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CHAPTER I 

THE RESEARCH PROBLEM 

1.1 Background 

This thesis presents the development of a methodology 

for the economically based design of an industrial system 

with bivariate capacity subject to bivariate loads or 

demands. The'methodology uses the utility-connected 

industrial cogeneration system or concurrent generation of 

heat and power as the demonstration mechanism. 

The analytical methodology has been developed using an 

evolutionary approach. Thus, the development starts with the 

formulation of a deterministic (non-random) and linear-cost 

optimization model. Then, it evolves with the sequential 

introduction of stochastic loads, stochastic capacities and 

an exponentially decreasing system unit-cost, towards a 

probabilistic and non-linear-cost optimization model. The 

development includes illustrative examples for the various 

analytical models. As a background for the formulation of 

the research problem, the deterministic and probabilistic 

approaches to design are discussed below. 

Traditionally, most engineering problems have been 

approached assuming that the "given data" is certain. Thus, 

in general, deterministic methods are considered to be more 

tractable, less complicated, with a lower computational 

burden, and with a lesser amount of data and data analysis. 

1 
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Also, design methods that assume complete certainty have a 

valuable educational stand point. That is, for students to 

grasp and understand engineering science principles, simple 

(or simplified) procedures are needed. Consequently, the 

instructional' design methods may not need to acknowledge the 

randomness of the underlying input figures (data) and output 

design variables (results). Also, it has been claimed that 

many experienced designers have developed a "feeling" for the 

randomness of the design variables, and that they are 

sometimes capable of intuitively handling random variation. 

That is, they are able to correct or adjust their designs 

accordingly. Thus, Haugen (1968, p. 3), one of the pioneers 

in probabilistic approaches to structural design, says: 

"operating in a domain fraught with uncertainty, that of 

statistics, and with tools not ideally suited to the task, 

the set of real numbers and conventional (deterministic) 

methods have performed surprisingly well in the past". He, 

however, does not elaborate on how cost effective are the 

operationally successful designs of conventional methods. 

In many circumstances, by using deterministic methods 

and models, the engineer may obtain "adequate" estimates of 

the desired design variables. Consequently, this general 

design methodology is still widely utilized. Under the 

traditional concept, the system and the environment in which 

it is supposed to function, are designed assuming perfect 

certainty, or in terms of the so called design (or extreme) 

conditions. However, after a given system has been designed, 

constructed and implemented, the degree of adequacy of the 

design method -and its outcome- will be subject to the 

realities of a varying and sometimes risky environment. In 
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fact, the environment may present input variables in a 

somewhat predictable pattern or may subject the system to a 

set of wildly varying causes. In addition, the system itself 

may not have a fully predictable performance. 

Sometimes, an implicit acknowledgment of uncertainty 

leads the designer to develop "parametric" designs. A 

parametric study evaluates'the system performance for a set 

of varying relevant parameters. For instance, fuel heat 

content can be one "parameter" in the design of an oil 

burner. In thermal system design, "maximum and minimum" 

values span the range of "possible" firing rates for a burner 

design. This kind of information usually appears in a 

nameplate. A similar approach is used in engineering 

economic analysis, i.e. the development of sensitivity or 

break-even analysis to evaluate the sensitivity of a 

project's cash flow attractiveness to probable changes in a 

cash flow parameter. 

Both, parametric design and sensitivity/break-even 

analysis allow the analyst to explore the performance or 

profitability of the system under "what-if" scenarios. Thus, 

by varying one variable at a time, the sensitivity of both, 

the system performance (in design) or cost-effectiveness (in 

economic analysis) can be evaluated under different 

conditions. 

An implicit assumption under most parametric/sensitivity 

evaluations is that the degree of uncertainty of a variable 

is such that any particular value in the range of interest is 

equally likely to occur. In this regard, Taha (1992) states 

that one of the criteria for decisions under uncertainty is 

the Laplace criterion. This criterion is based on what is 
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known as the principle of insufficient reason. Since 

uncertainty implies that the probabilities associated with 

the occurrence of say n events are unknown, the criterion 

states that the states or events are equally likely to occur. 

Hence, a uniform distribution is implicitly assumed for the 

underlying variable. 

However, once a syste~ is installed in its environment, 

the engineer can gradually know how the system-environment 

pair responds to the design expectations. If the system 

and/or its environment significantly deviate from the 

deterministic model -or do so with a different frequency -

then, it is not unlikely that the expected system performance 

is not attained. Most importantly, since the system 

implementation is a capital investment, it may subsequently 

be found that the system does ~ot meet the economic 

expectations defined by the traditional methods. 

Consequently, two examples of industrial systems are 

presented below to illustrate the problem. One is a flexible 

manufacturing systems (FMS), the other is a cogeneration 

system for the coincid~nt production of heat and power. But 

the general underlying problem is presented first as follows. 

1.2 Purpose 

A general type of engineering problem is to "size" a 

given system, i.e. to determine an "adequate" system capacity 

when the system is subject to a varying demand. Several 

models for mechanical system/components subject to random 

loads are discussed by Kapur and Lamberson (1977). They 

show that the reliability model of component strength and 

stress can be represented by probability density functions. 



This is illustrated in Figure 1.1. Here, changing loads 

cause random stress, and varying dimensions and physical 

properties produce strength variation. 

5 

In complex systems, however, the problem involves more 

than a unit subject to one random stress. A multiple load 

system is shown in Fig. 1.2; which illustrates the varying 

electrical and steam demand of a brewery. The multiple load 

problem is complicated by the existence of different load 

amplitudes, seasonal variation, random load duration or 

varying frequencies. This is further complicated when the 

system is subject to failures, which prevent its successful 

operation at any moment and for a random period of time. Two 

examples of this type of system are discussed below. 

A flexible manufacturing system (FMS) is an automated 

production system in. which different products are processed 

in small lots, taking statistically distributed throughput 

times. In FMS, the lots of parts arrive in a random sequence, 

the lot size is a random variable, and the frequency of 

arrival of different lots may also be stochastic. In 

addition, the FMS may be subject to random break-downs and 

multiple FMS units may be required. Asfahl (1985, p. 417) 

comments that a curious twist brought on by the FMS approach 

is that the problem becomes part of the solution. He says: 

Since the reason for designing a FMS was to permit a wide 
variety of short-run products and models to be processed 
by the same manufacturing system, such an objective 
forces the selection of very flexible material-handling 
equipment to serve the processing machines, which 
themselves are of varying degrees of flexibility. Once 
the flexible system has been installed, however, varying 
or randomizing the product and model mix can actually 
enhance the efficiency of the system! 

The theoretical justification is that given a rather 

large number of processing variables, their randomness and 
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f (s) 

J.I.S J.t.S s, s 

Figure 1.1 The stress (s) and strength (S) of a 
mechanical component are represented by 
the probability density functions f(s) and 
f(S) 

5 

0 
~~,o~~~~~~~~~~~~~oo~~~~~oo~~~~~~~7.,w~~~~ 

Day ollhll 'fNI 

Figure 1.2 Typical steam & electricity demand in a 
brewery. Source: Gainey and Ward (1986) 
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thorough mix will allow the products to flow more or less 

smoothly through the FMS. Thus, it is possible to obtain a 

more balanced line with low process time items followed by 

large process time items, and so on. An analogy can be drawn 

by comparing this situation to the limited capacity of a set 

of containers for irregularly shaped items. By using mixed 

items of different sizes, voids can be minimized, i.e. space 

utilization can be maximized. 

A counter-example, in which randomness works against the 

system performance, is that of combined heat and power 

(CHP) or cogeneration systems. For instance, in a production 

facility, during a period of time there may be a high power -

low heat demand combination. This may occur just when the CHP 

system capacities are low on power, but high on heat. In 

addition, part-load or off-design operation usually involve 

lower system performance. 

Thus, generally speaking, this kind of system may 

involve a random vector demand (a number of demand random 

variables present at a given time), a random vector capacity, 

and a set of failure (break-down) mechanisms for the CHP 

system. The CHP demands and capacities may or may not be 

correlated over time. These variables may or may not have 

seasonal patterns. In addition, the actual problem can be 

complicated if multiple units of the CHP system are used or 

required. In most of the cases, an increase in demand and/or 

capacity variation will reduce the cost effectiveness of the 

system. Figure 1.2.illustrates possible random thermal and 

electrical loads imposed in a CHP system. 

Since economics plays a definite role in the design 

process, the problem is to specify a "nominal" CHP system 
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(size, type, availability, scheduled maintenance time, etc.), 

which will likely meet the design requirements by optimizing 

a measure of economic merit. A different, but complementary 

problem, originates from the fact that a reduction in system 

and/or environment randomness can improve the performance and 

efficiency of the system, but at a price. In fact, the 

complementary problem becomes one in which a systematic and 

sequential analysis is needed to evaluate marginal reductions 

in the overall variation -to improve system performance

versus additional increments in system installed cost. 

Thus, what is needed is a fundamental methodology for 

the engineering design and economic evaluation of a system 

with continuous stochastic capacities subject to continuous 

stochastic demands. Such a research should use the CHP 

design and evaluation problem as the illustration mechanism. 

Extremely little research has been conducted on such a 

problem. Consequently, the required general methodology to 

analyze, evaluate and model this problem is yet to be 

accomplished. In fact, as far as the available literature 

indicates, this thesis is the first of a kind that proposes a 

systematic approach -that utilizes and combines the realm of 

probability theory, stochastic processes, reliability theory 

and engineering economic analysis- to the underlying research 

problem. Without loss of generality, the methodology should 

incorporate the following systematic procedures and 

extensions, as applied to CHP systems: 

1. The means and procedures to represent variable CHP 
load, equipment ~erformance, equipment installed 
cost, and operat1on and maintenance costs. 

2. The development of the underlying assumptions for 
(a) the economic criteria required and (b) the 
resulting life-cycle cost model. 
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3. A graphical design aid to conduct preliminary 
CHP designs evaluations, with an explicit randomness 
recognition, by using information from 1 and 2 above. 

4. The general analytical methodology to obtain the 
o~timal CHP system size. The methodology should 
f1rst define optimal conditions for the case of 
deterministic {constant) CHP loads. Next, the 
methodology should determine the optimal conditions 
for the case of random"CHP loads. 

The following summary sections {1.3 through 1.7) outline the 

literature review {Chapter II) and further support the 

discussion above. 

1.3 Probability and Stochastic Process 

Gnedenko {1975) points out that the relationship between 

probability theory and practical engineering applications has 

been the reason for the rapid development of theory and 

methods in the past three decades. Thus, the application of 

probability theory in digital signal processing and spectral 

analysis has been at the forefront of telecommunications 

research and development. Discrete event modeling and 

simulation of complex industrial systems is another example. 

In this regard, the Russian statistician P.L. Chebyshev 

{Gnedenko, 1975, p. 11) has remarked: 

The link-up between theory and practice yields the 
most salutary results, and the practical side is 
not the only one that benefits; the sciences 
themselves advance under its influence, for it 
opens up to them new objects of investigation or 
fresh aspects of familiar objects ... If the theory 
gains much form new applications of an old method or 
from its new developments, then it benefits still 
more from the discovery of new methods, and in this 
case too, science finds itself a true guide in 
practical affairs. 

A review of the fundamentals concepts of probability 

theory and stochastic process was required to formulate the 

research problem. Such material is not included in the 



literature review since it is readily available in many 

textbooks. The selected bibliography included Bendat and 

Piresol {1986), Ochi {1990) and Wenzel and Ocharov {1983). 
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Also, the field of reliability evaluation of utility 

power systems was reviewed, since it has received a large 

degree of research effort from academia and industry. See 

for example Billinton and Allan (1984) and Endrenyi {1978). 

On the contrary, CHP systems do not have -as far as the 

existing literature indicates- a formal reliability analysis 

method. This research intends to lay such a foundation. 

Therefore, probability theory provid~s the foundation 

to tackle the problem of sizing -in an economic basis- a 

system subject to multiple continuous random loads and 

subject to random failures. 

1.4 Energy and Energy Price Modelling 

Once the stochastic nature of demand and capacity 

is recognized, economic evaluation requires one to predict 

the performance of the project, upon which investment is 

being considered. In essence, to estimate a cash flow stream 

for an energy system, one must first predict the system's 

1) usage (energy), 2) demand (power) and 3) the price to be 

paid for energy and demand during the planning horizon. 

Thus, Section 2.1 reviews a number of concepts and 

methods to model energy consumption and to predict energy 

prices. It also discusses some of the problems encountered 

in energy forecasting. Next, Section 2.1.1 presents several 

approaches to forecast CHP loads in new facilities. Some of 

the methods considered are: weather and building simulation, 

energy utilization indices, "top-down and bottom-up" 
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approaches, regression and econometric models, and periodic 

or trigonometric models. In addition to the methods just 

listed, Section 2.1.2 considers a number of approaches that 

use records from existing facilities. It discusses prediction 

approaches used by industrial plants as well as those used by 

electric utilities. Then, Section 2.1.3 discusses how 

demand, supply, inflation and the latest geo-political event 

may complicate matters when one is trying to forecast energy 

prices. This section presents some practical approaches on 

how to "anchor and bound" the prices of the cogeneration 

staple fuels {diesel oil and natural gas), so they can be 

predicted with some sense and rationality. 

1.5 Cogeneration System Design and Analysis 

The combined heat and power {CHP) or cogeneration system 

problem is used as a vehicle to illustrate the research 

problem. Thus, current procedures to design and to analyze 

cogeneration systems are reviewed in Section 2.2. The 

following subtitles are further discussed in such a section: 

1) General Considerations and Definitions - defines 
the general terminology of industrial cogeneration 
systems. 

2) Basic Cogeneration systems - describes the 
technological aspects of the basic CHP equioment and 
cycles. 

3) Cogeneration Design Criteria - critically examines 
several methods and computer programs for CHP 
planning, design and economic evaluation. 

4) u.s. Cogeneration Legislation - overviews the legal 
and regulatory aspects of American cogeneration as 
stated in the Public Utility Regulator¥ Policy Act 
(PURPA) of 1978 and subsequent regulat1ons. 
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1.6 Cogeneration Research Needs 

Section 2.3 identifies the link between different 

research needs stated by cogeneration researchers and 

practitioners. Several surveys on how CHP systems actually 

perform are presented; focusing on current user and designer 

needs. Thus, actual system performance is compared with 

expected or design performance. Questions on the lack of 

consideration to variable loads, part load performance and 

availability are risen in most of the reviewed literature. 

For example, cogeneration -regulation is just one of the 

many "faces" of cogeneration that requires an integrating 

method that explicitly takes into account its stochastic 

nature. Wooster (1989) aptly titles her paper: "Purpa 

cogenerators: How Reliable", thus linking the planning and 

permitting stages of cogeneration plants with the ability of 

the cogenerator to demonstrate PURPA performance under risk. 

In this regard Steen (1990, p. 124) has said: 

I am of the opinion that (in cogeneration) to arrive at 
separate solutions for power reliability and quality 
problems independent of energy cost reduction efforts 
is to ignore optimal economics. 

1.7 Cogeneration Development Gaps 

After reviewing the existing cogeneration literature and 

interviewing a number of industrial designers and academic 

researchers, the following "gaps" have been identified: 

1. There is not a consistent procedure for data 
collection of thermal and electricity demand of 
existing facilities. Thus, there are no guidelines to 
define the amount and kind of data required to obtain 
certain confidence level in the design of a system. 

2. There exist no standard method to estimate and model 
the combined heat and power (CHP) demands in a 
prospective or new facility. 
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3. In general, there is not a basic methodology -using 
statistical concepts- which can provide the designer 
with CHP load forecasting for correlated loads and 
plant capacities. 

4. In order to generate system design alternatives 
(given load duration curves for thermal and electric 
loads), there is not a simple but effective way to 
def-ine and select a set -of '!suitable" CHP . 
technologies. · 

5. For· cogeneration economic evalua·tion, a standard set 
of criteria is needed to define discounted cash flow 
elements such as: 'finance options, interest rates, 
energy costs and escalation rates~ 

6. There is a need for a method to obtain an economics 
based .CHP system size for agiven application. The 
method should use "compact" CHP data and cogeneration 
system performance .curves. It should consider the 
system reliability, as well as capital costs, fuel 
costs'· "other" operation and maintenance (O&M) costs. 

A coherent subset of these research gaps will be 

translated into tpe research:~bjective of this thesis. The 

research objective and subojectives are stated in Chapter 3. 



CHAPTER II 

LITERATURE REVIEW 

An overview of the literature relevant to the research 

objectives is presented in this chapter. In addition, a 

detailed substantiation for the proposed research is 

discussed. Also, related research efforts are reviewed. 

This chapter contains four sections, which have been 

summarized in the previous chapter: 

1. A discussion of statistical models utilized for 
energy and power demand modeling and forecasting. 

2. A survey of the traditional approaches for industrial 
cogeneration design and economic analysis. 

3. An overview of the u.s. regulations on cogeneration. 

4. Identification of current cogeneration research 
needs. 

2.1 Energy and Energy Price Forecasting 

Aitchison and Dunsmore {1975) state the following 

etymology of prediction: "Predi~tion by its derivation (L. 

praedicere, to say before) means literally the stating before 

hand of what will happen at some future time". In their work, 

they caution the researcher, engineer and economist that do 

not acknowledge the presence of uncertainty in prediction. 

Specifically, they say that much of statistics is concerned 

with making inferences about unknown distribution parameters. 

And since the main purpose is, in general, to convey such 

inference statements as information upon which a second party 
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will make decisions, many use the estimates as they were true 

values. Thus, they claim that prediction analysis suffers a 

neglect -as compared with the fields of estimation, 

hypothesis testing and experimental design-. Henceforth, 

they present a unified approach to aspects of statistical 

prediction theory related to decision analysis from both the 

frequentist and the Bayesian viewpoints. 

There are many reasons to develop statements about what 

is likely to happen in the future. According to Schonberger 
' 

(1985), however, the main purposes for demand forecasting 

are: (1) to determine the items to be produced, (2) to plan 

for adjustable capacity, and p) to plan for facilities. He 

mentions that forecasts are short term (e.g. minutes in the 

fast food market) to some long lead time (months in 

industrial equipment sales),. 

To a certain extent, the purposes for demand prediction 

in this research are the same as those mentioned above. Here, 

however, we focus on purposes (2) and (3), i.e. to plan for 

adjustable -and varying- capacity and to plan for facility or 

system characteristics. 

Brown {1963) says that the criteria for time-series

analysis falls into the following categories: (1) accuracy, 

(2) simplicity and (3) flexibility to adjust the rate of 

response. Bedworth and Bailey (1982) state that these 

criteria are generally. valid for any forecast and that a 

trade-off of at least two of the three criteria is usually 

required. In addition, they point out two other criteria. 

These are {4) the elapsed time between making a forecast and 

implementing (or using) the forecast and (5) the frequency of 

data collection. Recognizing the forecast problem complexity, 



they maintain that only on some cost criteria can the 

multiple criteria be optimized, and possibly only through 

computer simulation. 
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Since CHP system demands are stochastic, one requires 

statistical estimates -i.e. forecasts- of the underlying 

random processes (or times series) and its parameters (e.g. 

mean values, variances). Parameter est·imation in engineering 

and science is a modern discipline. Beck and Arnold (1977) 

present a comprehensive study for non-linear estimation and 

regression as applied to engineering and scientific models. 

The objectives of their treatise are to provide (1} methods 

for estimating constants or parameters appearing in 

mathematical models of physical systems, (2} estimates for 

developing accuracy of the estimated parameters, and (3} 

tools and insights for developing improved mathematical 

models. 

In the CHP forecast problem, we are particularly 

concerned with the forecast of instantaneous rates of change 

(power units, e.g. kW) as we are with the prediction of sales 

(or purchases) of "items" during a time period (an energy 

unit, e.g. gallons of fuel oil per day). In addition, the 

CHP forecasting and prediction problem conveys a number of 

specific problems or questions. They are: 

1} What data should be collected? 

2) What practical problems exist in data collection 
and how can they be handled? 

3) What particular forecasting models should be 
developed? 

4) What prediction functions should be computed? 

5) How should data be processed so as to reduce 
statistical bias and random errors? 



6) How should computed quantities be interpreted so as 
to give physically and economically meaningful 
results? 
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Given a set of CHP load distributions, this research 

intends to provide ways to resolve the last question above as 

related to the CHP system design problem and to contribute a 

practical approach to evaluate the system cost effectiveness. 

For example, for economic evaluation, in the CHP problem, 

demand (kW or BTU/hr) and energy (kWH or BTU) must be 

estimated for the long term, i.e. the planning horizon or the 

expected economic life of the CHP system. Also, there is a 

need for both, intermediate-term and short-term forecasts. 

On the one hand, it is desired to forecast the long and 

intermediate terms to handle seasonal variations (e.g. 

monthly load variations). On the other hand, a microscopic, 

say hour-by-hour prediction, is required to evaluate the 

system capacity vs. demand performance. Thus, intermediate 

(seasonal) variations in load might be influenced by the 

difference in Summer-Winter demands. Conversely, short term 

forecasts are valuable in estimating the frequency and 

duration that the system state (under-loaded or over-loaded), 

and to compute peak demand charges. 

An implicit assumption, behind the forecast problem 

stated here, is that the facility has a utility tie to make 

up for any electricity deficit -or to sell back excess power. 

similarly, supplementary equipment provides for any heat 

deficit, otherwise a loss of load will occur. In fact, when 

these supplementary sources do no exist, the problem becomes 

a particular case of the general research problem. This case 

will not be discussed herein. 



There are two basic scenarios that condition the way 

a forecast is accomplished for the CHP problem. One is when 

the CHP system is intended for a new facility. The other is 

when the CHP system is a retrofit for an existing facility. 

These two situations and a review of their corresponding 

forecasting methods are discussed as follows. 

2.1.1 Forecasting CHP Loads in New 

Facilities 

In this case, the facility to be served by the CHP 

system does not yet exist. CHP historical data does not exist 

either, and must be estimated by indirect means. As follows, 

several data items useful to predict CHP loads are listed. 

1) the size of the ener9r consuming equipment to be 
installed in the fac1lity, 

2) the planned facility's operation schedule, 
3) the facilitr•s construction plans and 
4) the prevail1ng weather conditions for the facility. 

For new facilities, Wong et al. (1991) propose that the 

sum of all the maximum prospective process demands (rated 

or design loads) -likely to exist in the facility at a given 

time- defines an upper bound for seasonal forecasting. 

Conversely, they define a lower bound as the "true base 

load", i.e. the demand of equipment that is expected to run 

continuously in the facility. Then, an "expected" operation 

scenario determines the appropriate load curve between the 

two bounds. Whether the demand for energy is produced by 

causes in the exterior (weather load) or the interior (people 

and equipment) of a facility, it must be predicted in some 

fashion. Thus, below, some current methods to predict loads 

in new plants are discussed. 
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2.1.1.1 Weather Dependent Loads and Building Simulation 

Models. In the case of weather based loads, cooling and 

heating peak loads (and bounds) can also be defined. 

McQuiston and Parker (1988) compute building hourly cooling 

and heating loads using sensible and latent heat transfer 

rates for the "peak days". A weather model for the location 

and the facility's construction details establish the model 

structure for such days. These models are usually developed 

for "extreme or design" conditions; e.g. for the ambient 

temperatures that will be exceeded during 2.5% of the time. 

The majority of this kind of models use a sun-cloud model, 

and/or annual temperature data base (bin data). 

To estimate heating and cooling demand for a complete 

year, Wong et al. (1991) have replicated the peak load 

calculations for "average" instead of "extreme" conditions, 

for different seasons of the year. Their approach assumes 

that, for a given season, the underlying random process 

exhibits a degree of stati~narity that allows one to 

represent it by a daily load model, with adjustments for 

weekends and holidays .. Hence, using this approach, the 

weather-dependent load for both new and existing facilities 

can be modeled and predicted for any time of the year. 

Several "building simulation" programs such us ASEAM 

(1987), TRACE, and DOE 2.X, are commercially available. 

In general, these programs use_ as input the architectural 

characteristics of the building, a weather model for the 

location, an operation schedule, and "macros" or submodels of 

generic equipment. 

For instance, the DOE 2.X program was developed by the 

Lawrence Berkeley Laboratory, in collaboration with the Los 
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Alamos Scientific Laboratory, and financed by the u.s. 
Department of Energy. DOE 2.X has been used as a building 

design and analysis tool by architectural and engineering 

(A&E) firms. DOE 2.X allows the designer to forecast energy 

consumption by modeling typical architectural features and 

interior loads for a generic building type while using 

default values for appropri'ate heating, ventilating and air 

conditioning equipment. Riegel et al. (1983) have used DOE 

2.1 as an interactive design/analysis to~l. Using the 
' 

program, they tested a number of building design alternatives 

- upon a base line scenario- for cost effectiveness. 

Deterministic building simulation models are currently 

widely use for energy use. Ritschard and Huang (1989) have 

estimated water heating and aggregate electricity buildings 

in multi family buildings. Their results were a data base 

created with the DOE-2 building energy analysis program for 

15 locations. Ritschard and Handford (1989) have reported 

comparisons of multifamily heating and cooling loads from 

DOE-2 building simulation program with measured data. They 

conclude that many difficulties arise from comparing energy 

consumption for heating and cooling but that for aggregate 

electricity consumption compared within ±20% of the measured 

data from large samples. Wagner (1984) has conducted 

comparisons of predicted and measured energy data in 24 

studies for occupied buildings. He concluded that in the 

absence of detailed building data, the comparison between 

simulated and actual energy consumption of occupied buildings 

is best made with "large" samples of data. 
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2.1.1.2 Data Bases and Energy Utilization Indices. 

Generic data for a new-facility forecast can be obtained from 

loads profiles of existing similar facilities or from 

consumption data bases. Data bases can be used as a 

validation tool. For instance, a predicted plant load, can be 

compared with the "standard" heating load in BTU/sq-ft

degree-hour for the periods of interest. These standard unit 

loads are usually called Energy Utilization Indices (EUI). 

An example of standard data bases is the one developed 

by Silver and Burrows (1983) for hot water use demand in 

commercial buildings. They have compared their results 

with previously developed methods and show that hot water 

demand varies widely depending on the building type and hour 

of the day. These data are available for several different 

types of establishments (e.g., restaurants, hotels, 

apartments, etc). 

Existing data bases of measured energy data, such as 

Residential Energy Consumption Survey (RECS) of the Energy 

Information Administration (1987) and space heating energy 

data from the American Gas Association (AGA), provide basic 

information for heating energy estimates for new facilities. 

Kumar (1989) reports statistical analyses using Energy 

Utilization Indices for 1000 commercial facilities of various 

types and sizes in Jacksonville, Florida. The analyses are 

based on the correlation of his actual observation of energy 

to the size of the facilities. His paper also discusses the 

kW-per-square-foot index, and the extent of low-cost and no

cost conservation opportunities in a typical facility. 

Hodge and Steele (1982) recommend a simplified method to 

conduct energy surveys of buildings belonging to the same 
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generic class. Their study places special emphasis on 

determining the actual end-point energy usages for the 

building and on comparing these to target values that have 

been determined for similar buildings that run energy 

efficiently. Target or Energy Utilization Index (EUI) values 

are given for school, local government and small commercial 

buildings. EUI values constitute the so called "energy 

budget" for a building or building complex. EUI's are also 

useful to forecast consumption for new facilities. The EUI is 

calculated by dividing the total energy input into a 

building by the conditioned floor area. In order to generate 

an EUI, all sources of energy input must be converted to a 

common basis. 

In the u.s., this seemingly trivial operation is 

associated with a serious standardization difficulty. 

Besides the loss of validity of EUI's due to changes in 

location, facility construction and equipment operation, 

there is a unit standardization problem. Fricke (1983) has 

conducted energy utilization comparisons on a national basis 

and points out the lack of uniformity when it comes to 

compare a National Standard for electricity-to-fuel 

conversion. He states the need for a single unit of energy 

accounting. Thus, the Federal standard uses 10,000 BTU's per 

KWH, while the Engineering Standard uses 3412 BTU's per kWH. 

Unfortunately, he recommends to use both standards until one 

is officially adopted. Also, with the exception of the u.s., 
in most countries SI units are used for both heat and power 

consumption and demand; i.e. kWh and kW, respectively. Thus, 

for design and analysis, this author favors the engineering 

standard (3412 BTU/kWH) and SI units (with some exceptions). 
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2.1.1.3 Top-Down and Bottom-Up Approaches. Turner 

(1982) states that energy consumption can be estimated by 

using a top-down approach or a bottom-up approach. The top

down approach involves making an analysis of measured energy 

consumption and prorating it to the elements causing that 

consumption. The bottom-up approach involves the use of load 

calculation methods as in Section IV of the ASHRAE (1985) 

Handbook of Fundamentals. T~ese methods are similar to those 

described under the Weather Dependent Loads subtitle above. 

Using a "bottom -up" approach, Rayaran (1991) has 

developed a deterministic method to predict .the CHP loads for 

a new facility. In both approaches, knowledge of the load 

characteristic of the energy consuming equipment along with 

their operating schedule is required. Here, we propose to 

extend such a methodology to the stochastic field and to use 

it as a prediction basis of CHP demand for new plants. 

Henceforth, process energy demands could be predicted 

-between the two bounds defined above- according to the 

facility's operations schedule. Then, heating .and cooling 
. . 

loads due to weather variation can be added to the process 

loads by using any of the approaches stated above. In 

addition, production process loads must be included in the 

model according to the expected production schedule. 

Next, the forecast must incorporate means to model the 

intensity, frequency and duration of the energy-using 

activities within the facility. To develop a realistic 

forecast, the expected random variation or noise -for each 

demand item- can then be incorporated to the forecast. Random 

noise can be estimated from records of similar existing 

facilities and can be adjusted according to the expected 



operating conditions and energy control systems of the 

prospective facility. 
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2.1.1.4 Statistical-Regression and Econometric Models. 

Statistical models, such as the regression-based Princeton 

Scorekeeping Method (PRISM) have been developed to predict 

building energy usage (Pels, 1986). These approaches base 

their estimates on three arguments: time of the year, day

length and temperature. In a sense, PRISM is considered to be 

an econometric model, i.e. one that utilizes single or 

multiequation regression models with explanatory variables 

such as economic activity, prices, and weather to explain the 

energy usage. In this kind of model, energy-using equipment 

is not disaggregated by specific end use as in methods for 

heatingjcooling load calculation. The explanatory variables 

are used to explain aggregated energy usage for the facility. 

Therefore, forecasts for the variables that describe the 

facility's activity for the time of interest are required. 

Lee and Hadley (1988) have used PRISM to develop 

residential heating energy estimates. They adjusted the 

variance of PRISM estimates by using theoretical methods, 

i.e. heat transfer calculations. 

Darwin and Mazzucchi (1988) have used PRISM to predict 

the temperature-sensitive energy demand of a facility. The 

time and day- length are captured by other variables. 

Haberl, Smith and Kreider (1988) have developed 

Building Energy Analysis Consultant (BEACON), a prototype 

knowledge based system to track operation and maintenance 

problems related to energy consumption. PRISM was applied to 

develop "target" energy consumption patterns. BEACON was used 
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to compare actual metered data with PRISM target results in 

order to detect "significant causes and events". In general, 

the consumption predictors used were found to be "accurate, 

yet time consuming to assemble test and reinstall". Random 

variation of actual consumption {metered data) was not 

acknowledged. 

Mazzucchi and Devine (1988) have reported about the 

current status and planned progres,s in the development of 

improved energy base-lining {energy consumption, targets) and 

refinement of energy analysis methods. The main emphasis of 

their research is· in providing technical guidelines for 
' 

federal agencies that undergo performance based contracts 

(e.g. shared energy savings.contracts). 

2.1.1.5 Periodic-Trigonometric Models and Fourier 

Analysis. Due to the periodicity of the energy demand in 

most cases, Fourier analysis has a large potential for 

application in new facility energy modeling. Bloomfield 

(1976) indicates that,spatial series -i.e. equally spaced 

observations along a line-.can be represented by a 

combination of sinusoids. He says that a basic property of 

the sinusoids -that makes them generally suitable for the 

analysis of time series- is the fact that their simple 

behavior remains in spite of changes in time scale. Thus a 

sinusoid of frequency w or period 2nfw may be written as 

f(t) = R cos(wt+(/>) 

where R is the amplitude and ~ is the phase. If we change the 

time variable to u={t-a)fb, which incorporates a change in 

origin and in scale, this becomes 

g(u) = f{a+bu) = R cos(wbu+(/>+wa) = R'cos(w'u+(/>') 
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where R'=R, w'=wb, and ¢'=¢+wa. Thus the amplitude is 

unchanged, the frequency is multiplied by b (the reciprocal 

of the change in the time scale), and the phase is a altered 

by an amount involving the change of time origin and the 

frequency of the sinusoid. Since the time origin associated 

with a data set is often arbitrary, these simple 

relationships are useful. In particular, since the amplitude 

of the sinusoid depends on neither the origin nor the scale 

of the time variable, it may be regarded as an absolute 

quantity with no arbitrariness in its definition. 

A number of trigonometric models can be used as the 

basis for load prediction in new facilities. These 

models are mainly used with seasonal demand patterns. 

Thomopoulus (1980) describes the following trigonometric 

models based on a pair of terms (sine-cosine) per wave. 

-Three-term model: When the process follows a sinusoidal 

behavior but has a horizontal level mean value. The 

expected demand U at time t is defined by one sine wave 

by: 

Ut = al + a2 sin wt + a3 cos wt 

where 

al = long run mean level 
a2 = amplitude of sin wt 
a3 = amplitude of cos wt 

w = 360o(l/T) 
T = number of cyclic periods in a year. 

-Four-term model: When in addition to a sinusoidal 
behavior, the process has a trend effect (a2t). 
Thus, the expected demand is defined by: 

Ut = al + a2t + a3 sin wt + a4 cos wt 

-Six-term model: When the process is a combination of 
two sine waves and a trend effect. 

Ut = al + a2t + a3 sin wt + a4 cos wt 
+ aS sin 2wt + a6 cos 2wt 
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Hence, it can be suggested that by defining upper and 

lower bounds for the amplitude of sine waves, and by adding a 

random noise term based on "typical" residual variances, 

trigonometric models can be constructed as estimates of 

periodic random process -or process segments- for new 

facilities. The number of terms of the model would depend on 

the degree of non-stationarity of the random process and the 

degree of complexity required to model the underlying cyclic 

system. 

