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Abstract

Improved procedures, in terms of smaller missed discovery rates (MDR), for performing multiple

hypotheses testing with weak and strong control of the family-wise error rate (FWER) or the false

discovery rate (FDR) are developed and studied. The improvement over existing procedures such

as the Šidák procedure for FWER control and the Benjamini–Hochberg (BH) procedure for FDR

control is achieved by exploiting possible differences in the powers of the individual tests. Results

signal the need to take into account the powers of the individual tests and to have multiple

hypotheses decision functions which are not limited to simply using the individual p-values, as is

the case, for example, with the Šidák, Bonferroni, or BH procedures. They also enhance

understanding of the role of the powers of individual tests, or more precisely the receiver

operating characteristic (ROC) functions of decision processes, in the search for better multiple

hypotheses testing procedures. A decision-theoretic framework is utilized, and through auxiliary

randomizers the procedures could be used with discrete or mixed-type data or with rank-based

nonparametric tests. This is in contrast to existing p-value based procedures whose theoretical

validity is contingent on each of these p-value statistics being stochastically equal to or greater

than a standard uniform variable under the null hypothesis. Proposed procedures are relevant in

the analysis of high-dimensional “large M, small n” data sets arising in the natural, physical,

medical, economic and social sciences, whose generation and creation is accelerated by advances

in high-throughput technology, notably, but not limited to, microarray technology.
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1. Introduction and motivation

The advent of modern technology, epitomized by the microarray, has led to the generation

of very high-dimensional data pertaining to characteristics of a large number, M, of

attributes, hereon called genes, associated with usually a small number, n, of units or

subjects. Several such data sets are, for example, described in [10], and these are the inputs

to so-called parallel inference problems. The most common form of inference is multiple

hypotheses testing, wherein for the mth gene there are two competing hypotheses, a null

hypothesis Hm0 and an alternative hypothesis Hm1, for which a decision is to be made based

on the data. In such multiple decision-making, there is a need to be cognizant and cautious

of the Hyde-ian nature of multiplicity, while also exploiting the Jekyll-ian potentials of

multiplicity [39]. Furthermore, this entails a tenuous balance between two competing

desires: controlling the rate of rejection of correct null hypotheses, while at the same time

maintaining the rate of discovery of correct alternative hypotheses.

As in single-pair hypothesis testing, a type I error occurs when a correct null hypothesis is

rejected, while a type II error occurs when a false null hypothesis is not rejected. Several

type I errors have been proposed in multiple testing; see [6] and [7]. Our focus is on the

weak family wise error rate (FWER), the probability of rejecting at least one null hypothesis

when all the nulls are correct; strong FWER, the probability of rejecting at least one correct

null hypothesis; and false discovery rate (FDR), the expected proportion of the number of

false rejections of nulls relative to the number of rejections [1, 37]. Our type II error rate is

the missed discovery rate (MDR), the expected number of false nonrejections of null

hypotheses. Other type II errors have been discussed in [5–7, 9, 41]. The usual framework in

developing multiple decision functions is to bound the chosen type I error rate, and then

minimize or make small the MDR. For example, a procedure controlling weak FWER,

under an independence assumption, is that of Šidák [36]; while a conservative one not

requiring independence is the Bonferroni procedure [3]. For FDR control, the most common

procedure is the BH procedure [1]. Control of type I error measures related to the FDR have

also been discussed in [8–10, 12, 15, 40, 41, 45], while [20, 23, 34] focused on estimation of

the proportion of correct null hypotheses.

Procedures like the Šidák, Bonferroni and BH, rely on the set of p-values of individual tests.

Their validity hinges on each p-value statistic being stochastically equal to or greater than a

standard uniform variable under the null hypothesis. This fails, however, with

noncontinuous variables or when rank-based nonparametric tests are used. Crucially, p-

value based procedures also do not exploit the power characteristics of the individual tests,

contrary to Neyman and Pearson’s [27] adage that such considerations are germane in

constructing optimal tests. Such p-value based procedures are fine in exchangeable settings

where power characteristics of the individual tests are identical, but not in situations where

genes or subclasses of genes have different structures; see [11, 13, 29].
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Some papers dealing with procedures exploiting the power functions are [38, 49]. The use of

weighted p-values to improve type II performance have also been explored in [16, 21, 29,

30, 46]. Other approaches for optimal procedures are those in [42, 43] which employ a

Neyman–Pearson approach and [45] where oracle and adaptive compound rules were

obtained. Compound rules are characterized by information borrowing from each of the

genes, so a decision function for a specific gene utilizes information from other genes.

Decision-theoretic and Bayesian approaches were also implemented in [10, 17, 26, 33, 35].

More recently, [11] argues for separate subclass analysis, while [13] proposed use of

external covariates, with the procedures having a Bayes and empirical Bayes flavor.

The main goal of this paper is to develop better multiple testing procedures controlling weak

FWER, strong FWER and FDR by taking into account the individual powers of the tests.

We focus on the most fundamental setting where the null and alternative hypotheses for

each gene are both simple. This is also the setting in [29]. This admits, as starting point, the

Neyman–Pearson most powerful (MP) test for each pair of hypotheses. Each MP test will

have a power, but we will see that it is beneficial to look at each of these powers as function

of their MP test’s size, their so-called receiver operating characteristic (ROC) function.

The paper proceeds as follows. Section 2 presents the decision-theoretic elements. Section 3

reviews and reexamines MP tests, p-value statistics and ROC functions. Section 4 develops

the optimal weak FWER-controlling procedure, with existence and uniqueness established

in Section 4.2. Section 4.3 analytically describes the procedure for differentiable ROC

functions. Section 4.4 provides a concrete example using normal distributions, while Section

4.5 discusses a size-investing strategy for optimality. Section 5 discusses limitations,

extensions and connections: Section 5.1 deals with the restriction to the class of simple

procedures; Section 5.2 deals with extensions to the composite hypotheses setting in the

presence of the monotone likelihood ratio (MLR) property; and Section 5.3 relates the

optimal procedure to weighted p-value based procedures. Section 6 develops an improved

procedure which strongly controls the FWER, whereas Section 7 develops an improved

procedure which controls FDR. The development of these new procedures is anchored on

the weak FWER-controlling optimal procedure. We establish that the sequential Šidák and

BH procedures are special cases of these more general procedures. Section 8 provides a

modest simulation study demonstrating that the new FDR-controlling procedure improves

on the BH procedure. Section 9 contains a summary and some concluding remarks.

To manage the length of the paper and provide more focus on the main ideas and results,

technical proofs of lemmas, propositions, theorems and corollaries are all gathered in the

supplemental article [28].

2. Mathematical setting

Let (Ω, , P) be a probability space and  = {1, 2, …, M} an index set with M a known

positive integer. For each m ∈ , let Xm: (Ω, ) → ( , ),  some space with σ-field of

subsets . Form the product space ( , ) with  =   and  = σ(  ) so X =

(X1, X2, …, XM): (Ω, ) → ( , ). The probability measure of X is Q = PX−1, while the

(marginal) probability measure of Xm is . For each m ∈ , let Qm0 and Qm1 be
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two known probability measures on ( , ). We assume that Q ∈ , a class of probability

measures on ( , ) with marginal probability measure Qm ∈ {Qm0, Qm1} for each m ∈ .

