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CHAPTER 1

INTRODUCTION

Fast growing wireless technologies along with low cost embedded computation devices

and contemporary design of communication infrastructure have resulted in rapid de-

velopment of Mobile Ad hoc Networks. Such networks are self-organizing and their

nodes communicate directly to each other using wireless transceivers along multi hop

paths without the need of a fixed infrastructure( as opposed to cellular networks).

This distinguishing feature has shifted the focus of wireless community towards ad

hoc networks and they are considered as the technological counterpart of the concept

of ubiquitous computing.

1.1 Wireless Sensor Networks

Wireless Sensor Networks(WSNs for short) are a certain type of un-attended ad hoc

network consisting of numerous small independent sensor nodes that are either de-

ployed in the activity region or nearer to it. The sensor nodes in the network are self-

contained units containing advanced sensing functionalities, limited battery(energy),

radio, and a minimal amount of on-board computing power. These sensor nodes

exchange information in order to build a global view of the sensed region and the

information is made accessible to the external user through one or more gateway

node(s) [1]. Such networks are increasingly attractive means to enable a variety of

applications and services. Some of the application domains include environment mon-

itoring, health, military and home [2]. However these applications are delimited to a

great extent due to the limited energy at the sensor nodes as it directly corresponds
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Sensor
Nodes

Figure 1.1: Sensor Networks field

to network operational lifetime. In this context, since most of the energy is expended

in transmitting the information between the sensor nodes rather than sensing, many

academic and industrial efforts [3, 4, 5] focused on proposing energy-efficient routing

protocols that involves several short-range multi-hop communication in lieu of direct

long-range communication in relaying data between the sensor nodes. This routing

strategy curtails the amount of energy spent by the sensor nodes but tends to increase

the end-to-end delay involved in transfer of sensory data from the field to the sink.

1.2 Delay-Constrained, Energy-Efficient Routing Problem

Certain applications such as Volcanic Monitoring are highly delay sensitive, where

sensor nodes are deployed to monitor the seismic activities and emission levels of vol-

canic craters and data should be transmitted to the control center within a prescribed

delay in observance of any unusual activity [6]. Using power control or topology con-

trol, such sensitive delay requirements can be possibly met. In topology control, the

nodes transmit the sensory data using long-range radio links to distant nodes. The

transfer delay incurred in such transmission is lowered as the data is relayed in fewer

hops to the sink node but with higher energy consumption. A trade-off exists between

the energy consumed in the data transfer and the incurred data transfer delay, thus

giving rise to Delay-Constrained, Energy-Efficient Routing Problem (DCEERP) in

2



many WSNs applications. In DCEERP, given a delay bound of d′ seconds, the task

is to find a path from a sensor node to the sink with the lowest energy consumption,

such that the total transfer delay incurred along the path is less than d′ seconds.

Since the wireless medium is broadcast in nature, significant delay is caused by the

MAC layer in accessing the channel to transmit data, especially in multi-hop com-

munication. Current solutions that target this problem are inadequate as they do

not model the channel access delays caused by the MAC layer and hence the quality

of any DCEERP solution that does not model the MAC delay is emphatically poor.

Few of such existing protocols are discussed in the related work section.

1.3 Thesis Overview and Organization

This thesis work presents a methodology to solve the aforesaid DCEERP by intro-

ducing a network architecture and a routing strategy that employs topology control

to enable modeling of the channel access delays caused by 802.11 like access schemes.

This in turn, allows us to better estimate the end-to-end delays across various paths

between the source and the sink nodes. Firstly, we enumerate the set of paths avail-

able between the source and the sink node and index them in increasing order of

energy consumption. We then estimate the end-to-end delay incurred in each of the

paths in the indexed set and then select the lowest index path that satisfies the delay

constraint.

This thesis work is organized as under: In chapter 1, a brief introduction to the

thesis work is presented. In chapter 2, few highlights is provided on the existing

solutions in comparison to our work. Chapter 3 details on problem formulation and

necessary assumptions being made in solving the DCEERP problem. This chapter

also presents a detailed design of the proposed architecture and the data transmission

phases. Chapter 4 elaborates on the DCEERP solution details in estimating delay

and energy along the paths and the algorithm used. Numerical results are presented
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in chapter 5. Finally, the conclusion is made in 6.
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CHAPTER 2

RELATED WORK

The growing interest in sensor networks and continual emergence of new applications

inspired various efforts in attempting to address the problem of energy-efficient, delay-

constrained routing in sensor networks. The sensor nodes are heavily constrained in

terms of energy consumption, delay guarantee, processing capacity and storage and

hence require careful resource management. This chapter highlights about the existing

protocols and provides a distinction between the proposed work from other work.

