
 A HEURISTIC APPROACH TO

 THE CHANCE CONSTRAINED

 MINIMUM SPANNING k-CORE PROBLEM

 By

 AMEYA ABASAHEB DHAYGUDE

 Bachelor of Engineering

 University of Mumbai

 Mumbai, India

 2006

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2010

ii

 A HEURISTIC APPROACH TO

 THE CHANCE CONSTRAINED

 MINIMUM SPANNING k-CORE PROBLEM

 Thesis Approved:

Dr. Balabhaskar Balasundaram

Thesis Adviser

Dr. Tieming Liu

Dr. Manjunath Kamath

Dr. Mark E. Payton

 Dean of the Graduate College

.

iii

ACKNOWLEDGEMENTS

I am deeply indebted to my advisor Dr. Balabhaskar (Baski) Balasundaram for his

endless patience, support and encouragement throughout this thesis. It has been an honor to be

one of his first M.S. thesis students. Dr. Baski a perfectionist individual and obsessive researcher,

is a precious guide in my professional and personal development. I appreciate all his

contributions of time, ideas, advices and funding to make my M.S. experience productive and

invigorating.

I would like to express my sincere thanks to my committee members Dr. Tieming Liu

and Dr. Manjunath Kamath for serving on my graduate committee. Their valuable comments and

insightful questions during the proposal defense contributed to the research directions and

activities. The IEM department at Oklahoma State University provided me with wonderful

learning atmosphere that helped me to develop required sets of skills in academia.

I am grateful to Foad Mahdavi for patiently helping me with C++, Xpress-MP and other

conceptual doubts throughout the thesis. Also, I would like to express my special thanks to Kedar

Vilankar to solve my countless MATLAB issues. My special thanks to Amey Phadke for helping

me with several Linux concerns.

I would like to specially thank Amol Bhave and Sameer Managalvedhe for being

wonderful colleagues, and everlasting friends. They made my life in Stillwater, a memorable one.

iv

My time at Oklahoma State University was made enjoyable by many friends that became a part of

my life. I would like to thank Kunal Divekar, Abhishek Dhuri and Alok Dange, for their lasting

friendships. It would be difficult for me to name others who have helped me personally and

professionally. My sincere thanks are due to all of them.

 Although I have worked many late nights and weekends, I think the ones who deserve the

most recognition is my family. I am deeply indebted to my father Abasaheb Dhaygude for always

giving me more than I deserved and more than they could afford. I am greatly obliged to my

mother Rajani Dhaygude for providing endless love, encouragement and support. I am glad for

the love and support, I received from Atit and Manali. Also, thankful for the support of my cousin

Rohan Kulkarni for last two of my M.S. years. Thank you.

 Ameya Dhaygude

Oklahoma State University

 December, 2010

v

TABLE OF CONTENTS

CHAPTER Page

I. INTRODUCTION ..1

I.1. Research Overview ..3

I.2. Applications ...3

I.3. Research Objective and Contributions ..6

I.4. Thesis Organization ...7

II. THE MINIMUM SPANNING k-CORE PROBLEM ...8

 II.1. k-Cores ...9

 II.1.1. Choosing Appropriate k ...10

 II.2. The Minimum Spanning k-Core Problem (MSkC) ..11

 II.2.1. The Maximum Weighted b-Matching Problem11

 II.3. Chance Constrained Minimum Spanning k-Core Problem (CCMSkC) 14

 II.3.1. Randomness of Vertex Degree ...14

 II.3.2. Chance Constrained Programming...16

 II.3.3. Transforming CCMSkC Problem To MSkC Problem for G(n, p)17

 II.3.4. G(n,p1,p2) Model ..17

 II.4. Need for Metaheuristics ...19

III. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE.20

 III.1. Construction Phase..21

 III.1.1. Greedy Construction Phase ..23

 III.1.2. Randomized Construction Phase ..24

 III.1.3. Greedy Randomized Construction Phase ..25

 III.2. Local Search Phase ...29

 III.2.1. Local Search Phase for The MSkC Problem29

 III.2.2. Local Search Phase for The CCMSkC Problem32

vi

CHAPTER Page

IV. COMPUTATIONAL EXPERIMENTS ..34

 IV.1. General Implementation Details ...34

 IV.2. Description of Test Bed ..36

 IV.3. Design of Experiments ...37

 IV.4. Numerical Results: GRASP for The MSkC Problem39

 IV.5. Numerical Results: GRASP for The CCMSkC Problem40

V. CONCLUSION AND FUTURE WORK ..43

REFERENCES ..45

APPENDIX A ..48

APPENDIX B ..54

vii

LIST OF TABLES

TABLE Page

1. Candidate list ...22

2. Greedy construction phase solution ...23

3. Randomized construction phase solution ..24

4. Greedy-randomized construction phase solution ...26

5. Double dimensional array ...35

6. Double dimensional array after bubble sort ...35

7. Double dimensional array deterministic GRASP runtime improvement36

8. Test instances ...37

9. Parameters of GRASP for the CCMSkC problem ..40

10. CCMSkC objective improvement at 1000 iterations ..41

11. B.1. GRASP results for the MSkC problem at 10 iterations55

12. B.2. GRASP results for the MSkC problem at 1000 iterations57

13. B.3. GRASP results for the CCMSkC problem at 10 iterations58

14. B.4. GRASP results for the CCMSkC problem at 1000 iterations59

15. B.5. The CCMSkC problem objective functions and edge sets at 10 iterations 60

16. B.6. Effect of different values on the CCMSkC problem at 10 iterations 61

viii

LIST OF FIGURES

FIGURE Page

1. A simple graph ...1

2. Degree and diameter of graph ..2

3. Example graph ...4

4. Example design ..5

5. Illustration of robustness ..5

6. An illustrative example of k–cores ..9

7. Spanning k-core to b-matching reduction ...12

8. G(n,p1,p2) formula example ...18

9. Input graph and data for construction phase ..22

10. Greedily constructed solution ..24

11. Randomly constructed solution ...25

12. Greedy-randomized solution..26

13. A feasible solution after (1,1)-exchange for the MSkC problem30

14. A feasible solution after (1,2)-exchange for the MSkC problem31

15. A feasible solution after (1,2)-exchange for the CCMSkC problem32

16. A feasible solution after (1,1)-exchange for the CCMSkC problem 33

17. Optimality gap comparison ..39

18. GRASP runtime at 10 iterations ..41

1

CHAPTER I

 INTRODUCTION

In mathematics, a graph is defined by a pair (V, E) where V is the vertex set and E is the edge set.

Figure 1 illustrates a simple graph with 4 vertices and 6 edges. Graphs can be effective tools to

represent many real-life situations, where the vertex set is representative of entities and edges

indicates the presence or absence of specific relationships between pairs of these entities. We use

the terms “graph” and “network” interchangeably. Users of all real-life networks wish to transfer

some entity like electricity, material, final product, information, vehicle etc. from one vertex to

another vertex through edges. Users prefer a cost effective and well connected network. This

thesis is about a combinatorial optimization problem that fulfills these design requirements.

Figure 1. A simple graph

2

In this thesis, we always consider finite, simple and undirected graphs. An undirected

graph denoted by G = (V, E), where V = {1, 2, . . ., n} is a vertex set with |V| = n and E is an edge

set with |E| = m that consists of unordered pairs of vertices called as edges [i.e. Edge (i, j)

Edge (j, i)]. An edge (i, j) E is said to be incident at the vertices i, j V and i, j are called the

endpoints of edge (i, j). Graph G is called a complete graph if for all pairs of vertices i, j V there

exists an edge (i, j) E. Figure 1 shows a complete graph on four vertices. Real values such as

costs and capacities can be assigned to the edges and vertices of a graph. If (i, j) E then

vertices i and j are called adjacent to each other and are said to be neighbors. If V’ V and E’ E

then graph G’ (V’, E’) is called as subgraph of graph G = (V, E). G’ (V’, E’) is an induced

subgraph of G = (V, E) if, E’ contains each edge of E with both endpoints in V’. G’ (V’, E’) is a

spanning subgraph of G = (V, E) if, V’ = V and E’ E. The degree of a vertex v denoted by ()

is the number of edges incident at it. dG(i, j) denotes the length of a shortest path in terms of

number of edges between vertices i and j in G, and diam(G) = max dG(i, j), (i, j) V is the

diameter of graph G. For example, in Figure 2 degree of vertex 1 is 3 and diameter of graph is 2.

Figure 2. Degree and diameter of graph

The vertex connectivity of graph G denoted by Ҡ(G) is the minimum number of vertices whose

removal from the graph results in a disconnected or trivial graph. The edge connectivity of graph

3

G denoted by Ҡ’(G) is the minimum number of edges whose removal from the graph results in a

disconnected or trivial graph. These graph connectivity parameters obey the inequality Ҡ(G) ≤

Ҡ’(G). Readers are referred to the texts by West [31] and Diestel [10] for an introduction to graph

theory.

I.1. Research Overview

This thesis discusses a combinatorial optimization problem called as the minimum spanning k-

core problem introduced by Balasundaram in [4] and studies it under deterministic settings as

well as probabilistic settings. The minimum spanning k-core problem is motivated by hub

network design problems, where a set of designated hubs need to be connected in a reliable

manner. The hubs can represent airports, warehouses or distribution centers. In our model, the

design element is the edge set, as focus of our model will be on designing underlying network to

meet required conditions on connectivity and diameter. To achieve structural specifications we

are using properties of a graph theoretic structure called k-core, a graph is said to be a k-core if

 () ≥ k, Є V. Given an undirected graph G=(V,E) and a fixed positive integer k, the

minimum spanning k-core problem is to identify a minimum cost set of edges E*, so that the

resulting n vertex graph G*=(V, E*) is a k–core. By an appropriate choice of parameter k, one can

ensure that the designed network is robust under node or edge failure and it has diameter 2.

Briefly, our model aims to balance the network design objectives of robustness (high vertex

connectivity), reachability (navigation between vertices in fewer steps) and cost effectiveness by

using the notion of k-cores.

I.2. Applications

Recall, the three design objectives reachability, robustness and cost effectiveness of a minimum

spanning k-core that we have discussed in the previous section. Based on these three objectives

4

minimum spanning k -core problem is applicable in many situations. For example, transportation

networks, telecommunication networks, electrical and power distribution networks etc. To get

meaningful insight about applicability of the minimum spanning k -core problem we will discuss

an example of a general transportation network.

Figure 3. Example graph

Sum of all edge weights = 240; |E|=15

Let us consider an undirected and complete graph G = (V, E) as shown in Figure 3, where G

represents a general transportation network with |V|= 6, |E| =15, k = |V|/2 = 3 and respective

edge weights. Detailed discussion over selecting an appropriate value of k is given in Chapter II.

Vertices could represent airports, warehouses or cities and edges represent routes connecting

these vertices. Edge weights represent the cost of transportation between vertices. Solving the

minimum spanning k-core problem on the given graph G will identify a subset E* of edges so that

the resulting subgraph G* = (V, E*) is a minimum spanning k-core as shown in Figure 4.

5

Figure 4. Example design

 Total cost of network = 130; |E*|=11

 Figure 5. Illustration of robustness

The minimum spanning k–core, G* satisfies all desired properties such as reachability, robustness

and cost effectiveness as explained in the following text.

