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PREFACE 
 

Software “size” metrics play an important role in the field of measurement in 

software engineering.  Size metrics help to quantify and estimate productivity, overall 

cost, progress, and process improvement.  This thesis was a study to define a size metric 

based on the “workload” of the programming staff.  In this context, the definition of 

workload is simply the total amount of code worked by the programming staff (code 

added, modified, and deleted in the implementation of the requirements for a version of a 

software product).  The term “code” includes the source lines and the comment lines as 

well as the data files and script files required for complete implementation of the system 

requirements.  The new metric, i.e., the Worked Lines of Code (WLOC) metric, was 

compared to other size metrics that have a good basis in the software industry already.  

Simple correlation analyses were applied to the data sets generated from four historical 

versions of a software project to compare the new metric to Source Lines of Code, 

Function Point Count, and Halstead Token Count. 

 The main objectives of this study were to define a new metric and compare it to a 

number of popular and established software metrics.  Using software analysis tools from 

various vendors, size numbers were generated for four historical versions of a substantial 

application program from industry.  In particular, data was generated for source lines of 

code (SLOC), Enhancement Function Point Count, and Halstead Token Count.  The data 

for the metrics were collected from the four historical versions of the application using a



iv 

count utility designed and implemented to determine the lines of code added, modified, 

and deleted.  The correlation study indicated strong relationships between the new metric 

and Function Point Count.  The study found weak relationships with source lines of code 

and Halstead Token Count.  Based on the data collected, the new metric was deemed a 

valid size measurement for software projects. 
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CHAPTER I 
 

INTRODUCTION 
 

1.1 Background 
 

Software Engineering is defined as “the application of a systematic, disciplined, 

quantifiable approach to the development, operation, and maintenance of software; that 

is, the application of engineering to software” [IEEE 93].  Metrics are collected and used 

by the software industry to quantify the development, operation, and maintenance of 

software and the software development process. 

Computers are playing an ever-increasing role in almost every area of our lives.  

But computers and the software industry are also changing on a constant basis.  Advances 

in hardware, software, graphics, development techniques, and languages mean that 

applications must be constantly rethought, retooled, and reengineered to maintain pace 

with these changes.  This rapid evolution within the software industry makes 

management of the software development processes an extremely difficult task.   This 

fact alone identifies the need to have some level of control or a set of standards to oversee 

the software development process and/or the software products. 

Software measurement lends itself to establishing some degree of standardization 

for both the processes and products.  As pointed out by Garmus and Herron, “the ability 

of an organization to effectively and efficiently manage data provides a true competitive 

advantage and adds value to the company’s bottom line” [Garmus and Herron 96]. 
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The overall cost associated with software development and software maintenance 

activities justify the need for standards with regard to software measurement.  In 1980, 

Curtis [Curtis 80] indicated a need for scientific procedures to study the software 

development activities if programming was to be considered an engineering discipline.  

Curtis stated, “rigorous scientific procedures must be applied to studying the 

development of software systems if we are to transform programming into an engineering 

discipline”.  He advocated development of measurement techniques and determination of 

cause/effect relationships as the foundational approaches toward that goal.   

DeMarco [DeMarco 82] stated, “you can’t control what you can’t measure”.  

Hence, one of the basic needs for a software manager to be able to control the 

development of a software project is to measure the characteristics of the project.  

Measurements should help to improve the process and/or  the quality of the product. 

 

1.2 Objectives 

 Grady [Grady 87] [Grady 92] provided an answer to the question “why measure 

software?”.  He concluded that software measurement is used to provide a basis for 

estimates, track progress, determine complexity, understand quality, analyze the cause of 

defects, and validate best practices.  Nearly everyone agrees that measuring software 

(either the development processes or the delivered products) aids management in making 

better decisions.  Yet, there is no consensus within industry or academia as to what 

measurements are best as a set of standards for the software industry. 

The objectives of this study are two-fold: 1) to define a new software measure 

based on the workload of the programming staff, and 2) to validate the new software 
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measure against other measures currently used in industry and academia as valid software 

measures.  This new software measure (Worked Lines of Code) is basically another 

measurement of a project’s size.  It stems from the Configuration Management (CM) 

processes and products that have been employed by Techrizon (formerly TELOS�OK, 

LLC) for the past 15 years to track the lines of code added, modified, and deleted on any 

given software project.  It has evolved from a manual count into an automated utility that 

can recognize various programming languages, scripting languages, and data file 

classifications. 

Hartman and Austin [Hartman and Austin 93] looked at “changed lines of code” 

as the basis for a metric to define Maintenance Complexity.  Their definition of “changed 

lines of code” is somewhat analogous to the idea of “Worked Line of Code”, but their 

focus was on defining the complexity of the work being performed and not the validation 

of “changed lines of code” as a metric in its own right. 

The remainder of this thesis report is organized as follows.  Chapter II provides a 

brief history of software measurement.  Chapter III provides a review of the software size 

measurements used as a part of this study.  Chapter IV provides the evaluation of the 

WLOC metric based on correlation analyses with the other established metrics.  Chapter 

V provides a summary, conclusion, and ideas for future work with regard to this new 

metric. 
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CHAPTER II 
 

SOFTWARE MEASUREMENT 
 

2.1 History 
 

Software measurement has an established history dating back to the 1960s.  Most 

agree that one of the earliest works in this field came from Rubey and Hartwick in 1968 

[Rubey and Hartwick 68].  In this paper, Rubey and Hartwick define a quality model to 

address program quality for spacebourne software using quantitative measurements.  At 

the heart of this model are seven “quality” attributes: correct calculations, correct logic, 

no interference between components, time and memory usage optimization, 

intelligibility, ease of modification, and ease of understanding and usage.  These quality 

attributes correlate well with the goals of software engineering [Conte et al. 86]: 

efficiency, reliability, adaptability, maintainability, and usability. 

Horst Zuse [Zuse 95] provides a web site with a very comprehensive history on the 

subject of Software Measurement.  In his writings, he asserts that the “reasons for 

creating and inventing software measures” is mainly for the “development of reliable 

software”. 

Software reliability is probably the most critical attribute of a software system.  If 

the software cannot perform its required functionality reliably, then its development costs 

(both time and effort) are wasted.  Hence, software must be developed with a high degree 

of reliability at a reasonable cost.  Several papers support this viewpoint; one of the most 
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significant is that of Boehm, Brown, and Lipow [Boehm et al. 76] as they attempted to 

define software quality.  They developed and defined software quality based on several 

software characteristics:  reliability, portability, efficiency, human engineering, 

testability, understandability, and modifiability.  While these attributes are somewhat 

subjective, their use in establishing goals or guidelines to be followed during the software 

development process is a valuable tool for the software project manager. 

 
2.2 Classification 
 

As the discipline of software measurement evolved, measurements related to 

software became classified as process metrics or product metrics.  As described by Conte, 

Dunsmore, and Shen [Conte et al. 86], process metrics deal with the development process 

and environment, while product metrics deal with the actual software products. 

The classification of metrics is important because it helps to define the applicability 

and scope of the data being collected.  One would not want to compare data that is 

unrelated, as the comparison would have no meaning.  One would not want to collect 

data without having some basis for comparing that data either to the process involved or 

to the product produced. 

 

2.3 Software Measurement at Techrizon (formerly TELOS�OK, LLC) 

 For Techrison (formerly TELOS�OK, LLC), software measurement has been a 

key focus area for process improvement activities.  While software measurements were 

being gathered in the mid-1980’s, they were not being fully utilized until efforts were 

made to implement a process improvement program for the company.   
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In 1991, an initial appraisal following the guidelines of the Capability Maturity 

Model® (CMM®) published by the Software Engineering Institute (SEI) at Carnegie 

Mellon University, Pittsburg, Pennsylvania, established Techrizon (formerly 

TELOS�OK, LLC) as a Level I company.  Subsequent appraisals were conducted in 

1994, 1997, and 2003 with ratings of Level III, Level IV, and Level V, respectively.  The 

Level V assessment followed an updated CMM Integration (CMMISM) model and a more 

rigorous Standard CMMISM Appraisal Method for Process Improvement (SCAMPISM). 

One of the most significant achievements of the process improvement efforts was 

the ability to more accurately predict the size of the software projects during the initial 

stages of the development cycle.  As stated by Smith and Sperling, “the organization’s 

ability to accurately predict the size of the projects at the beginning of the development 

has improved 250 percent; as most companies realize, this ability is critical in estimating 

staffing and other resource needs” [Smith and Sperling 04]. 
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CHAPTER III 
 

SOFTWARE SIZE MEASUREMENTS 
 

The best-known (and possibly most used) software measure is often referred to as 

“program size”.  There are several methods that are somewhat analogous in determining 

the program size:  lines of code, token count, function point count, “reused” code, etc.  

Program size is often used as a basis for other types of metrics such as productivity, 

defect rate, and cost per LOC.  Sheppard [Sheppard 93] suggested that program size is a 

good predictor of other indirect and more qualitative program characteristics such as 

reliability and maintainability.   

 

3.1 Source Lines of Code (SLOC) 

Source LOC or SLOC is the earliest software measure and the most basic 

approach used in determining program size [Park 92].  Nonetheless, there is tremendous 

disconnect on its base definition.  Bailey and Basili [Bailey and Basili 81] asserted that 

LOC should be a “baseline metric to which all other metrics are compared”.  Their 

arguments suggested that LOC can be considered the “null hypothesis” for comparison 

studies and that any measure should perform better than the LOC measurement.  The 

main problem with LOC as a metric is defining what is and what is not a line of code.
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Several researchers have attempted to provide a stringent definition for LOC, but to date 

there is no single definition that is accepted across the software industry and academia. 

Within the context of this study, the methodology of classifying, defining, and 

counting physical source statements as presented by Park [Park 92] was utilized to 

provide a uniform basis for our definition.  Park [Park 92] also supports the idea that 

measurement is critical for software projects.  It states, “size measures have a direct 

application to the planning, tracking, and estimating of software projects; they are used 

also to compute productivities, to normalize quality indicators, and to derive measures for 

memory utilization and test coverage”.  Indeed, the ability to properly size or estimate the 

size of a programming task is of utmost value to the software manager for planning, 

scheduling, and staffing the project. 

 

3.2 Function Point Counts 

While not a true size metric, function point counts provide a valid alternative to 

estimating program size.  Albrecht [Albrecht 79] developed this method to estimate the 

“functionality” delivered by a program in terms of the number of function points (in lieu 

of estimating program size).  His methodology estimates the functionality the software 

performs by counting the external inputs (EI) and output (EO), external queries (EQ), 

external interface files (EIF), and internal logical files (ILF) needed to implement the 

functionality of each subsystem constituting a software system.  Albrecht claimed that 

“these factors are the outward manifestations of any application” [Albrecht 79].  It is 

possible with any development effort to collect these counts early in the requirement 

definition phase, independent of any programming language or implementation criteria. 
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Albrecht and Gaffney [Albrecht and Gaffney 83] validated this methodology 

against both the Halstead token count metrics and the basic Source LOC (SLOC) 

measurement.  Based on this validation study, the correlation between function points and 

SLOC suggests that the function point count is a valid alternative to estimating the size of 

a program in terms of LOC, and it provides a good basis for determining effort and 

productivity for programming projects. 

