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CHAPTER I

INTRODUCTION

1.1 Motivation

With applications ranging from target tracking to biomedical scanners, image

segmentation is an important component of many computer vision systems in use

today. Segmenting an lmage into homogeneous reglOl1s IS the first step in most

intelligent computer vision algorithms. Although the problem of dividing an image into

its constituent regions appears trivial at first glance, ill is one of the more complicated

problems in the field of image processing. The first question that must be addressed is

what constitutes a region? An image can be divided into regions based on a number of

criteria. One segmentation method is to group the regions of the image where the

objects in the scene have a similar texture. Another method is to segment the image

based on the color or hue of different objects in the scene. A third method is to segment

the image by defining regions based on the edges of objects. There are a number of

other methods to segment an image, many of which will be reviewed in Chapter II.

This thesis focuses on a segmentation technique that uses the edges of objects in

an image to divide the scene logically into regions. The key element of any edge based



segmentation algorithm is the technique used to locate the edges, and there are a variety

of techniques targeted toward finding the edges in an image. Interestingly, even though

edge detection has been a major area of research for decades, there is not an accepted

method that works well for every situation. The technique is almost always chosen

based on compromises, and custom tailored to fit the application. Some of the typical

properties of an edge detector include edge localization, sensitivity, and computational

complexity. The goal of most edge detection algorithms is to find the important edges

of an image quickly and accurately. The ambiguous nature of these criteria makes for

some interesting questions such all: What constitutes an edge? How do you classify an

algorithm as "high speed"? Exactly where is the edge of an object located? Further

discussion of edge detection is found in Chapter n.

The edge detection algorithm described in this paper is based on watershed

Image segmentation. The watershed transfonn segments an image by modeling the

different intensity regions of the image as topographical peaks and valleys. Watershed

segmentation is a powerful tool, with many advantages over other tradilional edge

based segmentation algorithms. One key advantage is that the watershed guarantees

thin connected edges. Another advantage is that the watershed offers good edge

localization. Unfortunately clue to some shortcomings of watershed image

segmentation. the technique has failed to gain widespread application in the image

processing community. The major downfalls of traditional watershed image analysis

are that it typically results in over segmented images, and traditional techniques for

determining the watershed regions are computationally intensive. Some of the
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traditional techniques for performing watershed image segmentation are discussed in

more detail in Chapter II.

This paper introduces a method to calculate a multiresolution watershed.

Multiresolution image processing algorithms introduce a sense of scale to the objects in

the scene. The logic behind multiresolution processing is that not all of the information

in the image is important for segmentation. The morphological pyramid technique

described in this paper eliminates the smaller objects in the scene by alternately

filtering and sub-sampling the image. The image pyramid works under the assumption

that the smaller objects in the image are details, and that these details are not essential

to segmenting the image into logical regions. The image pyramid and other

multiresolution image processing methods are discussed in Chapter n.

By combining the watershed transform with the morphological pyramid, this

paper addresses the two key shortcomings of the traditional watershed segmentation

algorithm: over-segmentation and computational expense. The over segmentation issue

is addressed by incorporating the notion of scale through the use of a pyramid. Smaller

objects are eliminated when the pyramid is formed, and consequently do not appear in

the resulting watershed transform of the image. The issue of computational expense is

addressed since the watershed is only applied once at a coarse scale. The linking

algorithm introduced in Chapter In allows the watershed La be performed once at a

coarse level of the image pyramid, then the boundary information is propagated through

the finer levels of the image pyramid until it reaches the original scale. Since the coarse

scale representation of the image has much fewer elements than the original image, the

watershed transform is not computationally prohibitive at the coarse level. Further, the

3



linking algorithm IS very simple and does not introduce a Jarge number of

computations.

In Chapter II of this paper, image segmentation and edge detection are described

in detail. Chapter II also introduces multiresolutioll image segmentation and the image

pyramid. Finally, Chapter II includes some discussion of traditional watershed

segmentation algorithms, and the work done to date in the area of multiresolution

watershed image analysis. Chapter III introduces the watershed pyramid and the linking

algorithm used to propagate the watershed between different levels of the watershed

pyramid. Chapter IV shows some visual results of appJying the watershed pyramid to

different images, and includes an analysis of the computational savings that comes froIll

using the watershed pyramid instead of traditional watershed image segmentation

techniques. Chapter V concludes the thesis with a summary of the watershed pyramid

and some ideas for future research.
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CHAPTER II

LITERATURE REVIEW OF IMAGE SEGMENTATION

2.1 Chapter Overview

This chapter offers a brief introduction to prevIous techniques of image

segmentation, and outlines the motivation for image segmentation. The basic

principles of image segmentation are discussed, and four different methods for image

segmentation are presented. These four methods are edge hased image segmentation,

region based image segmentatioll, watershed image segmentation, and multi resolution

image segmentation.

Section 2.2 contains a discussion of the need for image segmentation, and

establishes some of the propertjes L1sed to quantify an edge segmentation algorithm's

performance. Section 2.3 describes some of the widely recognized edge based image

segmentation techniques. The cdge based segmcntation techniques described include

the Sobel edge detector, the Prewitt edge detector, and Laplacian based detectors. This

is followed by a brief discussion of edge linking algorithms. Next, Section 2.4

overviews region based segmentation techniques, including spalial clustering, region

growing, and split and merge. A brief summary of watershed image segmentation is
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presented in Section 2.5. The principle behind watershed image segmentation is given

as well as a description of a few of the algorithms that exist to determine the watershed

of a digital image, including the flooding technique, Vincent's queuing algorithm, and

Meyer's queuing algorithm. Next, Section 2.5 describes multiresolution image

segmentation. The image pyramid is introduced with a discussion of Burt's

multiresolution segmentation algorithm using the Gaussian pyramid. Finally, Section

2.6 chapter gives a brief summary of image segmentation techniques discussed in

Chapter 2 and their properties.

2.2 Principles of Image Segmentation

Segmentation plays an important role in most image processing and computer

vision systems. Dividing an image into sensible regions is a logical first step in many

tasks ranging from tracking to object recognition. It is segmentation that enables an

image processing system (0 organize raw data in a manner such that processing can

focus on specific regions and objects in the scene rather than the entire collection of

raw data. Due to the importance of image segmentation, extensive research has been

performed to develop robust segmentation algorithms. Interestingly, although image

segmentation is one of the oldest areas of research in image processing, there is no one

algorithm in existence that performs well in every situation. In this section, a general

background of various segmentation techniques is given following a discussion of

some of the properties of a well-segmented image.

6



One key question must be asked when designing a system to segment images.

What constitutes a well-segmented image? In general, HaraJick and Shapiro suggest

that a well-segmented image will have the foHowing properties (Haralick, 1992):

J. Regions of an image segmentation should be uniform and homogeneous with

respect to some characteristic, such as gray level or texture.

2. Region interiors should be simple and without l11.any small holes.

3. Adjacent regions of a segmentation should have significantly different values

with respect to the characteristic on which they are uniform..

4. Boundan:es of each segment should be simple, not ragged, and must be spatially

accurate.

In practice, it is very difficult to satisfy these four properties simultaneously.

Typically, regions of a segmented image are plagued with the problem of having small

holes and ragged edges. Developing an algorithm to pelform an accurate segmentation

on real images is a problem that usually requires a somewhat ad hoc solution.

A dual of the problem of image segmentation is edge detect.ion. At first glance

it may appear that there is no difference between edge detection anti image

segmentation, but in practice there is a significant difference in implementation. The

main distinction between edge detection and image segmentation is that most edge

detection techniques do not guarantee a closed outline of the objects in the scene.

Figure 2.1 shows an image segmentation that does not correspond to the edge map of

the image. The human visual system can easily distinguish between the three regions

of the image, but the segmentation is not based on the edges of objects in the scene.

7
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ORIGINAL IMAGE A POSSIBLE SEGMENTATION

Figure 2.1 Example of image segmentation. Note that the boundaries of the

segmentation do not correspond the edges of objects in the original image.

In many applications, it is desirable for the boundaries of the regIons in a

segmented image to correspond to edges in the original image. In such cases Lhe

segmentation forms an outline of the objects in the scene, commonly referred Lo as an

edge map. Most edge detection algorithms do not guarantee a connected edge map,

meaning that although the edge map does somewhat form an outline of the scene in the

image, the scene is not divided into coherent regions. For the purposes of most

computer vision and image processing systems, an edge map that does nOL form a

meaningful segmentation has little value. An example of an edge map LhaL does not

segment the scene into coherent regions is shown in Figure 2.2.



Figure 2.2 Example of an edge map. The Original image is shown on the left. The

corresponding edge map is shown on the right. Note that although the edge map

does form a representative "outline" of the image, it does not divide the image into

distinct regions. The human visual system can identify the picture on the right. but

the edge map would be of little use to most computer vision systems.

Although edge detection and segmentation are different problems, many

segmentation algorithms are based on some fonn of edge detection. Most classic

methods of segmentation fall into one of two categories: edge based segmentation and

region based segmentation. The following section discusses some of the more common

edge detection algorithms, and concludes with a discussion of edge linking techniques

that produce image segmentation from a discontinuous edge map.
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2.3 Edge Based Image Segmentation

2.3.1 Image gradient operators

The basis of every algorithm that performs edge based image segmentation is

some form of edge detection. Before eJltering a discussion on edge detection it is

important that we understand what constitutes an edge in a digital image. Gonzalez

and Woods state that "an edge is the boundary between two regions with relatively

distinct gray-level properties" (Gonzalez, 1993). If we assume that the gray-level

intensity of each object in an image is homogeneous then an edge is any sharp

discontinuity of intensity between adjacent regions.

The basis of the edge detection techniques described in this section is a local

derivative operator. Figure 2.3 shows an edge and its relative deri vatives. There are

two basic methods used for finding the edges in an image lIsing derivatives. One

method is to calculate the first deri vative of the image and then threshold the

magnitude of the first derivative of each element in the image. If the magnitude of the

first derivative of an element exceeds the predletermined threshold then that element is

labeled as an edge. Another method relies on the second deri vati ve of the image.

Notice that in Figure 2.3 the point where the curve crosses the X-ax is in the second

derivative of the edge corresponds to the location of the edge in the original image. By

calculating the second derivative of an image and then searching for zero-crossing~

within the result, it is possible to identify the edges within the original image.

10



In order to calculate differentials in a digital image

space, we must first understand the defini tion of a gradient

operator. The gradient of an image f(x,y) at the location

(X,y) is the vector

I,m..,

Edge

For the application of edge detection, it is more

useful to represent Equation 2.1 in terms of the vector

magnitude. From this point forward, the gradient will be

Vf=[G']=[~] .G\, -'£
. d)l

denoted Vf where

IVfl= mag(Vf) =)e.: +G.~

An approximation of the gradient can be given as

(2. t)

(2.2)

(2.3)

151
Derivative

2nd
Derivative

Since the partial derivatives given in Equation 2.1

can be approximated as sums and di ffcrcnces ill a two

Figure 2.3 Differentiation

at an edge.

dimensional digital signal, we can calculate the derivative In Image space by

convolving the original image with the appropriate kernel.

11



2.3.2 Sobel and Prewitt edge detectors

One example of a gradient based edge detector is the Sobel operator (Sobel,

1970). The Sobel operator works by averaging the gradient of each element over three

rows and three columns. The derivatives Gx and Gy are given as

Gr =(Z7 + 2z8 + Z9) - (ZI + 2z2 + z~)

Gr =(z~ + 2z6 + Z9) - (ZI + 2z4 + Z7)
(2.4)

where the variables ZI ... Z9 are defined as the elements of a 3x3 kernel in eight

connectivity space. Figure 2.4 defines the position of each element within the kernel.

and shows the coefficients of the kernels used to calculate the Sobel differentiation of

a digital image based on Equation 2.4.