6

 Every node is reachable in 2 or fewer steps from every other node, i.e. diam (G*) ≤ 2.

 Cost of the design is 130 whereas a complete point-to-point design costs 240.

 Robustness/vertex connectivity of network design is illustrated with the help of Figure 5.

Suppose there is breakdown of vertex 2, we can still travel between other vertices in less

than or equal to 2 steps. Also, note that the breakdown of any specific vertex will result in

failure of edges incident at that vertex.

So far we have discussed the problem under deterministic settings, where we have

identified a subset E* of the edges such that G*=(V, E*) satisfies reachability, robustness and cost

effectiveness objectives. Let‟s consider probabilistic settings where each edge exists with a

probability pe along with a cost ce and is subject to probabilistic failure. We consider two types of

edges with probabilities p1 and p2 in the graph such that p1 > p2. The degree of a node becomes a

result of the sum of all incident independent p1 and p2 “trials” which makes the degree a random

variable. The goal of the probabilistic version is to select sufficient number of edges incident at

every node such that the probability of a particular node‟s degree being greater than or equal to k

is above a prescribed probability level. Chapter II explains the probabilistic version in more

detail.

I.3. Research Objective and Contributions

The overall goal of this thesis is to develop metaheuristic algorithms that solve the deterministic

and probabilistic versions of minimum spanning k-core problem on large scale instances. Greedy

Randomized Adaptive Search Procedure (GRASP), a metaheuristic introduced by Feo and

Resende [15] has been successfully applied to various combinatorial optimization problems, such

as set covering, location problems, flow shop scheduling, routing problems and production

planning [26]. Festa and Resende [16, 17] provided an annotated bibliography of the GRASP

literature from 1989 to 2008. Since this is the first application of GRASP to the minimum

7

spanning k-core problem, this thesis can provide guidance on efficiency of GRASP in solving the

minimum spanning k-core problem.

Contributions: Broadly, this thesis makes the following contributions. The mathematical

formulations for both deterministic and probabilistic versions of the problem are studied and the

formulation of the deterministic version is implemented in Xpress. We have developed GRASP

algorithms to solve both versions of the minimum spanning k-core problem. Effective local

search phases for both versions are developed by designing appropriate neighborhood definitions.

GRASP algorithms for both versions of problem have been implemented in the C++

programming language and extensive computational experiments carried out on the

implementation to study the performance of the developed algorithms. We have identified

techniques to improve overall algorithmic implementation by designing appropriate data

structures. Large test bed of instances for C++ and Xpress implementations are created using

MATLAB.

I.4. Thesis Organization

The rest of this thesis is organized as follows. Chapter II formally describes the research problem

that includes the selection of network design parameter k and mathematical programming

formulations of the problem. Chapter II also describes the relationship of the research problem to

the classical matching problem. Chapter II concludes with the explanation over the need for

metaheuristics. Details of algorithmic approach are given in Chapter III, which includes a

thorough description of GRASP algorithm for both the versions of minimum spanning k-core

problem. Results of computational experiments performed on test-bed are given in Chapter IV.

Finally, we conclude this thesis with Chapter V which presents a brief summary of the research,

important conclusions and future research directions.

8

CHAPTER II

THE MINIMUM SPANNING k-CORE PROBLEM

Network design is an important problem in designing robust transportation and distribution

systems. Some important properties to consider while designing such networks that have a high

impact on its efficiency and robustness are:

(a) Reachability, i.e. transportation between vertices in fewer steps.

(b) Cost of transportation between vertices.

(c) Robustness of network structure i.e., removal of few vertices from the network should not

disconnect the network.

(d) Survivability of the network structure under probabilistic failure of edges or vertices.

The k-core model was introduced by Seidman [28] as a measure of “network cohesion” in social

network analysis [30]. This model aims to detect a robust cluster with specified structural

properties such as vertex connectivity (a measure of robustness) and diameter (a measure of

reachability). The problem studied in this thesis is an extension of k -core based network model

called the minimum spanning k-core problem introduced by Balasundaram in [4].

9

II.1. k-Cores

A graph is called a k-core if every vertex has at least k neighbors. In other words, the minimum

degree of G is at least k. k-Cores were introduced by Seidman in 1983 [28] as a model for

simplifying interconnections of the graph elements to aid in analysis. Seidman‟s goal was to

identify regions of the social network containing “tightly knit” social subgroups.

Figure 6. An illustrative example of k–cores

Figure 6 illustrates an example that can help readers to understand concept of k-cores in graph

theory. Figure 6-(1) is a simple undirected graph G with minimum degree of 1 at node 8; hence

graph G is a 1-core. In Figure 6-(2) node 8 is deleted, which results in a graph which is a 2-core

with minimum degree of 2 at node 7. Finally, deletion of node 7 results in graph which is a 3-core

with minimum degree of 3.

10

II.1.1. Choosing Appropriate k

While designing a network to be minimum spanning k –core, two properties of interest to us are

vertex connectivity and diameter of graph. Following propositions derived by Seidman in [28] are

important to choose an appropriate k and to design a k-core on n vertices with prescribed

connectivity and diameter. In general, solving the minimum spanning k -core problem on graph G

is to identify a set of edges E* so that the graph G* = (V, E*) satisfies the vertex degree

requirement and the total cost of edges created is minimized for some “appropriately” chosen k.

Proposition 1 [Seidman, 1983]:

Let G = (V, E) be a k -core on n vertices. If k ≥ max [r,

], then Ҡ(G) ≥ r.

Proposition 2 [Seidman, 1983]:

Let G = (V, E) be a k -core on n vertices. If k

 then diam (G) ≤ 2.

Proposition 3 [Seidman, 1983]:

Let G = (V, E) be a k -core on n vertices with Ҡ(G)= r with 1≤ r ≤ k n.

If k ≤

 then diam (G) ≤ 3 + b (n, k, r) + 3 where = max {k+1, 3r} and,

b (n, k,r) = {
 2 2()

1 ≤ 2 2() 2

2 2 ≤ 2 2()

Based on the propositions, if we require Ҡ’(G*) ≥ Ҡ(G*) ≥ 2 and diam(G*) ≤ 2, we can choose

 . Furthermore, if r ≥ 2 and then,

(1) Ҡ(G*) ≥ r and diam(G*) ≤ 2;

(2) G*-v is a (k-1)-core for any v V;

(3) Ҡ(G*-v) ≥ r-1 and diam(G*-v) ≤ 2;











2

n
k 







 


2

2rn
k








 



22kn

11

II.2. The Minimum Spanning k -Core Problem (MSkC Problem)

Given the vertices of network to be designed as V = {1, . . . , n}, an appropriately chosen fixed

positive integer k, set of candidate edges E and the cost ce of creating an edge e Є E, the minimum

spanning k -core problem is to identify a subset E* of edges, so that the resulting n-vertex graph

G* = (V, E*) is a k -core and the total cost of edges included in G* is minimized. The following is

a binary integer programming (IP) formulation for the MSkC problem.

Decision Variables: Binary Variables: xe for every edge e Є E

 xe = 1, if edge e is selected to be in the subgraph G*

 xe = 0, otherwise

Where, ∂(v) is the set of edges incident at node v. This formulation ensures that every node has at

least k incident edges/neighbors, while the overall cost of network is minimized.

II.2.1. The Maximum Weighted b-Matching Problem

It is necessary to understand the relationship between the maximum weighted b-matching

problem and MSkC problem. Given a simple undirected graph G=(V, E) and a vector b, a b-

matching is a subset M of the edges such that every vertex Є V is incident with at most b(v)

edges in M. Hence, the maximum weighted b-matching problem defined on G with edge weights

ce for all e Є E is to find a b-matching ‘M’, such that the total cost of edges added to M is a

Eeex

ve
Vvkex

TS

Ee
exec











},1,0{

)(
,

..

.min

12

maximum. The following is a binary IP formulation for the maximum weighted b-matching

problem.

Figure 7. Spanning k-core to b-matching reduction

It was shown by Balasundaram [4] that the MSkC problem is polynomial-time solvable by

reduction to a special case of the maximum weighted b-matching problem [9]. This reduction

follows from the observation that by solving maximum weighted b-matching on G for a given

Eeex

ve
Vvvbex

TS

Ee
exec











},1,0{

)(
),(

..

.max

13

vector b, identifies those edges that must be excluded in MSkC problem. In other words, the

edges which are excluded in a maximum weighted b-matching will be the edges of a minimum

spanning k-core. Figure 7 illustrates the reduction of the MSkC problem to the maximum

weighted b-matching problem. Note that by solving the maximum weighted b–matching problem

on a given G (refer Figure 7-(1)) for a given vector b = {1, 1, 1, 1} identified edges with costs 7

and 8 (refer Figure 7-(3)) that are excluded in MSkC (refer Figure 7-(2)). In other words, the

edges with costs 2, 3, 3 and 4 which are excluded in the maximum weighted b-matching are the

edges of MSkC. The reduction of the MSkC problem to the generalized matching problem is,

when every node has at most (D(v)-k) incident edges. More specifically, in the binary IP

formulation of the maximum weighted b-matching problem discussed in the previous section,

b(v) is equal to (D(v)-k) as shown in the following formulation.

Edmonds and Pulleyblank [9, 11] have provided a pseudo-polynomial algorithm for solving the

maximum weighted b-matching. Also, Anstee [3] has provided a strongly polynomial time

algorithm for solving the maximum weighted b-matching problem. Hence, following the

reduction, the MSkC problem is also polynomial-time solvable by using the maximum weighted

b-matching algorithm.

Eeex

ve
VvkvDex

TS

Ee
exec











},1,0{

)(
),)((

..

.max

14

II.3. Chance Constrained Minimum Spanning k-Core Problem (CCMSkC Problem)

So far we have discussed the deterministic version of the problem, where we wish to identify a

MSkC in a given graph. Now consider the case in which one or more structural components

(edges or nodes) of the obtained MSkC will fail due to some reasons. For example, in an airline

network emergency breakdown of important hubs will result in lack of connectivity with adjacent

airports. Such failure of structural components will violate the desired properties of vertex

connectivity (reachability) and diameter (robustness) of MSkC. We focus our attention on

probabilistic edge failures in this thesis. Consider the Erdős–Rényi model [12-14] which is

denoted by G(n,p), where every possible edge is present independently with uniform

probability p. To be more specific, the presence or absence of an edge between two vertices is

independent of the presence or absence of any other edge i.e. each edge occurs independently

with probability p. Recall that the number of edges incident at a vertex is called the degree D(v)

of that vertex, and has a binomial probability distribution given as follows:

 r (()) (

) p (1 p) (2.1)

where,

n-1 = Maximum possible number of incident edges in G (n, p)

D(v) = Degree of node v, v V

II.3.1. Randomness of Vertex Degree

Suppose we are solving the MSkC problem on a complete graph G = (V, E) with |V| = n and

|E| = (

) = m. Given that, x {0, 1} m

is a decision vector of the edges to be included in a

solution to the MSkC problem, that is:

 xe = {
1 if edge e i in he ol ion

 if edge e i no in he ol ion

15

Now suppose, set E is random, and each e E exists with probability p and an indicator random

variable Ye such that:

Ye = {
1 if edge e exi

 if edge e i doe n exi

Indicator random variable Ye forms the components of the random vector Y , where

 {0, 1} m is the sample space corresponding to all possible graphs on n vertices. Hence, given

the decision vector x and the realization vector Y of set E, the realized network solution has the

edge e if and only if, xeYe = 1 which makes the degree a random variable. Recall from Section

II.2, the degree constraint of the deterministic formulation. We required that the degree D(v) of

every vertex v must be greater than or equal to k,

In the probabilistic version as each edge e has a probability of existence p in terms of indicator

random parameter Ye. The degree constraint changes to,

This change in the degree constraint converts D(v) into a random variable and one cannot

guarantee D(v) ≥ k, Є V, in every realization of the random vector. The probability that D(v)

is greater than or equal to k can be calculated by using binomial probability distribution as

follows:

 (2.2)

where, = the number of edges incident at vertex v in the solution x.





