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CHAPTER 1

INTRODUCTION

What is Artificial Intelligence (AI)? One of the most widely accepted defmitions

of AI is by Minsky, as quoted by Yazdani [Yazdani86]: "AI is the science of making

machines do things that would require intelligence ifdone by men." In other words, AI

is concerned with constructing programs that behave like people. The programs will have

the ability to associate with human beings, such as understanding natural language,

reasoning, solving problem, and learning.

One area of AI research is machine learning. Much research has been done to

understand the nature of learning and implement learning capabilities in machines.

Research has shown that learning manifests itself as a spectrum of information processing

activities ranging from the direct memorization of facts and acquisition of simple skills

by imitation to very intricate inferential processing leading to creation of new concepts

and discovery of new knowledge [Michalski86a].

Machine learning is one of the methods that has been used to reduce uncertainty

in problem solving and decision making by capturing knowledge from data or examples.

Krisar [Krisar95] quotes Simon's definition of learning: "Learning denotes changes in

the system that are adaptive in the sense that they enable the system to do the same task
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or tasks drawn from the same population more efficiently and more effectively the next

time. "

Algorithms that learn from examples can be divided into two categories

[Zheng93]:

• symbolic algorithms, such as ID3 [Quinlan86], C4.5 [Quinlan93], CART

[Breiman84], PLSI [Rendell83], the AQ family of algorithms [Michalski80],

and

• subsymbolic algorithms, such as backpropagation [Rumelhart86], Perceptron

learning procedure [Rosenblatt62], IB 1, IB2, IB3 [Aha91], MDLA B, C

[Cameron-Jones92], Nearest Neighbor, Bayes, and Linear Discriminant

[Duda73].

A general definition for both symbolic and subsymbolic algorithms can be stated as

follows: symbolic algorithms are those in which the learned theories and representation of

knowledge can be understood by a human being; other algorithms are subsymbolic. The

problem most often addressed by both types of algorithms is the inductive acquisition of

concepts from examples. Mooney [Mooney91] defines the problem as follows: "Given

descriptions of a set of examples each labeled as belonging to a particular class,

determine a procedure for correctly assigning new examples to these classes."

1.1 The Problem

Despite the fact that many learning algorithms and Fuzzy Neural Networks

(FNNs) [Halgamuge94b] learn from classified examples, very little is known regarding
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their comparative strengths and weaknesses. Many comparisons have been done to study

the differences between the symbolic and neural networks algorithms (Cheng94

Dietterich90, Fisher89, Holte93, Mooney91, Weiss89 etc.). However until recently

there has been little comparison done between the Induction of Decision Trees (ID3)

Feedforward Neural Networks that are trained with Backpropagation (FFNBPs), and

Fuzzy Neural Networks (FNNs) learning algorithms (Halgamuge93a, Halgamuge93b,

Halgamuge94a, and Halgamuge94b).

1.2 The Purpose of the Experiment

The main purpose of this experiment is to compare the 103, FFNBP, and FNN

algorithms. These algorithms are tested using twelve data sets obtained from the

University of California-Irvine Machine Learning Database Repository [Murphy91]. The

collected results are analyzed and used to compare these algorithms.

1.3 The Objective of the Experiment

The main objective of the research is to understand more about the comparative

strengths and weaknesses between ID3, FFNBP, and FNN. By comparing the

algorithms, this experiment may assist others in determining the best algorithm to use in

problem solving.

1.4 Outline of Work

This work is organized into five chapters. The next chapter contains discussions

of the learning algorithms used in the experiment and some related works that have been

3



done by others. The third chapter introduces the data sets and method of analysis and

metrics for comparing for the algorithms used in this work. Chapter Four discusses the

results of the experiments and Chapter Five is a summary and discusses future work.

4



CHAPTER 2

LITERATURE REVIEW

All learning systems have the same goals: to deal with complex real-world

decision-making problems and to solve these problems in the- sense of reaching correct

conclusions [Weiss90]. Many different approaches to machine learning have been

developed and applied to problems from a variety of fields such as medical science

biology, controls, and linguistics.

The learning algorithms chosen for this experiment are Induction of Decision

Trees, Feedforward Neural Network with Backpropagation, and FuNe-I .

2.1 Induction of Decision Trees

Induction of Decision Trees (ID3) [Quinlan86] is a simple and widely used

symbolic learning algorithm. Symbolic learning techniques are based on learning

strategies such as rote learning, learning from examples, learning by being told, learning

by analogy, and so on [Carbone1l83]. The learning strategy used by ID3 is learning from

examples.

ID3 takes objects of a known class and describes them in terms of a fixed

collection of properties or attributes. It produces a decision tree that incorporates these

attributes to correctly classify other objects. Quinlan describes the basic structure of ID3
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as follows [Quinlan86]:

"The basic structure ofJD3 is iterative. A subset ofthe training set called
window is chosen at random and a decision tree formed from it; this tree
correctly classifies all objects in the window. All other objects in the
training set are then classified using the tree. If the tree gives the correct
answer for all these objects then it is correct for the entire training set and
the process terminates. If not, a selection of the incorrectly classified
objects is added to the window and the process continues. "

ID3 employs top-down induction of decision trees (a greedy, divide-and-conquer

method) to induce decision trees [Quinlan86]. The method outline is as follows

[Murthy94]:

1. Begin with a set of examples called the training set T. If all examples in T

belong to one class, then halt.

2. Consider all tests that divide T into two or more subsets. Score each test

according to how well it splits up the examples.

3. Choose ("greedily") the test that scores the highest.

4. Divide the examples into subsets and run this procedure recursively on each

subset.

A decision tree consists of nodes and branches. A new node is added to the tree

by partitioning the training examples based on their value along a single, most-

informative attribute [Mooney91]. The attribute chosen is the one that minimizes the

following function:
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where

v S N k k
~ .~ ji jiE(A) = - L..-1 ~-lOg2-
i=1 S )=1 Sj Sj

v = number of values for attribute A,

(Eq. 1)

kjj = number of examples in the jth category with the ith value for attribute

A,

S = total number of examples,

Sj = number of examples with the ith value for attribute A, and

N = number of categories.

E(A) is the expected infonnation (see Section 3.1.11 for more details about the expected

amount of infonnation such as entropy) required for selecting an attribute as the root of a

decision trees or partitioning the training examples. The partitioning process is recursive;

it stops when each partition contains examples of only a single category. Then, the

algorithm creates a leaf for each partition and labels it with the category.

~
sunny overcast rain

~ ~ ~
high normal ltue faJ",

~ ~ ~ p

Figure 1: A simple decision tree [Quinlan86]
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Table 1: A small training set [Quinlan86]

No. Attribute Attribute Attribute Attribute Class
Outlook Temperature Humidity Windy

1 sunny hot high false N
2 sunny hot high true N
3 sunny hot high false P
4 overcast mild high false P
5 ram cool normal false P
6 ram cool normal true N
7 rain cool normal true P
8 overcast mild high false N
9 sunny cool normal false P
10 sunny mild normal false P
11 rain mild normal true P
12 overcast mild high true P
13 overcast hot normal false P
14 ram mild high true N

Figure 1 illustrates an example of a simple decision tree. The tree is built based

on a small training data that uses the 'Saturday Morning' training set given in Table 1

[Quinlan86]. P and N are the classes or categories. The objects of classes P and N are

referred to as positive instances and negative instances, respectively, of the concept being

learned.

2.1.1 Author

The ID3 program used in this experiment is provided by Dr. Ron Kohavi, who

wrote it when he was a Ph.D. student at Stanford University. It is part of the Machine

Learning library in C++ (MLC++) package developed by Dr. Kohavi and his colleagues.

MLC++ is a library of C++ classes and tools for machine learning algorithms that employ

supervised learning techniques (see Section 2.2). MLC++ is written in the C++.
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2.2 Feedforward Neural Network with Backpropagation

Artificial neural networks are densely interconnected networks of many simple

computational neurons. Figure 2 depicts one such neuron. The input to a neuron consists

of n values, xo' Xj, .... Xn-j, each of which is associated with a weight, wo' .., Wn-l,

respectively. The neuron computes the weighted sum x of its inputs and passes the result

The activation function is usually the sigmoid function as shown below:

to its activation function. The weighted sum is calculated using the following equation:

n-l

X = LX;W;
;=0

1
f(x) = 1+exr(-x)

(Eq.2)

(Eq. 3)

The value of the activation function is the output, y=f(x), of the neuron as shown in

Figure 2.
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input

y

output

Figure 2: A neuron

f ( x I

-4 -2 2

Figure 3: A sigmoid function

x

Supervised learning is a procedure that adjusts weights on the basis of the

difference (or error) between the actual output (the network's output) and the desired

output, given an input pattern and the desired output pattern [Zeidenberg90]. The input

pattern and desired output pattern together are called a training pair. Backpropagation (: \

(also called the generalized delta rule) is a supervised learning procedure. It uses a

gradient descent method in an attempt to minimize the sum of squares of the errors across

all the training pairs.
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Target

Error

Output
Layer

Hidden
Layer

Input
Layer

Inputs

Figure 4: Feedforward neural network with backpropagation [Wasserman89)

A feedforward neural network (FFNN) is a multilayer neural network with three

or more layers. FFNNs are usually trained with the backpropagation procedure. and are

called FFNBP in this paper. Figure 4 depicts a three-layer FFNBP.

Each neuron in any given layer is like the one shown in Figure 2: it accepts input

from previous layer and passes its activation value (or output) to each neuron in the next

layer. The first layer (the bottom layer in Figure 4) is called the input layer. The input

for each neuron in this layer is one of the values that comprises the input pattern of a

training pair. Thus, the number of neurons in the input layer is equal to the size of the

input pattern. The input layer neurons are non-computational; that is, they simply pass

their input value to the neurons of the next layer. The last layer (the top layer in Figure 4)

is called the output layer. The neurons in this layer compute the outputs of the network.

All layers between the input and output layers are called hidden layers. The neural net in

Figure 4 has one hidden layer.
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Backpropagation works in two phases. During the first phase, an input pattern is

presented to the input layer and all activation values propagate forward through the

network to compute the output for each neuron in the output layer. For each unitj, its

actual output 0pj for an training pair p is calculated using the following equation

[Mooney91] :

8j = a tunable threshold or bias for neuronj.

wj ; = the weight from neuron i (previous layer) to neuron j (current layer)where

1
0pj = (~ () )

1+ e- L.J WjiOpi + j

I

and

(Eq.4)

Equation 4 is a modified version of Equation 2 that works in a layered network. The

actual output of the neurons in the output layer is then compare with the desired output

pattern (the target in Figure 4) to compute the error.

The second phase is the backpropagation of errors through the network.

Beginning at the output layer, error is measured layer by layer and passed backwards

through the network. The weights are changed appropriately to reduce the error. The

following functions show changes of weight to the unit [Mooney91]:

12



where

and

where

~pw .. =n8.o.+aLl ,w ..
Jt ' I Pi pi P- JI

T] = learning rate,

(Eq.S)

if j is an output unit (Eq. 6)

if j is a hidden unit (Eq. 7)

a = momentwn term,

k = neurons (next layer) that neuron} directly connects to,

tp} = target output for the output neuron} for pattern p, and

8p} = error of the output of neuron} for patternp.

The process is repeated for each training pair. When all the training pairs have been

presented to the network, this is called one epoch (one iteration). The learning process

terminates when the overall error of the network is acceptably low or training reaches

some predetermined maximum number of epochs (iterations).

One drawback of the FFNBP is that it requires extensive experimentation to find

values for parameters such as the learning rate and momentwn to achieve optimal results.

The learning rate is a constant that expresses the proportionality of the change in weight

to the derivative ofthe error oftraining pair p with respect to the weight [Rumelhart86].

In other words, the learning rate is a constant that controls the amount of changes made to

the weights in a single pass. Momentum is a constant that determines the effects of past

weight changes on the current direction of movement in weight values.
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The FFNBP also has problems with local minima and oscillation.

