

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DISCOVERING INTERESTING PATTERNS AND ASSOCIATIONS

IN DATA STREAMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

NAN JIANG
Norman, Oklahoma

2009

DISCOVERING INTERESTING PATTERNS AND ASSOCIATIONS

IN DATA STREAMS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. T.H. Lee Williams, Chair

Dr. John K. Antonio

Dr. Mohammed Atiquzzaman

Dr. Yifei Dong

Dr. Changwook Kim

Dr. Albert B. Schwarzkopf

© Copyright by NAN JIANG 2009
All Rights Reserved.

To my family

v

Acknowledgements

First, I would like to thank our University for providing a nourishing

environment for study and research. I would like to express my sincere thanks to the

officers and staffs in the Graduate College who provide a warm and lively

environment to encourage and help graduate students to grow in their graduate study.

My research enthusiasm was encouraged and enriched by different research

seminars, travel and research grants and workshop presentations offered through

Graduate College over the years. When there is any question during my graduate

study, their help and advice have always been timely, specific and professional.

Next, I would like to thank all my committee members. Dr. T.H. Lee

Williams, Dr. John K. Antonio, Dr. Mohammed Atiquzzaman, Dr. Yifei Dong, Dr.

Changwook Kim, and Dr. Albert B. Schwarzkopf. I indebted to all of them for their

valuable time spent in discussing with me on the dissertation over the past years

while serving on my supervisory committee. Their expert advice and suggestions

have been very helpful in improving the quality of this dissertation. I appreciate and

remember all of the time we spend together in discussing the dissertation. Your

patience, kindly help and advice, supports and encouragements are in my lifetime

memory. My dissertation and graduate career would not have been completed

without your help and support.

Dr. Yun Chi, Dr. Mohammed Zaki and Mihale Halatchev provided the

comparing programs to perform the experimental study. Thank you for giving me

 vi

access to this data. This dissertation work has been done while I was working on

different projects as a research or teaching assistant, which provide me financial

supports on my graduate study and a nice study environment. I would like to thank

Dr. John K. Antonio for providing me the opportunity to work as a teaching assistant

for our department during the first couple of years in my graduate study; thank Dr.

Deborah Trytten for providing me the opportunity to work as a research assistant in

the OSIIS project in the Oklahoma Health Department; thank Dr. Le Gruenwald for

providing me the opportunity to work as a research assistant in the SENSE project in

the conjunction team with the Oklahoma State, Tulsa, and Langston University; and

thank Dr. Robert Dauffenbach and John G. McCraw for providing me the

opportunity to work as a research assistant in the Center for Economic and

Management Research on multiple projects. Many thanks to my supervisors and

colleagues while I was working in these projects, working with you is a great

pleasure and the work experience developed from these projects is a fortunate in my

life.

I would like to thank my family, for encouraging me to pursue graduate

studies and for always being there to share and to help. Their love, patience and

support to me during my graduate study never ceased, and always be there whenever

I need help. I thank you for your love and support, and dedicate this work to you.

Last but not least, thanks for God who leads me through the way and makes me to

have the courage, patience and knowledge to complete this dissertation.

 vii

Contents

List of Tables

List of Figures

1 Introduction ... 1

1.1 Problem Definition... 1

1.1.1 Data Mining and Knowledge Discovery .. 1

1.1.2 Data Streaming Application ... 2

1.1.3 Association Rule and Association Mining ... 3

1.1.4 Frequent Itemsets and Closed Itemsets .. 5

1.1.5 Frequent Pattern Mining and Closed Pattern Mining 5

1.1.6 Association Mining in Data Streams based on Closed Pattern Mining ... 6

1.2 Motivation .. 7

1.3 Research Contributions .. 10

1.4 Dissertation Structure... 12

2 Related Work .. 13

2.1 Data Pattern Mining ... 13

2.1.1 Frequent Pattern Mining on Static Data... 13

2.1.2 Frequent Items Mining on Streaming Data .. 18

2.1.3 Frequent Itemsets Mining on Streaming Data 21

2.1.4 Closed Pattern Mining on Static Data .. 28

2.1.5 Closed Pattern Mining on Streaming Data .. 30

2.2 Association Mining .. 32

2.2.1 Association Mining based on Frequent Pattern Mining 32

2.2.2 Association Mining based on Closed Pattern Mining............................ 34

2.3 Missing Data Estimation .. 36

2.4 Summary .. 42

3 Preliminary Concepts .. 45

4 Closed Pattern Mining in Data Streams .. 48

 viii

4.1 Overview .. 48

4.2 The Proposed Data Structure ... 49

4.2.1 The Direct Update Lattice .. 49

4.2.2 Insert a Transaction to the DIU .. 50

4.2.3 Delete a Transaction from the DIU .. 62

4.3 The Proposed CFI-Stream Algorithm .. 69

4.3.1 The Insertion Procedure ... 70

4.3.2 The Deletion Procedure ... 71

4.4 Comparing with Existing Literature .. 73

4.5 Summary .. 74

5 Association Mining in Data Streams based on Closed Pattern Mining 75

5.1 Overview .. 76

5.2 The Proposed Rule Mining Framework based on Closed Pattern Mining 77

5.3 Mining Informative Associations based on Closed Pattern Mining 79

5.4 Comparing with Existing Literature .. 88

5.5 Summary .. 89

6 Missing Data Estimation in a Sensor Network Database Based on Closed

Pattern Association Mining... 90

6.1 Overview .. 90

6.2 The Data Structure and Online Closed Pattern Association Mining in Data

Streams ... 91

6.3 Missing Data Estimation based on Closed Pattern Association Mining.... 92

6.4 Comparing with Existing Literature .. 96

6.5 Summary .. 97

7 Performance Study .. 99

7.1 Overview .. 99

7.2 Performance Study for Closed Pattern Mining .. 100

7.2.1 Performance under Different Total Number of Transactions 100

7.2.2 Performance under Different Sliding Window Size 102

 ix

7.2.3 Performance under Different Minimum Support Threshold 104

7.2.4 Performance under Different Average Transaction Size 106

7.2.5 Performance under Different Average Maximal Potential Frequent

Itemset Size .. 108

7.2.6 Performance under Data Variation .. 110

7.3 Performance Study for Association Mining .. 113

7.3.1 Performance under Different Total Number of Transactions 114

7.3.2 Performance under Different Minimum Support Threshold 116

7.3.3 Performance under Different Minimum Confidence Threshold 118

7.3.4 Performance under Different Average Transaction Size 120

7.3.5 Performance under Different Average Maximal Potential Frequent

Itemset Size .. 122

7.3.6 Performance under Data Variation .. 124

7.4 Performance Study for Missing Data Estimation 126

7.4.1 Performance Study of Estimation Accuracy .. 127

7.4.2 Performance Study of Running Time .. 130

7.4.3 Performance Study of Memory Usage ... 132

7.5 Summary .. 134

8 Conclusions and Future Work .. 136

Reference .. 138

 x

List Of Tables

Table 2-1: Sample transaction database ST1 ... 15

Table 2-2: Sample transaction database ST2 ... 19

Table 2-3: Data pattern mining approaches ... 43

Table 2-4: Association mining approaches .. 44

Table 2-5: Data estimation approaches .. 44

Table 4-1: Conditions to check for insertion operation ... 51

Table 4-2: Conditions to check for deletion operation .. 62

Table 4-3: Recent closed pattern mining approaches .. 74

Table 5-1: Recent association mining approaches ... 88

Table 6-1: Recent data estimation approaches ... 97

Table 7-1: Running time per transaction under different total number of transaction

size in seconds .. 101

Table 7-2: Memory usage in terms of number of stored itemsets under different total

number of transaction size ... 102

Table 7-3: Running time per transaction under different sliding window size in

seconds ... 103

Table 7-4: Memory usage in terms of number of stored itemsets under different

sliding window size .. 104

Table 7-5: Running time per transaction under different minimum support threshold

in seconds ... 105

Table 7-6: Memory usage in terms of number of stored itemsets under different

minimum support threshold ... 106

Table 7-7: Running time per transaction under different average transaction size in

seconds ... 107

Table 7-8: Memory usage in terms of number of stored itemsets under different

average transaction size ... 108

 xi

Table 7-9: Running time per transaction under different average maximal potential

frequent itemset size in seconds ... 109

Table 7-10: Memory usage in terms of number of stored itemsets under different

average maximal potential frequent itemset size ... 110

Table 7-11: Running time per transaction under data variation in seconds 112

Table 7-12: Memory usage in terms of number of stored itemsets under different data

variation ... 113

Table 7-13: Number of rules generated under different total number of transactions

 .. 115

Table 7-14: Running time under different total number of transactions in seconds 116

Table 7-15: Number of rules generated under different minimum support threshold

 .. 117

Table 7-16: Running time under different minimum support threshold in seconds 118

Table 7-17: Number of rules generated under different minimum confidence

threshold ... 119

Table 7-18: Running time under different minimum confidence threshold in seconds

 .. 120

Table 7-19: Number of rules generated under different average transaction size in

seconds ... 121

Table 7-20: Running time under different average transaction size in seconds 122

Table 7-21: Number of rules generated under different average maximal potential

frequent itemset size .. 123

Table 7-22: Running time under different average maximal potential frequent itemset

size in seconds .. 124

Table 7-23: Number of rules generated under data variation 125

Table 7-24: Running time under data variation in seconds 126

Table 7-25: Performance study of average and maximum estimation accuracy for

traffic monitoring application .. 129

 xii

Table 7-26: Performance study of average estimation accuracy for environmental

monitoring application ... 130

Table 7-27: Performance study of running time in seconds for traffic monitoring

application in seconds .. 131

Table 7-28: Performance study of running time for environmental monitoring

application in seconds .. 132

Table 7-29: Performance study of memory usage for traffic monitoring application in

MB ... 133

Table 7-30: Performance study of memory usage for environmental monitoring

application in MB .. 134

 xiii

List Of Figures

Figure 2-1: The FP-tree structure ... 16

Figure 4-1: The lexicographical ordered direct update lattice 50

Figure 4-2: CFI-Stream algorithm – insertion ... 71

Figure 4-3: CFI-Stream algorithm – deletion .. 73

Figure 5-1: The proposed association mining framework based on closed pattern

mining .. 78

Figure 5-2: The informative association mining algorithm 87

Figure 6-1: The online data estimation algorithm.. 96

Figure 7-1: Running time per transaction under different total number of transaction

size in seconds .. 101

Figure 7-2: Memory usage in terms of number of stored itemsets under different total

number of transaction size ... 102

Figure 7-3: Running time per transaction under different sliding window size in

seconds ... 103

Figure 7-4: Memory usage in terms of number of stored itemsets under different

sliding window size .. 104

Figure 7-5: Running time per transaction under different minimum support threshold

in seconds ... 105

Figure 7-6: Memory usage in terms of number of stored itemsets under different

minimum support threshold ... 106

Figure 7-7: Running time per transaction under different average transaction size in

seconds ... 107

Figure 7-8: Memory usage in terms of number of stored itemsets under different

average transaction size ... 108

Figure 7-9: Running time per transaction under different average maximal potential

frequent itemset size in seconds ... 109

 xiv

Figure 7-10: Memory usage in terms of number of stored itemsets under different

average maximal potential frequent itemset size ... 110

Figure 7-11: Running time per transaction under data variation in seconds 112

Figure 7-12: Memory usage in terms of number of stored itemsets under data

variation ... 112

Figure 7-13: Number of rules generated under different total number of transactions

 .. 115

Figure 7-14: Running time under different total number of transactions in seconds

 .. 116

Figure 7-15: Number of rules generated under different minimum support threshold

 .. 117

Figure 7-16: Running time under different minimum support threshold in seconds

 .. 118

Figure 7-17: Number of rules generated under different minimum confidence

threshold ... 119

Figure 7-18: Running time under different minimum confidence threshold in seconds

 .. 120

Figure 7-19: Number of rules generated under different average transaction size in

seconds ... 121

Figure 7-20: Running time under different average transaction size in seconds 122

Figure 7-21: Number of rules generated under different average maximal potential

frequent itemset size .. 123

Figure 7-22: Running time under different average maximal potential frequent

itemset size in seconds ... 124

Figure 7-23: Number of rules generated under data variation 125

Figure 7-24: Running time under data variation in seconds 125

Figure 7-25: Performance study of average and maximum estimation accuracy for

traffic monitoring application .. 128

 xv

Figure 7-26: Performance study of average estimation accuracy for environmental

monitoring application ... 129

Figure 7-27: Performance study of running time for traffic monitoring application in

seconds ... 130

Figure 7-28: Performance study of running time for environmental monitoring

application in seconds .. 131

Figure 7-29: Performance study of memory usage for traffic monitoring application

in MB ... 132

Figure 7-30: Performance study of memory usage for environmental monitoring

application in MB .. 133

 xvi

Abstract

A data stream is a sequence of items that arrive in a timely order. Different

from data in traditional static databases, data streams are continuous, unbounded,

usually come with high speed, and have a data value distribution that often changes

with time (Guha, 2001). As more applications such as web transactions, telephone

records, and network flows generate a large number of data streams every day,

efficient knowledge discovery of data streams is an active and growing research area

in data mining with broad applications. Traditional data mining algorithms are

developed to work on a complete static dataset and, thus, cannot be applied directly

in data stream applications.

One area of data mining research is to mine association relationship in a data

set. Most of association mining techniques for data streams can be categorized into

two types: those developed based on frequent patterns and those developed based on

closed patterns. Due to the number of frequent patterns are often huge and redundant,

non-informative patterns are contained in frequent patterns. An alternative way is to

develop the association mining approaches for data streaming applications based on

closed patterns, which generally represent a small subset of all frequent patterns, but

provide complete and condensed information. In these researches, the closed pattern

mining is the prerequisite condition for non-redundant and informative association

mining.

 xvii

In this dissertation, a sliding window technique for dynamic mining of closed

patterns in data streams is proposed, and an approach of mining non-redundant and

informative associations based on the discovered closed patterns is developed. The

closed pattern and relevant association mining techniques are selected research area

in this dissertation. First, the closed patterns for a given collection of data are

currently the most compact data knowledge that can provide complete support

information for all data patterns. Compared with other techniques, the proposed

closed pattern mining technique has potential to largely decrease the number of

subsequent combinatorial calculations performed on the data patterns. Second, the

memory requirement to store the closed patterns and relevant associations is

generally lower than the corresponding frequent patterns and associations. In some

data streaming applications, memory usage is an important measurement, because in

these applications memory usage is the bottleneck for knowledge discovery. Third,

the associations generated for data streams are the knowledge used to identify the

relations within the data. The discovered relations can find their wide applications in

many data streaming environments.

Different from the closed pattern mining techniques on traditional databases,

which require multiple scans of the entire database, the proposed technique

determines the closed patterns with a single scan. It is an incremental mining

process; as the sliding window advances, new data transactions enter and old data

transactions exit the window. But instead of regenerating closed patterns from the

entire window, the proposed technique updates the old set of closed patterns

 xviii

whenever a new transaction arrives and/or an old transaction leaves the sliding

window to obtain the current set of closed patterns. This incremental feature allows

the user to get the most recent updated closed patterns without rescanning the entire

updated database, which saves not only the computation time, but more importantly,

the I/O operating time to load and write data from database to memory. Third, the

proposed sliding window technique can handle both the insertion and deletion

operations independently, which allows the user to adjust the sliding window size in

different application environments. Furthermore, the proposed interesting patterns

and association mining framework can handle different users’ requests at the same

time at their specified support and confidence thresholds, and interested input and

output patterns.

The research includes both theoretical proofs of correctness for the proposed

algorithms and simulation experiments to compare the proposed techniques with

those existing in the literature using synthetic and real datasets. The utility of the

proposed technique is applied to sensor network databases of a traffic management

and an environmental monitoring site for missing data estimation purpose.

 1

1 Introduction

1.1 Problem Definition

1.1.1 Data Mining and Knowledge Discovery

The term ‘data mining’ refers to a process of nontrivial extraction of implicit,

previously unknown, and potentially useful information (such as knowledge rules,

regularities and outliers) from data in databases (Tan, 2005). The term ‘knowledge

discovery’ is more general than the term ‘data mining’. Data mining is usually

viewed as a step in the process of knowledge discovery (Han, 2001). The entire life

cycle of knowledge discovery includes steps such as data cleaning, data integration,

data selection, data transformation, data mining, pattern evaluation, and knowledge

presentation.

Briefly stated, Knowledge Discovery in Database (KDD) is the rapidly

growing inter-disciplinary field that merges together database management,

statistics, and machine leaning and aims to extract useful and understandable

knowledge from large volumes of data. Data mining is a critical step of the KDD

process that performs the extraction of unknown knowledge in data. Data mining can

be performed on a variety of data stores, including relational databases, transactional

databases, data warehouses, and data streams. A comprehensive data mining system

usually provides multiple mining functions. Association mining is one of the key

features that can be found in such systems.

 2

1.1.2 Data Streaming Application

A data stream is a sequence of items that arrive in a timed order. Different

from data in traditional static databases, data streams are continuous, unbounded,

usually arrive with high speed, and have a data value distribution that often changes

with time (Guha, 2001). A data stream is represented mathematically as an ordered

pair (r, ∆) where: r is a sequence of tuples, ∆ is the sequence of time intervals (i.e.

rational or real numbers) and each ∆i > 0.

Applications that reply on data streams can be classified into offline and

online streaming. Offline streaming applications are characterized by regular bulk

arrivals (Manku, 2002). Generating reports based on accumulated web log streams is

an example of mining offline data streams because most of reports are made based

on log data that is collected over a relatively large period of time. Online streaming

applications are characterized by real-time updated data that needs to be quickly

processed as the data is arrived. Predicting frequency of Internet packet streams is an

application of mining online data streams because the prediction needs to be made in

real time. Other potential online data streaming applications include stock tickers,

network measurements, and evaluation of sensor data. In online data streaming

applications, data is often discarded soon after it arrives and has been processed,

because of the high update rate and huge resulting amount of data. Therefore, unlike

offline data streaming applications, bulk processing a large portion of received data

is not appropriate for online data streaming applications.

 3

1.1.3 Association Rule and Association Mining

An association rule is an implication of the form X ⇒ Y (s, c), where X and Y

are frequent sets of items (also called itemsets) in a database, and X ∩ Y = φ. The

parameter s, support of the rule, represents the percentage of records that contain

both X and Y in the database. The parameter c, confidence of the rule, is the

percentage of records containing X that also contain Y. An association rule is said to

hold if both s and c are above or equal to a user-specified minimum support and

confidence (Agrawal, 1993).

Association mining, also called association rule mining, searches for

interesting relationships among items in a given database and displays them in rule

form, for example X ⇒ Y. In practice, association mining involves finding

association rules, the support and confidence of which are above or equal to a user-

specified minimum support and confidence, respectively (Agrawal, 1993).

With the massive amounts of data continuously being collected and stored in

databases, many industries are becoming interested in mining associations. Below is

a typical market basket analysis example of association mining.

Example 1.1 Suppose, as a manager of a supermarket, you would like to

learn more about the buying habits of your customers. Specifically, you may wonder

“Which groups or sets of items are customers likely to purchase on a given trip to the

supermarket?” To answer your question, association mining can be performed on the

retail data of customer transactions at your supermarket. The knowledge that

 4

customers who purchase bread also tend to buy milk at the same time is represented

in the association rule below.

bread ⇒ milk (s = 2%, c = 60%)

Support and confidence are two measures of rule interestingness. In the

above association rule, the support of 2% means that 2% of all the transactions under

analysis show that bread and milk are purchased together. The confidence of 60%

means that 60% of the customers who purchase bread also buy milk. For this

example, it should be noticed that the association rule: milk ⇒ bread, has the same

support, but not necessarily the same confidence as the association rule: bread ⇒

milk. In short, support represents the percentage of data samples that the given rule

satisfies and confidence assesses the degree of certainty of the detected association.

Support and confidence thresholds are usually set by users or domain experts.

Association rule mining is typically considered to be a two-step process

(Agrawal, 1993).

Step 1: Find all frequent patterns. By definition, each of these patterns will

occur at least as frequently as a user-specified minimum support

count.

Step 2: Generate strong association rules above user-specified support and

confidence thresholds from the frequent patterns.

 5

Frequent pattern mining (Step 1) is a crucial step of the process, and its

computational efficiency strongly impacts the overall performance of mining

association rules (Agrawal, 1994).

1.1.4 Frequent Itemsets and Closed Itemsets

An itemset is frequent if its support is above or equal to a user-specified

support threshold. An itemset is closed if none of its proper supersets has the same

support as it has (a formal mathematical definition of a closed itemset is given in

Chapter 3). A closed frequent itemset is an itemset that is both frequent and closed.

1.1.5 Frequent Pattern Mining and Closed Pattern Mining

As discussed in Section 1.1.3, frequent pattern mining is a crucial step of

mining associations. A number of methods have been proposed and developed for

frequent pattern mining in various kinds of databases, including transaction

databases and time series databases. These methods can be roughly classified into

two groups: frequent pattern mining and closed pattern mining.

The process of discovering the entire collection of frequent itemsets is called

frequent pattern mining. Mining all frequent patterns often generates a large number

of frequent itemsets due to the following combinatorial reality: for any collection of

frequent itemsets, their subsets are also frequent. For example, assume the itemset

{ a, b} has a frequency of three. Therefore, the subsets of this itemset, which are {a}

and {b}, also are frequent patterns with a support of at least three.

 6

Closed pattern mining is a process of discovering the entire collection of

closed frequent itemsets, which is generally a small subset of the complete set of

frequent itemsets (Pasquier, 1999). Referring back to the example in the previous

paragraph, because items {a} and {b} both have a support of three, and the itemset

{ a, b} also has a support of three, then we conclude that the items {a} and {b} are

not closed relative to a support value of three.

1.1.6 Association Mining in Data Streams based on Closed Pattern

Mining

From the above discussions, we can see that the purpose of association

mining in data streams based on closed pattern mining is to discover interesting

associations among closed patterns in a given data stream. Similar with the process

of discovering associations based on frequent pattern mining, it is a two-step process.

Step 1: Find all closed patterns. By definition, each of these closed patterns

will occur at least as frequently as a user-specified minimum support

count.

Step 2: Generate strong association rules above user-specified support and

confidence thresholds from the closed patterns.

Closed pattern mining (Step 1) is a crucial step of the process, and its computational

efficiency strongly impacts the overall performance of the mining process.

 7

Many researchers have been discussing the theoretical foundations and

complexity of closed pattern and association mining including (Zaki 1998, Wijsen

1998, Angiulli 2004, Yang 2004). In the following study, we focus is not on

asymptotic complexity analysis, but rather we focus on discovering and applying the

closed pattern and association mining in practical data streaming applications.

1.2 Motivation

As the number of data streaming applications grows, there is an increasing

need to perform association mining in data streams. One example application is to

estimate missing data in sensor networks (Halatchev, 2005). Another example

application is to predict frequency of Internet packet streams (Demaine, 2002). In the

MAIDS project (Cai, 2004), an association mining technique is used to find alarming

incidents from data streams. Association mining can also be applied to monitor

manufacturing flows (Kargupta, 2004) to predict failures or generate reports based

on accumulated web log streams.

Traditional association mining algorithms are developed to work on a

complete static dataset and, thus, cannot be applied directly to mine associations in

data streams. A number of association mining techniques for data streams have been

developed recently, and most of them are based on mining frequent patterns, the

number of which might be huge due to the number of redundant and non-informative

patterns that they contain. Thus, these types of approaches are not always efficient

for data streaming applications. An alternative approach is to mine closed patterns,

 8

which generally represent a small subset of all corresponding frequent patterns, but

provide complete and condensed information. Once the closed patterns are

determined, then non-redundant and informative associations can be found based on

these closed patterns.