Let θ = (θ1, …, θM):  → Θ ≡ {0, 1}M with θm(Q) = I {Qm = Qm1}, I {·} denoting indicator

function. De-fine, for each Q ∈ , the subcollections  ≡ (Q) = {m ∈ : θm(Q) = 0}

and  ≡ (Q) = {m ∈ : θm(Q) = 1}. In this paper, we shall impose an independence

condition given by:

Condition (I)—(Xm, m ∈ (Q)) is an independent collection of random entities, that is,

∀Bm ∈ , Q(  Bm) =  Qm(Bm).

However, the collection (Xm, m ∈  (Q)) need not be an independent collection, but it is

independent of (Xm, m ∈  (Q)). Two extreme subcollections of  are  = {Q ∈ : θm(Q)

= 0, ∀m ∈ } and  = {Q ∈ : θm(Q) = 1, ∀m ∈ }. By Condition (I),  is a singleton set,

Q0 will denote its element; while  need not be a singleton set. The decision problem is to

determine (Q) and (Q) based on X, which is equivalent to simultaneously testing the M

pairs of hypotheses Hm0: Qm = Qm0 versus Hm1: Qm = Qm1 for m ∈ .

We adopt a decision-theoretic framework similar to [33]. The action space is  = {0, 1}M

with generic element a = (a1, a2, …, aM)t ∈  with am = 0(1) meaning Hm0 is accepted

(rejected). The parameter space is , though the effective parameter space is Θ = {0, 1}M

with generic element θ = (θ1, θ2, …, θM)t. We introduce several loss functions, L:  ×  →

ℜ+, defined via

(2.1)

(2.2)

(2.3)

with the convention that 0/0 = 0 and 1 is an M × 1 vector of 1’s. The loss function L0(a, Q)

equals 1 if and only if at least one false discovery is committed. The loss L1(a, Q) is the

false discovery proportion, being the ratio between the number of false discoveries and the

number of discoveries; whereas the loss L2(a, Q) is the number of missed discoveries being

the number of true alternative hypotheses that were not discovered. We focus on this missed

discovery number since the relevant question is how many correct alternatives [θ(Q)t 1]

were missed by using the action a? See also [29] which essentially uses this loss function to

induce their power metric. Other types of losses, such as the false negative proportion with

(a, Q) ↦ [(1 − a)t θ(Q)]/[(1 − a)t 1]I {(1 − a)t 1 > 0}, have also been considered; see [15,

33].

A nonrandomized multiple decision function (MDF) is a δ: ( , ) → ( , σ ( )), where σ

( ) is the power set of . Such an MDF may be represented by δ(x) = (δ1(x), δ2(x), …, δM

(x))t, where δm(x) ∈ {0, 1}. In general, each δm could be made to depend on the full data x
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instead of just xm. We denote by  the class of all nonrandomized MDFs. A randomized

MDF may also be considered. Denote by ( ) the space of all probability measures over

( , σ ( )). A randomized MDF is a δ*: ( , ) → ( ( ), σ (  ( ))). For a realization X

= x, an action is chosen from  according to the probability measure δ*(x). Denote by  the

space of all randomized MDFs. Clearly,  ⊂ . By augmenting data X with a randomizer

U ~ U (0, 1) which is independent of X, randomized MDFs could be made nonrandomized

with respect to the augmented data (X, U). Henceforth,  represents all nonrandomized

MDFs δ(X, U)’s based on (X, U).

For brevity of notation, PQ{f (X, U) ∈ B} and EQ{f (X, U)} represent probability and

expectation with respect to (X, U) with X ~ Q, U ~ U (0, 1) and X and U independent. For δ

∈  and the loss functions defined earlier, we have the risk functions

(2.4)

(2.5)

(2.6)

Given a δ = (δ1, δ2, …, δM)t, let πδ (Q) = (πδ1 (Q), πδ2 (Q), …, πδM (Q))t with πδm (Q) =

EQ{δm(X, U)} be its vector of power functions. Then (2.6) becomes R2(δ, Q) = (1 − πδ (Q))t

θ(Q). In terms of these risk functions, for δ ∈ , its weak FWER is FWER(δ) = R0(δ, Q0). If

each δm depends only on Xm and U, by Condition (I),

(2.7)

where the expectation is with respect to U. When Q = Q0 and with the mth component  of

the randomized MDF depending only on Xm, an alternative formulation is to have U = (U1,

U2, …, UM) a vector of i.i.d. U (0, 1) variables which is independent of the Xm’s. The mth

component may then be re-defined via . Then (2.7)

becomes FWER(δ) = 1 −  [1 − PQm0 {δm(Xm, Um) = 1}].

The risk function R1(δ, Q) is the false discovery rate (FDR) of δ at Q [1]; while the risk

function R2(δ, Q) will be called the missed discovery rate (MDR) of δ at Q. The adjective

“rate” is somewhat misleading since R2(δ, Q) takes values in [0, |  (Q)|] instead of [0, 1];

however, this does not cause difficulty since, given the true underlying probability measure

Q of X, |  (Q)| is constant. This risk is related to the expected number of true positives

(ETP), an error measure used in [38, 42], via ETP(δ, Q) = |  (Q)| − R2(δ, Q).

To find an optimal MDF weakly controlling FWER in a subclass  ⊆ , a threshold α ∈ (0,

1) is specified and then we seek a δ* ∈  with R0(δ*, Q0) = FWER(δ*) ≤ α, and such that for

any δ ∈  satisfying R0(δ, Q0) = FWER(δ) ≤ α, we have R2(δ*, Q) ≤ R2(δ, Q).
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This criterion has a minimax flavor. One may require only that R2(δ*, Q*) ≤ R2(δ, Q*) where

Q* is the true, but unknown, probability law of X; but this may be too strong to preclude a

solution to the optimization problem. However, see [42] for a situation with a different type

I error and where an optimal, albeit an oracle, solution for minimizing R2(δ, Q*) is possible.

Observe that for δ ∈ , by using the representation of R2(δ, Q) in terms of the powers, 

R2(δ, Q) =  R2(δ, Q) = M −   πδm (Q). The optimality condition on the MDR

amounts therefore to maximizing  πδm (Qm1). Interestingly, if we had standardized the

loss function L2(a, Q) to take values in [0, 1] via division by | (Q)| = θ(Q)t 1, the minimax

justification does not carry through!

For strong FWER control, we seek a compound MDF, δ* ∈ , with R0(δ*, Q*) ≤ α whatever

the true, but unknown, probability law Q* of X is, and with  large,

possibly maximal, among all δ ∈  satisfying R0(δ, Q*) ≤ α. For (strong) FDR-control, a

threshold q* ∈ (0, 1) is specified and we seek a compound MDF, δ* ∈ , such that,

whatever Q* is, R1(δ*, Q*) ≤ q*, and with  large, possibly maximal, among

all δ ∈  satisfying R1(δ, Q*) ≤ q*. For discussion of weak and strong control, refer to [6, 7].

Discussion of optimality in multiple testing can be found in [25] where maximin optimality

results are established for some step-down and step-up MTPs.