Hea et al. [7] proposed a routing protocol called SPEED that supports real-time

communication in a sensor network and also provides soft real-time end-to-end de-

lay guarantees. Each node in the network maintains information about its neigh-

bor nodes and uses Stateless Non-deterministic Geographic Forwarding( SNFG ) in

routing packets without requiring the end-to-end path setup. SPEED maintains a

desired delivery speed for every admitted packet in the network. The term delivery

speed is defined as the rate at which the packet travels in a straight line from the

source to destination. This definition of speed makes the end-to-end delay in the

network proportional to the distance between the source and the destination. The

routing algorithm estimates the end-to-end delay for the packets by considering the

distance to the sink and the speed of the packet before making the admission decision.

Moreover, SPEED can provide congestion avoidance when the network is overloaded.

The routing module in SPEED called Stateless Geographic Non-Deterministic for-

warding (SNFG) along with other modules works at the network layer, as shown in

figure 2.1 [7]. The beacon exchange mechanism gathers information about the nodes

5
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Figure 2.1: Routing Components of SPEED

and the associated location. Delay estimation module calculated the elapsed time

when an ACK is received from a neighbor as a response to a transmitted packet.

The SNGF module selects the node that meets the speed requirements based on the

delay values provided by the delay estimation module.If none of the nodes satisfy

the speed requirements, the relay ratio of the node is checked. The Neighborhood

Feedback Loop module calculates the the relay ratio by examining the miss ratios of

the neighbors of a node and feeds it to the SNGF module. If the relay ratio is less

than a randomly generated number between 0 and 1, the packet is dropped. The

back-pressure re-routing is responsible to overcome packet delivery degradation due

to congestion. SPEED takes into account the delay in the transmission caused by

channel access mechanisms. However, it does not attempt on energy efficiency along

the selected path. Also the idea of per-flow reservation leads to scalability issue due

to the highly dynamic link and route characteristics of WSNs.

Lu et al. [8] proposed RAP, a real-time communication architecture for large-scale

wireless sensor networks. It provides a set of high-level query and event services

for applications. RAP proposes velocity-monotonic scheduling(VMS) as its default

packet-forwarding scheme on the wireless medium. Similar to SPEED, in order to

meet the end-to-end latency bound, a packet must maintain some desired average

speed or velocity across the network towards the target. This velocity is determined

by the timed delay bound and the distance between source and target nodes. RAP

prioritizes messages by their required velocity such that higher velocities imply higher
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priorities. RAP provides a multi-layer communication protocol stack that co-operates

on prioritizing packets at not only the network layer, but also at the MAC layer. Each

packet is put to a different FIFO queue based on their requested velocity, i.e. the

deadline and closeness to the gateway. This ensures a prioritization in the MAC layer.

RAP as an architecture, is concerned about the physical geography of the network

and distance plays a role in maintaining a desired speed or velocity across a sensor

network. However, RAP does not provide a routing algorithm. Also RAP attempts

on delay guarantees but energy metrics is not taken into consideration in the routing

mechanism.

Akkaya and Younis [9] proposed a energy-aware approach for routing delay con-

strained data. This approach provides a multi-hop packet transmission thereby re-

ducing the energy consumption at the nodes. Also, their approach employs weighted

fair queuing (WFQ) packet scheduling methodology along with leaky bucket con-

strained data sources in order to provide soft real-time guarantees for data delivery.

Such scheduling policy at each node provides a service differentiation between two

different classes of traffic, namely real-time and non-real-time traffic. In the case of

a mobile gateway, uninterrupted data flow for both types of traffic is achieved by

dynamic adjustment of the route set-up to react to the gateway’s departure out of

transmission range of relaying nodes. The routing algorithm uses global knowledge of

node queue sizes by the gateway to calculate end-to-end least cost paths and generate

routing tables. In the same work, two different queues are proposed for prioritization

of node packets. Use of such class-based, priority queuing mechanisms turns out to

be expensive on resource limited sensor nodes and also does not include the delay

caused by the MAC layer in routing delay constrained data.

