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Abstract 

Understanding how belowground microbial communities respond to increasing 

atmospheric CO2 is of crucial importance for global change biology, microbial ecology 

and predictive biology. However, our understanding of CO2 effects on microbial 

communities is still limited, especially due to the immense diversity and as yet-

uncultivable nature of most soil microorganisms. By implementing next generation 

sequencing (NGS) technologies, we comprehensively surveyed the responses of 

microbial communities to elevated CO2 (eCO2) in the BioCON experimental site, a 

grassland ecosystem, which had been exposed to eCO2 for 12 years.  

In the beginning of this study, it was noticed that computational approaches to 

identify microbial strains/species from shotgum metagenomes are very limited, thus we 

have developed a computational algorithm, termed GSMer that identifies genome-

specific markers (GSMs) from currently sequenced microbial genomes for 

strain/species identification in metagenomes. Although GSMer was not very 

successfully applied in our soil metagenomes due to the extremely low coverage and 

high diversity of soil microbial communities as well as short sequencing reads from 

early Illumina GAII performs, it was successfully used to analyze microbial 

communities with a good coverage of reference genomes, such as human microbiomes. 

Sensitivity evaluation against synthetic metagenomes with different levels of coverage 

suggested that 50 GSMs per strain were sufficient to identify most microbial strains 

with ≥ 0.25x coverage, and 10% of selected GSMs in a database should be detected for 

confident positive callings. Application of GSMs respectively identified 45 and 74 

microbial strains/species significantly associated with type-2-diabetes (T2D) patients 
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and obese/lean individuals from corresponding gastrointestinal tract metagenomes. Our 

results agreed well with previous studies, but provided strain-level information. 

 In the following, we analyzed the biodiversity, composition, structure and 

functional potential of soil microbial communities in response to eCO2 at multiple (e.g., 

phylogenetic, taxonomic, genetic, functional) dimensions using next generation 

sequencing approaches. For each dimension of microbial biodiversity, all components 

of diversity, including alpha-, beta- and gamma-diversity were analyzed. Our results 

suggested that long-term eCO2 decreased the overall microbial biodiversity. Beta-

diversity analysis suggested eCO2 decreased functional beta-diversity, but increased 

taxonomic and phylogenetic diversity, suggesting long-term eCO2 selected for 

microbial function rather than taxonomy. Further meta-analysis suggested that such 

decreased biodiversity was significantly negatively correlated with increased soil 

ammonification rate. Moreover, the abundance of gene families involved in ammonium 

producing pathways increased significantly as well, indicating a functional convergence 

process as a result of higher demand for biologically available nitrogen (N) by 

stimulated plant growth as a result of eCO2. Our findings present evidence that plant-

microbe interactions for NH4
+
 as result of progressive nitrogen limitation were an 

important driving factor, responsible for decreased microbial biodiversity under eCO2. 

 We also analyzed the response of fungal communities to long-term eCO2 by 

sequencing of 28S rRNA gene amplicons. Long-term eCO2 did not significantly alter 

the overall fungal community structure and species richness, but significantly increased 

community evenness and diversity. Relative abundances of 119 OTUs (~ 27% of the 

total captured sequences) were changed significantly. More interestingly, significantly 



xviii 

changed OTUs under eCO2 were associated with increased overall relative abundance 

of Ascomycota, but decreased relative abundance of Basidiomycota. Co-occurrence 

ecological network analysis indicated that eCO2 increased fungal community 

interactions, as evidenced by higher intermodular and intramodular connectivity and 

shorter geodesic distance. In contrast, decreased connections for dominant fungal 

species were observed in the eCO2 network. Community reassembly of unrelated fungal 

species into highly connected dense modules was observed. Such changes in the 

network structure were significantly associated with altered soil and plant properties 

under eCO2, especially with increased plant biomass and NH4
+

 availability. This study 

provides novel insights into our understanding of how eCO2 shapes soil fungal 

communities in grassland ecosystems. 

 Since it was noticed that changes of both belowground microbial biodiversity 

and fungal communities were significantly correlated with soil ammonification rate, and 

our previous studies showed that the abundance of nifH significantly increased at eCO2, 

we hypothesized that N2-fixing microorganisms would play important roles in response 

to eCO2. Therefore, we analyzed N2-fixing communities by sequencing of nifH gene 

amplicons as well as extraction of nifH fragments from shotgun metagenomes. 

Surprisingly, long-term eCO2 significantly increased the abundance of nifH genes, but 

did not change the overall nifH diversity and diazotrophic community structure. 

Taxonomic and phylogenetic analysis of amplified nifH sequences suggested a high 

diversity of nifH genes in the soil ecosystem, with the majority belonging to cluster I 

and II nifH genes. We then constructed a microbial ecological network using 16S rRNA 

gene and nifH gene profiles. Co-occurrence ecological network analysis suggested a 
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clear preference of co-occurrence patterns between diazotrophs and other microbial 

species with different patterns observed for different subgroups of diazotrophs, such as 

Azospirillum/Actinobacteria, Mesorhizobium/Conexibacter, and 

Bradyrhizobium/Acidobacteria. This indicated a potential attraction of these non-N2-

fixers by diazotrophs in the soil ecosystem. Interestingly, more complex co-occurrence 

patterns were found for free-living diazotrophs than commonly known symbiotic 

diazotrophs, consistent with the physical isolation nature of symbiotic diazotrophs from 

the environment by root nodules. The study provides novel insights of our 

understanding microbial ecology of soil diazotrophs in natural ecosystems.    

All studies included in this work provided novel insights into the long-term 

eCO2 effects on belowground microbial communities, which are of merit for next 

generation sequencing analysis for microbial ecologists, global change biologists and 

bioinformaticians. 
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metagenomes; elevated CO2; microbial biodiversity; functional diversity; 

functional convergence; progressive nitrogen limitation; fungal community; 

microbial ecological network; community reassembly; nifH; soil diazotrophs; 
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Chapter 1: Introduction 

1.1 Atmospheric CO2: the background 

The increasing atmospheric CO2 concentration has become a serious issue for global 

climate change. Historically, atmospheric CO2 concentration was not a critical issue 

until the first industrial revolution, starting around 1750s, when fossil fuels were 

extensively combusted as energy sources by industrial plants. By analyzing atmospheric 

air bubbles trapped in ice cores, atmospheric CO2 concentrations for past centuries or 

even up to 160,000 years could be obtained (Raynaud and Barnola 1985; Barnola, 

Raynaud et al. 1987; Jasper and Hayes 1990; Fischer, Wahlen et al. 1999). Such data 

provided evidence that the increased CO2 concentration was due to increased human 

activities, especially the huge amounts of fossil fuels being burned. According to the 

latest Intergovernmental Panel on Climate Change (IPCC 2013) report, the atmospheric 

CO2 concentration has now reached the highest level in historical records at  >400 ppm 

in year 2013, which is >40% greater than in year 1750 (Stocker 2013). If fossil fuel CO2 

emissions continue at their current rate, the atmospheric CO2 concentration in year 2100 

could increase to as high as 985 ppm (Stocker 2013).  Such estimates were consistent 

even when different predictive models were used. As one of the most important 

atmospheric components that interact with Earth’s biosphere, such an increase in CO2 

concentration would have large impacts on the Earth’s ecosystem.  

1.2 Effects of elevated atmospheric CO2 on macroecosystems 

Increasing atmospheric CO2 concentration has accelerated global warming by the 

greenhouse effect (Solomon 2007) — a process that thermal radiation could be 

absorbed by greenhouse gases such as CO2, water vapor, methane and ozone (Kiehl and 
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Trenberth 1997). As a consequence, macroecosystem communities are greatly affected 

in the following major aspects: (1) changed phenology and physiology of many 

organisms; (2) shifts of the range and distribution of species to the poles or higher 

altitudes; (3) changed composition and interaction within communities; (4) changed 

structure and dynamics of ecosystems (Walther, Post et al. 2002).  

 Altered plant communities resulting from eCO2 are believed to be the major 

factor that influences belowground microbial communities due to their direct link(s). 

Responses of plant communities to eCO2 have mainly been studied by Free Air CO2 

Enrichment (FACE) technologies (Lewin, Hendrey et al. 1994), allowing researchers to 

measure eCO2 effects on plant communities in large areas under otherwise natural 

conditions. Under eCO2, the growth of plant communities was stimulated (Reich, Knops 

et al. 2001; Norby, DeLucia et al. 2005; Luo, Hui et al. 2006; Reich, Hobbie et al. 2006; 

Reich and Hobbie 2013), owing to the increased photosynthesic rates. Both 

aboveground and belowground plant biomass were stimulated, resulting in increased 

carbon input to the soil (He, Xu et al. 2010; Xu, He et al. 2013). As a result of 

stimulated plant growth, biologically available N in soil may decrease, constraining the 

sustainability of plant community responses to eCO2 (Hu, Chapin et al. 2001; Luo, Su et 

al. 2004; Reich, Hobbie et al. 2006; Reich and Hobbie 2013). Although plant growth 

under eCO2 could be slower or even decrease due to progressive N limitation, 

continually increased plant biomass was observed in the BioCON grassland ecosystem 

after long-term eCO2 treatment. Since biologically available N in natural soil 

ecosystems mainly originates from microbial communities, the continually increased 
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plant biomass suggested an important role that microbial communities may play in 

maintaining the sustainability of plant community responses to eCO2.  

1.3 Effects of elevated atmospheric CO2 on soil microbial communities 

Rather than being directly affected by increasing atmospheric CO2, soil microbial 

communities are more likely affected by other factors caused by eCO2, such as 

accumulated carbon (C) input as a result of stimulated plant growth and altered soil 

physical and chemical properties. As a consequence of changes in plant and soil 

structure, the microbial biomass, community structure and composition, and community 

diversity are expected to change.  

Decomposition of organic matter into reusable nutrients that are able to enter the 

various biogeochemical cycles (C, N, S, P), is no doubt the most important role that 

microbial communities play in the Earth’s biosphere. Among these, the C-cycling 

process is the major pathway by which microbial communities respond to 

environmental perturbations, including elevated atmospheric CO2 and warming (Heath, 

Ayres et al. 2005; Carney, Hungate et al. 2007; Bardgett, Freeman et al. 2008; Drigo, 

Pijl et al. 2010; He, Xu et al. 2010; Cheng, Booker et al. 2012; Zhou, Xue et al. 2012). 

Since microbial decomposition is also closely influenced by many other environmental 

factors, such as pH, soil moisture, aerobic conditions, temperature (Davidson and 

Janssens 2006), and even litter quality (Ball 1997), contrasting observations of 

microbial decomposition responses to eCO2 were also found in different studies. In an 

experimental scrub-oak ecosystem exposed to doubled CO2 concentration for six years, 

stimulated microbial decomposition was found to be responsible for offsetting ≈52% of 

the additional C that had accumulated at eCO2 in aboveground and coarse root biomass  
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with soil C loss being driven by changes in microbial community composition and 

activities (Carney, Hungate et al. 2007). However, microbial decomposition of organic 

matters was found to be suppressed in a grassland ecosystem by another study, owing to 

progressive N limitation in soil caused by stimulated plant growth (Hu, Chapin et al. 

2001). These contrasting observations suggested that the response of microbial 

decomposition to eCO2 could be ecosystem dependent, and may also be greatly affected 

by other soil environmental factors.  

N cycling consists of important pathways by which microbial communities 

contribute to ecosystem functioning (Gruber and Galloway 2008). Under eCO2, plant 

growth is stimulated and take up more N from the soil, resulting in progressive N 

limitation (Hu, Chapin et al. 2001; Luo, Su et al. 2004; Reich, Hobbie et al. 2006; Reich 

and Hobbie 2013). Since microorganisms require various N sources, such as NH4
+
 and 

NO3
-
, for essential biological activities (Geisseler, Horwath et al. 2010), the changed N 

availability in soil due to stimulated plant growth is expected to influence belowground 

microbial communities. Similarly, microbial community activities of N cycling may 

respond differently to eCO2. For example, microbial N mineralization from 

decomposition of organic matters increased under low N availability, while being 

consistently suppressed by high soil N supply or substrate N concentrations (Craine, 

Morrow et al. 2007). However, a long-term eCO2 study suggested contrasting results, 

that microbial decomposition was suppressed by N limitation in soil (Hu, Chapin et al. 

2001).  

How elevated atmospheric CO2 concentration affects soil microbial community 

composition and structure was not as well studied until recently when advances in high 
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throughput technologies such as next generation sequencing (NGS) and microbial 

ecological microarrays made such studies feasible and practical. Studies of microbial 

community responses to long-term eCO2 could be generally divided into two major time 

frames, with the year 2010 as a separator. Prior to 2010, traditional low throughput 

technologies, such phospholipid fatty acids (PLFA), terminal restriction fragment length 

polymorphism (T-RFLP), and clone library sequencing of phylogenetic markers, were 

used to analyze changes of microbial community compositions and structure (Janus, 

Angeloni et al. 2005; Lipson, Wilson et al. 2005; Carney, Hungate et al. 2007; Chung, 

Zak et al. 2007; Drigo, Kowalchuk et al. 2008; Lesaulnier, Papamichail et al. 2008; 

Drigo, Pijl et al. 2010; Feng, Simpson et al. 2010). Since 2010, several high throughput 

technologies have been developed and applied to analyze the microbial community 

responses to environmental perturbations. Such technologies include microbial 

ecological microarrays such as GeoChip (He, Deng et al. 2010; Tu, Yu et al. 2014) and 

PhyloChip (Brodie, DeSantis et al. 2006; Brodie, DeSantis et al. 2007; Schatz, Phillippy 

et al. 2010), and 454 and Illumina based next generation sequencing technologies 

(Mardis 2008; Shendure and Ji 2008; Ansorge 2009; MacLean, Jones et al. 2009; 

Metzker 2010). As a result, more information regarding how microbial communities 

respond to eCO2 has been revealed. Although different results were obtained in various 

studies, almost all studies suggested a common consensus that the microbial community 

structure and composition significantly differed between ambient CO2 and eCO2 

conditions (Janus, Angeloni et al. 2005; Lipson, Wilson et al. 2005; Carney, Hungate et 

al. 2007; Chung, Zak et al. 2007; Drigo, Kowalchuk et al. 2008; Lesaulnier, 

Papamichail et al. 2008; Drigo, Pijl et al. 2010; Feng, Simpson et al. 2010; He, Xu et al. 
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2010; Deng, He et al. 2012; Dunbar, Eichorst et al. 2012; He, Piceno et al. 2012; Xu, He 

et al. 2013).  At the functional gene level, it has been found that abundances of a series 

of gene families involved in C, N, and phosphorous (P) cycling increased significantly 

in response to eCO2 (He, Xu et al. 2010; Xu, He et al. 2013). Specifically, abundances 

of gene families responsible for labile C degradation, rather than recalcitrant C 

degradation, increased significantly, suggesting a potential consequence of C 

sequestration instead of C loss as a result of eCO2 (He, Xu et al. 2010; Xu, He et al. 

2013).   

1.4 Microbial biodiversity and current challenges 

Biodiversity, both aboveground and belowground, is a major factor responsible for 

ecosystem multifunctioning and stability (McCann 2000; Hector and Hooper 2002; 

Tilman, Reich et al. 2006; Hector and Bagchi 2007; Zavaleta, Pasari et al. 2010; Wagg, 

Bender et al. 2014). Biodiversity in an ecosystem usually encompasses four dimensions: 

taxonomic, phylogenetic, genetic and functional diversity (Naeem, Duffy et al. 2012). 

Although more advanced technologies such as next generation sequencing are being 

developed, characterizing the belowground microbial biodiversity is still extremely 

challenging, especially for genetic diversity and functional diversity. This is solely due 

to the extremely diverse and >99% as-yet-uncultivable nature of soil microorganisms in 

the environment (Rappe and Giovannoni 2003).  

 Currently, by implementing NGS technologies, the phylogenetic and taxonomic 

diversity of microbial communities in most ecosystems can be assessed by sequencing 

of phylogenetic molecular markers, such as 16S rRNA genes. Similarly, the genetic and 

functional diversity could be analyzed by shotgun metagenome sequencing of whole 
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community DNA fragments. However, owing to the huge difficulties in data analysis of 

shotgun metagenomes such as annotation and de novo assembly (Scholz, Lo et al. 

2012), most current efforts of belowground microbial biodiversity largely focus on 

phylogenetic and taxonomic diversity. Until recently, a few pilot studies of shotgun soil 

metagenomes provided some fundamental information regarding the belowground 

microbial biodiversity. For example, Fierer et al. found that the functional diversity was 

significantly correlated with the taxonomic diversity in the central US continental 

(Fierer, Ladau et al. 2013). Similarly, at the global scale, the functional beta-diversity 

was also significantly correlated with the taxonomic and phylogenetic beta-diversity 

across multiple biomes (Fierer, Leff et al. 2012). This suggested a mutual deterministic 

property of functional and taxonomic diversity at the global scale. However, at a local 

scale, such situation may no longer hold as the dominant microbial species are already 

determined and microorganisms with specific functions are likely to be selected by the 

ecosystem. One such example is the soil diazotrophs, which encompass 

phylogenetically distinct groups of microorganisms, but all of whom possess the same 

functional trait — the gene nifH encoding nitrogenase and functioning as N fixation 

(Zehr, Jenkins et al. 2003). Thus environmental perturbation at a local scale may behave 

differently at different dimensions of microbial biodiversity.  

 Previous studies about eCO2 effects on microbial biodiversity were mainly 

carried out by relatively low throughput technologies such as clone library sequencing 

of 16S rRNA genes, and mainly focused on species richness, leaving other dimensions 

of microbial biodiversity untapped. For example, no significant changes of microbial 

diversity were found in two different ecosystems by Lipson et al. and Castro et al. 
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(Lipson, Wilson et al. 2005; Castro, Classen et al. 2010).  However, increased bacterial 

diversity as a result of eCO2 was found by Janus et al. and Lesaulnier et al.’s studies 

(Janus, Angeloni et al. 2005; Lesaulnier, Papamichail et al. 2008), the latter of which 

also suggested decreased archaeal diversity in the FACE experimental site in 

Rhinelander, WI, USA (Janus, Angeloni et al. 2005; Lesaulnier, Papamichail et al. 

2008). In contrast, the microbial species richness, as measured by 16S rRNA 

sequencing and PhyloChip, in the BioCON experimental site in Minnesota decreased in 

response to eCO2 (Deng, He et al. 2012; He, Piceno et al. 2012). These contrasting 

results could be due to ecosystem differences, but also experimental procedures. For 

example, the study by Janus et al. (Janus, Angeloni et al. 2005) was carried out in a 

forest ecosystem subjected to five years of eCO2, in which much less plant biomass was 

returned to the soil than grassland ecosystem and may take longer time for microbial 

communities to reach a new balance due to decreased N availability in the soil. 

Similarly, a large amount of decreased N availability was observed in the BioCON site 

in the first 4 years (see Chapter 2), but restored to a higher level afterwards, suggesting 

a new balance that microbial communities might have reached to provide more N to 

stimulated plant growth.  

 However, the effect of eCO2 on the functional diversity has not been well 

studied. According to many recent studies, the functional diversity might be more 

important for maintaining essential ecosystem functioning. For example, shotgun 

metagenomic analysis suggested a core functional gene set for human microbiome, but 

each individual hosts a unique microbial community composition (Turnbaugh, Hamady 

et al. 2009). The importance of functional diversity in response to environmental 
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perturbations has not been as well studied for microbial communities as in macro-

ecosystems, such as in plant communities. For example, Mokany et al. examined a 

native grassland ecosystem in Canberra, Australia, and found that functional identity 

and diversity were more important than community diversity in influencing ecosystem 

processes (Mokany, Ash et al. 2008). Another study by Suding et al. analyzed >900 

species across nine terrestrial ecosystems in North America suggested that functional 

traits of plants were related with diversity loss due to N fertilization (Suding, Collins et 

al. 2005). These results indicated that functional diversity could be of crucial 

importance for microbial community responses to eCO2, which may also explain varied 

observations of community changes in the taxonomical composition and structure.     

1.5 Foci of this study 

Although many studies have been carried out and it is certain that eCO2 has significant 

effects on microbial community taxonomic and functional structure and composition, 

how long-term eCO2 affects belowground microbial biodiversity is still not clear. In 

previous studies, the analysis of eCO2 effects on microbial diversity has mainly focused 

on microbial species richness, leaving other dimensions and components of biodiversity 

untapped. A comprehensive analysis of how eCO2 affects microbial biodiversity should 

include all four dimensions of biodiversity—phylogenetic diversity, taxonomic 

diversity, genetic diversity and functional diversity. For each of these dimension of 

biodiversity, all three components, alpha, beta and gamma, should be considered. In 

addition to species richness, the diversity and evenness of microbial community should 

also be analyzed, as they are also important in maintaining ecosystem functioning. Most 

importantly, the underlying mechanism how eCO2 affects the microbial biodiversity has 
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not yet been revealed. By taking advantage of next generation sequencing technologies, 

this study aimed to reveal the response of soil microbial communities to long-term 

eCO2 and their mechanisms in a comprehensive manner. Major results are presented in 

the following four chapters (2-5). 

 In Chapter 2, we present a novel k-mer based approach, GSMer to identify 

strain/species–specific markers from currently sequenced microbial genomes, which 

could be then used for strain/species identification in shotgun metagenomes. Although 

GSMer was not successfully applied in soil metagenomes due to the extremely low 

coverage and high diversity of soil microbial communities, it was successfully used to 

analyze microbial communities with good coverage of reference genomes, e.g., human 

microbiomes. Sensitivity evaluation against synthetic metagenomes with different 

coverage suggested that 50 GSMs per strain were sufficient to identify most microbial 

strains with ≥ 0.25x coverage, and 10% of selected GSMs in a database should be 

detected for confident positive callings. Application of GSMs respectively identified 45 

and 74 microbial strains/species significantly associated with type 2 diabetes (T2D) 

patients and obese/lean individuals from corresponding gastrointestinal tract 

metagenomes. Our results well agreed with previous studies, but provided more strain-

level information.    

Chapter 3 presents a comprehensive study about how long-term eCO2 affects 

belowground microbial biodiversity. By 16S rRNA amplicon analysis and shotgun 

metagenome sequencing, we comprehensively analyzed the phylogenetic, taxonomic, 

genetic and functional diversity of microbial communities in the BioCON experimental 

site, which had been exposed to long-term eCO2 treatment for 12 years. The mechanism 
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of how long-term eCO2 affects belowground microbial biodiversity was explored. We 

also proposed a conceptual model to illustrate why the microbial biodiversity decreased 

as a result of eCO2.    

 In Chapter 4, we attempted to analyze the response of the fungal community to 

long-term eCO2 in the same BioCON experimental site by sequencing of 28S rRNA 

amplicons. The diversity, composition, structure, and co-occurrence patterns of 

belowground fungal communities were comprehensively analyzed. Most interestingly, 

co-occurrence pattern analysis suggested that fungal communities responded to eCO2 by 

community reassembly.  

 In Chapter 3 and 4, we observed that the changed microbial biodiversity and 

fungal community were significantly correlated with soil ammonification rate. 

Therefore, in Chapter 5, we analyzed the response of N2-fixing microbial communities 

to eCO2 by sequencing nifH gene amplicons. Together with nifH gene fragments 

extracted from shotgun metagenomes, we found that eCO2 increased nifH gene 

abundance in soil, though the N2-fixing microbial community diversity and structure 

were not significantly changed. We also analyzed co-occurrence patterns between soil 

diazotrophs and other non-N2-fixers by combining nifH and 16S rRNA gene amplicon 

sequencing approaches. As a result, we found that free-living soil diazotrophs tend to 

form more complex co-occurrence networks than symbiotic ones and that different co-

occurrence patterns were observed for different diazotrophs, providing novel insights 

into the microbial ecology of soil diazotrophs in natural ecosystems.  

This work comprehensively analyzed the response of microbial communities to 

long-term eCO2 and presented novel methods in analyzing next generation sequencing 
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data. Our results indicated that microbial biodiversity decreases under long-term eCO2 

due to ecosystem functional convergence for ammonium production. Moreover, co-

occurrence network analysis suggested that fungal communities respond to eCO2 by 

community reassembly. Overall, these results provided novel insights into the long-term 

eCO2 effects on belowground microbial communities, and be of merit for next 

generation sequencing analysis for microbial ecologists, global change biologists and 

bioinformaticians.    
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Chapter 2: Strain/Species Identification in Metagenomes Using 

Genome-Specific Markers 

2.1 Abstract 

Shotgun metagenome sequencing has become a fast, cheap and high throughput 

technology for characterizing microbial communities in complex environments and 

human body sites. However, accurate identification of microorganisms at the 

strain/species level remains extremely challenging. We present a novel k-mer based 

approach, termed GSMer that identifies genome-specific markers (GSMs) from 

currently sequenced microbial genomes, which were then used for strain/species level 

identification in metagenomes. Using 5,390 sequenced microbial genomes, a total of 

8,770,321 50-mer strain-specific and 11,736,360 species-specific GSMs were identified 

for 4,088 strains and 2,005 species (4,933 strains), respectively. The GSMs were first 

evaluated against mock community metagenomes, recently sequenced genomes, and 

real metagenomes from different body sites, suggesting that the identified GSMs were 

specific to their targeting genomes. Sensitivity evaluation against synthetic 

metagenomes with different coverage suggested that 50 GSMs per strain were sufficient 

to identify most microbial strains with ≥ 0.25x coverage, and 10% of selected GSMs in 

a database should be detected for confident positive callings. Application of GSMs 

respectively identified 45 and 74 microbial strains/species significantly associated with 

type 2 diabetes (T2D) patients and obese/lean individuals from corresponding 

gastrointestinal tract metagenomes. Our result agreed well with previous studies, but 

provided strain-level information. The approach can be directly applied to identify 
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microbial strains/species from raw metagenomes, without the effort of complex data 

pre-processing.   