3. Revisiting MP tests and p-value statistics

An MDF δ ∈  whose mth component δm depends only on (Xm, Um) for every m ∈  is

called simple; otherwise, it is compound. The subclass of simple MDFs, denoted by , will

be our initial focus in searching for an optimal weak FWER-controlling MDF. The resulting

optimal MDF will then anchor our search for strong FWER- and FDR-controlling

compound MDFs. Before implementing this program, we introduce the unifying concept of

decision processes.

3.1. Decision processes, ROC functions, p-value statistics

First, a brief review. Let X: (Ω, ) → ( , ) and Q = PX−1. Based on X, consider testing the

pair of hypotheses H0: Q = Q0 versus H1: Q = Q1, where Q0 and Q1 are two probability

measures on ( , ). Let q0 and q1 be versions of the densities of Q0 and Q1 with respect to

some fixed dominating measure ν, for example, ν = Q0 + Q1. Recall that a test or decision

function is a δ: ( , ) → ([0, 1], σ [0, 1]), with σ [0, 1] the Borel sigma-field on [0, 1].

Given X = x, δ (x) is the probability of deciding in favor of H1. Its size is αδ = EQ0δ(X); it is

of level α ∈ [0, 1] if αδ ≤ α. Its power is πδ = EQ1 δ(X). δ* is most powerful (MP) of level α

if αδ* ≤ α and for all δ with αδ ≤ α, we have πδ* ≥ πδ.

Definition 3.1—A collection Δ = {δη: η ∈ [0, 1]} of test functions such that, a.e. [Q], δ0(x)

= 0, δ1(x) = 1 and η ↦ δη (x) is nondecreasing and right-continuous, is a decision process.

Its size function is AΔ: [0, 1] → [0, 1] and its power function is ρΔ: [0, 1] → [0, 1], where AΔ

(η) = αδη= EQ0 δη(X) and ρΔ(η) = πδη = EQ1 δη(X). Its receiver operating characteristic

(ROC) curve is ROC(Δ) ≡ Graph{(AΔ (η), ρΔ (η)): η ∈ [0, 1]}. If AΔ (η) = η for all η ∈ [0,

1], η ↦ ρΔ (η) is the ROC function of Δ.
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The use of the phrase power function in Definition 3.1 is atypical since we are not viewing

this as a function of a parameter as is the usual meaning of this phrase. However, for lack of

a better name, we shall adopt this terminology. In the sequel, δη and δ(η) will be used

interchangeably to also represent δ(·; η).

Let L: ( , ) → (ℜ+, σ (ℜ+)) be a version of the likelihood ratio function: L(x) = q1(x)/q0(x)

a.e. [ν]. Let G0(·) and G1(·) be the distribution functions of L(X) when (X) = Q0 and (X)

= Q1, where (X) is probability measure of X. For a monotone nondecreasing right-

continuous function M(·) from ℜ into ℜ, let M−1(r) = inf{x ∈ ℜ: M(x) ≥ r} and ΔM(r) = M(r)

− M(r−). By the Neyman–Pearson fundamental lemma [27], the MP test function of level η

for testing H0 versus H1 is

(3.1)

where  and γ (η) = (G0(c(η)) − (1 − η))/ΔG0(c(η)). Let U ~ U (0, 1) be

independent of X. Redefine δ* via , which is

nonrandomized w.r.t. (X, U). In essence, with the aid of an auxiliary randomizer U, the MP

test could always be made nonrandomized. The decision process formed from these MP

tests, given by

(3.2)

is called the most powerful (MP) decision process. The power (at Q = Q1) of the MP test 

or  is

(3.3)

It is well known [24] that  implies . We denote by AΔ* and ρΔ* the size and

power functions of Δ*. If  for all η < 1, then η ↦ ρΔ* (η) is the ROC function of Δ*.

We present below some important properties of this function.

Before stating the proposition, we reiterate that all formal proofs of propositions, theorems,

lemmas and corollaries are in the supplemental article [28].

Proposition 3.1—The function ρΔ*: [0, 1] → [0, 1] in (3.3) is concave, continuous and

nondecreasing. Furthermore, ρΔ* (η) ≥ η and it is strictly increasing on the set  ≡ {η ∈ [0,

1]: ρΔ* (η) < 1}.

Definition 3.2—Let Δ = {δη: η ∈ [0, 1]} be a decision process, where δη: (  × [0, 1],  ⊗

σ [0, 1]) → ({0, 1}, σ{0, 1}). Its (randomized) p-value statistic is SΔ: (  × [0, 1],  ⊗ σ[0,

1]) → ([0, 1], σ [0, 1]) with SΔ (x, u) = inf{η ∈ [0, 1]: δη(x, u) = 1}.
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When ∀(η, x, u) : δη(x, u) = δη(x), then SΔ(X, U) is the usual p-value statistic. See also [4] for

a more specialized definition of a randomized p-value statistic. We refer the reader to [18]

for properties of this p-value statistic and its use in existing FDR-controlling procedures.

Proposition 3.2—Let Δ = {δη : η ∈ [0, 1]} be a decision process with p-value statistic SΔ.

Then, for all s ∈ [0, 1], H0(s) ≡ PQ0 (SΔ ≤ s) = AΔ(s) and H1(s) ≡ PQ1 (SΔ ≤ s) = πδ(s) =

ρΔ(s). Consequently, SΔ ~ U[0, 1] under (X) = Q0 if and only if ∀η ∈ [0, 1] : AΔ(η) = η.

4. Optimal weak FWER control

Return now to the multiple decision problem in Section 2. We extend the notion of decision

processes to the multiple decision setting.

Definition 4.1—A collection Δ = (Δm : m ∈ ), where Δm = (δm(η) : η ∈ [0, 1]) is a

decision process on (  × [0, 1]M,  ⊗ σ[0, 1]M), is a multiple decision process (MDP). It is

simple if each Δm is simple; otherwise, it is compound. When simple its multiple decision

size function is AΔ = (AΔm : m ∈ ) and its multiple decision ROC function is ρΔ = (ρΔm : m

∈ ), where AΔm and ρΔm are the size and ROC functions of Δm.

4.1. Optimization problem

Let Δ be a simple MDP. Then, a multiple decision size vector η = (ηm : m ∈ ) ∈  ≡ [0,

1]M determines from Δ an MDF δΔ(η) = (δm(ηm) : m ∈ ) ∈ . For this MDF,

FWER(δΔ(η)) = 1 − [1 − AΔm (ηm)] and R2(δΔ(η), Q1) = M −  ρΔm (ηm) for Q1 ∈ .

Fix an FWER-threshold α ∈ (0, 1). Suppose there exists a multiple decision size vector

 such that

Then,  is the optimal multiple decision size vector

for weak FWER control at α associated with the simple MDP Δ. The associated optimal

simple MDF is .