Backpropagation employs a type of gradient descent technique. It follows the slope of

the error surface downward, adjusting the weights toward a minimum error. The network

can become trapped in a local minimum even though there may be a much deeper

minimum nearby. Statistical training methods can help avoid entrapment by local

minima, but such processes are slow. Oscillation can occur when the learning rate is too

large. The network may oscillate around the global minimum without reaching it. The

momentum parameter helps prevent oscillation by adding a tenn to the weight adjustment

that is proportional to the amount of the previous weight change.

2.2.1 Author

The FFNBP program used in this experiment is provided by Dr. Donald Tveter.

The program is written in C.

2.3 Fuzzy Neural Networks

Fuzzy set theory was first introduced by Zadeh [Zadeh65]. Fuzzy set theory is a

superset of conventional set theory. Fuzzy logic, a subset of fuzzy set theory, is

conventional logic extended to handle the concept of partial truth by incorporating "a

degree of truth". One area of fuzzy logic application is the integration of fuzzy logic and

neural networks known as Fuzzy Neural Networks (FNNs). FNNs seek to maximize of

the desirable properties and reduce the disadvantages of each of these systems. The

integration provides the low-level learning and computational power of neural networks

and the high-level reasoning of fuzzy systems [Lin92]. Neural networks and fuzzy

14



systems have the ability to deal with uncertainty, imprecision and noise in real-world

environment [Lin92].

Over the years, many fuzzy neural networks have been proposed and developed

usmg different learning techniques (i.e., supervised, unsupervised, and competitive)

[Halgamuge94b]. Wang et al. [Wang92a] used a backpropagation algorithm to train their

RCE can learn very fast and has good recognition perfonnance.

three-layer feedforward fuzzy network as an identifier for nonlinear dynamic systems.

Roan et al. [Roan93] developed a supervised fuzzy neural network called Fuzzy

r-------·------
1--­

I

I
I I

I I
I FI1ZZ)' Rule &;e I

I r
I I

I I

I I
I I

I I
Fuzzifier I Defuzzifier

I I
(input)

I I ~Ior aisp(
I IR'

I I
I i V
I F~renc.e I

I fuzzy set in U I fl1ZZ)' set in V I
I

aisp

Uc

Restricted Columb Energy (Fuzzy RCE) network for classification problems. Fuzzy

I

I
L 1

____ ..J

Figure 5: Basic configuration of fuzzy systems

2.3.1 Fuzzy System

A fuzzy system usually has four principal elements [Wang92a] [Wang92b] as

depicted in Figure 5: a fuzzifier, a fuzzy rule base, a fuzzy inference engine, and a

defuzzifier. The fuzzy systems defined by Wang have multiple inputs and a single
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output: U eRn ----+ R, where U is compact and R is real number [Wang92a]. A compact

set is defined as [Rudin64]: "A subset K ofa metric space X is said to be compact ifevery

open cover of K contains a finite subcover." A multiple outputs system can always be

divided into a group of single-output systems.

The fuzzifier maps the non-fuzzy inputs (U eRn) to fuzzy sets defined in U. A

fuzzy set [Zadeh65] is characterized by a membership function f-tF' U ----+ [0,1] and

labeled by a linguistic term F such as "Low", "Medium" or "High". The Singleton

fuzzifier is the most commonly used fuzzifier [Wang92a]. It maps x E U into fuzzy set

Ax in Uwith /-lAx(x) =1. 0 and f.JAx(xj=O.O for aU x' E Uwith x' .;rx.

The fuzzy rule base is a set of linguistic rules in the form of "IF a set of

conditions are satisfied, THEN a set ofconsequences are inferred." Given the fuzzy rule

base consists of M rules, the format of the rules can be shown as follows:

Rulej: IF Xj is Aj and X2 is A2 and ... and Xn is An, THEN z is B,

where j = 1,2, ..,M, Xi (i=1,2,.. ,n) are the input variables to the fuzzy system, z is the

output variable of the fuzzy system, and Ai and B are linguistic terms characterized by

membership function f-t A. (tJ and f.JB(z), respectively. Three example rules with two
I

input variables and an output variable:

Rule1: IF xl is high and x2 is high, THEN z is high,

Rule2= IF Xl is low and X2 is low, THEN z is low, and

Rule3: IF Xl is low and x2 is high, THEN z is medium.

Linguistic terms low, medium, and high are characterized by their membership functions

f.Jlow (xJ, /-lmedium (XV, and /-lhigh (xJ respectively.
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The fuzzy inference engine uses fuzzy rules from the fuzzy rule base to determine

the fuzzy outputs. The defuzzifier transforms the fuzzy outputs to non-fuzzy (i.e. <crisp)

outputs, which are the actual outputs of the system.

2.3.2 FuNe-I

FuNe-I IS used as the representative of FNNs in this experiment due to its

flexibility and good performance. FuNe-I i.s an integration of fuzzy system and

feedforward neural networks [Halgamuge94b]. It extracts fuzzy rules from training data

set and tunes its parameters to obtain optimal results by supervised learning.

Figure 6: FuNe-I training network [Halgamuge94b]
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Ii IlIGH

1/2 .

I,

Figure 7: Membership functions [Halgamuge94b]

LOW

1/2 .

Considering three possible adjectives: Low (L), Medium (M), and High (H), the

Basically, FuNe-I works in two phases. In the first phase, FuNe-I generates rules

18

network. FuNe-I training network consists of four neuron blocks: the input block, the

phase using the fuzzy system. Figure 6 depicts the basic structure of the FuNe-I training

from a training network. It tunes the parameters and the extracted rules in the second

Figure 6.

The input block distributes and feeds the input signals to the fuzzification block

where the membership functions are realized. A multilayer neural network is able to

fuzzification block, the rule block, and the output block. The input block is not shown in

2.3.2.1 Fuzzification

number of neurons, and exploiting the possibilities of shifting, scaling, and reflecting the

obtain virtually any membership function [Halgamuge94b]. However, using a smaller

sigmoid transfer functions, a set of bell shaped membership functions can be created.

formation of the memberships is illustrated in Figure 7. Only one sigmoid function is



needed for creating a low or high membership function. However two sigmoid functions

are needed to build a membership function in the range. The following example is taken

from HaLgamuge [Halgamuge94b]:

(Eq. 8,9)

Sigmoid a l (Equation 8) is the mirror reflection of the sigmoid ~ (Equation 9) on

the Y axis. C is a positive variable used to change the steepness of the sigmoid

curves. U is a positive variable employed in shifting the sigmoids. I is the input.

• Low:

L = a2[Ij,Cuud

• High:

H = a1[Ij,CH,uH]

• Medium:

First case: Uses two sigmoid neurons from both types. A third linear

neuron with F=Min is connected to the two sigmoid neurons

by fixed connection weights of unity.

Ml = al [Ij,CM1,UM1 ]

M2 = a2[Ij,CM2,UM2]

M = Min{Ml,M2}

Second case: Subtracts one shifted sigmoid neuron from another shifted

sigmoid neuron using a third Linear neuron.

19



M2 = at [Ij,CM2,UM2]

M = L{Ml,-M2}

It is to be noted that a.MI < a.MI in both cases.

2.3.2.2 Inference Process and Defuzzification

The rule block receives all the membership values. It creates the rules and passes

the rule strengths (described in later paragraph) to the defuzzification block. The rule

strengths are weighted and directly summed up to the output neurons with sigmoid

activation functions [Halgamuge94b).

FuNe-I constructs and tunes the fuzzy system from data sets. The fuzzy system

used by FuNe-I is trained with a gradient-descent method, the backpropagation algorithm.

Three types of fuzzy rules are considered for describing the fuzzy system

[Halgamuge93a]:

• simple rule with premises containing a single fuzzy variable,

• conjunctive rules with two or more fuzzy variables in premises, and

• disjunctive rules with two or more fuzzy variables in premises.

The following example (taken from Halgamuge) illustrates the inference process and

defuzzification of the weighted sum of the rules [Halgamuge93a]:

Assume for example rules Rl, R2, and R3 and inputs X=AI and Y=Bl. Outl,

Out2, and Out3 are the outputs and L, M, and H are Low, Medium, and High

respectively:

20



R2: If X is H OR Y's L THEN Out2 is M

(Eq. 11)

(Eq. 10) and

21

In = nth inputs.

K ~ I and

nLI/ ·eK
.!,

MaxK(I\, .. ,In ) = -=-i=....:.l
n
-_­

LeK .!/

;=1

RI: If X is L AND Y is M THEN Out! is H

nLI; ·e-K .!;

MinK (I!""In) = ~;=~I-n--­

Le-K.!;

i=1

R3: If X is M THEN Out3 is L

where nand u are fuzzy set conjunction and disjunction denoted as T-norm and

evaluation of the antecedents for rules RI, R2, and R3 are:

If the membership functions of X and Y are ~Lx' ~Mx' ~Hx' ~Ly. and ~MY' then the

respectively. Soft Min (Equation 10) operation is used as fuzzy set conjunction

T-Conorm, and Kl K2, and K3 denote the strengths of rule RI, R2 and R3,

and Soft Max (Equation 11) operation is used as fuzzy set disjunction.

where
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2.3.2.3 Automatic Rule Generation

As described earlier, FuNe-I is capable of extracting fuzzy rules from an input

(Eq. 12)

and

r

aieI Wy * K j )

j=1

Wij = weight of the connection fromjth rule node to the ith output,

r = number of rules,

Kj = strength ofjth rule node.

a; = activation of output neuron (sigmoid function),

Out.
I

where

(i.e., defuzzified) using the following sigmoid function:

The parameter K controls the hardness of the Soft Min and Soft Max operations.

As K ~ co, Soft Max (Soft Min) operates virtually like usual max (min)

operation. The weighted sum of the fired rules is translated into the crisp output

Figure 6 depicts the FuNe-I training network. The dark lines in the fuzzification

data set. The FuNe-I fuzzy-neural model is similar to the Horikawa method of evaluation

first identifies the conjunctive and disjunctive rules for each output neuron. This method

of the premise and the creation of membership functions except the initial rule base

[Halgamuge94b]. A different approach is used to find the initial rule base by FuNe-I. It

reduces the size of the initial rule drastically. Then, the training network of FuNe-I is

trained with its membership functions to generate rules learn from the input data set.

and defuzzification blocks represent variable weights; other connections have fixed unity



weights. The circles with D(N) represent neurons that have Soft Max (Soft Min)

operations. The circles with X represent neurons with sigmoid activation functions· other

neurons have linear activation functions.

The rule generation block in Figure 6 contains three layers of neurons for

extracting conjunction and disjunction rules. Five sections (1-5) in the rule block have

been identified for discussion. The first layer (first section) consists of M neurions (the

number of inputs to the network). Each neuron in this section selects the maximum of the

membership values of its inputs by using Soft Max. The second layer consists sections 2

and 3. Each of these sections contains M neurons that estimate the maximum (Soft Max)

and minimum (Soft Min) of all the neurons in the first layer with some exceptions since

the first and second layers are not fully connected. The third layer also has two sections

(4 and 5), each of them with 3*M sigmoid nemons. Each of these sections builds the

antecedents for conjunction and disjunction rules for the fuzzy rule base. Based on the

weights between the output block and the last layer of the rule block, two tables

containing the nodes for conjunction and disjunction rules are created.

During the second phase, all layers in the rule block are deleted and two new

layers are created for conjunction and disjunction rules. All possible conjunction and

disjunction rules with two variables are created using the tables obtained during the first

phase. After both phases, the generated rules can be analyzed and weak inputs can be

removed.
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2.3.2.4 Other Features

Optimization is needed if the number of initial rules generated by a fuzzy system

is too large for particular applications. Membership functions illustrated in section

2.3.2.1 can be tuned using training data by changing a values to create a shift in

membership function. C values can be used to tune the slopes of sigmoid curves of the

membership functions. Expert knowledge can be integrated into FuNe-I as fuzzy rules

and membership functions to speed up the training and increase performance of the

system.

2.3.3 Author

FuNe-I was developed by Dr. S.K. Halgamuge and his colleagues at Technical

University of Darmstadt (THD), Darmstadt, Germany. The program was provided by

Marc Theisen at THD. The program is written in C.

2.4 Related Works

Many comparisons of learning algorithms have been reported since the ~

development of the first learning algorithms and other statistical based algorithms.