Our motivation for developing the proposed closed pattern and association

mining technique are as follows. First, the number of closed patterns for a given

collection of data items is generally much smaller than the corresponding set of

frequent patterns for the same data items. Thus the approach has potential to largely

decrease the number of subsequent combinatorial calculations performed on the

patterns. Second, because the number of closed patterns is generally smaller than the

corresponding number of frequent patterns, memory usage is reduced. Third,

associations generated from closed patterns contain non-redundant information,

which is more easily understandable. Therefore, the objective of this study is to

develop an efficient closed pattern mining technique for data streams, and to derive

non-redundant and informative association rules based on the discovered closed

patterns.

Due to the characteristics of streaming data, there are some inherent

challenges and issues need to be considered for association mining in data streams.

First, due to the continuous, unbounded, and high speed characteristics of data

streams (Guha, 2001), they contain a huge amount of data, and thus, there is usually

not enough time to rescan the whole database or perform multiple scans whenever an

 9

update occurs, as in traditional data mining algorithms. This is especially true in

online data streaming applications, which require real-time updated results.

Furthermore, there is often not enough space to store all the streaming data for

processing over the entire dataset. Therefore, the single scan of data and compact

memory usage of the association mining technique are preferable. Second, the

mining method of data streams needs to adapt to the changing data value

distribution; otherwise, it may result in what is known as the “concept drifting

problem” (Wang, 2003) – as new streaming data arrives, the patterns which are

previously frequent or closed may become infrequent and unclosed, and vice versa –

and not perform well when the mining concepts changes dramatically. Third, due to

the high speed characteristics of online data streams, they need to be processed as

fast as possible; the speed of the mining algorithm should be faster than the data

input rate. Otherwise, data approximation techniques, such as sampling and load

shedding, must be applied and these generally decrease the accuracy of the mining

results. Fourth, due to the high update rate characteristics of streaming data, mining

of data streams is better performed as an incremental process. In other words, the

new iterations of mining results are incrementally built based on old mining results

combined with newly received items so that the results will not have to completely

be recalculated each time a user’s querying request is received.

The proposed technique is applied to sensor network databases of a traffic

management and an environmental monitoring site for missing data estimation

 10

purpose, in which data missing by a sensor is estimated using the data generated by

its related sensors.

1.3 Research Contributions

In this research we developed an incremental closed pattern mining technique

for data streams. By mining closed patterns, which are generally much smaller

subsets of the corresponding frequent patterns, this technique has potential to largely

decrease the size of the subsequent combinatorial calculation performed on the

patterns, which could be more serious in the streaming environment because of the

huge amount of streaming data. Also, by storing complete and compact information,

the technique reduces memory usage while still providing complete information to

fulfill different users’ requests. Different from the closed pattern mining techniques

on traditional databases, which require multiple scans of the entire database, the

proposed technique determines the closed patterns with a single scan. It is an

incremental mining process; as the sliding window advances, new data items enter

and old data items exit the window. But instead of regenerating closed patterns from

the entire window, it updates the old set of closed patterns whenever a new

transaction arrives and/or an old transaction leaves the sliding window to obtain the

current closed patterns. This incremental feature allows the user to get the most

recent updated closed patterns without rescanning the entire updated database, which

saves not only the computation time, but more importantly, the I/O operating time to

load and write data from database to memory. Furthermore, the proposed sliding

 11

window technique can handle both the insertion and deletion operations

independently, which allows the user to adjust the sliding window size in different

application environments.

We then developed an association mining framework in data streams to

derive interesting associations based on the discovered closed patterns. The

associations generated from closed patterns contain non-redundant and complete

information, which are more useful and concise for data analysis than the

associations generated based on frequent patterns (Zaki, 2000). Based on the users’

querying requests, different sets of non-redundant and correlated association rules

which contains user interested input and output patterns can be generated at the same

time with users’ specified support and confidence thresholds.

Furthermore, a data estimation algorithm based on our proposed association

rule mining technique is developed for sensor network database applications of a

traffic management and an environmental monitoring site to first identify the related

sensors, and then compute the estimated values of missing data from a sensor by

using the data generated by its related sensors. This technique enables us to find out

the relationships between two or more sensors when they have the same or different

values, therefore it can improve the estimation accuracy compared to the existing

technique in the literature which tracks relationships between two sensors when they

report the same value, while still achieving both time and space efficiency.

 12

1.4 Dissertation Structure

The rest of this dissertation is arranged as follows. Chapter 2 reviews the

related work. This chapter is divided into three major sections that correspond to the

background materials relevant to the work presented in Chapters 4, 5, and 6,

respectively. Chapter 3 presents preliminary concepts and definitions that are used

throughout the remainder of the dissertation. Chapter 4 introduces the main

contribution of the dissertation, which is the development of the sliding window

algorithm for closed pattern mining in data streams. Chapter 5 describes the

association mining framework based on closed pattern mining developed in Chapter

4. Chapter 6 illustrates how the association mining based on closed patterns can be

applied to sensor network database applications for missing data estimation purpose.

Chapter 7 describes the simulation experiment results of the proposed work and

comparing it with the existing literatures. Chapter 8 summarizes the work that has

been done, outlines directions of future work, and concludes the dissertation.

 13

2 Related Work

In this chapter, the existing literatures are reviewed for three main areas: data

pattern mining, association mining, and missing data estimation. These are covered

in three sections, and provide the relevant background for the discussions in Chapters

4, 5 and 6, respectively.

2.1 Data Pattern Mining

2.1.1 Frequent Pattern Mining on Static Data

Traditional frequent pattern mining algorithms are developed to work on

static data and, thus, are not suitable to be used for frequent pattern mining in online

data streaming applications. The first recognized frequent pattern mining algorithm

for traditional databases is Apriori (Agrawal, 1993). The Apriori Algorithm finds the

frequent patterns by repeating the following steps through multiple scans of the

database. At step k, it finds the frequent k-itemsets. The set of all frequent k-itemsets

is denoted by Lk. Then the candidate k+1 frequent itemsets, denoted by Ck+1, are

generated by combining all combinations of itemsets in Lk. Finally, in the prune

phase, any k-itemset that is not frequent and cannot be included in Lk+1 is removed

from Ck+1.

Before describing the Apriori Algorithm further, we introduce standard

notation for itemsets and frequent itemsets. For convenience, an itemset {a, b} is

 14

denoted simply as ab. Furthermore, if the itemset {a, b} has a frequency of 3, then

this is conveyed using the notation ab3.

To illustrate the Apriori Algorithm, let us examine the following example.

Assume that we have a transaction database ST1 as in Table 2-1, and the user-

specified support threshold is 2, which corresponds to 40% in this case because there

are five transactions. During the first scan of the database, we find the set of all the

frequent 1-itemsets, which is denoted by L1. L1 contains all the frequent 1-itemsets

whose frequency are equal or above the user-specified threshold 2, in this case L1 =

{ a3, c4, d2, e4, f4}. Then the candidates of frequent 2-itemsets are generated by

combining all combinations of itemsets in L1. The candidate set is denoted as C2, in

this case C2 = {ac, ad, ae, af, cd, ce, cf, de, df, ef}. Next, in the prune phase, we find

the counts of itemsets in C2: {ac2, ad2, ae2, af2, cd2, ce3, cf3, de1, df2, ef3}. Any 2-

itemset that is not frequent and cannot be included in L2 is removed from C2. The

resulting set of L2 is as follows: {ac2, ad2, ae2, af2, cd2, ce3, cf4, df2, ef3}. Repeating

the same operations, we get the result set for L3 as {acd2, acf2, adf2, cdf2, cef3}, L4 as

{ acdf2}, and L5 as φ. The Apriori Algorithm terminates when the resulting set

reaches empty. Combining all the frequent patterns derived, we get the set of

frequent patterns for database ST1: {acdf2, acd2, acf2, adf2, cdf2, cef3, ac2, ad2, ae2,

af2, cd2, ce3, cf4, df2, ef3, a3, c4, d2, e4, f4}.

 15

Transaction ID Items in Transaction

1 a, c, d, e, f

2 a, b, e

3 c, e, f

4 a, c, d, f

5 c, e, f

Table 2-1: Sample transaction database ST1

After Apriori Algorithm was introduced in 1993 (Agrawal, 1993), many

other algorithms based on the ideas of Apriori were developed for performance

improvement (Agrawal 1994, Inokuchi 2000, Yoshio 2002). Apriori-based

algorithms require multiple scans of the entire database, which lead to high CPU and

I/O costs. Therefore, they are not usually suitable for online data streaming

applications, in which data is generally scanned and/or processed only once.

Another category of frequent pattern mining algorithms for traditional

databases proposed by Han and Pei (Han, 2000) are those using a frequent pattern

tree (FP-tree) data structure and an FP-growth Algorithm, which allows mining of

frequent itemsets without generating candidate itemsets. In the FP-growth

Algorithm, the FP-tree is used to store the compressed and important information

about frequent patterns. FP-growth is an FP-tree-based mining method for mining

the entire collection of frequent patterns by pattern growth.

To illustrate the FP-tree data structure and the FP-growth Algorithm, let us

consider the application of the FP-growth Algorithm on the same transaction

 16

database ST1 as defined in Table 2-1. Also, as was previously the case, we assume

the user-specified support threshold is 2. During the first scan of the database, the

algorithm collects the count for each item and eliminates those items whose supports

do not pass the user-specified support threshold. The resulting set after the first step

is as follows: {a3, c4, d2, e4, f4}. Then the database ST1 is scanned a second time. For

each transaction, the algorithm filters out the infrequent items and sorts the

remaining ones in frequency descending order, and the revised patterns are inserted

into the FP-tree as a branch. In this case the patterns stored in the FP-tree are shown

in Figure 2-1.

Before describing the FP-growth Algorithm further, we introduce the

standard notation for patterns stored in an FP-tree. For convenience, an item a with

support 1 is denoted simply as a1. Furthermore, when the items in a branch of FP-

tree have the same or different support as shown in Figure 2-1, we denote the

patterns stored in the FP-tree as: {f4e3c3a1d1, f4c1a1d1, e1a1}.

Figure 2-1: The FP-tree structure

Φ

f 4 e1

e 3

c 3

a1

d1

c1

a1

d1

a1

 17

The constructed FP-tree is then mined from bottom to top. Starting from d,

for each frequent 1-itemset, its conditional pattern base is constructed. A conditional

pattern base for an itemset contains the transactions that end with that itemset. Then

the conditional pattern base is regarded as a transaction database and based on that,

the conditional FP-tree is built.

Take item d as an example. Item d’s conditional pattern base is: {f1e1c1a1,

f1c1a1}. In this conditional pattern base, e occurs only once and thus is eliminated.

The conditional FP-tree is constructed as {f2c2a2}. There is only one branch in d’s

conditional FP-tree. The possible combinations are {fcad2, cad2, fad2, ad2, fcd2, cd2,

fd2}. In the same way, we can get item a’s conditional FP-tree and generate the

frequent patterns as {fca2, ca2, ea2, fa2}. The frequent patterns generated based on

item c’s conditional FP-tree are {fec3, ec3, fc4}, and the frequent patterns generated

based on item e’s conditional FP-tree are {fe3}. Combining the frequent 1-itemsets

generated during the first database scan, we get the same set of frequent patterns for

transactional database ST1: {fcad2, cad2, fad2, ad2, fcd2, cd2, fd2, d2, fca2, ca2, ea2,

fa2, a3, fec3, ec3, fc4, c4, fe3, e4, f4}.

There are two advantages of the FP-growth Algorithm compared to the

Apriori Algorithm. First, the FP-tree is usually smaller than the original database and

thus, saves the costly database scans in the mining process. Second, it applies a

pattern growth method that avoids candidate generation. Compared with Apriori-

based algorithms, the FP-growth Algorithm achieves higher performance by

 18

avoiding iterative candidate generations. However, it still is not practical to mine

associations in data streaming applications because the construction of FP-tree

requires two scans of the entire dataset.

2.1.2 Frequent Items Mining on Streaming Data

One of the most basic problems associated with mining streaming data is to

find the most frequently occurring items in a data stream. It is a challenge to find and

maintain frequent items over a data stream because the stream of data can be huge

and comes continuously, so memory intensive solutions associated with traditional

approaches, such as keeping a counter for each distinct element (like in the Apriori

Algorithm) or sorting the stream (required by the FP-growth Algorithm), are

infeasible. Furthermore, the stream of data often comes with rapid speed, and thus, it

is desirable that the analysis can be done online in one pass as the data arrives.

The Frequent Algorithm (Karp 2003) is a two pass, exact algorithm for

finding frequent items above a user-specified threshold s. It is noted that the

Frequent Algorithm does not find frequent itemsets, but only finds frequent

(individual) items, i.e., 1-itemsets. The Frequent Algorithm requires that the total

number of items to be processed, denoted by N, is known. The first pass can be

processed as an online processing algorithm; after the first pass over the N data

items, the set of candidate items, denoted as K, is found, which contains items with

frequency over the user-specified threshold s, possibly among other items. Once the

 19

set K is determined in the first pass, with a second pass, the items in K that have

frequency less than sN are deleted.

Take the sample transaction database ST2 of Table 2-2 as an example. In this

context, there are 6 transactions in ST2, and assume that the user-specified threshold

s is 25%. That means we want to find all those transactions that appear more than

25% of the time. The sampling-based Frequent Algorithm identifies a set K of 1/s

symbols, in this case 1/0.25 = 4 memory cells. During the first step, it sets up a

counter for each transaction {a1, f1, c1, d1}. When the 5th transaction arrives, the

count of f increases, and the set K contains: {a1, f2, c1, d1}. When the 6th transaction

arrives, the set of K is updated as: {a1, f2, c1, d1, g1}. As the memory cells exceed 4

and go to 5, the algorithm decreases each counter by 1, and eliminates the cells

whose counts are zeros. Therefore the resulting set K is {f1}. During a second scan of

the database, we can find f’s exact support, which is s = 2/6 = 33.3%.

Transaction ID Items in Transaction

1 a

2 f

3 c

4 d

5 f

6 g

Table 2-2: Sample transaction database ST2

 20

From the above discussion, we see that the Frequent Algorithm requires two

passes of the data. It can maintain the possibly frequent items dynamically online,

but cannot provide the exact frequent items and their counts dynamically online. The

Frequent Algorithm cannot handle deletion operation in data streams, because the

counters are incremented whenever their corresponding items are observed and

decremented when the size of K is greater than 1/s, and it preserves only a part of

sample data. Furthermore, the length of the data stream couldn’t be too long for the

second offline algorithm to run, due to the corresponding memory or hard disk space

it needs to store the data stream offline. Therefore, it is undesirable for the time

sensitive applications, especially in the online data streaming applications.

Count Sketch Algorithm, proposed in (Charikar, 2004), is a single pass

algorithm for estimating the most frequent items in a data stream using limited

storage space. It can estimate the frequencies of all the items in a data stream using a

data structure called Count Sketch. It returns the items whose frequencies satisfy a

user-specified threshold with high probability. For each element, the algorithm uses

the Count Sketch data structure to estimate its count, and keeps a heap of the top k

elements seen so far.

Count Sketch Algorithm is a hash-based algorithm. It needs one pass over the

data. The output of the Count Sketch Algorithm is approximate; however, a user-

specified output error is guaranteed. The user needs to define pre-specified

 21

parameters before running the algorithm, which are the maximum allowable error ε,

and the heap parameter k.

Count Sketch Algorithm requires the user to know the data range of the input

data stream, which is not applicable in some cases where the received data range is

not known. Also, the Count Sketch Algorithm does not handle deletion operation

because it preserves only a part of the sample data which is the top k frequent items.

Suppose that an item that is currently frequent is subject to a number of deletions so

that it is no longer among the most frequent items. In this case, it is not possible,

using this algorithm, to retrieve items from the past that have consequently become

frequent.

2.1.3 Frequent Itemsets Mining on Streaming Data

In (Manku 2002, Chang 2003, Jin 2003, Yang 2004, Dang 2007), the authors

proposed algorithms to find frequent patterns over the entire history of data streams.

In (Giannella 2003, Chang 2004, Lin 2005, Mozafari 2008), the authors use different

sliding window models to find recently frequent patterns in data streams. These

algorithms focus on mining frequent patterns, instead of closed patterns, with one

scan over the entire data stream.

Lossy Counting Algorithm is proposed in (Manku, 2002). It is a one pass,

landmark model1, incremental algorithm using an in-memory data structure. The

1 The landmark model mines all frequent itemsets over the entire history of streaming data from a
specific time point called landmark to the present [Zhu, 2002].

 22

mining result is approximate, and the error is guaranteed through a user-specified

error parameter. The algorithm proceeds as follows.

The data structure D is a set of entries of the form (x, f, e), where x is an

element in the stream, f is an integer representing its estimated frequency, and e is

the maximum possible error in f. Initially, D is empty. The user-specified parameters

are a support threshold s∈(0, 1), and an error parameter ε∈(0, 1), such that ε << s. N

denotes the current length of the stream. The Lossy Counting Algorithm divides the

incoming transaction stream into buckets, where each bucket consists of w = 





ε

1

transactions. Buckets are labeled with bucket identifiers, starting from 1. The current

bucket identifier is denoted by bcurrent. Whenever a new element x arrives, the

algorithm first determines whether an entry for x already exists or not. If the look up

succeeds, it updates the entry by incrementing its frequency f by one. Otherwise, it

creates a new entry of the form (x, 1, bcurrent – 1). It also prunes D, by deleting some

of its entries at bucket boundaries, i.e., whenever N = 0 mod w. The rule for deletion

is: an entry (x, f, e) is deleted if f + e ≤ bcurrent. When a user requests a list of items

with threshold s, it outputs those entries in D where f ≥ (s-ε) N.

The Lossy Counting Algorithm computes frequency counts in a single pass

with the output error guaranteed not to exceed a user-specified parameter ε. It is an

incremental algorithm. The disadvantage of the Lossy Counting Algorithm is that its

output is approximate, and the users need to define the pre-specified parameters

 23

before running this algorithm, which are the minimum support s, the maximum

allowable error ε, and the probability parameter e.

In the estDec Algorithm (Chang, 2003), a method of finding recent frequent

itemsets adaptively over an online data stream is proposed. It uses a one pass

algorithm to maintain the occurrence count of a significant itemset that appears in

each transaction using a prefix-tree lattice structure in main memory. The effect of

old transactions on the current mining result is diminished by decaying the old

occurrence count of each itemset as time goes by.

In the estDec data structure, every node in a monitoring lattice maintains a

triple (cnt, err, MRtid) for its corresponding itemset X. The count of the itemset X is

denoted by cnt. The maximum error count of the itemset X is denoted by err. Finally,

the transaction identifier of the most recent transaction that contains the itemset X is

denoted by MRtid. The estDec method is composed of four phases: parameter

updating phase, count updating phase, delayed-insertion phase and frequent itemset

selection phase. When a new transaction is generated in a data stream, the total

number of transactions in the current data stream is updated in the parameter

updating phase. In the count updating phase, the counts of those itemsets in a

monitoring lattice that appear in the new transaction are updated. After all of these

itemsets are updated, the delayed-insertion phase is started in order to find any new

itemset that has a high possibility to become a frequent itemset in the near future.

The frequent itemset selection phase is performed only when the mining result of the

 24

current dataset is required. A force-pruning operation is performed periodically or

when the current size of a monitoring lattice reaches a user-specified threshold to

prune all insignificant itemsets.

With the estDec Algorithm, the recent change of information in a data stream

can be adaptively reflected to the current mining results of the data streams. The

weight of information in a transaction of a data stream is gradually reduced as time

goes by while its reduction rate can be flexibly controlled. Due to this reason, no

transaction needs to be maintained physically. The disadvantage of the estDec

Algorithm is that it is an approximate algorithm; its processing time is flexibly

controlled while sacrificing its accuracy. Also its output error is not guaranteed.

The hCount Algorithm is proposed in (Jin, 2003). It maintains a hash table

and uses h hash functions to map a digit from (0..M-1) to (0..m-1) uniformly and

independently. The algorithm checks and outputs the itemsets with frequency above

a user-specified threshold s along with their estimated frequencies.

The hCount Algorithm can output a list of most frequent itemsets with a

relatively small usage of memory space. It can handle both insertion and deletion of

itemsets, and does not request the pre-knowledge on the value range of a data stream.

The disadvantage of the hCount Algorithm is that its output is approximate, and

users need to define pre-specified parameters before running the algorithm, which

are the frequency threshold and the maximum allowable error.

 25

In (Yang, 2004), the authors proposed an algorithm that uses limited

computer memory to keep frequency counts of all short itemsets. Its objective is to

find those frequent itemsets and association rules, the lengths of which are not longer

than a pre-defined length k. It introduces a method to keep frequency counts of all

short itemsets and to discover association rules from the short frequent itemsets. This

method uses an array to keep frequency counts of all short itemsets. A bijection

between itemsets and array elements is set up. Itemsets are arranged in the array so

that new items can be inserted at any time during the mining process.

Given n items, there are C(n, k) k-itemsets and ∑
=

k

i

inC
0

),(up-to-k-itemsets,

which denote any i-itemset where i ≤ k. With a 32-bit modern computer which

addresses 4GB memory space, k can be chosen as up to 3 when the value n is less

than 1,800. The frequency counts of all up-to-k-itemsets are stored in memory. They

are arranged in a pre-defined order and then an array is used to keep these frequency

counts. With this pre-defined order, when inserting a new item, it only needs to

extend the list of itemsets at its end to include the up-to-k-itemsets containing the

new itemset. The ranks of all existing itemsets in the order do not need any change.

This method is simple, fast, and capable of online and data stream mining. It

takes one pass over the data, and keeps all the short itemsets (itemsets with k ≤ 3,

where k is the maximum size of frequent itemsets) and their frequency counts in

memory. The drawback of this algorithm is that it is only suitable for mining small

database which n is less than 1,800 and k ≤ 3.

 26

 In (Lin, 2005), the authors propose an approach for frequent pattern mining

in data streams based on a time-sensitive sliding window model. It consists of a

storage structure that captures all possible frequent itemsets and a table providing

approximate counts of the expired data itemsets, the size of which can be adjusted by

the available storage space.

A data structure called Discounting Table (DT) is devised to retain the

frequent itemsets with their support counts in the individual basic blocks of the

current time-sensitive sliding window. Another data structure named Potentially

Frequent-itemset Pool (PFP) is used to keep the potential frequent itemsets, which

are not frequent in the last time-sensitive sliding window, but are frequent in the

current transaction block. The time-sensitive sliding window model divides the data

stream into blocks by time. The support count threshold for each basic block is

computed and stored into an entry in the Threshold Array (TA). Only sliding

window size entries are maintained in the TA. An algorithm to mine frequent

itemsets is applied to the transactions in the buffer. Each frequent itemset is inserted

into PFP in the form of (ID, Items, Acount, Pcount), recording a unique identifier, the

items in it, the accumulated count, and the potential count, respectively. Each itemset

in PFP is inserted into Discounting Table (DT) in the form of (B_ID, ID, B_count),

recording the serial number of the current basic block, the identifier in PFP, and its

support count in the current basic block. Basically there are five steps to run this

algorithm: In Step 1, the incoming data are stored in the buffer; in Step 2, the

itemsets are discounting by DT, the min or max function is used to maintain the DT

 27

through self adjustment-merge. In Step 3, new itemsets are inserted and old itemsets

are updated; in Step 4, the potential counts are estimated by TA and TA is updated;

and finally in Step 5, the frequent itemsets are output.

