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Abstract

A data stream is a sequence of items that arrive in aytiorder. Different
from data in traditional static databases, data streamsoateuous, unbounded,
usually come with high speed, and have a data value distributiooftbatchanges
with time (Guha, 2001). As more applications such as web transaditepshone
records, and network flows generate a large number of datanstrezery day,
efficient knowledge discovery of data streams is an activegeowling research area
in data mining with broad applications. Traditional data miningrilyms are
developed to work on a complete static dataset and, thus, cannot be djpptity

in data stream applications.

One area of data mining research is to mine associatioronslaip in a data
set. Most of association mining techniques for data streambecaategorized into
two types: those developed based on frequent patterns and those delvakgubdn
closed patterns. Due to the number of frequent patterns are often huge and redundant,
non-informative patterns are contained in frequent patterns. Amative way is to
develop the association mining approaches for data streaming dppida&sed on
closed patterns, which generally represent a small subsetfadcalent patterns, but
provide complete and condensed information. In these researches, dtepatern
mining is the prerequisite condition for non-redundant and informatisecigion

mining.
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In this dissertation, a sliding window technique for dynamic miwihgosed
patterns in data streams is proposed, and an approach of mining non-redundant
informative associations based on the discovered closed patternslispee. The
closed pattern and relevant association mining techniques areedalestarch area
in this dissertation. First, the closed patterns for a given tiolteof data are
currently the most compact data knowledge that can provide conglefeort
information for all data patterns. Compared with other techniquesprtifosed
closed pattern mining technique has potential to largely dectbasaumber of
subsequent combinatorial calculations performed on the data patecend, the
memory requirement to store the closed patterns and relevartiatiess is
generally lower than the corresponding frequent patterns and asswidn some
data streaming applications, memory usage is an importanturagemnt, because in
these applications memory usage is the bottleneck for knowledge @ligcawird,
the associations generated for data streams are the knowledg® udentify the
relations within the data. The discovered relations can find thde applications in

many data streaming environments.

Different from the closed pattern mining techniques on traditidatbases,
which require multiple scans of the entire database, the proposadigige
determines the closed patterns with a single scan. It is aameatal mining
process; as the sliding window advances, new data transactionsediteld data
transactions exit the window. But instead of regenerating clostelnsa from the

entire window, the proposed technique updates the old set of closed patterns

XVii



whenever a new transaction arrives and/or an old transaction |devediding
window to obtain the current set of closed patterns. This increnfeatakre allows

the user to get the most recent updated closed patterns witharnnegcthe entire
updated database, which saves not only the computation time, but morentiport

the 1/0O operating time to load and write data from database teonge Third, the
proposed sliding window technique can handle both the insertion and deletion
operations independently, which allows the user to adjust the slidimdpwisize in
different application environments. Furthermore, the proposed inteygsétterns

and association mining framework can handle different users’ recatefte same

time at their specified support and confidence thresholds, and interepté and

output patterns.

The research includes both theoretical proofs of correctnesisef@roposed
algorithms and simulation experiments to compare the proposed techmighes
those existing in the literature using synthetic and real elatathe utility of the
proposed technique is applied to sensor network databases ofanraflagement

and an environmental monitoring site for missing data estimation purpose.
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1 Introduction

1.1 Problem Definition

1.1.1 Data Mining and Knowledge Discovery

The term ‘data mining’ refers to a process of nontrivial exiva of implicit,
previously unknown, and potentially useful information (such as knowledgg, rule
regularities and outliers) from data in databases (Tan, 2008)teFm ‘knowledge
discovery’ is more general than the term ‘data mining’. Dataingiis usually
viewed as a step in the process of knowledge discovery (Han, 2001)nfiredife
cycle of knowledge discovery includes steps such as data cledatagntegration,
data selection, data transformation, data mining, pattern ewaduamnd knowledge

presentation.

Briefly stated, Knowledge Discovery in Database (KDD)the rapidly
growing inter-disciplinary field that merges together databasanagement,
statistics, and machine leaning and aims to extract useful andstamtizble
knowledge from large volumes of data. Data mining is a critiegd ef the KDD
process that performs the extraction of unknown knowledge in data. Date wan
be performed on a variety of data stores, including relational da&sbmansactional
databases, data warehouses, and data streams. A comprehensiviaidgtaystem
usually provides multiple mining functions. Association mining is one ofkthe

features that can be found in such systems.



1.1.2 Data Streaming Application

A data stream is a sequence of items that arrive in a tordet. Different
from data in traditional static databases, data streamsoataswous, unbounded,
usually arrive with high speed, and have a data value distributiboftea changes
with time (Guha, 2001). A data stream is represented mathellyatisan ordered
pair (r, A) where:r is a sequence of tuples,is the sequence of time intervals (i.e.

rational or real numbers) and eagl» O.

Applications that reply on data streams can be classified irflioeofind
online streaming. Offline streaming applications are charaed by regular bulk
arrivals (Manku, 2002). Generating reports based on accumulated wstoelags is
an example of mining offline data streams because most oftsegner made based
on log data that is collected over a relatively large period a.t@mline streaming
applications are characterized by real-time updated datandests to be quickly
processed as the data is arrived. Predicting frequency of Inparciatt streams is an
application of mining online data streams because the prediction todeelsnade in
real time. Other potential online data streaming applicationsdacstock tickers,
network measurements, and evaluation of sensor data. In online d=misy
applications, data is often discarded soon after it arrives antbdeas processed,
because of the high update rate and huge resulting amount of data. Ehenetike
offline data streaming applications, bulk processing a large portioecefved data

is not appropriate for online data streaming applications.



1.1.3 Association Rule and Association Mining

An association rule is an implication of the foKna= Y (s, ¢), whereX andY
are frequent sets of items (also called itemsets) inabdse, ancK N Y = ¢. The
parameters, support of the rule, represents the percentage of records thanconta
both X and Y in the database. The parameterconfidence of the rule, is the
percentage of records containiighat also contailY. An association rule is said to
hold if boths andc are above or equal to a user-specified minimum support and

confidence (Agrawal, 1993).

Association mining, also called association rule mining, searches f
interesting relationships among items in a given database andydisipéan in rule
form, for exampleX = Y. In practice, association mining involves finding
association rules, the support and confidence of which are above ortequaser-

specified minimum support and confidence, respectively (Agrawal, 1993).

With the massive amounts of data continuously being collected and store
databases, many industries are becoming interested in minowadisms. Below is

a typical market basket analysis example of association mining.

Example 1.1 Suppose, as a manager of a supermarket, you would like to
learn more about the buying habits of your customers. Specifigallymay wonder
“Which groups or sets of items are customers likely to purchaaegoren trip to the
supermarket?” To answer your question, association mining can loenpedfon the

retail data of customer transactions at your supermarket. Kibe/ledge that



customers who purchase bread also tend to buy milk at the same tepeesented
in the association rule below.

bread= milk (s = 2%,c = 60%)

Support and confidence are two measures of rule interestingnesise
above association rule, the support of 2% means that 2% of alattsac¢tions under
analysis show that bread and milk are purchased togethercorfidence of 60%
means that 60% of the customers who purchase bread also buy milkhig-or
example, it should be noticed that the association rule: milbread, has the same
support, but not necessarily the same confidence as the assoni&iobread—=
milk. In short, support represents the percentage of data sainglekd given rule
satisfies and confidence assesses the degree of certathty adétected association.

Support and confidence thresholds are usually set by users or domain experts.

Association rule mining is typically considered to be a two-gieess
(Agrawal, 1993).

Step 1: Find alfrequent patterns. By definition, each of these patterns will
occur at least as frequently as a user-specified minimum guppor
count.

Step 2: Generate strong association rules above user-specifiedt samgbor

confidence thresholds from tfreequent patterns.



Frequent pattern mining (Step 1) is a crucial step of the proass its
computational efficiency strongly impacts the overall performan€emining

association rules (Agrawal, 1994).

1.1.4 Frequent Itemsetsand Closed |temsets

An itemset is frequent if its support is above or equal to a&spexified
support threshold. An itemset is closed if none of its proper sup&aethe same
support as it has (a formal mathematical definition of a dlasgnset is given in

Chapter 3). A closed frequent itemset is an itemset that is both frequenbvsed! cl

1.1.5 Frequent Pattern Mining and Closed Pattern Mining

As discussed in Section 1.1.3, frequent pattern mining is a crugmrlokte
mining associations. A number of methods have been proposed and developed for
frequent pattern mining in various kinds of databases, including trawsact
databases and time series databases. These methods can be tassffilgdcinto

two groups: frequent pattern mining and closed pattern mining.

The process of discovering the entire collection of frequentsigsris called
frequent pattern mining. Mining all frequent patterns often ggesra large number
of frequent itemsets due to the following combinatorial redidsany collection of
frequent itemsets, their subsets are also frequent. For exaamplane the itemset
{a, b} has a frequency of three. Therefore, the subsets of this itewlseh are &}

and {b}, also are frequent patterns with a support of at least three.



Closed pattern mining is a process of discovering the entire wofeof
closed frequent itemsets, which is generally a small subsiéteotomplete set of
frequent itemsets (Pasquier, 1999). Referring back to the examgie previous
paragraph, because iteme @and {b} both have a support of three, and the itemset
{a, b} also has a support of three, then we conclude that the iteprenfl {b} are

not closed relative to a support value of three.

1.1.6 Association Miningin Data Streams based on Closed Pattern

Mining

From the above discussions, we can see that the purpose of association
mining in data streams based on closed pattern mining is to discdesFsting

associations among closed patterns in a given data streamarSintii the process

of discovering associations based on frequent pattern mining, it is a two-steggproces

Step 1: Find altlosed patterns. By definition, each of these closed patterns
will occur at least as frequently as a user-specifiedmim support

count.

Step 2: Generate strong association rules above user-specifiedt samgbor

confidence thresholds from tlekosed patterns.

Closed pattern mining (Step 1) is a crucial step of the progegstsacomputational

efficiency strongly impacts the overall performance of the mining process



Many researchers have been discussing the theoretical foundatidns a
complexity of closed pattern and association mining including (Zaki 1888gen
1998, Angiulli 2004, Yang 2004). In the following study, we focus is not on
asymptotic complexity analysis, but rather we focus on discovandgpplying the

closed pattern and association mining in practical data streaming appkcati

1.2 Motivation

As the number of data streaming applications grows, there is srasirg
need to perform association mining in data streams. One exampieatpplis to
estimate missing data in sensor networks (Halatchev, 2005). Anothenplkex
application is to predict frequency of Internet packet stre@eméine, 2002). In the
MAIDS project (Cai, 2004), an association mining technique is uskadt@larming
incidents from data streams. Association mining can also be @pplienonitor
manufacturing flows (Kargupta, 2004) to predict failures or geneegterts based

on accumulated web log streams.

Traditional association mining algorithms are developed to work on a
complete static dataset and, thus, cannot be applied directly toassaeiations in
data streams. A number of association mining techniques fostlatams have been
developed recently, and most of them are based on mining frequemhgatte
number of which might be huge due to the number of redundant and non-informative
patterns that they contain. Thus, these types of approaches are aws afficient

for data streaming applications. An alternative approach is to cmsed patterns,



which generally represent a small subset of all correspgriddquent patterns, but
provide complete and condensed information. Once the closed patterns are
determined, then non-redundant and informative associations can be foumhatase

these closed patterns.

Our motivation for developing the proposed closed pattern and association
mining technique are as follows. First, the number of closed patterres given
collection of data items is generally much smaller than tireesponding set of
frequent patterns for the same data items. Thus the approapbtbasal to largely
decrease the number of subsequent combinatorial calculations performtn
patterns. Second, because the number of closed patterns is geneaily than the
corresponding number of frequent patterns, memory usage is reduced, Thi
associations generated from closed patterns contain non-redundant figioyma
which is more easily understandable. Therefore, the objectivhi®fstudy is to
develop an efficient closed pattern mining technique for datanstteand to derive
non-redundant and informative association rules based on the discoveretl close

patterns.

Due to the characteristics of streaming data, there aree Soherent
challenges and issues need to be considered for association midiig istreams.
First, due to the continuous, unbounded, and high speed characteristics of data
streams (Guha, 2001), they contain a huge amount of data, and thuss trsrally

not enough time to rescan the whole database or perform multiplewbanever an



update occurs, as in traditional data mining algorithms. This isciedigetrue in
online data streaming applications, which require real-time updatsdlts.
Furthermore, there is often not enough space to store all thenstgedata for
processing over the entire dataset. Therefore, the singleofcata and compact
memory usage of the association mining technique are prefei@dtend, the
mining method of data streams needs to adapt to the changiag vdhte
distribution; otherwise, it may result in what is known as the “ephdrifting
problem” (Wang, 2003)- as new streaming data arrives, the patterns which are
previously frequent or closed may become infrequent and unclosed, andreice ve
and not perform well when the mining concepts changes dramatithlid, due to
the high speed characteristics of online data streams, they méedprocessed as
fast as possible; the speed of the mining algorithm should be fhate the data
input rate. Otherwise, data approximation techniques, such as sgamaplihload
shedding, must be applied and these generally decrease thecpaiuttae mining
results. Fourth, due to the high update rate characteristicezafrshg data, mining
of data streams is better performed as an incremental prdoesther words, the
new iterations of mining results are incrementally built basedl@mining results
combined with newly received items so that the results willhave to completely

be recalculated each time a user’s querying request is received.

The proposed technique is applied to sensor network databasesatifca tr

management and an environmental monitoring site for missing dataatsn



purpose, in which data missing by a sensor is estimated usingtéhgeateerated by

its related sensors.

1.3 Research Contributions

In this research we developed an incremental closed pattern meomgdue
for data streams. By mining closed patterns, which are generalgh smaller
subsets of the corresponding frequent patterns, this technique has ptidatigely
decrease the size of the subsequent combinatorial calculationnpedfayn the
patterns, which could be more serious in the streaming environment defahs
huge amount of streaming data. Also, by storing complete and comfmatation,
the technique reduces memory usage while still providing completeniation to
fulfill different users’ requests. Different from the closedt@a mining techniques
on traditional databases, which require multiple scans of thee eststabase, the
proposed technique determines the closed patterns with a singleltscgaran
incremental mining process; as the sliding window advances, niewiteiams enter
and old data items exit the window. But instead of regeneratingdcp@geerns from
the entire window, it updates the old set of closed patterns whemevew
transaction arrives and/or an old transaction leaves the siMdimpw to obtain the
current closed patterns. This incremental feature allows thetoisget the most
recent updated closed patterns without rescanning the entire ugdtabdse, which
saves not only the computation time, but more importantly, the I/O topgtane to

load and write data from database to memory. Furthermore, the edopbding
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window technique can handle both the insertion and deletion operations
independently, which allows the user to adjust the sliding windowirsiddferent

application environments.

We then developed an association mining framework in data streams to
derive interesting associations based on the discovered closedngaftidne
associations generated from closed patterns contain non-redundanvrapléte
information, which are more useful and concise for data analysia the
associations generated based on frequent patterns (Zaki, 200Q).dafee users’
querying requests, different sets of non-redundant and correletedia®n rules
which contains user interested input and output patterns can be gdradrite same

time with users’ specified support and confidence thresholds.

Furthermore, a data estimation algorithm based on our proposed &ssocia
rule mining technique is developed for sensor network database appkcafi a
traffic management and an environmental monitoring site toidiesttify the related
sensors, and then compute the estimated values of missing@ata fsensor by
using the data generated by its related sensors. This teclamghkes us to find out
the relationships between two or more sensors when they have thesdifferent
values, therefore it can improve the estimation accuracy comparea existing
technique in the literature which tracks relationships betweendngoss when they

report the same value, while still achieving both time and space efficiency.
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1.4 Dissertation Structure

The rest of this dissertation is arranged as follows. Chaptewrigdws the
related work. This chapter is divided into three major sectionctiegspond to the
background materials relevant to the work presented in Chapters 4, %, and
respectively. Chapter 3 presents preliminary concepts and aefihat are used
throughout the remainder of the dissertation. Chapter 4 introduces time ma
contribution of the dissertation, which is the development of the slingow
algorithm for closed pattern mining in data streams. Chaptatescribes the
association mining framework based on closed pattern mining deveto@thpter
4. Chapter 6 illustrates how the association mining based ordghagerns can be
applied to sensor network database applications for missing diatatesn purpose.
Chapter 7 describes the simulation experiment results of the propmskdand
comparing it with the existing literatures. Chapter 8 sumrnaarthe work that has

been done, outlines directions of future work, and concludes the dissertation.
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2 Reated Work

In this chapter, the existing literatures are reviewedhi@e main areas: data
pattern mining, association mining, and missing data estimatione Erescovered
in three sections, and provide the relevant background for the discussions in Chapters

4,5 and 6, respectively.

2.1 Data Pattern Mining

2.1.1 Frequent Pattern Mining on Static Data

Traditional frequent pattern mining algorithms are developed to wark
static data and, thus, are not suitable to be used for frequesrhpathing in online
data streaming applications. The first recognized frequentripattming algorithm
for traditional databases is Apriori (Agrawal, 1993). The Apdgorithm finds the
frequent patterns by repeating the following steps through mubid@s of the
database. At stelp it finds the frequenk-itemsets. The set of all frequdaitemsets
is denoted by. Then the candidatlk+1 frequent itemsets, denoted By.;, are
generated by combining all combinations of itemset&iinFinally, in the prune
phase, ank-itemset that is not frequent and cannot be includdd.inis removed

from Cys1.

Before describing the Apriori Algorithm further, we introducendtd

notation for itemsets and frequent itemsets. For conveniencégraset f, b} is
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denoted simply aab. Furthermore, if the itemset{b} has a frequency of 3, then

this is conveyed using the notatialor.

To illustrate the Apriori Algorithm, let us examine the followiagample.
Assume that we have a transaction database ST1 as in Tablend-ihe user-
specified support threshold is 2, which corresponds to 40% in thidbeaaase there
are five transactions. During the first scan of the databasénavéhe set of all the
frequent 1-itemsets, which is denotedlhy L; contains all the frequent 1-itemsets
whose frequency are equal or above the user-specified thresholchi®, sagd ; =
{a% c* d% € f%. Then the candidates of frequent 2-itemsets are generated by
combining all combinations of itemsetslin The candidate set is denotedGsin
this caseC; = {ac, ad, ae, af, cd, ce, cf, de, df, ef}. Next, in the prune phase, we find
the counts of itemsets i@ {ac?, ad?, a€®, af?, cd?, ce®, cf?, de', df, ef’}). Any 2-
itemset that is not frequent and cannot be included; its removed fronC,. The
resulting set of, is as follows: fc? ad?® a€?, af®, cd?, ce’, cf*, df?, ef’}. Repeating
the same operations, we get the result setfas {acd®, acf?, adf®, cdf?, cef’}, L4 as
{acdf¥, and Ls as ¢. The Apriori Algorithm terminates when the resulting set
reaches empty. Combining all the frequent patterns derived, wehgeset of
frequent patterns for database STacdf, acd?, acf?, adf?, cdf?, cef®, ac?, ad?, a€’,

af?, cd?, ce®, cf?, df?, ef®, @, c*, o, €, 4.
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Transaction 1D Items in Transaction
1 acdef
2 abe
3 cef
4 acdf
5 cef

Table 2-1: Sample transaction database ST1

After Apriori Algorithm was introduced in 1993 (Agrawal, 1993), nypa
other algorithms based on the ideas of Apriori were developed ftorpance
improvement (Agrawal 1994, Inokuchi 2000, Yoshio 2002). Apriori-based
algorithms require multiple scans of the entire database, Wwdadhto high CPU and
I/O costs. Therefore, they are not usually suitable for online daaming

applications, in which data is generally scanned and/or processed only once.

Another category of frequent pattern mining algorithms for traditiona
databases proposed by Han and Pei (Han, 2000) are those using at fpadieen
tree (FP-tree) data structure and an FP-growth Algorithm,haddiows mining of
frequent itemsets without generating candidate itemsets. In FRRerowth
Algorithm, the FP-tree is used to store the compressed and impofiambation
about frequent patterns. FP-growth is an FP-tree-based mining nfethouning

the entire collection of frequent patterns by pattern growth.