 

Keywords: genome-specific markers; GSMer; strain/species identification; 

metagenomes 
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2.2 Introduction 

Microorganisms can be found in almost every environment of the Earth’s biosphere, 

and are responsible for numerous biological activities including carbon and nitrogen 

cycling (Gruber and Galloway 2008), organic contaminant remediation (Robinson, 

McMullan et al. 2001; Condron, Stark et al. 2010; Chikere, Okpokwasili et al. 2011), 

and human health and disease. Many human disorders, such as type 2 diabetes, obesity, 

dental cavities, cancer and some immune-related disease, are known to be related with a 

single or a group of microorganisms (Turnbaugh, Hamady et al. 2009; Larsen, 

Vogensen et al. 2010; Ley 2010; Kau, Ahern et al. 2011; Qin, Li et al. 2012; Karlsson, 

Tremaroli et al. 2013; Schwabe and Jobin 2013). In addition, different strains within the 

same species may have completely different impacts on human health, such as E. coli 

O157:H7 (Karch, Tarr et al. 2005), which is a highly virulent E. coli strain, while most 

other strains in this same species are non-pathogenic. Thus, characterization and 

identification of microbial strains/species in the environment and individual human 

hosts is of crucial importance to reveal human-microbial interactions, especially for 

patients with microbial mediated disorders. Although different technologies have been 

developed, the characterization and identification of known microorganisms at 

strain/species levels remain challenging, mainly due to the lack of high resolution tools 

and the extremely diverse nature of microbial communities. 

Currently, the most commonly used approach to characterize and identify 

microorganisms in complex environments is to sequence 16S rRNA gene amplicons 

using universally conserved primers (Wang and Qian 2009). However, due to the high 

similarity of 16S rRNA gene sequences among different microorganisms, this approach 
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can only confidently identity microorganisms at high taxonomic levels (e.g., genus, 

family), but not at the species/strain level, though species identification had been 

attempted in a few studies with less complex communities (Ravel, Gajer et al. 2010; 

Conlan, Kong et al. 2012). Even at the genus level, resolution problems with 16S rRNA 

gene sequences have been reported by many investigators (Janda and Abbott 2007). 

Therefore, it is necessary to use other molecular markers to identify and characterize 

microorganisms at the strain/species level in complex environments. 

Owing to the advances in next generation sequencing (NGS) technologies, 

shotgun metagenome sequencing, which tries to capture all DNA/RNA information 

directly from environmental samples, has been widely applied to characterize microbial 

communities in various environments (Venter, Remington et al. 2004; Tringe, von 

Mering et al. 2005; Hemme, Deng et al. 2010; Hess, Sczyrba et al. 2011; Mackelprang, 

Waldrop et al. 2011), including those of the human body (Turnbaugh, Hamady et al. 

2009; Qin, Li et al. 2010; Qin, Li et al. 2012; Karlsson, Tremaroli et al. 2013). Also, 

with the efforts of the Human Microbiome Project (Peterson, Garges et al. 2009), more 

than 5,000 sequenced microbial genomes are available as references, making it possible 

for us to identify and characterize those sequenced microbial strains/species in shotgun 

metagenomes. However, it is computationally intensive using traditional approaches, 

such as BLAST (Altschul, Gish et al. 1990) searching or short reads mapping (Hatem, 

Bozda et al. 2013) metagenomes against currently sequenced microbial genomes 

(~5,000 genomes), while assembling them into contigs to reduce data sizes is even more 

challenging (Scholz, Lo et al. 2012). Furthermore, many closely related microbial 

strains/species share large amounts of genome content, which generates a lot of noise in 
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assigning short reads to references, resulting in ambiguous observations. In addition, 

sequencing errors, a common issue in NGS techniques (Victoria Wang, Blades et al. 

2012), may also reduce confidence levels and increase ambiguity in assigning reads to 

reference genome sequences, especially to genomes of highly similar strains. Therefore, 

there is an urgent need to develop an approach that can accurately identify microbial 

strains/species from shotgun metagenomes. 

Until recently, efforts have been made to unambiguously classify metagenomic 

reads into species or higher levels using a reduced set of clade-specific genes (Segata, 

Waldron et al. 2012). However, this approach only incorporates gene coding regions in 

the genomes, leaving intergenic regions untapped. Moreover, strain level identification 

of known microorganisms is still not feasible due to the high conservation of clade-

specific genes in closely related strains (≥ 94% average nucleotide identity) 

(Konstantinidis and Tiedje 2005). 

In this study, we developed a novel k-mer based approach, termed GSMer to 

identify genome-specific markers from currently sequenced microbial genomes, which 

could then be used for accurate strain/species-level identification of microorganisms in 

metagenomes. GSMer firstly identifies a set of GSMs for each genome by rapidly and 

comprehensively searching all regions in the genome sequence and filtering out non-

specific sequences. By searching shotgun metagenomes against these GSMs, the 

presence/absence and/or the relative abundance of each reference strain/species can be 

determined. In the following, strain-specific GSMs were evaluated against mock 

community metagenomes, recently sequenced genomes and real metagenomes from 

different body sites for specificity. Detection limit and true positive calling thresholds 
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were also determined. It was then applied to identify microbial strains/species 

associated with type 2 diabetes and obesity from previously published metagenomes. 

2.3 Materials and Methods 

2.3.1 Data resources 

Reference genome sequences (both finished and draft) targeting 5,390 microbial strains 

were downloaded from HMP DACC and NCBI GenBank databases. Since human DNA 

may be the main contamination in human microbiome studies, human genome 

sequences were also downloaded and included for GSM selection. Duplicated genome 

sequences from different sources were binned together according to the organism 

information in GenBank files. Body site information for human associated microbial 

strains/species was obtained from the HMP DACC project catalogue.  

Four mock community metagenomes consisting of 21 bacterial strains were 

downloaded from NCBI Sequence Read Archive with accession numbers SRR172902, 

SRR072233, SRR172903 and SRR072232. Among these, two were even mock 

communities, and two were staggered mock communities. SRA format shotgun 

metagenomes were converted to FASTA files using the sra toolkit. Converted FASTA 

files were then used to identify microbial strains.   

Recently sequenced microbial genomes that were not included in GSM 

identification were downloaded from the JGI IMG website (http://img.jgi.doe.gov/cgi-

bin/w/main.cgi). A total of 302 finished genomes were downloaded. Body-site specific 

metagenome raw data was downloaded from the HMP DACC website for specificity 

evaluation of selected GSMs. For each body site, the largest metagenome dataset 

available was selected. A total of 9 bz2 compressed fastq format metagenomes from 

http://img.jgi.doe.gov/cgi-bin/w/main.cgi
http://img.jgi.doe.gov/cgi-bin/w/main.cgi
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stool (SRS011084, 15.3Gb), subgingival plaque (SRS019029, 1.9Gb), tongue dorsum 

(SRS011115, 9.9Gb), right retroauricular crease (SRS020263, 4.2Gb), palatine tonsils 

(SRS019126, 4.2Gb), throat (SRS019127, 2.7Gb), anterior nares (SRS023847, 

462.4Mb), left retroauricular crease (SRS017849, 4.7Gb), and posterior fornix 

(SRS023468, 6.4Gb) were downloaded.   

Raw metagenome datasets targeting T2D/control (Qin, Li et al. 2012) gut 

microbiomes were downloaded from NCBI Sequence Read Archive under accession 

numbers SRA045646 and SRA050230. Obese/lean metagenome raw data (Turnbaugh, 

Hamady et al. 2009) were downloaded from NCBI Sequence Read Archive under 

accession number SRA002775. SRA format shotgun metagenomes were converted to 

FASTA files using the sra toolkit. Converted FASTA files were then used to profile 

disease-associated microbial strains/species.   

2.3.2 Selection of genome-specific markers (GSMs) 

First, strain-level non-redundant k-mers were generated for all collected microbial 

strains as well as human genomes. k-mers occurred in two or more bacterial strains 

were extracted and combined with all k-mers of human genomes as a database for 

stretch filtering. A k-mer table was then built by the meryl program adopted from the 

kmer package (Marçais and Kingsford 2011).  To insure high specificity of GSMs and 

reduce computational cost, k-mer sizes ranging from 18 to 20 were used in this study. 

Second, after transforming GenBank files into fasta files, each reference genome was 

split into 50-mer fragments without ambiguous nucleotides (such as Ns and other 

consensus nucleotides). Thus for a genome size of L, the number of 50-mer fragments is 

as much as L-50. Non-redundant 50-mer fragments were identified and kept for further 
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filtering. Third, the k-mer based approach was used to filter out potentially non-specific 

50-mer fragments. One significant feature of non-specific DNA fragments is that they 

share continuous stretch oligonucleotides with their non-targets. Thus continuous 

stretch filtering could be used to filter out non-specific 50-mer fragments. Here we 

employed k-mer based strategies for continuous stretch filtering. All k-mers in the k-mer 

table were mapped to the 50-mers for each genome by the mapMers program (Marçais 

and Kingsford 2011). Mapped 50-mers were discarded since they shared k-mers with 

other strains. Finally, remaining 50-mers for each genome were then searched against 

all microbial genomes and human genomes for further global sequence identity filtering 

using MEGABLAST (Zhang, Schwartz et al. 2000) to search for the closest non-target 

sequences and recalculate global sequence identities. All 50-mers that share sequence 

identity ≥ 85% between their non-target genomes were discarded. The remaining 50-

mers were identified as GSMs.  

Species-specific GSMs were identified in a similar way as strain-specific GSMs, 

but k-mer databases were generated at the species level rather than at the strain level. 

The maximum sequence similarity was calculated between 50-mers and non-target 

genomes that belong to different species. 

To insure each strain/species has enough GSMs from multiple regions for real 

applications, a minimum of 50 GSMs/strain were desired. For such a purpose, a 

progressive k-mer filtering approach was used. For example, if less than 50 GSMs were 

identified for a strain at a k-mer size of 18, the strain would be subject to GSMs 

identification using a k-mer size of 19 and/or 20. The same procedure was also applied 

to identify species-specific GSMs. Microbial strains with fewer than 50 GSMs/strain at 
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both strain/species levels with all three k-mer sizes were excluded for disease-

associated strain/species profiling, though more GSMs might be found at longer k-mer 

sizes.   

2.3.3 Specificity evaluation of GSMs 

To evaluate the specificity of identified GSMs with known bacterial genomes, GSMs 

from all available microbial strains/species (50 GSMs/strain) were searched against the 

mock community consisting of 21 bacterial genomes using MEGABLAST (Zhang, 

Schwartz et al. 2000). Only perfect matches between metagenome reads and GSMs 

were considered as effective hits. The same criteria were used for specificity evaluation 

against recently sequenced microbial genomes.  

In order to evaluate the specificity of identified GSMs with unsequenced 

bacterial genomes, GSMs were separated into different groups by the body site from 

which the microorganisms had been isolated. Body site information for microbial 

strains was obtained from the HMP DACC website. Only strains linked to one body site 

were selected. A total of 6 groups of GSMs were extracted for evaluation, targeting 

body sites including oral, gastrointestinal tract, airways, skin, urogenital tract, and 

blood. For each body site, 80 strains with more than 50 GSMs identified were randomly 

selected. For each randomly selected microbial strain, 50 GSMs were randomly 

selected, resulting in 24,000 GSMs in total. Metagenomes from different body sites 

were searched against the selected GSMs using MEGABLAST (Zhang, Schwartz et al. 

2000). Only perfect matches between metagenome reads and GSMs were considered as 

effective hits. It is expected that GSMs targeting microorganisms isolated from one 

body site will be less likely to be perfectly matched with metagenomes from other 
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distinct body sites, because different body sites should host different microbial 

communities.  

2.3.4 Determining the detection limit and true positive thresholds 

Gut GSMs and their targeted genomes were extracted for evaluation. The identification 

rates between different numbers of GSMs per strain and different sequencing coverage 

of microorganisms were analyzed. Simulated metagenomes targeting 695 gut microbial 

genomes were generated by the Grinder program (Angly, Willner et al. 2012), with 

coverage ranging from 0.01 to 0.75. Paired-end 100-base reads were randomly 

generated. Randomly selected of 1, 5, 10, 25, 50, 100, 200, and 500 GSMs per strain 

were used for evaluation. The simulated metagenomes were searched against GSMs 

using MEGABLAST (Zhang, Schwartz et al. 2000) for strain/species identification. 

Only perfect matches were regarded as effective hits.   

2.3.5 Profiling T2D-/obesity-associated microbial strains 

Raw metagenome reads were downloaded and searched against gastrointestinal tract 

GSMs using MEGABLAST program (Zhang, Schwartz et al. 2000). Since different 

microbial strains/species may have different numbers of GSMs, we randomly selected 

50 GSMs for each strain for normalization purposes in statistical analysis. Only perfect 

matches between metagenome reads and GSMs were extracted for statistical analysis. 

Normalization of blast hits profile representing abundances of microbial strains/species 

was based on the total number of raw reads, and then further normalized to 10,000,000 

(Illumina) or 1,000,000 (454) to avoid too small relative abundance values. Student t-

test was applied to evaluate statistical significance of T2D-associated microbial 

strains/species. Response ratio analysis was used to illustrate obesity-associated 
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microbial strains/species. Benjamini-Hochberg false discovery rate analysis was applied 

to detected microbial strains with ≥5 normalized reads to see how many microbial 

strains remained significant after p-value correction.  

2.4 Results 

2.4.1 Selection of strain/species-specific GSMs 

To our best knowledge, no comparative (meta)genomic tools are currently available to 

identify genome-specific regions from more than 5,000 microbial genomes. Here we 

developed a novel approach to identify GSMs of same length by taking advantages of k-

mer based approaches. Two different criteria, including continuous stretch match length 

and maximum sequence identity with their non-targets, were used to insure the 

specificity of GSMs. The whole process of GSMs identification is illustrated in the 

flowchart (Fig. 2.1). Since the definition of microbial strains and species is still widely 

debated, strains and species here were defined based on the NCBI classification system, 

where the binomial nomenclature part defines a species and IDs followed by the 

binomial name defines a strain.   
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Fig. 2.1 Flowchart of GSM identification processes. First, k-mer database (db) 

construction. K-mer db representing k-mers that show up in two or more microbial 

strains and all human genome k-mers was constructed by the meryl program. K-mer 

sizes from 18 to 20 were selected. Second, 50-mer GSMs were generated for selected 

strains/species. GSMs were then mapped with the k-mer db, and mapped GSMs were 

filtered. Third, all GSMs were searched against all microbial genomes by BLAST, and 

GSMs having 85% identity with non-target GSMs were also filtered. 
 

We used two different criteria to identify highly specific GSMs. One is that all 

GSMs should not have a continuous stretch length ≥ 21-base match with non-target 

genomes. The other is that all GSMs should not have a sequence identity ≥ 85% with 

non-target genomes. In order to ensure the identified GSMs are highly specific to their 

target genomes and reduce the computational time for GSM identification, we started to 

identify GSMs using a continuous stretch cutoff of 18-mer, then progressively increased 

the stretch length for genomes without GSMs using previous stretch length, until 20-



25 

mer (Fig. 2.1). The 18-mer starting point was selected for its having relatively large 

amount (>10 million) of candidate GSMs after k-mer continuous stretch filtering, while 

17-mer stretch filtering only resulted in ≤20,000 GSMs for ≥ 5000 genomes (Fig. S2.1).   

As a result, of the 5,390 microbial strains subject to GSM identification, 4,088 

could have ≥ 50 strain-specific GSMs identified. Among them, 2,548 were identified at 

the 18-mer stretch length, 1,161 at the 19-mer stretch length, and 384 at the 20-mer 

stretch length. A total of 8,770,321 strain-specific GSMs were identified, among which 

6,011,103 (68.5%) were located within genes, 1,657,931 (18.9%) within intergenic 

regions, 861,008 (9.8%) overlapped between gene and intergenic regions, and 240,092 

(2.7%) from unannotated genomes (Fig. 2.2A). Considering the ratio of genes and 

intergenic regions in a typical bacterial genome (~4.9:1), a higher relative percentage of 

GSMs were located in or partially in intergenic regions. This also indicated the 

importance of intergenic regions in bacterial genomes, especially for microbial 

identification. 

 

Fig.  2.2 Location of the identified GSMs in the genome: (A) strain-specific GSMs; (B) 

species-specific GSMs. Different colors denote different locations in the genome: blue 

for GSMs within genes, green for GSMs within intergenic regions, red for GSMs 

overlapped between a gene and an intergenic region, and purple for unannotated 

genomes. 
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 GSMs that target multiple strains in the same species were defined as species-

specific GSMs. A total of 11,736,360 GSMs targeting 2,005 species (4,933 strains) 

were identified.  Among them, 1,872 species (3,219 strains) were identified at an 18-

mer size, 198 species (1,454 strains) at a 19-mer size, and 48 species (260 strains) at a 

20-mer size. About 63% (7,391,847) were located within genes, 8.8% (1,037,718) 

overlapped between a gene and its intergenic regions, 17.2% (2,016,522) within 

intergenic regions, and 11% (1,290,273) from unannotated genomes (Fig. 2.2B). This 

distribution was generally consistent with strain-specific GSMs, suggesting that 

intergenic regions are important for selecting species-specific GSMs. To select GSMs 

for the remaining microbial strains without GSMs using the above criteria, modified 

strategies such as longer stretch length and/or relaxed identity cutoffs could be used. 

2.4.2 Specificity evaluation with mock community metagenomes 

In order to check the specificity of GSMs with currently sequenced genomes, we first 

evaluated the selected GSMs against a mock microbial community consisting of 21 

bacterial species (Peterson, Garges et al. 2009), of which 16 species had GSMs 

available. As a result, all 16 (100%) bacterial strains were identified without false 

positives for the two “even-distributed” mock community data sets sequenced by 

Illumina and 454 (SRR172902 and SRR072233). Twelve (75%) and fourteen (87.5%) 

true positives were identified for the two staggered mock community datasets-- 

SRR172903 and SRR072232, respectively. False negative identification in the 

staggered mock communities was due to the low coverage of these strains (Table S2.1). 

Three false positives were found in the dataset SRR172903 with only one mapped read 

for each strain. Of these, two belonged to closely related strains at the same species, 
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thus it might be caused by the incomplete sequencing of these strains or contamination 

(Table S2.1). However, these false positives could be effectively removed if a cutoff of 

identified reads number (e.g., 5) and/or mapped GSM number (e.g., 5) be used.     

2.4.3 Specificity evaluation against recently sequenced genomes and body site specific 

metagenomes 

Another question is how specific the GSMs are to unsequenced genomes. This is also 

critical for true positive callings from metagenomes because the majority of microbial 

genomes are not yet sequenced, though more than 5,390 microbial strains were used for 

GSM identification. To evaluate the specificity of GSMs with unsequenced genomes, 

we collected 302 finished genomes that were recently sequenced (not included in the 

GSM target strains) and searched them against strain-specific GSMs. A total of 203 

(67.2%) genomes were not assigned to any genomes (Fig. 2.3A). Of the 99 (32.8%) 

genomes assigned to the strains in the GSM database, 75 (24.8%) were assigned to 

closely related strains in the same species, 14 (4.6%) to the same genus but different 

species, and only 10 (3.3%) were assigned to different genera (Fig. 2.3A). This suggests 

that the GSMs identified in this study are even highly specific to unsequenced microbial 

genomes.  
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Fig.  2.3 Specificity and sensitivity evaluation of identified GSMs. (A) Specificity 

evaluation against recently sequenced genomes. A total of 302 genomes were collected. 

(B) Specificity evaluation of GSMs targeting microorganisms isolated from different 

body sites using raw metagenomes reads. GSMs targeting six different body sites 

(gastrointestinal tract, oral, airways, skin, blood, and urogenital tract) were searched 

with metagenomes from nine different body sites (stool, subgingival plaque, tongue 

dorsum, throat, palatine tonsils, anterior nares, left retroauricular crease, right 

retroauricular crease, and posterior fornix) using MEGABLAST. Numbers denote the 

percentages of MEGABLAST hits with GSMs targeting each body site. (C) Sensitivity 

evaluation of GSMs using simulated metagenomes from 695 guts microbial strains. 

Simulated metagenomes at seven different coverages (0.01, 0.03, 0.05, 0.1, 0.25, 0.5, 

and 0.75) were searched against different number of GSMs per strain (1, 5, 10, 25, 50, 

100, 200, and 500). The percentages of identified microbial strains were analyzed. 
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In addition, we also performed an alternative evaluation to verify the specificity 

of GSMs, which was less rigorous, but still illustrative. In this test, we hypothesized that 

microorganisms isolated from one body site would be less likely to be found in another 

distinctly different body site, based on current studies that different body sites host 

different microbial communities (Costello, Lauber et al. 2009). Body site information 

for microbial strains was obtained from the HMP DACC website. GSMs of microbial 

strains linked with only one of the major six body sites were extracted, though the 

possibility existed that some strains may also be found in other body sites.  Selected 

GSMs were searched with raw metagenome data from different body sites. It was 

expected that far fewer hits could be found in other body sites than the particular body 

site that the selected strains were isolated from. As a result, of the six groups of GSMs 

targeting different body sites, three are highly specific to their corresponding body sites, 

and one (blood GSMs) rarely had any hits since it did not have any corresponding 

metagenomes (Fig. 2.3B). For example, gut GSMs were mainly targeted by stool 

metagenomes (99.96%); skin GSMs were mainly targeted by metagenomes from 

anterior nares (94.86%), left retroauricular crease (94.87%), and right retroauricular 

crease (99.56%); urogenital tract GSMs were mainly targeted by posterior fornix 

metagenome (99.87%) (Fig. 2.3B). The only exception was that a relatively high 

number of oral metagenomes, including tongue dorsum (39.66%), throat (21.50%), and 

palatine tonsils (24.55%) were hit by GSMs targeting microorganisms isolated from 

airways. Since these oral sites are so closely located and connected with airways, and 

share similar physiological and functional properties, it is possible for some 

microorganisms to co-occur in different body sites. This was also evidenced by 
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previous studies that microbes from oral sites, such as tongue, tonsils, throat, saliva, and 

gingival plaques, contribute to the colonization in the airways for their important 

overlap between the upper segments of the digestive and respiratory segments (Segata, 

Haake et al. 2012). In addition, low BLAST hit numbers were observed between these 

oral metagenomes and GSMs targeting gut, skin, blood, or urogenital microorganisms, 

confirming the high possibility that the hits between oral metagenomes and airway 

GSMs be resulted from their sharing some microorganisms. These results also 

suggested that the identified GSMs were highly specific to their targeted 

microorganisms.  

2.4.4 Determining the detection limit and true positive calling thresholds for microbial 

identification using GSMs 

Detection limit (sensitivity) is another important issue to identify microbial 

strains/species from short metagenome sequences in complex environments. There are 

two major questions associated with sensitivity: (i) At what sequencing coverage the 

microbial genome could be identified by GSMs? (ii) How many GSMs are required for 

effective identification of microbial strains/species? In order to answer these two 

questions, simulated metagenomes with different degrees of genome coverage were 

generated from sequenced genomes, and then used to determine how many GSMs could 

be identified. Of the 695 gut microbial genomes subjected to evaluation, about 40% 

could be detected at 0.01x sequencing coverage level when 100 or more GSMs per 

strain were used. The value increased to ~90% with 0.1x sequencing coverage and near 

100% for 0.25x sequencing coverage with 50 or more GSMs per strain (Fig. 2.3C). And 

the trend became saturated at 200 GSMs per strain. Overall, our results suggested that 
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the minimum required GSMs per strain for very low-coverage (≤ 0.25x) sequence data 

is 100, and 50 for reasonable sequence coverage (≥ 0.25x) sequence data. However, it 

should be noted reasonable sequencing coverage of a metagenome is necessary for any 

methods to identify its specific members, especially at the strain/species level.  

Another issue related with microbial identification is the threshold for positive 

calling of an identified strain or species. In order to confidently identify microbial 

strain/species in a metagenome, a proper threshold of mapped GSMs is necessary. 

Hence, we examined the distribution of mapped GSM numbers for the simulated 

metagenomes when 50 and 100 GSMs/strain was used (Fig. S2.2). With 50 

GSMs/strain, more than 94% of microbial strains with 0.5x and 0.75x sequencing 

coverage were identified with 6~50 GSMs (Fig. S2.2 B and C). And with 100 

GSMs/strain, more than 95% were identified with 11~100 GSMs (Fig. S2.2 E and F). 

Even at 0.25x sequencing coverage, more than 75% microbial strains were identified 

with ≥ 6 GSMs and ≥ 11 GSMs when 50 and 100 GSMs/strain were used, respectively 

(Fig. S2.2 A and D). In addition, it was found in the specificity evaluation section that 

~82% non-specific identifications in metagenomes from different body sites were with 

≤ 5GSMs (~2 GSMs/strain). These results suggested that a 10% threshold cutoff (e.g., 5 

to 10 GSMs per strain/species) of the number of selected GSMs could be recommended 

for positive callings. However, in order to detect low coverage microbial strains/species, 

a lower cutoff could be used with the potential trade-off of increased false positives.    

2.4.5 Comparison with other approaches 

To our best knowledge, no approaches are yet available to perform strain level analysis 

of shotgun metagenomes. Here we performed species level analysis for synthetic 
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shotgun metagenomes generated from the 302 recently sequenced microbial genomes, 

and compared the results with the current state of the art, MetaPhlAn. Of the 192 

microbial species targeted by the synthetic metagenome, MetaPhlAn identified 68 and 

69 true positives, and 38 and 41 false positives at sensitive and very sensitive mode, 

respectively. When ≥ 5 and ≥ 1 mapped GSMs were used as cutoffs, our GSMer 

approach showed slightly fewer true positives (58 and 62) but much fewer false 

positives (16 and 21) (Fig. S2.3). Such differences in true positives and false positives 

should be due to the higher specificity nature of identified GSMs. For both GSMer and 

MetaPhlAn, about 2/3 of the microbial species targeted by the recently sequenced 

genomes were not identified, indicating that both GSMer and MetaPhlAn to be a 

specific tool for sequenced microbial genomes. This also indicated that such limitations 

in identifying mainly known microbial strains/species could be a common issue for 

strain/species-level taxonomic identifiers. In order to increase the ability of identifying 

more microbial strains/species, more newly sequenced microbial genomes need to be 

included.    

