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Preliminary characterization of the Ponca City shale 

for highway construction purposes, and its amenability to 





CONVERSION BETWEEN US CUST011ARY UNITS 
AND SI UNITS 

US Customary 

one inch (in) 

one inch (in) 

one inch (in) 

one foot (ft) 

one square inch (sq. in.) 

one square foot (sqft) 

one pound (lb) 

one pound (lb) 

one pound force (lbf) 

one pound per square foot (PSP) 

one pound per square foot (PSP) 

one pound per, square inch (psi) 
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Figure 21: Shale rating chart (after Franklin, 1981) 



(i) "Lifting a country or region out of mud or out 

of sand for better economic developement 

(ii) Providing bases and surfaces for secondary and 

farm to market roads, where good primary roads 

are already in existence. 

(iii) Providing bases in higher type pavements, where 

em-

ployed for such bases are not economically 

available. 

(iv) Providing city and suburban streets with cer-

tain stabilized soil systems whose noise ab-

sorbing and elastic properties possess definite 

zdvantages over other construction materials. 

(v) Making an area trafficable within a short 

period of time for military and other emergen- 

The most common techniques of improving soil proper-

ties or soil stabilization are chemical and mechanical. 

However, thermal and electrical methods of stabilizing 

soils are also occasionally employed. Chemical stabili-

etation 'involves mixing with the soil some chemical sub- 
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Some modifica- A-2 5-9% 

duction compact  
tion of clay 
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FIGURE 2,2: APPLICABILITY OF STABILIZATION METHODS 
(after Ingles and Metcalf, 1973) 
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TABLE 2.2: PROPERTIES OF COMMERCIAL LIMES 

Quicklime 
Chemical Composition High Calcium, % Dolomitic, % 

CaO 92.25-98.00 55,50-57,50 

MgO 0.30- 2.50 37.60-40.80 

CO 2  0,40- 1.50 0.40- 	1,50 

Si0 2  0.20- 1.50 0.10- 	1,50 

Fe 2 03  0,10- 0.40 0,05- 0.40 

Al 2 03  0.10- 0,50 0.05- 0.50 

Ln 	
1120 0.10- 0,90 0.10- 0.90 

Specific Gravity 3.20- 3.40 3.20- 3.40 

Bulk Density, pcf 55 - 60 55 - 60 

Hydrates 
High Calcium Monohydrated Dihydrated 

Dolomitic Dolomitic 

Principal Chemical 	Ca(OH) 2 Ca (OH) 2 +MgO Ca (OH) 	(011)2 2+Mg 

Specific Gravity 	2.3 - 2,4 2.7 	- 	2,9 2.4 	- 	2.6 

Bulk Density, pcf 	25 - 35 25 - 35 30 - 40 

* From "Chemical Lime Facts",, Bulletin 214, National Lime Association, 1973, 
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amount of lime required to stabilize a soil. Figure 23 

depicts the relationship between soil-lime pH and amount 

of lime added. 
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Figure 2.3: Lime determination for soil stabilization 
(after Jha, 1977) 
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Figure 2.4: Effect of lime content on strength 
for various soils stabilized with 
hydrated lime, cured for seven days 
at 25C, (after Metcalf, 1973) 
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Figure 2.3: 
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AASHTO 
	

Cement Content for Wet-Dry and 

Soil Group 
	

Freeze-Thaw Tests, % by Weight 

A1a 	 3-5, 57 

A1b 

A2 
	

57, 7-9 

A3 
	

7-9, 9-11 

A4 
	

8-10, 10-12 

A-5 

A6 
	

10-12, 1214 

A-7 
	

10-13, 13-15 



TABLE 2.4: ESTIMATED CEMENT REQUIREMENT FOR OKLAHOMA 

* 
SOILS 

AASHTO % Cement by Dry Weight of Soil 

Class. % Pass. 	200 Sieve 

0 5 10 15 20 	25 30 35 

A-i-a 7 7 6 - 	- - - 
A-i-b 9 8 8 8 7 	7 - 
A-2-4 9 9 9 8 7 	7 8 9 
A-2-5 9 9 8 8 8 	8 8 8 
A-2-6 10 10 9 8 8 	8 8 9 
A-2-7 11 11 10 9 9 	9 10 10 

A-1 r  A-2, A-3 	--Add 2% cement 

A-4 1  A-S, A-6 1  A-7 --Add 1% cement 

AASHTO % Cement by Dry Weight of Soil 

Class. Group Index 

O2 3-5 6-8 9-11 12-14 15-17 	18-20 

A-4 9 10 11 - - 
A-5 9 10 11 11 12 - 	- 
A-6 10 11 12 12 13 14 	- 
A-7-5 11 11 12 13 13 14 	16 
A-7-6 11 12 13 14 14 15 	17 

* Research and Development Divison 
Oklahoma Department of Highways, 1966 
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Figure 26: 	Possible arrangement of coal ash collecting 
devices (after ISGS, 1931) 
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Figure 2,7: Coal consumption and ash production 
by United States electric utilities 
(after Yuan, 1979) 
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TABLE 2.5: 	TYPICAL 
* 

COMPOSITION OF FLY ASH 

Principal Constituents Amount, 

Sb 2  10-70 

Al 2 03  8-38 

Fe 2 03  250 

CaO 0,5-30 

MgO 0,3- 	8 

Na 2 0 0.1- 	8 

K 2 0 0.1- 3 

Ti02  0.4-3.5 

so   0,1-30 

* 	(Diamond, 	1981) 
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eastern fly ashes as a result of the higher calcium oxide 

and Brummer, 1976) 	Data on the mineralogical variation 

of fly ashes from the United Kingdom, United States, and 

Japan are presented in Table 2,6 (Rehsi, 1974) 



TABLE 2.6: VARIATIONS IN MINERALOGICAL COMPOSITION OF 
FLY ASHES FROM THREE COUNTRIES * 

* 	(Rehsi, 1974) 

WE 







f#, ression are given byt2 
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a c 
I at  = fiber stresses in compression and 

tension, psi 

M 	= bending moment, in-lb 

b 	= beam width, inches 

d 	= beam depth, inches 

C, E t  = strain in compression and tension, 

in/in 
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In a study of lime-fly ash stabilized bases and 

subbases, 	the National Cooperative Highway Research 



(1976) evaluated beam strengths and reported that.- 

(i) the flexural strength of lime-fly ash-aggregate 

mixtures gain in strength with age as shown in 

Figure 2,8 

(ii) the ratio of flexural strength to compressive 

c-trength values evaluated under split-tensil ,4 

and double-punch tests. 

The modulus of elasticity values of lime-f ly ash-

eggregate, mixtures were also found to change dependin ~ 

Electron  ic2sco: 

The study of the various levels of macro and micro 

BE 
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Figure 2e8: Flexural strength development 
of typical 1imef1y ash 
stabilized mixtures, laboratory 
curing (after Ahlberg, 1969) 

on 
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the pore space component of soil microfabric such as 

size, shape and orientation, have been investigated by 

resentation of pore space types. 

Thus far the main thrust of scanning electron 

microscopic studies have been qualitative, hence, few 

quantitative analyses are reported in the literature. 

McConnachie (1974) applied new techniques to analyze 

scanning electron micrographs in order to support his 

studies of the mechanism of consolidation of soils. 

Electron micrographs of thin slices of consolidated mono-

mineralic kaolin were taken and different variables were 

measured, including length, breadth, voids, area of soil 

particles and packing density. Laguros and Jha (1977) 

also studied the void domain characteristics of raw and 

III 	 111
111

ni ;  

scanning micrographs to their compressive strength val-

ues. The micrographs were on dispersed samples. In ad-

dition to void areas, they measured the largest distance 

between particles, i.e., "the pore-intercept". The un- 
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P = Longest pore (void) intercept, mm 

Figure 2.11: 	Electron micrograph of soil 
mass 







and cement-clay reaction products are presented in Table 

MR, 



Chlorite 14.00 7,18 
4,70 3.60 3.50 

Kaolinite 7.18 3,58 2,50 

Illite 9.99-10.40 3,34 

Montmorillonite 15.40 (variable) 4.48 
2.56 3,09 

Quartz 4.26 3,34 2.46 

Lime, Portlandite 4.90 2,63 
(Ca (OH) 

Calcite (CaCO3 ) 3,04 2,29 2,10 

Lime-Kaolinite 5.09 3.04 2,80 

Lime-Montmorillonite 8.11 7,94 7,59 

CAM 8,10 7,60 3,90 

C 
3 

 AH 8.30 8.07 7,70 

C4AHn 7.50 4,10 3.99 

CSH 17.30 12,60 10.00 

C 3SH, Tobermorite 14.00 9.00 6,16 
3.05 3,00 2.83 
1.82 

C2 S 2.88 

C3 S 3,07 2,98 2.77 

7.02 	4 4 80 ASTM (1966) 

ASTM (1966) 

Carroll 	(1970)Grim (1968) 

3.34 Carroll (1970), Rugg & Ho 
(1966) 

ASTM (1966) 

1,93 ASTM (1966) 

ASTM (1966) 

1,80 Eades and Grim (1962) 

Hilt and Davidson (1961) 
Glenn and Handy (1963 

Noble (1967) 

Noble 	(1967) 

2,88 Ruff and Ho (1966) 

3.08 Leonard and Davidson 
Glenn and Handy (1963) 

3.18 Glenn and Handy (1963) 
2.73 Ruff and Ho (1966) 

Taylor (1966) 

Taylor (1966) 

Herzog and Mitchell (1963) 

14 in, 

TABLE 2.7: SUMMARY OF CLAYS, LIME-CLAY AND CEMENT-CLAY REACTION PRODUCTS 

Crystal 	 d-spacing, 	 Reference 





IL 

16
' 	 13 

S.H. 11 TO 	 KILbARE/ 

INC POP 112 

21 	 22 23 	 24 

LLJ 

occi 
28 	 27 	 26 	 25 Cj  

Ae 

36 
r 	 / 	I 

TO KAW 

(T 3  
F 7 	 N i 	( 	Ill 	i 	 II 

QQBPOR 	JMITS\ \ 	11 

IL 	,10 , 	)77 	 12 	c • 	
1/ 

PROSPECT AVE 'N 
PONCA CITY 

R2E 	 CONTROL 
N 	 INC, POP 2€,238 	 09 
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Section 1 	1 	Section 2 	Section 3 	Section 4 	Section 5 
Portland 	Lime 	 Fly ash 	C+L+FA 	Control 
Cement 

Ln 	

-" 

Sta 267+00 	 274+00 	 281+00 	 288+00 	 295+00 	299+00 

Total length = 3,200 ft 

Stabilized sections 700 ft. 
rN Control section 	400 ft. 