)(

,)(
ve

VvkexvD





)(

,.)(
ve

VvkeYexvD

  iTi
T

pp

ki
i
T

kvD






 )1(**))(Pr(





)(ve

exT

16

II.3.2. Chance Constrained Programming

Chance constrained programming is one of the approaches available to deal with uncertainty in

optimization problems. Chance constrained programming is applicable to models where (optimal)

decisions have to be taken prior to realizing random effects. The constraints involving random

parameters can be violated due to uncertainty and it becomes difficult to find a feasible decision

which would certainly eliminate constraint violation caused by unexpected events. Under this

framework, we can rewrite the degree constraint as,

 r(() ≥) ≥ , Є V (2.3)

Here, D(v) is the degree of a vertex v which is a binomial random variable as discussed in the

previous section. The value Є [, 1] is the prescribed probability level which is selected as per

the safety requirements of the system. It is intuitive that, higher values of can result in fewer

and higher cost feasible solutions to the problem. Equation 2.3 represents |V| individual chance

constraints and can be calculated using Equation 2.2. Also, this constraint can be modeled as a

joint chance constraints as shown in Equation 2.4.

 r [⋀ (Є () ≥)] ≥ (2.4)

In this thesis we are using individual chance constraints as we have not found an efficient way to

handle dependence and calculate the joint probability. This is an important topic for future

research. The binary nonlinear IP formulation with individual chance constraints is given by:

Eeex

VvkvD

ve
Vvkex

TS

Ee
exec













},1,0{

,))(Pr(

)(
,

..

.min



17

II.3.3. Transforming CCMSkC Problem To MSkC Problem for G(n, p)

Suppose we consider the uniform random graph model G(n, p) and x {0, 1} m satisfies,

Let ,then

Hence, there either exists a t such that r(() ≥) ≥ for T = t or no such t exists. Satisfying

the chance constraint only depends on the number of edges added and not on which edges are

added as they are all equally likely to fail. Hence, the CCMSkC problem reduces to MSkC

problem with k = t, where whenever such a t exists. The problem

is infeasible otherwise. We now introduce a model where some edges can fail with a higher

probability than others.

II.3.4. G(n,p1,p2) Model

In this model we consider two types of edges in network, where some edges exist with lower

probability p2 and the remaining with higher probability p1 (p1>p2). We are assuming that a

greater fraction of the network edges will be higher probability edges. The edge probabilities are

again assumed independent and the degree of a node becomes the sum of independent p1 trials

and p2 trials. The probability of a node‟s degree being greater than or equal to k can be calculated

by using Equation 2.6.

 (2.6)

where,





)(

,.
ve

Vvkex





)(ve

exT

  iTi
T

pp

ki
i
T

kvD






 )1(**))(Pr(

  






iti

t

pp

ki
i
t

)1(**

 



T

kt

tvDkvD))(Pr())(Pr(





)(ve

exT

18

Let, T1(v) be the number of higher probability edges and T2(v) be the number of lower

probability edges incident at v in the solution x, then

Pr(D(v) = t) =

 (2.7)

Let us consider an example (refer Figure 8) where, we are calculating the probability that the

degree of node 6 being at least k using Equation 2.6.

Figure 8. G(n,p1,p2) formula example

T1(v) = Number of p1 trials = 3

T2(v) = Number of p2 trials = 2

T = Total number of trials = = P1trials + P2trials = 3 + 2 = 5

Assume, k = 3, p1 = 0.9, p2 = 0.3, substituting in Equation 2.6,

 r((6) ≥ 3) ∑ r((6))




































tba
vTb
vTa

bvTavT pppp ba

b

vT

a

vT

)(0
)(0

)()(

2

1

2
22

2
1

11

1

)1.(.*)1.(.
)()(


)(ve

ex

19

∑ r((6))

 r((6) 3) r((6) 4) r((6) 5)

By using Equation 2.7, we can calculate Pr((6) = 3) = 0.10206.

II.4. Need for Metaheuristics

Various approaches have been developed to solve combinatorial optimization problems, which

can either be exact or heuristic. An exact algorithm guarantees an optimal solution to the problem

in a finite number of steps, whereas a heuristic algorithm does not guarantee an optimal solution

but tries to provide a good solution in a reasonable amount of time. Metaheuristics form a class of

algorithms that intelligently embed basic heuristic algorithms in sophisticated algorithmic

frameworks that explore and exploit the search space more effectively [25]. In case of NP-hard

problems, exact algorithms may take exponential computational time in worst-case. In real-world

conditions we can accept solutions that are good enough for implementation and produced in a

reasonable amount of time, which can be achieved through sophisticated metaheuristics

algorithms.

As discussed in Section II.2.1, the MSkC problem is a polynomial-time solvable by using

O(n
4
) complexity of maximum weighted b-matching problem. O(n

4
) running time is prohibitive

for large size problems and the exact algorithm might take high computational time in worst-

cases. No polynomial-time algorithm is presently available for the probabilistic version of

minimum spanning k-core problem. Note that the formulation is a nonlinear IP. Hence, to get

better solutions in reduced amount of time, metaheuristics can be a good approach to solve the

MSkC and CCMSkC problems.

20

CHAPTER III

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE

The Greedy Randomized Adaptive Search Procedure introduced by Feo and Resende [15] is an

iterative, multi-start, heuristic procedure, where each iteration consists of two phases, the greedy

randomized construction phase and the local search phase. In the greedy randomized construction

phase, an initial feasible solution is constructed by randomly choosing elements from the

Restricted Candidate List (RCL). RCL consists of only best elements of the candidate list

selected by a greedy function. The second phase of GRASP is the local search phase that is

applied for further improvement of the solution generated by the GRASP construction, as the

solution obtained by the construction phase is not guaranteed to be the local optimum. At the end

of each GRASP iteration best solution is updated and a final solution is obtained when GRASP

completes a fixed number of iterations. This chapter explains in detail the overall procedure of

GRASP for the minimum spanning k-core problem in deterministic and probabilistic settings.

The overall procedure of the GRASP is shown in Algorithm 1 which is similar for both

deterministic and probabilistic versions. The difference in the procedure is at the construction and

local search phase of the algorithm.

21

GRASP construction phase builds an initial feasible solution based upon the structural

properties of the minimum spanning k-core problem. This initial feasible solution is further

improved by investigating appropriate neighborhoods of the feasible solution in the local search

phase. Finally, the best solution among the iterations will be return by GRASP as feasible

solution. The stopping criterion for GRASP is number of iterations. Larger number of GRASP

iterations increases computational time, but increases the possibility of finding better quality

solution.

Algorithm 1. GRASP framework

III.1. Construction Phase

Initially, the solution is an empty set and construction phase adds candidate edges to the solution.

Construction phase terminates when the solution achieves the desirable structural properties of

the problem under consideration (i.e., becomes feasible). We now illustrate this approach on an

example.

Procedure GRASP

for i = 0, , Number of GRASP Iterations do

Randomly generate „ ‟
StartSolution = GreedyRandomizedConstruction ()

LocalOptimal = LocalSearch (StartSolution)

if Local Optimal is Better Than Best Solution then

BestSolution = LocalOptimal

end

end

return BestSolution

end GRASP

22

Edge Index 1 2 3 4 5 6

Edges (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

Costs 8 6 3 5 4 5

Figure 9. Input graph and data for construction phase

Step 1 Building a candidate list: The algorithm ranks candidate edges by using a greedy rule. As

our objective is to minimize overall cost of network, algorithm sorts all edges in ascending order

of costs as shown in Table 1.

Edge Index 3 5 4 6 2 1

Edges (1, 4) (2, 4) (2, 3) (3, 4) (1, 3) (1, 2)

Costs 3 4 5 5 6 8

Table 1. Candidate list

Step 2 Building a restricted candidate list (RCL): In this step, the algorithm acts greedy by

constructing RCL which consists of only best quality candidate edges from candidate list. RCL is

associated with a „Threshold Parameter‟ (≤ ≤ 1), generated randomly at the start of each

GRASP iteration. A threshold value is then calculated as Cmin + (Cmax – Cmin), where Cmin and

Cmax are the minimum and maximum edge costs in the candidate list respectively. Based on the

threshold value, a candidate edge is selected from the RCL at random to add to the solution.

23

Step 3 Updating Candidate List: Edge added to the solution in step 2 is removed from the

candidate list and the algorithm reselects minimum cost (Cmin) and maximum cost (Cmax) edges.

Algorithm repeats Step 2 and Step 3 until degrees of all vertices become at least k. In

Step 2, if is equal to 0 then the behavior of the algorithm will be purely greedy and the

algorithm always selects a minimum cost edge from the candidate list. On the other hand, if is

equal to 1 then the algorithm will randomly select edge from the candidate list. Following

sections describe construction phase using purely greedy (= 0), and purely randomized (= 1)

and greedy-randomized (≤ ≤ 1) approaches for the graph given in Figure 9.

III.1.1. Greedy Construction Phase

Consider a construction phase iteration with = 0. This results in a threshold value of Cmin.

Initially, candidate list consists of all the edges as shown in Table 1. As = 0, in step 2 the

algorithm constructs an RCL that consists of edges with cost less than or equal to Cmin. Algorithm

makes a greedy choice and selects a minimum cost edge to add into solution. Finally, in step 3

candidate list is updated by removing the edge added in step 2 and algorithm reselects Cmin and

Cmax. Steps 2 and 3 repeat until degrees of all the vertices of the solution become at least k.

Candidate List Cmin Cmax Threshold Value RCL Solution

{1,2,3,4,5,6} 3 8 3 {3} {3}

{1,2,4,5,6} 4 8 4 {5} {3,5}

{1,2,4,6} 5 8 5 {4,6} {3,5,4}

{1,2,6} 5 8 5 {6} {3,5,4,6}

{1,2} 6 8 6 {2} {3,5,4,6,2}

Table 2. Greedy construction phase solution

The details of the steps carried out in the purely greedy construction phase to construct an initial

feasible solution for the graph in Figure 9 are given in Table 2 where RCL, Solution and

24

Candidate List are in terms of edge index. Greedy construction phase for the minimum spanning

k-core problem returns an initial feasible solution. Then we drop edges starting heaviest first until

the solution is minimal (i.e., at least one end point has degree = k), i.e. solution set S = {3, 5, 4, 2}

with minimized cost of 18 as shown in Figure 10.