2.4.6 Metagenomic profiling of type 2 diabetes (T2D)-associated microbial 

strains/species 

In order to evaluate whether our selected GSMs could be applied to identify disease-

associated microbial strains/species in the human body, GSMs targeting human gut 

microorganisms were searched with raw metagenome data from 345 Chinese 

individuals with 174 healthy people and 171 diagnosed with T2D (Qin, Li et al. 2012). 

The previous study with these metagenomes identified 47 T2D-associated MLGs 

(metagenomic linkage groups), of which 17 were assigned to known bacterial species, 8 
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to genera, 2 to families, and 1 to order (Qin, Li et al. 2012). Thus it makes us possible to 

judge the consistency of our results by comparing with this previous study.  

 With 50 GSMs per strain, 379 microbial strains and 11 species representing 66 

strains were found to be present in at least one individual. A total of 45 microbial 

strains/species was identified to be significantly (p ≤ 0.05) related with T2D patients, 

among which 22 had average normalized hits ≥ 5. After Benjamini-Hochberg false 

discovery rate (FDR) correction, six strains remained to be significantly correlated with 

T2D (Table 2.1). Since the FDR procedure is closely related with the number of 

detected microbial strains and all detected microbial strains could be considered 

independent and uncorrelated, all 22 potential T2D-associated microbial strains with t-

test p ≤ 0.05 without FDR correction were analyzed here. Of them, 14 were enriched in 

T2D patients, while the remaining 8 were enriched in healthy individuals (Table 2.1). 

Further literature mining showed that many of the T2D-enriched microbial 

strains/species were previously identified as potential opportunistic pathogens, such as 

Bacteroides caccae ATCC 43185 (Lozupone, Hamady et al. 2008),  Clostridium 

bolteae ATCC BAA-613 (Song, Liu et al. 2004), Escherichia coli DEC6E, or not yet 

well characterized microbial strains that are distinct from currently recognized strains 

such as those named Alistipes sp., Bacteroides sp., Parabacteroides sp., and 

Subdoligranulum sp.. In addition, the mucin-degrading strain Akkermansia muciniphila 

ATCC BAA-835 was also found to be significantly enriched in T2D patients, which 

was also observed in the previous study (Qin, Li et al. 2012). In contrast, most 

microbial strains enriched in healthy individuals belong to butyrate-producing bacteria, 

such as Clostridiales bacterium SS3/4, Eubacterium rectale ATCC 33656, Eubacterium 
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rectale DSM 17629, Faecalibacterium cf. prausnitzii KLE1255, Roseburia intestinalis 

XB6B4, and Roseburia inulinivorans DSM 16841. Two Prevotella strains, Prevotella 

copri DSM 18205 and Prevotella stercorea DSM 18206, which were reported to be 

highly associated with carbohydrate consumption (Wu, Chen et al. 2011), were also 

found to be significantly (p < 0.05) enriched in healthy individuals. These results well 

agreed with previous results based on metagenome-wide association studies (Qin, Li et 

al. 2012), but provided more detailed information at the strain level.     

Table 2.1 The list of microbial strains significantly associated with T2D patients with 

mean normalized hits ≥5 in treatment/control metagenomes. 

Strain 

#Mean Mormalized 

Hits±SDOM P-value 

 P-value 

after FDR 

correction 
Control Treatment 

T2D-enriched     

Akkermansia muciniphila ATCC BAA-

835 
4.79±1.72 18.12±4.58 0.0065 0.07 

Alistipes indistinctus YIT 12060 3.60±1.02 8.40±1.84 0.0222 0.15 

Alistipes sp. HGB5 3.43±0.40 6.58±1.14 0.0090 0.06 

Bacteroides caccae ATCC 43185 29.88±3.39 56.74±8.38 0.0030 0.04 

Bacteroides cellulosilyticus DSM 14838 9.27±1.90 17.08±3.31 0.0405 0.17 

Bacteroides sp. 2_1_16 2.87±0.57 5.90±1.41 0.0454 0.21 

Bacteroides sp. 2_1_33B 4.20±0.55 8.84±2.00 0.0247 0.13 

Bacteroides sp. 20_3 15.18±1.96 33.66±4.71 0.0003 0.02 

Bacteroides sp. D22 4.03±0.54 6.18±0.78 0.0245 0.15 

Clostridium bolteae ATCC BAA-613 3.28±0.53 22.50±9.04 0.0330 0.15 

Escherichia coli DEC6E 1.27±0.42 5.47±1.85 0.0261 0.16 

Lachnospiraceae bacterium 17.93±2.34 26.61±3.74 0.0492 0.15 

Parabacteroides sp. D13 4.51±0.93 8.04±1.05 0.0124 0.06 

Subdoligranulum sp. 4_3_54A2FAA 2.04±0.31 6.65±1.49 0.0025 0.05 

Control-enriched     

Clostridiales bacterium SS3/4 10.05±0.85 7.35±0.92 0.0318 0.19 

Eubacterium rectale ATCC 33656 5.58±1.15 2.91±0.45 0.0319 0.14 

Eubacterium rectale DSM 17629 7.07±1.05 3.50±0.52 0.0026 0.05 

Faecalibacterium cf. prausnitzii 

KLE1255 
20.46±2.30 12.75±2.03 0.0124 0.14 

Prevotella copri DSM 18205 204.12±33.5 106.57±22.4 0.0164 0.11 

Prevotella stercorea DSM 18206 58.41±14.61 14.00±5.77 0.0052 0.04 

Roseburia intestinalis XB6B4 15.78±2.14 7.30±1.30 0.0008 0.04 

Roseburia inulinivorans DSM 16841 34.08±4.61 21.76±3.59 0.0360 0.18 
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2.4.7 Metagenomic profiling of obesity-associated microbial strains/species 

Gut GSMs were then applied to identify obesity-associated microbial strains/species in 

human gut micorbiomes by searching gut GSMs with metagenomes from 18 

individuals, of whom 9 were diagnosed as obese, and the rest were lean/overweight 

(Turnbaugh, Hamady et al. 2009). The comparison (i.e. obese vs lean/overweight) was 

carried out in the same manner as the original study (Turnbaugh, Hamady et al. 2009). 

The previous study found an increased abundance of Actinobacteria and a decreased 

abundance of Bacteroides in obese individuals, but strain/species level identification of 

microorganisms associated with obesity was not carried out. Here we intend to identify 

microbial strains/species associated with obesity, and at the same time to evaluate our 

results with this previous study by summarizing our data at the phylum level.  
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Fig.  2.4 Response ratio analysis of obese/lean associated microorganisms at the phylum 

(A) and strain/species level (B). For strain/species level analysis, only significantly 

associated ones with normalized hit number ≥ 5 were displayed. * refers to microbial 

strains that did NOT pass Benjamini-Hochberg false discovery.  
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As a result, a total of 159 microbial strains/species were detected in at least one 

sample in the study. Response ratio analysis showed the relative abundance changes of 

microbial strains/species between obese and lean/overweight individuals at the 95% 

confidence interval level. To evaluate whether our results were consistent with the 

previous one, we first summarized and analyzed the relative abundances of microbial 

strains/species at the phylum level. A significant lower abundance of Bacteroides and 

higher abundance of Actinobacteria were found in obese individuals than those in 

lean/overweight individuals, while no significant changes were observed for microbial 

phyla such as Firmicutes, Proteobacteria, and Chlorobi between those two groups (Fig. 

2.4A). The results were consistent with the previous report using the whole 

metagenome BLAST searching approach (Turnbaugh, Hamady et al. 2009). We then 

analyzed the relative abundances of microorganisms at the strain/species level. Relative 

abundances of a total of 74 strains/species were identified to be significantly (p < 0.05) 

changed in obese/lean individuals. Among these, 13 were found to have an average 

normalized blast hits number ≥ 5 in obese or lean/overweight individuals. Only three 

did not pass Benjamini-Hochberg FDR analysis at corrected p-value cutoff of 0.05 (Fig. 

2.4B). Of these, six microbial strains were enriched in lean/overweight individuals with 

five (Bacteroides cellulosilyticus DSM 14838, Bacteroides finegoldii DSM 17565, 

Bacteroides caccae ATCC 43185, Bacteroides ovatus ATCC 8483, and Alistipes shahii 

WAL 8301) in the Bacteroides/Chlorobi group, and one (Clostridium sp. HGF2) in 

Firmicutes. Of the seven obesity-enriched microbial strains/species, three 

(Bifidobacterium breve UCC2003, Bifidobacterium pseudocatenulatum, and 

Bifidobacterium longum DJO10A) belonged to Actinobacteria, three (Acidaminococcus 
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sp. D21, Clostridium leptum DSM 753, Eubacterium rectale ATCC 33656) were 

Firmicutes, and one (Bacteroides sp. 1_1_30) was Bacteroides. Literature search 

suggests that most microbial strain/species enriched in lean/overweight individuals 

exhibited potential antibiotic/anti-anaerobic-pathogen resistance abilities (Salyers, 

Gupta et al. 2004; Wexler 2007), while obesity-enriched microorganisms were mostly 

probiotics (Schell, Karmirantzou et al. 2002; Sela, Chapman et al. 2008) and butyrate-

producing microorganism (Pryde, Duncan et al. 2002; Eckburg, Bik et al. 2005). These 

results provided new insights for a better understanding of microorganisms associated 

with obesity at the strain level.  

2.5 Discussion 

Comparing with other approaches such as BLAST searching against whole genomes for 

strain/species identification, our approach reduced the searching database to ~0.05% of 

the whole genomes and minimized noise in strain-level microbial identification. Noise 

could be introduced when searching metagenomes against whole reference genomes. 

First, sequencing errors or low quality bases are a common issue in NGS technology 

(Victoria Wang, Blades et al. 2012). Reduced sequence identity was reported when 

aligning such error-prone reads against long reference genomes, while the issue can be 

effectively avoided when searching against short GSMs. Second, the majority of 

genome content is similar among closely related strains, whereas only small portions 

are strain/species-specific. Ambiguous assignment of reads to reference genomes in 

such cases unavoidably introduces great noise for statistical analysis in comparative 

studies, resulting in ambiguous observations. Since GSMs were extracted from genome-
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specific regions, reads not specific to these regions will not be assigned, resulting in 

more confident microbial identification and statistical analysis.  

Specificity is the most important issue for GSM identification. Non-specific 

GSMs could lead to inaccurate and ambiguous results for strain/species identification in 

metagenomes. In order to insure highly specific GSMs, several progressive steps were 

applied. First, more than 5,390 sequenced microbial genomes as well as human genome 

were used to build k-mer databases that feature k-mers presenting in two or more 

genomes, which insures a comprehensive data source in the very beginning. Second, 

GSMs that can be mapped to any k-mers in the databases were discarded, insuring all 

remaining GSMs do not have any continuous stretch of k-mers (18≤ k ≤20) with non-

target genomes. Third, GSMs that share a sequence identity of 85% to their non-target 

genomes were also discarded, further assuring the specificity of identified GSMs. 

Fourth, all GSMs were identified as 50-mers, which are shorter than current NGS reads 

length and can be used for “perfect matching” identification of microbial strains. 

Finally, our evaluation of GSMs against recently sequenced microbial genomes and 

metagenomes from different body sites showed they are highly specific. 

Sensitivity is another important issue in using GSMs for microbial 

identification. On one hand, the selected GSMs could be from specific regions of one 

genome (strain-specific GSMs), or multiple genomes (species-specific GSMs), but not 

all GSMs could be covered by shotgun metagenome sequences, resulting in false 

negative detections. On the other hand, most microorganisms in the environment are not 

sequenced yet, so those incomplete and/or unsequenced genomes may also contain 

some GSMs identical to those sequenced genomes, leading to false positive detections. 
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Thus an appropriate number of GSMs and threshold should be determined for confident 

positive callings of identified microbial strains/species. Our evaluation using simulated 

metagenomes suggested that a minimum of 50 GSMs per strain and a 10% cutoff for 

mapped GSMs shall be used for positive callings for most microbial strains at ≥ 0.25x 

sequencing coverage.   

A large number of GSMs were identified from intergenic regions for both strain 

and species-specific GSMs. Intergenic regions comprise about 15% of bacterial 

genomes (Shabalina, Ogurtsov et al. 2001), and are usually discarded from data analysis 

in metagenomes at the gene prediction step. The current interest in intergenic regions is 

focused on exploring novel functional units such as small RNAs, small ORFs, 

pseudogenes, transposons, integrase binding sites, and repeat elements (Sridhar, 

Sabarinathan et al. 2011). Our results showed that intergenic regions also contributed 

heavily to GSMs, suggesting their important roles in identifying microbial 

strains/species. Thus here we recommended that gene-prediction-free metagenomes 

should be used for strain/species identification, and the importance of bacterial 

intergenic regions should be further recognized.  

Type 2 diabetes is a complex system level disorder influenced by both genetic 

and environmental factors (Wellen and Hotamisligil 2005; Scott, Mohlke et al. 2007), 

as well as the gut microbiome (Musso, Gambino et al. 2011; Qin, Li et al. 2012). 

Previous studies have suggested significantly different gut microbiome compositions 

between T2D patients and healthy individuals (Larsen, Vogensen et al. 2010), as well as 

a group of microbes significantly associated with T2D patients (Qin, Li et al. 2012). By 

searching metagenome raw reads against 34,750 randomly selected GSMs targeting 695 
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gut microbial strains, we identified 390 microbial strains/species present in at least one 

individual. The 45 microbial strains/species significantly associated with T2D were 

highly consistent with the previous metagenome-wide association study, showing that 

more “bad” microbes were enriched in T2D patients while more “good” microbes were 

enriched in healthy individuals. Comparing to the MLG approach, one shortage of our 

approach is that only sequenced microbial strains/species can be identified, but disease-

associated markers from unknown species are not targeted. However, this problem can 

be solved as more reference genomes are sequenced.  

Obesity is a genetically, environmentally and microbially associated energy 

imbalance disorder in the human body. Studies implementing 16S rRNA sequencing as 

well as shotgun metagenomes demonstrated significant links between the relative 

abundances of Actinobacteria, Bacteroides, Firmicutes and obese hosts (Wexler 2007; 

Turnbaugh, Hamady et al. 2009), such as increased Actinobacteria abundance and 

Firmicutes/Bacteroides ratio, and decreased Bacteroides. Our phylum level analysis of 

identified microbial strains using GSMs well agreed with these findings. Intriguingly, 

unlike the increased opportunistic pathogenic microbes in T2D patients, our strain level 

analysis showed obese and lean/overweight individuals were associated with different 

groups of “good” microbes: higher probiotics and butyrate-producing bacteria in obese 

individuals for maintaining a healthy gut microbiome (Collado, Isolauri et al. 2009) and 

providing energy source for intestinal epithelial cells (Hamer, Jonkers et al. 2008), and 

higher antibiotic/anti-anaerobic-pathogen bacteria in lean/overweight individuals. These 

observations suggested that both obese and lean/overweight individuals host a healthy 
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gut microbiota, but were enriched by different groups of microbes that harbor different 

functions.  

Both species- and strain-specific GSMs were provided in this study, for the 

purposes of microbial species and strain identification in metagenomes. Since the 

majority of currently sequenced microbial strains were covered by the identified GSMs, 

we expect the method could also be applied to analyze metagenomes from other 

environments, with the aim to identify sequenced microbial strains/species. However, 

potential problems may exist, especially for complex microbial communities from 

environments with limited coverage of reference genomes such as soil, for which the 

majority of microbial strains are still not yet cultivated and most microbial strains are 

sequenced with low coverage owing to the extremely high diversity of the community. 

Such problems would lead to higher false positives and low number of confidently 

identified microbial strains/species. Thus we recommend mainly using the developed 

GSMer approach for metagenomes with good coverage of reference genomes such as 

human microbiome. For complex metagenomes without good coverage of reference 

genomes, high level taxonomic classifiers (e.g., MEGAN (Huson, Mitra et al. 2011)) 

should be used for comprehensive data analysis, while high resolution identifiers like 

GSMer can be used to identify known microbial strains/species with ≥ 0.25x coverage. 

Even with species-specific GSMs, it seems that the majority of novel microbial 

strains/species still cannot be identified by such high resolution taxonomic identifiers, 

which is also the same case for MetaPhlAn, though some of them could be assigned to 

their nearest neighbors. With more novel microbial species/strains being isolated and 
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sequenced, we expect that such problems could be effectively solved by incorporating 

more novel microbial genomes.  

In conclusion, the GSMer approach we developed here can be used for direct, 

rapid and accurate identification of microorganisms at the strain/species level from 

metagenomes, providing a general tool for analysis of metagenome sequencing data. 

This approach does not require any efforts for preprocessing of huge deluges of reads, 

including quality trimming, gene prediction, metagenome assembly, and protein-

domain matching. In addition, with the advantage of directly taking raw reads, it has the 

potential to detect microbial strains/species present in low abundances, which are hardly 

assembled. Although only 50-mer GSMs with very strict parameters were identified and 

evaluated here, longer GSMs are also supported by the approach with more relaxed 

parameters. In addition, both gene and intergenic regions were used for GSM selection, 

expanding the detection ability of microbial strain/species. With more reference 

genomes being sequenced owing to the progress of HMP project (Human Microbiome 

Project Consortium 2012; Human Microbiome Project Consortium 2012), strain/species 

level identification of microorganisms is highly demanded, such as clinical diagnosis 

for patients with microbial related disorders. Our approach provides a great potential in 

solving such problems. By integrating such small database with NGS sequencing 

platforms, instant detection of microbial strains/species is also possible. When applied 

properly, the method can also be used to select probes for microbial ecological 

microarrays, which also faces great challenges with huge amount of sequences 

available. 
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Availability 

All source code for GSMer and testing datasets as well as identified strain/species-

specific GSMs could be found at https://github.com/qichao1984/GSMer and 

http://ieg.ou.edu/GSMer. A semiannual update to cover more newly sequenced 

genomes is projected. A full list of 50-mer strain/species-specific GSMs identified for 

all microbial strains can also be downloaded at the above website. 

 

  

https://github.com/qichao1984/GSMer
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Chapter 3: Long-term Elevated CO2 Decreases Microbial Biodiversity 

by Functional Convergence 

3.1 Abstract 

The belowground microbial biodiversity determines ecosystem multifunctioning 

(Fierer, Strickland et al. 2009; Wagg, Bender et al. 2014). However, how microbial 

biodiversity is affected by increasing atmospheric CO2 remains largely unknown. 

Through metagenomic analysis of microbial communities in an experimental grassland 

ecosystem that had been exposed to elevated CO2 (eCO2) treatment for 12 years, we 

found that long-term eCO2 decreased microbial biodiversity by functional convergence, 

rather than taxonomy. Such decreased microbial biodiversity was significantly 

correlated with enhanced soil NH4
+
 as a result of stimulated plant growth. Our findings 

present evidence that plant-microbe interactions for NH4
+
, as result of progressive 

nitrogen limitation, are an important driving factor responsible for decreased microbial 

biodiversity under eCO2. 

Keywords: elevated CO2; microbial biodiversity; functional diversity; functional 

convergence; progressive nitrogen limitation 
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3.2 Introduction 

The global atmospheric CO2 concentration has increased by at least 40% since the 

industrial revolution began and is likely to increase further due to fossil fuel combustion 

and land-use changes (Stocker 2013). This increased CO2 concentration has already 

significantly affected the Earth’s ecosystem, by increasing the Earth’s temperature 

(Stocker 2013), stimulating plant growth (Reich, Knops et al. 2001; Norby, DeLucia et 

al. 2005; Luo, Hui et al. 2006; Reich and Hobbie 2013), and changing belowground 

microbial communities (Janus, Angeloni et al. 2005; Lipson, Wilson et al. 2005; 

Lipson, Blair et al. 2006; Carney, Hungate et al. 2007; Chung, Zak et al. 2007; Bardgett, 

Freeman et al. 2008; Drigo, Kowalchuk et al. 2008; Lesaulnier, Papamichail et al. 2008; 

Castro, Classen et al. 2010; Drigo, Pijl et al. 2010; Feng, Simpson et al. 2010; He, Xu et 

al. 2010; Cheng, Booker et al. 2012; Dunbar, Eichorst et al. 2012; Eisenhauer, Cesarz et 

al. 2012). A general consensus has been reached by previous studies that microbial 

communities mainly respond to climate change through C-cycling processes (Heath, 

Ayres et al. 2005; Carney, Hungate et al. 2007; Bardgett, Freeman et al. 2008; Drigo, 

Pijl et al. 2010; He, Xu et al. 2010; Cheng, Booker et al. 2012; Zhou, Xue et al. 2012). 

However, the way in which microbial biodiversity changes as a result of eCO2 remains 

uncertain, as contrasting studies have shown increased, decreased or no change in 

microbial diversity under eCO2 regimes (Janus, Angeloni et al. 2005; Lipson, Wilson et 

al. 2005; Lipson, Blair et al. 2006; Lesaulnier, Papamichail et al. 2008; Castro, Classen 

et al. 2010; Dunbar, Eichorst et al. 2012; Eisenhauer, Cesarz et al. 2012; He, Piceno et 

al. 2012). This is a critical issue because the belowground microbial biodiversity is 

intimately linked to aboveground biodiversity (Wardle, Bardgett et al. 2004) and 
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determines ecosystem multifunctioning (Fierer, Strickland et al. 2009; Wagg, Bender et 

al. 2014). 

Under eCO2, two major processes—accumulated C input (Reich, Knops et al. 

2001; Norby, DeLucia et al. 2005; Luo, Hui et al. 2006; Reich and Hobbie 2013) and 

progressive N limitation (Hu, Chapin et al. 2001; Norby and Luo 2004; Reich, Hobbie 

et al. 2006; Norby, Warren et al. 2010; Reich and Hobbie 2013) resulting from 

stimulated plant growth, may greatly affect belowground microbial communities in a 

controversial manner. In the first process, increased C input into soil provides more 

energy source and stimulates microbial activities (Heath, Ayres et al. 2005; Carney, 

Hungate et al. 2007), thus reducing competition and increasing overall microbial 

biodiversity. In the second process, enhanced N uptake by stimulated plant growth 

could lead to progressive N limitation in natural ecosystems (Hu, Chapin et al. 2001; 

Norby and Luo 2004; Reich, Hobbie et al. 2006; Norby, Warren et al. 2010; Reich and 

Hobbie 2013), resulting in increased plant-microbe competition for N and suppressed 

microbial activities (Hu, Chapin et al. 2001), thus decreasing the overall microbial 

biodiversity. Previous observations (Janus, Angeloni et al. 2005; Lipson, Wilson et al. 

2005; Lipson, Blair et al. 2006; Lesaulnier, Papamichail et al. 2008; Castro, Classen et 

al. 2010; Dunbar, Eichorst et al. 2012; Eisenhauer, Cesarz et al. 2012) of changed 

microbial biodiversity under eCO2, mainly focused on species abundance and richness 

based on small datasets which may be inadequate to draw conclusions for the immense 

belowground microbial community. Most importantly, other dimensions of microbial 

biodiversity (e.g., genetic, functional) and the underlying mechanisms responsible for 

changed biodiversity have not well explored.  
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3.3 Results and discussion 

BioCON (Biodiversity, CO2 and Nitrogen) is a well-established long-term experiment 

to study ecosystem responses to global climate changes (Reich, Knops et al. 2001). 

Over ten years of elevated CO2 treatment (elevated by 180 µmol/mol), plant growth was 

continuously stimulated (Fig. 3.1A) (Reich, Tilman et al. 2012; Reich and Hobbie 

2013), an effect sustained by increased ammonification rate in soil (Fig. 3.1B) (Reich 

and Hobbie 2013). Interestingly, both nitrification and ammonification rates (N 

mineralization) were lower under eCO2 during the first four years (P<0.1, Fig. 3.1B, 

Fig. S3.1AB), confirming suppressed microbial activities by low N availability (Hu, 

Chapin et al. 2001). More interestingly, nitrification and ammonification rates 

recovered to a higher level after four years, suggesting restored microbial 

ammonification and decomposition activities by accumulated carbon input (Reich and 

Hobbie 2013). This indicated a critical role that soil microbial communities play in 

combating nitrogen limitation constraints (Norby and Luo 2004; Reich, Hobbie et al. 

2006; Reich and Hobbie 2013) by stimulated plant growth in response to long-term 

eCO2.   

 

Fig.  3.1 CO2 effects on plant biomass and soil ammonification rate. (A) Stimulated 

aboveground and root biomass in response to eCO2 in years 1-4 and years 5-12. (B) Soil 

ammonification rate between aCO2 and eCO2 samples in years 1-4 and years 5-12. 
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Ammonification rate was suppressed by eCO2 in years 1-4, but restored in years 5-12 

(P < 0.1). 

 

In order to examine how long-term eCO2 affects soil microbial biodiversity, 24 

soil samples (0-15cm, 12 from aCO2, 12 from eCO2, all with 16 plant species and under 

ambient N) were collected from the BioCON experimental site. By implementing NGS 

technologies of sequencing 16S rRNA genes and shotgun metagenomes, we 

comprehensively surveyed the responses of microbial biodiversity, including 

phylogenetic, genetic, taxonomic and functional diversity, to long-term eCO2 in this 

experimental grassland ecosystem. For each dimension of biodiversity, all three 

components, including alpha-diversity (local diversity of each sample), beta-diversity 

(dissimilarity among samples), and gamma-diversity (regional diversity by pooling 

samples under same condition) were analyzed.    
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Fig.  3.2 Responses of phylogenetic (A-C), taxonomic (D-F), and functional (G-I) 

diversity to long-term eCO2. For each dimension of biodiversity, all three components, 

including alpha (local diversity of each sample), beta (dissimilarity among samples), 

and gamma (regional diversity by pooling samples under same condition) were 

analyzed. 

