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Abstract

Power spectral density (PSD) of reflectivity and polarimetric variables have the po-

tential to provide the linkage between the dynamics and the microphysical properties

of scatterers within the radar resolution volume. The artificial intelligence (AI) meth-

ods such as fuzzy logic and neural network have been widely used in weather radar.

The main goal of this dissertation is to exploit spectral analysis and AI methods to the

two specific areas of tornado detection and the retrieval of microphysical properties

of rain-hail mixture.

A novel approach of using both fuzzy logic and neural network, termed neuro-fuzzy

tornado detection algorithm (NFTDA), is developed to integrate tornado’s shear,

spectral and polarimetric signatures for both regular resolution and high resolution

with the goal of enhanced and robust detection. The spectral signatures are charac-

terized by spectrum width and three additional parameters derived from the analysis

of bispectrum, statistics, and Eigen-ratio. The statistical analysis from numerical

simulation and real data has shown that NFTDA provides improved detection com-

pared to the conventional shear-based detection algorithm in terms of probability

of detection (POD), false alarm rate (FAR), and detection range. For the retrieval

problem, a model of Doppler and polarimetric spectra is first developed for the pres-

ence of both raindrops and melting hail. The melting ratio is introduced the first

time in the retrieval using weather radar. A genetic algorithm (GA) is introduced

to solve the optimization of fitting the observed Doppler and polarimetric spectra to

the model. Consequently, the drop size distribution (DSD) of both rain and hail,
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the melting ratio, the radial component of ambient wind and spectrum broadening

can be retrieved. The retrieval algorithm is demonstrated and tested using numerical

simulations.
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Chapter 1

Introduction

1.1 Literature Review

Weather radars not only can improve the warnings of severe and hazardous weather,

but can also provide important atmospheric information to forecasters and researchers

(e.g., Serafin and Wilson 2000; Council 2002). The warning lead time has been

increased significantly after the installation of the Weather Surveillance Radar-1988

Doppler (WSR-88D) (Polger et al. 1994; Bieringer and Ray 1996; Simmons and Sutter

2005). The upgrade of the WSR-88D to dual polarization is underway, which can

provide benefits such as improved hail detection, better severe thunderstorm warnings,

improved rainfall estimation and flood and flash warnings (e.g., Zrnić 2007; Spring

et al. 2009). It was reported that enhanced shear signature can be obtained with

super-resolution (Brown et al. 2002), which was proposed to be implemented by the

WSR-88D (e.g., Torres and Curtis 2007) and is currently available on a number of

WSR-88Ds. Enhanced tornado vortex signatures (TVS) with super-resolution have

been demonstrated using numerical simulation (Brown et al. 2002).

Reflectivity, mean radial velocity and spectrum width are the three fundamental

radar measurements, which are termed Doppler moments (Doviak and Zrnić 1993).

Doppler moments have been used in various applications, such as rainrate estimation,

tornado detection, clutter filtering and downburst prediction (e.g., Doviak and Zrnić
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1993; Mitchell et al. 1998; Sachidananda and Zrnić 2000; Smith et al. 2004). With

the capability of dual polarization, microphysical properties of scatterers within radar

resolution volume, such as type, size and orientation, can be studied with the help of

the polarimetric variables such as differential reflectivity ZDR, differential phase φDP ,

and cross-correlation coefficient ρhv. Polarimetric variables have been used to improve

several radar applications such as rainrate estimation, drop size distribution (DSD)

retrieval, severe hailstorm detection and hydrometeor classification (e.g., Ryzhkov and

Zrnić 1996; Bringi and Chandrasekar 2001; Gorgucci et al. 2002; Zrnić et al. 1993; Liu

and Chandrasekar 2000). Moreover, polarization variables can help with the diagnosis

of supercell thunderstorms, tornado identification and freezing-level estimation etc.

(e.g., Kumjian and Ryzhkov 2008; Ryzhkov et al. 2005; Brandes and Ikeda 2004).

The Doppler spectrum, is a power spectral density (PSD) of reflectivity and rep-

resents a power-weighted distribution of scatterers’ radial velocities within the radar

resolution volume. The commonly used Doppler moments are derived from the first

three moments of Doppler spectrum. In other words, Doppler spectrum has the po-

tential to provide insight of scatterers’ motion within the radar volume. Moreover,

the polarimetric spectra of differential reflectivity (ZDR(v)), cross correlation coeffi-

cient (ρhv(v)) and differential propagation phase (φDP (v)) for example, can further

provide the linkage between the hydrometeors’ microphysics and dynamics if their

terminal velocities can be Doppler sorted (e.g., Spek et al. 2007; Unal and Moisseev

2004).

Fabry and Keeler (2003) identified spectral processing as one of the trends to en-

hance the accuracy and sensitivity of weather radar. Spectral processing plays an

important role to help in advancing our understanding of the atmosphere, developing

new technologies, and improving current algorithms. A tornado vortex was reported

to produce bimodal or flattened spectral signatures (Zrnić and Doviak 1975; Zrnić

and Istok 1980; Bluestein et al. 1997; Yu et al. 2007). Non-Gaussian Doppler spectra
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were observed in a tornadic supercell storm that can be related to strong vertical

shears (Yu et al. 2008). Apparent separation between the echoes from clear-air and

biological scatterers was observed in the Doppler spectra, ZDR spectra (ZDR(v)) and

ρhv spectra (ρhv(v)), which can be used to recover clear-air wind fields (Bachmann

and Zrnić 2005). Gaussian model adaptive processing (GMAP) (Siggia and Passarelli

2004) showed better Doppler moment estimation for clutter filtering (Ice et al. 2004).

A ground clutter suppression algorithm was developed by Moisseev et al. (2002) based

on the different degrees of polarizations for clutter and weather. As a result, improved

performance can be obtained even when weather signals have near-zero radial veloci-

ties. In addition, Yanovsky et al. (2005) used ZDR spectra to retrieve the turbulence

intensity in rain. Furthermore, polarimetric spectra from higher elevation angles of-

fer the possibility of DSD retrieval due to size sorting and the existing relationship

between the particles’ sizes, shapes and terminal velocities. For example, the rain

DSD, turbulence broadening and shape parameters can be retrieved using Doppler

spectrum and ZDR (Moisseev et al. 2006). Moreover, the microphysical properties

of two types of ice particles above melting layer can be retrieved using the combina-

tion of Doppler and ZDR spectra (Spek et al. 2007). The texture of ZDR, φdp and

ρhv spectra exhibits different values for precipitation, clutter and noise. Therefore,

these three parameters were combined by fuzzy logic for adaptive clutter filtering and

noise suppression (Moisseev and Chandrasekar 2008). Recently, Moisseev and Chan-

drasekar (2007) developed a classification algorithm for ice particles using both the

bulk variables of reflectivity, specific differential phase (KDP ), linear depolarization

ratio (Ldr), and polarimetric spectra of ZDR, φDP , ρhv.

Doppler and/or polarimetric moments can be used directly to diagnose and detect

the weather of interest, but often it is desirable to extract useful information from

all the variables. Artificial intelligence (AI) methods such as fuzzy logic and neural

network have been widely used in atmospheric radars to integrate all the available
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information for detection or estimation. A fuzzy logic approach was proposed to

discriminate between clear sky and cloud, and if the clouds are present, to further

discriminate between single-layered and multilayered clouds (Baum et al. 1997). Re-

cently, a fuzzy logic algorithm was developed to segregate precipitating from non-

precipitating echoes using polarimetric radar observations at C band (Gourley et al.

2007). Kessinger et al. (2003) developed an anomalously-propagated (AP) return

filtering algorithm, which can help to improve the estimation of rainfall accumula-

tion. Fuzzy logic methods were also applied to the estimation of the mixing depth

of the convective boundary layer with wind profiling radars (Bianco and Wilczak

2002). Moreover, a fuzzy logic method was developed to improve moment estimation

while the data are contaminated by birds, aircraft, and range folding (Cornman et al.

1998). The approach of neural network (NN) has been used to solve prediction and

estimation problems in weather radar. For prediction, NN was applied to the forcast

of damaging winds, tornadoes, and severe-hail size (Marzban and Stumpf 1996, 1998;

Marzban and Witt 2001). For estimation, the NN has been applied to improve the

rainrate and the retrieval of microphysical properties of precipitation. For example,

accurate rainfall rate was estimated using an adaptive NN (Liu et al. 2001). The

improved rainfall rate estimation was reported by adding surface data using a NN

(Root et al. 2010). Vulpiani et al. (2009) developed a novel algorithm for improving

rain DSD retrieval using polarimetric variables based on NN. The combination of NN

and fuzzy logic named neuro-fuzzy system has not only the learning capability of

NN but also the advantages of the rule-based fuzzy logic system. An novel hydrom-

eteor classification algorithm was developed by Liu and Chandrasekar (2000), where

polarimetric variables are considered in a neuro-fuzzy system. Moreover, a genetic

algorithm (GA), which is one type of neural networks, shows attractive capability of

solving problem of discontinuous, nondifferentiable, stochastic, or highly nonlinear.

In this work, a neuro-fuzzy algorithm is developed to improve tornado detection, and
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a GA algorithm is introduced to solve the nonlinear optimization of DSD retrieval for

the presence of raindrops and melting hail.

The subjective detection of tornadic storms using hook-shape radar returns was

first documented by Stout and Huff (1953), and was suggested as an indicator of

tornadoes (Fujita 1958). However, Forbes (1981) found that more than half of the

tornadoes in his study did not exhibit apparent hook signatures and suggested that

hook echoes may not be a reliable indicator. A unique feature of TVS, was first

observed by Burgess et al. (1975) and Brown et al. (1978) using a pulsed Doppler

radar. The basic idea of the current tornado detection algorithm (TDA) is to search

for strong and localized azimuthal shear in the field of mean radial velocities (e.g.,

Crum and Alberty 1993; Mitchell et al. 1998). However, because of the smoothening

effect caused by the radar resolution volume, the shear signature can be significantly

degraded if the size of tornado is small compared to resolution volume (Brown and

Lemon 1976).

The DSD is one of the most important information to understand the micro-

physical property of precipitations, and several DSD retrieval methods using radar

data have been developed in the past. The DSD retrieval using VHF Doppler radar

was first reported by Wakasugi et al. (1987). In their work, the DSD of precipita-

tion and the background atmospheric parameters such as the mean radial wind and

atmospheric turbulence were simultaneously derived from Doppler spectra. Similar

to Sato et al. (1990), based on the UHF profiler with vertically incident observa-

tions, the ambient air motion and rain DSD can be retrieved by a nonlinear least

squares optimization (Williams 2002). It has been shown that using dual-wavelength

radar, the DSD of snow can be accurately estimated if the measurements from at

least one wavelength is located in a non-Rayleigh region (e.g., Matrosov 1998; Liao

et al. 2005). Moreover, a method for rain rate and DSD from polarimetric radar

measurements was proposed by Zhang et al. (2001a). Recently, it was reported that
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the raindrop size-shape relation and the DSD were retrieved using the combination

of Doppler spectrum and the bulk ZDR from a sufficiently high elevation angle (larger

than 300) (Moisseev et al. 2006). The DSD retrieval becomes more challenging if a

mixture of two and more types of precipitations are present because more parameters

need to be determined. In Spek et al. (2007), the DSD of both plates and aggregates

is retrieved simultaneously by a non-linear fitting to both Doppler and ZDR spectra.

The focus of this research is to exploit the additional information provided by

spectral analysis to develop a novel tornado detection algorithm and to retrieve mi-

crophysical properties using AI methods.

1.2 Motivations

The main scientific goals of this research are to (1) develop a novel algorithm to

improve tornado detection and (2) estimate the melting ratio for the presence of

raindrops and hailstones and their DSDs. The motivations for each goal are provide

as follows.

The conventional tornado detection algorithm (TDA) searches for gate-to-gate

velocity difference (Mitchell et al. 1998), and a prominent tornado feature is identified

if the velocity difference is larger than pre-defined thresholds. However, the velocity

differences are smoothened by the increasing size of radar volume with range and

consequently, missed detection can occur if a tornado is located at far ranges. It was

reported that the NSSL TDA has the probability of detection (POD) of 43%, false

alarm rate (FAR) of 48%, and critical success index (CSI) of 31% (Mitchell et al.

1998).

Wide and bimodal tornado spectra were observed from both simulations and real

data (e.g., Zrnić and Doviak 1975; Zrnić and Istok 1980; Bluestein et al. 1997; Yu

et al. 2007). Those results showed that the Doppler spectra from tornadic region

have a distinct character that sets these apart from other spectra. Moreover, Yu
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et al. (2007) have shown that these distinct features can be maintained while shear

signature becomes difficult to identify. In other words, the TSS has the potential in

helping tornado detection. In order to apply TSS to tornado detection, they need

to be characterized. Another tornado signature from debris observed by polarimetric

radars have been reported (e.g., Ryzhkov et al. 2005; Kumjian and Ryzhkov 2008;

Bluestein et al. 2006), and can also be used to facilitate or enhance tornado detec-

tion. It is desirable to develop an algorithm that can use all the available information

with the goal of reliable and robust tornado detection. Moreover, Brown et al. (2002)

recently demonstrated that shear signature can be enhanced using half-degree angu-

lar sampling (super-resolution) despite slightly increased statistical errors in velocity

data.

Compared to legacy resolution associated with Doppler data (radial velocity and

spectrum width) on a 250 m-by-1o grid, super-resolution can provide Doppler data

on a 250 m-by-0.5o grid through finer azimuthal sampling with a smaller effective

beamwidth (Brown et al. 2002; Torres and Curtis 2007). To obtain the desired az-

imuthal resolution and maintain compatibility with existing signal processing func-

tions, the system will collect overlapping signal every 0.5o (Torres and Curtis 2007).

According the setting of WSR-88D, effective beamwidth (θb) can be 1.02o for super-

resolution and 1.39o for legacy resolution, respectively (Brown et al. 2002). Currently,

Doppler moments in super-resolution are collected by a number of WSR-88Ds. There-

fore, in order to engage with this upgrade of WSR-88D, it is important that the detec-

tion algorithm to be developed is capable of handling super-resolution. Additionally,

most weather radars only provide Doppler moments. Thus, the detection algorithm

to be developed is flexible to take in different combinations of tornado features.

The melting process of hailstones is very important and is related to mircophysics

such as terminal velocity, dielectric constant and latent heat transfer. The melting

ratio is defined by the ratio of the water fraction over the melting hailstones (Jung
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et al. 2007). Simply speaking, one can consider that in the melting process, the water

on the surface of the hail core increases as the melting hailstone falls, but the total

mass of melting hailstone is conserved. In other words, the shedding and collision

of the melting hails are not considered. Since the melting hailstone is water-coated,

the water fraction which is associated with higher dielectric constant will increase the

hailstone’s backscattering cross section during the melting process. However, to our

knowledge no algorithm has been developed for the estimation of the melting ratio

using weather radar. It is the first time to propose the retrieval of melting ratio using

Doppler and ZDR spectra if the radar elevation angle is sufficiently high. Furthermore,

the retrieval problem becomes more complicated when the melting hail stones co-exist

with raindrops because the number of variables to describe the microphysics increases.

In this work, a novel algorithm is developed to retrieve the melting ratio of hailstones

in the rain-hail mixture and at the same time, the DSD of raindrops and hailstones

using a GA.

1.3 Organization of Dissertation

The main purposes of this study is to explore the application of spectral analysis and

AI methods specifically to tornado detection and the retrieval of melting ratio and

DSDs for the rain-hail mixture. This dissertation is organized as follows:

• Chapter 2: Doppler and polarimetric ZDR spectra are introduced. The esti-

mation of the two spectra is briefly reviewed. In addition, the bias, standard

deviation, and the windowing effect on Doppler spectrum estimator is discussed.

The numerical simulation of tornado Doppler spectrum is developed to study

the tornado spectral signatures qualitatively.

• Chapter 3: The parameters that can be used to quantify the TSS are developed.

The performance of these parameters are statistically analyzed using numerical
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simulations developed in Chapter 2. The tornado debris signatures, and the

impacts of super-resolution on tornado shear, spectral and debris signatures are

also examined.

• Chapter 4: An novel neuro-fuzzy tornado detection algorithm (NFTDA) is de-

veloped, which can integrate all existing tornado signatures. In this work, the

NFTDA is specifically trained for four different combinations of input features

based on (1) availability of feature parameters, (2) performance behavior, and

(3) the research values. The performance of NFTDA with both legacy and

super-resolution is statistically analyzed and compared to conventional TDA

using both simulation and real cases.

• Chapter 5: The application of spectral analysis and GA to retrieve the micro-

physical properties of rain-hail mixture is introduced. The analytical model

of both Doppler and ZDR spectra from the mixture of raindrops and melt-

ing hailstones is developed. The relation between the melting ratio and the

backscattering cross section is obtained using the 7th order polynomial fitting

to the data from T-matrix at C-band. The retrieval problem is formulated

as a highly non-linear optimization and is solved using a GA algorithm. The

retrieval of the DSDs and melting ratio is demonstrated and tested using nu-

merical simulations. Moreover, the sensitivity of the retrieval algorithm to the

input microphysical parameters is analyzed and discussed.

• Chapter 6: A summary of this research is presented. Future work is proposed

and discussed.
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Chapter 2

Tornado Doppler Spectrum

A pioneering work in the measurement of tornado spectra was done using a 3-cm

continuous wave (CW) radar (Smith and Holmes 1961). Atlas (1963) expected a

broad and flat spectrum to be observed by a pulsed radar if a tornado is within the

radar resolution volume. Although the history of tornado spectrum measurements

is long, the number of observed and studied cases is relative small. This is largely

because neither the technology to process spectra nor the technology to recored vo-

luminous amounts of time series data were readily available. Analytical simulations

have shown that tornado spectral signatures (TSS) with wide and bimodal pattern

can be obtained if the tornado is centered close to the radar beam (Zrnić and Doviak

1975). Such wide and bimodal signatures were then verified by both pulsed Doppler

radar (Zrnić and Istok 1980; Zrnić et al. 1985) and mobile frequency modulated CW

(FM-CW) radar (Bluestein et al. 1993, 1997) with extremely high maximum unam-

biguous velocity of approximately 90 m s−1. In this work, TSS and TDS is applied to

improve the detection of tornado vortices from traditional velocity-based algorithm.

Before further investigating tornado Doppler spectrum and its characterization, it is

necessary to provide the basic idea of spectrum estimation including the bias, vari-

ance and the impact of window function. In this chapter, a review of the Doppler

spectrum and the simulation of tornado Doppler spectrum are presented.
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This chapter is organized as follows. In section 2.1, a review of Doppler spectrum

is presented including the estimation of Doppler spectrum, the bias, variance and

the windowing effect in the spectrum estimation. Moreover, the calculation of ZDR

spectrum is introduced. In section 2.2, the tornado Doppler spectrum is introduced

and the numerical simulation of tornado Doppler spectrum is presented and discussed.

Moreover, several factors affecting spectrum shape are analyzed. The summary is

presented in section 2.3.

2.1 Review of Doppler Spectrum

2.1.1 Estimation of Doppler spectrum and differential reflectivity

spectrum

The Doppler spectrum S(f) is defined as the Discrete Time Fourier Transform (DTFT)

of the autocorrelation function R(l):

S(f) = lim
M→∞

Ts

M−1
∑

l=−(M−1)

R(l)e−j2πfTsl (2.1)

and the inverse relation can be obtained using the following equation:

R(l) =

∫ 1/2Ts

−1/2Ts

S(f)ej2πfTsldf (2.2)

where the Doppler spectrum has a repetitive cycle equal to T−1
s , twice the Nyquist

frequency.

The autocorrelation function (ACF) of a complex wide-sense-stationary signal is

defined as:

R(l) = lim
M→∞

1

M

M−|l|−1
∑

m=0

V ∗(m)V (m+ l) (2.3)
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where V (m) is the complex voltage of the mth sample. For a finite number of samples,

the estimate of autocorrelation R̂(l) (the caret is used to denote estimator) is obtained

using the following equations:

R̂(l) =











1
M

M−|l|−1
∑

m=0

V ∗(m)V (m+ l) for |l| ≤M − 1

0 otherwise

(2.4)

Two methods are commonly used to estimate the Doppler spectrum (power spec-

tral density). The first method is termed the Blackman-Tukey method. Using this

method, the power spectrum estimate can be obtained using Eq. (2.1) and the esti-

mate R̂(l) in Eq. (2.4):

Ŝ1(f) = Ts

M−1
∑

l=−(M−1)

R̂(l)e−j2πfTsl (2.5)

The other one named periodogram uses the DTFT to compute Ŝ2(f) directly from

the data:

Ŝ2(f) = |Z(f)|2Ts/M (2.6)

where Z(f) is the DTFT of the complex signals V (m).

Z(f) =
M−1
∑

m=0

V (m)e−2jπfTsm (2.7)

It can be shown in the following derivation that the two methods of spectrum esti-

mation are identical.

Ŝ2(f) = TS

M

[

M−1
∑

m=0

V ∗(m)ej2πfTsm
M−1
∑

n=0

V (n)e−j2πfTsn

]

= Ts

M

M−1
∑

m=0

M−1
∑

n=0

V ∗(m)V (n)e−j2πfTs(n−m)

= Ts

M−1
∑

l=−(M−1)

R̂(l)e−j2πfTsl

= Ŝ1(f)

(2.8)

where l = n −m. The equivalence between these two equations indicate that we do

not need to estimate the ACF. Instead, Doppler spectrum can be estimated more

efficiently by applying FFT to the time series data (periodogram).
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The differential reflectivity spectrum can be estimated as (Yanovsky et al. 2005;

Bachmann and Zrnić 2005, 2006):

ZDR(f) = 10 × log10

Shh(f)

Svv(f)
+ C (dB) (2.9)

where Shh(f) and Svv(f) are the Doppler spectra obtained with horizontally and ver-

tically polarized waves, respectively, and C is the calibration constant that accounts

for the difference in the system gains of the two channels. It should be noted that

normally the Shh(f) is represented by S(f).

2.1.2 Quality of Spectrum Estimates

Bias and variance are the two fundamental attributes for measuring the quality of the

estimators. If E[Ŝ2(f)] = S(f), Ŝ2(f) is unbiased, where S(f) is the true spectrum.

The bias and variance of periodogram estimation have been derived in Doviak and

Zrnić (1993). In order to investigate the impact of window function on the spectrum

estimation, the finite segment of complex sequence VM(m) is introduced as (Doviak

and Zrnić 1993):

VM(m) = V (m)d(m) (2.10)

where

d(m) =











1 0 ≤ m ≤M − 1

0 otherwise
(2.11)

The weighting sequence d(m) is referred to as the data window because it has only

a finite portion (of length M) of the infinite sequence V (m). With VM(m) expressed

by Eq. (2.10), the expectation of Eq. (2.6) can be written as:

E[Ŝ2(f)] = TS

M

[

M−1
∑

l=−(M−1)

M−1−|l|
∑

m=0

d∗(m)d(m+ 1)E[V ∗(m)V (m+ 1)]e−j2πfTsn

]

= Ts

M−1
∑

l=−(M−1)

R(l)e−j2πfTsl
M−1−|l|
∑

m=0

d∗(m)d(m+1)
M

= Ts

M−1
∑

l=−(M−1)

w(l)R(l)e−j2πfTsl

(2.12)
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Note we have assumed V (m) to be wide-sense stationary (WSS), which means that

E[V (m)V ∗(m + l)] is independent of m (only a function of l). Therefore, only the

data window product is summed over m. The sum of data window products is the

correlation of the data window samples and is called the lag window w(l) (Doviak

and Zrnić 1993):

w(l) =
1

M

M−1−|l|
∑

m=0

d∗(m)d(m+ l) (2.13)

If a rectangular data window function is used, a triangular (i.e., Bartlett) lag

window function will be produced:

w(l) =











1 − |l|
M

−M ≤ l ≤M

0 otherwise
(2.14)

By substituting Eq. (2.14) into Eq. (2.12), the expected value of spectrum estimate

can be rewritten in the following form:

E[Ŝ2(f)] = Ts

M−1
∑

−(M−1)

(1 − |l|
M

)R(l)e−j2πfTsl (2.15)

Eq. (2.15) equals the true spectrum of Eq. (2.1) only if M → ∞. Therefore the peri-

odogram is a biased estimate of the Doppler spectrum (or asymptotically unbiased).

However the bias can be reduced by collecting longer data set (i.e., larger M).

If the in-phase and quadrature components of V (m) are assumed to be zero-

mean white Gaussian distribution, the variance of periodogram estimate is derived in

Doviak and Zrnić (1993) as shown in the following equation.

var[Ŝ2(f)] = E2[Ŝ2(f)] (2.16)

It is clear that unlike the bias, the variance is not reduced by a longer data set.