Figure 10. Greedily constructed solution

III.1.2. Randomized Construction Phase

Consider a construction phase iteration with = 1. This results in a threshold value of Cmax and

RCL is the original candidate list. Algorithm‟s behavior will be completely random as it selects

any candidate edge to add into solution. Steps 2 and 3 repeat until degrees of all the vertices of

the solution become at least k.

Candidate List Cmin Cmax Threshold Value RCL Solution

{1,2,3,4,5,6} 3 8 8 {1,2,3,4,5,6} {1}

{2,3,4,5,6} 3 6 6 {2,3,4,5,6} {1,4}

{2,3,5,6} 3 6 6 {2,3,5,6} {1,4,6}

{2,3,5} 3 6 6 {2,3,5} {1,4,6,2}

{3,5} 3 4 4 {3,5} {1,4,6,2,3}

Table 3. Randomized construction phase solution

25

The details of the steps carried out in the purely randomized construction phase to construct an

initial feasible solution for Figure 9 graph are given in Table 3. Randomized construction phase

for minimum spanning k-core problem returns an initial feasible solution, which can then be

made minimal by greedily dropping edges, i.e. solution set S = {1, 4, 6, 3} with minimized cost of

21 as shown in Figure 11.

Figure 11. Randomly constructed solution

III.1.3. Greedy Randomized Construction Phase

Consider a construction phase iteration with = 0.5. Initially, candidate list consists of all the

edges as shown in Table 1. As = 0.5, in step 2 algorithm construct RCL that consists of edges

with cost less than or equal to Cmin +

 (Cmax – Cmin). Now, the algorithm will randomly select an

edge with cost less than or equal to threshold value to add into the solution. Finally, in step 3 the

candidate list is updated by removing the edge added in step 2 and the algorithm reselects Cmin

and Cmax. Steps 2 and 3 repeat until degrees of all the vertices of the solution become at least k.

26

Candidate List Cmin Cmax Threshold Value RCL Solution

{1,2,4,5,6} 3 8 6 {2,3,4,5,6} {3}

{1,2,5,6} 4 8 6 {2,4,5,6} {3,4}

{1,2,6} 4 8 6 {2,5,6} {3,4,5}

{1,6} 5 8 7 {2,6} {3,4,5,2}

Table 4. Greedy-randomized construction phase solution

Figure 12. Greedy-randomized solution

The details of the steps carried out in the greedy-randomized construction phase to construct an

initial feasible solution for the graph in Figure 9 are given in Table 4. Greedy randomized

construction phase for the minimum spanning k-core problem returns an initial feasible solution,

i.e. Solution set S = {3, 4, 5, 2} with minimized cost of 18 as shown in Figure 12.

In case of purely greedy approach, RCL is restricted to only the minimum cost edges that

can result in addition of extra edges to satisfy structural properties of problem especially for the

CCMSkC problem. Also, completely randomized approach may not include good quality edges

and result in inferior solutions to the problem. On the other hand, greedy-randomized approach

allows the algorithm to balance both cost minimization and degree requirements of minimum

spanning k-core problem. In other words, greedy-randomized approach can potentially provide

superior solutions as compare to completely greedy or randomized approaches. This is the reason

27

behind using greedy randomized construction approach in GRASP for the construction phase.

Note that GRASP is a multi-start heuristic and for each iteration, is generated randomly

between 0 and 1.

Algorithm 2 and Algorithm 3 are the detailed greedy randomized construction phases of

the MSkC and CCMSkC problems respectively. The input data for both algorithms is an

undirected graph G = (V, E). The output of Algorithm 2 is a minimal spanning k-core that ensures

degree of every vertex v V is at least k and there is no edge in the solution with both end points

greater than k. Furthermore, the output of Algorithm 3 is a minimal spanning k-core that ensures

every vertex v V satisfies the chance constraint in addition to the degree constraint.

Algorithm 2. Construction phase for the MSkC problem

Initially, the construction phase builds a candidate list that includes all the edges of the

given graph G = (V, E). In the next step algorithm constructs RCL which consists only of lower

cost edges from the candidate list. RCL is built using a threshold parameter which is generated

randomly in the range of 0 to 1. A threshold value is calculated as Cmin + (Cmax – Cmin), where

Cmin and Cmax are the minimum and maximum edge costs from the candidate list respectively. An

Procedure GreedyRandomizedConstruction ()

Initial SolutionSet =

Initial candidate list, CL= E

 while MinDeg < k do

Cmin = min{ Ce | e CL }

Cmax = min{ Ce | e CL }

RCL = { e CL | Ce ≤ Cmin + (Cmax – Cmin)}

 Select an edge s from the RCL at random

 SolutionSet = SolutionSet {s}

 Increment degrees of both endpoints of edge s by 1 in the degree list

 MinDeg = Minimum degree in the degree list

 end

 Find minimal spanning k-core by deleting all edges with both endpoints greater than k

 return SolutionSet

end GreedyRandomizedConstruction

28

edge is randomly selected from RCL to include in the solution. Once the selected edge is added to

the solution, the algorithm updates the candidate list for the next iteration. Iterations terminate

when degrees of all the nodes become greater than or equal to k. The steps explained up to this

point are similar for both Algorithm 2 and the first phase of Algorithm 3. In the last step,

Algorithm 2 deletes all the edges with both endpoints greater than k and identifies a minimal

spanning k-core.

Algorithm 3. Construction phase for the CCMSkC problem

Algorithm 3 is divided into two phases. The first phase is similar to Algorithm 2,

excluding the step of finding a minimal spanning k-core. In the second phase Algorithm 3

satisfies all the individual chance constraints by adding sufficient lower cost edges at every vertex

v V. Algorithm 3 terminates the GRASP iterations, if the individual chance constraint of a

particular node is violated and all incident edges have been added. In the last step, Algorithm 3

Procedure GreedyRandomizedConstruction ()

 SolutionSet = Algorithm 2 solution; excluding step of finding minimal spanning k-core

for i=0, . . . , Number of Nodes do

 Calculate r(() ≥ k)
 β = Prescribed probability level

 while r(() ≥ k) < β and ∂(i)\SolutionSet ≠ do

 j = argmin{ce| e ∂(i)\SolutionSet}

 SolutionSet = SolutionSet {j}

 end

 if r(() ≥ k) < β do

 terminate GRASP

 return “infeasible”

 end

end

Find minimal spanning k-core by deleting excess edges if,

chance constraints of both endpoints of edges are not violated

 return SolutionSet

end GreedyRandomizedConstruction

29

deletes excess edges and identifies a minimal spanning k-core. An edge is deleted only if both

endpoints still satisfy chance constraints upon deletion of the edge.

III.2. Local Search Phase

Local search phase starts with the solution from the GRASP construction phase and iteratively

improves the current solution by exploring solutions in the local neighborhood. Neighborhood of

a solution is a function defined on search space S (S is the set of all feasible solutions) that assigns

a set of neighbors N(s) S for each s S. Set N(s) is called the neighborhood of s. Solution

s* S is called a local minimum if f(*) ≤ f(), s N(s*) and it is called a global minimum if

f(*) ≤ f(), s S. Given a graph G = (V, E) as input, the GRASP construction phase builds an

initial feasible solution G’ (V, E’), E’ E. Since the solution generated by the construction phase

is not necessarily local/global optimum, it is helpful to further improve the solution in the local

search phase. (1,1)-exchange neighborhood is to delete an edge from the current solution and add

an edge (not present in the current solution) resulting in another feasible solution. Similarly,

(1,2)-exchange neighborhood is to delete an edge from the current solution and add two edges

(not present in the current solution) resulting in another feasible solution. We use (1,1)-exchange

and (1, 2)-exchange neighborhoods for both the versions of the problem.

III.2.1. Local Search Phase for The MSkC Problem

Let E0 E be a feasible solution, i.e., G0= (V, E0) is a spanning k-core.

N1,1(E0) = { E’ E | E’= E0 {w}\{u}, where w E0, u E0 and (V, E’) is a spanning k-core}

N1,2(E0)
= * E’ E | E’= E0 {v, w}\{u}, where w ≠ , u E0, v,w E0 and (V, E’) is a spanning

k-core}

30

The local search neighborhood used in GRASP for the MSkC problem is N1,1(E0) N1,2(E0).

Note that E0 {w}\{u} N1,1(E0)
will correspond to a minimal solution if u,w edges are incident

at the same node which has degree exactly k in the solution E0. Similarly, E0 {v, w}\{u}

N1,2(E0) will be a minimal solution if v is incident at one endpoint of u and w is incident at the

other endpoint of u, where both endpoints are at degree exactly k in E0. Such a minimal

neighboring solution is an improving solution if the cost of the added edges is less than the cost of

the deleted edge. Algorithm 4 is the local search phase of the MSkC problem.

Algorithm 4. Local search phase for the MSkC problem

Figure 13. A feasible solution after (1,1)-exchange for the MSkC problem

Procedure LocalSearch(E
0
)

while there exists (u,w) N1,1(E
0
) such that cw < cu do

 E
0
= E

0
 {w}\{u}

end

while there exists (u,v,w) N1,2(E
0
) such that (cw+ cv) < cu do

 E
0
= E

0
 {w,v}\{u}

end

return E
0

end LocalSearch

31

Consider Figure 13, in which candidate edge to delete is (5, 7) with degree of node 5 greater than

k and degree of node 7 equal to k. An improving solution after (1, 1)-exchange can be found by

replacing edge (5,7) with the edge (6, 7). Edge (6, 7) is incident at node 7, not present in the

current solution and the cost of edge (6, 7) is less than the cost of edge (5, 7). Let‟s assume that

after this step (1, 1)-exchange terminates and feasible solution is further improved in (1, 2)-

exchange neighborhood.

Figure 14. A feasible solution after (1,2)-exchange for the MSkC problem

An improving solution after (1, 2)-exchange is shown in Figure 14, where (2, 4) is the edge to

delete with degree of both endpoints equal to k. The edge (2, 4) is replaced with edges (1, 4) and

(2, 5). Both (1, 4) and (2, 5) edges are incident at respective endpoints of (2, 4) edge, not

present in current solution and sum of the costs of (1, 4) and (2, 5) edges is less than the cost of

edge (2, 4).

32

III.2.2. Local Search Phase for The CCMSkC Problem

Let E0 E be a feasible solution, i.e., G0= (V, E0) is a spanning k-core. We use N1,1(E0) and

N1,2(E0) as defined in Section III.2.1. A minimal neighboring solution is an improving solution if

the cost of the added edges is less than the cost of the deleted edge and the probabilities of the

added edges is greater than or equal to the probability of the deleted edge. Algorithm 5 is the

local search phase of the CCMSkC problem.

Algorithm 5. Local search phase for the CCMSkC problem

Figure 15. A feasible solution after (1,2)-exchange for the CCMSkC problem

Procedure LocalSearch(E
0
)

while there exists (u,w) N1,1(E
0
) such that cw < cu, pw ≥ pu do

 E
0
= E

0
 {w}\{u}

end

while there exists (u,v,w) N1,2(E
0
) such that (cw+ cv) < cu, pw ≥ pu, pv ≥ pu do

 E
0
= E

0
 {w,v}\{u}

end

return E
0

end LocalSearch

33

Consider Figure 15, in which edge to delete is (1,6) with the degree of both endpoints greater

than k . An improving solution after (1,2)-exchange can be found by replacing edge (1,6) with

the edge (1,2) and (5,6) edges, which are incident at respective endpoints of edge (1,6). Edges

(1,2) and (5,6) are not present in current solution and sum of the costs of (1, 2) and (5,6) is less

than the cost of edge (1, 6). Also, consider that the probabilities of both (1,2) and (5,6) edges are

at least probability of the edge (1,6).