Sobel kernel to calculate
Gy for the element Z!;j

-1 0

ZI Z2 Z3

Z4 Zs Z6

Z7 Za Zg

Region of Interest

-1 -2 -1
_.~ ..----

0 0 0

1 2 1

Sobel kernel to calculate
Gx for the element Zs

-2

-1

o

o

2

Figure 2.4 Kernels for Sobel edge detection.

To find an edge map using a Sobel edge detector, the first step is to determine

Gr and Gv for each element in the original image by convolving the original image

with the 3x3 kernels shown in Figure 2.4. The next step is to find the gradient

12



magnitude using the approximation given in Equation 2.3.

The final step is to perform a thresholding operation and

label every element whose gradient magnitude is greater

than a predetermined threshold as an edge.

Another commonly used gradient based edge

detector is the Prewitt edge detector. The Prewitt edge

detector is similar to the Sobel edge detector in function, but

uses a slightly different set of kernels to calculate the partial

derivatives (Prewitt, 1970). The kernels used in the Prewitt

edge detector are shown in Figure 2.5. The method for

calculating an edge map using the Prewitt edge detector is

identical to the method described for the Sobel edge detector

with the exception of the kernels used to calculate dfldx and

dfldy.

Prewitt kernel to
calculate Gy

-1 0 1

-1 0 1

-1 0 1

Prewitt kernel to
calculate Gx

-1 -1 -1

a a 0
----

1 1 1

Figure 2.5 Kernels
used in the Prewitt
edge detector.

An example of the Sobel edge detection algorithm is shown in Figure 2.6. Notc

that the result does not have connected contours, and that although reducing the

threshold does result in fewer discontinuities in the edge map it also has the effect of

introducing edges associated with small features such as noise.
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Figure 2.6 Edge detection using the Sobel edge detector. Note that as the threshold

is decreased, the contours begin to close, but unwanted edges also begin to appear.

Sobel edge map using
a threshold T=12

Sobel edge map using
a threshold T=25

Original image

2.3.3 Laplacian based edRt! detectors

Another type of gradient based image segmentation

relies on the Laplacian function to calculate the derivatives

of the image (Gonzalez, 1993). The Laplacian of a two-

dimensional function is defined as

-r---- -

0 -1 0

--

-1 4 -1

0 -1 0
--

(2.5) Figure 2.7 3x3
Laplacian kernel.

When Equation 2.5 is applied to a two-dimensional digital

image, it assumes the form

(2.6)
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The kernel used to calculate the Laplacian is shown in Figure 2.7. Since the Laplacian

is based 011 the second derivative of the image, the result of equation 2.5 is a scalar

instead of a vector, eliminating the need to find the gradient magnitude of the

derivative. The edge map is found by locating the zero-crossings in the matrix that

results from convolving the kernel shown in Figure 2.7 with a digital image.

A major shortcoming of using the Laplacian for edge detection is its sensitivity

to noise. Marr and Hildreth propose that the image should be smoothed with a low-pass

filter prior to convolving with the Laplacian (MalT, 1980). The two-dimensional

Gaussian is a common choice for the pre-filter, and since convolution is associative we

can combine the Laplacian and the Gaussian into a single kernel called the Laplacian of

Gaussian (LoG) kernel:

[

2 'J ] [ 2 ? ]2 1 x + y- x + y-
V G(x, y) =--4 1- 2 . exp - 2 .

1tcr 2cr 2a
(2.7)

An example llsing the Laplacian of Gaussian function is shown in Figure 2.8.

The resulting edge map is very similar to the edge map from the Sobel edge detector

shown in Figure 26. The Laplacian of Gaussian edge detector exhibits the samc

problem areas as other gradient based edge detectors. A high threshold results in few

edges. The initial edge map in Figure 2.~ (a=2, T=1.5) shows a low sensitivity to

noise, but does not have closed contours. The threshold is decreased in the second

edge map (a=2, T=O.75) and the contours begin to close, but edges that correspond to

small features and noise in the image also begin to appear.

15



Original image

LoG edge map with (J=2
and a threshold T=1.5

LoG edge map with 0=2
and a threshold T=O.75

Figure 2.8 Edge detection using the laplacian of Gaussian edge detector. The

LoG edge detector produces a result similar to that of the Sobel edge detector. As the

threshold is decreased the contours begin to close, but unwanted edges also begin to

appear.

2.3.4 Edge linking algorithms

Some work has been done to close the contours that are found in discontinuous

edge maps through edge linking algorithms. Most of these algorithms analyze the

characteristics of elements in a small neighborhood surrounding each edge

discontinuity. if similar elements are found in the local neighborhood then the

elements are linked to form a region boundary. More complicated edge linking

algorithms use nonlinear functions such as the Hough transform (Hough, 1962) to

approximate the boundary between discontinuous edge points. Generally. edge linking

algorithms only work jf the contours in edge map are almost continuous, and have a

tendency to create false edges.

16



2.4 Region Based Image Segmentation

2.4.1 Clustering algorithms

One classic method for image segmentation is the use of a clustering algmithrn.

In a clustering algorithm, elements which share similar features are grouped together

to from regions .. The similarity between regions is usually based on quantifiable image

properties such as intensity, gradient, texture, and distance from other elements with

similar properties. Further, the similarity measure may be based on a single image

property or a weighted combination of several image properties. The variety of image

properties which are available to the designer typically makes clustering algorithms a

very heuristic approach to image segmentation. Typically a clustering algorithm is

developed to segment a certa;n type of image, and performs poorly when applied to an

image which differs from the type of image the algorithm was original designed to

segment.An example of an application of a clustering algorithm is to segment the

image using histogram mode seeking. Histogram mode seeking works under the

assumption that homogeneous objects in the image appear as clusters in measurement

space (Haralick, 1985). An example of spatial clustering using histogram mode

seeking is shown in Figure 2.9. Although the original image appears to meet

Haralick's criteria and the histogram of the image contains three distinct modes, these

clusters in the measurement space do not correspond to unique objects in the image

space.

17



Figure 2.'9 Image segmentation using histogram mode seeking. The original

image is shown on the left, and the histogram of the original image is shown in the

center. The image on the right is segmented into three regions based on the three

major modes of the histogram.

2.4.2 Region growing algorithms

A second region based image segmentation technique is region growlIlg.

Castleman describes region growing algorithms as giving the impression that regions

in the interior of objects grow until the boundaries of the regions correspond to [he

edges of the objects being segmented (Castleman, 1996). The first step in a region

growing algorithm is to divide an image into tiny regions that may be as small as a

single pixel. Each of these regions is evaluated based on properties that identify them

as being part of an object in the scene. Measurement techniques vary from one

implementation to the next, but properties considered might include texture or gray

level intensity (Brice, 1970; Nagy, 1972: Levine, 1981). The next step is to assess all

J8



of the boundaries between adjacent reglOns. When designing a regIon growing

algorithm, a measure of boundary "strength" must be assigned based on which

properties are the most important. If a boundary between adjacent regions is found to

be below a predetermined threshold then that boundary is dissolved and the regions are

combined. The process is iterated until no adjacent regions have a "weak" boundary.

Region growing algorithms are often applied when segmenting natural scenes

where little is known about the properties the objects in the image. The key weakness

to region merging techniques is that they are computationally expensive and heuristic

by nature.

2.4.3 Split and m.erge algorithms

A third popular type of reglOll based segmentation IS the split and merge

method. The split and merge method is similar in function to the region growing

algorithm previously discussed, but adds a splitting operation to shrink regions. The

idea of using splitting algorithms was first introduced by Robertson and Klinger

(Robertson, 1973; Klinger, 1973). The first step in performing image segmentation

based on the split and merge algorithm is to arbitrarily segment the image. The

techniques used to perform this initial segmentation vary from labeling the entire

image as a single "segment", to dividing the image into N equal sections. After an

inilial segmentation has been determined, the spl it and merge algorithm docs two

operations. These two operations are referred to as splitting and merging.

The first operation we will discuss is the split operation, but there IS no set

order for the two operations. The first step IS to inspect the homogeneity of each

19
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segment in the image. As with the region growing algorithm, features such as gray

level intensity and texture can be evaluated to determine if the elements within a

region are homogeneolls (Robertson, 1973; Klinger, 1973; Horowitz, 1974). If it is

determined that the members of a region are not homogeneous then the region is split

into two or more regions. Like the initial segmentation, the method llsed for splitting

regions varies from one implementation to the next. The second operation is the merge

operation. This operation is identical to the region growing described previously. The

boundaries between adjacent regions are inspected, and if a boundary is found to be

"weak" then the two regions are merged.

The split and merge segmentation technique is very similar to the region

growmg technique, and suffers from the same shortcomings. The algorithms

developed to implement split and merge segmentations are complicated and heuristic

by nature. Typically split and merge processmg must be fine-tuned to fit each

application and comes with a heavy computational penalty.

2.4.4 Other region based segmentation techn.iques

There are a number of other region based segmentation algorithms in addition

to the ones described in this section, but many of these region based segmentation

schemes fall under the general classifications of either clustering, region growing, or

split and merge. An example is the use of marker functions described by Vincent and

Dougherty (Vincent, 1994). Marker function segmentation can be classified as a form

of region growing. With this approach, human intervention is used to identify the

objects to be segmented. After each object in the scene has been "marked", the area
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immediately adjacent to each marker is inspected for potential boundaries. Much like

the region growing method and the split and merge method, a measurement condition

for boundaries is established based on the properties of the objects in the image.

Segmentation using marker functions can be simply described as a region growing

technique where a human being performs the initial segmentation. Most region based

segmentation methods share the same deficiencies. Region based segmentation is

heuristic by nature, and typically requires costly computational time.

2.5 Watershed Image Segmentation

2.5. J Overview o.f watersheds

The theory behind watershed image analysis is actually borrowed from

topography. In topography, any surface can be divided into watersheds and catchment

basins. Given a three dimensional topographic surface, if a drop of water were placed

anywhere on the surface the water would stream down toward lower ground until it

finally reached a local minimum. The set of all the points in which water drains to the

same local minimum is referred to as a catchment basin. The boundaries between

catchment basins are referred to as watershed boundaries. Figure 2. IO illustrates these

basic concepts.The idea of using watersheds for image analysis was first introduced by

Beucher and Lantuejoul in 1979 (Beucher, 1979; 1982). They introduced the notion

that the watershed can be extended to digital image analysis by considering a digital

image as a three-dimensional surface. In this three-dimensional representation,
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catchment basins

watershed
boundary

local minimum

Figure 2.10 Topographical watershed. This illustrates a topographic

example of local minima, catchment basins, and watershed boundaries.

elements with a high value are assigned a higher altitude than elements with a low.

After this three-dimensional mapping of the image has been established, segmentation

is achieved by first labeling each local minimum in the image. These local minima

represent the catchment basins of the image. Next, each element is assigned to its

corresponding catchment basin, resulting in a segmentation of the image. Traditional

watershed segmentation algorithms are plagued with a number of shortcomings

including high computational expense, and the tendency to over segment the image.

Techniques to lower the computational intensity of the watershed followed quickly,

the most popular of which use an immersion simulation which is described in Section

2.5.3. The immersion simulation approach simulates flooding of the image with water

starting at the intensity minima, and when implemented using all ordered queue proves

to be very efficient (Vincent, 1991; Meyer 1991).
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One interesting feature of watershed image segmentation IS that the same

algorithm can act as either a region based segmentation technique or an edge based

segmentation technique. If the watershed transform is applied to the original image

then the resulting region based image segmentation is based on the pixel intensity.

This region based image segmentation has limited use in machine vision systems since

the boundaries of the segmentation do not usualJy correspond to the edges of objects in

the image. A second form of watershed image segmentation is based on gradient edge

detection. If the watershed transform is applied to the gradient magnitude of an image,

the resulting image segmentation will have region boundaries corresponding to the

edges of objects in the original image.