Narasimhan and Kunniyur [10] proposed a framework to provide differentiated

services over a sensor network by associating power with priority. All the data packets

are routed by an underlying routing structure derived using any of the conventional
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energy-efficient routing schemes. With the routing, every data packet at the source

is associated with a power budget which indicates the total excess power that can

be used by all nodes(in the routing path) to transmit that packet. The excess power

actually indicates the difference in power consumption if the packet follows any other

route. This associates a high priority to the packet with higher power budget. The

nodes transmits the data packet with a higher power provided the total excess power

that is consumed does not exceed the power budget of the packet. This ascertains that

less delay is incurred by the packet with higher power budget. Initially the scheme

employs topology control in deriving an optimal solution and uses an decentralized

and randomized algorithm that approximates the optimal solution. Nevertheless, this

scheme do not model the delays caused by channel access mechanisms.
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CHAPTER 3

PROPOSED FRAMEWORK

3.1 Problem Formulation

3.1.1 Problem Definition

Let s be a sensor node generating time sensitive data to be sent to the sink τ as

shown in figure 3.1; d′ be the maximum end-to-end delay that can be tolerated in the

data transmission; Let P denote the set of paths available between s and τ ; di and

Ei denote the end-to-end delay and energy consumed along the path Pi ∈ P . Given

the above, the DCEERP can be stated as follows:

DCEERP: Find a path Pi∗ , such that Pi∗ ∈ P c, and Ei∗ ≤ Ej, ∀Pj ∈ P c where,

P c = {Pi|Pi ∈ P and di ≤ d′}.

Figure 3.1: DCEERP Scenario

This problem belongs to the class of constrained path optimization problems and is

NP-Complete [11]. Hence, heuristic solutions are feasible. Earlier heuristic provided

to this problem [12] is applicable only under certain assumptions that restrict the

9



communication pattern among the sensor nodes. This thesis work aims to solve

the DCEERP for more generalized communication patterns thereby allowing better

utilization of network resources.

Measuring queuing delays in the network is not feasible due to the inconsistent

traffic patterns in the sensor network field and hence our solution does not account

for queuing delays in the network. Few other significant issues to be considered

in proposing the DCEERP solution is i) the residual energy at the nodes and ii)

reliability in data transfer.

3.1.2 Assumptions

Estimation of path delays in multi-hop wireless sensor networks using 802.11 like

channel access schemes becomes cumbersome while using features like topology con-

trol. In order to arrive at the solution, few assumptions being made are as follows.

• The sensor nodes are assumed to be are stationary in the network and are aware

of their geographical location. There exist some locations services that facilitate

such information [13] and does not require a GPS receiver at every node.

• The nodes are equipped with two radios: a low power radio for short-range com-

munication and a high power radio for long-range communication. Both radios

operate at different frequencies and hence there is no interference in simultane-

ous transmissions. Such dual radio sensors are already being manufactured by

Sensoria Corporation [14].

Since the short-range radio consumes lesser power than long-range radio, it is

made the default radio for the sensor nodes. Long-range radio is employed only

when the delay bound cannot be met using the short-range radios. In order to

make it energy-efficient, we also assume that the transmission power (and hence

the range) of the long-range radios are adjustable.
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• The sensor nodes use 802.11 like channel access scheme for each of the two

wireless channels. A similar assumption is being made in [7, 8].

We present a network architecture and a routing framework in which the proposed

approach enables us to model the channel access delays caused by the MAC layer and

hence to arrive at the DCEERP solution.

3.2 Network Architecture

The geographical area over which the sensor nodes are deployed is divided into sectors

of angular width θ and annular bands of thickness b as shown in figure 3.2. The

t

Direction of Data Flow

b

t Sink

Sensor node

Gateways

Figure 3.2: Network Architecture

activity region is viewed as a circular grid in polar co-ordinates,with the sink τ being

at the center. The network grid is created when the sink advertises the values of

θ and b over the entire network. As each sensor node is location aware, given the

geographical scope of the cells, it associates itself with the grid cell it belongs to after

the sink’s advertisement. The nodes in each cell of the grid network can have one of

the two status levels.

11



• gateway- a node that aggregates the information sensed and forms a communi-

cation infrastructure (backbone) with other gateways in the sector.

• node - a ordinary node.

Gateway Selection: Each cell in the network has a gateway - a node close to the

cell’s center that aggregates the information sensed by the nodes within that cell and

forms a communication backbone with other gateways in the network. On hearing the

sink’s advertised values of θ and b, sensor nodes located within a small distance ǫ from

a cell’s center start a random timer( ǫ can be as small as 0.01b in dense networks).

The node whose timer expires first advertises itself as the cell’s gateway. On hearing

this advertisement,the other nodes cancel their timers and elects the advertised node

as the gateway. The direction of data flow is always from the gateway of respective

bands toward the centralized sink.