 

Phylogenetic diversity. The microbial community phylogenetic diversity was assessed 

by 16S rRNA amplicon sequencing. A total of 16,633 non-chimeric OTUs were 

obtained and subjected to phylogenetic diversity analysis (Fig. 3.2 A-C). Although it 

was not significant, higher phylogenetic alpha-diversity was observed in aCO2 samples 

than that in eCO2 samples with the same amount of randomly selected sequences for 

analysis. Unweighted UniFrac distance analysis suggested significantly higher beta-

diversity among eCO2 samples than that among aCO2 samples. However, significance 

was eliminated by weighted UniFrac distance analysis, suggesting that rare species 
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could be an important factor responsible for the changes of phylogenetic diversity. 

Owing to the opposite trends of alpha- and beta-diversity, no obvious changes of 

phylogenetic gamma-diversity was found between aCO2 and eCO2 samples with any 

amount of randomly sampled sequences.  

Genetic diversity. Genetic diversity was measured by shotgun metagenome sequencing 

with genetic groups defined as predicted genes sharing ≥90% sequence identity over a 

≥30% aligned region. Despite insignificance, each aCO2 sample encompassed an 

average of 300,000 more genetic groups than eCO2 samples (Fig. S3.2E). Such 

differences in richness at the alpha level resulted in significantly higher genetic richness 

at the gamma level (Fig. S3.2F). However, the evenness of genetic groups did not 

change significantly at both alpha and gamma level (Fig. S3.3EF). Those changes 

resulted in no significant changes of genetic diversity (measured by Shannon diversity) 

at the alpha level, but did at the gamma level (P<0.05), especially when > 2 million 

randomly selected sequences were analyzed (Fig. S3.4A-C).  

Taxonomic diversity. Taxonomic diversity was analyzed based on OTUs of 16S rRNA 

amplicon sequencing and microbial species identified by shotgun metagenome 

sequencing approaches. The average richness of 16S OTUs in each aCO2 sample was 

about 500 higher than that in eCO2 samples (Fig. S3.2A). About 200 more sequenced 

microbial species were detected in aCO2 samples than in eCO2 samples by shotgun 

metagenome sequencing, with statistical significance p value of 0.08 (Fig. S3.2C). 

Significantly higher species richness in aCO2 samples was also observed at the gamma 

level by 16S OTUs (Fig. S3.2B), but not by shotgun metagenome sequencing (Fig. 

S3.2D), which could be due to the limited microbial species identified by shotgun 
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metagenome sequencing. Significantly changed evenness of microbial species was 

neither observed at the alpha level, nor at the gamma level for shotgun metagenomes, 

but at the gamma level of 16S OTUs (Fig. S3.3A-D). As a result, higher alpha-diversity 

(P<0.1 for 16S OTUs) and significantly lower beta-diversity (P<0.01) of microbial 

species at aCO2 were observed for both 16S OTUs and shotgun metagenomes (Fig. 

3.2DE, Fig. S3.4DE), which led to significantly higher gamma-diversity in aCO2 

samples (Fig. 3.2F, Fig. S3.4F).    

Functional diversity. Functional diversity was analyzed by functional groups identified 

by searching predicted proteins against the eggNOG database. Higher functional group 

richness in aCO2 samples was observed at both alpha (P<0.1) and gamma level (Fig. 

S3.2GH). Similar to the taxonomic diversity, the evenness of functional groups did not 

significantly change at the alpha level, but at the gamma level (Fig. S3.3GH). 

Interestingly, the diversity of functional groups decreased at all three diversity 

components in response to eCO2, with P<0.1 for alpha-, and P<0.05 for beta- or 

gamma-diversity (Fig. 3.2G-I).  

Based on above results, it could be concluded that long-term eCO2 decreased the 

overall microbial biodiversity as a result of functional, rather than taxonomic, 

convergence. This is evidenced by significantly decreased functional beta-diversity, and 

increased taxonomic and unweighted phylogenetic beta-diversity (Fig. 3.2BEH). The 

reduced functional beta-diversity indicated a more common set of functional gene 

groups in eCO2 samples, while increased taxonomic/phylogenetic beta-diversity 

indicated a less overlapped set of microbial species in eCO2 samples. Noticing that both 

richness and alpha diversity decreased in eCO2 samples (Fig. S3.2, Fig. 3.2, Fig. S3.4), 
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the decreased functional beta- and increased taxonomic/phylogenetic beta-diversity 

suggested that eCO2 selected microbial function rather than taxonomy. The increased 

taxonomic beta-diversity was not only evidenced by 16S rRNA sequencing, but also by 

microbial species derived from shotgun metagenomes (Fig. S3.4E). Furthermore, null 

model analysis by fixing alpha- and gamma-diversity (Chase, Kraft et al. 2011) 

suggested that both observed taxonomic/functional beta-diversity under aCO2 and eCO2 

were significantly different from null random expectations (Table S3.1), confirming the 

robustness of our findings. 

We then found that rare functional groups were mainly responsible for the 

decreased functional diversity in eCO2 samples. In order to reveal the preference 

behavior of functional convergence under eCO2, we first divided functional groups into 

two major categories (COGs–clusters of orthologous groups and NOGs—non-

supervised orthologous groups) according to their origins in the eggNOG database 

(Muller, Szklarczyk et al. 2010). The NOGs were considered as rare functional groups 

in this study for their having 7.5 times more orthologous groups than COGs, but only 

consisting ~1/7 as many sequences as that in COGs (Fig. S3.5). Although significantly 

lower Shannon diversity was found in eCO2 samples for both COGs and NOGs (Fig. 

S3.5EF), NOGs was mainly responsible for the decreased functional group richness 

(Fig. S3.5AB). This suggested that a functional convergence process under eCO2 

favored by dominant functional gene groups rather than rare ones, the latter of which 

may not be essential to maintain basic ecosystem functioning (Loreau, Naeem et al. 

2001; Smith and Knapp 2003; Lyons, Brigham et al. 2005). At the functional category 

level, although it was not significant, consistently decreased Chao1 richness was 
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observed for all functional categories (Table S3.2). Among these, only functional group 

richness for “Secondary metabolites biosynthesis, transport and catabolism” and 

“Coenzyme transport and metabolism” were significantly lower in eCO2 (P≤0.02), 

suggesting that the decreased functional diversity as an overall effect of all functional 

categories (Table S3.2).  

Consequently, functional convergence resulted in altered diversity for 

taxonomic groups. Unlike the dominance of Verrucomicrobia in the tallgrass prairie 

ecosystem in Midwestern US (Fierer, Ladau et al. 2013), the soil microbial community 

in this grassland ecosystem was dominated by Actinobacteria and Proteobacteria, 

followed by relatively low abundances of Acidobacteria, Planctomycetes, Chloroflexi, 

Firmicutes, Verrucomicrobia, Bacteroidetes, and Cyanobacteria, as revealed by both 

16S rRNA and shotgun metagenome sequencing (Fig. S3.6). Further investigation at the 

phylum level suggested that it was Proteobacteria and other rare phyla, not 

Actinobacteria, that were mainly responsible for the decreased taxonomic richness in 

eCO2 (Fig. S3.7A-C). Taxonomic Shannon diversity decreased for both Actinobacteria 

and Proteobacteria, but increased for rare phyla (Fig. S3.7G-I), indicating a 

magnitudinal increase of evenness for these succeeded rare phyla (Fig. S3.7D-F).  

 The decreased microbial biodiversity was significantly correlated with soil 

NH4
+
. Long-term eCO2 significantly stimulated both aboveground and root biomass 

production (Reich, Knops et al. 2001; Reich and Hobbie 2013), as well as 

ammonification rate in soil, but not soil moisture, pH or nitrification rate (Fig. S3.8). 

Positive correlations between aboveground biomass and ammonification rate could be 

observed (P<0.1) (Fig. 3.3A), suggesting a demand for more N in the form of NH4
+
 by 
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stimulated plant growth. Interestingly, significant or marginally significant negative 

correlations were observed between ammonification rate and functional richness 

(P<0.1), functional diversity (P<0.05), phylogenetic diversity (P<0.05), taxonomic 

richness (P<0.05) and taxonomic diversity (P=0.14) (Fig. 3.3 B-F), but not between 

plant biomass and diversity indices (Table S3.3). This suggested that the increased 

demand for NH4
+
 by stimulated plant growth was one of the major driving factors 

responsible for decreased microbial biodiversity.  

 

Fig.  3.3 Correlations between soil ammonification rate and aboveground plant biomass 

(A), functional richness (B), functional diversity (C), phylogenetic diversity (D), 

taxonomic richness (E), and taxonomic diversity (F). Soil ammonification rate was 

positively correlated with plant biomass, but negatively with diversity indices (P<0.1 

except taxonomic diversity). 

 

Notably, the correlation between soil NH4
+
 and microbial community was also 

evidenced by stimulated abundance of corresponding NH4
+
-producing gene families 

(Fig. S3.8). Specifically, relative abundance of gene families involved in organic 

decomposition (ureC), N2 fixation (nifH), and dissimilatory NO3
-
 reduction (narHJ, 
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napB, nirB and nrfA) that produce NH4
+
 from organic N, N2, and NO3

-
/NO2

-
 increased 

under eCO2 (P<0.1). Interestingly, relative abundances for gene families that are 

responsible for assimilatory NO3
-
 reduction, in which produced ammonium was used 

for microbial biomass synthesis, were not significantly changed (Fig. S3.10). The gene 

family amoA responsible for nitrification in soil remained unchanged (Fig. S3.10), 

consistent with our meta-analysis that nitrification rate was not significantly differed 

(Fig. S3.1A, Fig. S3.7C). More interestingly, the relative abundance of genes encoding 

glutamine synthetase that synthesizes glutamine from NH4
+
 and glutamate decreased as 

a result, indicating another potential mechanism of microbial communities to provide 

more NH4
+
 by reducing microbial NH4

+
 uptakes.  
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Fig.  3.4 A conceptual framework illustrating how long-term eCO2 decreases microbial 

biodiversity. Long-term eCO2 stimulated plant growth in grassland ecosystems, leading 

to progressive N limitation in soil. Microorganisms capable to produce NH4
+
 from 

various sources were favored, resulting in functional convergence of microbial 

communities. Decreased functional diversity as a result of functional convergence then 

led to decreased to taxonomic and phylogenetic diversity of microbial communities. 

Numbers in brackets indicate path coefficients as revealed by path analysis. Bolded 

numbers were significantly different from zero, based on bootstrap t-test.   

 

In summary, we proposed a conceptual model to illustrate how long-term eCO2 

affects soil microbial biodiversity (Fig. 3.4). Long-term eCO2 stimulated plant growth 

in grassland ecosystems (Reich, Knops et al. 2001; Norby, DeLucia et al. 2005; Luo, 
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Hui et al. 2006; Reich and Hobbie 2013), which proposed demands for more 

biologically available N in soil, a process termed as progressive N limitation (Hu, 

Chapin et al. 2001; Norby and Luo 2004; Reich, Hobbie et al. 2006; Norby, Warren et 

al. 2010; Reich and Hobbie 2013). As microorganisms are able to produce NH4
+
 from 

various sources, microbial species with such functions were favored (Zehr, Jenkins et 

al. 2003; Craine, Morrow et al. 2007), resulting in functional convergence of microbial 

communities. Of the three significantly increased NH4
+
-producing pathways, microbial 

decomposition is the major factor responsible for decreased functional diversity as 

revealed by path analysis. Decreased functional diversity as a result of functional 

convergence also led to decreased to taxonomic and phylogenetic diversity of microbial 

communities. As the microbial communities were favored by function, rather than 

taxonomy, decreased functional but increased taxonomic/phylogenetic beta diversity 

was observed, resulting in decreased microbial biodiversity in grassland ecosystems. 

Our findings in this study revealed a fundamental but important mechanism that 

microbial communities respond to environmental perturbations by functional 

convergence, a process commonly found in macro ecosystems (Reich, Walters et al. 

1997; Paruelo, Jobbágy et al. 1998; Meinzer 2003; Shaver, Street et al. 2007), but not 

yet well established for microbial communities. Our results also challenge many 

previous studies that showed no difference or increased microbial diversity under eCO2 

(Janus, Angeloni et al. 2005; Lipson, Wilson et al. 2005; Lipson, Blair et al. 2006; 

Lesaulnier, Papamichail et al. 2008; Castro, Classen et al. 2010; Dunbar, Eichorst et al. 

2012), possibly owing to technical drawbacks and short-term experiments, for which 

rare species were not well captured and a balance between eCO2, plant growth, nitrogen 
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limitation and microbial communities had not been established. Notably, although 

nitrogen limitation was found to be significantly correlated with decreased microbial 

biodiversity, other factors may also contribute importantly. This is solely because 

ecosystem responses to environmental perturbations are such a complex procedure that 

many other factors may not yet well explored (Norby and Luo 2004). 

3.4 Materials and Methods 

3.4.1 Site description and sample collection 

The study was conducted within the BioCON (Biodiversity, CO2 and N) experimental 

site located at the Cedar Creek Ecosystem Science Reserve in Minnesota, USA 

(45.4086° N, 93.2008° W). The long-term experiment was started in 1997 on a 

secondary successional grassland situated on a sandy outwash soil after removing the 

previous vegetation (Reich, Knops et al. 2001). The main BioCON field experiment has 

296 (of a total of 371) evenly distributed plots (2 x 2 m) in six 20-meter diameter FACE 

(free air CO2 enrichment) rings, three with aCO2 concentrations, and three with CO2 

concentrations elevated by 180 µmol/mol (Lewin, Hendrey et al. 1994). In this study, 

24 plots (12 from aCO2, 12 from eCO2, all with 16-species and no additional N supply) 

were used. 

All of the 16 plant species used in this study are native or naturalized to the 

Cedar Creek Ecosystem Science Reserve, and can be classified into four functional 

groups: (i) four C3 grasses (Agropyron repens, Bromus inermis, Koeleria cristata, Poa 

pratensis), (ii) four C4 grasses (Andropogon gerardii, Bouteloua gracilis, 

Schizachyrium scoparium, Sorghastrum nutans), (iii) four N-fixing legumes (Amorpha 

canescens, Lespedeza capitata, Lupinus perennis, Petalostemum villosum), and (iv) four 
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non N-fixing herbaceous species (Achillea millefolium, Anemone cylindrica, Asclepias 

tuberosa, Solidago rigida). Plots were regularly manually weeded to remove unwanted 

species, although the 16 species plots used in this study require minimal weeding. 

Bulk soil samples were taken in July, 2009 under ambient and eCO2 conditions for 

microbial community analysis, and each sample was composited from five soil cores at 

a depth of 0-15 cm. All samples were immediately transported to the laboratory, frozen 

and stored at -80
o
C for DNA extraction, PCR amplification, and 454 pyrosequencing. 

3.4.2 Plant and soil property measurements 

Plant biomass. The aboveground and belowground (0–20 cm) biomass were measured 

as previously described (Reich et al. 2001; Reich et al. 2006). A 10 x 100 cm strip was 

clipped at just above the soil surface, and all plant material was collected, sorted to live 

material and senesced litter, dried and weighed. Roots were sampled at 0–20 cm depth 

using three 5-cm diameter cores in the area used for the aboveground biomass clipping. 

Roots were washed, sorted into fine (< 1 mm diameter) and coarse classes and crowns, 

dried and weighed.  

Soil physical properties. Soil pH and volumetric soil moisture were measured at depths 

of 0-17, 42-59, and 83-100 cm in a KCl slurry and with permanently placed TRIME 

Time Domain Reflectometry (TDR) probes (Mesa Systems Co., Medfield MA), 

respectively. The soil pH and moisture values measured at 0-17cm were used in this 

study.  

Net N mineralization. Net N mineralization rates were measured concurrently in each 

plot for one-month in situ incubations with a semi-open core at 0-20 cm depth during 

midsummer of each year (Reich et al. 2001; Reich et al. 2006). Net N mineralization 
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rates were determined by the difference between the final and initial NH4
+
-N + NO3

-
-N 

pool
 
sizes determined with 1 M KCl extractions. Net ammonification was determined 

by the difference between the final and initial NH4
+
-N pool

 
sizes. Net nitrification was 

determined by the difference between the final and initial NO3
-
-N pool

 
sizes. 

 3.4.3 DNA extraction, purification and quantification 

Soil DNA was extracted by freeze-grinding mechanical lysis as described previously 

(Zhou, Bruns et al. 1996), and was purified using a low melting agarose gel followed by 

phenol extraction for all 24 soil samples collected. DNA quality was assessed by the 

ratios of 260/280 nm, and 260/230 nm using a NanoDrop ND-1000 Spectrophotometer 

(NanoDrop Technologies Inc., Wilmington, DE), and final soil DNA concentrations 

were quantified with PicoGreen (Ahn, Costa et al. 1996) using a FLUOstar Optima 

(BMG Labtech, Jena, Germany). 

3.4.4 Shotgun metagenome sequencing and 16S rRNA gene amplicon sequencing 

All 24 samples were subjected to shotgun metagenome sequencing by Roche 454 

pyrosequencing approaches. Library construction and sequencing were carried out by 

Los Alamos National Lab (New Mexico, USA) using standard shotgun protocols.  

A total of 23 samples instead of 24 were subjected to 16S rRNA gene amplification and 

MiSeq Illumina sequencing due to insufficient remaining DNA for one of the samples. 

PCR amplification was performed for the V4-V5 hypervariable regions of bacterial 16S 

rRNAs using the PCR primers, F515: GTGCCAGCMGCCGCGG, and R806: 

GGACTACHVGGGTWTCTAAT. A unique 12-mer barcode was added for each 

sample at the 5’-end of the forward primer. The barcode-primers were synthesized by 

Invitrogen (Carlsbad, CA) and used for the generation of PCR amplicons. 
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Quadruplicate 20 µl PCR reactions were performed as follows: 4 μl Promega GoTaq 

buffer, 0.5 μl GoTaq DNA polymerase, 1.5 μl Roche 25 mM MgCl2, 1 μl Invitrogen 10 

mM dNTP mix, 1 μl of each primer (10 pmol μl
-1

), 0.2 μl New England BioLabs 10 mg 

ml
-1

BSA, 1 μl 10 ng 7 μl
-1

 template, and 9.8 μl H2O. Cycling conditions were an initial 

denaturation of 94°C for 3 min, 30 cycles of 94°C for 1 min, 51°C for 40 s, 72°C for 1 

min, and an final extension at 72°C for 10 min. Replicates were pooled and gel purified 

using the Qiagen Gel Purification Kit following band excision. Products were further 

purified using the Qiagen PCR purification kit. After adapter ligation, amplicons were 

sequenced on a FLX 454 system (454 Life Sciences, Branford, CT) by Macrogen 

(Seoul, South Korea) using Lib-L kits and processed using the shotgun protocol. 

3.4.5 Shotgun data preprocessing, gene prediction and annotation 

A total of 18 454 run (12 full plate, 12 half plate) data was obtained. A total of 

18,890,805 raw reads were obtained. Quality control for 454 shotgun sequences was 

carried out by the LUCY program (Chou and Holmes 2001) with minimum quality 

score of 21 and maximum error rate of 0.01, resulting in 17,096,024 high quality 

sequences. Gene prediction was carried out by FragGeneScan (Rho, Tang et al. 2010), 

which predicts high quality gene fragments from short, error-prone reads and 

overcomes homopolymer errors. A total of 17,578,392 genes were predicted by 

FragGeneScan. Gene groups for predicted genes were assigned by self-vs.-self  BLAT 

(Kent 2002) approach with 90% identity cutoff over 30% alignment overlap. Function 

and taxonomy assignment of the predicted genes were carried out by searching protein 

sequences against eggNOG (Muller, Szklarczyk et al. 2010) and NCBI nr database, 

respectively. For function assignment, the best hit with eggNOG database was used. 
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And for taxonomy assignment, lowest common ancestors were assigned based on the 

best hits within 1/10 top e-value were used using the MEGAN program (Huson, Auch 

et al. 2007).  

3.4.6 16S amplicon data processing and OTU identification 

A total of 917,824 paired-end (2x150bp) MiSeq Illumina reads were obtained for 16S 

rRNA amplicons. Forward and reverse reads were joined by the FLASH program 

(Magoč and Salzberg 2011) with 10bp minimum overlap and allowing 2 mismatches. 

This resulted in 821,265 longer merged reads covering the primer region. Quality 

filtering, chimera removal and OTU clustering were carried out using the UPARSE 

pipeline (Edgar 2013), which is a recently developed approach that identifies highly 

accurate OTUs from amplicon sequencing data. Reads with expected errors >0.5 were 

discarded. The reads were then dereplicated, sorted, and clustered into candidate OTUs 

with an identity cutoff of 0.97. Chimeric OTUs were identified and removed by 

searching against the greengenes reference sequences (McDonald, Price et al. 2012). A 

total of 500,279 merged sequences were retained and clustered into 16,633 non-

chimeric OTUs. Finally, qualified reads were mapped to OTU reference sequences for 

relative abundance calculation. Taxonomic assignment for OTUs was carried out by 

RDP classifier (Wang, Garrity et al. 2007). OTU representative sequences were aligned 

by the MUSCLE program (Edgar 2004), and a phylogenetic tree was built using 

FASTTREE (Price, Dehal et al. 2009).   

3.4.7 Biodiversity definition and calculation 

Biodiversity encompasses at least four dimensions: taxonomic, phylogenetic, genetic, 

and functional diversity. In order to comprehensively examine all these four dimensions 
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of biodiversity, different sequencing approaches were used. The following definitions 

and methods were used to analyze all dimensions of biodiversity.  

Taxonomic diversity: diversity of microbial species. Taxonomic diversity was analyzed 

by 16S rRNA gene sequences, by defining operational taxonomic units (OTUs) based 

on sequence dissimilarity.  

Phylogenetic diversity: diversity of evolutionary relationships of microbial species. 

Phylogenetic diversity can be analyzed by constructing phylogenetic trees from 

phylogenetic markers such as 16S rRNA genes.  

Genetic diversity: the diversity of genetically inheritable regions. We defined genetic 

groups from predicted genes of shotgun metagenomes to analyze genetic diversity. Due 

to the short sequence length and not well assembly limitation of shotgun metagenomes, 

genetic groups were defined as predicted genes with 90% sequence identity over 30% 

overlaps. 

Functional diversity: the diversity of functional traits of microbial community. Here we 

used functional groups to assess the functional diversity of belowground microbial 

communities. Functional groups were defined by searching predefined orthologous 

(COG/NOG) database, in which each orthologous group could be defined as a gene 

family. 

For each dimension of biodiversity, all three components of diversity were 

analyzed, including alpha-, beta- and gamma-diversity. Richness and evenness were 

also analyzed at alpha- and gamma-level. Gamma-diversity was computed by combing 

all samples collected from the same treatment/control sites. In this study, we used 

Chao1 richness, Shannon evenness, and Shannon diversity to analyze richness, 
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evenness and diversity indices, respectively. Beta-diversity that represents the 

differences between two samples was analyzed by Bray-Curtis dissimilarity index. 

Phylogenetic diversity was analyzed by the mothur package, according to the method 

described in (Faith 1992). Phylogenetic beta diversity was assessed by both weigthed 

and unweighted UniFrac distance (Lozupone and Knight 2005).  
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Chapter 4: Fungal Communities Respond to Long-term Elevated CO2 

by Community Reassembly 

4.1 Abstract 

Fungal communities play key roles in Earth’s ecosystems – they are important 

decomposers and parasites as well as symbionts of plants. Their community-level 

responses to eCO2, one of the major global change factors impacting ecosystems, are 

not well understood. Using 28S rRNA gene amplicon sequencing and co-occurrence 

ecological network approaches, we analyzed the response of soil fungal communities in 

the BioCON experimental site in Minnesota, USA, in which a grassland ecosystem 

exposed to eCO2 for 12 years. Long-term eCO2 did not significantly change the overall 

fungal community structure and species richness, but significantly increased community 

evenness and diversity. Relative abundances of 119 OTUs (~ 27% of the total captured 

sequences) were changed significantly. Interestingly, significantly changed OTUs under 

eCO2 were associated with decreased overall relative abundance of Ascomycota, but 

increased relative abundance of Basidiomycota. Co-occurrence ecological network 

analysis indicated that eCO2 increased fungal community interactions, as evidenced by 

higher intermodular and intramodular connectivity and shorter geodesic distance. In 

contrast, decreased connections for dominant fungal species were observed in the eCO2 

network, and community reassembly of unrelated fungal species into highly connected 

dense modules was observed. Such changes in the network structure were significantly 

associated with altered soil and plant properties under eCO2, especially with increased 

plant biomass and NH4
+

 availability. This study provides novel insights into how eCO2 

shapes soil fungal communities in grassland ecosystems.    
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4.2 Introduction 

Fungi represent a significant portion of the microbial community in the Earth biosphere, 

with an estimated 1.5~5.1 million species in total (Hawksworth 2001; O'Brien, Parrent 

et al. 2005). They play various roles in terrestrial ecosystems, such as decomposers, 

parasites, and symbionts (Webster and Weber 2007). Understanding the fungal 

diversity, community structure and their responses  to long-term eCO2 in grassland 

ecosystems is an important issue in ecology and global change biology, but little is 

known about the impacts of eCO2 on the diversity, composition, structure, and function 

of soil fungal communities due to the high diversity and uncultivable nature of most 

(>80%) soil fungi (Bridge and Spooner 2001).  