2.5.2 Steepest descent method

Following the introduction of the watershed segmentation to image processing,

work began on the development of algorithms to calculate the watershed of a two

dimensional digital image. Using the definition given in topography, the most intuitive

way to determine the watershed of a digital image is to use the steepest descent

method.

The basis of the steepest descent method is to start at each pixel in the image

and trace the path a drop of water would take if the image were a three dimensional

surface. This method is very effective for a continuous three-dimensional surface, but

when extended to a digital surface representation with integer element values, the

steepest descent algorithm is faced with two deficiencies. The first problem is the lack

of an efficient way to calculate the watershed transformation. The use of a steepest
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descent algorithm typically requires multiple processing sweeps of the image, making

the algorithms inherently computationally intensive. The second and more serious

problem is how to deal with indefinite decision pixels. Since a digital image consists of

discrete valued pixels, it is possible for there to be more than one path leading away

from a pixel with the same "steepness", causing multiple choices for the direction of

steepest descent. Steepest descent algorithms typically deal with this problem in a

heuristic manner such as randomly picking one of the available paths.

2.5.3 Immersion simulations

After introducing the idea of using watersheds in digital Image processing,

Beucher and Lantuejoul proposed a watershed algorithm based on an immersion

analogy (Beucher, 1982). Using this immersion algorithm, watersheds are computed

by first assigning a distinct label to each of the local minima in the image. Since each

local minima represents a catchment basin in the watershed transform of the image,

each label will correspond to a distinct region in the final image segmentation. The

next step is to "flood" the catchment basins of the image by performing a series of

binary threshold operations on the image, starting at threshold T=O, and ending at

threshold T=N, where N represents the maximum pixel value found in the image.

Following each successive threshold, the regions surrounding the local minima of the

image expand. When two adjacent regions merge, the pixels where the regions first

made contact are defined as watershed boundaries.
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~-- Watershed
~ Boundaries

Figure 2.11 Exampie of a false watershed

boundary using an immersion algorithm.

The dashed line represents a false

watershed boundary.

Although this algorithm

avoids the problem of indefinite

decision pixels, it offers little

improvement over the steepest

descent method in the way of

computational efficiency, since it

reqUIres a large number of

sequential scans of the image. Due

to the nature of the algorithm,

immersion simulations also have a

tendency to produce thick

watershed boundaries, which is undesirable for many applications. Another problem

with Beucher and Lantuejoul's original immersion algorithm is the tendency to detect

false watershed boundaries as illustrated in Figure 2.11. In Ihis example, the dashed

line is labeled as a watershed boundary, even though it does not represent a boundary

between adjacent catchment basins.

2.5.4 Vincent and Meyer algorithms

Work to develop an efficient algorithm to compute the watershed transform

continued, and more efficient variations of the original immersion algorithm followed.

Many of these improved algorithms use an ordered queue to sort the pixels of the

image, then the watershed transform is found based on these sorted pixels. The two
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most popular queue based watershed algorithms are the Vincent and Soille watershed

algorithm and the Meyer watershed algorithm (Vincent, 1991; Meyer, 1992).

The Vincent and Soille watershed algorithm is an example of an ordered queue

implementation of the watershed transform (Vincent, 1991; 1994). The first step in the

Vincent and SoiHe algorithm is to arrange the pixels of the image in increasing order

based on their gray level values. This enables direct access to the pixels at any given

gray level or "elevation". The second step is to evaluate each gray level of the image

from the lowest gray-level in the image to the highest gray level in the image. At each

new gray level, the image is analyzed for new regional minima, and for watershed

boundaries. The criteria for labeling a watershed boundary is similar to the immersion

algorithm discussed in Section 2.5.3, but not every boundary between adjacent

catchment basins is labeled as a watershed boundary. Instead only those pixels are

equidistant from two adjacent regions are labeled as watershed boundaries. Pixels that

are not equidistant from two adjacent regions, but meet the criteria for a watershed

boundary given in the previous section, are given an "undefined" label. An example of

an image segmentation using the Vincent and Soille watershed is shown in Figure

2.12. This image segmentation is computed by performing the watershed scgmentalion

on the gradient magnitude of an image that had been filtered with a Gaussian kernel of

variance cr=3. Due to the definition watershed boundaries used by the algorithm, the

segmented image contains a number of "undefined" pixels which are shown in while.
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Watershed Segmentation

Original Image

Watershed Edgemap

Figure 2.12 Vincent and SoUle watershed

atgorithm. Notice that with the Vincent and

Soille algorithm, the watershed transform

contains "undefined" pixels which are shown

as white areas in the segmentation.

The Vincent and Soille watershed algorithm offers a more efficient means of

calculating the watershed transform than previous techniques. The use of an ordered

queue makes the algorithm very efficient, and also avoids the problem of false

watershed boundaries described in the previous section. For some applications, the

presence of "undefined" elements in the image is problematic, but for such a heuristic

method to assign these pixels to one of the adjacent watershed regions must be added

as the final step in the watershed image segmentation. Another problem with the

algorithm is its tendency to over segment the scene. This problem is shared by most

implementations of the watershed, and can be overcome using region merging

techniques as discussed ill Section 2.4.

27



The Meyer watershed algorithm operates in a fashion similar to that of the

Vincent and Soille algorithm (Meyer, ]990; ]992). Like Vincent and Soille, Meyer

uses an ordered queue to sort the pixels of the image based on the gray level intensity

of each pixel. The next step is to evaluate each gray level of the image. Unlike the

Vincent and Soille algorithm, the Meyer algorithm assigns every pixel in the image to

a watershed region. However, the algorithm uses a left-to-right raster scan of the image

resulting in a bias towards placing pixels which would be "undefined" in the Vincent

and SoiJle algorithm into either the region above or the region to the left of the pixel in

question (Dobrin, 1994).

The algorithms described in this chapter represent some of the more common

implementations of the watershed transform, but other methods include the use of

grayscale skeletonizatjon and arrowing algorithms to calculate the watershed

(Beucher, 1982). One common problem of watershed algorithms proposed to dale is

that they are highly sensitive to variations in the gradient of an image. When the

watershed transform is applied to the gradient magnitude of the Image it has a

tendency to over segment the original image, making it necessary to use a region

merging algorithm to achieve a well segmented result. Although a number of methods

have been proposed to avoid the problem of over segmentation, no one technique has

been shown to be effective in every situation.
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2.6 Multiresolution Image Segmentation

2.6. J Scale space

To counteract the over segmentation problem of traditional watershed

transformation algorithms, it is desirable to separate edges corresponding to important

objects in the scene from those edges that correspond to noise and insignificant

features. One way to categorize the edges in an image segmentation is to incorporate a

sense of scale with each object in the scene. Objects that are large in relative size are

said to be of a large scale while smaHer features are said to be of a smaller scale. A

collection of images from fine to coarse is commonly referred to as a scale space.

Witkin describes Gaussian convolution as a primitive scale space

representation (Witkin, 1983). The Gaussian scale space described by Witkin is a

sequence of images, where each successive image is calculated by convolving the

original image with a Gaussian filter of increasing variance (Witkin, 1983). As the

variance of the Gaussian filter increases, the insignificant features and noise begin to

disappear in the original image. Figure 2. J3 depicts a Gaussian scale space,

represented as a three-dimensional cube where the original image is at the top or the

cube and each successive image be]ow the original has been filtered with a Gaussian

filter of increasing variance. The images at the top of the cube depict fine scale

representations, while the images at the bottom of the cube depict coarse scale

representations.
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Figure 2.13 Gaussian scale space of an image. This image

was obtained by successive convolutions of the original image

with a Gaussian filter. The images toward the top of the cube

represent a fine scale, while the images toward the bottom of

the cube represent a coarse scale.

Based on this scale space representation of the image it is possible to associate

a sense of scale with the edges found in the edge map of lo he original image. Edges that

occur in a fine representation, but not in coarser representations are associated with

smal.ler features in the scene. Figure 2.14 shows the edge map of a Gaussian scale

space. This edge map was calculated by using the Laplacian of Gaussian edge detector

described in section 2.3.3.

30



Figure 2.14 Edges corresponding to a Gaussian scale space. The

edges in this figure correspond to the edges of objects in the Gaussian

scale space shown in Figure 2.13. In coarser representations of the

image, there are fewer edges, meaning there are fewer objects present

in the scene. Also of interest is the spatial causality of the Gaussian

scale space. Spatial causality states that no edge can exist at a coarse

scale that did not exist at each of the finer scales.

An important property of the scale space edge map is spatial causality. The

spatial causality property of the Gaussian scale space states that an edge that exists in a

coarse representation of the image must also exist in each of the finer representations

of the image (Witkin, 1983). Spatial causality implies that no edge can be created by

the scale space representation, and forms the basis of a coarse-to-fine search. In a

coarse-to-fine search, edge detection is performed at a coarse level, then the edges are

"traced" through the finer levels back to the original. unfiltered image.
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Although the scale space representation of an image offers a robust way to

produce a hierarchy of objects based on scale, it has seen little practical application in

the image processing community. This is because scale space image representations

require a great deal of processing to calculate the individual levels of the scale space.

In addition to computer processing time, scale spaces also require a large amount of

memory to store each of the levels.

2.6.2 Image Pyramids

Image pyramids are a practical extension of the scale space representation of an

image. Image pyramids provide a sense of scale to the objects in the scene, while

reducing the total amount of infomlation necessary to represent the image. This is

accomplished by constructing a scale space as described in Section 2.6. I, and

decimating the coarser representations of the image after each successive filtering

operation.

Construction of an image pyramid begins by filtering the original signal. The

filter is chosen to satisfy some sampling criterion, enabling the coarser representations

of the image to be subsampled. Subsampling is traditionally accomplished by

discarding every other row and every other column of the filtered image. This process

continues iteratively until all of the objects in the subsampled image representation are

at or above the desired scale. With each iteration, a new level of the pyramid is formed

which is one fourth the size of the previous pyramid level. If these images are stacked

with the original image at the bollom, and the coarsest representation at the top, the
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The Gaussian Image

"stack" of images produces a

lmage representation.

pyramid.

pyramid shown at the left was

Figure 2.15 shows a pyramid

three-dimensional

each filtered result to form a

Gaussian filter and decimating

filtering the image with a

Figure 2.15 Gaussian image pyramid. This

image pyramid was formed by successively

filtering the original image with a Gaussian filter

and subsampling by a factor of two along each

row and column.

constructed by iterati vely

more concise representation of

the original image. The image at any given pyramid level L is defined as

(2.8)

where Go is a Gaussian filter of standard deviation 0 (0=2 for the image pyramid in

Figure 2.15,) 12 denotes a subsampling of a factor of two along each row and each

column, and 10 is the original image (Burt, 1988).

The basis of the image pyramid is that feature extraction is performed at :;ome

level L>O which is denoted as the roof level of the pyramid. Since the image

representation at the root level has fewer pixels than the original image, feature

extraction can be done very quickly. After feature extraction is performed at this root

level, the information is propagated through the finer levels of the image pyramid until

it reaches the original image resolution. Although traditional image pyramids use

either a Gaussian fllter or a Laplacian filter, work has been done to introduce new

33



methods of forming image pyramids. Some of these new techniques for image

pyramids include the morphological image pyramid and the anisotropic diffusion

pyramid (Eichmann, 1988; Acton, 1994).

2.6.3 Edge Detection Using the Gaussian Pyramid

An application of the Gaussian pyramid is to perform a hierarchical edge

detection using a coarse-to-fine edge search. An is shown in Figure 2.16.