The time-sensitive sliding window approach takes one pass over the raw data.

It uses a time-sensitive sliding window model, which can answer time-sensitive

queries asked by the user within the time sliding window, and guarantees no false

dismissal or false alarm of the mining result. A mechanism to self-adjust the DT

under the memory limitation is presented. It can handle both insertion and deletion of

the data transactions, and the output error is guaranteed. The disadvantage of the

time-sensitive sliding window approach is that it stores duplicate information in

different data structures (DT and PFP) for each itemset, which will take more space

to store the redundant information. Although the authors developed a mechanism to

adjust the DT when memory is limited, it sacrifices the accuracy of this algorithm.

In (Dang, 2007), the authors propose an algorithm called EStream that allows

online processing of streaming data and guarantees the support error of frequent

patterns within a user-specified threshold. In (Mozafari, 2008), the authors propose

frequent itemset mining method for sliding windows by using a verification

technique, called verifier. Two verifiers and a hybrid verifier are used to mine

frequent itemsets.

 28

All the above algorithms focus on mining frequent itemsets, instead of closed

frequent itemsets over streaming data, which could result in redundancy on both the

data patterns and the derived associations based on these data patterns.

2.1.4 Closed Pattern Mining on Static Data

The concept of closed frequent itemsets was first introduced by Pasquier et al

in 1999 (Pasquier, 1999). It is well known that mining the entire collection of

frequent patterns often generates a large number of frequent itemsets, among which

users have to search through to find useful ones. For example, the set of frequent

patterns {a3, b3, ab3} can be more simply represented by {ab3}, from which we can

observe that the total number of closed frequent itemsets is a smaller subset of their

corresponding frequent itemsets. Furthermore, all frequent itemsets can be derived

from closed frequent itemsets. Because a frequent itemset must be a subset of one (or

more) closed frequent itemset(s), and its support is equal to the maximal support of

those closed itemsets that contain the frequent itemset, mining frequent closed

itemsets provides complete and condensed information for frequent pattern analysis.

More importantly, associations extracted from closed sets have been shown to be

more meaningful for analysis because all redundancies are discarded (Zaki, 2000).

A-close (Pasquier, 1999) is a variation of Apriori. It adopts the Apriori

framework, but looks for frequent closed itemsets and prunes the frequent itemsets

that are not closed. The mining process of A-close is as follows. First, A-close scans

the database and finds all frequent itemsets. Then, the Apriori heuristic is applied to

 29

generate all candidate 2-itemsets. In the second scan of the database, A-close counts

the supports of candidate 2-itemsets and derives the frequent 2-itemstes. Itemsets

that are not frequent are pruned during this scan. In the third scan of the database, A-

close collects the supports for the candidate 3-itemsets and finds that they are

frequent or not. The iterative candidate generation-and-testing process terminates

until no frequent itemsets are found. In order to generate the frequent closed

itemsets, A-close applies one more scan to compute the closures for all of the

surviving frequent itemsets. The closure of a frequent itemset is the intersection of

all transactions containing the itemset. The set of closures, after removing

duplications, is the set of frequent closed itemsets.

A-close scans the transaction database multiple times. The major cost of the

A-close is from two aspects. First, it has to generate a lot of candidates and scan the

transaction database multiple times to count candidates. Second, in the last scan to

compute closures, there could be a large number of surviving frequent itemsets. This

makes the closure computation costly.

Charm (Zaki, 2002) is another algorithm to find closed frequent itemsets.

Different from A-close, Charm explores a vertical data format, i.e., each item is

associated with a set of transaction identifiers (tid for short). Charm does not use the

Apriori framework. Initially, Charm builds a tree with multiple branches,

corresponding to the number of frequent items. The item, as well as the transaction

identifiers in which the item appears, is registered in the corresponding node. Then

 30

Charm attempts to combine items in the same layer to form itemsets. When it

combines, it computes the intersection of the sets of transaction identifiers of the two

itemsets (called tid set). If the combined itemset does not have enough support, it is

pruned. The efficiency of Charm is from the fact that the tid set of a superset itemset

is derived from those of its subsets. It is easy to check whether they are identical.

The major cost of Charm originates from the fact that it has to compute intersections

of tid sets repeatedly in each combination step.

Closet (Pei, 2003) is an algorithm proposed for mining closed frequent

itemsets. In the first step, it finds frequent items by scanning the entire database. The

items are sorted in descending support order. Then, it divides the search space. All

the frequent closed itemsets can be divided into non-overlapping subsets based on

the item list derived in the first step. In the third step, it mines the subsets of frequent

closed itemsets by constructing corresponding conditional pattern bases and mining

each recursively.

All the above works are developed to mine closed itemsets for traditional

static databases, where multiple scans are needed and whenever new transactions

arrive, additional scans must be performed on the updated transaction database.

Therefore, they are not suitable for data stream mining.

2.1.5 Closed Pattern Mining on Streaming Data

In (Chi, 2004), Chi et al considers the problem of mining closed frequent

itemsets over a data stream sliding window in the Moment Algorithm. A synopsis

 31

data structure is designed to monitor transactions in the sliding window so that it can

output the current closed frequent itemsets at any time. A compact data structure, the

Closed Enumeration Tree (CET) is introduced to maintain a dynamically selected set

of itemsets over a sliding window. Moment Algorithm visits itemsets in

lexicographical order. If a node is found to be infrequent, then it is marked as an

infrequent gateway node. The support and tid_sum of an infrequent gateway node

have to be stored because they will provide important information during a CET

update when an infrequent itemset can potentially become frequent. When an itemset

I is found to be non-closed because of another lexicographically smaller itemset, then

nI is an unpromising gateway node. In Explore, leftcheck(nI) checks if nI is an

unpromising gateway node. It looks up the hash table to see if there exists a

previously discovered closed itemset that has the same support as nI and also

subsumes I. And if so, it returns true (in this case nI is an unpromising gateway

node); otherwise, it returns false (in this case nI is a promising node). If a node nI is

found to be neither infrequent nor unpromising, then the algorithm explores its

descendants. After that, it can be determined if nI is an intermediate node or a closed

node.

Moment is an incremental algorithm. It takes one pass over the raw data, and

can handle both addition and deletion of the data transactions. The output error is

guaranteed. The disadvantage of Moment Algorithm is that it maintains not only

closed frequent itemsets, but also additional boundary nodes which increase the

memory usage as well as the computation time. And in (Li, 2006), the authors

 32

proposed the NewMoment Algorithm which uses a bit-sequence representation of

items to reduce the time and memory needed.

In Chapter 4, we propose an algorithm called CFI-Stream (Jiang, 2006), to

directly compute closed itemsets online and incrementally without the help of any

support information. Nothing other than closed itemsets is maintained in the derived

data structure. When a new transaction arrives, it performs the closure check on the

fly; only associated closed itemsets and their support information are incrementally

updated. The current closed frequent itemsets can be output in real time based on any

user-specified thresholds. And in (Li, 2008), Li et al proposed to improve the CFI-

stream Algorithm with bitmap coding named CLIMB (Closed Itemset Mining with

Bitmap) over data stream’s sliding window to reduce the memory cost. We then use

the discovered closed frequent itemsets to mine associations in data streams.

2.2 Association Mining

2.2.1 Association Mining based on Frequent Pattern Mining

There has been a lot of research in developing efficient association mining

algorithms for static data. The first recognized association mining algorithm for

traditional databases is Apriori (Agrawal, 1993).

Apriori is an influential algorithm for mining association rules, and a step-

wise algorithm. It generates the candidate itemsets to be counted in the pass by using

only the itemsets found frequently in the previous pass. The algorithm consists of

 33

two steps, a join step and a prune step. In the join step, join Lk-1 with Lk-1. In the

prune step, delete all itemsets X ∈ Ck such that some (k-1)-subset of X is not in Lk-1.

During each iteration, only candidates found to be frequent in the previous iteration

are used to generate a new candidate set during the next iteration. The candidate

itemsets having k items (called candidate k-itemset) can be generated by joining

frequent itemsets having k-1 items and deleting those itemsets that contain any

subset that is not frequent. The algorithm terminates when there are no frequent k-

itemsets. Apriori-based algorithms require multiple scans of the original database,

which lead to high CPU and I/O costs. Therefore, they are not suitable for the data

streaming environment, in which data can be scanned only once.

From the above discussions, we can see that traditional association mining

techniques are not suitable for the data streaming environment due to several

reasons. First, a huge amount of streaming data continuously arrives which produces

massive rules; the cost of calculation to find association rules is high and they may

not reflect the current situation. Second, traditional association rule mining

algorithms perform multiple scans over the database, which is not suitable to apply

to the data streaming environment that prefers a single scan. Furthermore, due to the

continuous, unbounded, and high speed characteristics of data streams, there is a

huge amount of data in both offline and online data streaming applications, and thus,

there is not enough time to rescan the whole database or perform a multi-scan as in

traditional data mining algorithms whenever an update occurs. Third, the mining

 34

method of data streams needs to adapt to their changing data value distribution

because the streaming data value distribution is usually changing with time.

Association mining technique based on frequent patterns produces many

rules. With a large amount of rules being produced, the cost of calculation to find

association rules is high. Also, it is difficult to evaluate the large amount of

associations which may or may not all be meaningful to the end users. To solve these

problems, many studies have been done. In (Toivonen 1995, Liu 1999), the authors

proposed techniques to prune and summarize the discovered associations. In

(Klemettinen 1994, Ng 1998, Liu 1999, Bayardo 1999), the authors proposed

techniques to mine the most interesting rules incorporated with the user-specified

constrains or defined by the object metrics of interest. But still they are aimed for the

traditional databases and, thus, do not fit the data streaming environment.

Furthermore, they do not address rule redundancy.

2.2.2 Association Mining based on Closed Pattern Mining

In (Bastide, 2000), the authors proposed the concept to mine minimal

antecedent and maximal consequent association rules with the same support and

same confidence. Using the closure of the Galois connection (Taouil, 2000), a

generating set for all valid association rules with the support and confidence is setup

using frequent closed itemsets and their generators; they consist of the non-redundant

association rules having minimal antecedents and maximal consequents. This

concept indicates to generate only the most informative rules.

 35

In (Li, 2004), the authors proposed a technique to mine minimal non-

redundant association rules from a quantitative closed itemset lattice. However, the

algorithm is based on a landmark data processing model and no deletion operation

can be performed over the entire history of data streams. Thus, when the amount of

data streams is high, the closed itemset lattice can grow rapidly.

In (Zaki, 2005), Zaki et al proposed the concept to mine non-redundant

association rules with minimal antecedent and minimal consequent with the same

support and same confidence. However, all these association rule mining algorithms

are based on the traditional association rule mining framework and require multiple

scans, which are not suitable for the stream mining environment.

In (Yang, 2004), (Halatchev, 2005), and (Shin, 2007), the authors proposed

using two, three, and multiple frequent pattern based methods to perform association

rule mining. Instead of using frequent pattern mining, we proposed to perform

association rule mining based on closed pattern mining technique we discussed in

Chapter 4, where the rule generation is based on the current closed itemsets in data

streams which are a condensed representation of the whole streaming data.

Furthermore, the rule can be generated on demand, at different users' querying

requests which is preferable in the distributed query processing data streaming

environment.

 36

2.3 Missing Data Estimation

Many articles have been published to deal with the missing data problem, and

a lot of software has been developed based on these methods. Some of the methods

totally delete the missing data before analyzing them, like listwise and pairwise

deletion (Wilkinson, 1999), while other methods focus on estimating the missing

data based on the available information. The most popular statistical estimation

methods include mean substitution, imputation by regression (Cool, 2000), hot deck

imputation (Iannacchione, 1982), cold deck imputation, expectation maximization

(EM) (McLachlan, 1997), multiple imputations (Rubin 1987, Shafer 1995), etc.

Mean Substitution (Cool, 2000) replaces all missing instances of a given

variable with the mean value for that variable. It is a good solution when data is both

Missing At Random (MAR) and somewhat normally distributed. If we assume that a

missing value for an individual on a given variable is best estimated by the mean for

the non-missing observations of that variable, that is to say, for a given item, simply

substitute the mean response of all valid cases providing data on that item.

The advantage of this method is that it is easy to implement, while the

disadvantage of this method is that the sample size is overestimated. Also, the

distribution of new values is an incorrect representation of the population values

because the shape of the distribution is distorted by adding values equal to the mean.

Imputation by Regression (Cool, 2000) is the prediction of the missing data

based on a regression equation that uses all other relevant variables as predictors.

 37

The advantage of this method is that it preserves the variance and covariance of the

variables with missing data. The disadvantage of this method is that if standard

errors are ignored when predicting the missing values, it may inflate the predictive

power of the model because the missing values of the dependent variables are

presented as perfectly predicted.

We can also perform the estimation by developing a regression equation to

predict the criterion of a variable with missing data using valid cases, and then apply

the equation to the valid scores on other variables of missing scores for that given

variable. This estimation is more sophisticated because it takes into account

relationships among the variables.

Regression methods rely on the information contained in the non-missing

values of variables to provide estimates of the missing values for the variable of

interest. Each variable with a missing value, in turn, is treated as a criterion variable

and is regressed onto all the other variables having observed values to predict the

criterion variable.

The Hot Deck Imputation (Iannacchione, 1982) replaces the missing values

with randomly selected values presented in a pool of similar complete cases. Because

the replacement values are randomly selected, hot deck imputation introduces the

variations seen in the pool of complete cases resulting in fewer tendencies toward the

mean. There are two main areas of concern: selecting valid characteristic sets for

identifying the potential pools containing values with reasonable variance, and

 38

ensuring that characteristic sets will allow for large enough donor pools with

reasonable variance. The technique has been used extensively by government

agencies and has been widely accepted as providing accurate samples of study

population. The Cold Deck Imputation replaces the missing value by a value that is

independent of the dataset. For example, we can replace the missing value with

population mean, or expected value under random response.

Expectation Maximization (EM) Algorithm (McLachlan, 1997) is a two step

iterative approach that estimates the parameters of a model starting from an initial

guess. Each iteration consists of two steps: an expectation step that finds the

distribution for the missing data based on the known values for the observed

variables and the current estimate of the parameters, and a maximization step that

substitutes the missing data with the expected value. The procedure iterates through

these two steps until convergence is obtained. Convergence occurs when the change

of the parameter estimates from iteration to iteration becomes negligible.

But none of the above approaches is suitable for wireless sensor network

environment, where streams of data are constantly sent from the sensors to the

server, due to several reasons. First, how much old information should be based on to

get the associated information for the missing data estimation? Using all of the old

readings to perform the estimation is unreasonable, especially when using an

iteration procedure until convergence to get the estimation like in the EM Algorithm.

On the other hand, using only the previous round of sensor readings to perform the

 39

estimation is also not a good choice because data streams often have a changing data

distribution. Some of the statistical methods use all of the available data points in a

database to construct the best possible results, in the wireless sensor networks, the

missing sensor data may or may not be related to all of the available information,

thus using all of the available information to process the result is not an optimal

choice and would consume more time and memory space than necessary.

Second, which information should be used to perform the missing data

estimation? In the wireless sensor network, data is collected within certain scopes

and reported to the server during a certain period of time. Different sensors have

different readings at different time periods. The current readings of one sensor may

relate not only to its previous readings, but also to other sensors’ previous or current

readings. Therefore, it is difficult to replace the missing values with randomly

selected values presented in a pool of similar complete cases or with a value which is

independent of the dataset like in the hot/cold deck imputation. This is because even

though we may get the complete set of information of a certain wireless sensor

network, it is not easy to decide which information is similar to the current round of

missing sensor’s information. In other words, it is hard to draw the pool for a certain

sensor’s certain round of readings when the application needs to perform the data

estimation.

Third, the missing data may or may not miss at random, while most of the

statistical techniques are based on the MAR assumption. According to the definition

 40

in (Little, 1987), Data on Y are missing at random if the probability that Y is missing

does not depend on the value of Y after controlling other observed variables X. For

example, we are modeling weight Y as a function of gender X. One gender may be

less likely to disclose its weight, that is, the probability that Y is missing depends

only on the value of X. Such data are MAR.

In (Deshpande, 2005), the authors proposed a model, called BBQ to provide

efficient query answers in sensor networks. They use probabilistic models to answer

queries. Such models can be learned from historical data using standard algorithms,

e.g. (Mitchell, 1997). The basic model used in BBQ is a time-varying multivate

Gaussians. A multivate Gaussian is the natural extension of the familiar

unidimensional normal Probability Density Function (PDF). First, the historical data

is used to construct the initial representation of the PDF. Once the initial PDF is

constructed, the answer queries can be answered using the model. The model is

updated as new observations are obtained from the sensor network, and as time

passes. There are various different models that may be more suitable in different

environments and for different classes of queries.

There are also some drawbacks of using the probabilistic models to answer

the query. First, the probabilistic models are learned from some set of training data.

The training data needs to be captured in advance before the model can be used to

predict values. In general, a probabilistic model is only as good at prediction as the

data used to train it. For models to perform accurate predictions, they must be trained

 41

in the kind of environment where they will be used. Second, the model needs to be

continuously updated as time goes by. Third, the suitable model needs to be selected,

choosing the best model for the given queries, and environment is another issue that

needs to be considered when using this approach.

As more and more data streaming applications emerge, proper data

estimation algorithms for streaming data are needed. In (Papadimitriou, 2005), the

authors proposed using pattern discovery in multiple time-series to estimate missing

data, but it’s not well suited for sensor networks, where the relationships between

sensors are decided not only by the time trends, but also by some other factors, like

locations and so on.

In (Halatchev, 2005), the authors proposed the Window Association Rule

Mining (WARM) Algorithm for estimating missing sensor data. WARM uses a

modified Apriori Algorithm for association rule mining to identify sensors that report

the same data for a number of times in a sliding window, called related sensors, and

then estimates the missing data from a sensor by using the data reported by its related

sensors. WARM has been reported to perform better than the mean substitution

approach where the average value reported by all sensors in the window is used for

estimation. However, there exist some limitations in WARM. First, it is based on 2-

frequent itemsets modified Apriori association rule mining algorithm, which means it

can discover relationships only between two sensors and ignores the cases where

missing values are related with multiple sensors. Second, it finds those relationships

 42

only when both sensors report the same value and ignores the cases where missing

values can be estimated by the relationships between sensors that report different

values. In (Gruenwald, 2007), the authors propose to use two frequent itemset

mining technique to perform estimation based on relationship between two sensors.

In (Tarui, 2007), the author discussed how to find a duplicate and a single missing

item in a stream.

In view of the above challenges, based on our proposed closed pattern and

association mining technique discussed in Chapter 4 and 5, we develop a technique

to perform missing data estimation based on the relationship between multiple sensor

readings. Since as discussed before, association rules based on the closed patterns in

data streams contain non-redundant and complete information, based on which

relationships between sensor values in data streams can be derived.

2.4 Summary

Table 2-3, Table 2-4 and Table 2-5 summarize the features of the discussed

algorithms in Section 2.1, 2.2, and 2.3 respectively.

 43

Mining
Strategy

Mining
Process

Data
Stream
Support

Scan

Mining
Frequent Item

Static Data Karp 03
Sampling
based

Offline No Two

Stream
Data

Charikar 04 Hash based Online Yes Single

Mining
Frequent
Itemsets

Static Data

Agrawal 93,
Agrawal 94

Candidate
based

Offline No Multiple

Han 00
Non-
candidate
based

Offline No Two

Stream
Data

Manku 02,
Chang 03, Jin
03, Yang 04,
Dang 07

Landmark
based

Online Yes Single

Giannella 03,
Chang 04, Lin
05, Mozafari
08

Sliding
window
based

Online Yes Single

Mining Closed
Itemsets

 Static Data
Pasquier 99

Key Pattern
Browsing

Offline No Multiple

Pei 00, Zaki
02, Pei 03

Closure
Climbing

Online No Multiple

Stream Data
Chi 04, Li 06 Indirect Online Yes Single

Proposed 06,
Li 08

Direct Online Yes Single

Table 2-3: Data pattern mining approaches

 44

Number of
Itemsets

Mining
Process

Data
Stream
Support

Scan

Mining
Association
Rule

Static
Data

Frequent
Itemsets

Agrawal
93,
Agrawal
94, Liu 99,
Han 00

Multiple Offline No Multiple

Closed
Itemsets

Bastide 00,
Li 04, Zaki
05

Multiple Offline No Multiple

Stream
Data

Frequent
Itemsets

Yang 04,
Halatchev
05

Two/Three/
Multiple

Online Yes Single

Closed
Itemsets

Proposed
07

Multiple Online Yes Single

Table 2-4: Association mining approaches

Number of
Itemsets

Data
Stream
Support

Data

Estimation

Static

Data Statistics
Iannacchione 82,
Rubin 96, Shafer 95,
Cool 00

N/A No

Stream

Data

Probabilistic
Models

Deshpande 05 N/A Yes

Time Series Papadimitriou 05 N/A Yes

Pattern and
Association
Mining

Tarui 07 One Yes

Halatchev 05,
Gruenwald 07

Two Yes

Proposed 07 Multiple Yes

Table 2-5: Data estimation approaches

 45

3 Preliminary Concepts

In this chapter, we describe the notations and definitions that are used

throughout this dissertation.

Let I = {i1, i2, …, in} be a set of n items. A subset X ⊆ I is called an itemset.

A k-subset is called a k-itemset. Each transaction t is a set of items from I. Given a

set of transactions T, the support of an itemset X is the percentage of transactions

that contain X. A frequent itemset is an itemset the support of which is above or

equal to a user-specified support threshold.

Let T and X be subsets of all the transactions and items appearing in a data

stream S, respectively. The concept of a closed itemset is based on the two

following functions, f and g: f(T) = {i ∈ I | ∀ t ∈ T, i ∈ t} and g(X) = {t ∈ T | ∀ i ∈

X, i ∈ t}. Function f returns the set of itemsets included in all the transactions

belonging to T, while function g returns the set of transactions containing a given

itemset X.

An itemset X is said to be closed if and only if C(X) = f(g(X)) = f•g(X) = X

where the composite function C = f•g is called Galois operator or closure operator

(Taouil, 2000).

Example 3.1 Let I = {a, b, c, d} be a set of 4 items, and T = {cd, ab, abc,

abc} be a set of transactions in data streams, then the closed itemsets are {c3, ab3,

cd1, abc2}. Each of the closed itemsets X satisfies C(X) = f(g(X)) = f•g(X) = X. Take

 46

ab as an example, g(ab) = {ab, abc, abc}, f•g(ab) = ab, so C(ab) = f(g(ab)) = f•

g(ab) = ab. If the user-specified absolute support threshold is two, then the frequent

closed itemsets are {c3, ab3, abc2}. The frequent itemsets are {a3, b3, c3, ab3, ac2,

bc2, abc2}, from which we can see that closed frequent itemsets are a smaller

subsets of frequent itemsets and contain all itemsets and support information in the

frequent itemsets.

From the above discussion, we can see that a closed itemset X is an itemset

whose closure C(X) is equal to itself (C(X) = X). The closure check is to check the

closure of an itemset X to see whether or not it is equal to itself, i.e., whether or not

it is a closed itemset. We define a smallest itemset X1 that satisfies C(X1) = X2, is

called a minimum generator of X2.

An association rule is an expression X → cs, Y, where X and Y are

interesting itemsets, and X ∩ Y = φ. The parameter s represents the support of the

rule which is the percentage of records that contain both X and Y in the database (s =

s(X∪Y) = |g(X∪Y)|/|T|), and c is the percentage of records containing X that also

contain Y, called the confidence of the rule (c = s(X∪Y)/s(X) = |g(X∪Y)|/|g(X)|).