To illustrate the FP-tree data structure and the FP-growgarighm, let us

consider the application of the FP-growth Algorithm on the sanmmesdciion
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database ST1 as defined in Table 2-1. Also, as was previouslystewms assume

the user-specified support threshold is 2. During the first scaéineoflatabase, the
algorithm collects the count for each item and eliminates tib@ses whose supports

do not pass the user-specified support threshold. The resultingesehaffirst step

is as follows: &2, c*, &, €', . Then the database ST1 is scanned a second time. For
each transaction, the algorithm filters out the infrequent itemd sorts the
remaining ones in frequency descending order, and the revisedpatterinserted

into the FP-tree as a branch. In this case the patterns stdiesl FP-tree are shown

in Figure 2-1.

Before describing the FP-growth Algorithm further, we introdube
standard notation for patterns stored in an FP-tree. For convenanitema with
support 1 is denoted simply a5 Furthermore, when the items in a branch of FP-
tree have the same or different support as shown in Figure 2-1, mote dihe

patterns stored in the FP-tree aée¥c®a'd’, f'clald", e'a'}.

f4 el
I
eT C:‘L a
- -
a d
i

Figure 2-1: The FP-tree structure
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The constructed FP-tree is then mined from bottom to top. Starongdy
for each frequent 1-itemset, its conditional pattern base isrooted. A conditional
pattern base for an itemset contains the transactions that gnthatiitemset. Then
the conditional pattern base is regarded as a transaction @atalthbased on that,

the conditional FP-tree is built.

Take itemd as an example. Itemi's conditional pattern base isf'¢'c'a’,
fic'a'}. In this conditional pattern base,occurs only once and thus is eliminated.
The conditional FP-tree is constructed &s°¢%. There is only one branch id's
conditional FP-tree. The possible combinations écadf, cad?, fad?, ad? fcd? cd?,
fd?}. In the same way, we can get itesits conditional FP-tree and generate the
frequent patterns addg?® ca’, ea?, fa’l. The frequent patterns generated based on
item c's conditional FP-tree areféc®, ec?, fc*}, and the frequent patterns generated
based on itene's conditional FP-tree arefd’}. Combining the frequent 1-itemsets
generated during the first database scan, we get the saofereguent patterns for
transactional database STXcdd?, cad?® fad?® ad® fcd?, cd?, fd?, o, fca?, ca®, ea?,
fa?, a, fec?, ec?, fc*, c*, fe?, &, ).

There are two advantages of the FP-growth Algorithm compared to the
Apriori Algorithm. First, the FP-tree is usually smaller tllae original database and
thus, saves the costly database scans in the mining process. Seapplies a
pattern growth method that avoids candidate generation. Compared withi-Aprior

based algorithms, the FP-growth Algorithm achieves higher perfoemédyc
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avoiding iterative candidate generations. However, it still is nattiped to mine
associations in data streaming applications because the constrattieR-tree

requires two scans of the entire dataset.

2.1.2 Frequent ItemsMining on Streaming Data

One of the most basic problems associated with mining streatatags to
find the most frequently occurring items in a data streara.dtdhallenge to find and
maintain frequent items over a data stream because the sifedata can be huge
and comes continuously, so memory intensive solutions associatedaaitiohal
approaches, such as keeping a counter for each distinct elemem ¢hiee Apriori
Algorithm) or sorting the stream (required by the FP-growtlyoAthm), are
infeasible. Furthermore, the stream of data often comesapttl speed, and thus, it

is desirable that the analysis can be done online in one pass as the data arrives.

The Frequent Algorithm (Karp 2003) is a two pass, exact algorfthmm
finding frequent items above a user-specified thresisoldt is noted that the
Frequent Algorithm doesot find frequent itemsets, but only finds frequent
(individual) items, i.e., 1-itemsets. The Frequent Algorithm regquihat the total
number of items to be processed, denoted\pys known. The first pass can be
processed as an online processing algorithm; after the first @es theN data
items, the set of candidate items, denote#{,as found, which contains items with

frequency over the user-specified threshglgossibly among other items. Once the
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setK is determined in the first pass, with a second pass, the iteghat have

frequency less thasN are deleted.

Take the sample transaction database ST2 of Table 2-2 as an exiantipis
context, there are 6 transactions in ST2, and assume that thspesiied threshold
sis 25%. That means we want to find all those transactions thatrapmee than
25% of the time. The sampling-based Frequent Algorithm identifest i of 1/5
symbols, in this case 1/0.25 = 4 memory cells. During the fiegt, st sets up a
counter for each transactiomy{ f', ¢!, d*}. When the ' transaction arrives, the
count off increases, and the détcontains: &%, f2, ¢, d*}. When the & transaction
arrives, the set o is updated as:&, %, c!, d*, g'}. As the memory cells exceed 4
and go to 5, the algorithm decreases each counter by 1, and elgminateells
whose counts are zeros. Therefore the resulting &f{f'}. During a second scan of

the database, we can fifid exact support, which = 2/6 = 33.3%.

Transaction ID Items in Transaction
1 a
2 f
3 c
4 d
5 f
6 g

Table 2-2: Sample transaction database ST2
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From the above discussion, we see that the Frequent Algorithme®sdui
passes of the data. It can maintain the possibly frequent itemasndbally online,
but cannot provide the exact frequent items and their counts dyngnunhtie. The
Frequent Algorithm cannot handle deletion operation in data streace)deethe
counters are incremented whenever their corresponding items anerecbsad
decremented when the size Kfis greater than 4/ and it preserves only a part of
sample data. Furthermore, the length of the data stream cooédtdb long for the
second offline algorithm to run, due to the corresponding memory or tskrdmhce
it needs to store the data stream offline. Therefore, it is wadksfor the time

sensitive applications, especially in the online data streaming applications.

Count Sketch Algorithm, proposed in (Charikar, 2004), is a single pass
algorithm for estimating the most frequent items in a datarstrasing limited
storage space. It can estimate the frequencies of all the itea data stream using a
data structure called Count Sketch. It returns the items whegeeihcies satisfy a
user-specified threshold with high probability. For each elemengltjogithm uses
the Count Sketch data structure to estimate its count, and keepp afltbe togk

elements seen so far.

Count Sketch Algorithm is a hash-based algorithm. It needs oneasthe
data. The output of the Count Sketch Algorithm is approximate; howevesera

specified output error is guaranteed. The user needs to defingpguidied
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parameters before running the algorithm, which are the maximomadlle errore,

and the heap parameter

Count Sketch Algorithm requires the user to know the data range ioipilne
data stream, which is not applicable in some cases wheredbiead data range is
not known. Also, the Count Sketch Algorithm does not handle deletion operation
because it preserves only a part of the sample data whichtapthérequent items.
Suppose that an item that is currently frequent is subject to a naintbeletions so
that it is no longer among the most frequent items. In this dasenot possible,
using this algorithm, to retrieve items from the past that lkansequently become

frequent.

2.1.3 Frequent Itemsets Mining on Streaming Data

In (Manku 2002, Chang 2003, Jin 2003, Yang 2004, Dang 2007), the authors
proposed algorithms to find frequent patterns over the entire histalytafstreams.
In (Giannella 2003, Chang 2004, Lin 2005, Mozafari 2008), the authors use different
sliding window models to find recently frequent patterns in dawasts. These
algorithms focus on mining frequent patterns, instead of closeermsgttwith one

scan over the entire data stream.

Lossy Counting Algorithm is proposed in (Manku, 2002). It is a one pass,

landmark modél, incremental algorithm using an in-memory data structure. The

! The landmark model mines all frequent itemsets twe entire history of streaming data from a
specific time point called landmark to the preq&hiu, 2002].
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mining result is approximate, and the error is guaranteed throwgleraspecified

error parameter. The algorithm proceeds as follows.

The data structur® is a set of entries of the form, (f, €), wherex is an
element in the streanf,is an integer representing its estimated frequency.eaad
the maximum possible error fninitially, D is empty. The user-specified parameters
are a support threshos (0, 1), and an error parameter(0, 1), such that <<s. N

denotes the current length of the stream. The Lossy Counting Algodivides the

incoming transaction stream into buckets, where each bucket cafsigts [lw
€

transactions. Buckets are labeled with bucket identifiergjrgjdrom 1. The current
bucket identifier is denoted blouren. Whenever a new element arrives, the
algorithm first determines whether an entryXalready exists or not. If the look up
succeeds, it updates the entry by incrementing its frequemgyne. Otherwise, it
creates a new entry of the form (, beyrrent — 1). It also pruneB, by deleting some
of its entries at bucket boundaries, i.e., whené&er0 modw. The rule for deletion
is: an entry X, f, €) is deleted iff + e < beyrent.: When a user requests a list of items

with thresholds, it outputs those entries brwheref > (s-¢) N.

The Lossy Counting Algorithm computes frequency counts in a spags
with the output error guaranteed not to exceed a user-specifi@ohgtare. It is an
incremental algorithm. The disadvantage of the Lossy Counting &lgois that its

output is approximate, and the users need to define the pre-speafiactheters
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before running this algorithm, which are the minimum suppgpthe maximum

allowable errog, and the probability parameter

In the estDec Algorithm (Chang, 2003), a method of finding refteqtient
itemsets adaptively over an online data stream is proposed. ltausee pass
algorithm to maintain the occurrence count of a significantsegrthat appears in
each transaction using a prefix-tree lattice structure im mma&mory. The effect of
old transactions on the current mining result is diminished by degaiie old

occurrence count of each itemset as time goes by.

In the estDec data structure, every node in a monitoring latt&etains a
triple (cnt, err, MRtid) for its corresponding items&t The count of the itemsetis
denoted bynt. The maximum error count of the item3eis denoted byrr. Finally,
the transaction identifier of the most recent transaction thahiosnihe itemseX is
denoted byMRtid. The estDec method is composed of four phases: parameter
updating phase, count updating phase, delayed-insertion phase and frexusei it
selection phase. When a new transaction is generated in atie@ta,sthe total
number of transactions in the current data stream is updated in ra@eper
updating phase. In the count updating phase, the counts of those itemsets in a
monitoring lattice that appear in the new transaction are uhdafter all of these
itemsets are updated, the delayed-insertion phase is startetbimaifind any new
itemset that has a high possibility to become a frequent itemsbé near future.

The frequent itemset selection phase is performed only when tiegmnesult of the
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current dataset is required. A force-pruning operation is pertbieeodically or
when the current size of a monitoring lattice reaches a usdfisgatreshold to

prune all insignificant itemsets.

With the estDec Algorithm, the recent change of informatica data stream
can be adaptively reflected to the current mining results of &t streams. The
weight of information in a transaction of a data streamaslgally reduced as time
goes by while its reduction rate can be flexibly controlled. Ruéhis reason, no
transaction needs to be maintained physically. The disadvantage @stibec
Algorithm is that it is an approximate algorithm; its progegsime is flexibly

controlled while sacrificing its accuracy. Also its output error is not gteedn

The hCount Algorithm is proposed in (Jin, 2003). It maintains a hasé tabl
and used hash functions to map a digit from (@-1) to (0.m-1) uniformly and
independently. The algorithm checks and outputs the itemsets with frgcplamee

a user-specified threshosdalong with their estimated frequencies.

The hCount Algorithm can output a list of most frequent itemsetis avi
relatively small usage of memory space. It can handle bothiorsend deletion of
itemsets, and does not request the pre-knowledge on the value range of a data stream.
The disadvantage of the hCount Algorithm is that its output is appatejnand
users need to define pre-specified parameters before runniradgttrghm, which

are the frequency threshold and the maximum allowable error.
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In (Yang, 2004), the authors proposed an algorithm that uses limited
computer memory to keep frequency counts of all short itemsetshjéstive is to
find those frequent itemsets and association rules, the lengthsabf arki not longer
than a pre-defined length It introduces a method to keep frequency counts of all
short itemsets and to discover association rules from the sbguefnt itemsets. This
method uses an array to keep frequency counts of all short isersétjection
between itemsets and array elements is set up. Itemseiganged in the array so
that new items can be inserted at any time during the mining process.

k

Given n items, there ar€(n, k) k-itemsets anoZC(n,i) up-tok-itemsets,

i=0
which denote any-itemset wherd < k. With a 32-bit modern computer which
addresses 4GB memory spakesan be chosen as up to 3 when the valigless
than 1,800. The frequency counts of all ugdtitemsets are stored in memory. They
are arranged in a pre-defined order and then an array is used tihdsefrequency
counts. With this pre-defined order, when inserting a new item, it nedds to
extend the list of itemsets at its end to include the upHemsets containing the

new itemset. The ranks of all existing itemsets in the order do not need agg.chan

This method is simple, fast, and capable of online and data stre@ngmnit
takes one pass over the data, and keeps all the short itemsetet§tevithk < 3,
wherek is the maximum size of frequent itemsets) and their fre;ueounts in
memory. The drawback of this algorithm is that it is only sugtdbt mining small

database which is less than 1,800 arkdk 3.
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In (Lin, 2005), the authors propose an approach for frequent pattern mining
in data streams based on a time-sensitive sliding window maddebnsists of a
storage structure that captures all possible frequent iterasdta table providing
approximate counts of the expired data itemsets, the size of vdmndbe adjusted by

the available storage space.

A data structure called Discounting Table (DT) is devised tairrethe
frequent itemsets with their support counts in the individual basic blotkke
current time-sensitive sliding window. Another data structure naRwéntially
Frequent-itemset Pool (PFP) is used to keep the potential frege®sets, which
are not frequent in the last time-sensitive sliding window, betfeequent in the
current transaction block. The time-sensitive sliding window mdikdies the data
stream into blocks by time. The support count threshold for each blasik is
computed and stored into an entry in the Threshold Array (TA). Omiyngl
window size entries are maintained in the TA. An algorithm toemfrequent
itemsets is applied to the transactions in the buffer. Eaghdre itemset is inserted
into PFP in the form ofiD, Items, Acount, Pcount), recording a unique identifier, the
items in it, the accumulated count, and the potential count, respeckeely.itemset
in PFP is inserted into Discounting Table (DT) in the formBfiD, ID, B_count),
recording the serial number of the current basic block, the identifieFP, and its
support count in the current basic block. Basically there are feps 40 run this
algorithm: In Step 1, the incoming data are stored in the buffe8tep 2, the

itemsets are discounting by DT, the min or max function is usethiotain the DT
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through self adjustment-merge. In Step 3, new itemsets areemhserd old itemsets
are updated; in Step 4, the potential counts are estimated by TRAaisdupdated;

and finally in Step 5, the frequent itemsets are output.

The time-sensitive sliding window approach takes one pass over the raw data.
It uses a time-sensitive sliding window model, which can angive-sensitive
queries asked by the user within the time sliding window, and geasamio false
dismissal or false alarm of the mining result. A mechanisrsetbadjust the DT
under the memory limitation is presented. It can handle both insertion andrdeleti
the data transactions, and the output error is guaranteed. The disgevaintae
time-sensitive sliding window approach is that it stores duplicdtgmation in
different data structures (DT and PFP) for each itemsethwhiit take more space
to store the redundant information. Although the authors developed amscha

adjust the DT when memory is limited, it sacrifices the accuracy oflgosithm.

In (Dang, 2007), the authors propose an algorithm called EStreaal|tvest
online processing of streaming data and guarantees the supporbiefrequent
patterns within a user-specified threshold. In (Mozafari, 2008), the authopose
frequent itemset mining method for sliding windows by using a igatibn
technique, called verifier. Two verifiers and a hybrid verifege used to mine

frequent itemsets.
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All the above algorithms focus on mining frequent itemsets, insteeldsed
frequent itemsets over streaming data, which could resutidundancy on both the

data patterns and the derived associations based on these data patterns.

2.1.4 Closed Pattern Mining on Static Data

The concept of closed frequent itemsets was first introduceddoiea et al
in 1999 (Pasquier, 1999). It is well known that mining the entire c¢mlemf
frequent patterns often generates a large number of frequenétsermsiong which
users have to search through to find useful ones. For example, tbkefessuent
patterns &, b®, ab®} can be more simply represented tab}}, from which we can
observe that the total number of closed frequent itemsets islizrssudbset of their
corresponding frequent itemsets. Furthermore, all frequent iteraaatbe derived
from closed frequent itemsets. Because a frequent itemsebemastubset of one (or
more) closed frequent itemset(s), and its support is equal todhkenal support of
those closed itemsets that contain the frequent itemset, mireggeht closed
itemsets provides complete and condensed information for frequent [zatédysis.
More importantly, associations extracted from closed sets haare sl®wn to be

more meaningful for analysis because all redundancies are discarded (0éKi

A-close (Pasquier, 1999) is a variation of Apriori. It adopts Apeiori
framework, but looks for frequent closed itemsets and prunes the ritatprasets
that are not closed. The mining process of A-close is as folleives, A-close scans

the database and finds all frequent itemsets. Then, the Aprigistie is applied to
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generate all candidate 2-itemsets. In the second scan of thasigtA-close counts
the supports of candidate 2-itemsets and derives the frequent S2egerttemsets
that are not frequent are pruned during this scan. In the third sdam @dtabase, A-
close collects the supports for the candidate 3-itemsets add that they are
frequent or not. The iterative candidate generation-and-testinggsrderminates
until no frequent itemsets are found. In order to generate the freglosed
itemsets, A-close applies one more scan to compute the cldsuredl of the
surviving frequent itemsets. The closure of a frequent iterasibiei intersection of
all transactions containing the itemset. The set of closuresr afimoving

duplications, is the set of frequent closed itemsets.

A-close scans the transaction database multiple times. The coagjoof the
A-close is from two aspects. First, it has to generat¢ aflcandidates and scan the
transaction database multiple times to count candidates. Second,lasttsean to
compute closures, there could be a large number of surviving frequaseite This

makes the closure computation costly.

Charm (Zaki, 2002) is another algorithm to find closed frequent itemset
Different from A-close, Charm explores a vertical data fdrma., each item is
associated with a set of transaction identifiers (tid fortshGharm does not use the
Apriori  framework. Initially, Charm builds a tree with multipleranches,
corresponding to the number of frequent items. The item, as svétleatransaction

identifiers in which the item appears, is registered in theespanding node. Then
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Charm attempts to combine items in the same layer to formséis. When it
combines, it computes the intersection of the sets of transadéotifiers of the two
itemsets (called tid set). If the combined itemset does notdrawegh support, it is
pruned. The efficiency of Charm is from the fact that thedtd§a superset itemset
is derived from those of its subsets. It is easy to check whttbgrare identical.
The major cost of Charm originates from the fact that it ba®mpute intersections

of tid sets repeatedly in each combination step.

Closet (Pei, 2003) is an algorithm proposed for mining closed frequent
itemsets. In the first step, it finds frequent items by scantiie entire database. The
items are sorted in descending support order. Then, it dividegdhnehsspace. All
the frequent closed itemsets can be divided into non-overlapping sbibset$ on
the item list derived in the first step. In the third stemines the subsets of frequent
closed itemsets by constructing corresponding conditional pattees hasl mining

each recursively.

All the above works are developed to mine closed itemsets fotidreai
static databases, where multiple scans are needed and whaeepevéransactions
arrive, additional scans must be performed on the updated transadidrasga

Therefore, they are not suitable for data stream mining.

