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CHAPTER I 
 

 

 INTRODUCTION  

 

In mathematics, a graph is defined by a pair (V, E) where V is the vertex set and E is the edge set. 

Figure 1 illustrates a simple graph with 4 vertices and 6 edges. Graphs can be effective tools to 

represent many real-life situations, where the vertex set is representative of entities and edges 

indicates the presence or absence of specific relationships between pairs of these entities. We use 

the terms “graph” and “network” interchangeably. Users of all real-life networks wish to transfer 

some entity like electricity, material, final product, information, vehicle etc. from one vertex to 

another vertex through edges. Users prefer a cost effective and well connected network. This 

thesis is about a combinatorial optimization problem that fulfills these design requirements. 

 

Figure 1. A simple graph  
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In this thesis, we always consider finite, simple and undirected graphs. An undirected 

graph denoted by G = (V, E), where V = {1, 2,  . . ., n} is a vertex set with |V| = n and E is an edge 

set with |E| = m that consists of unordered pairs of vertices called as edges [i.e. Edge (i, j)   

Edge (j, i)]. An edge (i, j)   E is said to be incident at the vertices i, j   V and i, j are called the 

endpoints of edge (i, j). Graph G is called a complete graph if for all pairs of vertices i, j   V there 

exists an edge (i, j)   E. Figure 1 shows a complete graph on four vertices. Real values such as 

costs and capacities can be assigned to the edges and vertices of a graph. If   (i, j)   E then 

vertices i and j are called adjacent to each other and are said to be neighbors. If V’   V and E’   E 

then graph G’  (V’, E’) is called as subgraph of graph G = (V, E). G’  (V’, E’) is an induced 

subgraph of G = (V, E) if, E’ contains each edge of E with both endpoints in V’. G’  (V’, E’) is a 

spanning subgraph of G = (V, E) if, V’ = V and E’   E. The degree of a vertex v denoted by  ( ) 

is the number of edges incident at it. dG(i, j) denotes the length of a shortest path in terms of 

number of edges between vertices i and j in G, and diam(G) = max dG(i, j),   (i, j)   V is the 

diameter of graph G. For example, in Figure 2 degree of vertex 1 is 3 and diameter of graph is 2. 

 

Figure 2. Degree and diameter of graph 

The vertex connectivity of graph G denoted by Ҡ(G) is the minimum number of vertices whose 

removal from the graph results in a disconnected or trivial graph. The edge connectivity of graph 
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G denoted by Ҡ’(G) is the minimum number of edges whose removal from the graph results in a 

disconnected or trivial graph. These graph connectivity parameters obey the inequality Ҡ(G) ≤ 

Ҡ’(G). Readers are referred to the texts by West [31] and Diestel [10] for an introduction to graph 

theory.  

I.1. Research Overview 

This thesis discusses a combinatorial optimization problem called as the minimum spanning k-

core problem introduced by Balasundaram in [4] and studies it under deterministic settings as 

well as probabilistic settings. The minimum spanning k-core problem is motivated by hub 

network design problems, where a set of designated hubs need to be connected in a reliable 

manner. The hubs can represent airports, warehouses or distribution centers. In our model, the 

design element is the edge set, as focus of our model will be on designing underlying network to 

meet required conditions on connectivity and diameter. To achieve structural specifications we 

are using properties of a graph theoretic structure called k-core, a graph is said to be a k-core if 

 ( ) ≥ k,     Є V. Given an undirected graph G=(V,E) and a fixed positive integer k, the 

minimum spanning k-core problem is to identify a minimum cost set of edges E*, so that the 

resulting n vertex graph G*=(V, E*) is a k–core. By an appropriate choice of parameter k, one can 

ensure that the designed network is robust under node or edge failure and it has diameter 2. 

Briefly, our model aims to balance the network design objectives of robustness (high vertex 

connectivity), reachability (navigation between vertices in fewer steps) and cost effectiveness by 

using the notion of k-cores. 

I.2. Applications 

Recall, the three design objectives reachability, robustness and cost effectiveness of a minimum 

spanning k-core that we have discussed in the previous section. Based on these three objectives 
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minimum spanning k -core problem is applicable in many situations. For example, transportation 

networks, telecommunication networks, electrical and power distribution networks etc. To get 

meaningful insight about applicability of the minimum spanning k -core problem we will discuss 

an example of a general transportation network.  

 

Figure 3. Example graph 

Sum of all edge weights = 240; |E|=15 

Let us consider an undirected and complete graph G = (V, E) as shown in Figure 3, where G 

represents a general transportation network with |V|= 6, |E| =15, k = |V|/2 = 3 and respective 

edge weights. Detailed discussion over selecting an appropriate value of k is given in Chapter II. 

Vertices could represent airports, warehouses or cities and edges represent routes connecting 

these vertices. Edge weights represent the cost of transportation between vertices. Solving the 

minimum spanning k-core problem on the given graph G will identify a subset E* of edges so that 

the resulting subgraph G* = (V, E*) is a minimum spanning k-core as shown in Figure 4.  
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Figure 4. Example design 

         Total cost of network = 130; |E*|=11 

 

 

        Figure 5. Illustration of robustness 

The minimum spanning k–core, G* satisfies all desired properties such as reachability, robustness 

and cost effectiveness as explained in the following text.  
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 Every node is reachable in 2 or fewer steps from every other node, i.e. diam (G*) ≤ 2. 

 Cost of the design is 130 whereas a complete point-to-point design costs 240. 

 Robustness/vertex connectivity of network design is illustrated with the help of Figure 5. 

Suppose there is breakdown of vertex 2, we can still travel between other vertices in less 

than or equal to 2 steps. Also, note that the breakdown of any specific vertex will result in 

failure of edges incident at that vertex.  

So far we have discussed the problem under deterministic settings, where we have 

identified a subset E* of the edges such that G*=(V, E*) satisfies reachability, robustness and cost 

effectiveness objectives. Let‟s consider probabilistic settings where each edge exists with a 

probability pe along with a cost ce and is subject to probabilistic failure. We consider two types of 

edges with probabilities p1 and p2 in the graph such that p1 > p2. The degree of a node becomes a 

result of the sum of all incident independent p1 and p2 “trials” which makes the degree a random 

variable. The goal of the probabilistic version is to select sufficient number of edges incident at 

every node such that the probability of a particular node‟s degree being greater than or equal to k 

is above a prescribed probability level. Chapter II explains the probabilistic version in more 

detail. 

I.3. Research Objective and Contributions 

The overall goal of this thesis is to develop metaheuristic algorithms that solve the deterministic 

and probabilistic versions of minimum spanning k-core problem on large scale instances. Greedy 

Randomized Adaptive Search Procedure (GRASP), a metaheuristic introduced by Feo and 

Resende [15] has been successfully applied to various combinatorial optimization problems, such 

as set covering, location problems, flow shop scheduling, routing problems and production 

planning [26]. Festa and Resende [16, 17] provided an annotated bibliography of the GRASP 

literature from 1989 to 2008. Since this is the first application of GRASP to the minimum 
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spanning k-core problem, this thesis can provide guidance on efficiency of GRASP in solving the 

minimum spanning k-core problem.  

Contributions: Broadly, this thesis makes the following contributions. The mathematical 

formulations for both deterministic and probabilistic versions of the problem are studied and the 

formulation of the deterministic version is implemented in Xpress. We have developed GRASP 

algorithms to solve both versions of the minimum spanning k-core problem. Effective local 

search phases for both versions are developed by designing appropriate neighborhood definitions. 

GRASP algorithms for both versions of problem have been implemented in the C++ 

programming language and extensive computational experiments carried out on the 

implementation to study the performance of the developed algorithms. We have identified 

techniques to improve overall algorithmic implementation by designing appropriate data 

structures. Large test bed of instances for C++ and Xpress implementations are created using 

MATLAB.  

I.4. Thesis Organization 

The rest of this thesis is organized as follows. Chapter II formally describes the research problem 

that includes the selection of network design parameter k and mathematical programming 

formulations of the problem. Chapter II also describes the relationship of the research problem to 

the classical matching problem. Chapter II concludes with the explanation over the need for 

metaheuristics. Details of algorithmic approach are given in Chapter III, which includes a 

thorough description of GRASP algorithm for both the versions of minimum spanning k-core 

problem. Results of computational experiments performed on test-bed are given in Chapter IV. 

Finally, we conclude this thesis with Chapter V which presents a brief summary of the research, 

important conclusions and future research directions. 
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CHAPTER II 
 

 

THE MINIMUM SPANNING k-CORE PROBLEM 

 

Network design is an important problem in designing robust transportation and distribution 

systems. Some important properties to consider while designing such networks that have a high 

impact on its efficiency and robustness are:  

(a) Reachability, i.e. transportation between vertices in fewer steps. 

(b) Cost of transportation between vertices. 

(c) Robustness of network structure i.e., removal of few vertices from the network should not 

disconnect the network. 

(d) Survivability of the network structure under probabilistic failure of edges or vertices. 

The k-core model was introduced by Seidman [28] as a measure of “network cohesion” in social 

network analysis [30]. This model aims to detect a robust cluster with specified structural 

properties such as vertex connectivity (a measure of robustness) and diameter (a measure of 

reachability). The problem studied in this thesis is an extension of k -core based network model 

called the minimum spanning k-core problem introduced by Balasundaram in [4].  
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II.1. k-Cores 

A graph is called a k-core if every vertex has at least k neighbors. In other words, the minimum 

degree of G is at least k. k-Cores were introduced by Seidman in 1983 [28] as a model for 

simplifying interconnections of the graph elements to aid in analysis. Seidman‟s goal was to 

identify regions of the social network containing “tightly knit” social subgroups.  