Past studies have shown that eCO2 significantly increases the plant productivity 

in grassland ecosystems, resulting in more C input to the soil (Reich, Knops et al. 2001; 

He, Xu et al. 2010; Langley and Megonigal 2010; Drake, Gallet‐Budynek et al. 2011; 

Zak, Pregitzer et al. 2011; Reich and Hobbie 2013), while increased C input in turn 

significantly changed bacterial diversity, composition and structure, and increased the 

functional potential of bacterial communities for C degradation and nutrient cycling, 

though such effects differed across various ecosystems (Lesaulnier, Papamichail et al. 

2008; Drigo, Van Veen et al. 2009; Blagodatskaya, Blagodatsky et al. 2010; Castro, 

Classen et al. 2010; Drigo, Pijl et al. 2010; Feng, Simpson et al. 2010; He, Xu et al. 

2010; Deng, He et al. 2012; Hayden, Mele et al. 2012; He, Piceno et al. 2012; Drigo, 

Kowalchuk et al. 2013). By contrast, fungal biomass and relative abundance did not 

change significantly under eCO2 in these studies (Chung, Zak et al. 2007; He, Xu et al. 

2010). Previous studies of fungal responses to eCO2 were mainly carried out using 
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approaches such as phospholipid fatty-acid analysis (PLFA), denaturing gradient gel 

electrophoresis (DGGE), extracellular enzyme assays, and clone library analysis 

(Chung, Zak et al. 2007; Parrent and Vilgalys 2007; Drigo, Kowalchuk et al. 2008; 

Drigo, Van Veen et al. 2009; Castro, Classen et al. 2010; He, Xu et al. 2010), and 

mostly focused on mycorrhizal fungi (Alberton, Kuyper et al. 2005; Drigo, Pijl et al. 

2010; Antoninka, Reich et al. 2011; Cheng, Booker et al. 2012), which have major 

influences on plant biodiversity and productivity (van der Heijden, Klironomos et al. 

1998). Those previous studies were focused on fungal C degradation, N cycling, and 

interactions with plants (Cheng, Booker et al. 2012; Phillips, Meier et al. 2012; 

Verbruggen, Veresoglou et al. 2013); however, knowledge about fungal community-

level responses to eCO2 is still limited, though some efforts have been made recently 

(Castro, Classen et al. 2010; Edwards and Zak 2011; Weber, Vilgalys et al. 2013).  

Microorganisms, including bacteria, archaea, viruses, fungi and protists, interact 

with each other in soil to form complex interactive networks (Faust and Raes 2012). 

Using ecological network approaches, co-occurrence ecological networks of microbial 

communities can be constructed and analyzed (Zhou, Deng et al. 2010; Steele, 

Countway et al. 2011; Zhou, Deng et al. 2011; Barberan, Bates et al. 2012; Faust, 

Sathirapongsasuti et al. 2012). For example, a global ecological network analysis of the 

human microbiome revealed 3,005 co-occurrence and co-exclusion relationships among 

197 clades occurring throughout the human microbiome (Faust, Sathirapongsasuti et al. 

2012). For environmental perturbation impacts on microbial network structures, 

previous studies showed that eCO2 significantly impacted soil bacterial/archaeal 

community networks in a grassland ecosystem, and that significantly different network 
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structures and increased network complexity were observed in response to eCO2 (Zhou, 

Deng et al. 2010; Zhou, Deng et al. 2011). However, the network interactions of large 

soil microorganisms (e.g., fungi, protists) and their responses to eCO2 have not yet been 

characterized. Therefore, much can be learned by exploring interactions within fungal 

communities under eCO2 using molecular ecological network analysis (MENA) (Deng, 

Jiang et al. 2012).  

In this study, we aimed to comprehensively survey the fungal community 

diversity and examine their changes in composition, structure, and co-occurrence 

interactions in response to eCO2 in a grassland soil ecosystem. The following 

hypotheses will be tested: (1) Stimulated plant biomass and changed soil properties as a 

result of eCO2 would significantly affect the fungal community structure and diversity; 

(2) Such stimulated plant growth and higher demand for biologically available N would 

promote fungal communities to form more effective collaborations for organic 

decomposition, resulting in reassembled communities. To test the above hypotheses, we 

examined the response of fungal communities to long-term eCO2 in the BioCON 

experimental site, a 12-year CO2 manipulation in temperate grassland in central 

Minnesota, USA, by sequencing 28S rRNA gene amplicons, and comparing fungal 

community co-occurrence networks under ambient aCO2 and eCO2. Our results 

indicated that eCO2 increased the fungal species richness and fungal community 

interactions, but decreased the community diversity and connections for dominant 

species. Such changes were significantly associated with soil and plant properties. This 

study provides novel insights into how eCO2 shapes soil fungal communities in 
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grassland ecosystems, improving our understanding of the effects of eCO2 on soil 

fungal communities.  

4.3 Materials and Methods 

4.3.1 Site description and sample collection 

The same samples collected from the BioCON experimental site were used. Please refer 

to Chapter 3 for more detailes. 

4.3.2 DNA extraction, purification and quantification 

Soil DNA was extracted by freeze-grinding mechanical lysis as described previously 

(Zhou, Bruns et al. 1996), and was purified using a low melting agarose gel followed by 

phenol extraction for all 24 soil samples collected. DNA quality was assessed by the 

ratios of 260/280 nm, and 260/230 nm using a NanoDrop ND-1000 Spectrophotometer 

(NanoDrop Technologies Inc., Wilmington, DE), and final soil DNA concentrations 

were quantified with PicoGreen (Ahn, Costa et al. 1996) using a FLUOstar Optima 

(BMG Labtech, Jena, Germany). 

4.3.3 PCR amplification and 454 pyrosequencing 

A total of 23 samples instead of 24 were subjected to 454 pyrosequencing due to 

insufficient remaining DNA for one of the samples. Amplification was performed using 

a fungal 28S rRNA gene primer pair with the forward primer LR3: 

ACCCGCTGAACTTAAGC, and the reverse primer LR0R: 

CCGTGTTTCAAGACGGG, whose products are expected to be approximately 625-bp 

(Liu, Porras-Alfaro et al. 2012). A unique 8-mer barcode was added for each sample at 

the 5’-end of the forward primer. The barcode-primers were synthesized by Invitrogen 

(Carlsbad, CA) and used for the generation of PCR amplicons. Quadruplicate 20 µl 
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PCR reactions were performed as follows: 4 μl Promega GoTaq buffer, 0.5 μl GoTaq 

DNA polymerase, 1.5 μl Roche 25 mM MgCl2, 1 μl Invitrogen 10 mM dNTP mix, 1 μl 

of each primer (10 pmol μl
-1

), 0.2 μl New England BioLabs 10 mg ml
-1

BSA, 1 μl 10 ng 

7 μl
-1

 template, and 9.8 μl H2O. Cycling conditions were an initial denaturation of 94°C 

for 3 min, 30 cycles of 94°C for 1 min, 51°C for 40 s, 72°C for 1 min, and an final 

extension at 72°C for 10 min. Replicates were pooled and gel purified using the Qiagen 

Gel Purification Kit following band excision. Products were further purified using the 

Qiagen PCR purification kit. After adapter ligation, amplicons were sequenced on a 

FLX 454 system (454 Life Sciences, Branford, CT) by Macrogen (Seoul, South Korea) 

using Lib-L kits and processed using the shotgun protocol. 

4.3.4 Data analysis 

Raw pyrosequencing reads were extracted from the sff file using the sffinfo tool from 

Roche 454. Two files, a fasta file containing the sequence and a qual file containing the 

quality information, were generated and then converted into a fastq file using the python 

script “faqual2fastq2.py” that comes with the UPARSE pipeline (Edgar 2013). The 

quality filtering, chimera removal and OTU clustering were carried out using the 

UPARSE pipeline (Edgar 2013), which is a recently developed approach that identifies 

highly accurate OTUs from amplicon sequencing data. Only the reads with perfectly 

matched barcodes and maximum of 2 primer mismatches were kept for further analysis. 

Barcodes and primers were deleted from reads. The remaining reads were then 

truncated to 250 bp, and reads with expected errors >0.5 were discarded. The reads 

were then dereplicated, sorted, and clustered into candidate OTUs with an identity 

cutoff of 0.97. Chimeric OTUs were identified and removed by searching against the 
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LSU reference sequences downloaded from the Silva database (release_111) (Pruesse, 

Quast et al. 2007). Finally, qualified reads were mapped to OTU reference sequences 

for relative abundance calculation.  

  Taxonomic assignment for OTUs was carried out by RDP classifier using the 

fungal LSU training dataset (Liu, Porras-Alfaro et al. 2012). Reference OTUs were 

aligned by the MUSCLE program (Edgar 2004), and a phylogenetic tree was built using 

FASTTREE (Price, Dehal et al. 2009). The tree was then rooted to an outlier OTU with 

taxonomy information assigned as “leaf”.  Significance tests for different taxonomic 

groups and OTUs were performed by response ratio analysis (Hedges, Gurevitch et al. 

1999) at 95% confidence interval. Nonmetric multidimensional scaling (NMDS) 

analysis was performed in R using the package vegan.  Species richness, evenness, and 

diversity indices were calculated by the Mothur package (Schloss, Westcott et al. 2009), 

with rarefaction analysis of 1000 bootstrap random sampling iterations and 0.1% 

incremental sampling efforts.  

4.3.5 Co-occurrence ecological network construction and analysis 

Fungal co-occurrence ecological networks were constructed and analyzed using the 

online MENA pipeline, which implements random matrix theory for threshold 

identification (Deng, Jiang et al. 2012). In order to construct highly confident fungal co-

occurrence ecological networks for comparative analysis, several different approaches 

were applied. First, we used an RMT-based approach to identify a proper threshold for 

pairwise Pearson correlation coefficient values between OTUs. The RMT identifies the 

threshold by observing a transition point of nearest-neighbor spacing distribution of 

eigenvalues from Gaussian to Poisson distribution, which are two universal extreme 
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distributions (Zhou, Deng et al. 2010). The RMT-based approach is a reliable and 

robust tool for network construction and has been successfully applied to construct 

various networks, including gene regulatory networks (Luo, Yang et al. 2007; Yang, 

Harris et al. 2008; Zhou, He et al. 2010; Lin, Song et al. 2011; Lin, Ji et al. 2013), 

functional molecular ecological networks (Zhou, Deng et al. 2010), and phylogenetic 

molecular ecological networks (Zhou, Deng et al. 2011). Second, the same cutoff of 

0.78 was applied to construct co-occurrence networks for fungal communities at aCO2 

and eCO2, with the purpose of comparing between different networks. Since a smaller 

threshold will result in less reliable and larger networks with more nodes, the same 

cutoff could effectively eliminate imbalances in network comparisons. Third, only 

OTUs presented in at least 6 samples were used for Pearson correlation coefficient 

calculations and zero was filled in for missing values for OTUs in paired samples. This 

made the correlation coefficient between two OTUs more statistically reliable. Finally, 

in order to statistically compare the constructed networks, 100 randomly generated 

networks were created for both aCO2 and eCO2 with the same OTUs in each 

corresponding network. Network topological properties such as small world, scale-free, 

and modularity (Wang and Chen 2003) were then compared between the constructed 

networks and these random networks. Ecological networks were visualized by 

Cytoscape (Smoot, Ono et al. 2011).  

4.3.6 Linking community structure and network topology with soil and plant properties 

To analyze if the changed fungal community structure and network topology were 

correlated with soil and plant properties, Mantel tests that calculate the correlation 

between two matrices were performed. A total of eight soil and plant properties, 
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including soil moisture (0~17cm); pH; mid-season in situ net nitrification, 

ammonification, and N mineralization rate; total plant biomass; and mid-season 

extractable soil NH4
+
 and NO3

- 
concentrations were collected and analyzed. Euclidean 

distance was used to construct dissimilarity matrices for both OTU-based tables 

(community structure, network topology) and environmental variable(s). For Mantel 

tests of correlations between network topology and soil and plant properties, the 

correlation between OTU significance (calculated by OTU relative abundance and soil 

and plant properties) and node connectivity was examined. More details could be found 

in (Deng, Jiang et al. 2012). 

4.4 Results 

4.4.1 CO2 effects on soil and plant characteristics 

Because soil and plant properties are directly related with belowground microbial 

community, the CO2 effects on soil moisture, pH, mid-season in situ net nitrification, 

ammonification, and N mineralization rate, and plant biomass were analyzed. No 

significant change of mid-season net soil nitrification rate was found between aCO2 and 

eCO2 samples. However, the net soil ammonification rate was significantly (P<0.05) 

higher in eCO2 samples than that in aCO2 samples, resulting in moderately significantly 

(P<0.1) higher net N mineralization rate (Fig. 4.1A). The total plant biomass, as 

expected, also increased significantly (P<0.05) as a result of eCO2 and higher soil N 

availability (Fig. 4.1B). The proportional soil moisture and pH, however, did not change 

significantly (Fig. S4.1), suggesting that the increased plant biomass and soil 

ammonification could be the major factors affecting belowground microbial 

communities, including fungal communities.   
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Fig.  4.1 eCO2 effects on soil nitrogen (A) and total plant biomass (B). Both soil 

ammonification rate and plant growth were significantly stimulated after 12 years CO2 

treatment.   

 

4.4.2 Sequence summary 

Using 454 pyrosequencing, a total of 402,265 raw sequences of 28S rRNA gene 

amplicons were obtained with an average length of 477 bp for all 23 samples. A total of 

339,048 reads (154,541 for aCO2 samples, and 184,507 for eCO2 samples) were then 

clustered into 1,975 OTUs after quality trimming, dereplication, clustering, and chimera 

removal by the UPARSE pipeline, with an OTU identity cutoff of 97%. Of the 

identified 1,975 OTUs, 407 were found to be singletons. Taxonomic assignment by 

RDP classifier showed 1,744 OTUs covering 97.9% qualified reads were fungal 28S 

rRNAs, and the remaining 231 were assigned to Eukaryota incertae sedis, but with 

<50% bootstrap confidence. Of these, 734 OTUs belonged to Ascomycota, 326 to 

Chytridiomycota, 298 to Basidiomycota, 96 to Blastocladiomycota, 53 to 

Glomeromycota, 41 to Neocallimastigomycota, and 2 to Zygomycota.  
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4.4.3 Long-term eCO2 did not change the overall fungal community structure, but 

increased their diversity 

The overall community structure between aCO2 and eCO2 samples was not significantly 

different, as revealed by three different non-parametric multivariate analysis methods 

(adonis: R=0.04, P=0.5; ANOSIM: R=0.03, P=0.71; MRPP: δ=0.55, P=0.52). This is 

also reflected by NMDS ordination analysis that no clear separation of aCO2 samples 

from eCO2 samples was found (Fig. S4.2).   

To understand how long-term eCO2 affects the fungal community diversity, the 

species richness and community diversity were analyzed by Chao1 index, Shannon 

evenness, Shannon diversity, and phylogenetic diversity. Shannon diversity treats each 

OTU as an independent entity (Hill 1973), and phylogenetic diversity (Vane-Wright, 

Humphries et al. 1991) considers the phylogenetic relationship among different OTUs. 

Owing to the close relationship between diversity indices and sequencing depth, a 

random subsampling effort of 6029 reads per sample was carried out by excluding four 

samples (two aCO2 and two eCO2) with less than 3000 reads. As a result, long-term 

eCO2 did not significantly change the overall fungal species richness either, because 

95% confidence intervals were clearly overlapped (Fig. S4.3A). However, the overall 

phylogenetic diversity (Fig. S4.3B) and taxonomic diversity (measured by Shannon 

diversity) (Fig. S4.3D) increased significantly, suggesting increased evenness of 

phylogenetically distant fungal species (Fig. S4.3C).  

4.4.4 The composition of fungal community in grassland soil ecosystems 

With a 50% bootstrap confidence cutoff, the fungal community in this grassland soil 

was dominated by Ascomycota (81% and 77% of sequences for aCO2 and eCO2, 



78 

respectively) and Basidiomycota, (11% and 14% of sequences for aCO2 and eCO2, 

respectively), followed by 1% Fungi incertae sedis, 0.25% Chytridiomycota, 0.05% 

Blastocladiomycota and 0.03% Glomeromycota at the phylum level. About 7% and 8% 

sequences in aCO2 and eCO2 samples could not be assigned to any phylum at 50% 

bootstrap confidence (Fig. S4.4A). At the order level, the most dominant fungal orders 

were Pleosporales (27.5%), Capnodiales (10.2%), Sordariales (7.5%), Hypocreales 

(5.4%), Helotiales (4.6%), Agaricales (5.2%), Thelebolales (3.2%), Chaetothyriales 

(2.6%), Cantharellales (2.3%), Coniochaetales (1.4%), Magnaporthales (1.4%), 

Xylariales (1.3%), Pezizales (1.3%), and Thelephorales (0.8%) (Fig. S4.4B). These 14 

dominant fungal orders accounted for 74.7% of the total 28S rRNA sequences obtained.  

No significant differences were found for the relative abundances of the above 

dominant fungal phyla and orders between aCO2 and eCO2 samples.   

Of the total 1,975 OTUs, the top 20 most abundant OTUs accounted for 50.3% 

and 50.2% of the total sequences for aCO2 and eCO2 samples, respectively. Three 

OTUs (OTU_1, OTU_3, and OTU_6) had ≥5% relative abundance in both aCO2 and 

eCO2 samples, and were assigned to genera Davidiella (70% bootstrap confidence), 

Corynespora (77% bootstrap confidence), and Didymella (47% bootstrap confidence), 

respectively. Relative abundance of a total of 119 OTUs significantly changed between 

aCO2 and eCO2 samples. Among these, 28 had ≥ 0.3% average relative abundance in 

aCO2 or eCO2 samples, including 18 from Ascomycota, 7 from Basidiomycota, and 3 

from Fungi incertae sedis (Fig. 4.2). A total of 14 out of these 28 OTUs were found 

with significantly increased relative abundance in eCO2 samples, including 7 

Ascomycota OTUs, 5 Basidiomycota OTUs, and 2 incertae sedis fungal OTUs. Of the 
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14 OTUs with significantly decreased relative abundance in eCO2, 11 were from 

Ascomycota, 2 from Basidiomycota, and one from incertae sedis fungus (Fig. 4.2). 

Interestingly, these significantly changed OTUs under eCO2 were associated with 

decreased overall relative abundance of Ascomycota (11.5% in eCO2 vs. 19.3% in 

aCO2), but increased relative abundance of Basidiomycota (14.3% in eCO2 and 3.5% in 

aCO2). The top three most abundant OTUs with significantly increased relative 

abundance at eCO2 were OTU_10 (Ramaricium, 11% bootstrap confidence), OTU_2 

(Lycoperdon, 78% bootstrap confidence), and OTU_11 (Lophiostoma, 59% bootstrap 

confidence). The top four most abundant OTUs with significantly decreased relative 

abundance were OTU_5 (Alternaria, 100% bootstrap confidence), OTU_8 (Delitschia, 

27% bootstrap confidence), OTU_34 (Cudoniella, 19% bootstrap confidence), and 

OTU_1351 (Thanatephorus, 31% bootstrap confidence). These 28 significantly 

changed OTUs accounted for 24.2% and 19.01% of the total captured sequences in 

eCO2 and eCO2 samples, respectively, while the total 119 significantly changed OTUs 

accounted for 27.9% and 24.8% of aCO2 and eCO2 samples, respectively (Fig. 4.2).   
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Fig.  4.2 Response ratio (eCO2 vs. aCO2) analysis of fungal OTU changes in response to 

eCO2. Only the top 28 most abundant OTUs with relative abundance ≥0.3% in aCO2 or 

eCO2 were plotted.  Error bar symbols plotted at the right of dashed line indicated 

increased relative abundances at eCO2, while error bar symbols plotted at the left of 

dashed line indicated decreased relative abundances at eCO2. The genus information as 

well as actual relative abundance with standard error was also listed. 

 

4.4.5 The co-occurrence networks of fungal communities and their responses to eCO2  

Similar to other microorganisms (Faust and Raes 2012), fungi do not exist alone and 

interact with each other to form complex ecological interaction networks. In order to 

understand how fungal communities assemble and whether long-term eCO2 affects the 

fungal community interaction, co-occurrence ecological networks were constructed for 

aCO2 and eCO2 fungal communities. Using the random matrix theory approach, a 

Pearson correlation coefficient cutoff of 0.78 was determined for network construction. 

Network comparisons were then carried out at both global level and sub-network level 

of selected nodes. The constructed aCO2 fungal network contained 271 nodes (OTUs), 
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647 links and 19 modules (12 with ≥ 3 nodes), with an average connectivity of 4.78, 

average geodesic distance of 6.0, and modularity of 0.86, while the eCO2 network had 

226 nodes, 600 links and 13 modules (9 with ≥3 nodes), with an average connectivity of 

5.31, average geodesic distance of 5.34, and modularity of 0.80 (Table S4.1, Fig. S4.5). 

Although the eCO2 network contained fewer nodes and links, it is more complex than 

the aCO2 network regarding the average connectivity, geodesic distance, and 

modularity, and the Student t-test showed that the average geodesic distance and 

modularity were significantly smaller in the eCO2 network, suggesting that the nodes in 

eCO2 network were more intensely connected with each other (Table S4.1). Both 

networks were dominated by OTUs from Ascomycota, which is also the dominant 

phylum in the fungal community (Fig. S4.5). For the 9 modules with ≥3 nodes in the 

eCO2 network, 92 intermodular connections that linked different modules together were 

observed. In contrast, only 41 intermodular links were found for the 12 modules in the 

aCO2 network. Since modules are composed of different fungal OTUs/species that have 

higher connectivity with within module members than outside module members, these 

modules could be regarded as putative microbial ecological niches (Zhou, Deng et al. 

2010). Thus increased intermodular connections might indicate increased interactions 

between different fungal community “niches”. In addition, more negative links were 

found in the eCO2 network than in the aCO2 network (47 in eCO2 vs. 37 in aCO2), 

suggesting that eCO2 may also have increased competition among fungal species.  



82 

 

Fig.  4.3 Community reassembly of sparsely distributed OTUs in the aCO2 network (A) 

into highly connected dense modules in the eCO2 network (B). Colored nodes were the 

OTUs involved in community reassembly. Teal nodes were the first neighbor of yellow 

nodes. Different colors refer to different fungal phyla. 

 

 In addition to our comparisons of global network topological parameters 

between aCO2 and eCO2 networks, we also analyzed the effect of eCO2 on sub-

networks of fungal communities. Interestingly, 31 nodes that were sparsely distributed 

in 13 independent modules in the aCO2 network (Fig. 4.3A) formed five dense modules 

with high connectivity in the eCO2 network (Fig. 4.3B).  Such interesting community 

reassembly process was not as obviously observed in the converse manner, i.e. dense 

aCO2 modules did not separate into sparse individual nodes in eCO2 networks. Of the 

31 nodes, 27 were connected to each other in two major modules, and four of the five 

sub-modules were connected to another one (Fig. 4.3B). This was also consistent with 

the global observation that eCO2 increased the intermodular connections. However, 

increased connectivity was not found for all the nodes in the eCO2 network. For 

example, in the aCO2 network, seven OTUs with high relative abundances (≥ 2%) were 

connected with 37 first neighbors and formed relatively complex sub-networks with 145 

links (Fig. 4.4A). In the eCO2 network, although 5 of the 7 OTUs remained as the most 



83 

abundant OTUs in the network, they only connected to 20 neighbors with 31 links (Fig. 

4.4B), resulting in much simpler network structure. The results indicated that long-term 

eCO2 decreased the connectivity of OTUs with high relative abundances, but increased 

the connectivity for OTUs with lower relative abundances.   

 

Fig.  4.4 The sub-network of top 7 most abundant OTUs and their first neighbor nodes 

in the aCO2 (A) and eCO2 (B) networks. Each node represents an OTU, which would be 

regarded as a fungal species. The size of nodes represents relative abundance of OTUs. 

Each link connects two OTUs. Grey links means positive connections, and red means 

negative connections. Different colors refer to different fungal phyla. The OTUs with 

top relative abundances were marked with OTU ids. 

 

4.4.6 Linking fungal community structure and network topology with soil and plant 

properties 

To determine if the fungal community structure and changed co-occurrence network 

topology were associated with soil and plant properties, Mantel test was performed. The 

relationships between community structure and soil moisture (0~17 cm), pH, mid-

season in situ net nitrification, ammonification, and N mineralization rate, and total 

plant biomass were analyzed (Table 4.1). Consistent with our dissimilarity testing that 

the community structure did not differ from each other, no significant (R=-0.259, P = 
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0.981) correlation was observed between the overall community structure and the 

overall soil and plant properties, nor with any single soil and plant properties (Table 

4.1). 

Table 4.1 Mantel analysis of the relationships between the overall fungal community structure, 

co-occurrence network topology and individual soil properties. 

Soil Properties 

Community Structure Network Topology 

rM P 
aCO2 eCO2 

rM P rM P 

Soil moisture (0~17cm) 0.044 0.325 -0.002 0.516 -0.08 1 

pH -0.091 0.728 -0.052 0.970 -0.07 0.982 

Mid-season in situ net nitrification rate -0.178 0.898 0.0003 0.457 -0.07 0.984 

Mid-season in situ net ammonification rate -0.206 0.973 0.037 0.167 0.359 0.001 

Mid-season in situ net N Mineralization rate -0.256 1 0.100 0.01 0.077 0.03 

Total plant biomass 0.022 0.392 -0.021 0.272 0.063 0.07 

 

For Mantel tests between network topology and soil and plant properties, the 

trait-based OTU significance measure was used to determine a common group of soil 

and plant properties important to the network structure (Zhou, Deng et al. 2011). Mantel 

test of network topology and each soil and plant property suggested that soil 

ammonification and total plant biomass to be the major factors responsible for changed 

network topology (Table 4.1). There was a significant correlation between node 

connectivity and OTU significance of the selected soil variables based on all nodes 

(OTUs) with P = 0.001 (Table 4.2). Not all nodes in the network showed significant 

correlations with soil ammonification rate and plant biomass. Significant correlations 

mainly occurred for OTUs belonging to Ascomycota (P = 0.001), Basidiomycota 

(P=0.04) and incertae sedis fungi (P = 0.006). All the four major orders in Ascomycota, 

including Sordariomycetes (P = 0.001), Dothideomycetes (P = 0.001), Leotiomycetes (P 

= 0.02), and Lecanoromycetes (P=0.02) were significantly correlated with soil and plant 

properties (Table 4.2). For the aCO2 co-occurrence network, as expected, no significant 

correlations were found between the node connectivity and OTU significance of the 
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selected soil and plant variables except Sordariomycetes, Fungi incertae sedis and 

Blastocladiomycota (Table 4.2). The above results suggest that the changes of the co-

occurrence fungal ecological network topology were significantly associated with 

increased soil ammonification rate and plant biomass under long-term eCO2, and that 

OTUs belonging to Ascomycota were mainly responsible for such changes.    