Figure 3.1a: Location of stabilized sections 



ities in their engineering characteristics, gradation 

Survey for Kay County, Oklahoma (1967) 

The stabilizing agents used in this study were lime, 

Portland cement and fly ash. The hydrated lime was ob-

tained 

 



TABLE 3.1: SOIL SAMPLING LOCATIONS 

A B C Distance from Station Offset 
Beginning of Distance 
Section, 	ft. from 

C.L., 	ft. 

267+00 
01 .091 .371 291 269+91 3.1 L 
02 .166 .056 531 272+32 10.7 	L 

03 .377 .648 1206 279+06 3.6 R 
06 .397 .769 1270 279+70 6.5 	P. 

04 .539 .972 1725 284+25 11.3 	P. 

05 .847 .925 2710 294+10 10.2 	P. 

08 .911 .215 2915 296+15 6.8 	L 
07 .946 .065 3027 297+27 10,4 L 

299+00 
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Sample No, <2)i <511 Silt Sand LL PI AASHTO UNIFIED USDA 
& Station Clay, % Clay, % % Classifi- Classifi- Classifi- 

cation cation cation 

1. 269+91 44 52 51 5 44 26 A-7-6(26) CL Silty Clay 

2. 272+31 41 47 55 4 48 29 A-7-6(30) CL Silty Clay 

3. 279+06 41 47 55 4 47 29 A-7-6(30) CL Silty Clay 

01 
0' 	, 2794-70 44 49 51 5 48 30 A-7-6(30) CL Silty Clay 

5. 284+25 52 66 30 18 51 30 A-7-6(25) CH Clay 

6, 294+10 41 46 54 5 53 37 A-7-6(38) CH Silty Clay 

7. 296+15 56 66 40 4 58 36 A-7-6(39) CH Clay 

8 297+27 46 54 48 6 52 32 A-7-6(33) CU Silty Clay 



TABLE 33: CHEMICAL ANALYSIS OF ASH GROVE 

"SNOW FLAKE" HYDRATED LIME 

Available calcium Hydroxide 95.25% Ca(OH) 2  

Equivalent to calcium oxide CaO 7216% 

Magnesium Hydroxide Mg(OH) 2 0.30% 

Calcium carbonate CaCO 3  1.95% 

Silicon Dioxide Sb 2  0,65 

Ferric Oxide Fe 2 O 3  0.05% 

Aluminium Oxide Al2 0 3  0.24% 

Sulphur Trioxide so  0,01% 

Carbon Dioxide CO  0.80% 

Mechanical Moisture H 2 O 0.70% 

Fineness: 

Passing 	400 mesh screen 99,0% 

Passing 	200 mesh screen 99.8% 
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Si02 	 20,9% 

Al 2 0 3 	 5,2% 

Fe 20 3 	 2,8% 

CaO 	 64,2% 

MgO 	 2,0% 

so 	3,1% 

Na 2 0 	 0.19% 

K 2 0 	 0,68% 

Loss on Ignition 	0,9% 



TABLE 3.5: CHEMICAL ANALYSIS OF FLY ASH FROM 

Magnesium Oxide, MgO 	 4.94% 

Loss on Ignition 	 0,45% 



In the first phase of this research., testing was 

Grain Size Analysis.  Grain size distributions for the 

raw and stabilized shale were determined in accordance 

with ASTM Designation D422-63(72) (AASHTO Designation 

T-88-78), The deflocculating agent used was calgon solu-

tion Further dispersion of clay particles was accom-

plished by applying a 10 psi air pressure from the Iowa 

dispersion jet apparatus for about 5 minutes, 

Atterberg Limits. Liquid limit tests were run according 
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Figure 41: 	Compression strength testing devi 

I 



open areas for Oklahoma. At the end of the drying peri-

od, the samples were transferred to humidifiers set at 

the curing temperatures (70°F and 90 1 F), 90 to 100 per-

cent relative humidity and were kept there for 24 hours, 

This drying and wetting or humidifying, therefore, con-

stituted one wet-dry cycle. At the end of 5 and 15 wet-

dry cycles triplicate specimens were tested for each 

humid or wet and dry condition, 

Triaxial Compressive Strength Parameters. The strength 

parameters of soils can be determinded by direct shear or 

by the triaxial compression test. The triaxial com-

pression test is often employed to study the behavior of 

soils, because it duplicates better, the soil conditions 

prior and after construction. The general Mohr-Coulomb 

failure law is used in determining the parameters and is 

expressed by the formula: 

T=c+atan 0 	 (4.1) 

T = shear stress, psi 

c = cohesion, psi 

a = total normal stress, psi 

• = angle of internal friction, degrees 

Depending upon the soil-water-air interaction within the 

cross-sectional area normal to the load, the total normal 

stress, a, includes some parameters and is generally ex- 



pressed by: 

a=aA +U  A 	+U A 	+AR 	 (42 m  a a 	w w 

where 

= contact stress at mineral to mineral 

contact points 

A 	= (area of mineral to mineral contact)/- 

(total area) 

tJa = pore air pressure 

A 	= (Area of air to mineral contact)/ 

(total area) 

= pore water pressure 

A 	= (area of water to mineral contact)/ w 
(total area) 

A 	= net attractive forces between clay 

platelets 

R 	= net repulsive forces between clay 

platelets 

In 	dispersed 	plastic 	clays, 	A 	and 	R 	are 	considered 

predominant, 	however, 	they 	cannot 	be 	measured 

experimentally. 	For other textured soils A and R are not 

significant 	and 	are generally 	disregarded. 	Also 	the 

mineral to mineral contact pressure a is very large, 	and 

A 	o but aA 	is finite 	and 	is 	equal 	to 	the effective m  

stress 	(a), and Aa + A 	1, 
W 
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The total normal stress for fully saturated and 

partially saturated soils is given by equations 4,3 and 

4.4 respectively. 

w 
	 (4,3) 

= 	+ U + A w  (U - Ua) 	 (4.4) 

In terms of the effective stress the Mohr-Coulomb equa-

tion is give by 

t=c+atan 	 (4,5) 

where 

= true cohesion, psi 

= effective normal stress, psi 

= true angle of internal friction, 

degrees 

Both the total stress and the effective stress 

M. 





I 
Figure 4.2 Triaxial coinnoression test set up. 

m 



Figure 4,3: 	Failure patterns of triaxial .ples 
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Figure 



the bending loads all the beams failed within the middle 

third span where the moment is maximum. Fig 4,5 depicts 

the mode and location of failure of a beam, 

containers. 

Two types of X-ray diffraction equipment were used 

in obtaining the diffractograms, the Siemens Diffracto-

meter Unit, and an APD-360 Phillips Automated X-ray 

WN 



ii  

Fiqu,-ce 4.5: 	Mode and failure location of the beaR 



powder diffractometer were used in obtaining the diffrac-

tograms. Thus, two methods of specimen preparations were 

used: (i) the bottom of a 50 ml beaker was covered with 

the soil finer than sieve No, 200. Distilled water was 

added to a volume of 40 ml, The soil water mixture was 

exposed to ultrasonic vibrations for five minutes. The 

sample was then left to settle for 1½ to 2 hours, to 

allow materials coarser than 2 micron to settle. The 

finer material in suspension was then drawn off with an 

eye dropper and loaded on a 37 x 37 mm glass plate. The 

sample was then left to dry overnight at room tempera-

ture, (ii) grooved glass slides were packed with the 

shale-stabilizer powder finer than sieve No. 200, 

The sedimented slides were run in the Siemens 

diffractometer unit and the powder slides were run in the 

APD-360 Phillips powder diffractometer. The rate of 

scanning used with the Siemens diffractometer was a 

1 1 (20) per minute. Other data pertinent to this 

equipment include: KV = 35V, MA = 18, rate meter = 2x10 4  

cycles per second, standard deviation of 2 percent and 

chart speed of 1cm per minute. The rate of scan on the 

Phillips powder diffractometer was 2 degrees per minute. 