 

Figure 6. An illustrative example of k–cores 

Figure 6 illustrates an example that can help readers to understand concept of k-cores in graph 

theory. Figure 6-(1) is a simple undirected graph G with minimum degree of 1 at node 8; hence 

graph G is a 1-core. In Figure 6-(2) node 8 is deleted, which results in a graph which is a 2-core 

with minimum degree of 2 at node 7. Finally, deletion of node 7 results in graph which is a 3-core 

with minimum degree of 3. 
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II.1.1. Choosing Appropriate k 

While designing a network to be minimum spanning k –core, two properties of interest to us are 

vertex connectivity and diameter of graph. Following propositions derived by Seidman in [28] are 

important to choose an appropriate k and to design a k-core on n vertices with prescribed 

connectivity and diameter. In general, solving the minimum spanning k -core problem on graph G 

is to identify a set of edges E* so that the graph G* = (V, E*) satisfies the vertex degree 

requirement and the total cost of edges created is minimized for some “appropriately” chosen k.  

Proposition 1 [Seidman, 1983]:  

Let G = (V, E) be a k -core on n vertices. If k ≥ max [r, 
     

 
], then Ҡ(G) ≥ r. 

Proposition 2 [Seidman, 1983]:  

Let G = (V, E) be a k -core on n vertices. If k   
   

 
 then diam (G) ≤ 2. 

Proposition 3 [Seidman, 1983]:  

Let G = (V, E) be a k -core on n vertices with Ҡ(G)= r with 1≤ r ≤ k   n.  

If k ≤ 
   

 
 then diam (G) ≤ 3                           + b (n, k, r) + 3 where   = max {k+1, 3r} and, 

b (n, k,r) = {
       2  2(     )   

1      ≤    2  2(     )  2  

2    2  ≤    2  2(     )
 

Based on the propositions, if we require Ҡ’(G*) ≥ Ҡ(G*) ≥ 2 and diam(G*) ≤ 2, we can choose   

             . Furthermore, if r ≥ 2 and                             then, 

(1) Ҡ(G*) ≥ r and diam(G*) ≤ 2; 

(2) G*-v is a (k-1)-core for any  v   V; 

(3) Ҡ(G*-v) ≥ r-1  and diam(G*-v) ≤ 2; 


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II.2. The Minimum Spanning k -Core Problem (MSkC Problem) 

Given the vertices of network to be designed as V = {1, . . . , n}, an appropriately chosen fixed 

positive integer k, set of candidate edges E and the cost ce of creating an edge e Є E, the minimum 

spanning k -core problem is to identify a subset E* of edges, so that the resulting n-vertex graph 

G* = (V, E*) is a k -core and the total cost of edges included in G* is minimized. The following is 

a binary integer programming (IP) formulation for the MSkC problem. 

Decision Variables:   Binary Variables:  xe for every edge e Є E 

              xe = 1, if edge e is selected to be in the subgraph G* 

              xe = 0, otherwise 

 

 

 

 

 

 

 

Where, ∂(v) is the set of edges incident at node v. This formulation ensures that every node has at 

least k incident edges/neighbors, while the overall cost of network is minimized.  

II.2.1. The Maximum Weighted b-Matching Problem 

It is necessary to understand the relationship between the maximum weighted b-matching 

problem and MSkC problem. Given a simple undirected graph G=(V, E) and a vector b, a b-

matching is a subset M of the edges such that every vertex   Є V is incident with at most b(v) 

edges in M.  Hence, the maximum weighted b-matching problem defined on G with edge weights 

ce for all e Є E is to find a b-matching ‘M’, such that the total cost of edges added to M is a 
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maximum. The following is a binary IP formulation for the maximum weighted b-matching 

problem. 

 

 

 

 

 

Figure 7. Spanning k-core to b-matching reduction 

It was shown by Balasundaram [4] that the MSkC problem is polynomial-time solvable by 

reduction to a special case of the maximum weighted b-matching problem [9]. This reduction 

follows from the observation that by solving maximum weighted b-matching on G for a given 
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vector b, identifies those edges that must be excluded in MSkC problem. In other words, the 

edges which are excluded in a maximum weighted b-matching will be the edges of a minimum 

spanning k-core. Figure 7 illustrates the reduction of the MSkC problem to the maximum 

weighted b-matching problem. Note that by solving the maximum weighted b–matching problem 

on a given G (refer Figure 7-(1)) for a given vector b = {1, 1, 1, 1} identified edges with costs 7 

and 8 (refer Figure 7-(3)) that are excluded in MSkC (refer Figure 7-(2)). In other words, the 

edges with costs 2, 3, 3 and 4 which are excluded in the maximum weighted b-matching are the 

edges of MSkC. The reduction of the MSkC problem to the generalized matching problem is, 

when every node has at most (D(v)-k) incident edges. More specifically, in the binary IP 

formulation of the maximum weighted b-matching problem discussed in the previous section, 

b(v) is equal to (D(v)-k) as shown in the following formulation. 

 

 

 

 

 

 

 

 

 

Edmonds and Pulleyblank [9, 11] have provided a pseudo-polynomial algorithm for solving the 

maximum weighted b-matching. Also, Anstee [3] has provided a strongly polynomial time 

algorithm for solving the maximum weighted b-matching problem. Hence, following the 

reduction, the MSkC problem is also polynomial-time solvable by using the maximum weighted 

b-matching algorithm.  
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II.3. Chance Constrained Minimum Spanning k-Core Problem (CCMSkC Problem) 

So far we have discussed the deterministic version of the problem, where we wish to identify a 

MSkC in a given graph. Now consider the case in which one or more structural components 

(edges or nodes) of the obtained MSkC will fail due to some reasons. For example, in an airline 

network emergency breakdown of important hubs will result in lack of connectivity with adjacent 

airports. Such failure of structural components will violate the desired properties of vertex 

connectivity (reachability) and diameter (robustness) of MSkC. We focus our attention on 

probabilistic edge failures in this thesis. Consider the Erdős–Rényi model [12-14] which is 

denoted by G(n,p), where every possible edge is present independently with uniform 

probability p. To be more specific, the presence or absence of an edge between two vertices is 

independent of the presence or absence of any other edge i.e. each edge occurs independently 

with probability p. Recall that the number of edges incident at a vertex is called the degree D(v) 

of that vertex, and has a binomial probability distribution given as follows: 

                                         r ( ( )    )  (   
 

)   p  (1  p)             (2.1) 

where, 

n-1 = Maximum possible number of incident edges in G (n, p) 

D(v) = Degree of node v, v   V  

 

II.3.1. Randomness of Vertex Degree  

Suppose we are solving the MSkC problem on a complete graph G = (V, E) with |V| = n and    

|E| = ( 
 
) = m. Given that, x   {0, 1} m 

is a decision vector of the edges to be included in a 

solution to the MSkC problem, that is: 

                 xe = { 
1 if edge e i  in  he  ol  ion

           if edge e i  no  in  he  ol  ion
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Now suppose, set E is random, and each e   E exists with probability p and an indicator random 

variable Ye such that: 

Ye = { 
1 if edge e exi   

   if edge e i  doe n   exi  
 

Indicator random variable Ye forms the components of the random vector Y   , where    

    {0, 1} m is the sample space corresponding to all possible graphs on n vertices. Hence, given 

the decision vector x and the realization vector Y of set E, the realized network solution has the 

edge e if and only if, xeYe = 1 which makes the degree a random variable. Recall from Section 

II.2, the degree constraint of the deterministic formulation. We required that the degree D(v) of 

every vertex v must be greater than or equal to k, 

 

In the probabilistic version as each edge e has a probability of existence p in terms of indicator 

random parameter Ye. The degree constraint changes to, 

 

This change in the degree constraint converts D(v)  into a random variable and one cannot 

guarantee D(v)  ≥  k,     Є V, in every realization of the random vector. The probability that D(v) 

is greater than or equal to k can be calculated by using binomial probability distribution as 

follows: 

                                                                         (2.2) 

where,                             =  the number of edges incident at vertex v in the solution x. 
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II.3.2. Chance Constrained Programming  

Chance constrained programming is one of the approaches available to deal with uncertainty in 

optimization problems. Chance constrained programming is applicable to models where (optimal) 

decisions have to be taken prior to realizing random effects. The constraints involving random 

parameters can be violated due to uncertainty and it becomes difficult to find a feasible decision 

which would certainly eliminate constraint violation caused by unexpected events. Under this 

framework, we can rewrite the degree constraint as, 

                 r( ( ) ≥  ) ≥   ,      Є V                                                 (2.3) 

Here, D(v) is the degree of a vertex v which is a binomial random variable as discussed in the 

previous section. The value   Є [ , 1] is the prescribed probability level which is selected as per 

the safety requirements of the system. It is intuitive that, higher values of   can result in fewer 

and higher cost feasible solutions to the problem. Equation 2.3 represents |V| individual chance 

constraints and can be calculated using Equation 2.2. Also, this constraint can be modeled as a 

joint chance constraints as shown in Equation 2.4. 

     r [⋀ (  Є   ( )  ≥   )] ≥                                                     (2.4)  

In this thesis we are using individual chance constraints as we have not found an efficient way to 

handle dependence and calculate the joint probability. This is an important topic for future 

research. The binary nonlinear IP formulation with individual chance constraints is given by:  
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II.3.3. Transforming CCMSkC Problem To MSkC Problem for G(n, p) 

Suppose we consider the uniform random graph model G(n, p) and x   {0, 1} m satisfies,  

 

Let                              ,then  

 

Hence, there either exists a t such that  r( ( ) ≥  ) ≥   for T = t or no such t exists. Satisfying 

the chance constraint only depends on the number of edges added and not on which edges are 

added as they are all equally likely to fail. Hence, the CCMSkC problem reduces to MSkC 

problem with k = t, where                                                     whenever such a t exists. The problem 

is infeasible otherwise. We now introduce a model where some edges can fail with a higher 

probability than others.  

II.3.4. G(n,p1,p2) Model 

In this model we consider two types of edges in network, where some edges exist with lower 

probability p2 and the remaining with higher probability p1 (p1>p2). We are assuming that a 

greater fraction of the network edges will be higher probability edges. The edge probabilities are 

again assumed independent and the degree of a node becomes the sum of independent p1 trials 

and p2 trials. The probability of a node‟s degree being greater than or equal to k can be calculated 

by using Equation 2.6. 