But, since Hm0 and Hm1 are both simple, then there exists a simple most powerful MDP,

, where  with  being the simple Neyman–

Pearson MP test function of size η for Hm0 versus Hm1. Consider the simple MDF obtained

from Δ* given by . This will satisfy the FWER constraint, and

by virtue of the MP property of each  for each m ∈ ,

Peña et al. Page 8

Ann Stat. Author manuscript; available in PMC 2014 July 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Thus, in searching for the optimal weak FWER-controlling simple MDF, it suffices to

restrict to the simple most powerful MDP Δ*. Without loss of generality (wlog), we may

assume  for m ∈  and η ∈ [0, 1]. The optimization problem reduces to finding

 satisfying

(4.1)

The optimal weak FWER-controlling simple MDF is then

(4.2)

Two well-known and conventional choices for the size vector η = (ηm : m ∈ ) which

satisfy the weak FWER constraint are the Šidák sizes ηm = ηm(α) = 1 − (1 − α)1/M and the

Bonferroni-adjusted sizes ηm = ηm(α) = α/M. The former requires the independence

Condition (I) and is sharp, the latter is conservative but does not require Condition (I). Both

ignore possible differences in power traits of the individual test functions.

4.2. Existence and uniqueness of optimal size vector

We establish the existence of an optimal multiple decision size vector for weak FWER

control within the class . As pointed out in Section 4.1, it suffices to look for the optimal

weak FWER-controlling simple MDF by starting with the most powerful simple MDP

. For brevity,  and . Recall that  = [0,

1]M, the multiple decision size space. In a nutshell, the existence of an optimal multiple

decision size vector for weak FWER control exploits convexity properties of relevant

subsets of . This is formalized by establishing a sequence of propositions which are

presented below. For α ∈ [0, 1], define the weak FWER constraint set

(4.3)

Proposition 4.1—Cα satisfies (i) η = 0 ∈ Cα; (ii) (0, αm) ∈ Cα for all m ∈ , where (0,

αm) is the zero-vector with the mth element replaced by α; and (iii) it is convex and closed.

Proposition 4.2—For η0 ∈  let U(η0) = {η ∈  : ηm ≥ η0m, ∀m ∈ }, the upper set of

η0, and let U B(Cα) = {η ∈  : Cα ∩ U(η) = {η}}, the upper boundary set of Cα. Then, for

all α ∈ [0, 1), U B(Cα) = {η ∈  :  log(1 − ηm) = log(1 − α)}.

Proposition 4.3—Let  ≡ {η ∈  :  ρm(ηm) ≥ Mb} for b ∈ [0, 1]. Then {  : b ∈ [0,

1]} satisfies (i) η = 1 ∈ , (ii) it is closed and convex, and (iii)  =  ⊇  ⊇  for 0 ≤ b1

≤ b2 ≤ 1.
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Proposition 4.4—Let Bα = {b ∈ [0, 1] :  ∩ Cα ≠ Ø} for α ∈ [0, 1) and let .

Then .

Building on these intermediate results, the existence of an optimal weak FWER-controlling

multiple decision size vector is obtained.

Theorem 4.1 (Existence)—Let α ∈ [0, 1). Then . Furthermore, η ∈  is a

weak FWER-α optimal multiple decision size vector if and only if .

Theorem 4.1 guarantees existence of an optimal weak FWER multiple decision size vector,

but it does not address whether the solution is unique. We present a result on this issue in the

following theorem.

Theorem 4.2 (Uniqueness)—Let α ∈ [0, 1) and define Cα(m) = {ηm ∈ [0, 1] : η ∈ Cα},

called the mth section of Cα. If, for all m ∈ , the mapping ηm ↦ ρm(ηm) is strictly

increasing on Cα(m), then the optimal weak FWER-α multiple decision size vector is unique

and it is the η* satisfying .

It is easy to see that a sufficient condition for uniqueness of the optimal size vector is that,

for all m ∈ , ηm ∈ [0, sup Cα(ηm)) ⇒ ρm(ηm) < 1. Nonuniqueness may occur with

nonregular families of densities, for example, uniform or shifted exponential, where the

power of the MP test may equal one even though its size is still less than one. It occurs if the

decision processes in the MDP do not satisfy the condition that ∀η ∈ [0, 1], ∀m ∈ , Am(η)

= η, which is the case with discrete data or when using nonparametric rank-based test

functions with randomization not permitted.

4.3. Finding optimal size vector

Generally, without differentiability of the ROC functions as in the case with discrete

distributions, linear or nonlinear programming methods are needed to obtain the optimal

solution. In the case, however, where the ROC functions are twice-differentiable, the

optimal size vector is in a more explicit form.

Theorem 4.3—Let  be the MP MDP, and assume that the ROC

functions ηm ↦ ρm(ηm) are strictly increasing and twice-differentiable with first and second

derivatives  and , respectively. Given α ∈ (0, 1), the optimal weak FWER-α multiple

decision size vector  is the η ∈  satisfying (i) for some λ

∈ ℜ+, ∀m ∈ ,  and (ii)  log(1 − ηm) = log(1 − α).

A question arises as to whether the optimal sizes are monotonic in α. Such a property is

desirable since it will imply that if at FWER size α1 we have δm(ηm(α1)) = 1, then at an

FWER size α2 with α2 > α1, we will also have δm(ηm(α2)) = 1. This property will also be

critical in proving a martingale property needed for the development of the FDR-controlling

procedure. This issue is the content of the following proposition.
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Proposition 4.5—Assume the conditions of Theorem 4.3. Then, for each m ∈ , the

mapping  is nondecreasing and continuous.

4.4. Gaussian example for weak FWER control

For m ∈ , let , where the μm’s are unknown and ’s are known.

Consider the multiple hypotheses testing problem Hm0 : μm = μm0 and Hm1 : μm = μm1 with

μm0 < μm1 for m ∈ . The MP test of size ηm for Hm0 versus Hm1 is

, where Φ(·) and Φ−1(·) are the

cumulative distribution and quantile functions, respectively, of a standard normal variable.

The mth effect size is γm = (μm1 − μm0)/σm0, and the ROC function of the decision process

 is ρm(ηm) ≡ ρm(ηm; γm) = Φ(γm − Φ−1(1 − ηm)), clearly twice-

differentiable with respect to ηm. With ϕ(·) the standard normal density function,

For fixed α ∈ (0, 1) and γm’s, consider the mappings d ↦ ηm(d), m ∈ , defined implicitly

by the equation

(4.4)

The optimal value of d, denoted by d*, solves the equation

(4.5)

The optimal sizes of the M MP tests are then ηm(d*), m ∈ . An R [19] implementation of

this numerical problem first defines vm = 1 − Φ−1(1 − ηm), so condition (4.4) amounts to

solving for vm = vm(d) the equation

(4.6)

We utilized a Newton–Raphson iteration in solving for vm’s in (4.6) and the uni-root routine

in the R Library to solve for d in (4.5). Upon obtaining vm(d)’s, the ηm(d)’s are computed via

ηm(d) = 1 − Φ(vm(d)).

Figure 1 demonstrates the optimal sizes when M = 2,000 and for uniformly distributed effect

sizes. Observe from the second panel that when the effect size is small, which converts to

low power, then the optimal size for the test is also small, but also note that when the effect

size is large, which converts to high power, then the optimal test size is also small. For the

tests with moderate effect sizes or power, then the optimal sizes are higher. This behavior
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could also be seen by looking at the third panel in the figure which shows the achieved

power of the tests at the optimal sizes.