The band closest to the sink has a thickness of b + b/2 and the gateways in this

band are spaced at a distance of b from the sink. In the above architecture, each

gateway is at a distance of R = nb, where n is the number of hops along the path to

the sink.

3.3 Data Transmission Phases

In the above architecture, the information sensed is transmitted from source node s

to the sink τ in two phases – intra-cell and inter-cell phase. In the former phase, the

source node s directly transmits the sensed information to the gateway located in the

same cell using its short-range radio. As the distance between the gateway and other

nodes of the cell is limited, a direct transmission is possible. Since minuscule amount

of nodes exist within a particular cell, we assume that the delay encountered in the

intra-cell communication is d′′ seconds, with d′′ < d′ seconds. In the latter phase,a

gateway relays the data to the sink τ within the remaining d′ − d′′ seconds either

12



directly or through other gateways in the sector. In the inter-cell phase, the gateways

can transmit directly to the destination sink using long-range radios. However, in

order to conserve energy, gateways select to relay data along multi-hop path. In this

context, short-range radios are used for communication between neighboring gateways

and long-range radios are used for communication between non-adjacent gateways.

Data transmission
phases

Intra-cell : A sensor node transmits data

directly to the gateway located in the same
cell using its short-range radio. Intra-cell

delay is d’ (< d ) seconds.

Inter-cell :  The gateway relays the data to
the sink  t within the remaining d - d’
seconds along a suitable path.

Figure 3.3: Data Transmission phases

The proposed heuristic solution finds an delay-constrained, energy-efficient path

for the inter-cell phase of data transfer1. Considering the gatew with adjacent sector

gateways is feasible, providing various paths to the sink. However, it’s makes the so-

lution highly difficult in modeling the channel access delays. Hence, we streamline the

communication pattern in the network in which the gateway acts as an intermediate

hop only for the sensory data that originates in the same sector as the gateway.

As the gateways act as a representative in aggregating and relaying data from all

nodes within the cell, their energy levels tends to drain earlier than other nodes. In

such cases, the sink sends a RE-ELECT messages to all nodes within the cell and

re-election of a new gateway takes place. It is also noted that the previously served

gateways are inhibited from participation. Otherwise, the sink advertises different θ

and b values for selection of a new gateway.

1In the DCEERP solution, delay refers to the inter-cell delay.
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CHAPTER 4

DCEERP SOLUTION

The main construct of the DCEERP solution is to firstly enumerate the set Pgm,n,τ of

all possible paths that exists between the source node gm,n and the sink τ . The energy

consumed along every path is estimated and the paths in the set are indexed in the

increasing order of energy consumption. Once the end-to-end delay along every path

is estimated, we select the lowest indexed path that satisfies the delay constraint.

Initially we assume that the sensor nodes in the network have sufficient energy for

data transfer. However, in practical sense it is not possible. This factor is handled

in later section of this chapter. Also, in estimating the transfer delay, reliability in

data transfer in taken into consideration based on the probability of successful packet

transmission.

4.1 Path Set Calculation

In calculating the path set, we use the k-shortest paths algorithm as described in [15].

The entire network is viewed as a directed acyclic graph with no directed cycles, i.e

for any gateway gm,n, there is no non-empty directed path starting and ending on

gm,n. The gateways are vertices with the links between two gateways as edges and

their weights are equal to the energy consumption across the links.

Energy estimation across the links: In calculating the energy consumption (weights)

of the links(edges), we consider a gateway gn set at distance R meters from the sink

and ri as the distance between gateways gi and gi−1, with the sink being g0. The

energy required to transmit data in wireless medium over a distance r is given by

14



Krα, where K is a proportionality constant and α is the attenuation exponent with

α ≥ 2 [16].

The k-shortest paths algorithm finds k-shortest paths from a given source gateway

to sink with n vertices and m edges, in time O(m+nlogn+ k). The number of paths

available for a gateway gn is given by NP (n) = 2n (exponential) and hence we use

the k-shortest paths algorithm to enumerate the path set in polynomial time. The

path set is divided into NP (n) >= 2k paths and firstly we identify the first k-shortest

paths. Now, to identify the other set of k-paths, we run the k-longest paths algorithm.

The k-longest paths algorithm can be transformed into a k-shortest paths algorithm

by negating all the edge weights and can solve it in the same time bounds. Thus, the

path set Pgm,n,τ indexed in terms on energy consumption is obtained and delay across

the paths in the set is then estimated.

