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CONFIDENCE INTERVALS, POWER CALCULATION,
AND SAMPLE SIZE ESTIMATION FOR THE SQUARED
MULTIPLE CORRELATION COEFFICIENT UNDER
THE FIXED AND RANDOM REGRESSION MODELS:

A COMPUTER PROGRAM AND USEFUL STANDARD TABLES

JORGE L. MENDOZA AND KAREN L. STAFFORD
University of Oklahoma

In this article, the authors introduce a computer package written for Mathematica, the
purpose of which is to perform a number of difficult iterative functions with respect to the
squared multiple correlation coefficient under the fixed and random models. These func-
tions include, among others, computation of confidence interval upper and lower
bounds, power calculation, calculation of sample size required for a specified power
level, and providing estimates of shrinkage in cross validating the squared multiple cor-
relation under both the random and fixed models. Attention is given to some of the tech-
nical issues regarding the selection of, and working with, these two types of models as
well as to issues concerning the construction of confidence intervals.

Much emphasis has been placed lately on the importance of using confi-
dence intervals in data analysis in addition to or as opposed to performing
null hypothesis testing. Some authors have gone so far as to suggest the re-
placement or banishment of hypothesis testing (e.g., Schmidt, 1996). In the
replacement of hypothesis testing, it is argued that parameter estimates be ac-
companied by their margin of error—confidence intervals. Clearly, this rec-
ommendation is especially valid when sample size is either very large or very
small. Large sample sizes can produce statistical tests that are overly sensi-
tive and, thus, lead to the finding of statistically significant differences where
only minuscule differences between parameters actually exist. On the other
hand, small samples produce tests that are not very sensitive and lead to the
detection of only large differences between the parameters. There are other
reasons why these authors have argued against tests of hypotheses, but we
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will not discuss them here. We are not taking a position regarding the merits
or demerits of hypothesis testing. Others have already done this (e.g., Baril &
Cannon, 1995; Cohen, 1994; Frick, 1996; Hagen, 1997). Instead, we will fo-
cus on some of the technical issues inherent in constructing confidence inter-
vals. Confidence intervals on means are well understood and are generally
simple to construct. Consequently, we will not discuss them in detail. Confi-
dence intervals on correlations are more difficult to construct, especially
when they involve the multiple correlation coefficient. We will focus on cov-
ering the procedure involved in obtaining a confidence interval on the
squared multiple correlation.

Multiple correlation procedures are widely used in education and the
social sciences. The underlying statistical models for these procedures are of
two types. These models are referred to as fixed and random models or,
respectively, correlation and regression models. A mathematical exposition
of the two models is given in Sampson (1974). Mathematically, we can often
view the fixed model as a conditional random regression model. The random
model is more appropriate for nonexperimental situations in which the levels
of the independent variables are not fixed a priori. It is common in education
and other social sciences to have studies in which the levels of the multiple
independent variables for each experimental unit cannot be controlled and
are available only after the observations are made. This type of design clearly
falls under the random model. In contrast, under the fixed model, the levels of
the independent variables are fixed before data collection.

Ordinarily, when computing a multiple regression analysis in a statistical
package like SAS or SPSS, the researcher need not worry whether data fit the
assumptions of the random versus the fixed model. Tests of hypotheses and
estimates of parameters are the same under both models (see Figure 1). One
needs to be aware, however, of the model under which one is working when
trying to establish the necessary sample size for a desired power level or when
finding a confidence interval for the squared multiple correlation. In addition,
although for large samples the results of power calculations under the two
models are similar, researchers need to be aware of the model under which
they are working when computing power. Lee (1972) gave tables for power
calculations under the random model for the multiple correlation coefficient.
These tables are, however, difficult to use. An easier set of tables is found in
Gatsonis and Sampson (1989), but these tables only provide the sample size
necessary to obtain a specified level of power. Sample size estimation and
power calculations under the fixed model are given in Cohen (1988).

Power calculations, sample size determination, and confidence interval
estimation are more complex under the random model than under the fixed
model. Under the fixed model, the noncentral F distribution is used for calcu-
lations. This is a well-known distribution for which many tables and com-
puter programs are available. Unfortunately, not many computer resources
exist to aid the researcher working with the random model.
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Fixed Model

F-Distribution

Random Model

Figure 1. Testing the null hypothesis that p2 = 0 under the fixed and random models.