However, the variance can be decreased through averaging a number of spectrum

estimates:

Ŝav(f) =
1

N

N
∑

n=1

Ŝn
2 (f) (2.17)
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where Ŝn
2 (f) = Ts

M
|

M−1
∑

m=0

Vn(m)e−j2πfmTs|2. Each Vn(m)(n = 1, 2, ..., N) is a M point

data sequence. If Ŝn
2 are independent of each other, then the variance can be decreased

as:

var[Ŝav(f)] =
var[Ŝ2(f)]

N
(2.18)

2.2 Doppler Spectrum From Tornado Vortices

2.2.1 Observations of tornado spectra

The Doppler spectrum for weather is defined by the following equation (Doviak and

Zrnić 1993).

S(r0, v) =

∫

v=η

CW 2
r (r)f 4

b (θ)Z(r)|∇v(r)|−1ds1ds2 (2.19)

where r0 is a vector in 3D space, C is a parameter that is a function of radar wave-

length, peak transmitted power, range, and antenna gain, W 2
r (r) is the range weight-

ing function, f 4
b (θ) is the two-way antenna pattern, Z(r) and v(r) are the reflectivity

and radial velocity fields, respectively, and ds1 and ds2 are two orthogonal differential

lengths on the surface of a constant v (isodop). The radar is located at the origin

and radar resolution volume is centered at r0. The term of velocity gradient is used

to adjust the density of scatterers between the two isodop surfaces. The magnitude

of Doppler spectrum represents the return power from all the scatterers within the

radar resolution volume that have the same radial velocity. The mean Doppler veloc-

ity and spectrum width are defined from the first and second moments of a Doppler

spectrum (Doviak and Zrnić 1993). Note that f = − 2v
λ

, where f , v and λ is the

Doppler frequency, radial velocity and wavelength in Hz, m s−1 and m, respectively.

Recently, Yu et al. (2007) reported that tornado spectra observed from systems

and setting that are similar to the operational WSR-88D are often flat, similar to a

white noise spectrum but with significant signal-to-noise ratio (SNR). These results

have shown that the Doppler spectra from tornadic regions have a distinct character
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that sets these apart from other spectra. To study tornado spectrum quantitatively,

numerical simulations of tornado spectrum are performed in the following section.

2.2.2 Numerical simulation of tornado spectra

To fully understand the characterization of tornado Doppler spectra under different

situations such as different size/range, multiple vortexes, background wind, shear en-

vironment etc., the numerical simulation of tornado spectra developed by Yu et al.

(2007) is adopted in this work. To simplify the problem, in the simulation it is as-

sumed that the reflectivity and velocity are independent of height. In addition, the

velocity field of each vortex is modeled by a combined Rankine vortex (Kundu and Co-

hen 2002). A virtual WSR-88D with 1.39o effective beamwidth (θb) and 250-m range

resolution was used. Consequently, the Level I time series data are generated with

desirable SNR and the three spectrum moments are estimated using the autocovari-

ance method (Doviak and Zrnić 1993). Under the assistance of this simulation tool,

the signatures of tornado spectra under different situation, such as range, reflectivity

structure and shear environment can be understood clearly.

2.2.2.1 Simulation approach

A Doppler spectrum represents the power weighted radial velocity distribution of

scatterers within the radar volume. The magnitude of Doppler spectrum at a veloc-

ity v is the return power from all scatterers with the same radial velocity v. The

received power from each scatterer is determined by the reflectivity and radar weight-

ing function at the scatterer’s location. For a maximum unambiguous velocity of Va,

the velocity bins are defined as vk = −Va + k∆v, k = 1, 2, ....M , where ∆v = 2Va/M .

The maximum unambiguous velocity is determined by Va = λ/(4Ts), where Ts is the

pulse repetition time. For given reflectivity and velocity fields, the Doppler spectrum

S(v) can be simulated by summing the return power from scatterers of radial velocity
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v within the radar resolution volume. In this work, it is assumed that the reflectivity

and velocity are independent of height. As a result, only 2D horizontal fields are

considered. An example of reflectivity and velocity fields are shown in Fig. 2.1.

The size of radar volume centered at r0 is defined by the range weighting function

W 2
r and antenna pattern f 4

b (θ) in range and azimuth, respectively, as depicted by

the white box. Each radar volume consists of 1500×500 grid points in the x and

y directions, respectively. A Doppler spectrum was simulated using the following

equation:

S(r0, v) =
∑

i

∑

j

W 2
r (i, j)f 4

b (i, j)Z(i, j) (2.20)

summation only for v−∆v
2

≤ vr(i, j) < v+ ∆v
2

, where r0 is the center of radar volume, i

and j are indices for the grid points in the x and y directions, and Z(i, j), W 2
r (i, j) and

f 4
b (i, j) are the reflectivity, range weighting function, and two-way antenna pattern at

Cartesian grid. In this work, the reflectivity pattern associated with a tornado vortex

is modeled by the following equation (Zrnić and Doviak 1975):

Z(i, j) = Zmexp

[−1

2
(
rij − r0z

Wz

)2

]

(2.21)

where Zm is the maximum reflectivity, r0z is the radius of maximum reflectivity, Wz

is the width of reflectivity, and rij is the distance between the grid point (i, j) and

the center of tornado. Therefore, a doughnut-shaped reflectivity can be produced.

Moreover, a uniform reflectivity and a Gaussian-shaped reflectivity can be ob-

tained by setting Wz ≈ ∞, and r0z = 0, respectively. An example of Gaussian-shaped

reflectivity is presented in Fig. 2.1. A reflectivity pattern for multiple vortices can be

obtained by the superposition of each individual reflectivity pattern. At each grid,

the radial velocity is given by the following equation:

V = V0 + Vs + V̄ (2.22)

where V0 = [u0, v0, w0] is the uniform background flow in the radial direction; Vs

is the contribution by the 2D horizontal shear; and V̄ is the radial velocity from
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Figure 2.1: A schematic diagram to demonstrate the simulation of Doppler spectrum.

The reflectivity pattern is depicted by color contour and the horizontal wind field is

denoted by the arrows.
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one or multiple vortices. A tornado is simulated using a vortex with given radius R,

maximum tangential velocity VT , and maximum radial velocity VR. If v(i, j) is outside

the range of (−Va, Va) (velocity aliasing), then it will be adjusted by v(i, j)±2nVa until

it is between (−Va, Va). Consequently, the Doppler spectrum at radial velocity v is the

sum of W 2
r (i, j)f 4

b (i, j)Z(i, j) at those grids with radial velocity between v − (∆v/2)

and v+ (∆v/2). The resultant spectrum is defined as the model spectrum. A similar

scheme was used by Bluestein et al. (1993) to simulate Doppler spectrum and by

Brown and Wood (1991) and Wood and Brown (1997) to simulate the mean Doppler

velocity.

The complex time series signals are obtained by taking an inverse Fourier trans-

form of the model spectrum and noise as described in Zrnić (1975). The three spec-

trum moments (signal power, mean Doppler velocity, and spectrum width) can be

estimated using either autocovariance or spectral method (Doviak and Zrnić 1993).

The proposed simulation scheme has a number of attractive features: 1) it can include

more general environmental conditions such as background flow, shears and multiple

vortices; 2) time series data that can be used to test various signal processing tech-

niques are generated; 3) it provides desirable statistics of the three moment estimates,

which can be used to investigate the statistical performance of a new detection al-

gorithm; 4) a realistic noise corruption is simulated; 5) the velocity aliasing is also

simulated in a realistic manner.

Note that the approach used in this work is flexible enough to simulate other types

of radars such as the Collaborative Adaptive Sensing of the Atmosphere (CASA)

radars (e.g., Brotzge et al. 2005). Moreover, different vortex model such as Burgers-

Rott, which has been shown to better describe some tornado vortexes (e.g., Bluestein

et al. 2003), can also be implemented.
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Figure 2.2: A demonstration of tornado spectra as a function of range (r0), uniform

background wind (v0), horizontal shear (vx), and the width of reflectivity (WZ). A

tornado-like vortex with maximum tangential wind of 50 m s−1 and a radius of 200 m

is located at the north of the radar at range r0.
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2.2.2.2 Sensitivity analysis of tornado Doppler spectrum

Dependence of tornado spectra on the range, background wind, horizontal shear, and

reflectivity structure is demonstrated in Fig. 2.2. To investigate the impact of these

four factors on a spectrum, only one parameter changes for each of these cases. In the

simulation the default mean background flow is zero (vo = u0 = 0 m s−1) and no shear

is presented (vx = dv/dx = 0 s−1, uy = du/dy = 0 s−1). The reflectivity of the tornado

is simulated using Eq. (2.21) with Wz = 60 m and roz = 220 m. As a result, a pattern

of low reflectivity surrounded by high reflectivity (i.e. doughnut-shaped reflectivity) is

produced, whereby the location of maximum reflectivity is slightly outside the tornado

core (Dowell et al. 2005). Therefore, the roz of 220 m is invariant in this work. No

mesocyclone is included in this case. The maximum unambiguous velocity (Va) is

set as 90 m s−1 such that no velocity aliasing occurs. Moreover, the radar resolution

volume is collocated with the center of the vortex. Ideal tornado spectra at three

different ranges (r0 = 2.5, 12.5 and 75 km) are shown on the top left of Fig. 2.2. Note

that the statistical fluctuation in Doppler spectrum (Zrnić 1975) is not included in

this case for the purpose of clear demonstration although a constant noise level of

-40 dB (associated with SNR of 40 dB) is used. It can be observed that the tornado

spectrum become wider and bimodal when the range increase from 2.5 to 12.5 km. If

the tornado is close to the radar (2.5 km in this study), only the center portion with

small velocities of the tornado is sampled by the radar resolution volume. Therefore,

the velocity components above 20 m s−1 and below -20 m s−1 can not be observed

(depicted by red line). Larger velocity components can be observed due to the increase

of radar resolution volume with range (blue and black lines), until the maximum radial

velocity from the vortex is reached. After that, the dependence of spectrum pattern

on range is relatively small as shown in the figure for range increases from 12.5 to 75

km. The results are consistent with previous results presented by Zrnić and Doviak

(1975) in which a different simulation approach was used. On the top right panel,

21



Doppler spectra from a tornado within a horizontal flow at 12.5 km with magnitude of

0, 5, and 15 m s−1 are shown. It is clear that the constant background wind shifts the

spectrum by its radial component without varying the spectrum pattern. Therefore,

it is desirable that the parameter characterizing TSS is not sensitive to the shift of

the pattern. Several reasons could cause the Doppler spectrum broadening. Because

the cited spectral broadening mechanisms are independent of one another, the square

of the spectrum width σ2
v can be considered as a sum of contributions by each as

(Doviak and Zrnić 1993):

σ2
b = σ2

s + σ2
α + σ2

o + σ2
t (2.23)

where σ2
s is due to shear, σ2

α to antenna motion, σ2
o to change in orientation or vibra-

tion of hydrometeors and σ2
t to turbulence (Doviak and Zrnić 1993). The spectrum

broadening caused by shear is shown in the lower left panel. It is clear how hori-

zontal shear changes spectrum. On the lower right panel, the results exhibit that

different reflectivity structures do not change the maximum radial velocity, but can

have a significant impact on the shape of the tornado spectrum. In this study, uni-

form reflectivity (Wz = ∞), wide (Wz = 60) and narrow (Wz = 30) band doughnut

shape reflectivity are simulated. Approximately rectangular shape spectrum is ob-

tained from uniform reflectivity. With the decreasing of the doughnut band (Wz),

Doppler spectrum becomes more bimodal (double peaks) shape. Note that other

factors such as the location of the tornado within the radar resolution volume and

velocity aliasing can further alter the spectrum shape. In practice the statistical fluc-

tuations in the spectrum is inevitable and could degrade the signatures. Moreover,

a spectrum is obtained by signals from a 3D radar resolution volumes, and therefore

the spectrum shape will also depend on the vertical profile of reflectivity and velocity

distribution within the radar resolution. Several high-resolution vertical profiles of

tornado structure have been reported using mobile Doppler radar (e.g., Wurman and

Gill 2000). The Doppler spectrum from a 3D radar volume can be considered as the
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super-position of the spectra from the 2D simulations at a number of heights within

the radar volume that are weighted by the antenna pattern in the vertical direction.

To further demonstrate the unique features of tornado spectrum, an idealized

tornado within a mesocyclone is simulated. The model reflectivity and horizontal

velocity fields are shown in the upper left panel of Fig. 2.3. Both the tornado and

mesocyclone are modeled by the Rankine vortex with a core radius of 200 m and 2 km,

respectively. The center of the tornado and mesocyclone are separated by 1 km. The

maximum tangential velocity for the tornado and mesocyclone is 50 and 25 m s−1,

respectively, and a maximum radial velocity of 5 m s−1 is used for both vortices. The

reflectivity structures associated with the mesocyclone and tornado are simulated by

a Gaussian and doughnut-shaped functions, respectively. The effective beamwidth

(θb) and angular sampling (∆θ) are set as 1.39 o, and 1.0 o, which are typically used

by WSR-88D (Brown et al. 2002). Spectra from five consecutive radials and ranges

observed by a virtual WSR-88D from the tornadic region, as specified by the white box

in the top of Fig. 2.3 are shown in decibels in the lower panels. The center of tornado

is located at ro = 25 km and φo = 0 o, where ro is the range and φo is the azimuth

angle of radar beam. The maximum unambiguous velocity is 35 m s−1, and therefore

velocity aliasing occurs. Moreover, a constant noise level of -55 dB (associated with

SNR of 50 dB) with the statistical fluctuations is simulated to generate 64 time series

data points using the scheme proposed by Zrnić (1975). The mean Doppler velocities

are also indicated in each spectrum by the location of triangles. In addition, the

inbound and outbound directions are denoted by downward and upward triangles,

respectively. Note that no apparent bimodal signature is observed given Va = 35

m s −1 due to velocity aliasing. Spectra similar to white noise can be observed in

azimuthal direction from -1 o to 1 o, and range from 24.75 km to 25.25 km. Obvious

velocity aliasing can be observed at (-1o, 25 km), (-2o, 24.75 to 25.25 km), (1o, 25.5

km) and (1o, 24.5 km). Although the estimated radial mean velocity from the center
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Figure 2.3: (a) Model reflectivity and horizontal wind field. The tornado is located

at 25 km north from the radar and a mesocyclone is centered at 1 km northeast from

the tornado. (b) The velocity field observed by a virtual WSR-88D. (bottom) Spectra

from the region of tornado vortex, denoted by a block box.
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of tornado (0o, 25 km) shows large positive value (> 20 m s−1), large variation is

expected caused by the fluctuation.

2.3 Summary

The Doppler spectrum was introduced in this chapter, and its properties in terms of

bias and variance, and the impact of window functions on the estimation of Doppler

spectrum was reviewed and discussed. Since the periodogram method shows equiv-

alence to the Blackman-Tukey method but is more efficient in computation, the pe-

riodogram will be used in later part of this dissertation. Moreover, the numerical

simulation of tornado Doppler spectrum was developed. The dependence of spec-

trum on range, background wind, shear, and reflectivity structure was investigated.

When the ambiguous velocity is large (90 m s−1 in the simulation), a wide and bimodal

Doppler spectrum is obtained from a tornado. This feature can be maintained under

different background wind, shear environment, and at relative far ranges. When the

maximum unambiguity velocity is low (35 m s−1 for example), the tornado Doppler

spectrum becomes more flattened due to the velocity aliasing. This wide and bimodal

feature can separate a tornado spectrum from other typical Gaussian spectra, and

make the application of tornado spectrum to tornado detection possible. In order

to take advantages of the wide and bimodal tornado spectrum signatures in tornado

detection, parameters that can quantify these features need to be developed, which

will be discussed in next chapter.
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Chapter 3

Tornado Spectral Signatures (TSS) and Tornado

Debris Signatures (TDS)

In Chapter 2, broad and bimodal tornado spectral signatures (TSS) have been shown

using simulations. Such features have also been observed by pulsed Doppler radar

(Zrnić and Istok 1980; Yu et al. 2007). It was shown that some TSS can be maintained

at far ranges which have the potential to facilitate tornado detection (Yu et al. 2007).

The upgrade of WSR-88D network to dual polarization supported by the National

Weather Service (NWS) began in late 2009 and was planned to be accomplished about

1.5 years later (Zrnić 2007). Polarimetric variables can provide information about

the scatterers’ shape, size, and orientation, which can be used for retrieving drop

size distribution, classifying the types of hydrometeors, and improving rainfall rate

estimation, for example (e.g., Spek et al. 2007; Liu and Chandrasekar 2000; Ryzhkov

and Zrnić 1996). Tornado debris signatures (TDS) defined as anomalously low values

of cross-correlation coefficient ρhv and very low (or negative) differential reflectivity

ZDR were observed by an S-band polarimetric radar (Ryzhkov et al. 2005). This is

because debris typically can have large size, very irregular nonspherical shapes, a high

refractive index, and low degree of common alignment. Kumjian and Ryzhkov (2008)

and Bluestein et al. (2006) further identified TDS during tornadic supercell storms

using an S-band and a mobile X-band dual-polarization Doppler radars.
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These tornado spectral and polarimetric signatures have the potential to improve

tornado detection and need to be carefully examined. Therefore, in this chapter TSS

and TDS observed by S-band weather radars will be characterized quantitatively and

investigated systematically for both legacy and super-resolutions. This chapter is

organized as follows: In section 3.1, the tornado spectral signatures are introduced

and quantified by four parameters. In section 3.2, the tornado debris signatures are

examined using real tornado cases. In section 3.3, the impact of super-resolution on

tornado velocity signature, spectral signature and debris signatures are investigated

through simulation and analysis of real cases. Finally, the conclusions are given in

section 3.4.

3.1 Tornado Spectral Signatures

3.1.1 Characterization of tornado spectral signatures

The shape of tornado Doppler spectrum influenced by the distribution of reflectivity

and velocity, and by radar sampling. It has been shown in Chapter 2 that spectra

from a tornadic region can significantly deviate from a well-defined Gaussian shape.

These spectra are of primary interest and could have the potential to facilitate the

detection of tornado vortices if TSS can be characterized and quantified with appro-

priate parameters. In this work, four feature parameters are defined and discussed

now.

3.1.1.1 Spectrum width

An intuitive parameter to characterize TSS is the spectrum width (σv), which is

the square root of the spectral second moment about the mean and is derived by

considering the normalized Doppler spectrum as a probability density function (PDF)

of the radial velocity v. The second moment quantifies the spread of the velocity
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distribution. The spectrum width can be estimated using autocovariance method

(Doviak and Zrnić 1993):

σ̂v =
λ

2πTs

√
2

∣

∣

∣

∣

∣

ln(
Ŝ

|R̂1|
)

∣

∣

∣

∣

∣

1/2

sgn

[

ln

(

Ŝ

|R̂1|

)]

(3.1)

The signal power estimate is obtained by subtracting the known noise power from

the average of the squares of the magnitudes.

Ŝ =
1

M

M−1
∑

k=0

|V (k)|2 −N (3.2)

The autocorrelation estimate R̂1 at lag Ts is given by:

R̂(Ts) =
1

M

M−1
∑

m=0

V ∗(m)V (m+ 1) (3.3)

However, spectrum width has inherent limitations in characterizing TSS. First of

all, spectrum width does not provide sufficient information about the shape of the

spectrum. In the covariance method, a Gaussian-shaped spectrum is assumed for the

estimation of spectrum width. Moreover, spectrum width estimate can be significantly

biased at large spectrum widths and should be used with caution. Additionally, the

spectrum width estimate is also sensitive to the accuracy of the noise estimation

(Doviak and Zrnić 1993). Three additional parameters that can characterize TSS are

developed in the following sections.

3.1.1.2 Spectral flatness

It has been demonstrated in Fig. 2.3 that some tornado spectra are similar to white

noise spectra when velocity aliasing occurs. The spectral flatness, σs, is defined in

the following equation to quantify the flatness of the spectrum.

σs =
1

M − 1

M
∑

k=1

[x(k) − µx]
2 (3.4)

where µx is the mean of x(k). The Doppler spectrum in decibels can be calculated

from x(k) = 10 log 10(S(k)). Note that σs is different from the spectrum width. σs
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is obtained by assuming that x(k) is a set of independent random value while σv is

estimated by considering the spectrum as a PDF. An example of tornado spectrum

from a real tornado case on 10 May 2003 is shown in Fig. 3.1. The spectrum in the

left panel is from a gate associated with a tornado, and the spectrum in the right

panel is from a gate 2 km away from the tornado. Note that the tornado is 38.5 km

away from the radar.
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Figure 3.1: Characterization of TSS using the spectrum flatness. A tornado spectrum

with signature of white spectrum is associated with a small value of σs as shown on

the left panel, while a conventional Gaussian spectrum (2 km away from the tornado)

exhibits high σs.

It is clear that σs is primarily determined by the statistical fluctuations for the

case of flattened tornado spectrum. On the contrary, large σs is obtained by most

contribution from the variation of the Gaussian shape itself for non-tornado cases. It

should be pointed out that if the tornado is weak or the range to the tornado is short

such that the tornado spectrum is no longer flat, σs will not help with the identification

of a tornado vortex. Moreover, although in general a spectrum with large spectrum

width will produce low σs, there are cases where σs can provide additional information

to the spectrum width for the characterization of tornado spectra. Detailed statistical

comparisons and the discussions of the limitation of σs are provided in section 3.1.2.
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3.1.1.3 Higher-order spectral analysis

In this work, the third-order spectrum (bispectrum) analysis is proposed to quantify

the tornado spectral signature by treating Doppler spectrum as 1D image. Bispec-

trum has been applied successfully to one-dimensional and two-dimensional pattern

recognition (e.g., Chandran and Elgar 1993; Chandran et al. 1997). Let us first con-

sider the Doppler spectrum of weather signals in decibels, x(k), as the 1D image.

The power spectrum of x(k) is given by Sx(f) = X(f)X∗(f), and the bispectrum is

obtained using the following equation (Nikias and Raghuveer 1987):

B(f1, f2) = X(f1)X(f2)X
∗(f1 + f2) (3.5)

Where X(f) is the N-point discrete Fourier transform of x(k) (using an FFT routine).

The bispectrum can be determined unambiguously within the region of 0 < f2 < f1 <

f1 + f2 < 1, where f1 and f2 are the normalized frequencies. Oppenheim and Lim

(1981) have shown that the shape information is often contained in the phases of

the Fourier transform of the pattern or image. This conclusion can be demonstrated

using a “face off” example as shown in Fig. 3.2. In this example, the original image of

“Lena” and “Johnny” are shown on the top of Fig. 3.2. A new image is created by the

IFFT of a synthesized signal with the phase of ”Lena” and magnitude of ”Johnny” in

the FFT domain. The result is shown on the bottom panel of Fig. 3.2. It is clear that

the image of ”Lena” can be somewhat recognized since the phase of the synthesized

signal is from ”Lena”. Although the magnitude of the new image is from ”Johnny”,

Johnny’s picture can not be seen in the new image.

The application of bispectrum to identify TSS is motived by the following facts:

(1) bispectrum can retain both the phase and amplitude of the Fourier coefficients,

while the commonly used power spectrum suppresses the phases due to the multiplica-

tion of Fourier coefficients with their complex conjugates; (2) bispectrum is invariant

to the shift of the pattern because the resultant phase shift in X(f) is canceled in

the triple product; (3) the bispectrum is also insensitive to additive Gaussian noise
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Figure 3.2: Original image of “Lena” (top left), original image of “Johnny” (top right).

the synthesis image from the phase of “Lena” and the magnitude of “Johnny”.
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because theoretically the third-moment sequence of a stationary Gaussian process is

zero (Papoulis and Pillai 2002) and the bispectrum is defined as its Fourier trans-

form. (4) it also has been shown that bispectrum is useful in the identification of

nonlinearity and non-Gaussian of the process (e.g., Nikias and Raghuveer 1987).

The bispectrum of a 1D image is a 2D complex function and is difficult to use

directly for automated pattern recognition. Therefore, different integration methods

have been proposed to extract the shape information. Axially integrated bispectrum

(AIB) is one of the integrated bispectrum approach developed by Tugnait (1994). In

this approach, the bispectrum is integrated along paths parallel to the f1 or f2 axes in

bifrequency plane, therefore this method is called axially integrated bispectrum. The

AIB is translation and scale invariant but will lose a great part of phase information

(Zhang et al. 2001b). Circularly integrated bispectra (CIB) is another approach

proposed by Liao and Bao (1998). A set of concentric circles with the origin as the

center are the integrated paths. Although CIB is translation invariant and keeps the

phase information of the signal, more computations are required. For the purpose of

extracting spectra shape information, another integration method: radially integrated

bispectra (RIB) is used in this work. In particular, the RIB is obtained along a radial

line of slope a (Chandran and Elgar 1993). The integration path is presented in

Fig. 3.3. The phase of RIB (PRIB), abbreviated by P , is proposed to effectively

extract the shape information from a bispectrum, and is defined in the following

forms (e.g., Chandran and Elgar 1993; Shao and Celenk 2001; Zhang et al. 2001b):

P (a) = tan−1

[

Ii(a)

Ir(a)

]

(3.6)

where

I(a) = Ir(a) + jIi(a) =

∫ 1

1+a

0+

B(f1, af1)df1, (3.7)

where I is the integration of bispectrum along the path of f2 = af1 in the bispectrum

domain, 0 < a ≤ 1 is the slope of the path, and PRIB is the phase of the complex
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f2 = af1

Figure 3.3: Region of computation of the bispectrum. Features are obtained integrat-

ing the complex bispectrum along a radial line with slope = a (dashed line). PRIB is

the phase of the integrated bispectrum, which shows translation and scale invariance.

variable I. The integral of Eq. (3.7) is approximated by a sum, yielding in the

following approach (Chandran and Elgar 1993).