Diffractions were run to 45 degrees. The intensity of 

the powder diffractograms below the 20 degree (20) scan 

were attenuated to give better peaks. 
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to 100 percent relative humidity. The grain size distri-

bution curves of raw and stabilized shale are presented 

in Figure 5,1, The gradation curves depict that all sta-

bilizers substantially reduced the silt-and clay-size 

fraction of the shale. The aggregation index (Al) as de-

fined by Jha (1977) is calculated for the different sta-

bilizersin order to* compare the agglomeration or crowd-

ing of the clay - size fraction. This term is mathemati-

cally defined as: 

Al =2ercent noriclay-size material of shale and stabilizer 
percent nonclay-size material of raw shale 
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TABLE 5.1: ENGINEERING PROPERTIES OF RAW AND 

STABILIZED SHALE 

Type of Mix 	< 21 < 	531 Silt Sand L.L. P.I. 
Clay,% Clay,% % % % % 

Raw Shale 46 53 48 6 50 31 

Shale + 3% lime 9 12 19 72 41 11 

+ 6% lime 4 7 18 78 43 9 

+ 9% lime 2 2 11 87 47 8 

Shale + 10% cement 1 2 11 88 NP NP 

+ 14% cement 1 2 13 86 NP NP 

+ 18% cement 0 0 14 86 NP NP 

Shale + 20% fly ash 8 13 32 60 37 13 

+ 25% fly ash 6 10 30 64 39 12 

+ 30% fly ash 6 12 36 58 38 13 

Shale + Combinations 

6%C+3%L+22% FA 0 0 16 84 NP NP 

6%C+4%L+18% FA 0 0 12 88 NP NP 



FOR 28 DAYS, 90 to 100 PERCENJ 

Type of Mix 	 Aggregation Index 

Raw Shale 	 100 

(6%C + 4%L + 18%FA) 	 185 



In terms of the aggregation index, the effectiveness 

of adding 14 percent cement (Al = 1,83) to the shale is 

equivalent to the conjunctive addition of 6 percent ce-

ment, 4 percent lime and 18 percent fly ash (Al = 1.85). 

Similarly and, as evidenced from Table 5.2, 25 percent 

fly ash is comparable to 6 percent lime. The gradation 

curves for all shale-lime, shale-fly ash, shale-cement 

and shale-conjunctive mixes are included in Figures B.1 

through B.4, Appendix B. 

Atterberg Limits. As reported in Chapter III, the shale 

was very clayey and had high plasticity. All stabilizers 

lowered the plasticity index of the shale significantly. 

Cement and conjunctive stabilization rendered the soil 

nonplastic. This is in agreement with the gradation re-

sults, because these two cases gave maximum reduction of 

the clay-size fraction which also infers higher aggrega-

tion. Lime stabilization reduced the plasticity index 

from 31 percent to 10 percent while fly ash stabilization 

lowered it to 12 percent. The gradation and plasticity 

data of the stabilized shale, cured for 28 days at 70°F 

and 90 to 100 percent relative humidity are included in 



Type of 	 Optimum Moisture 	Maximum Dry 
Mix 	 Content, % 	 Density, pc --" 

Raw Shale 	 18.5 	 101,0 

Shale + 3% lime 18.4 99,5 

+ 6% lime 19.3 97,3 

+ 9% lime 21,3 94.8 

Shale + 10% cement 18,5 101.5 

+ 14% cement 19.0 103.0 

+ 18% cement 18,0 102,5 

Shale + 20% fly ash 18,8 104,5 

+ 25% fly ash 19,0 104,3 

± 30% fly ash 18,0 105,0 



tially. The addition of cement and fly ash produced 

little change in the optimum moisture content of the 

shale but increased the maximuin dry density from 101 pcf 

to 103 and 104,3 pcf, respectively, on the other hand, 

the addition of lime lowered the maximum dry density to 

97.3 pcf and increased the optimum moisture content. Fly 

ash caused the highest increase of maximum dry density. 

The moisture-density curves for the raw and stabilized 

shale are included in Figures C.? to C.7 in Appendix C. 

Dry and Immersed Strengths. The unconfined compressive 

strength test results are presented in Tables D.1 through 

D.5 of Appendix D. The purpose of the immersed strength 

evaluations was to establish a measure of the durability 

or permanence of the strength gain resulting from stabil-

ization Table D.1 presents the strength levels attained 

by the various amounts for different stabilizers used. 

In general, the higher the amount of the stabilizer 

Added, the higher the strength gain. However, the rate 

of strength increase is reduced at higher soil-stabilizer 

proportions. For instance, the addition of 3, 6 and 9 

percent lime gave strengths of 137, 193 and 200 psi, 

respectively. 

The suitability and amount of stabilizer required to 

impart an acceptable degree of amelioration to the shale 

was based on the 28 day immersed strength and the plas-

ticity index of the shale-stabilizer mixes. In cement 
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fell below those for the cement and fly ash stabilized 

shale. Both the 70°F and 90°F cured specimens gained 

strength with aging. At the end of 180 days, the dry 

strength of the specimens cured at 70°F was 210 psi, a 

value almost twofold the strength at 28 days (107.6 psi). 

Higher curing temperature (90°F) resulted in higher 

strengths than those cured at 70°F; also, the rate of 

strength gain with aging was higher when curing took 

place at higher temperature. Immersion of specimens in 

water for 24 hours, reduced the strength. Specimens 

curved at 70°F lost about 36 percent of their strength 

while those cured at 90°F, lost about 33 percent of their 

strength. Thus, the 90-day dry strength of the 70°F and 

90°F cured specimens (129.3 and 187,7 psi, respectively) 

was reduced by approximately 20 percent upon soaking in 

water. This seems to suggest that the adverse effect of 

immersing specimens in water for 24 hours is less with 

longer curing periods. Figure 5.2 presents the relation-

ship of strength and curing time of lime stabilized 

shale. 

Fly Ash Stabilization. 	Fly ash stabilization of the 

shale resulted in higher dry and immersed strengths than 

lime did. The 28-day dry strength values for the 70°F 

and 90°F curing conditions were 193.8 and 208 psi, re-

spectively, and after 180 days of curing the correspond-

ing values were 257 and 409.9 psi, Also, with tempera- 
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Figure 52: Dry and immersed strength of 6 percent 
lime stabilized shale, cured at 70 F and 
90 °F, 90 to 100 percent relative humidity 



ture kept constant at 70°F the strength increase from 28 

to 180 days was lower (257-193.8 = 63.2 psi) than at 

90 ° F (409.9-208 = 201.9 psi). Thus, the rate of strength 

increase of fly ash stabilized shale was higher for high-

er curing temperature. Immersion in water for 24 hours 

reduced the strength of the specimens. 	The average 

strength loss for specimens cured at 70°F was 38 percent, 

and for those cured at 90°F it was 28 percent. Fly ash 

stabilized shale, therefore, seems to be less adversely 

affected by soaking in water when cured at higher temper- 

atures. 	Figure 5.3 presents the dry and immersed 

strength levels of the fly ash stabilized shale, 

Cement 	Stabili z ation. 	The 	unconfined 	compressive 

strength values of cement stabilized shale were much 

higher than the lime and fly, ash stabilized shale 

strength values. In fact, the 28-day dry strength of ce-

ment stabilized shale, cured at 70°F was 580 psi which is 

higher than the 180-day, 90°F cured dry strength of lime 

stabilized shale (289 psi) and of the fly ash stabilized 

shale (409,9 psi). As presented in Table D.4, cement 

stabilization increased strength values with higher cur-

ing temperature and longer curing periods. All specimens 

experienced loss in strength upon soaking in water for 24 

hours, However, those cured at 70°F showed slightly 

higher strength loss (33 percent) than those cured at 

90°F (30 percent). The immersed strengths of cement sta- 
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bilized shale were substantially higher than the immersed 

strengths of lime and fly ash stabilized shale. Figure 

5,4 shows the dry and immersed strengths of cement sta-

bilized shale. 

Conjunctive Stabilization. Conjunctive use of cement, 

lime and fly ash resulted in very high dry and immersed 

strength values. The 28-day strength of the 70°F and 

90°F cured specimens were lower than their cement stabil-

ized counterparts. With prolonged curing, however, the 

90 and 180-day conjunctive stabilization gives higher 

strengths (749.4 and 817,6 psi) than cement stabilization 

(630 and 761,2 psi). As with the other stabilizers, 

higher curing temperature led to the development of high-

er strength. Conjunctively stabilized specimens were 

more durable than their cement, lime and fly ash counter-

parts. Specimens lost only 13 to 16 percent of their 

strength as a result of immersion in water for 24 hours. 

Figure 5.5 depicts the dry and immersed strengths of con-

junctively stabilized shale. 

In examining the strength values obtained, it is 

possible to make a few general remarks, covering all sta-

bilized forms of shale, about the dependence of strength 

on temperature and time. As discussed in the previous 

sections, the unconfined compressive strength values of 

the shale-stabilizer mixes increased when cured for long-

er periods and at higher temperature. On the basis of 
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U.0 = 244X + 091X 2 	11245 	 (51) 

U.C. = 233X 1  + 078X2  + 3855 	 (52) 

U.C.= 552X1  + 099X 2  + 14008 	 (53) 

U.C.= 475X1  + 2.34X 2  + 9565 	 (54) 

where 

U.C. = unconfined compressive strength, psi 

= curing temperature, degrees Fahrenheit 

= curing time, days 



days, but these curing conditions can not be expected to 

result in similar strength levels. And it appears that 

the notion of degree-day can be applicable within reason-

able ranges of temperature 40 to 120°F and time, 3 to 360 

Figure 5,6 shows the graphs of the strength versus 

curing condition for the shale-stabilizer mixes. In all 

cases the increase in strength was higher for lower 

degree-days and flatten out for higher degree-day 

temperatures. A fact worth noting also is the rate of 

strength increase for the cement and fly ash stabilized 

shale. Up to about 2400 degree-days (i.e. 28 day 

curing), cement stabilized shale exhibits higher strength 

than the conjunctively stabilized shale. However, at 

higher degree-days, the conjunctively stabilized shale is 

stronger. One possible explanation may be that the fly 

ash in the conjunctive stabilization was slow in reacting 

with the shale initially. Hence, the strength gain was 

retarded but over longer curing periods, i.e., higher 

degree-day temperatures, the reaction proceeded normally 

and higher strength was attained. 