In 1986, the International Function Point Users Group (IFPUG) was founded to 

oversee the standardization of this metric and methodology [IFPUG 04].  One of the 

standardization methods employed by this group was the development and publication of 

the IFPUG Counting Practices Manual [IFPUG 01].  This manual provides the “rules” for 

counting the various inputs, outputs, data element types (DETs), record element types 

(RETs), and File Types Referenced (FTR).  This manual also defines the standards for 

determining the complexity values (low, average, high) for these counts based on the 

number of DETs and FTRs or RETs employed by the various count items.  Figures 1 

through 3 show the complexity matrices for EI, EO, and ILF/ELF as defined by the 

IFPUG Counting Practices Manual.  For an External Queries (EQ) count, either the EI or 

EO matrix is used based on whether there are more inputs (use EI matrix) or more 

outputs (use EO matrix) identified for the query.  Garmus and Herron [Garmus and 

Herron 96] provide an excellent book describing the various counts and their 

complexities as well as providing helpful hints for the novice to get started utilizing 

function points. 

The process for developing function point counts for an application follows a very 

basic set of steps. 



10

Functional Complexity Matrix (EI) 
DETs 

FTRs 1-4 5-15 16 + 

< 2 Low Low Average 

2 Low Average High 

> 2 Average High High 
Figure 1: Complexity Matrix for External Inputs (EI) 

 

Functional Complexity Matrix (EO) 
DETs 

FTRs 1-5 6-19 20 + 

< 2 Low Low Average 

2-3 Low Average High 

> 3 Average High High 
Figure 2: Complexity Matrix for External Outputs (EO) 

 

Functional Complexity Matrix (EIF/ILF) 
DETs 

RETs 1-19 20-50 51 + 

< 2 Low Low Average 

2-5 Low Average High 

> 5 Average High High 
Figure 3: Complexity Matrix for External/Internal Files (EIF/ILF) 
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1. Determine the specific Function Point count required. 
2. Identify the boundary for the application. 
3. Identify data functions and their complexities. 
4. Identify transactional functions and their complexities. 
5. Calculate the Unadjusted Function Point Count (weighted). 
6. Determine the Value Adjustment Factors. 
7. Calculate the Final Function Point Count. 
 

To determine the type of Function Point Count (FPC) to use, one must examine 

the type of application under consideration.  A Development Project FPC measures the 

functionality provided to the user with the first version of the application.  An 

Enhancement Project FPC measures modifications to an existing application 

(functionality added, functionality deleted, and functionality changed).  An Application 

FPC measures the functionality of an existing application in order to gather a baseline 

count for the application.  For this study, the Enhancement Project FPC most closely 

matches the concept for the metric being proposed.  Figure 4 provides an outline of the 

specific counts that must be gathered for the Enhancement Project FPC. 

The Value Adjustment Factor (VAF) is a weighting factor used to determine the 

final Function Point counts based on fourteen General System Characteristics.  These 

characteristics are evaluated based on their overall influence on the system.  A scale from 

0 (no influence) to 5 (strong influence) is used to classify the following characteristics. 

1. Data Communications 8. On-Line Updates 
2. Distributed Data Processing 9. Complex Processing 
3. Performance 10. Reusability 
4. Heavily Used Configuration 11. Installation Ease 
5. Transaction Rate 12. Operational Ease 
6. On-Line Data Entry 13. Multiple Sites 
7.   End-User Efficiency 14. Facilitate Change 



12

Figure 4: Enhancement Project Function Point Count Template 
 

Figure 5 shows the requirements for gathering VAF before the enhancements are applied 

and after the enhancements are applied to the software project. 

Once the various counts (Added, Changed, and Deleted) have been gathered and 

the VAF values (Before and After) have been calculated, the final Enhancement Function 

Point (EFP) can be calculated.  EFP is calculated by the equation 

 

EFP = (ADD + CHANGE) * VAF AFTER + DELETE * VAF BEFORE 

 

Function Points - Added Low Average High Total
Inputs (EI) 0 0 0 0 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 0 0 0 0 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 0 0 0 0 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 0 0 0 0 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 0 0 0 0 (Low * 5 + Avg * 7 + High * 10)

Added Function Points 0

Function Points - Changed Low Average High Total
Inputs (EI) 0 0 0 0 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 0 0 0 0 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 0 0 0 0 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 0 0 0 0 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 0 0 0 0 (Low * 5 + Avg * 7 + High * 10)

Changed Function Points 0

Function Points - Deleted Low Average High Total
Inputs (EI) 0 0 0 0 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 0 0 0 0 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 0 0 0 0 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 0 0 0 0 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 0 0 0 0 (Low * 5 + Avg * 7 + High * 10)

Deleted Function Points 0

Enhancement Function Point Counting Template
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where ADD = Function Points Added 

 CHANGE = Function Points Changed 

 VAF AFTER = Value Adjustment Factor after additions/changes 

 DELETE = Function Points Deleted 

VAF BEFORE = Value Adjustment Factor before deletion 

 

Figure 5: General System Characteristics Worksheet 
 

3.3 Halstead Token Counts 

Halstead [Halstead 77] introduced the concept of token count as a basis for a suite 

of metrics.  His terminology for program size in tokens is “Program Length”.  Program 

size was characterized as a logarithmic function of the number of unique operators and 

operands within the program source code.  His definition of size is derived from the 

program’s source code using the following definitions: 

n1 – the count of all unique operators 

General System Characteristics Before After Comment
1. Data Communication 0 0
2. Distributed Data Processing 0 0
3. Performace 0 0
4. Heavily Used Configuration 0 0
5. Transaction Rate 0 0
6. On-Line Data Entry 0 0
7. End-User Efficiency 0 0
8. On-Line Updates 0 0
9. Complex Processing 0 0
10. Reusability 0 0
11. Installation Ease 0 0
12. Operational Ease 0 0
13. Multiple Sites 0 0
14. Facilitate Change 0 0

Total Degree of Influence (TDI) 0 0

Value Adjustment Factor (VAF) 0.65 0.65 (0.65 + (TDI * 0.01)
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n2 – the count of all unique operands 

N1 – the count of all operators 

N2 – the count of all operands 

N – the program length (N1 + N2) 

N^ - the estimated program length (n1*log2 n1 + n2*log2 n2) 

 

3.4 Reuse Code 

Any software development project inherently lives with code reuse.  Specifically, 

code that has been written for another software project, but either is used verbatim or is 

easily converted to handle the requirements of the new project, is what is meant by code 

reuse.  Most programmers naturally attempt to reuse functions, features, and techniques 

that they have employed on previous projects.  Conte, Dunsmore, and Shen [Conte et al. 

86] claimed that “…in industry about 50 – 95% of what programmers do is modify 

existing code”.  Boehm [Boehm 81] accounted for code reuse in his COCOMO model.  

Bailey and Basili [Bailey and Basili 81] proposed a similar function to account for code 

reuse in their size estimation models.  Each model claims that some level of attention 

must be given to the concept of “reuse” for the size estimation techniques to be of value. 

Code reuse has been a salient focus in the processes and procedures utilized by 

Techrizon (formerly TELOS�OK, LLC) for software development.  As early as 1994, 

Sodhi and Smith [Sodhi and Smith 94] defined the initial setup of software reuse 

requirements and a reuse repository that would be populated and used at the Fire Support 

Software Engineering Center (FSSEC) by Techrizon (formerly TELOS�OK, LLC).  At 

Techrizon (formerly TELOS�OK, LLC), specific attention is given during requirement 
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analysis activities to identify requirements and functionality that can be incorporated into 

components that can be reused across several projects.  Impacts and/or changes to 

existing reuse components are also identified during requirements analysis activities.  In 

following this guideline, reuse code is logically separate and apart from the requirements 

specific to a software system being developed by Techrizon (formerly TELOS�OK, 

LLC).  The only “code” that must be accounted for in the sizing of a project that utilizes 

one of these reuse components is the “code” that is written to provide the interface to the 

reuse component (conversion of data formats, simple parameter lists, etc.). 

 

3.5 Worked Lines of Code (WLOC) 

The concept of WLOC has evolved over the past 15 years in the process and 

product development at Techrizon (formerly TELOS�OK, LLC) from a simple counting 

utility of assembly language source statements using a “diff” utility, into a counting of 

various language and data file unique terms using a more robust count utility program. 

The Configuration Management (CM) process (for the original assembly 

language products) required that data regarding “added”, “modified”, and “deleted” lines 

for both source and comments be identified as part of the Software Change Order (SCO).  

This data was originally collected manually by analyzing the output generated by using a 

“diff” command.  An automated utility was created to aid the programming staff in the 

collection of this required data. 

The original count utility took the output from the “diff” utility of a PDP 11/70 

system and analyzed the “diff” output file against the original source file to determine if 

the line of data was “added”, “modified”, or “deleted”.  The syntax of the “diff” file 
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allowed for this classification by a simple analysis of the “diff” commands for “a” 

(added), “c” (changed), and “d” (deleted), respectively. 

As the products (tactical system programs) evolved from the assembly world into 

the world of higher-order languages (mainly Ada), the classification of the “diff” output 

required better logic.  The count utility program was modified to determine Ada lines of 

code.  An Ada line of code was defined to be any source line of code ending in a semi-

colon (Terminating Semi-Colons (TCS)) except when contained within textual strings 

and delimiters. 

As implemented, the Ada line of code counting utility included counts for TSC, 

Comment Lines (CMT), Non-Comment Non-Blank (NCNB) lines, and Blank (BLNK) 

lines as part of its output data.  This original count utility for Ada programs lacked in its 

ability to determine the “added”, “modified”, and “deleted” lines of code as required by 

the CM process. 

As the CM process was further automated, the count utility was modified to 

determine a line of code based on the input syntax of the “language” under consideration.  

In this sense, the “language” could be Ada, Pascal, C, C++, Java, Unix Script files, or 

special Data files.  Data files are categorized by the “commenting” characters (!, #, --, 

etc.) used within the files.  The definition of the “language” of the file being analyzed 

allows for classification and identification of source lines and comment lines simply by 

defining the “commenting” character for the file under analysis. 

The source and comment lines are gathered into unique files and then counted 

based on the following logic.  If the line did not exist in the old file – added.  If the line 

existed in the old file but not in the new file – deleted.  If the line existed in both files – 
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modified.    Tracking these line types in separate files evolved into a more accurate 

method of counting comment and source lines and provided for the requirements of the 

CM process to identify both source and comment lines that were “added”, “modified”, 

and “deleted”.  The use of this utility across all projects ensured a unique, well-defined, 

and consistent method for collecting and reporting of the WLOC data. 

One of the projects at Techrizon (formerly TELOS�OK, LLC) that has employed 

this WLOC concept is the Forward Observer System (FOS).  FOS is a software package 

of products implemented in various programming languages (UNIX scripts, C, C++, and 

Ada) that provides automated digital message and data processing, data storage and 

recall, and communications capabilities to Field Artillery (FA) Fire Support (FS) 

personnel, FA Commanders (CDR), and FA Survey personnel.  FOS provides three basic 

operational modes: Forward Observer (FO)/Fire Support Team (FIST), Fire Support 

Officer (FSO)/CDR, and Survey with each mode providing specific functionality to fulfill 

the selected role of the operator (FIST, CDR, Survey) in his/her tactical environment.  

The FOS software is integrated into several vehicle platforms to provide a tactical link to 

the FS network for locating, engaging, and tracking enemy targets.  In addition, the FOS 

software provides a tactical link between the Tactical Internet (TI) and the FS network to 

allow TI assets direct access to FS assets for tactical Command and Control (C2)

activities.
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CHAPTER IV 
 

METRIC EVALUATION 
 

The evaluation of any metric must start with a solid definition of the metric and a 

basic understanding of what the metric is and is not reporting.  In this analysis, the metric 

under analysis is WLOC (worked lines of code) that basically is another metric that looks 

at a project’s “size” attribute.  Any project, big or small, requires a basic amount of work 

from the programming staff to analyze, design, code, unit test, and integrate the system.  