I(a) =

b(M/2−1)/(1+a)c
∑

k1=1

B(k1, ak1) (3.8)

where the B(k1, ak1) is interpolated by:

B(k1, ak1) = pB(k1, dak1e) + (1 − p)B(k1, bak1c) (3.9)

and p = ak1 − bak1c, bxc represents the largest integer contained in x, and dxe

represents the smallest integer containing x. The invariant parameter P (a) is the

principal component of the phase of I(a), −π < P (a) ≤ +π. Compared to AIB

and CIB, PRIB shows few advantages. First of all, the PRIB is also translation

and scale invariant and keeps the phase information of the signal. Second, PRIB is

computationally efficiently (Zhang et al. 2001b). Third, PRIB has been successfully

implemented in one (Chandran and Elgar 1993) and two dimensional (Chandran

et al. 1997) pattern recognition. It is shown in Chandran and Elgar (1993) that
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the phase of the Fourier transform of asymmetric pattern is a nonlinear function of

frequency, and PRIB can isolate this nonlinearity to provide information about the

shape. In addition, it has been proven that PRIB is invariant to amplification, scaling,

and DC shifting of the input signals. The translation or shift invariant has a great

advantage in our application because spectra with different mean Doppler velocities

will produce the same value of PRIB. It should be noted that P does not provide

any shape information if the input sequence has even or odd symmetry, because the

resultant bispectrum is either real or purely imaginary, respectively. An alternative

approach was developed by Chandran and Elgar (1993) to alleviate this problem. A

new sequence is first generated that is the amplitude of the Fourier transform of the

original signal x(k) (i.e., |X(f)|). Consequently, the bispectrum is calculated using

only the first half of the new sequence such that an asymmetry pattern is obtained.

This approach can still maintain those invariant properties (Chandran and Elgar

1993; Shao and Celenk 2001).

The application of PRIB to the characterization of TSS is demonstrated in Fig. 3.4.

The PRIB of a Gaussian and rectangular pattern as a function of spectrum width is

shown for a = 0.9. These two patterns have the same spectrum width, which varies

from 1 to 28 m s−1. An example of Gaussian and rectangular pulse with the same

spectrum width of 20 m s−1 is shown in the left panel. Distinct P values can be

identified over the entire spectrum widths from these two patterns. This example

suggests that the PRIB can be used to differentiate the two patterns for a wide range

of spectrum widths, even though the two patterns have the same spectrum width.
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Figure 3.4: An example of a rectangular pulse and a Gaussian pulse (left). Both of

them have spectrum width of σv = 12 m s −1. The P value of rectangular pulse and

Gaussian pulse (right) as a function of σv.

3.1.1.4 Eigen-ratio

In Yeary et al. (2007), it is shown that a white-noise like spectrum can be reflected

on the distribution of eigenvalues of the correlation matrix. Let V (n) be defined as

I&Q data collected by research WSR-88D, in the following vector form.

U(n) = [V (n), V (n− 1), ...., V (n−M + 1)]T (3.10)

where M denotes the number of samples. The autocorrelation function of a WSS

discrete-time process is defined to be: R(l) = E[V (n)V ∗(n− l)] for l = 0,±1,±2, ...,

etc. Consequently, the autocorrelation matrix, R, of this discrete-time process is

defined as:

R =



















R(0) R(1) · · · R(M − 1)

R∗(1) R(0) · · · R(M − 2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R∗(M − 1) R∗(M − 2) · · · R(0)



















. (3.11)

The correlation of a stationary discrete-time process is Hermitian and also Toeplitz.

It is always nonnegative definite and almost always positive definite (Monson 1996).
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This is important for proving the eigenvalues of R, that describe U(n), are posi-

tive and non-zero. Let λi and qi denote the ith eigenvalue and eigenvector of R,

respectively.

Rqi = λiqi i = 1, 2, ...,M (3.12)

In order to get the eigenvalues of matrix R, multiplying both sides of Eq. (3.12) by

qH
i gives: qH

i Rqi = qH
i λiqi = λiq

H
i qi, for i = 1, 2, ....,M . Hence,

λi =
qH
i Rqi
qH
i qi

i = 1, 2, ...,M (3.13)

where qH
i qi is the square Euclidean length of the eigenvector qi and is always positive

definite. Then we can conclude λi > 0 for i = 1, 2, ...,M . Moreover

λ1 ≥ λ2 ≥ ... ≥ λi ≥ ... ≥ λM ≥ 0 (3.14)

It has also been shown that eigenvalues λi are bounded by the maximum and minimum

values of the power spectrum of V (n):

minSx(f) ≥ λi ≥ maxSx(f) (3.15)

where Sx(f) is the power spectrum of the input sequence V (n). In our analysis of

tornadic time series data, we considered the ratio of the smallest over the largest

eigenvalue for correlation matrix of time series data calculated for only five time lags:

χ(R) = λM/λ1. It follows from Eq. 3.14 and Eq. 3.15 that:

0 < χ(R) =
λM

λ1

≤ minSxx(ω)

maxSxx(ω)
≤ 1 (3.16)

Thus, χ(R) approaches identity (or unity) as the power spectrum becomes increas-

ingly flat.
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3.1.2 Analysis of tornado spectral signatures using

numerical simulations

The shape of tornado spectra depends on several parameters such as the tornado’s

size relative to the resolution volume, its location within the radar volume, and the re-

flectivity structure. Four parameters of spectrum width, spectral flatness, PRIB and

Eigen-ratio are proposed to characterize TSS. The dependence of these four parame-

ters on range and relative location within the radar volume is studied statistically in

this section using numerical simulation developed in chapter 2.

The radar resolution volume is located due north from the radar and its position

is denoted by (r0, φo) where φo = 0o. A tornado within a mesocyclone as shown

in Fig. 2.3 is centered at (r
′

0, φ
′

o). To study radar sampling of different portions of

the tornado, 121 tornado locations within the radar resolution volume are simulated,

where r
′

0 varies from r0 − 125 m to r0 + 125 every 25 m and φ
′

o varies from -0.5o

to 0.5o at 0.1o intervals. In this work, the maximum unambiguous velocity, effective

beamwidth and range resolution are 35 m s−1, 1.39 o and 250 m, respectively. A

tornado with radius of 200 m is located on the southeast of a mesocyclone whose

radius is 2 km. The center of the tornado and mesocyclone are separated by 1 km.

The maximum tangential velocity for the tornado and mesocyclone is 50 and 15 m

s−1, respectively, and a maximum radial velocity of 5 m s−1 is used for both vortices.

The details of simulation are provided in Section 2.2. It is obvious that in this work,

the maximum wind in tornado exceeds the maximum unambiguous velocity of 35 m

s−1. Spectra from both uniform reflectivity and doughnut-shaped reflectivity (Wz

= 60 m) are simulated and are defined as TU and TD, respectively. An example of

spectra from 36 resolution volumes is shown in Fig. 3.5 for r0 = 60 km and SNR =

40 dB.
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Figure 3.5: Simulated spectra for different portions of the tornado sampled by the

radar. The radar resolution volume is centered at (r0 = 60 km, φo = 0o). The tornadic

vortex center is located at φ
′

o = -0.5o, -0.4o, -0.3o, -0.2o, -0.1o, 0o from the left to the

right columns, and of r
′

0 = 60.125 km, 60.1 km, 60.075 km, 60.05 km, 60.025 km and

60 km from the bottom to the top rows,respectively. Spectra from doughnut-shaped

reflectivity (TD), uniform reflectivity (TU), and reconstructed Gaussian spectra GD

are denoted by blue, black, and red lines, respectively.
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In order to demonstrate that TSS can provide shape information in addition to

spectrum width, Gaussian spectra with the same spectrum widths (termed as GD

and GU) are reconstructed using following equations:

GD(v) =
S√
2πσv

exp(
−(v − v̄r)

2

2σ2
v

) +
S√
2πσv

exp(
−(v − v̄r ± 2Va)

2

2σ2
v

) (3.17)

The simulation velocity range v = [−Va Va] with the step δv = 2Va/N. S, v̄r and

σ2
v are the zero, first and the second moments estimated from the simulated tornado

spectra. The second term on the right hand side of (3.17) is from the velocity aliasing,

where Va = 35 m s −1 is the maximum ambiguous velocity. Slight difference in spec-

tral shape can be observed if the tornado center locates at various places inside the

radar sample volumes in both azimuth and range directions. Since the spectrum for

GU is similar to TU , therefore it is not shown for clarity. The tornado spectrum from

doughnut reflectivity (TD) becomes flatter when the vortex center is closer to radar

resolution volume center in azimuthal direction and farther in range direction. In gen-

eral, most spectra from uniform reflectivity (TU) is flatter than those from TD. Since

most weather signals exhibit Gaussian-shaped spectra (Janssen and Spek 1985), the

reconstructed Gaussian spectra can be considered as the spectra from nontornadic

regions with large spectrum widths. It is evident that the reconstructed Gaussian

shaped spectra can not fully characterize the tornado spectra, which can be exem-

plified in the panel of φ
′

o = -0.2o and r
′

0 = 60.125 km. Therefore, it is important to

demonstrate that the spectral flatness, PRIB and eigen ratio can provide additional

information in identifying tornado spectra from nontornadic spectra. In section 2.2,

the variation of a Doppler spectrum as a function of range has been examined. Addi-

tionally, the strength of tornado vortex signature (TVS) in the velocity field has been

shown to deteriorate with range due to the increasing size of radar resolution volume

(Brown et al. 1978, 2002). The extreme Doppler velocity values of opposite sign is

defined as tornado signature (TS) if the tornado’s core diameter is larger than the

radar’s effective beamwidth or defined as tornadic vortex signature (TVS) otherwise.
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Thus, the impact of range on the four TSS parameters of spectrum width, spectral

flatness, PRIB and eigen ratio are now studied using numerical simulations. The

same configuration of tornado and mesocyclone as shown in Fig. 3.5 is performed

at various ranges. The normalized distance between the tornado and the radar is

defined as rn = r
′

0θb/rt, where rt = 200 m and effective beamwidth θb = 1.390π/180

(rad). The normalized distance varies from 0.12 to 18.1951, which corresponds the

real distance from 1 km to 150 km. Results of spectrum width, spectral flatness,

PRIB and eigen ratio are shown in Figs. 3.6, 3.7, 3.8 and 3.9, respectively. In order

to make the figures large enough to be recognized, only the results from range of r0,

r0-50m, and r0-100m and φ
′

o of 0o, 0.2o and 0.4o are shown.
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Figure 3.6: The variation of the normalized spectrum withs (σvn) as a function of nor-

malized range. Spectrum widths estimated from the spectra generated using dough-

nut (TD) and uniform (TU) reflectivities. It is apparent that with the increase of

the normalized range, the σvn increase, and can keep relative large value even at far

normalized range.
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The normalized spectrum width of σvn = σv/2Va is presented in Fig. 3.6 as a func-

tion of normalized range. For both doughnut reflectivity TD and uniform reflectivity

TU , the σvn increases rapidly with range for rn < 5. After rn > 5, TU decreases with

range while TD is maintained at almost a constant value with range. It also indicates

that at a given rn the spectrum width from uniform reflectivity decrease if the tor-

nado center is shifted farther from the radar resolution volume center in azimuth or

range direction. When r
′

0 = r0, spectrum widths from uniform reflectivity (TU) are

larger than than those from doughnut-shaped reflectivity (TU) at relative close range

(rn < 10) but become smaller at far range. However, the spectrum width from TD is

larger than from TU when a relative small portion of the tornado is sampled. (e.g. φ
′

o

= 0o, and r
′

0 = -100 m, φ
′

o = 0.2o, and r
′

0 = -100 m). The larger spectrum widths can

result from velocity aliasing of a relatively flat spectra and suggest that additional

parameters are needed to characterize TSS. The spectral shape as a function of range

has been shown in section 2.2.2.2.

The variation of spectral flatness in range is presented in Fig. 3.7. The recon-

structed Gaussian spectra using Eq. (3.17) from doughnut and uniform reflectivity

are included for comparison. In general, tornado spectra show better spectral flatness

(lower value) than the reconstructed Gaussian spectra for both reflectivity structures.

Moreover, both the tornado and reconstructed Gaussian spectra from uniform reflec-

tivity show lower spectra flatness than from doughnut shape reflectivity. When the

tornadic center is far away from the radar resolution center, the spectral flatness

difference between the doughnut shape and uniform reflectivity structure becomes

smaller. Similar trend can also be observed between the tornado spectra and recon-

structed Gaussian spectra. Statistical results of PRIB and eigen ratio are shown in

Fig. 3.8 and 3.9. It is evident that these two variables have distinct values for tornado

and non-tornado cases at various ranges, which can be used for tornado detection.

Apparent increase with range for 0 < rn < 5 and relatively smooth decrease after
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Figure 3.7: Similar to Fig. 3.6, but for the spectral flatness (σs). In addition, results

from the reconstructed Gaussian spectra (GD and GU) are included for comparison.

rn > 5 can be observed for both of them, which are consistent with the spectrum

width. The tornado spectra from uniform reflectivity show larger P and χR for all

ranges than those from donut shape reflectivity structure. This indicates the tor-

nado spectra from uniform reflectivity have more ”flat” and ”wide” tornado spectral

signatures, which is consistent with the results described in section 2.2.2

These results suggest that unlike tornado shear signature, the three parameters

for tornado spectra are less sensitive to the increasing size of the radar volume except

at close range. Among these four parameters (σv, σs, P and χR), it has been shown in

Fig. 3.5 that spectrum width is not sufficient to distinguish the tornado spectrum from

the reconstructed Gaussian spectrum even though the spectrum shape is different.

On the other hand, Fig. 3.7, 3.8 and 3.9 show that σs, P and χR derived from tornado

spectra for the case of doughnut reflectivity (TD) are different from those from the

reconstructed Gaussian spectra (GD) for rn > 1. Although such a difference becomes
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small when the radar resolution volume is located farther from the tornado’s center

in range, high P and χR and small σs are still observed. For the case of uniform

reflectivity, it is evident that P , σS and χR can assist with the identification of

tornado spectrum since all these values from tornado spectra show apparent difference

from reconstructed spectra. On the other hand, a false detection can occur if only

the spectrum width is used and the spectra from nontornadic regions have large

spectrum width. Moreover, spectrum width estimate can be significantly biased at

large spectrum widths and should be used with caution.
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Figure 3.8: Similar to Fig. 3.7, but for PRIB P .

3.1.3 Analysis of tornado spectral signatures using

radar observations

Two tornado outbreaks in central Oklahoma on 8 May and 10 May 2003 are of

interest. Level I time series data were collected by the research WSR-88D (KOUN)

operated by the NSSL in Norman, Oklahoma during the two tornado events. A more
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Figure 3.9: Similar to Fig. 3.7, but for eigen ratio χR.

detailed description of the two events is provided in next chapter. Doppler spectra

were estimated by the periodogram method with 64 samples, which corresponds to

the standard 1 o angular sampling. A von Hann window was used to produce a large

dynamic range in the Doppler spectrum (Doviak and Zrnić 1993). The three spectral

moments (reflectivity, Doppler velocity and spectrum width) were estimated using

covariance method, and the three feature parameters of spectral flatness, PRIB and

eigen ratio used to quantify the TSS were estimated using the method described in

section 3.1.1. The reflectivity, mean Doppler velocity and spectrum width from the

lowest elevation angles of 0.5 o at 0343 UTC are shown on the top of Fig. 3.10 from

left to right, respectively. The bottom three panels from left to right are spectral

flatness, PRIB and eigen ratio. Data associated with SNR smaller than 20 dB are

not shown for clarity. In order to help identifying tornado location, tornado damage

path from ground survey is superimposed using transparent blue shading area.
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The region of hook echo signature, highlighted by a white box, is consistent with

the tornado damage path and is well correlated with the region of strong azimuthal

shear. Enhanced spectrum width, PRIB and eigen ratio as well as reduced spectral

flatness can be observed in the region within the white box. Velocity aliasing can

be observed at approximately 5 km northeast of the tornado region, and is denoted

by a black box. False tornado detection is likely produced by current tornado vortex

detection algorithm (TDA) if the velocity field is improperly dealiased. However, the

spectrum width, PRIB, spectral flatness and eigen ratio exhibit values different from

those in tornadic region denoted by the white box. In other words, these four TSS

parameters are useful for accurate tornado detection.

Doppler spectra from the tornado region (white box) and velocity aliasing region

(black box) are shown on the top and bottom of Fig. 3.11. The mean radial velocity

is indicated by green downward and red triangles to represent negative and positive

velocity, respectively. Artificial shear signature caused by velocity aliasing can be

observed at gates (9.052o, 43.875 km to 44.375 km) and (8.094o, 43.375 km to 44.625

km) on the top of Fig. 3.11, which can lead to false detection in shear-based TDA

if dealiasing is not performed correctly. However the spectra from those gates do

not exhibit wide and flat tornado spectral signatures, they can be easily identified as

nontornado if the information of spectral signature is used. Large velocity difference

can also be observed at the gate (8.094o to 9.052o, 39.125 km to 39.625 km) on the

bottom of Fig. 3.11. Additionally, wide and flat spectra in terms of enhanced σv, P

and χR and low σs can be observed at those gates.

Another interesting example at 0349 UTC is presented in Fig. 3.12. Similar to

Fig. 3.11, the tornado damage path, hook signature and azimuthal shear can help

identify the tornado location. The region close to the tornado and a region located

at 5 km away from tornado are indicated by white and black boxes, respectively.

Within the tornado region (within the white box), hook signature, large azimuth
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Figure 3.10: The reflectivity(top left), mean Doppler radial velocity(top middle),

spectrum width(top right), spectra flatness(bottom left), PRIB(bottom middle), and

eigen ratio(bottom right) at 0343 UTC. The tornado damage path is superimposed

as a light shaded area. A contour of reflectivity with 30 dBZ is indicated by black

lines in all the panels. Apparent large P , σv, χR and low σs can be observed within

the white box at the tornado location.
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Figure 3.11: The spectra within the black box (region of velocity aliasing) and white

box (tornado region) in Fig. 3.10 are presented on the top and bottom panels, respec-

tively.
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Figure 3.12: The reflectivity (top left), mean Doppler radial velocity (top middle),

spectrum width (top right), spectra flatness (σs) (center left), PRIB P (center mid-

dle), and eigen ratio (χR) (center right) at 0349 UTC. The tornado damage path

is superimposed as a light shaded area. A contour of reflectivity with 30 dBZ is

indicated by black lines in all the panels.

shear as well as TSS are consistent with the tornado damage path. Similar velocity

shear and enhanced spectrum width, which could be caused by the velocity aliasing

can also be observed within the black box. Therefore, for this case, the conventional

moment data of radial velocity and spectrum width are not sufficient to distinguish

tornado spectra from nontornado spectra. However, the P and χR within the white

box show apparently higher value than in the region within the black box, which can

help tornado identification.
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Figure 3.13: The spectra within the black box (region of velocity aliasing) and white

box (tornado region) in Fig. 3.12 are presented on the top and bottom panels, respec-

tively.
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3.2 Tornado Debris Signatures

3.2.1 Tornado debris signature observation

The upgrade of WSR-88D to dual polarization is underway, and therefore incorpo-

rating polarimetric variables into NFTDA becomes more attractive. Polarimetric

tornadic debris signatures, characterized by near-zero ZDR and anomalously low val-

ues of ρhv, were first reported by Ryzhkov et al. (2002) based on the observation of

a tornado event outbreak on 3 May 1999 in central Oklahoma. The TDS has been

further demonstrated using two tornado events on May 2003 recorded with NSSL’s

KOUN (Ryzhkov et al. 2005). Randomly oriented scatterers with large size, irregular

shapes and a low degree of common alignment are the reasons for tornadic debris

signatures (Ryzhkov et al. 2005). Although it was reported that the TDS is visible

for strong (above EF-3) tornadoes, tornadoes with EF-1 scale have been observed

associated with these signatures (Kumjian and Ryzhkov 2008). Thus, the TDS has

the potential to improve or facilitate tornado detection, especially when the velocity

and/or the spectral signatures cannot provide sufficient discernibility, which will be

discussed in next chapter.

In this dissertation, the analysis of TDS is performed using real data collected

by the KOUN. Although the simulation used for TSS analysis is advantageous, such

type of simulation cannot be easily extended for polarimetric signatures. One type

of physical-based simulation has been discussed in Capsoni and D’Amico (1998) and

Capsoni et al. (2001). In addition, the ZDR arc signature has been simulated by

Kumjian and Ryzhkov (2008). However, formulations related to the tornado debris’s

backscattering properties and motions are needed for this approach, which requires

significant efforts on electric magnetic field and atmospheric dynamics. Therefore, in

this work the analysis of TDS is focused on using real data.
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3.2.2 Analysis of tornado debris signatures

In this work, the potential of TDS for tornado detection is demonstrated using one

tornado case on 8 May 2007 which was recorded by the KOUN. According to the

report from NWS Forecast Office in Norman OK, this tornado was formed at 0443

UTC and moved north through part of El Reno in central Oklahoma for approximately

7 minutes and traveled approximate 1.75 miles before it disappeared. The tornado is

likely EF1 on the Enhanced Fujita scale. Details of this tornadic event can be referred

at http://www.srh.noaa.gov/oun/wxevents/20070508/.

The fields of radial velocity, spectrum width, differential reflectivity, and correla-

tion coefficient in the vicinity of the tornado are shown in Fig. 3.14. The tornado’s

starting and ending locations are indicated by two white asterisks. The white line

connecting the two points provides a rough reference of the tornado damage path.

From the radial velocity plot, apparent shear signature can be observed around (-46

km, 30 km) in the east-west (zonal) and north-south (meridional) directions. En-

hanced σv, low ZDR and ρhv can also be found at this location, which agree well with

the tornado damage path. Within the 30 dBZ reflectivity contour, one more shear

region can be found around (-37 km, 27 km). Since this region is approximately 10

km away from the tornado damage path, it is not likely caused by the tornado. In

order to further investigate these two shear regions, Vr, σv, ZDR and ρhv as a function

of azimuthal angles for three consecutive ranges are shown in Fig. 3.15. Fig. 3.15 (a),

velocity difference of above 20 ms −1 can be found at 54.125 km in range and 304 o

in azimuthal direction. σv of 7 ms −1, ZDR of 0.6 dB and ρhv of 0.75 can be observed

as well. From the other two range gates, Vr, σv and ρhv show good consistency. All

these indicate that the tornado is located at (54.125 km, 304o) at this moment (0447

UTC). In Fig. 3.15 (b), large velocity difference of above 20 ms −1 and enhanced

spectrum width of above 6 ms −1 can be found at 46.875 km and 309o in range and

azimuthal direction, respectively. The results from other two range gates also show
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Figure 3.14: The Doppler velocity (Vr) (top left), spectrum width (σv) (top right),

differential reflectivity (ZDR) (bottom left), correlation coefficient ρhv (bottom right)

from 0.5o elevation angle at 0447 UTC 8 May 2007. The start and end locations of

tornado damage path are indicated by two white stars and further connected by a

white line. The Vr, σv, ZDR and ρhv along azimuthal direction indicated by blue lines

are shown in Fig. 3.15 A contour of reflectivity with 30 dBZ is indicated by black

lines in all the panels.
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good consistency. Therefore, it is difficult to distinguish these two locations if only

velocity and spectrum width are used for tornado detection. However, the signatures

of ZDR and ρhv are evident in the tornadic region. These results suggest that the

TDS, characterized by low ZDR and low ρhv has the potential for improving tornado

detection especially when velocity and spectrum width cannot provide sufficient in-

formation. On the other hand, the TDS may become not resolvable if a tornado is

at far range or is over open fields that can not loft debris to heights observable by a

radar (Kumjian and Ryzhkov 2008).