Figure 16. A feasible solution after (1,1)-exchange for the CCMSkC problem

Consider Figure 16, in which (3,6) is the edge to be deleted with the degree of both endpoints

greater than k. Higher probability edges (2,6) and (3,4) incident at respective endpoints of the

edge (3,6) are selected. Current solution cannot improve in an (1,2)-exchange, as sum of the

costs of edges (2,6) and (3,4) is greater than the cost of edge (3,6). However an improving

solution after (1,1)-exchange can be found by replacing edge (3,6) with either (2,6) or (3,4). The

algorithm deletes edge (3,6) and adds edge (3,4) if chance constraint at node 6 is not violated

upon deletion of the edge (3,6). In the next chapter, we discuss the computational experiment and

numerical results from solving the MSkC and CCMSkC problems using the GRASP algorithm

developed in this chapter.

34

CHAPTER IV

COMPUTATIONAL EXPERIMENTS

This chapter presents computational experiments on the GRASP algorithms developed in Chapter

III. Extensive experimentation on the algorithms for the deterministic and probabilistic versions

of the problem is carried out on a test-bed of instances. In Section 4.1, we describe the

implementation details and in Section 4.2 we describe the instances used in testing. Section 4.3

describes the experimental design and introduces the statistics collected during the experiments.

Finally, we conclude this chapter by presenting numerical results and observations.

IV.1. General Implementation Details

GRASP algorithm was implemented in the C++ programming language. All numerical

experiments were conducted on Dell Precision T3500 computers with Intel Xeon W3550, 3.07

GHz processor and 3GB RAM.

A binary IP formulation for the deterministic version of problem discussed in Section II.2 is

implemented in Xpress (Xpress Optimization Suite 7.0). Xpress results are important to assess the

solution quality of deterministic GRASP as Xpress provides the optimal solution for the

deterministic version of problem. Detailed Xpress model can be found in Section A.5 of

Appendix A.

35

Preliminary experiments demonstrated that the updating candidate list was the most time

consuming step in the construction phase. During each iteration of construction phase, we were

updating candidate list and the restricted candidate list by searching for the minimum and

maximum cost edges in the candidate list. To avoid searching for minimum and maximum cost

edges, we designed a double dimensional array specifically to update candidate list.

Edge Index 0 1 2 3 4

Edge Cost 15 7 35 10 5

Table 5. Double dimensional array

Double dimensional array stores edge id in the first dimension and respective edge cost in the

second dimension as shown in Table 5.Once this array is initialized, we applied the bubble sort

algorithm to sort all the edges in ascending order of cost along with their ids as shown in Table 6.

Edge Index 4 1 3 0 2

Edge Cost 5 7 10 15 35

Table 6. Double dimensional array after bubble sort

Now algorithm directly selects minimum and maximum cost edges from double dimension

array‟s first and last positions respectively. If the edge at any particular array‟s position is not in

the candidate list, the algorithm moves to the next position of the array to find an addable edge.

Table 7 shows runtime improvement due to double dimension array implementation on

deterministic GRASP algorithm with 10 iterations.

36

Instance
Previous

Runtime (sec)

Current

Runtime (sec)

150 Nodes 17 9.3

200 Nodes 61 30

250 Nodes 158 78

Table 7. Double dimensional array deterministic GRASP runtime improvement

IV.2. Description of Test Bed

The test-bed of instances consisting of graphs of various sizes was generated by using MATLAB

Appendix A, Section A.1. MATLAB generator produces test instances for the minimum spanning

k-core problem with specified number of vertices, edges, edge costs and probabilities. The

number of vertices in the generated graphs was selected as 30, 50, 70, 100, 150, 200 and 250. The

number of edges for all instances was calculated as
 ()

 , as we are assuming input to the

problem is a complete graph. The costs for edges were generated randomly and uniformly from

specified ranges. We have selected the edge cost ranges as [100,500], [500,1000], [500,1500] and

[1000,2000] for every test instance. Table 8 presents information regarding the 28 test instances

of G(n,p1,p2) graphs, used in our experiments for both deterministic and probabilistic algorithms.

The name of an instance provides information about the number of nodes and edge cost range for

that instance, for e.g. “Kcore-30-100-500.txt” is a 30-node instance and costs assigned to the

edges are distributed uniformly in the range of [100,500]. Furthermore, each edge was randomly

assigned either p1 or p2 type of probability and all test instances consists of larger proportion of p1

type edges. In every instance, MATLAB uses a predefined fraction which controls the proportion

of generating p1 type of edges amongst the graph edges. We have used p1 = 90%, p2 = 30% and p1

fraction = 80% for all the test instances. Therefore 80% of the edges are p1 type edges and the

remaining 20% are p2 type edges. GRASP for the MSkC is tested on all test instances ignoring

probability. Another MATLAB generator Appendix A, Section A.2 was used to convert all test

instances into a format readable by Xpress. An instance‟s data file for C++ implementation and

37

its conversion to readable Xpress-MP format by using respective MATLAB generators is given in

Appendix A, Section A.3 and Section A.4.

Instance n m Total Cost

Kcore-30-100-500.txt

30 435

130646

Kcore-30-500-1000.txt 327814

Kcore-30-500-1500.txt 431391

Kcore-30-1000-2000.txt 651884

Kcore-50-100-500.txt

50 1225

369059

Kcore-50-500-1000.txt 918390

Kcore-50-500-1500.txt 1231380

Kcore-50-1000-2000.txt 1854680

Kcore-70-100-500.txt

70 2415

720557

Kcore-70-500-1000.txt 1804450

Kcore-70-500-1500.txt 2413580

Kcore-70-1000-2000.txt 3625380

Kcore-100-100-500.txt

100 4950

1480550

Kcore-100-500-1000.txt 3700920

Kcore-100-500-1500.txt 4940630

Kcore-100-1000-2000.txt 7399500

Kcore-150-100-500.txt

150 11175

3370700

Kcore-150-500-1000.txt 8388520

Kcore-150-500-1500.txt 11197400

Kcore-150-1000-2000.txt 16752500

Kcore-200-100-500.txt

200 19900

5983010

Kcore-200-500-1000.txt 14934600

Kcore-200-500-1500.txt 19821800

Kcore-200-1000-2000.txt 29863100

Kcore-250-100-500.txt

250 31125

9359000

Kcore-250-500-1000.txt 23308700

Kcore-250-500-1500.txt 31161400

Kcore-250-1000-2000.txt 46725600

Table 8. Test instances

IV.3. Design of Experiments

This section discusses the experimental setup used to test the performance of both GRASP

algorithms. As discussed earlier, the termination criterion for GRASP is number of iterations.

38

Larger number of GRASP iterations increases computational time, but increases the possibility of

finding better quality solutions. After extensive experimentations we decided upon 10 GRASP

iterations within which good quality solutions to both the versions of minimum spanning k-core

were observed. Furthermore, to demonstrate algorithmic performance in terms of quality of

solution, we have executed 1000 iterations for 30, 50, 70 and 100 node instances for both

versions of GRASP. Following statistical data is collected during the computational experiments.

 GRASP Solution: The best solution returned by GRASP for a given instance.

 Edges Included: The number of edges |E*| included in the final solution given by

GRASP.

 Construction Time: Total time spent in construction phase.

 Local Search Time: Total time spent in local search phase.

 GRASP Time = Total GRASP time.

 LS Hit Rate: Number of times local search improved the initial feasible solution

provided by GRASP construction phase.

 LSAvgPerDec = The percentage improvement by local search averaged over all the

iterations in which improvement in initial feasiwas observed.

 Xpress Objective: The optimal cost returned by Xpress for a given instance.

 Optimality Gap: Represents percentage gap between the best solution by

deterministic GRASP and Xpress optimal solution for a given graph instance. The

following formula has been used to compute optimality gap:

 p imali y Gap
(e ol ion p imal ol ion)

 p imal ol ion

39

IV.4. Numerical Results: GRASP for The MSkC Problem

Optimality gap for all test instances at 10 GRASP iterations are detailed in Appendix B, Table

B.1 and vary within the range of 1% to 5%. Lesser optimality gap corresponds to the good quality

GRASP solutions. Considering 1% to 5 % range of optimality gap for 10 GRASP iterations, we

can conclude that the GRASP for the MSkC problem provides good quality solutions.

Furthermore, to increase possibility of getting good quality solutions experiments are executed

with 1000 GRASP iterations for 30, 50, 70 and 100 node instances and optimality gaps are

detailed in Appendix B, Table B.2. It‟s noteworthy to observe reduction in the optimality gap

range to 0%-3%.At larger iterations GRASP returns high-quality solutions to the problem, which

is exemplified with the instances that have 0.0%, 0.1%, 0.4% and 0.6% optimality gaps. This

implies algorithm can return superior quality solutions at higher number of iterations for any

given instance of graph. Figure 17 shows the optimality gap for all 30, 50, 70 and 100 node

instances at 10 and 1000 GRASP iterations.

Figure 17. Optimality gap comparison

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

O
p

ti
m

a
li

ty
 G

a
p

Instance

Optimality Gap

1000 Iterations

10 Iterations

40

Appendix B provides statistics mentioned in Section IV.3 for GRASP on the MSkC problem,

where Table B.1 presents statistics for 10 iterations for all instances. Table B.2 presents statistics

for 1000 iterations for 30, 50, 70 and100 node instance. GRASP is further extended to solve the

CCMSkC problem. GRASP‟s efficiency is first established on the MSkC problem as it allows us

to compare optimal solutions from Xpress. For the CCMSkC problem we need to solve a mixed

integer non linear program (MINLP), which is not easy given the current commercial

optimization packages. So, we evaluate GRASP performance in terms of its running time. The

running time comparison of GRASP for MSkC and CCMSkC problems is given in the following

section.

IV.5. Numerical Results: GRASP for The CCMSkC Problem

Experimental results of GRASP for CCMSkC problem given in this chapter and Appendix B are

based upon the parameters given in Table 9.

Parameter Value

p1 90%

p2 30%

 60%

Table 9. Parameters of GRASP for the CCMSkC problem

Results of GRASP for the CCMSkC problem at 10 iterations for all the test instances are

given in Appendix B, Table B.3, Table B.5. Table B.5 presents the difference in edge sets and

objective values of CCMSkC and MSkC problems. Table B.3 provides statistics mentioned in

Section IV.3 for GRASP on the CCMSkC problem. To increase possibility of getting good

quality solutions experiments were executed with 1000 GRASP iterations for 30, 50, 70 and 100

node instances and detailed in Appendix B, Table B.4. Table 10 presents the difference in

solutions returned by GRASP at 1000 and 10 iterations. Difference in solution implies that

41

GRASP for the CCMSkC problem can return high-quality solutions at higher number of

iterations.