Association mining is to find all association rules, the support and confidence of

which are above or equal to a user-specified minimum support and confidence,

respectively (Agrawal, 1993).

An association rule X1 → 1,1 cs Y1 is equivalent to an association rule X2

 → 2,2 cs Y2, if and only if X2  → 2,2 cs Y2 can be derived from X1 → 1,1 cs Y1, and

 47

s1=s2, c1=c2 (Zaki, 2005). If X1 → cs, X2, X3 → cs, X4, X1 ⊆ X3, and X4 ⊆ X2, we

say association rule X3 → cs, X4 is redundant (Bastide, 2000).

 48

4 Closed Pattern Mining in Data Streams

In this Chapter we introduce the proposed method to mine closed frequent

itemsets in data streams. First, we give an overview of the proposed algorithm and a

data structure, called DIrect Update lattice (DIU), to mine closed frequent itemsets in

data streams. Then, the conditions that are needed to check for closed itemsets and

how to check for them when performing insertion and deletion operations on the

DIU are discussed. Based on this, an online algorithm to discover and incrementally

update closed itemsets is developed.

4.1 Overview

The proposed algorithm employs a sliding window, which is a buffer that

holds a specified number of transactions that arrive from the input data stream. When

a new transaction enters (and/or a previously stored transaction leaves) the sliding

window, the algorithm updates the status of all associated closed itemsets’ support

values, on-the-fly. Current closed itemsets are maintained and updated in real time

using a newly proposed data structure, the DIU. The closed frequent itemsets can be

output at any time at user-specified thresholds by browsing the DIU.

Different from previous closure check techniques, which require multiple

scans over data (Pasquier 1999, Pei 2000, Zaki 2002, Pei 2003), our proposed

method performs the closure check on-the-fly with only one scan over the window. It

updates only the supports of the closed itemsets associated with the entering (or

 49

exiting) transactions, and it is able to provide real time updated results. The proposed

algorithm is an incremental algorithm where we check for closed itemsets and update

their associated supports based largely on the previously computed results, thus

increasing efficiency and reducing computational and I/O costs.

In contrast with other data stream mining techniques (Manku 2002, Chi 2004,

Lin 2005) , the proposed algorithm only stores the information of current closed

itemsets in the DIU, which is a compact and complete representation of all itemsets

and their support information. The current closed frequent itemsets can be output in

real time based on users’ specified thresholds by browsing the DIU. Also, the

proposed algorithm solves the concept-drifting problem (Wang, 2003) in data

streams by storing all current closed itemsets in the DIU from which all itemsets and

their support information can be incrementally updated. We discuss the update of the

DIU data structure and the closure check procedures for insertion and deletion

operations in Section 4.2.

4.2 The Proposed Data Structure

4.2.1 The Direct Update Lattice

A lexicographical ordered direct update lattice is used to maintain the current

closed itemsets. Each node in the DIU represents a closed itemset. There are k levels

in the DIU, each level i stores the closed i-itemsets. The parameter k is maximum

size of the current closed itemset. Each node in the DIU stores a closed itemset, its

 50

current support information, and the links to its immediate parent and child nodes.

Figure 4-1 illustrates the DIU after four transactions arrive. The support of each node

is labeled in the upper right corner of the node itself. The figure shows that currently

there are 4 closed itemsets c, ab, cd, abc in the DIU, and their associated supports are

3, 3, 1, and 2, respectively.

tid

1

2

3

4

itemsets

c, d

a, b

a, b, c

a, b, c

Φ

ab3 cd1

abc2

tim
elin

e

c3

Figure 4-1: The lexicographical ordered direct update lattice

All transactions in the current sliding window are stored in a (FIFO) queue

data structure; when the number of transactions exceeds the size of the sliding

window, the first transaction that comes into the queue exits the queue to make room

for the next arriving transaction to enter the queue.

4.2.2 Insert a Transaction to the DIU

In this subsection, the update and maintenance of the DIU when a new

transaction arrives is discussed. The basic result is the derivation of conditions that

define which itemsets, in the new transaction, need to be checked for closure and

how to decide if it is closed and need to be inserted to the DIU. The efficiency of the

 51

algorithm comes from the fact that not all itemsets need to be checked, but only a

subset of itemsets that are related to the arriving transaction.

4.2.2.1 Conditions to Check for Closed Itemsets

First, we define and prove the following conditions in which we need to

check whether an itemset is closed or not when a new transaction t arrives in the

current sliding window.

Table 4-1 shows the following conditions we classify to decide if a closure

check is needed when perform the addition operation.

Cases/Conditions Closure Check

Case 1
Case 1.A

Case 1.A.1 No

Case 1.A.2 Yes

Case 1.B No

Case 2

Case 2.A
Case 2.A.1 Yes

Case 2.A.2 No

Case 2.B
Case 2.B.1 No

Case 2.B.2 No

Table 4-1: Conditions to check for insertion operation

From the above table, we can see that there are two conditions we need to

perform closure check, which are as follows.

Condition 1 (Case 1.A.2): When the newly arrived transaction t equals { X},

X is not closed but has a support larger than zero in the old sliding window. If X is

currently closed and exists in the DIU, then no closure check is necessary. If X does

not currently exist in the DIU, then check all of X’s subsets Y to see whether they are

 52

closed or not in the new sliding window (mathematically, the condition of Case

1.A.2 can be expressed as: gT1(X) ≠ φ, gT1(Y) ≠ φ, CT1(X) ⊃ X, CT1(Y) ⊃ Y and Y ⊂ X).

Condition 2 (Case 2.A.1): When the newly arrived transaction t equals {X}, X

has a support of zero in the old sliding window. Check all of X’s subsets Y to

determine whether they are closed or not (mathematically, the condition of Case

2.A.1 can be expressed as: gT1(X) = φ, gT1(Y) ≠ φ, CT1(Y) ⊃ Y and Y ⊆ X).

Below we prove why we only need to perform closure checks for the itemsets

specified in the above two conditions, and why we do not need to perform closure

check in other conditions. We will use the Lemma 4.1 and Corollary 4.1 in

subsequent proofs. The proof of Lemma 4.1 is given in (Lucchese, 2006); we use

Lemma 4.1 in the proof of Corollary 4.1.

Lemma 4.1 Given an itemset X and an item i ∈ I, g(X) ⊆ g(i) ⇔ i ∈ C(X).

Corollary 4.1 Assume CT(X) is X’s closure within transaction set T. If CT(X)

= X and if there exists a subset Y ⊂ X such that CT(Y) ⊃ Y in transaction set T, then

there exists an item i, where i ∈ CT(Y), i ∉ Y, such that i ∈ X and CT(Y) ⊆ X.

Proof: Because Y ⊂ X, we have gT(X) ⊆ gT(Y). If i ∈ CT(Y), from Lemma 4.1,

we have gT(Y) ⊆ gT(i). Therefore, we have gT(X) ⊆ gT(i). Again from Lemma 4.1, we

have i ∈ CT(X). So if i ∉ X, we have CT(X) ≠ X, which is a contradiction with the

given condition. Therefore, we have i ∈ X. Because i ∈ CT(Y), i ∉ Y, Y ⊂ X , we have

CT(Y) ⊆ X. �

 53

When a new transaction t in the data streams arrives, if t equals {X}, depends

on whether X has or does not have a support larger than zero in the old transaction

set there are two conditions. Below we discuss the update and maintenance rules

under these two conditions. In the following proof, we assume X and Y are itemsets,

T1 is the old set of transactions, T2 is the set of transactions after t arrives, CT1(X) is

X’s closure in transaction set T1, and CT2(Y) is Y’s closure in the transaction set T2.

Case 1: When X has a support larger than zero in the old transaction set T1

For any new coming transaction t with the largest itemset X that already

exists in the old transaction set T1, we have gT1(X) ≠ φ. When gT1(X) ≠ φ, for any

itemset Y and Y ⊂ X, if gT1(Y) = φ. We have Y ⊂ X ⇒ gT1(Y) ⊃ gT1(X) ≠ φ. This is a

contradiction with gT1(Y) = φ. Therefore, if Y ⊂ X, the condition gT1(Y) = φ does not

need to be discussed. If Y ⊄ X ⇒ gT2(Y) = gT1(Y) = φ. Y’s support is zero in T2. Thus,

in both the cases Y ⊂ X and Y ⊄ X, we do not need to discuss the case when gT1(Y) =

φ. When gT1(X) ≠ φ and gT1(Y) ≠ φ, we examine cases according to the following

conditions: Y ⊄ X and Y ⊆ X.

Case 1.A: When Y is a subset of X

When Y is a subset of X, Y ⊆ X, we divide it into two subconditions to

analyze: X is or is not in the DIU.

Case 1.A.1: When X is in the old DIU

When X is in the old DIU, it is a closed itemset, therefore CT1(X) = X. We

have the following Lemma 4.2 and Lemma 4.3. From these two lemmas, we show

 54

that if a closed itemset X, which already exists in the old DIU, arrives, for any

itemset Y, Y ⊆ X, if Y is originally closed, it will remain closed; if Y is originally

unclosed, Y will remain unclosed, and we only need to update Y’s support. Therefore,

for most of the existing closed itemsets, we do not need to update the DIU structure;

we simply update their supports, which consume a small amount of time.

Lemma 4.2 Given T2 = T1 ∪ {X}, if CT1(X) = X and Y ⊆ X and CT1(Y) = Y,

then we have CT2(Y) = Y.

In this lemma we prove that if both X and Y are closed itemsets in the old set

of transactions T1, and Y ⊆ X, we have Y is also a closed itemset in the new

transaction set T2.

Proof: Since gT2(Y) = gT1(Y) ∪ {X}, we have CT2(Y) = f• gT2(Y) = f(gT1(Y) ∪

{ X}). Because Y ⊆ X, f(gT1(Y) ∪ {X}) = f(gT1(Y)) ∩ f({ X}) = CT1(Y) ∩ X = Y ∩ X =

Y. �

Lemma 4.3 Given T2 = T1 ∪ {X}, if CT1(X) = X and Y ⊂ X and CT1(Y) ⊃ Y,

then we have CT2(Y) ⊃ Y.

In this lemma we prove that if X is a closed itemset in transaction set T1, and

Y is not a closed itemset in transaction set T1, Y ⊂ X, we have Y is not a closed

itemset in transaction T2.

Proof: CT2(Y) = f(gT2(Y)) = f(gT1(Y)) ∩ f({ X}) = CT1(Y) ∩ {X}. From

Corollary 4.1, If CT1(X) = X, Y ⊂ X, CT1(Y) ⊃ Y. Given an item i, i ∈ CT1(Y), i ∉ Y,

we have i ∈ X. Therefore, CT2(Y) = CT1(Y) ∩ {X} ⊇ Y ∪ { i} ⊃ Y. �

 55

From Lemma 4.2, we know that if Y is a closed itemset in transaction set T1

before X comes, and Y ⊆ X, Y will remain closed after X comes in transaction set T2.

From Lemma 4.3, we know that if a closed itemset X which already exists on the

DIU tree comes, its subset Y which originally unclosed will remain unclosed.

Case 1.A.2: When X is not in the old DIU

When X is not in the old DIU, it is not a closed itemset, therefore CT1(X) ⊃ X.

Similarly, we have the following Lemma 4.4 and Lemma 4.5. From Lemma 4.4, we

show that if a new closed itemset, which is not originally in the old DIU, arrives and

if its subsets are already in the DIU, they will remain closed, and thus we simply

need to update their supports. From Lemma 4.5, we show that if a new closed

itemset, which is not originally in the old DIU, arrives, then we need to insert it as a

new closed itemset to the DIU.

Lemma 4.4 Given T2 = T1 ∪ {X}, if CT1(X) ⊃ X and Y ⊂ X and CT1(Y) = Y,

then we have CT2(Y) = Y.

In this lemma, we prove that when X is not a closed itemset, if Y is closed

itemsets in the old set of transactions T1, and Y ⊂ X, we have Y is also closed itemset

in the new transaction set T2.

Proof: Since gT2(Y)=gT1(Y) ∪ {X}, we have CT2(Y) = f•gT2(Y) = f(gT1(Y) ∪

{ X}). Because Y ⊂ X, f(gT1(Y) ∪ {X}) = f(gT1(Y)) ∩ f({ X}) = CT1(Y) ∩ X = Y ∩ X =

Y. �

From Lemma 4.5, we show that if a new closed itemset which is not

originally in DIU arrives, we need to add itself as a new closed itemset in the DIU.

 56

Lemma 4.5 Given T2 = T1 ∪ {X}, if CT1(X) ⊃ X and Y = X, then we have
CT2(Y) = Y = X.

In this lemma, we prove that when X is not a closed itemset in the old

transaction set T1, if Y = X, so Y is not a closed itemsets in the old set of transactions

T1, we have Y is a closed itemset in the new transaction set T2.

Proof: CT2(Y) = f•gT2(Y) = f(gT1(Y) ∪ {X}) = f(gT1(X)) ∩ f({ X}) = CT1(X) ∩

f({ X}) = CT1(X) ∩ X = Y = X. �

When CT1(X) ⊃ X, CT1(Y) ⊃ Y and Y ⊂ X, we will perform the closure check

to decide Y’s closure, which will be discussed further in Section 4.2.2.2.

Case 1.B: When Y is not a subset of X

When Y is not a subset of X, Y ⊄ X, we have the following Lemma 4.6. In

Lemma 4.6, we show that if Y is not a subset of X, Y’s closure does not change. That

is to say that if Y is an unclosed itemset before X arrives, then Y will remain unclosed

after X arrives; and, if Y is a closed itemset before X arrives, then Y will remain

closed after X arrives. Thus, the DIU structure does not need to be updated, and we

only need to update Y’s support.

Lemma 4.6 Given T2 = T1 ∪ {X}, if Y ⊄ X, then we have CT2(Y) = CT1(Y).

In this lemma we prove that when Y is not a subset of X, Y’s closure doesn’t

change in transaction set T2.

Proof: If Y ⊄ X, T2 = T1 ∪ {X}, we have gT2(Y) = gT1(Y). Because CT2(Y) = f•

gT2(Y), CT1(Y) = f• gT1(Y), gT2(Y) = gT1(Y), we have CT2(Y) = CT1(Y). �

Case 2: When X has a support equals to zero in the old transaction set T1

 57

For any new coming transaction t with the largest itemset X that has not

already appeared in the old transaction set T1, we have gT1(X) = φ. We discuss two

sub cases according to the following conditions: Y ⊄ X and Y ⊆ X.

Case 2.A: When Y is a subset of X

When Y is a subset of X, Y ⊆ X, we divide it into two subconditions to

discuss: Y has a support greater than zero in the old transaction set T1 or Y’s support

equals to zero in the old transaction set T1.

Case 2.A.1: When Y has a support greater than zero in the old transaction set T1

When Y is already in the old transaction set T1, then gT1(Y) ≠ φ. Because Y ⊆

X, we have gT2(Y) = gT1(Y) ∪ {X}. Therefore, CT2(Y) = CT1(Y) ∩ {X}. If CT1(Y) = Y,

we have CT2(Y) = Y that means Y is also closed in T2. If CT1(Y) ⊃ Y, we will perform

the closure check to decide Y’s closure, which will be discussed further in Section

4.2.2.2.

Case 2.A.2: When Y has a support equal to zero in the old transaction set T1

When Y does not have a support greater than zero in the old transaction set

T1, then gT1(Y) = φ. We have the following Lemma 4.7. In this lemma, we prove that

when Y is a subset of X, if Y = X, then Y is a closed itemset in the new transaction set

T2; and, if Y ⊂ X, then Y is not a closed itemset in the new transaction set T2.

Lemma 4.7 Given T2 = T1 ∪ {X}, if Y = X, then we have CT2(Y) = Y; if Y ⊂

X, then we have CT2(Y) ⊃ Y.

 58

In this lemma we prove that when Y is a subset of X, if Y = X, Y is a closed

itemset in transaction set T2; if Y ⊂ X, Y is not a closed itemset in transaction set T2.

Proof: If Y = X, then gT2(Y) = gT2(X) = {X}, from the given condition, we

know gT1(X) = φ. Therefore after X arrives, we have support(Y) = support(X) =1.

Because gT1(X) = φ, all X’s supersets’ supports = 0; from the definition of closed

itemset, we have Y is a closed itemset after X arrives. If Y ⊂ X, then gT2(Y) = gT2(X) =

{ X}, from the given condition, we know gT1(X) = φ. Therefore we have support(Y) =

support(X) = 1. Because X is a Y’s superset, and they have the same support, we have

Y as unclosed in transaction set T2. �

Case 2.B: When Y is not a subset of X

When Y is not a subset of X, Y ⊄ X, we divide it into two subconditions to

discuss: Y has a support greater than zero in the old transaction set T1 or Y’s support

equals to zero in the old transaction set T1.

Case 2.B.1: When Y has a support greater than zero in the old transaction set T1

If Y is already in the old transaction set T1, then gT1(Y) ≠ φ. We have the

following Lemma 4.8.

Lemma 4.8 Given T2 = T1 ∪ {X}, if Y ⊄ X, then CT2(Y) = CT1(Y).

In this lemma we prove that when Y is not a subset of X, Y’s closure doesn’t

change in transaction set T2.

Proof: If Y ⊄ X, Y ≠ X, we have gT2(Y)=gT1(Y). Because CT2(Y) = f• gT2(Y),

CT1(Y) = f• gT1(Y), gT2(Y) = gT1(Y), we have CT2(Y) = CT1(Y). �

 59

Therefore, Y’s closure doesn’t change. That is to say if Y is an unclosed

itemset before X comes, Y will remain unclosed after X comes; if Y is a closed

itemset before X comes, Y will remain closed after X comes.

Case 2.B.2: When Y has a support equal to zero in the old transaction set T1

If Y is not in the old transaction set, then gT1(Y) = φ. If Y ⊄ X, we have gT2(Y)

= gT1(Y) = φ, which does not need to be discussed.

From the above proofs, we can see that when a new transaction arrives, for

most of the above discussed cases, the DIU structure does not change and we only

need to update the associated closed itemsets’ supports in the DIU, which thus

reduces the processing costs. There are only two cases out of thirteen total cases that

we need to perform the closure check:

(1) Case 1.A.2: when gT1(X) ≠ φ, gT1(Y) ≠ φ, CT1(X) ⊃ X, CT1(Y) ⊃ Y and Y ⊂

X; and

(2) Case 2.A.1: when gT1(X) = φ, gT1(Y) ≠ φ, CT1(Y) ⊃ Y and Y ⊆ X.

We will discuss how to check for closed itemsets in the following Section 4.2.2.2.

4.2.2.2 Closure Check for Insertion

The CFI-Stream Algorithm checks whether an itemset is closed or not on the

fly and incrementally updates the DIU based on the previous mining results with one

scan of data streams. Below, we discuss the checking procedure when performing

the insertion operation on the DIU. In the following Theorem 1, we show that for any

 60

entering unclosed itemset Y, we can always find one and only one closed itemset Xc

in the DIU that equals to Y’s closure, i.e., Xc = C(Y).

Theorem 4.1 For any itemset Y that satisfies with C(Y) ⊃ Y and g(Y) ≠ φ,

there exists one and only one closed itemset Xc ∈ C, where C is a set of existing

closed itemsets, that satisfies with C(Y) = Xc, where Y ⊂ Xc.

Proof: To find Xc, we first find X1, such that X1 ⊃ Y, and support(X1) =

support(Y). According to the definition of closed itemsets, X1 always exists. If X1 is

not closed, we can find X2, where X2 ⊃ X1 and support(X1) = support(X2). Continuing

this until we can find one Xc which is a closed itemset. This Xc is the itemset that

satisfies C(Y) = Xc.

We also want to prove that there is only one such Xc, where support(Xc) =

support(Y) in the existing closed itemsets. Assume there is another Xc2, where

support(Xc2) = support(Y) in the existing closed itemsets. We know that for two

different closed itemset Xc, and Xc2, g(Xc) ≠ g(Xc2). Because Y ⊂ Xc and Y ⊂ Xc2, we

also know that g(Y) ⊇ g(Xc) and g(Y) ⊇ g(Xc2). Therefore, g(Y) ⊇ g(Xc) ∪ g(Xc2). The

Xc2 that we can find in the existing closed itemsets should satisfy with g(Y) ⊇ g(Xc)

∪ g(Xc2), g(Y) = g(Xc). From this we have g(Xc) ⊃ g(Xc2) because g(Xc) ≠ g(Xc2), then

this Xc2 cannot have the same support as Xc. This conflicts with our assumption,

support(Xc) = support(Y); so we could not find Xc2, thus Xc is unique.

We now prove C(Y) = Xc. For any i ∈ C(Y), i ∉ Y, from Lemma 4.1 we have

g(Y) ⊆ g(i). Because Y ⊂ Xc, we have g(Y) ⊇ g(Xc). Therefore, we have g(i) ⊇ g(Xc).

 61

From Lemma 4.1, we have i ∈ C(Xc) = Xc, therefore we have C(Y) ⊆ Xc. For any i ∈

Xc, i ∉ Y, because support(Y) = support(Xc), and from the given conditions we know

Y ⊂ Xc, so we have g(Y) = g(Xc). Also because i ∈ Xc, from Lemma 4.1, we have g(i)

⊇ g(Xc) = g(Y). Therefore, we have g(i) ⊇ g(Y). Again from Lemma 4.1 we know i ∈

C(Y), thus we have Xc ⊆ C(Y). From the above discussion, C(Y) ⊆ Xc and Xc ⊆ C(Y),

we have Xc = C(Y). �

From Theorem 4.1, we know that for any itemset Y that satisfies C(Y) ⊃ Y,

we can find Xc with a minimum number of items in it and Xc ⊃ Y. For any other Xc1 ⊃

Y, from the above discussion we know that g(Xc) ⊃ g(Xc1). Because Y ⊂ Xc, then g(Y)

⊇ g(Xc) ⊃ g(Xc1). To find Xc = C(Xc) ⊆ C(Y), we have g(Xc) = g(Y); only Xc will

fulfill this requirement. In this way, C(Y) can be found in the old transaction set T1.

Below, we show how we use this C(Y) to check if Y is a closed itemset in transaction

set T2 after X arrives.

Corollary 4.2 Given T2 = T1 ∪ {X}, if gT1(Y) ≠ φ , Y ⊆ X, CT1(Y) ⊃ Y,

(CT1(Y)/Y) ∩ X = φ, then we have CT2(Y) = Y.

Proof: CT2(Y) = f• gT2(Y) = f(gT1(Y) ∪ {X}) = f(gT1(Y)) ∩ f({ X}) = CT1(Y) ∩

f({ X}) = CT1(Y) ∩ X = Y. �

From Corollary 4.2, we derive a way to check whether Y is closed in

transaction T2 or not. If (CT1(Y)/Y) ∩ X = φ, then Y is a closed itemset in T2. We use

this condition to perform the closed itemset check on the fly when a new transaction

in the data streams arrives.

 62

4.2.3 Delete a Transaction from the DIU

In this subsection, the update and maintenance of the DIU for the deletion

operation, which occurs when a transaction leaves the sliding window is discussed.

The result of the research is to define the conditions under which closed itemsets,

currently stored in the DIU, need to be checked for closure when the old transaction

leaves the current sliding window.

4.2.3.1 Conditions to Check for Closed Itemsets

First, we define and prove the following condition in which we need to check

whether an itemset is closed or not when an old transaction X leaves the current

sliding window.

Table 4-2 shows the conditions we classify to decide if a closure check is

needed when perform the deletion operation.