By focusing on the amount of code being “worked” (added, deleted, and modified) by the 

programming staff in performing these tasks, one should be able to more accurately 

determine the schedule requirements and the overall cost of the project. 

 

4.1 Definition 

Park [Park 92] provided a basic checklist to help define the attributes associated 

with “counting” source lines of code.  Since WLOC is a “count” of the source lines of 

code that will be added, deleted, and modified, the checklist proposed by Park should 

allow for a concise definition of WLOC.  Appendix C provides the details of this 

checklist as applied to WLOC. 
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4.2 Analysis of Data 

 In order to evaluate this metric against other “validated” metrics, the source code 

from the project had to be parsed to gather data to use for comparison.  The gathering of 

this data was accomplished using “evaluation” copies of automated tools from various 

vendors and by developing Microsoft® Excel 2000 spreadsheets as required. 

 

4.2.1 Source Lines of Code Data 

 Data specific to the Source Lines of Code (SLOC) was developed using an 

automated tool “SLOCCount” developed by David A. Wheeler [Wheeler 05].  This tool 

was chosen based on its ability to automatically detect the type of file (Ada, C, C++) 

being counted.  Based on the documentation, this tool could easily be updated to handle 

the various data files associated with the FOS application to give an SLOC value that 

includes all the various components used in calculating WLOC.  The output from running 

this tool against the various versions of FOS software is included as Appendix D.  The 

SLOC values generated by this tool are shown in Figure 6. 

Figure 6: SLOC Count Summary 
 

4.2.2 Function Point Count Data 

 Data specific to function point counts was developed using an Enhancement 

Project Function Point Count [IPFUG 01].  The Requirement Definition Documents 

Version Ada C Script C++ Total SLOC
V11 238292 6346 1700 474 246812
V12 242523 14833 897 475 258728
V7.0 264212 16207 2940 475 283834
V7.01 275653 66015 1235 475 343378
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(RDDs) [RDD 99] [RDD 00] [RDD 03] [RDD 04] used to develop the FOS software 

were analyzed to determine appropriate function point counts.  Appendix E contains the 

Microsoft® Excel 2000 spreadsheets showing the function point counts that were 

developed by a review of these requirement documents.  The rules for counting and 

determining complexities as defining in the IFPUG Counting Practices Manual [IFPUG 

04] (and as discussed by Garmus and Herron [Garmus and Herron 96]) were followed as 

closely as possible.  In determining the Total Degree of Influent (TDI) for the FOS 

application, it was determined that both the “Before” and “After” values for the General 

System Characteristics were unaffected by the requirements as implemented; hence the 

Value Adjustment Factor (VAF) is the same for the “Before” and “After” influences.  

The final Adjusted Function Point counts are presented in Figure 7. 

Figure 7: Enhancement Function Point Count Summary 
 

4.2.3 Halstead Token Count Data 

 Data specific to the Halstead token counts [Halstead 77] was developed using 

software evaluation tools from Scientific Toolworks, Inc. [STI 05], called “Understand 

for Ada” and “Understand for C”.  These tools were used to parse the source code and a 

Perl script file (halstead.pl - downloaded from the Scientific Toolworks, Inc. web site) 

was used to generate the Halstead token counts for n1 (unique operators), n2 (unique 

operands), N1 (totals operators), N2 (total operands), N (length = N1 + N2), n 

Version Added Changed Deleted VAF Before VAF After Adjusted FP
V11 3049 513 709 1.21 1.21 5168
V12 1575 576 0 1.21 1.21 2602
V7.0 1721 622 247 1.21 1.21 3134
V7.01 1963 520 215 1.21 1.21 3265
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(vocabulary = n1 + n2), and N^ (estimated length = n1*log2 (n1) + n2*log2 (n2)).  A 

small change was made to the Perl script file (“halstead.pl”) in order to have the 

estimated length values (N^) displayed as part of the output from running the script.  

Partial output generated by the “halstead.pl” script for each software version is presented 

at Appendix F.  A summary of the token counts generated by these tools is provided in 

Figure 8. 

Figure 8: Halstead Token Count Summary 
 

4.2.4 Worked Lines of Code Data 

 The WLOC data was retrieved from an in-house developed Configuration 

Management Database (CMdb) utility that incorporated the line count utility that was 

previously described (see Section 3.5).  The historical data for the FOS application was 

extracted and tabulated.  Two totals were generated from this historical data: a total 

WLOC value for the FOS application and a WLOC value excluding the special data files 

associated with the FOS application.  The data files were excluded in order to ensure a 

comparison of like data from the other automated utilities.  These utilities do not possess 

the capability to properly count (as source code) the special data files that are developed 

as part of the FOS application.  An example of the output provided from the CMdb utility 

is shown in Appendix G for Version 7.01 of the FOS application.  The historical counts 

Version n1 n2 N1 N2 N n N^
V11 55769 115318 568570 440981 1009551 171087 954068
V12 82702 183856 880353 689675 1570028 266558 1511423
V7.0 115976 240425 1127959 885383 2013342 356401 1980225
V7.01 116331 243059 1153900 904006 2057906 359390 2004937
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are maintained for previous versions in the latest version’s output data.  A summary of 

the WLOC counts is provided in Figure 9. 

 

Figure 9: Worked Lines of Code Summary 
 
4.3 Metric Evaluation and Discussion 

 To provide a validation of this new metric, a simple correlation study was 

conducted to search for relationships between the various data components extracted 

from the FOS source code (SLOC and Halstead counts) and requirement documentation 

(Function Point Counts).  Figure 10 provides a table showing the calculated Pearson 

correlation coefficients (r) and the coefficient of determination (r2) between the various 

data sets and the WLOC data.  The question being addressed by this validation study is, 

“Does the WLOC metric/measurement provide a numerical characterization of the size 

attribute for software?”.  Our null hypothesis is that WLOC will be just as accurate with 

regards to system size as any of the other metrics considered within this study. 

 

4.3.1 Source Lines of Code Comparison 

 Looking at the relationship between WLOC and SLOC, one finds a weak, linear, 

and independent relationship.  Considering WLOC without Data (WLOC w/o Data), the 

data is inconclusive with regards to establishing a relationship for these data sets.  These 

results  were  as expected.  There is no significance in comparing the overall size  of  the 

Version Ada C Script Data Total w/o Data
V11 138574 1055 1384 243270 384283 141013
V12 53462 9346 843 33596 97247 63651
V7.0 72441 18732 2100 40650 133923 93273
V7.01 37616 64249 1558 33353 136776 103423
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Figure 10: WLOC Correlation Coefficients for Data Sets 
 

source code against the amount of code being added, modified, and deleted in the 

development of a software project.   The final size (SLOC) of an application may or may 

not show growth in the subsequent versions of the product.  If more requirements were 

removed than added, there may even be a decrease in the overall size of the final product.  

Thus, there is no clear indication that SLOC provides the same information as WLOC, 

and indeed, from the definition and understanding of WLOC, SLOC does not provide the 

same data. 

 Another value that was developed for SLOC was a “normalized” value.  This 

value was calculated by determining the SLOC value from the function point count by 

multiplying the function point count by an approximation of the number of source 

statements required to code a single function point [Jones 95] (71 SLOC for Ada and 128 

SLOC for C). This technique is referred to as “backfiring”.  In essence, the SLOC 

“Norm” value is an approximation of the amount of SLOC to be written based on the 

number of function points identified.  For SLOC “Norm”, there is a strong, linear, and 

WLOC w/ WLOC w/ WLOC w/o WLOC w/o
Data Data Data Data

Data Sets r r^2 r r^2
Source
SLOC -0.47 0.22 -0.06 0.004
SLOC Norm 0.96 0.93 0.97 0.94
SLOC Diff 0.98 0.96 0.92 0.85

Function Point
AFP 0.99 0.98 0.94 0.89
AFP Norm 0.96 0.92 0.94 0.89

Halstead
N (length) -0.82 0.68 -0.48 0.23
N^ (estimated) -0.82 0.68 -0.48 0.23
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dependent relationship with WLOC and with WLOC without Data.  This relationship was 

as expected based on the fact that the SLOC values came from the counts developed by 

the Function Point analysis. 

 A final value that was examined for SLOC was a simple difference in the final 

SLOC for each version (i.e., the amount of SLOC added from the previous version).  This 

difference represents the “growth” of SLOC for each version of the product.  A strong, 

linear, and dependent relationship was noted between SLOC “Diff” and WLOC.  This 

result was somewhat unexpected because of the previous discussion concerning SLOC as 

a total.  Had the difference been negative (i.e., more code deleted that added), this 

relationship would have been a weaker, possibly independent, relationship. 

 

4.3.2 Function Point Count Comparison 

 Examining the data for Adjusted Function Point (AFP) counts as it relates to 

WLOC, one finds a strong, linear, and dependent relationship between the data sets to 

include the WLOC without Data values.  Based on the definition of the Enhanced 

Function Point Count, a positive, strong correlation with WLOC was expected.  Both data 

sets are trying to capture basically the same data – added, modified/changed, and deleted 

data. 

 Since SLOC was “normalized” based on function point counts (see Subsection 

4.3.1), the same type of comparison was also conducted for the function point data.  The 

Function Point counts were “normalized” by taking the SLOC data and dividing by the 

source lines per function point values [Jones 95] to achieve a “normalized” Function 
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Point count.  The comparison of the AFP “Norm” to WLOC showed a strong, linear, and 

dependent relationship. 

 

4.3.3 Halstead Token Count Comparison 

 For the Halstead token counts, comparisons were made with both the length token 

count (N = N1 + N2) and the estimated length token count (n1*log2 (n1) + n2*log2 (n2)).  

These token counts are basically equivalent to SLOC in that they represent the same type 

of data (i.e., they are proportional to the total source lines of code).  Hence, expectations 

would indicate that the relationship should be similar to SLOC for the token counts under 

analysis.  Indeed, for WLOC without Data, they values are almost identical (which seems 

intuitive since WLOC without Data should capture exactly the same information captured 

by SLOC).  For WLOC, there was a somewhat strong, linear, yet independent 

relationship to the Halstead token counts. 

From the study conducted by Albrecht and Gaffney [Albrecht and Gaffney 83], 

they showed that function point counting procedures are supported by the formulas 

presented by Halstead [Halstead 77] and that SLOC itself had a strong relationship with 

function point counts.  This study does not contradict those findings. 
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CHAPTER V 
 

SUMMARY, CONCLUSION,  AND FUTURE WORK 
 

5.1 Summary and Conclusion 

The main focus of this thesis work was to examine a new metric (WLOC – 

worked lines of code) that is based on the workload of the programming staff.  The 

workload of the programming staff includes specification, design (modeling), code, unit 

test activities, and integration test activities.  A single “size” metric that captures this 

diversity of tasks is worth exploring. 

For “size” measurements, the most important characteristic that adds validity to 

the data collected is utilizing a consistent definition over time.  At Techrizon (formerly 

TELOS�OK, LLC), the WLOC data has been counted based on the same definition for 

over 15 years.  The consistency of this definition allows Techrizon (formerly 

TELOS�OK, LLC) to make predictions against future work products, to determine 

productivity levels for the programming staff, and to validate cost and schedule 

requirements for future projects based on historical data. 