Instance
GRASP Solution

 at 10 Iterations

GRASP Solution

at 1000 Iterations
Difference

Kcore-30-100-500.txt 76816 76166 650

Kcore-30-500-1000.txt 212783 210801 1982

Kcore-30-500-1500.txt 271522 269127 2395

Kcore-30-1000-2000.txt 424785 422686 2099

Kcore-50-100-500.txt 196153 195362 791

Kcore-50-500-1000.txt 553641 552678 963

Kcore-50-500-1500.txt 702588 699887 2701

Kcore-50-1000-2000.txt 1109320 1107420 1900

Kcore-70-100-500.txt 366200 365926 274

Kcore-70-500-1000.txt 1055430 1052020 3410

Kcore-70-500-1500.txt 1318970 1317060 1910

Kcore-70-1000-2000.txt 2120300 2111270 9030

Kcore-100-100-500.txt 739676 738665 1011

Kcore-100-500-1000.txt 2123340 2123090 250

Kcore-100-500-1500.txt 2679520 2675020 4500

Kcore-100-1000-2000.txt 4266990 4261880 5110

Table 10. CCMSkC objective improvement at 1000 iterations

Figure 18. GRASP runtime at 10 iterations

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300

T
im

e
(s

ec
)

Instance

GRASP Runtime

MSkC Problem

CCMSkC

Problem

42

Figure 18 represents running time comparison of GRASP for the MSkC and CCMSkC problems

at 10 iterations. Observing performance of GRASP for the CCMSkC problem, we conclude that

GRASP for the CCMSkC problem provides good quality solutions in less amount of time.

Recall from Chapter II, chance constraints ensures that the probability of a node‟s degree

being at least k is greater than or equal to a prescribed probability level , ≤ ≤ 1 Higher

values of results in either infeasible solutions or higher cost feasible solutions to the problem.

Probability of getting infeasible solutions increases as increases. The effect of different

values on the CCMSkC problem is shown in Appendix B, Table B.6, where we note the increase

in objective values and edge set sizes of instances as increases.

43

CHAPTER V

CONCLUSION AND FUTURE WORK

In this thesis we studied the minimum spanning k-core problem introduced by Balasundaram in

[4]. k-Cores were originally proposed by Seidman [22] in the social network analysis literature.

Minimum spanning k-core problem uses the notion of classical k-cores and explicitly controls

minimum degree and by proper choice of minimum degree, implicitly controls diameter and

connectivity of the network design.

The main contribution of this thesis is a GRASP metaheuristic to solve the MSkC and

CCMSkC problems. GRASP for the MSkC problem was first developed, benchmarked, and then

extended for the CCMSkC problem. Developing GRASP for the MSkC problem before extending

it to the CCMSkC problem allowed us to assess the performance of GRASP on the MSkC

problem by comparing optimal results from Xpress. These results helped to establish that the

GRASP for the MSkC problem returns a good feasible solution for all the test instances.

Following this we extended GRASP to solve the CCMSkC problem. In this thesis we have used

individual chance constraints as we have not found an efficient way to handle dependence and

calculate the joint probability. Finding an expression to calculate joint probability and employ the

existing model with a joint chance constraint is an interesting topic for future research.

44

Furthermore, the preliminary experiments on the GRASP for CCMSkC problem leads us

to an interesting conclusion that the CCMSkC problem on G(n,p) uniform random graph

instances can be reduced to a special case of MSkC problem. Therefore, we proposed a new

G(n,p1,p2) model for the CCMSkC problem and developed GRASP algorithm for the same.

Results shown in Appendix B, Table B.6 suggest that the GRASP for CCMSkC problem provides

good quality solutions in reduced amount of time. In the future, it would be interesting to derive

an efficient expression that can determine probability of a vertex degree being at least k for

G(n, p1, p2, … , pm) graph model, where every edge exists with a possibly different probability.

Additionally, a problem for study in the immediate future is to use the Conditional Value at Risk

(CVaR) based approach for the probabilistic version of minimum spanning k-core problem.

CVaR is a downside financial risk measure that has recently been adopted to the network

optimization under uncertainty [6, 27].

Finally, considering superior solution qualities of developed GRASP algorithms and

above mentioned future extensions, we conclude that the GRASP approach applied to the

minimum spanning k-cores in this thesis is a successful approach. The complexity of CCMSkC

problem is an open question to be addressed.

45

REFERENCES

1. Abello, J., Pardalos, P., & Resende, M. (1999). On Maximum Clique Problems In Very

Large Graphs. In J. Abello, & V. J., External Memory Algorithms and Visualization (pp.

110-130). Boston: Americal Mathematical Society.

2. Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network Flows:Theory, Algorithms, and

Applications. Prentice Hall.

3. Anstee , R. (1987). A Polynomial Algorithm for b-Matchings: An Alternative Approach .

Information Processing Letters , 24 (3), 153-157 .

4. Balasundaram, B. (2007). Graph Theoretic Generalizations of Clique: Optimization and

Extensions. College Station: Texas A&M University.

5. Blum , C., & Roli. , A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Comput. Surv. , 35 (3), 268-308.

6. Boginski, V. L., Commander, C. W., & Timofey, T. (2009). Polynomial-time

identification of robust network flows under uncertain arc failures. Optimization Letters ,

461-473.

7. Boginski, V., Butenko, S., & Pardalos, P. (2003). On Structural Properties of Market

Graph. In A. Nagurney, innovation in Financial and Economic Networks. London:

Edward Elgar publishers.

8. Broido, A., & Claffy, K. (2001). Internet Topology: Connectivity of IP Graphs. In F. S.,

& P. K., Scalability and Traffic Control in IP Networks (pp. 172-187). Bellingham, WA:

SPIE Publications.

9. Cook, W., & Pulleyblank, W. (1987). Linear Systems for Constrained Matching

Problems. Mathematics of Operations Research , 12 (1), 97-120 .

10. Diestel, R. (1997). Graph Theory. Berlin : Springer-Verlag.

46

11. Edmonds, J. (1965). Maximum Matching and A Polyhedron with 0, 1 Vertices. Journal

of Research of the National Bureau of Standards , B 69B, 125-130 .

12. Erdős, P., & Rényi, A. (1959). On Random Graphs . Publ. Math. , 6, 290-297.

13. Erdős, P., & Rényi, A. (1969). On The Evolution of Random Graphs . Publications of the

Mathematical Institute of the Hungarian Academy of Sciences , 5, 17-61.

14. Erdős, P., & Rényi, A. (1961). On the Strength of Connectedness of a Random Graph .

Acta Mathematica Sscientia , 12, 261-267.

15. Feo , T., & Resende, M. (1995). Greedy Randomized Adaptive Search Procedures .

Journal of Global Optimization , 6, 109-133.

16. Festa , P., & Rensende, M. (2000). GRASP: An annotated bibliography. Floham Park,

NJ: AT&T Labs Research.

17. Festa, P., & Resende, M. C. (2009). An annotated bibliography of GRASP–Part II:

Applications. International Transactions in Operational Research , 16 (2), 131–172.

18. Glover, F. (1997). Tabu Search. In Metaheuristic procedures for training neural

networks (p. 53). Boston: Springer.

19. Goldberg, D. (1989). Genetic algorithms in search and optimization. Machine Learning .

20. Henrion, R. (2004). Stochastic Programming Community Home Page. Retrieved from

http://stoprog.org.

21. Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies.

Journal of Statistical Physics , 975-986.

22. Lap Chi, L., Singh, M., Mohammad, R., & Naor, J. (2007). Survivable Network Design

with Degree and Order Constraints. Proceedings of the Thirty-Ninth Annual ACM

Symposium On Theory of Computing.

23. Minoux, M. (1989). Network synthesis and optimum network design problems: Models,

solution methods, and applications. Networks , 19, 313-360.

24. Pulleyblank, W. (1973). Faces of matching polyhedra. . Canada : University of Waterloo.

25. Reeves, C. (1993). Modern Heuristic Techniques for Combinatorial Problems . Blackwell

Scientific Publishing .

26. Resende , M., & Ribeiro , C. (2003). Greedy Randomized Adaptive Search Procedures.

In G. Kochenberger, & F. Glover, Handbook of Metaheuristics (pp. 219–249). Kluwer

Academic Publishers.

47

27. Rockafellar, T. R., & Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. The

journal of risk , 2.

28. Seidman, S. (1983). Network structure and minimum degree. Social Networks , 5, 269-

287.

29. Steiglitz, K., Weiner, P., & Kleitman., D. (1969). The Design of Minimum-Cost

Survivable Networks. IEEE Transactions on Circuit Theory , 16 (4), 455–460.

30. Wasserman, S., & Faust, K. (1994). Social Network Analysis. New York: Cambridge

University Press.

31. West, D. (2001). Introduction to Graph Theory . NJ : Prentice-Hall .

48

APPPENDIX A

MATLAB INSTANCE GENERATORS AND

XPRESS MODEL IMPLEMENTATION

Appendix A presents two MATLAB generators we have used to generate test bed of the

instances. Section A.1 is MATLAB generator which generates instance data files for C++

implementation. Format of an instance data file for C++ is shown in Section A.3, which further

converted into Xpress readable format (Section A.4) by using MATLAB generator given in

Section A.2.Finally, this appendix provide Xpress mosel language code for the MSkC problem.

49

A.1. MATLAB instance generator for C++ implementation

n = 6;
IMIN = 10;
IMAX = 50;

vert = n;
edge = n*(n-1)/2;
P1_percent = 80;
name =

strcat('Kcore','-',num2str(vert),'-',num2str(IMIN),'-

',num2str(IMAX),'.txt')
fid = fopen(name,'w');

 fprintf(fid, 'c ');
 fprintf(fid, name);
 fprintf(fid, '\n');
 fprintf(fid, 'p ');
 fprintf(fid, 'nodes ');
 fprintf(fid, '%d' , vert);
 fprintf(fid, '\n');

 id = 0;
 P1 = 0.9;
 P2 = 0.3;
 p1_edges = floor(edge * P1_percent/100);
 probability_column = zeros(edge,1);
 probability_column(1:p1_edges) = P1;
 probability_column(p1_edges+1:end) = P2;
 probability_column = randsample(probability_column,edge);

 for t = 1:n-1
 for h = t+1:n
 fprintf(fid,'e ');
 fprintf(fid,'%d',id); %Printing edge id
 fprintf(fid, ' ');
 fprintf(fid,'%d',t-1); %Printing tail node
 fprintf(fid, ' ');
 fprintf(fid,'%d',h-1); %Printing head node
 fprintf(fid,' ');
 costs = randi([IMIN IMAX],[1 1]);
 fprintf(fid,'%d',costs); %Printing cost

%Printing probability
fprintf(fid,' %1.2f',probability_column(id+1));

fprintf(fid,'\n');
 id = id + 1;
 end
 end
 status = fclose(fid);

50

A.2. MATLAB instance generator for Xpress implementation

function c2xpress(name)
% Read Instances from C++ data file.

ipname = strcat(name,'.txt');

opname = strcat(name,'.dat');
display(strcat(['Converting ' ipname ' to ' opname '...']));
fid = fopen(ipname,'r');

discard = fscanf(fid,'%s',[1 1]);

while (discard =='c')
 tline = fgets(fid);

 discard = fscanf(fid,'%s',[1 1]);
end
discard = fgets(fid,6);
G = fscanf(fid,'%d',[1 1]);
N = G(1); % no. of vertices.
E = (N*(N-1))/2; % no. of edges.
k = N/2;
COST = zeros(E,1);
PROB = zeros(E,1);
discard = fscanf(fid,'%s',[1 1]);
while (discard =='e')
 temp = fscanf(fid,'%d %d',[5]);