The statistical results of TDS and TSS from two tornado events on 8 and 10 May

2003 are provided in chapter 4. For both cases, polarimetric moments were available,

but only the time series data from H-channel were collected. Therefore, both TSS and

TDS can be obtained to study their impact on the tornado detection developed in

this work. However, it is not possible to re-produce polarimetric moments with super-

resolution, which will be discussed in section 3.3.2. Additionally, tornado damage

paths are available for these two events and can be used as one of the reference to

quantify the performance of tornado detection algorithms.

3.3 The Impact of Super Resolution

3.3.1 The impact on tornado velocity and spectral signatures

More pronounced tornado vortex signatures with super-resolution data have been

demonstrated using numerical simulation (Brown et al. 2002). Since enhanced TS/TVS

can be provided by the super-resolution, it is expected that tornado detection can be

improved using super-resolution. In this section, the impact of super-resolution on

the tornado velocity signature and spectral signatures are assessed using numerical

simulations. It should be note that in this simulation the super-resolution data were
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generated using the approach proposed by Brown et al. (2002), where smaller effec-

tive beamwidth was obtained owing to the fact that only half of the samples were

used. For example, an effective beamwidth of 1.02o is resulted while the effective

beamwidth of legacy resolution is 1.39o. However, the operational super-resolution is

achieved by using the same number of samples as the legacy resolution but with 0.5 o

angular sampling (Torres and Curtis 2007). The operational oversampling scheme is

used for the real data analysis in Chapter 4. The tornado velocity signature can be

characterized by gate to gate velocity difference ∆V , or the maximum to minimum

velocity difference δV , which is similar to TS (TVS) and can be calculated as:

∆V (i, j) = max{[V (i, j + 1) − V (i, j)], [V (i, j) − V (i, j − 1)]} (3.18)

δV (i, j) = max[V (i, j), V (i, j + 1)...V (i, j + n)]−min[V (i, j), V (i, j − 1)...V (i, j − n)]

(3.19)

where i and j represents the gate index in range and azimuthal directions. Since 99

% tornadoes in the northern hemisphere are cyclonic direction (Davies-Jones 1984),

∆V and δV are calculated using the radial velocity on higher azimuthal angle minus

the lower one.

The azimuthal gate-to-gate velocity difference ∆V can be calculated easily and

has been used in the current tornado detection algorithm (Mitchell et al. 1998). How-

ever, δV is more significant than ∆V especially when the tornado is at close range

or the size of tornado is large, owing to the fact that the maximum to minimum

velocity components can not be sampled from two adjacent azimuthal gates. The

TSS characterized by spectrum width σv, spectral flatness σs, PRIB P and eigenratio

χR have been discussed in section 3.1.1. The comparisons of the velocity signatures

and TSS between legacy and super-resolution as a function of range are presented

in Fig. 3.16 and Fig. 3.17, where the superscript of ”s” and ”l” represent the results

from super-resolution and legacy resolution, respectively. In the simulation a tor-

nado vortex was generated using a Rankine combined vortex model with a maximum
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Figure 3.16: Statistical analysis of the ∆V , δV and σv as a function of the range for

super-resolution and legacy resolution data. The abscissa is the distance from the

radar to the center of the resolution volume. The superscript of ”s” and ”l” represent

the results from super-resolution with effective beamwidth θb = 1.02o and legacy

resolution with θb = 1.39o, respectively. The radii of tornadoes are 100 m (left), 200

m (middle) and 400 m (right). The X axis is the normalized range as in Fig. 3.6

tangential and radial velocity of 30 m s−1 and 5 m s−1, respectively. Same as WSR-

88D radar, the range resolution (∆R) is 250 m, and effective beamwidth (θb) is 1.02o

for super-resolution and 1.39o for legacy resolution, respectively (Brown et al. 2002).

Moreover, the azimuthal sampling for super-resolution and legacy resolution is 0.5o

and 1.0o, respectively.

Several factors such as the range between the tornado and radar, the size of the

tornado, and the relative location of a tornado within the radar’s resolution volume

determine tornado’s shear and spectral signature (e.g., Zrnić et al. 1977; Brown et al.
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Figure 3.17: Similar as Fig. 3.16, but for P , σs, and χR.
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Figure 3.18: Simulated tornado spectra at 5 km and 50 km from super- and legacy

resolutions.

2002; Yu et al. 2007). The relationship between the TS/TVS, the size of the tornado

and range was studied by Brown et al. (2002). It should be noted that the spectral

signatures are also effected by the reflectivity structure as discussed in section 3.1.2.

In this section only the uniform reflectivity structure is used in order to simplify

the problem and focus on the impact of super-resolution. Similar conclusions can be

obtained if the doughnut shape reflectivity structure is used. In this work, the tornado

core diameters are set as 200 m, 400 m and 800 m. The range between the tornado and

the radar is set from 0 to 150 km. The normalized ranges rn = r0θb/rt are for both

legacy and super-resolutions. The tornado was centered on 121 different locations

within the radar resolution volume, which was divided into an 11 × 11 uniform

grids. Moreover, for each case 50 realizations were generated with independent noise

sequences. The mean of the estimated ∆V , δV , σv, P , σs and χR as a function of

range is shown in Fig. 3.16 and Fig. 3.17 for both legacy ans super-resolutions.
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In general, the velocity difference (∆V and δV ) and σv increase with range at

short distances, and then decrease after they reach the maximum values. The veloc-

ity difference shows more rapid decrease than the spectrum width. For small tornado

(Rt = 100 m), the δV l shows larger value than the ∆V l within rn = 4.8, and the

two variables become comparable after that. For super-resolution data, although

the difference between δV s and ∆V s becomes smaller with increasing distance, the

difference is still more obvious than the difference from legacy resolution. This is

because the effective beamwidth of super-resolution is three quarters of legacy reso-

lution, which can mitigate the smoothing effect. Moreover, the angular sampling of

super-resolution is 0.5 o which is only half of the legacy resolution, therefore more

radial velocities close to the maximum value are likely to be sampled. The difference

between ∆V l and δV l becomes negligible after 50 km and 90 km for the tornado with

radius of 200 m and 400 m, respectively. However, the difference between ∆V l and

δV l becomes even larger with the increase of tornado size.

The spectrum width estimated from legacy resolution is larger than from super-

resolution at close range ( ≤ 4.8 for Rt = 100 m; ≤ 6.0 for Rt = 200 m; ≤ 10.91

for Rt = 400 m), and smaller than from super-resolution after those ranges. Since

the cross section of radar beam from super-resolution (with effective beamwidth of

1.02o) is always smaller than from legacy resolution (with effective beamwidth of

1.39o), if the diameter of tornado is larger than the radar beam cross section (at close

range), only portion of the tornado is sampled by the radar. In other words, more

velocity components can be included with larger effective beamwidth. This causes the

spectrum width from legacy resolution at close range to be larger than from super-

resolution. However at far range, since the radar beam cross section is larger than

the diameter of tornado, all the velocity components can be sampled. As a result,

smaller estimated spectrum width is obtained from legacy resolution because of the
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smoothing effect. For the other three TSS parameters of σs, P and χR, consistent

behaviors as σv can be observed .

Examples of spectra from tornadoes located at 5 km and 50 km are displayed

in Fig. 3.18, where the tornadoes’ radius is 400 m. At close range (5 km), since a

portion of tornado is sampled by the radar beam, only the velocity components from

-10 m s−1 to 10 m s−1 can be observed in the spectrum. Narrow and flat TSS can be

obtained at close range, this is the reason that the σv, P and χR show such low values,

and σs shows such high value. Moreover, spectrum obtained from legacy resolution

is wider than from super-resolution due to effective beamwidth. At far range (50

km), since the dimension of radar beam in the cross beam direction is larger than

the diameter of the tornado, all the velocity components from the tornado can be

sampled. Wide and flat TSS can be observed from both legacy and super-resolutions,

which is manifested by large σv, P and χR and low value σs.

It is evident that super-resolution data can provide more pronounced velocity

and spectral signatures at far ranges, and have the potential for improving tornado

detection. Moreover, the maximum to minimum velocity difference is larger than the

gate-to-gate velocity difference for super-resolution even at far range. However, for

legacy resolution, the difference between ∆V l and δV l is relatively small, especially

for smaller tornado (Rt = 100 m). Therefore, for NFTDA in this work maximum to

minimum velocity difference implemented for the super-resolution, and the azimuthal

gate-to-gate velocity difference is adopted for the legacy resolution.

3.3.2 The impact on tornado debris signatures

An example of polarimetric TDS is presented in Fig. 3.20, and the radial velocity and

spectrum width are presented in Fig. 3.19. Where mean radial velocity Vr, spectrum

width σv, differential reflectivity ZDR and cross correlation coefficient ρhv on the left

columns are from legacy resolution of 250 m by 1 o, 250 m by 1 o, 1 km by 1 o and
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250 m by 1 o, respectively; the Vr, σv, ZDR and ρhv on the right column are from

super-resolution of 250 m by 0.5 o. To help identifying the tornado location, the outer

edge of tornado damage path is indicated by white lines. In the ZDR plot, several

consecutive gates in range with negative ZDR (< -1 dB) and exceptionally low value

of ρhv (< 0.85) can be observed around [-70 km, 50 km] for super-resolution, which

are located within the tornado damage path. However, positive (or close to zero) ZDR

can be observed at this location with legacy resolution. These high ZDR hardly can

be recognized as polarimetric TDS and can not be used in tornado detection. In the

ρhv plot for legacy resolution data, there are two gates show low value (< 0.85) at this

location. High values (> 0.9) of ρhv are observed in other locations around [-70 km, 50

km]. In order to examine the behavior of these four parameters, one dimensional plot

along the azimuthal direction crossing the tornado location is presented in Fig. 3.21.

The tornado is approximately located at azimuth angle of 306o, where obvious larger

σv and lower ρhv can be observed.

The results suggested that the polarimetric TDS is more clearly shown with super-

resolution, which can lead to better tornado detection.

3.4 Conclusions

The distinct wide and flat spectral signatures generated by tornadic vortex have

been studied by simulation and radar observations. Three parameters of σs, P and

χR were developed to improve the characterization of the tornado spectral signatures

(TSSs). Together with spectrum width σv, these four tornado spectral signatures have

the potential to facilitate tornado detection even when the shear signature becomes

difficult to identify. Based on the results of simulation and a real tornado case the

value of σv, P , σs and χR obtained in tornado region can be significantly different

from those obtained in nontornado regions. Moreover, the results also demonstrated
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Figure 3.19: The Doppler velocity (Vr) (top), spectrum width(σv) (bottom), at 0447

UTC 8 May 2007. The panels on the left column are those with legacy resolution, and

on the right column are the ones with super-resolution. The damage path is indicated

by white lines, which is used to help identifying the tornado. The 1 dimensional plot

indicated by a black line are provided in Fig. 3.21
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Figure 3.20: Similar as Fig. 3.19, but for ZDR (top) and ρhv (bottom)
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Fig. 3.20. The ZDR and ρhv from legacy and super-resolution are presented using

red and blue lines, respectively.
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that P , σs and χR can assist with the identification of tornado while the information

of spectrum width is not sufficient.

Very low values of ZDR and ρhv defined as tornado debris signatures have been

continuously observed in tornadic events. The analysis performed in this chapter,

similar to results of earlier work further confirms that TDS has the potential to help

with tornado detection. Compared to conventional tornado detection algorithm which

only relies on velocity signatures, a novel tornado detection algorithm that integrates

these tornado spectral, shear and polarimetric signatures is desirable and will be

developed in the next chapter.
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Chapter 4

Neuro-fuzzy Tornado Detection Algorithm

(NFTDA)

4.1 Motivation and Introduction

In Chapter 3, wide and flat tornado spectral signatures were characterized by four

parameters: spectrum width σv, spectral flatness σs, PRIB P , and eigen ratio χR.

Simulation results and real cases collected by KOUN indicate that the four variables

can be used individually to distinguish tornado spectra from non-tornado spectra

for some cases. Furthermore, tornado debris signatures manifested by anomalously

low differential reflectivity ZDR and cross-correlation coefficient ρhv were examined

using two real tornado events. Since individual TSS or TDS described in previous

chapter have the potential to facilitate tornado detection to some extent, it is desirable

to integrate all available signatures with the goal of improving tornado detection

compared to the conventional TDA. A novel neuro-fuzzy tornado detection algorithm

(NFTDA) was developed by Wang et al. (2008), which integrates shear and spectral

signatures with a neuro-fuzzy system. Enhanced detection capability, in terms of

high POD, lower FAR and further detection range, using NFTDA was reported. A

fuzzy logic methodology is ideal to address a complicated system which launches a

decision based on multiple inputs simultaneously. Fuzzy logic systems have already
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been applied to weather radar for hydrometer classification, cloud discrimination and

AP return filtering (e.g., Vivekanandan et al. 1999; Liu and Chandrasekar 2000; Zrnić

et al. 2001; Baum et al. 1997; Kessinger et al. 2003). In this work, a fuzzy logic system

is developed to flexibly integrate tornadic signatures in the velocity, spectra and

polarimetric measurements based on available parameters from radar observations.

The system is further enhanced by a feedback process provided through a neural

network and is termed the neuro-fuzzy tornado detection algorithm (NFTDA).

In this chapter, the architecture of the NFTDA is introduced in section 4.2. The

performance of the NFTDA for different combinations of input parameters is evalu-

ated in section 4.3. The summary and conclusions are given in section 4.4

4.2 Tornado Detection Using a Neuro-fuzzy

Framework

4.2.1 Rationale for applying fuzzy logic to tornado detection

Before demonstrating the use of fuzzy logic in tornado detection, the TSS and TDS

parameters are statistically analyzed using data collected from two tornadic events on

8 and 10 May 2003. The normalized histograms of (a) velocity difference, (b) spectrum

width, (c) PRIB, (d) Eigen-ratio, (e) spectral flatness, (f) differential reflectivity and

(g) cross-correlation coefficient for tornado and no-tornado cases are presented in

Fig. 4.1. The time series data were collected by the KOUN radar continuously over

the entire tornadic event for approximately one hour on 10 May but only two volume

scans of data for the 8 May case. The data from the lowest two elevation angles (0.5o

and 1.5o) were used to calculate the histograms (associated with 112 gates for tornado

cases, and 135,600 gates for non-tornado cases), which were normalized by the total

number of data used in the analysis.
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Figure 4.1: Normalized histograms of the parameters to characterize ∆V (a), TSS

(b)-(e) and TDS (f)-(g) for tornado (red bars) and non-tornado (blue bars) cases.
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A tornadic case is defined by the gate where the velocity difference (∆V ) of its

adjacent azimuthal gates is larger than 20 m s−1 and within the tornado damage path.

Regions outside the damage path with an SNR larger than 20 dB are defined as non-

tornado cases. It is shown that the tornado cases are associated with large values of σv,

∆V , P , χR, but small values of σs, ZDR and ρhv. It is interesting to point out that the

distributions of tornadic and non-tornadic cases are overlapped for all the parameters.

Thus, the values within the overlapping region cannot be used to represent either

tornado or non-tornado cases (i.e., some degree of fuzziness is involved). As a result,

a simple thresholding method based on any individual parameter is not sufficient and

will produce a certain amount of false or miss detections depending on the threshold.

Although the overlapping reign of ∆V is not obvious in Fig. 4.1, where only 1.5%

of non-tornadic cases have ∆V larger than 20 m s−1, the number of such cases is

significantly larger than the tornadic cases, because the majority of the data are

from non-tornadic cases. As a result many false/miss detections may be obtained.

Moreover, Yu et al. (2007) have shown cases that PRIB and spectral flatness can help

to characterize the TSS while the signatures of shear and spectrum width diminish.

The significant low value of ZDR and ρhv are indicators of tornado debris, which can

be used in tornado detection (Ryzhkov and Zrnić 1996). It is important to consider

these complementary tornadic features simultaneously in a detection algorithm, and

a fuzzy logic is an ideal candidate.

The choice of fuzzy logic over other approaches such as thresholding, decision trees,

and neural networks in their pure form is motivated by several considerations. First,

as mentioned previously, strong shear, large spectrum width, significant Eigen-ratio,

high PRIB, low value of spectral flatness and anomalously low differential reflectivity

and cross-correlation coefficient may be associated with a tornado vortex. The de-

scription of the degree of significance for each parameter is actually fuzzy in context,

since terms like “strong, weak, large, or low” are used to describe their significance.
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On the other hand, “crisp” values are binary – these values either exceed or do not

exceed a threshold. As such, the fuzzy parameters actually contain more information

than the crisp ones, and the intent here is to leverage this additional information that

is otherwise typically neglected. In retrospect, thresholding approaches would be ideal

if the distributions of tornadic and non-tornadic cases for any of the parameters in

Fig. 4.1 are disjointed; however, this is rarely the case for real scenarios. Secondly, a

fuzzy logic system can use all the available features simultaneously to reach a conclu-

sion, while a decision tree only uses a single parameter at each node and is exclusive

for all other parameters. Moreover, a fuzzy logic architecture is more flexible than

a decision tree for incorporating additional parameters without re-adjusting all the

rules. Finally, a large amount of training data is typically required to build a robust

neural network system in its pure form (Marzban and Stumpf 1996). In contrast, a

fuzzy logic system can be developed based on a set of rules that are obtained from a-

priori knowledge and/or defined by experts. Nevertheless, the self-learning capability

provided by the neural network is still attractive and is included here in this hybrid

approach to develop NFTDA. As such, the neural network is used to refine the rules

to optimize system performance. A similar approach of a neuro-fuzzy combination

was developed by Liu and Chandrasekar (2000) for hydrometeor classification with

polarimetric products. A schematic diagram of the NFTDA is depicted in Fig. 4.2,

and a detailed description of NFTDA is presented in the section 4.2.2 and 4.2.3.

4.2.2 Architecture of fuzzy logic system

A fuzzy logic system can be considered as a non-linear mapping of feature parameters

(i.e., inputs) to crisp outputs. In NFTDA the output is a binary detection of the pres-

ence of a tornado. This fuzzy logic system consists of three subsystems: fuzzification,

rule inference, and defuzzification (Mendel 1995). In fuzzification, the tornado fea-

ture parameters (or termed crisp input) of spectrum width, velocity difference, PRIB,
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Figure 4.2: The schematic diagram of the NFTDA. A fuzzy logic system is designed

to detect a tornado, while a neural network is incorporated to refine the membership

functions through a self-learning process. The framework is flexible enough to take

in different numbers of parameters. Weighted average is adopted in the rule inference

instead of multiplication. A neural network is used to refine the membership functions

through a self-learning process. The output of the neuro-fuzzy system is a cluster of

radar gates. Those gates associated with non-vortex are eliminated by quality control

(QC), and the tornado center is determined using a subtractive clustering method

(SCM).
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Eigen-ratio, spectral flatness, differential reflectivity and cross-correlation coefficient

are converted to fuzzy variables, by either S-shaped curve or Z-shaped curve mem-

bership function. An S-shaped membership function of a crisp input xi is defined by

two breaking points (xl
i and xh

i ) in the following equation.

F (xi) =


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(4.1)

where i =1, 2, ..., 7. corresponds to the input parameter. The fuzzy variables for

tornadic and non-tornadic cases are denoted by F Y
i and FN

i , respectively. Note that

a Z-shaped curve membership function is also determined by two breaking points as

following equation:

F (xi) =


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(4.2)

An example of the membership functions for seven tornado signatures as input pa-

rameters is presented in Fig. 4.3, where the membership functions of velocity differ-

ence, spectrum width, PRIB, eigen-ratio, spectral flatness, differential reflectivity, and

cross-correlation coefficient are depicted in a, b, c, d, e, f and g, respectively. It should

be noted that the membership functions will be different for different combinations

of the input parameters and the resolution of the data (legacy or super-resolution )

after neural network training.

The fuzzy variables are the inputs to the subsystem of rule inference with an

output of T Y and TN for tornadic and non-tornadic cases, respectively, as shown in

Fig. 4.2. The number of input variables is denoted by n, and the input parameters

can be in either legacy or super-resolution. The relationship between the input and
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Figure 4.3: Membership functions of tornado signatures.
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output of rule inference is described by fuzzy rules. The process of evaluating the

strength of each rule is called rule inference. Different from Wang et al. (2008), where

multiplication was used, in this dissertation, the Sugeno system of weighted average is

selected for the rule inference (Ross 2005). When the tornado velocity and/or spectral

and/or debris signatures are not present simultaneously, using weighted average rule

inference can still facilitate the detection. On the other hand, the multiplication (i.e.,

logical AND) is likely to fail in this situation. The weight as well as the membership

functions are obtained through the training process of a neural network, which will

be introduced in section 4.2.3. There are two layers in rule inference as indicated in

Fig. 4.2. In the first layer, the firing strengths of the rules ZY and ZN are calculated

as the multiplication of the fuzzy variables. In the second layer, the outputs of rule

inference T Y and TN are calculated from the normalized firing strengths, weights,

and the crisp inputs as indicated in Fig. 4.2. The normalized firing strengths are

obtained as Z̄Y = ZY

ZY +ZN and Z̄N = ZN

ZY +ZN , respectively. Finally, the output of

the rule inference, which is still a fuzzy variable, is converted to a crisp output of a

precise quantity through the subsystem of defuzzification. In this work, the weighted

average defuzzification method is chosen, which sums the T Y and TN together. If

the output of the defuzzification is larger than a pre-defined threshold (0.5 from the

training process in this work), a positive detection of the presence of a tornado is

selected; otherwise, it is a non-tornadic case.

The output of NFTDA is a cluster of radar gates associated with portion or all the

tornado features. Quality control (QC) procedure is implemented to eliminate those

gates where the detections are not continuous in range and height. Only those gates

having at least two adjacent neighbor(s) in range direction meet the range continuity

and to form the horizontal (2 dimensional) detections. The horizontal detections are

further examined at the three lowest elevation angles of 0.5o (time cut 2), 1.5o and 2.5o

in the volume coverage patterns (VCPs) of 11 for example. The vertical continuity is
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defined by that horizontal detections from each elevation angle are within a restrictive

region (2 km in range and azimuthal directions). Those remain gates associated with

nonvortex azimuthal shears such as gust fronts can be eliminated by examining the

aspect ratio. The aspect ratio, defined as the ratio of the cluster’s radial extent to

its azimuthal extent, exceeds a predefined threshold (4 in this work), this cluster is

discarded. Similar approach was used in Mitchell et al. (1998).

The remaining clusters are assumed from tornadic vortex, and the center of clus-

ter at the lowest elevation angle of 0.5o is designated to be the tornado center. In

this work, the subtractive clustering method (SCM), an extension of the mountain

clustering method proposed by Yager and Filev (1994) was used to determine the

center of the cluster. Unlike other clustering methods such as fuzzy c-means (FCM)

technique, which finds the cluster center with predefined cluster number, SCM can

estimate the number of clusters and determine their centers simultaneously. This

advantage of SCM is especially important when more than one tornado is present

in a given data set. In SCM, each data point is initially assumed to be a potential

cluster center. Subsequently a measurement of the likelihood that each data point

that would define the cluster center is calculated based on the density of surrounding

data points. The data with highest potential is set as the first cluster center, and

all the data points in the vicinity (as determined by a predefined radii) of the first

cluster are removed. This process is iterated until all of the data is within radii of a

cluster center.

In this work, the performances of the NFTDA using four combinations of input

parameters are examined using real tornado cases. The combination of different input

parameters and resolutions used in this work are listed in Table. 4.1. Where “Check”

means this situation is examined in this work.

The reasons to examine only these four combinations are based on the availability

of feature parameters, performance behavior, and the research values. First, currently
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NFTDA-D NFTDA-P NFTDA-S NFTDA-A

∆V + σv ∆V +σv +ZDR+

ρhv

∆V + σv + σs +

P + χR

∆V + σv + σs +

P + χR + ZDR +

ρhv

Legacy

Resolution

Check Check Check Check

Super

Resolution

Check No Check No

Table 4.1: The check list of different combinations of input parameters and resolutions

in this work.

most operational WSR-88Ds provide Level II moment data of reflectivity, radial ve-

locity and spectrum width but no Level I time series data are available. From the

operational and commercial point of view, using radial velocity and spectrum width

as the inputs of NFTDA is the most directly and reasonable option. Second, because

the tornado velocity signature is the most important (general) feature to identify a

tornado, velocity difference ∆V is adopted in all the combinations. Although TDS

have potential in helping tornado detection, low ZDR and ρhv can be found in plenty

nontornado locations. Therefore, the combination of using only ZDR and ρhv is not

examined in this work because of too many false detections. Third, although the TSS

is not currently available, its robustness in helping tornado detection is attractive.

The combination of TSS and velocity signatures is also analyzed in this work due to

its research value.