Table 4.2 Mantel test on network connectivity vs. the OTU significances of soil 

geochemical variables
a
 

Phylogeny 
aCO2 eCO2 

#nodes rM
b
 P

c
 #nodes rM P 

All OTUs 271 0.037 0.146 226 0.363 0.001 

Ascomycota 135 0.052 0.133 130 0.43 0.001 

  Sordariomycetes 46 0.209 0.026 47 0.463 0.001 

  Dothideomycetes 40 0.07 0.167 42 0.471 0.001 

  Leotiomycetes 16 -0.012 0.394 14 0.323 0.02 

  Lecanoromycetes 12 0.167 0.24 14   0.499 0.02 

Basidiomycota 58 -0.011 0.493 34 0.217 0.038 

Eukaryota incertae sedis 25 -0.071 0.671 21 0.268 0.06 

Fungi incertae sedis 21 0.180 0.035 16 0.483 0.006 

Chytridiomycota 18 0.205 0.086 11 0.036 0.424 

Blastocladiomycota 8 0.575 0.003 7 -0.086 0.423 

Glomeromycota 4 -0.451 0.963 5 0.542 0.052 
a
mid-season in situ net ammonification and total plant biomass were selected for their 

significant contribution to network topology differences 
b
Correlation based on Mantel test. 

c
The significance (probability) of Mantel test 

 

4.5 Discussion 

Understanding the response of fungal communities to elevated atmospheric CO2 is 

important for global change biology. This study comprehensively surveyed soil fungal 

communities under aCO2 and eCO2 by 454 pyrosequencing of 28S rRNA gene 

amplicons and RMT-based ecological network analysis. Our results indicated several 

interesting mechanisms about how fungal communities respond to long-term eCO2. 

First, long-term eCO2 did not significantly change the overall fungal community 
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structure and species richness, but increased fungal diversity with higher evenness of 

overall abundance. Second, co-occurrence network analysis suggested that fungal 

communities respond to long-term eCO2 by community reassembly. Third, such 

changed co-occurrence network topology was significantly correlated with increased 

soil ammonification rate and plant biomass, and OTUs belonging to Ascomycota were 

mainly responsible for such changes. These results will provide novel insights on how 

the ongoing global elevated atmospheric CO2 affects the Earth’s fungal community.        

Our first hypothesis is that long-term eCO2 would change the fungal community 

structure and diversity due to changed soil and plant properties. Unexpectedly, we did 

not see significant changes of overall fungal community structure and species richness 

between aCO2 and eCO2 samples, as revealed by both dissimilarity and NMDS 

ordination analysis. However, both taxonomic and phylogenetic diversity increased as a 

result of higher species evenness of overall abundance. Although no significant 

differences were observed at the phylum/order level, relative abundances of 119 OTUs 

(about 27% of all captured sequences) were significantly different between aCO2 and 

eCO2 fungal communities. Interestingly, decreased and increased overall relative 

abundances of Ascomycota and Basidiomycota in eCO2 samples were observed for the 

119 OTUs. Compared with Weber et al.’s recent study in a forest FACE site (Weber, 

Vilgalys et al. 2013), our results were generally consistent that eCO2 had no significant 

effects on high level fungal groups when relative abundances for all OTUs were 

considered. Our results were also generally consistent with a previous study that the 

fungal richness was not significantly affected by eCO2 (Parrent, Morris et al. 2006).  
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Another objective of this study is to determine the diversity and composition of 

fungal communities in the BioCON grassland ecosystem. The grassland soil ecosystem 

in the BioCON experimental site in Minnesota was dominated by Ascomycota (81% at 

aCO2 and 77% at eCO2) and Basidiomycota (11% at aCO2 and 14% at eCO2). 

Compared with the reports by previous studies (Buée, Reich et al. 2009; Jumpponen, 

Jones et al. 2010; Xu, Ravnskov et al. 2012; Penton, St. Louis et al. 2013; Weber, 

Vilgalys et al. 2013), fungal community composition in soil varied greatly across 

different types of soil ecosystems. Such variations in fungal community composition 

between different studies might be caused by different coverage of different primer sets 

or phylogenetic markers (such as ITS vs. 28S) (Toju, Tanabe et al. 2012), but more 

likely caused by plant species, soil, and/or climate differences (Buée, Reich et al. 2009). 

Nonetheless, all of these studies suggested Ascomycota and Basidiomycota be the 

dominant fungal phyla in soil ecosystems. Notably, only about 0.03% of reads (53 

OTUs) were from Glomeromycota in this study. Glomeromycota is the phylum that 

most arbuscular mycorrhizal fungi belong to and was previously reported to be 

dominant in grasslands (Santos-González, Finlay et al. 2007)  and widespread among 

different global ecosystems (ÖPik, Moora et al. 2006). Since a previous study using the 

same primer set identified at least 15% Glomeromycota in an Oklahoma tallgrass prairie 

soil, the low relative abundance of Glomeromycota identified in this study did not arise 

from the primer set used for PCR amplification, which was also verified by the NCBI 

primer tool (Penton, St. Louis et al. 2013). As arbuscular mycorrhizal fungi form 

symbioses with many herbaceous land plants, the low relative abundance of 

Glomeromycota may result from different plant species composition in these 
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ecosystems, as root hairs were not removed prior to DNA extraction and rhizosphere 

soil and bulk soil were not specifically distinguished during sampling process in either 

study. 

Our second hypothesis is that long-term eCO2 would promote fungal community 

reassembly, as driven by increased nutrition availability in the soil. To test this 

hypothesis, co-occurrence ecological network analysis was implemented. Ecological 

network analysis is a systems-level method to identify species interactions/co-

occurrence within an ecosystem that cannot be directly observed (Fath, Scharler et al. 

2007). Similar to the food web network analyses in macroecosystems, microorganisms 

including fungi should also form complex interactions with positive or negative impacts 

on other species (Faust and Raes 2012). “It would not be surprising to see entire 

patterns of community organization jumbled as a result of global change” (Kareiva, 

Kingsolver et al. 1993). For macroecosystems, many lines of evidence have shown that 

global change exerts pervasive impacts on various antagonistic and mutualistic 

interactions among species (Tylianakis, Didham et al. 2008). It is expected that the co-

occurrence patterns of fungal communities would change in responding to changed soil 

and plant properties, by forming denser and more collaborative relationships in 

decomposing increased biomass in the soil. Comparative analysis of fungal co-

occurrence networks in this study verified our hypothesis and indicated that long-term 

eCO2 affected the fungal community in the following ways. First, eCO2 increased the 

complexity of interactions within the fungal community, as evidenced by increased 

intermodular and intramodular connectivity, decreased geodesic distance, and decreased 

modularity, suggesting more intense interspecies correlations. Second, eCO2 increased 
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negative relationships between fungal species/OTUs with lower relative abundances (all 

< 1%, except one), suggesting that increased carbon inputs into soil increased 

competition between less dominant fungal species. Third, eCO2 decreased the 

connectivity for abundant OTUs. In the aCO2 network, dominant OTUs formed 

relatively complex networks by co-occurring with other less abundant ones, while in the 

eCO2 network, much fewer connections were observed for the same dominant OTUs. 

Finally, eCO2 promoted fungal community reassembly. At least 31 OTUs that were 

sparsely distributed in different modules in the aCO2 network became connected with 

each other and formed dense modules in the eCO2 network, suggesting a possible 

community reassembly process.   

Interestingly, the changed fungal network topology under eCO2 was 

significantly correlated with increased plant biomass and NH4
+
 availability in the soil. 

This indicated that the increased plant biomass and NH4
+
 availability in the soil might 

be the driving force for the changed network topologies, providing novel insights into 

how fungal communities respond to eCO2. Fungal communities are well known as 

decomposers in the ecosystem, by degrading organic matters into biologically available 

nutrients (Hu, Chapin et al. 2001; Chung, Zak et al. 2006; Cheng, Booker et al. 2012). 

Under eCO2, both aboveground and belowground plant biomass was stimulated (Reich, 

Knops et al. 2001; He, Xu et al. 2010; Langley and Megonigal 2010; Drake, Gallet‐

Budynek et al. 2011; Zak, Pregitzer et al. 2011; Reich and Hobbie 2013), providing 

more organic matters for fungal communities as well as proposing higher demand for 

biologically available nitrogen (Luo, Su et al. 2004; Luo, Hui et al. 2006; Reich, Hobbie 

et al. 2006; Reich and Hobbie 2013). In order to effectively degrade increased organic 
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matters in soil to provide more ammonium for stimulated plant growth, fungal species 

may tend to interact with each other more intensely, leading to reassembled community 

topology. Such increased network complexity was not only observed in fungal 

communities. Bacterial communities responded similarly to eCO2, as revealed by both 

phylogenetic and functional microbial ecological networks (Zhou, Deng et al. 2010; 

Zhou, Deng et al. 2011). 

In conclusion, our study suggested that microbial fungal communities mainly 

responded to long-term eCO2 by community reassembly with the overall community 

structure and species richness unchanged. Such responses were closely related with 

altered soil and plant properties, especially with the plant biomass and NH4
+
 availability 

in soil, thus it is expected to sustain as long as the plant biomass is stimulated by eCO2. 

However, previous studies have shown that the microbial decomposition and plant 

biomass stimulation by eCO2 were constrained by N availability in natural soil 

ecosystems (Hu, Chapin et al. 2001; Luo, Su et al. 2004; Reich, Hobbie et al. 2006). 

Therefore, the described responses of fungal community to eCO2 may subject to change 

when a new balance between microbial decomposition, plant biomass and N availability 

is reached. 
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Chapter 5: The Diversity and Co-occurrence Patterns of N2-fixing 

Microorganisms in a CO2 Enriched Grassland Ecosystem  

5.1 Abstract 

Diazotrophs are the major contributor responsible for atmospheric nitrogen (N2) fixation 

into the Earth’s biosphere. The extensive diversity and structure of N2-fixing 

communities and their responses to increasing atmospheric CO2 remain to be further 

explored. By pyrosequencing of nifH gene amplicons and extraction of nifH genes from 

shotgun metagenomes, coupled with co-occurrence ecological network analysis 

approaches, we comprehensively analyzed the diazotrophic community exposed to 

eCO2 for 12 years. Long-term eCO2 significantly increased the abundance of nifH 

genes, but did not change the overall nifH diversity and diazotrophic community 

structure. Taxonomic and phylogenetic analysis of nifH amplicons suggested a high 

diversity of nifH genes in the soil ecosystem, with the majority belonging to cluster I 

and II nifH genes. Co-occurrence ecological network analysis suggested a clear 

preference of co-occurrence patterns between diazotrophs and other microbial species, 

and different co-occurrence patterns were observed for different subgroups of 

diazotrophs, such as Azospirillum/Actinobacteria, Mesorhizobium/Conexibacter, and 

Bradyrhizobium/Acidobacteria. This indicated a potential attraction of these non-N2-

fixers by diazotrophs in the soil ecosystem. Interestingly, more complex co-occurrence 

patterns were found for free-living diazotrophs than commonly known symbiotic 

diazotrophs, which is consistent with the physical isolation nature of symbiotic 

diazotrophs from the environment by root nodules. The study provides novel insights of 

our understanding microbial ecology of soil diazotrophs in natural ecosystems.  
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5.2 Introduction 

Biological nitrogen fixation (BNF), the reduction of atmospheric N2 to biologically 

available ammonium, is the major pathway that atmospheric N2 enters the Earth’s 

biosphere and contributes about 128 Tg N per year in natural terrestrial ecosystems 

(Galloway, Dentener et al. 2004). BNF is catalyzed by diverse but limited groups of 

nitrogenase-containing bacteria and archaea known as diazotrophs. The nitrogenase 

enzyme is composed of two components—component I for N2 reduction with two 

heterodimers encoded by nifD and nifK, and component II that couples ATP-

hydrolyzing to interprotein electron transfer with two identical subunits encoded by 

nifH (Zehr, Jenkins et al. 2003). Among these, nifH encoding the nitrogenase reductase 

subunit has most sequences available and become a promising gene marker for 

analyzing nitrogen fixation of microbial communities in various environments (Zehr, 

Jenkins et al. 2003; Raymond, Siefert et al. 2004). Although phylogenetic analysis of 

taxonomically identified nitrogenase genes provided evidences of an ancient horizontal 

gene transfer of nitrogenase between archaea and bacteria, recent events of horizontal 

gene transfer were not observed (Gaby and Buckley 2014). The study also suggested an 

insignificant correlation of sequence dissimilarities between nifH and 16S rRNA genes 

at the species level, i.e. larger variation of dissimilarity was found among nifH genes 

(Gaby and Buckley 2014). However, the phylogenetic relationships derived from nifH 

genes agree well with those derived from 16S rRNA genes at higher levels (Young 

1992; Zehr, Mellon et al. 1995), indicating nifH as a promising biological marker for N2 

fixation in microbial community analysis.  



94 

The nifH gene family has been widely used in many studies to analyze 

diazotrophic microbial communities in various environments, especially in marine and 

soil ecosystems (Izquierdo and Nüsslein 2006; Moisander, Shiue et al. 2006; Mohamed, 

Colman et al. 2008; Hsu and Buckley 2009; Zehr 2011; Großkopf, Mohr et al. 2012; 

Wang, Quensen et al. 2013; Berthrong, Yeager et al. 2014; Collavino, Tripp et al. 

2014). As a result, novel insights into the diversity and structure of N2-fixing 

communities have been gained. In marine environments, cyanobacteria are generally 

regarded as the major microorganisms responsible for N2 fixation and can be classified 

into three major groups, including filamentous non-heterocyst-forming Trichodesmium, 

filamentous heterocyst-forming symbionts, and single-celled or unicellular 

cyanobacteria (Zehr 2011). Although Trichodesmium has been assumed as the major 

N2-fixing cyanobacteria (Zehr 2011), a recent study suggested that the contributions of 

other N2 fixers were much more significant than previously estimated (Groszkopf, Mohr 

et al. 2012), indicating the important role that these less dominant N2 fixers play. In soil, 

N2 fixation is dominated by symbiotic bacteria that form root-nodule symbiotic 

relationships with plants (Cleveland, Townsend et al. 1999). Similar to that in ocean, it 

is believed that both symbiotic and free-living diazotrophs contribute significantly to 

the Earth’s N budget (Cleveland, Townsend et al. 1999). Although many previous 

studies focused on the relationship between symbiotic diazotrophs and plants, the 

diversity and community structure of diazotrophic communities were analyzed by 

several studies recently (Izquierdo and Nüsslein 2006; Hsu and Buckley 2009; Gaby 

and Buckley 2011; Wang, Quensen et al. 2013; Berthrong, Yeager et al. 2014; 

Collavino, Tripp et al. 2014). It has also been pointed out that the N2 fixation rate in soil 
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was significantly affected by diazotrophic community structure (Hsu and Buckley 

2009). However, the extensive diversity and complex community structure in soil 

ecosystems remains to be further explored.   

Natural ecosystems under increased atmospheric CO2 concentration are 

subjected to progressive N limitation (Hu, Chapin et al. 2001; Luo, Su et al. 2004; Finzi, 

Moore et al. 2006; Tilman, Reich et al. 2006) due to the stimulated plant growth rate 

and limited biologically available N in soil. Such progressive N limitation not only 

constrains the sustainability of ecosystem responses to eCO2 (Luo, Su et al. 2004; 

Tilman, Reich et al. 2006), but also suppresses the microbial decomposition rate in soil 

(Hu, Chapin et al. 2001). As biologically available N mainly comes from the microbial 

decomposition of biomass and BNF, the stimulated plant growth and suppressed 

microbial decomposition should have proposed higher demand for BNF in soil. Thus it 

is of crucial interest for ecologists and microbial ecologists to understand how the 

belowground diazotrophic microbial communities respond to eCO2. A recent study of 

N2-fixing bacteria communities in forest ecosystems suggested that N fertilization had a 

stronger effect on the diazotrophic community than eCO2. However, the response of 

diazotrophic community diversity and structure in the grassland ecosystem, one of 

Earth’s largest ecosystems, is still not clear yet, although a previous GeoChip survey 

suggested increased nifH abundance in this same BioCON experimental site (He, Xu et 

al. 2010; Xu, He et al. 2013).  

Similar to that using a food web to describe the community structure of 

macroecosystems, the interactive relationships should also be considered when 

analyzing the community structure of microorganisms. Using ecological network 
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approaches, co-occurrence ecological networks of microbial communities would be 

constructed and analyzed (Zhou, Deng et al. 2010; Steele, Countway et al. 2011; Zhou, 

Deng et al. 2011; Barberan, Bates et al. 2012; Faust, Sathirapongsasuti et al. 2012). By 

implementing co-occurrence ecological network approaches, co-occurrence patterns can 

be identified for diazotrophic microorganisms, providing novel insights into how other 

microorganisms potentially interact with diazotrophs. Since symbiotic diazotrophs enter 

plant roots and form nodules that physically isolate them from the environment and are 

less likely to form complex relationships with free-living microorganisms, co-

occurrence networks may also provide information to identify free-living diazotrophs 

from symbiotic diazotrophs.  

In this study, by sequencing of nifH amplicons coupled with extraction of 

shotgun metagenome sequencing data and co-occurrence ecological network analysis, 

we aimed to reveal the response of soil diazotrophs to eCO2, and to determine the 

diversity and structure of soil diazotrophs, as well as their co-occurrence patterns in the 

BioCON experimental site after 12-year exposure to eCO2 (Reich, Knops et al. 2001). 

The following hypotheses were tested: (1) Increased plant growth would enhance the 

demand for biological N2 fixation in soil, resulting in increased nifH gene abundance as 

well as changed diazotrophic community diversity and structure; and (2) Free-living 

rather than symbiotic diazotrophs would form more complex co-occurrence ecological 

networks, and different co-occurrence patterns would be observed for different 

diazotrophs. This study provides valuable insights into our understanding of microbial 

ecology of diazotrophs in soil.  
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5.3 Materials and Methods 

5.3.1 Site description and sample collection 

The same samples collected from the BioCON experimental site were used. Please refer 

to Chapter 3 for more detailes. 

5.3.2 DNA extraction, purification and quantification 

Soil DNA was extracted by freeze-grinding mechanical lysis as described previously 

(Zhou, Bruns et al. 1996), and was purified using a low melting agarose gel followed by 

phenol extraction for all 24 soil samples collected. DNA quality was assessed by the 

ratios of 260/280 nm, and 260/230 nm using a NanoDrop ND-1000 Spectrophotometer 

(NanoDrop Technologies Inc., Wilmington, DE), and final soil DNA concentrations 

were quantified with PicoGreen (Ahn, Costa et al. 1996) using a FLUOstar Optima 

(BMG Labtech, Jena, Germany). 

5.3.3 PCR amplification and 454 pyrosequencing 

A total of 23 samples instead of 24 were subjected to 454 pyrosequencing due to 

insufficient remaining DNA and soil for one of the samples. Amplification was 

performed using the nifH PolF/PolR primers (PoLF: 

TGCGAYCCSAARGCBGACTC, and PolR: ATSGCCATCATYTCRCCGGA), whose 

products are expected to be approximately 362-bp (Poly, Monrozier et al. 2001). A 

unique 8-mer barcode was added for each sample at the 5’-end of the forward primer. 

The barcode-primers were synthesized by Invitrogen (Carlsbad, CA) and used for the 

generation of PCR amplicons. Quadruplicate 20 µl PCR reactions were performed as 

follows: 4 μl Promega GoTaq buffer, 0.5 μl GoTaq DNA polymerase, 1.5 μl Roche 25 

mM MgCl2, 1 μl Invitrogen 10 mM dNTP mix, 1 μl of each primer (10 pmol μl
-1

), 0.2 
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μl New England BioLabs 10 mg ml
-1

BSA, 1 μl 10 ng 7 μl
-1

 template, and 9.8 μl H2O. 

Cycling conditions were an initial denaturation of 94°C for 3 min, 30 cycles of 94°C for 

1 min, 51°C for 40 s, 72°C for 1 min, and an final extension at 72°C for 10 min. PCR 

products were gel purified using the Qiagen Gel Purification Kit following band 

excision. Products were further purified using the Qiagen PCR purification kit. After 

adapter ligation, amplicons were sequenced on a FLX 454 system (454 Life Sciences, 

Branford, CT) by Macrogen (Seoul, South Korea) using Lib-L kits and processed using 

the shotgun protocol.  

5.3.4 Data analysis 

Raw pyrosequencing reads were extracted from the sff file using the sffinfo tool from 

Roche 454. Two files, a fasta file containing the sequence and a qual file containing the 

quality information, were generated and then converted into a fastq file using the python 

script “faqual2fastq2.py” that comes with the UPARSE pipeline (Edgar 2013). The 

quality filtering, chimera removal and OTU clustering were carried out using the 

UPARSE pipeline (Edgar 2013), which is a recently developed approach that identifies 

highly accurate OTUs from amplicon sequencing data. Only the reads with perfectly 

matched barcodes and maximum of 2 primer mismatches were kept for further analysis. 

Barcodes and primers were deleted from reads. The remaining reads were then 

truncated to 300 bp, and reads with expected errors >0.5 were discarded. The program 

FrameBot (Wang, Quensen et al. 2013) was used to correct potential frame shifts 

caused by sequencing errors and only reads whose translated proteins got mapped to 

reference nifH protein sequences with >30% identity were kept. The reads were then 

dereplicated, sorted, and clustered into candidate OTUs with an identity cutoff of 0.94, 
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which is the average nucleotide identity that approximately corresponds to the species 

cutoff of 16S rRNA genes (Konstantinidis and Tiedje 2005). Chimeric OTUs were then 

identified and removed by searching against the nifH reference sequences maintained 

and curated by Zehr et al. (http://pmc.ucsc.edu/~wwwzehr/research/database/) (Zehr, 

Jenkins et al. 2003). Finally, qualified reads were mapped to OTU reference sequences 

for relative abundance calculation.  

  Taxonomic assignment for nifH OTUs was carried out by searching OTU 

representative sequences against reference nifH sequences with known taxonomic 

information. A minimum recalculated global identity cutoff of 80% was used to filter 

BLAST results. A lowest common ancestor algorithm was applied for taxonomic 

assignment based on the best BLAST hits with highest global identity. Taxonomic 

information at genus level or higher was assigned. For phylogenetic analysis, 

representative OTU sequences were aligned by the MUSCLE program (Edgar 2004), 

and a phylogenetic tree was built by FASTTREE (Price, Dehal et al. 2009). 

Significance tests for different taxonomic groups and OTUs were performed by 

response ratio analysis (Hedges, Gurevitch et al. 1999) at 95% confidence interval level. 

UniFrac PCoA analysis was done by the FastUniFrac pipeline (Hamady, Lozupone et 

al. 2009). Species richness, evenness, and diversity indices were calculated by the 

Mothur package (Schloss, Westcott et al. 2009), with rarefaction analysis of 1000 

bootstrap random sampling iterations and 0.1% incremental sampling efforts.  

5.3.5 Co-occurrence ecological network construction 

In order to identify co-occurrence relationships between diazotrophs and other 

microbial species, a 16S rRNA gene amplicon dataset from the same site was also 
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included. Relative abundance profiles were generated for both nifH (random 

subsampling of 1200 reads) and 16S rRNA (random subsampling of 18 000 reads) 

OTUs. Co-occurrence ecological networks were constructed and analyzed using the 

online MENA pipeline, which implements random matrix theory (RMT) for threshold 

identification (Deng, Jiang et al. 2012). The RMT approach identifies the threshold by 

observing a transition point of nearest-neighbor spacing distribution of eigenvalues 

from Gaussian to Poisson distribution, which are two universal extreme distributions 

(Zhou, Deng et al. 2010). The RMT-based approach is a reliable and robust tool for 

network construction and has been successfully applied to construct various networks, 

including gene regulatory networks (Luo, Yang et al. 2007; Yang, Harris et al. 2008; 

Zhou, He et al. 2010; Lin, Song et al. 2011; Lin, Ji et al. 2013), functional molecular 

ecological networks (Zhou, Deng et al. 2010), and phylogenetic molecular ecological 

networks (Zhou, Deng et al. 2011). To construct highly confident co-occurrence 

ecological networks, only OTUs presented in at least 10 samples were used for Pearson 

correlation coefficient calculations and zero was filled in for missing values for OTUs 

in paired samples. This made the correlation coefficient between two OTUs more 

statistically reliable. Ecological networks were then visualized by Cytoscape (Smoot, 

Ono et al. 2011).  