 COST(temp(1)+1)=temp(4);

 discard = fscanf(fid,'%s',[1 1]);

 discard = fscanf(fid,'%s',[1 1]);

end
status = fclose(fid);

% Write Instances in XPRESS Format.
 fidw = fopen(opname,'w');
 fprintf(fidw,'%s','NODEMAX: ');
 fprintf(fidw,'%d',N-1);
 fprintf(fidw,'\n');
 fprintf(fidw,'\n');
 fprintf(fidw,'%s','k: ');
 fprintf(fidw,'%d',k);
 fprintf(fidw,'\n');
 fprintf(fidw,'\n');
 fprintf(fidw,'%s','ARCS: [');
 fprintf(fidw,'\n');
 id = 0;

for t = 1:N-1
 for h = t+1:N
 fprintf(fidw,'%s','(');
 fprintf(fidw,'%d',id); %Printing edge id
 id = id + 1;
 fprintf(fidw,'%s', ' ');
 fprintf(fidw,'%d',1);
 fprintf(fidw,'%s',') ');
 fprintf(fidw,'%d',t-1); %Printing tail node
 fprintf(fidw, ' ');
 fprintf(fidw,'%d',h-1); %Printing head node
 fprintf(fidw,'\n');
 end

 end

51

 fprintf(fidw,']\n\n');
 if (id~=E)
 display('messed up');
 end
 fprintf(fidw,'%s','COST: [');fprintf(fidw, '\n');
 for i=1:E
 fprintf(fidw,'%s','(');
 fprintf(fidw,'%d',i-1);
 fprintf(fidw,'%s',') ');
 fprintf(fidw,'%d',COST(i));
 fprintf(fidw,'\n');
 end
 fprintf(fidw, ']\n\n');
 if (id~=E)
 display('messed up');
 end
 display('Run Complete.');
 status = fclose(fidw);

clear;

A.3. An instance data file generated for C++ implementation

c Kcore-6-10-50.txt

p nodes 6

e 0 0 1 15 0.90

e 1 0 2 27 0.90

e 2 0 3 47 0.90

e 3 0 4 42 0.90

e 4 0 5 49 0.30

e 5 1 2 36 0.90

e 6 1 3 11 0.90

e 7 1 4 44 0.30

e 8 1 5 48 0.90

e 9 2 3 37 0.90

e 10 2 4 41 0.90

e 11 2 5 40 0.30

e 12 3 4 26 0.90

e 13 3 5 36 0.90

e 14 4 5 17 0.90

A.4. An instance data file generated for Xpress implementation

NODEMAX: 5

k: 3

ARCS: [(0 1) 0 1 (1 1) 0 2 (2 1) 0 3 (3 1) 0 4 (4 1) 0 5 (5 1) 1 2 (6

1) 1 3 (7 1) 1 4 (8 1) 1 5 (9 1) 2 3 (10 1) 2 4 (11 1) 2 5 (12 1) 3 4

(13 1) 3 5 (14 1) 4 5]

COST: [(0) 15 (1) 27 (2) 47 (3) 42 (4) 49 (5) 36 (6) 11 (7) 44 (8) 48

(9) 37 (10) 41 (11) 40 (12) 26 (13) 36 (14) 17]

52

A.5. Xpress model for deterministic binary IP formulation

model "Minimum Spanning k-core Network"

uses "mmxprs","mmsystem"

!! DATA & PARAMETERS

parameters

 DATAFILE= "Kcore-6-100-500.dat"

e = 0

end-parameters

declarations

 NODEMAX, k: integer

end-declarations

initializations from DATAFILE

 NODEMAX k

end-initializations

declarations

 NODES = 0…NODEMAX

 ARCS: array (ARCID: range, 1..2) of integer

 COST: array (ARCID) of integer

 starttime, runtime : real

end-declarations

initializations from DATAFILE

 ARCS COST

end-initializations

finalize(ARCID)

declarations

 x: array (ARCID) of mpvar !1 if Arc is selected, 0

otherwise

end-declarations

!!OBJECTIVE FUNCTION

 NetworkCost: = sum (a in ARCID) COST(a)*x(a)

!!CONSTRAINT-1: DESIRABLE VERTEX CONNECTIVITY CHECK

forall (i in NODES) do

sum (a in ARCID | ARCS (a,2)=i) x(a) + sum (a in ARCID | ARCS

(a,1)=i) x(a) >= k

end-do

!!CONSTRAINT-2: BINARY VARIABLE x

 forall(a in ARCID) x(a) is_binary

!!SOLVING PROBLEM

 starttime:=gettime

 minimize(NetworkCost)

runtime:=gettime- starttime

!!PROBLEM STATUS

declarations

53

status:array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of

string

end-declarations

status::([XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH])[

"Optimum found","Unfinished","Infeasible","Unbounded","Failed"]

!! PRINTING SOLUTION

 writeln ("SOLUTION:")

 writeln ("Status: ",status(getprobstat))

 writeln ("Running Time (excluding data operations): ",runtime)

 writeln ("Objective Value: ", getobjval)

 forall(a in ARCID)

 if(getsol(x(a)) > 0) then

 e := e+1

 end-if

 writeln ("Number of edges in solution:",e)

end-model

54

APPENDIX B

RESULTS OF GRASP ALGORITHM FOR MSkC AND CCMSkC PROBLEMS

Appendix B present necessary statistics collected during the computational experiments on the

deterministic and probabilistic versions of GRASP algorithm. Tables B.1, B.2 are statistics of

GRASP for the MSkC problem. However, Tables B.3, B.4 and B.5 are statistics of GRASP for

the CCMSkC problem. At the end, Table B.6 illustrates the effect of different values on three

instances of the CCMSkC problem.

55

Instance
Xpress

Solution

Xpress

Time

(Sec)

GRASP

Solution

GRASP

Time

(Sec)

Construction

Time (sec)

Local Search

Time (sec)

Optimality

Gap

LS

Hit Rate

LSAvgPerDec

Kcore-30-100-500.txt 46835 0.032 49064 0.00 0.00 0.00 5% 1 0.8%

Kcore-30-500-1000.txt 142816 0.016 144952 0.02 0.00 0.02 1% 0.9 0.2%

Kcore-30-500-1500.txt 173428 0.016 180292 0.00 0.00 0.00 4% 0.8 0.5%

Kcore-30-1000-2000.txt 284664 0.015 292989 0.02 0.02 0.00 3% 0.9 0.5%

Kcore-50-100-500.txt 129271 0.032 134837 0.09 0.06 0.03 4% 1 0.9%

Kcore-50-500-1000.txt 396438 0.032 405629 0.11 0.09 0.02 2% 0.9 0.1%

Kcore-50-500-1500.txt 484134 0.031 500888 0.11 0.06 0.05 3% 0.9 0.1%

Kcore-50-1000-2000.txt 797718 0.031 811665 0.11 0.08 0.03 2% 0.9 0.2%

Kcore-70-100-500.txt 245924 0.031 255813 0.42 0.34 0.08 4% 1 0.5%

Kcore-70-500-1000.txt 771378 0.078 786296 0.45 0.28 0.17 2% 1 0.1%

Kcore-70-500-1500.txt 928686 0.063 957826 0.45 0.36 0.09 3% 1 0.0%

Kcore-70-1000-2000.txt 1543413 0.047 1576950 0.44 0.36 0.08 2% 1 0.1%

Kcore-100-100-500.txt 503100 0.093 521969 1.70 1.31 0.39 4% 1 0.3%

Kcore-100-500-1000.txt 1562196 0.093 1582140 1.81 1.38 0.44 1% 1 0.0%

Kcore-100-500-1500.txt 1890662 0.094 1931690 1.59 1.19 0.41 2% 1 0.2%

Kcore-100-1000-2000.txt 3144100 0.109 3195850 1.77 1.31 0.45 2% 1 0.1%

Kcore-150-100-500.txt 1146864 0.25 1186470 8.56 7.55 1.02 3% 1 0.5%

Kcore-150-500-1000.txt 3532914 0.204 3584760 9.31 6.53 2.78 1% 0.9 0.1%

Kcore-150-500-1500.txt 4255775 0.203 4350770 9.44 5.72 3.72 2% 1 0.2%

Kcore-150-1000-2000.txt 7048505 0.203 7151640 9.91 6.63 3.28 1% 0.8 0.4%

Table B.1. GRASP results for the MSkC problem at 10 iterations

56

Instance
Xpress

Solution

Xpress

Time

(Sec)

GRASP

Solution

GRASP

Time

(Sec)

Construction

Time (sec)

Local

Search Time

(sec)

Optimality

Gap

LS

Hit Rate

LSAvgPerDec

Kcore-200-100-500.txt 2017840 0.359 2081920 28.08 21.99 6.09 3% 1 0.5%

Kcore-200-500-1000.txt 6267888 0.422 6342090 31.84 22.58 9.27 1% 1 0.0%

Kcore-200-500-1500.txt 7502256 0.407 7657740 29.02 27.22 1.80 2% 1 0.1%

Kcore-200-1000-2000.txt 12561163 0.39 12718700 30.80 23.33 7.47 1% 0.8 0.0%

Kcore-250-100-500.txt 3155259 0.547 3243390 73.25 50.16 23.09 3% 1 0.8%

Kcore-250-500-1000.txt 9775016 0.531 9881630 80.20 62.27 17.94 1% 1 0.2%

Kcore-250-500-1500.txt 11786021 0.516 11986000 74.83 60.67 14.16 2% 1 0.5%

Kcore-250-1000-2000.txt 19570171 0.547 19822600 82.78 54.27 28.52 1% 1 0.8%

Table B.1. Continued

57

Instance
GRASP

Solution

GRASP

Time

(Sec)

Construction

Time (sec)

Local Search

 Time (sec)

Optimality

Gap

LS

Hit Rate

LSAvgPerDec

Edges

Included

Kcore-30-100-500.txt 48152 1.33 0.98 0.35 2.8% 1 0.5% 225

Kcore-30-500-1000.txt 142952 0.63 1.01 0.38 0.1% 0.974 0.2% 226

Kcore-30-500-1500.txt 173455 1.44 1.02 0.42 0.0% 1 0.2% 226

Kcore-30-1000-2000.txt 286236 0.58 0.99 0.40 0.6% 0.895 0.1% 225

Kcore-50-100-500.txt 132037 10.72 8.13 2.59 2.1% 1 0.7% 628

Kcore-50-500-1000.txt 400060 11.38 8.27 3.11 0.9% 0.886 0.1% 626

Kcore-50-500-1500.txt 497504 11.09 8.63 2.47 2.8% 0.975 0.2% 627

Kcore-50-1000-2000.txt 807757 10.24 7.85 2.39 1.3% 0.972 0.2% 626

Kcore-70-100-500.txt 252932 40.01 31.22 8.79 2.8% 1 0.7% 1232

Kcore-70-500-1000.txt 782121 43.14 31.57 11.58 1.4% 0.994 0.1% 1227

Kcore-70-500-1500.txt 950526 43.47 30.87 12.60 2.4% 0.951 0.2% 1227

Kcore-70-1000-2000.txt 1566770 42.91 31.11 11.79 1.5% 0.997 0.1% 1226

Kcore-100-100-500.txt 510839 169.16 130.27 38.89 1.5% 1 0.5% 2519

Kcore-100-500-1000.txt 1569120 180.90 128.29 52.62 0.4% 0.978 0.1% 2501

Kcore-100-500-1500.txt 1911340 167.81 129.08 38.73 1.1% 1 0.2% 2502

Kcore-100-1000-2000.txt 3171750 172.69 130.49 42.20 0.9% 0.999 0.1% 2501

Table B.2. GRASP results for the MSkC problem at 1000 iterations

58

Instance
 GRASP

Solution

Construction

Time (sec)