The NFTDA with only Doppler moments of ∆V and σv as inputs is termed

NFTDA-D where n = 2; the NFTDA with polarimetric and Doppler moments of σv,

∆V , ZDR and ρhv as inputs is termed NFTDA-P where n = 4; the NFTDA with

Doppler moment data and TSS of σv, ∆V , P , σs and χR as inputs is termed as
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NFTDA-S where n = 5; and NFTDA-A is represented by n = 7 with all the tornado

signatures, respectively.

4.2.3 Neural network for system optimization

The membership function is one of the most important components in a fuzzy logic

system. It can be obtained from intuition, inference, rank ordering, neural networks

and/or inductive reasoning, for example (Ross 2005). In NFTDA, the shape of the

membership functions were determined using prior knowledge of the relationship

between the feature parameters and fuzzy variables for both tornadoes and non-

tornadoes. For example, it is expected that a tornado is likely to have strong ∆V ,

large σv, P , and χR, but low σs, ZDR, and ρhv. Therefore, only an S- or Z-shaped

membership function is employed. The two breaking points of the S-shaped mem-

bership function of spectrum width for the tornadic case is exemplified in Fig. 4.3.

The breaking points of each membership function are initialized based on the results

of statistical analysis in Fig. 4.1, and same weights (Wi = 1, where i = 1, 2, ...,

7) are set to all the parameters. Subsequently, the breaking points and the weights

Wi are adjusted through a training process using a neural network as depicted in

Fig. 4.2. In the training process, the data from two radar volume scans (0341 UTC

and 0353 UTC 10 May 2003 ) at the two lowest elevation angles (0.5o and 1.5o) are

used as a training data set. Additional data generated from analytical simulations

are used as supplemental training data. Each training data point will be assigned

one input state: tornado or non-tornado. The tornado data is selected very carefully

from those gates associated with large velocity difference, obvious TSS and/or TDS

and consistent with the tornado damage path. Corresponding detection results of this

fuzzy logic system will be obtained based on present membership functions. If the

detection results do not match the input states, the breaking points and the weights

will be modified. The training process is achieved by minimizing the root mean square
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Figure 4.4: A example of the training process to show the variation of RMSE with

epochs.

error (RMSE) between the known input states and the detection results through an

iterative process (Liu and Chandrasekar 2000). The relation between the RMSE of

the training data and the training epoch is presented in Fig. 4.4. The training process

is accomplished when the RMSE reaches a pre-defined value (tolerance error). Oth-

erwise, the training process is terminated after pre-defined (10000) iterations. Note

that the membership functions shown in Fig. 4.3 were obtained after the training

process was completed (RMSE = 0).

4.2.4 Sensitivity analysis of input variables

In this section, the importance of input variables in NFTDA will be studied for the

four combination described in section 4.2.2. Heuristic methods have been developed

to address this issue (e.g., Sugeno and Yasukawa 1993; Jang 1996; Chiu 1996), where

the importance of input variables can be assessed by excluding them in a sequence

and comparing the corresponding algorithm performance. However, the computa-

tional cost can hinder the feasibility of these methods (Gaweda and Zurada 2001). In
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this work, a computational efficient method proposed by Gaweda and Zurada (2001)

is used to determine the significance of each input variables by calculating the nor-

malized sensitivity ϑk
i defined in the following.

ϑk
i =

∣

∣wk
i

∣

∣

∣

∣

∣

∣

xmax
i − xmin

i

Y max − Y min

∣

∣

∣

∣

(4.3)

where “k” represents “Y” and “N”, and 1 ≤ i ≤ n. The wk
i is the weight used in the

rule inference as shown in Fig. 4.2 and is represented in the following form.

Y = T Y + TN =

ZY

(

n
∑

i=1

wY
i xi + wY

0

)

+ ZN

(

n
∑

i=1

wN
i xi + wN

0

)

ZY + ZN
(4.4)

Moreover, the
∣

∣xmax
i − xmin

i

∣

∣ define the interval of the value of the ith input variables

and
∣

∣Y max − Y min
∣

∣ is the interval for the output of the rule inference. The ratio can

be thought of as a normalization factor for input variables with significantly different

values. The significance of a variable is defined by the maximum sensitivity as shown

in the following equation (Gaweda and Zurada 2001).

ϑmax
i = max

{

ϑY
i , ϑ

N
i

}

(4.5)

The input variable with the smallest ϑ is the least important variable. The weights

wk
i , and the resulted ϑ for each input variable and for the four combinations are listed

and discussed in section 4.3.

4.3 Performance Evaluations

In this work, the performance of NFTDA is assessed using four combinations of in-

put parameters for legacy and/or super-resolutions. The list of these combinations

is provided in Table 4.1. The performance of NFTDA is statistically analyzed and

compared to the conventional TDA. To achieve this goal, a tornado library was estab-

lished, which includes as many as possible tornado events that are available for this

work. Then the tornado detection scores in terms of POD and FAR are calculated

and exhibited.
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4.3.1 Tornado library and evaluation scheme

In order to evaluate the performance of NFTDA, a library of tornado events with

both radar data and tornado locations was established. Currently, the tornado li-

brary consists of 49 tornado events occurred during 1993 to 1999 with legacy res-

olution Doppler moment data, 24 events between March 11th 2008 and September

30th 2008 with super-resolution Doppler moment data, 2 events in 2003 with Doppler

moments and Level I time series data for H-channel polarization, 5 events between

2003 to 2008 with Doppler and polarimetric moments. Details of these tornadoes

are described in Table 4.4, Table 4.5 and Table 4.8. The selected cases in this work

show representativeness of the tornado events from various seasons, different geo-

graphical positions, and diverse tornado types. The locations of the WSR-88Ds that

recorded these tornado events are indicated in Fig. 4.5. The number and the time

period of tornadoes were obtained from the National Climate Data Center (NCDC)

record (http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwEvent Storms). All these

tornado events satisfy the following 3 conditions. (1) the tornado’s life time is more

than 3 minutes, (2) the quality of radar data is good, therefore no missing detec-

tions caused by blockage, missing data or corrupted data, and (3) all the tornadoes

are located within 150 km from the radar as suggested by Mitchell et al. (1998).

The WSR-88D Level II data for these events were acquired from the NCDC website

(http://www.ncdc.noaa.gov/nexradinv/), and from the collection of KOUN. Some of

these cases were also used for the evaluation of the operational WSR-88D NSSL TDA

(Mitchell et al. 1998).

The location of a tornado associated with each radar volume scan was determined

from the ground damage path if it was available. Otherwise, the tornado’s starting

and ending locations and the width of ground damage in the storm report were used

to assist the determination of the locations. These locations were further adjusted by

carefully examining the location of hook-signature, strong azimuthal shear, and large
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Figure 4.5: The locations of the WSR-88Ds in U.S.. The radar data used in this

dissertation were collected by the radars highlighted in red color. (From web-

site:http://www.ncdc.noaa.gov/nexradinv)
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spectrum width. Note that the damage path could be different from the location of

radar detection, which can be caused by the tilt of the tornado, the width of the radar

beam, and the limitation of the mechanical accuracy of the radar for determining the

azimuth (Speheger 2006). Similar methodology of adjustment in time and/or location

is also implemented by Mitchell et al. (1998) and Witt et al. (1998). For each volume

scan, a right detection defined as ”hit” is obtained when the detection is within the

close vicinity (< 1 km) of the tornado location. Other detections are defined as

”false”. In addition, a missed detection is obtained if the tornado is present but

the algorithm produces no detection. To quantify the performance, the time window

scoring method described in Witt et al. (1998) was applied. Algorithms run within

the time windows which starts from 15 minutes prior to the beginning time of the

tornado to 5 minutes after the ending time (Witt et al. 1998). The POD, FAR, are

defined by POD = a/(a+ c), FAR = b/(a+ b), , where a, b and c represent hit, false

and miss, respectively.

4.3.2 NFTDA-D

Since currently the Level II data from WSR-88D are available to the public, imple-

menting NFTDA using features directly from Doppler moments as input parame-

ters shows the most attractive operational and commercial benefit. Therefore, the

NFTDA with inputs of spectrum width and velocity difference derived from Level II

data is evaluated for both legacy and super-resolution in this section. For the compar-

ison purpose, the NSSL’s Warning Decision Support System- Integrated Information

(WDSSII) is used to produce TDA results. Since the TDA is only valid for legacy

resolution, it is termed as TDA-L (Lakshmanan et al. 2007).
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Figure 4.6: Statistical performance of POD (left) and FAR (right). The results are

from 49 tornado events. The detection results of NFTDA-DL are indicated by red

bars, and the results of TDA-L generated by WDSSII are indicated by blue bars. The

abscissa is the intensity of tornado in Fujita Scale.

4.3.2.1 NFTDA-D with legacy resolution data (NFTDA-DL)

The NFTDA-D for legacy resolution data is abbreviated as NFTDA-DL and was

trained and tested using 49 tornado events. The membership functions were initialized

by results from statistical analysis, and were further tuned by a neural network. Level

II moments from 9 tornado events associated with 21 volume scans were used to train

the membership functions. The details of the training data set are listed in Table 4.2,

where tornado events associated with various Fujita scales (F0 ∼ F3) and different

ranges (0 ∼ 150 km) are included. The training data set are categorized into “close”,

“median” and “far” according to the ranges of less than 50 km, between 50 km to 100

km and between 100 km to 150 km, respectively. The weights for ∆V and σv at each

range are listed in Table 4.3. No strong tornado cases (F4 and F5) were included in

the training data, but were included in the testing data set. It is apparent that if the

well trained algorithm can detect weak tornadoes, it must work for strong tornadoes

which are associated with larger velocity differences and spectrum widths.
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Date Radar County, State #Volume Range (km) Maximum

EF-Scale

04/15/94 KLSX St.Louis, MO 2 0–50 F0

10/07/96 KTBW Tampa Bay

Area, FL

2 50–100 F0

03/24/98 KHNX Hanford, CA 5 100–150 F0

01/21/90 KLZK Little Rock, AR 4 0–50 F2

07/03/90 KAPX Gaylord, MI 1 50–100 F2

02/23/98 KMLB Melbourne, FL 1 100–150 F2

05/31/96 KABR Aberdeen, SD 1 0–50 F3

05/17/95 KDDC Dodge City, KS 2 50–100 F3

02/23/98 KMLB Melbourne, FL 3 100-150 F3

Table 4.2: Tornado events used for the training of membership functions and weights

in NFTDA-DL.

49 tornado cases listed in Table 4.4 were used in the test. The POD and FAR for

NFTDA-DL and the TDA-L are shown on the left and right panels of Fig. 4.6, respec-

tively, for different Fujita scales. It is evident that for weak tornadoes of F0-scale the

NFTDA-DL provides significant improvement from conventional TDA manifested by

much higher POD (from 6.7% to 47%) and lower FAR (from 91% to 30%). Moreover,

for this testing data set the maximum detection range of F0 tornadoes using TDA-L

is 36 km and the NFTDA-DL can extend the detection to 60 km. For stronger torna-

does (F1-F5), the NFTDA-DL offers comparable or slightly higher PODs compared to

TDA-L. It is worth of noting that NFTDA-DL can have significantly lower FAR than

TDA-L. For example, for F4 and F5 tornadoes, both algorithms produce comparable

PODs of higher than 95%, but the NFTDA-DL can more effectively suppress false

detection to produce of FAR 23%, while the FAR of TDA-L is 42%. The performance

of NFTDA-DL and TDA-L as a function of ranges is presented in Fig. 4.7.

84



W∆V Wσv
W0

Range < 50 km

Yes -0.2325e-03 0.2512e-03 -0.0311e-03

No 0.0268 0.0603 -0.7861

Sensitivity ϑ∆V = 1.87 > ϑσv
= 0.90

50 km < Range < 100 km

Yes -0.0972e-05 -0.180e-05 0.7423e-05

No 0.00012 0.00003 1.0007

Sensitivity ϑ∆V = 0.61 > ϑσv
= 0.33

100 km < Range < 150 km

Yes -0.0916e-04 -0.1288e-04 0.7280e-04

No -0.0004 -0.0077 1.0819

Sensitivity ϑσv
= 0.83 > ϑ∆V = 0.12

Table 4.3: The trained weights and the significance sequence for each input parameter

in NFTDA-DL.
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Number (NFTDA/TDA)

Date Radar County, State #Tornado#Volume Hit Miss False

05/31/96 KABR Aberdeen, SD 1 29 7/5 3/5 4/7

05/22/95 KAMA Amarillo, TX 1 10 1/2 0/1 0/1

07/03/99 KAPX Gaylord, MI 1 13 4/4 0/0 0/0

05/21/98 KCYS Cheyenne,WY 1 85 0/0 5/5 0/0

05/16/95 KDDC Dodge City, KS 1 71 3/3 0/0 3/3

05/27/97 KEWX Austin, TX 9 81 17/11 9/15 3/1

03/29/98 KFSD Sioux Falls, SD 2 87 25/9 0/16 1/4

05/07/95 KFWS Dallas/Fort, TX 2 41 12/8 5/9 3/1

05/12/95 KGLD Goodland, KS 3 72 12/12 0/0 1/2

11/16/93 KHGX Houston, TX 5 67 4/2 6/8 2/2

04/07/98 KILX Lincoln, IL 4 137 6/6 5/5 2/3

01/02/99 KLCH Lake Charles,

LA

9 74 12/12 5/5 17/22

04/15/94 KLSX St. Louis, MO 2 49 3/2 6/7 3/9

05/28/96 KLVX Louisville, KY 2 33 13/13 1/1 4/10

03/29/98 KMPX Minneapolis,

MN

2 36 15/15 3/3 9/20

01/29/98 KNKX San Diego, CA 1 12 0/0 5/5 0/0

04/03/99 KSHV Shreveport, LA 1 32 12/11 9/10 7/17

09/02/98 KTBW Tampa Bay, FL 2 45 5/4 8/9 1/0

Table 4.4: Tornado events used in the testing of NFTDA-DL parameters for legacy-

resolution data.
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Number NFTDA/TDA

Date Radar County, State #Tornado#Volume Hit Miss False

07/02/08 KDMX Des Moines, IA 1 25 3/3 6/6 3/3

07/10/08 KDVN Davenport, IA 2 14 7/0 7/14 8/2

08/24/08 KFTG Denver, CO 1 9 0/0 6/6 0/0

06/04/08 KIND Indianapolis, IN 2 14 8/6 2/4 6/10

07/14/08 KLNX North Platte,

NE

2 14 4/0 8/12 0/0

08/02/08 KLWX Sterling, VA 2 14 4/0 8/12 0/0

05/08/03 KOUN Norman, OK 1 6 2/0 0/2 2/3

05/10/03 KOUN Norman, OK 3 12 9/5 0/4 2/3

Table 4.5: Tornado events used in the testing of NFTDA-DS parameters for super-

resolution data.

The main idea of TDA is searching for 3D shear feature based on multiple thresh-

olds. If the tornado is weak, such as F0 cases, the shear signature becomes too weak

to meet the thresholds, and the miss detections can occur. Additionally, if a tornado

is strong but is located at far range, the increased radar beam cross-section will also

smooth velocity shear so it becomes undetectable. On the other hand, large velocity

difference can also be caused from non-tornado events, such as gust front, squall lines,

velocity aliasing and second-trip echo. False detections are likely generated if these

situations are not dealt with caution in current TDA. However, because a tornado

can generate large spectrum width (above 6 m s−1) and this large spectrum width

can be better maintained at far ranges, miss detections generated by TDA that as-

sociated with small velocity difference but large spectrum width can be detected by

NFTDA-DL. Moreover, since the training process was accomplished with plentiful of

real tornado cases, with the obtained membership functions, the optimal combination
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W∆V Wσv
W0

Yes -0.1866e-06 -0.1108e-06 0.5035e-06

No 0.00001 0.00002 1.0020

Sensitivity ϑ∆V = 0.54 > ϑσv
= 0.38

Table 4.6: The trained wights and the significance sequence for each input parameters

in NFTDA-DS.
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Figure 4.7: Similar to Fig. 4.6, but the abscissa is the distance from tornado to radar

in very close range (0 ∼ 30 km), close range (30 ∼ 60 km), median range (60 ∼ 90

km), far range (90 ∼ 120 km) and very far range (120 ∼ 150 km).
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of velocity difference and spectrum width are implemented in NFTDA-DL. Some false

detections generated by TDA that associated with large velocity difference but small

spectrum width can be eliminated.

The importance of input variables at the three different range intervals is obtained

using Eqs. (4.3 and 4.5) and is listed in Table 4.3. It is interesting to point out that for

“close” and “median” ranges, ∆V is more important than σv (ϑ∆V > ϑσv
). Moreover,

for “far” range, the algorithm depends more on σv than ∆V . It is expected that at far

ranges the shear signature become degraded and the spectrum width still maintains

tornado spectral signature to some extent.

4.3.2.2 NFTDA-D with super-resolution data (NFTDA-DS)

Enhanced velocity difference and comparable tornado spectral signatures (worse than

legacy resolution at close range but better at far range) using super-resolution can

be observed from the simulation results demonstrated in Fig. 3.16 and Fig. 3.17. For

super-resolution, NFTDA-D was re-trained and is termed NFTDA-DS. 13 tornado

cases of Fujita scale from F0 to F3 with super-resolution moment data were initially

identified out of 1470 tornado cases archived in the NCDC from March 11 2008 to

September 30 2008. Radar data from two volume scans of a F0 tornado case recorded

by KFTG, and three volume scans of a F1 tornado case recorded by KDVN were

used for training, and the trained weights and the sequence of significance of each

parameters are listed in Table 4.6. Tornado cases used for testing are listed in Table

4.5.

Due to the limitation of available events with super-resolution, tornadoes are only

classified into weak case with Fujita scale of F0 and F1 and strong case with F2-

F5. Moreover, in order to compare with detection results with legacy resolution,

the NSSL’s WDSSII was used to simulate/convert Doppler moments from super-

resolution to the legacy resolution, which were subsequently fed to the NFTDA-DL
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Figure 4.8: Similar to Fig. 4.6, but for super-resolution data.

and TDA-L. The POD and FAR from the three approaches are presented in Fig. 4.8.

For the legacy resolution, the NFTDA-DL exhibits higher POD and lower FAR than

TDA-L, which is consistent with previous results as shown in Fig. 4.6. It is interesting

to note that for weak tornadoes the super-resolution NFTDA-DS has enhanced POD

of 75% and slightly worse FAR of 33%, compared to the legacy NFTDA-DL with

POD of 60% and FAR of 28.3%. Note that, the POD and FAR for NFTDA-DS

were obtained using δV , which shows apparent improvement compared to the one

using ∆V . However for the NFTDA-DL, the POD and FAR from δV are identical to

∆V , so that the ∆V is implemented due to the computation efficiency. It has been

demonstrated in section 3.3 that δV provides better velocity difference signature than

∆V , and likely produce higher POD in NFTDA. However, the difference between

the δV and ∆V is also related to the tornado size, distance, and relative location

of tornado inside the radar resolution volume. Therefore, the negligible difference

between the results from δV and ∆V for legacy resolution in this work are likely from

the tornado events used.
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4.3.3 NFTDA-S

4.3.3.1 Performance evaluations with real cases

The performance of NFTDA using Doppler moments and TSS for legacy resolu-

tion data (NFTDA-SL) is assessed using two tornadic events in central Oklahoma

on 8 and 10 May 2003. The tornado outbreaks on 10 May are of primary in-

terest because continuous time series data were collected by KOUN for the entire

event. The NCDC reported that three tornadoes from the same supercell thunder-

storm occurred in central Oklahoma from 0329 UTC to 0425 UTC on 10 May 2003

(http://www.ncdc.noaa.gov). The first tornado touched down at 0329 UTC and had

traveled 18 miles for approximately 37 minutes before dissipating. The maximum

intensity of this tornado was reported at F3 on the Fujita scale. The second tornado,

which was estimated to be of F1 maximum intensity touched down approximately 4

miles south of Luther, Oklahoma at 0406 UTC and had lasted for approximately 9

minutes with 3 miles of track. The final tornado occurred between 0415 and 0424 UTC

with a maximum intensity of F0. These tornadoes showed discontinuous tracks and

collectively lasted approximately 56 minutes, which is similar to the multiple cores

mesocyclone described by Burgess et al. (1982) and Adlerman et al. (1999). The

tornado damage path with Fujita scale from the ground survey is presented in the

upper portion of Fig. 4.9. The damage path of the 8 May tornado is also included

in the lower portion of the figure. The NCDC has reported that this tornado had a

maximum intensity of F4 and had traveled approximately 18 miles from 2210 UTC

to 2238 UTC. However, the collection of time series data by KOUN did not start

until approximately 2230 UTC and therefore, only two volume scans of the data are

associated with the tornado.

All the feature parameters were calculated from the raw time series data collected

by KOUN in Norman, OK. The membership functions were trained using the data

from two radar volume scans (0341 UTC and 0353 UTC 10 May 2003 ) at the elevation

91



−10 −5 0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

50

Zonal (km)

M
er

id
io

na
l (

km
)

 

 

KTLX

KOUN/PAR
Norman 

Moore

Pink

Choctaw

Edmond

Luther

Newalla

  

03:29

03:29

03:29

03:35

03:35

03:34
03:39

03:41

03:44

03:47

03:49

03:53

03:54
03:59

04:04

04:05

04:09 04:14 04:19

04:11

04:11

04:17

22:20
22:25

22:36
22:30

22:30
22:36 22:36

NFTDA−SL
TDA−L−KTLX
TDA−L−KOUN
F0
F1
F2
F3
F4

Figure 4.9: Comparisons of the detection results from TDA-L-KOUN and NFTDA-

SL, which are denoted by blue triangles and red circles respectively, for both tornadoes

on 8 and 10 May 2003. Moreover, the TDA results from the operational WSR-88D

at Twin Lakes, OK (TDA-L-KTLX) are depicted by black upward triangles. The

location of both KOUN and KTLX is indicated. The detection of “hit” from each

approach is connected by a solid line to show the time continuity. Ground damage

paths with Fujita scales are depicted by color-shaded contours.

92



angles of 0.5o and 1.5o. The trained weights for each parameters are listed in Table 4.7.

Subsequently NFTDA-SL was applied to the data with SNR larger than 20 dB. More

details related to the implementation of NFTDA can be referred to section 4.2.2. The

NSSL’s TDA was also applied to the KOUN Level II data and the detection results

are abbreviated by TDA-L-KOUN. For the verification of NFTDA-SL and TDA-L-

KOUN, tornado damage path from ground survey is used as an objective reference.

However, the damage path may not be available in suburb areas and can be different

from the real tornado location. The limitation of using damage path to verify the

performance of the detection algorithm is discussed by Witt et al. (1998). Moreover,

TDA results from the KTLX radar (denoted by TDA-L-KTLX) is used as another

reference. The maximum distance between the KTLX and the 10 May tornadoes is

approximately 32 km and it is expected that the TDA-L-KTLX will provide accurate

and reliable detections for most cases at such relatively short ranges (Mitchell et al.

1998). In addition to both objective references we carefully examined both spectral

and shear signatures for each detection and consequently classify the result to “hit”,

“miss”, or ”false” detection.

Comparisons of the detections from NFTDA-SL, TDA-L-KOUN, and TDA-L-

KTLX for both 8 and 10 May tornadoes are summarized in Table 4.8. Note that

only these TDA-L-KTLX detections with time index close to KOUN detections are

included in the table. The scoring statistics shown in Table 4.8 were calculated from

all the detections shown in Fig. 4.9. For these two tornadic events, it is evident

that NFTDA-SL can improve the shear-based TDA-L-KOUN to provide high POD,

low FAR, and high CSI. In addition, TDA-L-KTLX has perfect POD of 100% with

maximum detection of approximately 32 km, while NFTDA-SL has comparable POD

of 91% with maximum detection of approximately 55 km. Moreover, NFTDA-SL has

the lowest FAR among the three approaches. Note that NFTDA-SL has one miss
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W∆V Wσv
WP Wσs

WχR
W0

Yes 1.7861 -12.1282 -3.5112 5.6723 20.9741 -37.9901

No -0.0051 0.0432 -0.0280 0.37135 -0.3301 0.4962

Sensitivity ϑσv
= 0.67 > ϑ∆V = 0.51 > ϑσs

= 0.48 > ϑP = 0.11 > ϑχR
= 0.09

Table 4.7: The trained wights and the significance sequence for each input parameters

in NFTDA-SL.

detection at 0359 UTC where no obvious tornado velocity and spectral signatures

can be observed. The velocity deference and TSS plots are provided in Appendix A.

The NFTDA-S using super-resolution (NFTDA-SS) shows same performance as

the legacy resolution for the cases in this work. Therefore no separate figures are

provided for the results from NFTDA-SS. The relative close range and obvious ve-

locity and spectral signatures are the key reasons causing the detection results from

NFTDA-SL and NFTDA-SS same. Although enhanced velocity and spectral sig-

natures can be observed for super-resolution through simulation in section 3.3, the

detection results from more real tornado cases are needed to further verify this con-

clusion.