The first step of the pyramid edge detection is to construct the Gaussian

pyramjd as described in Equation 2.8. The next step is to perform edge detection at the

root level of the image pyramid. For the example in Figure 2.16, a gradient based edge

detector was used, and the root level is defined as pyramid level 3. The final step is to

link the edge information from the rool level to the original image. To accomplish this

edge linking, a simple algorithm was llsed that performs edge detection at every level

of the image pyramid. After this initial edge detection, a coarse to fine search is done

to determine which edges in the original image correspond to edges in the root level of

the pyramid. All edges in the original image which do not directly correspond to edges

in the root level edge detection are discarded, leaving only the edges that correspond to

large scale objects in the original scene.Pyramid based feature extraction does present

some problems in a practical application. The edge detection shown in Figure 2.16

exhibits some undesirable features such as discontinuous contours and edges thaI

correspond to noise and unwanted features. One remedy for the problem of

discontinuous region boundaries is to use a more complex edge linking algorithm to

trace edges through the coarse-to-fine hierarchy. Another solution is to use an edge
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linking operation as described in Section

2.3.4 to close the contours in the

resulting edge detection. The problem of

Level 3 - 32x32

insignificant features can be handled by

performing additional processing on the

unwanted edges resulting from Level 2 - 64x64

root level edge detection before linking
Level 1 - 128x128

it to the original image. Despite these

processmg architectures such as the

processing techniques. The pyramid

lmagemultiresolution

advantages over single resolution image

image pyramid offer some attractive

drawbacks,

incorporates a sense of scale with the

objects in the scene while reducing the

processing time required to perform the

initial feature extraction.

Figure 2.16 Edge detection using a

Gaussian pyramid. In this example,

the Gaussian pyramid was formed

using a Gaussian filter with G=2. A

gradient based edge detector was used

to perform edge detection at level 3,

and the information was linked back to

levelO.

2.7 Chapter Summary

Within the image processing community, there has long been a demand for a

robust algorithm to segment digital images Although there is a wide variety or
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techniques to segment images into logical regions, there is no olle algorithm that is

robust for every application. Each image segmentation method described in this

chapter has application in segmenting celtain images, but each method also has some

shortcomings. Although they are computationally efficient, gradient based image

segmentation algorithms typically result in either over-segmented results, or

discontinuous contours. Region based image segmentation algorithms guarantee

closed contours, but are computationally expensive and alm.ost always require fine

tuning for each specific application. Watershed based image segmentation also

guarantee closed contours and can be implemented efficiently using ordered queues,

but almost always result in over segmentation. Multiresolution image processing

techniques such as the image pyramid offer a way to reduce the computational

complexity of many image processing algorithms while also incorporating a sense of

scale with the edges in the resulting image segmentation. However, most of these

algorithms suffer from ineffective linking algorithms to correlate results found in the

coarse scale image to the original image.

Research continues in the image processing community to develop an Image

segmentation algorithm that performs well for a wide variety of images. The image

segmentation algorithm presented in Chapter 3 offers an alternative solution to the

traditional segmentation algorithms developed to date. This new technique uses a

pyramid based watershed algorithm which incorporates a sense of scale into the image

segmentation, guarantees closed contours, and is computationally efficient.
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CHAPTER III

WATERSHED PYRAMIDS

3.1 Chapter Overview

Watershed image segmentation is a powerful tool for segmenting images into

homogeneous regions based on the edges of objects in the image. Certain properties of

the watershed function ma.ke it well suited for image segmentation. One of these

properties is that when applied to the gradiellt magnitude of an image, the region

boundaries in the resulting watershed image segmentation correspond to the edges of

objects in the original scene. Another attractive property of watershed segmentation is

that the resulting image segmentation is guaranteed Lo have closed c.ontours. This

property is particularly important for many computer vision algorithms such as object

recognition.

Although watershed segmentation has a number of features which make iL

attractive for image segmentation, most traditional watershed algorithms also exhibit a

number of undesirable properties. As discussed in Chapter 2, many traditional

watershed transforms are computationally expensive, making them unacceptable for

real-time applications. Another problematic property of traditional watershed
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segmentation algorithms is the tendency to over-segment the image. The development

of queue based immersion algorithms such as. the Vincent and Soille algorithm

(Vincent, 1991) and the Meyer algorithm (Meyer, 1992) has helped to remedy the

computational issues surrounding the watershed transform, but these methods still

over-segment most images. Queue based algorithms also tend to result in watershed

boundaries that are multiple pixels in width, a property that is undesirable for many

applications. Traditionally, over segmentation has been remedied by either

incorporating a heuristic threshold into the watershed algorithm or applying a region

merging operation to the resulting image segmentation.

In this chapter an efficient algorithm to perform watershed image segmentation

IS presented. This algorithm avoids over-segmentation by incorporating a sense of

scale with the objects in the resulting image segmentation through the use of an image

pyramid. The image pyramid also results in increased computational efficiency over

traditional algorithms. Finally, based 011 the definition of watershed segmentation

presented in this thesis the resulting edge map is guaranteed to have boundaries thaI

are of a single pixel width.

In Section 3.2 mathematical definitions are given that form the basis of

watershed Image segmentation. Section 3.3 describes Gauch's steepest descent

algorithm, which is an integral part of the watershed pyramid. Next, Section 3.4

describes the morphological pyramid image structure used in this research. Some basic

principles of morphology are discussed, as well as properties of the morphological

pyramid. Section 3.5 introduces the watershed pyramid and the steps used to construct
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the pyramid. Finally, Section 3.6 concludes this chapter with a summary of the

watershed pyramid and its fundamental properties.

3.2 Watershed Definitions

The extension of watersheds to a two dimensional digital image space requires

some basic mathematical definitions. The basic premise of the watershed transform

was discussed in Section 2.5.1. In this section, formal definitions are given for a local

minimum, a catchment basin, and a watershed boundary. These definitions are based

on the watershed algorithm used in this research, and thus differ slightly from the

definitions given by previous authors such as Vincent and Meyer.

The first step is to clearly define a two dimensional digital image space. Let Dr,

where D, C Z2 XZ2, denote the domain of a two-dimensional digital gray scale image

I which is based on a square grid of eight connectivity. The range of I is the set

R={O,l...K}, with K a positive integer. We also denote N(p) to be the local

neighborhood of the element l(p). In other words, N(p) is set of all clements

adjacent to l(p) in eight-connectivity.

A path P of length l between two pixels p and q in the image I is an (l+ I)-tuple

Vi E {1,2, ...J}, (Pi-!' p,)E D,.

A locallnillimum M of an image I is a connected plateau of pixels having the

altitude h from which there is no path to an element with a lower altitude than h, that

does not include at least one element with an altitude greater than h. This implies that
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VpE M , I(p)= h. This also implies that Vqe M and Vp EM such that I(q)~ l(p),

it holds true that VP=(pO,PI""'P,) connecting P=Po and q=p" 3iE{I,2,... ,I-I}

such that 1(Pi) > [(po)= h.

The path of steepest descent is a path P=(Po,pp ... ,p,) where ViE {I,2,...,!},

[(Pi) ~ 1(17;-1)' and \;fp' E N(Pi_I)' [(Pi) ~ [(p'). In other words the altitude of every

element Pi in the path P is less than or equal to the altitude of every element in the

local neighborhood of the element Pi-I. In a digital image space, every path of steepest

descent ends at a local minimum M.

A catchment hasin, denoted CM, is defined as the set of all elements in an

image whose steepest descent path ends at the local minimum M. By definition each

catchment basin contains only one local minimum. It can be shown that every element

in the image I is a memher of one and only one catchment basin CM.

A watershed boundary W is defined as an element d in the image I sLlch that

d E eM' amI 3d' E N(d) such that d' e C1ft. In other words, the element d is a

member of the catchment basin CM, and has a neighboring element d' that is not a

member of the catchment basin eM.

3.3 Gauch's Steepest Descent Algorithm

3.3.1 Mathematical description

For the purpose of this research, a method introduced by Gauch and Pizer

(1993) is used to calculate the watershed regions. Gauch and Pizer's algorithm is based
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on the steepest descent method of calculating the watershed image segmentation.

Despite the shortcomings of steepest descent algorithms discussed in Section 2.5, this

algorithm was selected because it extends nicely to a pyramid image structure.

The first step in calculating the watershed image segmentation using this

algorithm is to convert the digital image to a real number representation. This step is

necessary to avoid the problems associated with ambiguous descent paths encountered

in traditional implementations of steepest descent watershed segmentation. Once the

image has been converted to a real number representation, it is blurred with a low

variance Gaussian (Gauch, 1993). This filtering of the image has two effects. The first

effect is to help reduce the likelihood of indefinite decision pixels in the image. The

second effect is to help smooth over noise and other small scale features that are

unimportant.

Given an original image I and a low variance Gaussian kernel G, the blurred

floating poi nt representation B becomes

I.....

'1

I
,~

],
'j

B=G*I. (3.1 )

The smoothing of the Gaussian filter helps to improve the approximation of a three-

dimensional surface provided by a discrete valued digital image, and helps to insure

that each element of the image will be unique in a local neighborhood N (Gauch, 1993).

After the image has been converted to a real number representation, the next

step is to locate aLI of the local minima of B as defined in Section 3.2. Each of these

local minima is given a unique label, so that the set of all local minima contained in

the image B is denoted as M={M 1J M2, ... , Mill where n is the number of local minima

contained in the image B. By definition, each catchment basin eM in the image B
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contains one and only one local minimum M i, so that the set of all catchment basins C

is denoted as C={C1, C2, ••• ,Cn }. It follows that ViE {1,2, ...n} VjE{1,2, .. J1}, i:;t:.j

After each local mInimUm has been located and labeled, the final step in

evaluating the watershed transform is to assign each element of B to the appropriate

watershed region. This is accomplished by starting at each element in B tracing the

path of steepest descent as defined i.J1 Section 3.2. Each element d in the image B

assumes the label i, where i corresponds to the label of the ~ocal minimum M; that is

found at the end of the path of steepest descent leading away from element d. As stated

before, the local minimum M; is a part of the catchment basin C, and based on the

definition given in Section 3.2, it follows that the element d is also a member of the

catchment basin C. It also follows that given a path of steepest descent

P = (Po' Pi>""PI) where Po = d , and PI =M j' Vj E {O,I,2, ... ,l}, PJ E C; . This implies

that given a path of steepest descent P, if Po E C;, then P s C,. In other words, if an

element d is a member of the catchment basin C, then each element ill the path of

steepest descent from do to the minimum M, is also a member of the catchment basin

C;. An example of the path of steepest descent is shown in Figure 3.1.
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7.8 5.6 7.6 6.5 8.6

8.2 7.5 6.8 5.9

Figure 3.1 - Path ,of steepest descent. This ;s an example of tracing the

path of steepest descent away from an element in a digital image. In each

case, an open circle denotes the starting element and a shaded circle

denotes the local minimum. Note that each intermediate element in the path

of steepest descent corresponds to the same catchment basin as first

element in the path.