Mooney et al. [Mooney91] compared 1D3 [Quinlan86] with perceptron [Rosenblatt62]

and FFNBP algorithms [Rwnelhart86]. Mooney et al. found that the overall performance

of the algorithms is comparable. However, FFNBP is more adaptive on noisy data sets

though it is slower. Fisher and McKusick compared batch learning backpropagation and

ID3; their results support Mooney's conclusion [Chen94]. Chen et aL. [Chen94]
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compared the prediction performance of human experts with ID3 and backpropagation

neural networks to predict winners in greyhound racing. In terms of prediction accuracy

and monetary payoff, both the learning algorithms performed better than human experts.

They found that 103 predicts more conservatively, and backpropagation is slow but

makes excellent predictions for long shots. Weiss and Kapouleas [Weiss89] used a

resampling technique such as leave-one-out for evaluation and found those discriminant

analysis methods, FFNBPs, and decision trees based learning algorithms achieve <_

comparable performance. Dietterich et al. [Dietterich90] compared ID3 and

backpropagation on the NetTalk data sets [Murphy91] and found that backpropagation

can capture statistical information that is not captured by ID3. Holte [Holte93] concluded

that on most data sets, very simple rules based on a single attribute are as accurate as the

rules created by the majority of machine learning systems when he compared IR with

C4.5 [Quinlan93]. C4.5 is a decision tree learning algorithm that is based on ID3. f--
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CHAPTER 3

METHODOLOGY

Many learning algorithms have been compared and evaluated. However, the

comparisons often share one common problem: only a few domains are used in each

comparison and different comparisons use different domains. Most of the algorithms

perform differently on different domains. "It's very hard to judge an algorithm by seeing

its performance on only afew arbitrarily selected domains", said Zheng [Zheng93]. For

that reason, Zheng developed a be~for comparing and evaluating learning

algorithms.

3.1 Benchmark for Classifier Learning

Learning algorithms are developed to solve real-world problems. Thus, data sets

from real-world domains are used when analyzing and comparing learning algorithms.

Zheng selected thirteen real-world and synthetic data sets from different domains from

the University of California-Irvine Repository of Machine Learning Databases (UCI­

RMLD) [Murphy91] to fonn a benchmark for comparing and evaluating learning

algorithms. Table 2 shows the thirteen data sets and their short descriptions. Real-world

data sets reflect the situations of real-world applications. Breast cancer and Diabetes data
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sets are examples of real-world data sets. Synthetic data sets reflect situations of real-

world applications through simulation. LED-24 and Waveform-40 data sets are examples

of synthetic data sets. Both LED-24 and Waveform-40 data sets are generated by

programs written in C.

Table 2: Data sets in the benchmark [Zheng93]

Name Description

Breast Cancer (W) Medical diagnosis applied to breast cytology (Wisconsin)
Diabetes I Pima Indians diabetes databases for diagnosing diabetes
Hepatitis Predicting whether a patient will die from hepatitis
LED-24 LED display with 24 segments (17 irrelevant)
LED-7 LED display with 7 segments
Lymphography Lymphography database
Monks-2 The second Monk's problem
Mushroom Mushrooms classified as poisonous or edible
NetTalk (Phoneme) NetTalk Corpus for the phonetic transcription of the 1000

most common English words (prediction of phoneme)
Promoter Promoter gene sequences (DNA)
Soybean Large soybean database
Thyroid Hypothyroid database (thyroid disease records)
Waveform-40 Wavefonn database with 40 attributes (19 irrelevant)

In general, the data set that describes a classification problem has three aspects:

the form of the attributes, the form of the instances, and the forms of the classes

[Zheng93]. Appendix A shows the dimensions of each data set and their values. Zheng

uses sixteen dimensions to describe these data sets (see Appendix A):

• Four dimensions concern attributes: the type of attributes, the number of

attributes, the number of different nominal attribute values, and the number of

irrelevant attributes.
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3.1.2 Number of Attributes

The number of attributes for a data set can be classified as small (less than 10),

medium (between 10 and 30), or large (more than 30). For example, LED-7 has 7

attributes (small), LED-24 has 24 attributes (medium), and Promoter has 57 attributes

(large).

There: are four types of attributes: binary, nominal, continuous, and mixed. Binary

attribute means its attribute value is either I or 0, YES or NO, + or -, and so on. Nominal

value is also known as discrete value. The attribute value is within a specify range, such

as '1, 2, 3, or 4 " or 'yellow, red, or blue'. Continuous attribute values are 1, 45.1,

999.12, and so on; they do not have any range or boundary. A mixed attribute is a

combination of at least two type of these attributes: binary, nominal, and continuous.

. ,3.1.1 Type of Attributes

• Five dimensions regard instances: the data set size, the data set density the

level of noise in attribute values, the level of noise in class membership or

indeterminacy, and the frequency of missing attribute values.

• Seven dimensions relate to classes: the number of classes, the default

accuracy, the entropy, the predictive accuracy, the relative accuracy, the

average information score, and the relative information score.

These dimensions are described below.
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3.1.3 Number of Different Nominal Attributes Values (#DNAV)

The #DNAV is the total number of different nominal attribute values for a data

set. The #DNAV also can be classified as small (less than 5), medium (between 5 and

10), or large (more than 10). For example, Promoter has 4, Soybean has 7, and

Mushroom has 12.

3.1.4 Number ofIrrelevant Attributes (#IAtt)

Irrelevant attributes occur both in real-world and synthetic data sets. However, it

is quite difficult to identify irrelevant attributes in a real-world data set. The synthetic

data sets such as LED-24 and Waveform-40 have irrelevant attributes. The #IAtt can

affect the performance of learning algorithms.

3.1.5 Data Set Size

Data set size is classified as small (less than 210 instances), medium (between 210

and 3170 instances), and large (more than 3170 instances). In most cases, the size of a

data set directly affects the training time and classification accuracy of a learning

algorithm.

3.1.6 Data Set Density

Learning algorithms usually achieve a higher accuracy from a large number of

training examples (larger data set size). However, because different domains have

different description space sizes, it is very hard to conclude those data sets that contain

more than N examples are large and those that contain less than N examples are small for
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Both LED-24 and Waveform-40 data sets have noise in their attribute values.

Monks-2 does not has noise in its attribute values. Breast Cancer data set contains noise

(if it is a continuous attribute).

or nominal attribute), or the number of different values in the data set

n = the number of attributes,

Nt = for the i-th attributes, the number of different values (if it is a binary

II

Size ofdescription space = flNI
;=1

Noise affects the performance of learning algorithms. Noise in attribute values

useful way to characterize a data set. Density is defined as:

D
. Number ofexamples

enslty= ----.::...--~--

Size ofdescription space

some N, according to Zheng [Zheng93]. Thus, the density of description space is a more

where

medium (between 1.00.10-18 and 6.00.10-7
), and high (greater than 6.00*} 0.7). For

There are three different classifications for the data set density: low (less than 1.0.10-18
),

examples, data set density for Promoter is low, Soybean is medium, and LED-7 is high.

3.1.7 Level ofNoise in Attribute Values and Class Membership

in its class memberships, but LED-24 does not.

and classes is inevitable especially in the real-world domains such as medical domains.

indeterminacy with respect to attributes.

Noise occurs due to errors introduced when measuring and diagnosing, and



3.1.8 Frequency of Missing Attribute Values (FMAV)

The Frequency of Missing Attribute Values is the ratio of the number of missing

attribute values with respect to the total attribute values in a data set. The frequency is

divided into three classes, none,few (between 0 and 5.6%), and many (more than 5.6%).

3.1.9 Number of Classes

The number of classes is categorized into binary (2), small or medium (between 3

and 10), and large (more than 10). Hepatitis and Promoter data sets have binary classes,

Lymphography and Wavefonn-40 data sets have medium number of classes, and

Soybean and NetTalk data sets have large number of classes.

3.1. 10 Default Accuracy

The default accuracy is the relative frequency of the most common class in a data

set. It is classified as: low (less than 40%), medium (between 40% and 75%), and high

(more than 75%). Soybean data set has the lowest default accuracy (13.7%), Thyroid

data set has the highest default accuracy with 95.2%, and most of the other data sets have

medium default accuracy.

3.1.11 Entropy

In general, the default accuracy is used to describe the major class of a data set. In

addition to the default accuracy, this benchmark includes entropy to account for the class

distribution of a data set. Entropy is the expected amount of infonnation for classifying

an instance. It can be defined as:
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learning algorithm is used. Relative accuracy is defined as:

3.1.12 Predictive Accuracy and Relative Accuracy

N = the number of classes and

P(C;) = the prior probability of class Ci.

-f P( Cf) * log,P( Ci) bits
;=1

where

Predictive accuracy and relative accuracy are used to discuss the difficulty of a

Entropy is also described by three tenns, low (less than 0.80 bits), medium

"In many cases, the probabilities of the occurrence of certain results are known a

. Predictive accuracy - Default accuracy
Relative accuracy = * 100%

100% - Default accuracy

occurrence of class x in a data set. The unit of information (by entropy) using base 2

logarithms is called a "bit". This word is first suggested by John W. Tukey, being a

condensation of "binary digit" [Shannon64].

has the lowest entropy with 0.28 and NetTalk has the highest entropy with 4.72.

(between 0.80 bits and 1.58 bits), and high (more than 1.58 bits). The Thyroid data set

priori, " said Fast [Fast68]. The prior probability of class x is the probabilities of the

domain. Predictive accuracy is defined as the highest accuracy achieved by some

existing algorithms, recorded in UCI-RMLD (past usage). If such an accuracy of a

domain is not available, the accuracy achieved by the C4.5 decision trees [Quinlan86]



learning algorithm.

high (more than 88.5%).
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Entropy/est = the entropy of the test set,

Ire/alive = the relative information score,

laverage = the average information score,

[average
--=----- * 100%
EntroPYtest

[
average

Predictive accuracy is the most commonly used evaluation criteria, but it does not

Predictive accuracy is divided into three classes: low (less than 80%) medium

Average information score and relative information score are defmed as follows,

I I .re alive

where 100% in the denominator is the accuracy that would be achieved by a perfect

divided into three classes: low (less than 52%), medium (between 52% and 88.5%), and

3.1.13 Average Information Score and Relative Information Score

(between 80% and 98.5%), and high (more than 98.5%). Relative accuracy is also

consider the prior probabilities of a class and class distribution of a data set. Zheng uses

the average information score and relative information score introduced by Kononenko

and Bratko [Kononenko91] to overcome the shortcoming of predictive accuracy.

where
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defined as:

ifgCq ) ~ P(Cq )

ifg:Cq ) < FtCq )

classifier.

Cej = the correct class of text example ej,

Q(Cej) = the posterior probability returned by the

P(Ce}) = the prior probability of class Cej, and

where

Jej = the infonnation score of the classifier on the test example ej and

T = the number of test examples and

This experiment uses all the data sets suggested by Zheng's benchmark except the

Average infonnation score is classified into three levels: low (less than 0.25 bits), medium

(between 0.25 bits and 1.30 bits), and high (more than 1.30 bits). Relative infonnation

high (more than 85.5%).

score has three levels: low (less than 4.50%), medium (between 45.0% and 85.5%), and

3.2 Data Sets

for FFNBP and FuNe-I. Due to the time constraints of the research, the NetTalk data set

was dismissed. The Wavefonn-40 data set was provided by Zijian Zheng [Zheng93]. The

NetTalk data set. The NetTalk data set requires a huge amount of training time especially

other eleven data sets are obtained from UCI-RMLD: Breast Cancer (W), Diabetes,



Hepatitis, LED-24, LED-7, Lymphography, Monks-2, Mushroom, Promoter Soybean,

and Thyroid.

The following sections introduce each of the data sets in general. The

infonnation is mostly summarized from the individual "readme. txt" that is included with

the data sets at UCI-RMLD. Table of Appendix A provides more infonnation about the

characteristics of each data set that are defined using the sixteen dimensions.