4.3.3.2 Simulation results

Since only very limited cases are available for the examination of the NFTDA-S, in

order to further understand the behavior of the NFTDA-S (including NFTDA-SL

and NFTDA-SS), simulated Level I time series data of an idealized vortex (Rankine

vortex) generated from a radar simulator developed by Yu et al. (2007) were used.

It should be note that the simulated super-resolution data is generated following the

approach proposed by Brown et al. (2002), which is different from the operational one

as mentioned in Chapter 3. Here, a tornado located at 1 km southwest of the center of

a mesocyclone is simulated. Both tornado and mesocyclone are modeled by a Rankine
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Time (UTC)

KOUN/KTLX

TDA-L-KOUN NFTDA-SL TDA-L-KTLX

Detection

Result

Range

(km)

Detection

Result

Range

(km)

Detection

Result

Range

(km)
10 May 2003

0329/0329 hit

false

35.188

33.336

hit 35.625 hit

false

27.358

28.968
0335/0334 hit

false

38.892

46.352

hit 37.625 hit 27.358

0341/0339 hit 38.892 hit 39.625 hit 25.749
0347/0349 hit

false

40.744

42.596

hit 40.625 hit

false

25.749

27.358
0353/0354 hit

false

42.596

33.336

hit 42.625 hit

false

25.749

27.358
0359/0359 miss N/A miss N/A hit

false

27.358

28.968
0405/0404 miss N/A hit 48.125 hit

false

27.358

30.577
0411/0409 false 46.30 hit 52.625 hit 28.968
0417/0419 miss N/A hit 55.375 hit 32.165

8 May 2003
2230/2230 miss N/A hit 24.875 hit 9.656
2236/2235 false

false

false

25.928

31.484

35.188

hit 29.375 hit 11.265

POD 55.6 % 90.9% 100%
FAR 61.5 % 0% 33.3%
CSI 29.4 % 90.9% 75%

Table 4.8: Comparison of NFTDA-SL, TDA-L-KOUN, and TDA-L-KTLX for 8 and

10 May 2003 tornadoes. The time index of each volume scan for both KOUN and

KTLX is given in the first column. The detection result and the range of detection

are presented for the three methods.
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combined vortex model with a maximum tangential velocity of 50 m s−1 and 15 m

s−1, respectively. The radius of the mesocyclone is 2 km and three different tornado’s

radius (rt) are used in the simulation. Moreover, uniform reflectivity (Wood and

Brown 1997; Brown 1998; Brown et al. 2002), is applied to the tornado and a broad

Gaussian-shape reflectivity is used for the mesocyclone. The Level I time series data

are simulated for a WSR-88D radar with a 1.39o degree beamwidth (θb) for NFTDA-

SL and 1.02o for NFTDA-SS, and a 250 m range resolution (∆R). The maximum

unambiguous velocity is 35 m s−1. The mean Doppler velocities and spectrum widths

are estimated by the autocovariance method (Doviak and Zrnić 1993). The spectral

flatness, PRIB, and Eigen-ratio are estimated by the methods described in Yu et al.

(2007) and Yeary et al. (2007).

It has been shown that tornado’s shear and spectral signatures depend on several

factors such as the range between the tornado and radar, the size of the tornado, and

the relative location of a tornado in the radar’s resolution volume. In this work, the

ratio of detection, defined as ROD = Nd/Nt, is introduced to quantify the perfor-

mance of NFTDA-S in the simulation, where Nt is the total number of tornadic cases

generated for the test and Nd is the number of cases detected. For each realization

121 tornado locations in the radar resolution volume are simulated with 11× 11 uni-

form grids in azimuthal and range directions at a given range (i.e., Nt = 121). The

radar resolution volume of interest is centered at an azimuth of 0o. For each tornado

location, the five feature parameters (velocity difference, spectrum width, spectral

flatness, PRIB, and Eigen-ratio) are obtained as the inputs of NFTDA-S. The ratio

of detection can be thought of as the POD for different tornado’s locations within the

radar resolution volume. The ROD as a function of the normalized range is presented

in Fig. 4.10 for the three tornado sizes that are defined by ∆R/rt, where rt = 50, 100,

and 200 m. The normalized range is defined as r0θb/rt, where r0 is the range from the

radar to the center of resolution volume. Each data point represents the mean of ROD
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Figure 4.10: Statistical analysis of the performance of NFTDA-SL and NFTDA-SS as

a function of normalized range for ∆R/rt = 1.25, 2.5, and 5.0, where ∆R = 250 m is

the range resolution. The abscissa is the normalized range with r0 is the distance from

the radar to the center of the resolution volume, θb is the beamwidth (1.39o for legacy

and 1.02o for super-resolution), and rt is the radius of the tornado. The results from

NFTDA-SL, NFTDA-SS and the detection based on a threshold of velocity difference

of 20 m s−1 (TTD) are denoted by red, black and blue lines, respectively.
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from 50 realizations, and each one has a different noise sequence added to the time

series data. For the purposes of comparison, a tornado detection solely based on the

thresholding of velocity difference is also implemented and is termed “thresholding

tornado detection” (TTD). Since the operational TDA is only for legacy resolution

data, the TTD which is used to simulate the performance of TDA only uses legacy

resolution data. The ROD from the TTD using a threshold of 20 m s−1, one of the

thresholds used in the NSSL’s TDA (Mitchell et al. 1998), is provided in Fig. 4.10.

Note that both the range and range resolution are normalized by the tornado’s radius

so that the detection result is scalable for radar with different beamwidth and range

resolution.

In this section, the membership functions implemented in NFTDA-SL and NFTDA-

SS were obtained from the training process of the same data set as mentioned in

section 4.3.3.1. It is evident that NFTDA-SL and NFTDA-SS provide higher RODs

than TTD especially at far ranges for the three tornado sizes. For example, NFTDA-

SL, NFTDA-SS and TTD have RODs of approximately 100% when the normalized

distance is smaller than 8.7 and ∆R/rt = 1.25 (i.e., a relatively large tornado). As

the range increases, ROD from TTD declines because of the diminishing shear signa-

tures. However, NFTDA-SL and NFTDA-SS still have high RODs because spectral

signatures are still evident enough to facilitate the detection. Although the perfor-

mance of TTD can be improved by lowering the threshold, false detections will likely

increase. The NFTDA-SS shows similar or better performance than the NFTDA-SL,

which consistent with the simulation results in section 3.3. For the large size tornado

∆R/rt = 1.25, 2.5, the improvement of using super-resolution at close range (roθb/rt

) is not obvious. Apparent enhancement can be observed for tornado with ∆R/rt = 5

especially at close range, which is consistent with the simulation results in section 3.3.

To better understand the strengths and weaknesses of NFTDA-S (NFTDA-SL

and NFTDA-SS), it is advantageous to investigate the regions where NFTDA-SL,
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NFTDA-SS and TTD detect and miss. One realization of the velocity difference for

121 tornado’s locations with the resolution volume, defined by 1.39o beamwidth and

250 m resolution, and at a normalized range of 7 is exemplified in the upper panel of

Fig. 4.11 for ∆R/rt = 5. Note that the tornado is present for all 121 cases. TTD has

20 positive detections which results in a ROD of 16.5%. It is interesting to point out

that large velocity differences occur if a tornado is located closer to the boundaries of

a radar resolution volume in azimuth and toward the center of the radar resolution

volume in range. If an ideal tornado with a size smaller than the radar resolution

volume is centered at azimuth angle of -0.5o (i.e., the boundary of the radar beam) and

the center of the gate, then the mean Doppler velocities from the two adjacent radar

volumes in azimuth (the one centered at 0o and the other one centered at -1o) have

the same magnitude but with opposite signs because of the symmetry of the vortex

and radar weighting functions. Thus the maximum velocity difference is obtained.

If the tornado is located toward the center of the radar beam or the boundaries of

a range gate, the velocity difference decreases. For example, if a small tornado is

located at the center of the resolution volume, the mean Doppler velocity is ideally

zero because of the symmetry of the spectrum. Additionally, the magnitude of the

mean Doppler velocity from either of the adjacent volumes centered at -1 o or 1 o

should be relatively small due to the range dependence of the vortex velocities from a

small tornado. For a relatively large tornado (rt = 200 m), velocity difference larger

than 20 m s−1 is observed for all 121 tornado’s locations at the normalized distance

of 7. Therefore, a ROD of 100% is obtained as shown in Fig. 4.10.

In contrast, the region of positive NFTDA-SL detections is denoted by white lines

with a ROD of 73.5% in Fig 4.11. One more detection can be provided by NFTDA-

SS which show ROD of 74.3%. For the clarity of the figure this addition detection is

not shown on the velocity plot (top), but the spectrum and velocity difference and

TSS are provided (bottom left). NFTDA-S (NFTDA-SL and NFTDA-SS) misses the
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Figure 4.11: A contour plot of the values of velocity difference for 121 tornado lo-

cations is shown on the upper panel for ∆R/rt = 5 and r0θb/rt = 7. The regions

where NFTDA-SL and TTD have positive detections are depicted by white and black

lines, respectively. Spectra from three sample locations (A, B, and C) and the five

parameters are shown from left to right on the lower panel. The spectra for super-

resolution data are indicated by red lines, and for legacy resolution are indicated by

black lines. In location A, NFTDA-SL and TTD have miss detections, but NFTDA-

SS has accurate detection; in location B, NFTDA-SL and NFTDA-SS have accurate

detections but TTD misses; in location C, NFTDA-SL, NFTDA-SS and TTD have

good detections
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detection when the tornado is located at the boundaries of a radar resolution volume

in range. Spectra from the three locations, denoted by A, B and C in the upper

panel of Fig. 4.11, are depicted from left to right in the lower panels, respectively.

At location A, both NFTDA-SL and TTD miss the detection of the tornado because

neither the spectral nor the shear signature is significant enough. However NFTDA-

SS can provide one more detection than NFTDA-SL. It is interesting to point out

that although the velocity difference at locations A and B is similar and small, the

spectrum from location B is wider and more flattened than the one from location A.

As a result, prominent spectral features assist the NFTDA-S to produce a positive

detection at B while TTD misses. Both NFTDA-S and TTD have positive detections

at location C, where the characteristic spectral and shear features are evident.

4.3.4 NFTDA-P

In the section 4.3.2 and section 4.3.3, the performance of NFTDA using Doppler

moments and TSS with both legacy and super-resolutions was demonstrated. In

this section, the polarimetric neuro-fuzzy tornado detection algorithm with legacy

resolution data (NFTDA-PL) was trained using two volumes scans from 10 May 2003

tornado, and tested using five tornado events (8 May 2003, 10 May 2003, 8 May 2007,

8 May 2008 and 19 August 2007 ). The scales of these tornadoes vary from EF-1 to

EF-4, and ranges are between 30 km to 105 km. All the radar data associated with

these tornadoes were collected by KOUN. The tornado outbreaks on 8 and 10 May

2003 are of primary interest because continuous polarimetric moments were collected,

and damage paths are available for both of them.

The detection results from NFTDA-PL are presented in Fig. 4.12, where re-

sults from NFTDA-DL are also included for comparisons. In general, the detec-

tions from NFTDA-DL and NFTDA-PL are consistent with the damage path, except

that NFTDA-DL produces two false detections at 0341 UTC and 0347 UTC on the

101



−10 0 10 20 30 40

0

5

10

15

20

25

30

35

40

45

50

Zonal (km)

M
er

id
io

na
l (

km
)

 

 

KTLX

KOUN/PAR
Norman 

Moore

Pink

Choctaw

Edmond

Luther

Newalla

  

03:29
03:35

03:4103:47

03:41 03:47

03:53
03:59

04:11

04:17

22:30

22:36

NFTDA−DL
NFTDA−PL
F0
F1
F2
F3
F4

Figure 4.12: The radial velocity (top left) and spectrum width (top right) at 0347

UTC. The contour of reflectivity at 30 dBZ is indicated by black lines on both plots.

Ground damage path with Fujita scales is depicted at the bottom of the figure.

Comparisons of the detection results from NFTDA-DL and NFTDA-PL (bottom),

which are denoted by blue triangles and red triangles, respectively.
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Figure 4.13: The radial velocity (top left), spectrum width (top right), differential

reflectivity (bottom left) and cross correlation coefficient (bottom right) at 0359 UTC,

respectively. Ground damage path is depicted by transparent contours. The tornado

location associated with low ZDR and ρhv is indicated by a red triangle
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W∆V Wσv
WZDR

Wρhv
W0

Yes -0.0010 0.0116 -0.0128 -0.0504 0.1057

No 0.7796 5.736 -0.2582 0.97135 -57.5092

Sensitivity ϑσv
= 0.72 > ϑ∆V = 0.51 > ϑρhv

= 0.25 > ϑZDR
= 0.14

Table 4.9: The trained wights and the weight significance sequence of each input

parameters in NFTDA-PL.

north side of the damage path. The fields of velocity and spectrum width at 0347

UTC UTC are presented in Fig. 4.12, from where obvious velocity aliasing can be

observed. False detections were resulted. However, NFTDA-PL can suppress both

false detections because no TDS was observed at the two locations of velocity alias-

ing. One more detection from NFTDA-PL at 0359 UTC is also within the damage

path, which was missed by NFTDA-DL and NFTDA-SL. For this case, apparent TDS

but relatively weak velocity difference and spectrum width were observed as shown

in Fig. 4.13. Therefore, NFTDA-PL can still successfully detect the tornado while

NFTDA-DL misses. Note that if the multiplication was used for the rule inference

instead of weighted summation as discussed in section 4.2, the NFTDA-PL would

have produced a miss detection as well. This case demonstrates the advantage of

using weight summation in the NFTDA-PL. NFTDA-PL has one miss detection at

0405 where no obvious TDS can be observed. The velocity, TDS and TSS fields at

this time are provided in Appendix A. For 8 May 2003 tornado case, only data from

two volume scans (2230 and 2236 UTC) are available, and the tornado was located

25 km from KOUN. The detections from NFTDA-DL and NFTDA-PL agree with

the damage path very well due to the apparent velocity, spectral and polarimetric

signatures. Since only limited polarimetric observations of tornadoes are available,

no statistical analysis is performed for NFTDA-PL. For the tornado cases on 8 May
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Time (UTC) NFTDA-DL NFTDA-PL

Detection

Result

Range

(km)

Detection

Result

Range

(km)

10 May 2003

0329 hit 35.625 hit 35.625

0335 hit 37.625 hit 37.625

0341 hit

false

39.625

43.375

hit 39.625

0347 hit

false

40.625

45.125

hit 40.625

0353 hit 42.625 hit 42.625

0359 miss N/A hit 48.125

0405 miss N/A miss N/A

0411 hit 52.625 hit 52.625

0417 hit 55.375 hit 55.375

8 May 2003

2230 hit 24.875 hit 24.875

2236 hit 29.375 hit 29.375

POD 72.7 % 90.9%

FAR 18.2 % 0%

CSI 69.2 % 90.9%

Table 4.10: Comparison of NFTDA-DL and NFTDA-PL for 8 and 10 May 2003

tornadoes. The time index of each volume scan is given in the first column. The

detection result and the range of detection are presented for the two methods.
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2007, 8 May 2008 and 19 August 2007, only few volume scans data are available.

Therefore, no statistical results can be generated.

There is one tornado case (29 May 2004) with time series data from both hori-

zontal and vertical polarization, which allow us to test the performance of NFTDA-P

for super-resolution data (NFTDA-PS). However, this tornado is far from the radar

(above 90 km), embedded within a mesocyclone and behind high precipitation (HP),

which vitiates the tornado’s velocity, spectral and polarimetric signatures. There-

fore, even both NFTDA-PL and NFTDA-PS can provide detections using this case,

there is occasionality inside the results and does not really reflect the true perfor-

mance and the comparisons between these two. The performance of NFTDA-PL is

not statistically analyzed in this study, future works will focus on this.

4.3.5 NFTDA-A

The performance of NFTDA using all the tornado signature parameters (n = 7) with

legacy resolution termed as NFTDA-AL is demonstrated using the tornado cases of

8 and 10 May 2003. The membership functions were trained using the the data from

two radar volume scans (0341 UTC and 0353 UTC 10 May 2003 ) at the elevation

angles of 0.5o and 1.5o. The scoring statistics is provided in Table 4.11, and the

comparison among the detection results from NFTDA-DL, NFTDA-PL, NFTDA-SL

and NFTDA-AL is presented in Fig. 4.14. Moreover for the clarity purpose, the PODs

and FARs of these four methods are shown in Fig. 4.15.

It is apparent, the NFTDA-AL provides the best results with all the hits and no

false detections. The miss detection of NFTDA-PL at 0405 UTC can be detected by

NFTDA-AL under the assistance of TSS, and the miss detection of NFTDA-SL at

0359 can be detected by NFTDA-AL under the help of TDS. It indicates that the

tornado velocity, spectral and debris signatures can work as compensation for each

other, and the best performance can be achieved when they are combined together.

106



Time

(UTC)

NFTDA-AL

Detection

Result

Range

(km)

10 May 2003

0329 hit 35.625

0335 hit 37.625

0341 hit 39.625

0347 hit 40.625

0353 hit 42.625

0359 hit 44.125

0405 hit 48.125

0411 hit 52.625

0417 hit 55.375

8 May 2003

2230 hit 24.875

2236 hit 29.375

POD 100%

FAR 0%

CSI 100%

Table 4.11: Similar to Table 4.10, but for NFTDA-AL
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Figure 4.14: Comparisons of the detection results from NFTDA-DL (indicated as blue

downward triangles, NFTDA-PL (indicated as red upward triangles), NFTDA-SL

(indicated as black dots), and NFTDA-AL (indicated as green stars). The detection

of “hit” from each approach is connected by a solid line to show the time continuity.

Ground damage paths with Fujita scales are depicted by color-shaded contours.
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W∆V Wσv
WP Wσs

WχR
WZDR

Wρhv
W0

Yes 0.0004 -0.021 0.0004 0.0028 0.00291 -0.0039 -0.0087 0.00134

No -0.0080 0.0996 -0.009 -0.0175 -0.0131 -0.0118 0.01747 2.9890

Sensitivity ϑσv
> ϑ∆V > ϑσs

> ϑρhv
> ϑZDR

> ϑP > ϑχR

Table 4.12: The trained wights and the significance sequence of each input parameters

in NFTDA-AL.
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Figure 4.15: The POD (left) and FAR (right) of the NFTDA using different input

parameters discussed in this section. The POD and FAR are calculated using the

tornado cases on 8 and 10 May 2003.
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Note that if the multiplication was used for the rule inference instead of weighted

average as discussed in section 4.2, the NFTDA-PL would have produced a miss de-

tection as well. It should be note that the rule inference with weighted summation

shows its advantage in this case. When the tornado is not associated with TSS and

TDS simultaneously, the rule inference with multiplication would produce miss detec-

tion. In this work, since no dual polarization time series data are available for these

two cases, so no NFTDA-A for super-resolution data (NFTDA-AL) is performed.

4.4 Summary and Conclusion

It has been shown that strong azimuthal shears can be observed in a tornadic re-

gion and are the primary feature for the operational tornado detection algorithm of

the WSR-88D. However, the shear signature deteriorates with range because of the

smoothing effect by the increasing radar resolution volume. Recently, tornado spec-

tral signatures (TSS) were characterized using spectrum width, bispectrum analysis,

and signal statistics. Moreover, large eigen-ratios derived from Level I time series

signals were also found to be associated with signals from the vicinity of a tornado.

Tornado debris signatures in terms of low differential reflectivity and cross correlation

coefficient have been observed in a number of tornadic events. In this work a novel

algorithm based on fuzzy logic was developed to integrate spectral, velocity, and de-

bris signatures with the goal of improving tornado detection. A fuzzy logic system is

able to launch a decision based on simultaneous inputs with fuzzy descriptions. The

system was further enhanced by a training process of a neural network. This hybrid

approach is termed Neuro-Fuzzy Tornado Detection Algorithm (NFTDA).

In the dissertation, the architecture of NFTDA was first presented and discussed.

The feasibility of NFTDA was tested with different combinations of the input param-

eters depending on the availability of feature parameters, performance behavior and
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the research values. The results indicate that the inclusion of spectral and polari-

metric signatures, in addition to shear information, is effective in improving tornado

detection. The best performance can be obtained when the velocity, spectral and

polarimetric signatures are integrated within the fuzzy logic framework. Moreover,

the impact of the super-resolution on the performance is also included in this work.

Noticeable improvement from super-resolution data can be obtained if the Doppler

moments of radial velocity and spectrum width were used for inputs parameters. In

practice, several factors can limit the performance of NFTDA such as the degraded

quality of the parameters caused by low SNRs and the fact that the radar actually

samples the storms aloft due to the earth curvature.
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Chapter 5

Retrieval of the Microphysical Properties for the

Mixture of Rain and Hail Using Doppler Spectral

Analysis and Genetic Algorithm

5.1 Introduction

In previous three chapters, the application of Doppler spectra and neuro-fuzzy to tor-

nado detection has been studied systematically. In this chapter, spectral analysis and

another artificial intelligence approach of GA are combined to retrieve the DSD of

both raindrops and melting hailstones, the melting ratio, environmental conditions of

ambient wind and turbulence. The mixed-phase precipitation that comprises either

rain and hail or graupel and hail are commonly observed below or above the melting

level, respectively (Pruppacher and Pitter 1971). This mixture can be frequently ob-

served in convective storms, where water can exist at temperatures below 0oC and ice

can be found at temperature above 0oC (Balakrishnan and Zrnić 1990). For melting

hailstones, their scattering properties become close to pure ice (if the percentage of

ice is very high) or pure water (if the percentage of water is high). It was demon-

strated that even for the same mixture of rain and hail (same rainrate and hail rate),

after the hailstones start to melt, the reflectivity, the differential reflectivity ZDR and

the differential propagation constant KDP show different values with different water
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percentages in the hailstones (Balakrishnan and Zrnić 1990). Overestimation of hail-

rate will be generated if the melting is not considered. Therefore, it is valuable to

accurately estimate the water fraction of the melting hailstones.

The DSD is one of the most important parameters to be determined in weather

radar, since the relation between the received power from precipitation and the rainfall

and/or the hailrate are largely affected by the size of drops. Usually, disdrometers are

used to measure the natural DSD on surface. Typical error sources for distrometer

include undersampling, physical variations, instrument limitations and environmental

factors, for example (e.g., Wong and Chidambaram 1985; Ulbrich 1983; Nespor et al.

2000). It was reported that radar retrieved rainfall rate agrees with the rainfall rate

derived from disdrometer when the raindrops are smaller than 3 mm (Goddard et al.

1982). Several DSD retrieval methods for radar have been developed in the past 20

years.

The DSDs of both raindrops and melting hailstones and the melting ratio are

proposed to be retrieved simultaneously based on the measurements of Doppler spec-

tra and ZDR spectra. In this work, the model of Doppler and polarimetric spectra

and the retrieval algorithm are developed for C-band radars. This chapter is or-

ganized as follows. An overview of the microphysical properties of raindrops and

hailstones is presented in section 5.2. The retrieval of DSD and melting ratio using

dual-polarization spectra is developed in section 5.3. The sensitivity analysis and the

retrieval procedure are presented in section 5.4 and section 5.5. The retrieval algo-

rithm is evaluated in section 5.6. Finally, the conclusions and future work are given

in section 5.7
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5.2 Microphysical Properties of Raindrop

and Hailstone

5.2.1 The size, shape and orientation

It was shown from observations that smaller raindrops (< 1 mm in diameter) are

typically spherical, but larger raindrops (> 1 mm in diameter) normally exhibit the

shape of oblate spheroids (Green 1975). The axis ratio (r), representing the ratio

between minor to major axis, is related to the equivalent diameters (D) in an equi-

librium model (Green 1975). A polynomial function which describes the relationship

between the D and r was developed by Zhang et al. (2001a), it is

r = 1.0148−2.0465×10−2D−2.0048×10−2D2+3.095×10−3D3−1.453×10−4D4 (5.1)

where D is in millimeters.

The hailstone size has been reported to be as large as 50 mm in diameter (Battan

and Theiss 1973). However, most of the hailstones have been observed within the

range of 5 - 25 mm (e.g., Matson and Huggins 1980; Mitchell 1996), which is the

hailstone size used in this study. The majority of hailstones have been reported with

an axis ratio of between 0.6 and 0.8 based on the ground observations (Matson and

Huggins 1980; Knight 1982), and the value of 0.75 was used in Jung et al. (2007). In

this work, the axis ratio of hailstones is set to be 0.75 and the axis ratio for raindrops

is estimated using Eq. (5.1) (Zhang et al. 2001a; Jung et al. 2007). Furthermore, it is

assumed that the major axis of a falling particles is aligned in the horizontal direction

(Jung et al. 2007).
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5.2.2 The terminal velocity

The terminal velocity of raindrop used in this work is provided in the following equa-

tion (Atlas et al. 1973).

vt(D) =

(

ρ0

ρ

)0.4

[9.65 − 10.3exp(−0.6D)] (5.2)

where ρ0 and ρ are the air densities at the sea level and the altitude of interest,

respectively.