Another useful property of the path of steepest descent is that given two paths

of steepest descent p' = (p~, p;, ... ,p~) and P =(Po, PI ,,,,,P,) if ::Iq, (qE P and qE p'),

then P; := PI_ It follows by the definition of a path of steepest descent given in Section

3.2 that if P t;;;; C;, then p't;;;; C;. In other words if two paths of steepest descent, P

and p' intersect, then every element that is a member of the path P and every

element that is a member of the path p' is a member of the same catchment basin Cj •

3.3.2 Application to a digital image

Using properties of a path of steepest descent, watershed segmentation can be

performed using two sequential passes through the image based on Gauch and Pizer's
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algorithm. In the first pass, every pixel d in the image I is compared to every other

pixel in the neighborhood N{d), and the direction of the lowest valued pixel in the

neighborhood is recorded in the watershed image W. The range of W is defined as

R={N,S,E,W,NE,NW,SE,SW,M 1 ,M 2 , ••. ,MJ where N represents a direction of

steepest descent to the "north" of the element d, S represents a direction of steepest

descent to the "south" of the element d, and so on. If the element d is a part of a local

minimum as defined in Section 3.2, Wed) is assigned the value Mj , where Mj represents

the label of the /' unique local minimum in the image L

In the second pass through the image, the path of steepest descent leading away

from each element is traced to a local minimum, and each element in the image W is

assigned to a catchment basin. Beginning at an element d, we follow the path of

steepest descent until it either ends at a local minimum M i, or intersects with another

path of steepest descent that has been previously labeled. The first case occurs when

the path ends at a local minimum Mj • For this case, the label i is given to every pixel

that is a member of the path of steepest descent from d to M i , where i corresponds to

the label of the catchment basin C; which contains the local minimum Mi. The second

case occurs when the path of steepest descent intersects with an element el' thal is not a

local minimum, but has already been assigned to a catchment basin. In this case, every

element in the path of steepest descent is assigned the label i, where i corresponds to

the label of the catchment basin C; of which d' is a member. This due to the properly

that if two paths of steepest descent, P and p' intersect, then every element that is a

member of the path P and every element that is a member of the path p' is a member

of the same catchment basin Ci. Since the element d' has already been assigned to a
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catchment basin Ci, d' is a member of a path of steepest descent P' that extends from d'

to Mi. It foBows that since the path P intersects with the element d' then every element

in the path P is a member of the catchment basin Ci.

Once each element in B has been assigned a watershed region, the watershed

transform is complete. From this point on the watershed transform will be denoted WS

so the watershed W is defined as

W =WS(B) =WS(G * I) (3.2)
I'

In order to use the watershed function described in the previous section to find

edges, the WS function must be applied to a blurred gradient representation of the

defined as the boundaries between adjacent watershed regions. The resulting edge map

By applying the watershed transform to the gradient of the image, the edges are

where VI represents the gradient magnitude of the image I as defined in Equation 2.2.

(3.3)W =WS(G *IVII)

image. Thus the watershed of the gradient becomes

E is defined as

_.( ) {I VW(d»O
Ed = o otw.

(3.4 )

An example of Gauch's watershed algorithm is shown in Figure 3.2. In this

example, the image is pre-filtered with a Gaussian filter with 0 = J. Gauch's

watershed algorithm was then applied to the gradient magnitude of the pre-filtered

image. The resulting image segmentation contains region boundaries that correspond

to the edges of objects in the original scene, but even with a high variance Gaussian

pre-filter the image is over-segmented.
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Figure 3.2 Example of Gauch's steepest descent watershed

algorilthm. The watershed segmentation on the right was calculated by

applying Gauch's algorithm to the gradient magnitude of the pre-filtered

image. In this case, the image was pre-filtered with a Gaussian filter with

(J =3.

3.3.3 Region merging

Although Gauch's algorithm is effective in segmenting digital images, a key

shortcoming of the technique is the tendency for over segmentation. There are a

number of methods to merge watersheds ami remedy the over-segmentation problem

in the literature, but for the purposes of this research, region adjacency graph (RAG)

processing is used to combine watersheds (Saarinen, J994). After the image is

segmented into watershed regions, an RAG is formed from the segmented watershed

based on spatial adjacencies. Two regions are said to be adjacent if they share a

common boundary. The RAG also contains user defined information such as the

average pixel intensity of a region, the variance of the pixel intensity of a region, the
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length of the boundary shared by two adjacent regions, or any other information which

is useful in evaluating which regions should be combined. Much work has been done

on region merging (Koshimizu, 1998; Vincent, 1994), but for the examples in this

thesis a simple RAG algorithm based on mean pixel intensity is used for region

merging. The first step in this procedure is to assign each watershed label a pixel

intensity representative of the original image. The array of mean pixel intensities X is

defined as

(3.5)
. I

where WSw == {(dYe=> W(d) =w}, and IWSwl is the cardinality of WSw' X has the range

R ={WI' w2 ' ... , wn } where n is the number of regions in the watershed image W.

Next, adjacent watersheds in Ware merged based on the representative pixel

intensities X found by equation 3.5. The watershed W is modified by merging adjacent

regions with a difference in mean pixel intensity less than a predetermined threshold T.

The modified watershed W' is then defined as

W'(d) = {Wi Ix (w j ) - X(w;)1 < T
w

J
olw.

(3.6)

'v'W; E Adj{w
J

), where w j =W(d) and Adj(w j ) represents the set of all regions

adjacent to the region Wj. An example of this region merging technique is shown in

Figure 3.3. In this example, the RAG region merging algorithm described above is

applied to the watershed image segmentation shown in Figure 3. The region merging

algorithm has the desired effect of simplifying the image segmentation, but the
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algorithm also hal) a high computational expense and still leaves the image somewhat

over-segmented.

Figure 3.3 Example of RAG based region merging. In this example, the

original image segmentation was calculated using Gauch's watershed

algorithm after pre-filtering the original image with a Gaussian filter with (J =3.

The region merging was performed based on a threshold T =24.

Initial segmentation

Segmentation after region merging

3.4 Watershed pyramids

As discussed in Chapter 2, an image pyramid is a practical form of a digital

image scale-space. Image pyramids are formed by filtering and decirnating the original

image, creating a more compact image representation. This compact image

representation has two key properties. The first property is that the new representation

of the image has fewer elements than the original image. For typical images, the
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number of elements is reduced by one to two orders of magnitude. For many image

processing algorithms, this reduction in size makes processing more efficient. The

second property of image pyramids is that the objects in the image are given a sense of

scale. Small features and noise are not present in the new image representation, which

means that for image segmentation algorithms only objects larger than the desired

scale are present: in the resulting image segmentation.

3.4.1 Previous multi-resolution watershed algorithms

Incorporating an image scale space into watershed image segmentation is not a

new idea. Gauch was the first person to propose a multi-scale watershed segmentation

algorithm (Gauch, 1993). Gauch's technique uses a Gaussian scale space that is

formed by successively filtering the image with a Gaussian filter of increasing

variance. After this image scale space has been formed, each watershed region in the

original image is assigned a scale based on the level in the scale space where the

watershed region in question combines with an adjacent region. A parent-child

relationship is also established based on which watershed regions combine in each

level of the scale space. Finally, the watershed regions in the original image

segmentation are sequentially combined until all of the watershed regions that are

below the desired scale have been eliminated.

More recently, Jackway has incorporated a morphological scale space into

watershed image segmentation (Jackway, 1996). Jackway's scale space uses

morphological operators to produce a hierarchy of watershed regions similar to the

parent-child relationship used in Gauch's algorithm. After this hierarchy of watersheds
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has been established, watershed regions are combined until the desired Image

segmentation has been achieved.

Gauch and Jackway's algorithms both address the problem of over-

segmentation in traditional watershed algorithms, but neither technique reduces the

computational expense of the watershed. In fact, both techniques actually increase the

computational expense of watershed segmentation. The multi-resolution watershed

algorithm introduced in this thesis differs from previous techniques since this

algorithm uses a morphological image pyramid to calculate the watershed image

segmentation. The morphological pyramid not only remedies the problem of over-

segmentation, but also reduces the computational expense of watershed analysis.

3.4.2 Morphological image pyramids

For this research, a morphological image pyramid is used to perform walershed

image segmentation. The morphological pyramid is constructed by successive filtering

of the original image with morphological operators. Morphological operators simplify

digital images, preserving shape characteristics and eliminating irrelevant features

(Haralick, 1987). Morphological filters also remove noise without introducing a

grayscale bias, making them well suited for image segmentation (Sternberg, 19~6).

Grayscale morphological operators are based on two fundamental operators,

erosion and dilation. Erosion is defined as a local-minimum operation in a digilal

image. The erosion of a digital image I with respect to a structuring element K is given

by

~
•II
•

(J8K)(x) =max{I(x + y)}.
yEK
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Dilation is the dual of erosion, and peIi"orms a movmg local-maximum

operation. It follows that the dilation of a digital image 1 with respect to a structuring

element K is given by

(I Ef> K )(x) = min {I (x + y)} .
)'EK

(3.8)

Based on these fundamental morphological operators, a number of

concatenated operators can be established. Two of these operators are opening and

described as dilation of the image I by the structuring element K followed by erosion

of the image 1 by the structuring element K. It follows that the opening of a digital

closing. The opening of a digital image I by the structuring element K call be

(3.9)10K =(I8K) Ef>K.

image I with respect to a stmcturing element K is given by

The closing of a digital image I by the structuring element K can be described

as erosion of the image I by the structuring element K followed by dilation of the

image I by the structuring clement K. It follows that the closing of a digital image I

with respect to a structuring element K is given by

I -K =((Ef>K) 8K. (3.10)

Morales (1995) has shown that when constructing a morphological pyramid,

using an open filter followed by a close filter offers better performance than using an

individual open filter or an individual close filter. Using an open-close filter to form

the morphological pyramid, pyramid level L is defined by

(3.1 I)
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where lois the original image, and [. ]is represents a down sampling by a factor of S in

each spatial dimension (along rows and columns). The parameter 11 is largest integer

such that for an MxN image {~n,~n} ~ I. An example of a morphological pyramid

formed using an open-close filter is shown in Figure 3.4.

Figure 3.4 Morphological pyramid constructed using an open­

close filter. This image pyramid was constructed using a open-close

filter with a 3x3 square structuring element and down-sampling by a

factor of S = 2.

3.4.3 Constructing the watershed pyramid

The watershed pyramid introduced in this section offers a solution to the two

most common problems found in most watershed segmentation algorithms. In the
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watershed pyramid, the watershed algorithm is apphed once at a coarse level, and the

edges are propagated back to finer representations without performing the watershed

algorithm at each level of the pyramid. The image pyramid not only filters Ollt

insignificant features and noise, but also reduces the computational expense of

watershed image segmentation.

The first step in constructing the watershed pyramid is to build a morphological

open-close pyramid using Equation 3.11. Once the morphological pyramid has been

constructed, the next step is to choose the root level of the pyramid. The root level

must be selected based on two criteria. The first criteria is that the smallest object that

is to be preserved in the final segmentation must appear in the root level of the image

pyramid. The second criteria is that the two "closest" objects to be preserved in the

final segmentation must not be merged in the root pyramid level.

Let a represent the length of the minor axis of the smallest object to be

preserved in the root level of the image pyramid. It follows that the pyramid level L{/ in

which the smallest object will disappear is defined as

L = log2 a _I
" log2 S '

(3.12)

where S is the factor by which the image is down-sampled between pyramid levels in

Equation 3. t I .

Similarly, let d represent the minimum distance between the two closest objects

to be preserved in the root level of the image pyramid. It follows that the pyramid level

LJ in which the two objects will be combined is defined as

(3.13 )
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It follows that the root level R is detennined by

R =rnin{L(J ,La}' (3.14)

Once the root level of the pyramid has been selected, Gauch's watershed

algorithm is applies to the root level I R of the image pyramid. The resulting watershed

segmentation W R of the root level is given as

(U5)

I

il

After the watershed has been applied at the root level R, each 111 level W R./

must be linked to a set of elements in level W R. In the image pyramid, every element

in level L has one "parent" in level L+ 1 and four "children" in level L-l since there is

a 4 to 1 pixel reduction with each ascending level. This implies that each edge pixel in

the root level R corresponds to up to four edge pixels in the level R - 1. Figure 3.5

illustrates the mapping between levels of an image pyramid.

Leve/3

Level 2

Levell

Level 0

IFigure 3.5 Example of the mapping, of pixels between levels

of an image pyramid.
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When linking the levels of the watershed pyramid, we want to maintain

connected region boundaries, and insure that no new regiOns are created as the

watershed segmentation lS propagated through the image pyramid. In order to

accomplish this, the pyramid node linking algorithm is separated into two operations.