"Wet-Dry" Cycles. Following curing, the specimens were 

subjected to a number of "wetting" and "drying" cycles. 

The unconfined compressive strength values were then 

determined at the end of 5 and 15 cycles. The strength 

data of all shale-stabilizer, curing temperature and 
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curing time combinations are presented in Tables 5.4 

through 5.7. This process of cyclic wetting and drying 

substantially 	raised 	the 	unconfined 	compressive 

strengths. At the end of 5 cycles of "wetting" and "dry-

ing", the "dry" strengths of shale-lime mixes cured at 

70°F and 90°F for 180-days were 364 and 387 psi, respec-

tively. For the corresponding conditions shale-fly ash 

gave 356 and 571 psi, shale-cement 1363 and 1441 psi, and 

shale-conjunctive 1126 and 1457 psi, respectively. 

Triaxial Compressive Strength Test. 	As presented in 

Chapter IV, the strength parameters, cohesion (c) and 

angle of internal friction () of the raw and stabilized 

shale were determined under the triaxial compressive 

testing. To arrive at the cohesion and at the angle of 

internal friction values the K  line was plotted using 

the p and q values instead of using the conventional Mohr 

circle. The advantages in using the p-q diagram are (i) 

it is easier to fit a straight line (K f ) between a number 

of data points than to draw a tangent line through close- 

ly packed circles, (ii) for small lateral stresses and 

high normal stresses, it is easier to scale the cohesion 

intercept. A typical p-q diagram is shown in Figure 5.7, 

The raw shale manifested a cohesion of 11,9 psi and an 

angle of internal friction of 32.9 degrees. Lime stabil-

ization increased both the cohesion and the angle of in-

ternal friction. The former varied from 9 to 32.6 psi 



TABLE 5,4: UNCONFINED COMPRESSIVE STRENGTH (psi) OF 6 PERCENT 

LIME STABILIZED SHALE SUBJECTED TO "WET" AND 

"DRY" CYCLES 

Curing Time, 	 70°F 90°F 

Days 5Cycles 15 Cycles 5Cycles 15 cycles 

"Wet" 	it "Wet" "Dry" "Wet" "Dry 9  "Wet" "Dry" 

28 165 	214 230 299 139 348 177 324 

90 244 	332 134 296 206 428 236 267 

180 288 	364 191 358 249 387 208 319 
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TABLE 55: UNCONFINED COMPRESSIVE STRENGTH (psi) OF 25 

PERCENT FLY ASH STABILIZED SHALE SUBJECTED 

TO "WET" AND "DRY" CYCLES 

Curing Time, 70°F 90°F 

Days 5Cycles 15 Cycles 5Cycles 15 Cycles 

"Wet" "Dry" "Wet" "Dry" t "We" "Dry" "Wet" "Dry" 

28 446 738 387 556 229 382 238 413 

90 371 469 290 451 228 588 200 377 

180 223 356 211 351 316 571 222 486 
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TABLE 5.6: UNCONFINED COMPRESSIVE STRENGTH (psi) OF 

14 PERCENT CEMENT STABILIZED SHALE SUBJECTED 

TO "WET" AND "DRY" CYCLA 

90 618 989 570 735 484 1013 536 1008 

180 618 1363 479 732 704 1441 1017 1097 



TABLE 57: UNCONFINED COMPRESSIVE STRENGTH OF 

CONJUNCTIVELY STABILIZED SHALE SUBJECTED 

TO "WET" AND "DRY" CYCLES 

Curing Time, 	 70°F 
	

90°F 

Days 
	

5 Cycles 	15 Cycles 	S Cycles 	15 Cycles 

"Wet" 	"Dry'1  "Wet" "Dry" "Wet" "Dry" "Wet" 	"Dry" 

28 352 621 314 436 718 888 630 774 

90 427 758 537 649 74 1005 677 975 

180 707 1126 526 855 1248 1457 539 960 
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Figure 57: Illustrative p q diagram 



and the latter ranged from 50.4 to 62.2 degrees. In many 

cases, immersing the specimens in water for 24 hours 

reduced cohesion. The 90°F curing resulted in higher 

angles of internal friction and lower cohesion than the 

70°F curing. 

Addition of fly ash (25 percent) contributed to the 

attainment of higher cohesion and angle of internal fric-

tion. The average cohesion for specimens tested dry was 

19.1 psi and for immersed specimens it was 18,5 psi. The 

average angle of internal friction was also lower for the 

immersed specimens (55.6 1 ) than the dry tested specimens 

(58,3 0 ). The average cohesion and angle of internal 

friction of the shale-fly ash were higher than those of 

the shale-lime. 

Cement (14 percent) imparted higher cohesion and 

angle of internal friction than either lime or fly ash. 

The dry tested specimens for 28 and 90 days gave an aver -

age cohesion of 22 psi and average angle of internal 

friction of 57.6 1 , while the immersed specimens gave an 

average cohesion of 28,4 psi and angle of internal fric-

tion of 58.6 0 . The cement stabilized shale, thus, under 

went an increase in cohesion and angle of internal fric-

tion upon immersion. After 180 days curing, the speci-

mens reached strength levels above the capacity of the 

triaxial equipment. Conjunctive stabilization resulted 

in very high triaxial compressive strength values. The 
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TABLE 5.8: STRENGTH PARAMETERS OF 6 PERCENT 

LIME STABILIZED SHALE 

0' 

	

Dry 	 Immersed 

	

Cohesion, 	Angle of Cohesion, Angle of 
C 	Internal 	C 	Internal 

(psi) 	Friction, 	(psi) 	Friction, 
(degrees) 	 1 (degrees) 

Curing 
	

70°F 
time, 
days 
	 Dry 	 Immersed 

Cohesion, 	Angle of Cohesion, 	Angle of 
C 	Internal 	C 

	
Internal 

(psi) 	Friction, 	(psi) 
	

Friction, 
4 (degrees) 
	

fl  degrees) 

0 
Lj 

28 9 56.4 14 41.4 16.6 53 10,1 42 

90 19.2 58,7 32,6 52,2 17.2 60,4 10.8 62.2 

180 25,1 50,4 16.5 50.4 14,5 56,4 5,9 59,7 



C) 

Curing 
time, 
days Dry 	 Immersed 

Cohesion, 	Angle of Cohesion, 	Angle of 
C 	Internal 	C 	Internal 

(psi) 	Friction, 	(psi) 	Friction, 
(degrees) 	 4 (degrees) 

	

Dry 	 Immersed 

	

Cohesion, 	Angle of Cohesion, Angle of 
C 	Internal 	C 	Internal 

(psi) 	Friction, 	(psi) 	Friction, 
4(degrees) 	 4(degrees) 

28 168 555 27.5 43.4 12.5 66.4 

90 9,0 63,7 159 50,9 28,5 	57 	17,6 63 

180 20,5 54.1 14 60 20,7 	61.1 	23,4 50,1 



TABLE 510: STRENGTH PARAMETERS OF 14 PERCENT 

CEMENT STABILIZED SHALE 

Curing 
time, 
days 

70°F 90°F 

- 	Dry 	 Immersed 
Cohesion, Angle of Cohesion, Angle of 

C 	Internal 	C 	Internal 
(psi) 	Friction, 	(psi) 	Friction, 

q(degrees) 	 4' (degrees) 

Dry 	 Immersed 

Cohesion, 	Angle of Cohesion, 	Angle of 

C 	Internal 	C 
	

Internal 
(psi) 	Friction, 	(psi) 
	

Friction, 
fl  degrees) 
	

(degrees) 

	

28 	 32.7 	50.1 	 22.2 	475 	13.6 	54.1 

	

90 	20,7 	61.1 	40.7 	62.2 	23,0 	64,2 	26,5 	67,8 

	

180 	NI) 	 ND 	 ND 	 NI) 	 ND 	 ND 	 ND 	 ND 

ND = Not Determined 

CD 
01 



* 
TABLE 511: STRENGTH PARAMETERS OF CONJUNCTIVELY STABILIZED SHALE 

• S 	 90°F 
IwI1I- 

	

Dry 	 Immersed 

	

Cohesion, 	Angie of Cohesion, Angle of 
C 	Internal 	C 	Internal 
(psi) 	Friction, 	(psi) 	Friction, 

4 (degrees) 	 0(degrees) 

Dry 	 Immersed 
Cohesion, 	Angle of Cohesion, 	Angie of 

C 	Internal 	C 
	

Internal 
(psi) 	Friction, 	(psi) 

	
Friction, 

4 (degrees) 
	

4 (degrees) 

H 	28 	ND ND 3L1 67.3 	 ND 	 ND 	25.3 	64.2 
Q 

90 	ND ND 29,8 68,3 	 ND 	 ND 	29,1 	69,9 

180 	ND ND ND ND 	 ND 	 ND 	ND 	 ND 

ND = Not Determined 

* 	(8 Percent cement + 4 percent lime + 18 percent flyash) 



of rupture and modulus of elasticity. Compressive and 

flexural strength and modulus of elasticity values from 

axial and flexural tests are also correlated. 