Chapter I introduced the necessity for measuring software products and processes 

and the need for developing standards for these measurement techniques.  Chapter II 

provided a history of software measurement and a classification of measurement.  

Chapter III reviewed the various “size” metrics that were reviewed as a part of this study.  

Although not a true measurement of “size”, Function Point Count was presented as a part 
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of this study because of its validity as an alternative to estimating program size.  Chapter 

IV presented the analysis of the various data components that were developed as part of 

this study.  Correlation comparisons were made for various counts and most showed 

strong, linear, and dependent relationships with WLOC.  The best comparison was with 

the Enhancement Function Point Count that has the same basic definition (added, 

changed, deleted) as WLOC. 

In conclusion, WLOC was shown to be an effective alternative when measuring a 

programming project’s size.  The amount of code added, modified, and deleted is an 

effective method for determining the effort required (and thus the scheduling and 

resource requirements) for a programming task. 

 

5.2 Future Work 

Measurements that capture the total “size” of a programming task are both diverse 

in definition and unique in their respective “counting” rules.  There is no industry 

standard for determining a programming project’s size, yet there is strong agreement that 

measurements must be made to allow management to control the process and thus 

increase the quality of the product.  With regards to WLOC, future analysis should 

consider data at the module level to achieve a more robust statistical analysis. 

This study has generated interest in Function Points as a valid estimation 

technique for “size”.  A combination of Function Points (during requirement analysis and 

for initial size estimates using the “backfiring” technique), and WLOC (during code 

development and formal test activities) may provide a more robust process for tracking 

and monitoring progress and warrants further investigation. 
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APPENDIX A 
 

GLOSSARY 
 

BLNK  Blank, a blank line in a program source file. 
 
C2 Command and Control, an operational mode that provides command and 

control of assets. 
 
CDR Commander, personnel in command of specific units and/or other 

personnel. 
 
CM Configuration Management, the process of controlling and managing 

software baselines. 
 
CMM® Capability Maturity Model®, a model of software engineering key 

practices devised by the SEI and used by the software industry. 
 
CMMISM Capability Maturity Model IntegrationSM, a new model of software 

engineering key practices devised by the SEI that integrates software and 
system engineering. 

 
CMT  Comment, a comment line in a program source file. 
 
COCOMO COnstructive COst  MOdel, a model used to estimate the cost of a software 

project. 
 
DET Data Element Type, a user identifiable, non-repeated field or attribute 

maintained in the ILF or EIF.  This includes foreign keys or special 
attributes attributed to the field [IFPUG 01]. 

 
EFP Enhancement Function Point, a type of function point count used mainly 

for projects where functionality is being added, deleted, and modified. 
 
EI External Input, an elementary process that processes data or control 

information that comes from outside an application’s boundary. The 
primary intent of an EI is to maintain one or more ILFs and/or to alter the 
behavior of the system [IFPUG 01]. 
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EIF External Interface File, a user identifiable group of logically related data or 
control information referenced by an application, but maintained within the 
boundary of another application. The primary intent of an EIF is to hold 
data referenced through one or more elementary processes within the 
boundary of the application counted. This means an EIF counted for an 
application must be in an ILF in another application [IFPUG 01]. 

 
EO External Output, an elementary process that sends data or control 

information outside an application’s boundary. The primary intent of an 
external output is to present information to a user through processing logic 
other than, or in addition to, the retrieval of data or control information. 
The processing logic must contain at least one mathematical formula or 
calculation or create derived data. An external output may also maintain 
one or more ILFs and/or alter the behavior of the system [IFPUG 01]. 

 
EQ External Inquery, an elementary process that sends data or control 

information outside an application boundary. The primary intent of an 
external inquiry is to present information to a user through the retrieval of 
data or control information from an ILF or EIF. The processing logic 
contains no mathematical formulas or calculations, and creates no derived 
data. No ILF is maintained during the processing, nor is the behavior of the 
system altered [IPFUG 01]. 

 
FA Field Artillery, units that provide artillery support to other units on the 

battlefield. 
 
FIST Fire Support Team, a group of personnel that act to provide fire support to 

other units on the battlefield. 
 
FO Forward Observer, personnel that locate and control artillery fire on enemy 

targets on the battlefield. 
 
FOS Forward Observer System, a tactical system used by the forward observer 

to track and control enemy targets. 
 
FPC Function Point Count, a count of the function points developed for an 

application’s functional requirements. 
 
FS Fire Support, a role of the field artillery to provide supporting artillery fire 

to other units on the battlefield. 
 
FSO Fire Support Officer, an officer that coordinates fire support needs for 

other units on the battlefield. 
 
FSSEC Fire Support Software Engineering Center, an organization located at Fort 

Sill, Oklahoma that manages the production of software systems. 
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FTR File Types Referenced, the total number of ILFs maintained, read, or 
referenced and the EIFs read or referenced by an input or output 
transaction (EI/EO) [IFPUG 01]. 

 
IEEE Institute of Electrical and Electronics Engineers, an institution that defines 

and determines appropriate standards and methods for the electrical and 
electronics engineering disciplines. 

 
IFPUG International Function Point Users Group, a non-profit, member governed 

organization. The mission of IFPUG is to be a recognized leader in 
promoting and encouraging the effective management of application 
software development and maintenance activities through the use of 
Function Point Analysis and other software measurement techniques 
[IFPUG 04]. 

 
ILF Internal Logical File, a user identifiable group of logically related data or 

control information maintained within the boundary of an application. The 
primary intent of an ILF is to hold data maintained through one or more 
elementary processes of the application being counted [IFPUG 01]. 

 
LOC  Lines of Code, a metric that identifies the size of a program source file. 
 
NCNB Non-Comment Non-Blank, a non-comment, non-blank line in a program 

source file. 
 
PDP Programmed Data Processor, a computer processor. 
 
RDD Requirement Definition Document, a document developed and controlled 

by Techrizon (formerly TELOS�OK, LLC) to capture the requirements 
and their system impacts. 

 
RET Record Element Type, a user identifiable subgroup of data elements 

contained within an ILF or ELF [IFPUG 01]. 
 
SCAMPISM Standard CMMISM Appraisal Method for Process Improvement, an 

appraisal methodology devised by the SEI to standardize the appraisal 
process across the software industry. 

 
SCO Software Change Order, a formal request to initiate and control changes to 

a software baseline. 
 
SEI Software Engineering Institute, a federal research center that promotes the 

practices of software engineering to improve the quality of software 
systems. 
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TDI Total Degree of Influence, a measure of the influence of fourteen general 
system characteristics on a software system’s functionality. 

 
TI Tactical Internet, a network that mimics the Internet over a tactical radio 

networks. 
 
TSC Terminating Semi-Colon, a line in a program source file that ends with a 

semi-colon. 
 
VAF Value Adjustment Factor, a weighting of system characteristics to 

determine the adjustment value to be applied to unadjusted function point 
counts to reach a final function point count for an application. 

 
WLOC Worked Lines of Code, a metric based on the workload (LOC added, 

modified, and deleted) of a software project.
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APPENDIX B 
 

TRADEMARK INFORMATION 
 

Capability Maturity Model® and CMM® are registered in the U.S. Patent and 
Trademark office. 
 
Capability Maturity Model Integration, CMMI and SCAMPI are service marks of 
Carnegie Mellon University. 

Microsoft® is a registered trademark of Microsoft Corporation. 
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APPENDIX C 
 

WLOC DEFINITION CHECKLIST 
 

This appendix contains a definition checklist [Park 92] that was developed for 

WLOC (worked lines of code) to provide a uniform basis for our definition of WLOC. 



38

Definition name: WORKED LINES OF CODE Date:   3/15/05  
(basic definition - physical count) Originator: MKR

Measurement unit: Physical source lines:
Logical source statements:

Statement type Definition Data array Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence - > 1 X
2 Nonexecutable
3 Declarations 2 X
4 Compiler directives 3 X
5 Comments
6 On their own lines 4 X
7 On lines with source code 5 X
8 Banners and nonblank spacers 6 X
9 Blank (empty) comments 7 X

10      Blank lines 8 X
11
12
How produced Definition Data array Includes Excludes

1 Programmed X
2 Generated with source code generators X
3 Converted with automated translators X
4 Copied or reused without change X
5 Modified X
6 Removed X
7
8

Origin Definition Data array Includes Excludes
1 New work; no prior existence X
2 Prior work; taken or adapted from
3 A previous version, build, or release X
4 Commercial, off-the-shelf software (COTS), other than libraries X
5 Government furnished software (GFS), other than reuse libraries X
6 Another product X
7 A vendor-supplied language support library (unmodified) X
8 A vendor-supplied operating system or utility (unmodified) X
9 A local or modified language support library or operating system X

10      Other commercial library X
11      A reuse library (software designed for reuse) X
12      Other software component or library X
13
14
Usage Definition Data array Includes Excludes

1 In or part of the primary product X
2 External to or in support of the primary product X
3

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 1

Definition Checklist for Source Statement Counts
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Definition name: WORKED LINES OF CODE
(basic definition - physical count)

Delivery Definition Data array Includes Excludes
1 Delivered
2 Delievered as source X
3 Delivered in compiled or execuatble for, but not as source X
4 Not delivered
5 Under configuration control X
6 Not under configuration control X
7

Functionality Definition Data array Includes Excludes
1 Operative X
2 Inoperative (dead, by-passed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes) X
4 Nonfunctional (unintentionally present) X
5
6

Replications Definition Data array Includes Excludes
1 Master source statements (originals) X
2 Physical replicates of master statements, stored in the master code X
3 Copies inserted, instantiated, or expanded when compiling or linking X
4 Postproduction replicates - as in distributed, redundant, X

 or reparameterized systems
5

Development status Definition Data array Includes Excludes
Each statement has one and only one status,

 usually that of its parent unit.
1 Estimated or planned X
2 Designed X
3 Coded X
4 Unit test completed X
5 Integrated into components X
6 Test readiness review completed X
7 Software (CSCI) tests completed X
8 System tests completed X
9

10
11
Language Definition Data array Includes Excludes

List each source language on a separate line.
1 UNIX scripts, makefiles, special X
2 Job control languages data files X
3
4 Assembly languages
5
6 Third generation languages Ada, C, C++ X
7
8 Fourth generation languages
9

10  Microcode
11

 The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 2

Definition Checklist for Source Statement Counts
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Definition name: WORKED LINES OF CODE
(basic definition - physical count) Includes Excludes

Clarifications (general) Listed elements are assigned to
1 Nulls, contrinues, and no-ops statement type - > 1 X
2 Empty statements (e.g., ";;" and lone semicolons on separate lines) 1 X
3 Statements that instantiate generics 2 X
4 Begin…end and {…} pairs used as executable statements 1 X
5 Begin…end and {…} pairs that delimit (sub)program bodies 1 X
6 Logical expressions used as test conditions X
7 Expression evaluations used as subprogram arguments X
8 End symbols that terminate executable statements 1 X
9 End symbols that terminate declarations or (sub)program bodies 1 X

10  Then, else, and otherwise symbols 1 X
11  Keywords like procedure division, interface, and implementation X
12  Labels (branching destinations) on lines by themselves 2 X
13
14
15
16
Clarifications (language specific)
Ada

1 End symbols that terminate declarations or (sub)program bodies 1 X
2 Block statements (e.g., begin…end) X
3 With and use clauses 1 X
4 When (the keyword preceding executable statements) X
5 Exception (the keyword, used as a frame header) X
6 Pragmas 2 X
7
8
9