An alternative cyclic analysis to estimate Y(t) fits the 

equation 

Y'(t) = (A+Bt) sin(2nt/p) + (C+Dt) cos(2nt/p) 

where the most significant period, p =1/w, is determined 

through spectral (Fourier transform) analysis. Additional 

terms -associated to additional periods- can be added to the 

equation above to model multi-frequency processes. 

Bedworth and Bailey (1982), however, point out that "the 

user may require up to five cyclic fits (5 periods), although 

two is probably the maximum that should be utilized, or else 

the model might be fitting noise." They have developed 

PREDICTS (PREdiction of Discrete Time Series), designed to 

allow a user to analyze historical data series in order to 

predict future values of the same series. PREDICTS can 

determine the most significant period p1 (and any other 

significant cyclic periods from the residuals). It also 

determines the amplitude coefficents -A,B,C, and D- through 

regression. This kind of analysis can be used with 

"discretized" data, i.e. integer (rounded-up) load values. 

The main benefit from cyclic analysis is it ability to 

"compress" time series or random process data into a compact 



equation-model per random process, for the periods of 

interest. Thus, in the case of new plants, cyclic analysis 

could use load data from time series generated by combined 

weather-production schedule simulations. 
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A very recent development -discussed by Wallich, {1990), 

is the utilization of Wavelet theory. It is based on recent 

mathematical developments applicable to digital signal 

processing. During the 1980's, Jean Morlet, an engineer at 

Elf-Aquitaine and mathematicians Yves Meyer of the University 

of Marseille and Ingrid Daubechies of Bell Labs have been at 

the forefront of such developments. Wavelets differ from a 

Fourier transform -that breaks a stationary signal into 

continuously repeating components at various scales or 

frequencies- in its ability to represent signals that change 

suddenly over time -e.g. heat load demands affected by sudden 

weather changes or telecommunication subject to jamming. 

Wavelets are able to isolate the location as well as the 

scale of features in a signal. As a result they can encode 

rapidly changing signals in a compact form. According to 

these authors, many potential applications in cyclic random 

process modeling may be warranted for this theoretical 

development. 

2.1.2 Forecasting Loads in Existing 

Facilities 

In addition to the models surveyed above -which are also 

valid for existing facilities- there are several approaches 

to forecast demands using records of continuous demands or 
-

utilities {e.g. steam, electricity, water etc). 

Because of system operation and planning requirements, 
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electrical companies have been the most active in developing 

various approaches to predict the load demand (i.e. the rate 

of change of energy usage). Since most electrical utilities 

use discrete sampling periods (e.g. 15-minute power demand 

metering window) and rounded figures due to constant meter 

multipliers, many forecasting methods for discrete parts 

production can be easily adapted to analog signals converted 

(or digitized) to integer quantities. Below, we discuss 1) 

some approaches used by this author and others for energy 

consumption analysis and 2) the approaches used by electric 

utilities to develop short,- intermediate and long term 

forecasts. 

2.1.2.1 Industrial Facility Energy Analysis. Measuring 

and documenting energy consumption constitutes the basic 

requirement for any energy analysis. In a large facility, 

several utilities are subject to metering by using a number 

of procedures. The most accurate way to allocate energy use 

in a large facility or complex is through effective 

submetering. Unfortunately, very few facilities actually do 

it. Submetering not only permits one to allocate more 

equitably energy costs, but also to prioritize energy 

conservation efforts. In other words, it is a basic 

requirement for an effective energy management plan. 

Stebbins (1986) remarks that the advent of the personal 

computer (PC) has permitted quantum leap forward in the 

ability to manage large amounts of utility data in industrial 

facilities. The PC based utility data can be assimilated into 

a variety of formats for data acquisition, revenue billing, 

trend analysis and energy consumption monitoring. A variety 
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of software packages, inputfoutput ports, interfaces, and 

sensors are commercially available for energy metering and 

monitoring. In addition, many electric utility companies can 

provide magnetic media (tapes and disks) with electrical 

records such as peak day demand and load duration curves. 

For field data recording, utility companies can 

sometimes provide strip and circular chart recorders. 

Recently, recorders with floppy disk drives have become 

available. Then, regardless of the recording method, data 

can be further processed to develop statistical forecasting 

models. 

Pliscott (1985) criticizes the "black box" (i.e. 

traditional accounting allocation of energy) in building 

energy performance evaluation. As alternatives to the black 

box he proposes two approaches. One is using STAT PLAN, a 

statistical analysis program which only requires 24 months 

worth of (monthly) consumption data. It is a multiple 

regression model used previously by Redlin (1979) to model 

energy consumption in lodging facilities. The other approach 

builds upon STAT PLAN with a more detailed and technically 

oriented procedure, in which loads are allocated according to 

facility activities. This last approach develops energy 

utilization indices for energy accounting and cost tracking. 

In industrial buildings, energy accounting is known as 

energy tracking. Sher (1985) suggests a regression analysis 

approach using only weather data and monthly utility bills. 

To obtain modelling data, he further proposes to sub-meter 

each utility stream and each large energy consuming activity 

or area in a facility. 

Andrews and Olson (1985) present a methodology for 
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allocating energy costs equitably among the users of a large 

facility. The methodology use room survey data, energy 

management computer logs, and other empirical data when 

assigning energy weighting factors to each room on a campus. 

The methodology appears to be a good estimator of relative 

energy consumption although it is not always a good predictor 

of a building's absolute energy consumption. 

A different approach is the development of industry 

specific models. The National Center for Analysis of Energy 

Systems at Brookhaven National Laboratory has developed and 

is managing a set of mathematical programming models of 

energy-intensive industries in the United States. Hill et 

al. (1981) report the development of industry-specific models 

based on data from economic and engineering analysis of 

manufacturing processes. These are intended to represent 

energy flows within an industry in considerable detail. For 

example, their paper discusses models for the pulp and paper 

mills, iron & steel plants, cement plants, etc. The models 

generally consider five levels of activities: 1) purchases of 

raw materials, 2) sales of by-product energy, 3) material/ 

energy conversion, 4) capacity expansion and 5) regional 

transportation from plant to plant. The models are oriented 

toward the"evaluation of technological innovation impact at 

the industry-wide level. However, they may be useful to 

predict energy usage of new plants and to define target 

indices for existing plants. 

At the process control level, Weper and Li (1985) have 

developed a stochastic load prediction algorithm -that 

incorporates control strategies - to forecast building loads. 

The main purpose of the algorithm is to predict several 



hourly building loads as the basis for adaptive 

microprocessor-based load control. The approach uses a 

multiple regression model developed from a recursive 

statistical analysis of previous building performance. 
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A deterministic approach was used by Rajamani and Wong 

(1989) to disaggregate and estimate heating and cooling 

electrical load data for an existing building complex. Here, 

for each building of the complex, the load parameters were 

estimated by using (1) the equipment operation schedule, (2) 

the instantaneous electrical demand recorded during the peak 

day of each month and (3) the energy bill data for twelve 

consecutive months. 

A different approach, using load factors, (i.e. the 

ratio of calculated average demand to metered peak demand) is 

described by Argawala et al. (1990) to estimate air 

conditioning loads for two Oklahoma state buildings. The 

objective of the study was to develop an estimation procedure 

of the buildings' cooling load to be shifted to "off-peak" 

utility hours by using modular ice storage. 

Moore (1987) states that because of ever changing 

weather conditions and production levels on energy 

consumption, it is often difficult for plant.managers to 

estimate a baseline level of energy consumption. He remarks 

that in the case of shared saving programs, it is 'especially 

important to predict and estim~te energy consumption and 

savings. He presents the results.of a basic energy usage 

model through statistical analysis by the Industrial Energy 

Extension Service at Georgia Tech. The regression model is 

based on five years of historical data of energy usage in a 

manufacturing plant, weather conditions and production 
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output. The model can be used to predict energy consumption, 

or as a basis to evaluate energy conservation programs. 

2.1.2.2 Electric Utility Load Forecasting. Electrical 

utilities are interested in short-term (24 hours), medium 

range (one year) and long range forecasts (5 to 10 years). 

Due to demand management efforts -to improve operation 

economy- during peaking hours, short-term forecasts methods 

have lately received greater attention. Hooke (1955) presents 

one of the first load prediction approaches. His paper 

"Forecasting the Demand for Electricity" presented an 

approach to deal with load forecast looking from 6 months to 

as much as 10 years or even more into the future. It produces 

the basic forecasts required in making studies of alternative 

methods of system expansion. They are also the forecasts to 

evaluate current generation capabilities. 

The lead times -in electric forecasting- are related to 

planning or control purposes. They range from a few minutes 

ahead for the economic loading of power plant to over forty 

years for the economic planning of new generating capacity 

and transmission networks. Specifically, Bunn and Farmer 

(1984) list the following three purposes of electric load 

forecast methods: 

-Plant scheduling, which deals with the day to day 
start-up and shut-down programs of large power plant 
units. The process is effected from several hours to 
days ahead, and is often termed unit commitment. It 
ensures that there is sufficient operational generating 
capacity to meet variable load, with a specified 
reliability, at each moment of the day. 

-Load dis~atching and security assessment, which refers 
to the m1nute-to-minute allocation of loads to 
generators to meet the varying demand at a minimum 
cost, while ensuring a required level of system 
security. 



-statistical allocation of reserve capacity, to allow 
for unpredictable variation in power plant capacity. 
~his rese~ve contains the frequency of supply 
1nterrupt1ons at acceptable levels. 
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The third purpose stated above -reserve capacity 

allocation- presents a similarity to the CHP load prediction 

problem. Thus, in the CHP case, we are concerned with the 

iteration of system capacity ~nd demand, at the planning and 

design stage. 

Load forecasting occupies a central role in the 

operation and planning of electric power systems. Huck et 

al. {1980) have surveyed load forecast bibliography. They 

point out that the subject is very broad in nature and that 

it includes many engineering considerations and economic 

analyses. They have compiled several papers that encompass 

the vast philosophy of load forecasting. On the contrary, CHP 

forecasting presents a limited scope; since it can be 

compared to that required for s~aller power plants and 

smaller service areas {less than 100 MW). Thus, from their 

work we have reviewed a number of publications related to 

smaller industrial power systems and/or smaller load areas. 

Menge {1977) describes the philosophy, methods and time 

series trend analysis for forecasting small area trend 

electricity. For modelling a small area, one may select from 

12 curve shapes including s curves that closely ,follow load 

growth. Several power forecasting models are based on land 

use models. Willis {1977), for example, formulates a model 

for small area electric load forecasting by "dual level 

spatial frequency modeling". The method is similar to the 

classical urban model growth and incorporates a simulation of 

multidimensional space to forecast land use and power demand. 



In power generation, there is a similarity between the 

growth in land development and the growth in production 

capacity or progressive expansion in an industrial plant. 
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For instance, the growth in power demand due to land 

development (or sales/production expansion) is expected to 

increase in very small increments in relation to the existing 

(and future requirements) power plant size. However, the 

long-range trend effect of electric demand in industrial 

plants, may be affected by a step-wise growth due to the 

addition of new and large production lines that involves new 

products and/or services. In conventional power plants, this 

is the case when a new and large consumer plant is built in 

the service area, involving a sudden "jump" in demand. These 

problems, which relate to the design and analysis of a system 

under demand growth, shall not be addressed herein. 

For CHP design, we are particularly interested in the 

development of a forecasting model that deal with time 

series that are (or can be converted into) stationary series 

in the wide sense, i.e. those that represent random process 

with an affinity for a mean value in the long run. Thus, the 

required prediction model should (1) span over the economic 

evaluation planning horizon and, at the same time, (2) show a 

sufficient level of detail at the short term to represent 

load-capacity iterations. Hence, the required models must 

exercise a level of compromise between short-term and long

term. The following utility models are related to the CHP 

dual criteria forecasting model. 

Stanton and Gupta (1969) describe six possible 

procedures for producing annual (or seasonal) peak demand 

probabilistic forecasts. Their models place greater emphasis 
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on probabilistic monthly or weekly peak demand forecasting 

and the derivation of annual forecasts form monthly or weekly 

forecasts. An introduction to the use of stochastic models 

for demand forecasting is also included. 

Stanton (1970) has developed statistical procedures for 

the preparation of weekly and seasonal peak demand forecast 

with lead times up to seven years. He reported that 

probability information in the form of both standard 

deviation and 99% confidence intervals gives a comprehensive 

basis for system planning but this can be supplemented by a 

tabulation of the forecast's probability distribution in 

cases where more detailed information is needed. 

Gupta (1971) describes a stochastic procedure for 

producing probabilistic fore~ast of monthly peak demands for 

up to three years ahead. The procedure is based on well-known 

concepts of prediction of stationary stochastic time series, 

which is developed further to predict those types of non

stationary series that can be reduced to a stationary series 

by finite linear transformations. The procedure yields 

a technique for forecasting the evolving, nonstationary and 

seasonal peak power demands. 

Dieck et al. (1987) present an approach to improve the 

accuracy of time series when outlying observations exist in 

predicting total energy demand. The approach is implemented 

using time series data of "Total Energy Demand". For 

simplicity and responsiveness, they use an univariate 

approach by applying (1) Box-Jenkins ARIMA, Winter's 

exponential smoothing, Harrison's harmonic smoothing and a 

naive model. By sequentially replacing previously removed 

outliers, they have tested the models just mentioned and 
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conclude that " greater accuracy -in terms of the Mean Square 

Error (MSE)- results from replacing outlying observations 

with the model that most accurately forecasts adjacent data 

points than by automatically replacing with the same model 

that is used to forecast future observations". And, that as 

more outlying points are replaced, the.choice of the most 

accurate model becomes less crucial. Their approach offers 

certain potential for CHP P.lants subject to a wide variation 

of loads that requires a robust model. 

2.1.3 Forecasting Energy Costs 

Energy costs constitute a very important (random) 

variable in the economic analysis of industrial energy 

projects. Turner, Estes and Tompkins (1981) have stated that 

"rapidly increasing prices and> dwindling supplies are the 

twin jaws of a vice closing". But the rate at which these 

"jaws" close and its effect on industrial productivity and/or 

investment profitability may change over time; depending on 

the latest environmenta:l, weather, or geo-political event. 

Thus, to monitor and b~dget energy costs, they have suggested 

an energy accounting approach based on the General Motors -

Energy Responsibility Accounting (ERA) system. It is based on 

variance analysis performed on a multiple linear.regression 

target model. The approach has three phases: 

(1) energy and cost metering, 

(2) energy and cost budgeting (linear regression) and 

(3) performance reporting (price variance analysis). 

Next, they discuss the Carborundum Accounting System, 

which is used to carry the analysis of variance several steps 

further by showing price variation as before, but consumption 
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variance is broken down into volume/mix, weather, pollution, 

conservation, alternative fuels, and others. 

2.1.3.1 Multiple Inflation Rates. Turner and Case 

(1979) have developed a procedure for economic analysis of 

energy proposals under inflation. They say that "perplexing 

problems of multiple rates of inflation" (different rates for 

different cash flow items) makes the analysis difficult and 

complex. Their work recognizes the fact that escalation rates 

different that the general inflation rate (as represented by 

the consumer price index, CPI) may exist in energy cost 

modeling. Thus, they present a technically correct way of 

analyzing cash flows of energy projects with multiple rates 

of inflation. They advise that great care must be taken in 

choosing inflation and interest rates for this kind of 

projects. Henceforth, the following question arises: How to 

forecast energy costs vis-a-vis their expected escalation 

rates? An answer to this question is attempted below. 

2.1.3.2 Supply, Demand and Energy Prices. Kempski 

(1991) states that forecasting energy prices is like playing 

the child's game of Chutes and Ladders - prices climb and 

slide in ways that often appear completely unpredictable. He 

advises: "In making plans, keep, in mind the quick shifts, or 

your energy dollars could slip away". Thus, many computer 

programs for cash flow analysis permit to input different 

energy prices for different years or different escalation 

rates. Also, economists have developed models to define a 

price level of a resource according to the amount consumed 

and/or supplied, i.e. using a resource's price elasticity. 

Consequently, by knowing the price elasticity of a resource -



i.e. the ratio of a change in its price to a change in its 

demand or supply- it is possible to predict prices by 

anticipating the amount consumed. 

For example, Figure 2.1 shows the wide spectrum of the 

forecasts by different researchers for u.s. primary energy 

consumption. The spread of .the forecasts increases as the 
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Figure 2.1 Projections of u.s. primary energy consumption 



lead time progresses. This is not a very insightful graph, 

however, since it does not allow one to conclude whether 

energy consumption will grow, will stay the same or will be 

less in the future. 

In this regard Kempski {1991) states the following: 

40 

"This poses a dilemma for forecasting prices. If you forecast 

increased energy consumption, the prediction will put 

pressure on prices and lead to real cost increases in 

energy after inflation. If -you forecast a decrease in energy 

consumption, you will place less pressure on energy markets, 

and energy prices probably will remain stable or decrease 

after inflation" 

He then concludes: "If you believe future energy 

consumption will increase, then estimate real increases in 

energy prices. If you believe energy consumption will remain 

the same or drop, however, one can expect the cost of energy 

to equal the rate of inflation." Hence, depending on market 

demand expectations for the fuel{s) involved in an energy 

project, energy prices can be forecasted by setting the 

- corresponding escalation rate for such a market. 

For the proposed analysis for CHP systems, however, 

energy price prediction remains unclear and uncertain. 

Consequently, at least some limits {a reasonable range) for 

energy prices are required for sensitivity analysis or 

stochastic simulation. This is examined as follows. 

2.1.3.3 Bounds for Energy Prices. The world depends on 

oil as a raw material and as the fuel for more than 40% of 

its energy supply. But oil is a naturally volatile commodity. 

Since 1945 the supply of oil has frequently been threatened 
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by conflict. The price of oil has gone up to later come down. 

Nevertheless, in the long run, oil price seems to have been 

controlled by its economic servo-mechanism. 

In economics, exponential growth rates define,some 

limits to price levels. Thus, before the current Middle-East 

crises (1990~1991), oil was se_l,ling for $12 to $16 a barrel. 

Assuming a 15-percent escalation rate over a 20-year planning 

horizon, the value of that barrel of oil would be about $200. 

Many analysts believe that price level could not be sustained 

without a collapse of the industrial world. In fact, most 

economists predict dire results if the long-term price (10 to 

20 years) of oil exceed the$60-a-barrel price limit. 

Figure 2.2 shows how the economy has maintained a sense 

of control below such a limit~ ,It also shows a lower price 

limit. For example, the average price of oil (1905-1990) has 

1»~---------------4+--~ 
& 
e 
~ ~ T---------~----------------~~~~--~ 

0 

1100 11nO 1820 1830 1140 1150 18110 117'0 18110 1180 2000 

Figure 2.2 Average price for oil in "then" current 
dollars. Source: Kempski (1991). 
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roughly ranged from $10 to $40 a barrel ("then" current 

dollars). In general, real oil prices have been maintained

during the last 10 years- between $10 to $30. 

Using the "rule of 72 11 -the doubling time of an 

investment is equal to 72 divided by an interest rate- it can 

be shown that an investment doubles in 5 years at 15% 

interest by it will double in 14 years at 5% interest. Exact 

figures are readily available in interest tables. Thus, 

using reason~ble escalation rates (1 to 5 percent), the 

rule leads, approximately, to a doubling of energy prices 

within the next 20-year period. Hence, economists assert that 

escalation rates above the 1 to 5 percent range would be 

unacceptable by consumers and unbearable by the economy. 

In conclusion, taking into consideration (1) the 

historical variation of energy prices and (2) the limits 

imposed by growth, Mapp (1990) states that for the next 20 

years, the practical and steady maximum real price of oil is 
) 

around $30 per barrel (1990 prices) and that the practical 

minimum would be about $12 per barrel (1990 prices). 

In most CHP systems, fuel oil and natural gas are the 

staple fuels. Since natural gas prices historically lag oil 

prices by about one year, Mapp suggests a long-term ratio of 

oil to natural gas prices of 5:1. The ratio means that the 

price per barrel of oil will be about five times the cost of 

a thousand cubic feet (MCF) of natural gas. A barrel of oil 

contains 5x1o6 BTUs, while an MCF of natural gas 1xto6 BTUs. 

Hence, he implies that in an energy content basis, oil and 

natural gas will be priced the same in the future. Therefore, 

the practical long-term limits -i.e. $6/106 BTUs and $2.4/106 

BTUs, in 1990 prices- are valid for both natural gas and oil. 
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2.2 Cogeneration system Design and Analysis 

The combined generation of useful heat and power or 

cogeneration is not a new concept. The U.S. Department of 

Energy (1978} reported that in the early 1900s, 58% of the 

total power produced by on-site industrial plants was 

cogenerated. However, Polimeros (1981) states that by 1950, 

on-site CHP generation accounted for only 15 percent of total 

U.S. electrical generation; and by 1974, this figure had 

dropped to about 5 percent. 

In Europe, the experience has been different. The 

US-DOE report quoted above informs that "historically, 

industrial cogeneration has been five to six times more 

common in some parts of Europe than in the U.S." And that in 

1972, for example, "16% of West Germany's total power 

production was cogenerated by industries; in Italy, 18%; in 

France, 16%; and in the Netherlands, 10%". 

Since the issuance of the Public Utility Regulatory Act 

(PURPA) in 1978, however, U.S. cogeneration design, operation 

and marketing activities have significantly increased, and 

currently receive much attention from industry and academe. 

With this incentive, several new technologies -such as 

circulating-bed boilers, packaged cogeneration and combined 

cycles- have been developed. In 1990, cogenerators produced 

about 7% of the total power generated in the u.s. This trend 

is likely to increase since many consider cogneration as a 

supplementary way of increasing the existing u.s. power 

generation capacity. Thus, to promote industrial energy 

efficiency, PURPA obligates electric utilities to purchase 

cogenerated power at fair rates to both, the utility and the 
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generator. It also orders utilities to provide supplementary 

and back-up power at non-discriminatory rates. 

Below, an overview of current industrial cogeneration 

technology and design procedures is presented. Section 2.4 

discusses further details on u.s. cogeneration legislation. 

2.2.1 General Considerations and 

Definitions 

Turner (1982) indicates that although cogeneration 

should be evaluated as a part of any energy management plan, 

the main prerequisite is that a plant shows a significant and 

concurrent demand for heat and power. Once this scenario is 

identified, he states that cogeneration systems can be 

explored under the following circumstances: 

1. Development of new facilities 

2. Major expansions to existing facilities which 
increase process heat demands and/or process energy 
rejection 

3. When old process and/or power plant e9uipment is 
being replaced, offering the opportun~ty to upgrade 
the energy supply system. 

The following terms and definitions are regularly used 

in the discussion of CHP systems: 

Industrial Plant: the facility requ~r~ng process heat 
and electric and/or shaft ~ower. It can be a·process 
plant, a manufacturing fac~lity, a college campus, etc. 

Process Heat CPHl: the thermal energy required in the 
industrial plant. This energy can be supplied as steam, 
hot water, hot air, etc. In the u. s., it is expressed 
in BTU/hr. 

Process Returns CPR>: the fluid returned from the 
industrial plant to the cogeneration system. For systems 
where the process heat is supplied as steam, the process 
returns are condensate. 
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Net Heat to Process CNHPl: the difference between the 
thermal energy supplied to the industrial plant and the 
energy returned to the cogeneration system. NHP = PH -PR 
is the actual heat demand of the plant, which is 
considered to be a random process. 

Plant Power Demand CPPDl: the electrical power or load 
demanded by the industrial plant. It includes the ~ower 
required in manufacturing processes, air-condition1.ng, 
lighting and so on. It is expressed in kW or mw. 

Heat/Power Ratio CH/Pl: the heat-to-power ratio of 
the industrial plant (demand), or the rated heat-to
power ratio of the cogeneration cycle (capacity). 

Topping Cycles: CH/P<3:1) thermal cycles where power is 
produced prior to the delivery of heat to the industrial 
plant. One example is the case of heat recovered from a 
diesel-engine generator to produce steam and hot water. 
Figure 2.3 shows a diesel engine topping cycle. 

Bottoming Cycle: CH/P>5:1l power production from the 
recovery of heat that would "normally" be rejected to a 
heat sink. Examples include the generation of power 
using the heat from various exothermic chemical process 
and the heat rejected from kilns used in various 
industries. Figure 2.4 illustrates a bottoming cycle. 

Combined cycle: CH/P<5:1l this is a combination of the 
two cycles described above. Power is produced in a 
topping cycle -typically a gas-turbine generator. Then, 
heat exhausted from the turbine is used to produce 
steam; which is subsequently expanded in a steam turbine 
to generate more electric or shaft power. Steam can also 
be extracted from the cycle to be used as process heat. 
Figure 2.5 depicts a gas turbine based combined cycle. 

Prime Mover: a unit of the CHP system that generates 
electric or shaft power. Typically, it is a turbine 
generator or a diesel-engine generator. 

Bottoming cycles are generally used in the chemical 

process industry. In this research, however, we will focus on 

topping cycles as they are applied to industrial plants that 

are eligible as "qualifying facilities" by PURPA. That is, 

systems that have a thermal utilization of more than 5% of 

the energy input and a minimum overall efficiency of 42.5%. 
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2.2.2 Basic Cogeneration Systems 

2.2.2.1 Steam Turbine Systems. Kovacik (1982) 

recommends that four factors must be examined to assure that 

the maximum amount of power from a CHP steam plant is 

economically generated based on the process heat required. 

These factors are: (1) prime-mover size, (2) initial steam 

conditions, (3) process pressure levels, and (4) feedwater 

heating cycle. 

1. Prime-Mover ~ and Size. Process heat and plant 
electric requirements define the type and size of the 
steam generator. The type of CHP system and its 
corresponding prime mover are selected by matching the 
CHP system heat output to the process heat load. 
If process heat demands are such that the plant power 
requirements can be satisfied by cogenerated power, then 
the size of the prime mover is selected to meet or 
exceed the "peak" power demand. 

However, in the usual case, cogeneration will supply 
only a portion of the total plant power needs. The 
balance has to be imported through a utility tie. In 
isolated plants, the balance is generated by additional 
conventional units. This discussion assumes that both 
heat and power demands remain constant all times. Hence, 
the design problem becomes one of specifying two 
decision variables: (1) how much power should be 
cogenerated on-site and (2) how much power should be 
imported. Thus, given the technological, economical and 
legal constraints for a particular plant, and assuming 
the CHP system must be constructed at a minimum overall 
cost, it becomes a constrained optimization problem. 

2. Initial steam Conditions. Kovacik indicates that most 
industrial plants do not have adequate process steam 
demands to generate all the power required. Thus, 
it is important for the designer to examine those 
variables over which he has control so he can optimize 
the amount of power that can be economically generated. 

One set of these variables are the initial pressure and 
temperature of the steam generated. In general, an 
increase in initial pressure and/or temperature will 
increase the amount of energy available for power 
generation. But the prime mover construction and cost, 
and the heat demand impose economical limits for the 
initial steam conditions. Thus, higher initial steam 
conditions can be economically justified in industrial 
plants having relatively large process steam demands. 



3. Process Steam Pressure. For a given set of initial 
steam conditions, lowering the exhaust pressure also 
increases the energy available for power generation 
However, this pressure is limited -totally, with non
condensing turbines, or partially, with extraction 
turbines- by the maximum pressure required in the 
industrial process. 

4. Feedwater Heating. Feedwater heating through use of 
steam exhausted and/or extracted from a turbine 
increases the power that can be generated. 
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2.2.2.2 Calculation of Steam Turbine Power. Given the 

initial steam conditions (psig, °F) and the.exhaust saturated 

pressure (psig), Theoretical Steam Rates (TSR) specify the 

amount of steam heat input required to generate a kWH in an 

ideal turbine. The TSR is defined by 

TSR(lb/kWh) = 
3412 BTU/kWH 

AE BTU/lb 
(2.3.1) 

where AE is the difference in enthalpy from the initial steam 

conditions to the exhaust pressure based on an isentropic 

(ideal) expansion. These values can be obtained from steam 

tables or a Mollier chart. However, they are conveniently 

tabulated by the American Society of Mechanical Engineers. 

The TSR can be converted to the Actual Steam Rate {ASR) 

TSR 
ASR (lb/kWH) = (2.3.2) 

n 

where n is the turbine-generator overall efficiency, stated 

or specified at "design" or full-load conditions. Among the 

many factors that define the overall efficiency of a turbine

genertor set we have: the inlet volume flow, pressure ratio, 

speed, geometry of turbine staging, throttling losses, 

friction losses, generator losses and kinetic losses 

associated to the turbine exhaust. Most turbine manufacturers 

provide charts specifying either ASR or n values. 

\ 



Once the ASR has been established, the net enthalpy of 

the steam supplied to process (NEP) can be calculated: 
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NEP (BTU/lb) = Hi - 3500/ASR - He - Hm (2.3.3) 

where Hi 
3500 

He 
Hm 

= 
= 

= 
= 

enthalp¥ at the turbine inlet conditions (BTU/lb) 
convers1.on from heat to power (BTU/kWh), including 
the effect of 2 .• 6% radiation, mechanical and 
generator losses 
enthalpy of condensate return (BTU/lb) 
enthalpy of make-up water (BTU/lb) 

Hence, the net heat to process (BTU/hr) defined in 

Section 2.2.1 can be obtained by multiplying_ equation 2.3.3 

by the flow rates in lbfhr. The analysis of the overall 

cycle would require the replication of complete heat and mass 

balance calculations at part loads efficiencies. To expedite 

these computations, there are a number of commercial 

software packages, which also plot flow balance diagrams. 

2.2.2.3 Gas Turbine Systems. Gas turbines -using 

technology originally developed for aircraft engines- have 

been extensively applied in industrial plants. Two types of 

gas turbines are utilized in industry: one is the lighter 

aircraft derivative turbine and the other is the rugged 

industrial gas·turbine. Nelson (1988) points out that the 

latter are generally larger and designed for longer lives 

with rigorous maintenance requirements. Hence, 

industrial turbines may have lower life cycle costs than 

aircraft derivatives in heavy duty applications. 

Since gas turbines can. burn a variety of liquid and gas 

fuels and run long times unattended, they are considered 

to be versatile and reliable. For a fixed capacity, they have 

the smallest relative foot-print (sq-ft per kW)~ 
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2.2.2.4 Gas Turbine Based CHP Systems. Exhaust gases 

from gas turbines (from 600 to 1200 °F) offer a large heat 

recovery potential. The exhaust has been used directly, as in 

drying processes. Topping cycles have also been developed by 

using the exhaust gases to gen~rate process steam in heat 

recovery steam generators (HRSG's). Where larger power loads 

exist, high pressure steam is generated to be subsequently 

expanded in a steam turbine-generator; this constitutes the 

so called combined cycle. 

If the demand for steam and/or power is even higher, the 

exhaust gases are used (1) as preheated combustion air of a 

combustion process or (2) are additionally fired by a "duct 

burner" to increase their heat content and temperature. All 

these options present a greater degree of CHP generation 

flexibility, allowing a gas turbine system to match a wider 

variety of heat-to-power demand ratios. 

2.2.2.5 Gas Turbine Ratings and Performance. There is 

a wide range of gas turbine sizes and drives. Available 

turbines have ratings that vary in discrete sizes from 50 kW 

to 100,000 kW. Consequently, when selecting a CHP unit, the 

actual turbine-generator size does not necessarily match the 

"optimal" size required for a given plant. In addition, the 

output of gas turbines depends on the inlet air temperature. 

Kovacik (1982) and Nelson (1988) list the following gas 

turbine data required for design and off-design conditions: 

1. Unit Fuel Consumption-Output Characteristics. These 
data depends in the unit design and manufacturer. 
The actual specific fuel consumption or efficiency and 
output also depend on (a) ambient temperature, (b) 
pressure ratio and (c) part-load operation. Vendors 
usually provide this kind of information in the form of 
charts for "off-design" performance characteristics. 
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2. Exhaust Flow Temperature. This data item allows the 
development of the exhaust heat recovery system. The most 
common recovery system are HRSG's which are classified as 
unfired, supplementary fired and fired units. 

The amount of steam that can be generated in an unfired or 
supplementary fired HRSG can be estimated by the following 
relationship: 

where ws = 
Wg = 
cP = 
Tl = 
TL = 

= 
hsh = 

hsat = 
e = 
f = 

Temperature 

= 
Wg Cp {T1 - T3) e L f 

{2.3.4) 

steam flow rate 
exhaust flow rate to HRSG 
specific heat of products of combustion 
gas temperature -after burner, if applicable 
saturation temperature in steam drum 
radiation and other losses, 0.985 
enthalpy of steam leaving superheater 
saturated liquid enthalpy in the steam drum 
HRSG effectiveness, defined by Fig. 2.6 
fuel factor, 1.0 for fuel oil, 

Evaporator 

1.15 for gas. 

Super 
heater 

Figure 2.6 Heat recovery steam generator 
effectiveness 

3. Parametric Studies for Off-design Conditions. 
Varying the amount of supplementary firin~ will change 
the HRSG steam output of the model shown 1n Fig. 2.6. 
Thus, with varying temperatures, several iterations of 
equation 2.3.4 are required to evaluate off-design or 
part load conditions. When the analysis is carried over 
a range of loads, firing rates, and temperatures, it is 
called a parametric study. 



4. Exhaust Pressure Effects QD Output and Exhaust 
Temperature. Heat recovery systems increase the 
exhaust back-pressure, reducing the turbine output 
in relation to simple operation (without HRSG). 
Turbine manufacturers provide test data about back
pressure effects in turbine output and efficiency. 
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2.2.2.6 Reciprocating Engine, Systems. Reciprocating 

engines include a variety of internally fired, piston driven 

engines. Their sizes range from 10 bhp to 50,000 bhp. 

According to Kovacik (1982), the largest unit supplied by a 

u.s. manufacturer is rated at 13,500 bhp. In larger plants, 

several units are used to accommodate part, load and to 

provide redundancy and better availability., 

In these engines, combustion heat rejected through the 

jacket water£ lube oil and exhaust gases, can be recovered 

through heat exchangers to generate hot water and/or steam. 

Exhaust gases have also been used directly. For instance, 

Wong (1985) discusses a way to mix diesel-engine exhaust, 

gases with ambient air to dry paddy rice. Reciprocating 

engines are classified by: 

- the thermodynamic cycle: Diesel or Otto cycle. 