) Noncentral
Fixed Model F-Distribution
A Mixture of the
Random Model » Noncentral F With the
Negative Binomial

Figure 2. The appropriate distribution for constructing a confidence interval for p2 under the
fixed and random models.

Obtaining a confidence interval on the population squared multiple corre-
lation p° requires that we identify a model. A confidence interval obtained
under the fixed model is not the same as one obtained under the random
model. Confidence intervals obtained under the fixed model are usually
shorter than those obtained under the random model. The implication for us is
that we must determine which model is appropriate before we can embark on
computing the confidence interval for p>. Figure 2 illustrates the appropriate
distribution that must be used for constructing confidence intervals on p*
under the random or fixed model.

The construction of a confidence interval on p* under either the random
model or the fixed model is somewhat complex and requires the use of a com-
puter or special tables. We will outline the procedures used to construct confi-
dence intervals under both models. The construction of these intervals is
similar in principle but different in execution. Constructing a confidence
interval under the fixed model requires access to the noncentral F distribu-
tion. The experienced researcher can use this distribution, which is available
in SAS, to obtain the interval. We have written and compiled a package in
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Table 1
Functions Contained in MultipleR2 Mathematica Package

Function Usage Description

Random model

functions
probr probr[n,p,rho2,x] Computes the probability that Rris<x
confidence confidence[n,p,R2,plevel] Computes the lower or upper bound for
a p-level confidence interval for p2 given R
powerR2 powerR2[n,p,rho2,alpha] Computes the probability of rejecting the null
hypothesis that p2 =0 when p2 =rho2
findsample findsample[p,rho2,power, For power and alpha, computes the sample
alpha] size necessary to reject the null hypothesis
that p2 =0 when p2 =rho2
crossR2sample crossR2sample[p,rho2, Gives the necessary sample to obtain a
peross,diff] cross-validated R2 that does not differ from
rho2 by more than diff
crossR2 crossR2confidence[n,p, For a given rho2, returns the one-sided
confidence rho2,pcross] confidence interval for the cross-validated

R? at the p-cross level
Fixed model

functions
confidencefix  confidencefix[n,p,R2, Computes the lower or upper bound for a
plevel] p-level confidence interval for p2 given R
probf probf[n,p,fval] Computes the probability that the F is <
or = fval
powerR2fix powerR2fix[n,p,rho2, Computes the probability of rejecting the
alpha] null hypothesis that p2 =0 when p2 =rho2
invprobf invprobf[n,p,upperp] Inverse function for probf, returns the fval
stdnormal stdnormal[z] Computes the probability that a standard
normal variable is < z
findsamplefix  findsamplefix[p,rho2, For power and alpha, computes the sample
power,alpha] size necessary to reject the null hypothesis
that p2 =0 when p2 =rho2
invnormal invnormal[plevel] Inverse of std normal

Mathematica 3.0, in which we have included a set of functions that give the
confidence interval easily and directly under either the fixed or the random
model. We will illustrate the use of these functions later in this article. Addi-
tional useful functions, including a function to compute power under both
models, are included in the package. See the appendix for information about
accessing the Mathematica package, which is available from the authors.
Table 1 provides function, syntax, and output information for all of the avail-
able functions. Although it could be argued that better computational engines
exist, we have written the package in Mathematica 3.0 because of the ease
with which these functions can be incorporated into other calculations and
plotting functions that exist in Mathematica. For users without access to
Mathematica, we have created a set of confidence interval tables. (See Tables
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Table 2
Lower Bounds for >, N = 20

Ny Number of Predictors

R 2 3 4 5 6 8 10 2 14 16
30 002 0 0 0 0 0 0 0 0 0
32 012 0 0 0 0 0 0 0 0 0
34023 0 0 0 0 0 0 0 0 0
36 036 0 0 0 0 0 0 0 0 0
38 048 001 0O 0 0 0 0 0 0 0
40 .062 015 0 0 0 0 0 0 0 0
42 078 029 0 0 0 0 0 0 0 0
44 096 046 0 0 0 0 0 0 0 0
46 111 064 010 0 0 0 0 0 0 0
48 131 082 026 0 0 0 0 0 0 0
50 148 .101 046 0 0 0 0 0 0 0
52170 121 .069 .008 0 0 0 0 0 0
54189 .143 .088 029 0 0 0 0 0 0
56 214 .166 113 .052 0 0 0 0 0 0
58 237 190 135 0717 009 0 0 0 0 0
60 262 215 .164 .103 037 0 0 0 0 0
62 288 242 .188 .130 062 0 0 0 0 0
64 315 27 22 .16 095 0 0 0 0 0

2-8.) Next, we briefly discuss the general principles involved in finding a
confidence interval.