2.1.5 Closed Pattern Mining on Streaming Data

In (Chi, 2004), Chi et al considers the problem of mining closed frequent

itemsets over a data stream sliding window in the Moment Allgor A synopsis

30



data structure is designed to monitor transactions in the slidmapw so that it can
output the current closed frequent itemsets at any time. A comaicstructure, the
Closed Enumeration Tree (CET) is introduced to maintain a dynéyrsedected set

of itemsets over a sliding window. Moment Algorithm visits itetsisen
lexicographical order. If a node is found to be infrequent, then itaiked as an
infrequent gateway node. The support and tid_sum of an infrequent gateda
have to be stored because they will provide important informatiomgilar CET
update when an infrequent itemset can potentially become frequent.aWlitemset

| is found to be non-closed because of another lexicographically smaller itemset, the
n, is an unpromising gateway node. In Explore, leftchgkikg¢hecks ifn, is an
unpromising gateway node. It looks up the hash table to see if ¢hests a
previously discovered closed itemset that has the same suppartaasl also
subsumed. And if so, it returns true (in this caseis an unpromising gateway
node); otherwise, it returns false (in this cases a promising node). If a nodgis
found to be neither infrequent nor unpromising, then the algorithm explisres i
descendants. After that, it can be determineg ig an intermediate node or a closed

node.

Moment is an incremental algorithm. It takes one pass overwhdata, and
can handle both addition and deletion of the data transactions. The ougpus er
guaranteed. The disadvantage of Moment Algorithm is that it masntaot only
closed frequent itemsets, but also additional boundary nodes whiclasactiee

memory usage as well as the computation time. And in (Li, 2006)aubti®ers
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proposed the NewMoment Algorithm which uses a bit-sequence reatbse raf

items to reduce the time and memory needed.

In Chapter 4, we propose an algorithm called CFI-Stream (J20Q$), to
directly compute closed itemsets online and incrementally witheutelp of any
support information. Nothing other than closed itemsets is maintairtee derived
data structure. When a new transaction arrives, it performdabgre check on the
fly; only associated closed itemsets and their support informatemerementally
updated. The current closed frequent itemsets can be output immedlased on any
user-specified thresholds. And in (Li, 2008), Li et al proposed to imptrev€FI-
stream Algorithm with bitmap coding named CLIMB (Closed ItemMmming with
Bitmap) over data stream’s sliding window to reduce the memoty \éesthen use

the discovered closed frequent itemsets to mine associations in data streams.

2.2 Association Mining

2.2.1 Association Mining based on Frequent Pattern Mining

There has been a lot of research in developing efficient assacratning
algorithms for static data. The first recognized associationing algorithm for

traditional databases is Apriori (Agrawal, 1993).

Apriori is an influential algorithm for mining association rulasd a step-
wise algorithm. It generates the candidate itemsets to be caaritexlpass by using

only the itemsets found frequently in the previous pass. The algoctimsists of
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two steps, a join step and a prune step. In the join steplLjgimvith Li;. In the
prune step, delete all itemseéts= Cysuch that somek{1)-subset o is not inLy..
During each iteration, only candidates found to be frequent in the preateoatson
are used to generate a new candidate set during the nekbiterthe candidate

itemsets having items (called candidatk-itemset) can be generated by joining

frequent itemsets having1l items and deleting those itemsets that contain any

subset that is not frequent. The algorithm terminates when #nereo frequenk-
itemsets. Apriori-based algorithms require multiple scans obtlggnal database,
which lead to high CPU and I/O costs. Therefore, they are naibkiifor the data

streaming environment, in which data can be scanned only once.

From the above discussions, we can see that traditional assocatioig
techniques are not suitable for the data streaming environment dseveoal
reasons. First, a huge amount of streaming data continuously avhiesproduces
massive rules; the cost of calculation to find association rslaggh and they may
not reflect the current situation. Second, traditional association miteng
algorithms perform multiple scans over the database, whidloti suitable to apply
to the data streaming environment that prefers a single scaheiffoiore, due to the
continuous, unbounded, and high speed characteristics of data streamss there
huge amount of data in both offline and online data streaming apptisaand thus,
there is not enough time to rescan the whole database or perfouiti-agan as in

traditional data mining algorithms whenever an update occursd,Tifie mining
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method of data streams needs to adapt to their changing data isthisutibn

because the streaming data value distribution is usually changing weth tim

Association mining technique based on frequent patterns produces many
rules. With a large amount of rules being produced, the cost aflai#®dn to find
association rules is high. Also, it is difficult to evaluate thegé amount of
associations which may or may not all be meaningful to the end Gisesslve these
problems, many studies have been done. In (Toivonen 1995, Liu 1999), the authors
proposed techniques to prune and summarize the discovered associations. In
(Klemettinen 1994, Ng 1998, Liu 1999, Bayardo 1999), the authors proposed
techniques to mine the most interesting rules incorporated withistiespecified
constrains or defined by the object metrics of interest. Buthety are aimed for the
traditional databases and, thus, do not fit the data streaming enuronme

Furthermore, they do not address rule redundancy.

2.2.2 Association Mining based on Closed Pattern Mining

In (Bastide, 2000), the authors proposed the concept to mine minimal
antecedent and maximal consequent association rules with thessampert and
same confidence. Using the closure of the Galois connection (T200Q), a
generating set for all valid association rules with the sugattconfidence is setup
using frequent closed itemsets and their generators; they consist of tretlnndant
association rules having minimal antecedents and maximal consequédns

concept indicates to generate only the most informative rules.
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In (Li, 2004), the authors proposed a technique to mine minimal non-
redundant association rules from a quantitative closed itemse¢ |diowever, the
algorithm is based on a landmark data processing model and no deletiatioope
can be performed over the entire history of data streams. Thas, tiwd amount of

data streams is high, the closed itemset lattice can grow rapidly.

In (Zaki, 2005), Zaki et al proposed the concept to mine non-redundant
association rules with minimal antecedent and minimal consequdnttiveitsame
support and same confidence. However, all these association rule @gonghms
are based on the traditional association rule mining framewatkequire multiple

scans, which are not suitable for the stream mining environment.

In (Yang, 2004), (Halatchev, 2005), and (Shin, 2007), the authors proposed
using two, three, and multiple frequent pattern based methods to pessoniagion
rule mining. Instead of using frequent pattern mining, we proposegokitiorm
association rule mining based on closed pattern mining technique euessid in
Chapter 4, where the rule generation is based on the current cksseéts in data
streams which are a condensed representation of the whole siyealata.
Furthermore, the rule can be generated on demand, at different qusemghg
requests which is preferable in the distributed query procesiate streaming

environment.
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2.3 Missing Data Estimation

Many articles have been published to deal with the missingodaibéem, and
a lot of software has been developed based on these methods. Sbmenethods
totally delete the missing data before analyzing them, lldtevise and pairwise
deletion (Wilkinson, 1999), while other methods focus on estimating theing
data based on the available information. The most popular statisttiedation
methods include mean substitution, imputation by regression (Cool, 2000), hot deck
imputation (lannacchione, 1982), cold deck imputation, expectation makoniza

(EM) (McLachlan, 1997), multiple imputations (Rubin 1987, Shafer 1995), etc.

Mean Substitution (Cool, 2000) replaces all missing instances giWes
variable with the mean value for that variable. It is a good solwthen data is both
Missing At Random (MAR) and somewhat normally distributed. Ifassume that a
missing value for an individual on a given variable is best estnay the mean for
the non-missing observations of that variable, that is to sag, goren item, simply

substitute the mean response of all valid cases providing data on that item.

The advantage of this method is that it is easy to implememte \the
disadvantage of this method is that the sample size is oveatstimAlso, the
distribution of new values is an incorrect representation of the papulaélues

because the shape of the distribution is distorted by adding values equal tathe me

Imputation by Regression (Cool, 2000) is the prediction of the miskitey

based on a regression equation that uses all other relevant waaabpgedictors.
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The advantage of this method is that it preserves the variadceoaariance of the
variables with missing data. The disadvantage of this method tisfteeandard
errors are ignored when predicting the missing values, it métarthe predictive
power of the model because the missing values of the dependent waaable

presented as perfectly predicted.

We can also perform the estimation by developing a regressjuation to
predict the criterion of a variable with missing data using wadgkes, and then apply
the equation to the valid scores on other variables of missingsstar that given
variable. This estimation is more sophisticated because it taitesaccount

relationships among the variables.

Regression methods rely on the information contained in the non-gissin
values of variables to provide estimates of the missing vabrethé variable of
interest. Each variable with a missing value, in turn, isdéceat a criterion variable
and is regressed onto all the other variables having observed walpesdict the

criterion variable.

The Hot Deck Imputation (lannacchione, 1982) replaces the missingsvalu
with randomly selected values presented in a pool of similar complete Basasise
the replacement values are randomly selected, hot deck imputatioducgs the
variations seen in the pool of complete cases resulting in tewgencies toward the
mean. There are two main areas of concern: selecting vaidathristic sets for

identifying the potential pools containing values with reasonable naajaand
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ensuring that characteristic sets will allow for large ehodgnor pools with
reasonable variance. The technique has been used extensively byngaver
agencies and has been widely accepted as providing accurate samplesly
population. The Cold Deck Imputation replaces the missing value bilua that is
independent of the dataset. For example, we can replace the miakiegwith

population mean, or expected value under random response.

Expectation Maximization (EM) Algorithm (McLachlan, 1997) isntstep
iterative approach that estimates the parameters of a madahg from an initial
guess. Each iteration consists of two steps: an expectation letedirtds the
distribution for the missing data based on the known values foroliserved
variables and the current estimate of the parameters, arakisnization step that
substitutes the missing data with the expected value. The prodtatates through
these two steps until convergence is obtained. Convergence occurshetutrange

of the parameter estimates from iteration to iteration becomes égligi

But none of the above approaches is suitable for wireless sensarketw
environment, where streams of data are constantly sent from nkerseo the
server, due to several reasons. First, how much old information should be based on to
get the associated information for the missing data estinfatsing all of the old
readings to perform the estimation is unreasonable, especiallp whkieg an
iteration procedure until convergence to get the estimation liteeiEM Algorithm.

On the other hand, using only the previous round of sensor readings to pé&dorm t
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estimation is also not a good choice because data streams oftea tizanging data
distribution. Some of the statistical methods use all of theablaildata points in a
database to construct the best possible results, in the wisglessr networks, the
missing sensor data may or may not be related to all of thialaeainformation,
thus using all of the available information to process the résuibt an optimal

choice and would consume more time and memory space than necessary.

Second, which information should be used to perform the missing data
estimation? In the wireless sensor network, data is callegithin certain scopes
and reported to the server during a certain period of time. Biffesensors have
different readings at different time periods. The current rgadafi one sensor may
relate not only to its previous readings, but also to other sensovgyser current
readings. Therefore, it is difficult to replace the missuajues with randomly
selected values presented in a pool of similar complete cageth a value which is
independent of the dataset like in the hot/cold deck imputation. Thisasideeeven
though we may get the complete set of information of a certaieless sensor
network, it is not easy to decide which information is sintbethe current round of
missing sensor’s information. In other words, it is hard to draw thefpoal certain
sensor’s certain round of readings when the application needs twnpdte data

estimation.

Third, the missing data may or may not miss at random, while mdbkeof

statistical techniques are based on the MAR assumption. Accdadthg definition
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in (Little, 1987), Data on Y are missing at random if the probglihiat Y is missing
does not depend on the value of Y after controlling other observedblearid. For
example, we are modeling weight Y as a function of gender X.génder may be
less likely to disclose its weight, that is, the probabilityt thas missing depends

only on the value of X. Such data are MAR.

In (Deshpande, 2005), the authors proposed a model, called BBQ to provide
efficient query answers in sensor networks. They use probahihstiels to answer
gueries. Such models can be learned from historical data using stafgianithms,

e.g. (Mitchell, 1997). The basic model used in BBQ is a time-varymultivate
Gaussians. A multivate Gaussian is the natural extension of aheliaf
unidimensional normal Probability Density Function (PDF). Firsthiktorical data

is used to construct the initial representation of the PDF. Oncaitted PDF is
constructed, the answer queries can be answered using the modelodéleisn
updated as new observations are obtained from the sensor network, ame as t
passes. There are various different models that may be maéabélsun different

environments and for different classes of queries.

There are also some drawbacks of using the probabilistic modatssieer
the query. First, the probabilistic models are learned from s@hef training data.
The training data needs to be captured in advance before thé¢ caadee used to
predict values. In general, a probabilistic model is only asl gbgrediction as the

data used to train it. For models to perform accurate predictioysmiigt be trained
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in the kind of environment where they will be used. Second, the moeés e be
continuously updated as time goes by. Third, the suitable model weeels¢lected,
choosing the best model for the given queries, and environment is asstiethat

needs to be considered when using this approach.

As more and more data streaming applications emerge, proper data
estimation algorithms for streaming data are needed. paffaitriou, 2005), the
authors proposed using pattern discovery in multiple time-steriestimate missing
data, but it's not well suited for sensor networks, where théiaeships between
sensors are decided not only by the time trends, but also by sbendauttors, like

locations and so on.

In (Halatchev, 2005), the authors proposed the Window Association Rule
Mining (WARM) Algorithm for estimating missing sensor dal@ARM uses a
modified Apriori Algorithm for association rule mining to identify sensors thaort
the same data for a number of times in a sliding window, callatedesensors, and
then estimates the missing data from a sensor by using the data repatsaelbted
sensors. WARM has been reported to perform better than the meattusaobst
approach where the average value reported by all sensors imnth@wis used for
estimation. However, there exist some limitations in WARMstFit is based on 2-
frequent itemsets modified Apriori association rule mining algorithm, whicdmsi
can discover relationships only between two sensors and ignoresstee where

missing values are related with multiple sensors. Second, ittfiods relationships
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only when both sensors report the same value and ignores the tesesmissing
values can be estimated by the relationships between sensorepbid different
values. In (Gruenwald, 2007), the authors propose to use two frequenttitemse
mining technique to perform estimation based on relationship betweesetwors.
In (Tarui, 2007), the author discussed how to find a duplicate and la sigging

item in a stream.

In view of the above challenges, based on our proposed closed pattern and
association mining technique discussed in Chapter 4 and 5, we develbpiguec
to perform missing data estimation based on the relationship betwégple sensor
readings. Since as discussed before, association rules basecclmsedepatterns in
data streams contain non-redundant and complete information, basedhicn

relationships between sensor values in data streams can be derived.

24 Summary

Table 2-3, Table 2-4 and Table 2-5 summarize the featurds afiscussed

algorithms in Section 2.1, 2.2, and 2.3 respectively.
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Data

Sirate Process | Steam | Scan
9y Support
Static Data | Karp 03 Sam%hng Offline No Two
Mining ase
Frequent Iltem
gt;te;m Charikar 04 Hash based Online Yes Single
Agrawal 93, Candidate . .
Agrawal 94 based Offline No Multiple
Static Data
Non-
Han 00 candidate Offline No Two
based
L/Ilnlng Manku 02,
requent .
Itemsets Chang 03, Jin | Landmark Online Yes Single
03, Yang 04, | based
Stream Dang 07
Data Giannella 03, .
-’ | Sliding
Chang 04, Lin . : :
; window Online Yes Single
05, Mozafari
based
08
Mining Closed Pasquier 99 Key Pgttern Offline No Multiple
Itemsets . Browsing
Static Data - -
Pei 00, Zaki Closure Online No Multiole
02, Pei 03 Climbing P
Chi 04, Li 06 Indirect Online Yes Single
Stream Data
Eirggosed 06, Direct Online Yes Single

Table 2-3: Data pattern mining approaches
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. Data
Number of | Mining
Iltemsets Process Stream | Scan
Support
Agrawal
Frequent 93,
d Agrawal Multiple Offline No Multiple
Iltemsets .
Data Han 00
. Bastide 00
Minin '
el . cl0sed | Lioa, zaki | Multiple | Offline No Multiple
Rule 05
Yang 04,
llztrequetnt Halatchev LWﬁ_/Tlhree/ Online Yes Single
Stream | ltemsets | o ultiple
Data
Closed | Proposed . . .
ltemsets | 07 Multiple Online Yes Single
Table 2-4: Association mining approaches
Number of gata
tream
Iltemsets
Support
Static lannacchione 82,
Data Statistics Rubin 96, Shafer 95, | N/A No
Cool 00
Eﬂg)(?;lglllstlc Deshpande 05 N/A Yes
Data
Estimation Time Series Papadimitriou 05 N/A Yes
Stream
Data Tarui 07 One Yes
Pattern and
o Halatchev 05,
A;s_00|at|0n Gruenwald 07 Two Yes
Mining
Proposed 07 Multiple Yes

Table 2-5: Data estimation approaches
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3 Preiminary Concepts

In this chapter, we describe the notations and definitions thatised

throughout this dissertation.

Letl ={iy, i, ..., in} be a set oh items. A subseX c | is called an itemset.
A k-subset is called kitemset. Each transactidans a set of items frorh Given a
set of transaction$, the support of an itemsg&tis the percentage of transactions
that containX. A frequent itemset is an itemset the support of whichtbha/a or

equal to a user-specified support threshold.

Let T andX be subsets of all the transactions and items appearing ta a da
stream S respectively. The concept of a closed itemset is based on the tw
following functions,f andg: f(T) ={i e | |[Vte T, i etfandgX)={te T |Vi e
X, 1 € t}. Functionf returns the set of itemsets included in all the transactions
belonging toT, while functiong returns the set of transactions containing a given

itemsetX.

An itemsetX is said to be closed if and only@(X) = f(g(X)) = feg(X) = X
where the composite functidd = feg is called Galois operator or closure operator

(Taouil, 2000).

Example 3.1 Let| ={a, b, ¢, d} be a set of 4 items, ant = {cd, ab, abc,
abc} be a set of transactions in data streams, then the closeditears €, ab’,

cd', abc?}. Each of the closed itemse¥ssatisfiesC(X) = f(g(X)) = feg(X) = X. Take
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ab as an examplgy(ab) = {ab, abc, abc}, feg(ab) = ab, so C(ab) = f(g(ab)) = fe
g(ab) = ab. If the user-specified absolute support threshold is two, thendteeint
closed itemsets arecy ab®, abc?. The frequent itemsets ar@¥ b?, ¢, ab®, ac?,
bc?, abc?, from which we can see that closed frequent itemsets anmadles
subsets of frequent itemsets and contain all itemsets and suppariation in the

frequent itemsets.

From the above discussion, we can see that a closed it¥rsan itemset
whose closur€C(X) is equal to itself@(X) = X). The closure check is to check the
closure of an itemseX to see whether or not it is equal to itself, i.e., whether or not
it is a closed itemset. We define a smallest itetXgsdhat satisfiesC(X;) = X, is

called a minimum generator %§.

An association rule is an expressigh—=— Y, where X and Y are
interesting itemsets, and N Y = ¢. The parametes represents the support of the
rule which is the percentage of records that contain ¥athdY in the databases €
sS(XUY) = g(XUY)|/[T]), andc is the percentage of records containkghat also
contain, called the confidence of the rule £ sS(XUY)/s(X) = g(XuY)|/lg(X)]).
Association mining is to find all association rules, the support anfidence of
which are above or equal to a user-specified minimum support and cosfidenc

respectively (Agrawal, 1993).

An association ruleX; —*%Y; is equivalent to an association rute

—S22 Y, if and only if X, —2%- Y, can be derived fronX; —2%-Y;, and
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s1=s2, c1=c2 (Zaki, 2005). IfX; —*— X5, X3 —>—> X4, X1 < X3, andXy = Xp, we

say association rubd; —<— X, is redundant (Bastide, 2000).
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4 Closed Pattern Mining in Data Streams

In this Chapter we introduce the proposed method to mine closed frequent
itemsets in data streams. First, we give an overview of the mo@bgorithm and a
data structure, called Direct Update lattice (DIU), to mionsex frequent itemsets in
data streams. Then, the conditions that are needed to check fat itbwssets and
how to check for them when performing insertion and deletion operatiotiseon
DIU are discussed. Based on this, an online algorithm to discoven@aedentally

update closed itemsets is developed.

4.1 Overview

The proposed algorithm employs a sliding window, which is a bulfietr t
holds a specified number of transactions that arrive from the input data stréam. W
a new transaction enters (and/or a previously stored transadies)ethe sliding
window, the algorithm updates the status of all associated clasudeits’ support
values, on-the-fly. Current closed itemsets are maintained and dpdateal time
using a newly proposed data structure, the DIU. The closed freqeersets can be

output at any time at user-specified thresholds by browsing the DIU.