Cases/Conditions Closure Check

Case 1 No

Case 2

Case 2. A Case 2.A.1 No

Case 2. B
Case 2.B.1 Yes

Case 2.B.2 No

Table 4-2: Conditions to check for deletion operation

From the above table, we can see that there is one condition we need to

perform closure check, which is as in the following statement.

 63

Condition1 (Case 2.B.1): When the number of the transactions with same

itemset as X is equal to zero, for all subsets Y of X, where the number of transactions

with same itemset as Y is equal to zero, and Y is a closed itemset in the old

transaction set, we need to check whether Y remains closed or not (mathematically,

when {X} ∉ T2, Y ⊆ X, {Y} ∉ T2, and CT1(Y) = Y).

Below, we prove why we only need to perform closure check for closed

itemsets specified in the above condition. In the following proof, we assume X and Y

are itemsets, T1 is the old set of transactions, T2 is the new set of transactions after

itemset X leaves, CT1(X) is X’s closure within transaction set T1, and CT2(Y) is Y’s

closure under transaction set T2.

Case 1: When the number of the transactions with the same itemset X is greater than

zero

When the number of transactions with the same itemset of X is greater than

zero, we have the following Lemma 4.9. From this lemma, we know that Y’s closure

does not change when the number of transactions with the same itemset of X is

greater than zero. That is to say that if Y is an unclosed itemset before X leaves, Y

will remain unclosed after X leaves; and, if Y is a closed itemset before X leaves, Y

will remain closed after X leaves.

Lemma 4.9 Given T2 = T1 \ {X}, { X} ∈ T2, we have CT2(Y) = CT1(Y).

In this lemma we prove that when the number of the transactions with same

itemset of X is greater than zero, Y’s closure doesn’t change in transaction set T2.

 64

Proof: Because {X} ∈ T2, if gT2(X) \ {X} ≠ φ, we have f(gT2(X)) = f(gT2(X) \

{ X}) ∩ X, so CT2(X) = f(gT2(X) \ {X}) ∩ X ⊆ X. According to the definition, CT2(X) ⊇

X. Therefore, we have CT2(X) = X. If gT2(X) \ {X} = φ, we have gT2(X) = {X},

f(gT2(X)) = f({ X}), and CT2(X) = X. Therefore, we have CT2(X) = X.

(a) For Y = X, we have CT2(Y) = Y, Y is a closed itemset in the transaction set

T2.

(b) For Y ⊂ X, because CT2(X) = X, Y ⊂ X, for CT2(Y) = Y, we have CT2(Y) ⊂

X; for CT2(Y) ⊃ Y, from Corollary 4.1, we have CT2(Y) ⊂ X. Therefore,

gT1(Y) = gT2(Y) ∪ {X}, so CT1(Y) = CT2(Y) ∩ {X}. Because CT2(Y) ⊂ X,

CT2(Y) ∩ {X} = CT2(Y). Therefore, we have CT2(Y) = CT1(Y).

(c) For Y ⊄ X, Y ≠ X, we have gT2(Y)=gT1(Y). Because CT2(Y) = f• gT2(Y),

CT1(Y) = f• gT1(Y), gT2(Y) = gT1(Y), we have CT2(Y) = CT1(Y). �

Therefore, Y’s closure doesn’t change when the number of the transactions

with same itemset of X is greater than zero. That is to say if Y was an unclosed

itemset before X leaves, Y will remain unclosed after X leaves; if Y was a closed

itemset before X leaves, Y will remain closed after X leaves.

 65

Case 2: When the number of transactions with the same itemset X is equal to zero

When the number of the transactions with same itemset of X is equal to zero,

{ X} ∉ T2, we divide this condition into the following two subconditions to discuss:

Y is not a subset of X or Y is a subset of X.

Case 2.A: When Y is not a subset of X

If Y is not a subset of X, we have the following Lemma 4.10. In this lemma,

we prove that when {X} no longer exists in transaction set T2, and Y is not a subset

of X, Y’s closure does not change in transaction set T2.

Lemma 4.10 Given T2 = T1 \ {X}, if { X} ∉ T2, Y ⊄ X, Y ≠ X, then CT2(Y) =

CT1(Y).

In this lemma we prove that when {X} is no longer exist in the transaction set

T2, Y is not a subset of X, Y’s closure doesn’t change in transaction set T2.

Proof: If {X} ∉ T2, Y ⊄ X, Y ≠ X, we have gT2(Y) = gT1(Y). Because CT2(Y) =

f• gT2(Y), CT1(Y) = f• gT1(Y), gT2(Y) = gT1(Y), we have CT2(Y) = CT1(Y). �

Therefore, Y’s closure doesn’t change. That is to say if Y was an unclosed

itemset before X leaves, Y will remain unclosed after X leaves; if Y was a closed

itemset before X leaves, Y will remain closed after X leaves.

Case 2.B: When Y is a subset of X

If Y is a subset of X, we discuss according to the following subconditions: Y

is a closed itemset in transaction set T1 and Y is not a closed itemset in transaction

set T1.

 66

Case 2.B.1: When Y is a closed itemset in transaction set T1

In the following Lemma 4.11, we prove that when Y is a subset of X, Y ⊂ X,

{ Y} ∈ T2. Y is a closed itemset in transaction set T2.

Lemma 4.11 For any itemset Y, if Y ⊂ X, {Y} ∈ T2, we have CT2(Y) = Y.

In this lemma we prove that when Y is a subset of X, Y ⊂ X, {Y} ∈ T2. Y is a

closed itemset in transaction set T2.

Proof: Because gT2(Y) = {Y} ∪ (gT2(Y) \ {Y}), we have CT2(Y) = f({ Y}) ∩

f(gT2(Y) \ {Y}) ⊆ Y. Also because CT2(Y) ⊇ Y, we have CT2(Y) = Y. �

From the above discussion, we can see that in the condition that we need to

perform the closure check for the deletion operation, if {Y} ∈ T2, the Y is closed in

the new transaction set T2. When Y is a closed itemset in the transaction set T1, that

is to say when Y ⊆ X, CT1(Y) = Y, and {Y} ∉ T2, we need to perform the closure

check, which we will discuss further in Section 4.2.3.2.

Case 2.B.2: When Y is not a closed itemset in transaction set T1

When Y is not a closed itemset in transaction set T1, we have the following

Lemma 4.12.

Lemma 4.12 Given T2 = T1 \ {X}, if Y ⊂ X, CT1(Y) ⊂ Y, then CT2(Y) ⊂ Y.

In this lemma we prove that when Y is a subset of X, Y ⊂ X, and CT1(Y) ⊂ Y ,

then Y is not a closed itemset in transaction set T2.

 67

Proof: Because Y ⊂ X, gT1(Y) = gT2(Y) ∪ {X}, CT1(Y) = f• gT1(Y) = f(gT2(Y) ∪

{ X}) = CT2(Y) ∩ {X}. Because CT1(Y) ⊃ Y, Y ⊂ X, we have CT2(Y) ∩ {X} ⊃ Y.

Therefore, CT2(Y) ⊃ Y. �

From the above discussion, we can see that when an old transaction leaves

the current sliding window, for most cases in the above discussions, the DIU

structure does not change, and we need to update only the associated closed itemsets’

supports, which thus reduces the update costs. There is only one case out of five total

cases that we need to perform the closure check when an old transaction {X} leaves

the current sliding window: when {X} ∉ T2, Y ⊆ X, and {Y} ∉ T2, and CT1(Y) = Y.

We will discuss how to check for closed itemsets in the following section.

4.2.3.2 Closure Check for Deletion

The CFI-Stream Algorithm checks whether an itemset is closed or not on the

fly, and incrementally updates the DIU based on the previous mining results with

one scan of data streams. Below, we discuss the checking procedure for the deletion

operation. In the following Theorem 4.2, we show that for any itemset Y, if Y ⊆ X,

CT1(Y) = Y, {X} ∉ T2, then we can always find CT2(Y) in the original closed itemsets.

Theorem 4.2 For any itemset Y, if Y ⊆ X, CT1(Y) = Y, {X} ∉ T2, then CT2(Y)

∈ CT1. That is to say, we can always find CT2(Y) in CT1.

 Proof: CT1(CT2(Y)) = f(gT1(f(gT1(Y) \ {X})))

 68

Because {X} ∉ T2, there is one {X} transaction in T1, we have gT1(Y) \ {X} ⊆

gT1(f(gT1(Y) \ {X})) ⊆ gT1(Y). So we have either gT1(f(gT1(Y) \ {X})) = gT1(Y) \ {X} or

gT1(f(gT1(Y) \ {X})) = gT1(Y).

In the first case, gT1(f(gT1(Y) \ {X})) = gT1(Y) \ {X}. Because CT1(CT2(Y)) =

f(gT1(f(gT1(Y) \ {X}))) = f(gT1(Y) \ {X}) = CT2(Y), we have CT2(Y) as a closed itemset

in CT1.

In the second case, gT1(f(gT1(Y) \ {X})) = gT1(Y). Because CT1(CT2(Y)) =

f(gT1(Y)) = CT1(Y) = Y. So we have CT2(Y) ⊆ Y. Also because Y ⊆ CT2(Y), so we have

CT2(Y) = Y. So CT2(Y) is a closed itemset in CT1.

Hence, for both cases CT2(Y) ∈ CT1, we definitely can find CT2(Y) in CT1.

Below, we show how we perform the closure check when {Y} ∉ T2 and to

see if Y is a closed itemset in transaction set T2 after X leaves.

Corollary 4.3 If Y ⊆ X, {Y} ∉ T2, for all u1, u2, …, ui, …, un which satisfies

CT2(ui) = ui , Y ⊂ ui, we have CT2(Y) = u1 ∩ u2 ∩ …∩ ui ∩ …∩ un.

Proof: First, we prove CT2(Y) ⊆ u1 ∩ u2 ∩ …∩ ui ∩ …∩ un. Because Y ⊂ ui,

CT2(ui) = ui according to Corollary 4.1, CT2(Y) ⊆ ui. Therefore CT2(Y) ⊆ u1 ∩ u2 ∩

…∩ ui ∩ …∩ un.

Next, we prove CT2(Y) ⊇ u1 ∩ u2 ∩ …∩ ui ∩ …∩ un. For any transaction t, t

∈ T2, Y ∈ t. Because {Y} ∉ T2, so we can find Z ⊃ Y, Z ∈ t. We know CT2(Z) ⊇ Z ⊃

Y, CT2(Z) ∈ CT2. Because u1, u2, …, ui, …, un are all itemsets in CT2 which includes Y.

So we can assume CT2(Z) = uk, so gT2(uk) = gT2(Z). So t ∈ gT2(Z), t ∈ gT2(uk).

 69

Therefore, we have gT2(Y) ⊆ gT2(u1) ∪ gT2(u2) ∪ …∪ gT2(ui) ∪ …∪ gT2(un). So

CT2(Y) ⊇ CT2(u1) ∩ CT2(u2) ∩ …∩ CT2(ui) ∩ …∩ CT2(un) = u1 ∩ u2 ∩ …∩ ui ∩ …∩

un.

Therefore, we have CT2(Y) = u1 ∩ u2 ∩ …∩ ui ∩ …∩ un. �

From Corollary 4.3, we derive a way to check Y’s closure: if CT2(Y) = u1 ∩

u2 ∩ … ∩ ui ∩ … ∩ un = Y, then Y is a closed itemset. We use this rule to perform

the closure check in the CFI-Stream Algorithm on the fly when an old transaction

leaves the current sliding window.

4.3 The Proposed CFI-Stream Algorithm

Based on our above discussions, we derive an algorithm to perform online

checking for closed itemsets over data streams. The CFI-Stream Algorithm performs

an insertion operation when a new transaction arrives and a deletion operation when

an old transaction leaves the current sliding window.

When a transaction arrives or leaves the current data stream sliding window,

by performing the insertion and deletion operations, the CFI-Stream Algorithm

checks each itemset in the transaction on the fly and updates the associated closed

itemsets’ supports. Current closed itemsets are maintained and updated in real time

in the DIU. The closed frequent itemsets can be output at any time at users’ specified

thresholds by browsing the DIU.

 70

4.3.1 The Insertion Procedure

The insertion procedure in Figure 4-2 illustrates the insertion process when

an itemset X arrives. The algorithm first checks if X is in the current closed itemsets

set C. If X is in C, it updates X’s support, and for all X’s subsets Y belonging to C, it

updates Y’s supports (lines 3 to 8). Otherwise, if X is not in C and X has been

included by at least one transaction in the old transaction set, it checks whether it is a

closed itemset for itself and all its subsets after the new transaction arrives (lines 9 to

36); and, it updates the associated supports for all the closed itemsets (lines 37 to 40).

If X is a newly arrived closed itemset and does not exist in the DIU, the algorithm

inserts it as a new node to the DIU (lines 27 to 31). Otherwise, it inserts X into the

closed itemset (lines 10-15); if X is the subset of the inserted transaction, a closure

check is performed (lines 16-24). In the following algorithm description, X and Y

represent itemsets, Xs and Ys represent X’s support and Y’s support, len(X) represents

the length of the itemset X, which is the number of items in an itemset X, C

represents the original closed itemsets in the DIU, and Cnew represents new closed

itemsets in the DIU after itemset X arrives.

CFI-Stream – Insertion

1 X_close = true; Cnew = φ;
2 procedure Insert(X, C, Cnew)
3 if (X ∈ C)
4 for all (Y ⊆ X and Y ∈C)
5 Ys  support(Y, C) + 1;
6 end for
7 if (X_close = true) return;
8 else

 71

9 if (support(X, C) > 0)
10 if(Cnew = φ)
11 X0  X;
12 Cnew  X;
13 X_close = false;
14 Xs  support (X, C) + 1;
15 else
16 Xc = φ;
17 M = I;
18 for all (K ⊃ X and K ∈ C)
19 if (len(K)<len(M)) M=K;
20 end for
21 Xc  M;
22 if ((Xc\X) ∩ X0 = φ and Xc ≠ φ)
23 Cnew  Cnew ∪ X;
24 Xs  support(X, C) + 1;
25 end if
26 end if
27 else
28 if (Cnew = φ)
29 X0  X;
30 Cnew  X;
31 Xs = 1;
32 end if
33 end if
34 end if
35 for all (m ⊂ X and Len(m) = Len(X)-1)
36 call Insert(m, C, Cnew);
37 end for
38 if (X = X0)
39 C  C ∪ Cnew;
40 support(X, C) = Xs;
41 end if
42 end procedure

Figure 4-2: CFI-Stream algorithm – insertion

4.3.2 The Deletion Procedure

The deletion procedure in Figure 4-3 illustrates the procedure to perform the

deletion operation when an itemset X leaves the current sliding window. CFI-Stream

 72

first checks if X is in the current closed itemsets set C and its count is greater or

equal to two; if so, it updates X’s support and X’s subsets’ support belonging to C

(lines 3 to 6). Otherwise, it checks the itemset X and all its subsets, which are in the

current closed itemset set C, to see whether they are still closed itemsets (lines 8 to

26) and updates the support for all its subsets that are in the current closed itemsets

(lines 28 to 29). If the subset Y exists in the transaction, Y should keep closed (lines

11-13); otherwise a closure check for the subset Y is performed (lines 14-22). In the

following Figure 4-3, Cobsolete represents the itemsets that are no longer closed after

transaction {X} leaves.

CFI-Stream – Deletion

1 Cobsolete = φ;
2 procedure Delete (X, C, Cobsolete)
3 if (count({X}) ≥ 2)
4 for all (Y ⊆ X and Y ∈C)
5 Ys  support(Y, C) – 1;
6 end for
7 else
8 length = len(X);
9 while (length ≥ 1)
10 for all (Y ⊆ X and Y ∈C and len(Y) = length)
11 if (count({Y}) ≥ 2)
12 Ys  support(Y, C) – 1;
13 else
14 M = I;
15 for all (U ⊃ Y and U ∈C)
16 M = M ∩ U;
17 end for
18 if (M = Y)
19 Ys  support(Y, C) – 1;
20 else
21 Cobsolete= Cobsolete ∪ Y;
22 end if

 73

23 end if
24 end for
25 length = length-1;
26 end while
27 end if
28 C  C \ Cobsolete
29 support(Y, C) = Ys;
30 end procedure

Figure 4-3: CFI-Stream algorithm – deletion

4.4 Comparing with Existing Literature

Table 4-3 summarizes the recent closed pattern mining approaches. From

which we can see that according to different mining strategies, the proposed methods

perform single or multiple scan through the entire dataset. In the data stream

environment, as we discussed in Section 1.2, the single scan of data and compact

memory usage of the mining technique are preferable. Chi et al proposed the

Moment Algorithm to judge the closed itemsets indirectly through node property

checking and excludes them from the other three types of boundary nodes stored in

the data structure. And in (Li, 2006), the authors proposed the NewMoment

Algorithm which uses a bit-sequence representation of items to reduce the time and

memory needed. We proposed the CFI-Stream Algorithm in (Jiang, 2006) to directly

compute the closed itemses online and incrementally without the help of any support

information. In (Li, 2008), Li et al proposed to improve the CFI-Stream Algorithm

with bitmap coding named CLIMB (Closed Itemset Mining with Bitmap) over data

stream’s sliding window to reduce the memory cost.

 74

Mining
Strategy

Mining
Process

Data
Stream
Support

Scan

Mining Closed
Patterns

 Static Data
Pasquier 99

Key Pattern
Browsing

Offline No Multiple

Pei 00, Zaki
02, Pei 03

Closure
Climbing

Online No Multiple

Stream Data
Chi 04, Li 06 Indirect Online Yes Single

Proposed 06,
Li 08

Direct Online Yes Single

Table 4-3: Recent closed pattern mining approaches

4.5 Summary

In this chapter an algorithm called CFI-Stream is proposed to directly

compute closed itemsets online and incrementally, without requiring the user to

provide support information. Once the closed itemsets are determined, the user’s

support information can be used to easily retrieve the desired frequent itemsets.

An in-memory data structure DIU is proposed to store and monitor the closed

patterns in the current sliding window. Nothing other than closed itemsets and their

support is maintained in the DIU. The proposed CFI-Stream Algorithm is a sliding

window approach to maintain the DIU in an incremental fashion. When a new

transaction arrives, it performs the closure check on the fly; only associated closed

itemsets and their support information are incrementally updated. This achieves both

time and space efficiency compared with the state of the art algorithm for closed

pattern mining in data streams (Chi, 2004). The current closed itemsets can be output

in real time based on any user’s specified support thresholds.

 75

5 Association Mining in Data Streams based on Closed

Pattern Mining

Association mining can produce many association rules. It is widely

recognized that the set of association rules can rapidly grow to be unwieldy,

especially when the support requirements are relatively low. In general, mining a

large set of frequent itemsets leads to a large number of rules being presented to the

user, many of which are redundant and difficult to analyze. A primary goal of the

proposed approach is to reduce the number and redundancy of the rules provided to

the user.

Many researchers have considered various kinds of solutions to the above

problem, and these can be divided into the following three categories: First is

efficient association mining based on frequent itemsets. This category’s research

objective is to enumerate all frequent itemsets, and to produce association rules

based on the derived frequent itemsets. Second is mining interesting association

rules. This category’s research objective is to incorporate user-specified constraints

on the kind of rules generated or to define objective metrics of interest. Third is

mining non-redundant association rules. This category’s research objectives include

the generation of non-redundant association rules.

In this research we focus on the combination of the second and third

approaches, to mine non-redundant and informative association rules that match the

 76

user interests. The generated association rules are evaluated by users for data

analysis. Because the cost of evaluating a large number of rules can be very high, we

attempt to reduce the non-informative association rules by generating only non-

redundant association rules that match the user’s interests.

5.1 Overview

The goal of association rule mining is to discover interesting associations and

correlation relationships among a large set of items. With massive amounts of data

continuously arriving in a data stream environment, it is possible for a huge number

of rules to be generated continuously.

Although there are a lot of existing studies on association rule mining,

traditional association rule mining techniques are not suitable for a data stream

environment due to several reasons. These reasons are outlined in detail in Section

2.2.1. Different from the previous non-redundant association rule generation

techniques that have been studied for the traditional database (Bastide, 2000, Zaki

2005), the proposed technique is to generate association rules with a single scan

based on the closed pattern mining method we proposed in Chapter 4. The rule

generation is based on the current closed itemsets in data streams derived from the

DIU, which are a condensed representation of the whole stream data without loss of

information. Compared with (Li 2004), the proposed technique involves the mining

of minimal non-redundant association rules from the DIU based on a sliding window

model, instead of a quantitative closed itemset lattice based on a landmark data

 77

processing model as we discussed in Section 2.1.3. Thus both insertion and deletion

operation can be performed on the data streams. Furthermore, the DIU contains all

the closed patterns in the current sliding window. Therefore, the rules can be

generated on demand, at different user-specified support and confidence thresholds.

Theoretical analysis and experimental results are also performed to show that

our proposed technique can efficiently produce non-redundant rules in data streams,

which provide a condensed set of association rules among itemsets in data streams

and make it easier for data analysis. In addition, only correlated relationships are

developed and user interest patterns are output from the pattern filters. The rules can

be generated for multiple user query requests with different thresholds and pattern

requirements which are especially suitable for the distributed data stream query

environment.

5.2 The Proposed Rule Mining Framework based on Closed
Pattern Mining

In this section, we present an online non-redundant and informative

association rule mining framework based on the closed pattern mining method in

data streams we proposed in Chapter 4. We first briefly describe the framework we

are going to use to compute the closed frequent itemsets and mine non-redundant

association rules in data streams. Then we discuss how we mine non-redundant and

informative association rules based on the discovered closed patterns.

 78

As illustrated in Figure 5-1, when data stream comes and leaves the server,

the CFI-Stream Algorithm checks each itemset in the transaction on the fly and

updates the associated closed itemsets’ supports. Current closed itemsets are

maintained and their support values are updated in real time in the DIU. We mine the

minimal non-redundant association rules based on the closed patterns maintained in

the lexicographical ordered direct update lattice. The derived rule set then goes

through the correlation filter to leave out any non-correlated associations into user

consideration. Based on different users’ requests on interested patterns, minimum

support and confidence thresholds, different association rule sets are output through

the pattern filter.

Figure 5-1: The proposed association mining framework based on closed pattern
mining

 79

5.3 Mining Informative Associations based on Closed Pattern
Mining

It is widely recognized that the set of association rules can rapidly grow to be

unwieldy, especially when support requirements are low. In this section, we show

how frequent closed itemsets can help us form a basic set of rules, from which all

other association rules can be inferred. Thus only a small and understandable set of

rules need to be presented to the user that can later selectively derive other rules of

interest. We show that the derived association rules in data streams are non-

redundant rules that provide a minimum set of association rules among itemsets in

data streams and make it easier for data analysis.

Lemma 5.1 The support of an itemset X is equal to the support of its closure,

i.e. s(X) = s(C(X)).

This lemma, reported in (Pasquier, 1999) and (Zaki, 2000), states that all

frequent itemsets are uniquely determined by the frequent closed itemsets. From

Lemma 5.1, we know that the support of an itemset X equals the support of its

closure C(X). Thus it suffices to consider rules only among the frequent closed

itemsets (Zaki, 2000). We show that they are equivalent in the following Lemma 5.2.

In the following proofs, we use |g(X)| to represent the number of transactions in g(X).

Lemma 5.2 The rule X1 → cs, X2 is equivalent to the rule

C(X1) → cs, C(X2).

 80

Proof: For support we have s = s(X1 ∪ X2) = |g(X1 ∪ X2)| = |g(X1) ∩ g(X2)|.