Load Deflection. Four beams were tested for each shale-

stabilizer mix. The data points of the load-deflection 

curves of the four specimens fell very close to each 

other; thus, the average was plotted. Figures E.1 

through E,4 in Appendix E present the load versus deflec-

tion curves. These Figures suggest that shale-stabilizer 

mixes containing large amounts of stabilizer require high 

loads to undergo the same deflection as those containing 

lower amounts of stabilizer. The slope of the load de-

flection curves in all cases, increased at lower loads 

and was constant at higher loads. 

Modulus of Rupture. The maximum load required to fail 

each beam in bending was used to calculate the maximum 

moment within the middle third span. The elastic bending 

method was adopted to calculate the modulus of rupture 

(flexural stress) from the following relationship: 

km 



PL 
MR=- 

bd2  

The modulus of rupture values for all the various 

stabilizers used are reported in Table 512 	Four speci 



FliIiIi  - 11:15 	 NQ 

RUPTURE VALUES OF STABILIZED SHALE, CURED 

FOR 28 DAYS AT 70°F, 90 to 100 PERCENT 

RELATIVE HUMIDITY 

+ 9% lime 204.0 36.5 

Shale + 15% fly ash 160.0 26.7 

+ 20% fly ash 177.8 41,1 

+ 25% fly ash 193,8 47.7 

Shale + 10% cement 313.0 73.2 

+ 14% cement 515.0 93.7 

+ 18% cement 580,0 101.4 

Shale + 18% fly ash + 8% 
cement + 4% lime 476,6 142.7 

0 
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regression (R=0,98) between the modulus of rupture and 

the unconfined compressive strength values of the stabil-

ized shale resulted in Equation 5.6. 

MR = 8,37 + 0,168a 	 (5,6) 

where 

MR = modulus of rupture, psi 

= unconfined compressive strength, psi 

Modulus of Elasticity. The flexural modulus of elastic-

ity values of the stabilized shale beams were calculated 

from the following relationship: 

El = 5PL 3 	 (5,7) 
324Y 

where 

E = modulus of elasticity, psi 

I = moment of inertia, in  

P = load, pounds 

L = span length, inches 

Y = deflection, inches 

These values ranged from 3 x IO to 6 x 10 psi. The 

modulus of elasticity values in compression were also 

calculated within the initial elastic region of the 

stress-strain curves. These values varied from 1.4 x 10 4 

to 5.5 x 10 psi. Both the flexural and compressive 

modulus of elasticity values are reported in Table 5.13. 

111 



AT 70°F, 90 TO 100 PERCENT RELATIVE 

HUMIDITY 

Type of Flexural Compressional 
Mix Modulus of Modulus of 

Elasticity, Elasticity, 
(psi) (psi) 

Shale + 3% lime 2782 13636 

+ 6% lime 4178 17708 

+ 9% lime 4616 21495 

Shale + 15% fly ash 3551 18182 

+ 20% fly ash 4197 25974 

+ 25% fly ash 3877 22989 

Shale + 10% cement 4632 36765 

+ 14% cement 5504 54545 



Equation 5.8 was derived to express the flexural mod-

ulus of elasticity in terms of the compressive modulus of 

elasticity. 

E  = 2697.8 + 0,057 E 	 (5.8) 

where 

E f  = flexural modulus of elasticity, psi 

E c = compressive modulus of elasticity, psi 

Application of Beam Strength Results: 

The principal objective in the design of pavements 

is to reduce subgrade stress and pavement deflections by 

either incorporating more rigid upper layers and/or by 

increasing the thicknesses of existing layers. These 

features tend to minimize pavement distress associated 

with subgrade shear and densificatiori due to applied 

loads. However, an important fact that must be realized 

is that even though the stiffer layers reduce the risk 

associated with a subgrade mode of distress, the presence 

of a stiff layer brings about an increase in the tensile 

stress magnitude at the bottom of the layer as well as an 

increase in the horizontal shearing stress (Yoder, 1975). 

Hence, a design analysis is required to ensure that both 

the flexural and the shearing resistance of the stiff 

layer are higher than the high stress conditions that 

exist. 



An example of the application of this design 

analysis employing the modulus of rupture values for the 

assumed field conditions is presented below: 

Problem Statement. A pavement structure with an eight 

inch stabilized base and a four inch bituminous surface 

is to carry medium volume traffic, and the design vehicle 

properties are, contact radius a = 6 inches and contact 

pressure p = 100 psi. The structural properties of the 

pavement materials are given below. Investigate the 

adequacy of the pavement using the stress method. 

a le
7 p  

Subgrade, E 3  = 10,000 psi 

h 3  = 



Solution.  From Yoder's charts (1975), pp. 74-75 

w A 	
a 	611 	

0.75 
2 

K 2  = 	= 	
2 

10,000 

The tensile to vertical stress ratio when 

A = 0,75 and K 2  = 2 is 0,2 

therefore, tensile stress, 	= 0.2? = 

0,2x100 = 20 psi 

(ii) K 1  = 	= 70,000 

18,000 

depth = h 1  = 4" 

The ,horizontal shear stress to vertical 

stress, when K 1  = 4 and h = 4" is 0.17 

therefore, horizontal shear stress., 

T  rz = 0.17x100 = 17 psi 

WE 



It is important to note that the general remarks and ob-

servations presented herein are from micrographs of a 

very small area of samples and should not be extrapolated 

to form a basis for statistical inferences, 
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TABLE 5.14: VOID AREAS FROM MICROGRAPHS OF RAW 

AND STABILIZED SHALE 

Type of Area of Voids as Percent of Total Area 

Mix 70°F 90°F 

28 90 180 28 90 180 

Raw Shale 14 

Shale + lime 2.2 3,7 2 2.3 5.0 4,5 

Shale + fly ash 2.1 1.8 0.6 2.0 1,7 1.8 

Shale + cement 1.4 1,5 - 1,9 1,3 - 

Shale + conjunctive 1.1 0.7 1,1 1.5 - 1.1 
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Figure 5.14: 	Micrograph of fly ash stabilized shale 
(25%, 	70°F, 180 days) (a) general 

(b) details identified 
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Figure 515: fl1crographs of fly ash stabilized shale 
(25%, 70°F, 	180 days) (a) general 

(b) details identified 
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Figure 5,16: Micrographs of fly ash stablished shale 
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Figure 5.17: 	MicrograpL of cement stabilized shale 
(a) 14%, 70 0F, 90 days 
(b) 14%, 90 0F, 90 days 
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established thus far. Figure 519 is a scatter plot of 
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Figure 5.19: Unconfined compressive strength response to void area 





TABLE 5,15: 	CLAY MINERAL PEAKS OF RAW AND STABILIZED 

SHALE, CURED AT 70°F, 28 DAYS, 90 TO 100 

PERCENT RELATIVE HUMIDITY 

Clay Mineral Shale 	Shale Raw 	Shale Shale 

+ + + 	 + 

Peak Shale 	Lime Fly Ash Cement 	Conjunctive 

Mixed Layer N 	N N N 	 N 

I<aolinite N 	- N - 	 - 

Illite N 	N N N 	 N 

N 	= 	presence of mineral peak 

- 	= 	absence of mineral peak 
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TABLE 5,16: 	MIXED LAYER CRYSTAL RESPONSE TO STABILIZATION 

Type of Area Peak Peak 

Mix Base Width Height Under Peak 
cpm 	. deg,* 

Raw Shale 0,32 42 6.6 

Shale + 6% lime 
70°F, 90 days 0.31 37 5.7 

90°F, 28 days 0.32 39 6.3 

90°F, 90 days 0.31 36 5.5 

Shale + 25% fly ash 
70°F, 28 days 0,31 35 5,3 

70°F, 90 days 0.42 31 6,4 

90°F, 28 days 0.25 35 4.4 

90°F, 90 days 0.39 31 5.9 

Shale + 14% cement 
70°F, 28 days 0,36 34 6.0 

70°F, 90 days 0.31 34 5.3 

90°F, 28 days 0.27 29 3.9 

90°F, 90 days 0.37 33 6.1 

Shale + Conjunctives 
70°F, 28 days 0.42 17 3.6 

70°F, 90 days 0,19 15 1.4 

90°F, 28 days 0.42 16 3.3 

90°F, 90 days 0.43 21 4.4 

* 	Counts per minute degrees 
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Figure 5,20: Strength response to peak area reduction. 



Diffractograrns of the stabilized shale were examined 

for possible new crystals. The diffractcgrams from the 

Siemens and the Automated Phillips diffractometer unit 

did not provide identifiable new crystals peaks. There-

fore, the search for new crystals was supplemented by the 

Automated Phillips diffractogram algorithm data. The da-

ta on the identified crystals is reported in Tables F.? 

through F.16, Appendix F. The reaction products of the 

stabilized shale are reported in Tables 5.18 through 

5.20, 

Shale-Lime Reaction Products. Lime stabilization result-

ed in the formation of new crystals at various basal 

spacings. Calcium aluminum silicate (Ca 2 Al 2 S1O 2 ) peak 

was present at 3.86k d-spacing. 	Two forms of calcium 

aluminum silicate hydrate (CASH) are formed at d-spacing 

of 3.12k (CaA1SiO 2 H 2O) and 2.99k, 2.93L 2.84k 

(CaAl 2 Si 7 O 18 6H 2 O). 