The efficiency of the optimal procedure relative to the Šidák procedure was measured via

the ratio (multiplied by 100) of the average power over the M tests, defined by 

ρm(ηm)/M, of the optimal procedure and the average power of the Šidák procedure. The

fourth panel in Figure 1 depicts the powers of the resulting tests versus the effect size for

both procedures (solid blue = optimal; dashed red = Šidák). For these uniformly-generated

effect sizes, the efficiency of the optimal procedure over the Šidák is 103.5%. This

efficiency is affected by the vector of effect sizes. For instance, when we change the effect

sizes in Figure 1 to be generated from a uniform over [0.1, 2], then the efficiency jumps to

181.7%, though it should also be pointed out that since the effect sizes are small, then the

overall powers of both procedures are also small.

4.5. A size-investing strategy

In the preceding Gaussian example, as well as in other situations we examined, for example,

with exponential and Bernoulli distributions, we observed the phenomenon where, among

the M tests, those with low powers (small effect sizes) and those with high powers (large

effect sizes) are allocated relatively small sizes in the weak FWER-controlling optimal

procedure. The tests with larger sizes are those with moderate powers or effect sizes. This is

a size-investing strategy in the multiple hypotheses testing problem, and it has intuitive

content. With the overall goal of making more real discoveries while controlling the

proportion of false discoveries for a pre-specified, usually small, overall size α, the optimal

procedure dictates that not much size should be accorded those tests with either very low or

very high powers. The former case will not lead to any discoveries anyway if the size that

could be allocated is small, while the latter case will lead to discoveries even if the test sizes

are made small. Thus, there is more to be gained by investing larger sizes on those tests that

are of moderate powers, and an appropriate tweaking of their test sizes according to

condition (i) in Theorem 4.3 improves the ability to achieve more real discoveries. However,

this phenomenon is dependent on the magnitude of the overall size. If this overall size is

made larger, more leeway ensues to the extent that it may then be more beneficial to allocate

more size to those with low powers since those tests with moderate powers, when they had

small sizes, may now have larger powers because of the consequent increase in their sizes.

The precise and crucial determinant of where the differential sizes should be allocated are

the rates of change of the ROC functions, with some size-attenuation. Interesting discussions

of size and weight allocation strategies can also be found in [49], where the size allocation

was related to the “α-spending” function of [22], in [14] which deals with α-investing in

sequential procedures that control expected false discoveries, and in [16, 29] which discuss

optimal weights for the p-values.

A tangential real-life manifestation of this strategy occurred during the 2008 American

presidential election, with the total resources (financial, manpower, etc.) available to the

candidates analogous to the overall size in the multiple testing problem. In the waning days

of the campaign, the major candidates, then-Senator Barack Obama of the Democratic Party

and Senator John McCain of the Republican Party, focused their campaign efforts, in terms
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of allocating their financial and manpower resources, in the “battleground states” of North

Carolina, Virginia and Pennsylvania, while basically ignoring the “in-the-bag states” of

South Carolina, then expected to vote for McCain, and California, then expected to vote for

Obama. Also, by virtue of the deep resources of the Obama campaign, it was able to allocate

more resources even in states that traditionally voted Republican, whereas the McCain

campaign, with a relatively smaller war chest, had to “drop” some states (e.g., Michigan) in

their campaign. The behaviors of the two camps somehow mirror the size-investing strategy

with proper accounting of each campaign’s overall resources.

5. Restrictions, extensions and connections

5.1. On the restriction to 

The optimization problem for weak FWER control could be construed as limited since we

restricted to the subclass  thus leading to an optimal weak FWER-controlling procedure

that is still simple. In [42, 45], it was demonstrated that performance is enhanced via

compound MDFs.

Examples of compound MDFs are the estimated optimal discovery procedure (ODP) in [42,

43], the FDR-controlling procedure in [1], and the oracle-based adaptive MDFs in [45].

Could we immediately start from compound MDFs in the search for an optimal weak

FWER-controlling compound MDF? Let us suppose that δ = (δm : m ∈ ) is a compound

MDF, so δm depends on (X, U) and not only on (Xm, Um). For such an MDF, we have

(5.1)

Now, even if the independence Condition (I) holds, (δm(X, U): m ∈ (Q)) need not be an

independent collection. As such no closed-form exact expression for R0(δ, Q) need exist.

The right-hand side in (5.1) could be Bonferroni-bounded by

(5.2)

called the expected number of false positives in [42]. Alternatively, if a generalized positive

quadrant dependence (PQD) condition holds, with

then the right-hand side in (5.1) could be upper-bounded by
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(5.3)

where αδm (Q) = EQδm(X, U), the size of δm when m ∈ (Q). For this compound MDF, its

MDR is R2(δ, Q) =  [1 − πδm (Q)], where πdelta;m(Q) = EQδm(X, U) is the power of δm

when m ∈ (Q).

An optimization approach could proceed by putting an upper threshold α ∈ (0, 1) on either

(5.2) or (5.3), and then finding the δ that minimizes R2(δ, Q), or equivalently, maximizes

ETP(δ, Q) ≡  πδm(Q), the latter quantity referred to as the expected number of true

positives in [42]. The MDFs in [38] and [42] were both obtained through this program. The

MDF in [38] is

(5.4)

where Q0 ∈  and Q1 ∈ ; whereas the optimal discovery procedure (ODP) in [42] is

(5.5)

where Q is the true probability measure of X. The use of EFP as type I error measure in [42]

enabled a calculus of variations optimization to obtain the ODP. This has a particularly

interesting structure when we utilize as its input the vector of p-value statistics

( ) from the MP MDP  with multiple decision size

function  and multiple decision ROC function

 and with  and  both differentiable with

derivatives  and . The significance thresholding function : ([0, 1], σ [0, 1])

→ (ℜ, σ (ℜ)) utilized in the ODP becomes

(5.6)

a consequence of Lemma 2 in [42] and Proposition 3.2. The ODP δSTO = (δm,STO: m ∈ )

has a single-thresholding structure with components

where λ ∈ [0, ∞) is chosen so the size constraint on EFP(δSTO(α; Q), Q) is approximately

satisfied. Observe that each of these components is still of simple-type, unless λ is

determined in a data-dependent manner using the full data (x, u). Note also that δSTO was

derived under complete knowledge of the unknown Q, or more specifically, the sets (Q)

and (Q), as can be seen in (5.6), hence is referred to as an oracle MDF. For the simple

Peña et al. Page 14

Ann Stat. Author manuscript; available in PMC 2014 July 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



null versus simple alternative hypotheses case, the size functions ’s and the ROC

functions ’s will be known, but with composite hypotheses they will be unknown. To

implement δSTO, it was proposed in [42, 43] that these unknown quantities, sets, functions,

or significance thresholding function, be estimated using the data (x, u). This will make the

estimated ODP of compound type. But note that through this plug-in approach the exact

optimality property of the ODP need not anymore hold for the estimated version; see also

[13, 45]. In contrast, δSPJ is determined only by the two classes of extreme probability

measures,  and , so the marginal probability measures, Qm’s, are completely known, and

not by the unknown true probability measure Q governing X. This fact was criticized in [42]

as a “potentially problematic optimality” criterion. More importantly, it should be

recognized that both δSPJ and δSTO need not be the optimal weak or strong FWER- or FDR-

controlling MDFs since the Bonferroni upper bound for R0(δ, Q) utilized in their derivations

is hardly a sharp upper bound.