3.2.1 Breast Cancer (Wisconsin) J...

The Breast Cancer data set (Wisconsin) originates from the University of

Wisconsin Hospitals, Madison. The data was .collected by Dr. William H. Wolberg. The

data set is dated January 8, 1992.

The Breast Cancer data set (BCDS) has 699 instances. The data set has nine

attributes and a class attribute. All of its attributes are continuous. The number of classes

is binary or 2, and its class distributions are 65.5% (458 instances) for Benign and 34.5%

(241 instances) for Malignant.

The past usage of the data set has applied mostly to the older version of the

BCDS, which has only 369 instances. Zhang applied four instance-based learning

algorithms on the data set, as cited by Murphy [Zhang92] [Murphy91]. The algorithms

were trained on 200 instances and tested on the other 169 instances using 10-fold cross­

validation. The best classification accuracy was obtained by I-nearest neighbor

algorithm with 93.7%. Zheng [Zheng93] used IB1, C4.5, and CI2-2L algorithms with

10-fold cross-validation on the data set, which has 699 instances. The reported accuracies

are 96.0%, 94.8%, and 94.7% respectively.
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3.2.2 Diabetes -;

The Pima Indians Diabetes data set (DDS) is the formal name for this data set.

The owner of the DDS is the National Institute of Diabetes, Digestive and Kidney

Diseases.

The Diabetes data set has 768 instances. It has eight continuous attributes plus the

class attributes. It does not have any missing attributes. It has two classes (binary

classes). Its class distributions are 65.1 % (500 instances) for class 0 and 34.9% (268

instances) for class 1.

Smith et al. used the ADAP learning on the older version of the DDS to forecast

the onset of diabetes mellitus [Srnith88]. The older version of DDS has only 576

instances. The algorithm was trained with 384 instances and tested with 192 instances.

The classification accuracy is 76%. Zheng [Zheng93] used IBl, C4.5, and CI2-2L

algorithms with lO-fold cross-validation on the new version data set which has 768

instances. Their accuracies were 70.6%, 71.5%, and 70.4% respectively.

/

~ t:
3.2.3 Hepatitis L

The Hepatitis data set was donated to UCI-RMLD by G. Gong from Carnegie-

Mellon University.

Hepatitis data set (HDS) has 155 instances. HDS has twenty attributes that

consist of thirteen binary attributes, six continuous attributes, and a class attribute. The

data set has two classes (binary classes) with 32 instances (21.6%) of class DIE and 123

instance (79.4%) of class LIVE.
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Cestnik et a1. reported a 83% classification accuracy using Assitand-86, as cited

by Murphy [Cestnik87J [Murphy91]. Zheng [Zheng93] used illl 04.5 and CI2-2L

algorithms with 10-fold cross-validation on the data set. The reported accuracies are

81.9%,78.2%, and 82.1% respectively.

3.2.4 LED-24 and LED-7 10

The LED Display Domain (LDD) is divided into two parts, LED-24 and LED-7.

The LDD is created by Breiman and his associates. The data sets are generated by

programs that written in C.

In this experiment, each data set (LED-24 and LED-7) has 200 instances. Each

domain has ten classes. LED-24 has seven binary attributes, seventeen irrelevant

attributes, and noise in its attribute values. The LED-7 consists of seven binary attributes

and no noise. Neither of the data sets have missing values in their attributes. Their class

distributions are 10% theoretically since each class has the same theoretical probability of

occurrence.

Zheng [Zheng93] used 181, C4.5, and CI2-2L algorithms with 10-fold cross-

validation on LED-24 and LED-7. The reported accuracies on LED24 are 32.0%, 60.5%

and 60.5% respectively. The reported accuracies on LED-7 are 71.0%, 69.5% and 70.5%

respectively.

3.2.5 Lymphography

Lymphograhy data set was collected by M. Zwitter and M. Soklic, University

Medical Center, Institute of Oncology, Ljubljana, Yugoslavia.
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Lymphography data set (LOS) consists of nine binary attributes nine nominal

attributes, and a class attribute. It has eight different nominal attribute values. Irrelevant

attributes, missing attribute values, and noise are not present in LDS. LDS has 148

instances. It has four classes and its class distributions are normal find (2 instances),

metastases (81 instances), malign lymph (61 instances), andfibrosis (4 instances).

LOS has been tested by various algorithms. Cestnisk et al. used Assistant-86 and

reported a 76% classification accuracy [Cestnik87]. Clark et al. used Simple Bayes

(83%) and CN2 (82%) on LOS [Clark87]. Michalski et al. tested AQ15 with LDS and

reported a 80-82% accuracy [Michalski86b]. Zheng [Zheng93] used IBl, C4.5, and CI2­

2L algorithms with 10-fold cross-validation on the data set. Their accuracies were

82.4%, 78.4%, and 81.1 % respectively.

3.2.6 Monks-2 J-

The Monks-2 Problems data set (M2DS) originates from Sebastian Thrun,

Carnegie-Mellon University, Pittsburgh, Philadelphia, USA.

M2DS contains a total of six attributes. The attributes consist of two binary

attributes and four nominal attributes. The nominal attribute consists of four different

nominal attribute values. Irrelevant attributes, noise, and missing attribute values are not

present in M2DS. M2DS has 432 instances and two classes.

Zheng [Zheng93] used IBl, C4.5, and C12-2L algorithms with 3-fold cross­

validation on the data set. The reported accuracies are 70.4%, 60.5%, and 72.7%

respectively.
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3.2.7 Mushroom ~

The Mushroom data set (MDS) is drawn from The Audubon Society Field Guide

to North American Mushrooms. It was prepared by Jeff Schlimmer.

MDS consists of four binary attributes and eighteen nominal attributes, for a total

of 22 attributes. The number of different nominal attribute values is 12. Irrelevant

attribute and noise are not present in MOS. However, MDS has about 2480 missing

values, all for attribute #11. There are 8124 instances and two classes in MDS. Its class

distributions are 51.8% (4208 instances) for edible and 48.2% (3916 instances) for

poisonous.

Murphy cited Schlimmer's STAGGER reported a 95% accuracy after reviewing

1000 instances [Murphy91]. Zheng [Zheng93] used IBI, C4.5, and CU-2L algorithms

with la-fold cross-validation on the data set. All three algorithms achieved 100%

classification accuracy.

3.2.8 Promoter

The official name for Promoter data set is E. coli promoter gene sequence (DNA)

with associated imperfect domain theory. The creators of the promoter instances are C.

Harley and R. Reynolds. The creator of the non-promoter instances and the domain

theory is M. Noordewier.

Promoter data set (PDS) contains 57 nominal attributes and a class attribute. The

nominal attributes have four values. IrreLevant attribute, noise, and missing value are not

present in PDS. POS has 106 instances and two classes. The instances are distributed

equally between two classes.
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Towell et al. [Towell90] has used PDS with KBANN (Knowledge-Based

Artificial Neural Net), Standard Backpropagation Neural Nets with one hidden layer,

ID3, and Nearest Neighbor with k is 3. Using leave-one-out methodology, the accuracies

achieved by the algorithms are 96.23%, 92.45%, 82.08%, and 87.74% respectively.

Zheng [Zheng93] used IBl, C4.5, and CI2-2L algorithms with 10-fold cross-validation

on the data set. The reported accuracies are 83.0%, 76.0% and 81.1% respectively.

3.2.9 Soybean ,~

Soybean data set (large) was collected R.S. Michalski and R.L. Chilausky.

Soybean data set (SDS) contains seventeen binary attributes and nineteen nominal

attributes. The number of nominal attribute values is seven. SDS has 2337 missing

values in its data set. It also has noise in both of its attribute values and class

membership. SOS has nineteen classes.

Zheng [Zheng93] used IBl, C4.5, and CI2-2L algorithms with lO-fold cross-

validation on the data set. The reported accuracies are 91.1 %, 91.5%, and 99.1 %.

3.2.10 Thyroid 19 11; '" ; <> Jf ~1: a$. 1

The fonnal name of Thyroid data set is Hypothyroid. This data set was left at

University of California at Irvine by Dr. Ross Quinlan during his visit in 1987 for the

1987 Machine Learning Workshop.

The Thyroid data set consists of eighteen binary attributes, seven continuous

attributes, and a class attribute, a total of 25 attributes. It has noise at its attribute level,

40



which 5329 of its attribute values are missing. The total number of instances in this data

set is 3163. It has two classes.

Zheng [Zheng93] used IB1, C4.5, and CI2-2L algorithms with lO-fold cross-

validation on the data set. The reported accuracies are 97.1%, 99.1 %, and 99.1%

respectively.

3.2.11 Wavefonn-40 )

Waveform-40 is an artificial data set. The data set is generated by Wavefonn--------
Database Generator, which is written in C. The authors of the program are Breiman and

his colleagues.

Wavefonn-40 has 40 continuous attributes. Missing values are not present in the

data set. However, it has noise in its attributes. It also has nineteen irrelevant attributes.

300 instances were used for this experiment. Wavefonn-40 has~ classes. The

instances are distributed equally among the three classes.

Waveforrn-40 was used by Optimal Bayes classification (86%), CART decision~

tree algorithm (72%), and Nearest Neighbor Algorithm (38%) [Murphy91]. Zheng

[Zheng93] used fB 1, C4.5, and CI2-2L algorithms with 10-fold cross-validation on the

data set. The reported accuracies are 67.7%,69.4%, and 72.7% respectively.

3.3 Cross-Validation

Cross-validation refers to the practice of partitioning the data set into folds of as

equal-size as possible. A partition is called fold. The smallest number of partitions is 2-

fold. The largest number of partitions is n-fold where n is the size of the data set. This
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used as the testing set. The final result is the average of the four separate runs. ~

are used for training, and the remaining fold is used for testing.

Test:
- - - - - - - - -
i Train:

4-fold cross-validation refers to the case where the data set is randomly divided

runs of the learning algorithm are made. During each run, all but one of the folds (n-1)

into 4 folds. For example (see Figure 8), the LED7 data set has 200 instances. The data

made. During each run, three of the folds are selected as the training set and the fourth is

special case is also known as jackknife or leave-one-out cross-validation. For n-fold n

used as testing set. The process is repeated four times, each time with a different fold

set is divided into 4 folds (1, 2, 3, and 4). Each fold has 50 instances. Four runs are

Figure 8: An example of4-fold cross-validation.

Many experiments have used various partitioning such as 2-folds, 3-folds, 10­

E::--
fold, 3/5 of data set used for training and 2/5 of data used for testing, etc. In this

experiment, both 10-fold and 4-fold cross-validations were applied on the data sets.
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10-fold cross-validation was chosen because it had roven itself better than other

methods. Experimental results [Kohavi95] indicate that for real-world data sets, the best

method to use is 10-fold even if computational power allows more folds. 4-fold cross­

validation was chosen because the sizes of some data sets are smaller than 500 instances,

such as Hepatitis (155), LED? (200), LED24 (200), Lymphography (148), Promoter

(106), and Wavefonn-40 (300). The testing data set might not represent accurately the €-­

original data sets using lO-fold cross-validation.

For all subsequent testing of dropping features and reducing the amount of

training data (as described in sections 4.3 and 4.4), 4-fold cross-validation was used.

This decision is based on two factors: 4-fold cross-validation takes less time in training,

and the results obtained by this method have shown to be comparable with 10-fold cross- ~

validation in initial tests. Refer to Chapter 4 for further discussion of the results.

3.4 Analysis and Comparison

The benchmark for classifier learning defined by Zheng [Zheng93] is used in

evaluating the algorithms. Zheng uses sixteen dimensions to fonn the benchmark. The

benchmark provides a standardized basis for evaluating and comparing the learning

algorithms: ID3, FFNBP, and FNN.

The algorithms are analyzed and compared based on the following criteria: ~

1. classification accuracy,

2. learning time,

3. dependence on the amount of training data, and
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4. ability to handle imperfect data of various types, such as missing attributes

and irrelevant attributes.