 

5.4 Results 

5.4.1 Effects of eCO2 on plant biomass, soil N, and nifH gene abundance 

The plant biomass (aboveground and root) and soil nitrogen levels (NO3
-
 and NH4

+
) 

were collected and analyzed. Long-term elevated CO2 significantly increased plant 
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biomass and ammonification rate in soil, but not nitrification (Fig. 5.1). Consistent with 

previous observations (Reich, Knops et al. 2001; He, Xu et al. 2010), significantly 

increased plant biomass was found for both aboveground (P = 0.01) and root (P = 0.06) 

biomass (Fig. 5.1A). Such increased aboveground plant biomass and root biomass 

would have imposed higher demand for biologically available N (NO3
-
 and NH4

+
) in 

soil. To analyze the nitrification and ammonification rates in soil, NO3
-
 and NH4

+
 

concentrations were then measured using a semi-open core, one-month in situ 

incubation approach. No significant differences were observed for initial NO3
-
 and 

NH4
+
 amount between aCO2 and eCO2 samples. After one-month in situ incubation, the 

NO3
-
 amount in the soil increased from 0.53 mg/kg soil to 3.08 mg/kg soil (Fig. 5.1B). 

No significant differences were observed for the final NO3
-
 amount between aCO2 and 

eCO2 samples, suggesting a similar nitrification rate of microbial communities under 

aCO2 and eCO2. Interestingly, the NH4
+
 amount in aCO2 samples decreased 

significantly after incubation, while the amount in eCO2 samples remained almost 

unchanged at ~4.3 mg/kg soil, resulting in significantly higher final NH4
+
 amount in 

eCO2 samples (Fig. 5.1B).  Since NO3
-
 in natural ecosystems is mostly converted from 

NH4
+
, similar nitrification and higher ammonification in eCO2 samples suggested that 

more nitrogen were fixed or converted from other sources, such as N2 fixation by 

diazotrophs.  
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Fig.  5.1 Effects of long-term eCO2 on plant biomass (A), soil NO3
-
 and NH4

+ 
(B), and 

nifH gene abundance (C). Both aboveground and root biomass were averaged from 5 

years at the time of sampling, i.e. 2005-2009. Soil NO3
-
 and NH4

+
 concentrations were 

then measured using a semi-open core, one-month in situ incubation approach. The 

abundance of nifH genes was obtained from shotgun metagenome datasets by extracting 

sequences mapped to nifH genes. Statistical testing was performed by the Student’s t 

test. ino3 and fno3: initial and final NO3
-
 concentration; inh4 and fnh4: initial and final 

NH4
+
 concentration. Grey bars represent aCO2 samples, and black bars for eCO2 samples.  
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The abundance of nifH genes was assessed by extracting nifH sequences from 

shotgun metagenome datasets, which were annotated by searching against eggNOG 

database (Muller, Szklarczyk et al. 2010). Comparisons were performed by randomly 

selecting 350,000 reads per sample from the shotgun metagenome. Although only a few 

nifH reads were identified, the nifH genes were twice abundant in eCO2 samples than 

that in aCO2 samples (Fig. 5.1C), with significance Student’s t test p-value of 0.04. This 

suggested that eCO2 had significantly increased the abundance of nifH genes in soil.   

5.4.2 Sequencing data summary 

Using 454 pyrosequenicng, a total of 102,679 raw forward reads targeting nifH gene 

amplicons were obtained for 23 samples with an average length of 338 bp. Four 

samples (two aCO2 and two eCO2) were excluded from further data analysis for their 

having < 500 reads.  After quality trimming, frameshift correction and chimera removal, 

73,161 reads were clustered into 749 nifH OTUs at 94% identity cutoff, of which 624 (a 

total of 73,036 reads with 42,725 from aCO2 samples and 30,436 from eCO2 samples) 

were non-singleton OTUs. The number of sequences in each sample ranged from 1,184 

to 7,579 (3,851 on average), resulting in 80 to 287 OTUs per sample. A random re-

sampling effort of 1200 reads per sample was made for further statistical analysis.    

5.4.3 No significant eCO2 effects on overall nifH-community diversity and structure 

To analyze the nifH-community diversity in the grassland soil ecosystem and their 

responses to eCO2, the OTU richness (Chao1), evenness, taxonomic and phylogenetic 

diversity indices were calculated (Fig. 5.2). A total of 633 and 616 OTUs were 

identified for aCO2 and eCO2 samples with the current sequencing effort. No significant 

differences between aCO2 and eCO2 samples were observed for the OTU richness, as 



104 

the 95% confidence intervals were overlapped with any number of randomly sampled 

sequences (Fig. 5.2A). Similarly, no significant differences were observed for the 

evenness of the overall nifH community between aCO2 and eCO2 sites (Fig. 5.2B), 

resulting in insignificant changes of the taxonomic diversity (Fig. 5.2C). Consistently, 

the phylogenetic diversity, which also considers the phylogenetic relationship among 

OTUs did not significantly change in response to eCO2 (Fig. 5.2D). All these results 

suggested that the diversity of nifH-community was not significantly affected by long-

term eCO2 in the grassland ecosystem. 

 

Fig.  5.2 The diversity of nifH genes in the grassland ecosystem under ambient CO2 and 

elevated CO2 conditions: (A) Chao1 richness; (B) Shannon evenness; (C) Shannon 

diversity; (D) phylogenetic diversity. Black line represents the averaged value for each 

diversity index. Turquoise and light-pink regions represent 95% confidence intervals.   

 

Long-term eCO2 did not significantly alter the overall nifH-community structure 

in the grassland soil ecosystem either (Fig. S5.1-S5.2). The overall community 
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structural differences among all samples were assessed by both weighted (with relative 

abundance data)/unweighted (with richness data) UniFrac PCoA analyses. A separation 

trend of eCO2 samples from aCO2 samples could be observed by unweighted UniFrac 

PCoA (Fig. S5.1), but not by weighted PCoA (Fig. S5.2). This indicated that the trend 

of separation of unweighted PCoA analysis should be due to the rare species rather than 

abundant ones. Further dissimilarity analysis also suggested that the overall community 

structure between aCO2 and eCO2 samples was not significantly different (ADONIS: F 

= 0.062, P = 0.329; ANOSIM: R = 0.035, P = 0.249; MRPP: δ = 0.531, P = 0.252).  

5.4.4 The taxonomic and phylogenetic composition of nifH genes 

Unlike 16S rRNA genes, reference sequences for nifH genes from cultivated microbial 

strains/species are still very limited, making it difficult to classify nifH sequences into 

their taxonomic groups, especially at the species/strain level. We first tried a strict 

manner to only assign taxonomic information to OTUs having a minimum of 94% 

sequence identity with references in the nifH database. As a result, only 49 OTUs could 

be assigned to known taxonomic groups, among which six were assigned at 100% 

identity. Even at 90% sequence identity cutoff, this number only increased to 119, 

indicating a large diversified genetic pool of nifH gene variants in the soil microbial 

community. The taxonomic information for nifH OTUs was hence assigned as the 

lowest common ancestor of the best hits at a cutoff of 80% minimum sequence identity 

with reference sequences. Genus or higher taxonomic information was then assigned to 

478 nifH OTUs as their nearest taxonomic matches.  

The nifH community was dominated by Alphaproteobacteria as viewed by both 

OTU number and relative abundance, followed by Betaproteobacteria, Actinobacteria, 
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Delta-/Gamma-proteobacteria, and Bacilli (Fig. 5.3A). At the genus level, a total of 134 

OTUs were assigned to Bradyrhizobium and accounted for 56.1% total sequences in the 

community. Other abundant genera detected with >1% relative abundance were 

Mesorhizobium (9 OTUs, 12.7% relative abundance), Azospirillum (20 OTUs, 4.8% 

relative abundance), Azohydromonas (4 OTUs, 3.3% relative abundance), Frankia (2 

OTUs, 1.9% relative abundance), Methylocystis (12 OTUs, 1.45% relative abundance), 

and Sideroxydans (18 OTUs, 1.4% relative abundance). The most dominant OTU 

(OTU_1) belonged to Bradyrhizobium, and accounted for 35.3% of the nifH-containing 

community, followed by OTU_5 (Mesorhizobium, 8.34% relative abundance), OTU_2 

(Bradyrhizobium , 5.36% relative abundance), and OTT_7 (Azohydromonas, 3.2% 

relative abundance). No significant changes of relative abundance were observed for the 

majority of OTUs although 34 OTUs did significantly change their abundances at eCO2, 

which accounted for 13.15% of the total captured sequences. Among these, 18 were 

enriched in eCO2 samples, and 16 were enriched in aCO2 samples. All significantly 

changed OTUs were found with > 0.1% relative abundance in aCO2 or eCO2 samples 

(Fig. S5.3). Among these, five were found with >1% relative abundances, and were 

assigned to Bradyrhizobium (OUT_450), Mesorhizobium (OUT_711), Azospirillum 

(OUT_13), Sideroxydans (OUT_30), and Frankia (OUT_206) (Fig. S5.3). Notably, 

OTU_206 detected in 18 samples, which was also the only Frankia OTU found in more 

than three samples, increased significantly (p < 0.05) under eCO2 (3.6% relative 

abundance in eCO2 vs. 0.5% in aCO2).    
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Fig.  5.3 Taxonomic (A) and phylogenetic (B) composition of nifH genes at both OTU 

and sequence levels. Taxonomic groups were summarized at the class level. 

 

 Phylogenetic clade assignment of nifH OTUs was performed at a lower cutoff 

(30% sequence identity) and the clade information of best BLAST hits aligned by each 

OTU was selected. The nifH community was dominated by sequences belonging to 

group I and group II NifH clades, which encode Mo-dependent nitrogenase (Zehr, 

Jenkins et al. 2003; Raymond, Siefert et al. 2004; Gaby and Buckley 2011), and 

accounted for 93.1% and 6.76% of the total captured sequences, and 78.54% and 

21.13% total OTUs, respectively. Only two OTUs accounting for 0.14% of total 

sequences were found to be group III Mo-independent nitrogenase (Fig. 5.3B). No 

significant changes of relative abundances for any nifH groups were observed between 

aCO2 and eCO2.   

5.4.5 Co-occurrence ecological networks of nifH communities  

To explore the co-occurrence patterns of nifH-containing microorganisms with other 

microbial groups, co-occurrence ecological network was constructed using both 16S 

rRNA and nifH OTU profiles. By using the random matrix theory approach, a Pearson 

correlation coefficient cutoff of 0.81 was determined for network construction. Only the 
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first neighbors of nifH OTUs were extracted for further analysis, with the purpose to 

identify nifH OTU mediated co-occurrence patterns. As a result, six modules with more 

than 5 nodes were identified, covering 154 nodes and 242 links in total (Fig. S5.4).  

 

Fig.  5.4 Co-occurrence modules centered by nifH OTUs: (A) Azospirillum module; (B) 

Mesorhizobium module; (C) Bradyrhizobium module. nifH OTUs were represented by 

diamond shape. 16S rRNA OTUs were represented by circular shape. Different colors 

refer to different phyla. 

 

Azospirillum module. The most complex module (module I, Fig. S5.4) was centered by 

two OTUs (nifH_643 and nifH_31) belonging to Azospirillum. Extraction of their first 

neighbors showed that these two Azospirillum OTUs were mainly connected by 17 

Actinobacteria OTUs and 12 Proteobacteria OTUs, the latter of which included 4 nifH 

OTUs (Fig. 5.4A). Two Acidobacteria OTUs, two Chloroflexi OTUs, one Bacilli, one 

Sphingobacteria, and two unclassified nifH OTUs were also linked with the above 

Azospirillum OTUs. Among the 17 Actinobacteria OTUs connected with Azospirillum 

OTUs, nine were derived from Solirubrobacterales, six from Actinomycetales, and two 

from Acidimicrobiales. The connected Proteobacteria 16S rRNA OTUs were mainly 
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dominated by four Polyangiaceae OTUs, followed by two Rhizobiales, one 

Syntrophobacteraceae and one Oxalobacteraceae OTUs. These results suggested a high 

co-occurrence frequency of Azospirillum species with Actinobacteria species, especially 

those derived from Solirubrobacterales (Solirubrobacter and Conexibacter) and 

Actinomycetales.  

Mesorhizobium module. Module II was centered by a nifH OTU (nifH_325) belonging 

to Mesorhizobium (Fig. 5.4B, Fig. S5.4). A total of seven Actinobacteria, two 

Acidobacteria, two Spartobacteria, and one Alphaproteobacteria OTUs were connected 

with the Mesorhizobium OTU. Notably, five of the Actinobacteria OTUs were assigned 

to Conexibacter, suggesting a high probability of co-occurrence relationship between 

Mesorhizobium and Conexibacter.   

Bradyrhizobium modules. Two modules were centered by Bradyrhizobium (modules III, 

Fig. S5.4). In both modules, Bradyrhizobium nifH OTUs were connected by a high 

number of Acidobacteria species belonging to multiple subgroups, such as Gp3, Gp4, 

Gp7 and Gp17 (Fig. 5.4C). Specifically, the nifH_372 OTU was connected with three 

Acidobacteria Gp4 species and one Granulicella species. Also, the nifH_450 OTU was 

connected with one Acidobacteria Gp3, two Gp4, one Gp7 and one Gp17 species. In 

addition, the nifH_450 OTU was connected with four Alphaproteobacteria 16S rRNA 

OTUs. These results suggested a high probability of co-occurrence patterns between 

Bradyrhizobium and Acidobacteria.  

Modules IV and V. Module IV was a relatively simple module centered by two 

Burkholderiales nifH OTUs, which were connected with two Acidobacteria, three 

Proteobacteria, and one Actinobacteria species (Fig. S5.4). In contrast, module V was a 
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relatively complex module centered by one Bradyrhizobium, one Desulfovibrio and one 

unclassified nifH OTU (Fig. S5.4). The Bradyrhizobium OTU was connected with 

multiple 16S rRNA OTUs, without preferred co-occurrence patterns. However, the 

Desulfovibrio and unclassified nifH OTUs were connected with a high portion of 

Actinobacteria and Acidobacteria species.  

 

5.6 Discussion 

Understanding the diversity, composition and structure of N2-fixing communities and 

their interactions with other groups is essential for reliably accessing and predicting N 

dynamics in ecosystems. In this study, we used next-generation sequencing and co-

occurrence ecological network approaches to analyze N2-fixing communities from 

grassland soils subjected to 12-year eCO2 exposure. Our results showed that long-term 

eCO2 significantly increased the abundance of nifH genes, but did not change the 

overall nifH diversity and structure of N2-fixing communities. Co-occurrence ecological 

networks were observed with other microbial groups as well as within nifH-containing 

microorganisms. The study provides novel insights into our understanding microbial 

ecology of N2-fixing communities in grassland ecosystems. 

The first question is how soil nifH communities respond to long-term eCO2 in 

this grassland ecosystem. As expected, long-term eCO2 stimulated the plant growth rate, 

resulting in increased aboveground and belowground plant biomass, which is consistent 

with our previous observations (Reich, Knops et al. 2001; He, Xu et al. 2010; Reich and 

Hobbie 2013), as well as many other similar studies (Langley and Megonigal 2010; 

Drake, Gallet‐Budynek et al. 2011; Zak, Pregitzer et al. 2011). Meta-analysis indicated 

that such increased plant growth rate as a result of eCO2 imposed a higher demand for 
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biologically available N in soil, in the form of increased NH4
+
. Since NH4

+
 in natural 

ecosystems mainly originates from microbial fixation of atmospheric N2 and 

decomposition of soil biomass, it is expected that key functional genes involved in 

microbial N2 fixation would be changed. This was evidenced by the increased nifH gene 

abundance revealed by extraction of nifH genes from shotgun metagenome sequencing 

and our previous study using GeoChip that the abundance of nifH gene family and 

carbon degradation gene families increased as a result of eCO2 (He, Xu et al. 2010; Xu, 

He et al. 2013). However, owing to the limited coverage of nifH probes on the array and 

low number of captured nifH sequences in shotgun metagenomes, the changes of nifH 

community structure and diversity in response to eCO2 may not be reliably and 

comprehensively evaluated. To overcome such limitations, nifH amplicon sequencing 

approach was applied in this study. Strikingly, the overall nifH community structure and 

diversity did not change significantly in response to eCO2. This suggested that long-

term eCO2 increased the overall nifH community abundance, but not necessarily 

changed the nifH diversity and community structure. Although such results contradicted 

our hypothesis that the imposed demand for more N by increased plant growth in 

response to eCO2 would change the nifH diversity and community structure in the soil 

ecosystem, the observation was consistent with several recent studies (Law, Breitbarth 

et al. 2012; Berthrong, Yeager et al. 2014). For example, Berthrong et al. found 

relatively small effects of CO2 treatment on N-fixing bacterial community in the four 

long-term eCO2 experimental sites they investigated, and no consistent differences were 

observed for nifH diversity between aCO2 and eCO2 soils (Berthrong, Yeager et al. 

2014). Such observation was also consistent with their another community level study 
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that eCO2 induced shifts in microbial communities were driven by functional groups not 

necessarily possess nifH (Dunbar, Eichorst et al. 2012). Notably, although only two 

OTUs were found for the genus Frankia, they were about 8-fold abundant than that in 

aCO2, which is also consistent with a previous study that the activity of Frankia species 

increased with infertile soil in response to eCO2 (Koike, Izuta et al. 1997). Taken all our 

current and previous observations together, the long-term treatment of eCO2 in this 

grassland ecosystem has increased the overall abundance of nifH gene family, but not 

necessarily changed the diazotrophic community diversity and structure. 

Another objective in this study is to determine the diversity of nifH community 

in the grassland ecosystem. High diversity of nifH community was observed, with 

OTUs from six major phyla (ten classes), among which Proteobacteria (Alpha- and 

Beta-) is the most dominant groups, which is generally consistent with several previous 

studies in soil (Berthrong, Yeager et al. 2014; Collavino, Tripp et al. 2014). Although 

found with high diversity, 271 OTUs were still not classified to any taxonomic groups 

at 80% identity cutoff, suggesting a highly diverse genetic pool for nifH genes. 

Contrasting with Berthrong et al. and Collavino et al.’s study with nifH community in 

forest (Berthrong, Yeager et al. 2014) and pampas (Collavino, Tripp et al. 2014) soil 

ecosystem, low amounts of Deltaproteobacteria and cluster III/IV nifH genes were 

found in this study. Since the same PolF/PolR primer (Poly, Monrozier et al. 2001) was 

used for PCR amplification of the nifH genes, such differences should be due to the 

different plant composition in these ecosystems, which may favor distinct subsets of 

diazotroph communities (Mutch and Young 2004; Martinez-Romero 2009). Notably, 

Bradyrhizobium species, widely known as N2-fixing bacteria forming symbiotic 
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relationships with legume species through nodules (Stacey 1995), are obviously the 

most abundant and dominant nifH-containing microorganisms in this soil ecosystem at 

both sequence and OTU levels, suggesting their major roles in N fixation in the 

grassland soil. More interestingly, the most abundant OTU, OUT_1, is 100% identical 

with nifH sequences from three Bradyrhizobium strains isolated from plant root nodules 

of Centrosema virginianu, Centrosema virginianum and Lupinus perennis collected in 

New York and North Carolina (Parker 2012), of which Lupinus perennis is also planted 

in this BioCON experimental site (Reich, Knops et al. 2001). This suggested a potential 

prevalent existence and plant-specific selection nature of some Bradyrhizobium species 

throughout the continent, though different geographical distance and soil properties they 

may inhabit.  

The third interesting question we would like to address is that how nifH-

containing microorganisms interact with others, i.e. who are the members included in 

the symbiotic N fixation niche they may form? Since the majority of microorganisms in 

soil are still uncultivable (Rappe and Giovannoni 2003), such co-occurrence 

relationships between microbial species can hardly be directly observed by currently 

available experimental procedure. In this study, we took advantage of amplicon 

sequencing of 16S rRNA genes and nifH genes, as well as random matrix theory based 

co-occurrence ecological network approach, to predict potential neighbors that co-occur 

with these nifH-containing microbial species. Such a rational design provided us 

opportunities to identify potential microbial interactions not only among nifH-

containing microorganisms, but also between other microbial species and nifH 

communities. Although such approaches to identify nifH co-occurrence networks have 
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not previously performed, similar methods have been used to identify bacteria-diatom 

relationships (Stanish, O'Neill et al. 2013) and bacteria-archaea-protist relationships 

(Steele, Countway et al. 2011). As a result, several interesting messages have been 

brought to our attention. First, only a few OTUs belonging to Bradyrhizobium were 

included in the constructed co-occurrence ecological network, though Bradyrhizobium 

OTUs were most abundant at both OTU and sequence level. This is because most 

Bradyrhizobium species enter plant roots and form symbiotic relationships with plants 

in the form of root nodules (Stacey 1995), these species are physically isolated from 

other free living soil microorganisms, resulting in few co-occurrence patterns with other 

microbial species. Second, although not many, several nifH OTUs assigned to 

commonly known as symbiotic N2-fixing bacteria such as Mesorhizobium and 

Bradyrhizobium, formed relatively complex co-occurrence ecological networks with 

other microbial species, confirming their potential role as free-living diazotrophs 

(Kahindi, Woomer et al. 1997; Okubo, Tsukui et al. 2012). Third, the taxonomic 

assignment of co-occurred 16S rRNA OTUs with nifH OTUs are distinctly different 

from these diazotrophs, contradicting a previous observation based on a global 

coexisting network using whole genome sequencing data that coexisting 

microorganisms are phylogenetically closely related and coexisting genomes tend to be 

more similar regarding pathway content and genome size (Chaffron, Rehrauer et al. 

2010). This is possibly because the N2-fixing ability of diazotrophs to produce NH4
+
 

attracted more microbial species without such abilities, rather than other diazotrophs, 

which is also indirectly evidenced by a previous study that many bacteria prefer 

ammonia as nitrogen source (Müller, Walter et al. 2006).  
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Several co-occurrence modules centered by nifH OTUs were identified. Among 

them, the module centered by Azospirillum OTUs was the most complex one. Since 

Azospirillum species are usually isolated from the rhizosphere of various plant species 

and are free-living N-fixing bacteria closely associated with grasses (Tien, Gaskins et 

al. 1979; Reinhold, Hurek et al. 1987; Steenhoudt and Vanderleyden 2000; Eckert, 

Weber et al. 2001), the complex module formed by Azospirillum OTUs confirmed our 

hypothesis that free-living diazotrophs tend to form more complex networks than 

symbiotic ones. Clear preference of co-occurrence patterns were identified between 

diazotrophs and other microbial species, such as Azospirillum/Actinobacteria, 

Mesorhizobium/Conexibacter, and Bradyrhizobium/Acidobacteria, indicating different 

co-occurrence patterns for different diazotrophs. Such frequent co-occurrence patterns 

indicated a potential attraction of Actinobacteria and Acidobacteria by ammonium 

produced by potentially free-living diazotrophs. However, the exact underlying 

mechanism can hardly be identified with current approaches and knowledge.  

In conclusion, this study comprehensively analyzed the diversity, structure and 

co-occurrence patterns of N2-fixing microbial communities in a CO2 enriched grassland 

ecosystem.  Our results provided several valuable insights into the microbial ecology of 

N2-fixing microorganisms and their responses to long-term eCO2. First, this study was 

conducted in a grassland ecosystem subjected to >12 years eCO2 treatment using 

multiple complementary approaches, providing reliable evidence that long-term eCO2 

affects microbial communities by increasing abundance of nifH-containing 

microorganisms. Second, the diversity and community structure identified in this study 

provided more information to our better understanding of the soil diazotrophs. Finally, 
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co-occurrence network analysis provided informative clues about how N2-fixing 

microorganisms may interact with other species in the environment. Such information 

may also help to identify free-living N2-fixers from symbiotic ones in a predictive 

manner. However, more experimental approaches are needed for accurate and reliable 

identification of species-species interactions. 
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Chapter 6: Summary and Output 

How and by what mechanisms long-term eCO2 affects belowground microbial 

communities is a critical issue for ecology and global change biology. By taking 

advantage of NGS technologies, this study comprehensively surveyed the response of 

microbial communities to long-term eCO2 in a grassland ecosystem that had been 

exposed to CO2 treatment for 12 years. Based on the observed results, several outcomes 

and/or mechanisms about microbial community responses to eCO2 were revealed.  

First, long-term eCO2 decreased the belowground microbial biodiversity, 

including phylogenetic, taxonomic and functional diversity, as evidenced by 16S rRNA 

gene and shotgun metagenome sequencing. Until now, no consistent results were 

obtained about how elevated CO2 affects the belowground microbial biodiversity and 

almost all previous studies about CO2 effects on microbial diversity only focused on 

species richness (Janus, Angeloni et al. 2005; Lipson, Wilson et al. 2005; Lipson, Blair 

et al. 2006; Lesaulnier, Papamichail et al. 2008; Castro, Classen et al. 2010; Dunbar, 

Eichorst et al. 2012; Eisenhauer, Cesarz et al. 2012; He, Piceno et al. 2012). Our results 

provided comprehensive and solid evidences that elevated CO2 decreases both 

taxonomic and functional richness and diversity, as well as phylogenetic diversity. 

Further investigation suggested that rare functional groups were mainly responsible for 

the decreased functional diversity, whereas diversity indices for major functional groups 

remained unchanged. Decreased taxonomic diversity was mainly contributed by 

Proteobacteria and less abundance taxonomic groups. Because the belowground 

microbial biodiversity is intimately linked to aboveground biodiversity (Wardle, 

Bardgett et al. 2004) and determines ecosystem multifunctioning (Fierer, Strickland et 
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al. 2009; Wagg, Bender et al. 2014), such decreased microbial biodiversity may lead to 

serious ecosystem consequences in the future.   