The criticism leveled against δSPJ could also be invoked against our optimal weak FWER-

controlling procedure since we also relied on a criterion determined only by the extreme

classes  and . However, note that each component of the optimal weak FWER-

controlling multiple decision size vector, and consequently each component of , uses

all of the Qm0’s and Qm1’s, analogously to the ODP, though the MDF  is still neither

adaptive nor compound. Our development of this simple MDF, which is optimal in the class

, is a prelude to our development of adaptive and compound MDFs strongly-controlling

FWER and FDR. The MDF  will be the anchor for these FWER and FDR strongly-

controlling compound MDFs. These new MDFs are discussed in Section 6 for strong

FWER-control and in Section 7 for FDR control. Our approach to obtaining these strongly-

controlling MDFs is indirect, whereas that in [42] is direct. There is also an intrinsic

difference in the problems considered since our focus is on the type I error risk functions R0

and R1, whereas in [38, 42] the simpler type I error metric of EFP was utilized. Looking

forward, though our starting point is the optimal weak FWER-controlling simple MDF

, there is confidence in the viability of our indirect approach to generate good MDFs

since we will establish later that both the sequential Šidák procedure and the BH procedure

are special cases of our new MDFs under exchangeability.

5.2. Families with MLR property

The initial simplification to the simple null versus simple alternative hypotheses for each m

∈  could be perceived as a limitation because of the need to know the Qm1’s to determine

the ROC functions. However, this approach, which was also implemented in [29, 38, 42], is

natural and historically-justified by the Neyman–Pearson framework. We surmise that in

this multiple decision problem, the solution to the simple null versus simple alternative

hypotheses setting will play a prominent role in solving the composite hypotheses setting,

since it appears that for an MDF to possess optimality, it will require knowledge, either in

exact, approximate, or estimated forms, of the alternative hypotheses distributions. We touch

on this aspect in the presence of the monotone likelihood ratio (MLR) property; see [24].
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Suppose that for each m ∈ , the density function qm belongs to a one-dimensional

parametric family  = {qm(·; ξm) : ξm ∈ Γm ⊂ ℜ} which possesses the MLR property. A

typical pair of hypotheses to be tested would be  versus , where

ξm0 is known. With the MLR property, a uniformly most powerful (UMP) test function

δm(Xm, Um; ηm) of size ηm exists, with this UMP test identical to the MP test of size ηm for

the simple null hypothesis Hm0 : ξm = ξm0 versus the simple alternative hypothesis Hm1 : ξm

= ξm1, with ξm1 > ξm0. When dealing with the single-pair hypothesis testing problem, recall

that exact knowledge of the value of ξ1 is not necessary since the critical constants of the

size-η MP test for H0 : ξ = ξ0 versus H1 : ξ = ξ1 can be made independent of ξ1. In contrast,

for the multiple decision problem, to determine the optimal size allocations for each of the

M MP tests, the powers of the tests at the ξm1’s are required, hence the need to know the

values of the ξm1’s. When M is large, such information may not be so forthcoming. The

default procedure is the simplistic approach of simply assuming that the (Qm0, Qm1) is

invariant in m, which is the exchangeable setting. However, this exchangeable assumption is

most likely wrong as a consequence of varied effect sizes or different test functions utilized.

See, for instance, [11] for real situations where exchangeability do not hold. We propose two

possible solutions to this dilemma.

The first approach is to solicit from the scientific investigator the values of the ξm1’s for

which the powers are of most interest. Such values may coincide with those that are

scientifically different from the ξm0’s. Such elicitation, which may not be very feasible in

practice if M is large, but which may be made possible by forming subclasses or clusters of

the M genes as in [11], amounts to specifying effect sizes. Formation of such clusters must

be made in close consultation with the investigator, or perhaps guided by the result of a

preliminary cluster analysis using data independent of that used in the decision functions.

For the specified ξm1’s, the ROC functions in the determination of the optimal weak FWER-

controlling multiple size vector become  for m ∈ , where  is the

simple MP test of size η for testing Hm0 : ξm = ξm0 versus Hm1 : ξm = ξm1, and  is

the power of  (at ξm = ξm1). In the clustered situation with , we may

denote by ρ̄
k(η) and ζk, respectively, the common ROC function and size for the decision

functions in cluster . Under second-order differentiability of ρ̄
k(η)’s, by Theorem 4.3, the

optimal weak FWER-α controlling multiple size vector ζ(α) = (ζ1(α), ζ2(α), …, ζK (α)) is

the ζ = (ζ1, ζ2, …, ζK) that solves the set of equations  for

some λ ∈ ℜ+ with .

The second approach, analogous to those in [21, 30, 42, 43, 45, 49] is to estimate or

approximate the underlying values of the ξm’s either using the observed data x, possibly via

shrinkage-type estimators, or through the use of prior information which could be informed

by external covariates as in [13]. Addressing this same restriction of requiring knowledge of

the simple null and simple alternative hypotheses and advocating this second approach, [29],

page 679, stated: “although leading to oracle procedures, it can be used in practice as soon

as the null and alternative distributions are estimated or guessed reasonably accurately from

independent data.” By “independent data” is meant in [29] as data different from that used in

performing the actual tests. However, such external data need not always be used for
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estimating or imputing the unknown parameters. For example, suppose that for each m ∈ ,

data xm could be partitioned into (vm, wm). We may then use ξ̃
m(vm) = max{ξm0, ξ̂

m(vm)},

where ξ̂
m(vm) is the maximum likelihood estimate of ξm based on vm, and proceed as in the

preceding paragraph with ξm1 set to ξ̃
m(vm) for each m ∈ , and with the component data

wm used in the test functions. The resulting MDF will be of an adaptive type, possibly also

compound as in [45] if shrinkage estimators are used for estimating the ξm’s using the vm

components. Observe that if for some m0 ∈ , ξ̃
m(vm0) and ξm00 are very close or identical,

then a relatively small size will be allocated to the MP test for component m0. This amounts

to downgrading the testing problem for this component, a fact of importance since a

criticism of multiple hypotheses testing, especially when using FDR, is that an unscrupulous

investigator may keep adding irrelevant genes. When using the adaptive MDF arising from

the optimal multiple decision size vector, this investigator’s strategy will backfire since the

adaptive MDF will automatically downgrade the irrelevant genes. This second approach still

requires deeper study. For instance, there is the issue of how to partition each xm into the vm

and wm components. Furthermore, the impact of a misspecified ξm1, possibly arising from

the estimation procedure, needs to be ascertained.