The first and second criteria are standard criteria in comparing learning algorithms. The

third and fourth criteria also are important because data sets are different as described by

Zheng's sixteen dimensions. Some learning systems slow down rapidly as the numbers

of attributes increase, but others do not. Some algorithms can deal with discrete values,

continuous values, noise, more than two classes, missing attributes or irrelevant

attributes, but some others have difficulty with them [Zheng93]. With the help of the

benchmark, it is possible to characterize the learning algorithms and pinpoint particular C-'

strengths or weaknesses of different learning algorithms with respect to the four criteria.-
3.5 Experiment Platform

The platforms for testing the learning algorithms are Sparcstations 20 running the

SunGS Released 5.4 Version Generic 101945-36 (Solaris 2.4) operating system. The

SunGS is a UNIX system port that is compatible with UNIX(R) System V Release 4.0.

There are fifteen Sparcstations. Each machine is equipped with 64 MB of memory.
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CHAPTER 4

RESULTS AND DISCUSSIONS

This chapter reports the results of four experiments. The first and second

experiments compared the classification accuracy and learning time of the Induction of

Decision Trees (ID3), Feedforward Neural Network with Backpropagation (FFNBP), and

Fuzzy Neural Network (FuNe-I) learning algorithms. The effects of the number of

training examples and imperfect data on the classification performances of the algorithms

were studied in the third and fourth experiment.

As explained in Chapter 2, FFNBP and FuNe-I have several parameters including

learning rate and momentum. A few experimental runs were conducted to find the best

parameters for FFNBP and FuNe-I. The FFNBP parameters were set as follows:

• Learning rate = lin, where n is the number of training instances (as suggested

by Dr. Tveter),

• Momentum = 0.9,

• One hidden layer with m neurons, where m is the number of inputs (attributes)

and,

• Each training run stops when the network correctly classifies at least 99.0% of

the training data set or when the number ofpasses (epochs) through the data

set reaches 5000.
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The parameters for FuNe-I were set as follows:

• Learning rate = lin (same as FFNBP),

• Momentum = 0.9, and

• Each training and optimization run (if applicable) makes 500 iterations

(epochs). Optimization of the rules is applicable only if the number of inputs

(attributes) is less than or equal to 20.

The learning rates chosen in these experiments are very small (low). FFNBP and FuNe-I

take a longer time to be trained with a small learning rate. However, a small learning rate

helps avoid oscillation and assures that the algorithms achieve better classification

performances.

5 6 7 B 9 10 11 12

Data Set

1.4-fold .1Q-fold I
I J

Graph 1: Classification performance of ID3 as a function of data set (4-fold vs. 10-fold).

All three algorithms were tested with twelve data sets. The data sets were

obtained from University of California-Irvine Machine Learning Database Repository

[Murph91]. To perform the experiments, 4-fold cross-validation method was applied to
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partition each data sets into training and testing data sets. Besides 4-fold cross-validation,

la-fold cross-validation was also used to partition the data sets in the first and second

experiments. Chapter 3.3 discusses cross-validation method in more details.

The results show that the algorithms perform as well with 4-fold cross-validation

as they do with la-fold cross-validation. 4-fold cross-validation is even better than 10-

fold cross-validation in some cases (see Graph 1,2, and 3). The results also show that 4-

fold cross-validation took less time than la-fold cross validation for learning from

training data sets (see Table B2, B3, B4, B6, B7, and B8 of Appendix B).

ID3 performed better under 10-fold cross-validation. On the other hand, FFNBP

and FuNe-I performed better under 4-fold cross-validation (see Table DI and D5 of

Appendix D). Overall, most results obtained by algorithms that used 4-fold and la-fold

cross-validation are within 5% of each other. The following discussions focus on

algorithms that used 4-fold cross-validation method.

100.00 -r-----------~
90.00.
80.00

~ 70.00
~ 60.00
~ 50.00
~
.:::l 40.00
~ 30.00

20.00
10.00

0.00
2 3 4 5 6 7 8 9 10 11 12

Data Set

Graph 2: Classification performance of FFNBP as a function of data set (4-fold Ys. 10­
fold).
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Graph 3: Classification perfonnance ofFuNe-I as a function ofdata set (4-fold vs. 10­
fold).

4.1 Experiment One: Classification Accuracy

Classification accuracy on a testing data set is one of the most commonly used

evaluation criteria in comparing and evaluating learning algorithms. The accuracy of a

classifier is the probability of correctly classifying a randomly selected instance from the

data set [Kohavi95]. In this experiment, the classification accuracy on a testing data set is

calculated as follow:

Number of examples correctly classify '" 100%.
Total number of examples

4.1.1 Results

Graph 4 and 5 report the classification accuracies of the three learning algorithms

that used 4-fold and lO-fold cross-validation, respectively. The actual numbers and their

averages appeared in the Table 01 through D8 of Appendix D. The italic and bold

numbers shown in Table 01 and D5 of Appendix B reflected the highest classification
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4.1.2 Discussion

fold cross-validation.

[Weiss89] [Atlas90] [Towe1l90] [Chen94].

I

... ... L. ... 1I

100.00

80.00
~

~e- 60.00>-u
~
::I 40.00u
u«

20.00

0.00

2 3 4 5 6 7 8 9 10 11' 12

Data Set

In this experiment, the results show ID3 and FFNBP learning algorithms are

FuNe-I consistently outperformed or performed as well as (within 5%) ID3 and

1_103 _FFNBP CFuNe-11

accuracy achieved among the three algorithms. Table 3 shows the means of classification

within 5% of each other except the data sets Lymphography, Monks-2 and Waveform-

40. This conclusion coincides with the conclusions from other experiments [Mooney91]

accuracies of ID3, FFNBP, and FuNe-I on the testing data sets that used 4-fold and 10-

similar with respect to accurately classifying examples. A majority of the results are

FFNBP on most of the data sets except Mushroom, Thyroid, and Waveform-40.

Graph 4: Classification performance of ID3, FFNBP, and FuNe-I as a function of data
sets using 4-fold cross-validation.

According to the classification accuracies of the experiment (see Table Dl of Appendix
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data set and the sixteen dimensions used to define each data set.

4.2 Experiment Two: Learning Time

Learning time is another commonly used evaluation criteria in comparing learning

L... ... I.;" L... 4- L... L...

100.00

80.00
~

~
60.00>.

u
~
:> 40.00u
u«

20.00

0.00

4-fold 10-fold
ID3 76.48 % 77.04 %

FFNBP 79.55 % 78.96 %
FuNe-I 80.98 % 79.88 %

data sets. It did poorly on large data sets. Chapter 3 described the characteristic of each

D), FuNe-1 is the best followed by FFNBP and ID3. FuNe-I outperfonned ID3 and

2 3 4 5 6 7 8 9 10 11 12

Data Set

FFNBP on six of the twelve data sets. FuNe-I perfonned better on small and medium

Graph 5: Classification perfonnance of ID3, FFNBP, and FuNe-I as a function ofdata
sets using IO-fold cross-validation.

Table 3: Averages of the accuracy of the 12 data sets for ID3, FFNBP, and FuNe-I
algorithms.

..

algorithms. Learning time is the time learning algorithms take to learn the theory or

concept from examples or training data sets. In this experiment, the learning time

included the time (testing time) used to classify testing data sets after learning. The
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testing time is very small, approximately 2% of the overall time. The UNIX kom sh 11

command time was used to keep track of the time.

4.2.1 Results

Graph 6 and 7 show the relative learning time of the three learning algorithms

(normalized to the time taken by ID3) using 4-fold and lO-fold cross-validation

respectively. Table 4 shows the mean learning time for each algorithm and its relative

learning time. Table D2 to D4 and D6 to D8 of Appendix D reports the actual time each

algorithm took to learn and test each data set.

4.2.2 Discussion

ID3 took the least time in learning from the training examples, followed by

FFNBP and FuNe-1. FuNe-I generated the worst learning time. As explained in Chapter

2, FuNe-I works in two phases. It first generates rules from training data set through its

training network. Then, it tunes the parameters and the extracted rules in the second

phase using the fuzzy system. Thus, it was expected to take longer time than the other

two algorithms in learning from the training data set. However, the learning times

captured from the experiment were unexpectedly high. FuNe-I takes about 1357 times

longer than ID3 to learn from training examples (see Table 4).

The relative quickness of ID3 with respect to FFNBP in learning concepts from

training examples was also observed in other experiments. Experimental results from

Chen et al. [Chen94], Fisher and McKusick [Fisher89], Mooney et al. [Mooney91],
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[Weiss89] agree with the above conclusion.

Towell et at. [Towe1l90], Tsaptsinos et al. [Tsaptsinos90] and Weiss and Kapouleas

103 _ FFNBP C FuNe-1 I

2 3 4 5 6 7 8 9 10 11 12

Data Set

1-103 .FFNBP CFuNe-1 i

2 3 4 5 6 7 8 9 10 11 12

Data Set

10000.00
Q)

E 1000.00i=
0>
c:

100,00'E
(ll
(J)
..J 10.00
ill
>
~ 1.00Q)
ex:

10000.00
III
E 1000.00i=
Ol
c:

100.00'E
<11
Q)
..J 10.00
Q)

.2:
iii 1.00Q)
c::

0.10

Graph 6: Relative learning time ofID3, FFNBP, and FuNe-I as a function of data sets
using 4-fold cross-validation.

Graph 7: Relative learning time ofID3, FFNBP, and FuNe-I as a function of data sets
using 10-fold cross-validation.
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Table 4: Averages of the learning time and the relative learning time for ill3 FFNBP and
FuNe-I algorithms.

4-fold: Relative 10-fold: Relative
average Learning Time average Leaming Time

learning time (normalized to learning time (normalized to
(h:mm:ss.O) ID3) (h:mm:ss.O) ID3)

ID3 0:00:08.18 1 0:00:20.20 1
FFNBP 0:21:45.46 159.61 0:24:39.92 73.27
FuNe-I 3:05:02.84 1357.45 3:31:11.26 627.32

4.3 Experiment Three: The Effect ofNumber of Training Examples

Some learning algorithms perform relatively better with small amount of training

examples while others perform relatively better on large training examples. In this

experiment, the three algorithms were tested for their dependency on the number of the

training examples.

4.3.1 Results

Graph Bl through B12 of Appendix B present classification accuracy of ID3,

FFNBP, and FuNe-I as a function of the percentage of the data set used for each of the

twelve data sets. Graph B l3a through B15b present classification accuracy as a function

of percentage of data set for each learning algorithm.

Each data point on the graphs represent the average of three distinct runs with data

sets a, b, and c. The composition of data sets a, b, and c are shown in Table 5. The

original data set was randomly divided into four parts (1, 2, 3, and 4). Each part

represents ~ of the total number instances of a data set. For example, when a data set is

reduced by Y4 of its original size; data set a consists of part 1, 2 and 3 of the original data
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set; data set b consists of part 2, 3, and 4 of the original data set; and data set c consists of

part 1, 2, and 4 of the original data set.

Table 5: Organization of data set a, b, and c.

Reduced by Reduced by Reduced by
1/4 1/2 3/4

a 1,2, and 3 1 and 2 I
b 2,3, and 4 2 and 3 2
c 1,2, and 4 3 and 4 3

4.3.2 Discussion

Compared to FFNBP and ID3, FuNe-I perfonns as well and better on small and

medium (based on Zheng's benchmark) data sets. The dependency of the algorithm on

the amount of the training instances is the least among the three algorithms. The

conclusion is supported by the results of the experiment.

From observing the graphs of Appendix B and tables of Appendix D, the

classification accuracies for FuNe-I on some of the data sets increased as the numbers of

instances were reduced, especially on small and medium data sets (Hepatitis, LED-24,

LED-7, Lymphography, and Promoter). The largest increase was recorded on Promoter

data set, :9%. The classification accuracy on Thyroid data set increased by almost 4%

even though its size is large. The classification perfonnance on the rest of the data sets

decreased slightly (~ 2%) except Soybean data set, which dropped about 13% and

Mushroom data set lost about 6%.

On the same token, the classification accuracies of ID3 on the data sets decreased

consistently as the numbers of instances were reduced. For 103, the classification
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accuracies degraded slightly ($ 3%) for most data sets (Breast Cancer, Diabetes

Lymphography, Monks-2, Mushroom, and Thyroid). The classification accuracy of ID3

on Waveform-40 data set suffered the most lost (=12%), it is followed by Soybean

(=9%), LED-24 (=9%), Promoter (=9%), Hepatitis (=5%), and LED-7 (=4%) data sets.