- the rotation speed: high-speed (1200-1800 rpm) 

medium-speed (500-900 rpm) 

low speed (450,rpm or less) 

- the type of aspiration: naturally aspirated 

.turbocharged or 

supercharged 

- the operating cycle: two-cycle or 

four-cycle 

- the fuel burned: fuel-oil fired or 

natural-gas fired. 
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Reciprocating engines are widely used to move vehicles, 

generators and a variety of shaft loads. Larger engines are 

associated with lower speeds, increased torque, and heavier 

duties. The total heat utilization of CHP systems based on 

gas-fired or fuel-oil fired engines approach 60-75%. Thus, 

reciprocating engines have a be~ter part-load efficiency than 

simple gas turbines of comparable size. Figure 2.7 shows the 

CHP balance vs. load of a typical diesel engine. 
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Figure 2.7 Diesel engine heat and power balance 



54 

2.2.3 Cogeneration Design Criteria 

Polimeros (1981) discusses (1) a series of steps to 

estimate CHP demand requirements and (2) the design rationale 

for central heating-and-cooling cogeneration plant and its 

advantages. These two topics are summarized below. 

2.2.3.1 CHP Demand Estimation. Demand estimates can be 

obtained by using the following methods: 

-The Heating degree-day method 
-combined method degree-day and heat loss calculation 
-The Bin method , 
-The cooling degree-day method 
-The equivalent full load hour (EFLH) method 
-The prediction of peak demand 

-demand factor method 
-radiation factor method 

-Factors affecting heating consumption and demand 
-Factors affecting cooling consumption demand 
-Load calculation programs 
-Facility simulation programs 

2.2.3.2 Central Plant Design Rationale. Sizing the 

equipment for the "concurrent" peak heat-and-power loads and 

not for the sum of the maximum of individual and dispersed 

loads has the following advantages. 

Advantages from the capital investment standpoint: 

- Lower initial cost than decentralized units. 

- When the CHP system is owned by a third party, there 
is no capital investment by the user. 

- More usable or rentable space becomes available. 

- Less mechanical equipment space is needed. 

- Lower development cost than several dispersed plants. 

- Take advantage of load diversit¥, i.e. the total 
capacity of a central plant is 1nvariably less than 
the sum of multiple, smaller dispersed plants. 

Advantages from the operation standpoint: 

- Plant efficiency is maximized at partial load. 



Labor costs are minimized due to easier superv1s1on, 
and centralized scheduling and maintenance. 

- Fuel savings are possible due to the negotiation for 
more advantageous rates with fuel dealers, i.e. bulk 
rates and competitive buying. 

- Central maintenance has the advantages of closely 
located repair shops, more effective preventive and 
predictive maintenance and lower parts inventory. 

- Refinements in design, construction and controls are 
possible for central CHP plants. 
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The following specific evaluation steps are suggested by 

Kovacik (1982) to carry out a cogeneration system design. 

1. Develop the profile of the various process steam 
(heat) demands at the appro~riate steam pressures for 
the applications being stud1ed. Also, collect data 
with regard to condensate returned from the process 
and its temperature. Data must include daily 
fluctuations due to normal variations in process 
needs, as well as seasonal weather effects; including 
the influence of not-working periods such as 
weekends, vacation periods, and holidays. 

2. A profile for electric power must be developed in the 
same manner as the process heat demand profile. 
These profiles typically include hour-by-hour heat 
and power demands for "typical" days (or weeks) for 
each season or month of the year. 

3. Fuel availability and present-day cost as well as 
projected future costs. The study should also factor 
process by-product fuels into the development of the 
energy supply system. 

4. Purchased power availability and its present and 
expected future cost. 

5. Plant discharge stream data in the same degree of 
detail as the process heat demand data. 

6. Number and rating of major (demand and generation) 
equipment items. This evaluation usually establish 
whether spare capacity and/or supplementary firing 
should be installed. 

7. Plant, process and CHP system economic lifes. 

Kovacik points out that once this initial data bank has 

been established, the various alternatives that can satisfy 

plant heat and power demands can be identified. Furthermore, 

energy balances can be made, investment cost estimated, and 
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the economic merit of each alternative evaluated. 

Nelson (1988) presents a more structured approach for 

CHP system design and evaluation. It is based in a sequence 

of evaluation iterations, each greater than the previous and 

each producing information whether the costs of the next step 

is warranted. His suggested design process is based on the 

following steps. 

Step 1: site Walkthrough and Technical Screening 

Step 2: Preliminary Economic Screening 

step 3: Detailed Engineering Design. 

Similarly, Butler (1984) c9nsiders three steps to 

perform studies, engineering and construction of cogeneration 

projects. These are discussed as follow. 

Step 1. Preliminary studies and conceptual engineering. 
He states that this is achieved by performing a 
technical feasibility and economic cost-benefit study to 
rank and recommend alternatives. The determination of 
technical feasibility includes a realistic assessment 
with respect to environmental impact, regulatory 
compliance, and interface with a utility. Then, an 
economic analysis -based on the simple payback period
serves as a basis for more refined evaluations. 

step 2. Engineering and Construction Planning. Once an 
alternative has been selected and approved by the owner, 
preliminary engineering is started to develop the 
9eneral design criteria. These include specific site 
1nformation such as process heat and power requirements, 
fuel availability and pricing, system type definition, 
modes of operation, system interface, review of 
alternatives under more detailed load and equipment 
data, confirm selected alternative and finallf size the 
plant equipment and systems to match the appl1cation. 

step 3. Design Documentation. This includes the 
~reparation of project flow charts, piping and 
1nstrument diagrams, equipment layouts, process 
interface layouts, building and structural drawings, 
foundation drawings, electrical diagrams, and specifying 
an energy management system, if necessary. 

This research is specifically concerned with the last 

engineering task of step 2, i.e. the economic sizing of the 

equipment to match the application. The research intends to 



extend the state of the art to the those design cases that 

involve sizing CHP systems subject to variable loads. 
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In regard to Step 1 -as discussed by Nelson and Butler 

above- more detailed methods for cogeneration feasibility 

analysis have been developed b~ GKCO Consultants (1982). 

Also, preliminary "screening" methods have l;:>een developed at 

Texas A&M University by and Somasundaram et al. (1988). and 

Canton et al. (1987). 

GKCO Consultants (1982) have developed a "Cogeneration 

Feasibility Analysis Manual" for the American Gas Association 

(AGA). The Manual is composed of three major sections: 

1. An introduction which includes: "A brief summary of 
the concepts of cogeneration, the concepts of 
cogeneration, including a listing of owner benefits, a 
description of typical facilities where cogeneration is 
viable, a listing of existing facilities, and an 
overview of the process by which a specific site is 
examined" 

2. co9eneration Feasibility Analysis Procedure- It 
descr1bes the procedure and necessary background data. 
It includes the following sections: 

- How to analyze a Potential Site- describes the 
analytic procedure and discusses general input 
requirements and technique limitations. 

- How are Economics Measured?- discusses measures of 
economic value used in the procedure. , 

- Supporting Data and Data Sources- lists the 
information required in the study and identifies 
sources of information; including site data, utility 
data, equipment cost and performance data, and 
plant/system design data. 

- A Cogeneration Conceptual Design Guide- provides 
guidelines for the development of plant designs. It 
specifies the following steps to conduct the site 
feasibility study: 

a) Select the type of prime mover or cycle (piston 
engine, gas turbine or steam turbine); 

b) Determine the total installed capacity; 

c) Determine the size and number of prime movers; 
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d) Determine the required standby capacity. 

Accordin9' to the authors "the approach taken (in the 
manual) 1s to develop the minimal amount of 
information required for the feasibility analysis, 
deferring more rigorous and comprehensive analyses to 
the .actual concept study". 

This section includes the discussion of the following 
"Desi<1n Options" or design criteria to determine (1) 
the s1ze and (2) the operation mode of the CHP system. 

* Isolated Operation, Electric Load Followin9'- The 
facility is independent of the electric ut1lity 
grid, and is required to produce all power 
required ort-site and to provide all required 
reserves for scheduled and unscheduled 
maintenance. 

* Baseloaded, Electrically Sized- The facility is 
sized for baseloaded operation based on the 
minimum historic billing demand. Supplemental 
power is purchased from the utility grid. This 
facility concept generally results in a shorter 
payback period than that from the isolated site. 

* Baseloaded, Thermally Sized- The facilit¥ is 
sized to provide most of the site's requ1red 
thermal energy using recovered heat. The engines 
operated to follow the thermal demand with 
supplemental boiler fired as required. The 
authors J?Oint out that: "this option frequently 
results 1n the production of more power than is 
required on-site and this power is sold to the 
electric utility." 

3. co9eneration Data: Sources and Procedures - A 
descr1ption of sources of information or processes by 
which background data can be developed for the specific 
~as distribution service area. The section provides the 
1nformation or process description to adapt the 
screening procedures to a specific utility. 

2.2.3.3 Comments on the "Design Opti~ns" Suggested .Qy 

the AGA Manual. The authors of the manual outlined above 

admit that "the number of available design options (in 

cogeneration) are limited only by the ingenuity of the 

engineer". However, they propose the three options described 

above because they "will allow the owner to asses the range 

of returns available from a cogeneration system". In regard 

to their design approach we have the following comments. 
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Since "a range of returns" is possible for different CHP 

system sizes and operation modes, they recognize that the 

"best" cogeneration system is not necessarily represented by 

one of the options stated above. In fact, the three options 

constitute criteria for sizing the installed capacity; using 

rules of thumb that are valid only in certain conditions. 

Thus, in the case of electrically isolated site, they 

state that "the total installed capacity will be the derived 

from a detailed electrical load analysis in which the maximum 

loading conditions for the plant are defined". They suggest 

that, "for a typical site, with no special loads", the 

capacity can be obtained from historic billing data and an 

inventory of site motors. For a larger site, above 500 kW, 

the required capacity is (1) the sum of the maximum historic 

billing demand plus the starting requirements of the larges 

motor. For smaller sites, or for sites where the largest 

motor size is significant in comparison to the billing 

demand, the installed capacity should be (2) 150% of the 

historic maximum billing demand. They say that the actual 

capacity should be the smaller of these two values. In this 

case, for technical, economical, or legal reasons, the CHP 

system must be operated in isolation from the grid. After 

PURPA, however, we consider this to be a rare case in the 

u.s. Few CHP-system owners would operate without a firm 

utility back-up andjor without the benefit of some power 

exports. 

GKCO Consultants state that the CHP system may be 

sized to produce a fraction of the required power on-site, 

i.e. electrically base-loaded. Then, the engine is sized at 

"minimum billing demand" and operated at a relatively high 
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annual load factor or about 0.7. In this case, the 

generators are operated in synchronization with the utility 

grid and additional electrical interface equipment is 

installed. It is assumed that some power may be purchased 

from the utility, but sales of power to the grid are not 

allowed. Here, they explicitly associate a load factor -i.e. 

the average demand expressed as 70% of the annual peak 

demand- with the size of the CHP plant. This "option" 

presents two severe limitations: (1) It assumes that by 

sizing the cogeneration power capacity according to the 

"minimum annual billing demand" will warrant a load factor of 

0.7 (or higher). In fact, the procedure assumes a "typical" 

load curve with mean demand equal to 70% of the annual peak 

demand. But, this load curve does not necessarily represent 

all possible cases. (2) It assumes that it is not technically 

(or legally) feasible to export power to the grid; or that 

power exports are not economically attractive at all. These 

assumptions make this option representative of a rather 

limited scenario, which may not be the case under scrutiny. 

Consequently, the electrically baseloaded plant will not 

warrant a "least total cost" or "most profitable" 

alternative. 

According to the AGA manual, when the plant is thermally 

baseloaded, it is sized to track the site's thermal needs 

with recovered heat. Here, the authors assume that "the 

installed thermal capacity of the prime mover will be the 50% 

of the required peak demand capacity and that two-thirds of 

the site thermal requirements would be satisfied by 

recovering heat". The balance will be provided by a peaking 

boiler or supplementary firing. They suggest, however, to use 
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daily load profile data -if available. Here, they present a 

rather vague design criterion. In this case, when no load 

data exist, a "typical" load curve (2/3 of the heat is used 

below 50% of the peak load). However, this criterion does 

not warrant a constant heat demand on the CHP system, nor 

qualifies the system as the most cost effective alternative. 

In conclusion, if one considers that the best system is 

the one that minimizes the total system cost or maximizes the 

operating profit, then the three options do not necessarily 

include the 11 best11 system. On the contrary, one of the three 

options may be optimal in a few cases. One way to determine 

that one of the three options could be the optimal one is to 

prove that they indeed constitute extreme points of the CHP 

feasible space. Otherwise the target or optimal capacity 

point may lay elsewhere on the CHP sub-plane. This target CHP 

capacity may or may not be represented by commercially 

available equipment. Thus, the actual -and feasible- optimal 

CHP system capacity would be a point -possibly close to the 

target CHP point- represented by a commercially available 

cogeneration plant. In addition, the actual optimal CHP 

system would meet the technical, economical, and regulatory 

constraints imposed on the underlying industrial facility. 

2.2.3.4 Comments on the Approach by Somusandaram et al. 

The procedure by Somasundaram et al. (1988) is titled 11A 

Simplified Self-Help Approach to Sizing of Small-Scale 

Cogeneration Systems." It is a workbook "compiled for use by 

the energy managers/physical plant directors of various Texas 

state agencies so that an initial screening of the potential 

candidates for cogeneration can be made." Thus, it has 



basically the same audience and scope than the AGA manual. 

The authors summarize their methodology as follows: 
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"The procedure used in the study is extremely simple, 
and certain optimistic assumptions have been made to 
facilitate the approach. An approximate feasibility of a 
cogeneration s¥stem will be determined simply from the 
available bill1ng data for electricit¥ and natural gas 
use at the state agency. If the decis1on for a system is 
deemed to be "GO" or "POSSIBLE" on the basis of the 
initial screening, then the state agency/building 
complex will be considered a prime candidate for a more 
detailed feasibility analysis." 

The approach discussed above has many drawbacks, even 

for a preliminary analysis. Thus, they recommend that "having 

determined the average thermal load, the prime mover (engine) 

selection can be made either .on the basis of its rated 

electrical or thermal output." But the primary method used 

in their analysis -to define the size of the prime mover- is 

"the average monthly electrical demand (kW) determined form 

the past year's utility bill". The major problem with the 

whole approach is that it is based on average parameters. 

That is, average electrical prices, average gas prices, 

average electrical demand and average thermal loads. The only 

situation in which this approach may be valid is when the 

coefficient of variation of the CHP demands (the ratio of the 

standard deviation to the mean value) is insignificant or the 

signal to noise (SNR) ratio is very large. In other words, 

when the loads are "fairly constant" throughout the year. In 

all other cases, the variation or "load diversity" can 

present serious complications to the method. For example, 

two different facilities may have similar mean loads, thus 

similar results are obtained from the analysis. The 

facilities may, however, have very different CHP load 

variances. Then, one problem not accounted for in the 
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"average" approach is that a facility with larger peak 

electrical loads will incur in larger -and possibly 

ratcheting- demand penalties. Another problem is that the 

larger the CHP load variation, the longer the time the CHP 

system may run under part-load conditions. Partial loads, in 

turn, affect the efficiency of the system. Consequently, 

even though the CHP systems run under the same average load, 

the may have a very different heat ratio (cycle efficiency) 

and economic performance. 

An important problem should be identified at this point, 

i.e. larger load variances imply the accumulation of a series 

of penalties to departures from the "mean" load value or 

"rated" system capacity. Hence, the fact that, in general, 

the CHP problem involves stochastic demands and capacities, 

clearly states the need for a methodology that can overcome 

the limitations of the methods discussed above. The following 

approach, also developed at Texas A&M, makes an attempt to 

consider load variation in the selection of CHP systems. 

Canton et al. (1987) have developed a set of seminar 

notes on cogeneration systems for the Energy Management, 

Combustion and Fuels Research Groups at Texas A&M. The notes 

include a series of graphs, which can be used as an aid in 

cogeneration system selection. The principal graphs are: 

Graph 1. 

Graph 2. 

Determination of Heat/Power Ratio. The heat/power 
ratio is the ordinate and the process heat demand 
is the abscissa. A family of lines with the same 
slope represent different electrical demands. 

Thermal and Power Needs of the Underlying Plant. 
The power demand is the ordinate and the process 
heat demand is the abscissa. A family of lines 
depict different heat/power ratios or slopes. 

Graph 3. Selection of Cogeneration System to Match Power 
Needs (same coordinates that graph 2). The candidate 
CHP system is represented by a straight line that 



passes through the origin and defines the system 
heat/power ratio or slope. The power demand is 
always met, but two ~ossible cases are shown {1) 
there is excess heat1ng capacity and {2) there is 
heating deficit. 
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Graph 4. Selection of Cogeneration System to Match Heating 
Needs {same coordinates that graph 2). The candidate 
CHP system is represented by a straight line that 
passes through the origin and defines the system 
heat/power ratio or slope.' The process heat demand 
is always met, but two possible cases are shown: {1) 
there is excess power capacity and {2) there is 
power capacity deficit. 

The systems modeled by Graphs 3 and 4 may be operated 

under the following situations: 

1. Match power, heat deficit results: use auxiliary firing 

2. Match power, excess heat results: reject excess heat 

3. Match heat, excess power results: sell excess power 

4. Match heat, power deficit results: buy remaining power. 

The four operating cases require that the CHP system be 

sized to meet or exceed the "maximum" power demand -in cases 

1 and 2- and the "maximum" heat demand- in cases 3 and 4. 

These cases restrict the design problem to the situations in 

which the CHP system must be sized to meet or exceed the 

power or heat load. Unless it is proven that these operating 

conditions -which may lead to system oversizing- are truly 

optimal, as compared with smaller CHP systems, it can not be 

said that they represent the most cost effective options. 

These four operating modes, however, can still be 

utilized with systems that are not sized to meet or exceed 

the peak demands. Thus, instead of "matching" the power or 

heat demand, the cogeneration system may "track or follow" 

the heat or power load -as long as the demand does not exceed 

the thermal or power capacity. When capacities are exceeded, 

power or heat is obtained from the utility or auxiliary 
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equipment, respectively. Consequently, besides determining 

the size of the prime mover, the problem becomes one of 

defining its tracking mode. That is, the system might be 

sized to track power {with some utility imports) or might be 

sized to track heat {with possible auxiliary firing). In the 

most general case, the CHP system may allow power exports in 

times of low power demand. 

The following modulation and control methods allow the 

dynamic operation-tracking of power load or heating load. 

POWER MODULATION: Power demand tracking 

1. Part Load Operation {excess power modulation) 

2. Multiple Prime Movers {excess power modulation) 

3. Utility Interconnect {power export/import) 

4. Heat Storage (e.g. chilled water tanks) 

HEAT MODULATION: Heating load tracking 

1. Supplementary Boiler Fuel {heat deficit) 

2. Heat Dumping {excess heat modulation) 

3. Heat Storage (e.g., hot water tanks) 

The graphs described above constitute a first step in 

recognizing the variable nature of CHP demands and the need 

for modulation in system operation. Thus, their approach to 

size a cogeneration system involves matching or exceeding 

one of the loads {heat or power), while the other load is met 

by "modulating" or adjusting the system capacity with the 

control methods outlined above. In this approach, there is an 

implicit intent of sizing the system to "always" meet one 

of the load {heat or power) while the other one "floats" or 

is satisfied with auxiliary equipment. In the "tracking" 

approach, however, it is recognized that "matching or 

exceeding" a load all the time is not necessarily the most 
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cost effective criterion to determine the size of the system, 

and that the "optimal" CHP system type and size is a point 

located elsewhere in the feasible space of the CHP plane. 

2.2.4 Computer Programs for Cogeneration 

Design and Evaluation 

There are several computer programs available for 

detailed evaluation of cogeneration systems. In opposition to 

the rather simple methods discussed above, CHP programs are 

intended for system configu~ation or detailed design. For 

these reasons, they require a vast amount of input data. 

Below, we examine two of the most well k·nown programs. 

2.2.4.1 CELCAP. Lee (1988) reports that the Naval 

Civil Engineering Laboratory ~eveloped a cogeneration 

analysis computer program known as Civil Engineering 

Laboratory Cogeneration Pro~ram (CELCAP), "for the purpose of 

evaluating the performance of cogeneration systems on a life

cycle operating cost bpsis. He states that "selection of a 

cogeneration energy system for a specific application is a 

complex task." He points out that the first step in the 

selection of cogeneration system is to make a list of 

potential candidates. These candidates should include single 

or multiple combinations of the various types of engine 

available. This "search and match" procedure is a rather 

empiric process. The CQmputer program does not specify CHP 

systems; these must be selected by the designer. Thus, 

depending on the training and previous experience of the 

designer, different designers may select different systems of 

different sizes. 
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After selecting a short-list of candidates, modes of 

operations are defined for the candidates. So, if there are N 

candidates and M modes of operation, then NxM alternatives 

must be evaluated. Lee considers three modes of operation: 

1) Prime movers operating at their full-rated capacity, 
any excess electricity is sold to the utility and any 
excess heat is rejected to the environment. Any 
electricity shortage is made up with electricity 
imports form the utility. Process heat shortages are 
made-up by an auxiliary boiler. 

2) Prime movers are specified to always meet the entire 
electrical load of the user. Steam or heat demand is 
met b¥ the prime mover. But if there is a heat 
defic1t, an auxiliary boiler is fired. Any excess 
heat is rejected to the environment. 

3) Prime movers are operated to just meet the steam or 
heat load •. In this mode, power deficits are made up 
by purchased electricity. similarly, any excess power 
is sold back to the utility. 

For load analysis, Lee considers that "demand of the 

user is continuously changing. This requires that data on the 

electrical and thermal demands of the user be available for 

at least one year". He further states that "electrical and 

heat demands of a user vary during the year because of the 

changing working and weather conditions." However, for 

evaluation purposes, he assumes that the working conditions 

of the user -production related CHP load- remain constant and 

"that the energy-demand pattern does not change significantly 

from year to year". Thus, to consider working condition 

variations, Lee classifies the days of the year as working 

and non-working days. Then, he uses "average" monthly load 

profiles and "typical" 24-hour load profiles for each class. 

"Average" load profiles are based on electric and steam 

consumption for an average weather condition at the site. A 

load profile is developed for each month, thus monthly 

weather and consumption data is required. A best fit of 
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consumption {BTU/month or kWh/month) versus heating and 

cooling degree days is obtained. Then, actual hourly load 

profiles for working and non-working days for each month of 

the year are developed. The "best representative" profile is 

then chosen for the "typical working day" of the month. A 

similar procedure is done for the non-working days of the 

month. 

Next an energy balance or reconciliation is performed to 

make sure the consumption of the hourly load profiles agrees 

with the monthly energy usage. A multiplying factor K 

is defined to adjust load profiles that do not balance. 

where K· = multiplying factor for month j 
~j = average consumption {kWH) by the user for the 

month j selected from the monthly electricity 
usa~e versus degree day plot 

AEwj = typ1cal working-day electric usage {kWH), 
i.e. the area under the typical workin~ day 
electric demand ~rofile for the month J 

AEnwj = typical non-work1ng day usage {kWH), i.e. the 
area under the typical non-working day 
electric demand profile for the month j. 

Lee suggest that each hourly load in the load profiles 

be multiplied by the K factor to obtain the "correct working 

and non-working-day load profiles for the month". Thus, the 

procedure is repeated for all months of the year for both 

electric and steam demands. Lee states that."the resulting 

load profiles represent the load demand for average weather 

conditions". 

Once a number of candidate CHP systems has been 

selected, equipment performance data and the load profiles 

are feed into CELCAP to produce the required output. The 

output can be obtained in a brief or detailed form. In brief 
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form, the output consists on a summary of input data and a 

life cycle cost analysis including fuel, operation and 

maintenance and purchased power costs. The detailed printout 

includes all the information of the brief printout, plus 

hourly performance data for 2 days in each month of the year. 

It also includes the maximum hourly CHP output and fuel 

consumption. The hourly electric demand and supply are 

plotted, along with the hourly steam demand and supply for 

each month of the year. 

Despite the simplifying assumptions introduced by Lee to 

generate average monthly and typical daily load profiles, it 

is evident that still a large amount of data handling and 

preparation is required before CELCAP is run. By recognizing 

the fact that CHP loads vary over time, he implicitly 

justifies the amount of effort in representing the input data 

through hourly profiles for typical working and non-working 

days of the month. In our view, this is just a "microscopic" 

way to simulate the detailed operation of candidate systems. 

However, there are some disadvantages with this 

approach. First, heat and electric load data for each 

typical working and non-working day of each month must be 

obtained or estimated. If for a given plant, hour-by-hour 

records exist for a year, a total of 17,520 load readings (2 

x 8,760 hrfyr) should be converted to 1,152 data items. This 

constitutes a cumbersome and time consuming task, especially 

in the case of facilities with complex demand patterns. It is 

not objective, since it is based on the visual inspection of 

hourly load profiles to obtain a "typical" profile. 

If a change occurs in the products, process or equipment 

that constitute the energy consumers within the industrial 



plant, a new set of load profiles must be generated. Thus, 

exploring different conditions, sensitivity analyses or 

parametric studies become very time consuming. 
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A problem that becomes evident at this point is that, to 

accurately represent varying loads, a large number of load 

data points must be estimated, handled and stored for 

subsequent use in a computer program like CELCAP. Conversely, 

the preliminary feasibility evaluation methods discussed 

previously, require very few and only "average" load data. 

Criticism of preliminary methods has arisen for not being 

able to truly reflect seasonality variations in load analysis 

(and economic analysis) and for lacking the flexibility to 

represent varying CHP system performance at varying loads. 

2.2.4.2 COGENMASTER. Limaye and Balakrishnan (1989) of 

Synergic Resources Corporation have developed COGENMASTER. 

It is a computer program to model the technical aspects of 

various cogeneration options, evaluate economic feasibility, 

and prepare detailed cash flow statements. 

According to the authors, COGENMASTER compares the CHP 

alternatives to a base case system where electricity is 

purchased from the utility and thermal energy is generated at 

the site. They extend the concept of an option by referring 

to different technologies and operating strategies, and also 

to different ownership structures and-financing arrangements. 

The program has two main sections: a Technology and a 

Financial Section. The Technology Section includes 5 modules: 

* Technology Database Module 
* Rates Module 
* Load Module 
* Sizing Module 
* Operating Module 



The Financial Section includes 3 modules: 

* Financing Module 
* Cash Flow Module 
* Pricing Module 
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In COGENMASTER, facility electric and thermal loads may 

be entered in one of three ways, depending on the available 

data and the detailed required for project valuation; 

* A constant average load for every hour of the year. 

* Hourly data for three typical days of the year 

* Hourly data for three typical days of each month 

Thermal loads may be in the form of hot water or steam; 

but system outlet conditions must be specified by the user. 

The authors point out that the sizing and operating 

modules permit a variety of alternatives and combinations to 

be considered. The system may be sized for the base or peak, 

summer or winter, and electric or thermal load. There is also 

an option for the user to define the size the system in 

kilowatts. Once the system size is defined, several operation 

modes may be selected. The system may be operated in the 

electric following, thermal following or constantly running 

modes of operation. Thus, N sizing options and M operations 

modes define a total of NxM cogeneration alternatives, from 

which the "best" alternative must be selected. The economic 

analysis is based on simple payback estimates for the CHP 

candidates versus a base case or do-nothing scenario. Next, 

depending on the financing options available, different cash 

flows may be defined and further economic analysis -based on 

the Net Present Value of the alternatives- may be performed. 

However, since the NxM options include only a limited 

set of pre-selected candidates, the true optimal CHP system 

may or may not be included in this set. Therefore, an 
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optimal solution is not warranted through this procedure. In 

other words, the COGENMASTER economic analysis is performed 

after a set of units sizes and operation modes have been 

selected. Thus, in this program, economics plays no direct 

role in the sizing (or pre-selection) of alternative CHP 

systems; and economic evaluation is a posterior analysis. 

As an alternative, this research proposes to develop a 

method that defines an economically selected target for the 

CHP system size; recognizing, a-priori, the variation of 

loads and capacities, and the impact of system availability. 

The basic thesis being that, to size a CHP system not only 

certain relevant sizing options must be evaluated, but the 

stochastic nature of the loads and capacities and system 

,availability must be jointly included in the evaluation. 

Specifically, the research proposes the development of a 

methodology to economically size a CHP system. Hence, the 

methodology should include a set of models that explicitly 

represent the stochastic loads and capacities of an 

industrial cogeneration system (interconnected with a 

utility) in conjunction with their relevant cost parameters. 

Probability theory provides the capability of establishing an 

innovative design method ~y maintaining a level of simplicity 

and cost-effectiveness without sacrificing loadfsystem 

detail. For instance, instead of handling and processing 

lengthy "hour-by-hour" load profiles (the input data to a set 

of pre-selected candidate models), load data can be 

compressed and evaluated, without loss of information, in the 

form of load probability distributions as represented by 

estimates of its statistical parameters. 



2.3 u.s. Cogeneration Legislation 

In 1978 the U.S. Congress amended the Federal Power 

Act resulting .in the promulgation of the Public Utility 

Regulatory Policies Act (PURPA). The Act recognized the 

energy saving potential of cogeneration and small power 

production, the need for real and positive incentives for 

development of these facilities and the private sector 

requirement to remain unregulated. PURPA has eliminated 

several institutional obstacles to cogeneration. As a 

result, cogenerators can now count on a more fair 

treatment by the local electric utility with regard to 

iterconnection, back-up power supplies, and the sale of 

excess power. 

PURPA of 1978 contains the major federal initiatives 

regarding cogeneration and small power production. These 

initiatives are stated as rules and regulations pertaining 

to PURPA Sections 210 and 201; which were issued in final 

form in February and March of 1980, respectively. These 

rules and regulations are discussed in the following 

sections. 

Initially, several utilities -especially those with 

excess capacity- were reticent to buy cogenerated power 
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and have, in the past, contested PURPA. Power (1980) magazine 

reported several cases in which opposition persisted in some 

utilities to private cogeneration. But after the supreme 

Court ruling in favor of PURPA, more and more utilities are 

finding that PURPA can work to their advantage. Polsky and 

Landry (1987) report that some utilities are changing 

attitudes and are even investing in cogeneration projects. 
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2.3.1 PURPA 201* 

Section 201 of PURPA requires the Federal Energy 

Regulatory Commission (FERC) to define the criteria and 

procedures by which small power producers (SPP's) and 

cogeneration facilities can obtain qualifying status to 

receive the rate benefits and exemptions set forth in Section 

210 of PURPA, which is discussed later. Some PURPA 201 

definitions are stated below. 

2. 3 .1.1 Small, Power Production Facility. A "Small 
' Power Production Facility" is a facility that uses biomass, 

waste, or renewable resources, including wind, solar and 

water, to produce electric power,and is not greater than 80 

megawatts. 

Facilities less than 30 MW are exempt from the Public 

Utility Holding Co. Act and certain state law and regulation. 

Facilities of 30 to 80 MW which use biomass, may be exempted 

from the above but may not be exempted from certain sections 

of the Federal Power Act. 

2.3.1.2 Cogeneration Facility. A "Cogeneration 

Facility" is a facility which produces electric energy and 

at least one form of useful thermal energy (such as heat or 

steam) used for industrial, commercial, heating or cooling 

purposes, through the sequential use of energy. A Qualifying 

Facility (QF) must meet certain minimum efficiency standards 

as described later. Cogeneration facilities are generally 

classified a "topping" cycle or "bottoming" cycle facilities. 

* Most of the following sections have been adapted from CFR-
18 (1990) and Harkins (1980), unless quoted otherwise. 



2.3.2 Cogeneration Facility and Small 

Power Production Facility 
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2.3.2.1 Cogeneration Facilities. To distinguish new 

cogeneration facilities which will achieve meaningful energy 

conservation from those which would be "token" facilities 

producing trivial amounts of either useful heat or power, the 

FERC rules establish efficiency standards for both topping

cycle and bottoming-cycle NEW cogeneration facilities. No 

efficiency standards are required for EXISTING cogeneration 

facilities regardless of energy source or type of facility. 

For a new topping-cycle facility: 

o No less than 5% of the total annual energy output of 
the facility must be useful thermal energy. 

o For any new topping-cycle facility that uses any 
natural gas or oil : 

oo All the useful electric power and half the useful 
thermal energy must equal at least 42.5% of the 
total natural gas and oil energy input to the 
facility for the calendar year; and 

oo If the useful th~rmal output of a facility is less 
than 15% of the total energy output of the 
facility, the useful power output plus one-half the 
useful thermal energy output must be no less than 
45% of the total energy input of natural gas and 
oil for the calendar. 

For a new bottoming-cycle facility: 

o If supplementary firing (heating of water or steam 
before entering the electricity generation cycle from 
the thermal energy cycle) is done with oil or gas, the 
useful power output of the bottoming cycle must, 
during any calendar year, be no less than 45% of the 
energy input of natural gas and oil for supplementary 
firing. 

2.3.2.2 Small Power Production Facilities. To qualify 

as a small power production (SPP) facility under PURPA, the 

underlying facility must have a rated power production 

capacity of under 80 MW and must get more than 50 per cent 



of its total energy input from biomass, waste, or renewable 

resources. Also, use of oil, coal, or natural gas by the 

facility may not exceed 25% of total annual energy input to 

the facility. 

76 

ownership rule applying to Cogeneration and small Power 

Producers A qualifying facility may not have more than 50% 

of the equal interest in the facility held by an electric 

utility. 

2.3.3 Procedures for Obtaining 

Qualifying Status 

If a facility meets the qualifying criteria summarized 

here, its owner can choose one of two procedures for 

obtaining qualifying status. The owner can either; 1) furnish 

notice to FERC that it is a qualifying facility and provide 

specific information on the facility's location, fuel use, 

characteristics, and ownership; or, 2) apply for FERC 

certification as a qualifying cogeneration or small power 

production facility. 

If applying for FERC certification, there are some 

additional application requirements specified for both 

cogenerators and small power production facilities. The 

application includes information on plant location, fuels 

and characteristics. Any application for certification must 

be processed by FERC and an order issued within 90 days or 

else the apply~ng facility is automatically certified. 