5.3. Connections to p-value statistics

Proposition 3.2 indicates that the ROC function η ↦ ρm(η) is differentiable if and only if the

distribution function of the p-value statistic Sm(Xm, Um) under Hm1 : Qm = Qm1 is

differentiable. In this case,  coincides with hm(·), the density function of Sm(Xm, Um)

under Hm1 : Qm = Qm1. Condition (i) in Theorem 4.3 is equivalent to the constancy in m of

hm(ηm)(1− ηm). This is surprising since it indicates that it is not enough to simply find the

sizes that maximize these hm(·)’s, as dictated by the Neyman–Pearson lemma when dealing

with a single pair of null and alternative hypotheses. Rather, in the multiple hypotheses

testing scenario, there is attenuation in that larger sizes incur penalties. Condition (i) in

Theorem 4.3 governs the interactions among the M tests regarding their size allocations to

achieve the best overall result, in terms of overall type II error, among themselves.

The optimal weak FWER-controlling MDF can be converted to a procedure based on the p-

value statistics. If  is the optimal weak FWER-α multiple decision

size vector and (Sm(xm, um), m ∈ ) is the vector of computed p-value statistics, the

decision based on data (x, u) = ((xm, um), m ∈ ) is

, an MDF based on weighted p-values. This

is related to the approach in several papers using weighted p-values such as [16, 21, 29, 30,

46]. In our case, the weights are tied-in to the optimal sizes.

6. Strong FWER control

Let  be the MP MDP with  the MP decision

process for Hm0 : Qm = Qm0 versus Hm1 : Qm = Qm1 based on (Xm, Um). Wlog, assume that

the size function Am(·) of  satisfies Am(η) = η. Define η : [0, 1] → [0, 1]M such that η(α)

=(ηm(α), m ∈ ) is the optimal weak FWER-controlling multiple decision size vector at

level α. Assume that each component of this mapping is nondecreasing and continuous,
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which is the case when the ROC functions of Δ* are twice-differentiable as established in

Proposition 4.5.

For a weak FWER threshold of α ∈ [0, 1], the optimal MDF in  is

, as given in (4.2). Associated with this MDF is the

generalized multiple decision p-value statistic W = (Wm, m ∈ ), where

(6.1)

The wm = Wm(xm, um) is the smallest weak FWER size leading to rejection of Hm0 when

using  given data (x, u) = ((xm, um), m ∈ ). The usual p-value statistic Sm [see (3.2)]

for  is related to Wm via

(6.2)

Now, a lá [42, 45], suppose an Oracle knows Q, the true underlying probability measure of

X. For the MDF , its FWER is

This is nondecreasing and continuous in α since the mappings α ↦ ηm(α) for each m ∈ 

are nondecreasing and continuous. If the Oracle desires to control this type I error rate at a

value q* ∈ [0, 1] and also minimize the MDR given by

, where ρm(ηm(α)) is the power of

, then she should choose the largest α ∈ [0, 1] such that .

Owing to the continuity and nondecreasing properties of  in α, the Oracle’s

optimal α could also be expressed via

However, there is no Oracle and Q is not known, else there is no multiple decision problem.

Thus, α†(q*; Q) is not observable. A natural idea is to estimate the unknown θm(Q), the state

of the mth pair of hypotheses. An intuitive and simple estimator of θm(Q) for a fixed value

of α is

(6.3)
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In turn, we obtain a step-down estimator α†(q*) ≡ α†(X, U ; q*) of the Oracle-based α†(q*;

Q) given by

(6.4)

This determines a compound MDF , where

(6.5)

By virtue of the optimal choice of the ηm(α)’s and the use of the MP tests, we expect 

to possess excellent, if not optimal, MDR-properties. By taking the infimum over the weak

FWER-size α coupled with the estimation of θm(Q) by  in (6.4), there occurs an

adaptive downweighting of components whose Hm0’s are most likely correct as dictated by

the data (x, u). Theorem 6.1 below establishes that  in (6.5) does strongly control the

FWER.

Theorem 6.1—Let q* ∈ [0, 1]. Then, ∀Q ∈ , .

Next, we reexpress  in terms of the generalized p-value statistic W. This is achieved

by defining the random variable

Since α†(q*) ∈ [W(J†(q*)), W(J†(q*)+1)), then

The next result shows that the sequential step-down Šidák MDF, which strongly controls

FWER, is a special case of  under exchangeability.

Proposition 6.1—If the M ROC functions are identical, then  coincides with the

sequential Šidák step-down FWER-controlling MDF.

7. Strong FDR control

Assume the same framework as in Section 6. Our idea in obtaining an FDR-controlling

MDF builds on the development of the BH MDF, specifically the rationale of Theorem 2 in

[1]. Let q* ∈ [0, 1] be the desired FDR threshold and Q be the underlying probability
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measure of X. We introduce two stochastic processes: T0 = {T0(α; Q) : α ∈ [0, 1]} and T =

{T(α): α ∈ [0, 1]}, where

For the MDF , its FDR is

By the definition of the generalized p-value statistics Wm’s in (6.1), we have for α ∈ [W(m),

W(m+1)) that T(α) = m, whereas

(7.1)

Focus now on an α ∈ [W(m), W(m+1)). If  ηj (W(m)) ≤ mq*, then the best α in this interval

will be the largest value satisfying  ηj (α) ≤ mq*, since by increasing α, the MDR

decreases as argued in the development of  in Section 6. This motivates our definition

of α*(q*) = α*(X, U ; q*) as the step-up estimator

(7.2)

This induces a compound MDF  given by

(7.3)

Theorem 7.1 establishes that  does control the FDR at q*. Interestingly, the proof of

this theorem, which can be found in [28], employs a reverse martingale argument.

Theorem 7.1—Let q*∈ [0, 1]. If, ∀Q ∈ \{Q0} and ∀α ∈ (0, 1), | (Q)|  ηm(α) ≤

 ηm(α), then  ≤ q* for ∀Q ∈ .

Some remarks are in order regarding the condition in Theorem 7.1. Clearly, the Šidák

multiple decision size vector, which is the optimal multiple decision size vector when the

ROC functions are identical, always satisfies this condition. When not in this exchangeable

setting, this condition induces some control on the differences of the ROC functions. The

next proposition establishes that the BH procedure is a special case of  under

exchangeability.
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Proposition 7.1—If the ROC functions are identical, then  is the FDR-q*

controlling MDF in [1].

Examination of the proof of Proposition 7.1 as presented in [28] shows that the BH MDF

δBH(q*) coincides with the Šidák-size based MDF δS(q*). The martingale proof for Theorem

7.1 thus carries over to establishing FDR control by δBH(q*). We mention that a martingale-

based proof of FDR control by δBH(q*) has also been presented in [44].

We also provide an alternative form of  in terms of the generalized p-value statistics

Wm’s, a form analogous to the conventional formulation of the BH procedure. Define

(7.4)

Then, it is easy to see that  rejects H(m)0 for m ∈ {1, 2, …, J *(q*)} and accepts H(m)0

for m ∈ {J *(q*) + 1, J *(q*) + 2, …, M}.

Finally, let us examine further the generalized p-value statistics Wm’s. Focusing on W(1),

under Q0, we have that, for a ∈ (0, 1),

the second equality obtained by using the independence of the ’s under Q0. Thus, W(1) is

standard uniform when all null hypotheses are correct. Using this uniformity result and

Lemma D.2 presented in [28] dealing with lower and upper bounds of η• for η ∈ U B(Cα),

we obtain in Proposition 7.2 presented below a lower bound for , the FDR

when all the null hypotheses are correct.