For FFNBP algorithm, its classification accuracies on the data sets degraded

slightly for some and plenty for the other as the numbers of instances were reduced. The

classification accuracies of six data sets decreased drastically (~ 5%); the greatest change

was on data set LED-24 (=18%) followed by Soybean (=10%), Monks-2 (=9%),

Wavefonn-40 (=8%), LED-7 (=8%), and Hepatitis (=5%). The classification

performances on other six data sets decreased only slightly ($ 3%).

4.4 Experiment Four: The Effect ofImperfect Data

The sensitivity oflearning algorithms to imperfect data is also an important aspect

in comparing the algorithms. Imperfect data can affect the performance of learning

algorithms. Data is improperly represented due to various reasons: for example, mistakes

may be made when recording and copying attribute values, or some attribute values may

be missing; or instances that are represented or described with insufficient collection of

attributes.

This experiment investigated two types of imperfect data and reported their effect

on the three learning algorithms. Irrelevant attributes and completely-dropped attributes

were used to stimulate imperfect data, and the performances of the three algorithms were

compared.
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4.4.1 Irrelevant Attributes

The first type of imperfection is irrelevant attributes. Irrelevant attributes do exist

in the data sets used in these experiments., However, it is very difficult to determine

which attributes are irrelevant. Irrelevant attributes can affect the Learning performance

of a classifier learning. LED-24 and Waveform-40 are the only known data sets with

irrelevant attributes, 7 irrelevant attributes for LED-24 data set and 19 irrelevant

attributes for Waveform-40 data set. The only known data set that does not has irrelevant

attributes is LED-7.

4.4.1.1 Results

Graph 4 and Table B 1 of Appendix B show the results obtained by the three

algorithms on LED-24, LED-7, and Wavefonn-40 data sets.

4.4.1.2 Discussion

The results obtained by the three algorithms on LED-24 and LED-7 show that

FuNe-I and ID3 are the least affected by irrelevant attributes. ID3 reported 58% and 54%

classification accuracies on LED-7 and LED-24, respectively. The difference is very

small. FuNe-I shows the same characteristic, and its classification accuracies are better;

68.5% for LED-7 and 65.5% for LED-24. The difference is very small, too. On the other

hand, FFNBP is affected the most by the irrelevant attributes. Its classification accuracy

different between LED-7 and LED24 is 9.5%.
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4.4.2 Completely-Dropped Attributes

The second imperfection investigated is completely-dropped attributes. The

imperfection arises when an insufficient information is used to describe or represent

examples. This experiment investigated the sensitivity of the learning algorithms to the

attributes by randomly dropping some of the attributes. If an attribute is dropped, it is

dropped from all examples in both the training and testing data set. In this experiment,

all of the odd numbered attributes were dropped gradually from 10%, 25% to 50% of the

total attributes in the data set. Table 6 shows the data sets and the number of attributes

dropped for each category, 10%,25%, and 50% of the total number of attributes (in a data

set).

Table 6: Number of attributes being dropped (10%,25% and 50%) for each data set.

Data Data Set Name Total # Reduced Reduced Reduced
Set # of Attributes by 10% by 25% by 50%

1 Breast Cancer 9 1 2 4
2 Diabetes 8 1 2 4
3 Hepatitis 19 2 5 10
4 LED-24 24 2 6 12
5 LED-7 7 1 2 4

I

6 Lymphography 18 2 4 9
7 Monks-2 6 1 2 4
8 Mushroom 22 2 6 11

9 Promoter 2 6 14 28
10 Soybean 19 4 9 18
11 Thyroid 2 2 6 12
12 Waveform-40 3 4 10 20
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4.4.2.1 Results

Graph C1 through C12 of Appendix C present classification performance of ID3

FFNBP, and FuNe-I as a function of percentage of attributes dropped for each of the

twelve data sets. Graph C13a through C15b present classification performance of the

learning algorithms as function of the percentage of attributes dropped for all twelve data

sets.

4.4.2.2 Discussion

All three algorithms' performances degraded the most on data set LED-24 and

LED-7. ID3 and FuNe-I performed comparably as the attributes were dropped from the

data sets. Both ID3 and FuNe-I performed better than FFNBP. On interesting aspect of

the Graphs of Appendix C is the occasion where the classification performance of the

three learning algorithms improve when the attributes were dropped. It illustrates that

extra attributes can degrade learning algorithms' performances. The conclusion is

supported by these experimental results and it also agrees with the experimental results of

Mooney et al. [Mooney91].

ID3 performed very well as the numbers of the attributes were being reduced. Its

classification performances on most of the data sets degraded gradually (~ 10%), except

LED-24, LED-7, and Waveform-40. Four of the data sets reported better results as the

number of attributes decreasing (Diabetes, Hepatitis, Lymphography, Monks-2, and

Mushroom). ID3's classification accuracy on Monks-2 data set increased by 25.16%.

Classification accuracy ofID3 on Mushroom and Lymphography data sets unchanged.
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The experiment results show that FuNe-I performed as well as ID3 and it worked

best with fewer attributes. Table D14 of Appendix D and graphs of Appendix C show

that the classification perfonnances of FuNe-I on most of the data sets degraded gradually

(::S; 10%) except LED-24 and Soybean data sets. Four of the data sets achieved better

results as the numbers of attributes were decreased (Hepatitis, Lymphography, Thyroid,

and Wavefonn-40).

FFNBP is affected the most by the reduction of attributes. Tables of Appendix D

and graphs of Appendix C show its classification performances on the data sets degraded

more drastically than ID3 and FuNe-I. Its classification accuracies on five of the data sets

lost are greater than 10%.
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CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary

The main objective of the experiment is to study and understand more about the

comparative strengths and weaknesses between Induction of Decision Trees (ID3),

Feedforward Neural Network trained with Backpropagation (FFNBP), and Fuzzy Neural

Network (FuNe-I). All the three algorithms were tested on twelve data sets obtained

from the University of California-Irvine Machine Learning Database Repository

(Murphy91]. Sixteen dimensions defined by Zheng were used to describe these data sets

[Zheng93]. The algorithms were tested and compared based on the classification

accuracy, the learning time, the effects of the number of training data, and the effects of

imperfect data.

The first experiment tested the classification accuracy of the three algorithms.

The experiment found that FuNe-1 is superior than 103 and FFNBP on small and medium

data sets. FuNe-I performance on large data sets was poor. The performance ofID3 and

FFNBP is comparable.

Learning time of each algorithm was monitored in the second experiment. The

results show that FuNe-1 generated the worst learning time. It is foHowed by FFNBP and

ID3. ID3 performed extremely fast. In the third experiment, the three algorithms'
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dependencies on the amount of training examples were tested. FuNe-I outperformed ID3

and FFNBP as the numbers of training examples were reduced. FuNe-I works better with

small and medium data sets. FuNe-I's classification perfonnance increased as the

numbers of training examples were reduced. Overall, 103 's classification performance

consistently degraded slightly across the twelve data sets. FFNBP's classification

performance was not stable. Its performance degraded drastically on six of the twelve

data sets.

In the last experiment, two types of imperfect data were tested: irrelevant

attributes and completely dropped of attributes. In the first section of the experiment, the

results indicated that FuNe-I and ID3 performed better than FFNBP with irrelevant

attributes. FFNBP's classification performance degraded as the irrelevant attributes were

introduced to the LED-24 data set. FuNe-I achieved higher classification accuracy on

that data set and it was least affected by the irrelevant attributes.

The results from the second section of experiment four show the occasions where

the classification performances of 103, FFNBP, and FuNe-I algorithms improved when

the number of attributes was reduced. It illustrates that extra attributes can degrade

learning algorithms' performance. Both ID3 and FuNe-I performed better than FFNBP

as the number of attributes was being reduced. The results show that FuNe-I works well

with fewer attributes. Its classification performances on some data sets were better when

fewer numbers of attributes were presented. At the same moment, FFNBP was most

affected by the attribute reduction. Its classification performances degraded more

drastically as compared to ID3 and FuNe-I.
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5.2 Future Work

Due to the time constraint, only selected nwnbers of criteria were used to compare

the three algorithms. Thus, there are several directions where future endeavors might

pursue to better evaluate and compare the three algorithms.

The fIrst improvement is to include the Nettalk data set. The data set was omitted

from the experiment due to the time constraint. The data set requires huge learning time

(especially for FFNBP and FuNe-I). This will truly satisfy the requirements for Zheng's

learning classifier benchmark.

A second improvement is to test the algorithms with noise and missing values in

the data set. Noise and missing values affect the performance of the learning algorithms.

Each noise and missing values should be manually applied to the data set. Then, their

effects on the algorithms' performances can be measured and compared.

The third improvement is to include the information scores and relative

information scores. The information scores can assist the experiment in evaluating and

comparing algorithms on different data sets. This measure is introduced by Kononenko

and Bratko [Kononenk091] to overcome the shortcoming of predictive accuracy.

Finally, the experiment can be expanded to include different types of Fuzzy

Neural Networks. Currently, there are a lot of research work is going on different types

of Fuzzy Neural Networks, such as Fuzzy RCE [Roan93], Multilayer Feedforward Net

with Pattern Learning [Qin92], Multilayer Feedforward Net with Batch Learning [Qin92],

Feedforward Net with External Recurrence and Pattern Learning [Qin92], Feedforward

Net with External Recurrence and Batch Learning [Qin92], and many others.
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DataSet Size Missing Noise Level # Attributes # # #
Values Att. CI. B N C T IAtt DNAV CI.

Breast Cancer (W) 699 16(0.25) yes yes 0 0 9 9 2
Diabetes 768 0 0 0 8 8 2
Hepatitis 155 167(5.67) 13 0 6 19 2
LED-24 200 0 yes no 24 0 0 24 17(70.8) 10
LED-7 200 0 yes no 7 0 0 7 0 10
Lymphography 148 0 9 9 0 18 8 4
Monks-2 432 0 no no 2 4 0 6 0 -1 2
Mushroom 8124 2480(1.39) 4 18 0 22 12 2
NetTalk(P honeme) 5438 0 no yes 0 7 0 7 0 27 52
Promoter 106 0 0 57 0 57 4 2
Soybean 683 2337(9.78) yes yes 16 19 0 35 7 19
Thyroid 3163 5329(6.74) yes yes 18 0 7 25 2
Waveform-40 300 0 yes no 0 0 40 40 19(47.5) 3

DataSet Density Default Entropy Highest Acc. Info. S. of C4.5
Acc. (bits) Pred. ReI. Average. ReJ.

Breast Cancer (W) 7.77 x 10 7 65.5 0.93 94.8 84.9 0.81 87.5
Diabetes 1.12 x 10 ·LJ 65.1 0.93 78.8 39.3 0.32 34.1

Hepatitis 1.28 x lO- u 79.4 0.73 83.0 17.5 0.14 19.1
LED-24 1.19 x 10 " 14.1 3.28 70.0 65.1 1.64 56.1
LED-7 1.56 14.1 3.28 71.0 66.2 1.92 66.2
Lymphography 4.90 x 10 54.7 1.23 78A 52.3 0.61 54.3
Monks-2 1.00 62.1 0.96 100.0 100..0 0.15 16.6
Mushroom 5.79 x 10 l~ 51.8 1.00 100.0 100.0 1.00 100.0
NetTalk(Phoneme) 5.20 x 10- 18.7 4.72 84.1 80.4 3.70 79.4
Promoter 5.10 x 10 .JJ 51.5 1.00 76.3 51.1 OAI 42,1

Soybean 5.47 x 10 ·1J 13.7 3.84 97.1 96.6 3.35 91.4
Thyroid 1.32 x 10 '1 95.2 0.28 99.1 81.2 0.24 85.6
Waveform-40 7.31 x 10-92 39.0 1.56 86.0 77.0 0.83 54.0
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Graph B1: Classification perfonnance as a function of percent of Breast Cancer data set.
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Graph B13a: Classification perfonnance of ID3 as a function of percent ofdata reduced
for data sets 1 to 6.
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Graph B14a: Classification performance of FFNBP as a function of percent of data
reduced for data sets 1 to 6.
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Graph B14b: Classification performance of FFNBP as a function of percent of data
reduced for data sets 7 to 12.
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Graph C3: Classification performance as a function of percent of attributes dropped for
Hepatitis data set.
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Graph C4: Classification perfonnance as a function of percent of attributes dropped for
LED-24 data set.
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Graph C6: Classification performance as a function of percent of attributes dropped for
Lymphography data set.
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Graph C 11: Classification performance as a function of percent of attributes dropped for
Thyroid data set.
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Graph C12: Classification performance as a function of percent of attributes dropped for
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Graph C 13a: Classification performance of ID3 as a function of percent of attributes
dropped for data sets 1 to 6.
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Graph C13b: Classification performance of ID3 as a function of percent of attributes
dropped for data sets 7 to 12.
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dropped for data sets 1 to 6.
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Table Dl: Classification accuracy of ID3, FFNBP, and FuNe-l using 4-fold cross­
validation.