Confidence Intervals

The standard situation in setting a confidence interval on the mean of a
normal distribution is a straightforward procedure. Also, in the standard situ-
ation, the processes involved in obtaining a confidence interval and testing a
null hypothesis are very similar. The confidence interval is obtained by
“inverting” the hypothesis test. Consider the null hypothesis Ho: it = . The
test of this null hypothesis is performed by checking to see whether the inter-
val U, = ¢ SHN covers the observed sample mean x. If the interval does not
include the mean, we reject the null. Using this same interval with the sample
mean instead of |1,, we obtain the confidence interval on [, x £ tS/\/N .(Thet
in both situations refers to the appropriate cutoff point under the central ¢ dis-
tribution, and S refers to the sample standard deviation.) Before leaving the
subject of a confidence interval on the mean, it should be pointed out that
because a regression weight [ is a conditional mean, its estimation (point or
interval) is the same under the fixed or random model (see Sampson, 1974).

The inversion process is more complex in situations in which we are
unable to find a function of the estimator that is independent of the parame-
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Table 3
Lower Bounds for *, N = 30

Ny Number of Predictors

R 2 3 4 5 6 8 10 12 14 16
20 001 O 0 0 0 0 0 0 0 0
22 009 0 0 0 0 0 0 0 0 0
24 019 0 0 0 0 0 0 0 0 0
26 .030 002 0 0 0 0 0 0 0 0
28 041 014 0 0 0 0 0 0 0 0
30 .053 025 0 0 0 0 0 0 0 0
32 .067 .04 .01 0 0 0 0 0 0 0
34 .082 .053 023 0 0 0 0 0 0 0
36 .098 .070 .039 .005 0 0 0 0 0 0
38 115 .086 .053 .020 0 0 0 0 0 0
40 131 .103 071 .037 .003 0 0 0 0 0
42 150 121 .088 .055 019 0 0 0 0 0
44 168 139 .108 075 039 0 0 0 0 0
46 186 158 129 .095 059 0 0 0 0 0
A48 205 .18 15 116 .080 .001 0 0 0 0
S50 230 201 171 136 101 023 0 0 0 0
52 251 223 192 162 25 046 0 0 0 0
54 274 244 217 185 151 071 0 0 0 0
56 297 271 .240 21 175 098 004 0O 0 0
58 321 294 267 235 203 126 036 0 0 0
.60 346 318 292 262 229 154 065 O 0 0
.62 370 346 319 290 256 184 096 O 0 0
.64 397 372 347 32 287 217 13 025 0 0

ters of the sampling distribution. This is the case for the squared multiple cor-
relation p”. The confidence interval on p? is not a simple inverse of the proce-
dure used to test the null hypothesis. The problems lie in that the variance of
the sampling distribution of R* depends on p?. The process of finding a confi-
dence interval under this dependency requires working directly with the sam-
pling distribution of the squared multiple correlation R*. To explain briefly,
we must identify the values /,and #, that demarcate an area under the sam-
pling distribution equal to the chosen (1 — c)% level of confidence for each
possible value of p* (see Mood & Grabill, 1963). The values are selected such
that the sum of the conditional probabilities, P(R* <h, | p*) and P(R*>h, | p?),
equals o.. Without loss of generality, we focus on a specific n (sample size)
and p (number of independent variables) to illustrate the procedure.

Let us consider a 90% confidence interval on p*> when p =4 and n = 40. To
find the interval, we first find the values for &, and /, that make the sum of the
conditional probabilities .10. The &, and h, are found for many consecutive
values of p?in the interval (0,1). (Note that k, and £, yield the lower and upper
bounds of R?, respectively.) Plotting /, and h, for each p?, we can see that i,
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Table 4
Lower Bounds for °, N = 40