Second, the decreased microbial biodiversity was a result of functional 

convergence to provide more biologically available N in the form of ammonium for 

stimulated plant growth. This is evidenced by decreased functional beta-diversity and 

increased taxonomic and phylogenetic beta-diversity of microbial communities under 

eCO2, indicating that long-term eCO2 selects microbial communities by function rather 

than taxonomy. Interestingly, the decreased microbial biodiversity was significantly 

correlated with increased ammonification rate in soil. Moreover, abundances for 

functional gene families that are responsible for producing ammonium from various 

sources were increased. Taken all evidence together, it could be concluded that long-

term eCO2 decreased microbial biodiversity by functional convergence, which is a 

process commonly found in macroecosystems (Reich, Walters et al. 1997; Paruelo, 

Jobbágy et al. 1998; Meinzer 2003; Shaver, Street et al. 2007), but not yet well 

established for microbial communities. This may be also a way that microbial 

communities mediate progressive N limitation (Hu, Chapin et al. 2001; Norby and Luo 

2004; Reich, Hobbie et al. 2006; Norby, Warren et al. 2010; Reich and Hobbie 2013) as 

a result of continuously stimulated plant growth under eCO2.  

Third, the diversity and overall structure for fungal communities was not as 

significantly affected. Instead, fungal communities respond to long-term eCO2 by 

community reassembly, which was significantly correlated with increased plant biomass 

and soil ammonification rate. No significant changes regarding the fungal community 

structure and species richness was observed, as revealed by NMDS ordination analysis 
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and diversity indices. However, the complexity of fungal community co-occurrence 

patterns significantly increased under eCO2, as evidenced by increased inter-modular 

and intra-modular connections. Moreover, uncorrelated fungal species under aCO2 

formed highly dense co-occurrence modules under eCO2, suggesting a process of 

community assembly. In contrast, the complexity of co-occurrences patterns for 

abundant fungal species decreased as a result of eCO2. These changes of co-occurrence 

network topology were significantly correlated with increased plant biomass and soil 

ammonification rate, indicating community reassembly as a way for more efficient 

organic decomposition to produce more biologically available N for stimulated plant 

growth. The results provide novel insights into how fungal communities respond to 

long-term eCO2 and increased plant biomass.    

Fourth, long-term eCO2 significantly increased the abundance of N fixation 

genes, but did not change the overall community structure and composition. Owing to 

the important roles that N fixation may play under eCO2, under which progressive N 

limitation occurs due to stimulated plant growth, the diversity and community structure 

of N2-fixing microbial community were analyzed. However, no significant changes of 

community structure and diversity were found. Instead, the abundance of N fixation 

gene—nifH, increased significantly, suggesting that eCO2 affects the N2-fixing 

community by increasing the overall abundance. In addition, the co-occurrence patterns 

for N2-fixing community were analyzed. A clear preference of co-occurrence patterns 

between diazotrophs and other microbial species was found, and different co-

occurrence patterns were observed for different subgroups of diazotrophs, such as 

Azospirillum/Actinobacteria, Mesorhizobium/Conexibacter, and 
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Bradyrhizobium/Acidobacteria. This indicated a potential attraction of these non-N2-

fixers by diazotrophs in soil ecosystems. Interestingly, more complex co-occurrence 

patterns were found for free-living diazotrophs than commonly known symbiotic 

diazotrophs, which is consistent with the physical isolation nature of symbiotic 

diazotrophs from the environment by root nodules. The study provides novel insights of 

our understanding microbial ecology of soil diazotrophs in natural ecosystems. 

In addition, we also developed a new k-mer based computational approach that 

is able to identify microbial strains/species from complex shotgun metagenomes. This  

method can be well applied to analyze microbial communities with good coverage of 

reference genomes, such as human microbiomes. Sensitivity evaluation against 

synthetic metagenomes with different coverage suggested that 50 GSMs per strain were 

sufficient to identify most microbial strains with ≥ 0.25x coverage, and 10% of selected 

GSMs in a database should be detected for confident positive callings. We expect this 

method will be useful for microbial strain/species identifications in future soil 

metagenome studies with higher sequencing coverage. This approach is one of a few 

methods available for microbial identification at the strain level.  

In conclusion, our study provided novel insights for better understanding the 

belowground microbial community and their responses to increasing atmospheric CO2, 

and would be of great interest for microbiologists, ecologists, global change biologists, 

and bioinformaticians, and the developed novel data analysis methods and software 

tools are useful resources for the scientific community. 



121 

Those results from this study and other associated projects that I have involved 

are largely reflected in my publications (published, in press, in preparation) as they are 

listed below: 

1. Qichao Tu et al. “Fungal communities respond to long-term elevated CO2 by 

community reassembly”. (in revision) 

2. Qichao Tu et al. “The diversity and co-occurrence patterns of N2-fixing community 

in a CO2 enriched grassland ecosystem”. (submitted) 

3. Qichao Tu et al. “Long-term elevated CO2 decreases microbial biodiversity by 

functional convergence”. (draft) 

4. Qichao Tu, Zhili He, and Jizhong Zhou. "Strain/species identification in 

metagenomes using genome-specific markers". Nucleic Acids Research 42.8 (2014): 

e67-e67. 

5. Qichao Tu, Zhili He, Yan Li, Yanfei Chen, Ye Deng, Lu Lin, Christopher L. 

Hemme, Tong Yuan, Joy Van Nostrand, Liyou Wu, Xuedong Zhou, Wenyuan Shi, 

Lanjuan Li, Jian Xu, Jizhong Zhou. “Development of HuMiChip for Functional 

Profiling of Human Microbiomes.” PLoS ONE 9(3): e90546. doi: 

10.1371/journal.pone.0090546  

6. Qichao Tu, Zhili He, Ye Deng and Jizhong Zhou. “Strain/Species-Specific Probe 

Design for Microbial Identification Microarrays.” Applied and Environmental 

Microbiology. AEM.01124-13; doi:10.1128/AEM.01124-13  

7. Qichao Tu, Hao Yu, Zhili He, Ye Deng, Liyou Wu, Joy D. Van Nostrand, Aifen 

Zhou, James Voordeckers, Yong-Jin Lee, Yujia Qin, Christopher L. Hemme, Zhou 

Shi, Kai Xue, Tong Yuan, Aijie Wang, and Jizhong Zhou. “GeoChip 4: a functional 

gene array-based high throughput environmental technology for microbial 

community analysis."  Molecular Ecology Resources. DOI:10.1111/1755-

0998.12239 (in press)  

8. Qichao Tu, Ye Deng, Jizhong Zhou, and Zhili He. “Development and Evaluation of 

Functional Gene Arrays with GeoChip as an Example” in Microarrays: Current 

Technology, Innovations and Applications. Caister Academic Press, Norwich, UK. 

ISBN: 978-1-908230-49-2 (Book Chapter, in press)  

9. Chengwei Luo, Luis Rodriguez-R., Eric Johnston, Liyou Wu, Lei Cheng, Kai 

Xue, Qichao Tu, Ye Deng, Zhili He, Zhou Shi, mengting Yuan, Sherry Rebecca, 

dejun Li, Yiqi Luo, E.A.G. Schuur, Patrick Chain, James Tiedje, Jizhong Zhou, and 

Konstantinos Konstantinidis. “Soil microbial community responses to a decade of 

warming as revealed by comparative metagenomics”. Applied and Environmental 

Microbiology (2013): AEM-03712. 



122 

10. Meiying Xu, Yun Fang, Jun Liu, Xingjuan Chen, Guoping Sun, Jun Guo, 

Zhengshuang Hua, Qichao Tu, Liyou Wu, Jizhong Zhou, and Xueduan Liu. Draft 

genome sequence of Shewanella decolorationis S12, a dye degrading bacterium 

isolated from a waste-water treatment plant. Genome announcements 1.6 (2013): 

e00993-13. 

11. Lu Lin, Yuetong Ji, Qichao Tu, Ranran Huang, Lin Teng, Xiaowei Zeng, Houhui 

Song, Kun Wang, Qian Zhou, Yifei Li, Qiu Cui, Zhili He, Jizhong Zhou, and Jian 

Xu. "Microevolution from shock to adaptation revealed strategies improving ethanol 

tolerance and production in thermophiles". Biotechnology for Biofuels. 2013, 6:103 

(doi:10.1186/1754-6834-6-103). 

12. Fang YANG, Kang NING, Xingzhi CHANG, Xiao YUAN, Yue ZHANG, Xinping 

CUI, Qichao TU, Yuan TONG, Ye DENG, Christopher L Hemme, Joy Van 

Nostrand, Zhili HE, Jian Xu. "Saliva microbiota carry caries-specific functional 

gene signatures." PLoS ONE 9: e76458 (doi:10.1371/journal.pone.0076458). 

13. Zhou, Aifen, He, Zhili, Qin, Yujia, Lu, Zhenmei, DENG, Ye, Tu, Qichao, Hemme, 

Christopher, Van Nostrand, Joy, Wu, Liyou, Hazen, Terry, Arkin, Adam, Zhou, Joe. 

“StressChip as a High Throughput Tool for Assessing Microbial Community 

Stability.” Environmental science & technology 47.17 (2013): 9841-9849. 

14. Dongru Qiu, Hehong Wei, Qichao Tu, Yunfeng Yang, Ming Xie, Jingrong Chen, 

Mark Pinkerton, Yili Liang, Zhili He, and Jizhong Zhou. “Combined genomics and 

experimental analyses of respiratory characteristics of Shewanella putrefaciens W3-

18-1.” Applied and environmental microbiology 79.17 (2013): 5250-5257. 

15. Lee, Y.-J., J. D. Van Nostrand, Q. Tu, T. Yuan, L. Cheng, Z. Lu, Y. Deng, M. Q. 

Carter, Z. He, L. Wu, F. Yang, J. Xu, and J. Zhou. The PathoChip, a functional gene 

array for assessing pathogenic properties of diverse microbial communities. The 

ISME journal, 7(10), 1974-1984. 

16. Zhou, Jizhong, Liyou Wu, Ye Deng, Xiaoyang Zhi, Yi-Huei Jiang, Qichao Tu, 

Jianping Xie, Joy D. Van Nostrand, Zhili He, and Yunfeng Yang. "Reproducibility 

and quantitation of amplicon sequencing-based detection." The ISME Journal 5, no. 

8 (2011): 1303-1313. 

17. Hemme, Christopher L., Matthew W. Fields, Qiang He, Ye Deng, Lu Lin, Qichao 

Tu, Housna Mouttaki et al. "Correlation of genomic and physiological traits of 

thermoanaerobacter species with biofuel yields." Applied and Environmental 

Microbiology 77, no. 22 (2011): 7998-8008. 

18. Lin, Lu, Houhui Song, Qichao Tu, Yujia Qin, Aifen Zhou, Wenbin Liu, Zhili He, 

Jizhong Zhou, and Jian Xu. "The thermoanaerobacter glycobiome reveals 

mechanisms of pentose and hexose co-utilization in bacteria." PLoS Genetics 7, no. 

10 (2011): e1002318. 

19. Zhou, Jizhong, Ye Deng, Feng Luo, Zhili He, Qichao Tu, and Xiaoyang Zhi. 

"Functional molecular ecological networks." MBio 1, no. 4 (2010). 



123 

20. He, Zhili, Ye Deng, Joy D. Van Nostrand, Qichao Tu, Meiying Xu, Christopher L. 

Hemme, Xingyuan Li et al. "GeoChip 3.0 as a high-throughput tool for analyzing 

microbial community composition, structure and functional activity." The ISME 

Journal 4, no. 9 (2010): 1167-1179. 

  



124 

Appendix A: Supplementary Tables 

Table S2.1 Summary of mapped reads and GSMs of mock community metagenomes. 

Red denote false positives. 

 

Table S3.1. Null model analysis of the centroids of soil microbial communities under 

aCO2 and eCO2 conditions. 

 

Table S3.2 Alpha diversity at functional category levels. 

 

Table S3.3 Spearman’s correlation analysis between plant biomass and microbial 

biodiversity indices. 

 

Table S4.1 Topological property of co-occurrence networks of fungal communities 

under eCO2 and eCO2 conditions and their. 
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Table S2.1 Summary of mapped reads and GSMs of mock community metagenomes. 

Red denotes false positives. 

 

Accession Strain Name 
#reads 

mapped to 
genome 

#reads 
mapped 
to GSMs 

#mapped 
GSMs 

SRR172902 
(Even mock 
community, 
Illumina 75bp) 

Streptococcus agalactiae 2603V/R 6104 1 5 

Streptococcus mutans UA159 113260 38 43 

Bacillus cereus ATCC 10987  52022 2 5 

Actinomyces odontolyticus ATCC 17982 154918 65 37 

Bacteroides vulgatus ATCC 8482 607992 98 46 

Acinetobacter baumannii ATCC 17978 787612 79 48 

Clostridium beijerinckii NCIMB 8052 243616 32 28 

Deinococcus radiodurans R1 2492460 802 50 

Enterococcus faecalis OG1RF 83409 30 21 

Lactobacillus gasseri ATCC 33323 1771 2 3 

Listeria monocytogenes EGD-e 123554 34 28 

Methanobrevibacter smithii ATCC 35061 44131 22 23 

Pseudomonas aeruginosa PAO1 47377 6 17 

Rhodobacter sphaeroides 2.4.1 211977 68 39 

Staphylococcus aureus subsp. aureus 
USA300_TCH959 

209230 19 21 

Staphylococcus epidermidis ATCC 12228 330608 423 48 

SRR072233 
(Even mock 
community, 
454 shotgun) 

Streptococcus agalactiae 2603V/R 1227 3 4 

Streptococcus mutans UA159 22469 18 36 

Bacillus cereus ATCC 10987  10752 9 12 

Actinomyces odontolyticus ATCC 17982 34654 214 48 

Bacteroides vulgatus ATCC 8482 122608 266 50 

Acinetobacter baumannii ATCC 17978 174655 269 50 

Clostridium beijerinckii NCIMB 8052 45573 99 39 

Deinococcus radiodurans R1 524593 2511 47 

Enterococcus faecalis OG1RF 17847 63 37 

Lactobacillus gasseri ATCC 33323 391 2 2 

Listeria monocytogenes EGD-e 28108 86 45 

Methanobrevibacter smithii ATCC 35061 8128 54 30 

Pseudomonas aeruginosa PAO1 10460 15 20 

Rhodobacter sphaeroides 2.4.1 34127 186 47 
Staphylococcus aureus subsp. aureus 
USA300_TCH959 39582 60 27 

Staphylococcus epidermidis ATCC 12228 68187 746 49 

 
 
 
 

Streptococcus agalactiae 2603V/R 38388 6 15 

Streptococcus mutans UA159 625898 134 50 

Bacillus cereus ATCC 10987 24505 1 4 

Actinomyces odontolyticus ATCC 17982 786 0 0 
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SRR172903 
(Staggered 

mock 
community, 

Illumina 75bp ) 

Bacteroides vulgatus ATCC 8482 1858 0 0 

Acinetobacter baumannii ATCC 17978 35169 1 1 

Clostridium beijerinckii NCIMB 8052 97505 16 16 

Deinococcus radiodurans R1 22254 4 5 

Enterococcus faecalis OG1RF 899 0 0 

Lactobacillus gasseri ATCC 33323 582 0 0 

Listeria monocytogenes EGD-e 6285 1 1 

Methanobrevibacter smithii ATCC 35061 307412 111 49 

Pseudomonas aeruginosa PAO1 200837 7 11 

Rhodobacter sphaeroides 2.4.1 2069571 387 50 

Staphylococcus aureus subsp. aureus 
USA300_TCH959 

1838375 122 28 

Staphylococcus epidermidis ATCC 12228 1732754 1836 50 

Streptococcus pneumoniae SP3-BS71  1 7 

Mycobacterium tuberculosis H37Ra  1 2 

Staphylococcus aureus subsp. aureus 
TCH130 

 1 4 

SRR072232 
(Staggered 
mock 
community, 
454 shotgun) 

Streptococcus agalactiae 2603V/R 6712 5 16 

Streptococcus mutans UA159 106100 138 50 

Bacillus cereus ATCC 10987  4146 3 5 

Actinomyces odontolyticus ATCC 17982 138 1 3 

Bacteroides vulgatus ATCC 8482 324 1 2 

Acinetobacter baumannii ATCC 17978 6089 14 35 

Clostridium beijerinckii NCIMB 8052 18661 40 22 

Deinococcus radiodurans R1 2999 20 15 

Enterococcus faecalis OG1RF 132 0 0 

Lactobacillus gasseri ATCC 33323 106 0 0 

Listeria monocytogenes EGD-e 1009 4 5 

Methanobrevibacter smithii ATCC 35061 53719 331 49 

Pseudomonas aeruginosa PAO1 29446 61 50 

Rhodobacter sphaeroides 2.4.1 213549 1327 50 
Staphylococcus aureus subsp. aureus 
USA300_TCH959 309205 362 28 

Staphylococcus epidermidis ATCC 12228 310448 4114 50 
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Table S3.3 Spearman’s correlation analysis between plant biomass and microbial 

biodiversity indices  

 Aboveground biomass Root biomass Total biomass 

 Spearman’s 

rho 
P 

Spearman’s 

rho 
P 

Spearman’s 

rho 
P 

Phylogenetic 

diversity 
0.05 0.82 0.21 0.34 0.22 0.31 

Taxonomic richness 0.17 0.43 -0.08 0.71 -0.09 0.68 

Taxonomic 

diversity 
0.19 0.39 -0.1 0.65 -0.06 0.8 

Functional richness -0.03 0.9 -0.25 0.23 -0.18 0.40 

Functional diversity -0.09 0.68 -0.3 0.15 -0.25 0.24 
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Appendix B: Supplementary Figures 

Fig. S2.1 Number of candidate GSMs when different k-mer sizes were used for 

continuous stretch filtering. 

 

Fig. S2.2 Distribution of mapped GSM numbers to simulated metagenomes at 

sequencing coverage of 0.25, 0.5 and 0.75 with 50 and 100 GSMs/strain used. 

 

Fig. S2.3 Comparison with MetaPhlAn at species level using synthetic metagenomes 

generated from 302 recently sequenced microbial genomes. 

 

Fig. S3.1 Soil nitrification (A) and net N mineralization rate (B) in aCO2 and eCO2 

samples summarized at two time frames: years 1-4 and years 5-12. Nitrification rate 

was suppressed by eCO2 in years 1-4, but restored in years 5-12 (P<0.1).  

 

Fig. S3.2 The Chao1 richness of taxonomic (A-D), genetic (E-F) and functional groups 

in aCO2 and eCO2 samples. Both alpha (left) and gamma (right) level richness was 

analyzed.   

 

Fig. S3.3 The Shannon evenness of taxonomic (A-D), genetic (E-F) and functional 

groups in aCO2 and eCO2 samples. Both alpha (left) and gamma (right) level evenness 

was analyzed. 
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Fig. S3.4 The Shannon diversity for describing genetic and taxonomic diversities 

identified from shotgun metagenomes. Alpha (left), beta (middle) and gamma (right) 

diversities were calculated. **: P<0.05. 

 

Fig. S3.5 The Chao1 richness (A,B), Shannon evenness (C,D) and Shannon diversity 

(E,F) for COG (left) and NOG (right) orthologous groups.  

 

Fig. S3.6 The relative abundance of major bacteria phyla determined by 16S and 

shotgun metagenomes. 

 

Fig. S3.7 The Chao1 richness (A-C), Shannon evenness (D-F), and Shannon diversity 

(G-I) for Actinobacteria, Proteobacteria and other rare phyla. 

 

Fig. S3.8 Soil and plant properties under aCO2 and eCO2 collected in year 2009. (A) soil 

moisture, (B) pH, (C) nitrification rate, (D) ammonification, (E) aboveground biomass 

and (F) root biomass.   

 

Fig. S3.9 Response ratio analysis of gene families related with NH4
+
 (left). Their 

relative abundances (middle) and major roles (right) in ammonium pathways are also 

plotted. Red indicate increased relative abundance, and green indicated decreased 

relative abundance. 
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Fig. S3.10 Response ratio analysis of gene families involved in nitrification and 

assimilatory NO3
-
 reduction.  

 

Fig. S4.1 eCO2 effects on soil moisture (A) and soil pH (B). No significant changes 

were observed for both proportional soil moisture and pH. 

 

Fig. S4.2 Nonmetric multidimensional scaling analysis of overall fungal community 

structure under aCO2 and eCO2 samples. No clear separations could be observed.   

 

Fig. S4.3  Rarefaction analysis of fungal community species richness (A), phylogenetic 

diversity (B), species evenness (C), and taxonomic diversity (D) under aCO2 and eCO2 

samples. Filled curves refer to 95% confidence intervals.   

 

Fig. S4.4 The composition of fungal community at (A) phylum level and (B) order 

level. Only the top 15 most abundant fungal orders with relative abundance ≥ 0.8% 

were displayed. These 15 fungal orders accounted for about 75% of the total captured 

fungal community.  Calculation was based on total number of sequences covered by 

OTUs.   

 

Fig. S4.5 An overview of constructed networks for fungal communities at aCO2 (A) and 

eCO2 (B). More intense connections between nodes and modules were observed in 

eCO2 network, showing more complex community interactions under eCO2. Each node 

represents an OTU, which could be regarded as a fungal species. The size of nodes 
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represents relative abundance of OTUs. Each link connects two OTUs. Grey links 

means positive connections, and red means negative connections. Different colors refer 

to different fungal phyla. 

 

Fig. S5.1  Unweighted UniFrac PCoA analysis of the nifH community. A trend of 

separation was found at all three dimensions analyzed.  

 

Fig. S5.2 Weighted UniFrac PCoA analysis of the nifH community. The trend of 

separation disappeared when relative abundance of nifH OTUs was considered.  

 

Fig. S5.3 Response ratio analysis of significantly changed nifH OTUs. Relative 

abundance and genus assignment for these OTUs were also included. Error bars plotted 

at the right side of the dashed line indicate significantly increased relative abundance at 

eCO2, while error bars plotted at the left side indicate significantly decreased relative 

abundance at eCO2.  

 

Fig. S5.4 All nifH-centered modules identified in this study. Only modules with >5 

nodes were included.  
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Fig. S2.1 Number of candidate GSMs when different k-mer sizes were used for 

continuous stretch filtering. 
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Fig. S2.2 Distribution of mapped GSM numbers to simulated metagenomes at 

sequencing coverage of 0.25, 0.5 and 0.75 with 50 and 100 GSMs/strain used. 
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Fig. S2.3 Comparison with MetaPhlAn at species level using synthetic metagenomes 

generated from 302 recently sequenced microbial genomes. 
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Fig. S3.1 Soil nitrification (A) and net N mineralization rate (B) in aCO2 and eCO2 

samples summarized at two time frames: years 1-4 and years 5-12. Nitrification rate 

was suppressed by eCO2 in years 1-4, but restored in years 5-12 (P<0.1).  
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Fig. S3.2 The Chao1 richness of taxonomic (A-D), genetic (E-F) and functional 

groups in aCO2 and eCO2 samples. Both alpha (left) and gamma (right) level 

richness was analyzed.  
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Fig. S3.3 The Shannon evenness of taxonomic (A-D), genetic (E-F) and functional 

groups in aCO2 and eCO2 samples. Both alpha (left) and gamma (right) level 

evenness was analyzed. 
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Fig. S3.4 The Shannon diversity for describing genetic and taxonomic diversities 

identified from shotgun metagenomes. Alpha (left), beta (middle) and gamma 

(right) diversities were calculated. **: P<0.05.   
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Fig. S3.5 The Chao1 richness (A,B), Shannon evenness (C,D) and Shannon 

diversity (E,F) for COG (left) and NOG (right) orthologous groups.  
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Fig. S3.6 The relative abundance of major bacteria phyla determined by 16S and 

shotgun metagenomes.   
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Fig. S3.7 The Chao1 richness (A-C), Shannon evenness (D-F), and Shannon 

diversity (G-I) for Actinobacteria, Proteobacteria and other rare phyla.   
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Fig. S3.8 Soil and plant properties under aCO2 and eCO2 collected in year 2009. (A) 

soil moisture, (B) pH, (C) nitrification rate, (D) ammonification, (E) aboveground 

biomass and (F) root biomass.    
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Fig. S3.10 Response ratio analysis of gene families involved in nitrification and 

assimilatory NO3
-
 reduction.  
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Fig. S4.1 eCO2 effects on soil moisture (A) and soil pH (B). No significant changes 

were observed for both proportional soil moisture and pH.     
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Fig. S4.2 Nonmetric multidimensional scaling analysis of overall fungal community 

structure under aCO2 and eCO2 samples. No clear separations could be observed.   
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Fig. S4.3  Rarefaction analysis of fungal community species richness (A), phylogenetic 

diversity (B), species evenness (C), and taxonomic diversity (D) under aCO2 and eCO2 

samples. Filled curves refer to 95% confidence intervals.    
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Fig. S4.4 The composition of fungal community at (A) phylum level and (B) order 

level. Only the top 15 most abundant fungal orders with relative abundance ≥ 0.8% 

were displayed. These 15 fungal orders accounted for about 75% of the total captured 

fungal community.  Calculation was based on total number of sequences covered by 

OTUs.   
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Fig. S4.5 An overview of constructed networks for fungal communities at aCO2 (A) and 

eCO2 (B). More intense connections between nodes and modules were observed in 

eCO2 network, showing more complex community interactions under eCO2. Each node 

represents an OTU, which could be regarded as a fungal species. The size of nodes 

represents relative abundance of OTUs. Each link connects two OTUs. Grey links 

means positive connections, and red means negative connections. Different colors refer 

to different fungal phyla. 
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Fig. S5.1  Unweighted UniFrac PCoA analysis of the nifH community. A trend of 

separation was found at all three dimensions analyzed.   
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Fig. S5.2 Weighted UniFrac PCoA analysis of the nifH community. The trend of 

separation disappeared when relative abundance of nifH OTUs was considered.  
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Fig. S5.3 Response ratio analysis of significantly changed nifH OTUs. Relative 

abundance and genus assignment for these OTUs were also included. Error bars plotted 

at the right side of the dashed line indicate significantly increased relative abundance at 

eCO2, while error bars plotted at the left side indicate significantly decreased relative 

abundance at eCO2.   
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Fig. S5.4 All nifH-centered modules identified in this study. Only modules with >5 

nodes were included.  
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