The terminal velocity of hailstones derived by Mitchell (1996) is as follows.

vt(D) = 1.086

(

2αg

ρξ

)0.5

D0.5(β+2−σ)−1 (5.3)

where g is the gravitational constant. The value of α, β, ξ and σ are suggested as

0.466, 3.0, 0.625 and 2.0, respectively (Matson and Huggins 1980). In the work of Mat-

son and Huggins (1980), 621 hailstone samples from summer seasons in Wyoming,

Nebraska and Colorado were used to evaluate the relationship between hailstones’

terminal velocities and sizes and Eq. (5.3) is the best fitting result. The compari-

son between the terminal velocities between raindrops and hailstones is presented in

Fig. 5.1, where the diameter of raindrops is from 0.08 to 8 mm, and diameter of hail-

stones is from 5 to 25 mm. It is clear that the terminal velocity of hailstone is larger

than the raindrop for D >10 mm. Additionally, smaller hailstones can have the same

terminal velocity as those from larger raindrops. In other words, the contribution

of raindrops and hailstones to the Doppler spectrum cannot be distinguished in the

region where their velocities overlap. The radial velocity observed by a weather radar

with elevation angle of γ can be written as follows.

v(D) = Vt(D) × sin(γ) + v0 (5.4)

where vt is particle’s terminal velocity and v0 is the ambient air radial velocity (m

s−1).
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5.2.3 The drop size distribution (DSD)

Based on earlier observations (e.g., Marshall and Palmer 1948; Law and Parson 1943),

the exponential DSD was derived in the following equation.

N(D) = Nwexp(−ΛD) (5.5)

Ulbrich (1983) suggested the use of the Gamma distribution for representing raindrop

DSD.

N(D) = NwD
µexp(−ΛD) (5.6)

The Gamma DSD with three parameters (Nw, µ and Λ) is capable of describing a

broader variation in rain DSD than an exponential distribution. It should be noted

that the exponential distribution is a special case of Gamma distribution with µ =

0. More accurate and complicated expression of Gamma distribution was suggested

by Bringi and Chandrasekar (2001) as:

N(D) = Nw
6

3.674

(3.67 + µ)µ+4

Γ(µ+ 4)
(
D

D0

)µexp[−(3.67 + µ)
D

D0

] (5.7)

where Nw, D0 and µ are the intercept parameter of the distribution, median volume

diameter of a raindrop, and the shape parameter, respectively. Note that for hail-

stones, the exponential DSD of Eq. (5.5) is often used (e.g., Cheng and English 1983;

Balakrishnan and Zrnić 1990; Spek et al. 2007), where Λ and D are in mm−1 and

mm, respectively.

5.2.4 Melting process of hailstone

The melting process of ice particles is closely related to the latent heat transfer and

the redistribution of liquid water in cloud, and have been studies in plentiful work

(e.g., Rasmussen et al. 1984a,b; Rasmussen and Heymsfield 1987). It was reported

that smaller size hailstone can carry more water on surface to reach its equilibrium

mass, but for larger size hailstone, this water fraction becomes smaller (Rasmussen
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et al. 1984b; Rasmussen and Heymsfield 1987). If the water on the surface of a melt-

ing hailstone excesses the the equilibrium mass, shedding will occur. As a result, the

mass of water-coated hailstone decreases and consequently the terminal velocity will

decrease. In this work, the shedding process is not considered for the simplification

purpose. In other words, if the water on the surface of a hailstone reaches its equi-

librium mass, the melting process stops and the melting ratio reaches its maximum

value. The melting ratio (fw) of hailstones is defined by Rasmussen et al. (1984b);

Jung et al. (2007) as presented in the following equation.

fw =
mw

mw +mi

(5.8)

where the mw is the mass of the melted water on the surface of the hailstones, and mi

are the mass of the ice core. Moreover, no shedding occurs if the equivalent diameter

of the melting hailstone is less than 9 mm, which means the fw of small size hailstone

(< 9 mm) can be up to 100% (Rasmussen et al. 1984b). The water mass growth rate

for small (5 mm < D < 9 mm) and large (9 mm < D < 25 mm) hailstones suggested

by Rasmussen et al. (1984b) are

dmw

dt
= −4πad

Lm

[f̄hka(T∞ − T0) + f̄vLeDv(ρv,∞ − ρv,0)] (5mm ≤ D < 9mm) (5.9)

dmw

dt
= −χAN

1/2
Re

2adLm

[N
1/3
Pr ka(T∞ −T0) +N

1/3
Sc LeDv(ρv,∞ − ρv,0)] (9mm ≤ D ≤ 25mm)

(5.10)

f̄h = (0.78 + 0.308N
1/3
Pr N

1/2
Re ) (5.11)

f̄v = (0.78 + 0.308N
1/3
Sc N

1/2
Re ) (5.12)

where ad is the overall radius of particle, and ai is the radius of ice core, Lm is the

latent heat of melting, ka is the thermal conductivity of air, T∞ is the temperature
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(K) in the environment far from particle’s surface, T0 is the constant equal to 273.16

K, Le is the latent heat of evaporation, Dv is the diffusivity of water vapor in air,

ρv,∞ is the water vapor density at temperature T∞, ρv,0 is the water vapor density

at temperature T0, A is the surface area of the ice spheroid, and χ a heat transfer

coefficient experimentally determined by Macklin as a function of the axis ratio of

the spheroid, and χ = 0.76 as suggested by Rasmussen et al. (1984b) for the entire

melting period. Moreover, the Schmidt number is defined by NSc = ν/Dv, where ν is

the kinematic viscosity of air; the Prandtl number is defined by NPr = ν/κa, where κa

is the thermal diffusivity of air; the Reynolds number is defined by NRe = 2aiU∞/ν,

where ai is the semi-major axis of the melting particles, U∞ is the terminal velocity

of the particle.

From Eq. (5.9) and Eq. (5.10), the melting ratio for different sizes of hailstones

can be derived if the melting ratio of the smallest size is known. It is assumed that

all the hailstones start to melt at the same moment and the mass of hailstones is

conserved during the melting process (i.e., no shedding, collision and condensation

are considered). The mass of the hailstone with the smallest diameter of 5 mm is

denoted by m5mm
t at initial time. Assuming after t seconds, the water mass on the

melting hail ism5mm
w . The melting ratio of the smallest hail at time t can be calculated

using the following equation.

f 5mm
w =

m5mm
w

m5mm
t

(5.13)

The water mass growth rate can be approximated by the following equation if the

period t is not too large.

R5mm
m = m5mm

w /t. (5.14)

where R5mm
m is the estimated water mass growth rate. From Eq. (5.9) and Eq. (5.10),

it is apparent that water mass growth rate is a function of the hailstone’s size (mass),

therefore the water growth rate and the water mass for other sizes of hailstones can
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be calculated as mw = Rmt. Furthermore, the melting ratio of other sizes hailstones

can be estimated using Eq. (5.14).

Given the melting ratio of the smallest hailstone with diameter of 5 mm (f 5mm
w ),

the distribution of melting ratio as a function of the hailstones size is presented in

Fig. 5.2. For small particles (with size less than 9 mm ), the melting ratio can be

as high as 100%. In other words, it can melt into raindrop. However, for large

drop with diameter of 20 mm for example, the maximum melting ratio is below 20%.

This result is consistent with the early observations by Rasmussen et al. (1984b).

Note hereafter the melting ratio is used to represent the melting ratio of the smallest

hailstone (Fw = f 5mm
w ), if not specified.
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Figure 5.2: The melting ratio of hailstone as function of hailstones’ size. The melting

ratio of the smallest hailstone with diameter of 5 mm fmm
w is given and the melting

ratio of other size can be estimated. The X axis is the equivalent diameter of hailstone,

and Y axis is melting ratio (fw). Different color lines indicate different melting ratios

of the smallest hail.
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5.2.5 Canting angle of raindrop and hailstone

The canting of hydrometeor can be caused by different sources such as ambient wind

and turbulence (Spek et al. 2007). The backscattering matrix for an arbitrarily canted

Rayleigh scatterer can be expressed as a function of the principal scattering amplitude

(fa, fb) (Zhang et al. 2001a):







fhh fhv

fvh fvv






=







cosφ − sinφ

− sinφ cosφ













f ′
h 0

0 f ′
v













cosφ sinφ

− sinφ cosφ







=







Afa +Bfb (fa − fb)
√
BC

(fa − fb)
√
BC Cfb +Dfa







(5.15)

where

A = cos2 φ+ sin2 γ sin2 φ

B = cos2 γ sin2 φ

C = cos2 γ cos2 φ

D = sin2 φ+ sin2 γ cos2 φ

(5.16)

and φ and γ are canting angle components in polarization and transverse, respectively.

Note that γ can be viewed as the elevation angle of an incident wave (Zhang et al.

2001a). The fa and fb are the scattering amplitude at horizontal and vertical direction

of raindrop and hailstone. In this work, the fa and fb are calculated using the T-

matrix method following Zhang et al. (2001a). Although Eq. (5.15) was derived for

Rayleigh scatterers, the canting angle distribution is assumed to be independent of

the hydrometeor size or shape (e.g., Holt 1984; Metcalf 1988; Balakrishnan and Zrnic

1990). The scattering matrix for large hailstones, which are in Mie region are also

calculated using Eq. (5.15). The same assumption was also made in Balakrishnan

and Zrnic (1990).
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The backscattering cross section can be estimated using the following equations

(Zhang et al. 2001a; Jung et al. 2007):

σhh = 4π < |Fhh|2 >

= 4π(Ā2|fa|2 + B̄2|fb|2 + 2ĀB|fa||fb|)
(5.17)

σvv = 4π < |Fvv|2 >

= 4π(D̄2|fa|2 + C̄2|fb|2 + 2C̄D|fa||fb|)
(5.18)

where:

Ā2 = < (cos2φ+ sin2γsin2φ)2 > = A0 + sin4γB0 + 2sin2γC0 (5.19)

B̄2 = < (cos2γsin2φ)2 > = cos4 γB0 (5.20)

C̄2 = < (cos2γcos2φ)2 > = cos4 γA0 (5.21)

D̄2 = < (sin2φ+ sin2γcos2φ)2 > = B0 + sin4γA0 + 2sin2γC0 (5.22)

where

A0 = < cos4 φ > =
1

8
(3 + 4 cos 2φ̄e−2σ2

+ cos 4φ̄e−8σ2

) (5.23)

B0 = < sin4 φ > =
1

8
(3 − 4 cos 2φ̄e−2σ2

+ cos 4φ̄e−8σ2

) (5.24)

C0 = < sin2 φ cos2 φ > =
1

8
(1 − cos 4φ̄e−8σ2

) (5.25)

And the φ̄ and σ are the mean and standard deviation (SD) of the canting angles.

In this work the mean and standard deviation of the canting angle for raindrop are

0o, which was suggested based on observations (Hendry and McCormick 1976), and

further implemented by Jung et al. (2007). For hailstones, the mean of canting angle is

also assumed to be 0o, but the SD is a function of the melting ratio as σ = 60o(1−cfw),

where c is a coefficient of 0.8 (Jung et al. 2007).
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5.3 Retrieval of Drop Size Distribution and Melting

Ratio Using Dual-polarimetric Spectra

Assume that there is no spectral broadening, the Doppler spectrum, Shh(v)dv for the

horizontal polarization and Svv(v)dv for the vertical polarization and the differential

reflectivity spectrum ZDR(v)dv can be written as (Doviak and Zrnić 1993; Moisseev

et al. 2006; Spek et al. 2007):

Shh(v)dv =
λ4

π5|kw|2
N [D(v)]σhh[D(v)]

dD(v)

dv
dv (mm6m−3) (5.26)

Svv(v)dv =
λ4

π5|kw|2
N [D(v)]σvv[D(v)]

dD(v)

dv
dv (mm6m−3) (5.27)

ZDR(v)dv =
Shh(v)

Svv(v)
dv (5.28)

where the dielectric factor kw = (εr − 1)/(εr + 2), εr is the complex dielectric con-

stant calculated using the Maxwell-Garnett mixing formula (Maxwell-Garnett 1904),

N [D(v)] is the DSD (# m−3mm−1). It is apparent that the Doppler spectrum and dif-

ferential reflectivity spectrum are determined by N(D) and the backscattering cross

section of σhh and σvv, where D can be determined from the radial component of the

terminal velocity if the elevation angle is sufficiently high. Moreover, the σhh and

σvv can be calculated using the backscattering amplitude fa and fb. An example of

backscattering amplitudes of raindrops (D from 0.08 mm to 8 mm with step of 0.08

mm) at C-band was calculated using the T-matrix method, and is shown as a func-

tion of equivolume diameter D in Fig. 5.3. The left and right panels are the real and

imaginary values of the backscattering amplitude for polarization along major (fa)

and minor (fb) axes, respectively. Moreover, the ratio of backscattering cross section

of a single rain drop (in dB) from horizontal and vertical polarizations as a function

of raindrop size is presented in Fig. 5.4.

If the hailstones start to melt, the hailstones become water coated. Since the rela-

tive dielectric constant of water is much higher than ice, 68.2317+ j35.4776 for water
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Figure 5.3: Backscattering amplitudes as a function of equivolume diameter for rain-

drop. Real part for major and minor axis (left), imaginary part for major and minor

axis (right).
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compared to 3.1683 + j0.0006 for ice at 0oC for 5 GHz for example, the water on the

surface of hailstone will significantly affect the backscattering amplitude and conse-

quently, the Doppler and differential reflectivity spectra. Moreover, a water-coated

hailstone can produce different backscattering amplitudes for different melting ratio.

Therefore, the melted hailstone’s backscattering amplitude connects the melting ratio

and spectra together, and makes the retrieval of melting ratio using Doppler and ZDR

spectrum possible.

In this work, the backscattering amplitude of melted hailstones (fa and fb) with

diameter from 5 mm to 25 mm (with step of 0.7 mm) and with fw from 0% to 100%

(with setp of 5%) are pre-calculatied at C-band using the T-matrix method (Zhang

et al. 2001a; Jung et al. 2007). The real and image parts of backscattering amplitude

from smallest (5 mm) and largest (25 mm) hailstone as a function of melting ratio

fw are exemplified in Fig. 5.5. The one to one relationship between the fw and the

fa(fb) is needed, so that in the retrieval the Doppler and ZDR spectra can be directly

expressed as the function of fw in the following forms.

Shh(v)dv =
λ4

π5|kw|2
N [D(v)]Fhh{fw[D(v)]}dD(v)

dv
dv (mm6m−3) (5.29)

Svv(v)dv =
λ4

π5|kw|2
N [D(v)]Fvv{fw[D(v)]}dD(v)

dv
dv (mm6m−3) (5.30)

where σhh[D(v)] = Fhh{fw[D(v)]} and σvv[D(v)] = Fvv{fw[D(v)]}, and Fhh and

Fvv are the functions that used to calculate σhh[D(v)] and σvv[D(v)] from fw[D(v)].

In this work, the 3rd, 5th and 7th order polynomial fitting have been tested and

the results are presented in Fig. 5.5 using lines with different colors. For the small

particle with equivalent diameter of 5 mm, the fitting results of these three approaches

are quite similar. However, for large particle with equivalent diameter of 25 mm

(bottom panels), the higher order fitting provides much better results. Although

polynomial with order higher than 7th can provide slight improvement, it requires

larger computational power. Therefore, the 7th polynomial is selected for this work.
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Figure 5.5: Polarimetric backscattering amplitudes (fa and fb as a function of equiv-

olume diameter. The results from T-matrix are denoted by asterisks. The polynomial
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The Doppler and ZDR spectra for the mixture of raindrops and melting hailstones

can be written as the combination of pure rain and pure melted hail in the following

equations.

Shh(v)dv = Sr
hh(N

r
w, D0, µ)dv + Sh

hh(N
h
w,Λ, fw)dv (5.31)

ZDR(v)dv =
Sr

hh(N
r
w, D0, µ)dv + Sh

hh(N
h
w,Λ, fw)dv

Sr
vv(N

r
w, D0, µ)dv + Sh

vv(N
h
w,Λ, fw)dv

(5.32)

where superscript r and h represent pure rain and melting hail, respectively. It

should be noted that the Doppler and ZDR spectra are obtained from sufficiently high

elevation angle. Therefore, the separation in spectral components can be obtained

from the particles’ terminal velocities.

Several factors could produce spectrum broadening such as turbulence, antenna

motion, shear and the change in orientation or vibration of hydrometeors (Doviak and

Zrnić 1993). It is common to model the effect of spectral broadening as a convolution

of the original spectrum from precipitation with a Gaussian kernel (Doviak and Zrnić

1993):

Smod
hh (v) = Sbroad(v) ∗ Shh(v) =

1√
2πσb

∫

exp[−(v − v̄)2

2σ2
b

]Shh(v̄)dv̄ (5.33)

where Smod
hh (v) is the model spectrum used in the retrieval procedure, the asterisk

(*) is the convolution operator, and σb is the width of the Gaussian Kernel (m s−1).

This broadening could be the summation of independent contributions, that is σ2
b =

σ2
s + σ2

α + σ2
o + σ2

t as discussed in Section 2.2.2.1.

5.4 Sensitivity Analysis

Before the discussion of the retrieval technique, it is necessary to verify that the

DSD parameters from both raindrops and hailstones, melting ratio, ambient wind,

and spectrum broadening have impacts on the Doppler and differential reflectivity

spectra. If the parameter of interest cannot produce noticeable changes, it is not

likely to be retrieved correctly and reliably. In this testing, only one parameter is
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changed while others are kept constant each time. As a result, we can study the

dependence of spectrum on the parameter of interest independently. The effect of

ambient wind v0 on the spectrum is straightforward, which can shift the Doppler

spectrum by an amount of v0 according to Eq. (5.4). In the test, the v0 is set as 0 and

the retrieval of v0 is discussed in Section 5.5.2. In order to study the impact of each

parameter on Doppler spectrum and differential reflectivity spectrum, the analysis of

raindrops and melting hails is performed independently. Subsequently, the mixture

of both types of hydrometeors are considered. The simulation is designed for C-band

radar, and the ambiguous velocity is set at 16 m s−1 in this study. Therefore velocity

aliasing can be observed if the radial component of the terminal velocities is larger

than 16 m s−1.

5.4.1 Contributions from raindrops

From Eq. (5.7), it is clearly shown that the Doppler spectrum from raindrop is de-

termined by four parameters of N r
w ( m−3mm−1), D0 (mm), µ (dimensionless) and σb

(m s−1). It should be noted that the shedding process is not considered in this work,

although it will change the DSD of raindrops and melting hails. The dependence of

Doppler and ZDR spectra on these four parameters is demonstrated in Fig. 5.6 and

5.7. In the test, the sign of radial velocity from the terminal velocity is negative

(downward motion).

Note that in the plot of ZDR spectra, the spectral components associated with

Doppler spectrum below −20 dB are not shown. The following conclusions can be

obtained from Fig. 5.6 and 5.7.

1. The N r
w is set from 5000 to 9000 with the step of 1000. An increase of N r

w

leads to an increase in the amplitude of Shh(v). From N r
w = 5000 to N r

w =

9000, the maximum difference of Shh(v) can be as high as 3 dB when the v is

approximately -7 m s−1. Moreover, ZDR(v) keeps the same for different N r
w,
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Figure 5.6: Simulated Doppler spectra of rain for hh polarization. The elevation angle

is 45o. The dependence of Doppler spectra on DSD parameters of Nw (top left), µ (top

right), D0 (bottom left) and on spectral broadening σb (bottom right), respectively.

The X axis is the Doppler velocity (v) in m s−1, and Y axis is the Doppler spectrum

from horizontal direction polarization in dB.
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Figure 5.7: Similar to Fig. 5.6, but for ZDR.

which is consistent with the conclusion in Zhang et al. (2001a). It is because

the differential reflectivity spectrum is defined by Eq. (5.28), where the N r
w

is canceled. In other words, the ZDR spectrum from pure raindrop is only

determined by µ and D0.

2. The shape parameter µ varies from 0 to 4 with the step of 1. A large difference

of approximately 7.5 dB in Shh(v) between µ = 0 and µ = 4 can be observed

at approximately -7.6 ms−1. For given N r
w, D0 and σb, the ZDR(v) of larger

drops (v = -8 m s−1 for example) decreases with the increasing of µ. For

smaller drops (v = -1 m s−1 for example) the ZDR(v) is 0 dB as expected. This

result is consistent with the results demonstrated byMoisseev et al. (2006). The

decrease of µ can be thought of as the increase of the number of large drops. As a

result, the magnitude of Doppler spectrum and ZDR spectrum from large drops

(high radial velocities due to Doppler sorting) will increase. The maximum
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difference of ZDR(v) between µ = 0 and µ = 4 can be around 0.3 dB when v is

approximately -7.6 m s−1.

3. The median volume diameter of a raindrop D0 changes from 1 mm to 3 mm

with a step of 0.5 mm. The D0 has the most significant effect on Shh(v) among

the four parameters, which can produce a difference of Shh(v) as high as 40

dB. The increase of D0 has similar effect to the increase of the number of large

drops. As a result, the magnitude of Doppler spectrum and ZDR spectrum from

large drops (high radial velocities) will increase. This result is also consistent

with the conclusion from the work of Moisseev et al. (2006). Compared to the

previous two parameters, D0 has the most significant impact on both Doppler

and ZDR spectra, and is likely to be better retrieved.

4. The spectrum broadening width σb varies from 0.4 m s−1 to 1.2 m s−1 with

a 0.2 m s−1 step. The σb alters the spectrum shape to be wider. Significant

broadening effect on the Doppler spectrum and ZDR spectrum can be observed.

Based on the above analysis, it is clear that the D0 and σb have significantly stronger

impact on the shape and amplitude of Doppler and ZDR spectra than N r
w and µ.

In other words, one can expect that D0 and σb can be retrieved more accurately

compared to N r
w and µ due to inevitable noise.

5.4.2 Contribution from hailstones

From Eq. (5.5), the exponential DSD of hailstones is defined by N h
w and Λ. Therefore,

four parameters of Nh
w, Λ, fw, and σb determine the Doppler spectrum and differential

reflectivity spectrum of melting hailstone. The dependence of the Shh(v) and ZDR(v)

on these four parameters is shown in Fig. 5.8 and 5.9. Similar to the case of pure

raindrop in Section 5.4.1, the v0 is set as 0, the terminal velocities are negative, and

the following conclusions can be obtained.
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Figure 5.8: Simulated Doppler spectra of hail for hh polarization. The elevation angle

is 45o. The dependence of the Doppler spectrum on DSD parameters of N h
w (top left),

Λ (top right), on spectral broadening σb (bottom left), and melting ratio fw (bottom

right), respectively. The X axis is the Doppler velocity in m s−1, and Y axis is the

Doppler spectrum from horizontal direction polarization in dB.
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Figure 5.9: Similar to Fig. 5.8, but for ZDR.

1. The Λ is set as 0.5, and Nh
w is set as 20, 40, 60, 80 and 100 which corresponds

to hailrate of 3.18 mm/hour to 10.45 mm/hour. With the increasing of N h
w, the

amplitude of Shh(v)dv increases. The maximum difference from Nh
w = 20 to

Nh
w = 100 can be as high as 10 dB. Similar to the raindrops, the ZDR(v) from

melting hails is independent of Nh
w.

2. TheNh
w is set as 50, and the Λ is set to 0.2, 0.4, 0.6 0.8 and 1.0 which corresponds

to hailrate of 2.79 mm/hour to 44.14 mm/hour. Significant effect of Λ on the

Shh(v) can be observed, and the maximum difference can be more than 30 dB.

Since the axis ratio for all the hailstones is set to 0.75, the ZDR spectrum is more

“flat”. In other words, Λ does not have significant effect on ZDR spectrum.

3. The melting ratio of hailstone is set to 0%, 10%, 30%, 50%, 70% and 90%.

From 0% to 90%, the maximum spectrum difference can be as high as 15 dB. It
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should be noted that when Fw is above 50%, the spectrum does not show much

(< 1 dB) difference, therefore the retrieval of Fw can be in error for this case.

4. The spectrum broadening σb is set the same as the one for raindrops. The

significant broadening of Doppler spectrum can be observed for large σb. Unlike

the case of pure raindrop, the spectrum broadening for melting hails have limited

effect on ZDR(v). It is because the constant axis ratio used in the test.