By Lemma 5.1, we have s = |g(C(X1)) ∩ g(C(X2))|, because the support of an itemset

and its closure is the same. The last expression can be rewritten as s = |g(C(X1) ∪

C(X2))| = s(C(X1) ∪ C(X2)). For confidence, we have c = s/|g(X1)| = s/|g(C(X1))|.

Therefore, the rule X1 → cs, X2 is equivalent to the rule C(X1) → cs, C(X2).

Lemma 5.3 (Zaki, 2000) The rule X1 → cs, X2 is equivalent to the rule X1

→ 1,1 cs X1 ∪ X2, i.e., s = s1 and c = c1.

Proof: For support we have s = |g(X1 ∪ X2)| = |g(X1 ∪ (X1 ∪ X2))| = s1. For

confidence, we have c = s/|g(X1)| = s1/|g(X1)| = c1. Therefore, the rule X1 → cs, X2

is equivalent to the rule X1 → 1,1 cs X1 ∪ X2, i.e., s = s1 and c = c1.

In the following discussions, we consider two cases of association rules,

those with 100% confidence, i.e. with c = 1.0, and those with c < 1.0.

Case 1: Rule with confidence = 100%

Lemma 5.4 The rule X1  → = 0.1,cs X1 ∪ X2 is equivalent to the rule

X1  → = 0.11,1 cs C(X1 ∪ X2), i.e., s = s1 and c = c1.

Proof:

(a) Because X1  → = 0.1,cs X1 ∪ X2, we have c = |g(X1 ∪ (X1 ∪ X2))|/|g(X1)|

= 1.0. Therefore, we have |g(X1 ∪ X2)|/|g(X1)|=1.0.

(b) Now let’s look at the rule X1  → = 0.11,1 cs C(X1 ∪ X2). For the

confidence, c1 = |g(X1 ∪ C(X1 ∪ X2))|/|g(X1)| = |g(C(X1 ∪ X2))|/|g(X1)|. From

Lemma 5.1, s(C(X1 ∪ X2)) = s(X1 ∪ X2), we have |g(X1 ∪ X2)|= |g(C(X1 ∪

 81

X2))|. Therefore, c1 = |g(X1 ∪ C(X1 ∪ X2))|/|g(X1)| = |g(C(X1 ∪ X2))|/|g(X1)| =

|g(X1 ∪ X2)|/|g(X1)|=1.0 = c. For the support, s1 = |g(C(X1 ∪ X2))| = |g(X1 ∪

X2)| = s. Therefore, the rule X1  → = 0.1,cs X1 ∪ X2 is equivalent to the rule

X1  → = 0.1,cs C(X1 ∪ X2).

Lemma 5.5 The rule X1  → = 0.1,cs X2 is equivalent to the rule

X1  → = 0.1,cs C(X1), and also the rule X1  → = 0.1,cs X2 is redundant.

Proof:

(a) From Lemma 5.3, we have X1 → cs, X2 is equivalent to the rule X1

→ 1,1 cs X1 ∪ X2. From (Luxenburger, 1991), we know that an association

rule X1 → cs, X2 has confidence c = 1.0 if and only if g(X1) ⊆ g(X2), or

equivalently if and only if C(X2) ⊆ C(X1). Therefore, we have rule X1 → cs,

X1 ∪ X2 has confidence c = 1.0 if and only if g(X1) ⊆ g(X1 ∪ X2), or

equivalently if and only if C(X1 ∪ X2) ⊆ C(X1).

(b) Because X1 ⊆ X1 ∪ X2, from the monotonicity property of Galois

connection (Luxenburger, 1991), we have C(X1) ⊆ C(X1 ∪ X2).

(c) From (a) and (b) we know that C(X1) = C(X1 ∪ X2), also from Lemma

5.3, we have X1 → cs, X2 is equivalent to the rule X1 → cs, X1 ∪ X2. From

Lemma 5.4, we have rule X1  → = 0.1,cs X1 ∪ X2 is equivalent to the rule X1

 → = 0.1,cs C(X1 ∪ X2). Therefore, we have the rule X1  → = 0.1,cs X2 is

equivalent to the rule X1  → = 0.1,cs C(X1 ∪ X2). Also because C(X1) = C(X1 ∪

 82

X2), we have the rule X1  → = 0.1,cs X2 is equivalent to the rule

X1  → = 0.1,cs C(X1).

From Lemma 5.5, we proved that any association rule X1  → = 0.1,cs X2 is

equivalent to the rule X1  → = 0.1,cs C(X1). Therefore, the set of association rules in the

format X1  → = 0.1,cs C(X1) is complete. Because C(X1) = C(X1 ∪ X2), and from the

extension property of Galois connection X ⊆ C(X), we have X2 ⊆ C(X2) ⊆ C(X1).

Thus, from the rule redundancy definition in Chapter 3, the rule X1  → = 0.1,cs X2 is

redundant.

In the following Lemma 5.6, we prove that the rules from all non-minimum

generators to its closure are redundant.

Lemma 5.6 The rules X1  → = 0.1,cs C(X1), X1 is not a minimum generator, are

redundant.

Proof: From the minimum generator definition in Chapter 3, we know that

the smallest itemset X1 that satisfies with C(X1) = X2, is called X2’s minimum

generator. If X1 is not the minimum generator, we can find a minimum generator X1’,

such that X1’  → = 0.1,cs C(X1). s’ = s(X1’∪C(X1)) = |g(X1’∪C(X1))| = |g(X1’) ∩

g(C(X1))| = | g(C(X1))| = |g(X1)∪g(C(X1))| = s, and c’ = |g(X1’∪C(X1))| / |g(X1’) | =

|g(X1∪C(X1))| / |g(X1) | = c . Therefore, the rules X1  → = 0.1,cs C(X1) are equivalent

with the rules X1’  → = 0.1,cs C(X1). Also because X1’ ⊆ X1, the rules from non-

minimum generator X1  → = 0.1,cs C(X1) are redundant.

 83

We use the method in (Li, 2004) to find the minimum generator of a given

closed itemset. In the following Lemma 5.7, we prove that all association rules from

the minimum generator to closed itemsets are non-redundant.

Lemma 5.7 The rules X1  → = 0.1,cs C(X1), X1 is a minimum generator, are

non-redundant.

Proof: Assume that we have two rules X1  → = 0.1,cs C(X1), and

X2  → = 0.1,cs C(X2). If X1 ⊃ X2, and C(X1) ⊂ C(X2), then X1 � C(X1) is redundant. We

show this is impossible. Because X1 and X2 are minimum generators, if X1 ⊃ X2, from

the monotonicity of Galois connection property (Luxenburger, 1991), we have C(X1)

⊃ C(X2). This is contrary with the given assumption C(X1) ⊂ C(X2). Therefore the

rules X1 � C(X1) are non-redundant.

From the above discussions, we show that when confidence of the association

rule is equal to 1, the set of association rules in the format X1  → = 0.1,cs C(X1), X1 is a

minimum generator, is complete and non-redundant. In the following, we discuss the

conditions when the confidence of the rule is less than 1.

Case 2: Rule with confidence < 100%

Lemma 5.8 The rule X1  → < 0.1,cs X2 is equivalent to the rule

X1  → < 0.1,cs C(X1 ∪ X2), and X1 ⊂ C(X1 ∪ X2).

Proof: For the rule X1  → < 0.1,cs X2, the support s = s(X1∪X2)) = |g(X1∪X2)|,

the confidence c = |g(X1∪X2)| / |g(X1) |. For the rule X1  → < 0.1,cs C(X1 ∪ X2), we have

its support is s(X1∪C(X1 ∪ X2)) = |g(X1∪C(X1 ∪ X2))| = | g(X1) ∩ g(C(X1 ∪ X2))| = |

 84

g(X1) ∩ g(X1 ∪ X2)| = | g(X1) ∩ g(X1) ∩ g(X2)| = | g(X1) ∩ g(X2)| = |g(X1∪X2)| = s, the

confidence is |g(X1∪C(X1 ∪ X2))|/ |g(X1) | = |g(X1∪X2)| / |g(X1) | = c. In all above

association rules, c is less than 1, the support of X1 is greater than the support of C(X1

∪ X2), therefore we have X1 ⊂ C(X1 ∪ X2). From the above discussion, we proved

that any association rule X1  → < 0.1,cs X2 is equivalent to the rule X1  → < 0.1,cs C(X1

∪ X2), and X1 ⊂ C(X1 ∪ X2). Therefore, if we can find all association rules with the

format of X1  → < 0.1,cs C(X1 ∪ X2), X1 ⊂ C(X1 ∪ X2), these association rules should

provide complete information.

Lemma 5.9 The rules X1  → < 0.1,cs C(X1 ∪ X2), X1 ⊂ C(X1 ∪ X2), X1 is not a

minimum generator, are redundant.

Proof: From the definition of minimum generator in Chapter 3, we know that

the most minimal generator X1 is the itemset that satisfies with C(X1) = X2. If X1 is

not the minimum generator, we can find a minimum generator X1’, such that

X1’  → < 0.1,cs C(X1 ∪ X2). s’ = |g(X1’∪C(X1 ∪ X2))| = |g(X1’) ∩g(C(X1 ∪ X2))| =

|g(X1’)∩g(X1)∩g(X2)| = |g(X1)∩g(X2)| = s , and c’ = |g(X1’)∪C(X1 ∪ X2)|/|g(X1)| =

|g(X1’)∩g(X1)∩g(X2)| /|g(X1)| = |g(X1∪X2)|/ |g(X1)| = c. Also because X1’ ⊆ X1, the

rules from non-minimum generator X1  → < 0.1,cs C(X1 ∪ X2), X1 ⊂ C(X1 ∪ X2), are

redundant.

In the following Lemma 5.10, we prove that all association rules from the

minimum generators to their closed supersets are non-redundant.

 85

Lemma 5.10 The rules X1  → < 0.1,cs C(X1 ∪ X2), X1 ⊂ C(X1 ∪ X2), X1 is a

minimum generator, are non-redundant.

Proof: Assume that we have two rules X1  → < 0.1,cs C(X1 ∪ X2), and

X1’  → < 0.1,cs C(X1 ∪ X2), X1 ⊂ C(X1 ∪ X2). If X1 ⊃ X1’, then X1 � C(X2) is

redundant. We show this is impossible. Because X1 and X1’ are generators, if X1 ⊃

X1’, from the monotonicity property of Galois connection, we have C(X1) ⊃ C(X1’).

This is contrary with the given condition that both X1 and X1’ are generators of the

same close itemset, i.e. C(X1) = C(X1’). Therefore the rules X1 � C(X1 ∪ X2), X1 ⊂

C(X1 ∪ X2), X1 is minimum generator are non-redundant.

From the above discussions, we show that when confidence of the association

rule is less than 1, the set of association rules in the format X1  → < 0.1,cs C(X1 ∪ X2),

X1 ⊂ C(X1 ∪ X2) and X1 is minimum generator, is a complete and non-redundant

association rule. In this relationship, C(X1 ∪ X2) is X1’s closed supersets. From (Zaki

2005), we know that for closed itemsets related by the subset relation, it is sufficient

to consider rules among adjacent closed itemsets, since other rules can be inferred by

transitivity (Luxenburger, 1991). Therefore, in our proposed algorithm, we derive

rules only among immediate parent and child nodes.

Not all association rules are correlated with each other, to determine all the

correlated association rules, we introduce the lift formula to calculate the correlation

of two closed patterns. The lift of two closed patterns X and Y can be measured as

lift(X, Y) = s(X ∪ Y) / s(X)s(Y) = |g(X ∪ Y)| /|g(X)||g(Y)|. As discussed in (Han, 2001),

 86

if the resulting value is less than 1, then the occurrence of X is negatively correlated

with the occurrence of Y. Otherwise if the resulting value is greater than 1, then X

and Y are positively correlated. If the resulting value is equal to 1, then X and Y are

independent and there is no correlation between them. We calculate and output all

the positively correlated rules, having lift values greater than 1.

Furthermore, different users often have different query requests at the same

time to the same stream of data. This is due to the fact that each user may have

different needs and interest information. To match different users’ query requests at

the server, we derive mechanism to output only the rule sets that match different

user-specified support and confidence thresholds. We also include a pattern filter in

the proposed association rule mining framework, which outputs the particular

patterns that the user interests about. For example, the electronic department

manager of a wholesale store may particular interests about the rule sets that imply

the following information: if a customer buys a camera, what other products that he

or she may also want to buy? In this specific query, camera is the user interest input

pattern. Based on this information, we derive the rule sets that match the input and

output patterns specified by different users. Figure 5-2 shows how we mine the non-

redundant and informative association rules in data streams from the DIU.

Input: (1) DIU: All closed itemsets in the DIU
 (2) Sspecify: the user-specified minimum support
 (3) Cspecify: the user-specified minimum confidence
 (4) Pin: the user-specified input pattern
 (5) Pout: the user-specified output pattern

 87

Output: R: The output informative association rule set

Method:

1 for each node X in the DIU
2 if (S(X) ≥ Sspecify)
3 find X’s minimum generator Y
4 for each Y, and Pin ⊆ Y
5 if (Y ≠ X and Pout ⊆ X and lift(Y, X) > 1)
6 R = R ∪ (Y � X)
7 S = S(X)
8 C = 1
9 for each X’s immediate upper-level node Xp
10 if (S(Xp) ≥ Sspecify and S(Xp)/S(X) ≥ Cspecify
 and Pout ⊆ Xp and lift(Y, Xp) > 1)
11 R = R ∪ Y � Xp
12 S = S(Xp)
13 C = S(Xp)/S(X)
14 end if
15 end for
16 end if
17 if (Y = X and Pout ⊆ X and lift(Y, X) > 1)
18 for each X’s immediate upper-level node Xp
19 if (S(Xp) ≥ Sspecify and S(Xp)/S(X) ≥ Cspecify
 and Pout ⊆ Xp and lift(Y, Xp) > 1)
20 R = R ∪ Y � Xp
21 S = S(Xp)
22 C = S(Xp)/S(X)
23 end if
24 end for
25 end if
26 end for
27 end if
28 end for

__

Figure 5-2: The informative association mining algorithm

 88

5.4 Comparing with Existing Literature

Table 5-1 summarizes recent association rule mining approaches. The mining

algorithms can be categorized based on the mining processes, the number of itemsets

the association rule mines, the number of scans the algorithm performs, etc.

Traditional rule mining algorithms based on frequent and closed patterns are

performed offline and need multiple scans over the entire dataset. In (Yang, 2004),

(Halatchev, 2005), and (Shin, 2007), the authors proposed using two, three, and

multiple frequent pattern based methods to perform association rule mining. Instead

of using frequent pattern mining, we proposed to perform association rule mining

based on closed pattern mining technique we discussed in Chapter 4, which is a

multiple closed pattern mining based algorithm, and be able to answer multiple

requests from different users’ specified interest query criteria at the same time.

Number of
Itemsets

Mining
Process

Data
Stream
Support

Scan

Mining
Association
Rule

Static
Data

Frequent
Itemsets

Agrawal 93,
Agrawal 94,
Liu 99, Han
00

Multiple Offline No Multiple

Closed
Itemsets

Bastide 00,
Li 04, Zaki
05

Multiple Offline No Multiple

Stream
Data

Frequent
Itemsets

Yang 04,
Halatchev
05, Shin 07

Two/Three/
Multiple

Online Yes Single

Closed
Itemsets

Proposed 07 Multiple Online Yes Single

Table 5-1: Recent association mining approaches

 89

5.5 Summary

In this chapter we propose a framework to produce non-redundant and

informative association rules based on closed itemset mining in data streams. Based

on the discovered closed itemsets derived and maintained in DIU, we perform non-

redundant association and informative rule mining using an association mining

framework. Theoretical analysis and experimental results show that our proposed

technique can efficiently produce non-redundant rules in data streams that provide a

minimum set of association rules among itemsets in data streams and thus make it

easier for data analysis. Furthermore, the rules can be generated on demand, at

different users' request thresholds, and different input and output patterns.

 90

6 Missing Data Estimation in a Sensor Network Database

Based on Closed Pattern Association Mining

In this chapter, a data estimation technique is developed based on association

rules derived from closed frequent patterns generated by sensors, to discover

relationships between sensors and use them to perform missing data estimation. By

discovering the relationships between multiple sensors when they have the same or

different values, this technique can perform data estimation for more cases than the

state of the art technique (Halatchev, 2005) and improve the estimation accuracy.

6.1 Overview

Recent advances in sensor technology have made possible the development

of relatively low cost and low-energy-consumption micro sensors which can be

integrated in a wireless sensor network. These devices - Wireless Integrated Network

Sensors (WINS) - will enable fundamental changes in applications spanning the

home, office, clinic, factory, vehicle, metropolitan area, and the global environment

(Asada, 1998).

Many research projects have been conducted by different organizations

regarding wireless sensor networks; however, few of them discuss how to estimate

the missing data when data is lost or corrupted. Traditional methods to handle the

situation when data is missing are to ignore the missing data, make sensors send

them again or use some statistical methods to perform the estimation. As we

 91

discussed in Chapter 2.3, these methods are not especially suited for wireless sensor

networks.

In this chapter, a data estimation technique is developed using Closed

Association Rule Mining (CARM) on stream data to discover relationships between

sensors and use them to compensate for missing and corrupted data. Different from

other existing techniques (Dempster 1977, Gelman 1995, Halatchev 2005,

McLachlan 1997, Rubin 1996), CARM can find out the relationships between two or

more sensors when they have the same or different values. The derived association

rules provide complete and non-redundant information; therefore it can improve the

estimation accuracy and achieve both time and space efficiency. Furthermore,

CARM is an online and incremental algorithm, which is especially beneficial when

users have different specified support thresholds in their online queries.

6.2 The Data Structure and Online Closed Pattern Association
Mining in Data Streams

In this section, an online data estimation technique called CARM is

developed based on the closed frequent pattern mining algorithm we proposed.

When a transaction arrives or leaves the current data stream sliding window, the

proposed closed pattern mining algorithm checks each itemset in the transaction on

the fly and updates the associated closed itemsets’ supports. The current closed

itemsets are maintained and updated in real time in the DIU, and can be output at any

time at users’ specified thresholds by browsing the DIU.

 92

A lexicographical ordered direct update lattice is used to maintain the current

closed itemsets. Each node in the DIU represents a closed itemset. There are k levels

in the DIU, where each level i stores the closed i-itemsets. The parameter k is the

maximum length of the current closed itemsets. Each node in the DIU stores a closed

itemset, its current support information, and the links to its immediate parent and

child nodes. We assume in this chapter that all current closed itemsets are already

derived, and based on these closed itemsets, we generate association rules for data

estimation.

6.3 Missing Data Estimation based on Closed Pattern Association
Mining

The closed itemset mining provides the foundation for our data estimation

algorithm, CARM. The reason we based CARM on the closed itemsets mining is

because not only it forms a non-redundant set of association rules (Zaki, 2000),

which helps to achieve the time and space efficiency, but also it provides compact

and complete information, which helps to achieve the estimation accuracy. Because

without losing any information, we are able to find out all the relationships (rules)

between sensors.

Lemma 6.1 The support of an itemset X is equal to the support of its closure,

i.e. s(X) = s(C(X)).

This lemma, reported in (Pasquier, 1999) and (Zaki, 2000), states that all

frequent itemsets are uniquely determined by the frequent closed itemsets.

 93

From Lemma 6.1, we can derive all itemsets’ supports through their closed

itemsets’ supports in the DIU.

Lemma 6.2 The rule X1 → cs, X2 is equivalent to the rule

C(X1) → cs, C(X2).

 Proof: For support we have s = s(X1 ∪ X2) = |g(X1 ∪ X2)| = |g(X1) ∩ g(X2)|.

By Lemma 6.1, we have s = |g(C(X1)) ∩ g(C(X2))|, because the support of an itemset

and its closure is the same. The last expression can be rewritten as s = |g(C(X1) ∪

C(X2))| = s(C(X1) ∪ C(X2)). For confidence, we have c = s/|g(X1)| = s/|g(C(X1))|.

From Lemma 6.2, we can derive all association rules between itemsets

through their closed itemsets in the DIU.

Instead of generating all possible association rules, we generate the rules that

have strong relationships with the current round of sensor readings where one or

more readings are missing. We achieve this through browsing the DIU, which stores

all of the closed itemsets. Based on the users’ specified support and confidence

thresholds, we find out rules through paths (links) of closed itemsets that suit the

users’ needs, i.e., satisfy the users’ specified support and confidence thresholds. The

mining process is online and incremental, which is especially beneficial when the

users have different specified threshold criteria in their online queries. The CARM

Algorithm is shown in Figure 6-1.

CARM proceeds in the following manner. First, it checks if there are missing

values in the current round of readings of stream data. If yes, it uses the current

round of readings X that contains the missing items to find out its closure online. If

 94

the rules from X to its immediate upper level supersets satisfy the user-specified

support and confidence criteria, these upper level supersets are treated as starting

points to explore more potential itemsets until CARM estimates all missing sensor

data. Following this method, CARM continues to explore and find all closed itemsets

that can generate association rules satisfying the users’ specified support and

confidence criteria. All these closed itemsets are the supersets of the exploration set

and have the support and confidence along the path above or equal to the users’

specified support and confidence thresholds.

CARM generates the estimated value based on the rules and selected closed

itemsets, which contain item value(s) that are not included in the original readings X.

It weighs each rule by its confidence and calculates the summation of these weights

multiplied with their associated item values as the final estimated result. These item

values can be expected as the missing item values with the support and confidence

values equal to or greater than the users’ specified thresholds. In this way, CARM

takes into consideration all the possible relationships between the sensor readings

and weighs each possible missing value by the strength (confidence) of each

relationship (rule). This enables CARM to produce a final estimated result near the

actual sensor value based on all of the previous sensor relationships information.

Before introducing the CARM Algorithm, we define the symbols to be used

in the algorithm. Let D = {d1, d2,…, dn} be a set of n item identifiers, and V = {v1,

v2,…, vm} be a set of m item values. An item J is a combination of D and V, denoted

 95

as J = D.V. For example, dn.vm means that an item with identifier dn has the value

vm. In the following figure, X is the itemset in the current round of sensor readings, Y

represents all supersets of X, Confy represents the strength of the rule from itemset X

to Y, support(X) represents X’s support, closure(X) is the closure of itemset X in the

current transaction sets, min(X) represents X’s immediate upper level supersets in

the DIU, S represents the support of association rule, C represents the confidence of

association rule, V(N) represents the value V(N) of sensor identifier S(N), Xestimate

represents the returned estimation itemset which contains the senor identifiers with

missing values in the current round of readings of stream data and their

corresponding estimated values. Sspecify represents the user-specified support, and

Cspecify represents the user-specified confidence.