Data Data Set 103 FFNBP FuNe-1
Set#

1 Breast Cancer 94.42 94.99 94.56
2 Diabetes 69.01 64.89 79.69
3 Hepatitis 77.41 79.99 80.65
4 LED-24 54.00 53.00 65.50 ,

5 LED-7 58.00 62.50 68.50
6 Lymphography 74.32 79.73 78.38
7 Monks-2 51.39 66.44 75.00
8 Mushroom 100.00 100.00 93.50
9 . Promoter 74.61 72.80 78.30
10 Soybean 91.07 93.41 88.97
11 Thyroid 98.51 98.23 90.76
12 Waveform-40 75.00 88.67 78.00

Total 917.74 954.65 971.81
Average 76.48 79.55 80.98
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Table D2: Classification accuracy ofID3 using 4-fold cross-validation.

Data Data Set Total # Time: User T'esting
Set # of Data (mm:ss.OO) Accuracy

(%)

1 Breast cancer 699 00:04.16 94.42
2 Diabetes 768 00:09.55 69.01
3 Hepatitis 155 00:01.78 77.41
4 LED-24 200 00:02.66 54.00
5 LED-7 200 00:01.08 58.00
6 Lymphography 148 00:01.20 74.32
7 Monks-2 432 00:02.64 51.39
8 Mushroom 8124 00:49.00 100.00
9 Promoter 106 00:01.35 74.61
10 Soybean 683 00:06.62 91.07
11 Thyroid 3163 00:25.60 98.51
12 Waveform-40 300 00:12.51 75.00

Total 01:38.15 917.74
Average 00:08.18 76.48
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Table D3: Classification accuracy ofFFNBP using 4-fold cross-validation.

Data Data Set Network Momentum Learning Total # of Time: User Testing
Set # Rate Data (h:mm:ss.OO) Accuracy

(%)
1 Breast cancer 9-9-2 0.9 0.002 699 0:04:20.00 94.99
2 Diabetes 8-8-2 0.9 0.002 768 0:04:02.93 64.89
3 Hepatitis 19-19-2 0.9 0.0005 155 0:03:09.96 79.99
4 LED-24 24-24-10 0.9 0.001 200 0:02:57.75 53.00
5 LED-7 7-7-10 0.9 0.001 200 0:01:49.08 62.50
6 Lymphography 18-184 0.9 0.005 148 0:00:37.78 79.73
7 Monks-2 6-6-2 0.9 0.003 432 0:01:39.06 66.44
8 Mushroom 22-22-2 0.9 0.0001 8124 1:12:42.97 100.00
9 Promoter 57-57-2 I 0.9 0.005 106 0:00:06.71 72.80
10 Soybean 35-35-19 0.9 0.001 683 1:04:06.22 93.41
11 Thyroid 25-25-2 0.9 0.0001 3163 1:44:50.69 98.23
12 Waveforrn40 4040-3 0.9 0.004 300 0:00:42.40 88.67

Total 4:21:05.55 954.65
Average 0:21:45.46 79.55
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Table D4: Classification accuracy of FuNe-I using 4-fold cross- alidation.

Data Set: Data Set Momentum Learning Total # of Time: User Testing
# Rate Data (h:mm:ss.OO) Accuracy

(0/0)

1 Breast cancer 0.90 0.002 699 0:44:48.93 94.56
2 Diabetes 0.90 0.002 768 0:47:24.11 79.69
3 Hepatitis 0.90 0.0001 155 0:36:53.96 80.65
4 LED-24 0.90 0.0001 200 0:56:36.41 65.50
5 LED-7 0.90 0.0001 200 0:18:47.26 68.50
6 Lymphography 0.90 0.002 148 0:28:24.94 78.38
7 Monks-2 0.90 0.005 432 0:17:13.91 75.00
8 Mushroom 0.90 0.0001 8124 16:39:33.85 93.50
9 Promoter 0.90 0.005 106 1:10:42.53 78.30
10 Soybean 0.90 0.001 683 5:40:14.87 88.97
11 Thyroid 0.90 0.0001 3163 8:02:45.58 90.76
12 Waveform-40 0.90 0.004 300 1:17:07.78 78.00

Total 13:00:34.13 971.81
Average 3:05:02.84 80.98
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Table D5: Classification accuracy of ill3, FFNBP and FuNe-l using lO-fold cross­
validation.

Data Data Set 103 FFNBP FuNe-1
Set#

1 Breast cancer 94.13 95.01 93.71
2 Diabetes 70.57 66.26 80.61
3 Hepatitis 77.33 73.00 83.83
4 LED-24 50.50 60.50 61.00
5 LED-7 60.00 63.50 70.00
6 Lymphography 78.38 76.56 81.49
7 Monks-2 49.52 67.15 74.09
8 Mushroom 100.00 100.00 84.06
9 Promoter 83.27 72.13 79.04
10 Soybean 93.84 91.99 81.68
11 Thyroid 98.61 98.13 92.69
12 Waveform-40 68.33 83.33 76.33

Total 924.48 947.56 958.53
Average 77.04 78.96 79.88
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Table D6: Classification accuracy of ill3 using IO-fold cross- alidation.

Data Data Set Total # Time: User Testing
Set# of Data (mm:ss.OO) Accuracy

(%)

1 Breast cancer 699 00:11.68 94.13
2 Diabetes 768 00:26.71 70.57
3 Hepatitis 155 00:04.63 77.33
4 LED-24 200 00:07.00 50.50
5 LED-7 200 00:02.66 60.00
6 Lymphography 148 00:02.84 78.38
7 Monks-2 432 00:07.17 49.52
8 Mushroom 8124 00:56.02 100.00
9 Promoter 106 00:03.00 83.27
10 Soybean 683 00:16.10 93.84
11 Thyroid 3163 01:06.60 98.61
12 Waveform-40 300 00:37.98 68.33

Total 04:02.39 924.48
Average 00:20.20 77.04
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Table D7: Classification accuracy of FFNBP using lO-fold cross-validation

Data Data Set Network Momentum Learning Total # of Time:User Testing
Set # Rate Data (h:mm:ss.OO) Accuracy

(%)

1 Bcancer 9-9-2 0.90 0.002 699 0:05:24.62 95.01
2 Diabetes 8-8-2 0.90 0.002 768 0:04:58.38 66.26
3 Hepatitis 19-19-2 0.90 0.0001 155 0:03:36.04 73.00
4 LED-24 24-24-10 0.90 0.0001 200 0:09:36.16 60.50
5 LED-7 7-7-10 0.90 0.0001 200 0:02:14.77 63.50
6 Lymphography 18-18-4 0.90 0.002 148 0:00:41.62 76.56
7 Monks-2 6-6-2 0.90 0.005 432 0:02:06.67 67.15
8 Mushroom 22-22-2 0.90 0.0001 8124 0:59:55.45 100.00
9 Promoter 57-57-2 0.90 0.005 106 0:00:10.16 72.13
10 Soybean 35-35-19 0.90 0.001 683 1:17:30.01 91.99
11 Thyroid 25-25-2 0.90 0.0001 3163 2:08:23.50 98.13
12 Waveform-40 40-40-3 0.90 0.004 300 0:01:21.62 83.33

Total 4:55:59.00 947.56
Average 0:24:39.92 78.96
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Table D8: Classification accuracies ofFuNe-I using lO-fold cross-validation.

Data Data set Momentum Learning Total # Time: User Testing
Set# Rate of Data (h:mm:ss.OO) Accuracy

(%)

1 Breast cancer 0.,90 0.002 699 0:49:38.58 93.71
2 Diabetes 0.90 0.002 768 0:52:21.31 80.61
3 Hepatitis 0.90 0.0001 155 0:41:03.52 83.83
4 LED-24 0.90 0.0001 200 0:52:19.19 61.00
5 LED-7 0.90 0.0001 200 0:23:51.11 70.00
6 Lymphography 0.90 0.002 148 0:40:18.02 81.49
7 Monks-2 0.90 0.005 432 0:18:56.34 74.09
8 Mushroom 0.90 0.0001 8124 18:15:48.19 84.06
9 Promoter 0.90 0.005 106 1:20:16.99 79,04
10 Soybean 0.90 0.001 683 6:39:49.54 81.68
11 Thyroid 0.90 0.0001 3163 9:32:33.34 92.69
12 Waveform-40 0.90 0.004 300 1:47:18.94 76.33

Total 18:14:15.07 958.53
Average 3:31:11,26 79.88
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Table D9: Classification performance of 103 with reducing data.

Data Data Set % of Data Total # of Time: User Testing
Set # Reduced Data (mm:ss.OO) Accuracy

(%)

1 Breast cancer 0% 699 00:04.16 94.42
25% 522 00:02.98 93.87
50% 348 00:01.77 94.08
75% 174 00:00.75 94.26

2 Diabetes 0% 768 00:09.55 69.01
25% 576 00:06.67 68.69
50% 384 00:04.36 68.40
75% 192 00:01.84 68.58

3 Hepatitis 0% 155 00:01.78 77.41
25% 114 00:01.30 77.04
50% 76 00:00.86 78.28
75% 38 00:00.45 72.22

4 LED-24 0% 200 00:02.66 54.00
, 25% 150 00:02.03 48,02

50% 100 00:01.36 50.67
75% 50 00:00.75 44.61

5 LED-7 0% 200 00:01.08 58.00
25% 150 00:00.86 58.44
50% 100 00:00.68 58.67
75% 50 00:00.41 54.06

6 Lymphography 0% 148 DO:01.20 74.32
25% 111 00:00.87 75.65
50% 74 00:00.59 71.69
75% 37 00:00.29 71.11

7 Monks-2 0% 432 00:02.64 51.39
25% 324 00:01.95 50.82
50% 216 00:01.31 50.31
75% 108 00:00.63 55.25

8 Mushroom 0% 8124 00:29.00 100.00
25% 6093 00:18.25 100.00
50% 4062 00:11.94 99.98
75% 2031 00:05.96 99.95

9 Promoter 0% 106 00:01.35 74.61
25% 78 00:00.88 70.18
50% 52 00:00.74 70.19
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75% 26 00:00.40 63.10

10 Soybean 0% 683 00:06.62 91.07
25% 510 00:05.17 91.28
50% 340 00:03.44 87.39
75% 170 00:02.03 80.63

11 Thyroid 0% 3163 00:25.60 98.51
25% 2370 00:18.12 98.58
50% 1580 00:11.34 98.59
75% 790 00:05.44 97.93

12 Waveforrn-40 0% 300 00:12.51 75.00
25% 225 00:08.96 68.44
50% 150 00:05.48 67.34
75% 75 00:02.39 62.77
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Table 010: Classification perfonnance ofFFNBP with reducing data.