                                     (2.6) 

where,  
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Let, T1(v) be the number of higher probability edges and T2(v) be the number of lower 

probability edges incident at v in the solution x, then 

Pr(D(v) = t) =  

 

                     (2.7) 

Let us consider an example (refer Figure 8) where, we are calculating the probability that the 

degree of node 6 being at least k using Equation 2.6. 

 

Figure 8. G(n,p1,p2) formula example 

T1(v) = Number of p1 trials = 3 

T2(v) = Number of p2 trials = 2  

T = Total number of trials =                    = P1trials + P2trials = 3 + 2 = 5 

Assume, k = 3, p1 = 0.9, p2 = 0.3, substituting in Equation 2.6,  

 r( (6) ≥ 3)   ∑  r( (6)   )  
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∑  r( (6)   )  

 

     

   r( (6)    3)     r( (6)    4)     r( (6)    5) 

By using Equation 2.7, we can calculate Pr( (6) = 3) = 0.10206. 

II.4. Need for Metaheuristics  

Various approaches have been developed to solve combinatorial optimization problems, which 

can either be exact or heuristic. An exact algorithm guarantees an optimal solution to the problem 

in a finite number of steps, whereas a heuristic algorithm does not guarantee an optimal solution 

but tries to provide a good solution in a reasonable amount of time. Metaheuristics form a class of 

algorithms that intelligently embed basic heuristic algorithms in sophisticated algorithmic 

frameworks that explore and exploit the search space more effectively [25]. In case of NP-hard 

problems, exact algorithms may take exponential computational time in worst-case. In real-world 

conditions we can accept solutions that are good enough for implementation and produced in a 

reasonable amount of time, which can be achieved through sophisticated metaheuristics 

algorithms.  

As discussed in Section II.2.1, the MSkC problem is a polynomial-time solvable by using 

O(n
4
) complexity of maximum weighted b-matching problem. O(n

4
) running time is prohibitive 

for large size problems and the exact algorithm might take high computational time in worst-

cases. No polynomial-time algorithm is presently available for the probabilistic version of 

minimum spanning k-core problem. Note that the formulation is a nonlinear IP. Hence, to get 

better solutions in reduced amount of time, metaheuristics can be a good approach to solve the 

MSkC and CCMSkC problems.  
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CHAPTER III 
 

 

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE 

 

The Greedy Randomized Adaptive Search Procedure introduced by Feo and Resende [15] is an 

iterative, multi-start, heuristic procedure, where each iteration consists of two phases, the greedy 

randomized construction phase and the local search phase. In the greedy randomized construction 

phase, an initial feasible solution is constructed by randomly choosing elements from the 

Restricted Candidate List (RCL). RCL consists of only best elements of the candidate list 

selected by a greedy function. The second phase of GRASP is the local search phase that is 

applied for further improvement of the solution generated by the GRASP construction, as the 

solution obtained by the construction phase is not guaranteed to be the local optimum. At the end 

of each GRASP iteration best solution is updated and a final solution is obtained when GRASP 

completes a fixed number of iterations. This chapter explains in detail the overall procedure of 

GRASP for the minimum spanning k-core problem in deterministic and probabilistic settings. 

The overall procedure of the GRASP is shown in Algorithm 1 which is similar for both 

deterministic and probabilistic versions. The difference in the procedure is at the construction and 

local search phase of the algorithm.   
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GRASP construction phase builds an initial feasible solution based upon the structural 

properties of the minimum spanning k-core problem. This initial feasible solution is further 

improved by investigating appropriate neighborhoods of the feasible solution in the local search 

phase. Finally, the best solution among the iterations will be return by GRASP as feasible 

solution. The stopping criterion for GRASP is number of iterations. Larger number of GRASP 

iterations increases computational time, but increases the possibility of finding better quality 

solution. 

 

 

 

 

 

 

Algorithm 1. GRASP framework 

III.1. Construction Phase 

Initially, the solution is an empty set and construction phase adds candidate edges to the solution. 

Construction phase terminates when the solution achieves the desirable structural properties of 

the problem under consideration (i.e., becomes feasible). We now illustrate this approach on an 

example. 

Procedure GRASP 

 

for i = 0, . . . . , Number of GRASP Iterations do 

 

Randomly generate „ ‟ 
StartSolution = GreedyRandomizedConstruction ( ) 

LocalOptimal = LocalSearch (StartSolution) 

 

if Local Optimal is Better Than Best Solution then  

BestSolution = LocalOptimal 

end 

end 

 

return BestSolution 

end GRASP 
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Edge Index 1 2 3 4 5 6 

Edges (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) 

Costs 8 6 3 5 4 5 

 

Figure 9. Input graph and data for construction phase 

 

Step 1 Building a candidate list: The algorithm ranks candidate edges by using a greedy rule. As 

our objective is to minimize overall cost of network, algorithm sorts all edges in ascending order 

of costs as shown in Table 1.  

Edge Index 3 5 4 6 2 1 

Edges (1, 4) (2, 4) (2, 3) (3, 4) (1, 3) (1, 2) 

Costs 3 4 5 5 6 8 

 

Table 1. Candidate list 

 

Step 2 Building a restricted candidate list (RCL): In this step, the algorithm acts greedy by 

constructing RCL which consists of only best quality candidate edges from candidate list. RCL is 

associated with a „Threshold Parameter‟   ( ≤  ≤ 1), generated randomly at the start of each 

GRASP iteration. A threshold value is then calculated as Cmin +   (Cmax – Cmin), where Cmin and 

Cmax are the minimum and maximum edge costs in the candidate list respectively. Based on the 

threshold value, a candidate edge is selected from the RCL at random to add to the solution.  
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Step 3 Updating Candidate List: Edge added to the solution in step 2 is removed from the 

candidate list and the algorithm reselects minimum cost (Cmin) and maximum cost (Cmax) edges.  

Algorithm repeats Step 2 and Step 3 until degrees of all vertices become at least k. In 

Step 2, if   is equal to 0 then the behavior of the algorithm will be purely greedy and the 

algorithm always selects a minimum cost edge from the candidate list. On the other hand, if   is 

equal to 1 then the algorithm will randomly select edge from the candidate list. Following 

sections describe construction phase using purely greedy (  = 0), and purely randomized (  = 1) 

and greedy-randomized ( ≤  ≤ 1) approaches for the graph given in Figure 9. 

III.1.1. Greedy Construction Phase  

Consider a construction phase iteration with   = 0. This results in a threshold value of Cmin. 

Initially, candidate list consists of all the edges as shown in Table 1. As   = 0, in step 2 the 

algorithm constructs an RCL that consists of edges with cost less than or equal to Cmin. Algorithm 

makes a greedy choice and selects a minimum cost edge to add into solution. Finally, in step 3 

candidate list is updated by removing the edge added in step 2 and algorithm reselects Cmin and 

Cmax. Steps 2 and 3 repeat until degrees of all the vertices of the solution become at least k.  

Candidate List Cmin Cmax Threshold Value RCL Solution  

{1,2,3,4,5,6} 3 8 3 {3} {3} 

{1,2,4,5,6} 4 8 4 {5} {3,5} 

{1,2,4,6} 5 8 5 {4,6} {3,5,4} 

{1,2,6} 5 8 5 {6} {3,5,4,6} 

{1,2} 6 8 6 {2} {3,5,4,6,2} 

 

Table 2. Greedy construction phase solution 

 

The details of the steps carried out in the purely greedy construction phase to construct an initial 

feasible solution for the graph in Figure 9 are given in Table 2 where RCL, Solution and 
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Candidate List are in terms of edge index. Greedy construction phase for the minimum spanning 

k-core problem returns an initial feasible solution. Then we drop edges starting heaviest first until 

the solution is minimal (i.e., at least one end point has degree = k), i.e. solution set S = {3, 5, 4, 2} 

with minimized cost of 18 as shown in Figure 10. 

 

Figure 10. Greedily constructed solution 

 

III.1.2. Randomized Construction Phase   

Consider a construction phase iteration with   = 1. This results in a threshold value of Cmax and 

RCL is the original candidate list. Algorithm‟s behavior will be completely random as it selects 

any candidate edge to add into solution. Steps 2 and 3 repeat until degrees of all the vertices of 

the solution become at least k.   

Candidate List Cmin Cmax Threshold Value RCL Solution  

{1,2,3,4,5,6} 3 8 8 {1,2,3,4,5,6} {1} 

{2,3,4,5,6} 3 6 6 {2,3,4,5,6} {1,4} 

{2,3,5,6} 3 6 6 {2,3,5,6} {1,4,6} 

{2,3,5} 3 6 6 {2,3,5} {1,4,6,2} 

{3,5} 3 4 4 {3,5} {1,4,6,2,3} 

 

Table 3. Randomized construction phase solution 
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The details of the steps carried out in the purely randomized construction phase to construct an 

initial feasible solution for Figure 9 graph are given in Table 3. Randomized construction phase 

for minimum spanning k-core problem returns an initial feasible solution, which can then be 

made minimal by greedily dropping edges, i.e. solution set S = {1, 4, 6, 3} with minimized cost of 

21 as shown in Figure 11. 

 

Figure 11. Randomly constructed solution 

 

III.1.3. Greedy Randomized Construction Phase  

Consider a construction phase iteration with   = 0.5. Initially, candidate list consists of all the 

edges as shown in Table 1. As   = 0.5, in step 2 algorithm construct RCL that consists of edges 

with cost less than or equal to Cmin + 
 

 
 (Cmax – Cmin). Now, the algorithm will randomly select an 

edge with cost less than or equal to threshold value to add into the solution. Finally, in step 3 the 

candidate list is updated by removing the edge added in step 2 and the algorithm reselects Cmin 

and Cmax. Steps 2 and 3 repeat until degrees of all the vertices of the solution become at least k.  
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Candidate List Cmin Cmax Threshold Value RCL Solution 

{1,2,4,5,6} 3 8 6 {2,3,4,5,6} {3} 

{1,2,5,6} 4 8 6 {2,4,5,6} {3,4} 

{1,2,6} 4 8 6 {2,5,6} {3,4,5} 

{1,6} 5 8 7 {2,6} {3,4,5,2} 

 

Table 4. Greedy-randomized construction phase solution 

 

 

Figure 12. Greedy-randomized solution 

 

The details of the steps carried out in the greedy-randomized construction phase to construct an 

initial feasible solution for the graph in Figure 9 are given in Table 4. Greedy randomized 

construction phase for the minimum spanning k-core problem returns an initial feasible solution, 

i.e. Solution set S = {3, 4, 5, 2} with minimized cost of 18 as shown in Figure 12.  