Assembly
1 Macro calls
2 Macro expansion
3
4
5
6

C and C++
1 Null statements (e.g., ";" by itself to indicate an empty body) 1 X
2 Expression statements (expressions terminated by semicolons) 1 X
3 Expressions separated by semicolons, as in a "for" statement) X
4 Block statements (e.g., {…} with no terminating semicolon) X
5 "{", "}", or "};" on a line by itself when part of a declaration 2 X
6 "{" or "}" on line by itself when part of an executable statement 1 X
7 Conditionally compiled statements (#if, #ifdef, #ifndef) 2 X
8 Preprocessor statements other than #if, #ifdef, and #ifndef 2 X
9

10
11
12

 The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 3

Definition Checklist for Source Statement Counts
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Definition name: WORKED LINES OF CODE
(basic definition - physical count) Includes Excludes

CMS-2 Listed elements are assigned to
1 Keywords like SYS-PROC and SYS-DD statement type - >
2
3
4
5
6
7
8
9

COBOL
1 "PROCEDURE DIVISION", "END DECLARATIVES", etc.
2
3
4
5
6
7
8
9

FORTRAN
1 END statements
2 Format statements
3 Entry statements
4
5
6
7
8

JOVIAL
1
2
3
4
5
6
7
8

Pascal
1 Execuatble statements not terminated by semicolons
2 Keywords like INTERFACE and IMPLEMENTATION]
3 FORWARD declarations
4
5
6
7
8
9

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 4

Definition Checklist for Source Statement Counts
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Definition name: WORKED LINES OF CODE
(basic definition - physical count) Includes Excludes

Listed elements are assigned to
1 Data files with ! statement type - > 2 X
2 Data files with # 2 X
3 Data files with -- 2 X
4
5
6
7
8
9

10
11
12

Summary of Statement Types

Executable statements
Executable statements cause runtime actions.  They may be simple statements such as
 assignments, goto's, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls,
 no-ops, empty statements, and FORTRAN'S END. Or they may be structured or compound
 statements, such as conditional statements, repetitive statements, and "with" statements.
 Languages like Ada, C, C++, and Pascal have block statements [begin…end and {…}] that are
 classified as executable when used where other executable statements would be permitted.  C
 and C++ define expressions as executable statements when they terminate with a semicolon,
 and C++ has a <declaration> statement that is executable.

Declarations
Declarations are nonexecutable program elements that affect an assembler's or compiler's 
 interpretation of other program elements.  They are used to name, define, and initialize; to
 specify internal and external interfaces; to assign ranges for bound checking; and to identify
 and bound modules and sections of code.  Examples include declarations of names, numbers,
 constants, objects, types, subtypes, programs, subprograms, tasks, exceptions, packages,
 generics, macros, and deferred constants.  Declarations also include renaming declarations, use
 clauses, and declarations that instantiate generics.  Mandatory begin…end and {…} symbols that
 delimit bodies of programs and subprograms are integral parts of program and subprogram
 declarations.  Language superstructure elements that establish boundaries for different sections
 of source code are also declarations.  Examples include terms such as PROCEDURE DIVISION
 DATA DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
 SYS-PROC, and SYS-DD.  Declarations, in general, are never required by language
 specifications to initiate runtime actions, although some languages permit compile
 implement them that way.

Compiler directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems)
 to perform special actions.  Some, such as Ada's pragma and COBOL's COPY, REPLACE, and
 USE, are integral parts of the source language.  In other languages like C and C++, special
 symbols like # are used along with standardized keywords to direct preprocessor or compiler
 actions.  Still other languages rely on nonstandardized methods supplied by compiler vendors.
 In these languages, directives are often designated by special symbols such as #, $, and {$}.

 The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 5

Definition Checklist for Source Statement Counts
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APPENDIX D 
 

“SLOCCount” OUTPUT 
 

This appendix contains the output files generated by the “SLOCCount” utility 

[WHEELER 05] from analyzing the historical versions of the FOS source code. 

 
Version 10 Output 
 
Creating filelist for v10 
Categorizing files. 
Finding a working MD5 command.... 
Found a working MD5 command. 
Computing results. 
 

SLOC Directory SLOC-by-Language (Sorted) 
70669   v10             ada=69519,ansic=613,sh=537 
 

Totals grouped by language (dominant language first): 
ada:          69519 (98.37%) 
ansic:          613 (0.87%) 
sh:             537 (0.76%) 
 

Total Physical Source Lines of Code (SLOC)                = 70,669 
Development Effort Estimate, Person-Years (Person-Months) = 17.49 (209.85) 
 (Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05)) 
Schedule Estimate, Years (Months)                         = 1.59 (19.07) 
 (Basic COCOMO model, Months = 2.5 * (person-months**0.38)) 
Estimated Average Number of Developers (Effort/Schedule)  = 11.01 
Total Estimated Cost to Develop                           = $ 2,362,284 
 (average salary = $56,286/year, overhead = 2.40). 
SLOCCount, Copyright (C) 2001-2004 David A. Wheeler 
SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL. 
SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to 
redistribute it under certain conditions as specified by the GNU GPL license; 
see the documentation for details. 
Please credit this data as "generated using David A. Wheeler's 'SLOCCount'." 
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Version 11 Output 
 
Creating filelist for background_processing 
Creating filelist for c_code 
Creating filelist for cdmt 
Creating filelist for communications 
Creating filelist for components 
Creating filelist for conversions 
Creating filelist for data_base 
Creating filelist for forward_observer_system 
Creating filelist for hardware_interface 
Creating filelist for library 
Creating filelist for message_processing 
Creating filelist for operator_interface 
Creating filelist for scripts 
Creating filelist for survey 
Creating filelist for transmit_rules 
Categorizing files. 
Finding a working MD5 command.... 
Found a working MD5 command. 
Computing results. 
 
SLOC Directory SLOC-by-Language (Sorted) 
60407   operator_interface      ada=60407 
60008   conversions             ada=60008 
34679   survey                  ada=34679 
20597   message_processing      ada=20597 
18389   communications          ada=18389 
10124   data_base               ada=10124 
9862    library                 ada=9658,ansic=204 
8098    transmit_rules          ada=8098 
7677    hardware_interface      ada=7677 
6616    c_code                  ansic=6142,cpp=474 
5496    background_processing   ada=5496 
2817    components              ada=2817 
894     cdmt                    sh=894 
806     scripts                 sh=806 
342     forward_observer_system ada=342 
 
Totals grouped by language (dominant language first): 
ada:         238292 (96.55%) 
ansic:         6346 (2.57%) 
sh:            1700 (0.69%) 
cpp:            474 (0.19%) 
 

Total Physical Source Lines of Code (SLOC)                = 246,812 
Development Effort Estimate, Person-Years (Person-Months) = 65.02 (780.18) 
 (Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05)) 
Schedule Estimate, Years (Months)                         = 2.62 (31.40) 
 (Basic COCOMO model, Months = 2.5 * (person-months**0.38)) 
Estimated Average Number of Developers (Effort/Schedule)  = 24.84 
Total Estimated Cost to Develop                           = $ 8,782,663 
 (average salary = $56,286/year, overhead = 2.40). 
SLOCCount, Copyright (C) 2001-2004 David A. Wheeler 
SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL. 
SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to 
redistribute it under certain conditions as specified by the GNU GPL license; 
see the documentation for details. 
Please credit this data as "generated using David A. Wheeler's 'SLOCCount'." 
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Version 12 Output 
Creating filelist for background_processing 
Creating filelist for c_code 
Creating filelist for communications 
Creating filelist for components 
Creating filelist for conversions 
Creating filelist for data_base 
Creating filelist for forward_observer_system 
Creating filelist for hardware_interface 
Creating filelist for library 
Creating filelist for master 
Creating filelist for message_processing 
Creating filelist for operator_interface 
Creating filelist for scripts 
Creating filelist for survey 
Creating filelist for transmit_rules 
Categorizing files. 
Finding a working MD5 command.... 
Found a working MD5 command. 
Computing results. 
 
SLOC Directory SLOC-by-Language (Sorted) 
63213   operator_interface      ada=63213 
60011   conversions             ada=60011 
34707   survey                  ada=34707 
20649   message_processing      ada=20649 
18388   communications          ada=18388 
15308   c_code                  ansic=14833,cpp=475 
10227   data_base               ada=10227 
9757    library                 ada=9757 
8781    hardware_interface      ada=8781 
8122    transmit_rules          ada=8122 
5621    background_processing   ada=5621 
2610    components              ada=2610 
820     master                  sh=820 
437     forward_observer_system ada=437 
77      scripts                 sh=77 
 
Totals grouped by language (dominant language first): 
ada:         242523 (93.74%) 
ansic:        14833 (5.73%) 
sh:             897 (0.35%) 
cpp:            475 (0.18%) 
 
Total Physical Source Lines of Code (SLOC)                = 258,728 
Development Effort Estimate, Person-Years (Person-Months) = 68.31 (819.78) 
 (Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05)) 
Schedule Estimate, Years (Months)                         = 2.67 (32.00) 
 (Basic COCOMO model, Months = 2.5 * (person-months**0.38)) 
Estimated Average Number of Developers (Effort/Schedule)  = 25.62 
Total Estimated Cost to Develop                           = $ 9,228,417 
 (average salary = $56,286/year, overhead = 2.40). 
SLOCCount, Copyright (C) 2001-2004 David A. Wheeler 
SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL. 
SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to 
redistribute it under certain conditions as specified by the GNU GPL license; 
see the documentation for details. 
Please credit this data as "generated using David A. Wheeler's 'SLOCCount'." 



46

Version 7.0 Output 
Creating filelist for background_processing 
Creating filelist for c_code 
Creating filelist for communications 
Creating filelist for components 
Creating filelist for conversions 
Creating filelist for data_base 
Creating filelist for forward_observer_system 
Creating filelist for hardware_interface 
Creating filelist for library 
Creating filelist for master 
Creating filelist for message_processing 
Creating filelist for operator_interface 
Creating filelist for scripts 
Creating filelist for sensor_process 
Creating filelist for survey 
Creating filelist for transmit_rules 
Categorizing files. 
Finding a working MD5 command.... 
Found a working MD5 command. 
Computing results. 
 
SLOC Directory SLOC-by-Language (Sorted) 
69184   operator_interface      ada=69184 
65209   conversions             ada=65209 
34699   survey                  ada=34699 
23087   message_processing      ada=23087 
21563   communications          ada=21563 
16706   c_code                  ansic=16207,cpp=475,sh=24 
12086   library                 ada=12086 
10492   data_base               ada=10492 
8632    transmit_rules          ada=8632 
8257    hardware_interface      ada=8257 
5973    background_processing   ada=5973 
2824    master                  sh=2824 
2700    components              ada=2700 
1978    sensor_process          ada=1978 
352     forward_observer_system ada=352 
92      scripts                 sh=92 
 
Totals grouped by language (dominant language first): 
ada:         264212 (93.09%) 
ansic:        16207 (5.71%) 
sh:            2940 (1.04%) 
cpp:            475 (0.17%) 
 

Total Physical Source Lines of Code (SLOC)                = 283,834 
Development Effort Estimate, Person-Years (Person-Months) = 75.29 (903.50) 
 (Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05)) 
Schedule Estimate, Years (Months)                         = 2.77 (33.20) 
 (Basic COCOMO model, Months = 2.5 * (person-months**0.38)) 
Estimated Average Number of Developers (Effort/Schedule)  = 27.21 
Total Estimated Cost to Develop                           = $ 10,170,897 
 (average salary = $56,286/year, overhead = 2.40). 
SLOCCount, Copyright (C) 2001-2004 David A. Wheeler 
SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL. 
SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to 
redistribute it under certain conditions as specified by the GNU GPL license; 
see the documentation for details. 
Please credit this data as "generated using David A. Wheeler's 'SLOCCount'." 
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Version 7.01 Output 
Creating filelist for background_processing 
Creating filelist for c_code 
Creating filelist for communications 
Creating filelist for components 
Creating filelist for conversions 
Creating filelist for data_base 
Creating filelist for forward_observer_system 
Creating filelist for hardware_interface 
Creating filelist for library 
Creating filelist for master 
Creating filelist for message_processing 
Creating filelist for operator_interface 
Creating filelist for project 
Creating filelist for scripts 
Creating filelist for sensor_process 
Creating filelist for survey 
Creating filelist for transmit_rules 
Categorizing files. 
Finding a working MD5 command.... 
Found a working MD5 command. 
Computing results. 
 