Data Data Set % of Data Total # of Time: User Testing
Set # Reduced Data (h:mm:ss.OO) Accuracy

(%)

1 Breast cancer 0% 699 0:04:20.00 94.99
25% 522 0:02:25.39 93.99
50% 348 0:00:55.80 95.11
75% 174 0:00:11.79 92.73

2 Diabetes 0% 768 0:04:02.93 64.89
25% 576 0:03:10.56 64.82
50% 384 0:01:53.95 65.97
75% 192 0:01:00.67 62.50

3 Hepatitis 0% 155 0:03:09.96 79.99
25% 114 0:02:24.96 72.36
50% 76 0:01:35.24 73.68
75% 38 0:00:46.65 72.22

4 LED-24 0% 200 , 0:02:57.75 53.00
25% 150 0:01:47.13 48.13
50% 100 0:01 :04.06 42.00
75% 50 0:00:27.70 31.62

5 LED-7 0% 200 0:01 :49.08 62.50
25% 150 0:01 :25,69 60.53
50% 100 0:00:58.51 58.67
75% 50 0:00:28.94 54.27

6 Lymphography 0% 148 0:00:37.78 79.73
25% 111 0:00:17.55 78.09
50% 74 0:00:06.67 79.72
75% 37 0:00:03.21 79.08

7 Monks-2 0% 432 0:01:39.06 66.44
25% , 324 0:01:19.28 60.91
50% 216 0:00:50.24 61.27
75% 108 0:00:23.42 55.55

8 Mushroom 0% 8124 1:12:42.97 100.00
25% 6093 0:56:32.78 99.99
50% 4062 0:37:26.68 99.98
75% 2031 0:38:26.54 99.84

9 Promoter 0% 106 0:00:06.71 72.80
25% 78 0:00:06.19 68.58
50% 52 0:00:03.38 66.03
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75% 26 0:00:01.66 70.63

10 Soybean 0% 663 1:04:06.22 93.41
25% 510 0:40:05.37 92.61
50% 340 0:19:15.27 91.07
75% 170 0:05:42.56 83.72

11 Thyroid 0% 3163 1:44:50.69 98.23
25% 2370 1:19:36.10 98.19
50% 1580 0:52:24.39 98.16
75% 790 0:26:43.95 96.48

12 Waveforrn-40 0% 300 0:00:42.40 88.67
25% 225 0:00:29.56 84.73
50% 150 0:00:11.69 64.21
75% 75 0:00:05.47 76.59
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Table DII: Classification performance of FuNe-I with reducing data.

Data Data Set % of Data Total # of Time: User Testing
Set# Reduced Data (h:mm:ss.OO) Accuracy

(%)

1 Breast cancer 0% 699 0:44:48.93 94.56
25% 522 0:32:06.18 93.93
50% 348 0:22:04.14 93.97
75% 174 0:11:43.94 92.70

2 Diabetes 0% 768 0:47:24.11 79.69
25% 576 0:35:52.25 78.65
50% 384 0:21:05.25 77.60
75% 192 0:13:37.02 77.26

3 Hepatitis 0% 155 0:36:53.96 80.65
25% 114 0:24:02.26 83.02
50% 76 0:17:17.79 82.89
75% 38 0:08:11.74 82.32

4 LED-24 0% 200 0:56:36.41 65.50
25% 150 0:33:52.86 60.01
50% 100 0:22:57.70 61.33
75% 50 0:12:53.22 68.06

5 LED-7 0% 200 0:18:47.26 68.50
25% 150 0:15:28.44 68.45
50% 100 0: 10:01.40 70.67
75% 50 0:04:41.48 71.92

6 Lymphography 0% 148 0:28:24.94 78.38
25% 111 0:23:15.54 78.95
50% 74 0:16:15.64 79.35
75% 37 0:06:54.36 81.85

7 Monks-2 0% 432 0:17:13.91 75.00
25% 324 0:11 :25.04 74.79
50% 216 0:08:57.21 74.69
75% 108 0:04:47.43 71.91

8 Mushroom 0% 8124 16:39:33.85 93.50
25% 6093 12:29:38.97 86.77
50% 4062 8:24:44.29 90.83
75% 2031 4:16:45.08 88.10

9 Promoter 0% 106 1:10:42.53 78.30
25% 78 0:49:52.88 79.05
50% 52 0:33:24.05 82.05
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75% 26 0:17:45.77 87.50

10 Soybean 0% 683 5:40:14.87 88.97
25% 510 4:16:19.24 84.57
50% 340 2:54:09.05 86.76
75% 170 1:25:42.65 76.23

11 Thyroid 0% 3163 8:02:45.58 90.76
25% 2370 6:00:45.39 94.77
50% 1580 3:55:26.75 94.62
75% 790 2:01:54.37 94.64

12 Waveform-40 0% 300 1:17:07.78 78.00
25% 225 1:16:53.41 80.00
50% 150 0:51:14.19 78.19
75% 75 0:27:30.22 75.46
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Table 012: Classification perfonnance ofID3 with dropping attributes.

Data Data Set Total # of % of # of Time: User Testing
8et# ' Attributes Attributes Att.ributes (mm:ss.OO) Accuracy

Dropped Dropped (%)

1 Breast cancer 9 0% 0 00:04.16 94.42
10% 1 00:03.83 94.42
25% 2 00:03.63 93.42
50% 4 00:02.96 93.42

2 Diabetes 8 0% 0 00:09.55 69.01
10% 1 00:09.23 69.27
25% 2 00:08.08 69.27
50% 4 00:07.10 69.53

3 Hepatitis 19 0% 0 00:01.78 77.41
10% 2 00:01.59 80.01
25% 5 00:01.48 80.01
50% 10 00:01.10 78.74

4 LED-24 24 0% 0 00:02.66 54.00
10% 2 00:02.76 38.00
25% 4 00:02.79 53.00
50% 9 00:02.33 43.00

5 LED-7 7 0% 0 00:01.08 58.00
10% 1 00:00.91 58.00
25% 2 00:00.81 53.00
50% 4 00:00.47 43.00

6 Lymphography 18 0% 0 00:01.20 74.32
10% 2 00:01.09 78.38
25% 6 00:01.03 81.76
50% 12 00:01.09 74.32

7 Monks-2 6 0% 0 00:02.64 51,39

10% 1 00:01.80 54.86
25% 2 00:01.40 52.55
50% 3 00:00.84 64.32

8 Mushroom 22 0% 0 00:29.00 100.00
10% 2 00:22.51 100.00

25% 6 00:23,66 100.00
50% 11 00:19.27 100.00

9 Promoter 57 0% 0 00:01.35 74.61

10% 6 00:01.62 73.75

25% 14 00:01.19 77.42
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50% 28 00:00.93 72.79

10 Soybean 35 0% 0 00:06.62 91.07
10% 4 00:06.51 87.41
25% 9 00:06.58 84.04
50% 18 00:04.91 83.60

11 Thyroid 25 0% 0 00:25.60 98.51
10% 2 00:21.80 98.64
25% 6 00:20.30 98.67
50% 12 00:15.54 95.23

12 Waveform-40 40 0% 0 00:12.51 75.00
10% 4 00:11.41 77.00
25% 10 00:10.06 66.00
50% 20 00:07.27 65.23
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Table D13: Classification performance ofFFNBP with dropping attributes.

Data Data Set Total # of % of #of Time: User Testing
Set# Attributes Attributes Attributes (h:mm:ss.OO) Accuracy

Dropped Dropped (%)

1 Breast cancer 9 0% 0 0:04:20.00 94.99
10% 1 0:04:03.87 94.42
25% 2 0:03:25.68 94.70
50% 4 0:02:22.20 95.69

2 Diabetes 8 0% 0 0:04:02.93 64.89
10% 1 0:03:47.25 64.98
25% 2 0:02:42.02 64.72
50% 4 0:02:18.52 64.98

3 Hepatitis 19 0% 0 0:03:09.96 79.99
10% 2 0:02:40.73 72.15
25% 5 0:01:44.84 73.51
50% 10 0:00:56.92 77.36

4 LED-24 24 0% 0 0:02:57.75 53.00
10% 2 0:03:29.94 41.00
25% 4 0:05:39.35 24.50
50% 9 0:03:14.44 30.00

5 LED-7 7 0% 0 0:01:49.08 62.50
10% 1 0:01:37.07 62.00
25% 2 0:01:25.82 56.50
50% 4 , 0:01:05.57 47.00

6 Lymphography 18 0% a 0:00:37.78 79.73
10% 2 0:00:37.48 78.38
25% 6 0:01:35.62 76,35
50% 12 0:01:09.80 75.47

7 Monks-2 6 0% 0 0:01:39.06 66.44
10% 1 0:01:23.42 67.13
25% 2 0:01:08.45 61.34
50% 3 0:00:55.50 63.43

8 Mushroom 22 0% 0 1:12:42.97 100.00
10% 2 1:31 :05.76 100.00
25% 6 1:57:10.26 94.37
50% 11 1:08:34.08 99.80

9 Promoter 57 0% 0 0:00:06.71 72.80
10% 6 0:00:06.37 75.55
25% 14 0:00:09.22 69.02
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50% 28 0:00:09.74 56.66

10 Soybean 35 0% 0 1:04:06.22 93.41
10% 4 0:54:07.49 86.24
25% 9 0:43:14.40 82.28
50% 18 0:24:40.71 83.73

11 Thyroid 25 0% 0 1:44:50.69 98.23
10% 2 1:37:20.46 98.71
25% 6 1:04:47.55 97.60
50% 12 1:05:05.38 97.60

12 Waveform-40 40 0% 0 0:00:42.40 88.67
10% 4 0:00:36.13 87.33
25% 10 0:01:13.24 77.00
50% 20 0:00:55.40 78.33
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Table D14: Classification perfonnance ofFuNe-I with dropping attributes.

Data Data Set Total # of % of # of Time: User Testing
Set# Attributes Attributes Attributes (h:mm:ss.OO) Accuracy

Dropped Dropped (%)

1 Breast cancer 9 0% 0 0:44:48.93 94.56
10% 1 0:38:41.02 94.43
25% 2 0:34:37.33 94.14
50% 4 0:21:04.21 94.28

2 Diabetes 8 0% 0 0:47:24.11 79.69
10% 1 0:40:47.76 78.65
25% 2 0:29:43.03 78.52
50% 4 0:16:08.60 77.73

3 Hepatitis 19 0% 0 0:36:53.96 80.65
10% 2 0:28:46.67 78.63
25% 5 0:16:44.45 84.45
50% 10 0:10:17.82 85.77

4 LED-24 24 0% 0 0:56:36.41 65.50
10% 2 0:39:52.15 55.50
25% 4 0:29:19.47 47.50
50% 9 0: 17:12.21 45.00

5 LED-7 7 0% 0 0:18:47.26 68.50
10% 1 0:15:56.64 65.00
25% 2 0:12:31.16 62.00
50% 4 0:06:30.07 62.00

6 Lymphography 18 0% 0 0:28:24.94 78.38
10% 2 0:28:33.29 83.78
25% 6 0:20:42.89 82.43
50% 12 0:15:41.34 81.08

7 Monks-2 6 0% 0 0:17:13.91 75.00
10% 1 0:13:59.87 75.00
25% 2 0:09:27.16 74.54
50% 3 0:06:39.63 74.54

8 Mushroom 22 0% 0 16:39:33.85 93.50
10% 2 14:24:04.46 83.65
25% 6 10:33:33.80 87.30
50% 11 6:26:51.94 90.95

9 Promoter 57 0% 0 1:10:42.53 78.30
10% 6 0:56:22.94 78.37

25% 14 0:40:15.45 72.66
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50% 28 0:21 :14.82 74.59

10 Soybean 35 0% 0 5:40:14.87 88.97
10% I 4 4:42:42.62 81 .. 83
25% 9 3:37:22.04 82.14
50% 18 2:13:27.62 75.28

11 Thyroid 25 0% 0 8:02:45.58 90.76
10% 2 7:17:44.37 95.23
25% 6 5:24:08.13 95.83
50% 12 3:29:23.46 96.71

12 Waveform-40 40 0% 0 1:17:07.78 78.00
10% 4 1:29:41.62 88.33
25% 10 1:05:54.21 79.33
50% 20 0:34:04.32 89.67
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TRADEMARK rNFORMATION
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Spare

SunOS

UNIX

Spare is a registered trademark of Sun Microsystems

SunOS is a registered trademark of Sun Mierosystems.

UNIX is a registered trademark of AT&T.
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