The regulations require cogeneration and small power 

production facilities of over 500 kW design capacity to 

notify the electric utility that it is a qualifying facility. 
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The utility does not have to purchase electric energy from 

qualifying facilities prior to 90 days after it has been 

notified by the qualifying facility or else 90 days after the 

qualifying facility has applied to FERC for certification. 

2.3.4 PURPA 210 

section 210 of PURPA directs the Federal Energy 

Regulatory Commission (FERC) to establish the rules and 

regulations requiring electric utilities to purchase electric 

power from and sell electric power to qualifying cogeneration 

and small power production facilities and provide for the 

exemption to qualifying facilities (QF) from certain federal 

and state regulations. 

Thus, FERC issued in 1980 a series of rules to relax 

obstacles to cogeneration. Such rules implement sections of 

the 1978 PURPA and include detailed instructions to state 

utility commissions that all utilities must purchase 

electricity from cogenerators and small power producers at 

the utilities' "avoided" cost. In a nutshell, this means 

that rates paid by utilities for such electricity must 

reflect the cost savings they realize by being able to avoid 

capacity additions and fuel usage of their own. 

Tuttle (1980) states that prior to PURPA 210, cogenera

tion facilities wishing to sell their power were faced with 

three major obstacles: 

* Utilities had no obligation to ~urchase power, and 
contended that cogeneration fac1lities were too small 
and unreliable. As a result, even,those cogenerators 
able to sell power had difficulty getting an equitable 
price. 

* Utility rates for backup power were high and often 
discriminatory 



* Cogenerators often were subject to the same strict 
state and federal regulations as the utility. 

PURPA was designed to remove these obstacles, by 

requiring utilities to develop an equitable program of 

integrating cogenerated power into their loads. 
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Avoided Costs The costs avoided by a utility when a 

cogeneration plant displaces generation capacity and/or fuel 

usage are the basis to set the rates paid by utilities for 

cogenerated power sold back to the utility grid. In some 

circumstances, the actual rates may be higher or lower than 

the avoided costs, depending on the need of the utility for 

additional power and on the outcomes of the negotiations 

between the parties involved in the cogeneration development 

process. 

The avoided-cost concept is, however, more easily said 

than implemented. Catalano (1981) reported two lawsuits filed 

by utilities to contest PURPA. One, a us District Court in 

Mississippi declared PURPA unconstitutional; the judge stated 

that Congress has no authority to impose regulatory or 

ratemaking rules on state commissions. In the other suit, 

several utilities charged the FERC with excessive authority 

under PURPA by requiring utilities to buy all of the 

cogenerated power, and to pay full avoided cost for it. 

In other case, in 1982, the US District Court of Appeals 

of Washington, D.C. found the FERC's rules on avoided-cost 

payments and interconnections, which utilities must provide 

to cogenerators under PURPA, were on "inadequate reasoning". 

It was claimed that FERC forced utilities to pay cogenerators 

what they save by not generating the electricity themselves. 

This is 100% of the avoided cost. The commission also ruled 



that utilities must interconnect with cogenerators ,in order 

to receive power. The court held that by setting on 100% of 

the avoided cost, FERC violated Section 210 of PURPA, where 

Congress stated that the rates must be "just and reasonable 

to the electric consumers of the electric utility and the 

public interest". 
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Later FERc·appealed the court's decision. Eventually, 

the decisions of the Mississippi federal_district court and 

of the D.C. court of Appeais where appealed to the u.s. 

Supreme Court by the Justice Department in. '1982. The Supreme 

Court decided that the PURPA legislation and FERC implementa

tion rules must prevail. After the supreme Court decision, 

Limaye (1985) reports that most state commissions have 

completed the implementation of PURPA rules. 

All utilities·are now required by PURPA to provide data 

regarding present and,future electricity costs on a cent-per

kWh basis during dqily, seasonal, peak and off-peak periods 

for the next five years. This information must also include 
-' ' 

estimates on planned utility capacity additions and 

retirements (forecasts),'cost of new capacity, and energy 

costs. 

Tuttle (1980) points out that utilities may agree to pay 

greater price for.power.if a cogeneration .f~cility can: 

* Furnish information on demonstrated reliability 
and term of commitment., 

* Allow the utility to regulate· the power production for 
better control of its load and demand changes. 

* Schedule maintenance outages for low-demand periods. 

* Provide energy during utility-system daily and 
seasonal peaks and emergencies. 

* Reduce in-house on-site load usage during emergencies. 



* Avoid line losses the utility otherwise would have 
incurred. 
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In conclusion, a utility is willing to pay better "buy

back" rates for cogenerated power if it is short in capacity, 

if can exercise a level of control on the CHP plant and load, 

and if the cogenerator can provide and/or demonstrate a 

"high" system availability. 

PURPA further states that the utility is not obligated 

to purchase electricity from a QF during periods that would 

result in net increases in its operating costs. Thus, low 

demand periods must be identified by the utility and the 

cogenerator must be notified in advance. During emergencies 

(utility outages), the QF is not required to provide more 

power than its contract requires, but a utility has the right 

to discontinue power purchases if they contribute to the 

outage. 

2.3.5 Electric Utility Obligations 

Under Purpa 

In order to encourage, and thereby implement, qualified 

facilities PURPA requires the electric utilities to: 

o Purchase electrical energy from the QF. 

o Sell electrical energy to the QF at just, reasonable, 
and non-discriminatory rates comparable to rates to 
other similar customers served by the utility. 

o Interconnect with QF. 

o Transmit to other utilities, if the QF agrees. 

o Operate in parallel with the QF. 

Electric utilities are required to purqhase any energy 

and capacity made available from a QF or wheel it to another 

utility (if the qualifying facility agrees to that). Section 



210 regulations govern the sales and purchases of power 

between qualifying facilities and electric utilities. 

However, the regulations state that agreements between 

qualifying facilities and electric utilities can be 

negotiated with terms different from those set out in the 

regulations. Since qualifying facilities are by definition 

new facilities, the regulations do not affect any existing 

contracts between QF's and electric utilities. 
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Under Section 210 regulations, most electric utilities 

are required to provide cost data to qualifying cogeneration 

or small power production facilities so that "avoided costs" 

(the basis for setting rates) can be calculated. 

Regulated utilities are to provide the required data to 

the state regulatory authority and nonregulated utilities are 

required to maintain the data for public inspection. 

All utilities with retail sales over 500 million KWH are 

required to file data on: 

o The utility system's estimated avoided cost for the 
current year and the following five years for various 
levels of purchase from qualifying facilities; 

o The utility system's 10-year plan for addition of 
capacity retirements and for firm energy and capacity 
purchase and the associated estimated capacity costs 
and energy costs. 

Utilities with over 500 million KWH but less than 1 

billion KWH sales receive an exemption from the 1980 filling 

requirement, but must file in 1982. 

Smaller utilities (total electric energy sales -other 

than resale- of under 500 million KWH for all calendar years 

after 1975), must provide the date only upon request. If the 

utility obtains all its power requirements from another 

electric utility, it may submit the data on its supplying 



utility and current purchase rates. If data is not provided 

by the utility, a qualifying facility can request and order 

from the state regulatory authority or FERC. 
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The state regulatory authority or a non regulated 

utility can require different data to determine "avoided 

costs" but must serve public notice, provide opportunity for 

comment, and notify FERC. 

2.3.6 Rates for Purchases From 

Qualifying Facilities 

Rates for purchases shall be "just and reasonable," "in 

the public interest," and non-discriminatory toward QF's. 

Under the section 210 regulations, a rate for utility 

purchases from new QF's meets these conditions if the rate 

equals the utility's avoided costs. (For QF's built before 

November 1978, a rate less than the avoided cost is 

permissible if the PUC or nonregulated utility determines 

that the rate is sufficient to encourage cogeneration and 

small power production.) 

Section 210 specifies that in determining "avoided 

costs," the following factors shall, to the extent 

practicable, be taken into account: 

o System cost data; 

o The availabilit¥ of the qualifying facility's capacity 
during peak per1ods (specific criteria for determining 
this are given in the regulations); 

o The possible reduction of fossil fuel use and capacity 
additions; 

o Cost or savings from variations in line losses. 

The "avoided cost" provision applies even in the case 

where the electric utility purchasing power from a QF is 



simultaneously making sales to the QF (simultaneous 

buyfsell). Standard must be established for purchases from 

qualifying of 100 kW capacity. The standard rates may 

differentiate among facilities on the basis of supply 

characteristics of different technologies. 
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The QF's can either provide energy as it is available or 

provide it on a scheduled, legally and enforceable basis. In 

the first instance, the purchasing utility must pay a rate 

equal to the avoided cost at the time of delivery. In the 

second case, the QF has a choice of whether avoided cost are 

calculated at time of delivery or the time the legal 

obligation is incurred. Qualifying facilities must pay for 

interconnection costs established by the state regulatory 

authority or nonregulated utility on a non-discriminatory 

basis. 

An electric utility can stop the purchase of electric 

energy or capacity during any period when, due to operational 

circumstances, the cost of purchases from a QF would exceed 

those the utility would incur if it did not make such 

purchases. The utility must notify the QF adequately. The 

state regulatory authority is responsible for verification of 

such situations. 

2.3.7 Rates for Sales to 

Qualifying Facilities 

Rates for sales to QF's shall be the same as rates 

charged to the class of customers which the QF would be 

assigned' if it did not have its own generation, unless the 

utility can provide data to substantiate that load and cost 

of the qualifying facility are significantly different. 
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The regulations require utilities to offer rates for 

the following services: (1) Supplementary Power, (2) Back-up 

Power, (3) Maintenance Power and (4) Interruptible Power. 

The state regulatory authority (FERC for non-regulated 

facilities) may waive these requirements if compliance would 

impair the utility's ability to render adequate service or 

would place an undue burden on the utility. Public notice and 

hearing is required prior to such determination. 

The regulations specify that back-up or maintenance 

power sales rates shall not be based on assumptions that 

qualifying facilities' outages or reductions in output will 

occur simultaneously or during system peak. Also, the rates 

must take into account possible coordination of scheduled 

outages between qualifying facilities and utilities. 

2.3.8 Non-Regulation of Qualifying Facilities 

Generally, QF's are exempted from federal and state 

regulations governing electric utilities. All qualified 

cogeneration facilities and small power productions plants 

under 30 MW capacity are exempt from most of the provision of 

the Federal Power Act and all of the Public Utility Holding 

Company Act of 1935. QF's are also exempt from state laws 

and regulation regarding electric utility rates and the 

financial and organizational regulation of electric 

utilities. Small power production facilities using biomass 

are exempted from those state laws and regulations even if 

they are over 30 MW capacity facilities. 

QF's have to meet reasonable standards established by 

the state regulatory authority or a nonregulated utility for 

ensuring system reliability of interconnected operations. 



2.4 Cogeneration Research Needs 

This section reviews research efforts and needs about 

cogeneration system design and evaluation. It provides 

further support to the research proposal by identifying: 1) 

the needs for new research and development as stated in the 

pertinent literature and 2) the problems currently 

encountered in the field by cogeneration designers and 

practitioners. 

2.4.1 The Customer Needs 
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From the cogeneration point of view, Waite (1990) has 

studied: "mass customer power needs, individual customer 

power needs and a method to optimize the energy supply 

resources available to the customer". He identifies the 

following technical and cultural attributes required by mass 

customers (industrial or commercial): 

Technical Attributes 

* Kind of Power (voltage, phase, deltafwye, hertz) 

* Quantity of Power (kW or MW range) 

* Availability of Power (standard, interruptible) 

* Power Quality (voltage, frequency, harmonics) 

* Cost of Power (demand charge, kWH charge, etc.) 

Cultural Attributes 

* Fairness: non exclusive treatment of customers 

* Public Safety: public and environmental protection 

* Commitmment: continuity of service 

* Flexibility: response to customer demands/needs 

* Support: information on "best available rates" 

For the individual customer he states a shorter 
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list of attributes or needs: 

* Reliable Power -less and shorter interruptions 

* Regulated Power -state control of electric rates 

* Low Capital Cost -least investment to have power 

* Low Energy Cost -least expenditure to obtain fuel 

Based on these customer attributes, the author suggests 

a method to formalize the'customer needs and the power-energy 

system development and operation. Next, he recommends a 

Comprehensive Energy Commodity Value Analysis (CECVA) through 

a chart that specifies the actual attributes in function of 

the needs of different customers. 

This method can be compared to the Quality Function 

Deployment (QFD) approach, as suggested by Bossert (1991). 

Both CECVA and QFD make the customer requirements their 

primary focus. According to Bossert, product or service 

development is (or must be) driven by what the customer 

wants, not by innovations in technology. Thus the product 

design phase must focus on key customer requirements. The 

main advantages of this approach are: 1) maximizing added 

value into the product by providing what the customer really 

wants; 2) shorter design phase (less time spent in redesign 

or modifications); 3) process information and product 

specification can be summarized in a concise format (trade

offs are identified early in the design process and product 

specification is more objective); 4) the design process as 

well as the resulting product become more robust (they can 

perform satisfactorily under varying scenarios); 5) system 

design is performed following a discipline that motivates 

team-work (rather than litigation) among all parties involved 

and customer-driven innovation among designers. 



Henceforth, Waite gives the following guidelines for 

each attribute of his "Cogeneration Needs Spectrum": 

87 

Kind of Load (power/thermal): (Are distribution voltage 
level and in-house circuiting compatible with power 
production?). Check thermal pressure level and capacity 
distribution limitations and hurdles. 

Availability: Verify CHP system and utility reliability 
interactions; including continuously changing loads. 

Quantity: Ca~acity or Load Magnitude (kilowatt-megawatt). 
If small, there 1s little relative risk or benefit. If large, 
are you ready to get into the power business? 

Power Quality: General vs. specific end use voltage 
regulation, protection, and cleanliness needs. 

Ener9Y Cost: Check the combined power and thermal 
cost relat1onship, and the lon~evity of the end use must be 
established. Speculative benef1ts achievable through wishful 
escalations projections are deceiving and dangerous. Use 
firm-contract fuel price estimates for evaluation. 

Operation k Maintenance: If from outside vendors, then 
there is a loss of a portion of the benefit and potential 
loss of long term support is an added risk. 

Cost of outage: Compare known site history to CHP 
performance records. Evaluate if outage incurs labor or 
product losses, or loss of sales. 

Match Load Analysis: Power and thermal load profiles 
overtime of use are critical to a proper economic evaluation 
of on-site generation. 

Business Cycle: Facility needs change, how adaptable is 
the power supplf system to load increase, site load center 
shifts. Also, 1s the end use in an up or down trend of need. 

Sfstem Capacity Control: Can the supply resource output 
vary w1th moment by moment load changes. 

Environmental: Examine the existing and trending 
regulations for unwarranted risks. 

2.4.2. The Performance of Existing 

Cogeneration Systems 

The needs stated above are amplified by field reports on 

the actual performance of cogeneration systems. steen (1990) 

reports and advises the following: 
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Actual metered data, thus far, does not support the 
optimistic economic estimates, exhibited in the 
engineering studies, which were used to justify the 
project. By (1) utilizing actual data at every 
opportunity and (2) by evaluating risks, a better 
evaluation can be made. so, before installing a 
cogeneration system, there are (3) some basic questions 
that should be asked, and (4) some research should be 
performed. 

Do not depend on averages to evaluate cogeneration 
because it provides unrealistically low payback periods, 
which in turn increase the financial risk. Know what the 
hourly electrical and thermal demand are for the 
facility and how well the cogeneration production 
matches the facilities needs. Increases in energy 
efficiencies do not automatically equate to decreases in 
total operating expenses ••• 

Next, Steen describes the "probability assessment of 

savings" in regard to the operation of 14 CHP locations in 

the Detroit Edison Co. area and 24 turbines in Europe. He 

presents plots of the probability of occurrence of the actual 

payback period for the projects mentioned above. These plots 

are valuable to indicate how quick the industry as a whole is 

"paying back" its CHP investment. However, they are not valid 

to asses the feasibility of a particular site CHP potential. 

Unfortunately, steen does not mention 1) how actual data 

is supposed to be utilized, 2) how to evaluate risks, and 3) 

what are the basic questions that should be asked. 

Other researchers, such as Keb and Limaye (1990), have 

urged manufacturers to avoid exaggerated savings claims. 

Here, it appears that the advise assumes that the savings are 

overstated, thus understating the payback period. 

Spitzka (1990) and Somasundaram and Turner (1990) 

acknowledge that using average values for demands and 

capacities do overstate the savings and that may lead to 

major problems. However, purposely overstatement of savings 

is not necessarily true. Many simply do not acknowledge that 
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the payback period or any other measure of economic merit are 

not fully predictable, because they just constitute functions 

of the many random variables involved in cogeneration. 

Also, a survey about the performance of existing 

cogeneration and independent power production {IPP) systems 

was published by the Association of Energy Engineers (AEE) in 

AEE Energy Insight (1991). Some of the survey findings are: 

* About 89% of the respondents said that the interest in 
cogeneration has remained the same or increased 

* 39% stated their organization is planning on 
installing a cogeneration of IPP facility within the 
next 12 months. 

* But 26% reported a "just" satisfactory or poor 
performance, 46% said it was good and 28% stated 
an excellent performance. 

* Also, 27% said that their operation and maintenance 
(O&M) costs were higher than estimated. 

*The overall savings: are less than estimated (22%), 
met estimated calculations (56%), are higher than the 
estimated (22%). 

* The average installed cost was $1,428/nominal-kW. 

* The average operation and maintenance cost was 
$0.062/kW. 

Even though most cogeneration designers and developers 

use a rather "conservative" approach to estimate their 

installed and O&M costs (i.e. they would err in 

overestimating cost and understating revenues), the 

percentage of respondents with "above target costs and/or 

below target savingsn seems rather high. This, taking into 

account, that most developers tend to emphasize good 

projects, but play down the slow ones. 

To sum up, this limited survey may not tell us exactly 

how systems are performing in the field, but does inform two 

important things: one is the large interest in cogeneration, 
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and the other is the wide spread of the results in system 

performance {O&M cost and payback) -as compared to the 

planned expectations. The fact is, that in most cases, these 

results constitute random variables -the best crystal ball 

cannot predict them accurately. The existing methods do not 

fully acknowledge the probabilistic aspects of the problem 

and do not state the results in terms of probabilities. 

2.4.3 The Regulatory Needs 

To become a qualifying facility {QF) -and receive the 

benefits of a QF- the prospect cogenerator must demonstrate 

to the regulatory agencies hisjher capability of meeting the 

corresponding PURPA regulations. For example, to demonstrate 

a minimum 42.5% total fuel effectiveness {TFE) in any year, 

not only the cogenerator can show the estimated average TFE 

but also an statistical confidence limit. In this way, one 

can give more validity to the estimates in cases with load 

variations. Conversely, the utility may request higher back

up rates if a statistical analysis shows the CHP peak load is 

highly correlated with the utility load and the cogeneration 

system is prone to be down during peak hours. In both 

examples, the cos.ts are best treated as expected values; 

weighted by the corresponding probabilities of occurrence. 

Many utilities have questioned cogeneration for being 

a potential source of un-reliability. Whether a particular 

CHP plant contributes positively or adversely to a power 

system's availability, this is best stated in probabilistic 

terms. Further, the cost of reliability is usually stated as 

an expected value. Thus, to resolve conflicts during negotia

tions -or a litigation in the court room- the impact of 
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cogeneration reliability is best addressed using the 

methods and language of reliability theory. The cogeneration 

evaluation method that integrates buyjsell rates, system 

reliability, and varying loads is yet to be accomplished. 

2.4.4 A Synthesizing Design Methodology 

The needs stated above can be synthesized as the 

demand for a suitable and integrating CHP design, sizing and 

evaluation methodology. These needs may only be met through 

the development of a design method that: 1)' considers and 

quantifies all relevant customer needs but -at the same time

is time and cost effective; and 2) accepts and recognizes the 

statistical nature of the problem. Steen (1990) concluded his 

paper with the following statement: 

I am of the opinion that (in cogeneration) to arrive at 
separate solutions for power reliability and quality 
problems independent of energy cost reduction efforts 
is to ignore optimal economics. 



CHAPTER III 

OBJECTIVES AND ASSUMPTIONS OF THE RESEARCH 

3.1 Introduction 

In general, cogeneration system design is very complex. 

Depending on the application, industrial cogeneration or 

combined heat and power (CHP) systems can vary widely. There 

is variation in scope (i.e. the ultimate objective of the CHP 

plant), in technology, in loads, in capacities, and in costs. 

Thus, to design a cogeneration system, various methods 

and approaches have been developed, from nomographs to 

computer programs; and from simulations to expert systems. 

Some of them, e.g. nomographs, make too many simplifying 

assumptions. on the other hand, computer packages require as 

input every possible variation in the technical and 

economical factors involved in a particular application 

making the evaluation very time consuming. Hence, for the 

existing methods, the more flexible and detailed the models, 

the larger the data requirements and the development time. 

Thus, an alternative design methodology is proposed herein. 

The actual industrial cogeneration design process has 

the following major steps. See Figure 3.1 below. 

1) Select Technology and Mode of Operation. 

2) Determine Total Installed Capacity 

3) Determine Size and Number of Prime Movers 

-including stand by capacity. 
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Henceforth, the focus of this research is the 

development of a responsive and robust methodology for 

cogeneration system design. It must be responsive to adapt to 

the various cases and robust to maintain validity in spite of 

different applications. Specifically, we are concerned with 

step two above, i.e. the determination of the total system 

capacity. Figure 3.1 depicts the general cogeneration design 

process and the envelope of the research proposed here. 

3.2 Scope of the Research 

The underlying scope of the research is to use CHP 

sample data compressed into probability distributions and 

statistical parameters; and typical equipment performance 

equations, so variation in loads and system capacity are 

taken into account mathematically. Hence, the underlying 

methodology comprehend both, deterministic and probabilistic 

models that combine technology performance and CHP 

capacity/demand probability distributions. Thus, the 

methodology should be expressed -as long as it is feasible or 

practical- through closed form equations. When necessary, 

numerical methods will be used to implement the models. 

Hence, the scope is to avoid the traditional hour by 

hour (deterministic) simulation methods discussed in section 

2.2. Instead, the scope will be to represent data by using 

probability distributions and their relevant parameters. 

Therefore, the convolution of (1) the demand/capacity 

probability distributions and (2) analytical relationships of 

equipment performance should be the essence of a responsive, 

robust and cost effective CHP design and plant size 

optimization method. 



3.3 CHP Technologies 

The basic CHP technologies considered for modelling are: 

1) Internal combustion engine with waste 

heat boiler or water heater 

2) Gas turbine with non-fired waste heat boiler 

However, after some adjustments, the models proposed here 

should be applicable to most CHP technologies. 

3.4 Basic Assumptions 

The basic underlying assumptions used in the research 

and development of this thesis are: 
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1) The heat and power demands are represented by ergodic 

stationary time series. Thus, they generally 

constitute Gaussian distributed random processes. 

2) The CHP system will be eligible to export and to 

import electricity to a utility grid as needed. 

3) The CHP plant output will be 100% of the available 

capacity throughout a given number of hours per year. 

4) There exist a very large amount of auxiliary thermal 

capacity {auxiliary'equipment) -but with a lower 

efficiency- to supplement any heat capacity deficit. 

5) CHP capacities are functionally dependent: They have 

a constant {linear) heat-to-power ratio. But the 

capacities are statistically independent of demands. 

Also, heat demands are independent of power demands. 

6) The system power capacity is always fully utilized, 

either, for on-site use andfor for export. That is, 

the maximum available power capacity available from 

the CHP system is generated at any time. 
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7) Any excess electricity is sold to the utility grid at 

a given rate, which is normally less than the 

purchase cost of that electricity. 

8) All heat surplus is rejected to the environment. 

9) When the electrical capacity is exceeded by the 

demand, the difference is purchased from the grid. 

10) When the heat demand exceeds the capacity, auxiliary 

equipment absorbs the excess demand. It is assumed 

that the auxiliary equipment capacity is always 

larger than the thermal deficit demand. 

11) A definite upper bound for the system size is defined 

by PURPA regulations: The total useful CHP system 

output must be no less than 42.5% of the total fuel 

input. 

3.5 Research Objective 

Given that one technology or a reduced set of 

technologies have been selected for a specific application, 

the proposed research intends to develop a methodology that 

economically sizes the CHP plant, in terms of its rated mean 

or nominal capacity typically in kWe, for the above mentioned 

technologies. Thus the primary objective of the research is: 

To develop a CHP design methodology which determines a 

target size of the CHP plant that minimizes the 

expected total annual cost (TEAC) of owning and 

operating the CHP system. 

The target CHP plant size is the "ideal" plant size for a 

given set of CHP load distributions and for a specific 

technology. The target system size may not be commercially 

available, but it can be used as a CHP system surrogate 
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indicator in selecting an available system that is closest to 

the target. In fact, using further analysis, a set of 

commercially available plants can be compared against the 

target size and the actual "nearest-optimal" plant size can 

be selected. 

3.6 Sub-Objec~ives 

The following sub-objectives are required to meet the 

research objective. 

1) For the technologies mentioned above, develop the 

basic economic criteria to size CHP systems under 

variable loads. The following deterministic cost items 

shall be considered in the development: 

- Minimum attractive rate of return 

- Capital costs: principal and interest 

- CHP system Fuel cost 

- Imported electricity cost 

- Exported electricity cost 

- Auxiliary/supplementary firing cost 

- CHP regular maintenance cost 

2) Develop a conceptual model to determine the CHP system 

size that minimizes the expected total annual cost when 

heat demand (Hd) and electrical power demand (Pd) are 

constant. Also, the CHP system heat capacity (He) and 

electrical power capacity (Pc) are constant. This is the 

case of an internal combustion engine CHP system subject 

to constant loads or base-loading. 

3) Develop a conceptual model to determine the CHP system 

size that minimizes the expected total annual cost when 

the heat and electrical demands are independently 



distributed Gaussian random variables. The CHP system 

heat capacity and electrical capacity are constant. This 

is the case of an internal combustion engine CHP system 

subject to random loads. 
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4) Develop a conceptual model to determine the CHP system 

size that minimizes the expected total annual cost when 

heat demand and electricity demand are independently 

distributed Gaussian random variables. The CHP system heat 

capacity and electricity capacity are also Gaussian random 

variables. Here, the CHP demands are statistically 

independent of CHP equipment capacity. This is the case 

of a gas turbine CHP system operating under random air 

temperature and subject to random loads. 

5) Conclude on the applicability and validity of the models, 

and define related topics for further research. 



CHAPTER IV 

A ROBUST AND RESPONSIVE METHODOLOGY FOR 

ECONOMICALLY BASED DESIGN OF INDUSTRIAL 

COGENERATION SYSTEMS 

4.1 Cogeneration System Design Economic Criteria 

4.1.1 General Considerations and Assumptions 

The development of a general stochastic model for 

cogeneration optimal design will be based in the Bayesian 

approach to decision theory. Stark and Woods (1986) state 

that Bayesian decision theory defines as optimal the decision 

that minimizes the average cost of risk. This is obtained by 

partitioning the heat and pow~r space in sub spaces that can 

be associated with specific cost items. The cost items, are 

in turn terms of the objective cost function, i.e. the total 

expected annual cost (TEAC) of owning and operating the CHP 

system. Therefore, the problem is in essence the selection 

of the CHP plant size that minimizes the TEAC. 

The rationale of the economically based design-decision 
' 

model -to obtain the plant size- is discussed as follows. 

First, in the space W there exist a set partitioned into 

N states of nature wj, j= 1, ••• Nand that the states 

prevail according to a probability distribution known to the 

observer. Hence, the elements of W consists of the totality 

of outcomes that we associate with the states of nature wj. 

Four basic outcomes are defined by the following relations: 
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Where: 

1) Pc > Pd 

2) Pc S Pd 

3) He > Hd 

4) He S Hd 

Pc = the system electrical power capacity 
He = the system thermal or heat capacity 
Pd = the electrical demand 
Hd = the thermal demand 

In the CHP system with random electricity capacity and 

random heat capacity - subject to electricity demand and heat 

demand- there exist the following states of nature wj: 

[ w1 . He > Hd and Pc 
> Pd J . 

w· = w2 . He > Hd and Pc S Pd J . 
w3 . He s Hd and Pc > Pd . 
w4 . He s Hd and Pc < Pd . 

where heat and electricity demands are expressed in power 

unit, i.e kWt and kWe, respectively. 

Each state wj is a combination of two elementary 

outcomes (e.g. an elementary outcome is He> Hd), which have 

been grouped to obtain a convenient portioning of the CHP 

space. 

Second, the observer obtains a demand vector sample D = 
(d1 , d2) t, which is probabilh;tic i.n nature and represents a 

sample realization of the states of nature. The observation 

vector D is a two-dimensional r.v. whose domain n and range 

As D roams over W it generates numerical data 
' 

according to the probability law f(X/wj) -i.e. heat and power 

demand samples are taken. Hence, for a particular value 

xiewj, D assumes the value D(Xj) = (d1 (xj), d2 (xj))t); which 

represents a CHP demand sample point. 
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Similarity, in the most general case, the observer takes 

a two-dimesional capacity vector sample c = (c1 , c 2)t, whose 

domain is also n, but its range is Rc. Thus, for a particular 

CHP capacity Yi£Wj, c assumes the value C(Yj) = (c1 (Yj), 

c 2 (Yj))t); which represents a CHP capacity sample point. 

Third, the existence of a set of costs cjk (k= 1, ••. K) 

(known to the observer) associated to each state wj is 

postulated~ There is ~ one to one correspondence of a 

particular set of costs items and a state wj. Table 4.1 

below summarizes the states of nature just defined, i.e. the 

feasible space of a general CHP system. 

STATE 

TABLE 4.1 

STATES OF NATURE OR FEASIBLE SPACE 
OF THE CHP SYSTEM 

DESCRIPTION 

HEAT IS: ELECTRICITY IS: 

rejected sold back to utility 

rejected purchased from utility 

Aux. fired sold back to utility 

Aux. fired purchased from utility 

4.1.2 Economic Analysis Notation 

The following is the general notation used in this work. 

However, notation specific to particular models will be 

defined later throughout the analysis. Fuel rated and 

efficiencies are based on high heating values (HHV). 



AC = Amortized Cost of CHP system ($/yr) 

cp = Annual plant fixed charge ($/kw-yr) 

ca = auxiliary firing unit cost ($/ MMBTU) 
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ce = cost of electricity purchased from the grid ($/kWh) 

cf = unit cost of fuel ($/MMBTU) 

Om = unit operation and maintenance cost ($/kwh) 

cr = cost of rejecting heat, $/kWH 

cu = CHP system unit cost, $/kWe 

EC = Annual purchased electricity cost ($/yr) 

FC = Annual fuel consumption cost ($/yr) 

He = CHP plant thermal capacity (kWt) 

Hd = CHP plant thermal demand (kWt) 

IC = Total CHP plant installed .cost ($) 

Ne = CHP plant fuel-to-electricity efficiency 

Na = Auxiliary firing thermal efficiency. 

MC = Annual operation & maintenance cost ($jyr) 

Pc = CHP plant electrical capacity (kWe) 

Pd = CHP plant electrical demand (kWe) 

RC = Annual heat rejection cost ($/yr) 

r 0 = system heat to power ratio 

se = electricity cost, sales to the grid, se<O, ($/kWh) 

ES = Electricity sales to the grid ($/yr) 

TEAC = Total expected sales annual cost of CHP system 

t 1 = CHP plant time of operation (hrjyr) 

t 2 = Auxiliary equipment time of operation (hrjyr) 

t 3 = Electricity deficit time (hrjyr) 

In general, lower case symbols represent unit costs and/or 

constants and upper case symbols represent annual costs and/ 

or random variables. 
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4.1.3 CHP System Costs - A General 

Deterministic Formulation 

The problem defined in Section 4.1.1 is normally 

probabilistic in nature. In this section, however, the 

formulae are expressed in terms of the time (hours/year) of 

the cost associated with a given syst~m state. Thus, a 

deterministic formulation is obtained. The basic modeling 

assumptions were stated in Chapter III. Next, the following 

relationships define the basic annual costs of owning, 

operating and maintaining the underlying CHP system (To keep 

the model manageable, escalation factors are avoided): 

Amortization CHP System Cost. This is essentially a before

tax cost of owning the system. It is expressed in terms of 

an uniform amount based on the Equivalent Annual cost (EAC) 

of the CHP system total installed cost and an annual plant 

fixed charge (insurance, overhead, etc). It is defined by 

AC = IC {A/P i, n) + cp.Pc [4.1] 

AC = annual equipment owning cost ($/yr) 
IC = total CHP plant installed cost ($) 

= Cu.PC 
(A/P i,n) = uniform-series capital-recovery factor 

i = Minimum Attractive Rate of Return {MARR) 
n = expected project life (years) 

Cp = annual plant fixed charge, if any ($/kW-yr) 

Economies of scale make the cogeneration unit system cost cu 

a decreasing (exponential) function of the system size Pc: 

cu = b + a.e-(kPc) [4.2] 

where a, b and k are constants. For a small range of Pc, 0u 

can be approximated by a linear equation with slope a (a<O) 

and intercept b (b>O). That is Cu = b + a.Pc. However, cu 

can be assumed to be constant (cu=K) in the asymptotic or 
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"flat" portion of equation (4.2) {see Figure 4 .1) • Then, 

IC = K.Pc, and [4.1] can be rewritten as the linear equation 

AC = {K.Pc) {A/P i, n) + cp.Pc 

= a.Pc [4.1a] 

where a= K.{A/P i,n)+cp. 