4.2 Delay Estimation

The medium access delay across a wireless link is a function of the channel contention

experienced by the nodes at either ends of that link. The terminologies used in this

section are as follows.

• Let µn be the average time taken to transmit a packet from gn to gateway gn−1

using the short-range radio. This includes both channel capture and transmis-

sion times, with propagation delays assumed to be negligible.

• µ′n be the average time taken to transmit a packet directly from gn to any other

gateway or sink τ using the long-range radio.

• Let T n
p,q be the total time taken by a packet originating at gn to reach gq from

gp along the basis path using short-range links, where p, q < n and q < p. Note

that T n
p,q =

∑q+1
x=p µx.

• D(gn, gn−1) be the distance between two gateways gn and gn−1.

15



Once the values of µn and µ′n are determined for all values of n, the delay across every

path in the set can be estimated.

4.2.1 Short-range Delay

Consider a gateway gn that transmits data to its neighboring gateway gn−1 using its

short-range radio. Since the sensor nodes use 802.11 like channel access mechanism1,

the delay µn can be estimated if we can find the set of nodes In that interfere with

gn’s transmission to gn−1 [17]. A gateway gmk ,nk
will interfere with gm,n’s transmission

to gm,n−1 if either D(gmk,nk
, gm,n) ≤ b or D(gmk,nk

, gm,n−1) ≤ b. The set of all such

gmk ,nk
’s constitute the set In. Since the short-range radio is the default and its

reachability between neighboring gateways is set at b meters, set In is easily identified

for each gn. Using the set In , the values for µn can be estimated using the procedure

outlined in [17].

4.2.2 Long-range Delay

Like in the short-range delay estimation, the delay µ′n experienced in gateway gn’s

long-range radio transmission2 can be estimated if the interference set Un can be

determined. Since the long-range radios are used only when necessary and that too

with just enough power, it is not straight forward to estimate the interference set of

long-range links.

Let N be the farthest band from the sink in the query region along any sector.

If TN
N,0 ≤ d, then all the gateways in the query region transmits data along their

basis paths satisfying the delay constraint. In such cases, U = ∅ for all n. But , if

TN
N,0 > d, then the gateways uses long-range radios in transmitting data to the sink.

1In channel access mechanisms such as TDMA that are non-contention based, handling traffic

fluctuations is not very flexible. They also have an overhead of schedule generation.
2Note that a gateway in the lowest band (band 1) is at a distance of b meters from the sink and

does not use its long-range radio.
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1. Determine In and estimate µn for all gn using the procedure outlined in [17].

2. If T N
N,0
≤ d,

(a) The basis path P1 ∈ Pgn,τ for a gateway gn is its DCEERP solution.

(b) Return.

3. Else

(a) For each n = 1 : N,

i. Pgn,τ ← Pgn,τ - {Pi | Pi includes T n
n,j > d; 1 < j < n}

ii. Assign indices i = 1 : x where x < NP (n) to paths Pi ∈ Pgn,τ such

that for any i < j, there exist paths Pi,Pj ∈ Pgn,τ and Ei < Ej.

(b) Initialize : Ui ← ⊘,i = 1 : n (for all gateways in the sector). Each

element in set Ui is of type (gn, rn,S).
Here S denotes a set of source gateways that uses gn along their path.

(c) Repeat

i. For n = N to 2,

A. For each index i = 1 : x where x < NP (n)
① Estimate delay di using the current set Ui and In using the

procedure in [17] for lowest index path P ∗

i ∈ Pgn,τ such that

di < d.

B. For k = N : 2
① Uk → Uk ⊗ { (gj , rj ,S)|j = 2 : N and (gj , r,S) uses variable

power or long-range in P ∗

i }. gkR
is the reception node of gk

Uk →
�
Uk

S
{(gj , rj ,S)} if |gk − gj | ≥ r or |gkR

− gj | ≥ rj

Until paths for all gateways do not change

(d) Return

Figure 4.1: Algorithm for solving DCEERP for a given delay constraint.

The iterative procedure of the algorithm in figure 4.1 simultaneously estimates the

interference set U of long-range link and solves the DCEERP.

4.3 Other Consideration

Residual Energy : The solution takes into account the residual energy at each node

in deciding the transmission path, therefore increasing the network lifetime. In the

network, when the residual energy of any of the sensor node involved in the transmis-

sion path falls below a optimum value ω, all the current paths in the sector involving

that particular node is annulled and the DCEERP solution in calculated again. It

is also noted that the paths under consideration will not include any of the energy

drained nodes.
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, the proposed heuristic solution is evaluated for its efficacy and perfor-

mance analysis is done by establishing the network scenario and performing numerical

simulations. The performance of the proposed heuristic methodology(henceforth re-

ferred to as PRO-II) is evaluated and compared to the following routing schemes.