__
Input: (1)Xinput: the current round of sensor readings that contains missing
 values
 (2)Sspecify: the user-specified minimum support

 (3)Cspecify: the user-specified minimum confidence

 Output: Xestimate: a set containing the senor ids with missing values in the current
 round of sensor readings and their corresponding estimated values

 Method:

1 Xestimate=φ;
2 Cinput=1;
3 Procedure Estimate(Xinput, Cinput, Sspecify, Cspecify)
4 if (Xinput ≠ φ and Xinput =C(Xinput))
5 C=Cinput;
6 for all (Y = min(Xinput))
7 C=C*(S(Y)/S(Xinput)) ;
8 Xnew=Y\ Xinput;

9 if (S(Y)> Sspecify and C>Cspecify and Xnew ≠ φ)
10 for all (Z∈Xnew, Z’s new value V)

 96

11 N=index(Z);
12 V(N)= V(N)+C*value(Z) ;
13 end for
14 Estimate(Y, C, Sspecify, Cspecify) ;
15 end if
16 end for
17 end if

18 if (Xinput ≠ φ and Xinput ≠ C(Xinput))
19 Y=closure(Xinput) ;
20 Xnew=Y\ Xinput;
21 C=1;

22 if (S(Y)> Sspecify and C>Cspecify and Xnew ≠ φ)
23 for all (Z∈Xnew , Z’s new value V)
24 N=index(Z) ;
25 V(N)= V(N)+C*value(Z) ;
26 end for
27 Estimate(Y, C, Sspecify, Cspecify) ;
28 end if
29 end if
30 Xestimate = Xinput ∪ Xnew
31 end procedure

Figure 6-1: The online data estimation algorithm

6.4 Comparing with Existing Literature

Table 6-1 summarizes the recent data estimation approaches, which can be

categorized according to the different methodologies. As we discussed in Section

2.3, the traditional statistical methods do not suitable to be used in the data stream

environment. Methods based on time series estimate the missing data based on its

time trends, but in the sensor stream database, sensor data is not only related with

time trends, other factors such as location can also affect the data relationships.

Methods based on pattern and association mining can discover implicit relationships

 97

between data. In (Tarui, 2007), the author discussed how to find a duplicate and a

single missing item in a stream. In (Halatchev, 2005) (Gruenwald, 2007), the authors

propose to use two frequent itemset mining technique to perform estimation based on

relationship between two sensors. Based on our proposed pattern and association

mining technique discussed in Chapter 4 and 5, we developed a technique to perform

missing data estimation considering the relationship between multiple sensor

readings.

Number of
Itemsets

Data
Stream
Support

Data

Estimation

Static

Data Statistics
Iannacchione 82,
Rubin 96, Shafer 95,
Cool 00

N/A No

Stream

Data

Time Series Papadimitriou 05 N/A Yes

Pattern and
Association
Mining

Tarui 07 One Yes

Halatchev 05,
Gruenwald 07

Two Yes

Proposed 07 Multiple Yes

Table 6-1: Recent data estimation approaches

6.5 Summary

 In this chapter we proposed a novel algorithm, called CARM, to perform data

estimation in sensor network databases based on closed pattern mining in sensor

streams. The algorithm offers an online method to derive association rules based on

the discovered closed itemsets, and estimates the missing sensor values based on the

derived association rules. It can find out the relationships between multiple sensors

 98

not only when they report the same sensor readings but also when they report

different sensor readings.

 99

7 Performance Study

7.1 Overview

In this chapter, we describe experimental study and results of our proposed

techniques. Section 7.2, 7.3 and 7.4 describe the performance study and analysis for

the content discussed in Chapter 4, 5, and 6 respectively. Section 7.5 summarizes this

chapter.

For the performance study, nine synthetic datasets T5.I6.D1K, T5I6D10K,

T5I6D20K, T5I6D100K, T5I10D10K, T5I12D10K, T10I6D10K, T12I6D10K,

T5.I6.D10K-AB and two real datasets are used to evaluate the performance of

proposed techniques. Each synthetic dataset is generated by the same method as

described in (Agrawal 1993), where the three numbers of each dataset denote the

average transaction size (T), the average maximal potential frequent itemset size (I)

and the total number of transactions (D), respectively. The first real dataset was

collected in year 2000 at various locations throughout the city of Austin, Texas. The

data represents the current location, the time interval, and the number of vehicles

detected during this interval. All sensor nodes report to a single server. The sensors

are deployed on city streets, collect and store the number of the vehicles detected for

a given time interval. The vehicle counts taken as sensor readings that are used as

input for our simulation experiments are traffic data provided by (Austin, 2003). The

second real dataset was sensor data collected in the Huntington Botanical Garden in

 100

Sam Marino, California (Huntington, 2008). The sensor reports the air temperature

of several places in the gardens for different time intervals. In the experiments, the

transactions of each dataset are looked up one by one in sequence to simulate the

environment of an online data stream. All our experiments were done on a 1.60 GHz

Intel Core 2 CPU with 2GB memory.

7.2 Performance Study for Closed Pattern Mining

We compare our algorithm with Moment (Chi 2004), which is the state-of-

the-art algorithm to mine closed itemsets in data streams and closet+ (Pei 2003),

which is the state-of-the-art closed itemsets mining algorithm for traditional

databases. For the performance study, synthetic datasets T5.I6.D1K, T5I6D10K,

T5I6D100K, T5I10D10K, T5I12D10K, T10I6D10K, T12I6D10K, T5.I6.D10K-AB are

used to evaluate the performance of the CFI-Stream Algorithm. The figures and

tables in this section show the average running time per transaction and memory

usage in terms of the number of stored itemsets in the above synthetic datasets.

7.2.1 Performance under Different Total Number of Transactions

In this experiment, we compare CFI-Stream, Moment (Chi 2004) and Closet+

(Pei 2003) under different total number of transactions. As shown in Figure 7-1 and

Table 7-1, as the total number of transaction size increases, the running time per

transaction of CFI-Stream, Moment and Closet+ fluctuate in a certain range, among

which Closet+ fluctuates the most. From Figure 7-1, we can also see that for the

 101

given three datasets with specified parameters, CFI-Stream gives the fast running

time, follows by Closet+ and Moment.

Figure 7-1: Running time per transaction under different total number of transaction
size in seconds

 T5I6D1K T5I6D10K T5I6D100K
CFI-Stream 0.000303 0.000997 0.00205596
Moment 0.09875 0.09444 0.0676
Closet+ 0.022188 0.0213424 0.01635217

Table 7-1: Running time per transaction under different total number of transaction
size in seconds

Figure 7-2 and Table 7-2 show that as the total number of transaction size

increases, for CFI-Stream and Closet+, the number of itemsets stored in the memory

is the same as the number of closed itemsets, which increases when the transaction

size increases. While for Moment, the memory space usage increased faster than

CFI-Stream and Closet+; this is because the Moment Algorithm needs to store all the

 102

boundary nodes, which include all the infrequent gateway nodes, unpromising

gateway nodes, intermediate nodes, and closed nodes. The number of boundary

nodes as well as the closed nodes increase while the total number of transaction size

increases.

Figure 7-2: Memory usage in terms of number of stored itemsets under different total

number of transaction size

 T5I6D1K T5I6D10K T5I6D100K
CFI-Stream 1925 18728 134010
Moment 21198 91000 391456
Closet+ 1925 18728 134010

Table 7-2: Memory usage in terms of number of stored itemsets under different total
number of transaction size

7.2.2 Performance under Different Sliding Window Size

In this experiment, we compare CFI-Stream, Moment (Chi 2004) under

different sliding window sizes. As shown in Figure 7-3 and Table 7-3, as the sliding

window size increases, the running time per transaction of CFI-Stream and Moment

 103

fluctuate in a certain range. Also we can see from Figure 7-3 and Table 7-3 that CFI-

Stream runs faster than Moment when processing the closed pattern mining with

different sliding window size under the given datasets and parameters.

Figure 7-3: Running time per transaction under different sliding window size in
seconds

T5I6D10K

(w=1K)
T5I6D10K

(w=2K)
T5I6D10K

(w=4K)
CFI-Stream 0.0027569 0.0043946 0.0064299
Moment 0.09929 0.10713 0.06874

Table 7-3: Running time per transaction under different sliding window size in
seconds

Figure 7-4 and Table 7-4 show that as the sliding window size increases, for

CFI-Stream, the number of itemsets stored in the memory is the same as the number

of closed itemsets, which increases when the transaction size increases. While for

Moment, the memory space usage increased faster than CFI-Stream; this is because

the Moment Algorithm needs to store all the boundary nodes, which include the

 104

infrequent gateway nodes, unpromising gateway nodes, intermediate nodes, and

closed nodes. The number of boundary nodes as well as the closed nodes increases

when the sliding window size increases.

Figure 7-4: Memory usage in terms of number of stored itemsets under different
sliding window size

Table 7-4: Memory usage in terms of number of stored itemsets under different

sliding window size

7.2.3 Performance under Different Minimum Support Threshold

Figure 7-5 and Table 7-5 show the average processing time per transaction

for Closet+, Moment and CFI-Stream under different minimum support thresholds.

As the minimum support threshold decreases, the running time per transaction for

T5I6D10K

(w=1K)
T5I6D10K

(w=2K)
T5I6D10K

(w=4K)
CFI-Stream 1768 4810 7660
Moment 21198 31271 52878

 105

Moment, CFI-Stream and Closet+ decreases as illustrated in Figure 7-5 for the given

datasets and parameters.

Figure 7-5: Running time per transaction under different minimum support threshold
in seconds

T5I6D10K

(s=1%)
T5I6D10K

(s=3%)
T5I6D10K

(s=5%)
CFI-Stream 0.0009549 0.0009521 0.0004796
Moment 0.06848 0.05752 0.05479
Closet+ 0.000138 0.0000077 0.00000355

Table 7-5: Running time per transaction under different minimum support threshold
in seconds

Figure 7-6 and Table 7-6 show the memory usage in terms of the number of

stored itemsets of Closet+, Moment and CFI-Stream under different minimum

support thresholds. As shown in this figure, the memory usage for Closet+ and

Moment decreases when the minimum support threshold increases. This is because

the number of itemsets it keeps track of decreases. For CFI-Stream, it keeps track of

 106

all the current closed itemsets independent of support information, therefore the

number of stored itemsets did not change with the support information.

Figure 7-6: Memory usage in terms of number of stored itemsets under different
minimum support threshold

T5I6D10K

(s=1%)
T5I6D10K

(s=3%)
T5I6D10K

(s=5%)
CFI-Stream 18728 18728 18728
Moment 14926 11424 10801
Closet+ 3608 1019 581

Table 7-6: Memory usage in terms of number of stored itemsets under different
minimum support threshold

7.2.4 Performance under Different Average Transaction Size

Figure 7-7 and Table 7-7 show the average processing time for Closet+,

Moment and CFI-Stream under different average transaction sizes. As the average

transaction size increases, the running time for CFI-Stream, Moment and Closet+

increases as illustrated in Figure 7-7.

 107

Figure 7-7: Running time per transaction under different average transaction size in
seconds

 T5I6D10K T10I6D10K T12I6D10K
CFI-Stream 0.000997 0.445898 3.55638
Moment 0.09444 1.87323 6.56796
Closet+ 0.0213424 0.644135 1.9165038

Table 7-7: Running time per transaction under different average transaction size in
seconds

Figure 7-8 and Table 7-8 show the memory usage in terms of the number of

stored itemsets of Closet+, Moment and CFI-Stream while the average transaction

size increases. As shown in this figure, the memory usage for the three algorithms

increases when the average transaction size increases. This is because the number of

itemsets it keeps track of increases. Also we can see from the figure that the CFI-

Stream and Closet+ Algorithm consumes less memory space than the Moment

Algorithm, because they only need to keep track of the closed itemsets. While

 108

Moment keeps track of all the infrequent gateway nodes, unpromising gateway

nodes, intermediate nodes, and closed nodes.

Figure 7-8: Memory usage in terms of number of stored itemsets under different
average transaction size

 T5I6D10K T10I6D10K T12I6D10K
CFI-Stream 18728 512923 1583586
Moment 91000 1472744 4667617
Closet+ 18728 512923 1583586

Table 7-8: Memory usage in terms of number of stored itemsets under different

average transaction size

7.2.5 Performance under Different Average Maximal Potential Frequent

Itemset Size

Figure 7-9 and Table 7-9 show the running time for Closet+, Moment and

CFI-Stream under different average maximal potential frequent itemset sizes. As the

average maximal potential frequent itemset size increases, the running time for CFI-

 109

Stream, Moment and Closet+ increases as illustrated in Figure 7-9 with the given

datasets and parameters.

Figure 7-9: Running time per transaction under different average maximal potential
frequent itemset size in seconds

 T5I6D10K T5I10D10K T5I12D10K

CFI-Stream 0.000997 0.0422233 0.023927
Moment 0.09444 0.64178 3.39715
Closet+ 0.0213424 0.1622659 0.0704573

Table 7-9: Running time per transaction under different average maximal potential
frequent itemset size in seconds

Figure 7-10 and Table 7-10 show the memory usage in terms of the number

of stored itemsets of Closet+, Moment and CFI-Stream under different average

maximal potential frequent itemset sizes. As shown in this figure, the memory usage

for the three algorithms increases when the average maximal potential frequent

itemset size increases. This is because the number of itemsets it keeps track of

increases. Also we can see from the figure that the CFI-Stream and Closet+

 110

Algorithm consume less memory space than the Moment Algorithm, because they

only need to keep track of the closed itemsets. While Moment keeps track of all the

infrequent gateway nodes, unpromising gateway nodes, intermediate nodes, and

closed nodes.

Figure 7-10: Memory usage in terms of number of stored itemsets under different
average maximal potential frequent itemset size

 T5I6D10K T5I10D10K T5I12D10K
CFI-Stream 18728 138363 58785

Moment 91000 388602 353126
Closet+ 18728 138363 58785

Table 7-10: Memory usage in terms of number of stored itemsets under different

average maximal potential frequent itemset size

7.2.6 Performance under Data Variation

Figure and Table 7-11 and 7-12 show the adaptability of the CFI-Stream

method to the change in data streams. In this experiment, the dataset T5I6D10K and

 111

(%)100×
|R|

X setitem anby induced itemsets frequent closed of #

T5.I6.D10K-AB is used. The dataset T5.I6.D10K-AB is composed of two consecutive

subparts. The first part is a set of 5,000 transactions generated by an item set A, while

the second part is a set of 5,000 transactions generated by an item set B. There are no

common items in the item sets A and B. We use the coverage rate CR(X) proposed by

Chang et al in (Chang, 2003) to illustrate the concept drift property of dataset

T5.I6.D10K-AB. CR(X) denotes the ratio of closed frequent itemsets introduced by

an item set X in all closed frequent itemsets as follows:

where |R| denotes the total number of closed frequent itemsets in a data stream. In the

first 5,000 transactions, which are generated by an item set A, all the new coming

closed frequent itemsets are introduced by the item set A, therefore the coverage rate

CR(A) is a hundred percent, while the coverage rate CR(B) is zero. In the second

5,000 transactions, all closed itemsets are generated by the item set B, not containing

any item from set A, therefore the final coverage rate CR(A) is 50%, and CR(B) is

50%. From Figure 7-11 and 7-12, we can see that the running time and memory

space consumption of CFI-Stream didn’t fluctuate much while using the dataset with

concept drift, which is favorable when processing data streams with different data

distribution.

CR(X) =

 112

Figure 7-11: Running time per transaction under data variation in seconds

 T5I6D10K T5I6D10K-AB
CFI-Stream 0.000997 0.0009332
Moment 0.09444 0.08734
Closet+ 0.0213424 0.0224317

Table 7-11: Running time per transaction under data variation in seconds

Figure 7-12: Memory usage in terms of number of stored itemsets under data
variation

 113

 T5I6D10K T5I6D10K-AB
CFI-Stream 18728 19767
Moment 91000 100038
Closet+ 18728 19767

Table 7-12: Memory usage in terms of number of stored itemsets under different data
variation

7.3 Performance Study for Association Mining

In this section, we describe the experimental study and results of the

proposed informative association mining framework. We compare our algorithm in

the proposed association mining framework with the fast implementation of the

Apriori Algorithm presented in (Fedor 2003), and the Charm Algorithm, which is a

non-redundant association rule mining algorithm for traditional databases proposed

in (Zaki, 2005) in traditional association mining framework. For the performance

study, synthetic datasets T5.I6.D1K, T5I6D10K, T5I6D20K, T5I10D10K,

T10I6D10K, T5.I6.D10K-AB are used to evaluate the performance of the informative

association rule mining algorithm. The dataset is generated by the same method as

described in (Agrawal, 1994), where the three numbers of each dataset denote the

average transaction size (T), the average maximal potential frequent itemset size (I)

and the total number of transactions (D), respectively. In each of the following

studies, we compare the number of rules generated and the computation time under

different experimental parameters. The figures and tables in this section show the

total running time and number of generated rules performance under different

association frameworks in the above synthetic datasets. In our proposed association

 114

mining framework as described in Chapter 5, we calculate the average running time

for each transaction to update the DIU, and the total association mining time for the

above synthetic datasets. In the comparing traditional sequential association mining

framework, we calculate the total running time to generate frequent or closed

itemsets and associations in the above synthetic datasets.

7.3.1 Performance under Different Total Number of Transactions

From Figure 7-13 and Table 7-13, we can see that as the total number of

transaction size increases, the number of rules generated by the three comparing

algorithms increases. The number of rules generated by CFI-R is less than the

number of rules generated by Charm and is much smaller than those generated by

Apriori. This is because CFI-R and Charm derived the non-redundant association

rules using the closed frequent itemsets according to different non-redundant rule

definitions, while Apriori uses all the frequent itemsets to generate association rules,

which contain a lot of redundant information (Zaki, 2000).

 115

Figure 7-13: Number of rules generated under different total number of transactions

 T5I6D1K T5I6D10K T5I6D20K
CFI-R 10397 123688 233931
Charm 20986 194798 372276
Apriori 421822 944569 998049

Table 7-13: Number of rules generated under different total number of transactions

From Figure 7-14 and Table 7-14, we can see that the running time of Apriori

is smaller than Charm and CFI-R. That is because the rules generated by Apriori

directly come from all frequent itemsets, while both Charm and CFI-R need to

generate closed frequent itemsets to produce the non-redundant association rules.

Therefore the calculation time increases.

 116

Figure 7-14: Running time under different total number of transactions in seconds

 T5I6D1K T5I6D10K T5I6D20K
CFI-R 0.183303 2.812997 5.83540325
Charm 1.11934 13.16552 25.04471
Apriori 0.06 0.14 0.17

Table 7-14: Running time under different total number of transactions in seconds

7.3.2 Performance under Different Minimum Support Threshold

Figure 7-15 and Table 7-15 show that the number of rules generated

decreases as the minimum support threshold increases in Apriori, Charm and CFI-R,

because when the user-specified support threshold increases, the number of rules that

satisfy the criteria will decrease as well.

 117

Figure 7-15: Number of rules generated under different minimum support threshold

T5I6D10K

(s=1%)
T5I6D10K

(s=3%)
T5I6D10K

(s=5%)
CFI-R 16430 4111 2110
Charm 16430 4110 2110
Apriori 62453 22624 15351

Table 7-15: Number of rules generated under different minimum support threshold

Figure 7-16 and Table 7-16 show that for both Apriori and Charm, the

running time decreases as the user-specified support threshold increases. That is

because when the user-specified support threshold increases, the number of rules

generated will be decreased, and therefore the calculation time decreases as well.

The running time for CFI-R didn’t change much because it finds out complete closed

itemsets independent of support information, and in the rule mining stage it filters

out the rules whose support and confidence is less than the user-specified thresholds.

 118

Figure 7-16: Running time under different minimum support threshold in seconds

T5I6D10K

(s=1%)
T5I6D10K

(s=3%)
T5I6D10K

(s=5%)
CFI-R 0.265997 0.265997 0.281997
Charm 1.537489 0.430442 0.29365
Apriori 0.05 0.03 0.04

Table 7-16: Running time under different minimum support threshold in seconds

7.3.3 Performance under Different Minimum Confidence Threshold

From Figure 7-17 and Table 7-17, we can see that the number of rules

generated decreases under different minimum confidence thresholds. Because when

the user-specified confidence threshold increases, the number of rules that satisfies

the query criteria will decrease. The amount of rules generated by Apriori Algorithm

is largest, because it is generated based on frequent itemsets. The number of rules

generated by Charm and CFI-R Algorithms are smaller, because they are generated

based on closed itemsets.

 119

Figure 7-17: Number of rules generated under different minimum confidence
threshold

T5I6D10K
(c=10%)

T5I6D10K
(c=30%)

T5I6D10K
(c=50%)

CFI-R 117941 109407 106375
Charm 188039 178616 174830
Apriori 324121 275989 257584

Table 7-17: Number of rules generated under different minimum confidence

threshold

Figure 7-18 and Table 7-18 illustrate the running time under different

minimum confidence thresholds. We can see that the running time for Charm and

CFI-R Algorithm is greater than the Apriori Algorithm. This is because both Charm

and CFI-R need to generate closed frequent itemsets to produce the non-redundant

association rules. Therefore the calculation time increases.

 120

Figure 7-18: Running time under different minimum confidence threshold in seconds

T5I6D10K
(c=10%)

T5I6D10K
(c=30%)

T5I6D10K
(c=50%)

CFI-R 0.265997 0.266997 0.281997
Charm 12.98839 12.68256 12.51883
Apriori 0.04 0.04 0.04

Table 7-18: Running time under different minimum confidence threshold in seconds

7.3.4 Performance under Different Average Transaction Size

Figure 7-19 and Table 7-19 show the number of rules generated under

different average transaction sizes. We can see that for all three algorithms the

number of rules generated increases when the average transaction size increases,

because the number of frequent and closed itemsets increases as the average

transaction size increases.

 121

Figure 7-19: Number of rules generated under different average transaction size in
seconds

 T5I6D10K T10I6D10K
CFI-R 123688 4887155
Charm 194798 5112739
Apriori 944569 1981482

Table 7-19: Number of rules generated under different average transaction size in
seconds

Figure 7-20 and Table 7-20 show the running time under different average

transaction sizes for CFI-R, Charm and Apriori Algorithm. We can see that as the

average transaction size increases, the running time increases for all three algorithms.

This is because both the number of closed itemsets and frequent itemsets increase

while the average transaction size increases, and the calculation time increases with

the increment of the number of frequent and closed itemsets.

 122

Figure 7-20: Running time under different average transaction size in seconds

 T5I6D10K T10I6D10K
CFI-R 0.265997 19.040898
Charm 13.16552 868.031
Apriori 0.14 0.24

Table 7-20: Running time under different average transaction size in seconds

7.3.5 Performance under Different Average Maximal Potential Frequent

Itemset Size

Figure 7-21 and Table 7-21 show the number of rules generated under

different average maximal potential frequent itemset sizes for CFI-R, Charm and

Apriori Algorithm. We can see that as the average maximal potential frequent

itemset size increases, the number of rules generated increases for all three

algorithms. This is because both the number of closed itemsets and frequent itemsets

increase while the average maximal potential frequent itemset size increases.

 123

Figure 7-21: Number of rules generated under different average maximal potential
frequent itemset size

 T5I6D10K T5I10D10K
CFI-R 123688 1503616
Charm 194798 1546412
Apriori 944569 5302210

Table 7-21: Number of rules generated under different average maximal potential
frequent itemset size

Figure 7-22 and Table 7-22 show the running time under different average

maximal potential frequent itemset sizes for CFI-R, Charm and Apriori Algorithm.

We can see that as the average maximal potential frequent itemset size increases, the

running time increases for all three algorithms. This is because both the number of

closed itemsets and frequent itemsets increase while the average maximal potential

frequent itemset size increases, and the calculation time increases with the increment

of the number of frequent and closed itemsets.

 124

Figure 7-22: Running time under different average maximal potential frequent
itemset size in seconds

 T5I6D10K T5I10D10K
CFI-R 0.265997 3.3812233
Charm 13.16552 189.1896
Apriori 0.14 1.15

Table 7-22: Running time under different average maximal potential frequent

itemset size in seconds

7.3.6 Performance under Data Variation

Figure and Table 7-23 and 7-24 show that number of rules generated and

running time for CFI-R, Charm, and Apriori Algorithm. We can see that the

performance of CFI-R Algorithm didn’t fluctuate much under the data variation,

which is a preferable characteristic in data streaming applications.