For the "curve" part of equation [4.2] {Figure 4.1) the 

annualized owning cost can be represented by 

AC = {A/P i,n) {b+a.e-kPc) Pc + cp• Pc [4.1b] 

Fuel Cost. If both, capacity and demand are deterministic, 

then the fuel cost for the plant is calculated as 

[4.3] 

Electricity Cost. This is the cost of electricity consumed 

from the grid whenever Pd>Pc. It is estimated by 

Pd>Pc [4.4] 

Operation k Maintenance Cost. This cost includes personnel 

and preventive maintenance conducted in the CHP system. It 

is proportional to the amount of energy generated {fuel usage 

and equipment wear) in the plant. It is defined as 

[4.5] 

Heat Rejection Cost. This cost considers the additional 

power consumption, cooling water treatment, etc, required to 

reject excess heat in the plant. If t 2 is the time of heat 

deficit, then t 1-t2 is the time of rejection. This cost is 

Hc>Hd [4.6] 

Electricity Revenue. Whenever Pc>Pd, electricity is sold 

back to the grid. The revenue is 

. Pc>Pd [4.7] 

Total Equivalent annual Cost. The total equivalent annual 

cost of owning, operating and maintaining the CHP system is: 

TEAC = AC + FC + EC + MC + RC + ES [4.8] 
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4.2 Constant Capacities and Constant 

Demands CCCCDl Model 
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In this case, the economic criteria is to select the 

optimal size Pc* of a CHP system that minimizes TEAC when 

both, CHP capacities and demands are constant. TEAC is 

generally defined by equation [4.8]. If the linear equation 

[4.1a] is used, then equation [4.8] is linear. If the 

exponential unit cost model [4.1b] is assumed, then [4.8] is 

non-linear.-

Also, depending on the values assumed for the parameters 

He, Hd, Pc, and Pd; different terms appear and/or vanish in 

equation [4.8]. Figure 4.2 corresponds to the first quadrant 

of the Heat (H) and Power (P) space, which defines the sub

space W containing all the feasible CHP demands (~0). For a 

constant heat-to-power ratio r 0 , the CHP capacity curve is 

defined by the linear equation 

He = r 0 Pc [4.9] 

Thus, W is partitioned by the capacity curve in two regions: 

Zone A: which contains all the possible CHP demands 

located to the left of the system curve, e.g. point a. 

Zone B: which contains all the possible CHP demands 

located to the right of the system curve, e.g. point b. 

But the most important PURPA regulation imposes a 

definite upper bound on the system capacity Pc (See section 

2.4). PURPA establishes that "the total useful output of the 

system must be no less than 42.5% the total annual fuel input 

to the system based on lower heating value". However, to be 

prudent in meeting PURPA requirements according to previously 

defined equations, higher heating values are considered here. 
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Thus, for any given CHP demand point (Pd,Hd) the PURPA 

constraint is: (Pc + Hd) ~ 0.425 (Pcfne) 

or Hd ~ Pc (0.425/ne -1) [4.10] 

Hence, if point a in Figure 4.2 defines the power and heat 

demands (p,h} respectively, then the insersection of line 

Hd = h and the PURPA line defines point 0 -which projected on 

the system curve gives the maximum legal operating point c. 
Next, n projected on the abscissa gives the maximum feasible 

(legal} capacity PCmax· 

Equation 4.10 definep, an effective size constraint as 

long as ne < 0.425; which is generally the case of the CHP 

systems considered here. That is internal combustion engines 

or gas turbines, with heat recovery for industrial processes. 

4.2.1 CHP System Sizing Strategies 

In this model, we are concerned with the optimality of 

the system size in the neighborhood of the demand point. 

Henceforth, the following sizing strategies are defined in 

terms of the above described regions A and B: 

In region A, point a defines the demands Pd and Hd. Then 

point a1 represents a system with capacities defined by 

Pc = Pd and He = Pdfre (Hc<Hd} 

Conversely, point a 2 defines a system size with 

a2 : Pe = r 0 Hd and He = Hd (Pe>Pd} 

Similarly, in region B, the demand point b can be projected 

to b1 and b2 

bl: Pc = reHd and He = Hd (Pc<Pd} 

b2: Pc = Pd and He = Pd/r0 (Hc>Hd) 

Since points al and a 2 (points b 1 and b2 in the B region} 



on the capacity curve S constitute points at which the 

objective function (OF) defined by [7.4] changes in basis 

(i.e. some of the terms vanish and/or other terms become 

positive), then they are extreme points. 
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Hence, without loss of generality, the demand point "a" 

defines a 1 and a 2 ; which in turn partitions the system 

capacity line in three segments: S1, S2 and S3. Note that 

PURPA defines the upper limit for S3. (See Figure 4.2). Sl 

represents all systems with He < Hd and Pc < Pd. Assuming a 

constant CHP-system unit cost (equation [4.1a]), and using 

(4.3] through (4.8], the cost to own and operate over S1 is 

TEAC1 = (a'.Pc) + cf{(Pcfne.t1 ) + (Hd-Hc)fna.t1} 

+ Cm·Pc.t1 + (Pd~Pc) t 1 .ce [4.11] 

Similarly, S2 represents all systems with He < Hd and Pc > 

Pd. The cost to own and operate over S2 is 

TEAC2 = (a'.Pc) + cf{(Pcfne.t1 ) + (Hd-Hc)fna.t1} + 

Cm.Pc.t1 + (Pc-Pd) t 1 .se (4.12] 

Next, S3 represents all systems with He > Hd and Pc > Pd. The 

cost to own and operate over S3 is 

TEAC3 = (a'.Pc) + cf{(Pcfne.t1 ) ++Om (Pc.t1 ) + (Pc-Pd) 

(t1 .se) + (Hc-Hd) t 1 .cr [4.13] 

4.2.2 CHP CCCD-1: A Linear Model 

Since equations 4.11, 4.12 and 4.13 are linear over PC, 

the TEAC functions are optimal at extreme points. Here, the 

underlying assumption is that the unit system cost Cu is 

constant. Hence, for typical values of the coefficients of 

the TEAC functions, the CHP space is convex with the global 

minimum existing at the end of one of the intervals si. Since 

PURPA ultimately defines a constrained convex feasible space, 



110 

from equation [4.10], 

Pc(c) = PCmax = Hd.ne /(0.425-ne) [4.10a] 

which gives c the final feasible point on the system line. 

Henceforth, the CCCD linear model can be formulated as: 

Minimize { min TEAC1 , min TEAc2 , min TEAC3 } subject to 

the constraint set: 

System, curve: He = rc. Pc 

PURPA constraint: Pc :S Hd.ne /(0.425 -ne) 
cs 

Efficiency constraint: ne < 0.425 [per Eq. 4.10] 

Non-negative size: Pc :=!:: 0 

The optimal solution to this model can be obtained by 

evaluating the extreme points (O,O), a 1 , a 2 and c. Since 

these points warrant the optimal CHP-size Pc* for the minimum 

TEAC*, a search over the intervals S1, S2 and SJ is not 

necessary. Thus, for a demand point a € cs, the protilem boils 

down to find the system size which satisfies: 

TEAC* = min { TEAC[O], TEAC[Pc(a1)], TEAC[Pc(a2)], 

TEAC. [PCmaxl} [ 4 .14a] 

Where TEAC[Pc] is the total equivalent annual cost of owning 

and operating the system of size Pc. Pc(a1 ) and Pc(a2) are 

the CHP system sizes defined by Section 4 .,2 .1 and Fig. 4. 2. 

A similar solution is valid for a demand point b € cs, using 

TEAC* = min { TEAC[O], TEAC[Pc(b1)], TEAC[Pc(b2)], 

TEAC [PCmaxJ} [4.14b] 

COROLLARY 1: If Pc(a1 ) < Pcmax < Pc(a2), then 

TEAC* = min { TEAC[O], TEAC [Pc(a1)], TEAC [PCmaxJ} [4.15] 

COROLLARY 2 : I,f PCmax < Pc (a 1 ) , then 

TEAC* = min { TEAC[O], TEAC [PCmaxl} [4.16] 
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Example 4.1: CCCD-1. Table 4.2 lists an example of the 

application of the CCCD-1 model. The top portion of the table 

includes all the relevant input data. By definition, both 

demand and capacity parameters are constant (they are not 

random variables). Thus, the electrical demand is 800 kW and 

the thermal demand is 3.5·MMBTU/hr. 

The CHP capacities Pc and He ar~ listed in the left hand 

side of the table. An economic analysis includinq all the 

costs defined by equations [4.3] throuqh [4.8], for Pc =0 to 

Pc = 2700, is listed in the body of the table. The last two 

columns list the TEAC and PURPA efficiency for each Pc. 

Since evaluation of extreme points warrant the optimum 

Pc*, a search, is not required. However, Table 4.2 includes 

a search list (Pc = o, 2700) for model verification. The TEAC 

correspondinq to the extreme points (O,O), b1, b2, and c 

(which defines PCmax> are included in the list. 

Note that the heat-to~power ratio (HPR) relations define 

the slope of the demand and the slope of the system curve. In 

this example: [HPR(d~mand)=0.92] < [HPR(system)= rc=1.364]. 

Therefore, the formulation is a CCCD-1 model for the B zone. 

Hence the extreme points EP· in the CHP space are: 

(0,0): Pc=O and He =0 

b1 : He = Hd =2.5 MMBTU/hr 

Pc = Hd/rc 

= 2.5/1.364/(0.003412 MMBTU/kWh) 

= 537.2 kW 

b2 : Pc = Pd = 800 kW 

He = rc. Pc 

= (1.364) (800) (0.003412 MMBTU/kWh) 

= 3.72 MMBTU/hr 



TABLE 4.2 

CCDD-1 MODEL FOR EXAMPLE 4.1 

INPUT DATA 
Pd: 800 KW cr: $0.100 /MMBTU cu: $1.000 /kW MAAR: 15% 
Hd: us MMBTU/ 116: $0.034 /kwh Dem-a: $50.00 /kW-yr Proj Life: 20 year a 
Ne: 0.33 ce: $0.038 /kWh Dem-b: $70.00 lkW-yr (AlP l,n): 0.15976 
Nt: 0.45 cf: $2.000 /MMBTU 
T: 8000 hr/yr cf: $2.000 /MMBTU Na: 0.75 HPR(de 0.92 
Avail. 0.9132 cp: $10.00 lkW em: $0.0040 /kWh HPR(sya) 1.38 

Pc He RC Auxfire FC EC ES MC IC O&M AC TEAC PURPA 
kw MBTU/ $/yr $lyr $lyr $/yr $lyr $lyr $ $lyr $/yr $lyr EFF 

0 0.00 0 53333 53333 299200 0 0 0 352533 0 352533 N/A 
100 0.47 0 43408 59951 261800 0 3200 100000 324951 16976 341927 78.00~ 
200 0.93 0 33482 66568 224400 0 6400 200000 297368 33952 331320 78.00% 
300 1.40 0 23556 73185 187000 0 9600 300000 269785 60928 320713 78.00% 
400 1.88 0 13830 79802 149600 0 12800 400000 242202 67906 310107 78.00~ 
600 2.33 0 3704 86419 112200 0 16000 600000 214818 84881 299600 78.00IMI 

Pc(b1): 637 2.60 0 0 88888 98243 0 17184 537318 204326 91216 295542 78.00% 
600 2.79 233 0 99258 74800 0 18200 600000 193491 101857 295348 73.30% 
700 3.26 606 0 115801 37400 0 22400 700000 176207 118833 296040 67.54% 

Pc(b2): 800 3.72 978 0 132344 0 0 25600 800000 158922 135808 ~lr 63.22~ 
900 4.19 1350 0 148887 0 32200 28800 800000 179037 152785 299623 69.87% 

1100 5.12 2084 0 181973 0 86600 35200 1100000 219268 186738 309405 54.98~ 
1300 8.06 2839 0 216059 0 161000 41600 1300000 259498 220690 319188 51.60«MM 
1500 8.98 3583 0 248145 0 226400 48000 1600000 299729 254642 328971 49.12~ 

1700 7.91 4328 0 281232 0 289800 54400 1700000 339959 288584 338754 47.22% 
1900 8.84 6072 0 314318 0 354200 60800 1800000 380190 322547 348537 46.73~ 
2100 9.n 5817 0 347404 0 418600 67200 2100000 420420 356499 358319 44.51% 
2300 10.70 6561 0 380490 0 483000 73600 2300000 460651 390461 368102 43.51% 
2500 11.63 7305 0 413576 0 547400 80000 2600000 600881 424404 3n8as 42.e7% 

Pcmax 2645 11.84 7474 0 421053 0 561953 81446 2545197 60997a 432076 380096 42.60% 
2700 12.58 8050 0 446662 0 611800 86400 2700000 541112 458356 387668 41.96% 

..... 

..... 
1\) 
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Pc = PCmax 

= Hd.ne /(0.425-ne) 

= (2.5) {0.33) /[ {0.425-0.33) (0.003412 MMBTU/kWh)] 

= 2,545.2 kW 

He = rc.Pc 

= (1.364) {2542.2) {0.003412 MMBTU/kWh) 

= 11.83 MMBTU/hr 

The system size Pc versus TEAC has been plotted in Figure 

4.3. The extreme point b2 corresponds to the optimal size PC* 

= 800 kW with a TEAC* = $294,73 per year. 

Note that Pc=O corresponds to a "base case" or "do 

nothing" alternative. In other words, TEAC{O) should be 

comparable to the annual operation and maintenance cost of 

the existing facility or the facility's most recent {or 

forecasted) equivalent uniform annual energy cost {EUAC). In 

the example above TEAC{O) = $352,533/yr. If TEAC{O) were no 

comparable to EUAC, the model should be calibrated. Model 

calibration is examined in Chapter 5. 

In a new facility, the base case cost is not necessarily 

comparable to TEAC{O); since the total cost would include the 

cost to own and operate a new conventional boiler system, and 

electricity would be purchased from the utility grid. In 

either case, the TEAC corresponding to the base alternative 

should be a horizontal line on the graph. 

If several CHP technologies are feasible, their Pc-vs

TEAC plots could be superimposed to create a multiple

technology break-even chart. Such a chart allows one to 

perform further sensitivity analysis in terms of Pc sizes. 

This feature makes the model a truly robust analysis tool to 

evaluate the various CHP investment alternatives and cases. 
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4.2.3 CHP CCCD-2: A Non-Linear Model 

To achieve a linear program in the previous model, the 

main simplifying assumption was that the system unit cost 

was constant. However, as stated in section 4.1.2, economies 

of scale can make cu a function of Pc. Hence, the linear term 

AC = (a.Pc) in equations [4.11] through [4.13] should be 

substituted using equation [4.2]. Thus 

ACe - (b + a.e-kPc)Pc(A/P i,n.) + Cp.Pc 

= (C1.Pc. e-kPc) .+ C2 .Pc [ 4 .17] 

where C1 = [a.(A/P i, n)] and C2 = [b.(A/P i, n) + cp] 

Then, the TEAC functions for 51, 52 and 53, respectively (in 

terms of Pc and He= rc.Pc) are 

TEAC1 =ACe+ Cf{(Pc/ne.t1) + (Hd-r0 .Pc)fna.t1} 

+ Cm (Pc.t1) + (Pd-Pc) t 1 (ce) 

TEAC2 =ACe+ cf{(Pc/ne.t1) + (Hd-r0 .Pc)fna.t1} 

+ Om (Pc.t1) + (Pc-Pd) (t1) (se) 

[4.18] 

[4.19] 

TEAC3 =ACe+ cf{(Pcfne.t1) +Om (Pc*t1) + (Pc-Pd) (t1) (se) + 

cr. (r0 .Pc-Hd). (t1). [4.20] 

Compare equations 4.18, 4.19 and 4.20 to the linear model in 

4.11, 4.12, and 4.13. Linea~ity has vanished in the objective 

function expressed by equations 4.18 through 4.20. They, 

however, still span a convex objective function. Thus, the 

first derivative of TEACi with respect to Pc is 

where 

TEACi' = AC 1 + O&Mi' for i = 1,2 and 3. 

AC 1 = C1.e-kPc (1-kPc) + C2, and 

O&M1 1 = [cf(1/ne - r 0 /na> +Om- ce].t1 

O&M2 1 = [cf{1/ne- r 01na} + Cm + se].t1 

O&M3 1 = [cf.1/ne + Cm + se + cr.r0 ].t1 



Note that (a+ O&Mi) ' constitute the constant slopes of the 

TEACi functions in the linear model CCCD-1. 

Next, the second derivative of TEACi with respect to Pc is 

TEACi" = -(k.Cl.e-kPc) (2-k.Pc) 
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Since k > o, then for k.Pc < 2, TEACi" is negative 

definite, and therefore, TEACi is concave (convex downwards) 

for typical values of Pc. In general, k € (0.0001, 0.0002) 

and Pc € (100, 10,000). In fact, if k.Pc = 2, then TEACi"= o, 

and the CCCD-2 model becomes the linear CCCD-1 model. In 

other words, CCCD-1 is the particular case of CCCD-2 -for 

the asymptotic portion of the plot of equation [4.2]. For 

plots of installed capacity (kW) vs system unit cost ($/kW), 

that assume typical values of k and Pc, the reader is 

referred to works by GKCO Consultants (1982) and RCG/Hagler 

Bailly, Inc. (1991). 

Henceforth, the "extreme points" represented by (O,O), 

al, a2 and care linked by the curves TEACi (i= 1, 2, 3); 

which are concave for the parameter values of interest, i.e. 

Pc € (100, 10,000). Figure 4.4 shows that the objective 

function defined by the curves Si (i=1,2,3) is amenable to 

extreme point optimization, so the "extreme point" optimality 

of the previous model (CCCD-1) prevails. Therefore, one just 

need to evaluate TEAC at the extreme points to find the 

optimum Pc* (i.e. min TEAC*). Thus, Pc* € [0, Pc(a1), Pc(a2), 

PCmaxJ • 

The rationale is that although the previous linear model 

has been modified to a non-linear one, the optimum should 

"anchor" on one of the linear extreme points, at which 

significant changes in the OF's slope occur. 

Hence, the CCCD-2 model is generally represented by 



Minimize {min TEAC1 , min TEAC2 , min TEAC3} 

subject to the constraint set cs. 
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Therefore, the optimum Pc* of CCCD-2 can be found using the 

TEAC values defined by equations [4.18] through [4.20], then 

substituted in equations [4.14a], [4.14b] or in Corollaries I 

and II, depending on the case. 

Example 4.2 CCCD-2. Table 4.3 lists an example of the 

application of the CCCD-2 model. The top portion of the table 

includes all the relevant input data; which is essentially 

the same data of the CCCD-1 example, except the system unit 

cost cu. Here, cu is expressed in terms of the exponential 

unit cost function parameters a=900, b=600 and k=0.0002 

(these cost parameters are not equivalent to the flat unit 

cost in the CCCD-1 example). Thus using equation 4.2 the 

unit system cost is 

cu = 600 + 900 e-{0.0002Pc) 

and using equation 4.17 the annual owning cost is 

AC = Cu. rc {A/P i,n) + cp.Pc 

The rest of the computations and the method are the same as 

in the CCCD-1 example; including the determination of the 

extreme points. 

Since the evaluation of extreme points warrants the 

optimum Pc*, a search is not required. However, the search 

list from Pc = 0, 2700 has been included in table 4.3 to 

generate points for model verification and to plot the curves 

TEACi. The TEAC of the extreme points {0,0), b1, b2, and c 

{which defines Pcmax> are included in the list. The system 

size Pc versus TEAC has been plotted in Figure 4.4 below. In 

this example, the extreme point b1 corresponds to the optimal 

size Pc* = 537 kW with a TEAC* = $325,218/year. 



TABLE 4.3 

CCDD-2 MODEL FOR EXAMPLE 4.2 

INPUT DATA 

Pd: 800 KW cr: $0.100 /MMBTU Demand-s $50.00 /kW-yr MAAR, I: 15% 
Hd: 2.5 MMBTU/H se: $0.034 /kwh Demand-b $70.00 /kW-yr Proj Life: 20 years 
Ne: 0.33 ce: $0.038 /kWh Na: 0.75 (AlP l,n}: 0.15976 
Nt: 0.45 cf: $2.000 /MMBTU a: 900 cp: $10.00 /kW 
t: 8000 hr/yr cf: $2.000 /MMBTU b: 600 HPR(dem): 0.92 
Avail.: 0.9132 em: $0.0040 /kWh k: 0.00020 HPR (sys): 1.36 

Pc He RC Aux fire FC EC ES MC IC O&M AC TEAC PURPA 
kw MMBTU/h $/yr $/yr $/yr $/yr $/yr $/yr $ $/yr $/yr $/yr EFF 

0 0.00 0 53333 53333 299200 0 0 0 352533 0 352533 N/A 
100 0.47 0 43408 59951 261800 0 3200 148218 324951 23680 348630 78.00°AJ 
200 0.93 0 33482 66568 224400 0 6400 292942 297368 46801 344169 78.00% 
300 1.40 0 23556 73185 187000 0 9600 434276 269785 69381 339166 78.00% 
400 1.86 0 13630 79802 149600 0 12800 572322 242202 91435 333637 78.000AJ 
500 2.33 0 3704 86419 112200 0 16000 1011n 214619 112980 327599 78.00°AJ 

Pc(b1): 537 2.50 0 0 88889 98243 0 17194 756706 204326 120892 325218* 78.00% 
600 2.79 233 0 99258 74800 0 19200 838937 193491 134030 327521 73.30% 
700 3.26 606 0 115801 37400 0 22400 967696 176207 154600 330807 67.54% 

Pc(b2): 800 3.72 978 0 132344 0 0 25600 1093544 158922 174706 333628 63.22~ 
I 

900 4.19 1350 0 148887 0 32200 28800 1216569 179037 194361 341198 59.87~ 
1100 5.12 2094 0 181973 0 96600 35200 1454494 219268 232372 355040 54.98° 
1300 6.05 2839 0 215059 0 161000 41600 1682130 259498 268740 367238 51.60% 
1500 6.98 3583 0 248145 0 225400 48000 1900105 299729 303564 3n892 49.12~ 

1700 7.91 4328 0 281232 0 289800 54400 2109009 339959 336938 387098 47.22°AI 
1900 8.84 5072 0 314318 0 354200 60800 2309403 380190 368954 394943 45.73% 
2100 9.n 5817 0 347404 0 418600 67200 2501818 420420 399694 401514 44.51% 
2300 10.70 6561 0 380490 0 483000 73600 2686757 460651 429240 406891 43.51% 
2500 11.63 7305 0 413576 0 547400 80000 2864694 500881 457668 411149 42.67% 

Pcmax: 2545 11.84 7474 0 421053 0 561953 81446 2903981 509973 463944 411964 42.50°AJ 
2700 12.56 8050 0 446662 0 611800 86400 3036078 541112 485048 414360 41.96°~ 1-' 

1-' 
co 
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The discussion with respect to base case and alternative 

system comparison and sensitivity analysis also apply to this 

model. 
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Example 4.3: PURPA Machine. Another example based on the 

exponential unit cost or CCCD-2 model is shown in Table 4.4 

and Figure 4.5. Here, some of the unit cost parameters (e.g. 

a=600 and b=500) were modified to explore the sensitivity of 

the model (and CHP system) to a dramatic reduction in the 

system unit installed cost. Also, a reduced fuel cost (cf= 

$1.8/MMBTU) was utilized to obtain a larger system as the 

optimum. The analysis and computations are the same as in 

the previous examples~ The results are shown in Table 4.4. 

In this case, TEAC is a generally (but not necessarily a 

monotonically) decreasing function of Pc (See Figure 4.5). 

Thus, at least a local maximum TEAC might exist. This is 

important, since a local maximum of TEAC defines a system 

size Pcno that should be avoided. 

Next, the optimal CHP plant size can be obtained from 

the constraint 

Thus, 

Hd ~ Pc (0.425/ne -1) [4.10] 

Pc* = Pcmax = 

= 

Hd 

(0.425/ne-1) 

(2.5 MMBTU/Hr)/(0.003412 MMBTU/kWH) 

(0.425/0.33 -1) 

= 2545 kW 

From Table 4.4, by evaluating TEAC(Pc) at Pc = PCmax' we 

obtain TEAC* = $276,925/yr. Hence, this example yields as 

optimum the maximum legally feasible CHP system size; i.e. 

the so called "PURPA machine". 

The discussion with respect to base case and alternative 

system comparison and sensitivity analysis also apply to this 

model and example. 



TABLE 4.4 

CCDD-2 MODEL FOR EXAMPLE 4.3 
(PURPA MACHINE) 

INPUT DATA 

Pd: 800 KW cr: $0.100 JMMBTU Demand-s $50.00 /kW-yr MAAR, I: 15% 
Hd: 2.5 MMBTUIH se: $0.034 /kwh Demand-b $70.00 /kW-yr Pro) Life: 20 years 
Ne: 0.33 ce: $0.038 /kWh Na: 0.75 (AlP l,n): 0.15976 
Nt: 0.45 cf: $1.800 JMMBTU a: 600 cp: $10.00 /kW 
t: 8000 hr/yr cf: $1.800 JMMBTU b: 500 HPR(dem): 0.92 
Avail.: 0.9132 em: $0.0040 /kWh k: 0.00020 HPR(sys): 1.36 

Pe He RC Aux fire FC EC ES MC IC O&M AC TEAC PURPA 
kw MMBTU/h $/yr $/yr $/yr $/yr $/yr $/yr $ $/yr $/yr $lyr EFF 

0 0.00 0 48000 48000 299200 0 0 0 347200 0 347200 N/A 
100 0.47 0 39067 53955 2618QO 0 3200 108812 318955 17384 336339 78.000AI 
200 0.93 0 30134 59911 224400 0 6400 215295 290711 34396 325107 78.00% 

-300 1.40 0 21200 65866 187000 0 9600 319518 262466 51047 313513 78.00% 
-400 1.86 0 12267 71822 149600 0 12800 421548 234222 67347 301569 78.00% 
500 2.33 0 3334 1nn 112200 0 16000 521451 205977 83308 289285 78.00% 

Pc(b1): 537 2.50 0 0 80000 98243 0 17194 558202 195437 89179 284616 78.00% 
600 2.79 233 0 89332 74800 0 19200 619291 183566 98939 282505 73.30% 
700 3.26 606 0 104221 37400 0 22400 715130 164627 114250 278877 67.54% 

Pc(b2): BOO 3.72 978 0 119110 0 0 25600 809029 145688 129252 274939 63.22% 
900 4.19 1350 0 133999 0 32200 28800 901046 16414~ 143952 275901 59.87% 

1100 5.12 2094 0 163776 0 96600 35200 1079662 201070 172488 276959 54.98% 
1300 6.05 2839 0 193553 0 161000 41600 1251420 237992 199929 276921 51.600AI 
1500 6.98 3583 0 223331 0 225400 48000 1416736 274914 226340 275854 49.120AI 
1700 7.91 4328 0 253108 0 289800 54400 1576006 311836 251785 273821 47.220~ 

1900 8.84 5072 0 282886 0 354200 60800 1729602 348758 276324 270882 ~.n~ 2100 9.77 5817 0 312663 0 418600 67200 1877879 385680 300013 267093 44.51 
2300 10.70 6561 0 342441 0 483000 73600 2021171 422602 322905 262507 43.51 
2500 11.63 7305 0 372218 0 547400 80000 2159796 459524 345052 257176 42.67 

Pemax: 2545 11.84 7474 0 378947 0 561953 81446 2190507 467867 349959 255873* 42.5~ 

2700 12.56 8050 0 401996 0 611800 86400 2294052 496446 366501 251147 41.96 .... 
IV .... 



.350 

.340 

.330 

.320 

-- .310 
~ (/) 

~'U ... 5 
.300 ..._,(/) 

u :::J 

l5 _g 
~c 290 

280 

270 

260 

250 

0 0.4 0.8 1.2 1 .6 
(Thousands) 

SYSTEM POWER RATING (kW) 

2 

Figure 4.5 ccco-2 Model and PURPA Machine 

2.4 2.8 

J\mu • 2S<tS kW e 



123 

4.3 Constant Capacities and Gaussian 

Demands Model (CCGD) 

In this case, the economic criteria is to select the 

optimal size Pc* of a CHP system that minimizes TEAC when the 

CHP system capacities are constant and the demands are 

Gaussianly distributed. The following formulation, however, 

is given for a generally distributed demand with a 

probability density function f(d) ?nd cumulative 

distribution F(d). Later, this general formulation 

will be changed to the Gaussian case. 

Considering that the CHP demand is the function of two 

random variables: heat (H) and power (P), then the CDF of 

the joint CHP demand is 

G(z) = I I f(p,h)dp.dh 
D(z) 

where Z = CHP(p,h) is the CHP demand and f(p,h) is the joint 

density function of the variables P and H, and D(z) is the 

domain for which CHP(p,h) < z. The pdf g(z) can be determined 

by means of differentiation of g(z); i.e, g(z) = G'(z). 

Figure 4.6 corresponds to the first quadrant of the Heat (H) 

and Power (P) space, which defines the sub-space W containing 

all the feasible CHP demands. For a constant heat-to-power 

ratio r 0 , the CHP capacity curve s is defined by the equation 

He = r 0 Pc [4.9] 

Thus, in Figure 4.6, W is partitioned by the capacity curve 

in two main zones: 

Zone A: which contains all the possible CHP demands 
(>0) located to the left of the capacity curve. 

Zone B: which contains all the possible CHP demands 
(>0) located to the right of the capacity curve. 
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The marginal pdf's of p and h, f(p) and f(h) 

respectively define a bivariate JDF f(p,h). Here, we assume 

that the variables P and H are statistically independent. 

Henceforth 

f(p,h) = f(p). f(h) 

This is a critical assumption that sometimes will not be 

satisfied, since correlated CHP loads might exist in some 

facilities. Future research should examine this problem. 
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In Fig 4.6, the CHP space W is also partitioned by the 

lines defined by an arbitrary system-size point (pc, he) and 

an arbitrary bivariate density contour line f(p,h) in four 

regions. Each region has a one to one correspondence to the 

four states previously defined in section 4.1.1 and 

Table 4.1. The regions or states are 

w1 : He > Hd and Pc > Pd 
w2 : He > Hd and Pc < Pd 
W3 : He < Hd and Pc > Pd 
w4 : He < Hd and Pc < Pd 

Since Pd and Hd are independent random variables, then the 

probability of each CHP state is defined by the product of 

the marginal probabilities of each state: 

P (W1) = P(Hc > Hd). P(Pc > Pd) 
P (W2) = P(Hc > Hd). P(Pc < Pd) 
P (W3) = P(Hc < Hd). P(Pc > Pd) 
P (W4) = P(Hc < Hd). P(Pc > Pd) 

Thus, states Wi are complementary and their probabilities 

form a joint probability mass function, that is 

4.3.1 General Linear Unit Cost 

Formulation 

For a system size [Pc,Hc]: Pc>O and Hc>O, there is an 

expected linear cost function TEACi associated with each 

state Wi (i=1,2,3,4). Thus, fort operating hours per year, 

and using He= rc.Pc the expected (state) linear costs are: 

JHc JPc 
= o o {(a.Pc) + cf{(Pcfne) + (rc.Pc-Hd)cr 

+ Cm·Pc+ (Pc-Pd) se} t f(p) f(h) dp dh 

JHc s~ 
= o Pc {(a.Pc) + cf(Pcfne) 

+ Cm·Pc+ (Pd-Pc) Ce} t f(p) 

+ (rc.Pc-Hd)cr 

f(h) dp dh 

[4.21] 

[4.22] 

I 



J oo JPc 
= He o {(a.Pc) + cf[(Pcfne) + (Hd-rc.Pc)fna] 

+ Cm·Pc+ (Pc-Pd) Se} t f(p) f(h) dp dh 

= J:c J;c {(a.Pc) + cf((Pcfne) + (Hd-rc.Pc)fna] 

+ Cm.Pc+ (Pd-Pc) ce} t f(p) f(h) dp dh 
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[4.23] 

[4.24] 

Then, the total expected annual cost is a function of a 

single variable (Pc) and is defined by: 

TEAC = l: TEAC i (i= 1,2,3,4) [4.25] 

Taking derivatives of equations 4.21 to 4.24 with respect to 

Pc and equating to zero we have (the necessary condition): 

Where: 
TEACi' =a+ O&Mi'= 0 

and: 

O&M2 '= (cf.1/ne +Om- ce + cr.r0 ].t.P(W2) 

O&M3 •= [cf(1/ne- r 0 /na) +Om+ se].t. P(W3) 

O&M4 '= [cf[1/ne- r 01na) +Om- ce].t. P(W4 ) 

P(Wi) = f f dp dh 
D(Wi) 

are the state probabilities. D(Wi) is the integration domain 

of state Wi previously defined (equations 4.21 through 4.25). 

Thus, P(Wi) is a function of Pc, i.e. P(Wi) = g(Pc). Then, 

for an extreme point, equation 4.25 can be restated as: 

TEAC' = a + l: O&Mi.t.g(Pc) i=1,2,3,4 

Now, for TEAC(Pc)' = o, by solving for Pc or through a search 

algorithm, we obtain Pc = Pc0 • Then depending on the values 

of the second derivative of TEAC with respect to Pc (TEAC"), 

Then the unconstrained TEAC(Pc) 
If: function (viewed from below) is: 

CASE (1) TEAC"(Pc0 ) > 0 Convex (a global minimumm exists) 

CASE (2) TEAC"(Pc0 ) < 0 Concave (a global maximum exists) 

CASE (3) TEAC" (Pc0 ) = 0 Indefinite (see note below) 
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In case (3) [TEAC (Pc*), Pc*] is an inflexion point (a 

point of a flat bottom) if there is (not) a change in sign in 

the neighborhood of TEAC(PC*) '· But, since Pc is bounded by 

the constraints defined in Section 4.2.2, then the CCGD 

linear model spans a convex feasible space determined by the 

constraint set (CS): 

cs 

Where: 

System curve: He = rc. Pc 

PURPA constraint: Pc s PCmax 

Efficiency constraint: ne < 0.425 (per Eq. 4.10] 

Non-negative size: Pc ~ 0 

Pcmax = ~Hd.ne /(0.425 -ne) is the PURPA limit, and 

~Hd = the mean or expected average value of the 
heat demand (Hd) random variable. 

Next, the necessary general condition for a relative minimum 

TEAC(Pc) to exist is: 

~ O&Mi.P(Wi) = -a/t 

Thus, for an unconstrained optimum Pc0 to exist, the hourly 

expected incremental O&M cost (the left hand side of equation 

4.27) must be equal to the system owning cost per hour (a/t). 

Henceforth, to solve the constrained linear model 

Min TEAC = ~ TEACi (i= 1,2,3,4) 

Subject to: CS 

the following general decision rules are defined. The rules 

also constitute the sufficient,optimal conditions, which are 

defined to obtain the constrained optimum Pc* for a unimodal 

(single peak or single valley) TEAC function. The rules are: 

(1): If TEAC(Pc0 )" > o, TEAC is Convex (a minimum exists). 