• Minimal energy path routing - MIN-EN: MIN −EN refers to the routing along

the basis path of the set. This routing strategy curtails the amount of energy

spent at the sensor nodes. However, the total delay involved in transferring

data along this path can be more than the delay constraint.

• Direct Transfer - DIR: DIR refers to the direct long-range transmission of the

gateways directly to the sink τ . Since there are no intermediate hops in the

transmission, it leads to lower transmission delay at increased energy consump-

tion.

• Direct Optimal-PRO : PRO refers to the routing strategy proposed in the earlier

work [12]. In this strategy, the long-range radio links can directly transmit data

to the destination sink τ alone and hence restricts the communication pattern.

It also leads to higher energy consumption with mostly satisfying the delay

constraint.

The performance of all the aforesaid routing schemes are compared based on

the end-to-end delay incurred and energy expended in the inter-cell phase of data

transmission. Results show that the proposed algorithm PRO-II provides an effective
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balance in the network, thereby leading to a better performance when compared to

other routing schemes.

5.1 Experimental Setup

Numerical simulations were carried out using MATLAB tool and simulation graphs

obtained were used to compare the performance of all the routing schemes. The

sensor activity region extends to a distance of 200 meters from the sink with an

angular width of 180 degrees. The geographical expanse that generates periodic,

delay-sensitive reports to the sink is restricted between the radii 0 to 200 meters.

The band thickness b and angular width θ of the circular network are considered to

be 20 meters and 30 degrees. The energy involved in transferring unit data over a

distance of r meters is assumed to be proportional to rα, with α taken as 3.8709 [16].

The link bandwidth is taken as 200 Kbps. The parameters of the 802:11 MAC protocol

used in the simulation study are shown in table below.

Table 5.1: IEEE 802.11 Parameters

MAC Layer Value

RTS(bytes) 44

CTS(bytes) 38

ACK(bytes) 38

Slot time(µsec) 20

SIFS(µsec) 10

DIFS(µsec) 50

Wmin 32

Wmax 1024
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Figure 5.1: Performance of MIN-EN, DIR, PRO, PRO-II with respect to gateway

location

5.2 Effect of the gateway location

In this section, we analyze the performance of the routing schemes based on the

location of gateway nodes. The delay constraint taken in this experiment is 150

milliseconds(ms). Figures 5.1(a) and (b) depicts the energy expended and delay

incurred in the data transmission from gateways located at various distance from

the sink, under each of the four routing schemes. In case of MIN-EN scheme, we

observe that both the energy consumption and transfer delay increases with increase

in distance. This is obvious as the MIN-EN(basis) path from the gateway located

farther away from the sink has more number of hops than other MIN-EN(basis)

path from gateways closer to the sink. IN DIR scheme, we see that the energy

consumption increases with distance similar to the claim in [16]. Also most of the

energy is expended in communication than in sensing. However the transfer delay

in DIR remains more or less unchanged. In DIR, the gateway(except the one closest

to the sink) located anywhere in the query region transmits directly to the sink in a

single hop using a long-range radio link. The delays involved in such a transfer is just
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a single channel access plus a single transmission delay and this remains the same

regardless of the gateway location.

In PRO, we see that that energy consumption and transfer delay follows that

of MIN-EN up to a certain distance( 120 meters in this case), and then takes a

diverted route. This is because whenever the MIN-EN(basis)’s path satisfies the

delay constraint, PRO considers it as the minimum energy path. When the basis

path does not satisfy the delay constraint(in the above scenario, this happens for

gateways beyond the distance of 120 meters) PRO chooses a minimum energy path

that involves a direct long-range transmission to the sink. Since the chosen path

involves a direct long-range transmission, gateways located located farther away from

the sink incurs high energy consumption. Similar to PRO, PRO-II follows the MIN-

EN up to a certain distance( 120 meters in this case) after which it choses a minimum

energy path as stated in the algorithm. In PRO-II, the MIN-EN(basis) path is chosen

whenever it satisfies the given delay constraint as the MIN-EN path consumes the

least energy of all other paths. When the MIN-EN path does not satisfy the delay

constraint, PRO-II choses the next least energy path from the path set. Unlike in

PRO, the path chosen does not necessarily transmit directly to the sink in one hop

using a long-range radio link. Instead, the PRO-II transmission involves a mix of

long and short range transmission. Hence the transfer delay in PRO-II in lesser when

compared to PRO and other routing schemes. This clearly shows the PRO-II scheme

provides a better performance satisfying the delay constraint with minimal energy

consumption.