In case of purely greedy approach, RCL is restricted to only the minimum cost edges that 

can result in addition of extra edges to satisfy structural properties of problem especially for the 

CCMSkC problem. Also, completely randomized approach may not include good quality edges 

and result in inferior solutions to the problem. On the other hand, greedy-randomized approach 

allows the algorithm to balance both cost minimization and degree requirements of minimum 

spanning k-core problem. In other words, greedy-randomized approach can potentially provide 

superior solutions as compare to completely greedy or randomized approaches. This is the reason 
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behind using greedy randomized construction approach in GRASP for the construction phase. 

Note that GRASP is a multi-start heuristic and for each iteration,   is generated randomly 

between 0 and 1. 

Algorithm 2 and Algorithm 3 are the detailed greedy randomized construction phases of 

the MSkC and CCMSkC problems respectively. The input data for both algorithms is an 

undirected graph G = (V, E). The output of Algorithm 2 is a minimal spanning k-core that ensures 

degree of every vertex v   V is at least k and there is no edge in the solution with both end points 

greater than k.  Furthermore, the output of Algorithm 3 is a minimal spanning k-core that ensures 

every vertex v   V satisfies the chance constraint in addition to the degree constraint.  

 

 

 

 

 

 

Algorithm 2. Construction phase for the MSkC problem 

Initially, the construction phase builds a candidate list that includes all the edges of the 

given graph G = (V, E). In the next step algorithm constructs RCL which consists only of lower 

cost edges from the candidate list. RCL is built using a threshold parameter   which is generated 

randomly in the range of 0 to 1. A threshold value is calculated as Cmin +   (Cmax – Cmin), where 

Cmin and Cmax are the minimum and maximum edge costs from the candidate list respectively. An 

Procedure GreedyRandomizedConstruction ( )  

Initial SolutionSet =   

Initial candidate list, CL= E 

               while MinDeg < k do 

Cmin = min{ Ce | e   CL } 

Cmax = min{ Ce | e   CL } 

RCL = { e   CL | Ce ≤ Cmin +   (Cmax – Cmin)} 

                          Select an edge s from the RCL at random 

                          SolutionSet = SolutionSet   {s} 

                          Increment degrees of both endpoints of edge s by 1 in the degree list 

                          MinDeg = Minimum degree in the degree list 

               end 

            Find minimal spanning k-core by deleting all edges with both endpoints greater than k 

           return SolutionSet 

end GreedyRandomizedConstruction 
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edge is randomly selected from RCL to include in the solution. Once the selected edge is added to 

the solution, the algorithm updates the candidate list for the next iteration. Iterations terminate 

when degrees of all the nodes become greater than or equal to k. The steps explained up to this 

point are similar for both Algorithm 2 and the first phase of Algorithm 3. In the last step, 

Algorithm 2 deletes all the edges with both endpoints greater than k and identifies a minimal 

spanning k-core.  

 

 

 

 

 

 

 

 

Algorithm 3. Construction phase for the CCMSkC problem 

Algorithm 3 is divided into two phases. The first phase is similar to Algorithm 2, 

excluding the step of finding a minimal spanning k-core. In the second phase Algorithm 3 

satisfies all the individual chance constraints by adding sufficient lower cost edges at every vertex 

v   V. Algorithm 3 terminates the GRASP iterations, if the individual chance constraint of a 

particular node is violated and all incident edges have been added. In the last step, Algorithm 3 

Procedure GreedyRandomizedConstruction ( )  

       SolutionSet = Algorithm 2 solution; excluding step of finding minimal spanning k-core 

for i=0, . . . , Number of Nodes do 

 Calculate  r( ( ) ≥ k)  
 β = Prescribed probability level 

 while  r( ( ) ≥ k)  < β and ∂(i )\SolutionSet ≠    do  

          j = argmin{ce| e   ∂(i)\SolutionSet} 

         SolutionSet = SolutionSet   {j} 

 end 

 

 if  r( ( ) ≥ k)  < β do 

     terminate GRASP 

     return “infeasible” 

 end  

end 

 

Find minimal spanning k-core by deleting excess edges if,  

chance constraints of both endpoints of edges are not violated 

       return SolutionSet 

end GreedyRandomizedConstruction 
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deletes excess edges and identifies a minimal spanning k-core. An edge is deleted only if both 

endpoints still satisfy chance constraints upon deletion of the edge. 

III.2. Local Search Phase 

Local search phase starts with the solution from the GRASP construction phase and iteratively 

improves the current solution by exploring solutions in the local neighborhood. Neighborhood of 

a solution is a function defined on search space S (S is the set of all feasible solutions) that assigns 

a set of neighbors N(s)   S for each s   S. Set N(s) is called the neighborhood of s. Solution      

s*   S is called a local minimum if f( *) ≤ f( ),   s   N(s*) and it is called a global minimum if 

f( *) ≤ f( ),   s   S. Given a graph G = (V, E) as input, the GRASP construction phase builds an 

initial feasible solution G’   (V, E’), E’   E. Since the solution generated by the construction phase 

is not necessarily local/global optimum, it is helpful to further improve the solution in the local 

search phase. (1,1)-exchange neighborhood is to delete an edge from the current solution and add 

an edge (not present in the current solution) resulting in another feasible solution. Similarly, 

(1,2)-exchange neighborhood is to delete an edge from the current solution and add two edges 

(not present in the current solution) resulting in another feasible solution. We use (1,1)-exchange 

and (1, 2)-exchange neighborhoods for both the versions of the problem.  

III.2.1. Local Search Phase for The MSkC Problem 

Let E0   E be a feasible solution, i.e., G0= (V, E0) is a spanning k-core. 

N1,1(E0) = { E’   E | E’= E0   {w}\{u}, where w   E0, u   E0 and (V, E’) is a spanning k-core} 

N1,2(E0) 
= * E’   E | E’= E0   {v, w}\{u}, where w ≠  ,  u   E0, v,w   E0 and (V, E’) is a spanning 

k-core} 
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The local search neighborhood used in GRASP for the MSkC problem is N1,1(E0)   N1,2(E0). 

Note that E0   {w}\{u}   N1,1(E0)  
will correspond to a minimal solution if u,w edges are incident 

at the same node which has degree exactly k in the solution E0. Similarly, E0   {v, w}\{u}   

N1,2(E0) will be a minimal solution if v is incident at one endpoint of u and w is incident at the 

other endpoint of u, where both endpoints are at degree exactly k in E0. Such a minimal 

neighboring solution is an improving solution if the cost of the added edges is less than the cost of 

the deleted edge. Algorithm 4 is the local search phase of the MSkC problem.  

 

 

 

 

Algorithm 4. Local search phase for the MSkC problem 

 

Figure 13. A feasible solution after (1,1)-exchange for the MSkC problem 

Procedure LocalSearch(E
0
) 

 

while there exists (u,w)   N1,1(E
0
) such that cw < cu do 

          E
0 
= E

0
   {w}\{u} 

end  
 

while there exists (u,v,w)   N1,2(E
0
) such that (cw+ cv)  < cu do 

          E
0 
= E

0
   {w,v}\{u} 

end 
 

return E
0
 

end LocalSearch 
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Consider Figure 13, in which candidate edge to delete is (5, 7) with degree of node 5 greater than 

k and degree of node 7 equal to k. An improving solution after (1, 1)-exchange can be found by 

replacing edge (5,7) with the edge (6, 7). Edge (6, 7) is incident at node 7, not present in the 

current solution and the cost of edge (6, 7) is less than the cost of edge (5, 7). Let‟s assume that 

after this step (1, 1)-exchange terminates and feasible solution is further improved in (1, 2)-

exchange neighborhood. 

 

Figure 14. A feasible solution after (1,2)-exchange for the MSkC problem 

An improving solution after (1, 2)-exchange is shown in Figure 14, where (2, 4) is the edge to 

delete with degree of both endpoints equal to k. The edge (2, 4) is replaced with edges (1, 4) and 

(2, 5). Both (1, 4) and (2, 5) edges are incident at respective endpoints of (2, 4) edge, not 

present in current solution and sum of the costs of (1, 4) and (2, 5) edges is less than the cost of 

edge (2, 4).  
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III.2.2. Local Search Phase for The CCMSkC Problem 

Let E0   E be a feasible solution, i.e., G0= (V, E0) is a spanning k-core. We use N1,1(E0) and 

N1,2(E0) as defined in Section III.2.1. A minimal neighboring solution is an improving solution if 

the cost of the added edges is less than the cost of the deleted edge and the probabilities of the 

added edges is greater than or equal to the probability of the deleted edge. Algorithm 5 is the 

local search phase of the CCMSkC problem. 

 

 

 

 

 

Algorithm 5. Local search phase for the CCMSkC problem 

 

Figure 15. A feasible solution after (1,2)-exchange for the CCMSkC problem 

Procedure LocalSearch(E
0
) 

 

while there exists (u,w)   N1,1(E
0
) such that cw < cu, pw ≥ pu do 

          E
0 
= E

0
   {w}\{u} 

end  
 

while there exists (u,v,w)   N1,2(E
0
) such that (cw+ cv)  < cu, pw ≥ pu, pv ≥ pu do 

          E
0 
= E

0
   {w,v}\{u} 

end 
 

return E
0
 

end LocalSearch 
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Consider Figure 15, in which edge to delete is (1,6) with the degree of both endpoints greater 

than k . An improving solution after (1,2)-exchange can be found by replacing edge (1,6) with 

the edge (1,2) and (5,6) edges, which are incident at respective endpoints of edge (1,6). Edges 

(1,2) and (5,6)  are not present in current solution and sum of the costs of (1, 2) and (5,6) is less 

than the cost of edge (1, 6). Also, consider that the probabilities of both (1,2) and (5,6) edges are 

at least probability of the edge (1,6).  