SLOC Directory SLOC-by-Language (Sorted) 
73289   operator_interface      ada=73289 
67078   conversions             ada=67078 
66518   c_code                  ansic=66015,cpp=475,sh=28 
35214   survey                  ada=35214 
23422   message_processing      ada=23422 
23105   communications          ada=23105 
12470   data_base               ada=12470 
12181   library                 ada=12181 
8974    transmit_rules          ada=8974 
8540    hardware_interface      ada=8540 
6023    background_processing   ada=6023 
2968    components              ada=2968 
2021    sensor_process          ada=2021 
1200    master                  sh=1200 
368     forward_observer_system ada=368 
7 scripts                 sh=7 
 
Totals grouped by language (dominant language first): 
ada:         275653 (80.28%) 
ansic:        66015 (19.23%) 
sh:            1235 (0.36%) 
cpp:            475 (0.14%) 
 
Total Physical Source Lines of Code (SLOC)                = 343,378 
Development Effort Estimate, Person-Years (Person-Months) = 91.96 (1,103.50) 
 (Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05)) 
Schedule Estimate, Years (Months)                         = 2.99 (35.83) 
 (Basic COCOMO model, Months = 2.5 * (person-months**0.38)) 
Estimated Average Number of Developers (Effort/Schedule)  = 30.80 
Total Estimated Cost to Develop                           = $ 12,422,320 
 (average salary = $56,286/year, overhead = 2.40). 
SLOCCount, Copyright (C) 2001-2004 David A. Wheeler 
SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL. 
SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to 
redistribute it under certain conditions as specified by the GNU GPL 
license; 
see the documentation for details. 
Please credit this data as "generated using David A. Wheeler's 'SLOCCount'." 
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APPENDIX E 
 

FUNCTION POINT COUNT WORKSHEETS 
 

This appendix contains the Microsoft® Excel worksheets that were generated 

from analyzing the requirement documents for the historical versions of the FOS 

software. 
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Function Points - Added Low Average High Total
Inputs (EI) 95 54 5 531 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 100 75 9 838 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 60 56 7 446 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 43 45 10 901 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 20 19 10 333 (Low * 5 + Avg * 7 + High * 10)

Added Function Points - FPA 3049

Function Points - Changed Low Average High Total
Inputs (EI) 10 4 8 94 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 10 4 2 74 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 5 5 4 59 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 10 7 5 215 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 10 3 0 71 (Low * 5 + Avg * 7 + High * 10)

Changed Function Points - FPC 513

Function Points - Deleted Low Average High Total
Inputs (EI) 25 10 4 139 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 25 13 4 193 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 10 4 8 94 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 5 12 4 215 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 2 4 3 68 (Low * 5 + Avg * 7 + High * 10)

Deleted Function Points - FPD 709

General System Characteristics Before After
1. Data Communication 5 5
2. Distributed Data Processing 4 4
3. Performace 4 4
4. Heavily Used Configuration 4 4
5. Transaction Rate 4 4
6. On-Line Data Entry 5 5
7. End-User Efficiency 5 5
8. On-Line Updates 4 4
9. Complex Processing 3 3
10. Reusability 5 5
11. Installation Ease 3 3
12. Operational Ease 3 3
13. Multiple Sites 4 4
14. Facilitate Change 3 3

Total Degree of Influence (TDI) 56 56

Value Adjustment Factor (VAF) 1.21 1.21 (0.65 + (TDI * 0.01)

Enhancement Adjusted Function Points 5168 [(FPA + FPC) * VAFB] + (FPD * VAFA)

Design for maintenance mandated

Data loss protection mandated
Logic, Math, Security control

Reuse mandated
Procedures provided

All data entered by operator or thru rcvd msgs
Efficiency mandated

Education level of end-user
4unique Hardware platforms

V11 Enhancement Function Point Counts

Comment
System supports 5 comms protocols/standards

Each node has unique processing reqmts
Performance requirements mandated

CPU usage mandated
Performance requirements mandated
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Function Points - Added Low Average High Total
Inputs (EI) 39 58 8 397 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 39 58 8 502 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 13 23 0 131 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 8 25 6 396 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 3 9 7 148 (Low * 5 + Avg * 7 + High * 10)

Added Function Points 1574

Function Points - Changed Low Average High Total
Inputs (EI) 17 20 0 131 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 17 20 0 168 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 3 15 0 69 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 3 13 0 151 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 3 6 0 57 (Low * 5 + Avg * 7 + High * 10)

Changed Function Points 576

Function Points - Deleted Low Average High Total
Inputs (EI) 0 0 0 0 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 0 0 0 0 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 0 0 0 0 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 0 0 0 0 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 0 0 0 0 (Low * 5 + Avg * 7 + High * 10)

Deleted Function Points 0

General System Characteristics Before After
1. Data Communication 5 5
2. Distributed Data Processing 4 4
3. Performace 4 4
4. Heavily Used Configuration 4 4
5. Transaction Rate 4 4
6. On-Line Data Entry 5 5
7. End-User Efficiency 5 5
8. On-Line Updates 4 4
9. Complex Processing 3 3
10. Reusability 5 5
11. Installation Ease 3 3
12. Operational Ease 3 3
13. Multiple Sites 4 4
14. Facilitate Change 3 3

Total Degree of Influence (TDI) 56 56

Value Adjustment Factor (VAF) 1.21 1.21 (0.65 + (TDI * 0.01)

Enhancement Adjusted Function Points 2602 [(FPA + FPC) * VAFB] + (FPD * VAFA)

V12 Enhancement Function Point Counts

Comment
System supports 5 comms protocols/standards

Each node has unique processing reqmts
Performance requirements mandated

CPU usage mandated
Performance requirements mandated

All data entered by operator or thru rcvd msgs
Efficiency mandated

Education level of end-user
4 unique Hardware platforms

Design for maintenance mandated

Data loss protection mandated
Logic, Math, Security control

Reuse mandated
Procedures provided
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Function Points - Added Low Average High Total
Inputs (EI) 43 63 11 447 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 43 63 11 564 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 16 14 0 104 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 20 14 12 460 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 4 8 7 146 (Low * 5 + Avg * 7 + High * 10)

Added Function Points 1721

Function Points - Changed Low Average High Total
Inputs (EI) 12 22 4 148 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 14 24 5 211 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 4 3 3 42 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 7 5 2 129 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 2 6 4 92 (Low * 5 + Avg * 7 + High * 10)

Changed Function Points 622

Function Points - Deleted Low Average High Total
Inputs (EI) 3 8 5 71 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 4 9 2 75 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 2 2 2 26 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 4 1 1 53 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 1 1 1 22 (Low * 5 + Avg * 7 + High * 10)

Deleted Function Points 247

General System Characteristics Before After
1. Data Communication 5 5
2. Distributed Data Processing 4 4
3. Performace 4 4
4. Heavily Used Configuration 4 4
5. Transaction Rate 4 4
6. On-Line Data Entry 5 5
7. End-User Efficiency 5 5
8. On-Line Updates 4 4
9. Complex Processing 3 3
10. Reusability 5 5
11. Installation Ease 3 3
12. Operational Ease 3 3
13. Multiple Sites 4 4
14. Facilitate Change 3 3

Total Degree of Influence (TDI) 56 56

Value Adjustment Factor (VAF) 1.21 1.21 (0.65 + (TDI * 0.01)

Enhancement Adjusted Function Points 3134 [(FPA + FPC) * VAFB] + (FPD * VAFA)

V7.0 Enhancement Function Point Counts

Comment
System supports 5 comms protocols/standards

Each node has unique processing reqmts
Performance requirements mandated

CPU usage mandated
Performance requirements mandated

All data entered by operator or thru rcvd msgs
Efficiency mandated

Education level of end-user
4 unique Hardware platforms

Design for maintenance mandated

Data loss protection mandated
Logic, Math, Security control

Reuse mandated
Procedures provided
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Function Points - Added Low Average High Total
Inputs (EI) 65 62 5 473 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 65 62 5 605 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 12 15 3 114 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 25 25 15 650 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 5 8 4 121 (Low * 5 + Avg * 7 + High * 10)

Added Function Points 1963

Function Points - Changed Low Average High Total
Inputs (EI) 11 26 3 155 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 18 25 3 218 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 3 3 3 39 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 2 2 2 64 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 2 2 2 44 (Low * 5 + Avg * 7 + High * 10)

Changed Function Points 520

Function Points - Deleted Low Average High Total
Inputs (EI) 4 5 2 44 (Low * 3 + Avg * 4 + High * 6)
Outputs (EO) 4 3 2 45 (Low * 4 + Avg * 5 + High * 7)
Queries (EQ) 3 3 2 33 (Low * 3 + Avg * 4 + High * 6)
File Access (ILF) 3 2 2 71 (Low * 7 + Avg * 10 + High * 15)
Interface Files (EIF) 1 1 1 22 (Low * 5 + Avg * 7 + High * 10)

Deleted Function Points 215

General System Characteristics Before After
1. Data Communication 5 5
2. Distributed Data Processing 4 4
3. Performace 4 4
4. Heavily Used Configuration 4 4
5. Transaction Rate 4 4
6. On-Line Data Entry 5 5
7. End-User Efficiency 5 5
8. On-Line Updates 4 4
9. Complex Processing 3 3
10. Reusability 5 5
11. Installation Ease 3 3
12. Operational Ease 3 3
13. Multiple Sites 4 4
14. Facilitate Change 3 3

Total Degree of Influence (TDI) 56 56

Value Adjustment Factor (VAF) 1.21 1.21 (0.65 + (TDI * 0.01)

Enhancement Adjusted Function Points 3265 [(FPA + FPC) * VAFB] + (FPD * VAFA)

V7.01 Enhancement Function Point Counts

Comment
System supports 5 comms protocols/standards

Each node has unique processing reqmts
Performance requirements mandated

CPU usage mandated
Performance requirements mandated

All data entered by operator or thru rcvd msgs
Efficiency mandated

Education level of end-user
4 unique Hardware platforms

Design for maintenance mandated

Data loss protection mandated
Logic, Math, Security control

Reuse mandated
Procedures provided
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APPENDIX F 
 

SELECTED HALSTEAD OUTPUT 
 

This appendix contains abbreviated output files captured from the “Understand 

for Ada” and “Understand for C” tools [STI 05] generated by invoking a Perl script 