5.3 Effect of the delay constraint

We now consider the performance of all the four routing schemes with respect to vari-

ous delay constraints and the graphs in figures 5.2(a) and (b) show their performance.

Here, we consider only the farthest gateway in the query region to measure the energy
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Figure 5.2: Performance of MIN-EN, DIR, PRO, PRO-II with respect to given delay

constraint

consumed and delay incurred in data transmission as it is the limiting case. We can

notice from the graphs that the performance of MIN-EN and DIR is unchanged for

any delay constraint. This is because the routes in both the schemes are calculated

independent of the delay constraint. MIN-EN scheme utilizes lesser energy and takes

the basis path, thus satisfying only large delays. DIR however, satisfies the delay con-

straint at the expense of higher energy consumption. PRO and PRO-II performance

alters perceptibly with varied delay constraints. The delay constraints are always

satisfied by both the routing schemes at the expense of energy. Both schemes follows

the MIN-EN route for large delay constraints and hence consumes less energy. For

stringent delay values ( for delays less than 450 ms in this case), they bend towards

the DIR scheme. This is because, as said earlier, PRO and PRO-II route data via

the MIN-EN path with multiple short-range transmissions for loose delay constraints.

But for smaller delay constraints, the gateways minimizes the number of intermedi-

ate hops by using long-range transmissions. Hence the energy expended is also high.

While PRO tends to use a single long-range directly to the sink from the node after
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Figure 5.3: Influence of θ on the performance of MIN-EN and DIR

which the delay constraint is not satisfied, PRO-II tends to uses several short and

long-range combinations thereby reducing the long-range transmission distance. This

may result in negligible increase in delay, but reduces the amount of energy involved

in the transmission. So, PRO-II surpasses PRO and other’s performance by reducing

the energy involved in the data transmission.

5.4 Effect of parameter θ

In the network architecture, the activity region is divided into sectors of angular width

θ and annular bands of thickness b. Thus both θ and b may have a significant impact

on the performance of all the four routing schemes. In this section, we consider the

effect of the angular width θ of the network in the behavior of all the routing schemes.

Each of the routing schemes choose different path based on the delay requirements.

The path chosen for data transmission belonging to the path set consists of gateway

nodes within the same sector as the source node. Since the band thickness b is fixed,

any variations in θ may not alter the path set. However, change in band thickness

along with θ may result in more bands in the sector.
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Figure 5.4: Influence of θ on the performance of PRO,PRO-II

The number of nodes that may interfere with a gateway node’s transmission may

increase/decrease based on θ variations. This may affect the delay estimation de-

pending on the change in the interference set. Consequently, the path taken by PRO

and PRO-II may differ. However, graphs in figures 5.3 and 5.4 show that θ variations

have minimal effect on the performance of all four routing schemes. To summarize,

variation in the angular width θ does not influence the performance of MIN-EN, DIR,

PRO and PRO-II with respect to both transfer energy and transfer delay.

5.5 Effect of parameter b

We now analyze the influence of parameter b on the routing performance. We analyze

the energy consumption and delay incurred by all the four routing schemes with

respect to the father gateway in the activity region.

Figures 5.5 and 5.6 depicts the energy expended and delay incurred in the data

transmission under all the four routing schemes with respect to varying number of

bands. In graph 5.5 (a), we can notice that transfer energy under DIR remains

unchanged with increase in number of bands. But MIN-EN scheme’s energy con-
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Figure 5.5: Influence of number of bands on the performance of MIN-EN and DIR

sumption decreases with increase in number of bands. This happens because under

DIR, the energy consumption is based on the distance of the farthest gateway from

the sink node and hence change in number of bands or change in band thickness b

does not affect the amount of energy consumed by the source gateway node. The

behavior of the MIN-EN scheme can be explained as follows. When we increase the

number of bands, the band thickness b decreases. This in turn, reduces the single

hop distance between two gateway nodes and the MIN-EN(basis) path contains more

number of hops to the sink. Since the energy required to transmit data over single

hop is proportional to bα, overall energy consumption by the nodes in the MIN-EN

path is reduced. Now considering the graph 5.5 (b), we can see that under DIR, there

is a slight increase in the end-to-end transfer delay. Though the DIR transfer is only

a single hop long-range transfer, the increase in number of bands certainly increases

the number of gateways in the network. This results in more gateways competing for

channel access and there is a increase in channel capture time. Hence the observation.