In some cases, crystalline peaks that were formed 

after 28-days curing were absent in the 90-day diffracto- 

137 



TABLE 5,17: 	ILLITE LAYER CRYSTAL RESPONSE TO STABILIZATION 

Type of Peak Peak Area 

Mix Base Width Height Under Peak 
cpin 	deg,* 

Raw Shale 0.31 12 1.9 

Shale + 6% lime 
70°F, 90 days 0,36 9 1.6 
90°F, 28 days 0.4 6 1.2 

90°F, 90 days 0.39 7 1.4 

Shale + 25% fly ash 
70°F, 28 days 0.30 9 1.4 
70°F, 90 days 0,38 5 1.0 
90°F, 28 days 0.34 9 1.5 
90°F, 90 days 

Shale + 14% cement 
70%F, 28 days 0.31 6 0.9 
70°F, 90 days 0,34 7 1,2 
90°F, 28 days 0,42 5 1,1 
90°F, 90 days 0.31 7 1.1 

Shale + Conjunctives 
70°F, 28 days 0,31 7 1.1 
70°F, 90 days 0.33 9 1.6 
90°F, 28 days 0.30 7 1.0 
90°F, 90 days 0.37 6 1.1 

* 	Counts per minute degrees 
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grams. It is unlikely that the crystals would be de-

stroyed due to further curing. Possibly the masking of 

the crystals may be more with more reaction products 

forming or that the degree of reproducibility of X-ray 

diffractions may not be high. 

Shale-Fly Ash Reaction Products. Fly ash stabilization 

resulted in more new crystal formations than lime did. 

Table 5,18 presents the new crystals indentified and the 

extent of crystallization as measured by the area under 

each crystal peak. Tetracalcium aluminum silicate hy-

drate (C 4  ASH)was identified at 5.62k d-spacing, calcium 

aluminum silicate (CAS) at 3.86L calcium silicate hy-

drate (CSH) at 2.77R and tricalcium silicate (C 3 S) at 

2. 6 9R. 

No consistent pattern seems to be present for the 

AUP with re'spect to curing time and temperatures. How-

ever, on the basis of the sizes of AUP, the degree of 

crystallization was in the following order: tricalcium 

silicate was highest followed by calcium silicate hy-

drate, calcium aluminum silicate, tetracalcium aluminum 

silicate hydrate. 

Shale-Cement Reaction Products. The new crystals formed 

in the cement stabilized shale were mostly hydrated forms 

of calcium aluminum and calcium silicate. Calcium alum-

inum silicate (3.86), calcium silicate hydrate (2.77) 

and calcium aluminum silicate hydrate (2,6029i) were pre- 
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TABLE 518: SIZES OF NEWLY FORMED CRYSTAL PEAKS OF 
SHALE-FLY ASH MIXES 

AUP 

Curing Condition C 4ASH, CAS, CSH, C 3 5 

(562A° ) (386) (277) (269) 

70°F, 28 days 1.32 L73 LOS 342 

90°F, 28 days - 223 073 319 

70°F, 90 days 075 2,67 - 3,78 

90 ° F, 90 days 1,75 163 378 3,05 
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TABLE 5,19: SIZES OF NEWLY FORMED CRYSTAL 

PEAKS OF SHALE-CEMENT MIXES 

AUP 
Curing Condition,  

CAS, CSH, CASH, 

(3.86k) (27 7) (260) 

70°F, 28 days 189 558 5,61 

90°F, 28 days 2.04 2,25 4,44 

70°F, 90 days 2,30 360 3,63 

90 ° F, 90 days 1,23 3,97 189 
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TABLE 520: SIZES OF NEWLY FORMED CRYSTAL PEAKS 

OF SHALE-CONJUNCTIVE MIXES 

AUP 

Curing Condition, C4ASH, CAS, CSH, C3 S, CS, 

(5,59) (3.86) (2.77k) (2.69) (2,56) 

70°F, 28 days 0.60 1,65 5.47 2.18 6.25 

90 0 F, 28days 2.08 2.90 2.36 4.75 

70°F, 90 days 0.94 1.84 2.59 1.32 4,81 

90°F, 90 days 0.64 1,48 2.54 2.88 5.2k  
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 



The former gave an Al of 1,83 and 1,85, 

respectively, and the latter an Al of 1.78 and 

1.74, respectively, 

4. Cement and conjunctives rendered the shale 

nonplastic while lime and fly ash 

stabilizations lowered the plasticity index to 

10 and 12 percent, respectively. 

5. Lime stabilization lowered the maximum dry 

density and increased the optimum moisture 

content of the shale while cement and fly ash 

stabilizations increased the maximum dry. 

density and produced little change in the 

optimum moisture content. 

6. All forms of stabilization resulted in a 

substantial increase in unconfined compressive 

strength. Strengths were higher when specimens 

were cured at higher temperatures and for 

longer curing periods. The rate of strength 

gain was higher when cured at higher 

temperatures. 

7. Conjunctive stabilization attained the highest 

unconfined compressive strength values followed 

by cement, fly ash, and lime, in that order. 

8. The permanence of strength as measured by 

unconfined compressive test after immersion in 

water for 24 hours was highest in conjunctively 
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of elasticity in compression by the equation: 

E f = 2697,8 + 0057E 
c 

15. Micrographs of stabilized shales reveal a dense 





3. Field implementation is expected to yield 

observations that, in all likelihood, will 

deviate 	from 	laboratory 	behavior. 	The 

deviations will accrue, for example, when No, 4 

material is used instead of No, 10 or when 

delayed compaction in the field assumes 

dimensions different than those in the 

laboratory. The assessment of these deviations 

is essential for purposes of formulating design 

procedures and specifications. 

4. Laboratory studies are performed under well 

controlled conditions. Differences in 

stabilization effectiveness may also result, 

primarily in terms of strength and durability, 
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from less strict requirements employed in the 

field. Accordingly, a program of assessing 

the degree of field quality control and 

assurance should be initiated so that such 

statistical parameters as variability 

tolerances could be evaluated and service 

related to the performance of stabilized shale 

pavements 

5. 	Associated with field implementation there 

should be improvised a program leading to the 

development of a pavement design. Accordingly, 

the design should have the elements of a time 

continuous method wherein changing properties 

of the stabilized material below the highway 

pavement could be taken into account. Starting 

from the time of opening the highway to 

traffic, samples from the highway construction 

projects should be obtained at periodic 

intervals to study the effects of weathering 

and traffic stresses on the durability and 

other predictive characteristics of the 

stabilized shale materials. The data obtained 

from the present study could then be correlated 

with and/or modified according to the field 

data. 
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TABLE D.1: DRY AND IMMERSED STRENGTH OF STABILIZED 

SHALE CURED FOR 28 DAYS AT 70°F, 90 To 

Type of Mix Unconfined Strength, psi 

Dry Immersed 

Raw Shale 73 - 

Shale + 3% lime 137 89 
+ 5% lime 173 98 
+ 6% lime 193 103 
+ 9% lime 204 154 

Shale + 20% fly ash 222 143 
+ 25% fly ash 243 151 
+ 30% fly ash 250 158 

Shale + 10% cement 313 254 
+ 12% cement 592 480 
+ 14% cement 619 428 
+ 18% cement 696 642 

Shale + conjunctive 



STABILIZED SHALE, CURED FOR 28, 90 AND 

180 DAYS AT 70°F AND 90°F, 90 TO 100 

70 	 180 	 209.5 	126.5 

90 	 28 	 116.0 	74.2 

90 	 90 	 187.7 	167.4 

90 	 180 	 289.0 	140.6 



TABLE D3: DRY AND IMMERSED STRENGTH OF 25% FLY ASH 

STABILIZED SHALE, CURED FOR 28, 90 AND 

180 DAYS AT 70°F AND 90°F, 90 TO 100 

PERCENT RELATIVE HUMIDITY 

70 28 193.8 132,2 

70 90 386,6 257 

70 180 257 134.2 

90 28 208 169 

90 90 359.5 177,3 

90 180 409.9 261 



MEN  9.1  My:  a  599.1 OWN* Iffil 

STABILIZED SHALE, CURED FOR 28, 90 AND 

180 DAYS AT 70°F AND 90 ° F, 90 TO 100 

Curing Temperature, Curing Time, Dry Immersed 

OF Days Strength, Strength, 

psi psi 

70 28 580 3001 

70 90 630 4133 

70 180 6647 5453 

90 28 610 3238 

90 90 7612 6313 

90 180 834.9 624 



70 180 755,7 721,4 

90 28 490.3 419.0 

90 90 817.6 710.8 

90 180 958.7 777.7 
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Figure F 13 X-ray diffractogram of cement stabilized shale 
(14%, 90 0F 90 days) 
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TABLE F.1: CRYSTALLINE DATA OF RAW SHALE 

28 d-Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

8.81 10.02 0.31 24 0,64 
13,82 6,40 0.18 35 0.93 
17,70 5.01 0.30 6 0.15 
19,74 4.49 0.32 83 2,22 
20.82 4.26 0.13 697 18.67 
21.95 4,05 0.14 112 3.01 
23.46 3.79 0,20 23 0.62 
24,01 3.70 0.23 49 1,31 
24.29 3.66 0.13 21 0.57 
25,40 3.50 0.38 30 0.81 
26.60 3.35 0.16 3733 100.00 
27.40 3.25 0.19 132 3.54 
27.85 3.20 0,15 458 12.27 
29.38 3,04 0.21 79 2.12 
30.82 2.90 0.25 125 3.36 
4.89 2.57 0.44 98 2.63 