 

Figure 16. A feasible solution after (1,1)-exchange for the CCMSkC problem 

Consider Figure 16, in which (3,6) is the edge to be deleted with the degree of both endpoints 

greater than k. Higher probability edges (2,6) and (3,4) incident at respective endpoints of the 

edge (3,6) are selected. Current solution cannot improve in an (1,2)-exchange, as sum of the 

costs of edges (2,6) and (3,4) is greater than the cost of edge (3,6). However an improving 

solution after (1,1)-exchange can be found by replacing edge (3,6) with either (2,6) or (3,4). The 

algorithm deletes edge (3,6) and adds edge (3,4) if chance constraint at node 6 is not violated 

upon deletion of the edge (3,6). In the next chapter, we discuss the computational experiment and 

numerical results from solving the MSkC and CCMSkC problems using the GRASP algorithm 

developed in this chapter.  
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CHAPTER IV 
 

 

COMPUTATIONAL EXPERIMENTS 

 

This chapter presents computational experiments on the GRASP algorithms developed in Chapter 

III. Extensive experimentation on the algorithms for the deterministic and probabilistic versions 

of the problem is carried out on a test-bed of instances. In Section 4.1, we describe the 

implementation details and in Section 4.2 we describe the instances used in testing. Section 4.3 

describes the experimental design and introduces the statistics collected during the experiments. 

Finally, we conclude this chapter by presenting numerical results and observations. 

IV.1. General Implementation Details 

GRASP algorithm was implemented in the C++ programming language. All numerical 

experiments were conducted on Dell Precision T3500 computers with Intel Xeon W3550, 3.07 

GHz processor and 3GB RAM.  

A binary IP formulation for the deterministic version of problem discussed in Section II.2 is 

implemented in Xpress (Xpress Optimization Suite 7.0). Xpress results are important to assess the 

solution quality of deterministic GRASP as Xpress provides the optimal solution for the 

deterministic version of problem. Detailed Xpress model can be found in Section A.5 of 

Appendix A.  
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Preliminary experiments demonstrated that the updating candidate list was the most time 

consuming step in the construction phase. During each iteration of construction phase, we were 

updating candidate list and the restricted candidate list by searching for the minimum and 

maximum cost edges in the candidate list. To avoid searching for minimum and maximum cost 

edges, we designed a double dimensional array specifically to update candidate list.  

Edge Index 0 1 2 3 4 

Edge Cost 15 7 35 10 5 

Table 5. Double dimensional array 

Double dimensional array stores edge id in the first dimension and respective edge cost in the 

second dimension as shown in Table 5.Once this array is initialized, we applied the bubble sort 

algorithm to sort all the edges in ascending order of cost along with their ids as shown in Table 6.  

Edge Index 4 1 3 0 2 

Edge Cost 5 7 10 15 35 

Table 6. Double dimensional array after bubble sort 

Now algorithm directly selects minimum and maximum cost edges from double dimension 

array‟s first and last positions respectively. If the edge at any particular array‟s position is not in 

the candidate list, the algorithm moves to the next position of the array to find an addable edge. 

Table 7 shows runtime improvement due to double dimension array implementation on 

deterministic GRASP algorithm with 10 iterations. 
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Instance 
Previous 

Runtime (sec) 

Current 

Runtime (sec) 

150 Nodes 17 9.3 

200 Nodes 61 30 

250 Nodes 158 78 

Table 7. Double dimensional array deterministic GRASP runtime improvement  

IV.2. Description of Test Bed 

The test-bed of instances consisting of graphs of various sizes was generated by using MATLAB 

Appendix A, Section A.1. MATLAB generator produces test instances for the minimum spanning 

k-core problem with specified number of vertices, edges, edge costs and probabilities. The 

number of vertices in the generated graphs was selected as 30, 50, 70, 100, 150, 200 and 250. The 

number of edges for all instances was calculated as  
 (   )

 
 , as we are assuming input to the 

problem is a complete graph. The costs for edges were generated randomly and uniformly from 

specified ranges. We have selected the edge cost ranges as [100,500], [500,1000], [500,1500] and 

[1000,2000] for every test instance. Table 8 presents information regarding the 28 test instances 

of G(n,p1,p2) graphs, used in our experiments for both deterministic and probabilistic algorithms. 

The name of an instance provides information about the number of nodes and edge cost range for 

that instance, for e.g. “Kcore-30-100-500.txt” is a 30-node instance and costs assigned to the 

edges are distributed uniformly in the range of [100,500]. Furthermore, each edge was randomly 

assigned either p1 or p2 type of probability and all test instances consists of larger proportion of p1 

type edges. In every instance, MATLAB uses a predefined fraction which controls the proportion 

of generating p1 type of edges amongst the graph edges. We have used p1 = 90%, p2 = 30% and p1 

fraction = 80% for all the test instances. Therefore 80% of the edges are p1 type edges and the 

remaining 20% are p2 type edges. GRASP for the MSkC is tested on all test instances ignoring 

probability. Another MATLAB generator Appendix A, Section A.2 was used to convert all test 

instances into a format readable by Xpress. An instance‟s data file for C++ implementation and 
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its conversion to readable Xpress-MP format by using respective MATLAB generators is given in 

Appendix A, Section A.3 and Section A.4. 

Instance n m Total Cost 

Kcore-30-100-500.txt 

30 435 

130646 

Kcore-30-500-1000.txt 327814 

Kcore-30-500-1500.txt 431391 

Kcore-30-1000-2000.txt 651884 

Kcore-50-100-500.txt 

50 1225 

369059 

Kcore-50-500-1000.txt 918390 

Kcore-50-500-1500.txt 1231380 

Kcore-50-1000-2000.txt 1854680 

Kcore-70-100-500.txt 

70 2415 

720557 

Kcore-70-500-1000.txt 1804450 

Kcore-70-500-1500.txt 2413580 

Kcore-70-1000-2000.txt 3625380 

Kcore-100-100-500.txt 

100 4950 

1480550 

Kcore-100-500-1000.txt 3700920 

Kcore-100-500-1500.txt 4940630 

Kcore-100-1000-2000.txt 7399500 

Kcore-150-100-500.txt 

150 11175 

3370700 

Kcore-150-500-1000.txt 8388520 

Kcore-150-500-1500.txt 11197400 

Kcore-150-1000-2000.txt 16752500 

Kcore-200-100-500.txt 

200 19900 

5983010 

Kcore-200-500-1000.txt 14934600 

Kcore-200-500-1500.txt 19821800 

Kcore-200-1000-2000.txt 29863100 

Kcore-250-100-500.txt 

250 31125 

9359000 

Kcore-250-500-1000.txt 23308700 

Kcore-250-500-1500.txt 31161400 

Kcore-250-1000-2000.txt 46725600 

Table 8. Test instances 

IV.3. Design of Experiments 

This section discusses the experimental setup used to test the performance of both GRASP 

algorithms. As discussed earlier, the termination criterion for GRASP is number of iterations. 
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Larger number of GRASP iterations increases computational time, but increases the possibility of 

finding better quality solutions. After extensive experimentations we decided upon 10 GRASP 

iterations within which good quality solutions to both the versions of minimum spanning k-core 

were observed. Furthermore, to demonstrate algorithmic performance in terms of quality of 

solution, we have executed 1000 iterations for 30, 50, 70 and 100 node instances for both 

versions of GRASP. Following statistical data is collected during the computational experiments. 

 GRASP Solution: The best solution returned by GRASP for a given instance. 

 Edges Included: The number of edges |E*| included in the final solution given by 

GRASP. 

 Construction Time: Total time spent in construction phase. 

 Local Search Time: Total time spent in local search phase. 

 GRASP Time = Total GRASP time. 

 LS Hit Rate: Number of times local search improved the initial feasible solution 

provided by GRASP construction phase. 

 LSAvgPerDec = The percentage improvement by local search averaged over all the 

iterations in which improvement in initial feasiwas observed. 

 Xpress Objective: The optimal cost returned by Xpress for a given instance. 

 Optimality Gap: Represents percentage gap between the best solution by 

deterministic GRASP and Xpress optimal solution for a given graph instance. The 

following formula has been used to compute optimality gap:  

 p imali y Gap   
( e    ol  ion   p imal  ol  ion)

 p imal  ol  ion
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IV.4. Numerical Results: GRASP for The MSkC Problem 

Optimality gap for all test instances at 10 GRASP iterations are detailed in Appendix B, Table 

B.1 and vary within the range of 1% to 5%. Lesser optimality gap corresponds to the good quality 

GRASP solutions. Considering 1% to 5 % range of optimality gap for 10 GRASP iterations, we 

can conclude that the GRASP for the MSkC problem provides good quality solutions. 

Furthermore, to increase possibility of getting good quality solutions experiments are executed 

with 1000 GRASP iterations for 30, 50, 70 and 100 node instances and optimality gaps are 

detailed in Appendix B, Table B.2. It‟s noteworthy to observe reduction in the optimality gap 

range to 0%-3%.At larger iterations GRASP returns high-quality solutions to the problem, which 

is exemplified with the instances that have 0.0%, 0.1%, 0.4% and 0.6% optimality gaps. This 

implies algorithm can return superior quality solutions at higher number of iterations for any 

given instance of graph. Figure 17 shows the optimality gap for all 30, 50, 70 and 100 node 

instances at 10 and 1000 GRASP iterations. 

 

Figure 17. Optimality gap comparison 
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Appendix B provides statistics mentioned in Section IV.3 for GRASP on the MSkC problem, 

where Table B.1 presents statistics for 10 iterations for all instances. Table B.2 presents statistics 

for 1000 iterations for 30, 50, 70 and100 node instance. GRASP is further extended to solve the 

CCMSkC problem. GRASP‟s efficiency is first established on the MSkC problem as it allows us 

to compare optimal solutions from Xpress. For the CCMSkC problem we need to solve a mixed 

integer non linear program (MINLP), which is not easy given the current commercial 

optimization packages. So, we evaluate GRASP performance in terms of its running time. The 

running time comparison of GRASP for MSkC and CCMSkC problems is given in the following 

section.  