Different from previous closure check techniques, which require plaulti
scans over data (Pasquier 1999, Pei 2000, Zaki 2002, Pei 2003), our proposed
method performs the closure check on-the-fly with only one scan overridewvi It

updates only the supports of the closed itemsets associatedhei#gntering (or
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exiting) transactions, and it is able to provide real time updasdts. The proposed
algorithm is an incremental algorithm where we check for closedetsmsad update
their associated supports based largely on the previously computdts$, résus

increasing efficiency and reducing computational and I/O costs.

In contrast with other data stream mining techniques (Manku 2002, Chi 2004,
Lin 2005) , the proposed algorithm only stores the information of curteséd
itemsets in the DIU, which is a compact and complete repegsanof all itemsets
and their support information. The current closed frequent iterogatbe output in
real time based on users’ specified thresholds by browsing e Also, the
proposed algorithm solves the concept-drifting problem (Wang, 2003) in data
streams by storing all current closed itemsets in the fildkh which all itemsets and
their support information can be incrementally updated. We discuspdage of the
DIU data structure and the closure check procedures for iorseahd deletion

operations in Section 4.2.

4.2 TheProposed Data Structure

4.2.1 TheDirect Update L attice

A lexicographical ordered direct update lattice is used to maitita current
closed itemsets. Each node in the DIU represents a closedtit@imsee ark levels
in the DIU, each level stores the closeditemsets. The parametkris maximum

size of the current closed itemset. Each node in the DIU stalesed itemset, its
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current support information, and the links to its immediate parent latdl rodes.
Figure 4-1 illustrates the DIU after four transactionsvarrThe support of each node
is labeled in the upper right corner of the node itself. The figurers that currently
there are 4 closed itemsetsab, cd, abc in the DIU, and their associated supports are

3, 3,1, and 2, respectively.

tid itemsets
()

1 c,d / \03
ab ab’ cd

a, b, c ’

N

aulpWI

w

4 a,b,c abc

Figure 4-1: The lexicographical ordered direct update lattice

All transactions in the current sliding window are stored in &Qflqueue
data structure; when the number of transactions exceeds thefsthe sliding
window, the first transaction that comes into the queue exitgubge to make room

for the next arriving transaction to enter the queue.

4.2.2 Insert aTransactiontotheDIU

In this subsection, the update and maintenance of the DIU when a new
transaction arrives is discussed. The basic result is the damivadtconditions that
define which itemsets, in the new transaction, need to be checketbsare and

how to decide if it is closed and need to be inserted to the DIUeffioeency of the
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algorithm comes from the fact that not all itemsets need tchbeked, but only a

subset of itemsets that are related to the arriving transaction.

4.2.2.1 Conditionsto Check for Closed | temsets

First, we define and prove the following conditions in which we need to
check whether an itemset is closed or not when a new transa@rones in the
current sliding window.

Table 4-1 shows the following conditions we classify to decidedioaure

check is needed when perform the addition operation.

Cases/Conditions Closure Check
Case 1.A.1 No
Case 1.A
Case 1 Case 1.A.2 Yes
Case 1.B No
Case 2.A.1 Yes
Case 2.A
Case 2.A.2 No
Case 2
Case 2.B.1 No
Case 2.B
Case 2.B.2 No

Table 4-1: Conditions to check for insertion operation
From the above table, we can see that there are two conditionsesleto
perform closure check, which are as follows.

Condition 1 (Case 1.A.2): When the newly arrived transadtimquals { X},

X is not closed but has a support larger than zero in the old sldimdpw. If X is

currently closed and exists in the DIU, then no closure check issage IfX does

not currently exist in the DIU, then check allX§ subsets’ to see whether they are
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closed or not in the new sliding window (mathematically, the conditio@ase
1.A.2 can be expressed asi(X) = ¢, gri(Y) = ¢, Cri(X) o X, Cri(Y) o Y andY c X).

Condition 2 (Case 2.A.1): When the newly arrived transatteauals ¥}, X

has a support of zero in the old sliding windoBheck all of X's subsetsY to

determine whether they are closed or not (mathematicallycdhdition of Case
2.A.1 can be expressed asi(X) = ¢, gri(Y) = ¢, Cr2(Y) o Y andY c X).

Below we prove why we only need to perform closure checks fatemsets
specified in the above two conditions, and why we do not need to petcfosore
check in other conditions. We will use the Lemma 4.1 and Corollary 4.1 in
subsequent proofs. The proof of Lemma 4.1 is given in (Lucchese, 2006)sewe
Lemma 4.1 in the proof of Corollary 4.1.

Lemma 4.1 Given an itemseX and an item € |, g(X) c 9(i) < i € C(X).

Corollary 4.1 AssumeCq(X) is X's closure within transaction sét If C(X)
= X and if there exists a subsét= X such thatC(Y) o Y in transaction sel, then
there exists an itemwherei € C(Y), i ¢ Y, such that e X andC(Y) c X.

Proof: Becaus¥ c X, we havagr(X) < gr(Y). If i € C(Y), from Lemma 4.1,
we havegr(Y) < gr(i). Therefore, we havgr(X) < gr(i). Again from Lemma 4.1, we
havei € C¢(X). So ifi ¢ X, we haveCy(X) = X, which is a contradiction with the

given condition. Therefore, we have X. Because € C(Y),i ¢ Y, Yc X, we have

Cr(Y) = X.
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When a new transactidrin the data streams arrivest gquals ¥}, depends
on whetherX has or does not have a support larger than zero in the old tramsact
set there are two conditions. Below we discuss the update and raacgerules
under these two conditions. In the following proof, we assdraadY are itemsets,
T1 is the old set of transactionE is the set of transactions aftearrives,Cri(X) is

X’s closure in transaction s€1, andCr,(Y) is Y's closure in the transaction SE&.

Case 1. When X has a support larger than zero in the old transaction set T1

For any new coming transactianwith the largest itemseX that already
exists in the old transaction SEt, we havegri(X) = ¢. Whengmni(X) = ¢, for any
itemsetY and Y c X, if gri(Y) = ¢. We haveY c X = gn(Y) o gri(X) # ¢. Thisis a
contradiction withgr1(Y) = ¢. Therefore, ifY c X, the conditiorgr(Y) = ¢ does not
need to be discussed.Miz X = gr2(Y) = gni(Y) = ¢. Y's support is zero ii2. Thus,
in both the case¥ c X andY & X, we do not need to discuss the case whgY) =
¢. Whengn(X) = ¢ andgri(Y) = ¢, we examine cases according to the following

conditions:Y ¢ X andY c X.

Case 1.A: When Y is a subset of X
WhenY is a subset oK, Y < X, we divide it into two subconditions to

analyzeXis or is not in the DIU.

Case 1.A.1: When Xisintheold DIU
When X is in the old DIU, it is a closed itemset, theref@g(X) = X. We

have the following Lemma 4.2 and Lemma 4.3. From these two lemneashaw
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that if a closed itemseX, which already exists in the old DIU, arrives, for any
itemsetY, Y c X, if Y is originally closed, it will remain closed; ¥ is originally
unclosedy will remain unclosed, and we only need to updésesupport. Therefore,
for most of the existing closed itemsets, we do not need to upaalW structure;
we simply update their supports, which consume a small amount of time.

Lemma 4.2 GivenT2 = TL U {X}, if Cry(X) =X andY < X andCry(Y) =,
then we hav€(Y) =Y.

In this lemma we prove that if bo¥iandY are closed itemsets in the old set
of transactionsTl, andY < X, we haveY is also a closed itemset in the new
transaction sef2.

Proof: Sincegr(Y) = gri(Y) U {X}, we haveCry(Y) = fe gr(Y) = f(gr(Y) L
{X}). BecauseY < X, f(gru(Y) © {X}) = f(gr(Y)) N f{X}) = Cru() nX=YnX=
Y. N

Lemma 4.3 GivenT2 = T1 U {X}, if Cry(X) =X andY < X andCry(Y) oY,
then we hav€r,(Y) o Y.

In this lemma we prove thatX is a closed itemset in transaction &t and
Y is not a closed itemset in transaction B&tY — X, we haveY is not a closed
itemset in transactiomn2.

Proof:  Crx(Y) = f(gra(Y)) = f(gru(Y)) n f{X}) = Cr(Y) n {X}. From
Corollary 4.1, IfCry(X) = X, Y < X, Cr1(Y) o Y. Given an itemi, i € Cry(Y), i ¢ Y,

we have e X. ThereforeCra(Y) =Cri(Y) n {X} 2 YU {i} o Y. N
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From Lemma 4.2, we know thatYfis a closed itemset in transaction $&t
beforeX comes, and < X, Y will remain closed afteX comes in transaction S€2.
From Lemma 4.3, we know that if a closed items$ethich already exists on the
DIU tree comes, its subs¥étwhich originally unclosed will remain unclosed.

Case 1.A.2: When Xisnot in the old DIU

WhenX is not in the old DIU, it is not a closed itemset, there@m€X) o> X.
Similarly, we have the following Lemma 4.4 and Lemma 4.5. From L&, we
show that if a new closed itemset, which is not originalhyhadld DIU, arrives and
if its subsets are already in the DIU, they will remaiosed, and thus we simply
need to update their supports. From Lemma 4.5, we show that if aclosed
itemset, which is not originally in the old DIU, arrives, then wedht® insert it as a
new closed itemset to the DIU.

Lemma 4.4 GivenT2 =T1 U {X}, if Cri(X) o XandY < X andC(Y) =Y,
then we hav€r(Y) =Y.

In this lemma, we prove that wheéfis not a closed itemset, ¥f is closed
itemsets in the old set of transactidiis andY c X, we haveY is also closed itemset

in the new transaction s€g.
Proof. Sincegra(Y)=gri(Y) U {X}, we haveCr(Y) = fegr(Y) = f(gri(Y) v

{X}). BecauseY c X, f(gri(Y) v {X}) = f(gri(V)) nf{X}) = Cri(Y) n X=¥Y N X =
Y. N
From Lemma 4.5, we show that if a new closed itemset which is not

originally in DIU arrives, we need to add itself as a new closed itemgst DIU.
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Lemma 4.5 GivenT2 = T1 u {X}, if Cri(X) o X andY = X, then we have
CTz(Y) =Y=X

In this lemma, we prove that whet is not a closed itemset in the old
transaction setl, if Y =X, so Yis not a closed itemsets in the old set of transactions
T1, we haveY is a closed itemset in the new transactionf2et

Proof: Crx(Y) = fegr(Y) = f(gri(Y) U {X}) = f(gri(X)) » f({X}) = Cra(X)
f{X}) = Cn(X) nX=Y=X 1

WhenCri(X) o X, Cri(Y) o Y andY < X, we will perform the closure check
to decideY’s closure, which will be discussed further in Section 4.2.2.2.

Case 1.B: When Y is not a subset of X

WhenY is not a subset of, Y ¢ X, we have the following Lemma 4.6. In
Lemma 4.6, we show thatYfis not a subset of, Y’s closure does not change. That
is to say that ifY is an unclosed itemset befotearrives, ther¥ will remain unclosed
after X arrives; and, ifY is a closed itemset befod¢ arrives, thenY will remain
closed afteiX arrives. Thus, the DIU structure does not need to be updated, and we
only need to updat€¢s support.

Lemma4.6 GivenT2 =T1u {X}, if Y& X, then we hav€,(Y) = C1(Y).

In this lemma we prove that whéhis not a subset of, Y's closure doesn’t
change in transaction SE2.

Proof: IfY ¢ X, T2 =T1 u {X}, we havegr(Y) = gri(Y). Becauser,(Y) = fe

gr(Y), Cra(Y) =fe gri(Y), gr2(Y) = gru(Y), we haveCra(Y) = Cry(Y). N

Case 2: When X has a support equals to zero in the old transaction set T1
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For any new coming transactidrwith the largest itemseX that has not
already appeared in the old transactionTdetwe havegri(X) = ¢. We discuss two

sub cases according to the following conditions: X andY c X.

Case 2.A: When Y is a subset of X
WhenY is a subset oK, Y < X, we divide it into two subconditions to
discussiY has a support greater than zero in the old transactiari sety’s support

equals to zero in the old transaction Bkt

Case 2.A.1: When Y has a support greater than zero in the old transaction set T1
WhenY is already in the old transaction 3@t thengr(Y) # ¢. BecauseY

X, we havegra(Y) = gri(Y) v {X}. Therefore,Crx(Y) = Cra(Y) n {X}. If Cri(Y) =Y,

we haveCrx(Y) =Y that mean¥ is also closed iT2. If Cri(Y) oY, we will perform

the closure check to decidés closure, which will be discussed further in Section

4.2.2.2.

Case 2.A.2: When Y has a support equal to zero in the old transaction set T1

WhenY does not have a support greater than zero in the old transaction set
T1, thengri(Y) = ¢. We have the following Lemma 4.7. In this lemma, we prove that
whenY is a subset aX, if Y =X, thenY is a closed itemset in the new transaction set
T2; and, ifY X, thenY is not a closed itemset in the new transactioif3et

Lemma 4.7 GivenT2 =T1 U {X}, if Y =X, then we hav€r(Y) =Y, if Y

X, then we hav€rx(Y) o Y.
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In this lemma we prove that whéhis a subset oX, if Y =X, Y is a closed
itemset in transaction s&g; if Y — X, Y is not a closed itemset in transactionTs&t

Proof: If Y = X, thengr(Y) = gr2(X) = {X}, from the given condition, we
know gr1(X) = ¢. Therefore afteX arrives, we have suppor)(= supportk) =1.
Becausegri(X) = ¢, all X's supersets’ supports = 0; from the definition of closed
itemset, we hav¥ is a closed itemset aft&rarrives. IfY < X, thengr(Y) = gr2(X) =
{X}, from the given condition, we knog(X) = ¢. Therefore we have suppofj(=
supportK) = 1. BecausX is aY’s superset, and they have the same support, we have

Y as unclosed in transaction &t N

Case 2.B: When Y is not a subset of X
WhenY is not a subset of, Y & X, we divide it into two subconditions to
discussl has a support greater than zero in the old transactidri sety’s support

equals to zerm the old transaction sétl.

Case 2.B.1: When Y has a support greater than zero in the old transaction set T1
If Y is already in the old transaction Skt thengri(Y) = ¢. We have the
following Lemma 4.8.

Lemma4.8 GivenT2 =T1 U {X}, if Y& X, thenCrx(Y) = Cry(Y).

In this lemma we prove that whéhis not a subset of, Y's closure doesn’t
change in transaction SE2.

Proof: If Y & X, Y # X, we have &(Y)=gr(Y). Because &(Y) = fo grx(V),

Cra(Y) = fo gri(Y), gr2(Y) = gri(Y), we have &(Y) = Cry(Y). N
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Therefore,Y's closure doesn’t change. That is to sayifs an unclosed
itemset beforeX comes,Y will remain unclosed afteK comes; ifY is a closed

itemset beforeX comes.Y will remain closed afteX comes.

Case 2.B.2: When Y has a support equal to zero in the old transaction set T1

If Y is not in the old transaction set, thga(Y) = ¢. If Y & X, we havegr(Y)
=gn(Y) = ¢, which does not need to be discussed.

From the above proofs, we can see that when a new transactiors,diwive
most of the above discussed cases, the DIU structure does not eimange only
need to update the associated closed itemsets’ supports in thewbitlh thus
reduces the processing costs. There are only two cases outewrthiotal cases that

we need to perform the closure check:

(1) Case 1.A.2: whegni(X) # ¢, gri(Y) # ¢, Cr1(X) o X, Cr(Y) o YandY
X; and

(2) Case 2.A.1: whegri(X) = ¢, gri(Y) # ¢, Cri(Y) o YandY < X.

We will discuss how to check for closed itemsets in the following Section 4.2.2.2.

4.2.2.2 Closure Check for Insertion

The CFI-Stream Algorithm checks whether an itemset is closedt on the
fly and incrementally updates the DIU based on the previous mirsaggavith one
scan of data streams. Below, we discuss the checking procebare pgrforming

the insertion operation on the DIU. In the following Theorem 1, we show that for any
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entering unclosed items¥t we can always find one and only one closed iterdset
in the DIU that equals t¥'s closure, i.e., X. = C(Y).

Theorem 4.1 For any itemseY that satisfies withC(Y) o Y andg(Y) # ¢,
there exists one and only one closed itexget C, whereC is a set of existing
closed itemsets, that satisfies W@fl) = X., whereY c X..

Proof: To find X., we first find X;, such thatX; o Y, and suppori;) =
supportl’). According to the definition of closed itemseXs,always exists. 1, is
not closed, we can fin#,, whereX, o X; and suppori;) = supportX,). Continuing
this until we can find on&. which is a closed itemset. Thi& is the itemset that
satisfiesC(Y) = X..

We also want to prove that there is only one sKghwhere suppor¥c) =
supportl) in the existing closed itemsets. Assume there is andtherwhere
supportk.) = supportf) in the existing closed itemsets. We know that for two
different closed itemsef;, andXc, g(Xc) # g(Xc2). Becausey — X, andY < X, we
also know thag(Y) = g(Xc) andg(Y) 2 g(Xc2). Thereforeg(Y) = g(Xc) v g(X2). The
X2 that we can find in the existing closed itemsets should satigfiyg(Y) o g(Xc)
U g(Xe2), 9(Y) = g(Xc). From this we havg(Xc) o g(Xc2) becausg(Xc) # g(Xc2), then
this X, cannot have the same supportXas This conflicts with our assumption,
supporti.) = supporty); so we could not fini,, thusX; is unique.

We now proveC(Y) = X.. For anyi € C(Y), i ¢ Y, from Lemma 4.1 we have

g(Y) c g(i). Becauser c X;, we havey(Y) o g(Xc). Therefore, we havg(i) o g(X.).
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From Lemma 4.1, we have= C(X;) = X, therefore we haveé(Y) c X.. For anyi e
Xe, i ¢ Y, because suppo¥f( = supportk.), and from the given conditions we know
Y < X, so we haveg(Y) = g(Xc). Also because € X, from Lemma 4.1, we hawgi)
2 9(Xc) = g(Y). Therefore, we havg(i) o g(Y). Again from Lemma 4.1 we knoinve
C(Y), thus we haveX. < C(Y). From the above discussidd(Y) < X; andX; < C(Y),

we havex; = C(Y). N

From Theorem 4.1, we know that for any itemgdhat satisfiesC(Y) o,
we can findX. with a minimum number of items in it add > Y. For any otheKy o
Y, from the above discussion we know tgéX.) o g(Xc1). Becauser X, theng(Y)
2 g(Xe) 2 g(Xer). To find Xe = C(Xo) < C(Y), we haveg(Xc) = g(Y); only Xc will
fulfill this requirement. In this wayC(Y) can be found in the old transaction $&t
Below, we show how we use thHXY) to check ifY is a closed itemset in transaction
setT2after X arrives.

Corollary 4.2 GivenT2 = T1 U {X}, if gri(Y) # ¢, Y < X, Cn(Y) o,
(CriM/IY) N X = ¢, then we hav€ry(Y) =Y.

Proof: Crx(Y) = fe gra(Y) = f(gra(Y) U {X}) = f(gra(Y)) N f({X}) = Cra(Y) m
f{X}) = Cn(Y) n X=Y.

From Corollary 4.2, we derive a way to check whethers closed in
transactionl2 or not. If Cri(Y)/Y) n X = ¢, thenY is a closed itemset ifi2. We use
this condition to perform the closed itemset check on the fly wheswatransaction

in the data streams arrives.
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4.2.3 Deletea Transaction from theDIU

In this subsection, the update and maintenance of the DIU for thgodele
operation, which occurs when a transaction leaves the sliding wirgldisdussed.
The result of the research is to define the conditions under whichdcitesnsets,
currently stored in the DIU, need to be checked for closure Wieeald transaction

leaves the current sliding window.

4.2.3.1 Conditionsto Check for Closed | temsets

First, we define and prove the following condition in which we need tokche
whether an itemset is closed or not when an old transakgtimaves the current
sliding window.