(a) If OS Pc0 > PCmax' then Pc* = PCmax 

(b) If os Pc0 s PCmax' then Pc* = Pc0 
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(2) : If TEAC (Pc0 ) " < 0, TEAC is Concave (a maximum exists) • 

In this case, TEAC is evaluated at the extreme points 

Pc=O and Pc=PCmax· The optimum is 

Pc* = Pc, such that 

TEAC* =Min {TEAC(Pc=O), TEAC (Pc=PCmax)} 

(3) If TEAC(Pc0 )" = 0 , TEAC is indefinite. If a local 

minimum des not exist in the interval Pc= (0, PCmax>, 

(a) If TEAC 1 (PCmax)>O, then Pc* = o 

(b) If TEAC'(Pcmax>so, then Pc* = PCmax 

For any CHP demand distributions, if TEAC has multiple 

feasible minimums -i.e. equation 4.27 has several real roots 

in the interval (0, PCmax>- then a relative global optimum 

Pc0 € (0, PCmax> must be found by evaluating TEAC at each 

minimum in the interval. Then rule (1) is evaluated for Pc0 • 

However, the following section (4.3.2) shows that for most 

typical cost parameters and independent CHP demand densities, 

TEAC(Pc) is strictly convex. Thus, there exist one global 

optimum. The next two examples illustrate an application of 

the methodology. 

Example 4.4. CCUD-1 Model. Develop the general necessary 

and sufficient conditions to obtain the optimal system size 

when the heat H and power P demands are independent random 

variables with the following uniform density functions: 

1 
Heat demand: f(H) = Hl S H S H2 

H2 - Hl 

f(H) = 0 elsewhere 

1 
Power demand: f(P) = pl s p s p2 

p2 - p1 

f(P) = 0 elsewhere 
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SOLUTION. First equations 4.21 through 4.24 are written in 

terms 

TEAC2 

TEAC3 

of the densities f(H) and f(P) and give 

J
Hc JPc 

= H1 P1 {(a.Pc) + Cf{(Pcfne) + (rc.Pc-H)cr 

+ Cm·Pc+ (Pe-P) Se} J(t) dP dH 

= 
JHc JP2 

H1 Pc {(a.Pc) 

+ Cm·Pc+ (P-Pc) 

= 
JH2 JP2 

He P1 {(a.Pc) 

+ Cm·Pc+ (Pe-P) 

J
H2 JH1 

= He Pc {(a.Pc) 

+ Cm·Pc+ (P-Pc) 

t 

+ cf(Pc/ne) + (rc.Pc-H)cr 

ce} t J(t) dP dH 

+ cf [ (Pc/ne) + (H-rc.Pc)/na] 

Se} J(t) dP dH 

+ cf[(Pc/ne) + (H-rc.Pc)/na] 

Ce} t J(t) dP dH 

Where J(t) = ------------- is the time domain joint 
density funct~on. 

[4.21] 

[4.22] 

[4.23] 

[4.24] 

Then, the total expected annual CHP cost of a system of size 

(Pc,Hc) is: 

TEAC = I: TEACi (i= 1,2,3,4) [4.25] 

Collecting the common terms in equations above we have: 

TEAC(Pc) = J J (a + cf/ne.t+ cm.t)Pc f(P).f(H) dpdh 
(W) 

+ EC1 + Ec2 + EC3 + EC4 [4.25a] 

Where: 

EC1 = 
JHc 

H1 
JPc 

P1 {Cr(Hc-H) + Se(Pc-P)} J(t) dPdH 

EC2 = 
JHc 

H1 
JP2 

Pc {Cr(Hc-H) + Ce(P-Pc)} J(t) dPdH 

EC3 = 
JH2 

He 
JPC 

P1 {cf/na (H-Hc) + Se(Pc-P)} J(t) dPdH 

EC4 = 
JH2 

He 
JH1 

Pc {cf/na (H-Hc) + ce(P-Pc)} J(t) dPdH 



These equations can be integrated and simplified to yield 

(Please refer to the Appendix for detailed proof) 
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TEAC = A.Pc2 + {B1+ B2)Pc + C [4.26] 

where: 

A= 1/2 [rc2 (cr+cf/na) (P2 - P1) + (ce+se) (H2 - H1)].J(t) 

B1 = [(ceP2 + seP1) (H1 - H2) 

+ rc<cr.H1 + C:f/na.H2) (P1 - P2)].J(t) 

B2 = a + (cf/ne)t + cm.t 

c = 1/2 [(cr.H12 + cf/(na)H22) (P2 - P1 ) 

+ (ceP22 + seP12)(H2- H1)]. J(t) 

Then, the necessary optimal condition is 

TEAC'(Pc) = 2A.Pc + B1 + B2 = 0 

and the sufficient condition for-a global minimum is 

[TEAC"(Pc) = 2A ] > 0 

[4.27] 

where 2A = {(cr+cf/na) (P2 - P1)rc2 + (ce+se) (H2 -H1)}.J(t). 

Given that (cr, Cf, na, rc, ce, J(t)) > 0 

p2 > P1, H2 > H1 and 

ce ~ se, since se <0 (by definition) 

therefore, TEAC"(Pc) is >0 and TEAC(Pc), a quadratic 

function, is strictly convex for the case of uniformly 

distributed CHP loads. Hence, the unconstrained optimum Pc0 

can be obtained directly by solving equation [4.27], That is 

Pc0 = -(B1 + B2)/(2A) 

Then the optimum Pc* is obtained as follows for Pc0 >0. 

If 

Pco > Pcmax' 

Pco S PCmax' 

Pc0 < o, 

then 

Pc* = PCmax 

Pc* = Pc0 

Pc* = o • 

[4.28] 
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Example 4.5: CCUD-1 Model. Use the following uniformly

distributed CHP demands and cost data with the results and 

equations of the Example 4.4 to determine the unconstrained 

optimum Pc0 and the optimum under PURPA constraint Pc*. Plot 

TEAC(Pc) vs Pc. 

SOLUTION Table 4.5A lists all the relevant input data. Table 

4.5B shows the equations needed to calculate TEAC for uniform 

CHP loads and various Pc and their corresponding calculated 

TEAC(Pc) values. Figure 4.5 shows a plot of Pc vs TEAC(Pc). 

TABLE 4.5A 

COST DATA AND DISTRIBUTION PARAMETERS 
FOR EXAMPLE 4.5 (CCUD-1) 

Operation and Maintenance Cost Data 

ce = 0.038 + 70/8760 
se = -[0.034 + 50/8760] 
cr = (0.1) (0.003412) 
cf = (2.0) (0.003412) 
Cm = 0.004 

Owning Cost data 

Cu = 1000 
9p = 10 
~ = 0.15 
n = 20 

System Performance Data 

t = 8000 
ne = 0.33 
nt = 0.45 
na = 0.75 
rc = ntfne 

Distribution Parameters 

p1 = 600 
p2 = 1000 
H1 = 500 
H2 = 1000 

($/kW-installed 
($/yrfkw-installed) 
(MARR) 
(years) 

(hours/year) 

See notation in Section 4.1.2 and Example 4.4 
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Example 4.5, Continued. For constant system-unit- cost 

(cu = k), the equivalent annual cost of owning the CHP system 

is a= cu.A + cp, where: A= i (1+i)n/[(1 + i)n -1]. 

For uniformly distributed loads, the time domain joint 

density distribution is 

t 
J(t) = t.f(Pd,Hd) = 

(P2 - P1) (H2 - H1) 

Then, using MATHCAD, Anderson (1989), a numerical analysis 

software, an exhaustive search is performed for Pck = 100.k, 

(k = o, 20), i.e. in the interval Pc € (0, 2000 kWe), to 

generate points for the TEAC vs Pc plot (Figure 4.5). Using 

the data of Table 4.5A, the TEAC equations in Table 4.5B are 

solved for each Pck. The results are shown in Figure 4.7. 

TABLE 4.5B 

EXAMPLE 4.5: TEAC EQUATIONS FOR CCUD-1 MODEL 
{MATHCAD FORMAT) 

A :• [;] · [[ Cr + :1- (P2 - P1) · rc 
2 + (Ce + Se) · (82 -Hl) l Jt 

B1 :• [ (Ce· P2 + Se· P1) · (H1 - 82) + [er· rc·H1 + Cf· ::·82] · (P1 - P2)] ·Jt 

C :• [[~·H12 + 2:a·822
]· (P2- P1) + [~·P22 + :·P1

2l (82- H1)]-Jt 

A '"' 0.203 B1 • -645.563 B2 - 367.192 

2 
TEAC :• A·Pc + (B1 + B2)·Pc + C 

k k k 

5 
c- 3.904·10 



Example 4. 5-continued: Plot and table of TFAC VII Pc 8how 
optimal system size and cost. Pcmax and Pc* are computed below. -------------------------------------
500000 

TEAC 
k 

($/yr) 

250000 

1\ 

0 

\ 
f\ 

" r-..... / 
r-

Pc 
k 

(kW) 

I 
v 

I 

J 

I v 

2000 

The maximum leqally feasible system i• 

H1 + H2 He 
Pcmax :• --- ----

2 0.425 - He 

3 kW. 
Pcmax • 2.605·10 

Then, the unconstrained optimum size ia 

-(B1 + B2) 
Pco :• 

2·A 

Pco • 684.77 kW. 

Since Pco < Pcmax 

Pc TEAC 
k k 

(r --s-
100 3.904·10 
200 5 
300 3.646·10 
400 5 
500 3.429·10 
600 5 
700 3.252·10 
800 5 
900 3.116·10 

3 5 
1·10 3.021·10 

3 5 
1.1· 10 2.966·10 

3 !5 
1.2·10 2.952·10 

3 5 
1. 3·10 2.978·10 

3 5 
1.4·10 3.045·10 

3 5 
1.5·10 3.153·10 

3 !5 
1.6·10 3.302·10 

3 !5 
1. 7·10 3.491·10 

3 !5 
1.8·10 3.721·10 

3 5 
1.9·10 3.991·10 

3 !5 
2·10 4.302·10 

5 
4.654·10 

5 
5.046·10 

5 
5.479·10 

5 
5.953·10 

5 
6.467·10 

Pc* • Pco • 684.77 kW is the global optimum. 

Next, the minimum cost is: 

2 
TEAC :• A· Pco + (B1 + B2) · Pco + C 

5 
TEAC • 2.951·10 Dollars/year. 

Figure 4.7 Constant Capacity Cogeneration System 
with Uniformly Distributed CHP Loads 
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4.3.2 Model For Constant Capacity and General 

Probabilistic Demands CCCPD-1) 
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This section develops the necessary and sufficient 

condition for optimality for a model with generally 

distributed loads. For the stochastic CHP demand space W 

(Figure 4.6), we have the following ge~eral and independent 

(marginal) density distributions and their corresponding 

domains: 

Heat demand: f(Hd) = f(H) 

= 0 elsewhere 

Power demand: f(Pd) = f(P) 

= 0 elsewhere 

Since the densities are independent, then the joint density 

distribution is 

f(P,H) = f(P) .f(H) 

Hence, equations 4.21 through 4.24 can be restated as follows 

J
Hc JPc 

= 0 0 {(a.Pc) + cf(Pc/ne) + cr(rc.Pc-H) 

+ Cm·Pc+ se(Pc-P)} t f(P).f(H) dP dH 

JHc Jao 
= 0 Pc {(a.Pc) + cf(Pc/ne) + cr(rc.Pc-H) 

+ cm.Pc+ ce(P-Pc)} t f(P).f(H) dP dH 

J ao JPc 
TEAC3 = He 0 {(a.Pc) + cf[(Pcfne) + (H-rc.Pc)fna] 

TEAC4 

+ Cm.Pc+ Se(Pc-P)}t f(P).f(H) dP dH 

= J:c J:c {(a.Pc) +-cf[(Pc/ne) + (H-rc.Pc)/na] 

+ Cm·Pc+ ce(P-Pc)}t f(P).f(H) dP dH 

[4.21] 

[4.22] 

[4.23] 

[4.24] 
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Then, the total expected annual CHP cost of a system of 

size (Pc,Hc) is: 

TEAC = 1: TEAC i (i= 1,2,3,4) [4.25] 

Note that the capacities Pc and He are constants with respect 

to the variables of integrat'ion -the demands P and H. Hence, 

collecting common terms in the 'equations above we have: 

[4.25a] 

Where: 

ECo = J: J: (a + cffne.t+ cm.t)Pc f(P,H) dPdH 

J H
0

c JPc 
= o {cr(Hc-H) + Se(Pc-P)}t f(P,H) dPdH 

JHOc F 
= jp0 {cr(Hc-H) + ce(P-Pc)}t f(P,H) dPdH 

F fPc 
= JHc 0 {Cf/na(H-Hc) + Se(Pc-P)}t f(P,H) dPdH 

Since equation (aO] spans the whole CHP domain W, that is 

I J f(P,H) dP dH = 1 ( by definition) 
(W) 

then it can be simplified to yield 

EC0 = (a + cf/ne.t+ cm.t)Pc 

Next, equation (al] can be rewritten as 

J HcJPc 
= Pc(cr rc + se) o o f(P).f(H)dPdH 

[aO] 

[al] 

[a2] 

[a3] 

[a4] 

[aO] 

J HcJPc 
- Cr 0 0 H.f(P).f(H)dPdH J HcJPc 

- se 0 0 P.f(P).f(H)dPdH 
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Next, using the following definitions for statistically 

independent marginal density functions, 

(1) 

(2) 

(3) 

Fx(a) e J: f(x)dx 

E(xi) e'J x.fx(x)dx 
wi 

J a
0 

Jb
0 

Ja Jb 
f(x,y) dxdy e 0 fx(x)dx • 0 fy(Y)dy 

we have from equation (al] 

EC1/t = Pc(crrc + Se) Fp(Pc).Fh(Hc) - Cr.E(H1 ).Fp(Pc) 

- se.E(P1 ).Fh(Hc) [bl] 

Similarly, using 1 - Fx(a) = J: f(x)dx, equations (a2] 

through [a4] can be reduced to 

EC2/t = Pc(crrc- ce) Fh(Hc).[l-Fp(Hc)] [b2] 

- Cr.E(H2).[1-Fp(Pc)] + Ce.E(P2).Fh(Hc) 

EC3/t = Pc(-cfrcfna + se).[l-Fh(Hc)].[Fp(Hc)] [b3] 

+ cf/na.E(H3).Fp(Pc) - se.E(P3}.[1-Fh(Hc)] 

EC4/t = Pc(-cfrc/na- ce).[l-Fh(Hc)].[l-Fp(Hc)] [b4] 

+ cf/na.E(H4).[1-Fp(Pc)] - ce.E(P4 ).[1-Fh(Hc)] 

Note that in the last four equations [bi] above 

J Hoc H 
= fh(H}dH 

Then, using the expected values E(Hk) and E(Pk), k = a,b; 

summing and collecting terms in the equations [bi] we have 



{EC1 + EC2 + EC3 + EC4 )/t = 
[{cr+cf/na)rcFh{Hc) + {se + ce).Fp{Pc)] Pc 

- cr.E{Ha) - se.Ep{Pa) + cf/na.E{Hb) + ce.E{Pb) 

- cf/na.rc - ce 

Next, substituting [4.27] in [4.25a] we obtain 

TEAC{Pc) = {a + Cf/ne.t+ Cm·t)Pc 

+ { [{cr + Cf/na)rc.Fh{Hc) 

+ {se + ce)Fp{Pc) -cf/na.rc -ce]Pc 

- cr.ECHa) - se.Ep{Pa) 

+ Cf/na.E{Hb) + Ce.E{Pb) }.t 
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[4.29] 

[4.30] 

The necessary condition for a minimum is obtained by taking 

the derivative {') of equation [4.30] with respect to Pc and 

equating it to zero. Hence, after collecting terms we have 

TEAC • {Pc) = o 

= {a + cf/ne.t+ Cm·t) [4.31] 

+ [{cr + cf/na)rc.F'h{Hc) + {se + ce).F'p{Pc)]Pc 

+ [{cr + cffna)rc.Fh{Hc) + {se + ce)·Fp{Pc) 

- cr.ECHa) - se.Ep{Pa) 

- Cr.E'{Ha) - Se.E'{Pa) + Cf/na.E'{Hb) + Ce.E'{Pb)}t 

If a closed form of Pc is obtained from the equation above, 

then it can be solved for the unconstrained optimum Pc0 • 

Otherwise, a search is required to approximate Pc0 • 

Next, the sufficient condition for an unconstrained 

global minimum is obtained by taking the second derivative 

{") of TEAC{Pc) with respect to Pc, and verifying whether it 

is positive definite. Thus 

TEAC"{Pc) = [{cr + cffna)rc.F"h{Hc) + {se + ce).F"p{Pc)] Pc 

+ 2 [{cr + cf/na)rc.F'h{Hc) + {se + ce).F'p{Pc)] 

- Cr.E"{Ha) - se.E"{Pa) 

+ Cf/na.E"{Hb) + Ce.E"{Pb)}t [4.32] 
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Next, recall that 

Fh (He) = 
JHc 

0 fh(H)dH 

Fp(Pc) = 
JPc 

0 fp(H)dH 

E(Ha) = J~c H.fh(H)dH 

E(Hb) = r:c H.f~(H)dH 

E(Pa) = J~c P.fp(P)dP 

E(Hb) = r:c P.fp(P)dP 

Next, we use x = Pc, y= Hc,Pc and apply the following 

(Leibniz equation) to the six relationships above. Thus, the 

Jb(x) 
derivative of F(x) = a(x) f(x,y) dy with respect to x is: 

d Jb(x) 
- ·F(x) = a(x) 
dx 

(Leibniz Rule) 

d 

dx 
f(x,y)dy +[:xb(x)] f[x,b(x)] 

d 
- [ dx a(x) J f[x,a(x)] 

Hence, for constant first derivatives F'(.) and E'(.) we 

obtain the following 

F'h(Hc) = rc.fh(Hc) > o, F"h(Hc) = 0 

F'p(Pc) = fp(Pc) > o, F" (Pc) = 0 p 

E'h(Ha) = Hc.fh(Hc) > o, E"h(Ha) = 0 

E'p(Pa) = Pc.fp(Pc) > o, E" (Pa) p = 0 

E'h (Hb) = -Hc.fh(Hc) <0, E"h(Ha) = 0 

E'p(Pb) = -Pc.fp(Pc) <0, E"p(Pa) = 0 [4.33] 

In fact, for any fp(.) and fh ( • ) I the second derivative 

terms in [4.32] are negligible and should vanish. Therefore 



139 

TEAC(Pc)" = 2[(cf/na + Cr) rc2 .fh(H) +(se+ ce).fp(P)] 

[4.32a] 

Then TEAC"(Pc) is positive definite as long as 

(cf/na + cr) rc2 .fh(H) +(Se+ ce)·fp(P) > o 

or (cf/na + cr) rc2 .fh(H) + ce.fp(P) > -se. fp(P) 

Since {cf/na, cr, rc, ce, fh(H), fp(P)} ~ o, and lsel < ce, 

then the inequality above is in general true for typical 

values found in industry. Thus the total expected annual cost 

TEAC(Pc) is typically convex for independent demands. 

4.3.3 Non Linear Formulation CCCPD-2} 

Recall that Section 4.2.3 models a non-linear 

(exponentially decreasing) unit cost to account for economies 

of scale of larger CHP plants. Then, using [4.17] the cost is 

TEAC(Pc) = C1.Pc.e-kPc + (C2 + cf/ne.t+ Cm·t)Pc [4.34] 

+ { [(cr + ctfna)rc.Fh(Hc) + (se + ce)Fp(Pc) 

- cf/na.rc - ce]Pc - cr.E(Ha) - se.Ep(Pa) 

+ Cf/na.E(Hb) + Ce.E(Pb) }.t 

where C1 = a.(A/P i, n) and C2 = b.(A/P i,n)+cp. 

Next, the first derivative of TEAC with respect to PC is 

TEAC'(Pc) = C1.e-kPc(1-kPc) + (C2 + Cf/ne.t+ Cm·t) [4.35] 

+ [(cr + cffna)rc.F'h(Hc) + (se + ce).F'p(Pc)]Pc 

+ [(cr + cf/na)rc.Fh(Hc) + (se + ce)·Fp(Pc) 

- Cr.E(Ha) - Se.Ep(Pa) - Cr.E'(Ha) - Se.E'(Pa) 

+ Cf/na.E'(Hb) + Ce.E'(Pb)}t 

Hence the second derivative of TEAC with repect to Pc is 

TEAC 11 (Pc) =- C1.k.e-kPc (2-kPc) + [(cr + Cf/na)rc.F"h(Hc) 

+ (se + ce) F"p(Pc)]Pc + 2 [(cr + cf/na)rc.F'h(Hc) 

+ (se + Ce) F'p(Pc)] - Cr.E"(Ha) - se.E"(Pa) 

+ Cf/na.E"(Hb) + Ce.E"(Pb)}t 
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Using [4.33] and removing negligible second order derivatives 

TEAC(Pc)" = 2((cf/na + cr)rc2 .fh(H) + (se+ ce).fp(P)] 

- C1.k.e-kPc (2-kPc) [4.36] 

Here, for se<O, TEAC"(Pc) is positive definite as long as 

2[(cf/na + cr) rc2 .fh(H) + ce.fp(P)] > C1.k.e-kPc (2-kPc) 

- 2se.fp(P) 

which is the case of typical values found in industry. But, 

recall from section 4.2.3 that an exponential unit cost term 

introduces partially concave TEAC functions. Thus, for some 

combinations of cost coefficients, equation 4.36 can be 

indefinite; showing inflexion points and/or local maxima. 

4.3.4 Constant Capacities and Gaussian 

Demands Model CCCGD-1) 

Since CHP loads are the sum of many individual random 

loads from multiple processes and machines in an industrial 

plant, then they can be considered realizations of random 

process that follow the so called "Law of the Large Numbers". 

But most heating and cooling loads are seasonal. 

Nevertheless, even with seasonal effects, each season or 

period associated with a load variance can assume normally 

distributed loads. Thus, the methodology developed here can 

be replicated for each set of seasonal CHP distributions. 

Consequently, CHP demands constitute wide-sense 

stationary processes. Thus, most CHP loads encountered in 

industrial facilities can be regarded as Gaussian stationary, 

since they have a definite affinity for a mean value and 

converge stochastically to a constant. Recall that the 
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Gaussian or normal pdf for the random variable x is 

1 -(x-~) 2 /(2a2 ) 
f(x) = e 

v(27r).a [4.37] 

and the Gaussian CDF is 

- I co 1 -(x-~) 2 /(2a2) 
FCx> - -co e dx [4.38] 

v(2n).a 

Then, using the results of section 4.3, the total expected 

equivalent annual cost of a constant ~apacity CHP system 

subject to normally distributed loads (CCGD) is 

TEAC(Pc) = (a + cffne.t+ Cm•t)Pc 

where: 

+ { ((cr + cf/na)rc.Fh(Hc) 

+ (se + ce)Fp(Pc) -c!fna.rc -ce]Pc 

- Cr.Eh(Ha) - Se.Ep(Pa) 

+ cffna.Eh(Hb) + ce.Ep(Pb) }.t 

JP
0

c 
Fp(Pa) = 

P -(H-~ )2/(2a 2) ----e p p dP 
v(27r).ap 

[4.39] 

~j and aj2 are the mean and the variance of demand j = (h,p). 
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Example 4.6. Use the Gaussian distributed CHP demand 

and cost data listed in Table 4.6a, and the equations of 

Section 4.3.4 to calculate TEAC. Next find approximated 

values for the unconstrained optimum Pc0 and the optimum 

under PURPAPc*. Then plot TEAC(Pc) vs Pc, Pc € (0,2000 kWe>· 

SOLUTION The numerical analysis software MATHCAD 2.5 was 

used in this example to compute·and plot the results. Table 

4.6A lists all the relevant input.~ata. Then, Table 4.6B 

shows the equations needed to calculate TEAC for normally 

distributed CHP loads. Next, Table 4.7 lists TEAC(Pc) for Pc 

€ (0,2000 kWe>· Finally, Figure 4.8 depicts a plot of TEAC 

vs Pc, showing the optimal size at Pc0 = Pc* ~ 700 kW. 

TABLE 4.6A 

INPUT DATA AND DISTRIBUTION PARAMETERS 
FOR EXAMPLE 4. 6 (MATHCAD FORMAT) 

-----------------------------------------------------------------
1-'P :• 800 
op :- 50 
cr :z o.1· .003412 

Se :• -[0.034 + ~] 
8000 

Se • -0.04 

Ne := 0.33 

Nt :• 0.45 

Nt 
rc :•

Ne 
rc • 1.364 

P1 :• 1-'P- 3·ap 

P2 :• 1-'P + 3·ap 

ph =- 730 
ah :• 50 
Cf :• 2· .003412 

70 
Ce :- 0.038 + -

8000 
Ce - 0.047 

Na :-= 0~75 

em :• o.oo4 

t :- 8000 

H1 :• ph - 3· ah 

H2 :• ph + 3· ah 

Ql :- 1000 
Cp :- 10 

i :- 0.15 
n :• 20 

n 
in :- (1 + i) 

in 
AP :• i·--

in- 1 

a :• CU·AP + Cp 

k :- 0 •• 20 

Pc :• 100·k 
k 

He :• rc·Pc 
k k 



TABLE 4.6B 

CCGD-MODEL EQUATIONS FOR EXAMPLE 4.6 
(MATBCAD FORMA'l') 
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---------------------------------------------------
ECO :• [a + ~-t + Cia· t] · Pc 

k Ne k 

FPc 
k 

TOL :• 0.01 

FHc :• 
k 

"JHck 1 
,f"2.;-ah 

H1 

H 

·e 

EHa 
k 

dH EHb 
k ·-[ ---·e 

EPa 
k 

EPb :• 
k 

~2·v·ah 
k 

c1 := [[er + Cf] · rc· FHc + (Se + Ce) ·FPc - ~- rc - ee] · Pc 
k Na k k Na k 

Cf 
C2 := -Cr· EHa - Se· EPa + -· EHb + Ce· EPb 

k k k Na k k 

TEAC := ECO + t· [C1 + C2 ] 
k k k k 

Ne 
Pcmax :a: ph·----

0.425 - Ne 

-[(·-.... :·] 
2·ah 

dH 

dH 

dP 



TABLE 4.7 

COMPARISON OF RESULTS OF EQUATION 4.39 
AND EQUATIONS 4.21 TO 4.25 

USING EXAMPLE 4.6 DATA 

Pc (kWe): 0 200 400 600 800 1000 1200 1400 1600 1800 2000 

EQUATIONS TEAC(Pc) ($10,000/year] 

(A) 4.21 - 4.25 3.515 3.302 3.090 2.944 2.948 3.035 3.132 3.229 3.327 3.424 3.522 

TOLERANCE: 1.0 

(B) 4.39 (CCGD) 3.526 3.326 3.126 2.964 2.966 3.052 3.159 3.265 3.372 3.488 3.600 

TOLERANCE: 0.01 

%Variance: 0.3% 0.7°AI 1.2°AI 0.7°AI 0.6% 0.6% 0.9% 1.1% 1.3% 1.8% 2.2% 

NOTE: 
Tolerance Is the treshold limit used by the Integration routine to establish convergence. 
Lower tolerances give more accurate results but may produce overflow or underflow, and may not warrant convergence. 



($/year) 

400000 

TEAC 
k 
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~ 
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k 
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/ 
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v 
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Note: The optimum Pc* is approximated as the 
mean value of the flat bottom 

Figure 4.8 Plot of Pc vc TEAC(Pc) for Example 4.6 
Shows convex TEAC function. 
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4.3.5 Computation Efficiency and Accuracy 

of Equation 4.39. 
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One of the advantages of the methodology developed in 

this thesis is its computation ,efficiency with respect to 

plain double numerical integration of the general cost 

formulation expressed by equations 4.21 through 4.25 -method 

(A). With a gross convergence t~lerance = 1, and using data 

from Example 4.6, the execution of equations 4.21 to 4.25 

using numerical integration takes about 5 hours. The actual 

computations were performed using the mathematical analysis 

software MATHCAD 2.5, in a 10 MHZ computer with an 80286 

microprocessor and mathematical co-processor. 

However, in spite of the smaller tolerance used (0.01), 

the same problem only takes about 4 minutes to run using 

relationship 4.39 -~ethod (B)- in the same machine. 

For other ranges of Pc, Pc E (0, PCmax>, relationship 

4. 39 is even faster. Thus', 'in general, using the same 

numerical integration ro~tine (Newton-Cotes trapezoidal rule) 

the methodology of the 'CCGD model or method (B) is about 70 

to 100 times faster than double numerical integration using 

the general equations 4.21 through 4.25 or method (A). 

Table 4.7 shows the results for the two methods (A & B) 

discussed above. To accelerate the computation of method (A), 

a tolerance of 1.0 was used; whereas a tolerance of 0.01 was 

used with method (B). 

However, note that in method (A) the computation error 

(variance) increases as Pc increases. Thus, since equation 

4.39 only requires single numerical integration, it gives 

quicker and more accurate results. 



4.4 Gaussian Capacities and Gaussian 

Demands Model 

147 

Variable production capacities are present in most 

industrial processes. In power plants, the temperature of 

boilers varies randomly according to differences in fuel heat 

content, ambient temperature and humidity. Changes in 

furnace temperature, in turn, produce variation in boiler 

heat transfer rates; with subsequent fluctuations in the 

amount and/or temperature of steam produced. For instance, 

Deming (1986) discuses the use of control charts to monitor 

utility boiler temperature -which is typically Gaussian. He 

uses cause-and-effect graphs to show the effect of boiler 

temperature variation on random monthly production costs. 

Several examples of variable output capacity exist in 

conventional and cogeneration plants that use bio-mass and/or 

refuse derived fuel (RDF). Thus, the RDF fed into power 

boilers is a mixture of various components, with varying 

proportions throughout the day. In addition, unpredictable 

moisture content in bio-mass fuels make their heat of 

combustion a random variable. For instance, this author has 

witnessed the large variation in the power output of a sugar

mill power station caused by the hour-to-hour variation of 

moisture content in the bagasse used as fuel. 

Also, since an increase in air temperature represents a 

reduction in air density, gas or combustion turbines exhibit 

output capacity variation according to the prevailing ambient 

air temperature -which is a random variable. Hence, increases 

in air temperature reduce the turbine output. Conversely, 

low air temperatures increase the turbine capacity. 
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Henceforth, in this case, the economic criteria is to 

select the optimal size Pc* of a CHP system that minimizes 

TEAC when both, the CHP system capacities and the demands are 

Gaussian or normally distributed. The model is based on the 

fact that the algebraic sum of .two independent and normally 

distributed random variables {capacity and demand) also has a 

normal distribution. Thus, the results obtained for a normal 

distribution are also applicable to the sum or convolution of 

two independent normal random variables, {See Section 2.1.3). 

Consequently, the CHP demand is represented by two 

random vectors with two components each: Capacity {Pc, He) 

and Demand {Pd, Hd) -{See Figure 4.9). This model, however, 

shall be stated in terms of the difference between demand and 

capacity {Figure 4.10). Thus, the transform random variables 

Zp = Pc - Pd and zh = He - Pd [4.40] 

are the power and heat differences, respectively. Then the 

CDF of the joint CHP demand difference is 

G[z{p,h)] =I I f{Zp,Zh) dZp.dZh 
D{z) 

where z {p,h) is the CHP demand difference and f{p,h) is the 

joint density function of the variables Zp and Zh, and D{Z) 

is the domain for which Z{p,h) < z. The pdf g{z) can be 

determined by means of differentiation of g{z); i.e, g{z) = 

G'{z). Figure 4.9 corresponds to the first quadrant of the 

Heat {H) and Power {P) space, which defines the space W, 

which contains all the feasible CHP demands and capacities. 

Hence, for a constant demand heat-to-power ratio rd, the CHP 

demands are related by 

Hd = rd Pd [4.41] 



Hd,Hc 
(kWt) 

J.Lac "Mean" 
System Curve 

-+-------. f(Pc) 

Pd,Pc (kWe) 

Figure 4.9 CHP,Space for the Gaussian 
Capacity and Demand Model 

----Zh 

Figure 4.10 CHP difference space (Z) is the domain 
of the heat difference (Zh) and power 
difference (Zp) random variables 
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Furthermore, capacity variation is in general 

proportional to the rated mean capacity. Then, the CHP 

capacity coefficient of variation vc is defined as: 
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Vc = 0hc/~hc = 0pc/~pc [4.42] 

where ahc and ape are the standard deviations of the heat and 

power capacities, and ~he and ~pc are the means of the heat 

and power capacities. 

The marginal pdf's of Zb and zh, f(Zp) and f(Zh) jointly 

define a bivariate JDF f(Zp,Zh). Here, the variables zp and 

Zh are statistically independent. Thus 

f(Zp,Zh) = f(Zp)• f(Zh) 

Again, this is a critical assumption that is not always 

satisfied. Proposed future research should examine this. 