36.49 2.46 0.16 346 9.27 
37,71 2.38 0.24 22 0.59 
38.51 2.34 0.32 3 0,09 
39.42 2,28 0,17 388 10.40 
40.24 2.24 0,25 149 3.99 
41.03 2.20 0.27 32 0,87 
42.41 2,13 0.19 306 8.20 
43.13 2,10 0.11 35 0.93 
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2e d-Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

8.81 10.04 0,36 18 0,60 
17,77 4,99 0.31 11 0.35 
19.74 4,49 0,31 74 2.39 
20.84 4.26 0,14 454 14,68 
22,01 4.04 0,25 40 1,28 
22,93 3,87 0.32 28 0,91 
23.51 3.78 0.25 40 1.28 
24.16 3.68 0,29 11 0,35 
25,40 3.50 0.48 27 0,87 
26.63 3.35 0,17 3091 100,00 
2740 3.25 0,17 128 4,13 
27.93 3.19 0.15 146 4.74 
29.38 3.04 0,25 94 3.04 
30,45 2.93 0.20 59 1,92 
30.87 2.89 0,24 49 1.59 
34.94 2,56 0.41 86 2,80 
36.54 2.46 0.20 190 6.16 
39.43 2,28 0,14 225 7,28 
40.26 2,24 0,16 137 4.43 
41.10 2,19 0.29 4 0,14 
42.40 2,13 0,12 204 6.61 
43.22 2.09 0,21 6 0.20 
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20 	 d-Spacing 	Peak 	Peak 	Peak 

Degrees 	Angstroms 	Width 	Count Intensity% 

8.91 9.91 0.40 12 0.49 
19.85 4,47 0.32 79 3.14 
20.90 4.25 0,14 471 18.69 
22.09 4.02 0.33 30 1.20 
23,09 3.85 0.26 24 0.95 
23.60 3,77 0,26 23 0.91 
24.24 3.67 0.31 25 0,99 
25,60 3,48 0.41 42 1.68 
26.68 3.34 0.16 2520 100.00 
27.51 3.24 0.20 72 2.87 
27.99 3.19 0.15 142 5.62 
28.35 3.15 0.17 42 1.68 
29.45 3.03 0.12 400 15.87 
29.85 2.99 0.17 50 2,35 
30.90 2.89 0.24 38 1.53 
31.52 2.84 0,19 32 1.29 
34.96 2.56 0.53 85 3.36 
36,62 2.45 0.17 279 11.07 
39.51 2.28 0.23 243 9.66 
40.35 2.23 0.21 142 5.62 
41,09 2.19 0.32 18 0.70 
42.49 2,13 0.19 213 8.46 
43,24 2.09 0.25 55 2.17 
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28 d-Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

19,84 4.47 0.31 71 2.80 
20,91 4.24 0.10 424 16.84 
22.07 4.03 0.25 28 1.11 
23.59 3.77 0,21 37 1.48 
24.24 3.67 0.25 20 0.80 
25,51 3.49 0.49 16 0,63 
26,68 3.34 0.15 2520 100,00 
27,47 3.24 0.14 159 6.30 
27.81 3,21 0.16 199 7.89 
28,57 3.12 0.12 114 4.54 
29.45 3.03 0.26 125 4.98 
30,90 2.89 0,25 59 2.35 
35.02 2.56 0.43 76 3.00 
36.59 2.45 0.18 320 12,71 
39.51 2.28 0.18 234 9.29 
40.33 2.23 0,23 110 4.37 
41,20 2.19 0.26 16 0.63 
41.74 2.16 0.23 3 0.13 
42.49 2.13 0.21 185 7.34 

ME 



STABILIZED WITH 25 PERCENT FLY 

ASH CURED AT 70°F FOR 28 DAYS 

28 d-Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intenity% 

9,03 9.79 0.39 14 0.66 
15.75 5,62 0.31 17 0,80 
19.74 4,49 0.31 69 3.30 
20.84 4.26 0,14 346 16.57 
21.98 4,04 0.21 44 2.09 
22.90 3.88 0.15 46 2,21 
25.55 3.48 0.38 27 1.29 
26.63 3.35 0.16 2088 100.00 
27.41 3,25 0.19 79 3.79 
27,91 3.19 0.23 44 2.09 
29.37 3.04 0.29 76 3.62 
30.87 2.89 0.19 55 2.62 
32.26 2.77 0.37 20 0.97 
33.25 2.69 0.37 37 1.78 
34.95 2.57 0,41 92 4.41 
36.52 2,46 0.20 177 8.47 
39.46 2.28 0,21 161 7.72 
40.27 2.24 0.24 104 4,98 
41,02 2,20 0.50 20 0,97 
42.44 2.13 0.24 137 6.55 
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Milli] 	1 , 111 , 11 

ASH CURED AT 70°F FOR 90 DAYS 

20 &Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

9,10 9.70 0.30 18 0.91 
15,81 5.60 0.25 13 0.67 
17.82 4.97 0.33 21 1.09 
19.83 4.47 0.42 61 3,14 
20.91 4.24 0.18 286 14.75 
22.01 4,03 0.25 53 2.75 
23.00 3.86 0,26 41 2,12 
24.26 3.67 0.25 52 2,68 
25.62 3.47 0.31 61 3.14 
26.71 3.34 0.17 1936 100,00 
27.52 3.24 0.23 98 5.06 
27.99 3.19 0.21 110 5.69 
29.49 3,03 0.25 121 6.25 
30.90 2,89 0.28 59 3,06 
31.40 2,85 0.23 77 4.00 
33.36 2.68 0.42 36 1.86 
35.10 2.55 0.27 137 7,07 
36.62 2,45 0.21 180 9.27 
39,49 2.28 0,15 149 7.69 
40,34 2.23 0.24 77 4,00 
40.95 2.20 0.29 17 0.87 
41.90 2,15 0.30 23 1.19 
42.50 2.13 0.23 132 6,83 



TABLE F.7: 	CRYSTALLINE DATA OF SHALE 

STABILIZED WITH 25 PERCENT FLY 

ASH CURED AT 90°F FOR 28 DAYS 

28 d-Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

8.89 9.94 0.38 10 0,50 
13.89 6,38 0.38 7 0,38 
17.73 5,00 0.35 10 0.53 
19,77 4.49 0.25 71 3.64 
20.81 4.27 0.10 296 15.28 
21.92 4.05 0.40 16 0.83 
22.92 3.88 0.33 27 1.40 
24.24 3,67 0.26 5 0.25 
26.60 3.35 0.13 1936 100.00 
27,46 3.25 0.18 123 6.36 
27.88 3.20 0.14 74 3.82 
29.30 3.05 0.29 69 3,56 
30.82 2,90 0,24 34 1.74 
32.24 2.77 0.29 10 0,53 
33.29 2,69 0.44 29 1,51 
34.85 2.57 0.32 81 4,18 
36.49 2,46 0.18 182 9.41 
39.40 2.28 0.20 222 11,47 
40,21 2,24 0,26 86 4.47 
40.91 2,20 0,42 18 0.91 
42.40 2.13 0.19 151 7,81 
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TABLE F.8: CRYSTALLINE DATA OF SHALE 

STABILIZED WITH 25 PERCENT FLY 

ASH CURED AT 90°F FOR 90 DAYS 

2e &'Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

9,10 9.70 0.34 28 1,31 
15,77 5,62 0.35 20 0.94 
19.79 4.48 0.39 61 2,84 
20.87 4.25 0.10 240 11.21 
22.01 4,03 0.26 41 1,91 
22.92 3.88 0.31 21 0.99 
23.59 3.77 0,28 18 0,86 
24,20 3.68 0.32 10 0.45 
25.56 3.48 0,29 41 1.91 
26.63 3.34 0.15 2144 100.00 
27.46 3,25 0.19 90 4.21 
27.90 3,20 0,25 45 2.09 
29.41 3,03 0,23 72 3,37 
30.89 2.89 0,19 44 2.03 
32,26 2,77 0,42 36 1,68 
33.32 2.69 0.42 29 1.36 
34.59 2,59 0.21 79 3.70 
34.99 2,56 0.26 99 4,57 
36,56 2,46 0.23 219 10,22 
39.45 2.28 0,16 161 7.52 
40,28 2.24 0.25 62 2,91 
40.98 2.20 0.44 18 0.82 
42.49 2,13 0.14 119 5.54 
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TABLE F.9: 	CRYSTALLINE DATA OF SHALE 

STABILIZED WITH 14 PERCENT 

CEMENT CURED AT 70°F FOR 28 DAYS 

20 d-Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

19,78 4.48 0.36 67 3.25 
20.85 4.25 0.15 328 15.82 
21.09 4.21 0.16 64 3.09 
22.01 4.03 0,31 33 1.57 
23.00 3,86 0.29 26 1.26 
23.54 3,78 0.21 27 1.31 
24.20 3.68 0.40 40 1,92 
25.44 3.50 0.41 40 1.92 
26.65 3.34 0.13 3070 100,00 
27.43 3.25 0.21 64 3.09 
27.91 3,19 0.32 98 4.73 
29.40 3.04 0.25 172 8.29 
30.87 2.89 0.25 66 3.17 
32.21 2.78 0.29 77 3.74 
32.65 2.74 0.23 62 3.01 
34.38 2.61 0.34 66 3.17 
34.96 2.56 0.39 86 4.18 
36,52 2,46 0.23 177 8.54 
39.46 2.28 0.21 169 8.16 
40.29 2.24 0.24 98 4.73 
41.15 2.19 0,41 26 1.26 
42.44 2.13 0,24 135 6.50 
43.20 2,09 0.33 22 1.07 
43.99 2.06 0.33 18 0.89 
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TABLE F.10: CRYSTALLINE DATA OF SHALE 