Proposition 7.2—∀q* ∈ [0, 1], .

8. A modest simulation

We compared through computer simulations the performances of  and δBH in terms of

FDR and MDR. The simulation model utilized is similar to the Gaussian example

illustrating the optimal weak FWER-controlling procedure in Section 4.4. In this model, the

observables are Xm ~ N(μm, 1) for each m ∈ , which are independent of each other. The

mth pair of hypotheses is Hm0 : μm ≤ 0 versus Hm1 : μm > 0. The UMP size-ηm test is

. The true values of the means μm’s are μm = ξmθm, m ∈

, with θm ~ Ber(p) and effect sizes ξm ~ |N(ν, 1)|, again independently generated from each

other. The parameter combinations were induced by taking M ∈ {20, 50, 100}, p ∈ {0.1,

0.2, 0.4} and ν ∈ {1, 2, 4}. The FDR-threshold utilized were q* ∈ {0.05, 0.10}. Since the

computational implementation of  takes time, for each combination of (q*, M, ν, p), we
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limited our simulations to 1,000 replications. The simulated FDR and MDR* were the

averages of the false discovery proportions, L1(a, Q)’s, and the standardized missed

discovery proportions, L2(a, Q)/| (Q)|, over the 1,000 replications. We used this

standardized MDR since, for each replicate, a Q is generated, hence | (Q)| differs over the

replications. In essence, we are comparing the averages of  and R2(δBH,

Q)/| (Q)|, where the averaging is with respect to the mechanism generating the Q’s over

the simulation replications.

We only report results for q* = 0.10 in Table 1 since results for q* = 0.05 lead to similar

conclusions. From this table, we observe that both  and δBH fulfill the FDR-constraint,

and in a conservative manner, which is expected from theory. More importantly, the MDR-

performance of  is better compared to that of δBH, with this dominance holding for all

twenty-seven parameter combinations. Observe that as M is increased with (ν, p) remaining

the same, there is an increase in their MDR*’s; whereas, when ν is increased, which

increases the effect sizes, their MDR*’s decrease. Interestingly, the impact of a change of

value in p, the proportion of true alternative hypotheses, did not necessarily translate into a

monotone change in their MDR*’s, especially when M = 20, though for the larger M-values,

the change in MDR* appears monotonically decreasing.

It may appear from this simulation study that the standardized improvement of  over δBH

is minuscule. However, note that when translated to overall number of discoveries, when M

is large,  will lead to many more discoveries than δBH while still maintaining desired FDR

control. Such an increase in the number of discoveries may have important practical

implications, such as enlarging the number of genes to be explored in consequent studies.

This may translate to enhanced chances of discovering crucial and important genes without

sacrificing the type I error rate.

9. Summary and concluding remarks

This paper provides some resolution on the role of the individual powers of test or decision

functions, more appropriately their ROC functions, in multiple hypotheses testing problems.

The importance and relevance of these problems have arisen because of the proliferation of

high-dimensional “large M, small n” data sets in the natural, medical, physical, economic

and social sciences. Such data sets are being created or generated due to advances in high-

throughput technology, the latter fueled by speedy developments in computer technology

and miniaturization.

Almost a century ago, Neyman and Pearson demonstrated the need to take into account the

power function and the alternative hypothesis configuration when seeking an optimal test

procedure in single-pair hypothesis testing. Their work led to a divorce from the then-

existing significance or p-value approach. Currently, many multiple hypotheses testing

procedures, epitomized by the Šidák procedures for weak and strong FWER control and by

the Benjamini–Hochberg (BH) procedure for FDR control, are based on the p-values of the

individual tests and do not consider differences in the power traits of the individual tests.

They are appropriate in so-called exchangeable settings wherein power characteristics of the
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individual tests are identical. Such settings, however, are more the exception than the rule,

since nonidentical power characteristics easily arise due to differences in the effect sizes, the

dispersion parameters, or the test functions that are employed.

This paper examined whether differences in power characteristics of the individual tests

could be exploited to improve on existing procedures for FWER and FDR control.

Procedures were developed under the historically most fundamental scenario where the null

and the alternative hypotheses are simple. First, an optimal MDF within the class of simple

MDFs was shown to exist for weak FWER control. This MDF is better than the Šidák weak

FWER-controlling MDF, though the latter is a special case of the optimal MDF under

exchangeability. Optimality also informs us of an optimal size-investing strategy. Second,

by using this optimal, though still restricted, MDF as an anchor, a compound MDF strongly

controlling FWER was obtained. The sequential Šidák MDF is a special case of this MDF

under exchangeability. Third, we developed a compound MDF that controls FDR. The BH

procedure obtains from this MDF under exchangeability. By construction, these new MDFs

have smaller MDRs relative to those that did not exploit power differences. The

improvement was demonstrated through a modest simulation study by comparing the new

FDR-controlling MDF and the BH MDF.

Though the proposed MDFs do improve on existing ones, we could not claim that they are

optimal among all compound MDFs for strong FWER or FDR control. This question of

global optimality is a difficult and elusive one. So far none of the existing compound MDFs,

such as the estimated ODP in [42], could claim global optimality. In our case, the possible

drawback is that in constructing the new MDFs, we started with the class of simple MDFs.

The resulting MDFs are indeed compound, but establishing global optimality is not

transparent. A question even arise as to whether there truly exists an optimal MDF among

all compound MDFs that, say, control FDR. One thing certain about our MDFs is that they

do control FWER or FDR. This is in contrast to some MDFs that are obtained from oracle

MDFs via plugging-in of estimates for unknown quantities. Even though the oracle MDF,

which are unimplementable, satisfies the type I error rate control, the plug-in step will

usually invalidate such control. See [45] where optimality was in an asymptotic sense and

with the type I error rate being the mFDR, as well as [13,29] for more discussions on these

issues.

A natural layer to add in the decision-theoretic formulation of the problem is a Bayesian

layer where a prior measure is specified on the unknown probability measure Q or,

alternatively, on θ(Q). There is a possibility that through this Bayesian approach, one may

be able to obtain a characterization of the class of optimal MDFs controlling type I error

rates, or when the two types of error rates are combined, for example, via a weighted linear

combination. The papers [10, 11, 26, 33] which employ Bayes or empirical Bayes

approaches are highly relevant on this front.

Finally, we mention that there are still other aspects of the multiple decision problem not

dealt with in this paper. First is the extension to situations with composite null and

alternative hypotheses. We indicated some ideas in Section 5.2 for distributional models

possessing the MLR property, but further and more extensive studies are needed. Second are
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possible dependencies among the components in (Xm, m ∈ (Q)). We have assumed that

this is an independent collection, but it is certainly of theoretical and applied relevance to

examine dependent settings. Potential results in such scenarios will extend those in [2, 31,

32]. In these composite hypotheses and dependent data settings, we expect that resampling-

based ideas and approaches, such as those in [47, 48], will be central.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Optimal test sizes and powers for 2,000 MP tests of hypotheses under normality when the

effect sizes were generated from a uniform[0.1, 10] distribution. Panel four shows the

powers for both the optimal [solid black] and the Šidák [dashed red] tests with respect to

effect sizes.
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