Local Search

Time (sec)

GRASP

Time (sec)

LS

Hit Rate

LSAvgPerDec

Kcore-30-100-500.txt 76816 0.08 0.05 0.12 1 1.4%

Kcore-30-500-1000.txt 212783 0.09 0.05 0.14 0.8 1.0%

Kcore-30-500-1500.txt 271522 0.11 0.03 0.14 1 0.8%

Kcore-30-1000-2000.txt 424785 0.06 0.08 0.14 1 0.7%

Kcore-50-100-500.txt 196153 0.66 0.36 1.02 0.9 2.0%

Kcore-50-500-1000.txt 553641 0.69 0.50 1.19 1 1.0%

Kcore-50-500-1500.txt 702588 0.69 0.45 1.14 0.7 2.4%

Kcore-50-1000-2000.txt 1109320 0.70 0.47 1.17 1 0.7%

Kcore-70-100-500.txt 366200 2.83 1.70 4.53 1 2.9%

Kcore-70-500-1000.txt 1055430 2.88 1.86 4.74 0.8 0.7%

Kcore-70-500-1500.txt 1318970 2.84 1.97 4.81 1 1.7%

Kcore-70-1000-2000.txt 2120300 2.92 1.91 4.83 0.9 0.8%

Kcore-100-100-500.txt 739676 14.66 8.75 23.41 1 1.5%

Kcore-100-500-1000.txt 2123340 14.64 9.54 24.19 1 0.6%

Kcore-100-500-1500.txt 2679520 14.91 9.89 24.80 0.9 0.7%

Kcore-100-1000-2000.txt 4266990 14.72 8.91 23.63 1 0.5%

Kcore-150-100-500.txt 1682610 98.98 57.51 156.50 1 1.8%

Kcore-150-500-1000.txt 4821910 101.89 72.91 174.80 1 0.6%

Kcore-150-500-1500.txt 6019560 100.42 65.83 166.25 1 1.6%

Kcore-150-1000-2000.txt 9561310 99.34 69.06 168.40 1 0.5%

Kcore-200-100-500.txt 2977240 400.71 231.79 632.51 0.8 1.0%

Kcore-200-500-1000.txt 8516920 390.81 245.75 636.56 1 0.6%

Kcore-200-500-1500.txt 10578000 393.98 239.31 633.29 1 2.4%

Kcore-200-1000-2000.txt 17041700 393.73 257.50 651.23 1 0.6%

Kcore-250-100-500.txt 4646430 1160.44 621.23 1781.66 1 0.5%

Kcore-250-500-1000.txt 13313000 1183.88 781.87 1965.75 1 1.3%

Kcore-250-500-1500.txt 16616800 1180.52 727.25 1907.77 0.9 0.7%

Kcore-250-1000-2000.txt 26677100 1186.47 767.53 1954.00 1 0.8%

Table B.3. GRASP results for the CCMSkC problem at 10 iterations

59

Instance
GRASP

Solution

Edges

Included

Construction

Time (sec)

Local Search

Time (sec)

GRASP

Time (sec)

LS

Hit Rate

LSAvgPerDec

(%)

Kcore-30-100-500.txt 76166 303 8.00 4.61 12.61 1 1.5%

Kcore-30-500-1000.txt 210801 302 7.84 4.91 12.75 0.9 0.7%

Kcore-30-500-1500.txt 269127 304 8.04 5.45 13.49 1 1.1%

Kcore-30-1000-2000.txt 422686 306 8.35 4.87 13.22 1 0.8%

Kcore-50-100-500.txt 195362 809 65.65 35.52 101.17 1 2.1%

Kcore-50-500-1000.txt 552678 813 67.26 46.05 113.31 1 1.0%

Kcore-50-500-1500.txt 699887 811 65.29 44.39 109.69 0.8 1.5%

Kcore-50-1000-2000.txt 1107420 808 65.61 42.37 107.98 1 0.9%

Kcore-70-100-500.txt 365926 1574 285.96 168.44 454.40 0.9 1.9%

Kcore-70-500-1000.txt 1052020 1570 286.38 193.13 479.51 1 0.8%

Kcore-70-500-1500.txt 1317060 1559 284.91 188.38 473.29 0.9 1.0%

Kcore-70-1000-2000.txt 2111270 1569 289.19 189.76 478.95 1 0.6%

Kcore-100-100-500.txt 738665 3193 1453.87 818.72 2272.59 1 1.3%

Kcore-100-500-1000.txt 2123090 3192 1478.77 994.03 2472.80 1 0.7%

Kcore-100-500-1500.txt 2675020 3206 1499.03 996.76 2495.78 1 1.0%

Kcore-100-1000-2000.txt 4261880 3192 1487.53 948.43 2435.97 1 1.7%

Table B.4. GRASP results for the CCMSkC problem at 1000 iterations

60

Instance
CCMSkC

Edge Set Size

GRASP for

 CCMSkC Solution Cost

MSkC

 Edge Set Size

GRASP for

MSkC Solution Cost

Kcore-30-100-500.txt 305 76816 226 49064

Kcore-30-500-1000.txt 306 212783 225 144952

Kcore-30-500-1500.txt 308 271522 226 180292

Kcore-30-1000-2000.txt 310 424785 226 292989

Kcore-50-100-500.txt 814 196153 631 134837

Kcore-50-500-1000.txt 813 553641 625 405629

Kcore-50-500-1500.txt 817 702588 628 500888

Kcore-50-1000-2000.txt 810 1109320 627 811665

Kcore-70-100-500.txt 1574 366200 1235 255813

Kcore-70-500-1000.txt 1574 1055430 1232 786296

Kcore-70-500-1500.txt 1568 1318970 1227 957826

Kcore-70-1000-2000.txt 1574 2120300 1228 1576950

Kcore-100-100-500.txt 3194 739676 2521 521969

Kcore-100-500-1000.txt 3193 2123340 2503 1582140

Kcore-100-500-1500.txt 3209 2679520 2508 1931690

Kcore-100-1000-

2000.txt
3199 4266990 2506 3195850

Kcore-150-100-500.txt 7206 1682610 5670 1186470

Kcore-150-500-1000.txt 7231 4821910 5636 3584760

Kcore-150-500-1500.txt 7220 6019560 5635 4350770

Kcore-150-1000-

2000.txt
7190 9561310 5633 7151640

Kcore-200-100-500.txt 12834 2977240 10053 2081920

Kcore-200-500-1000.txt 12816 8516920 10008 6342090

Kcore-200-500-1500.txt 12831 10578000 10016 7657740

Kcore-200-1000-

2000.txt
12816 17041700 10009 12718700

Kcore-250-100-500.txt 20077 4646430 15740 3243390

Kcore-250-500-1000.txt 20083 13313000 15628 9881630

Kcore-250-500-1500.txt 20061 16616800 15640 11986000

Kcore-250-1000-

2000.txt
20070 26677100 15632 19822600

Table B.5. The CCMSkC problem objective functions and edge sets at 10 iterations

7
9

8
2

61

 0.0 0.1 0.2 0.3 0.4 0.5

Instance

Kcore-30-500-1000.txt 146182 179892 187614 194649 196900 204287

Edges Set 227 266 276 284 286 295

Kcore-50-500-1000.txt 405703 495253 506164 520740 533741 543407

Edges Set 629 746 756 773 789 803

Kcore-70-500-1000.txt 786768 951185 976499 993467 1019260 1037130

Edges Set 1236 1445 1478 1501 1533 1553

 0.6 0.7 0.8 0.9 1

Instance

Kcore-30-500-1000.txt 211518 226536 243504 No feasible

solution found

No feasible

solution found
Edges Set 303 318 336

Kcore-50-500-1000.txt 555257 567982 590436 623637 No feasible

solution found
Edges Set 815 830 859 895

Kcore-70-500-1000.txt 1054260 1082480 1111040 1152250 No feasible

solution found
Edges Set 1571 1606 1637 1687

Table B.6. Effect of different values on the CCMSkC problem at 10 iterations

VITA

Ameya Abasaheb Dhaygude

Candidate for the Degree of

Master of Science

Thesis: A HEURISTIC APPROACH TO THE CHANCE CONSTRAINED MINIMUM

SPANNING k-CORE PROBLEM

Major Field: Industrial Engineering and Management

Biographical:

Education:

December, 2010

Master of Science in Industrial Engineering and Management

Oklahoma State University, Stillwater, Oklahoma, USA

June, 2006

Bachelor of Science in Mechanical Engineering

University of Mumbai, Mumbai, Maharashtra, India

Experience:

Research Assistant (January, 2009 – December, 2010)

Oklahoma State University, Stillwater, Oklahoma, USA

Project Development Executive (September, 2007 – February, 2008)

StructArch Consultants, Mumbai, Maharashtra, India

Engineer Trainee (March, 2007 – August, 2007)

NMSEZ Pvt. Ltd., Mumbai, Maharashtra, India

Engineer Trainee (November, 2006 – February, 2007)

Hercules Hoists Ltd., Mumbai, Maharashtra, India

Professional Membership: Alpha Pi Mu,

 Society for Industrial and Applied Mathematics,

 Institute for Operations Research and the

 Management Sciences

ADVISER‟S APPROVAL: Dr. Balabhaskar Balasundaram

Name: Ameya Abasaheb Dhaygude Date of Degree: December, 2010

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A HEURISTIC APPROACH TO THE CHANCE CONSTRAINED

MINIMUM SPANNING k-CORE PROBLEM

Pages in Study: 61 Candidate for the Degree of Master of Science

Major Field: Industrial Engineering and Management

This thesis presents metaheuristic approaches to solve a novel network design

problem under uncertainty. The problem is an extension of the classical k-core based

network model called as the minimum spanning k–core problem. The minimum spanning

k-core problem aims to balance the network design objectives of robustness, reachability

and cost effectiveness. The problem is further extended to a probabilistic version called

as, the chance constrained minimum spanning k-core problem. The minimum spanning

k-core problem can be used to design underlying transportation networks,

telecommunication networks, electrical and power distribution networks etc. in robust

manner.

In this thesis, Greedy Randomized Adaptive Search Procedure (GRASP), a

metaheuristic approach is developed to solve both versions of the minimum spanning k-

core problem. Computational experiments are performed to study the effectiveness of

GRASP on specially designed test instances. Computational results conclude that

GRASP provides good quality feasible solutions and efficiently solve both versions of the

minimum spanning k-core problem.