Nyo Number of Predictors

R 2 3 4 5 6 8 10 12 14 16
16 .004 0 0 0 0 0 0 0 0 0
18 013 0 0 0 0 0 0 0 0 0
20 .023 .003 0 0 0 0 0 0 0 0
22 .034 013 0 0 0 0 0 0 0 0
24 .046 .026 004 0 0 0 0 0 0 0
26 .058 .038 017 0 0 0 0 0 0 0
28 072 .052 .030 007 0 0 0 0 0 0
30 .086 .066 .044 021 0 0 0 0 0 0
32 102 .082 .06 .037 012 0 0 0 0 0
34 119 .098 .075 .053 029 0 0 0 0 0
36 135 115 .092 .070 045 0 0 0 0 0
38 154 133 .109 .087 .062 011 0 0 0 0
40 171 15 128 .106 .081 .029 0 0 0 0
42190 .170 147 124 .101 .049 0 0 0 0
44 209 .189 .168 .146 122 .070 012 0 0 0
46 .23 210 190 167 143 .091 034 0 0 0
48 251 232 21 187 165 114 056 0 0 0
S50 273 253 234 210 187 136 .082 015 0 0
52 .296 276 255 235 211 162 105 042 0 0
54 318 299 278 257 236 187 132 069 0 0
56 341 323 304 284 262 214 159 .098 .026 0
58 364 .346 328 308 287 240 188 126 058 0

.60 389 372 353 335 314 269 217 159 .089  .009
.62 414 397 380 360 341 297 247 188 123 .043
.64 44 425 407 .39 37 327 28 222 157 .08

and h, define two curves on the p>-R* plane. Given a specific value of R* (say
R*?), the confidence interval on p? is obtained by drawing a vertical line
through R*? parallel to the p* axis. This line intersects the two curves at points
h*, and h*,. When the points are projected onto the p* axis, we obtain the
upper and lower bounds for the confidence interval. In Figure 3, we see that if
the sample multiple correlation squared is .45, we can say with 90% confi-
dence that p* lies in the interval between .18 and .57. We discuss this proce-
dure at length in the next section.

One-Sided Confidence Interval on *

As we previously mentioned, the computation of a confidence interval on
p’is complex because we cannot find a function of the sample multiple corre-
lation R* (and p?) that is independent of the parameters of the sampling distri-
bution. When we cannot find such a function, we must work directly with the
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Table 5
Lower Bounds for >N =350

N5, Number of Predictors

R 2 3 4 5 6 8 10 12 14 16
.14 .008 0 0 0 0 0 0 0 0 0
16 .017 002 0 0 0 0 0 0 0 0
18 .028 012 0 0 0 0 0 0 0 0
20 .039 023 .007 O 0 0 0 0 0 0
22 .051 036 018 .002 O 0 0 0 0 0
24 .065 048 031 015 O 0 0 0 0 0
26 .079 062 046 028 010 O 0 0 0 0
28 .094 078 061 .043 .025 O 0 0 0 0
30 .110 093 077 058 .039 .002 O 0 0 0
32 127 11 092 075 057 017 0 0 0 0
34143 27 1100 092 074 034 0 0 0 0
36 .161 Jd44 127 109 092 .053 011 0 0 0
38 179 163 146 129 111 071 029 0 0 0
40 198 82 165 148 131 .092 .05 003 0 0
42 218 203 185 168 150 111 070  .024 0 0
44 238 223 206 189 171 134 092 .048 O 0
46 258 244 228 210 194 156 115 .070 021 0
48 281 264 249 235 215 18 138 .093 045 0

.50 .300 287 271 255 238 .203 162 119 .070  .015
52325 308 294 278 262 227 186 144 .097  .044
54 345 333 318 301 286  .251 213 170 124071
56 369 356 341 325 310 277 240 199 153102
58 394 380 367 351 335 303 267 226 183 131
.60 417 405 391 377 363 330 295 257 213 164
.62 443 429 416 403 389 358 324 285 244 196
.64 467 455 442 43 415 387 352 317 277 023

sampling distribution. Specifically, we work with the integral of the sampling
distribution of R* for a given value of p2. In a one-sided (1 — a)% confidence
interval, we must solve for 4 such that

P(R>> h) = j’l e(R% pH)dR’ = au. M

The function g(R?; p?) represents the sampling distribution of R? under the
fixed or random model. If & were only a function of p?, we could construct a
figure similar to Figure 3 and find the one-sided (1 — )% confidence interval.
Unfortunately, the sampling distribution of R* also depends on n and p. So the
approach taken in Figure 3 is not practical because / is a function of p?, n, p,
and o.. We are not working with a single curve but with a multidimensional
surface.
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Table 6
Lower Bounds for °,N =75