STABILIZED WITH 14 PERCENT 

CEMENT CURED AT 70°F FOR 90 DAYS 

20 d''Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

9.03 9.78 0,31 11 0.62 
17.87 4.96 0.25 7 0.42 
19.85 4.47 0.31 69 3,94 
20,91 4.24 0.13 408 23.35 
23,01 3.86 0.23 40 2.27 
23.65 3.76 0.33 30 1,71 
24,27 3.66 0.30 28 1.61 
25.73 3,46 0.19 32 1,86 
26.71 3,33 0.13 1747 100.00 
27,51 3.24 0,13 112 6,43 
27.76 3.21 0,15 55 3,13 
28.01 3.18 0,23 108 6.19 
29,46 3.03 0.27 112 6,43 
30.96 2,89 0.25 40 2.27 
32.20 2.78 0,30 48 2,72 
32,65 2.74 0.26 76 4.33 
34.46 2.60 0.25 58 3,31 
35.09 2.56 0,25 58 3,31 
36.61 2,45 0,19 132 7,57 
39.52 2.28 0.20 202 11.54 
40,34 2.23 0,21 102 5,84 
41.16 2,19 0.57 45 2,57 
42.49 2,13 0,27 146 8.38 
43.23 2.09 0.31 18 1.01 
44,16 2.05 0.32 9 0,52 
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TABLE F,11: CRYSTALLINE DATA OF SHALE 

STABILIZED WITH 14 PERCENT 

CEMENT CURED AT 90°F FOR 28 DAYS 

20 d-Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

9.08 9.73 0.34 14 0.59 
12.34 7,17 0.37 10 0,44 
13.85 6.39 0.31 17 0.73 
17.85 4.97 0.31 16 0,69 
19.85 4.47 0.27 58 2.51 
20.92 4,24 0.13 376 16.34 
23.10 3,85 0.17 48 2.07 
23.67 3,76 0,22 15 0.66 
24,34 3.65 0.38 25 1.09 
25.68 3,47 0.26 31 1.36 
26,70 3.34 0.16 2304 100.00 
27.15 3.28 0.19 64 2.78 
27.49 3.24 0.25 119 5.16 
28,01 3,18 0.19 125 5.44 
29.49 3.03 0,26 108 4.69 
30.93 2,89 0,24 55 2.38 
32.24 2,77 0,30 30 1,31 
32.68 2,74 0,20 36 1.56 
34.46 2,60 0,25 71 3.06 
35,01 2.56 0,36 72 3,14 
36.60 2,45 0,21 196 8.51 
37.84 2,38 0.37 18 0.77 
39,56 2,28 0.21 172 7.45 
40.35 2,23 0.26 67 2.92 
41.35 2,18 0.33 41 1.78 
42,49 2,13 0.12 174 7,56 
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28 d-Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

9.05 9.77 0,42 10 0.50 
15,87 5.58 0,25 10 0.53 
17.81 4.98 0.31 10 0.50 
19.82 4,48 0.37 66 3.40 
20.89 4.25 0,14 467 24.21 
22.07 4.03 0.21 18 0,92 
23.05 3.86 0.29 17 0.87 
23.63 3.76 0.25 38 1.99 
25.53 3.49 0.31 21 1.10 
26.70 3.34 0,13 1927 100.00 
27.51 3,24 0,24 72 3.75 
27.96 3.19 0.19 106 5.50 
29.49 3.03 0,29 71 3.66 
30.92 2.89 0.21 69 3,57 
32.24 2.77 0,26 61 3.16 
34.53 2.60 0.28 27 1.40 
35.01 2.56 0.30 81 4.20 
36.60 2.45 0.17 225 11.67 
39,54 2.28 0.20 177 9.18 
40.34 2.23 0.26 83 4.30 
41.08 2.20 0.44 34 1.75 
42,49 2,13 0.25 161 8.37 
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TABLE F,13: CRYSTALLINE DATA OF SHALE 

CONJUNCTIVELY STABILIZED, 

CURED AT 70°F FOR 28 DAYS 

28 dSpacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

9.15 9.66 0.31 14 1.11 
15,81 5.60 0.34 7 0.55 
17.96 4.93 0.38 23 1.87 
19.87 4.47 0.42 34 2.73 
20.91 4.24 0.15 228 18.51 
23,04 3.86 0,30 22 1.79 
24.29 3.66 0.33 11 0.88 
25.57 3.48 0.45 20 1.64 
26.71 3.34 0,14 1232 100.00 
27.96 3.19 0.27 44 3.54 
29.48 3.03 0.25 66 5.33 
30.13 2.96 0.25 18 1.43 
30.93 2.89 0,24 49 3.98 
32,35 2.76 0,27 81 6.57 
33.32 2.69 0,30 29 2.37 
34.24 2.62 0.35 53 4.33 
35,06 2.56 0.51 49 3.98 
36.65 2,45 0,15 125 10.18 
39.52 2.28 0.23 139 11.30 
40.37 2.23 0.25 59 4.81 
41.10 2.19 0.40 19 1.57 
41.76 2.16 0.19 34 2.73 
42.49 2,13 0.19 104 8,44 
43.05 2,10 0,35 14 1.11 
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CONJUNCTIVELY STABILIZED, 

CURED AT 70°F FOR 90 DAYS 

20 d-Spacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

9.08 9.73 0.33 19 1.09 
15,81 5.60 0,25 15 0.85 
17,89 4,95 0,37 12 0,65 
19.81 4.48 0.19 30 1.70 
20.86 4,26 0.14 269 15.10 
22.01 4.03 0,27 27 1,52 
23,00 3.86 0.35 21 1,19 
23,60 3.77 0,33 23 1.29 
24.28 3,66 0.31 22 1.24 
25,66 3.47 0,31 20 1,14 
26,65 3.34 0,17 1781 100.00 
27.49 3.24 0,23 61 3,42 
28,13 3.17 0,25 36 2,02 
29.45 3.03 0,19 48 2.67 
30,88 2.89 0.31 27 1.52 
32.29 2,77 0.69 15 0,85 
33.32 2.69 0,31 17 0.94 
34.45 2.60 0,24 62 3,50 
34,99 2,56 0,37 52 2.91 
36.54 2.46 0,12 161 9,06 
39,49 2.28 0.21 144 8.09 
39.95 2,25 0,28 17 0.94 
40.29 2,24 0,24 66 3,68 
41,04 2.20 0.36 32 1,82 
42.49 2,13 0,20 98 5.50 



TABLE F.150- CRYSTALLINE DATA OF SHALE 

CONJUNCTIVELY STABILIZED, 

CURED AT 90°F FOR 28 DAYS 

20 	 dSpacing 	Peak 	Peak 	Peak 

Degrees 	 Angstroms 	Width 	Count Intensity% 

9.02 9.80 0.30 13 0.94 
18.98 4.67 0.32 4 0.26 
19.85 4,47 0,42 31 2,28 
20.88 4,25 0.25 172 12,47 
22.99 3.86 0.32 26 1.89 
24.26 3,67 0.33 19 1.41 
26.69 3.34 0.19 1376 100.00 
27.54 3.24 0.21 25 1.82 
27.99 3,19 0.20 38 2.79 
29.47 3.03 0,37 34 2,44 
31.00 2.86 0.31 28 2.04 
32.20 2,78 0,29 40 2.88 
32.65 2,74 0,31 40 2.88 
33.33 2.69 0.35 27 1.96 
35.33 2,54 0.19 106 7,71 
36.60 2.45 0.24 106 7.71 
39.51 2.28 0.23 106 7,71 
40,38 2,23 0.23 38 2.79 
41.07 2.20 0.38 35 2,53 
42,51 2.12 0.27 119 8.63 
44,05 2,05 0,42 23 1.67 



TABLE F,16: CRYSTALLINE DATA OF SHALE 

CONJUNCTIVELY STABILIZED, 

20 dSpacing Peak Peak Peak 

Degrees Angstroms Width Count Intensity% 

9,04 9.77 0.37 12 0.79 
15.79 5.61 0.32 8 0.54 
17.68 5.01 0.32 15 0.98 
19.82 4.48 0.43 41 2.64 
20.84 4.26 0.14 266 17.12 
22.99 3.87 0.37 16 1.03 
26.63 3.35 0.16 1552 100.00 
27.45 3.25 0.24 40 2,56 
27.90 3.19 0.26 59 3.82 
29.35 3,04 0.22 135 8.67 
30.86 2.90 0.24 22 1.68 
32.46 2.76 0.35 29 1.88 
33,15 2.70 0.32 36 2.32 
34.39 2.61 0,31 46 2.98 
34.99 2,56 0.40 52 3.34 
36.52 2,46 0,24 135 8,67 
39,44 2,28 0.19 161 10.39 
40,26 2,24 0.21 76 4.88 
41,01 2,20 0.43 34 2.17 
42.41 2.13 0.14 207 13.36 
43.06 2.10 0,26 18 1.19 