5.4.3 Contribution from a mixture of raindrops and melting

hailstones

From the analysis in the previous two parts, it is clear that N r
w of pure raindrops has

small impact on the Doppler spectrum, and has no impact on the differential reflectiv-

ity spectrum. It is speculated that large retrieved errors N r
w can occur. Furthermore,

the amplitude of Doppler spectrum from the hailstones has larger value than the one

from raindrops. In other words, the changes in the shape and amplitude of Doppler

spectrum and ZDR spectrum can be dominated by the contribution from melting

hails. It is important and of interest to study the impacts of D0 and µ from raindrops

and fw, Nh
w and Λ from hailstones on Doppler and ZDR spectra from a mixture of

raindrops and melting hailstones. The impact of σb on the mixture spectrum is also

included in this section.

The same test used for pure raindrops and melting hailstones is performed, and

the results are presented in Fig. 5.10 and 5.11. The conclusions are summarized in

the following.

1. D0 and µ change the low velocity portion (defined by velocity from -8 to 0 m

s−1) of the spectrum (from raindrops); and the fw, Nh
w and Λ only change the

high velocity portion (defined by velocity from -16 to -8 m s−1) of the spectrum

(from hailstones).
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Figure 5.10: Simulated Doppler spectra from a mixture of hailstones and raindrops.

The elevation angle is 45o. The dependence of the spectral density on DSD parameters

of raindrops of Do (top left) and µ (top right); Nh
w (middle left) and Λ (middle right);

and melting ratio fw (bottom left), and spectral broadening σb (bottom right), The

X axis is the Doppler velocity in m s−1, and Y axis is the Doppler spectrum from

horizontal direction polarization in dB.

135



−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

v (m s −1)

Z D
R

(v
) 

(d
B

)

N
w
h  = 50, Λ = 0.5, F

w
 = 20%,  N

w
r  = 8000, µ = 2, σ

b
 = 0.6 

 

 

D
0
 = 1

D
0
 = 1.5

D
0
 = 2

D
0
 = 2.5

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

v (m s −1)

Z D
R

(v
) 

(d
B

)

N
w
h  = 50, Λ = 0.5, F

w
 = 20%,  N

w
r  = 8000, D

O
 = 2, σ

b
 = 0.6 

 

 

µ = 0
µ = 1
µ = 2
µ = 3

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

v (m s −1)

Z D
R

(v
) 

(d
B

)

Λ = 0.5, F
w

 = 20%, N
w
r  = 8000, µ = 2, D

0
 = 2,  σ

b
 = 0.6 

 

 

N
w
h  = 20

N
w
h  = 40

N
w
h  = 60

N
w
h  = 80

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

v (m s −1)

Z D
R

(v
) 

(d
B

)

N
w
h  = 50, F

w
 = 20%,  N

w
r  = 8000, µ = 2, D

O
 = 2, σ

b
 = 0.6 

 

 

Λ = 0.2
Λ = 0.4
Λ = 0.6
Λ = 0.8

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

v (m s −1)

Z D
R

(v
) 

(d
B

)

N
w
h  = 50, Λ = 0.5, N

w
r  = 8000, µ = 2, D

0
 = 2,  σ

b
 = 0.6 

 

 

F
w

 = 0%

F
w

 = 20%

F
w

 = 40%

F
w

 = 80%

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

v (m s −1)

Z D
R

(v
) 

(d
B

)

N
w
h  = 50, F

w
 = 20%,  N

w
r  = 8000, µ = 2, D

O
 = 2,σ

b
 = 0.6 

 

 

σ
b
 = 0.4

σ
b
 = 0.8

σ
b
 = 1.2

σ
b
 = 1.6

Figure 5.11: Similar to Fig. 5.10 but for ZDR(v).
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2. The Λ has the most significant impact on Doppler spectrum.

3. Spectrum broadening σb smoothen the spectrum from both raindrops and hail-

stones. The Doppler spectrum with double-peak feature (one from raindrops

and the other is from hailstones) can only be observed for smaller σb of 0.4 m

s−1.

In this section, the dependence of Doppler spectrum and ZDR spectrum on the

DSD, melting ratio and spectrum broadening was investigated. It is obvious that D0,

Λ, Nh
w, fw and σb have significant impact on the shape and amplitude of the Doppler

spectrum, and D0, fw and σb have obvious impact on the ZDR spectrum. Those five

parameters are likely to be retrieved more accurately. On the other hand, N r
w and

µ have small impact on Doppler spectra, and N r
w does not affect the ZDR spectrum,

therefore can not be retrieved as accurate as previous five parameters.

5.4.4 Impact of elevation angles

The impact of the elevation angles on Doppler spectrum and differential reflectivity

spectrum is examined now. The Shh(v) and ZDR(v) from elevation angles of 10o,

45o, 75o and 90o are presented in Fig. 5.12 and 5.13. From Eq. (5.4), it is clear that

with the decrease of elevation angle γ, the contribution of the terminal velocity to

radial velocity becomes smaller. For γ = 0o, the radial velocity from the terminal

velocity of all the precipitations are all zeros. In other words, no Doppler sorting of

hydrometeors is occurred, although the differential reflectivity from large hydromete-

ors are maximized. On the other hand, for γ = 90o, the Doppler sorting capability of

the falling velocities is maximized. In other words, hydrometeors with different size

can be separated in Doppler spectrum. This is manifested by the increase of spec-

trum components as increasing elevation angle. However, the benefit of polarimetric

measurements is compromised.
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Furthermore, the influence of raindrop shapes on the ZDR spectrum measurements

is larger for smaller elevation, which can be observed on the top left panel of Fig. 5.13.

On the other hand, for γ = 90o, the ZDR(v) is 0 at all the radial velocity components

due to the spherical symmetry particles shape. No useful ZDR spectrum information

is available to the retrieval. Therefore, in the selection of elevation angles, there is

a trade-off between the large number of spectral components and significant ZDR

spectrum information. The elevation angle of 45o used in the retrieval follows the one

used in Moisseev et al. (2006) and Spek et al. (2007).
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Figure 5.12: Simulated Doppler spectra from pure rain (top left), pure hail (top right)

and mixture of rain and hail (bottom) for hh polarization. The elevation angle of 10o,

45o, 75o and 90o, respectively. The X axis is the Doppler velocity in m s−1, and Y

axis is the spectral reflectivity in dB
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Figure 5.13: Similar to Fig. 5.12, but for ZDR(v).
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5.5 Retrieval of Particles’ DSDs and the Melting

Ratio

From previous analysis, it is clear that the model of Doppler spectrum and differential

reflectivity spectrum is determined by eight parameters of N r
w, D0, µ, Nh

w, Λ, Fw, σb

and v0. Therefore, one can formulate the retrieval problem as an optimization of

fitting observations to model spectra described in the following.

min
Nr

w,D0,µ,Nh
w,Λ,Fw,σb,v0

va
∑

v=−va

{log[Smod
hh (v,N r

w, D0, µ,N
h
w,Λ, Fw, σb, v0)dv] − log[Smeas

hh (v)dv]}2

(5.34)

min
Nr

w,D0,µ,Nh
w,Λ,Fw,σb,v0

va
∑

v=−va

{log[Zmod
DR (v,N r

w, D0, µ,N
h
w,Λ, Fw, σb, v0)dv] − log[Zmeas

DR (v)dv]}2

(5.35)

where Smeas
hh and Zmeas

DR are the measured Doppler and differential reflectivity spectra,

and Smod
hh and Zmod

DR are the modeled Doppler spectrum and differential reflectivity

spectra defined in Eq. (5.31) and (5.32), respectively. In order to suppress the statis-

tical fluctuation, the optimization is performed in the log-domain (Sato et al. 1990).

Similar approach is also adopted in the work of Moisseev et al. (2006) and Spek et al.

(2007).

5.5.1 Introduction of genetic algorithm

The nonlinear least square fitting method, such as Levenberg-Marquardt Algorithm

(LMA), is usually implemented in the retrieval process (e.g., Sato et al. 1990; Moisseev

et al. 2006; Spek et al. 2007). In this work, the Genetic Algorithm (GA), which can

solve both constrained and unconstrained optimization problems based on natural

selection, is proposed for the retrieval. The GA can be used to solve a variety of

optimization problems that are not well suited for standard optimization algorithms,

including problems in which the objective function is discontinuous, nondifferentiable,

stochastic, or highly nonlinear. Compared to traditional deterministic optimization
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algorithms such as LMA, the GA strategy can increase the probability of obtaining

the global minimum instead of local minimum (Sellami et al. 2007). The GA repeat-

edly modifies the population of individual solutions. At each step, the GA selects

individuals from the current population termed parents and uses them to produce

the children for the next generation. Over successive generations, the population

”evolves” toward an optimal solution. A model of Doppler and ZDR spectra is first

developed using 8 parameters of the DSD of raindrops and melting hailstones (5 pa-

rameters), melting ratio, ambient radial velocity, and turbulence broadening. The

GA is introduced to estimate the 8 parameters based on the minimization between

the model and observed spectra. The GA retrieval for this work is summarized in the

following steps.

1. In the retrieval problem, the N r
w, fw, ... are the individuals, and the fitness

function is defined by the following two equations.

f1(Υ) =
va
∑

v=−va

{log[Smod
hh (v,Υ)dv] − log[Smeas

hh (v)dv]}2 (5.36)

f2(Υ) =
va
∑

v=−va

{log[Zmod
DR (v,Υ)dv] − log[Zmeas

DR (v)dv]}2 (5.37)

where Υ is used to represent the population which is the set of the 8 parameters

(N r
w, D0, µ,N

h
w,Λ, Fw, σb, v0). The algorithm begins by creating a random initial

population. If the first guess of each individual can be provided, the initial

population will be around the first guess.

2. The value of the fitness function for the current population is computed and

scored. A group of individuals associated with better (lower) fitness values in

the current population is selected as parents (also called elite), and others are

eliminated from current population.

3. Those parents are used to create the children that make up the next generation.

Three ways can be used to create children for the next generation: the children
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from survived elite parent; the crossover children created by combining the

vectors of a pair of parents; and the mutation children created by introducing

random changes to parents. In this retrieval problem, the method of crossover

and mutation children is used.

4. The current generation is replaced by a new generation. Repeat the first three

steps until the global optimal fitness value is achieved. Then the newest genera-

tion will be the final results. The optimal fitness can be defined as the output of

fitness function reaches a pre-defined value (tolerance error), or the generation

after pre-defined iterations.

5.5.2 Retrieval procedure

In section 5.5.1, the retrieval problem is formulated as an optimization problem of

finding the minimal difference of the observed spectrum and model spectrum defined

by the 8 unknowns. In order to increase the convergent rate in the retrieval, the

intervals for the following 6 parameters are selected.

0% ≤ Fw ≤ 100% (5.38)

0 ≤ D0 ≤ 5 (5.39)

−4 ≤ µ ≤ 4 (5.40)

0 ≤ Nh
w ≤ 80 (5.41)

0 ≤ Λ ≤ 5 (5.42)

0 ≤ σb ≤ 5 (5.43)

It should be noted that generally the interval of these parameters are not necessary

for GA problems. However, in this work, some parameters have limited values from

previous observations and research. For example, the melting ratio Fw should be

between 0% and 100%. Therefore, optimal results can be reached with fewer iterations

if the interval of these parameters are used. Following the procedure developed by
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Moisseev et al. (2006), one simplification was made by removing the estimation of the

ambient air velocity v0 from the GA fitting. It should be noted that v0 is estimated

by finding the lag at which the cross correlation of modeled and measured spectra is

maximum (Moisseev et al. 2006). Moreover, in this work, in order to further decrease

the statistical fluctuation, 20 Doppler spectra from two adjacent azimuth angles and

10 consecutive range gates are averaged.

5.6 Evaluation of the Retrieval Algorithm

The performance of the GA retrieval algorithm is demonstrated and evaluated in this

section using simulations. The normalized error from initial guess and error after

the retrieval is completed, is defined by εi = |ψm − ψi|/ψm and εr = |ψm − ψr|/ψm,

respectively, where ψm, ψi and ψr represent the model parameters, initial guess, and

the retrieval results. The DSD parameters and the melting ratio of the model, initial

guess, the mean and standard deviation of 30 realizations, and the mean εr (ε̄r) are

provided in Table 5.1. Since N r
w has relative small effect on Doppler spectrum and has

no effect on ZDR spectrum as shown in section 5.4, large errors are expected in the

retrieval result. The N r
w in the model and initial guess is 8000 and 7000, respectively.

The resultant mean and the standard deviation of the retrieval is 6947 and 1094,

respectively. The high SD indicates the retrieval of N r
w is unstable and sensitive to

small changes in the Doppler spectrum. Similar to N r
w, relative small effect on both

spectra can explain the large SD of the retrieved µ, Better retrieval results can be

observed for D0, N
h
w, Λ, Fw and σb, which are manifested by small εr and small

standard deviation. It is because these 5 parameters have significant effects on the

Doppler spectrum and ZDR spectrum compared to N r
w and µ as shown previously.

The performance of the proposed retrieval technique is further tested and the

impact of Fw on the retrieval is presented in Fig. 5.14. Large errors are likely to

be generated in the retrieval of N r
w and µ, and therefore they are not included in
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Model Value Initial Value Retrieval Result ε̄r

N r
w 8000 7000 6947 (mean)

1094 (std)

13.16%

D0 2 4.5 1.92 (mean)

0.077 (std)

4%

µ 2 1 1.03 (mean)

0.3 (std)

48.5%

Nh
w 60 40 63.51 (mean)

7.66 (std)

5.85%

Λ 0.6 0.4 0.6125 (mean)

0.0832 (std)

2.08%

Fw 60% 10% 61.376%(mean)

7.98% (std)

2.29%

σb 0.6 0.2 0.6124 (mean)

0.012% (std)

2.07%

Table 5.1: The DSD parameters and melting ratio of model, initial guess, and the

mean and standard deviation of the retrieval results from 30 realizations.
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Figure 5.14: The retrieval results from Fw (top left), Nh
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145



the sensitivity test. In Fig. 5.14, the Fw-model is changed from 10% to 100% with

step of 10%. The Nh
w, D0, Λ and σb are set as 60, 2, 0.6 and 0.6, respectively. When

Fw-model change from 0% to 70%, the Fw can be retrieved accurately. However, after

Fw-model reaches 70%, the retrieved Fw exhibits large errors and fluctuates around

approximately 70%. It can be explained by examining Figs. 5.8 and 5.9, where Fw-

model has limited effect on Doppler spectrum and ZDR spectrum after Fw-model

reaches 70%. Retrieval error of Nh
w can be observed with maximum εr of 0.2956

(when Fw = 80%) and mean εr of 0.1279. On the other hand, it can be shown from

from Fig. 5.14 that D0, Λ and σb can be accurately retrieved with the mean εr of

0.0546, 0.0422 and 0.0431, respectively.

In the simulation, the elevation angle was 45o, and 256 samples were used to

generate the Doppler and ZDR spectra. Moreover, 20 spectra were averaged in the

retrieval to reduce the statistical fluctuations. In summary, the simulation results

indicate that the GA algorithm can retrieve DSD parameters and melting ratio with

small normalized errors and standard deviations.

5.7 Conclusion and Future Work

In this work, a new technique to retrieve the DSDs of raindrops and melting hailstones

as well as the melting ratio of hailstones was developed using Doppler and ZDR

spectra. As a part of the proposed method, the relationship between the melting

ratio and the backscattering cross section of hailstones was obtained using polynomial

fitting to the pre-calculated T-matrix results at C-band. It has been shown that the

GA can provide reasonable retrieval in the optimization problem of multiple unknown

parameters.

A microphysical model was developed for the mixture of raindrops and melting

hailstones. This model depends on eight parameters: the gamma drop size distri-

bution of raindrops (N r
w, D0 and µ) and hailstones (Nh

w and Λ), the melting ratio
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of hailstones (Fw), the spectral broadening (σb), and the ambient wind velocity (v0).

The output of the model is the Doppler spectrum and differential reflectivity spec-

trum. Moreover, it was suggested that the ambient wind velocity can be estimated

independently through cross-correlation analysis. As a result, the retrieval becomes a

minimization with 7 unknowns. Since the problem is designed to retrieve two types of

hydrometeors (raindrops and melting hailstones), the presence of other type particles

such as snow (mixture of air, water and ice) may produce additional errors in the

retrieval.

Some assumptions and simplifications were made in the microphysical model of

the hailstones. First, the shedding process was not considered although the shed-

ding will change the DSD of raindrops. This algorithm retrieves the instant DSD of

raindrops and hailstones only at relatively high elevation angles when the Doppler

sorting is sufficient. Second, when a hailstone start to melt, the water fraction on the

surface of the hailstone will decrease its terminal velocity. The amount of decrease

in velocity is proportional to the amount of water on the hail’s surface. Although

few models were developed to describe relations between the melting and the termi-

nal velocity of hailstones in previous work (e.g. Rasmussen et al. 1984b; Rasmussen

and Heymsfield 1987; List et al. 1973), however there is no well accepted model in

current stage. Since the focus of this work is not the study of the terminal velocity

under different melting ratios, the equation proposed by Mitchell (1996) was used in

this work. The parameters in the model were obtained from the fitting results from

plentiful hailstones samples from summer seasons, which could be used to represent

the mean velocities under various melting ratios for each size. However, bias is ex-

pected in the terminal velocity calculation. Third, in order to mitigate the impact of

random fluctuation on the retrieval results, spectra used for the retrieval have been

averaged over 20 adjacent gates. In other words, the spatial resolution of the retrieval

is compromised.
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Since DSD and melting ratio retrieval is the most critical part of this study, it

would be advantageous of validate the retrieved results. The special setup required by

this retrieval (45o elevation angle and higher) make it difficult to compare the retrieved

parameters to in-situ instruments. However, indirect validations of the retrieved

melting ratio, nonetheless, is still possible. Since the hailstones are assumed melting

when they are falling, larger melting ratio is expected at low altitude compared to

high altitude. Therefore retrieval algorithm can be tested at two different elevation

angles (30o and 45o), and the melting ratio retrieved from 30o is expected higher

than from 45o. Even this approach can not evaluate the performance quantitatively,

but still can qualitatively show the feasibility of this algorithm in the melting ratio

retrieval.

The spectral broadening has relative large influence on the retrieval accuracy. This

is a general limitation applicable to most DSD parameters retrieval methods based

on the analysis of spectra. The statistical analysis of the performance of this retrieval

algorithm under different spectral broadening, elevation angle, FFT length, etc. is

needed to further demonstrate the feasibility of the algorithm. Similar analysis can

be found in the work from Moisseev et al. (2006). Since unusual setting is required for

the radar to collect the data for this research (elevation angle of 45o and higher), and

the mixture of raindrops and hailstones is not a very common type of precipitation,

there is no real data collected for this work in current stage. Real case analysis is the

most important part to validate the application of the proposed method, and will be

implemented in future work.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this dissertation, the application of the spectral analysis and two AI methods

to weather radar were explored in two areas of tornado detection and retrieval of

microphysical properties for rain-hail mixture. A hybrid method of fuzzy logic and

neural network was developed for tornado detection and is termed NFTDA, which can

integrate tornado signatures in velocity, spectral, and polarimetric domains, with the

goals of enhancing the performance compared to the convectional TDA. Moreover,

a genetic algorithm (GA) was introduced to retrieve the DSD of both raindrops

and melting hailstones, the melting ratio, ambient wind, and turbulence broadening

using Doppler and ZDR spectra for the case where rain and melting hails are present

simultaneously within the radar volume. The important results from this dissertation

are highlighted as follows.

• Three parameters of spectral flatness (σs), higher-order spectra of PRIB (P )

and Eigen-ratio (χR) were defined to characterize the unique spectral signa-

tures of tornadoes in addition to spectrum width (σv). It has been shown that

larger σv, P , χR and lower σs can be observed from tornado spectra than those

from non-tornado spectra. The dependence of these four parameters on range,

reflectivity structure, and relative location within the radar resolution volume
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were statistically analyzed using numerical simulations. It is shown that these

feature parameters are complementary to each other and some spectral features

can be maintained while the shear signature becomes degraded. In other words,

the TSS has the potential to facilitate or improve tornado detection.

• The impact of super-resolution on tornado shear, spectral and polarimetric sig-

natures was investigated using numerical simulations and analysis of real tor-

nado cases. The results have shown that compared to legacy resolution, super-

resolution can enhance tornado signatures, which can lead to better tornado

detection.

• In this work, a novel NFTDA was developed to integrate the shear, spectral

and polarimetric signatures of tornadoes using a fuzzy logic framework. A neu-

ral network was included to optimize the algorithm through a training process.

The NFTDA is flexible enough to take in a portion of or all the tornado signa-

tures. In this work, four different combinations of feature parameters (NFTDA-

D, NFTDA-P, NFTDA-S and NFTDA-A) for legacy and/or super-resolutions

were studied based on (1) the availability of feature parameters, (2) performance

behavior, and (3) research values. Consequently, their performance were statis-

tically analyzed as a function of range and tornado strength. Compared to the

conventional shear-based TDA, NFTDA provides higher POD, lower FAR, and

extended detection range.

• In this work, spectral analysis and GA method were proposed to estimate the

DSD of both raindrops and melting hailstones, the melting ratio, the turbulence

broadening and ambient air velocity. The model of Doppler and ZDR spectra

from the mixture of raindrops and melting hails was established and the impact

of melting ratio on Doppler and ZDR spectra was studied for the first time. In

the GA retrieval, the relationship between the backscattering amplitude and the
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melting ratio was obtained by polynomial fitting. In other words, there is no

need to calculate the backscattering amplitude from T-matrix in each iteration

and therefore, the retrieval can be accomplished in an efficient manner. The

feasibility of the GA-based retrieval algorithm was demonstrated and verified

using numerical simulations.

6.2 Future Work

The major tasks for subsequent research are proposed in the following.

• The tornado spectral signatures revealed in Doppler spectrum and polarimetric

signatures in ZDR and ρhv were studied and applied to NFTDA in this work.

However, it is speculated that additional tornado features may reside in polari-

metric spectra of ZDR and ρhv, which can be used to further improve tornado

detection and possibly prediction. In order to carry out this work, time se-

ries data from both polarizations are needed. For example, the high resolution

polarimetric radar OU-PRIME on south campus can be a candidate for this

research.

• In this work, the NFTDA is mainly designed for S-band radar such as WSR-88D,

whose scanning patterns does not change constantly. On the other hands, many

research and operational radars have flexible scanning patterns. It is of interest

to systematically study the impact of scanning strategies on the performance of

NFTDA with different combination of input signatures.

• The retrieval algorithm has been demonstrated using simulations. But a com-

prehensive statistical analysis of this algorithm is needed such as the sensitivity

of the retrieval to different elevation angle, spectral broadening, FFT length

and SNR. Moreover, implementation of this algorithm on real data is needed to

further verify the feasibility of the proposed algorithm.
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• The enhanced tornado debris and spectral signatures have been observed us-

ing super-resolution. Therefore, NFTDA using all the tornado signatures for

super-resolution data (NFTDA-AS) can produce the best performance among

all other combinations. The statistical performance of NFTDA-AS is needed to

be analyzed using real tornado cases due to its attractive behavior.
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AppendixA

The tornado outbreaks on 10 May 2003 was of primary interest in this work. The
tornado spectral signatures and debris signatures from two volume scanns were ex-
amined in Chapter 3. More examples of σv, P , σs, χR, ZDR, ρhv and Doppler spectra
from this tornado event are presented in this appendix as complement to further
demonstrate tornado signatures.
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Figure 6.1: Examples of reflectivity (top left), radial velocity (top right), spectrum
width (middle left) spectral flatness (middle right), PRIB (bottom left), eigen-ratio
(bottom right) at 331 UTC 10 May 2003
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Figure 6.2: Examples of differential reflectivity (top left), cross-correlation coefficent
(top right) and Doppler spectra within the white box (bottom) at 331 UTC 10 May
2003
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Figure 6.3: Similar to Fig. 6.1 but at 337 UTC 10 May 2003
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Figure 6.4: Similar to Fig. 6.2 but at 337 UTC 10 May 2003
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Figure 6.5: Similar to Fig. 6.1 but at 355 UTC 10 May 2003
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Figure 6.6: Similar to Fig. 6.2 but at 355 UTC 10 May 2003
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Figure 6.7: Similar to Fig. 6.1 but at 401 UTC 10 May 2003
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Figure 6.8: Similar to Fig. 6.2 but at 401 UTC 10 May 2003
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Figure 6.9: Similar to Fig. 6.1 but at 407 UTC 10 May 2003
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Figure 6.10: Similar to Fig. 6.2 but at 407 UTC 10 May 2003
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Figure 6.11: Similar to Fig. 6.1 but at 413 UTC 10 May 2003
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Figure 6.12: Similar to Fig. 6.2 but at 413 UTC 10 May 2003
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Figure 6.13: Similar to Fig. 6.1 but at 419 UTC 10 May 2003
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Figure 6.14: Similar to Fig. 6.2 but at 419 UTC 10 May 2003
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