Ny Number of Predictors

R 2 3 4 5 6 8 10 12 14 16
10 007 0 0 0 0 0 0 0 0 0
12 017 007 O 0 0 0 0 0 0 0
14 028 018 .007 O 0 0 0 0 0 0
16 .04 03 018 .008 0 0 0 0 0 0
18 053 042 031 .020 .009 0 0 0 0 0
20 067 056 .045 034 022 0 0 0 0 0
22 080 070 059 .048 036 012 0 0 0 0
24 .09 .08 .075 .063 .051 .028  .002 O 0 0
26 112 .101 .090 .079 .067 .043 018 0 0 0
28 129 118 .107 096 .084 .060  .035 008 O 0
30 .146  .135 .24 112 .100 077 051 025 0 0
32 163 152 142 131 .12 095 .07 043 016 0
34 181 171 160  .148 138 114  .088 .062  .034 .009
36 201  .189 .18  .168 .157 .133  .109 .082  .054 .026
38 219 209 .198 .I188 .176 .154  .129 .103 075 .047
40 239 229 218 207 .19 .175 .15 .125 096 .068
42 259 249 239 229 218 .195 172 .146  .119 .091
44 280 269 259 249 238 216  .194 168  .142 113
46 300 291 282 271 260 238 215 .192  .165 .138
48 322 313 303 292 283 265 24 215 189 .163
50 343 333 326 316 306 285 263 240 214 .187
52 365 357 347 339 329 308 286 264 239 215
54 388 379 371 361 352 333 312 288 265 240
56 411 402 393 385 376 356 336 315 293 269
58 435 425 418 410 401 382 362 342 319 296
60 458 45 442 433 425 407 389 367 346 323
62 481 474 467 458 450 433 415 395 375 353
64 506 498 492 483 476 46 442 423 403 382

One practical solution to the problem is to write a computer program that
can integrate the sampling distribution of R*. The sampling distribution of R
is a function of the noncentral F distribution under the fixed regression
model. In contrast, the sampling distribution of R* under the random model is

-1 n-1 o
P(R2<h)={3(1,12),n_§_lj} (1-p*) 2 Y C.
k=0

C, is also a function of the incomplete beta function B,

s
(p/2) k!

k

)
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Table 7
Lower Bounds for *, N = 100

Nigo Number of Predictors

R 2 3 4 5 6 8 10 12 14 16
08 008 0 0 0 0 0 0 0 0 0
10 017 010 .002 0 0 0 0 0 0 0
12 029 021 013 .005 O 0 0 0 0 0
14 041 033 025 017 .009 0 0 0 0 0
16 055 046 038 .030 .021 .005 O 0 0 0
18 068 .060 .052 .044 035 018 O 0 0 0
20 083 075 067 059 050 .032 014 0 0 0
22 099 091 082 074 .066 .048 030 012 0 0
24 115 107 .099 .090 .082 .064  .046 028 012 0

26 132 23 115 107 .099 .08l .063 .044 .027  .020
28 149 142 133 124 117 .099 .080  .062 .043  .031
30 .167 159 151 142 134 117 099  .080 062 .045
32 186 177 170 161 153 136 118 .100 .081 .062
34204 196 188 180 172 155 138 119 100 .081
36 223 216 208 199 192 175 157 .140 120 .101
38 243 236 228 219 212 195 178 .160 142 123
40 262 256 248 240 232 217 200 182 164 145
42283 275 269 260 253 237 221 203 185 167
44 304 297 280 281 275 259 242 226 207 190
46 325 318 310 303 296 .281 265 249 231 213
A48 345 339 331 325 318 303 288 271 255 238
50 367 361 354 347 340 326 310 294 279 261
52 .390 383 376 369 363 349 335 318 303 286
54 411 405 398 392 386 373 358 343 329 312
56 434 428 422 415 409 397 382 368 354 337
58 457 450 446 439 433 421 407 394 379 364
.60 480 A74 468 464 457 445 432 419 405 391
.62 .503 498 492 488 481 469 457 445 432 417
.64 527 522 517 512 506 495 483 471 458 445

and (D)y= 1,0, =D+ 1)...([+k-1).(See Gatsonis & Sampson, 1989, for
more details.) We present here documentation for a program in Mathematica
3.0 to numerically integrate this sampling distribution. This program is part
of a larger package that we have developed to compute confidence intervals
and power.