 125

Figure 7-23: Number of rules generated under data variation

 T5I6D10K T5I6D10K-AB
CFI-R 123688 126918
Charm 194798 32454
Apriori 944569 3071352

Table 7-23: Number of rules generated under data variation

Figure 7-24: Running time under data variation in seconds

 126

 T5I6D10K T5I6D10K-AB
CFI-R 0.265997 0.2819332
Charm 13.16552 2.572267
Apriori 0.14 1.17

Table 7-24: Running time under data variation in seconds

7.4 Performance Study for Missing Data Estimation

The performance of our proposed approach, CARM, is studied by means of

simulation. Several different simulation experiments are conducted in order to

evaluate the proposed technique and compare it with the Average Window Size

(AWS) approach, the linear interpolation approach, the linear trend approach, and

with the WARM approach, the state-of-the-art data estimation algorithm in sensor

databases using 2-frequent itemsets based association mining (Halatchev, 2005). We

compared the estimation accuracy, running time and memory space usage when

applying different methods to each application dataset.

The first dataset was collected in year 2000 at various locations throughout

the city of Austin, Texas. The data represents the current location, the time interval,

and the number of vehicles detected during this interval. All sensor nodes report to a

single server. The sensors are deployed on city streets, collect and store the number

of the vehicles detected for a given time interval. The vehicle counts taken as sensor

readings that are used as input for our simulation experiments are traffic data

provided by (Austin, 2003).

 127

A second experiment was performed over sensor data collected in the

Huntington Botanical Garden in Sam Marino, California (Huntington, 2008). The

simulation data of the environmental monitoring application was collected in year

2008 at various locations throughout the sensor network in Huntington Botanical

Garden. The data represents the current location, the time interval, and the air

temperature of detected environment during this interval. All sensor nodes report to a

single server. The sensors are deployed on different places of the botanical garden,

collect and store the air temperature detected for a given time interval. The air

temperatures are taken as sensor readings that are used as input for our simulation

experiment.

7.4.1 Performance Study of Estimation Accuracy

The evaluation of the estimation accuracy of the missing values is done by

using the average Root Mean Square Error (RMSE):

sestimation

XeXa

numStates
RMSE

sestimation

i
ii

#

)(
1

#

1

2∑
=

−
=

where Xai and Xei are the actual value and the estimated value, respectively;

#estimations is the number of estimations performed in a simulation run; and

numStates is the number of subsets, in which the actual readings are distributed.

The expression
sestimation

XeXa
sestimation

i
ii

#

)(
#

1

2∑
=

− represents the standard error and is an estimate of the

standard deviation under the assumption that the errors in the estimated values (i.e.

 128

Xai - Xei) are normally distributed. From the definition, we can see the smaller the

RMSE, the better the estimation accuracy.

From Figure 7-25 and Table 7-25, we can see that CARM gives the best

average estimation result of the above approaches regarding the accuracy, followed

by the WARM approach. The linear interpolation, AWS, and linear trend approaches

perform no better than WARM and CARM approaches. From Figure 7-25, we can

also see that CARM gives the best estimation result on the maximum estimation

accuracy, which is the root square error for the maximum difference between the

estimated and accurate values.

Figure 7-25: Performance study of average and maximum estimation accuracy for
traffic monitoring application

 129

 Average Maximum
WARM 0.1266228 0.6
CARM 0.021517 0.1
AWS 0.144978 0.5
Linear Interpolation 0.138109 0.6
Linear Trend 0.145933 0.5

Table 7-25: Performance study of average and maximum estimation accuracy for
traffic monitoring application

From Figure 7-26 and Table 7-26, we can see that CARM gives the best

result of the above approaches regarding the estimation accuracy. The linear

interpolation, AWS, and linear trend approaches perform no better than CARM

approach.

Figure 7-26: Performance study of average estimation accuracy for environmental
monitoring application

 130

CARM 0
AWS 3
Linear Interpolation
Linear Trend 1

Table 7-26: Performance study of average estimation accuracy for environmental
monitoring application

7.4.2 Performance Study of Running Time

Figure 7-27 and Table 7-27 illustrate the running time in seconds of AWS,

linear interpolation, linear trend, WARM and CARM approaches. The experimental

results show that in terms of running time, the WARM and CARM approaches are

outperformed by AWS, linear interpolation and linear trend approaches. The CARM

approach is faster than the WARM technique.

Figure 7-27: Performance study of running time for traffic monitoring application in
seconds

 131

WARM 0.026222222
CARM 0.018046296
AWS 0.001388889
Linear Interpolation 0.002314815
Linear Trend 0.0025

Table 7-27: Performance study of running time in seconds for traffic monitoring

application in seconds

Figure 7-28 and Table 7-28 illustrate the running time in seconds of AWS,

linear interpolation, linear trend, and CARM approaches. The experimental results

show that in terms of running time, the CARM approach is outperformed by AWS,

linear interpolation and linear trend approaches.

Figure 7-28: Performance study of running time for environmental monitoring

application in seconds

 132

CARM 0.185
AWS 0.04
Linear Interpolation 0.17
Linear Trend 0.09

Table 7-28: Performance study of running time for environmental monitoring
application in seconds

7.4.3 Performance Study of Memory Usage

Figure 7-29 and Table 7-29 illustrate the memory usage of AWS, linear

interpolation, linear trend, WARM and CARM approaches in MB. The experimental

results show that in terms of memory space, the WARM approach is outperformed

by all the other four approaches. The results of the simulation experiments show that

for 108 sensors the needed memory space using WARM is much higher than that

using CARM. This is because the DIU data structure uses less memory space than

the cube data structures, and it only stores the condensed closed itemsets

information.

Figure 7-29: Performance study of memory usage for traffic monitoring application
in MB

 133

WARM 14.463792
CARM 0.153084
AWS 0.080352
Linear Interpolation 0.080352
Linear Trend 0.080352

Table 7-29: Performance study of memory usage for traffic monitoring
application in MB

Figure 7-30 and Table 7-30 illustrate the memory usage of AWS, linear

interpolation, linear trend, and CARM approaches in MB. The experimental results

show that in terms of memory space, the CARM approach is outperformed by all the

other three approaches.

Figure 7-30: Performance study of memory usage for environmental monitoring
application in MB

 134

CARM 0.153084
AWS 0.080352
Linear Interpolation 0.080352
Linear Trend 0.080352

Table 7-30: Performance study of memory usage for environmental monitoring
application in MB

7.5 Summary

In this chapter we perform different simulation experiments to study the

performance of proposed algorithms and comparing them with the state-of-art

algorithms in the literature.

The CFI-Stream Algorithm is an incremental method to check and maintain

closed itemsets online. It mines and maintains a pool of current closed itemsets in the

DIU. The performance study demonstrates the performance advantage of the

proposed technique in terms of both computation time and memory usage to mine

closed itemsets. Its maintained sets remain the same independent of the support

threshold, which could be a disadvantage in application on single user query request

with high support threshold, since it’s designed to mine complete information and be

able to fulfill multiple support thresholds at the same time.

The performance study of the association mining framework based on closed

pattern mining shows that our proposed technique can efficiently produce a

minimum set of non-redundant association rules in data streams and thus makes it

easier for data analysis. Furthermore, the rules can be generated on demand, at

different users' request thresholds, and different input and output patterns. The

 135

proposed association mining framework is especially suitable for a distributed data

stream query environment.

Our performance study shows that the application of closed pattern based

association mining to estimate missing sensor data online is an area worth to explore.

Our designed algorithm CARM is able to estimate missing sensor value with both

time and space efficiency, and greatly improves the estimation accuracy.

 136

8 Conclusions and Future Work

In this dissertation, a novel algorithm, CFI-Stream, is developed to perform

closure check and discover closed patterns in the current data stream sliding

window. The algorithm offers an incremental method to check and maintain closed

patterns online. All closed frequent itemsets in data streams can be output in real

time based on different users’ specified thresholds.

The performance studies show that this algorithm is able to mine data streams

online with both time and space efficiency independent of support information, and

it can adapt to the concept drift in data streams. Experimental results show that our

method can achieve better performance than a representation algorithm for the state-

of-the-art approaches in terms of both time and space overhead. In the future, we

plan to extend our proposed algorithm to different data streaming applications.

Also, a framework is developed to mine non-redundant and informative

associations based on the derived closed itemsets in data streams. The rule

generation is based on the current closed itemsets in data streams which are a

condensed representation of the stream data. Theoretical analysis and experimental

results show that our proposed framework can efficiently produce non-redundant

association rules in data streams which provide a minimum set of associations

among itemsets in data streams and thus make it easier for data analysis.

Furthermore, the association rules can be generated on demand, at different users’

 137

request support and confidence thresholds, and input and output patterns, which is

especially suitable for the distributed data stream query environment.

Finally, a novel algorithm, called CARM, is proposed to perform data

estimation in sensor network databases based on closed pattern association mining

in sensor streams. The algorithm offers an online method to derive association rules

based on the discovered closed patterns, and estimates the missing values based on

derived associations. It can find out the relationships between multiple sensors not

only when they report the same sensor readings but also when they report different

sensor readings. Our performance study shows that CARM is able to estimate

missing sensor readings online with both time and space efficiency, and greatly

improves the estimation accuracy.

There are more future works can be done in this research area. For example,

to develop more data mining techniques for stream data, such as clustering,

classification, and finding outliers in data streams. Also these derived techniques

can be applied to more data streams applications. Some applications have special

processing needs, for example, mining the stream sequence, time series in data

streams and so on.

 138

Reference

(Agrawal, 1993) Agrawal, R., & Imielinski, T., & Swami, A. (1993). Mining

association rules between sets of items in massive databases.

International Conference on Management of Data.

(Agrawal, 1994) Agrawal R., & Srikant, R. (1994). Fast algorithms for mining

association rules. International Conference on Very Large

Databases.

(Allison, 2002) Allison, P. D. (2002). Missing data. Thousand Oaks, CA:

Sage.

(Angiulli, 2004) Angiulli, F., & Ianni, G., & Palopoli, L. (2004). On the

complexity of inducing categorical and quantitative

association rules. Theoretical Computer Science. Vol. 314

Issue 1.

 (Asada, 1998) Asada, G., & Dong, M., & Lin, T. S., & Newberg, F., &

Pottie, G., & Kaiser, W. J., & Marcy, H. O. (1998). Wireless

integrated network sensors: Low power systems on a chip.

European Solid State Circuits Conference.

 (Austin, 2003) Austin, F. I. (2000). Austin Freeway ITS Data Archive.

Retrieved January, 2003 from

http://austindata.tamu.edu/default.asp.

 139

(Bayardo, 1999) Bayardo, R. J., & Agrawal, R. (1999). Mining the most

interesting rules. ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining.

(Bastide, 2000) Bastide, Y., & Pasquier, N., & Taouil, R., & Stumme, G., &

Lakhal, L. (2000). Mining minimal non-redundant association

rules using frequent closed itemsets. First International

Conference on Computational Logic.

(Cai, 2004) Cai, Y. D., & Pape, G., & Han, J., & Welge, M., & Auvil, L.

(2004). MAIDS: Mining alarming incidents from data streams.

International Conference on Management of Data.

(Chang, 2003) Chang, J. H., & Lee, W. S., & Zhou, A. (2003). Finding recent

frequent itemsets adaptively over online data streams. ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining.

(Chang, 2004) Chang, J. H., Lee, & W. S. (2004). A sliding window method

for finding recently frequent itemsets over online data streams.

Journal of Information Science and Engineering.

(Charikar, 2004) Charikar, M. & Chen, K., & Farach-Colton, M. (2004).

Finding frequent items in data streams. Theoretical Computer

Science, Vol. 312, Issue 1.

(Chi, 2004) Chi, Y., & Wang, H. X., & Yu, P. S., & Muntz R. R. (2004).

Moment: Maintaining closed frequent itemsets over a stream

 140

sliding window. IEEE International Conference on Data

Mining.

(Chi, 2006) Chi, Y., & Wang, H. X., & Yu, P. S., & Muntz R. R. (2006).

Catch the moment: maintaining closed frequent itemsets over

a stream sliding window. Knowledge and Information

Systems.

(Cool, 2000) Cool, A. L. (2000). A review of methods for dealing with

missing data. The Annual Meeting of the Southwest

Educational Research Association.

(Dang 2007) Dang, X. H., & Ng, W. K., & Ong, K. L. (2007). Online

mining of frequent sets in data streams with error guarantee.

Knowledge and Information Systems.

(Demaine, 2002) Demaine, E. D., & Ortiz, A. L., & Munro, J. I. (2002).

Frequency estimation of internet packet streams with limited

space. European Symposium on Algorithms.

(Dempster, 1977) Dempster, N. L., & Rubin, D. (1977). Maximum likelihood

from incomplete data via the EM algorithm. Journal of the

Royal Statistical Society.

(Deshpande, 2005) Deshpande, A., & Guestrin C., & Madden, S. (2005). Using

probabilistic models for data management in acquisitional

environments. The Conference on Innovative Data Systems

Research.

 141

(Gelman , 1995) Gelman, J., & Carlin, H. S., & Rubin, D. (1995). Bayesian

data analysis. Chapman & Hall.

(Guha, 2001) Guha S., & Koudas, N., & Shim, K. (2001). Data streams and

histograms. ACM Symposium on Theory of Computing.

(Guha, 2002) Guha, S., & Koudas, N. (2002). Approximating a data stream

for querying and estimation: Algorithms and performance

evaluation. International Conference on Data Engineering.

(Giannella, 2003) Giannella, C., & Han, J. W., & Pei, J., & Yan, X. F., & Yu, P.

S. (2003). Mining frequent patterns in data streams at multiple

time granularities. Data Mining: Next Generation Challenges

and Future Directions, AAAI/MIT.

(Gruenwald, 2007) Gruenwald, L., & Chok, H, & Aboukhamis, M. (2007). Using

data mining to estimate missing sensor data. IEEE

International Conference on Data Mining Workshop.

(Halatchev, 2005) Halatchev, M., & Gruenwald, L. (2005). Estimating missing

values in related sensor data streams. International

Conference on Management of Data.

(Han, 2000) Han, J. W., & Pei, J., & Yin, Y. W. (2000). Mining frequent

patterns without candidate generation. International

Conference on Management of Data.

(Han, 2001) Han, J. W., & Kamber, M. (2001). Data mining: Concepts and

techniques. San Francisco: Morgan Kaufmann.

 142

(Huntington, 2008) Huntington Botanical Gardens SensorWare Systems. (2008).

Huntington Botanical Gardens Sensor Web Live Data.

Retrieved November, 2008 from

http://caupanga.huntington.org/swim/.

(Iannacchione, 1982) Iannacchione, V. G. (1982). Weighted sequential hot deck

imputation macros. Proceedings of the SAS Users Group

International Conference.

(Inokuchi, 2000) Inokuchi, A., & Washio, T., & Motoda, H. (2000). An

Apriori-based algorithm for mining frequent substructures

from graph data. In proceedings of the 4th European

Conference on Principles of Data Mining and Knowledge

Discovery.

(Jiang, 2006) Jiang, N., & Gruenwald, L. (2006). CFI-Stream: Mining

Closed Frequent Itemsets in Data Streams. ACM SIGKDD

international conference on knowledge discovery and data

mining.

(Jiang, 2007) Jiang, N. & Gruenwald, L. (2007). Estimating missing data in

data streams. the International Conference on Database

Systems for Advanced Applications.

(Jin, 2003) Jin, C. & Qian, W. N., & Sha, C. F., & Yu, J. X., & Zhou, A.

Y. (2003). Dynamically maintaining frequent items over a

 143

data stream. International Conference on Information and

Knowledge Management.

(Kargupta, 2004) Kargupta, H., & Bhargava, R., & Liu, K., & Powers, M., &

Blair, P., & Bushra, S., & Dull, J., & Sarkar, K., & Klein, M.,

& Vasa, M., & Handy, D. (2004). VEDAS: A mobile and

distributed data stream mining system for real-time vehicle

monitoring. SIAM International Conference on Data Mining.

(Karp, 2003) Karp, R. M., & Shenkerm, S., & Papadimitriou, C. H. (2003).

A simple algorithm for finding frequent elements in streams

and bags. ACM Transactions on Database Systems, vol. 28,

No. 1, pages 51-55.

(Klementinen, 1994) Klementinen, M., & Mannila, H., & Ronkainen, P., &

Toivonen, H., & Verkamo, A. I. (1994). Finding interesting

rules from large sets of discovered association rules. In Third

International Conference on Information and Knowledge

Management.

(Koh, 2006) Koh, J. L., & Shin, S. N. (2006). An approximate approach for

mining recently frequent itemsets from data streams. The 8th

International Conference on Data Warehousing and

Knowledge Discovery.

(Li, 2004) Li, H. F., & Lee, S. Y., & Shan, M. K. (2004). An efficient

algorithm for mining frequent itemsets over the entire history

 144

of data streams. The International Workshop on Knowledge

Discovery in Data Streams.

(Li, 2004) Li, Y., & Liu, Z. T., & Chen, L., & Cheng, W., & Xie, C.H.

(2004). Extracting minimal non-redundant association rules

from QCIL. The 4th International Conference on Computer

and Information Technology.

(Li, 2006) Li, H. F., & Ho, C. C., & Kuo, F. F., & Lee, S. Y. (2006). A

new algorithm for maintaining closed frequent itemsets in data

streams by incremental updates. Six IEEE International

Conference on Data Mining Workshop.

(Li, 2008) Li, H. F., & Cheng, H. (2008). Improve frequent closed

itemsets mining over data stream with bitmap. Ninth ACIS

International conference on software engineering, artificial

intelligence, networking, and parallel/distributed computing.

(Lin, 2005) Lin, C. H., & Chiu, D. Y., & Wu, Y. H., & Chen, A. L. P.

(2005). Mining frequent itemsets from data streams with a

time-sensitive sliding window. SIAM International

Conference on Data Mining.

(Little, 1987) Little, R. J. A., & Rubin, D. B. (1987). Statistical analysis

with missing data. New York: John Wiley and Sons.

 145

(Liu, 1999) Liu, B., & Hsu, W., & Ma, Y. (1999). Pruning and

summarizing the discovered association rules. In International

Conference on Knowledge Discovery and Data Mining.

(Lucchese, 2004) Lucchese, C., & Orlando, S., & Perego, R. (2004). DCI

closed: A fast and memory efficient algorithm to mine

frequent closed itemsets. Workshop on Frequent Itemset

Mining Implementations.

(Lucchese, 2006) Lucchese, C., & Orlando, S., & Perego R. (2006). Fast and

Memory Efficient Mining of Frequent Closed Itemsets.

Knowledge and Data Engineering, IEEE Transactions.

(McLachlan, 1997) McLachlan, G., & Thriyambakam, K. (1997). The EM

algorithm and extensions. New York: John Wiley & Sons.

(Manku, 2002) Manku, G. S., & Motwani, R. (2002). Approximate frequency

counts over data streams. International Conference on Very

Large Databases.

(Mitchell, 1997) Mitchell, T. (1997). Machine Learning. McGraw Hill.

(Mozafari, 2008) Mozafari, B., & Thakkar, H., & Zaniolo, C. (2008). Verifying

and mining frequent patterns from large windows over data

streams. IEEE International Conference on Data Engineering.

(Ng, 1998) Ng, R. T., & Lakshmanan, L. V. S., & Han, J. W., & Pang, A.

(1998). Exploratory mining and pruning optimizations of

 146

constrained associations rules, ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining.

(Papadimitriou, 2005) Papadimitriou, S., & Sun, J., & Faloutsos, C. (2005).

Streaming pattern discovery in multiple time-series; The

International Conference on Very Large Databases.

(Pasquier, 1999) Pasquier, N., & Bastide, Y., & Taouil, R., & Lakhal, L.

(1999). Discovering frequent closed itemsets for association

rules. The International Conference on Database Theory.

(Pei 2000) Pei, J., & Han, J. W., & Mao, R. (2000). Closet: An efficient

algorithm for mining frequent closed itemsets. SIGMOD

International Workshop on Data Mining and Knowledge

Discovery.

(Pei 2003) Pei, J., & Han J. W., & Wang, J. (2003). Closet+: Searching

for the best strategies for mining frequent closed itemsets

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining.

(Rubin, 1987) Rubin, D. (1987). Multiple imputations for nonresponce in

surveys. New York: John Wiley & Sons.

(Rubin, 1996) Rubin, D. (1996). Multiple imputations after 18 years; Journal

of the American Statistical Association.

 147

(Shafer, 1995) Shafer, J. (1995). Model-Based Imputations of Census Short-

Form Items. In Proceedings of the Annual Research

Conference.

(Shin, 2007) Shin, S. J., & Lee, W. S. (2007). An online interactive method

for finding assoication rules data streams. ACM 16th

Conference on Information and Knowledge Management.

(Tan, 2005) Tan P. N., & Steinbach, M., & Kumar, V. (2005). Introduction

to Data Mining. Addison Wesley.

(Taouil, 2000) Taouil, R., & Pasquier, N., & Bastide, Y., & Lakhal, L.

(2000). Mining bases for association rules using closed sets.

International Conference on Data Engineering.

(Tarui, 2007) Tarui, J. (2007). Finding a dulicate and a missing item in a

stream. Theory and Applications of Models of Computation.

(Toivonen, 1995) Toivonen, H., & Klemettinen, M., & Ronkainen, P., &

Hatonen, K., & Mannila, H. (1995). Pruning an grouping

discovered association rules. In Mlnet: Familiarisation

Workshop on Statistics, Machine Learning and Knowledge

Discovery in Databases.

(Wang, 2003) Wang, H. X., & Fan, W., & Yu, P. S., & Han, J. W. (2003).

Mining concept-drifting data streams using ensemble

classifiers; ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining.

 148

(Wijsen, 1998) Wijsen, J., & Meersman, R. (1998). On the complexity of

mining quantitative association rules. Data Mining and

Knowledge Discovery. Vol. 2, Issue 3.

(Wilkinson, 1999) Wilkinson & The APA Task Force on Statistical Inference.

(Yang, 2004) Yang, L., & Sanver, M. (2004). Mining short association rules

with one database scan. International Conference on

Information and Knowledge Engineering.

(Yang, 2004) Yang, G. Z. (2004). The complexity of mining maximal

frequent itemsets and maximal frequent patterns. International

Conference on Knowledge Discovery and Data Mining.

(Yoshio, 2002) Yoshio, N., & Takashi, W., & Tetsuya, Y., & Hiroshi, M., &

Akihiro, I. (2002). A Faster Apriori-based Graph Algorithm.

SIG-KBS.

(Yu, 2004) Yu, J. X., & Chong, Z. H., & Lu, H. J., & Zhou, A. Y. (2004).

False positive or false negative: Mining frequent itemsets from

high speed transactional data streams. Intermational

Conference on Very Large Databases; 2004.

(Zaki, 1998) Zaki, M. J., & Ogihara, M. (1998). Theoretical foundations of

association rules. ACM SIGMOD Workshop on Research

Issues in Data Mining and Knowledge Discovery.

 149

(Zaki, 2000) Zaki, M. J. (2000). Generating non-redundant association

rules; ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining.

(Zaki, 2002) Zaki, M. J., Hsiao, C. J. (2002). Charm: an efficient algorithm

for closed itemsets mining. SIAM International Conference on

Data Mining.

(Zaki, 2005) Zaki, M. J., Hsiao, C. J. (2005). Efficient algorithms for

mining closed itemsets and their lattice structure. IEEE

Transactions on Knowledge and Data Engineering.