(“halstead.pl”) to analyze the Halstead Token Count for the historical versions of the FOS 

software. 
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E n tity  N a m e n 1 n 2 N 1 N 2 N n N ^
c t_ im d m .a d a 1 1 8 4 6 9 1 9 7 3 1 6 3 4 3 6 0 7 5 8 7 4 1 0 5
m r_ c h e s s .a d a 3 3 9 4 3 4 7 2 4 5 5 9 2 1 2 7 7 8 2
m r_ in e p t.a d a 6 1 7 2 9 7 1 5
m r_ p a m p r.a d a 2 9 1 0 0 2 6 6 2 3 1 4 9 7 1 2 9 8 0 4
m r_ p ra n k .a d a 2 2 6 8 1 6 6 1 3 9 3 0 5 9 0 5 1 1
m r_ ro ve r.a d a 6 1 7 2 9 7 1 5
m r_ ta s k .a d a 1 4 3 2 6 3 7 5 1 6 0 3 1 3 5 4 4 0 6 2 1 0 3
m r_ u m b e r.a d a 3 1 5 8 1 8 1 1 3 8 3 1 9 8 9 4 9 2
m t_ ro u te .a d a 2 2 6 9 2 0 0 1 6 8 3 6 8 9 1 5 1 9
m t_ s e r ia .a d a 2 7 7 0 1 8 7 1 6 4 3 5 1 9 7 5 5 7
m t_ x ta s k .a d a 2 5 4 5 4 1 1 3 4 4 1 0 4 3 2 3 8 7 7 9 5 4 0 5 3
c t_ e rro r.a d a 1 9 2 9 5 6 4 3 9 9 4 8 2 2 0
m r_ id e .a d a 2 6 5 0 1 7 9 1 3 0 3 0 9 7 6 4 0 4
m r_ re a m .a d a 3 1 7 2 2 1 5 1 5 9 3 7 4 1 0 3 5 9 7
m r_ r id e .a d a 2 1 1 3 6 8 4 2 1 1 0 3 4 1 4 0
m r_ s a c k .a d a 2 4 2 8 8 6 5 8 1 4 4 5 2 2 4 4
m r_ va lid .a d a 2 4 5 2 3 1 2 1 8 7 4 9 9 7 6 4 0 6
m t_ a u th .a d a 2 3 4 8 1 3 5 9 8 2 3 3 7 1 3 7 2
m t_ c k a th .a d a 2 3 4 0 9 9 7 8 1 7 7 6 3 3 1 6
m t_ g tlin .a d a 2 1 3 1 6 5 5 0 1 1 5 5 2 2 4 5
m t_ n e x t.a d a 4 0 7 1 2 5 1 1 7 8 4 2 9 1 1 1 5 5 7
m t_ rs a th .a d a 2 4 8 1 2 2 3 1 9 6 4 1 9 1 0 5 6 2 3
m t_ rs s e r.a d a 2 9 6 9 1 7 8 1 5 0 3 2 8 9 8 5 6 1
m t_ s e tli.a d a 2 1 2 8 6 2 4 6 1 0 8 4 9 2 2 6
m t_ u p a th .a d a 3 6 9 5 4 4 5 3 6 2 8 0 7 1 3 1 8 1 0
m t_ u p m e s .a d a 2 1 2 9 6 9 5 3 1 2 2 5 0 2 3 2
d m .a d a 2 4 1 8 4 5 3 1 7 6 4 2 1 4 2
d m _ c h e c k .a d a 2 8 6 3 8 6 2 4 1 8 1 7 1 1 4 1 2 9 6 7 2 3 4 3 5
d m _ d e l.a d a 1 5 2 2 6 6 1 4 3 1 1 0 4 1 2 4 7 2 4 1 8 2 2 5 0
d m _ e ra s e .a d a 7 4 1 3 0 6 5 0 4 9 1 1 1 4 1 2 0 4 1 0 9 0
d m _ lin k .a d a 1 7 3 1 6 7 5 8 1 2 5 4 8 2 2 2
d m _ n e x t.a d a 4 6 7 0 4 0 1 3 0 0 7 0 1 1 1 6 6 0 2
d m _ re a d .a d a 2 2 3 7 1 0 9 8 3 1 9 2 5 9 2 9 0
d m _ s yn c .a d a 9 6 1 2 8 2 0 1 5 4 3
d m _ w rite .a d a 2 8 0 4 0 3 2 3 5 5 1 6 5 3 4 0 0 8 6 8 3 3 3 4 7
d s _ w rite .a d a 1 3 9 3 4 6 1 3 4 9 1 0 3 1 2 3 8 0 4 8 5 2 8 1 0
io _ c lo s e .a d a 1 4 1 4 3 4 2 6 6 0 2 8 1 0 6
io _ c re a t.a d a 2 3 3 7 9 0 6 5 1 5 5 6 0 2 9 6
io _ e rro r.a d a 1 0 6 1 3 8 2 1 1 6 4 8
io _ f ile .a d a 1 0 6 1 4 9 2 3 1 6 4 8
io _ g e t.a d a 1 1 8 2 0 1 5 3 5 1 9 6 2
io _ le n .a d a 2 6 5 7 1 6 5 1 2 7 2 9 2 8 3 4 5 4
io _ n e x t.a d a 2 1 1 1 4 5 2 9 7 4 3 2 1 3 0
io _ o p e n .a d a 2 2 2 9 7 5 5 5 1 3 0 5 1 2 3 8
io _ p u t.a d a 1 2 9 2 2 1 6 3 8 2 1 7 1
io _ re a d .a d a 2 6 2 9 8 9 6 7 1 5 6 5 5 2 6 2

o
o
o

T o ta ls : 2 3 1 6 9 4 6 0 6 3 2 1 5 6 3 1 1 6 7 1 0 1 3 8 2 7 3 2 6 9 2 3 2 3 8 3 0 8 3

V 1 0  H a ls te a d  O u tp u t
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Entity Name n1 n2 N1 N2 N n N̂
service_manager.2.ada 309 281 937 642 1579 590 2535
service_manager.abort_print.2.ada 45 101 272 203 475 146 796
service_manager.assign_print_buffer.2.ada 27 34 146 92 238 61 300
service_manager.background_task_type.2.ada 55 88 201 136 337 143 628
service_manager.bulk_transmit.2.ada 941 2464 13712 10756 24468 3405 20586
service_manager.generate_file_image.2.ada 27 56 208 168 376 83 453
service_manager.generate_screen_image.2.ada 42 84 376 291 667 126 762
service_manager.get_form_header.2.ada 24 38 106 86 192 62 309
service_manager.get_service_request.2.ada 143 414 2593 1906 4499 557 3480
service_manager.print_altitude_form.2.ada 25 66 471 429 900 91 514
service_manager.print_arty_astro_form.2.ada 23 61 360 342 702 84 465
service_manager.print_azimuth_distance_form.2.ada 24 47 183 157 340 71 371
service_manager.print_buffer_line.2.ada 33 83 538 377 915 116 695
service_manager.print_coord_convert_form.2.ada 25 58 876 848 1724 83 455
service_manager.print_form.2.ada 150 227 1194 849 2043 377 1879
service_manager.print_gauss_kruger_datum_form.2.ada 23 47 168 144 312 70 365
service_manager.print_grid_conv_form.2.ada 23 45 152 134 286 68 351
service_manager.print_hasty_astro_form.2.ada 23 51 205 187 392 74 393
service_manager.print_intersection_form.2.ada 28 65 294 262 556 93 525
service_manager.print_opord.2.ada 21 38 95 78 173 59 291
service_manager.print_polaris_tab_form.2.ada 23 61 599 581 1180 84 465
service_manager.print_resection_form.2.ada 23 49 229 211 440 72 379
service_manager.print_star_id_form.2.ada 23 55 225 207 432 78 421
service_manager.print_traverse_form.2.ada 58 132 875 748 1623 190 1112
service_manager.print_triangulation_form.2.ada 58 146 1229 1087 2316 204 1222
service_manager.print_trig_trav_form.2.ada 23 45 156 138 294 68 351
service_manager.print_user_defined_datum_form.2.ada 25 69 1388 1360 2748 94 537
service_manager.print_utm_geo_datum_form.2.ada 27 58 326 302 628 85 467
service_manager.purge_transmit.2.ada 31 77 326 243 569 108 635
a220_config.2.ada 32 18 46 21 67 50 154
a220_config.generate_a220_file.2.ada 31 260 689 589 1278 291 2238
application_header.2.ada 171 454 2122 1773 3895 625 3882
communications.2.ada 780 1262 3987 3112 7099 2042 9845
communications.check_members.2.ada 40 104 708 526 1234 144 794
communications.check_nets.2.ada 27 55 306 257 563 82 445
communications.check_setup.2.ada 20 39 97 73 170 59 292
communications.control_type.2.ada 946 2367 9816 7704 17520 3313 19037
communications.generate_comms_files.2.ada 157 443 2099 1624 3723 600 3546
communications.initialize_channel.2.ada 131 319 2219 1567 3786 450 2567
communications.put_message.2.ada 267 818 4555 3614 8169 1085 6892
communications.send.2.ada 88 215 861 718 1579 303 1703
communications_definitions.2.ada 134 87 328 237 565 221 850
communications_services.2.ada 326 435 1133 865 1998 761 3552
compression.2.ada 75 118 328 289 617 193 901
debug_messages.2.ada 178 558 3775 3598 7373 736 4576
format_tff.to_db.2.ada 21 42 108 95 203 63 318
format_tff.to_tff.2.ada 20 43 109 96 205 63 319

o
o
o

Totals: 55769 115318 568570 440981 1009551 171087 954068

V11 Halstead Output
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Entity Name n1 n2 N1 N2 N n N̂
bulk_transmit.2.ada 31 42 107 82 189 73 325
bulk_transmit.bulk_transmit.2.ada 959 2604 14707 11654 26361 3563 21847
bulk_transmit.purge_transmit.2.ada 35 79 369 266 635 114 676
cctt_print.2.ada 42 38 95 64 159 80 308
generate_print_files.2.ada 81 91 239 186 425 172 675
generate_print_files.generate_db_file_image.2.ada 30 58 193 149 342 88 486
generate_print_files.make_db_print_file.2.ada 33 71 220 159 379 104 602
generate_print_files.make_screen_print_file.2.ada 34 85 396 304 700 119 716
generate_print_files.total_pages_of_data.2.ada 24 39 93 70 163 63 316
print_file_queue.2.ada 119 105 242 166 408 224 848
print_file_task.print_file.2.ada 40 59 244 185 429 99 459
printer_interface.2.ada 112 130 331 219 550 242 1114
service_manager.2.ada 27 17 44 26 70 44 132
service_manager.abort_print.2.ada 39 79 172 142 314 118 585
service_manager.background_task_type.2.ada 30 32 59 40 99 62 209
service_manager.get_service_request.2.ada 64 149 381 301 682 213 1186
survey_forms.2.ada 277 272 812 577 1389 549 2301
survey_forms.get_form_header.2.ada 22 37 104 85 189 59 290
survey_forms.print_altitude_form.2.ada 26 81 499 451 950 107 635
survey_forms.print_arty_astro_form.2.ada 24 76 388 364 752 100 584
survey_forms.print_azimuth_distance_form.2.ada 25 60 208 177 385 85 470
survey_forms.print_coord_convert_form.2.ada 26 73 904 870 1774 99 573
survey_forms.print_form.2.ada 133 185 965 672 1637 318 1535
survey_forms.print_gauss_kruger_datum_form.2.ada 24 62 196 166 362 86 479
survey_forms.print_grid_conv_form.2.ada 24 60 180 156 336 84 464
survey_forms.print_hasty_astro_form.2.ada 24 66 233 209 442 90 508
survey_forms.print_intersection_form.2.ada 29 78 316 278 594 107 630
survey_forms.print_polaris_tab_form.2.ada 24 76 627 603 1230 100 584
survey_forms.print_resection_form.2.ada 24 64 257 233 490 88 494
survey_forms.print_star_id_form.2.ada 24 70 253 229 482 94 539
survey_forms.print_traverse_form.2.ada 57 146 891 758 1649 203 1221
survey_forms.print_triangulation_form.2.ada 57 160 1242 1094 2336 217 1332
survey_forms.print_trig_trav_form.2.ada 24 59 184 160 344 83 457
survey_forms.print_user_defined_datum_form.2.ada 26 83 1416 1382 2798 109 651
survey_forms.print_utm_geo_datum_form.2.ada 27 73 354 324 678 100 579
a220_config.2.ada 32 18 46 21 67 50 154
a220_config.generate_a220_file.2.ada 32 258 694 594 1288 290 2226
application_header.2.ada 171 436 2132 1779 3911 607 3719
communications.2.ada 903 1303 4192 3156 7348 2206 10416
communications.check_a220.2.ada 20 49 136 100 236 69 361
communications.check_adds.2.ada 116 337 1342 1100 2442 453 2769
communications.check_bf.2.ada 19 48 149 112 261 67 348
communications.check_cctt.2.ada 21 85 296 238 534 106 636
communications.check_fs.2.ada 26 101 322 256 578 127 794
communications.check_inc.2.ada 16 34 78 61 139 50 236
communications.check_lop.2.ada 56 138 544 404 948 194 1146
communications.check_members.2.ada 40 104 708 526 1234 144 794