IV.5. Numerical Results: GRASP for The CCMSkC Problem 

Experimental results of GRASP for CCMSkC problem given in this chapter and Appendix B are 

based upon the parameters given in Table 9.  

Parameter Value 

p1 90% 

p2 30% 

  60% 

Table 9. Parameters of GRASP for the CCMSkC problem 

Results of GRASP for the CCMSkC problem at 10 iterations for all the test instances are 

given in Appendix B, Table B.3, Table B.5. Table B.5 presents the difference in edge sets and 

objective values of CCMSkC and MSkC problems. Table B.3 provides statistics mentioned in 

Section IV.3 for GRASP on the CCMSkC problem. To increase possibility of getting good 

quality solutions experiments were executed with 1000 GRASP iterations for 30, 50, 70 and 100 

node instances and detailed in Appendix B, Table B.4. Table 10 presents the difference in 

solutions returned by GRASP at 1000 and 10 iterations. Difference in solution implies that 
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GRASP for the CCMSkC problem can return high-quality solutions at higher number of 

iterations.  

Instance 
GRASP Solution 

 at 10 Iterations 

GRASP Solution 

at 1000 Iterations 
Difference 

Kcore-30-100-500.txt 76816 76166 650 

Kcore-30-500-1000.txt 212783 210801 1982 

Kcore-30-500-1500.txt 271522 269127 2395 

Kcore-30-1000-2000.txt 424785 422686 2099 

Kcore-50-100-500.txt 196153 195362 791 

Kcore-50-500-1000.txt 553641 552678 963 

Kcore-50-500-1500.txt 702588 699887 2701 

Kcore-50-1000-2000.txt 1109320 1107420 1900 

Kcore-70-100-500.txt 366200 365926 274 

Kcore-70-500-1000.txt 1055430 1052020 3410 

Kcore-70-500-1500.txt 1318970 1317060 1910 

Kcore-70-1000-2000.txt 2120300 2111270 9030 

Kcore-100-100-500.txt 739676 738665 1011 

Kcore-100-500-1000.txt 2123340 2123090 250 

Kcore-100-500-1500.txt 2679520 2675020 4500 

Kcore-100-1000-2000.txt 4266990 4261880 5110 

Table 10. CCMSkC objective improvement at 1000 iterations  

 

 

Figure 18. GRASP runtime at 10 iterations 
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Figure 18 represents running time comparison of GRASP for the MSkC and CCMSkC problems 

at 10 iterations. Observing performance of GRASP for the CCMSkC problem, we conclude that 

GRASP for the CCMSkC problem provides good quality solutions in less amount of time.  

Recall from Chapter II, chance constraints ensures that the probability of a node‟s degree 

being at least k is greater than or equal to a prescribed probability level  ,    ≤    ≤ 1  Higher 

values of   results in either infeasible solutions or higher cost feasible solutions to the problem. 

Probability of getting infeasible solutions increases as   increases. The effect of different    

values on the CCMSkC problem is shown in Appendix B, Table B.6, where we note the increase 

in objective values and edge set sizes of instances as   increases.  
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CHAPTER V 
 

 

CONCLUSION AND FUTURE WORK 

 

In this thesis we studied the minimum spanning k-core problem introduced by Balasundaram in 

[4]. k-Cores were originally proposed by Seidman [22] in the social network analysis literature. 

Minimum spanning k-core problem uses the notion of classical k-cores and explicitly controls 

minimum degree and by proper choice of minimum degree, implicitly controls diameter and 

connectivity of the network design.  

The main contribution of this thesis is a GRASP metaheuristic to solve the MSkC and 

CCMSkC problems. GRASP for the MSkC problem was first developed, benchmarked, and then 

extended for the CCMSkC problem. Developing GRASP for the MSkC problem before extending 

it to the CCMSkC problem allowed us to assess the performance of GRASP on the MSkC 

problem by comparing optimal results from Xpress. These results helped to establish that the 

GRASP for the MSkC problem returns a good feasible solution for all the test instances. 

Following this we extended GRASP to solve the CCMSkC problem. In this thesis we have used 

individual chance constraints as we have not found an efficient way to handle dependence and 

calculate the joint probability. Finding an expression to calculate joint probability and employ the 

existing model with a joint chance constraint is an interesting topic for future research. 
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Furthermore, the preliminary experiments on the GRASP for CCMSkC problem leads us 

to an interesting conclusion that the CCMSkC problem on G(n,p) uniform random graph 

instances can be reduced to a special case of MSkC problem. Therefore, we proposed a new 

G(n,p1,p2) model for the CCMSkC problem and developed GRASP algorithm for the same. 

Results shown in Appendix B, Table B.6 suggest that the GRASP for CCMSkC problem provides 

good quality solutions in reduced amount of time. In the future, it would be interesting to derive 

an efficient expression that can determine probability of a vertex degree being at least k for     

G(n, p1, p2, … , pm) graph model, where every edge exists with a possibly different probability. 

Additionally, a problem for study in the immediate future is to use the Conditional Value at Risk 

(CVaR) based approach for the probabilistic version of minimum spanning k-core problem. 

CVaR is a downside financial risk measure that has recently been adopted to the network 

optimization under uncertainty [6, 27].  

Finally, considering superior solution qualities of developed GRASP algorithms and 

above mentioned future extensions, we conclude that the GRASP approach applied to the 

minimum spanning k-cores in this thesis is a successful approach. The complexity of CCMSkC 

problem is an open question to be addressed.  
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APPPENDIX A 
 

 

MATLAB INSTANCE GENERATORS AND  

XPRESS MODEL IMPLEMENTATION 

 

Appendix A presents two MATLAB generators we have used to generate test bed of the 

instances. Section A.1 is MATLAB generator which generates instance data files for C++ 

implementation. Format of an instance data file for C++ is shown in Section A.3, which further 

converted into Xpress readable format (Section A.4) by using MATLAB generator given in 

Section A.2.Finally, this appendix provide Xpress mosel language code for the MSkC problem. 
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A.1. MATLAB instance generator for C++ implementation 
 

n = 6;  
IMIN = 10; 
IMAX = 50; 

 
vert = n; 
edge = n*(n-1)/2; 
P1_percent = 80;     
name =  

strcat('Kcore','-',num2str(vert),'-',num2str(IMIN),'-

',num2str(IMAX),'.txt') 
fid = fopen(name,'w'); 

  
     fprintf(fid, 'c ');      
     fprintf(fid, name); 
     fprintf(fid, '\n'); 
     fprintf(fid, 'p ');  
     fprintf(fid, 'nodes '); 
     fprintf(fid, '%d' , vert); 
     fprintf(fid, '\n'); 

      
     id = 0; 
     P1 = 0.9; 
     P2 = 0.3;      
     p1_edges = floor(edge * P1_percent/100);      
     probability_column = zeros(edge,1); 
     probability_column(1:p1_edges) = P1; 
     probability_column(p1_edges+1:end) = P2;      
     probability_column = randsample(probability_column,edge); 

      
     for t = 1:n-1  
        for h = t+1:n  
            fprintf(fid,'e ');          
            fprintf(fid,'%d',id);       %Printing edge id 
            fprintf(fid, ' '); 
            fprintf(fid,'%d',t-1);      %Printing tail node 
            fprintf(fid, ' '); 
            fprintf(fid,'%d',h-1);      %Printing head node     
            fprintf(fid,' '); 
            costs = randi([IMIN IMAX],[1 1]); 
            fprintf(fid,'%d',costs);    %Printing cost 

%Printing probability 
fprintf(fid,' %1.2f',probability_column(id+1));            

fprintf(fid,'\n');     
            id = id + 1; 
        end 
     end         
    status = fclose(fid); 
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A.2. MATLAB instance generator for Xpress implementation 
 

function c2xpress(name)  
% Read Instances from C++ data file.  

ipname = strcat(name,'.txt');    

opname = strcat(name,'.dat');    
display(strcat(['Converting ' ipname ' to ' opname '...']));  
fid = fopen(ipname,'r');     

discard = fscanf(fid,'%s',[1 1]);  

while (discard =='c') 
    tline = fgets(fid); 

    discard = fscanf(fid,'%s',[1 1]);  
end  
discard = fgets(fid,6);  
G = fscanf(fid,'%d',[1 1]);  
N = G(1); % no. of vertices.  
E = (N*(N-1))/2; % no. of edges. 
k = N/2;  
COST = zeros(E,1);  
PROB = zeros(E,1);  
discard = fscanf(fid,'%s',[1 1]);  
while (discard =='e') 
    temp =  fscanf(fid,'%d %d',[5]);     

    COST(temp(1)+1)=temp(4);     

    discard = fscanf(fid,'%s',[1 1]); 

    discard = fscanf(fid,'%s',[1 1]); 

end 
status = fclose(fid);  

 
% Write Instances in XPRESS Format.   
    fidw = fopen(opname,'w');        
    fprintf(fidw,'%s','NODEMAX: '); 
    fprintf(fidw,'%d',N-1); 
    fprintf(fidw,'\n');  
    fprintf(fidw,'\n');   
    fprintf(fidw,'%s','k: '); 
    fprintf(fidw,'%d',k); 
    fprintf(fidw,'\n');  
    fprintf(fidw,'\n');      
    fprintf(fidw,'%s','ARCS: ['); 
    fprintf(fidw,'\n');   
    id = 0;  

for t = 1:N-1  
        for h = t+1:N  
            fprintf(fidw,'%s','('); 
            fprintf(fidw,'%d',id);       %Printing edge id 
            id = id + 1; 
            fprintf(fidw,'%s', ' '); 
            fprintf(fidw,'%d',1); 
            fprintf(fidw,'%s',') '); 
            fprintf(fidw,'%d',t-1);      %Printing tail node 
            fprintf(fidw, ' '); 
            fprintf(fidw,'%d',h-1);      %Printing head node     
            fprintf(fidw,'\n');     
        end 

    end 
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    fprintf(fidw,']\n\n');     
    if (id~=E) 
        display('messed up'); 
    end     
    fprintf(fidw,'%s','COST: [');fprintf(fidw, '\n'); 
    for i=1:E                      
            fprintf(fidw,'%s','('); 
             fprintf(fidw,'%d',i-1); 
             fprintf(fidw,'%s',') '); 
             fprintf(fidw,'%d',COST(i));    
             fprintf(fidw,'\n'); 
    end 
    fprintf(fidw, ']\n\n');     
    if (id~=E) 
        display('messed up'); 
    end        
    display('Run Complete.'); 
    status = fclose(fidw);    

clear; 