Table 4-2 shows the conditions we classify to decide if a cloduzek is

needed when perform the deletion operation.

Cases/Conditions Closure Check
Case 1 No
Case 2. A Case 2.A.1 No
Case 2 Case 2.B.1 Yes
Case 2.B
Case 2.B.2 No

Table 4-2: Conditions to check for deletion operation
From the above table, we can see that there is one condition wemeed

perform closure check, which is as in the following statement.
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Conditionl (Case 2.B.1): When the number of the transactions with same

itemset aX is equal to zero, for all subsetf X, where the number of transactions

with same itemset a¥ is equal to zero, an¥ is a closed itemset in the old

transaction setwe need to check wheth¥rremains closed or not (mathematically,
when X} ¢ T2, Y X, {Y} ¢ T2, andCry(Y) =).

Below, we prove why we only need to perform closure check foredlos
itemsets specified in the above condition. In the following proofasseimex andY
are itemsets,T1 is the old set of transaction3?2 is the new set of transactions after
itemsetX leaves, Cr1(X) is X's closure within transaction s&fl, andCr(Y) is Y’'s
closure under transaction &t
Case 1. When the number of the transactions with the same itemset X is greater than

Zero

When the number of transactions with the same itemskgtisfgreater than
zero, we have the following Lemma 4.9. From this lemma, we know thatosure
does not change when the number of transactions with the sansetitehX is
greater than zero. That is to say thaY ils an unclosed itemset befaXeleaves,Y
will remain unclosed afteX leaves; and, if is a closed itemset befokeleaves,Y
will remain closed afteX leaves.

Lemma 4.9 GivenT2 =T1\ {X}, { X} € T2, we haveCr(Y) = Cry(Y).

In this lemma we prove that when the number of the transactionsane

itemset ofX is greater than zer®]s closure doesn’t change in transactionTaet
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Proof: BecauseX} € T2, if gr(X) \ {X} # ¢, we havef(gra(X)) = f(gr2(X) \
{X}) N X, soCrx(X) =f(gr2(X) \ {X}) n X < X. According to the definitionCr(X) o
X. Therefore, we hav€r(X) = X. If grz(X) \ {X} = ¢, we havegr(X) = {X},
f(gr2(X)) = f({X}), and C12(X) = X. Therefore, we haver,(X) = X.

(a) ForY =X, we haveCrx(Y) =Y, Y is a closed itemset in the transaction set

T2.

(b) ForY c X, becaus€r,(X) = X, Y < X, for Cra(Y) =Y, we haveCr(Y)
X; for Crp(Y) o Y, from Corollary 4.1, we hav€r,(Y) < X. Therefore,
gri(Y) = gr2(Y) U {X}, s0 Cra(Y) = Cra(Y) N {X}. BecauseCry(Y) < X,
Cr2(Y) n {X} = Cr2(Y). Therefore, we haver,(Y) = Cri(Y).

(c) ForY & X, Y = X, we havegr(Y)=gri(Y). BecauseCrx(Y) = fe grx(Y),
Cru(Y) =fe gri(Y), gr2(Y) = gra(Y), we haveCr(Y) = Cry(Y).

Therefore,Y’s closure doesn’t change when the number of the transactions

with same itemset oK is greater than zero. That is to sayYifwas an unclosed

itemset beforeX leaves,Y will remain unclosed afteX leaves; ifY was a closed

itemset beforeX leaves.Y will remain closed afteX leaves.
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Case 2: When the number of transactions with the same itemset X is equal to zero

When the number of the transactions with same itemsg¢tiequal to zero,
{X} ¢ T2, we divide this condition into the following two subconditions to discuss:

Y is not a subset &f or Y is a subset oX.

Case 2.A: When Y is not a subset of X

If Y is not a subset of, we have the following Lemma 4.10. In this lemma,
we prove that whenX} no longer exists in transaction SE2, andY is not a subset
of X, Y's closure does not change in transactionget

Lemma 4.10 GivenT2 =T1\ {X}, if { X} ¢ T2Y & X, Y = X, thenCrx(Y) =
Cra(Y).

In this lemma we prove that wheX}is no longer exist in the transaction set
T2, Y is not a subset &f, Y's closure doesn’t change in transactionTéet

Proof: If {X} ¢ T2, Yz X, Y %= X, we havegr(Y) = gri(Y). BecauseCr,(Y) =

fo gra(Y), Cra(Y) =fe gra(Y), gra(Y) = gru(Y), we haveCrx(Y) = Cra(Y). N

Therefore,Y’s closure doesn’t change. That is to say #vas an unclosed
itemset beforeX leaves,Y will remain unclosed afteX leaves; ifY was a closed
itemset befor& leaves)Y will remain closed afteX leaves.
Case 2.B: When Y isa subset of X

If Y is a subset oK, we discuss according to the following subconditions:
is a closed itemset in transaction $&tandY is not a closed itemset in transaction

setTl.
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Case 2.B.1: When Y isa closed itemset in transaction set T1

In the following Lemma 4.11, we prove that whéms a subset oX, Y c X,
{Y} € T2. Yis a closed itemset in transaction B2t

Lemma 4.11 For any itemseY, if Y = X, {Y} e T2, we haveCry(Y) =Y.

In this lemma we prove that whéhis a subset ok, Y X, {Y} € T2. Yis a
closed itemset in transaction 3&

Proof: Becaus@r(Y) = {Y} U (gr2(Y) \ {Y}), we haveCr(Y) = f({Y}) m
f(gr2(Y) \{Y}) < V. Also becaus€r,(Y) o Y, we haveCx(Y) =Y. N

From the above discussion, we can see that in the condition that d/éonee
perform the closure check for the deletion operationY}f € T2, theY is closed in
the new transaction s&2. WhenY is a closed itemset in the transactionTetthat
is to say wher¥ < X, Cri(Y) =Y, and {¥} ¢ T2, we need to perform the closure

check, which we will discuss further in Section 4.2.3.2.

Case 2.B.2: When Y is not a closed itemset in transaction set T1

WhenY is not a closed itemset in transaction Eetwe have the following
Lemma 4.12.

Lemma4.12 GivenT2 =T1\ {X}, if Y X, Cr1(Y) Y, thenCrx(Y) C V.

In this lemma we prove that whahis a subset aX, Y < X, andCqy(Y) c Y,

thenY is not a closed itemset in transactionTs&t
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Proof: Becaus® < X, gri(Y) = gr2(Y) U {X}, Cri(Y) =fe gri(Y) = f(gr2(Y) U
{X}) = Cra(Y) N {X}. BecauseCri(Y) o Y, Y < X, we haveCr(Y) n {X} o Y.

ThereforeCr(Y) o Y. 1

From the above discussion, we can see that when an old transactian leave
the current sliding window, for most cases in the above discusdioasDIU
structure does not change, and we need to update only the associated closésl items
supports, which thus reduces the update costs. There is only one cafsiveuibtal
cases that we need to perform the closure check when an olactrangX} leaves
the current sliding window: whend ¢ T2, Y < X, and {Y} ¢ T2, andCrn(Y) =Y.

We will discuss how to check for closed itemsets in the following section.

4.2.3.2 ClosureCheck for Deletion

The CFI-Stream Algorithm checks whether an itemset is closadt on the
fly, and incrementally updates the DIU based on the previous miegts with
one scan of data streams. Below, we discuss the checking pmdedthre deletion
operation. In the following Theorem 4.2, we show that for any itemsiéty c X,
Cn(Y) =Y, {X} ¢ T2, then we can always finG»(Y) in the original closed itemsets.

Theorem 4.2 For any itemseY, if Y < X, Cri(Y) =Y, {X} ¢ T2, thenCrx(Y)

e Cr;. That is to say, we can always fi@gh(Y) in Cqy.

Proof:Cr1(Cra(Y)) = f(gri(f(gra(Y) \ {X})))
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Because X} ¢ T2, there is one X} transaction inT1l, we havegr(Y) \ {X} <

gr(f(gra(Y) \ {X})) < gni(Y). So we have eithegri(f(gru(Y) \ {X})) = gra(Y) \ {X} or
gri(f(gra(Y) \ {X})) = gnu(Y).

In the first casegri(f(gri(Y) \ {X})) = gn(Y) \ {X}. BecauseCri(Cr(Y)) =
f(gri(f(gr(V) \ {X})) = f(gru(Y) \ {X}) = Cr2(Y), we haveCrx(Y) as a closed itemset
in Cry.

In the second casari(f(gri(Y) \ {X})) = gmn(Y). BecauseCri(Cra(Y)) =
f(gri(Y)) = Cri(Y) =Y. So we hav€Er(Y) < Y. Also becaus® < Crx(Y), so we have
Cra2(Y) =Y. SoCr(Y) is a closed itemset i@Gr;.

Hence, for both cas&r,(Y) € Cri1, we definitely can findCr2(Y) in Cra.

Below, we show how we perform the closure check whén4 T2 and to
see ifY is a closed itemset in transaction B2after X leaves.

Corollary 4.3 1f Y X, {Y} ¢ T2, for alluy, up, ..., U, ..., Uy, which satisfies
Cra(u) =ui, Y c U, we haveCra(Y) =urn Ua M ... Ui o/ U,

Proof: First, we prov€r(Y) c N N ... Uin ...N Uy, Becausey c ui,
Cr2(u) = u; according to Corollary 4.1Cr(Y) < u. ThereforeCr(Y) c upm Uz M
U LN U,

Next, we proveCr(Y) D urn U ... Uin ..M Uy, For any transactiot) t
€ T2,Y et. Because Y} ¢ T2, sowe can find oY, Z € t. We knowCr(2) o Z >
Y, Cr2(2) € Cr,. Becauseyy, Uy, ..., Ui, ..., Upare all itemsets i€, which includesy.

So we can assum@érx(Z) = Uk, SO gr(w) = gr(2). Sot € gr(2), t € gra(W).
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Therefore, we havegr(Y) < gr2(U1) U gra(Ue) U ..U gr2(W) U ...u gr2(uy). So
CTz(Y) ) CTz(U]_)ﬁ CTz(Uz) M ..M CTz(Ui)ﬁ LM CTz(Un) =utNbeN ..UM ..M
Un,

Therefore, we havEr(Y) =uin Uz ... UiN .0 Uy, D

From Corollary 4.3, we derive a way to check Y’s closureCr{Y) = u;n
LN ...nunN ..."Nu=Y, thenYis a closed itemset. We use this rule to perform

the closure check in the CFI-Stream Algorithm on the fly whewoldrtransaction

leaves the current sliding window.

4.3 TheProposed CFI-Stream Algorithm

Based on our above discussions, we derive an algorithm to performe onl
checking for closed itemsets over data streams. The CFRrStdgorithm performs
an insertion operation when a new transaction arrives and a deletiati@perhen
an old transaction leaves the current sliding window.

When a transaction arrives or leaves the current data stheamgy svindow,
by performing the insertion and deletion operations, the CFIli8trAagorithm
checks each itemset in the transaction on the fly and updatesstiweated closed
itemsets’ supportCurrent closed itemsets are maintained and updated in real time
in the DIU. The closed frequent itemsets can be output atraeyati users’ specified

thresholds by browsing the DIU.
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431 Thelnsertion Procedure

The insertion procedure in Figure 4-2 illustrates the insertion ggoslen
an itemseK arrives. The algorithm first checksXfis in the current closed itemsets
setC. If Xis inC, it updatesX’s support, and for alK’s subsetsr belonging toC, it
updatesY’s supports (lines 3 to 8). Otherwise,Xfis not inC and X has been
included by at least one transaction in the old transaction shgaks whether it is a
closed itemset for itself and all its subsets after thetreavgaction arrives (lines 9 to
36); and, it updates the associated supports for all the closed itemsets (Imd®B7 t
If X is a newly arrived closed itemset and does not exist in tbe the algorithm
inserts it as a new node to the DIU (lines 27 to 31). OtherwigesartsX into the
closed itemset (lines 10-15); X is the subset of the inserted transaction, a closure
check is performed (lines 16-24). In the following algorithm desonpX andY
represent itemsetXs andYs represenX’s support and’s support, lenX) represents
the length of the itemseX, which is the number of items in an itemsé€tC
represents the original closed itemsets in the DIU, Giad represents new closed

itemsets in the DIU after itemsk¥tarrives.

CFI-Stream — Insertion

1 X close = true;Cren= ¢;
2 procedure Insery, C, Chen)
3 if X e C)

4 for all Y ¢ X andY €C)

5 Ys € supportf, C) + 1;
6 end for

7 if (X_close = true) return;
8 else
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9 if (suppori,C) >0)

10 ifCrew =)

11 Xo € X;

12 Chew € X;

13 X _close = false;

14 Xs € supportX, C) + 1;
15 else

16 Xe=¢;

17 M=1I;

18 for allK o> XandK € C)
19 if (lem)<len(M)) M=K
20 end for

21 Xc € M;

22 if \X) N Xo=¢ andXc#= ¢ )
23 Crenv € Craw U X;

24 Xs € supportk, C) + 1;
25 end if

26 end if

27 else

28 if Chew=19)

29 Xo € X;

30 Crew € X

31 Xs=1;

32 end if

33 end if

34 end if

35 for all fnc X and Lenf) = Len(X)-1)
36 call Insent, C, Cren);

37 end for

38 if (X =Xo)

39 C ¢ Cu Chan;

40 suppori, C) =X

41 end if

42 end procedure

Figure 4-2: CFI-Stream algorithm — insertion

4.3.2 TheDdetion Procedure

The deletion procedure in Figure 4-3 illustrates the procedure toripetiie

deletion operation when an itemaeteaves the current sliding window. CFI-Stream
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first checks ifX is in the current closed itemsets €etand its count is greater or
equal to two; if so, it updates's support andX’s subsets’ support belonging @
(lines 3 to 6). Otherwise, it checks the itemsetnd all its subsets, which are in the
current closed itemset s€f to see whether they are still closed itemsets (lines 8 t
26) and updates the support for all its subsets that are in the atlosed itemsets
(lines 28 to 29). If the subs¥texists in the transactiolY,should keep closed (lines
11-13); otherwise a closure check for the sulysistperformed (lines 14-22). In the
following Figure 4-3,Consiere fEpPresents the itemsets that are no longer closed after

transaction X} leaves.

CFI-Stream — Deletion

1 Cobsolete= ;
2 procedure DeleteX( C, Cobsolete)

3 if (count({x}) > 2)

4 for all Y ¢ X andY €C)

5 Ys € supporty, C) — 1,

6 end for

7 else

8 length = len(X);

9 while ength > 1)

10 for all Y ¢ X andY C and len¥) = length)
11 if (count{{}) > 2)

12 Ys € supporty, C) — 1;
13 else

14 M=1;

15 for allly o YandU C)
16 M=MnU,

17 end for

18 ifN =)

19 Ys € supporty, C) — 1;
20 else

21 Cobsolete= Cobsolete W Y;
22 end if
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23 end if

24 end for

25 length = length-1;
26 end while

27 end if

28 C € C\ Copsolete
29 support(, C) =Yg,
30 end procedure
Figure 4-3: CFI-Stream algorithm — deletion

4.4 Comparing with Existing Literature

Table 4-3 summarizes the recent closed pattern mining appsaEhom
which we can see that according to different mining strategieqroposed methods
perform single or multiple scan through the entire datasethéndata stream
environment, as we discussed in Section 1.2, the single scan of datarapact
memory usage of the mining technique are preferable. Chi eroplosed the
Moment Algorithm to judge the closed itemsets indirectly thhongde property
checking and excludes them from the other three types of boundarystockzsin
the data structure. And in (Li, 2006), the authors proposed the NewMoment
Algorithm which uses a bit-sequence representation of items toerédecime and
memory needed. We proposed the CFI-Stream Algorithm in (Jiang) 088ectly
compute the closed itemses online and incrementally without thehefry support
information. In (Li, 2008), Li et al proposed to improve the CFI-Strédgorithm
with bitmap coding named CLIMB (Closed Itemset Mining with Bipnaver data

stream’s sliding window to reduce the memory cost.
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Minin Minin Data
Strateg Procegss Stream | Scan
9y Support
Mining Closed Pasquier 99 Key Pattern Offline No Multiple
Patterns . Browsing
Static Data - -
Pei 00, Zaki | Closure Online No Multiole
02, Pei 03 | Climbing P
Chi 04, Li 06| Indirect Online Yes Single
Stream Data
P_roposed 08, Direct Online Yes Single
Li 08
Table 4-3: Recent closed pattern mining approaches
4.5 Summary

In this chapter an algorithm called CFI-Stream is proposed tatlgire
compute closed itemsets online and incrementally, without requihieguser to
provide support information. Once the closed itemsets are deterntiedser’s

support information can be used to easily retrieve the desired frequent itemsets

An in-memory data structure DIU is proposed to store and mongasidised
patterns in the current sliding window. Nothing other than closedsdenand their
support is maintained in the DIU. The proposed CFI-Stream Algorighansliding
window approach to maintain the DIU in an incremental fashion. Wheewa
transaction arrives, it performs the closure check on the fly; asdpciated closed
itemsets and their support information are incrementally updatedadihisves both
time and space efficiency compared with the state of thalgotithm for closed
pattern mining in data streams (Chi, 2004). The current closeddteman be output

in real time based on any user’s specified support thresholds.
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5 Association Mining in Data Streams based on Closed
Pattern Mining

Association mining can produce many association rules. It is widely
recognized that the set of association rules can rapidly growetanwieldy,
especially when the support requirements are relatively lovwgeheral, mining a
large set of frequent itemsets leads to a large numberesf Ipging presented to the
user, many of which are redundant and difficult to analyze. A pyigaal of the
proposed approach is to reduce the number and redundancy of the rules gwovided

the user.

Many researchers have considered various kinds of solutions @btve
problem, and these can be divided into the following three cagsgdfFirst is
efficient association mining based on frequent itemsets. Theg@y's research
objective is to enumerate all frequent itemsets, and to produceiadissocules
based on the derived frequent itemsets. Second is mining interassogiation
rules. This category’s research objective is to incorporatespseified constraints
on the kind of rules generated or to define objective metrics efestt Third is
mining non-redundant association rules. This category’s researchivdgeaclude

the generation of non-redundant association rules.

In this research we focus on the combination of the second and third

approaches, to mine non-redundant and informative association rulesatobhtthe
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user interests. The generated association rules are evaluatadets for data
analysis. Because the cost of evaluating a large number otaridse very high, we
attempt to reduce the non-informative association rules byraemg only non-

redundant association rules that match the user’s interests.

5.1 Overview

The goal of association rule mining is to discover interesssga@ations and
correlation relationships among a large set of items. With messnounts of data
continuously arriving in a data stream environment, it is possibla farge number

of rules to be generated continuously.

Although there are a lot of existing studies on association rufengji
traditional association rule mining techniques are not suitablea fdata stream
environment due to several reasons. These reasons are outlinedlim d&tation
2.2.1. Different from the previous non-redundant association rule gemerati
techniques that have been studied for the traditional database (Bastde Zaki
2005), the proposed technique is to generate association rules witgle sian
based on the closed pattern mining method we proposed in Chapter 4uld@he
generation is based on the current closed itemsets in datastdeaived from the
DIU, which are a condensed representation of the whole streamvidlbut loss of
information. Compared with (Li 2004), the proposed technique involves the mining
of minimal non-redundant association rules from the DIU based on agstidgindow

model, instead of a quantitative closed itemset lattice based landenark data
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processing model as we discussed in Section 2.1.3. Thus both insedidaleton
operation can be performed on the data streams. Furthermore, theoidlins all
the closed patterns in the current sliding window. Therefore, thes rde be

generated on demand, at different user-specified support and confidence thresholds

Theoretical analysis and experimental results are also pediotanshow that
our proposed technique can efficiently produce non-redundant rules inréarass
which provide a condensed set of association rules among itemsktta streams
and make it easier for data analysis. In addition, only coectleelationships are
developed and user interest patterns are output from the pattem filhe rules can
be generated for multiple user query requests with differeashbids and pattern
requirements which are especially suitable for the distribdegd stream query

environment.