In Fig 4.10, the CHP space W is transformed into the 

difference space z. Here, an arbitrary contour curve of a 

bivariate normal density, the abscissa (Zh=O) and the 

ordinate (Zp=O) partition Z in four sub-spaces. Thus, each 

region has a one to one correspondence to the four states 

previously defined in section 4.1.1 and Table 4.1. In the 

difference (Z) domain, however, the regions or states are 

z1: zh > 0 and Zp > 0 
z2: zh > 0 and z < 0 
ZJ: zh < 0 and zP > 0 
Z4: zh < 0 and zP < 0 p 

Since zh and Zp are independent random variables, then the 

probability of each CHP state is defined by the product of 

the marginal probabilities of each state: 

P(Z1 ) = P(Zh > O).P(Zp > 0) 

P(Z2 ) = P(Zh > O).P(Zp < 0) 

P{Z3 ) = P(Zh < O).P(Zp > 0) 

P(Z4 ) = P(Zh < 0) .P(Zp < 0) 



Thus, states Zi are complementary and their probabilities 

form a joint probability mass function, that is 

4.4.1 General GCGD Formulation for 

Linear Unit Cost CGCGD-11 
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This section develops the·TEAC eqUations for a general 

GDGC formulation. Thus, using equations.4.40, i.e. the 

transformations 

zp = Pc-Pd 

zh = Hc-Hd = rc.Pc - rd.Pd [4.40] 

equation 4.25a can be restated as follows 

TEAC = ECo + EC1 + EC2 + EC3 + EC4 [4.25b] 

Where: 

ECo = roo I:oo (a + cf/ne.t+ cm.t) Pc f(Zp,Zh) dZp dZh 

Ec1 = J: J: (cr.Zh + Se.Zp]t f{Zp,Zh) dZp dZh 

EC2 = J: I~ao (cr.Zh -·ce.Zp]t f(Zp,Zh) dZp dZh 

EC3 = I~ao I: [-cf/na.Zh + se.Zp]t f.(Zp,Zh) dZp dZh 

Since equation (aO] spans the whole CHP domain Z, that is 

E(Pc) = I Jp f(P,H) dP dH 
(Z) 

= P.pc (by definition) 

[aO] 

(al] 

(a2] 

[a3] 

[a4] 

and using E(k.Pc) = k.p.Pc (Pc is a r.v. and k is non-random), 



equation [aO] can be simplified to yield 

ECo = (a + cf/ne.t+ cm.t).JJ.pc 

Where J.l.pc is the mean or nominal CHP system capacity in 

Next, equations [a1] through [a2] can be rewritten as 

EC1/t = J: J: [cr.Zh + Se.ZP] f(Zp,Zh) dZp dZh 

EC2/t = J: J:oo [cr.Zh - ce.ZP] f(Zp,Zh) dZp dZh 

EC3/t = J:oo J: [-cffna.Zh + Se.ZP] f(Zp,Zh) dZp dZh 

EC4/t = J:oo J:oo [-cf/na.Zh - ce.ZP] f(Zp,Zh) dZp dZh 

Then, using the following definitions for statistically 

independent marginal density functions, 

(1) Jao Fx(a) = f(x)dx 

(2) 

(3) J: J: f(x,y) dxdy = J~ fx(x)dx . J: fy(Y)dy 

(4) 1 - Fx(a) = J: f(x)dx 

equations [b1] through [b4] can be simplified to yield: 
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[bO] 

kWe. 

[b1] 

[b2] 

[b3] 

[b4] 

EC1/t = cr[1-Fp(O)].E(Zha) + se[1-Fh(O)].E(ZPa) [b1] 

EC2/t = cr[Fp(O)] .E(Zha) - ce[1-Fh(O)] .E,(Zpb) [b2] 

EC3/t = -cf/na[1-Fp(O)].E(Zhb) + Se[Fh(O)].E(Zpa) [b3] 

EC4/t = -cf/na[Fp(O)].E(Zhb) - Ce[Fh(O)].E(Zpb) [b4] 

Note that in the four equations [bi] above the partial 
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first moments or centers of mass are: 

E(Zha) = J: zh fh(Zh)dZh > 0 [c1] 

E(Zhb) = J: zh fh(Zh)dZh < 0 [c2] 

E(ZPa) = J: zP fp(Zp)dZp > 0 [c3] 

E(Zpb) = J~co Zp fp(Zp)dZp < 0 (c4] 

And the probabilites are: 

Fh {0) = J~co fh(Zh)dh > 0 [d1] 

1 - Fh(O) = J: fh(Zh)dh > 0 [d2] 

Fp{O) = J~co fp(Zp)dp > 0 [d3] 

1 - Fp(O) = J: fp(Zp)dp > 0 [d4] 

Then, summing and collecting terms in equations [b1] through 

[b4] we have 

(EC1 + EC2 + EC3 + EC4 )/t = [4.43] 

cr.E(Zha) + se.E{ZPa) - ce.E(Zpb) - cffna.E(Zhb) 

Hence, substituting [4.43] in [4.25b] we obtain the total 

expected equivalent annual cost for the GCGD model, i.e. 

TEAC(Pc) = (a + cffne.t+ Cm·t)~pc 

+ [cr.E(Zha) + se.E(ZPa) 

- ce.E(Zpb) -cffna.E(Zhb)].t 

[4.44] 

Where ~Pc is the mean or nominal CHP system capacity in kWe. 

4.4.2 Necessary and Sufficient Conditions 

for Optimality (GCGD-1) 

The necessary condition for a minimum is obtained by 

taking the derivative (') of equation [4.44] with respect to 

~PC' and equating it to zero. Hence, collecting terms we have 
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TEAC'(Pc) = 0 = (a+ Cf/ne.t+ Cm·t) [4.45] 

+ [cr.E' (Zha) + se.E' (ZPa) 

- Ce.E'(Zpb) -cffna.E'(Zhb)].t 

A closed form of Pc can not be obtained from equation 4.45 

above, but it can be solved for the unconstrained optimum Pc0 

through numerical integration. 

The sufficient condition for an unconstrained global 

minimum is obtained by taking the second derivative (") of 

TEAC(Pc) with respect to Pc, and verifying whether it is 

positive. Thus 

TEAC"(Pc) = [cr.E"(Zha) + se.E"(ZPa) . 

Since 

- ce.E"(Zpb) -cffna.E"(Zhb)].t 

[E'(ZPa), E'(Zha), E"(ZPa), E"(Zha)J ~ 0 and 

[E'(Zpb), E'(Zhb), E"(Zpa), E"(Zha)J S 0 

Then, TEAC"(Pc) is positive semi-definite as long as 

[4.46] 

cr.E"(Zha) + se.E"(ZPa) - ce.E"(Zpb) -cffna.E"(Zhb) ~ 0 

The inequality above is in general true for typical energy 

costs found in industry. See Table 4.10 (Example 4.7). 

Therefore, the total expected equivalent annual cost 

TEAC(Pc) for the GDGC case is typically convex. Thus, in 

general, there exist an unconstrained global optimum for the 

GDGC case. But, indefinite TEAC functions might exist, 

showing local maxima and inflexion points. Then, local maxima 

should be identified, since operating a CHP system close to a 

local maximum is not economical and should be avoided. 

4.4.3 Formulation with Exponentially 

Decreasing System Unit 

Cost (GCGD-2) 

Recall that in Section 4.2.3 a model is defined for 



non-linear (exponentially decreasing) unit cost to account 

for economies of scale of larger CHP plants. Then, using 

equation 4.17, we have 
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TEAC(Pc) = C1.Pc.e-(k~pc) [4.47] 

+ (C2 + cf/ne.t+ Cm·t)~pc 

+ [cr.E(Zha) + se.E(ZPa> 

- Cf/na.E(Zpb) - Ce.E(Zhb)].t 

Where C1 = a.(A/P i, n) and C2 = b.(A/P i,n)+cp. 

Next, the first derivative of TEAC with respect to ~Pc is 

TEAC'(Pc) = C1.e-(k~pc).(1-kPc) [4.48] 

+ (C2 + cf/ne.t + Cm·t) 

+ [cr.E' (Zha) + se.E'(ZPa) 

- Cf/na.E'(Zpb) - Ce.E'(Zhb)].t 

Then the second derivative of TEAC with respect to ~Pc is 

TEAC" (Pc) = - C1.k.e-(k~Pc). (2-kPc) [4.49] 

+ [cr.E"(Zha) + se.E"(ZPa) 

- Cf/na.E"(Zpb) - Ce.E"(Zhb)].t 

Here, TEAC"(Pc) is positive semi-definite as long as 

- C1.k.e-(k~Pc).(2-kPc) + [cr.E"(Zha) - Se.E"(ZPa) 

- Cf/na.E"(Zpb) - Ce.E"(Zhb)].t ~ 0 

which is the case of typical values encountered in industry. 

But, the positive semi-definiteness of the TEAC function -for 

the case of exponential unit cost- indicates that inflexion 

points and/or local maximums might exist. See Example 4.8. 

Example 4.7: GCGD-1. Using the data listed in Table 4.8 

and the GCGD model for a constant unit cost, evaluate the 

expected values defined by equations c1 trough c4. Next plot 

TEAC vs Pc showing the optimum. Estimate the maximum legal 

size and verify the cost of the "do nothing" option TEAC(O). 
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Solution Table 4.8 lists -in MATHCAD 2.5 format- (1) the 

relevant input data, (2) the input normal distribution 

parameters for the demands and capacities, and (3) the 

preliminary equations required to determine the mean (~) and 

standard deviation (a) of the power (Zp) and heat (Zh) 

differences. The table also defines the limits (~ ± Ja) and 

the convergence tolerance (TOL) required for numerical 

integration. In the INPUT DATA section, the search index k = 

(0, 20) is defined to compute TEACk for Pck = (0, 2000 kW). 

The TEAC solution for this problem is obtained by 

calculating the GCGD-1 model equations, shown in Table 4.9. 

Note that the expected values EZhak, EZpak, EZhbk and EZp~ 

defined in Table 4.9 (MATHCAD format) are equivalent to 

E(Zha), E(Zpa), E(Zhb) and E(Zpb). The expected values are 

defined by equations (c1] to [c4], or in general by 

E(Zx) = J: Zx fx(Zx)dZx 

Note that E(Zx) is also the center of mass (a first moment) 

of the surface defined by the limits of integration a and b, 

and the density curve fx(Zx). For model verification, the 

expected values E(Zx), and their first and second derivatives 

are estimated and listed in Table 4.10 for various ~pc· 

Table 4.10 also shows the computed values of TEAC(~pc>· These 

values have been plotted in Figure 4.11. 

Next, the expected value of the maximum legal system as 

defined by PURPA is 

Ne 
E(Pcmax> = ~hd -----------

0.425 - Ne 

= 12,000 kWe 

From Figure 4.11 below, we see that the unconstrained 



TABLE 4.8 

INPUT DATA, DISTRIBUTION PARAMETERS 
AND PRELIMINARY EQUATIONS 

FOR EXAMPLE 4.7 

INPUT DATA (MATHCAD 2 • 5) 
cu :- 900 

:= -[0.034 + ~] 70 '1 :=- 10 
Se Ce :- 0.038 +- :• 0.15 

8000 8000 n :• 20 

cr := 0.1· .003412 Na := o. 7,5 ln :- (1 + i) 
Cf := 2· .003412 k :::o 0 •• 20 
em :== 0.005 t :l"' 8000 in 
Ne := 0.40 Nt := 0.45 AP· :• i· 

in -

INPUT DISTRIBUTION PARAMETERS 

n 

1 

The mean values and standard deviations of the CHP demands are 

J,£pd := 800 apd :• 80 J,£hd := 750 ahd :::o 75 

The coefficient_ of variation of the CHP capacity is Vc := 0.2 

INPUT PRELIMINARY EQUATIONS 

The equivalent annual system unit cost is a := CU· AP + Cp 

The capacity (rc) and the demand (rd) heat-to-power ratios are 

Nt 
rc :=

Ne 

J,£pd 
.rd :=

J,£hd 

The mean and standard deviation of the power capacity are 

JLPC := 100· k ape· := ppc · Vc 
k k k 

The mean and standard deviation of the heat capacity are 

J,£hc : = rc· JLpc ahc : = J,£hc · Vc 
k k k k 

The mean power (JLZP) and mean heat (pzh) differences are 

JLZp := JLpc - J,£pd J,£Zh := J,£hc - JLhd 
k k k k 

The power (azp) and heat (azh) difference standard deviations are 

azp := 
k 

2 2 
azh := ahc + ahd 

k k 

The limits for numerical integration (JJ +/- 3a) are 

p1 := pzp - 3·azp 
k k k 

p2 := pzp ~ 3·azp 
k k k 

h1 := pzh - 3·azh 
k k k 

h2 := JLZh + 3·azh 
k k k 

The convergence tolerance for integration is TOL :• 0.01 
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EZha := 
k 

EZpa := 
k 

EZhb := 
k 

EZpb := 
k 

TABLE 4.9 

MODEL EQUATIONS OF EXAMPLE 4.7 
MATHCAD FORMAT 

h2 
k 

0 

p2 
k 

0 

0 

hl 
k 

0 

pl 
k 

Zh 
----·e 
~·azh 

k 

Zp 
----·e 

~·azpk 

Zh 
----·e 
~·azh 

k 

Zp 
----·e 

~·azpk 

[Zh-"z\] 
2 

2·azh 
k 

2 

2 
[Zp-J,lzpk] 

2 
2·azp 

k 

[Zh-~£Z\] 

2 
2·azh 

k 

2 

2 

[Zp-J,lzpk] 

2 
2·azp 

k 

dZh 

dZp 

dZh 

dZp 

ECO := [a + Cf. t + Cln· t] ·~£PC 
k Ne k 

TEAC :• ECO + t· [er· EZha - ~- EZhb + Se· EZpa - Ce· EZpb ] 
k k k Na k k k 
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JlPC E(Zha) E'(Zha) 
(kWe) X 100 

0 0.68 
100 0.51 0.17 
200 0.32 0.19 
300 0.11 0.21 
400 0.08 0.03 
500 4.76 -4,68 
600 30.65 -25.90 
700 89.12 -58.47 
800 173.67 -84.55 
900 272.92 -99.25 

1000 379.21 -106.28 
1100 488.67 -109.46 
1200 599.57 -110.90 
1300 711.13 -111.56 
1400 823.01 -111.88 
1500 935.06 -112.04 
1600 1047.00 -111.95 
1700 1159.00 -112.00 
1800 1272.00 -113.00 
1900 1384.00 -112.00 
2000 1496.00 -112.00 

TABLE 4.10 

EXPECTED VALUES, FIRST & SECOND DERIVATIVES 
OF MASS CENTERS OF SUBSPACES Zi 

EXAMPLE 4.7, GCGD-1 MODEL 

E"(Zha) E(Zhb) E'(Zhb) E"(Zhb) E(Zpa) E'(Zpa) E"(Zpa) E(Zpb) E'(Zpb) 
X 100 X 100 X 100 X 100 X 100 X 100 

-748.55 0.73 -798.57 
-636.29 -112.26 0.58 0.15 -698.69 -99.88 

-0.03 -523.90 -224.80 112.54 0.41 0.16 -0.02 -598.79 -99.90 
-0.02 -411.50 -112.23 -112.57 0.23 0.18 -0.02 -498.89 -99.91 
0.18 -299.27 -107.52 -4.71 0.04 0.19 -0.01 -398.97 -99.92 
4.71 -191.75 -86.30 -21.22 0.25 -0.21 0.40 -299.44 -99.52 

21.22 -105.45 -53.73 -32.57 5.Q8 -4.82 4.62 -204.54 -94.91 
32.57 -51.72 -27.65 -26.08 25.74 -20.66 15.84 -125.47 -79.07 
26.08 -24.08 -12.95 -14.70 70.57 -44.a4 24.17 -70.57 -54.89 
14.70 -11.13 -5.91 -7.03 137.49 -66.92 22.08 -37.76 -32.81 
7.03 -5.22 -2.73 -3.18 219.30 -81.81 14.90 -19.84 -17.92 
3.18 -2.48 -1.30 -1.43 309.64 -90.34 8.52 ' -10.45 -9.39 
1.43 -1.19 -0.63 -0.66 404.49 -94.84 4.51 -5.57 -4.89 
0.66 -0.55 -0.31 -0.32 501.,65 -97.16 2.32 -3.00 -2.57 
0.32 -0.24 -0.15 -0.16 600.00 -98.35 1.19 -1.62 -1.38 
0.16 -0.09 . -0.07 -0.09 698.98 -98.98 0.62 -0.87 -0.75 

-0.10 -0.02 2.70 -2.76 798.29 -99.31 0.34 -0.45 -0.42 
0.05 -2.72 -2.71 5.40 897.79 -99.50 0.19 -0.22 -0.23 
1.00 -0.01 0.02 -2.73 997.39 -99.60 0.11 -0.09 .-0.13 

-1.00 -0.03 0.03 -0.01 1097.00 -99.61 0.00 -0.09 o.oo· 
0.00 -0.06 0.03 0.00 1197.00 -100.00 0.39 -0.09 . 0.00 

NOTE: The estimates of the first (') and second(") derivatives above were obtained through finite differencing, 
I.e. E'(Pc + 100) ... [E(Pc + 100)- E(Pc)]/(100) and 

E"(Pc + 100) .. (E'(Pc + 100)- E'(Pc)]/100 

E"(Zpb) 
X 100 

0.02 
0.01 
0.01 

-0.40 
-4.62 

-15.84 
-24.17 
-22.08 
-14.90 

-8.52 
-4.51 
-2.32 
-1.19 
-0.63 
-0.33 
-0.19 
-0.11 
-0.13 
0.00 

TEAC(ppc) 
$/year 

3.529E+05 
3.405E+05 
3.280E+05 
3.155E+05 
3.031E+05 
2.910E+05 
2.808E+05 
2.738E+05 
2.701E+05 
2.686E+05 
2.685E+05 
2.690E+05 
2.699E+05 
2.709E+05 
2.720E+05 
2.732E+05 
2.744E+05 
2.756E+05 
2.768E+05 
2.780E+05 
2.793E+05 

..... 
01 
\0 
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optimum [~pco ~ 1000 kWe] < [E(PCmax>=12,000 kWe]. Then the 

optimal size is ~pc* = ~pco ~ 1000 kWe, and from Table 4.10 

the optimal TEAC* ~ $2.586 x 105 per yar. Next we calculate 

the actual expected value of the cost of the "do nothing 

alternative", i.e. TEAC(~pc=O), with 

TEACo = (Cf/Na.~hd + Ce.~pd).t 

= $3.538 x 105/year 

[4.50] 

By comparing TEACo above and TEACfO) obtained through 

numerical integration using the GCGD model, we can verify the 

accuracy of the model. Thus, when TEAC(O) is computed using 

the GCGD-1 equations of Table 4.9 (TOL = 0.01), we see in 

Table 4.10 that TEAC(O) is $3.529 x 105/year or just 0.254% 

lower than the actual expected value of TEACo. Which shows 

that the GCGD model is quite accurate. • 

Example 4.8 GCGD-2 Model. This example illustrates the 

case of an industrial cogeneration system with random CHP 

output, which is subject to random loads. All the random 

variables are normally distributed. The capacities are 

statistically independent of the demands. Also, the heat and 

power demands are mutually independent. Here, economies of 

scale are accounted for using an exponentially decreasing 

installed system unit cost. The input data, distribution 

parameters, preliminary equations and parameters for 

numerical integration are listed in Table 4.11. In this 

example, it is required: (1) to calculate the expected legal 

maximum E(Pcmax>, (2) to plot TEAC vs ~PC' (3) to find an 

approximated value for the optimum Pc*, and (4) to verify 

whether an inflexion point/local maxima exist in the 

neighborhood of Pc0 • 



TABLE 4.11 

INPUT DATA, DISTRIBUTION PARAMETERS 
AND PRELIMINARY EQUATIONS 

FOR EXAMPLE 4.8 

INPUT DATA (MATH CAD 2. 5) 

:= -[0.034 + ~] 50 
Se Ce := 0.034 +--

8000 8000 

Cp := 10 
i := 0.18 
n := 15 

cr := 0.1· .003412 Na := 0.80 in := (1 + 
Cf := 2 •.• 003412 j := 0 •• 40 
em := 0.008 Vc := 0.25 
Ne := 0.33 t := 8000 AP := i· 
Nt := 0.25 in 

INPUT DISTRIBUTION PARAMETERS 

n 
i) 

in 

- 1 

The mean values and standard deviations of the CHP demands are 

~pd := 8000 apd := 2000 ~hd := 15000 ahd := 3500 

The parameters for the exponential unit cost function are 

a := 700 b := 500 k := 0.0001 

INPUT PRELIMINARY EQUATIONS 

The capacity (rc) and the demand (rd) heat-to-power ratios are 

Nt 
rc :=

Ne 

~pd 
rd := -

~hd 

The mean and standard deviation of the power capacity are 

~pc := 2500·j ape := ~pc ·Vc 
j j j 

The mean and standard deviation of the heat capacity are 

~he := rc· ~pc ahc := J,~hc · Vc 
j j j j 

The mean power (J.!Zp) and heat (J.!Zh) differences are 

J.!Zp := ~pc - ~pd ~zh := J,lhC - J,lhd 
j . j j j 

The power (azp) and heat (azh) difference standard deviations are 

azp. := 
J 

2 2 
azh := ahc + ahd 

j j 

The limits for numerical integration (~ +/- 3a) are 

p1 := J.IZP - 3·azp p2 := ~zp + 3·azp 
j j j j j j 

h1 := J.!Zh - 3·azh h2 := ~zh + 3·azh 
j j j j j j 

The convergence tolerance for integration is TOL := 0.01 
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Solution The GCGD-2 model required to solve this example 

uses the same expected values -i.e. E(Zha), E(Zpa), E(Zhb) 

and E(Zpb)- defined in Table 4.9 for the GCGD-1 model. But, 

the GCGD-2 model includes an exponential cost term. So, the 

TEAC equation required is: 

TEAC(Pc) = C1.Pc.e-(k~pc) + (C2 + cffne.t+ Cm·t)~pc [4.47] 

+ [cr.E(Zha)+se.E(ZPa)-cffna.E(Zpb)-ce.E(Zhb)]t 

Thus, the upper part of Figure 4.12 includes the equations 

for the GCGD-2 model in MATHCAD format. Note that the search 

index is j. The required solution is explained as follows. 

1) The expected legal maximum system size is 

Ne 
E(Pcmax> = ~hd ----------

0.425 - Ne 

= 5.211 X 104 kWe 

2) The Plot of TEAC vs Pc is depicted in Figure 4.12 

3) The local (positive) minimum shown in Figure 4.12 is 

~pco ~ 30,000 kWe < E(Pcmax> 

Then the constrained optimum is 

~pc* = ~pco ~ 30,000 kWe 

4) Figure 4.12, however, readily shows that in fact 

the function is concave for some Pc and convex for 

other Pc. Next, Table 4.12 lists values of TEAC, 

TEAC'(~pc> and TEAC"(~pc> estimated through finite 

differentiation. Table 4.12 shows that there exist a 

local minimum (~pc ~ 30000) and a local maximum 

(~pc ~ 5000). Finally, Figure 4.13 is a plot of 

TEAC'(~pc> and TEAC"(~pc>· It shows that for the 

feasible space 0 S ~pc SPcmax' there is a point of 

inflexion at ~pc ~ 13,750. 



(Example 4.8) GOGO Model Equations 

C1 :• a·AP C2 := b·AP + Cp 

TEAC :• ECO + t· [cr·EZhaj ~ Cf·EZhb + Se·EZpa - Ce·EZpb] 
j j Na j j j 

Ne 
Pcmax : = ~thd· ----

0.425 - Ne 

(Sfyear) 

5000000 

TFAC 
j 

3000000 

,..... 
If \ 

\ 

0 

I'-

4 
Pcmax = 5.211·10 

v 
/ 

v 
v 

/ 
_/ 

,_..,., 

I' PC 100000 
j 

(kilowatts) 

Figure 4.12 GCGD-2 Model Equations and 
TEAC vs J.l.pc , ... 
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TABLE 4.12 

TEAC, TEAC 1 AND TEAC11 OUTPUT 
FOR EXAMPLE 4.8 

we 
kW 

0 
2500 
5000 
7500 

10000 
12500 
15000 
17500 
20000 
22500 
25000 -
27500 
30000 
32500 
35000 
37500 
40000 
42500 
45000 
47500 
50000 
52500 
55000 
57500 
60000 
62500 
65000 
67500 
70000 
72500 
75000 
77500 
80000 
82500 
85000 
87500 
90000 
92500 
95000 
97500 

100000 

we• 
kW 

0 
1250 
3750 
6250 
8750 

11250 
13750 
16250 
18750 
21250 
23750 
26250 
28750 
31250 
33750 
36250 
38750 
41250 
43750 
46250 
48750 
51250 
53750 
56250 
58750 
61250 
63750 
66250 
68750 
71250 
73750 
76250 
78750 
81250 
83750 
86250 
88750 
91250 
93750 
96250 
98750 

TEAC{ppe) TEAC'(ppe*) TEAC"(ppc*) 
$/year $/yr/kW $/yr/kW/kw 

3.590E+06 
3.770E+06 
3.832E+06 
3.814E+OG 
3.748E+06 
3.657E+OS 
3.561E+06 
3.477E+06 
3.4t1E+06 
3.365E+06 
3.336E+06 
3.321E+06 
3.318E+06 
3.324E+06 
3.336E+06 
3.355E+06 
3.378E+06 
3.405E+06 
3.436E+06 
3.469E+06 
3.505E+06 
3.542E+06 
3.581E+06 
3.622E+06 
3.663E+06 
3.705E+06 
3.749E+06 
3.792E+06 
3.837E+06 
3.881E+06 
3.926E+06 
3.971E+06 
4.017E+06 
4.063E+06 
4.108E+06 · 
4.154E+06 
4.200E+06 
4.247E+06 
4.293E+06 
4.339E+06 
4.385E+06 

72.000 
24.800 
-7.200 

-26.400 
-36.400 

' -38.400 
-33.600 
-26.400 
-18.400 
-11.600 

-6.000 
-1.200 

2.400 
4.800 
7.600 
9.200 

10.800 
12.400 
13.200 
14.400 
14.800 
15.600 
16.400 
16.400 
16.800 
17.600 
17.200 
18.000 
17.600 
18.000 
18.000 
18.400 
18.400 
18.000 
18.560 
18.240 
18.800 
18.400 
18.400 
18.400 

(x1000) 

-18.880 
-12.800 

-7.680 
-4.000 
-0.800 

1.920 
2.880 
3.200 
2.720 
2.240 

. 1.920 
1.440 
0.960 
1.120 
0.640 
0.640 
0.640 
0.320 
0.480 
0.160 
0.320 
0.320 
0.000 
0.160 
0.320 

-0.160 
0.320 

-0.160 
0.160 
0.000 
0.160 
0.000 

-0.160 
0.224 

-0.128 
0.224 

-0.160 
0.000 
0.000 

NOTE: The estimates of the first C) and second (") derivatives 
were obtained through finite differentiation for the midpoints we•. 
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4.5 Summary 

This chapter presented the analysis and development of 

the methodology proposed in Chapter III. Hence, after 

defining general considerations and assumptions, a basic 

notation and a general formulation was established. Next, 

the models were developed in an evolutionary fashion -from a 

base model with linear unit cost and totally deterministic 

loads, to a complex model with non-linear unit cost, and 

stochastic outputs and loads. Thus, Table 4.13 summarizes 
' 

the models that comprehend the proposed methodology for 

economically based design of industrial cogeneration systems. 

TABLE 4.13 

A METHODOLOGY FOR ECONOMICALLY BASED 
DESIGN OF COGENERATION SYSTEMS 

MODEL DESCRIPTION SECTION/EXAMPLE 

CCCD-1 

CCCD-2 

CCSU-1 

Constant Capacities and 
Constant Demands - Constant cu 

Constant Capacities and 
Constant Demands - Exponential cu 

Constant Capacities and Uniformly 
distributed Demands - Constant cu 

CCPD-1 Constant Ca~acities and general 
Probabilist1c Demands - Constant cu 

CCPD-2 Constant Capacities and general 
Probabilistic Demands - Exponential cu 

CCGD-1 Constant Capacities and Gaussian 
Demands -- Constant cu 

GCGD-1 Gaussian Capacities and Gaussian 
Demands - Constant Cu 

GCGD-2 Gaussian Capacities and Gaussian 
Demands - Exponential cu 

4.2.2/4.1 

4.2.3/4.2 
/4.3 

4.3.1/4.4 
4.5 

4.3.2/4.6 

4.3.3/ 

4.3.4/4.6 

4.4.1/4.7 

4.4.3/4.8 



CHAPTER V 

ANALYSIS OF RESULTS 

5.1 Introduction 

This chapter .presents a unifying analysis for all the 

models previously developed. We first examine, from a 

probabilistic approach, how the methodology should be 

integrated to the actual cogeneration design process. 

Then, we present a number of observations about the 

models. The discussion is focussed on the constant-unit-cost 

models. Some extensions of the methodology to other research 

problems are also considered. 

Since the methodology is based on mathematical models, 

it has some limitations. Thus, one of the following sections 

addresses verification, calibration and limitations of the 

models presented herein. Next, a sensitivity analysis is 

performed to assess the validity of the methodology. This is 

achieved through a sensitivity analysis, i.e. by comparing 

the response of the models (to changes in cost coefficients 

and in distribution parameters) with what is generally 

expected from actual cogeneration systems. The application 

of some extensions of the models to actual cogeneration 

projects is also considered. 

These topics are discussed in the following sections, 

which also define how the methodology extends to other design 

problems and how it can be linked to future research. 
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5.2 A Probablisitic Cogeneration 

Design Paradigm 

169 

Figure 5.1 synthesizes the design process suggested in 

this thesis. Its three phases are discussed below. 

First, Phase I consists of the data analysis and 

preparation tasks accomplished through conventional 

statistical methods. Phase I also includes the 

characterization of the bivariate load in terms of parameter 

estimates and the selection of a technically feasible 

technologies (i.e. those that meet the thermal demand of the 

industrial plant or thermal host). 

Next, Phase II is the focus of this thesis. Thus, its 

objective is the determination of the optimal combination of 

system technology and total capacity. Consequently, Phase II 

comprehends all the models developed herein and others that 

might be constructed in the future. Basically, any chart 

that shows TEAC vs Pc in Chapter 4, can serve as the common 

template for the evaluation of several alternative 

technologies. For example, Figure 5.2 presents 4 curves that 

could represent four different technologies for a given CHP 

load distribution. Therefore, the designer can visualize, 

for each technology, both the optimal capacity and the 

sensitivity of the TEAC to changes in capacity. But most 

importantly, the engineer can determine simultaneously which 

technology and what size gives the best expected total 

equivalent annual cost of owning, operating and maintaining 

the CHP system. Thus, the Oklahoma Energy Analysis center at 

Oklahoma State University is currently using the methodology 

of Phase II for preliminary cogeneration evaluation. 



PHASE I PHASE II PHASE Ill 

DATA COLLECTION SELECT CHP DEFINE 

AND ANALYSIS 
OPTIMIZATION RAM 

MODEL REQUIREMENTS 

ESTIMATE PDF'S DEFINE DETERMINE 
OPTIMALITY LOAD/RAM 
CONDITIONS MODEL 

ALLOCATE RAM: 

SELECT 
NUMBER OF 

PRIME 

DEFINE SET FIND Pcmax MOVERS 

OF CANDIDATE SEARCH Pco 

TECHNOLOGIES DETERMINE Pc• DETERMINE 

STAND BY 

SELECT 
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CHARACTERIZE 

SYSTEM/LOAD 
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DETAILED 
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Figure 5.1 A Probabilistic Cogeneration 
Design Paradigm 
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In Phase II, and in our methodology, system availability 

is implicitly acknowledged by using an "expected hours of 

operation" figure. E.g. t = 8000 "up-time" hours per year 

implies a system availability of 8000/87060 = 0.91324. 

Phase III -the logical, continuation of Phase II- is 

suggested for further research. Phase III would involve 

the development of a subsequent methodology that evaluates 

and allocates the CHP system's Reliability, Availability and 

Maintainability (RAM) in conjunction with random CHP loads 

and capacities. In other words, for a CHP system, this phase 

would define the required mean time between failures (MTBF) 

and mean time to repair (MTTR). Then the number of prime 

mover units and their corresponding size would be determined. 

But, continuous pdf's f(x) for x~o can not model "system 

andfor component" down-time, nor can model "no-load" periods. 

Hence, for all those cases in which a discrete capacity and 

down-time exist; and when a discrete or "step-function" 

variation of load occur (including periods with no load 

whatsoever) mixed discrete-continuous pdf's are needed to 

model the CHP system. Bra~son (1992) has suggested that this 

could be accomplished with a similar procedure to those used 

to represent queuing systems with "no waiting in line time" 

and with "no service time". 'In other words, when the 

probability P(x=o) >0 and/or there is a step-wise random 

process over time, mixed continuous-discrete pdf's can be 

utilized. Again, examples of x can be CHP system (or 

component) down-time and no-load-time. 

Another approach is the development of a Load-RAM model 

through continuous Markov chains. These type of models have 

been used extensively in power plant reliability evaluation. 
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A rather complete discussion can be found in Billinton and 

Allan (1984). Thus, for the CHP problem, the four states Zi 

defined in section 4.4 can have at least two additional 

states (one for CHP system down-time, and another one for 

industrial load down-time). Other states which are different 

"derated" discrete levels,and their rel~vant load-capacity 

combinations could also be defined. 

In our case, however, ·in~tead of starting with a set of 

given stochastic transition rates,towards the determination 

of state probabilities; we might start with a limited set of 

state probabilities in order to define transition rates that 

in turn would 'provide the frequency of arrival to the states 

(and their expected associated costs)., Thus, some states 

could represent discrete changes in CHP system capacity and 

other states discrete partial changes in CHP demands. 

Also, an interesting development of a likely application 

in future research is the method of "level crossing" utilized 

in the fields of random v~brations and digital signal 

processing. Here, a crossing of certain levels of a 

continuous rv x represent a "change of state". For details, 

see for example DeNewland (1984) and Stark .and Woods (1986). 

However, we should keep in mind that the ultimate 

objective of Phase III is the optimal determination of the 

number of units that conform the total capacity -including 

any stand by capacity, tf deemed cost effective. This should 

be modeled taking into consideration all the cost items used 

in our methodology. In addition, other costs such as failure 

and "loss-of-load" costs should be integrated in a total cost 

objective function. 
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5.3 Analysis of Results and Extensions 

Due to the built-in generality of the TEAC equations, 

the results of the research could also be extended to various 

problems encountered in energy systems design and also in 

manufacturing systems optimization. We saw at the beginning 

of Chapter 1 an example on how·~andomness helps minimizing 

the throughput time of a flexible manufacturing system. In 

the case of a cogeneration system, however, the benefit of 

randomness is not that obvious. In fact, depending on the 

actual magnitude of the cost parameters invo.lved in a 

particular model, larger variations in CHP capacity might or 

might not imply larger investment risk and lower returns. 