The Mathematica 3.0 program is based on the following algorithm. For a
manifest value of R?, say R*?, the program sets & = R** and p” = R** and com-
putes the P(R* > R*?). If this probability is not equal to o, the value of p? is
changed, and the probability is computed again. The program searches
through different values of p® until it finds a p? such that

P(R*2R¥* | p*) =
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Table 8
Lower Bounds for * N = 200

Nogo Number of Predictors

R 2 3 4 5 6 8 10 12 14 16
.06 .013 009 .006 .002 O 0 0 0 0 0
.08 .025 021 017 013 009 .001 O 0 0 0
.10 .038 034 030 .026 .022 .014 006 0 0 0
A2 .052 048 .045 040 036 .028 019 015 .002 0

.14 .067 063 .060 .055 .051 .042 034 .027 .017 .007
.16 .083 080 .075 .071 .065 .058 050  .041 .039  .023
18 .099 .09 .092 .087 .083 .075 066  .057 .050 .040
20 117 113 108 .104 100  .092 .083 075 .066 .064
22 134 130 126 122 117 110 .101 .091 .083 .076
24 151 148 144 139 135 127 119 110 101 .092
26 .170 166 162 158 154 146 137 128 119 111
28 188 184 180 177 172 165 156 147 139 130
30 .207 203 199 195 192 183 175 167 159 150
32226 222218 215 211 203 .195 187 178 170
34 245 241 238 235 231 223 215 207 199 191
36 265 261 258 254 251 243 235 227 219 211
38 285 282 278 274 271 264 256 248 240 233
40 305 302 298 295 291 284 276 269 261 253
42 326 323 319 315 312 305 .298 .290 283 275
44 347 343 340 336 333 326 319 312 305 297
46 367 364 361 357 354 347 341 334 327 319
48 389 385 382 379 375 369 362 356 349 342
.50 410 407 404 400 397 391 384 378 372 365
52 431 428 425 422 419 413 407 401 395 387
54 453 450 447 445 441 435 430 423 417 411
56 474 472 469 467 463 458 452 447 440 434
58 .497 495 491 489 487 481 475 470 464 458
.60 519 516 514 512 509 503 499 493 487 482
.62 541 539 537 534 532 527 521 517 511 506
.64 565 562 560 557 555 550 .546 541 535 530

The p2 identified in this manner is the lower bound of the one-sided (1 — o)%
confidence interval. The search is conducted with an interval-halving algo-
rithm similar to the one given in MacCallum, Browne, and Sugawara (1996).
(All other search procedures in our Mathematica Package are based also on
this algorithm.)

The Mathematica Package

The Mathematica Package contains a set of functions for computing
power, constructing a confidence interval, and estimating the level of predic-
tion under either the random or fixed model. Table 1 lists these functions and
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Figure 3. Lower bounds (/2) and upper bounds (/) for the squared multiple correlation coeffi-
cient for sample size = 40 and number of independent variables = 4.

gives a short definition of each function. We did not use Mathematica’s
noncentral F distribution. Instead, we created our own because we found the
Mathematica function a bit unstable when we tried to integrate it under some
extreme conditions. Our noncentral F probability routine resembles the one
given in SAS 6.11.

One of the functions in the package computes the confidence interval
under the random model, whereas another function computes the confidence
interval under the fixed model. The package also includes functions for
power and sample size calculations under both models. The functions in this
Mathematica package were checked against existing tables for accuracy. The
functions always were extremely close to the table values. In addition, we
took precautions with the functions to stay within the accuracy limitations of
a 32-bit processor. We feel confident in the accuracy of our functions. We
have used the random confidence function in the package to create Tables 2
through 8. Researchers without access to Mathematica can use these tables to
find a confidence interval for p* under the random model.
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A Confidence Interval on the
Cross-Validated Multiple Correlation

Sometimes in accessing an obtained sample regression b, it is desirable to
estimate how well it will predict in future samples. This is a situation likely to
be encountered in many situations. The researcher generates a regression
equation in a validation study and would like to know how well the obtained
regression equation is likely to predict in future samples. Not exactly the
same question, but a related one, is how well the obtained regression equation
would predict if it were to be applied to the population. We call this measure
the predictive precision of the equation, and it is given by

7 2
o= VT ®
V's,.bo:
The vector X, contains the population covariances between the independent
and dependent variables. Similarly, X, is the variance-covariance matrix of
the independent variables. The predictive precision given in Equation 3 is a
random variable prior to data collection but a fixed parameter once we obtain
the regression equation (see Mendoza, 1977). The p> ranges from 0 to p*.
Under the assumption of multivariate normality, Park and Dudycha
(1974) have shown that the sampling distribution of pf follows the non-
central F distribution,
P =

1+ (p-1)
Flp-1.