5.2 TheProposed Rule Mining Framework based on Closed
Pattern Mining

In this section, we present an online non-redundant and informative
association rule mining framework based on the closed pattermgnnethod in
data streams we proposed in Chapter 4. We first briefly ibesttre framework we
are going to use to compute the closed frequent itemsets andhamiredundant
association rules in data streams. Then we discuss how we mimedumaant and

informative association rules based on the discovered closed patterns.
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As illustrated in Figure 5-1, when data stream comes andddheeserver,
the CFI-Stream Algorithm checks each itemset in the transaonh the fly and
updates the associated closed itemsets’ supports. Current clesesets are
maintained and their support values are updated in real time intheA mine the
minimal non-redundant association rules based on the closed patt@ntesimad in
the lexicographical ordered direct update lattice. The derived sefighen goes
through the correlation filter to leave out any non-correlasmb@ations into user
consideration. Based on different users’ requests on interestednpatminimum
support and confidence thresholds, different association rule sets pu¢ thudugh

the pattern filter.

Tlser Feguest 2

TIzer FEeguest 1 TTzer Reguest 3

N |/
\VJ

Drata streatn Drata streatn
=] Closed Iternsets

Y

Closed Pattern [Association IWindng

W

Ilind

Mon-redundatt
Fule Set

Correlation|Filter
W

Correlated Fule
Set

Pattern|Filter

RN

Fule Set 1 ¥ Fule Set 3
Fule Set 2

Figure 5-1: The proposed association mining framework based on closed patter
mining
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5.3 Mining Informative Associations based on Closed Pattern
Mining

It is widely recognized that the set of association rulegagidly grow to be
unwieldy, especially when support requirements are low. In thisoseeve show
how frequent closed itemsets can help us form a basic set of froleswhich all
other association rules can be inferred. Thus only a small and amikiske set of
rules need to be presented to the user that can later seledeviely other rules of
interest. We show that the derived association rules in datamstr@are non-
redundant rules that provide a minimum set of association rules ateomggeis in
data streams and make it easier for data analysis.

Lemma 5.1 The support of an items#tis equal to the support of its closure,
i.e.s(X) = s(C(X)).

This lemma, reported in (Pasquier, 1999) and (Zaki, 2000), stateslithat a
frequent itemsets are uniquely determined by the frequent cltesedets. From
Lemma 5.1, we know that the support of an item¥$etquals the support of its
closure C(X). Thus it suffices to consider rules only among the frequent ctlose
itemsets (Zaki, 2000). We show that they are equivalent in the faliplxemma 5.2.

In the following proofs, we usg(X)| to represent the number of transactiong(X).

Lemma 52 The rule X; —=-> X, is equivalent to the rule
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Proof: For support we have= s(X; U X3) = g(X1 U X2)| = p(X1) n g(X2)|-
By Lemma 5.1, we have= |g(C(X1)) N 9(C(X2))|, because the support of an itemset
and its closure is the same. The last expression can be eavass = |g(C(X;) v
C(X2)| = S(C(X1) v C(X2)). For confidence, we have = g|g(X1)| = [g(C(X)|.
Therefore, the rulX; —*— X; is equivalent to the rulg€(X;) —=— C(Xy).

Lemma 5.3 (Zaki, 2000) The rul&X; —*— X; is equivalent to the rul¥;
—Stel y X, U Xy, i.e.,s=sl andc =cl.

Proof: For support we hawe= [g(X; u X2)| = p(X1 v (X1 U Xp))| =sl. For

confidence, we have = ¢/|g(X1)| =s1/lg(X1)| =cl. Therefore, the rul¥; —=— X,

is equivalent to the rulg; —==% 5 X; U Xy, i.e.,s=sl andc = cl.

In the following discussions, we consider two cases of asiwtiatles,
those with 100% confidence, i.e. withx 1.0, and those with< 1.0.
Case 1: Rule with confidence = 100%

Lemma 54 The rule X; —==2 5 X; U X, is equivalent to the rule

X —2L0 5 C(X, U Xy), i.e.,s=sl andc = cl.
Proof:
(a) BecauseX; —=2 5 X; U Xp, we havee = [g(X1 U (X1 W X)) |[/lg(X0)]
= 1.0. Therefore, we havg(X: U X2)|/lg(X1)|=1.0.
(b) Now let's look at the ruleX; —=2 5 C(X; U Xp). For the

confidencecl = p(X: U C(X1 L Xo))B(Xo)| = B(C(X1 U X2))/lg(X1)|- From

Lemma 51,S(C(X1 ) Xz)) = S(Xl ) Xz), we haveQ(Xl ) X2)|: Q(C(Xl )
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X2))|- Thereforecl = p(Xi W C(X1 w X))|/A(X0)| = BIC(Xa © X)I(X1)| =

lo(X1 v X)/g(X1)|=1.0 =c. For the supportsl = P(C(X1 U X2))| = p(X: v

Xo)| =s. Therefore, the rulX; —=2 5 X; U X, is equivalent to the rule

X1 —22 5 C(X1 U Xo).

Lemma 55 The rule X; —==2 5 X, is equivalent to the rule
5,10

X1 —2=2 5 C(Xy), and also the rulg; —=2 X, is redundant.
Proof:

(@) From Lemma 5.3, we hav§ —*— X, is equivalent to the rul¥;
— 5 X1 U Xo. From (Luxenburger, 1991), we know that an association
rule X; —*- X, has confidence = 1.0 if and only ifg(Xy) < g(Xp), or
equivalently if and only ifC(X;) < C(Xy). Therefore, we have rubg —<—

X1 U Xz has confidence = 1.0 if and only ifg(X1) < g(X; u Xp), or
equivalently if and only IiC(X; U Xz) < C(X1).

(b) BecauseX; ¢ X; U X, from the monotonicity property of Galois
connection (Luxenburger, 1991), we h&y&X;) < C(X1 U Xy).

(c) From (a) and (b) we know th@&(X;) = C(X; U X), also from Lemma
5.3, we haveX; —*— X; is equivalent to the rulg; —*— X; U X,. From

Lemma 5.4, we have rub; —=225X; U X, is equivalent to the rulX;

510, C(Xy; U Xp). Therefore, we have the rul —==° 5 X, is

equivalent to the rulX; —=2 5 C(X; U Xo). Also becaus€(X;) = C(X; U
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X2), we have the ruleX; —=2 5 X, is equivalent to the rule

X]_ s,c=10 C(X]_) ]

From Lemma 5.5, we proved that any association Xale—==%5 X, is

equivalent to the rul¥; —>=*% 5 C(X,). Therefore, the set of association rules in the

format X; —=2 5 C(X;) is complete. Becausg(X;) = C(X; U Xp), and from the
extension property of Galois connectid¥nc C(X), we haveX;  C(X2) < C(Xy).

Thus, from the rule redundancy definition in Chapter 3, the Xule=>=2 X, is

redundant.

In the following Lemma 5.6, we prove that the rules from all non+mim
generators to its closure are redundant.

Lemma 5.6 The rulesX; —=2 C(X;), X1 is not a minimum generator, are
redundant.

Proof: From the minimum generator definition in Chapter 3, we know that
the smallest itemseX; that satisfies withC(X;) = X;, is called Xy’s minimum
generator. 1fX; is not the minimum generator, we can find a minimum genexator
such thatX;y —2=2 5 C(X)). s = (X UC(X1)) = (X' UC(X))| = B(X) M
9(CXD)l = 19(C(X)| = B(X2)wg(C(X1))| = s, andc’ = [g(X"WC(X))| / B(X1) | =

lo(X2uC(X0))| / B(X1) | =c . Therefore, the rule¥; —=* 5 C(X,) are equivalent

with the rulesX; —=2 5 C(X;). Also becauseX;’ — Xi, the rules from non-

minimum generatoX; —>=% 5 C(X;) are redundant.
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We use the method in (Li, 2004) to find the minimum generator of a give
closed itemset. In the following Lemma 5.7, we prove that aticgsson rules from
the minimum generator to closed itemsets are non-redundant.

Lemma 5.7 The rulesX; —2 5 C(X;), X; iS a minimum generator, are
non-redundant.

Proof: Assume that we have two rule¥; —=*5 C(X;), and
Xo—2E0 5 C(Xo). If X1 o Xp, andC(Xy) < C(X2), thenX; = C(Xy) is redundant. We
show this is impossible. BecausgandX; are minimum generators, X o Xz, from
the monotonicity of Galois connection property (Luxenburger, 1991), we®(@iE
> C(Xy). This is contrary with the given assumptiG(X;) — C(X;). Therefore the
rulesX; - C(X,) are non-redundant.

From the above discussions, we show that when confidence of the association
rule is equal to 1, the set of association rules in the folaat>=22— C(Xy), X1 is a
minimum generator, is complete and non-redundant. In the following, wesdishe
conditions when the confidence of the rule is less than 1.

Case 2: Rule with confidence < 100%

Lenmma 58 The rule X; —2 5 X, is equivalent to the rule
X —220 5 (X1 U Xo), andXy < C(X1 U Xo).

Proof: For the ruleX; —2 5 X,, the suppors = s(X1UXp)) = g(X1uXy)|,

the confidence = [g(X1UX2)| / P(X1) |. For the rule; —22 5 C(X; U Xo), we have

its support iss(X;UC(X1 U X3)) = P(XaUC(X1 L X2))| = [9(X1) N g(C(X1 L X)) = |
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g(X1) N g(X1 U X)| = [g(X1) N g(X1) N g(X2)| = [9(X1) N g(X2)| = B(XauXo)| =S, the
confidence isg(X;UC(Xy U X))/ B(X1) | = p(XeuX2)| / p(X2) | =c. In all above
association ruleg; is less than 1, the supportXfis greater than the support@fX;

U Xp), therefore we hav&; — C(X; U X;). From the above discussion, we proved

s,c<10

that any association rubé; —<*° 5 X, is equivalent to the rul¥; —>* 5 C(X;
U Xp), andX; < C(Xyu Xp). Therefore, if we can find all association rules with the
format of X;—=22 5 C(X; U X»), X1 = C(X1 U X»), these association rules should
provide complete information.

Lemma 5.9 The rulesX; —>*2% 5 C(X; U Xo), X1 € C(X1 U Xp), X1 is not a
minimum generator, are redundant.

Proof: From the definition of minimum generator in Chapter 3, we khatv t
the most minimal generatof; is the itemset that satisfies wi@(X;) = Xo. If X3 is
not the minimum generator, we can find a minimum gener&iyr such that

Xy —250 5 C(Xp U Xp). S = g% UC(X U X))| = BXe’) mg(CX1 U Xo))| =

l9(X1) Ng(X)Ng(X2)| = [g(X)Ng(X2)| = s, andc’ = [g(X1) VC(Xa W X)l/lg(Xa)[ =

lg(X2") Fg(X)Ng(X)| /B(XD)| = BOauXa)ll O] = c. Also becaus&y’ < X, the

rules from non-minimum generatdf —22 5 C(X; U X»), X1 < C(X1 U Xy), are
redundant.

In the following Lemma 5.10, we prove that all association rules fthe

minimum generators to their closed supersets are non-redundant.
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Lemma 5.10 The rulesX;—22 5 C(X; U Xp), X; < C(Xy u X2), X1 is a
minimum generator, are non-redundant.

Proof: Assume that we have two rulég —=%5 C(X; U Xy), and
Xy —20 5 C(X1 U X2), X1 < C(Xg U Xo). If X3 © Xy, then X; = C(Xo) is
redundant. We show this is impossible. Becaxisand X;' are generators, iK; o
X{', from the monotonicity property of Galois connection, we h@g;) > C(Xy).
This is contrary with the given condition that bathandX;” are generators of the
same close itemset, i.€(X;) = C(X1'). Therefore the ruleX; > C(X1 U Xp), X3 <
C(X1 U Xp), X1 is minimum generator are non-redundant.

From the above discussions, we show that when confidence of the association
rule is less than 1, the set of association rules in the fofprafs%— C(X; U Xo),
X1 < C(Xy U Xp) and X; is minimum generator, is a complete and non-redundant
association rule. In this relationship(X; u Xp) is X;'s closed supersets. From (Zaki
2005), we know that for closed itemsets related by the suldggome it is sufficient
to consider rules among adjacent closed itemsets, since otreecanlée inferred by
transitivity (Luxenburger, 1991). Therefore, in our proposed algorithm, weederi
rules only among immediate parent and child nodes.

Not all association rules are correlated with each other,teyrdme all the
correlated association rules, we introduce the lift formula twutate the correlation

of two closed patterns. The lift of two closed patteXnandY can be measured as

lift(X, Y) = (X U Y) / S()SCY) = X U V)| IgX)|lg(Y)|. As discussed in (Han, 2001),
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if the resulting value is less than 1, then the occurreniei®hegatively correlated
with the occurrence of. Otherwise if the resulting value is greater than 1, tKen
andY are positively correlated. If the resulting value is equal thdnX andY are
independent and there is no correlation between them. We calculataitpod all
the positively correlated rules, having lift values greater than 1.

Furthermore, different users often have different query reqaéste same
time to the same stream of data. This is due to the face#wt user may have
different needs and interest information. To match different ‘ugaesy requests at
the server, we derive mechanism to output only the rule sets theh ohfferent
user-specified support and confidence thresholds. We also includera fiite in
the proposed association rule mining framework, which outputs the particula
patterns that the user interests about. For example, the electtepartment
manager of a wholesale store may particular interests aboutléhsets that imply
the following information: if a customer buys a camera, wha¢roproducts that he
or she may also want to buy? In this specific query, caméa igser interest input
pattern. Based on this information, we derive the rule sets thahrtee input and
output patterns specified by different users. Figure 5-2 showsueomine the non-

redundant and informative association rules in data streams from the DIU.

Input: (1) DIU: All closed itemsets in the DIU
(2)Specity: the user-specified minimum support
(3)Cspedity: the user-specified minimum confidence
(4)Pin: the user-specified input pattern
(5)Paut: the user-specified output pattern
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Output: R The output informative association rule set

Method:

1 for each nod& in the DIU

2 if (S(X) > Syety)

3 find X's minimum generatoY

4 for eachy, andPj,c Y

5 if ¥ = X andPg: < X and lift(Y, X) > 1)

6 R=RuU (Y2 X)

4 S=3X)

8 C=1

9 for eacl's immediate upper-level nodg

10 I Xp) > Sypecity aNASXp)/X) > Cepexity
Bagc X, and lift(Y, Xp) > 1)

11 R=RUY=>X,

12 S=9Xp)

13 C = S(Xp)/SX)

14 end if

15 end for

16 end if

17 ifY =X andPy < X and lift(Y, X) > 1)

18 for eack's immediate upper-level nodg

19 if &(Xp) > Specity aNAS(Xp)/(X) > Cpecity
Badc X, and lift(Y, Xp) > 1)

20 R=RUY=>X,

21 S=9Xp)

22 C = SXp)/SX)

23 end if

24 end for

25 end if

26 end for

27 end if

28 end for

Figure 5-2: The informative association mining algorithm
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5.4 Comparing with Existing Literature

Table 5-1 summarizes recent association rule mining approacteemimimg
algorithms can be categorized based on the mining processeajiber of itemsets
the association rule mines, the number of scans the algorithm pgrfetn
Traditional rule mining algorithms based on frequent and closed pataeens
performed offline and need multiple scans over the entire datlaggtang, 2004),
(Halatchev, 2005), and (Shin, 2007), the authors proposed using two, three, and
multiple frequent pattern based methods to perform associatiommileg. Instead
of using frequent pattern mining, we proposed to perform associatiommieg
based on closed pattern mining technique we discussed in ChaptéicH, isva
multiple closed pattern mining based algorithm, and be able to amsuléple

requests from different users’ specified interest query criteria aathe time.

- Data
Number of | Mining Stream | Scan
ltemsets Process
Support
Agrawal 93,
Frequent| Agrawal 94, . . .
ltemsets | Liu 99, Han Multiple Offline No Multiple
Static 00
Data
o Closed Bastide 00,
Mining | Li 04, Zaki Multiple Offline No Multiple
Association temsets | g
Rule
Yang 04,
Ilztreemqgeetnst Halatchev mﬁ{Tlr;ree/ Online Yes Single
Stream 05, Shin 07 P
Data
Closed Proposed 07 Multiple Online Yes Single
ltemsets

Table 5-1: Recent association mining approaches
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55 Summary

In this chapter we propose a framework to produce non-redundant and

informative association rules based on closed itemset mining irstlatans. Based
on the discovered closed itemsets derived and maintained in DIU, feenpe&ron-

redundant association and informative rule mining using an associaiiung

framework. Theoretical analysis and experimental results shatvour proposed
technique can efficiently produce non-redundant rules in data streatmdévide a
minimum set of association rules among itemsets in data streaththus make it
easier for data analysis. Furthermore, the rules can beagetheon demand, at

different users' request thresholds, and different input and output patterns.

89



6 Missing Data Estimation in a Sensor Network Database

Based on Closed Pattern Association Mining

In this chapter, a data estimation technique is developed based on associati
rules derived from closed frequent patterns generated by semsodsscover
relationships between sensors and use them to perform missingtilaigien. By
discovering the relationships between multiple sensors when theyth@agame or
different values, this technique can perform data estimatiomdoe cases than the

state of the art technique (Halatchev, 2005) and improve the estimation accuracy.

6.1 Overview

Recent advances in sensor technology have made possible the devtlopm
of relatively low cost and low-energy-consumption micro sensor&hwban be
integrated in a wireless sensor network. These devices -@a8reitegrated Network
Sensors (WINS) - will enable fundamental changes in applicationmisgathe
home, office, clinic, factory, vehicle, metropolitan area, and thbajlenvironment

(Asada, 1998).

Many research projects have been conducted by different organgati
regarding wireless sensor networks; however, few of them didoas to estimate
the missing data when data is lost or corrupted. Traditiondiadsetto handle the
situation when data is missing are to ignore the missing datke sensors send

them again or use some statistical methods to perform timadsen. As we
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discussed in Chapter 2.3, these methods are not especially suitgdefess sensor

networks.

In this chapter, a data estimation technique is developed udogpdC
Association Rule Mining (CARM) on stream data to discover mahips between
sensors and use them to compensate for missing and corrupted dat@nDiffom
other existing techniques (Dempster 1977, Gelman 1995, Halatchev 2005,
McLachlan 1997, Rubin 1996), CARM can find out the relationships betweeartw
more sensors when they have the same or different values. Theddassociation
rules provide complete and non-redundant information; therefore it canvienfive
estimation accuracy and achieve both time and space efficiemcthefmore,
CARM is an online and incremental algorithm, which is especkslyeficial when

users have different specified support thresholds in their online queries.

6.2 TheData Structure and Online Closed Pattern Association
Mining in Data Streams

In this section, an online data estimation technique called CARM is
developed based on the closed frequent pattern mining algorithm opespd.
When a transaction arrives or leaves the current data stieting svindow, the
proposed closed pattern mining algorithm checks each itemset fratisaction on
the fly and updates the associated closed itemsets’ supports. irkat alosed
itemsets are maintained and updated in real time in the DIU, and can be oatput at

time at users’ specified thresholds by browsing the DIU.
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A lexicographical ordered direct update lattice is used to miaitita current
closed itemsets. Each node in the DIU represents a closedtitdimsee ark levels
in the DIU, where each levelstores the closeditemsets. The parametkris the
maximum length of the current closed itemsets. Each node in thetbiés a closed
itemset, its current support information, and the links to its imatedarent and
child nodes. We assume in this chapter that all current closedeiterare already
derived, and based on these closed itemsets, we generatet@ssogias for data

estimation.

6.3 Missing Data Estimation based on Closed Pattern Association
Mining

The closed itemset mining provides the foundation for our dai@at&in
algorithm, CARM. The reason we based CARM on the closed itemsatag is
because not only it forms a non-redundant set of association rid&s 2000),
which helps to achieve the time and space efficiency, but alsoviidps compact
and complete information, which helps to achieve the estimatiamasyc Because
without losing any information, we are able to find out all thati@hships (rules)

between sensors.