In MIN-EN scheme, as said before, there is increase in number of hops in the MIN-EN

path. This results in more number of channel access by the gateway nodes and hence

25



0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
10

4

10
5

10
6

10
7

10
8

10
9

Given Delay(seconds)

T
ra

n
s
fe

r 
E

n
e

rg
y
 (

e
n

e
rg

y
 u

n
it
s
)

Energy from PRO, PRO−II transfer

PRO−II (Bands =5)
PRO (Bands =5)
PRO−II (Bands =10)
PRO (Bands =10)
PRO−II (Bands =15)
PRO (Bands =15)

(a) Energy consumption

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Given Delay(seconds)

T
ra

n
s
fe

r 
D

e
la

y
(s

e
c
o

n
d

s
)

Delay from PRO, PRO−II transfer

PRO−II (Bands =5)
PRO (Bands =5)
PRO−II (Bands =10)
PRO (Bands =10)
PRO−II (Bands =15)
PRO (Bands =15)

(b) Latency

Figure 5.6: Influence of number of bands on the performance of PRO,PRO-II

the end-to-end transfer delay increases.

In graphs 5.6 (a) and (b), we can see that under PRO, increase in number of bands

increases the transfer energy for strict delay constraints. However, the same increase

in band number decreases the transfer energy for loose delay constraints. The same

performance in experienced by PRO-II, however the transfer energy consumption

is much lesser. PRO-II paths have a mix of long-range and short-range link and

hence the observation. PRO, PRO-II and MIN-EN follow the same path, when the

MIN-EN(basis) path can satisfy the delay constraint. When the MIN-EN path does

not satisfy the delay constraint(which happens for strict delays), then PRO uses

long-range transmissions by the gateways directly to the sink. The data from the

farthest gateway in the sector is brought less closer to the sink along the MIN-EN

path, when there are more bands in the network1. Consequently, when PRO uses a

gateway’s long-range transmission , the distance over which the gateway transmits

is comparatively longer with more number of bands. This results in higher energy

consumption for strict delays under PRO scheme. The same rationale in applicable

1With increase in number of bands, the per hop length is small

26



to PRO-II, however the energy consumption under PRO-II is much lesser due to the

availability of more paths between the source and destination. In both schemes, data

is transmitted along the MIN-EN(basis) path over long distance and hence there is

no use of long-range transmissions. This obviously reduces the energy consumption

by the gateway nodes. Hence the observation.
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CHAPTER 6

CONCLUSION

6.1 Summary

In Wireless Sensor Networks(WSNs), energy consumption and delay guarantee issues

are of major consideration in developing efficient routing schemes. Due to the increas-

ing number of applications of such networks, many such efficient routing schemes were

proposed. However, any routing scheme that does not consider the delay caused by

the MAC layer in data transmission is considered inadequate. As the wireless medium

is broadcast in nature, the delay introduced by the MAC layer in capturing the chan-

nel can be considerable, especially along a multi-hop path. Hence, a unique approach

in handling the MAC delay metric in finding energy efficient routing paths for delay

sensitive applications is of high concern.

In this thesis work, a novel solution is proposed for finding energy-efficient paths

that satisfy the delay constraints in sensor networks. The proposed network archi-

tecture in conjunction with the routing framework enables us to model the delays

caused by the 802.11 like MAC protocols. This in turn, allows us to obtain better

estimates for the end-to-end delays of the paths. Experimental results show that the

proposed solution is effective in satisfying the delay constraint and also reduces the

energy consumption in data transmission compared to conventional solutions. Also,

the proposed solution is compared to our previous work [12] which is applicable only

under certain assumptions that restrict the communication pattern among the sensor

nodes. This thesis work solves the DCEERP for more generalized communication

patterns thereby allowing better utilization of network resources.
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6.2 Further Consideration and Future Work

This work proposes a new protocol and hence more work will certainly improve the

results much better. Few considerations are as follows

• The main consideration is to handle the network scalability issue. As the net-

work grows, the cell area increases and hence a direct communication may not

be possible within the cell.

• In estimating the delay across the path ,the intra-cell phase delay is assumed

to be negligible. However, including the intra-cell delays will provide a much

approximate delay incurred in the link.

A good balance achieved between the latency incurred in the data transfer and

energy consumption makes the protocol highly efficient and along with the above

mentioned considerations, the proposed protocol can serve as an ideal choice for

highly delay sensitive WSNs applications
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