The first operation is to link all of the pixels that are not a member of a

watershed boundary in level L-l to level L. Using the definition of a watershed

boundary given in Section 3.2, if a pixel d in level L-1 is a member of catchment basin

Ci, and pixel d is not a member of a watershed boundary, then each of pixel d's four

children in level L is a member of the catchment basin C. This first step in the linking

of pyramid level L to level L-1 is accomplished by

(3.16)

for all do E C(d,L) where C(d,L) represents the children of element d at level L

(Wright, 1997). In Equation 3.16, if VW,Jd) =0, signifying no change in watershed

label exists in that neighborhood, the label for the children of WJd) is known to be

equal to the label of WL(d). If VWJd) 7: 0, then the label of the children of element d

is uncertain. These pixels in level L-I with an uncertain labels are assigned a value of" -

I and will be evaluated in the second step of the edge linking algorithm.

The second operation in linking level L-1 to level L is to apply Gauch's

watershed algorithm to the elements of W L·J with uncertain labels. This is

accomplished by

(3.17 )
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for all do such that Wt _1(do) = -1, where B is defined in Equation 3.] (Wright, 1997).

Since the pyramid structure insures the causality of watersheds, no watershed can

appear in level L-1 that did not exist in level L. For this reason an additional step is

added to the watershed algorithm. Any new local minimum which is located within a

region of uncertainty must be flooded into its nearest neighbor by Equation 3.6, given

the condition that any watershed formed in level L- J must merge with one and only one

watershed that existed in level L.

Edge linking continues until L-I =0, and finally, edge detection is performed on

level L = °llsing Equation 3.4. In the next chapter, a number of examples of image

segmentation using the watershed pyramid are presented. The resulting image

segmentations have significantly fewer edges than traditional watershed segmentation

algorithms, and show less sensitivity to noise. The watershed pyramid also performs

image segmentation at a much lower computational expense than traditional

algorithms.

3.5 Chapter Summary

Watershed segmentation IS a powerful image processmg tool, although

traditional techniques tend to over-segment Images and have a high computational

expense. In this chapter, a multi-resolution watershed image segmentation algorithm

was described. This algorithm is based on a morphological image pyramid, and uses

Gauch's minimum following algorithm to calculate the watershed segmentation.

The watershed pyramid has a number of properties which make it well suited

for computer vision appl ications. The first property is that the algorithm is
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computationally efficient, offering a reduction in the computational expense by one to

two orders of magnitude over traditional algorithms. Another important property of

image segmentation using the watershed pyramid is that the segmentation is tunable

based on the selection of the root pyramid leveL By selecting a "high" level as the root

level of the image pyramid, small features can be eliminated producing an image

segmentation based on the major features in the original image. By "Iowerin.g" the root

level, smaller features can be added to the image segmentation. A third property of the

watershed pyramid is that the resulting edge map is guaranteed to have connected

edges that are of single pixel width. This property is particularly useful when the

purpose of image segmentation is object identification or pattern recognition.

In summary, the watershed pyramid offers an alternative means to calculate the

watershed image segmentation. The watershed pyramid algorithm reduces the

computational. expense and addresses the problem of over-segmentation found in

traditional algorithms while maintaining an image segmentation that features closed

contours and region boundaries that closely correspond to the edges of object in the

original image.

In the next chapter, results of watershed pyramid image segmentation are

presented. These results confirm that the watershed pyramid is an effective method of

calculating the watershed image segmentation, and also confirm that the watershed

pyramid helps to solve the problems of over-segmentation and computational expense

associared with traditional algorithms.
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CHAPTER IV

WATERSHED PYRAMID RESULTS

4.1 Chapter Overview

In th.is chapter, results are presented from several applications of the watershed

pyramid. These results demonstrate that incorporating a morphological pyramid into

watershed image segmentation pyramid helps to remedy the two major problems

associated with traditional watershed segmentation algorithms: over-segmentation and

computational expense.

The first problem with most traditional algorithms is that watershed analysis is

very sensitive to small features. This sensitivity typically results in an over­

segmentation of the image. By incorporating an image pyramid into the watershed, the

objects in the resulting image segmentation are given a sense of scale. With careful

selection of the root pyramid level, smaJl features and noise can be eliminated from the

final image segmentation. Section 4.2 presents some sample image segmentations

calculated using the watershed pyramid. These examples show the image segmentation

for each level of the watershed pyramid., demonstrating the refinement of the edge map

as the region information is propagated through the image pyramid. Section 4.2 also
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compares Image segmentations calculated using the watershed pyramid with image

segmentations calculated using a traditional watershed algorithm. Finally, Section 4.2

compares the performance of the watershed pyramid with the performance of a

traditional watershed segmentation algorithm for images that have been corrupted with

nOIse.

The second problem with most. traditional algorithms is the computational

expense associated with calculating the watershed segmentation. This problem is also

addressed by the use of an image pyramid. With a watershed pyramid, the watershed

image segmentation is only performed once at a coarse scale representation of the

original image. The resulting image segmentation is then propagated through the

image pyramid, until it reaches the original image. Section 4.3 presents a detailed

analysis comparing the computational expense of performing watershed image

segmentation using a morphological pyramid versus using a traditional watershed

algorithm. This analysis shows that even with the computational expense of building

the image pyramid and propagating the edge information through the pyramid, the

watershed pyramid is more efficient than the two most common traditional watershed

algorithms. Section 4.4 concludes the chapter with a brief summary of the features of

the watershed pyramid.
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4.2 Visual watershed pyramid results

4.2.1 Watershed pyramid results

This section presents image segmentation results from applying the watershed

pyramid to sample images. The results demonstrate that the watershed pyramid is

applicable to a variety of different imaging scenarios, and helps remedy the problem of

over-segmentation. Figures 4.1 through 4.12 show four examples of applyi.ng the

watershed pyramid to digital images. These examples show the image pyramid used to

calculate the watershed, and the resulting image segmentation for each level of the

image pyramid.

In each example, an open-close filter with a 3x3 square kernel is used to form

the morphological pyramid, and the image is down-sampled by a factor of 2 along

each row and each column between levels of the pyramid. The gradient magnitude of

each level of tbe pyramid was blurred with a Gaussian filter with () = I to help insure

local uniqueness for each pixel in the image. The root level of the pyramid was

selected based on the size of the smallest feature desired in the final segmentation.

Figure 4.1 shows the image pyramid used to segment the "Swan" image. This

image pyramid was formed using a 3x3 morphological open-close filter. Figure 4.2

shows the image segmentation for each level of the watershed pyramid. When using

the watershed pyramid, image segmentation is only performed one time at the root

level of the image pyramid. For this example the size of the original image is 256x256.

The root level is defined as L = 3, which corresponds to a size of 32x32. After the

initial segmentation, region information is linked back through the pyramid to the
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original image. Figure 4.3 shows the image segmentation after incorporating a simple

region merging algorithm into the watershed pyramid. The region merging algorithm

used for this case is described in Chapter 3, and uses the mean pixel value of each

region in the initial image segmentation. If the mean pixel value of two adjacent

regions in the watershed image segmentation differs by Jess than a threshold T, the

regions are combined. The region merging algorithm is applied once at the root level,

and the "simplified" image segmentation is propagated through the pyramid to the

original image. It should be noted that the region merging can also be performed at the

base level of the image pyramid (L =0). PeJforming region merging at the base

pyramid level typically offers a more accurate image segmentation, but does not take

advantage of the computational savings offered by the image pyramid.

Figures 4.4 through 4.6 show the same image segmentation results for the

"Peppers" test image. Next, Figures 4.7 through 4.9 show the results for the "Old

Central" test image. Finally, Figures 4.10 through 4.12 show the results for the "Meg

Ryan" lest image.
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Figure 4.1 Morphological pyramid

of the "Swan" image. A 3x3 open­

close filter was used to build the

image pyramid.

Figure 4.2 Edge map of the "Swan"

image with no region merging. A

root level of L = 3 was used.

Figure 4.3 Edge map of the "Swan"

image with merged regions. In this

example, region merging was applied at

the root level with a threshold of T = 15.
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Figure 4.4 Morphological pyramid

of the "Peppers" image. A 3x3

open-close filter was used to build the

image pyramid.

Figure 4.5 Edge map of the "Peppers"

image with no region merging. A root

level of L =3 was used.

Figure 4.6 Edge map of the "Peppers"

image with merged regions. In this

example, region merging was applied at

the root level with a threshold of T = 7.
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Figure 4.7 Morphological Pyramid

of the "Old Central" image. A 3x3

open-close filter was used to build

, the image pyramid.

Figure 4.8 Edge map of the "Old

Central" image with no region

merging. A root level of L= 3 was used.

Figure 4.9 Edge map of the "Old

Central" image with merged regions. In

this example, region merging was app~ied

L-----L ---'-__--' at the root level with a threshold of T = 12.

64



-

" '" I
.......1

i
.-1
i,.,

\
\

':
L',

i ,

,,
., \,

. ",.. ' \

"

Figure 4.10 Morphological Pyramid of the

"Meg Ryan" image. A 3x3 open-close filter

was used to build the image pyramid .
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Figure 4.11 Edge map of the "Meg

Ryan" image with no region merging.

A root level of L =4 was used,
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Figure 4.12 Edge map of the "Meg

Ryan" image with merged regions. In

this example, region merging was applied

at the root level with a threshold of T =22.
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4.2.2 Watershed pyramid vs. traditional watershed analysis

Figures 4.13 through 4.16 compare watershed segmentation on a single

resolution image with the results of image segmentation using a watershed pyramid.

These results demonstrate that without using any region merging techniques, the

watershed pyramid addresses the problem of over-segmentation. For each of these

cases, the single resolution image segmentation is applied to the original image after

prefiltering with a Gaussian filter with (J = 3 (this corresponds to a 7x7 square kernel.)

No region merging was performed on the resulting image segmentation. For each of

these test images, the watershed pyramid image segmentation results are identical to

those presented in the Figures 4.1 through 4.12. In each case, the watershed pyramid

was formed using a a 3x3 open-close morphological filter. A Gaussian filter with

(J =1 was then applied to the gradient magnitude of the root level of the image

pyramid level. Finally, watershed image segmentation was perfOJmed at the root level,

and the information was propagated back to the original image. Region merging was

not incorporated into the watershed pyramid segmentation.
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Single Resolution Watershed

Original Image

Watershed Pyramid

Figure 4.13 Segmentation of the "Swan" image with a watershed pyramid

vs. traditional watershed segmentation. The segmentation on the left was

calculated without using a watershed pyramid or region merging. The image was

pre-filtered with a Gaussian filter with cr = 3. The segmentation on the right was

calculated using a 3x3 open-close image pyramid with root level of L = 3.

Single Resolution Watershed

Original Image

Watershed Pyramid

Figure 4.14 Segmentation of the "Peppers" image with a watershed

pyramid vs. traditional watershed segmentation. The segmentation on the left

was calculated without using a watershed pyramid or region merging. The image

was pre-filtered with a Gaussian filter with cr = 3. The segmentation on the right

was calculated using a 3x3 open-close image pyramid with root level of L =3.
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SIngle R,esolution Watershed

Original Image

Watershed Pyramid

Figure 4.15 Segmentation of the "Old Central" image with a watershed

pyramid vs. traditional watershed segmentation. The segmentation on the left

was calculated without using a watershed pyramid or region merging. The image

was pre-filtered with a Gaussian filter with (J = 3. The segmentation on the right

was calculated using a 3x3 open-close image pyramid with root level of L= 3.