Lemma 6.1 The support of an items#tis equal to the support of its closure,

i.e.s(X) = 5(C(X)).
This lemma, reported in (Pasquier, 1999) and (Zaki, 2000), stateslithat a

frequent itemsets are uniquely determined by the frequent closed itemsets
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From Lemma 6.1, we can derive all itemsets’ supports through tbhsidc
itemsets’ supports in the DIU.

Lemma 6.2 The rule X; —=->» X, is equivalent to the rule
C(X1) —= C(Xy).

Proof: For support we hase s(X; U X2) = g(X1 U X2)| = B(X1) m g(X2)|.
By Lemma 6.1, we have= g(C(X1)) » g(C(Xy))|, because the support of an itemset
and its closure is the same. The last expression can be eavass = |g(C(X1) U
C(X2))| =s(C(Xy) v C(X2)). For confidence, we hawe= g/|g(X1)| =/[9(C(Xp))|.

From Lemma 6.2, we can derive all association rules betweersetem
through their closed itemsets in the DIU.

Instead of generating all possible association rules, we derteearules that
have strong relationships with the current round of sensor readimg® wne or
more readings are missing. We achieve this through browsiriglthewvhich stores
all of the closed itemsets. Based on the users’ specified suppdrconfidence
thresholds, we find out rules through paths (links) of closed iterntisatssuit the
users’ needs, i.e., satisfy the users’ specified support andlenoé thresholds. The
mining process is online and incremental, which is especially ioeeivhen the
users have different specified threshold criteria in their orjireries. The CARM
Algorithm is shown in Figure 6-1.

CARM proceeds in the following manner. First, it checks if theeenaissing
values in the current round of readings of stream data. [fityases the current

round of readingX that contains the missing items to find out its closure online. If
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the rules fromX to its immediate upper level supersets satisfy the useifispec
support and confidence criteria, these upper level supersets aexltes starting
points to explore more potential itemsets until CARM estimaliemissing sensor
data. Following this method, CARM continues to explore and find all closed igemset
that can generate association rules satisfying the usersifispesupport and
confidence criteria. All these closed itemsets are the setpav the exploration set

and have the support and confidence along the path above or equal to she user

specified support and confidence thresholds.

CARM generates the estimated value based on the rules aneéddaesed
itemsets, which contain item value(s) that are not included in ij@arreadingsx.
It weighs each rule by its confidence and calculates the stiomdd these weights
multiplied with their associated item values as the finaineged result. These item
values can be expected as the missing item values with the sapparonfidence
values equal to or greater than the users’ specified thresholttgs iway, CARM
takes into consideration all the possible relationships between riberseadings
and weighs each possible missing value by the strength (confidehceach
relationship (rule). This enables CARM to produce a final eggchresult near the

actual sensor value based on all of the previous sensor relationships information.

Before introducing the CARM Algorithm, we define the symbols taved
in the algorithm. LeD = {d, d,,..., d,} be a set oh item identifiers, and/ = {v,

Va,..., Vm} be a set oimitem values. An itend is a combination oD andV, denoted
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asJ = D.V. For exampled,.vi,, means that an item with identifidy has the value

V. In the following figure X is the itemset in the current round of sensor readihgs,
represents all supersetsXgfConf, represents the strength of the rule from iterxset

to Y, supportK) representX’s support, closure) is the closure of itemsetin the
current transaction sets, mi)(represents<’s immediate upper level supersets in
the DIU, Srepresents the support of association r@legpresents the confidence of
association ruleyV(y represents the valuéy, of sensor identifierSy), Xesimate
represents the returned estimation itemset which containsrbeidentifiers with
missing values in the current round of readings of stream data amd the
corresponding estimated valu€,eiry represents the user-specified support, and

Cspecity represents the user-specified confidence.

Input:  (LXinput: the current round of sensor readings that contains missing
values
(ZPpecity: the user-specified minimum support

(Wspecify: the user-specified minimum confidence

Output: Xesimate: @ S€t containing the senor ids with missing values in the current
round of sensor readings and their corresponding estimated values

Method:
1 Xestimate=9;
2 Cinputzl;
3 Procedure Estimat&fout, Cinput, Specifys Cepecify)
4 if Kinpue= ¢ andXinput =C(Xinput))
C=Cinput;
for all (Y = min(Xinput ))
C=C*(S(V)/SKinpu)) ;
Xnew=Y\ Xinput;
if (S(Y)> Sypecity and CXgpecity aNAXnew # ¢)
10 for all ZeXnew, Z's new valueV)

©O© 00 N O O
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11 N=index(2);

12 V(N): V(N)+C*val ue(2) ;

13 end for

14 Estimaté(, C, S_:pecify, Cspecify) ;
15 end if

16 end for

17 end if

18 if Q(inputi (1) andXinput * C(Xinput))

19 Y=closureKinput) ;

20 Xnew=Y\ Xinput;

21 C=1,

22 if (SY)> Sspecify and C:Cspecify andXney # (I))
23 for all ZeXpew , Z's Nnew valueV)
24 N=index(2) ;

25 V(N): V(N)+C*val ue(Z) ;

26 end for

27 Estimate(, C, Sypecity, Cpecify) ;
28 end if

29 end if

30 Xestimate = Xi nput \Y Xnew
31 end procedure

Figure 6-1: The online data estimation algorithm

6.4 Comparingwith Existing Literature

Table 6-1 summarizes the recent data estimation approaches$, edm be
categorized according to the different methodologies. As weaislied in Section
2.3, the traditional statistical methods do not suitable to be used dataestream
environment. Methods based on time series estimate the missadpatadd on its
time trends, but in the sensor stream database, sensor dataordynaglated with
time trends, other factors such as location can also affectata relationships.

Methods based on pattern and association mining can discover imgdationships
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between data. In (Tarui, 2007), the author discussed how to find a tei@itd a

single missing item in a stream. In (Halatchev, 2005) (Gruehk807), the authors
propose to use two frequent itemset mining technique to perform estimation based on
relationship between two sensors. Based on our proposed pattern acidtiass
mining technique discussed in Chapter 4 and 5, we developed a techmeui®tm

missing data estimation considering the relationship between raulsphsor

readings.
Number of Data
Stream
ltemsets
Support
Static lannacchione 82,
Data Statistics Rubin 96, Shafer 95, | N/A No
Cool 00
Data Time Series| Papadimitriou 05 N/A Yes
Estimation )
Stream Tarui 07 One Yes
Data Pattern and Halatchev 05
Association i Two Yes
. Gruenwald 07
Mining
Proposed 07 Multiple Yes
Table 6-1: Recent data estimation approaches
6.5 Summary

In this chapter we proposed a novel algorithm, called CARM, to pedaten
estimation in sensor network databases based on closed pattern mirsegsor
streams. The algorithm offers an online method to derive assocrales based on
the discovered closed itemsets, and estimates the missing galss based on the

derived association rules. It can find out the relationships betwediplemgensors
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not only when they report the same sensor readings but also whemepwy

different sensor readings.
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7 Performance Sudy

7.1 Overview

In this chapter, we describe experimental study and results giroposed
techniques. Section 7.2, 7.3 and 7.4 describe the performance study and &malys
the content discussed in Chapter 4, 5, and 6 respectively. Section 7.5 summarizes this

chapter.

For the performance study, nine synthetic datasbt6.D1K, T516D10K,
T516D20K, T516D100K, T5I110D10K, T5112D10K, T106D10K, T1216D10K,
T5.16.D10K-AB and two real datasets are used to evaluate the performance of
proposed techniques. Each synthetic dataset is generated byrmthersthod as
described in (Agrawal 1993), where the three numbers of each tddémsse the
average transaction siz€)( the average maximal potential frequent itemset $)ze (
and the total number of transaction3),( respectively. The first real dataset was
collected in year 2000 at various locations throughout the city of Ausgixgsl The
data represents the current location, the time interval, andutider of vehicles
detected during this interval. All sensor nodes report to a ssagleer. The sensors
are deployed on city streets, collect and store the number ofhiwegedetected for
a given time interval. The vehicle counts taken as sensor reatffiagare used as
input for our simulation experiments are traffic data providedAmgtin, 2003). The

second real dataset was sensor data collected in the HuntBagtomcal Garden in
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Sam Marino, California (Huntington, 2008). The sensor reports thenapetature
of several places in the gardens for different time interyialthe experiments, the
transactions of each dataset are looked up one by one in sequenoel&btesthe
environment of an online data stream. All our experiments were doad @9 GHz

Intel Core 2 CPU with 2GB memory.

7.2 Performance Study for Closed Pattern Mining

We compare our algorithm with Moment (Chi 2004), which is theesift
the-art algorithm to mine closed itemsets in data stremmdscloset+ (Pei 2003),
which is the state-of-the-art closed itemsets mining algoritfor traditional
databases. For the performance study, synthetic dat@S¢&D1K, T5I6D10K,
T516D100K, T5I10D10K, T5112D10K, T10I6D10K, T1216D10K, T5.16.D10K-AB are
used to evaluate the performance of the CFI-Stream Algorithma. fijures and
tables in this section show the average running time per transacttbimemory

usage in terms of the number of stored itemsets in the above synthetic datasets

7.2.1 Performanceunder Different Total Number of Transactions

In this experiment, we compare CFI-Stream, Moment (Chi 2004) and Closet+
(Pei 2003) under different total number of transactions. As showigure 7-1 and
Table 7-1, as the total number of transaction size incredsesumnning time per
transaction of CFI-Stream, Moment and Closet+ fluctuate intaisaange, among

which Closet+ fluctuates the most. From Figure 7-1, we can sde that for the
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given three datasets with specified parameters, CFI-Stréass the fast running

time, follows by Closet+ and Moment.

0.1 =
0.09 -
0.08 -
9 0.07 -
)
E 0.06 - m CFl-Stream
|n_.o 0.05 1 Moment
€ 0.04 -
c M Closet+
2 0.03 4
0.02 -
T=5
001 N |=6
-
0 - - 5=0
T516D1K T516D10K TSI6D100K W=D

Figure 7-1: Running time per transaction under different total numbemsbtton
size in seconds

T516D1K T516D10K T516D10CK
CFI-Stream 0.000303 0.000997 0.00205596
Moment 0.09875 0.09444 0.0676
Closet+ 0.022188 0.0213424 0.0163521]7

Table 7-1: Running time per transaction under different total number of tti@nsac
size in seconds

Figure 7-2 and Table 7-2 show that as the total number of treorsacte

increases, for CFI-Stream and Closet+, the number of itesteeexl in the memory

is the same as the number of closed itemsets, which insredsm the transaction

size increases. While for Moment, the memory space usagesedrdaster than

CFI-Stream and Closet+; this is because the Moment Algoritletsne store all the
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boundary nodes, which include all the infrequent gateway nodes, unprgmisi
gateway nodes, intermediate nodes, and closed nodes. The number of boundary

nodes as well as the closed nodes increase while the total numizarsafction size

400000 -
350000
300000 -
250000 1 | CFI-5tream
200000 1 Moment
150000 A ® Closet+
100000 -
50000 - -IL I

= a

0

increases.

Number of Stored Itemsets

T51601K T516D10K T5160100K

Figure 7-2: Memory usage in terms of number of stored itemsets underrditfese
number of transaction size

T516D1K T516D10K T516D100K
CFI-Stream 1925 18728 134010
Moment 21198 91000 391456
Closet+ 1925 18728 134010

Table 7-2: Memory usage in terms of number of stored itemsets under diféeaknt t
number of transaction size

7.2.2 Performance under Different Sliding Window Size

In this experiment, we compare CFI-Stream, Moment (Chi 2004) under
different sliding window sizes. As shown in Figure 7-3 and Tal8e &s the sliding

window size increases, the running time per transaction ofSGE&m and Moment
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fluctuate in a certain range. Also we can see from FigtBend Table 7-3 that CFI-
Stream runs faster than Moment when processing the closed paiteng with

different sliding window size under the given datasets and parameters.

012

3
» 0.08
a A—
E
W 08 W CFI-Stream
2
E 0.04 Moment
&
-
0.02 _
- ] - 1=6
0 ~
S=0
TSIEDLOK TSIEDLOK TSIED10K D=10K

(w=1K) (Ww=4K)

(w=2K)

Figure 7-3: Running time per transaction under different sliding windasiz

seconds
T516D10K T516D10K T516D10K
(w=1K) (w=2K) (w=4K)
CFI-Stream 0.0027569 0.0043946 0.0064299
Moment 0.09929 0.10713 0.06874
Table 7-3: Running time per transaction under different sliding window size in
seconds

Figure 7-4 and Table 7-4 show that as the sliding window sizeases, for
CFI-Stream, the number of itemsets stored in the memory sathe as the number
of closed itemsets, which increases when the transactionnsimases. While for
Moment, the memory space usage increased faster than CHhSthesis because

the Moment Algorithm needs to store all the boundary nodes, whichda¢he
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infrequent gateway nodes, unpromising gateway nodes, intermediate aades,

closed nodes. The number of boundary nodes as well as the closed ncegsescr

when the sliding window size increases.

60000 7

Number of Stored Itemsets

L'l ¥

50000 1~
40000 1
30000 1
20000 1~

10000 4~

TSIGDL1OK
(w=1K)

TSIGDLOK TSIGD10K
(w=2K) (w=4K)

W CFl-Straam

Moment

T=5
1=6
$=0
D=10K

Figure 7-4: Memory usage in terms of number of stored itemsets under different
sliding window size

T516D10K T516D10K T516D10K

(w=1K) (w=2K) (w=4K)
CFI-Stream 1768 4810 7660
Moment 21198 31271 52878

Table 7-4: Memory usage in terms of number of stored itemsets under different
sliding window size

7.2.3 Performance under Different Minimum Support Threshold

Figure 7-5 and Table 7-5 show the average processing time psadti@n

for Closet+, Moment and CFI-Stream under different minimum suppasholds.

As the minimum support threshold decreases, the running time perctrandar
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Moment, CFI-Stream and Closet+ decreases as illustratadure-5 for the given

datasets and parameters.

0.07 - —
D.06 - =
2 005 -
]
u
E 0.04 m CF-Stream
'—
2 003 - Moment
c
c -
Z 0.02 A H Closet+
0.01 -
T=5
T516D10K T5/6D10K T516D10K e
(s=1%) (s=3%) (s=5%) -

Figure 7-5: Running time per transaction under different minimum supportotdes

in seconds
T516D10K T516D10K T516D10K
(s=1%) (5=3%) (s=5%)
CFI-Stream 0.0009549 0.0009521 0.0004796
Moment 0.06848 0.05752 0.05479
Closet+ 0.000138 0.0000077 0.00000355
Table 7-5: Running time per transaction under different minimum support threshold
in seconds

Figure 7-6 and Table 7-6 show the memory usage in terms of theenuin
stored itemsets of Closet+, Moment and CFI-Stream under diffenemimum
support thresholds. As shown in this figure, the memory usage foet€lesmd
Moment decreases when the minimum support threshold increasess bhsause

the number of itemsets it keeps track of decreases. For €&frgtit keeps track of
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all the current closed itemsets independent of support informationfoiteeithe

number of stored itemsets did not change with the support information.

20000 1
g 18000 7
$ 16000 |
5 14000
T 12000 ¥
S 10000 ¥ M CFI-Stream
H:- 8000 Moment
8 6000 W Closet+
E 4000
% 2000 ¥ _—
0 » - 1=6
TSIGD 10K TSIGDL0K TSI6D10K D=10K
(s=1%) (5=3%) (s=5%) W=D

Figure 7-6: Memory usage in terms of number of stored itemsets under different
minimum support threshold

T516D10K T516D10K T516D10K
(s=1%) (5=3%) (s=5%)
CFI-Stream 18728 18728 18728
Moment 14926 11424 10801
Closet+ 3608 1019 581

Table 7-6: Memory usage in terms of number of stored itemsets under different
minimum support threshold

7.2.4 Performance under Different Average Transaction Size

Figure 7-7 and Table 7-7 show the average processing time foet€los
Moment and CFI-Stream under different average transaction gigethe average
transaction size increases, the running time for CFI-Stréémment and Closet+

increases as illustrated in Figure 7-7.
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Running Time (sec)
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5 -

4 - | CFI-Stream
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H Closet+
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T516D10K T1016D10K T1216D10K

Figure 7-7: Running time per transaction under different average ttianssize in

seconds
T516D10K T1016D10K T1216D10K
CFI-Stream 0.000997 0.445898 3.55638
Moment 0.09444 1.87323 6.56796
Closet+ 0.0213424 0.644135 1.9165038
Table 7-7: Running time per transaction under different average transactiom siz
seconds

Figure 7-8 and Table 7-8 show the memory usage in terms of the nafbe
stored itemsets of Closet+, Moment and CFI-Stream while thegadransaction
size increases. As shown in this figure, the memory usage fahréee algorithms
increases when the average transaction size increasess basause the number of
itemsets it keeps track of increases. Also we canrsee the figure that the CFI-
Stream and Closet+ Algorithm consumes less memory space ltbaMdment

Algorithm, because they only need to keep track of the closed iemAkiile
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Moment keeps track of all the infrequent gateway nodes, unpromisitegvay

nodes, intermediate nodes, and closed nodes.

5000000 -

4500000 -
Y
T 4000000 -
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Figure 7-8: Memory usage in terms of number of stored itemsets underrdiffere
average transaction size

T516D10K T1016D10K T1216D10K
CFI-Stream 18728 512923 1583586
Moment 91000 1472744 4667617
Closet+ 18728 512923 1583586

Table 7-8: Memory usage in terms of number of stored itemsets under different
average transaction size
7.2.5 Performance under Different Average Maximal Potential Frequent
ltemset Size

Figure 7-9 and Table 7-9 show the running time for Closet+, Moiaueaht
CFI-Stream under different average maximal potential freqgtemset sizes. As the

average maximal potential frequent itemset size increasesjrthimg time for CFI-
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Stream, Moment and Closet+ increases as illustrated in FigQrevith the given

datasets and parameters.