 

 

A.3. An instance data file generated for C++ implementation 
 

c Kcore-6-10-50.txt 

p nodes 6 

e 0 0 1 15 0.90 

e 1 0 2 27 0.90 

e 2 0 3 47 0.90 

e 3 0 4 42 0.90 

e 4 0 5 49 0.30 

e 5 1 2 36 0.90 

e 6 1 3 11 0.90 

e 7 1 4 44 0.30 

e 8 1 5 48 0.90 

e 9 2 3 37 0.90 

e 10 2 4 41 0.90 

e 11 2 5 40 0.30 

e 12 3 4 26 0.90 

e 13 3 5 36 0.90 

e 14 4 5 17 0.90 

 

A.4. An instance data file generated for Xpress implementation 

 
NODEMAX: 5 

 

k: 3 

 

ARCS: [(0 1) 0 1 (1 1) 0 2 (2 1) 0 3 (3 1) 0 4 (4 1) 0 5 (5 1) 1 2 (6 

1) 1 3 (7 1) 1 4 (8 1) 1 5 (9 1) 2 3 (10 1) 2 4 (11 1) 2 5 (12 1) 3 4 

(13 1) 3 5 (14 1) 4 5] 

 

COST: [(0) 15 (1) 27 (2) 47 (3) 42 (4) 49 (5) 36 (6) 11 (7) 44 (8) 48 

(9) 37 (10) 41 (11) 40 (12) 26 (13) 36 (14) 17] 
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A.5. Xpress model for deterministic binary IP formulation 
 

model "Minimum Spanning k-core Network" 

uses "mmxprs","mmsystem" 

 

!! DATA & PARAMETERS 

parameters 

 DATAFILE= "Kcore-6-100-500.dat"   

e = 0 

end-parameters 

 

declarations 

 NODEMAX, k: integer 

end-declarations 

 

initializations from DATAFILE 

 NODEMAX k 

end-initializations 

 

declarations  

 NODES = 0…NODEMAX  

 ARCS: array (ARCID: range, 1..2) of integer      

 COST: array (ARCID) of integer 

 starttime, runtime : real   

end-declarations 

 

initializations from DATAFILE 

 ARCS COST 

end-initializations 

 

finalize(ARCID)  

declarations 

 x: array (ARCID) of mpvar !1 if Arc is selected, 0 

otherwise  

end-declarations    

  

!!OBJECTIVE FUNCTION 

 NetworkCost: = sum (a in ARCID) COST(a)*x(a)   

  

!!CONSTRAINT-1: DESIRABLE VERTEX CONNECTIVITY CHECK   

forall (i in NODES) do 

sum (a in ARCID | ARCS (a,2)=i) x(a) + sum (a in ARCID | ARCS 

(a,1)=i) x(a) >= k 

end-do   

 

!!CONSTRAINT-2: BINARY VARIABLE x 

 forall(a in ARCID) x(a) is_binary  

 

!!SOLVING PROBLEM  

 starttime:=gettime 

 minimize(NetworkCost)  

runtime:=gettime- starttime   

 

!!PROBLEM STATUS 

declarations     
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status:array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of 

string 

end-declarations 

status::([XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH])[ 

"Optimum found","Unfinished","Infeasible","Unbounded","Failed"] 

 

!! PRINTING SOLUTION 

 writeln ("SOLUTION:") 

 writeln ("Status: ",status(getprobstat)) 

 writeln ("Running Time (excluding data operations): ",runtime)  

 writeln ("Objective Value: ", getobjval)   

  forall(a in ARCID)  

  if(getsol(x(a)) > 0) then  

  e := e+1 

  end-if  

 writeln ("Number of edges in solution:",e)  

end-model 
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APPENDIX B 
 

 

RESULTS OF GRASP ALGORITHM FOR MSkC AND CCMSkC PROBLEMS 

 

Appendix B present necessary statistics collected during the computational experiments on the 

deterministic and probabilistic versions of GRASP algorithm. Tables B.1, B.2 are statistics of 

GRASP for the MSkC problem. However, Tables B.3, B.4 and B.5 are statistics of GRASP for 

the CCMSkC problem. At the end, Table B.6 illustrates the effect of different   values on three 

instances of the CCMSkC problem. 
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Instance 
Xpress 

Solution 

Xpress 

Time 

(Sec) 

GRASP 

Solution 

GRASP 

Time 

(Sec) 

Construction 

Time (sec) 

Local Search 

Time (sec) 

Optimality 

Gap 

LS  

Hit Rate 

LSAvgPerDec 

 

Kcore-30-100-500.txt 46835 0.032 49064 0.00 0.00 0.00 5% 1 0.8% 

Kcore-30-500-1000.txt 142816 0.016 144952 0.02 0.00 0.02 1% 0.9 0.2% 

Kcore-30-500-1500.txt 173428 0.016 180292 0.00 0.00 0.00 4% 0.8 0.5% 

Kcore-30-1000-2000.txt 284664 0.015 292989 0.02 0.02 0.00 3% 0.9 0.5% 

Kcore-50-100-500.txt 129271 0.032 134837 0.09 0.06 0.03 4% 1 0.9% 

Kcore-50-500-1000.txt 396438 0.032 405629 0.11 0.09 0.02 2% 0.9 0.1% 

Kcore-50-500-1500.txt 484134 0.031 500888 0.11 0.06 0.05 3% 0.9 0.1% 

Kcore-50-1000-2000.txt 797718 0.031 811665 0.11 0.08 0.03 2% 0.9 0.2% 

Kcore-70-100-500.txt 245924 0.031 255813 0.42 0.34 0.08 4% 1 0.5% 

Kcore-70-500-1000.txt 771378 0.078 786296 0.45 0.28 0.17 2% 1 0.1% 

Kcore-70-500-1500.txt 928686 0.063 957826 0.45 0.36 0.09 3% 1 0.0% 

Kcore-70-1000-2000.txt 1543413 0.047 1576950 0.44 0.36 0.08 2% 1 0.1% 

Kcore-100-100-500.txt 503100 0.093 521969 1.70 1.31 0.39 4% 1 0.3% 

Kcore-100-500-1000.txt 1562196 0.093 1582140 1.81 1.38 0.44 1% 1 0.0% 

Kcore-100-500-1500.txt 1890662 0.094 1931690 1.59 1.19 0.41 2% 1 0.2% 

Kcore-100-1000-2000.txt 3144100 0.109 3195850 1.77 1.31 0.45 2% 1 0.1% 

Kcore-150-100-500.txt 1146864 0.25 1186470 8.56 7.55 1.02 3% 1 0.5% 

Kcore-150-500-1000.txt 3532914 0.204 3584760 9.31 6.53 2.78 1% 0.9 0.1% 

Kcore-150-500-1500.txt 4255775 0.203 4350770 9.44 5.72 3.72 2% 1 0.2% 

Kcore-150-1000-2000.txt 7048505 0.203 7151640 9.91 6.63 3.28 1% 0.8 0.4% 

Table B.1. GRASP results for the MSkC problem at 10 iterations 
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Instance 
Xpress 

Solution 

Xpress 

Time 

(Sec) 

GRASP 

Solution 

GRASP 

Time 

(Sec) 

Construction 

Time (sec) 

Local 

Search Time 

(sec) 

Optimality 

Gap 

LS  

Hit Rate 

LSAvgPerDec 

 

Kcore-200-100-500.txt 2017840 0.359 2081920 28.08 21.99 6.09 3% 1 0.5% 

Kcore-200-500-1000.txt 6267888 0.422 6342090 31.84 22.58 9.27 1% 1 0.0% 

Kcore-200-500-1500.txt 7502256 0.407 7657740 29.02 27.22 1.80 2% 1 0.1% 

Kcore-200-1000-2000.txt 12561163 0.39 12718700 30.80 23.33 7.47 1% 0.8 0.0% 

Kcore-250-100-500.txt 3155259 0.547 3243390 73.25 50.16 23.09 3% 1 0.8% 

Kcore-250-500-1000.txt 9775016 0.531 9881630 80.20 62.27 17.94 1% 1 0.2% 

Kcore-250-500-1500.txt 11786021 0.516 11986000 74.83 60.67 14.16 2% 1 0.5% 

Kcore-250-1000-2000.txt 19570171 0.547 19822600 82.78 54.27 28.52 1% 1 0.8% 

Table B.1. Continued 
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Instance 
GRASP 

Solution 

GRASP 

Time 

(Sec) 

Construction 

Time (sec) 

Local Search 

 Time (sec) 

Optimality 

Gap 

LS  

Hit Rate 

LSAvgPerDec 

 

Edges 

Included 

Kcore-30-100-500.txt 48152 1.33 0.98 0.35 2.8% 1 0.5% 225 

Kcore-30-500-1000.txt 142952 0.63 1.01 0.38 0.1% 0.974 0.2% 226 

Kcore-30-500-1500.txt 173455 1.44 1.02 0.42 0.0% 1 0.2% 226 

Kcore-30-1000-2000.txt 286236 0.58 0.99 0.40 0.6% 0.895 0.1% 225 

Kcore-50-100-500.txt 132037 10.72 8.13 2.59 2.1% 1 0.7% 628 

Kcore-50-500-1000.txt 400060 11.38 8.27 3.11 0.9% 0.886 0.1% 626 

Kcore-50-500-1500.txt 497504 11.09 8.63 2.47 2.8% 0.975 0.2% 627 

Kcore-50-1000-2000.txt 807757 10.24 7.85 2.39 1.3% 0.972 0.2% 626 

Kcore-70-100-500.txt 252932 40.01 31.22 8.79 2.8% 1 0.7% 1232 

Kcore-70-500-1000.txt 782121 43.14 31.57 11.58 1.4% 0.994 0.1% 1227 

Kcore-70-500-1500.txt 950526 43.47 30.87 12.60 2.4% 0.951 0.2% 1227 

Kcore-70-1000-2000.txt 1566770 42.91 31.11 11.79 1.5% 0.997 0.1% 1226 

Kcore-100-100-500.txt 510839 169.16 130.27 38.89 1.5% 1 0.5% 2519 

Kcore-100-500-1000.txt 1569120 180.90 128.29 52.62 0.4% 0.978 0.1% 2501 

Kcore-100-500-1500.txt 1911340 167.81 129.08 38.73 1.1% 1 0.2% 2502 

Kcore-100-1000-2000.txt 3171750 172.69 130.49 42.20 0.9% 0.999 0.1% 2501 

Table B.2. GRASP results for the MSkC problem at 1000 iterations 
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Instance 
 GRASP  