Watershed PyramidSingle Resolution Watershed

Original Image
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Figure 4.16 Segmentation of the "Meg Ryan" image with a watershed

pyramid vs. traditional watershed segmentation. The segmentation on the left

was calculated without using a watershed pyramid or region merging. The image

was pre-filtered with a Gaussian filter with (J = 3. The segmentation on the right

was calculated using a 3x3 open-close image pyramid with root level of L =4.
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4.2.3 Performance afthe watershed pyramid on noisy images

Figures 4.17 and 4.18 show the performance of the watershed pyramid in the

presence of noise. These results demonstrate that the watershed pyramid performs well

on noisy images, while the single resolution watershed algorithm suffers from severe

over-segmentation. The morphological pyramid acts to filter out the noise, minimizing

its effect on the watershed segmentation of the root pyramid level. The presence of

noise does have minor effects on the edge localization as the boundary information is

propagated through the image pyramid, but the resulting image segmentation

maintains regions that directly correspond to large scale features in the original image.

For the examples shown in Figures 4.17 and 4.18, the original images are

conupted with zero mean Gaussian noise with (J 2 = 40. The singJe resolution image

segmentation is applied to the noise corrupted image after prefiltering with a Gaussian

filter with (J = 3. No region merging was performed on the resulting image

segmentation. For the watershed pyramid segmentation, the image pyramid was

formed using a a 3x3 open-close morphological filter. For the "Swan" example, a level

of L = 3 was selected as the root level of the image pyramid. For the "Meg Ryan"

example, a level of L = 4 was selected as the root level of the image pyramid. Next, a

Gaussian filter with (J = I was applied to the gradient magnitude of the root level of

the image pyramid. Finally, watershed image segmentation was performed at the root

level, and the information was propagated back to the original image. No region

merging was performed on the resulting image segmentation for either example.
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Single Resolution Watershed

Noise Corrupted
Image

Watershed Pyramid

Figure 4.17 Performance of the watershed pyramid on a noise corrupted

imagle. The "Swan" image was corrupted with zero mean Gaussian noise with

cr 2 =40. The segmentation on the left was calculated without using a

watershed pyramid or region merging. The noise corrupted image was pre­

filtered with a Gaussian filter with cr = 3. The segmentation on the right was

calculated using a 3x3 open-close image pyramid with root level of L =3.
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Figure 4.18 Performance of the watershed pyramid on a noise corrupted

image. The "Meg Ryan" image was corrupted with zero mean Gaussian noise

with cr =40. The segmentation on the left was calculated without using a

watershed pyramid or region merging. The noise corrupted image was pre­

filtered with a Gaussian filter with cr = 3. The segmentation on the right was

calculated using a 3x3 open-close image pyramid with root level of L =4.
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4.3 Computational expense of the watershed pyramid

In practice the multiresolution algorithm decreases the computationa.J

complexity of traditional watershed segmentation algorithms by an order of

magnitude. In this section, the computational expense of implementing the watershed

pyramid is compared with the computational expense of traditional watershed

segmentation algorithms. The traditional watershed algorithms used for comparison

are the steepest descent algorithm presented by Gauch and Pizer, and the queue based

algorithm presented by Vincent and Soi1le (Gauch, 1993; Vincent, 1991). It should be

noted that the computational expense of the queue based algorithm presented by

Meyer and Beucher is nearly identical to the computational expense of Vincent's

watershed algorithm (Meyer, 1992; Dobrin, 1994).

4.3./ Computational expense of Gauch's watershed algorithm

Making the assumption that a comparison belween elements is equivalent to an

addition operation, the cost of performing the full resolution watershed on an NxN

image using Gauch's steepest descent watershed algorith m can be esti mated. The first

step is to perform the V' operation which requires 3N2 adds and 2N2 multiplies. Next,

the gradient magnitude of the image is blurred with a Gaussian filter to ensure local

uniqueness of each pixel, requiring 8(GN)2 adds and 9(CNy2 multiplies for

convolution with a GxG Gaussian, where G =20 + I. The final step is to perform the

WS operation, which requires 8N2 adds for the arrowing operation and 2N2 adds for

the marking operation. In total, Gauch's watershed algorithm requires (13+9C2 )N2
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addition operations and (2+9G2)N2 multiplication operations, not taking into

consideration the computational cost of pre-filtering or region merging.

4.3.2 Computational expense of Vincent's watershed algorithm

Again making the assumption that a companson between elements is

equivalent to an addition operation, the cost of performing the full resolution

watershed on an NxN image using Vincent's queuing watershed algorithm can be

estimated. The first step is to perfonn the yo operation which requires 3N2 adds and

2N2 multiplies. Next, the elements of the image must be sorted based on gray-level

intensity which requi res N2 adds. Finally, the elements at each gray level are analyzed,

which requires 8N2 adds. In total, Vincent's watershed algorithm requires l3N2

addition operations and 2N2 multiplication operations. not taking into consideration the

computational cost of pre-filtering or region merging.

4.3.3 Computational expense o/the watershed pyramid

The computation expense of applying the watershed pyramid to an NxN image

can be estimated using the assumption that a comparison between clements is

equivalent to an addition operation. For the watershed pyramid algorithm, the

watershed is applied at a level R that is of size MxM, where M =~R' then linked to

the finer levels of the pyramid. The cost of constructing the pyramid using an open-

R-I ( )?
close filter with a kernel of size KxK is 4K 2 I '1:1. -adds. After the morphological

L-=O
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pyramid has been constructed, Gauch's watershed algorithm is applied to the root level

of the image pyramid. Using the computational expense derived in Section 4.3.1, this

requires (13+9C2)M2 addition operations and (2+9C2)M2 multiplication operations

where C represents the size of the Gaussian kernel used to blur the gradient magnitude

of the image. The final step is to perform pyramid level linking to propagate the

watershed boundary information through the image pyramid. Assuming there are Eu

elements in level R which represent watershed boundaries, the watershed must be

performed on 4ER elements to link level R to level R-J. This linking will produce

E R-l "'" 2E" elements in level R-l since connectivity is maintained. The resulting

computational cost of linking the multiresolution watershed is found to be

R-I

approximately (13 + 9C 2
). 42,.2L ER adds. In total, the watershed pyramid algorithm

f.=O

requires approximately (13+9G' l{M' +4~2'- E,]+ 4K'~ (1,', )' addition

operations, and (2+9C2)M2 multiplication operations, nol taking into consideration the

computational expense of pre-filtering or region merging. Since these formulas are a

bit confusing, it is best to look at the computational expense of actual image

segmentations 10 draw a comparison between the watershed pyramid and traditional

watershed segmentation techniques.

4.3.4 Computational expense in practical applications

In this section, the computational expense of performing image segmentation

usmg the watershed pyramid for four different test images is compared with the
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computational expense of performing image segmentation using Vincent's watershed

algorithm and Gauch's watershed algorithm. The results show that in practice, the

watershed pyramid reduces the computational complexity of watershed image

segmentation by an order of magnitude.

The first test image is the "Swan" image shown in Figures 4.1 through 4.3. For

this case, the original image has a size of 256x256, and the image pyramid is

constructed using an open-close filter with a 3x3 kernel. A level of L = 3 is selected as

the root level, making the computational expense of building the image pyramid up to

the root level equal to 3. Ix I06 adds. The size of the root level is 32x32, making the

computational expense of applying Gauch's watershed algorithm at the root level

equal to 41x103 adds and 30xl03 multiplies. Finally, the level linking operation

requires 764x 103 adds and 573x103 multiplies. This makes the total computational

expense of segmenting the "Swan" image using a watershed pyramid equal to 3.9x 106

addition operations and 603x (0) multipl icati.on operations.

Segmenting the "Swan" test image using Gauch's watershed algorithm requires

25.7x 106 adds and 28.9x 106 multiplies to pre-filter with a 7x7 Gaussian filter,

followed by 2.6x 106 adds and 2.0x 106 multiplies to calculale the watershed. This

makes the total computational. expense of the Gauch's watershed algorithm equal to

28.3x106 addition operations and 30.9x 106 multiplication operations.

Finally, segmenting the "Swan" test image using Vincent's watershed

algorithm requires 25.7x106 adds and 28.9xlO° multiplies to pre-filter with a 7x7

Gaussian filter, followed by 852x I0) adds and 13] x] 03 multiplies to calculate the

watershed. This makes the total computational expense of the Vincent's watershed
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algorithm equal to 26.6x 106 addition operations and 30.2x106 multiplication

operations.

The second test image is the "Meg Ryan" image shown in Figures 4.10 through

4.12. For this case, the original image has a size of 512x512, and the image pyramid is

constructed using an open-close filter with a 3x3 kernel. A level of L = 4 is selected as

the root level, making the computational expense of building the image pyramid up to

the root level equal to 12.6x 106 adds. The size of the root level is 32x32, making the

computational expense of applying Gauch's watershed algorithm at the root level

equal to 41 x103 adds and 30x103 multiplies. Finally, the level linking operation

requires 1.9x 106 adds and 1.4x 106 multiplies. This makes the total computational

expense of segmenting the "Meg Ryan" image using a watershed pyramid equal to

14.5x 106 addition operations and lAx 106 multiplication operations.

Segmenting the "Meg Ryan" test image using Gauch's watershed algorithm

requires I02.8x I06 adds and 115.6x 106 multiplies to pre-filter with a 7x7 Gaussian

filter, followed by IO.5x106 adds and 7.9x106 multiplies to calculate the watershed.

This makes the total computational expense of the Gauch's watershed algorithm equal

to 113.3x 106 addition operations and 123.5x 106 multiplication operations.

Finally, segmenting the "Meg Ryan" test image using Vincent's watershed

algorithm requires 102.8x 106 adds and 115.6x 106 multiplies to pre-filter with a 7x7

Gaussian filter, followed by 3.4x 106 adds and 524x 103 multiplies to calculate the

watershed. This makes the total computational expense of the Vincent's watershed

algorithm equal to 106.2x 106 addition operations and 116.1 x 106 mUltiplication

operations.
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The computational expense of all four test images used in Section 4.2 is

summarized in Table 4.1. These results show that in every case, the watershed pyramid

reduces the number of addition operations necessary to perfOlm watershed image

segmentation by approximately lIi'\ and reduces the number of multiplication

operations by approximately 1I50th
. In total, the watershed pyramid reduces the total

number of computations by well over an order of magnitude.

Watershed Gauch's Vincent's
pyramid watershed watershed

Adds Multiplies Adds Multiplies Adds Multiplies
xl06 xl06 xl06 xl06 x106 xl06

"Swan" image
3.9 0.6 28.3 30.9 26.6 30.2size 256x256

"Meg Ryan" image
14.5 1.4 113.3 123.5 106.2 116.1size 512x512

"Old Central" image
3.9 0.6 28.3 30.9 26.6 30.2size 256x256 ,

"Peppers" image
4.0 0.7 28.3 30.9 26.6 30.2size 256x256

Table 4.1 - Computational expense of the watershed pyramid vs. traditional

watershed algorithms. This table shows the approximate number of calculations

necessary to perform watershed image segmentation using three different

methods: the watershed pyramid, Gauch's watershed algorithm, and Vincent's

watershed algorithm. These calculations include a Gaussian pre-filter for the single

resolution results, and do not take into account any region merging operations.
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4.4 Chapter Summary

This chapter has presented several results from image segmentation using the

watershed pyramid. The visual results presented in Sections 4.2 through 4.4 offer a

qualitative view of the perfonnance of the watershed pyramid. Figures 4.1 through

4.12 demonstrate that the pyramid level linking algorithm presented in Chapter 3 is

effective in propagating the region information from the root level of the pyramid to

the original image. These examples also demonstrate that by incorporating a region

merging algorithm into the watershed pyramid it is possible to further remedy the

problem of over-segmentation. Figures 4.13 through 4.16 demonstrate that the

watershed pyramid offers an effective solution to the problem of over-segmentation

associated with most traditional watershed segmentation algorithms. Finally, Figures

4.17 and 4.18 demonstrate that while the presence of noise in the input image adds to

the over-segmentation problem of the traditional watershed algorithm, it has little

effect on the image segmentation calculated using the watershed pyramid.