3.5 -~
3 -
§ 2.5
g 2 m CFI-Stream
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nén 15 4 Moment
£ o Closet+
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T516D10K T5110D10K T5112D10K

Figure 7-9: Running time per transaction under different average mgateatial
frequent itemset size in seconds

T516D10K T5110D10K T5112D10K
CFI-Stream 0.000997 0.0422233 0.023927
Moment 0.09444 0.64178 3.39715
Closet+ 0.0213424 0.1622659 0.0704573

Table 7-9: Running time per transaction under different average maximaliglotent
frequent itemset size in seconds

Figure 7-10 and Table 7-10 show the memory usage in terms of the mumbe
of stored itemsets of Closet+, Moment and CFI-Stream under atiffaaverage
maximal potential frequent itemset sizes. As shown in thisdighe memory usage
for the three algorithms increases when the average mlapiotantial frequent
itemset size increases. This is because the number of iteihdeeeps track of

increases. Also we can see from the figure that the CE&®trand Closet+
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Algorithm consume less memory space than the Moment Algorithmusedhey
only need to keep track of the closed itemsets. While Momenst kesgk of all the
infrequent gateway nodes, unpromising gateway nodes, intermediate, aodes

closed nodes.
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Figure 7-10: Memory usage in terms of number of stored itemsets under different
average maximal potential frequent itemset size

T516D10K T5110D10K T5112D10K
CFI-Stream 18728 138363 58785
Moment 91000 388602 353126
Closet+ 18728 138363 58785

Table 7-10: Memory usage in terms of number of stored itemsets under different
average maximal potential frequent itemset size

7.2.6 Performanceunder Data Variation

Figure and Table 7-11 and 7-12 show the adaptability of the CFIrStrea

method to the change in data streams. In this experiment, thet d&ii&f210K and
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T5.16.D10K-AB is used. The datas€b.16.D10K-AB is composed of two consecutive
subparts. The first part is a set of 5,000 transactions generated by art ikgnwisiée

the second part is a set of 5,000 transactions generated by aeiirithere are no
common items in the item seAsandB. We use the coverage rate GRproposed by
Chang et al in (Chang, 2003) to illustrate the concept drift pypertdataset
T5.6.D10K-AB. CR(X) denotes the ratio of closed frequent itemsets introduced by

an item seX in all closed frequent itemsets as follows:

CR(X) = #of closed frequent itemsetsinduced by anitemset X
|R|

x100(%)

where R| denotes the total number of closed frequent itemsets in a data stream. In the
first 5,000 transactions, which are generated by an item, sat the new coming
closed frequent itemsets are introduced by the iterA dberefore the coverage rate
CR(A) is a hundred percent, while the coverage rateBLR( zero. In the second
5,000 transactions, all closed itemsets are generated by theeitBymot containing

any item from sef, therefore the final coverage rate @R{s 50%, and CHR) is

50%. From Figure 7-11 and 7-12, we can see that the running time emndryn
space consumption of CFI-Stream didn’t fluctuate much while usindataset with
concept drift, which is favorable when processing data streathsdifierent data

distribution.
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Figure 7-11: Running time per transaction under data variation in seconds

T516D10K | T516D10K-AB
CFI-Stream 0.000997 0.0009332
Moment 0.09444 0.08734
Closet+ 0.0213424 0.0224317

Table 7-11: Running time per transaction under data variation in seconds
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Figure 7-12: Memory usage in terms of number of stored itemsets under data
variation
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T516D10K | TS5I6D10K-AB
CFI-Stream 18728 19767
Moment 91000 100038
Closet+ 18728 19767

Table 7-12: Memory usage in terms of number of stored itemasdex different data
variation

7.3 Performance Study for Association Mining

In this section, we describe the experimental study and restilthe
proposed informative association mining framework. We compare our thtgoin
the proposed association mining framework with the fast implet@mtaf the
Apriori Algorithm presented in (Fedor 2003), and the Charm Algoriththich is a
non-redundant association rule mining algorithm for traditional datsh@sg@osed
in (Zaki, 2005) in traditional association mining framework. For thdop@ance
study, synthetic datasetsI5.16.D1K, T516D10K, T516D20K, T5110D10K,
T1016D10K, T5.16.D10K-AB are used to evaluate the performance of the informative
association rule mining algorithm. The dataset is generateéldebgame method as
described in (Agrawal, 1994), where the three numbers of each dd¢éasde the
average transaction siz€){ the average maximal potential frequent itemset $)ze (
and the total number of transactior3),( respectively. In each of the following
studies, we compare the number of rules generated and the computagiamder
different experimental parameters. The figures and tablesisnséction show the
total running time and number of generated rules performance unifiererdi

association frameworks in the above synthetic datasets. In our pilopeseciation
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mining framework as described in Chapter 5, we calculate thage/eunning time
for each transaction to update the DIU, and the total associationgnime for the
above synthetic datasets. In the comparing traditional sequesg@tiation mining
framework, we calculate the total running time to generaguént or closed

itemsets and associations in the above synthetic datasets.

7.3.1 Performanceunder Different Total Number of Transactions

From Figure 7-13 and Table 7-13, we can see that as the total nafmber
transaction size increases, the number of rules generatduk three comparing
algorithms increases. The number of rules generated by CFl&sssthan the
number of rules generated by Charm and is much smaller than thusatgd by
Apriori. This is because CFI-R and Charm derived the non-redundartissm
rules using the closed frequent itemsets according to differentedoimdant rule
definitions, while Apriori uses all the frequent itemsets to gareasissociation rules,

which contain a lot of redundant information (Zaki, 2000).
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Figure 7-13: Number of rules generated under different total numbeneshttzons

T516D1K T516D10K T516D20K
CFI-R 10397 123688 233931
Charm 20986 194798 372276
Apriori 421822 944569 998049

Table 7-13: Number of rules generated under different total number of tiansact

From Figure 7-14 and Table 7-14, we can see that the running time of Apriori
is smaller than Charm and CFI-R. That is because the relesrajed by Apriori
directly come from all frequent itemsets, while both Charm antdRCReed to
generate closed frequent itemsets to produce the non-redundanatassaales.

Therefore the calculation time increases.
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Figure 7-14: Running time under different total number of transactions in seconds

T516D1K T516D10K T516D20K
CFI-R 0.183303 2.812997 5.83540325
Charm 1.11934 13.16552 25.04471
Apriori 0.06 0.14 0.17

Table 7-14: Running time under different total number of transactions in seconds

7.3.2 Performance under Different Minimum Support Threshold

Figure 7-15 and Table 7-15 show that the number of rules generated
decreases as the minimum support threshold increases in Apriann @hd CFI-R,
because when the user-specified support threshold increases, the ouralesr that

satisfy the criteria will decrease as well.
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Figure 7-15: Number of rules generated under different minimum support tlireshol

T516D10K T516D10K T516D10K

(s=1%) (s=3%) (s=5%)
CFI-R 16430 4111 2110
Charm 16430 4110 2110
Apriori 62453 22624 15351

Table 7-15: Number of rules generated under different minimum support threshold

Figure 7-16 and Table 7-16 show that for both Apriori and Charm, the

running time decreases as the user-specified support thresholdsexrdhat is

because when the user-specified support threshold increases, the mimides

generated will be decreased, and therefore the calculationdticreases as well.

The running time for CFI-R didn’t change much because it findsauaplete closed

itemsets independent of support information, and in the rule mining stéitjers

out the rules whose support and confidence is less than the user-specified thresholds
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Figure 7-16: Running time under different minimum support threshold in seconds
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T516D10K T516D10K T516D10K
(s=1%) (s=3%) (s=5%)
CFI-R 0.265997 0.265997 0.281997
Charm 1.537489 0.430442 0.29365
Apriori 0.05 0.03 0.04

Table 7-16: Running time under different minimum support threshold in seconds

7.3.3 Performanceunder Different Minimum Confidence Threshold

From Figure 7-17 and Table 7-17, we can see that the number sf rule
generated decreases under different minimum confidence thredBetidgise when
the user-specified confidence threshold increases, the number othatesatisfies
the query criteria will decrease. The amount of rules geetekay Apriori Algorithm
is largest, because it is generated based on frequent gerbet number of rules
generated by Charm and CFI-R Algorithms are smaller, bedhey are generated

based on closed itemsets.
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Figure 7-17: Number of rules generated under different minimum confidence

threshold
T516D10K T516D10K T516D10K
(c=10%) (c=30%) (c=50%)
CFI-R 117941 109407 106375
Charm 188039 178616 174830
Apriori 324121 275989 257584

Table 7-17: Number of rules generated under different minimum confidence

Figure 7-18 and Table 7-18 illustrate the running time under different
minimum confidence thresholds. We can see that the running tim@himm and
CFI-R Algorithm is greater than the Apriori Algorithm. Thésbecause both Charm

and CFI-R need to generate closed frequent itemsets to produce thednondant

threshold

association rules. Therefore the calculation time increases.
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Figure 7-18: Running time under different minimum confidence threshold in seconds

T516D10K T516D10K T516D10K
(c=10%) (c=30%) (c=50%)
CFI-R 0.265997 0.266997 0.281997
Charm 12.98839 12.68256 12.51883
Apriori 0.04 0.04 0.04

Table 7-18: Running time under different minimum confidence threshold in seconds

7.3.4 Performance under Different Average Transaction Size

Figure 7-19 and Table 7-19 show the number of rules generated under

different average transaction sizes. We can see that fdhrak algorithms the

number of rules generated increases when the average transamtiancseases,

because the number of frequent and closed itemsets increasbegs average

transaction size increases.
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Figure 7-19: Number of rules generated under different average tiansaze in

seconds
T516D10K T1016D10K
CFI-R 123688 4887155
Charm 194798 5112739
Apriori 944569 1981482

Table 7-19: Number of rules generated under different average transaxtiam Si

seconds

Figure 7-20 and Table 7-20 show the running time under different average

transaction sizes for CFI-R, Charm and Apriori Algorithm. We sa@ that as the

average transaction size increases, the running time increases foreadllgfonéthms.

This is because both the number of closed itemsets and frequesgtigemcrease

while the average transaction size increases, and the calouiatie increases with

the increment of the number of frequent and closed itemsets.

121



900 7
800
700

600 1

=
@
2,
a o b
E 500 Z B T5I6010K
£ 400 ¢ T10I6D 10K
= b
g 300 |
m 5
200 ¥ =6
100 D=10K
. A v F ] —-— S=0
b c=0

CFI-R Charm Apriori

Figure 7-20: Running time under different average transaction size in seconds

T516D10K T1016D10K
CFI-R 0.265997 19.040898
Charm 13.16552 868.031
Apriori 0.14 0.24

Table 7-20: Running time under different average transaction size in seconds

7.3.5 Performance under Different Average Maximal Potential Frequent

[temset Size

Figure 7-21 and Table 7-21 show the number of rules generated under
different average maximal potential frequent itemset sise<CFI-R, Charm and
Apriori Algorithm. We can see that as the average maximatnpiat frequent
itemset size increases, the number of rules generated incriasedl three
algorithms. This is because both the number of closed itemsetsegndnt itemsets

increase while the average maximal potential frequent itemset sieasest
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Figure 7-21: Number of rules generated under different average algotential
frequent itemset size

T516D10K T5110D10K
CFI-R 123688 1503616
Charm 194798 1546412
Apriori 944569 5302210

Table 7-21: Number of rules generated under different average maximaiglotent
frequent itemset size
Figure 7-22 and Table 7-22 show the running time under different average

maximal potential frequent itemset sizes for CFI-R, Chamoh Apriori Algorithm.
We can see that as the average maximal potential freqaeerdet size increases, the
running time increases for all three algorithms. This is tmeedoth the number of
closed itemsets and frequent itemsets increase while thagaveraximal potential
frequent itemset size increases, and the calculation timeages with the increment

of the number of frequent and closed itemsets.
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Figure 7-22: Running time under different average maximal potential freque
itemset size in seconds

T516D10K T5110D10K
CFI-R 0.265997 3.3812233
Charm 13.16552 189.1896
Apriori 0.14 1.15

Table 7-22: Running time under different average maximal potential frequent
itemset size in seconds

7.3.6 Performanceunder Data Variation

Figure and Table 7-23 and 7-24 show that number of rules generated and
running time for CFI-R, Charm, and Apriori Algorithm. We can sed thea
performance of CFI-R Algorithm didn’t fluctuate much under théadaariation,

which is a preferable characteristic in data streaming applications.
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Figure 7-23: Number of rules generated under data variation

T516D10K T516D10K-AB
CFI-R 123688 126918
Charm 194798 32454
Apriori 944569 3071352

Table 7-23: Number of rules generated under data variation
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Figure 7-24: Running time under data variation in seconds
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T516D10K T516D10K-AB
CFI-R 0.265997 0.2819332
Charm 13.16552 2.572267
Apriori 0.14 1.17

Table 7-24: Running time under data variation in seconds

7.4 Performance Study for Missing Data Estimation

The performance of our proposed approach, CARM, is studied by means of
simulation. Several different simulation experiments are conductedrder to
evaluate the proposed technique and compare it with the Average Windew S
(AWS) approach, the linear interpolation approach, the linear trenwagbp and
with the WARM approach, the state-of-the-art data estimalgorithm in sensor
databases using 2-frequent itemsets based association miniatcfida) 2005). We
compared the estimation accuracy, running time and memory sggage when

applying different methods to each application dataset.

The first dataset was collected in year 2000 at various locatioogghout
the city of Austin, Texas. The data represents the currentdacdlie time interval,
and the number of vehicles detected during this interval. All sew&t@s report to a
single server. The sensors are deployed on city streets, @il@dtore the number
of the vehicles detected for a given time interval. The vehicle sdakén as sensor
readings that are used as input for our simulation experimentéradfie data

provided by (Austin, 2003).
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A second experiment was performed over sensor data collected in the
Huntington Botanical Garden in Sam Marino, California (Huntington, 2008). The
simulation data of the environmental monitoring application was callentgear
2008 at various locations throughout the sensor network in Huntington Botanical
Garden. The data represents the current location, the time Intanga the air
temperature of detected environment during this interval. All setcstes report to a
single server. The sensors are deployed on different pladbs bbtanical garden,
collect and store the air temperature detected for a givem itmerval. The air
temperatures are taken as sensor readings that are usgditafoi our simulation

experiment.

7.4.1 Performance Study of Estimation Accuracy

The evaluation of the estimation accuracy of the missing vaudsne by

using the average Root Mean Square Error (RMSE):

#estimatiors

1 Z(Xa - Xg)?

numSates #estimatiors

RMSE =

where Xa; and Xe are the actual value and the estimated value, respectively;
#estimations is the number of estimations performed in a simwlatin; and

numStates is the number of subsets, in which the actual readings are distributed.

The expressio:ﬁ 2. -Xe)* rapresents the standard error and is an estimate of the
#estimations

standard deviation under the assumption that the errors in the edtwahies (i.e.
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Xai - Xei) are normally distributed. From the definition, we can see thdesntiae

RMSE, the better the estimation accuracy.

From Figure 7-25 and Table 7-25, we can see that CARM gives #te be
average estimation result of the above approaches regarding tinacgcdollowed
by the WARM approach. The linear interpolation, AWS, and linesdtiapproaches
perform no better than WARM and CARM approaches. From Figure 7-28awe
also see that CARM gives the best estimation result on thxéma estimation
accuracy, which is the root square error for the maximum difter between the

estimated and accurate values.
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Figure 7-25: Performance study of average and maximum estimatioa@ctor
traffic monitoring application
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Average Maximum
WARM 0.1266228 0.6
CARM 0.021517 0.1
AWS 0.144978 0.5
Linear Interpolation| 0.138109 0.6
Linear Trend 0.145933 0.5

Table 7-25: Performance study of average and maximum estimation@cfarra
traffic monitoring application

From Figure 7-26 and Table 7-26, we can see that CARM gives #te be
result of the above approaches regarding the estimation accurheylinear

interpolation, AWS, and linear trend approaches perform no better GA&RM

approach.
—
 ———— —
w —_—
= ———

Linear
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Figure 7-26: Performance study of average estimation accuraaypiooremental
monitoring application
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Table 7-26: Performance study of average estimation accuracy foorenental
monitoring application

CARM 0
AWS 3
Linear Interpolation

Linear Trend 1

7.4.2 Performance Study of Running Time

Figure 7-27 and Table 7-27 illustrate the running time in seconddNs,
linear interpolation, linear trend, WARM and CARM approaches. Tiperaxental
results show that in terms of running time, the WARM and CARM Gaupbres are

outperformed by AWS, linear interpolation and linear trend approathesCARM

approach is faster than the WARM technique.
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Figure 7-27: Performance study of running time for traffic monitoring egipdin in

seconds
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WARM 0.026222222
CARM 0.018046296
AWS 0.001388889
Linear Interpolation 0.002314815
Linear Trend 0.0025

Table 7-27: Performance study of running time in seconds for traffic magtori
application in seconds

Figure 7-28 and Table 7-28 illustrate the running time in secondaNs,
linear interpolation, linear trend, and CARM approaches. The iexpetal results
show that in terms of running time, the CARM approach is outpeeriny AWS,

linear interpolation and linear trend approaches.
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Figure 7-28: Performance study of running time for environmental monitoring
application in seconds
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CARM 0.185
AWS 0.04

Linear Interpolation 0.17
Linear Trend 0.09

Table 7-28: Performance study of running time for environmental monitoring
application in seconds

7.4.3 Performance Study of Memory Usage

Figure 7-29 and Table 7-29 illustrate the memory usage of ANN&ar

interpolation, linear trend, WARM and CARM approaches in MB. The @éxgetal

results show that in terms of memory space, the WARM approamhtperformed

by all the other four approaches. The results of the simulatjperiexents show that

for 108 sensors the needed memory space using WARM is much highgh#ta

using CARM. This is because the DIU data structure usegriessory space than

the cube data structures, and it only stores the condensed closesktste

information.

Memory Usage (MB)
[v5]

Figure 7-29: Performance study of memory usage for traffic monitopiplication

in MB
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WARM 14.463792
CARM 0.153084
AWS 0.080352
Linear Interpolation 0.080352
Linear Trend 0.080352

Table 7-29: Performance study of memory usage for traffic monitoring
application in MB

Figure 7-30 and Table 7-30 illustrate the memory usage of ANN&ar

interpolation, linear trend, and CARM approaches in MB. The expetaheesults

show that in terms of memory space, the CARM approach is outpexdooy all the

other three approaches.
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Figure 7-30: Performance study of memory usage for environmental monitoring
application in MB
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CARM 0.153084
AWS 0.080352
Linear Interpolation 0.080352
Linear Trend 0.080352

Table 7-30: Performance study of memory usage for environmental monitoring
application in MB

7.5 Summary

In this chapter we perform different simulation experiments talysthe
performance of proposed algorithms and comparing them with the otate-
algorithms in the literature.

The CFI-Stream Algorithm is an incremental method to check adtam
closed itemsets online. It mines and maintains a pool of current closegttamthe
DIU. The performance study demonstrates the performance adeanfaghe
proposed technique in terms of both computation time and memory usage to mine
closed itemsets. Its maintained sets remain the same indepesfdthe support
threshold, which could be a disadvantage in application on single usgrrggeest
with high support threshold, since it's designed to mine completanatayn and be
able to fulfill multiple support thresholds at the same time.

The performance study of the association mining framework lmasetbsed
pattern mining shows that our proposed technique can efficiently produce
minimum set of non-redundant association rules in data streams anchdkas it
easier for data analysis. Furthermore, the rules can beagetheon demand, at

different users' request thresholds, and different input and outpernsatiThe
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proposed association mining framework is especially suitabla fiistributed data
stream query environment.

Our performance study shows that the application of closed pétdeed
association mining to estimate missing sensor data online reanvarth to explore.
Our designed algorithm CARM is able to estimate missing sersoe with both

time and space efficiency, and greatly improves the estimation accuracy.
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8 Conclusionsand Future Work

In this dissertation, a novel algorithm, CFI-Stream, is develdpegerform
closure check and discover closed patterns in the current datmssliding
window. The algorithm offers an incremental method to check and amaitibsed
patterns online. All closed frequent itemsets in data stream®eautput in real

time based on different users’ specified thresholds.

The performance studies show that this algorithm is able to mine datastre
online with both time and space efficiency independent of support inflormand
it can adapt to the concept drift in data streams. Experimezstalts show that our
method can achieve better performance than a representatiorhatgiontthe state-
of-the-art approaches in terms of both time and space overhead. fitute we

plan to extend our proposed algorithm to different data streaming applications.

Also, a framework is developed to mine non-redundant and informative
associations based on the derived closed itemsets in data strEaengule
generation is based on the current closed itemsets in datenstielaich are a
condensed representation of the stream data. Theoretical amagsexperimental
results show that our proposed framework can efficiently produce ettumdant
association rules in data streams which provide a minimum sassafciations
among itemsets in data streams and thus make it easiedatar analysis.

Furthermore, the association rules can be generated on demand,rahtdiffers’
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request support and confidence thresholds, and input and output patterns, which is

especially suitable for the distributed data stream query environment.

Finally, a novel algorithm, called CARM, is proposed to performa dat
estimation in sensor network databases based on closed patterati@ssauning
in sensor streams. The algorithm offers an online method to deseeiation rules
based on the discovered closed patterns, and estimates thgmeses based on
derived associations. It can find out the relationships between rautpisors not
only when they report the same sensor readings but also wherepuoey different
sensor readings. Our performance study shows that CARM istabéstimate
missing sensor readings online with both time and space efficiancygreatly

improves the estimation accuracy.

There are more future works can be done in this research aresxdraple,
to develop more data mining techniques for stream data, such deriolys
classification, and finding outliers in data streams. Also tlieseed techniques
can be applied to more data streams applications. Some appkchtive special
processing needs, for example, mining the stream sequence, tie® isedata

streams and so on.
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