with noncentrality parameter

- /(n—p—22>p2.
(I-p™)

For a given p?, we can find the probability that

P(pf >p, pz) =l-a. C))

By working backward, we can identify a lower bound for p_ that will satisfy
the probability statement in Equation 4. We have created a function “cross-
R2confidence” that for a given pz, n, p, and a specified confidence level, re-
turns a (1- o) lower bound for the level of predictive precision p>. For the
usual situation in which we do not know p?, we could use the sample multiple
correlation R, or, if we wish to be conservative, we could use the lower bound
of pz, which can be obtained with our random confidence interval function.
By using the sample multiple R*in the function “crossR2confidence,” we ob-
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tain an estimate of the “shrinkage”—the difference between the returned
value and the sample R*.

A Practical Example

Allen, Cipielewski, and Stanovich (1992) investigated the relationship
between the amount of time that 63 elementary school children spent reading
and a number of indicator variables. Two independent variables contributed
significantly to the prediction of reading time and were retained in their
model with R =.56, R*= 31. Assuming the random model, a one-sided confi-
dence interval is easily established with the Mathematica Package. Using
“confidence[63,2,.31,.95]” in the Mathematica package, we find that the
lower bound for a 95% confidence interval on p2 is .14; that is, we can say
with 95% confidence that p*is between .14 and 1. We could also get an idea of
the magnitude of the lower bound by looking at Table 5. Finally, we wish to
obtain an estimate of the shrinkage we would expect to see in a cross-valida-
tion study. Using the estimate of p? obtained from the sample, submitted to
the function in the form crossR2confidence[63,2,.31,.95], we find that the
cross-validated lower bound returned by the function is .265. Therefore, the
estimate of shrinkage is .045(.31 —.265).

What of a similar study conducted with, again, two independent variables,
the same observed R? of .31, but now with a sample size of only 30? The
decrease in estimation precision is seen by the lengthening of the confidence
interval, the lower bound of which is now returned as .06. As we would
expect, although the level of power is still good at .84, the value returned is
considerably less. The increased imprecision is also reflected in the estimate
of the cross-validated lower bound, which is decreased to .21, thus increasing
the shrinkage estimate to .10. Next, we consider the calculation of power.

In the process of planning an experiment, a researcher is interested in
detecting a medium effect size (p* = .13; Cohen, 1992) with a sample of 50
individuals and three predictors. To calculate power, the researcher enters
“powerR2[50,3,.13,.05],” and Mathematica returns .56. If the researcher is
not content with power of .56 and, instead, wants power to be .85, the
researcher may enter “findsample[3,.13,.85,.05],” and Mathematica returns
90. In this situation, the researcher needs 90 subjects to detect a medium
effect with power of .85.

Other Features

The Mathematica Package can also be used to make a few observations
regarding the effect of number of predictors and sample size on the size of the
confidence interval. To illustrate the relation between p and the size of the
confidence interval, consider Figure 4. By increasing the number of predic-
tors from two to six (while keeping R? at about .4), the width of the confidence
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Figure 4. The effect of increasing p on the width of the confidence interval.

interval on p2 isincreased from .82 (1 —.18) t0 .92 (1 —.08). As pis increased,
the size of the confidence interval is also increased. We would have to have an
increase in R* of approximately .08 just to keep the size of the confidence
interval at the same level. So, unless we could get an increase greater than .08
in R?, we would decrease precision by increasing the number of predictors
from two to six.

Our routine could be used to obtain this kind of information. We begin by
typing “confidence[41,2,.4,.95]” in Mathematica after loading the package,
and Mathematica returns the value of .175. The same operation for “confi-
dence[41,6,.4,.95]” yields a value of .0875. We can see the decrease
in precision as we moved from 2 to 6. By entering “confidence[41,2,.48,.95]”
(=.1725), we see that it would take at least an increase of .08 in the R* to get
back to the original level of precision. The evaluation between number of
predictors and the size of the confidence interval provides yet another tool in
trying to identify the “best” regression model. The package also may be used
to illustrate the effect of p on power. We can show that for a given difference,
as p increases, power decreases.
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Program Accuracy

As a final word about accuracy, we have checked and compared our
answers to many of the tables available in the literature, and they have always
agreed. We have also taken great care in ensuring that the numerical algo-
rithm stay in proper bounds. However, when n and p get large and R* gets
small, the numbers in some of the numerical algorithms may get too large for
the accuracy of some microcomputers. For the random functions up to an n of
200, we are confident that the results are accurate. For n greater than 200, the
result should be accurate as long as p is not too large (>16) and R is not too
small (<.10). A researcher dealing with large n and p values combined with
small values of R* should take a few precautions to make sure that the func-
tions are returning the appropriate values. Because the algorithm involving
the fixed functions are simpler than those involving the random functions,
both functions should be executed to make sure that the values are close when
n and p are both large. In addition, we can step down in sample size or p and
rerun the function to ascertain that the value obtained earlier is within appro-
priate bounds. A final alternative is to pursue an approximation. Lee (1972)
gives a normal approximation for R when n and p are large.