But this can not be easily generalized. So, Figure 5.2 is in 

reality the plot of four models developed in this thesis for 

the case of constant unit-cost (cu=k). In the figure, the 

plots were obtained from the examples used to illustrate the 

models: CCCD-1, CCUD-1, CCG0-1 and GCGD-1. That is examples 

4.1, 4.5, 4.6, and 4.7, respectively. In general, the 

examples use the same cost coefficients and the same (or 

similar) CHP average demands. However, depending on the 

underlying load and capacity distributions, different results 

are observed. Some observations are discussed as follows: 

1) The CCCD-1 model is almost identical to the CCGD-1 
model. In fact, a variation analysis (not shown) 
indicated that there was an average of about 0.2% 
difference between the TEAC estimates of the CCCD-1 
and the CCGD-1 models. This shouldn't come as a 
surprise, since the standard deviations for the CCGD-
1 model were selected to be small (10% of their 
corresponding means), so as to use the deterministic 
CCCD-1 model as a control; i.e. a means of 
verification and validation. 

2) The CCUD-1 model depicts the largest sensitivity of 
TEAC to changes in Pc. It shows how the "uncertainty 
without central tendency" of uniformed distributed 
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CHP loads makes TEAC a quadratic function of Pc. 
Hence, a deviation from the target Pc* (or Pc0 ) 
imply an increase in TEAC proportional to the square 
of the deviation in Pc. This presents a remarkable 
similarity to the postulated by the "Taguchi loss 
function", which states that the loss to society 
due to "off-target" decisions, products or services 
is proportional to the square of the deviations from 
the target. For more details on this Quality Control 
concept, see for example Lochner and Matar (1990). 

3) The GCGD-1 model shows the effect of the convolution 
betwe.en random demands and capacities. Since a 
convolution is solely defined for the algebraic sum 
of independent density functions, then the effect in 
the TEAC function is a reduction in risk (or in the 
sensitivity of TEAC(Pc). A casual explanation for 
this follows the same rationale .of the flexible 
manufacturing system with random capacity and random 
demands. Thus, in the GCGD-1 case, a low capacity 
has ai:t.equal probability to occur with a "high" as 
well as·with a "low" demand. But in the CHP case, 
PURPA permits that the surplus (deficit) electrical 
energy be absorbed (provided) by the utility grid. . 
since typically ce > lsel, the larger variance of the 
power O'zp is "buf:rered" by the utility system. 

4) In figure 5.2, from Pc = (0 ••• 400 kWe) the CCCD-1 
CCGD-1 and GCGD-1 models show very small differences. 

5) The GCGD-1 models shows the overall minimum. 

Similar conclusions can be obtained for the models that 

include an exponentially decreasing system unit-cost to 

account for economies of scale. However, the most relevant 

effect of such models (XXXX-2) is that regardless of the 

underlying CHP load dis.tributions, they exhibit at least one 

inflexion point. In some cases, as shown in examples 4.2 and 

4.8 the TEAC functions have local maximums. This should be 

further explored, since local maxim~s define points of 

operation that should be avoided. 

Further research is suggested for the case of the 

integration of this methodology with the characterization and 

evaluation of technologies for load variance reduction. 

For example, thermal energy storage TES (in the form of ice, 

hot water, chilled water or compressed air) is used to level 
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the load "seen" by the CHP system. Recall from observation 3 

above, that "moderate" load variation does not have a 

significant impact on the sensitivity of TEAC, specially when 

the price differential between ce and lsel is not large. 

But, for isolated systems or whence >>lsel' reduction in 

load variation will certainly affect the sensitivity of TEAC 

and its optimality. Hence TES and cogeneration systems can 

be evaluated jointly. Then optimal combinations of TES-CHP 

capacities can be obtained. 

5.4 Verification, Calibration 

and Limitations 

Verification tests have been conducted through the 

examples of Chapter 4. The tests have shown that the 

numerical output of the models are the same or almost the 

same as those obtained through double numerical integration. 

Also, the results have shown that the models provide more 

accurate and much quicker results than plain (double) 

numerical integration. In addition, Figure 5.2 generally 

provides a visual means to verify the numerical results 

obtained in the model-examples. By extension, Figure 5.2 

provides a means to establish the relative validity of all 

the models developed here. Thus, the figure 'Shows that the 

models behave as expected. That is they provide a convex 

function with a global minimum for typical cost coefficients. 

"Calibration" of the models is readily attained by 

linearly adjusting the TEAC at the starting point of the 

search, i.e. TEAC (Pc = 0). Recall from Example 4.1 that CHP 

model calibration is the process of verifying that TEAC(Pc=O) 

is comparable to the existing total annual energy cost. 
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Thus, the following relationship can be used to calibrate, if 

necessary, any of the models. Henceforth, 

where 

TEACcal = a + S.TEAC(O) = AEC 

a, B 

= calibrated TEAC function 
= model TEAC evaluated @ Pc =0 
= existing or predicted Annual 

Energy Cost without cogeneration. 
= calibration constants 

[5.1] 

Since in general 8=1, i.e. the model may be simply 

shifted from AEC, then the calibration constant a can be 

solved from equation [5.1]. However, if a change in scale is 

detected, then B can be obtained by solving equation 5.15 at 

TEAC(Pc) for a value of Pc > o. TEAC(Pc) can be obtained 

from historical costs of existing cogeneration plants. 

The ultimate validation, however, lies on the proper 

application of the models. For example, in the case of 

seasonal costs and/or seasonal CHP loads, a different model 

can be used for each season. Then, the owning costs can be 

prorated according to the energy generated in each season. 

Finally, all expected seasonal costs can be added together. 

The following section on sensitivity analysis further 

demonstrates the validity of the models. However, 

we should quote Taha (1982, pp 657-658): 

The apparent reason for this (application) 
difficulty is that ••• models available rarely 
satisfy the conditions under which the real system 
operates. However, we must keep in mind that this 
difficulty is typical of all mathematical models. 
What we need then is a clear recognition of the 
limitations of available (queuing) models from the 
point of view of their apRlications to real life 
situations. These limitat~ons should be investigated 
in a manner that would reveal the degree of 
sensitivity of approximating a real system by a given 
mathematical model." 

Thus, one of the main limitations of the methodology is 
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the fact that many facilities exhibit correlated loads and 

capacities. For example, a hospital has high demand for air

conditioning electricity during summer and high demand for 

heating steam during winter. Again, one way to mitigate and 

sometimes to totally, circumvent this problem is through the 

buffering effects of energy management technologies for the 

reduction of load variance. 

Also, load displacement techniques can be used. For the 

hospital example with negatively correlated CHP loads, steam 

heat can be used for cooling through absorption cycles. In 

this way, electrical demand is ·substituted by heat demand. 

Similarly, in winter a mix of electricity using heat pumps 

and steam coils might be used to "shave" the steam demand 

peak. But all these techniques are available at a cost. 

Therefore: How much reduction in either load variation or 

load-capacity correlation is cost effective? 

However, the correlation problem prevails. A 

symmetrical covariance matrix Kbp (4x4) of CHP loads and 

capacities is a good starting point: 

He Pc Hd Pd 

He v11 

Pc 

Hd 

CHP-utility exchange is generally the rule, but some may 

consider a limitation the fact that the methodology is only 

for cogeneration with electricity import and export. Thus, 

for the exceptional cases, the problem can be circumvented by 

modifying the underlying model equations so they emulate: 



1) A system that tracks the internal electrical load 
and only purchases electricity deficits 
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2) A system that is totally isolated from the utility. 

In the first case, this is done by modifying states w1 

and w3 (CCxx models) or z1 and z3 (GCGO models), so power 

is not sold back but it's only purchased from the grid. 

This is actually accomplished by dropping the terms on se of 

equations EC1 and EC3 . In addition, to represent power load 

tracking, equation EC0 should be function of Pd instead of 

Pc. Thus, for the GCGD model, one load tracking equation is 

ECo = s:~ s=~ (a + cf/ne.t+ cm.t) Pd f(Zp,Zh) dZp dZh 

Based on the rationale just stated, two discrete cogeneration 

sizing models for load tracking has been developed by Turner, 

Wong and Viswanathan (1992). Such models develop quadratic 

TEAC functions. The models have been applied in a World Bank 

project (in Mexico) to evaluate potential cogeneration sites. 

Mexican and international experts have agreed with the logic 

and the results of the models. 

The second case is not a trivial o~e and it certainly 

warrants a topic for further research. Here, in addition to 

the modifications stated for the plain load tracking model, 

it is necessary to define at least one additional term to 

account for "loss of load" occurring in the states with 

capacity deficit, i.e. w2 and w4 (CCxx models) or z2 and z4 

(GCGD models). However, other than plants isolated from 

utility transmission/distribution lines or in countries where 

cogeneration with a utility tie is not allowed, the case has 

limited applications in practice. In the u.s.: Who would 

plan, design and install a cogeneration without the utility 

back-up (and other benefits) provided by PURPA? 
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5.5 Validation and Sensitivity Analysis 

This section provides a validation scheme through 

sensitivity analysis. Thus, by making some changes in model 

parameters and coefficients, the models are validated by 

comparing their response to '(a) the results of similar 

changes in actual cogener~~ion plants and to (b) generally 

accepted expectations. 

First notice that an_underlying assumption has been that 

energy costs ~re non random (20-year contracts .for firm fuel 

costs are becoming commonplace.in cogeneration). But there 

have been a few cases in which a drop in electricity rates 

has caused a cogeneration developer to reduce the rates he 

was charging to a client. Thus we wanted to further 

investigate the effects of changes in energy costs and 

changes in load/capacity variances. For instance, Fore 

(1988, pp 1) reports that, after a change in rates by Pacific 

Gas & Electric, a cogeneration plant had to (contractually) 

reduce its tariffs. Fore says that "such a developer had 

trouble meeting debt obligations as a result of the drop in 

prices". Then, the developer decided not to expand the CHP 

plant. On the other hand, it is not unusual that a potential 

industrial developer may obtain a better deal from his 

cogeneration-averse electric utility when he gives a serious 

consideration to cogeneration. Thus, a number of parametric 

analysis were performed using the CCUD-1 and the GCGD-1 

models. These models were selected since they are the "most 

general" and "well behaved". The sensitivity analysis will 

explore changes in: (1) electricity costs, (2) gas cost, (3) 

the ratio sefce and, (4) the variances of load and output. 



181 

5.5.1 Changes in Electricity Costs 

Figure 5.3 shows a TEAC vs Pc plot using the CCUD-1 

model for various multipliers (1+mi>· The multipliers adjust 

the base values of Ce and se used in Example 4.5. Note that 

TEAC(O) is linearly proportional to the electricity cost. 

That is the model is valid at the "do-nothing" level. Also 

notice that as the electricity costs increase TEAC(Pc*) 

decreases and, at the same time, Pc* increases. In other 

words, a larger CHP plant is more profitable with increasing 

electricity costs. These results indicate that the CCUD-1 

model, which is the foundation of all the stochastic models 

developed here, behaves as expected and is in general valid. 

An interesting observation is the locus point L, which 

shows that regardless of the changes on electricity costs, 

TEAC(Pc) ~ $300,000/yr is constant for Pc = ~pd = 800 kW. 

Note that the optimum points [Pc*,TEAC(Pc*)] spread around L. 

Thus, it can be said that for typical electricity rates, the 

optimum Pc* is in the neighborhood of ~pd· This is useful 

since TEAC(Pc=~pd) is a good starting search point. Then the 

result challenges the conventional criterion of base-loading 

as a likely optimum. Thus, instead of sizing at the lower 

tail of one of the CHP load distributions, this result 

indicates that many optimal solutions are closer to the mean 

load than to the lower tail. Also, the result is similar to 

the optimality conditions obtained for the CCCD models. Note 

that beyond L, the ranking given by the TEAC equations is 

reversed. So, under decreasing electricity rates, it becomes 

more risky to oversize the CHP plant beyond L. This is just 

the case presented by Fore (1988), which was discussed above. 
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5.5.2 Changes in Fuel Cost 

Figure 5.4 is a TEAC vs Pc plot of the CCUD-1 model for 

various multipliers (1+mi) of the fuel cost cf. The base 

cost (m=O) is from Example 4.5. This graph shows what we 

generally expected for changes in cf. Thus, it shows that 

Pc* slowly increases as cf decreases, and at the same time, 

TEAC(Pc) decreases. Note that the convexity of TEAC 

diminishes as cf decreases, making less risky to oversize the 

plant. Also, note how the optimal Pc*•s_are located just to 

the left of Pc= ~pd = 800 kW. Hence, as discussed in the 

literature, the model emulates closely actual CHP systems, by 

showing a much larger sensitivity to changes in electricity 

costs than to changes in fuel cost. The CCUD-1 model allows 

one to verify this by comparing the sum of the partial 

derivatives of TEAC with respect to ce and se, with the 

partial derivative of TEAC with respect to cf. The partial 

derivatives of TEAC equation [4.26] are given by 

6TEAC t 
----- = --------- (kWh/yr) [5.1] 

= --------- [5.2] 

6TEAC 
+ = -------- [5.3] 

= 

Note that equations 5.1 and 5.2 have one quadratic term of 

electrical power P. But in equation 5.3, the combined effect 

of both ce and se is represented through two quadratic terms 

of electrical power (between brackets). 
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Whereas there is only one quadratic function of electrical 

power in equation 5.4. Thus, with regard to power loads, 

TEAC is much more sensitive to ce and se, than to cf. Note 

however that equation 5.4 includes quadratic terms of the 

thermal load (H). Hence, as generally expected, TEAC becomes 

more dependent of cf with larger thermal loads .. 

5.5.3 Changes in the Relative Cost 

of Electricity 

Here we explore relative changes in the ratio r=jsefcel 

or r=-sefce (for se<O, ce>O). The base cost and distribution 

data is from Example 4.7. Figure 5.5 shows realizations of 

the GCGD-1 model for various ratios r of the electricity 

costs. Note that to the left of the optimum Pc*'s, the 

TEAC(Pc) functions are totally insensitive to relative 

changes between the electricity costs se and ce. Again, all 

Pc*s are around the mean demands ~pd=800 and ~hd=750; showing 

that the optimal solutions are generally "anchor" between ~pd 

and ~hd· 

Note that about the optimal region, the functions are 

curved. But, to the right of the "optimal region", the TEAC 

functions behave linearly; with slopes inversely proportional 

to the ratios r. Hence, for smaller r, i.e. decreasing se 

(revenues) with respect to ce (costs), TEAC increases and it 

is more risky to oversize a CHP plant. This is what we 

expected from the model. 

5.5.4 Changes in the Variances 

Figure 5.6 depicts a parametric plot of TEAC vs Pc for 

various coefficients of variations (vc, vd)· The cost data 
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is from Example 4.7. Due to the buffering effect of the 

utility tie, TEAC is not very sensitive to changes in the 

variance of capacity or demand. Note that all the optimums 

Pc* "anchor" at the mean power demand JLpd=SOO. However, 

in the neighborhood of Pc*, ,TEAC is larger (less profitable) 

with larger coefficients of variation~ An interesting and 

unexpected observation is that, with higher (vc, vd), the 

TEAC functions tend to flatten as JLpc increases. 

5.6 Summary 

This chapter has analyzed the results of the models 

developed in Chapter 4. It discussed how the results of 

models have been verified through examples and how the models 

can be calibrated, if necessary. Next, some limitations of 

the models were addressed. Then, the chapter is concentrated 

on a sensitivity analysis for the validation of the models 

CCUD-1 and GCGD-1, the first and last constant-unit-cost 

models. Therefore, since all the probabilistic models of the 

methodology were derived from these two models, then by 

extension, the whole methodology was validated. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

This thesis has presented tpe development of a robust 

and responsive methodology for cogeneration system design. 

Throughout the development, there has been a deliberate 

attempt to present the material in a didactical manner: with 

demonstrative examples amenable to educational endeavors. 

As seen in section 4.5, the methodology has been developed 

through an incremental modelling of the randomness that 

naturally occur in industrial cogeneration systems. Thus, 

Figure 5.1 globally illustrates a probabilistic cogeneration 

design paradigm. The figure shows a design process composed 

of three phases which are prescribed for an explicit 

acknowledgment of randomness in the operation of CHP systems. 

Thus, Phase I uses statistical methods to convert CHP data 

into CHP distributions, Phase II is the focus of this thesis 

and Phase III, RAM analysis, is proposed for future research. 

Then, it can be seen that the research envelope shown in 

Figure 3.1 has evolved to Phases II and III of Figure 5.1. 

Also, it can be said that, in essence, Phase II and this 

methodology are almost indistinguishable. This is a good sign 

that the main research objectives have been accomplished. 

We have obtained insightful results and observations 

from this research. These are summarized in this chapter. 

Next, we discuss how the methodology extends to other design 

problems and how it can be linked to future research. 

187 
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6.1 Conclusions 

The following conclusions are drawn from this research: 

1} The research effort has allowed us to convert a random 

process [Bd, Be, Pd, Pc] into a set of discrete states 

(w1 , w2 , w3 , w4 ] and (z1 , ·z2 , z3 , z4]. This was 

accomplished through the aefinition of the CHP space and 

the CHP difference space, respectively. Subsequently, the 

formulation of the TEAC eq~ations for each model determine 

a global objective function'for the optimization of 

various cogeneration systems. 

2} The development process proceeded in an evolutionary 

fashion. But, first it w~s necessary to conduct a rather 

exhaustive literature review. Thus, studying and 

understanding the research problem allowed us to formulate 

the problem integration mechanism defined by the TEAC 

model equations. 

3} The models summarized in Table 4.13 constitute the robust 

and responsive methodology for economically based design 

of cogeneration systems proposed in the definition of the 

research objective in Section 3.5. The development of the 

models presented in Chapter 4, and the analysis of Chapter 

5 accomplish the mission ·defined by the Subobjectives 

stated in Section 3.6. Thus, Subojective 1; the basic 

economic criteria for CHP systems, is accomplished through 

Section 4.1. Subojective 2, a conceptual model for 

constant demands and capacities, is obtained in Section 

4.2. Subojective 3, a conceptual model for a CHP system 

with constant capacity subject to Gaussian demands, is 

discussed in Section 4.3. Next, Subojective 4, a 
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conceptual model for a CHP system with Gaussian 

distributed capacities and loads, was developed in Section 

4.4. Finally, Subojective 5, conclude on the applicability 

and validity and define topics for further research, is 

accomplished throughout Chapter 5 and in Chapter 6. In 

addition, a model for uniformly distributed loads and 

another one for constant capacities and generally 

distributed demands are included in Chapter 4. 

4) The methodology shows that for most typical cost 

coefficients and distribution parameters the objective 

functions are generally convex. The only exception is the 

set of models that account for economies of scale, which 

always show at least one inflexion point and sometimes 

might have local maxima. 

5) An interesting characteristic of the models is their 

ability to represent the buffering effects of a utility 

tie with electricity import and export. In fact, as the 

randomness of the models increases, the economic effects 

of over-sizing the system are mitigated. In other words, 

with respect to constant load models, the TEAC of the GCGD 

models become rather insensitive to random loads and 

capacities. The reality of the US cogeneration market 

indicates just that. According to Turner (1992) most of 

the new cogeneration output installed during the last 

decade accounts for more than 50% of the new total US 

power generation capacity; and the majority of the plants 

are gas turbine based systems. But, in spite of their 

random outputs, gas turbine systems keep steadily growing 

in size and number. This shows that in many cases they 

are more cost effective than conventional power plants. 
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6.2 Research Contribution 

The comprehensive methodology for the economically based 

sizing of bivariate capacity/demand systems, is the first 

analytical attempt -as far as the available literature 

indicates- to effectively iptegrate existing statistical 

methods and probability th~ory to the realm of industrial 

energy systems design. Energy systems such as cogeneration 

plants, thermal energy,storage, and steam distribution 

networks are some of the direct applications of the developed 

methodology. The methodology could also be extended to the 

design and analysis of flexible manufacturing systems with 

and without inventories. 

Research needs, stated in the pertinent literature, 

strongly indicated that the met~odology proposed here has 

been needed and awaited for a long time. Recall that the 

underlying problems of randomness in design and economic 

decision analysis under risk have been widely recognized and 

understood and it is not suggested that they have recently 

come to fore. But the literature and industry repeatedly 

indicate that an effective solution procedure for CHP plant 

design must recognize and 'incorporate the stochastic nature 

of the problem. Thus, the co~rect application,of the results 

of this research will allow engineers, analysts and decision 

makers involved in design and/or evaluation of this kind of 

problem to resolve the imp~sse caused by its probabilistic 

nature. 

In addition, the models developed in this research will 

be able to serve as a powerful research and development tool. 

For instance, by knowing the "most likely" operating range of 



191 

a gas turbine CHP system for a given market segment or for a 

type of application, the manufacturer can improve the overall 

value of the product by enhancing the performance 

characteristics of the machine for the relevant range and 

frequency of operation. Consequently, using our methodology, 

robust designs (i.e. designs that economically operate under 

wide load variation) could be developed for CHP and other 

similar systems. In this context, our methodology becomes a 

quality improvement technique that could be even extended to 

conduct market research. 

The research results presented in this thesis should 

also serve as the basic conceptual framework upon which 

further and more sophisticated methods can be developed. In 

particular, as a result of this research, CHP system design 

improvements could be evaluated under probabilistic 

scenarios. For example, a systematic incremental economic 

analysis for marginal improvements -as related to reductions 

in variance of capacity and/or demand- can be conducted. 

Another example of the research usefulness is the economic 

assessment of reliability improvements in the underlying CHP 

system. 

In addition, regulatory compliance can be demonstrated 

by expressing the requirements of cogeneration regulation 

within the CHP sizing methodology. For instance, statistical 

limits on the performance of prospect cogeneration systems 

could be formulated to show compliance to system 

effectiveness requirements. Also, a probabilistic approach 

can help in the negotiation process of setting rates between 

developer and utility, and to show the impact of the CHP 

plant on the utility system's reliability and availability. 
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Finally, this methodology is said to be robust because 

the engineer or analyst can use one of various models to suit 

a particular cogeneration application. In other words, the 

methodology remains valid, withstanding the variation in 

cases and applications. The methodology is also responsive. 

Thus, to construct valid evaluation models, the methodology 

can be easily adapted to the characteristics andfor details 

of a particular site. In this context, robustness and 

responsiveness provide the analyst with the means to create 

better and valid models. 

6.3 For Further Research 

The following are topics recommended for further 

research: 

1) The modification of the methodology for the cases 

with correlated CHP capacities andfor loads. 

2) The extension of the models to consider (a) load tracking 

(no electricity export) and (b) for isolated plants. 

3) The development of the CHP-RAM capacity allocation (i.e 

how many units and what size each) models discussed in 

Section 5.1 

4) The development of a model for load variance reduction. 

For instance, an optimization methodology for the design 

of CHP-TES systems. In other words: What is the optimal 

combination of CHP-plant-size.and TES-size? 

5) The estimation of the variance of the TEAC functions, 

which should follow a development similar to the one used 

for the TEAC equations. 

6) The development of a cogeneration design expert system 

based on the models presented and/or proposed herein. 



7) The optimization of the n-multivariate demand and load 

problem discussed below. 

6.4 Concluding Remarks 
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From determining the diameter (and the tolerances) of a 

bolt to estimating th'e number of gates in an airport; and 

from sizing an electrical conductor to establishing the 

useful pay-load of a space ship, one of the most important 

design tasks that always have confronted engineers is the 

specification of the size or capacity of an engineering 

system. Thus', much judgement and many trade-offs have to be 

exercised by engineers in order to specify the "right" system 

capacity. This is more critical when the engineer is 

confronted with technological constraints and limited 

resources -an ever present problem. Furthermore, the system 

sizing problem becomes more complex when two or more design 

parameters (e.g •. weight, volume and strength) have to be 

specified. 

This thesis has ~resented an evolutionary approach to 

the economical system sizing problem for the case of 

bivariate capacities and bivariate demands. The cogeneration 

or CHP problem has been used throughout as the vehicle to 

develop the methodology. 

It is hoped that, in a fashion similar to the 

developments of vector analysis, linear algebra and linear 

programming, in which two variables and the X-Y plane are 

used to demonstrate the theory of an n-dimensional problem, 

the two-variable case of CHP size optimization will serve as 

the basis for the development of a conceptual optimization 

method for the general case of a system with n-random-



variable capacities subject to n-random-variable demands. 

Thus, for instance, the problem of industrial steam 

utilization (or any other fluid) at different temperatures 

and pressures has triggered much research in the so called 

field of "thermo-economics"; but under pure deterministic 

conditions. 

Since steam at different temperatures and pressures 

represents different levels of ~·exergy" or energy 

availability (i.e. the capacity to perform work), then 

the fluid becomes a multi - commodity, or better, a set of 

commodities. For example, in cogeneration topping cycles, 
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a hot fluid is always used to produce electrical or shaft 

power first, then it is subsequently used to make steam 

distributed to various processes in cascade through a network 

with several pressure levels. 

So, each commodity or fluid stream (Sj) has a value 

proportional to its absolute temperature (Tj) and a cost 

proportional to the temperature difference (Tj - Tj+l) of the 

process that constitute its demand. Henceforth, in an 

industrial plant where steam is utilized at multiple 

pressures and is supplied from a multiple unit CHP plant, we 

can visualize a realization of the multivariate-capacity 

multivariate-demand problem. But, the methodology to 

determine, under stochastic conditions, both the total 

optimal capacity and the capacity allocated to each commodity 

remains to be accomplished. 
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APPENDIX 

PROOF FOR THE CCUD~l MODEL 
[EQUATION 4.26] 

Recall from equation 4.25a (Example 4.4) that the 

expected total equivalent annu~l cost for uniformly 

distributed heat H and power P loads is 
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TEAC(Pc) = EC0 + EC1 + EC2 + EC3 + EC4 

Where: 

[4.25a] 

ECo = J J (a + cf/ne.t+ cm.t)Pc f(P).f(H) dPdH 

EC1 = 
JHc 

Hl 
JPc 
Pl {cr(Hc-H) + se(Pc-P)} J(t) dPdH 

EC2 = 
JHc 

Hl 
JP2 

Pc {cr(Hc-H) + Ce(P-Pc)} J(t) dPdH 

J H2 JPc 
= He Pl {cffna (H-Hc) + Se(Pc-P)} J(t) dPdH 

J H2 JHl 
= He Pc {Cf/na (H-Hc) + ce(P-Pc)} J(t) dPdH 

J(t) = t.f(H,P) = t/[(H2-Hl) (P2-Pl)] 

Next, all terms within the integral equations are developed. 

Thus for Ec1 , over the integration domain Wl, we have 

EC1 = J J [crHc- crH + sePc -sePJ J(t) dPdH 
(Wl) 

= [crHc + CePe] J J J(t) dPdH 
(Wl) 

+ J J[-crH -seP] J(t) dPdH 
(Wl) 
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I
Hc IPc 
Hl Pl 

= [(crHC + SePc) (P0 - P1) (H0 -H1) 

+ (-cr(Hc2-H12) (Pc-P1)/2 -se(Hc-H1) (Pc2-p12)/2] J(t) 

= [crHc2Pc'- crH1HcPc - CrP1Hc2 + crP1H1Hc [Al] 

+ SeHcPc2 - SeP1HcPc + SeP1H1Pc - sePc2H1 

- (crHc2Pc + crHc2P~ + crH12pc - crH12~1 
- SeHcPc2 + SeHcP12, + seH1Pc2 - seH1P12)/2] J(t) 

Next for EC2 , over the integration domain W2, we have 

= J r [crH~ - CrH + CeP - CePe] J(t) dPdH 
(W2~ 

I
Hc IP2 

= [[crHC- cePe] P.H- crH2P/2 + ceHP2/2] J(t) Hl Pc 

= [(crHC- CePe) (P2- Pc) (He- H1) - (Cr/2) (H0 2-H12) 

(P2-Pc) + (ce/2) (Hc-H1)(P22 -Pc2)] J(t) 

= [crP2Hc2 - CrP2H1Hc - CrPcHc2 + CrH1PcHc [A2] 

- CeP2PcHc + CeP2H1Pc + ceHcPc2- ceH1Pc2 

- (1/2) (crP2Hc2+ CrHc2Pc+ crH12P2- crH12Pc 

+ CeP22Hc- CeHcP0 2- CeH1P22+ CeH1P0 2)] J(t) 

Next for EC3 , over the integration domain WJ, we have 

EC3 = J J[(cf/na)H -(cf/na)Hc + sePC- seP] J(t) dPdH 
(WJ) 

= [(-Cf/na.Hc +sePc)H.P +cf/2na H2P -se/2HP2 ] J(t) ~~~ ~~~ 
= [(-cfHc + sePc)(H2 - He) (Pc- P1) 

+(1/2)(cf/na) (H22 - Hc2)(Pc- P1) 

-(se/2) (H2- He) (Pc2 p12)]J(t) 
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= [-cf/na.H2HcPc +cf/na.H2P1Hc +cf/na.Hc2Pc -cf/na.P1Hc2 

+(seH2Pc2 - seH2P1Pc - seHcPc2 + seP1HcPc (A3] 

+(cf/na.H22Pc - cf/na.H22P1 - cf/na.Hc2Pc + cf/na.P1Hc2 

- seH2Pc2 + SeH2P12 + SeHcPc2 - SeP12Hc)/2] J(t) 

Next for EC4 , over the integration domain W4, we have 

= I I [Cf/na.H- Cf/na.Hc+ ceP- cePe] J(t) dPdH 
(W4) 

I
H2 IP2 
He Pc 

= (-Cf/na.Hc - CePe) (H2 - He) (P2 - Pc) 

+cf/(na2) (H22-Hc2)(P2-Pc] + (ce/2) (H2- He) (P22-Pc2) 

= [(-cfH2P2Hc + cfH2HcPc + cfP2Hc2 - cfHc2Pc)fna [A4) 

-ceH2P2Pc + ceH2Pc2 + ceP2HcPc - ceHcPc2 

+l/2(cf/naH22P2 -cffnaH22Pc - cf/naP2Hc2 + cf/naHc2Pc 

+ ceH2P22 - ceH2Pc2 - ceP22Hc + ceHcPc2)] J(t) 

In equations Al, A2, AJ, and A4 above, all the third degree 

terms containing Hc2Pc and HcPc2 cancel out. Henceforth, 

collecting all the second degree terms (i.e. those containing 

Pc2 , Pc.Hc and Hc2 = r 0 2.Pc2), from all the above equations, 

we obtain the following partial coefficients of Pc2 : 

= 

= 

(-seHl + SeHl/2 - CeHl + CeHl/2 

+ seH2- SeH2/2 + CeH2 -ceH2/2) J(t) 

1/2 (-seHl - ceHl + seH2 + ceH2) J(t) 

1/2 (se + ce) (H2 - H1 ) J(t) 

rc(-crHl - sePl + crH1- ceP2 

- Cf/naH2 + SePl + Cf/naH2 + CeP2) J(t) 

= 0 



== 

= 

== 

rc2 (-CrPl + Cr/2Pl + CrP2 - Cr/2P2 

- CfPl + cfPl + Cf/naP2 - Cf/2naP2 ) J(t) 

rc2 [-cr/2P1 + cr/2P2 - cf/2naPl + cf/2naP2]J(t) 

rc2 [cr/2(P2 - P1 )+ Cf/2na (P2 - P1) J(t) 

rc212 (P2 - P1 ) (cr + cf/na) J(t) 

205 

Thus, we define the global coefficient A (of Pc2) as follows 

A = A1 + A2 + A3 [AS] 

= 1/2[(ce + se) (H2 - H1 ) _+ (cr + cf/na) (P2 - P1)r0 2] 

Next, considering He = r 0 .Pc, the terms containing Pc are: 

Ba = rcCcrPlHl + seP12/2 - crP2Hl + cep22/2 

+ Cf/na.H2P1 - SeP12/2 - Cf/na.H2P2 - CeP22/2) 

= r 0 [crHl(P1 - P2) + Cf/na.H2 (P1- P2)) J(t) 

== r 0 [(P1 - P2 ) (crHl + cf/naH2)J J(t) 

Bb == (se PlHl + CrH12/2 + CeP2Hl - CrH12/2 

- seH2P1 + cfH22/(2na) - ceH2P2 - cf/2H22/(2na)JJ(t) 

== [(sePl (H1 - H2)+ ceP2 (H1 - H2)] J(t) 

== (H1 - H2) (sePl + ceP2) J(t) 

Next, from equation 4.2Sa above we have 

ECo == J J 
(W) 

(a+ cf/ne.t+ Cm·t)Pc f(P).f(H) dpdh 

Since the integral of f(P) and f(H) over whole domain W 

J J k.f(P).f(H) dpdh = k.l = k, by definition, 
(W) 

where k is a constant independent of the rv's P and H. 

Then, we have EC0 == [a + (cf/ne)t + Cm·t)Pc 

and by making B2 == a + (cf/ne)t + Cm·t we obtain 

ECo = B2.Pc 

gives 
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Hence, the global coefficient of Pc is 

B = Bl + B2 [A6] 

where: 

Bl = Ba + Bb 

= [rc(P1-P2) (crHl + cf/na.H2) + (H1-H2) (sePl + ceP2)]J(t) 

B2 = a + (cf/ne)t + Cm·t 

Finally, the remaining terms are grouped to form 

C = (1/2)[-crH12pl- seH1P12 + CrH12p2- CeH1P22 

- (cf/na)H22pl + seH2Pl + (cf/na)H22p2 + ceH2P22]J(t) 

= (1/2)[ceP2 (H2 - H1) + CrH12 (P2 - P1) 

+ (cf/na> 8 22 CP2- P1) + seP12 (H2- Hl)]J(t) 

= 1/2((ceP22 + SeP12) (H2 - H1) [A7] 

+ (crH12 + (cfjna)H22) (P2 - P1)]J(t) 

Therefore from equations AS, A6 and A7, we obtain the TEAC 

function for the CCUD-1 model: 

TEAC = APc2 + (Bl + B2)Pc + C [4.26] 

Where: 

A= 1/2[(se+ce) (H2-H1 ) +-rc2 (P2-P1) (cr+cffna)JJ(t) 

Bl = [(H1-H2) (seP1+ceP2) + rc(P1-P2) (crH1+(Cf/na)H2)]J(t) 

B2 = a + (cf/ne)t + Cmt 

c = 1/2((ceP22 + seP12)(H2 - H1 ) 

+ (crH12 + (cffna)H22)(P2- Pl)]J(t) 

Which demonstratres equation [4.26] • 

Note: A verification of model equation 4.26 was carried out 
using data 9iven in Example 4.5. The results for (A) 

numerical integrat1on of equation 4.25a above, and for (B) 
direct computation of [4.26] were identical. It took over 4 
minutes to run method A and just less than two seconds to 
compute and display the same results through method B. 
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