Solution  

Construction 

Time (sec) 

Local Search  

Time (sec) 

GRASP 

Time (sec) 

LS  

Hit Rate 

LSAvgPerDec 

 

Kcore-30-100-500.txt 76816 0.08 0.05 0.12 1 1.4% 

Kcore-30-500-1000.txt 212783 0.09 0.05 0.14 0.8 1.0% 

Kcore-30-500-1500.txt 271522 0.11 0.03 0.14 1 0.8% 

Kcore-30-1000-2000.txt 424785 0.06 0.08 0.14 1 0.7% 

Kcore-50-100-500.txt 196153 0.66 0.36 1.02 0.9 2.0% 

Kcore-50-500-1000.txt 553641 0.69 0.50 1.19 1 1.0% 

Kcore-50-500-1500.txt 702588 0.69 0.45 1.14 0.7 2.4% 

Kcore-50-1000-2000.txt 1109320 0.70 0.47 1.17 1 0.7% 

Kcore-70-100-500.txt 366200 2.83 1.70 4.53 1 2.9% 

Kcore-70-500-1000.txt 1055430 2.88 1.86 4.74 0.8 0.7% 

Kcore-70-500-1500.txt 1318970 2.84 1.97 4.81 1 1.7% 

Kcore-70-1000-2000.txt 2120300 2.92 1.91 4.83 0.9 0.8% 

Kcore-100-100-500.txt 739676 14.66 8.75 23.41 1 1.5% 

Kcore-100-500-1000.txt 2123340 14.64 9.54 24.19 1 0.6% 

Kcore-100-500-1500.txt 2679520 14.91 9.89 24.80 0.9 0.7% 

Kcore-100-1000-2000.txt 4266990 14.72 8.91 23.63 1 0.5% 

Kcore-150-100-500.txt 1682610 98.98 57.51 156.50 1 1.8% 

Kcore-150-500-1000.txt 4821910 101.89 72.91 174.80 1 0.6% 

Kcore-150-500-1500.txt 6019560 100.42 65.83 166.25 1 1.6% 

Kcore-150-1000-2000.txt 9561310 99.34 69.06 168.40 1 0.5% 

Kcore-200-100-500.txt 2977240 400.71 231.79 632.51 0.8 1.0% 

Kcore-200-500-1000.txt 8516920 390.81 245.75 636.56 1 0.6% 

Kcore-200-500-1500.txt 10578000 393.98 239.31 633.29 1 2.4% 

Kcore-200-1000-2000.txt 17041700 393.73 257.50 651.23 1 0.6% 

Kcore-250-100-500.txt 4646430 1160.44 621.23 1781.66 1 0.5% 

Kcore-250-500-1000.txt 13313000 1183.88 781.87 1965.75 1 1.3% 

Kcore-250-500-1500.txt 16616800 1180.52 727.25 1907.77 0.9 0.7% 

Kcore-250-1000-2000.txt 26677100 1186.47 767.53 1954.00 1 0.8% 

 

Table B.3. GRASP results for the CCMSkC problem at 10 iterations 
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Instance 
GRASP  

Solution 

Edges 

Included 

Construction 

Time (sec) 

Local Search  

Time (sec) 

GRASP 

Time (sec) 

LS  

Hit Rate 

LSAvgPerDec 

(%) 

Kcore-30-100-500.txt 76166 303 8.00 4.61 12.61 1 1.5% 

Kcore-30-500-1000.txt 210801 302 7.84 4.91 12.75 0.9 0.7% 

Kcore-30-500-1500.txt 269127 304 8.04 5.45 13.49 1 1.1% 

Kcore-30-1000-2000.txt 422686 306 8.35 4.87 13.22 1 0.8% 

Kcore-50-100-500.txt 195362 809 65.65 35.52 101.17 1 2.1% 

Kcore-50-500-1000.txt 552678 813 67.26 46.05 113.31 1 1.0% 

Kcore-50-500-1500.txt 699887 811 65.29 44.39 109.69 0.8 1.5% 

Kcore-50-1000-2000.txt 1107420 808 65.61 42.37 107.98 1 0.9% 

Kcore-70-100-500.txt 365926 1574 285.96 168.44 454.40 0.9 1.9% 

Kcore-70-500-1000.txt 1052020 1570 286.38 193.13 479.51 1 0.8% 

Kcore-70-500-1500.txt 1317060 1559 284.91 188.38 473.29 0.9 1.0% 

Kcore-70-1000-2000.txt 2111270 1569 289.19 189.76 478.95 1 0.6% 

Kcore-100-100-500.txt 738665 3193 1453.87 818.72 2272.59 1 1.3% 

Kcore-100-500-1000.txt 2123090 3192 1478.77 994.03 2472.80 1 0.7% 

Kcore-100-500-1500.txt 2675020 3206 1499.03 996.76 2495.78 1 1.0% 

Kcore-100-1000-2000.txt 4261880 3192 1487.53 948.43 2435.97 1 1.7% 

 

Table B.4. GRASP results for the CCMSkC problem at 1000 iterations  
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Instance 
CCMSkC 

Edge Set Size 

GRASP for 

 CCMSkC Solution Cost 

MSkC 

 Edge Set Size 

GRASP for  

MSkC Solution Cost 

Kcore-30-100-500.txt 305 76816 226 49064 

Kcore-30-500-1000.txt 306 212783 225 144952 

Kcore-30-500-1500.txt 308 271522 226 180292 

Kcore-30-1000-2000.txt 310 424785 226 292989 

Kcore-50-100-500.txt 814 196153 631 134837 

Kcore-50-500-1000.txt 813 553641 625 405629 

Kcore-50-500-1500.txt 817 702588 628 500888 

Kcore-50-1000-2000.txt 810 1109320 627 811665 

Kcore-70-100-500.txt 1574 366200 1235 255813 

Kcore-70-500-1000.txt 1574 1055430 1232 786296 

Kcore-70-500-1500.txt 1568 1318970 1227 957826 

Kcore-70-1000-2000.txt 1574 2120300 1228 1576950 

Kcore-100-100-500.txt 3194 739676 2521 521969 

Kcore-100-500-1000.txt 3193 2123340 2503 1582140 

Kcore-100-500-1500.txt 3209 2679520 2508 1931690 

Kcore-100-1000-

2000.txt 
3199 4266990 2506 3195850 

Kcore-150-100-500.txt 7206 1682610 5670 1186470 

Kcore-150-500-1000.txt 7231 4821910 5636 3584760 

Kcore-150-500-1500.txt 7220 6019560 5635 4350770 

Kcore-150-1000-

2000.txt 
7190 9561310 5633 7151640 

Kcore-200-100-500.txt 12834 2977240 10053 2081920 

Kcore-200-500-1000.txt 12816 8516920 10008 6342090 

Kcore-200-500-1500.txt 12831 10578000 10016 7657740 

Kcore-200-1000-

2000.txt 
12816 17041700 10009 12718700 

 
Kcore-250-100-500.txt 20077 4646430 15740 3243390 

Kcore-250-500-1000.txt 20083 13313000 15628 9881630 

Kcore-250-500-1500.txt 20061 16616800 15640 11986000 

Kcore-250-1000-

2000.txt 
20070 26677100 15632 19822600 

 

Table B.5. The CCMSkC problem objective functions and edge sets at 10 iterations 
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  0.0 0.1 0.2 0.3 0.4 0.5 

Instance 
      

Kcore-30-500-1000.txt 146182 179892 187614 194649 196900 204287 

Edges Set  227 266 276 284 286 295 

Kcore-50-500-1000.txt 405703 495253 506164 520740 533741 543407 

Edges Set  629 746 756 773 789 803 

Kcore-70-500-1000.txt 786768 951185 976499 993467 1019260 1037130 

Edges Set  1236 1445 1478 1501 1533 1553 

 

   0.6 0.7 0.8 0.9 1 

Instance           

Kcore-30-500-1000.txt 211518 226536 243504 No feasible 

solution found 

No feasible 

solution found 
Edges Set  303 318 336 

Kcore-50-500-1000.txt 555257 567982 590436 623637 No feasible 

solution found 
Edges Set  815 830 859 895 

Kcore-70-500-1000.txt 1054260 1082480 1111040 1152250 No feasible 

solution found 
Edges Set  1571 1606 1637 1687 

 

Table B.6. Effect of different   values on the CCMSkC problem at 10 iterations 
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This thesis presents metaheuristic approaches to solve a novel network design 

problem under uncertainty. The problem is an extension of the classical k-core based 

network model called as the minimum spanning k–core problem. The minimum spanning 

k-core problem aims to balance the network design objectives of robustness, reachability 

and cost effectiveness. The problem is further extended to a probabilistic version called 

as, the chance constrained minimum spanning k-core problem. The minimum spanning 

k-core problem can be used to design underlying transportation networks, 

telecommunication networks, electrical and power distribution networks etc. in robust 

manner. 

 

 

In this thesis, Greedy Randomized Adaptive Search Procedure (GRASP), a 

metaheuristic approach is developed to solve both versions of the minimum spanning k-

core problem. Computational experiments are performed to study the effectiveness of 

GRASP on specially designed test instances. Computational results conclude that 

GRASP provides good quality feasible solutions and efficiently solve both versions of the 

minimum spanning k-core problem. 

 

 