o
o
o

Totals 82702 183856 880353 689675 1570028 266558 1511423

V12 Halstead Output
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Entity Name n1 n2 N1 N2 N n N̂
bulk_transmit.2.ada 31 42 107 82 189 73 325
bulk_transmit.bulk_transmit.2.ada 973 2693 15281 12134 27415 3666 22572
bulk_transmit.purge_transmit.2.ada 35 79 369 266 635 114 676
cctt_print.2.ada 42 38 95 64 159 80 308
generate_print_files.2.ada 81 91 239 186 425 172 675
generate_print_files.generate_db_file_image.2.ada 30 58 190 146 336 88 486
generate_print_files.make_db_print_file.2.ada 33 70 218 157 375 103 595
generate_print_files.make_screen_print_file.2.ada 34 87 398 305 703 121 732
generate_print_files.total_pages_of_data.2.ada 24 39 93 70 163 63 316
print_file_queue.2.ada 119 105 242 166 408 224 848
print_file_task.print_file.2.ada 40 57 245 185 430 97 446
printer_interface.2.ada 112 130 334 221 555 242 1114
service_manager.2.ada 27 17 44 26 70 44 132
service_manager.abort_print.2.ada 39 79 172 142 314 118 585
service_manager.background_task_type.2.ada 30 32 59 40 99 62 209
service_manager.get_service_request.2.ada 64 158 419 338 757 222 1259
survey_forms.2.ada 277 272 814 577 1391 549 2301
survey_forms.get_form_header.2.ada 22 37 104 85 189 59 290
survey_forms.print_altitude_form.2.ada 26 81 499 451 950 107 635
survey_forms.print_arty_astro_form.2.ada 24 76 388 364 752 100 584
survey_forms.print_azimuth_distance_form.2.ada 25 60 208 177 385 85 470
survey_forms.print_coord_convert_form.2.ada 26 73 904 870 1774 99 573
survey_forms.print_form.2.ada 155 224 1115 782 1897 379 1865
survey_forms.print_gauss_kruger_datum_form.2.ada 24 62 196 166 362 86 479
survey_forms.print_grid_conv_form.2.ada 24 60 180 156 336 84 464
survey_forms.print_hasty_astro_form.2.ada 24 66 233 209 442 90 508
survey_forms.print_intersection_form.2.ada 29 78 316 278 594 107 630
survey_forms.print_polaris_tab_form.2.ada 24 76 627 603 1230 100 584
survey_forms.print_resection_form.2.ada 24 64 257 233 490 88 494
survey_forms.print_star_id_form.2.ada 24 70 253 229 482 94 539
survey_forms.print_traverse_form.2.ada 57 146 891 758 1649 203 1221
survey_forms.print_triangulation_form.2.ada 57 160 1242 1094 2336 217 1332
survey_forms.print_trig_trav_form.2.ada 24 59 184 160 344 83 457
survey_forms.print_user_defined_datum_form.2.ada 26 83 1416 1382 2798 109 651
survey_forms.print_utm_geo_datum_form.2.ada 27 73 354 324 678 100 579
a220_config.generate_a220_file.2.ada 32 258 694 594 1288 290 2226
application_header.2.ada 174 439 2154 1792 3946 613 3764
b220_config.generate_b220_file.2.ada 32 269 745 637 1382 301 2331
communications.2.ada 1027 1497 4940 3752 8692 2524 11864
communications.check_a220.2.ada 23 59 162 118 280 82 451
communications.check_adds.2.ada 116 339 1346 1104 2450 455 2785
communications.check_b220.2.ada 23 59 164 120 284 82 451
communications.check_cctt.2.ada 21 85 296 238 534 106 636
communications.check_clearance.2.ada 70 194 686 574 1260 264 1552
communications.check_fs.2.ada 27 109 358 282 640 136 865
communications.check_inc.2.ada 16 38 84 67 151 54 263
communications.check_lop.2.ada 56 138 544 404 948 194 1146

o
o
o

Totals: 115976 240425 1127959 885383 2013342 356401 1980225

V7.0 Halstead Output
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Entity Name n1 n2 N1 N2 N n N̂
bulk_transmit.2.ada 31 42 106 81 187 73 325
bulk_transmit.bulk_transmit.2.ada 949 2639 15287 12107 27394 3588 22142
bulk_transmit.purge_transmit.2.ada 35 79 367 264 631 114 676
cctt_print.2.ada 42 38 95 64 159 80 308
generate_print_files.2.ada 81 91 239 186 425 172 675
generate_print_files.generate_db_file_image.2.ada 57 87 365 258 623 144 803
generate_print_files.make_db_print_file.2.ada 35 74 226 162 388 109 638
generate_print_files.make_screen_print_file.2.ada 34 87 398 305 703 121 732
generate_print_files.total_pages_of_data.2.ada 24 39 93 70 163 63 316
print_file_queue.2.ada 119 105 242 166 408 224 848
print_file_task.print_file.2.ada 40 57 245 185 430 97 446
printer_interface.2.ada 112 130 334 221 555 242 1114
service_manager.2.ada 27 17 44 26 70 44 132
service_manager.abort_print.2.ada 39 79 170 140 310 118 585
service_manager.background_task_type.2.ada 30 32 59 40 99 62 209
service_manager.get_service_request.2.ada 64 156 418 337 755 220 1243
survey_forms.2.ada 277 272 814 577 1391 549 2301
survey_forms.get_form_header.2.ada 22 37 104 85 189 59 290
survey_forms.print_altitude_form.2.ada 26 81 499 451 950 107 635
survey_forms.print_arty_astro_form.2.ada 24 76 388 364 752 100 584
survey_forms.print_azimuth_distance_form.2.ada 25 60 208 177 385 85 470
survey_forms.print_coord_convert_form.2.ada 26 73 904 870 1774 99 573
survey_forms.print_form.2.ada 155 224 1115 782 1897 379 1865
survey_forms.print_gauss_kruger_datum_form.2.ada 24 62 196 166 362 86 479
survey_forms.print_grid_conv_form.2.ada 24 60 180 156 336 84 464
survey_forms.print_hasty_astro_form.2.ada 24 66 233 209 442 90 508
survey_forms.print_intersection_form.2.ada 29 78 316 278 594 107 630
survey_forms.print_polaris_tab_form.2.ada 24 76 627 603 1230 100 584
survey_forms.print_resection_form.2.ada 24 64 257 233 490 88 494
survey_forms.print_star_id_form.2.ada 24 70 253 229 482 94 539
survey_forms.print_traverse_form.2.ada 57 146 891 758 1649 203 1221
survey_forms.print_triangulation_form.2.ada 57 160 1242 1094 2336 217 1332
survey_forms.print_trig_trav_form.2.ada 24 59 184 160 344 83 457
survey_forms.print_user_defined_datum_form.2.ada 26 83 1416 1382 2798 109 651
survey_forms.print_utm_geo_datum_form.2.ada 27 73 354 324 678 100 579
a220_config.generate_a220_file.2.ada 32 264 723 623 1346 296 2283
application_header.2.ada 173 464 2256 1870 4126 637 3981
c220_config.generate_c220_file.2.ada 34 293 845 720 1565 327 2573
communications.2.ada 1134 1695 5581 4271 9852 2829 13451
communications.check_a220.2.ada 23 59 162 118 280 82 451
communications.check_adds.2.ada 116 340 1348 1106 2454 456 2793
communications.check_c220.2.ada 23 59 164 120 284 82 451
communications.check_cctt.2.ada 21 85 296 238 534 106 636
communications.check_clearance.2.ada 70 198 718 598 1316 268 1585
communications.check_fs.2.ada 27 109 358 282 640 136 865
communications.check_hf.2.ada 12 10 25 17 42 22 76
communications.check_inc.2.ada 16 38 84 67 151 54 263

o
o
o

Totals: 116331 243059 1153900 904006 2057906 359390 2004937

V7.01 Halstead Output
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APPENDIX G 
 

SELECTED “CMdb” OUTPUT 
 

This appendix contains the WLOC (worked lines of code) data for the FOS 

software as captured from the “CMdb” utility developed by Techrizon (formerly 

TELOS�OK, LLC) to aid in managing the baseline system. 

ADA C SCRIPT DATA Totals
WLOC as 
of v11.017 117,010 12,044 9,520 997 51 7 1,014 126 244 197,925 9,345 36,000 384,283
WLOC as 
of v12.008 32,595 11,502 9,365 9,305 37 4 200 243 400 31,674 974 948 97,247
WLOC as 
of v7.0.03 54,052 10,745 7,644 16,631 238 1,863 0 175 1,925 25,734 4,231 10,685 133,923

VERSION ADD MOD DEL ADD MOD DEL ADD MOD DEL ADD MOD DEL WLOC

7.01.00 11,817 3,534 18,522 57,923 256 226 783 222 253 22,470 804 6,971 123,781

7.01.01 250 321 218 1,260 873 1,049 94 35 13 705 245 683 5,746

7.01.02 943 588 518 1,437 492 657 90 2 53 1,200 88 175 6,243

7.01.03 0 0 0 0 0 0 0 2 0 0 2 0 4

7.01.04 37 19 0 52 13 11 0 2 0 3 2 0 139

7.01.05 3 1 0 0 0 0 0 2 0 0 1 0 7

7.01.06 0 4 0 0 0 0 0 2 0 0 1 0 7

7.01.07 0 2 2 0 0 0 0 2 0 0 1 0 7

7.01.08 13 1 0 0 0 0 0 1 0 0 1 0 16

7.01.09 620 177 26 0 0 0 0 2 0 0 1 0 826

Total to Date: 136,776

ADDED, MODIFIED, DELETED LINECOUNT BY LANGUAGE for:  FOS
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