Program Syntax

Again, further information including the syntax necessary to use the pack-
age can be found in the appendix and in Table 1. We hope it is apparent that by
using this package, a large amount of previously difficult-to-acquire infor-
mation can now be obtained quickly and easily. Note that the package can be
used with either the random or fixed model. The functions that deal with the
fixed model have the word fix attached to them. We hope that other research-
ers will find this package to be a useful tool.

Appendix
Using the Package (multiple R*) Functions in Mathematica 3.0

The Mathematica Package within which all the functions are located is named
MultipleR2. Here, we offer instructions for accessing the package from both a floppy
disk and a fixed disk. Furthermore, the names of each function within the package, the
syntax for using most functions, and a brief description of the output of these func-
tions is given. It should be noted that after loading the package, additional syntax and
output information is available by typing a question mark (?) followed by the function
name. Users of the package also should be aware that the package was written and
compiled using Release 2, November 1997 or later. When using Release 1, April
1997, some apparent computational difficulties have occurred in a number of the
functions when certain parameter values are used. Wolfram Research has been con-
tacted regarding these problems and is working on a solution to the problem.
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Before you begin, it is important to know that Mathematica commands are case
sensitive. You must enter the commands and arguments exactly as they appear in this
text. Also, to submit commands and arguments to Mathematica for evaluation, the
shift key and the enter key must be pressed simultaneously.

Accessing the Package

If you are accessing the package from a floppy disk, at the Mathematica edit
screen, with the disk in drive A, submit the following string:

<<A:\MultipleR2.m

All the functions within the MultipleR2 package will now be available after simulta-
neously pressing the SHIFT and ENTER keys.

If you are accessing the package from a fixed disk, we assume the platform under
which you are running Mathematica 3.0 is Windows-95, 98, or NT. Although
Mathematica runs essentially the same under other platforms, the file structure under
other platforms may differ. If you wish to use the package from a hard drive, you must
first copy the package into a subdirectory (folder) under Mathematica 3.0. Although it
can be copied into an existing folder, we recommend creating a dedicated folder under
Mathematica 3.0 for personal programs. This folder we call “myprograms.” Once the
package is copied into the desired folder, type the following to retrieve the package:

<<Foldername ‘MultipleR2’

where foldername is replaced with the name of the folder under which you have cop-
ied the package, and the ‘ is the grave accent symbol found in the upper-left portion of
your keyboard. The functions within the package will now be available to you.

Using the MultipleR2 Functions

In this section are most of the functions available in the MultipleR2 package to-
gether with a description of the output of each. The function names are written in the
correct and required case. As noted in this article, for all functions, N represents sam-
ple size, and p represents the number of predictors in the model.

The probr function (probr{N,p,r2,X]) returns the probability that R* < X under the
random regression model in which X is the parameter value against which the estimate
from the sample is compared.

The confidence function (confidence[N,p,r2,plevel]) returns the upper or lower
bound for a p-level confidence interval for p2 given an observed R’ under the random
regression model.

The crossR2sample function (crossR2sample[p,rho2,pcross,diff]) returns the
necessary sample size to obtain a cross-validated R’ that does not differ from p2 by
more than “diff” with probability pcross.

The findsample function (findsample[p,Rho2,power,alpha]) for the given power
and oo computes the sample size necessary to reject the hypothesis that p2 =0 when p2
= R’ under the random regression model.
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The powerR2 function (powerR2[N,p,Rho2,alpha]) computes the probability of
rejecting the hypothesis that p2 =0 when p2 =K.

The crossR2confidence function (crossR2confidence[N,p,Rho2,pcross]) returns,
for a given R, a one-sided confidence interval for the cross-validated R’ at the pcross
level.

In addition to the functions listed above, several other useful functions are in-
cluded in the package. Furthermore, functions that return the fixed model equivalents
for the random model values are included in the package.
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