Section 4.3 presents a quantitative analysis of the computational expense of

watershed image segmentation llsing the watershed pyramid. It also includes analysis

of the computational expense of watershed image segmentation using Gauch's

watershed algorithm and Vincent's watershed algorithm. This analysis shows that the

watershed pyramid reduces the computational complexity of watershed segmentation

by more than an order of magnitude for most cases.
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CHAPTER V

CONCLUSION

5.1 Summary of the Watershed Pyramid

Image segmentation is a key element in many computer vision algorithms,

creating a demand for robust algorithms to segment digital images. Although there is a

wide variety of techniques to segment images into logical regions, there is no one

algorithm that works well for every application. The focus of this thesis is an improved

watershed segmentation algorithm. Watershed segmentation is a powerful image

processing tool, although traditional techniques tend to over-segment images and have

a high computational expense.

The watershed image segmentation algorithm presented in this thesis offers an

alternative solution to the traditional watershed segmentation algorithms developed to

elate. This new technique uses a pyramid based watershed algorithm which

incorporates a sense of scale into the image segmentation, guarantees closed contours,

and is computationally efficient. This multi-resolution watershed image segmentation

algorithm presented in Chapter 3 is based on a morphological image pyramid, and uses

Gauch's minimum following algorithm to calculate the watershed segmentation.
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The watershed pyramid has a number of properties which make it well suited

for computer vision applications. The first property is that the algorithm is

computationally efficient, offering a reduction in the computational expense by one to

two orders of magnitude over traditional algorithms. Another key property of the

watershed pyramid is that the resulting edge map is guaranteed to have closed contours

that are of single pixel width. This property is particularly useful when the purpose of

image segmentation is object identification or pattern recognition. A third important

property of the watershed pyramid is that the segmentation is tunable based on the

selection of the root pyramid level. By selecting a "high" Jevel as the root level of the

image pyramid, small features can be eliminated producing an image segmentation

based only on the major features in the original image. By "lowering" the root level,

smaller features can be added to the image segmentation.

In Chapter 4, results of watershed pyramid image segmentation are presented.

These results confirm that the watershed pyramid is an effective method of calculating

the watershed image segmentation, and also demonstrate that the watershed pyramid

helps to solve the problems of over-segmentation and computational expenSl:

associated with traditional algorithms. The visual results presented in Chapt.er 4 offer a

qualitative view of the performance of the watershed pyramid. These results verify that

the watershed pyramid remedies the problem of over-segmentation found in traditional

watershed segmentation algorithms, and also demonstrate that while the presence of

noise in the input image adds to the over-segment.ation problem of traditional

watershed algorithms, it has little effect on image segmentations calculated using the

watershed pyramid. Chapter 4 also presents a quantitative analysis of the
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computational expense of watershed image segmentation using the watershed pyramid.

This analysis shows that the watershed pyramid reduces the computational complexity

of watershed segmentation by more than an order of magnitude over traditional

algorithms for most cases.

In summary, the watershed pyramid offers an alternative method to caJculate

the watershed image segmentation. The watershed pyramid algorithm reduces the

computational expense and addresses the problem of over-segmentation found in

traditional algorithms, while maintaining an image segmentation that features closed

contours and region boundaries that closely correspond to the edges of object in the

original image.

5.2 Future Work

The image segmentation algorithm presented in this research offers an

alternative method to segment digital Images. Although this algorithm does out­

perform other watershed segmentation algorithms in most cases, there is still work to

be done surrounding the watershed pyramid algorithm.

One key area of research thaI is not explored in this thesis is the development

of a more robust region merging algorithm to be incorporated into the watershed

pyramid. The region merging technique used for the examples in this thesis was a

sirnple algorithm based solely on the mean pixel intensity of the watershed regions,

and does not perform well for certain types of images. Koshimizu (1998) has presented

a more robust algorithm to merge watershed regions, but the subject of watershed

region merging remains an open area of research.



A second area of research that was unexplored in this thesis was the

performance of the watershed pyramid algorithm using different types of filters to

fOlm the image pyramid. The algorithm presented in this thesis is not constrained to

the morphological pyramid, and can be extended to other pyramid image structures

such as the Gaussian pyramid or the anisotropic diffusion pyramid. Although the

morphological pyramid performs well for the examples presented in this research,

other types of image pyramids may be better suited for certain applications.

XI



REFERENCES

Acton, S., A.C. Bovick, and M.M. Crawford (1994), "Anisotropic Diffusion Pyramids
for Image Segmentation," Proceedings of the IEEE Intemational Conference on
Image Processing, Nov. 1994.

Beucher, S. and C. Lantuejou) (1979), "Use of Watersheds in Contour Detection",
Proceedings of the International Workshop on Image Processing, Real-Time
Edge and Motion Detection/Estimation, Rennes, France, Sept. 17-21, 1979.

Beucher, S. (1982), "Watersheds of Functions and Picture Segmentation", Proceedings
of IEEE International Conference on Acoustics, Speech and Signal Processing,
Paris, France.

Brice, C. and C. Fennema (1970), "Scene Analysis Using Regions", Artificial
Intelligence, vol. 1, pp. 205-226.

Burt, PJ. (1988), "Smart sensing within a pyramid vision machine," Proceedings of the
IEEE, vol.76, no.8, pp.t 006- I5, 1988.

Castleman, K.R. (1996), Digital Image Processing, Prentice Hall, Inc., New Jersey.

Collins, S.H. (1975), "Terrain Parameters Directly from a Digital Terrain Model",
Canadian Surveyor, vol. 29, no. 5, pp. 227-24R.

Dobrin, B.P., T. Viero, M. Gabbouj (1994), "Fast Watershed Algorithms: Analysis and
Extensions", Nonlinear Image Proces.\·ing V, SPIE vol. 2180, pp. 209-220.

Eichman, G. C. Lu, 1. Zhu, and Y. Li (1988), "Pyramidal Image Processing Using
Morpho.logy", Applications of Digital/mage ProcessinK Xl, SPIE vol. 974, pp.
30-37.

Gauch, 1.M. and S.M. Pizer (1993), "Multiresolution Analysis of Ridges and Valleys in
Grey-Scale Images", IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, no. 6.

Gonzalez, R.C. and R.E. Woods (1993), Digital image Processing, Addison Wesley
Publishing Co, New York.

82



Haralick, R.M and L.G. Shapiro (1985), "Survey: Image Segmentation Techniques",
Computer Vision, Graphics, and Image Processing, vol. 29, pp. 100-132.

Harahck, RM., S.R. Sternberg, and X. Zhuang () 987), "Image Analysis Using
Mathematical Morphology", IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 9, no. 4, pp. 532-550.

Harallck, RM. and L.G. Shapiro (1992), Computer and Robot Vision,Vo\.] , Addison­
Wesley Publishing Co., New York.

Horowitz, S.L. and T. Pavlidis (1974), "Picture Segmentation by a Directed SpUt and
Merge Procedure", Proceedings of the 2nd International Joint CU1~lerence 011

Pattern Recognition, pp. 424-433.

Jackway, P.T. (1996), "Gradient Watersheds in Morphological Scale Spaces", IEEE
Transactions on Image Processing, vol. 5, no. 6, pp. 913-921.

Koshimizll, T. (1998), "Watershed Segmentation and Region Merging with Application
to Remote Sensing", Oklahoma State University Masters of Science I1resis.

Kasturi, Rand R.C. Fain (1991), Cornputer Vision: Principles, IEEE Computer Society
Press, Washington D.C.

Klinger, K. (1973), "Data Structures and Pattern Recognition", Proceedings of the First
International Joint Conference 011 Pattern Recognition, Washington, D.C., pp.
497-498.

Levine, M.D. and S.l. Shaheen (1981), "A Modular Computer Vision System for Image
Segmentation and Interpretation", IEEE Transactions on Pattern Analysis (Jnd
Machine Analysis, vol. PAMI-3, pp. 287-300.

Marks, D., J. Dozier, and J. Frew (1984), "Automated Basin Delineation [mm Digital
Elevation Data", Gcoprocessin/?, vol. 2, pp. 299-3! I.

MalT, D. and E. Hildreth (1980), "Theory of Edge Detection", Proceedingso(tlU' Royal
Society of London, Series B, vol. 207, pp.187-2 17.

Meyer, F. and Beucher, S. (1990), "Morphological Segmentation", Journal of Visual
Communication and Image Representation, vol. I , no. I ,Sept. 1990, pp. 21-46.

Meyer, F. and Beucher, S. (1992). "The Morphological Approach to Segmentation: The
Watershed Transformation", Mathematical Morphology in Image Processinp,.
Marcel Dekker, Inc., New York, pp. 433-48J.

Morales, A., R. Acharya and SJ. Ko (1995), "Morphological Pyramids with
Alternating Sequential Filters", IEEE Transaction.s on Imap,e Processin.g, vol. 4,
no. 7, rp.965-977.

83



Nagy G. and J. Tolaba (1972), "Nonsupervised Crop Classification through Airborne
Multispectral Observations", IBM Journal ofResearch and Development, vol.
16, pp. 138-153.

Prewitt, J. (1970), "Object Enhancement and Extraction", in Picture Processing and
Psychopictorics, edited by B. Limpkin and A Rosenfield, Academic Press, New
York, pp. 1674-75.

Robertson, T.V. (1973), "Extraction and Classification of Objects in Multispectral
Images", Machine Processing of Relnotely Sensed Data, IEEE 73 CHO 837­
2GE, Purdue University, West Lafayette, IN, pp. 3B-27-3B-34.

Russ, J.e. (1995), The Image Processing Handbook, Second Edition, eRC Press,
Florida.

Saarinen, K. (1994), "Color Image Segmentation by a Watershed Algorithm and
Region Adjacency Graph Processing", Proceedings of the IEEE International
Conference on Image Processing, Nov. 1994.

Sobel, I.E. (1970), "Camera Models and Machine Perception", AIM-2, Stanford
Artificial Intelligence Lab, Palo Alto.

Sternberg, S.R. (1986), "Grayscale Morphology", Computer Vision, Graphics, and
Image Processing, vol. 35, pp. 333-335.

Vincent, L. and E.R. Dougherty (1994), "Morphological Segmentation for Textures and
Particles", in Digital Image Processing Methods, edited by E.R. Dougherty,
Marcel Dekker Publishing, Inc., New York, pp. 43-102.

Vincent, L. and P. Soille (1991), "Watersheds in Digital Spaces: An Efficient
Algorithm based on Immersion Simulations", IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 13, 110. 6, June 1991, pp. 583-598.

Witki n, A.P. (1983), "Scale-space fi lteri ng", ProceedinJ{s of the International .loin /
C0I1ference on Artificial Intelligence, pp.1 0 19-22.

Wright, A.S., and S. Acton (1997), "Watershed Pyramids for Edge Detection",
Proceedings ()fthe IEEE International Conference on Image Processinl{,
Oct. 1997.

R4



VITA

Anthony S. Wright

Candidate for the Degree of

Master of Science

Thesis: IMAGE SEGMENTATION USING WATERSHED PYRAMIDS

Major Field: Electrical Engineering

Biographical:

Education: Received Bachelor of Science degree in Electrical Engineering from
Oklahoma State University, Stillwater, Oklahoma in May 1996.
Cornpleted requirements for the Master of Science degree at Oklahoma
State University in December, 1998.

Professional Experience: Graduate Research Assistant, Okiahoma Imaging
Laboratory, School. of Electrical and Computer Engineering, Oklahoma
State University, May 1996 to December, 1997. Engineer for WorldCom,
Tulsa, Oklahoma, January, 1998 to May, 1998. Engineer for Williams
Comrnunications, Tulsa, Ok lahoma,~-1ay, 1998 to present.




