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Abstract:  The Cross Timbers is a patchwork of grassland, savanna, and xeric oak forest 

that stretch across Kansas, Oklahoma, and Texas.  Historically a pyric ecosystem, burning 

of the Cross Timbers became infrequent.  Currently, land managers are increasingly 

using prescribed fire as a tool to increase biodiversity, reduce woody encroachment, 

and decrease wildfire risk.  Understanding the effects fire has on litter decomposition is 

important due to its impacts on carbon storage, nutrient cycling, and erosion.  Nitrogen 

volatilizes in fire and this can reduce the bioavailable nitrogen that, in turn, lowers litter 

quality.  Previous studies have shown that lower litter quality can slow decomposition.   

Fire can also affect decomposition environment, resulting in altered microbial 

communities, arthropods, litter depth, moisture, and temperature in the litter layer that 

can change the rate of decomposition.  The objective of our study was to determine 

whether fire frequency effects on litter quality and decomposition environment alter 

the rate of decomposition.  Litterbags were installed at three wildlife management areas 

in Oklahoma that have been periodically burned for at least 24 years.  Litterbags were 

collected every three months for a period of 15 months.  Major findings of our study 
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LONG-TERM PRESCRIBED FIRE DOES NOT ALTER LITTER DECOMPOSITION AND 

BIOAVAILABILE NITROGEN IN XERIC OAK FORESTS 

 

1.  Introduction 

1.1.  Cross Timbers 

 Stretching across portions of Kansas, Oklahoma, and Texas, the Cross Timbers 

Ecoregion encompasses 7,991,900 hectares (McArthur and Ott 1996).  Representing a 

landscape-sized ecotone where the eastern forests meet the Great Plains, the Cross 

Timbers is characterized as a patchwork of grassland, savanna, and xeric forest.  The 

forests are predominately composed of post oak (Quercus stellata) and blackjack oak 

(Quercus marilandica) and to a lesser extent black hickory (Carya texana), shumard oak 

(Quercus shumardii), winged elm (Ulmus alata), and eastern redcedar (Juniperus 

virginiana).   Post oak and blackjack oak comprise 68% of the total basal area in the 

Oklahoma Cross Timbers (DeSantis 2010).  Typical understory species include greenbrier 

(Smilax spp.), little bluestem (Schizachyrium scoparium), big bluestem (Andropogon 

gerardii), buckbrush (Symphoricarpos orbiculatus), and fish-on-a-fishing-pole grass 

(Chasmanthium latifolium). 

 Historically, the Cross Timbers was subjected to periodic burning (mean fire 

return interval=4.1-4.4 years) (Clark 2003; Stambaugh et al. 2009) by Native Americans
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for communication, warfare, and to aid in the hunting of the American bison (Bison 

bison) (Courtwright 2007).  As Euro-American settlement ensued, human populations 

within the Cross Timbers increased and anthropogenic fires increased to a mean fire 

return interval of 2.0 years (Clark 2003; DeSantis 2010).  Most (97%) fires were ignited in 

the dormant season (September-March) (Stambaugh et al. 2009) and were of low-

intensity.  Currently, much of the Cross Timbers is increasingly becoming fragmented by 

roads, agriculture, and urban areas (Bidwell et al. 2003).  Public perception of fire is 

generally negative and periodic burning is not as commonplace as it was in the past 

(Collins and Wallace 1990; Morton et al. 2010). 

Recently, a renewed interest in prescribed fire has taken hold as a beneficial tool 

to manage the Cross Timbers (Bidwell et al. 2003).   Land managers and private owners 

are using fire to increase biodiversity, reduce fuel loads that can result in catastrophic 

wildfires, and reduce woody encroachment of eastern redcedar.  Increasing prescribed 

burning has been shown to have a positive linear relationship on herbaceous 

biodiversity in the Cross Timbers (Burton 2009).  Through regular burning, the quantity 

of fuel is reduced and the potential for wildfires that destroy homes and infrastructure 

is lower (Bidwell et al. 2003).  Burning can reduce woody encroachment by eastern 

redcedar, a native tree, which has been increasing its abundance in the Cross Timbers 

due to the absence of fire.  From 1985 to 1994 redcedar extended its range throughout 

Oklahoma by 79% (Bidwell and Oklahoma Cooperative Extension Service 2009).  This 

profound increase has widespread ecological effects for forested systems including 

reduced litter C, shifts in soil microbial communities, increased actual 
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evapotranspiration, and reduced understory cover and species richness (Pierce and 

Reich 2010; Williams 2010; Hung 2012; van Els et al. 2010).   

1.2.  Fires and Nitrogen Volatilization 

 Though studied elsewhere (Grigal and McColl 1977; Ferran and Vallejo 1992; 

Hernández and Hobbie 2008; Silveira et al. 2009), the effects of fire on litter 

decomposition and bioavailable nitrogen has never been studied in the Cross Timbers.  

Nitrogen has been shown to volatilize during fires with temperatures above 200°C.  

Typical maximum ground surface temperatures of a forest fire are between 200-300°C 

(Knicker 2007).  Research in a chaparral ecosystem observed losses of 146 kg/ha N 

during a controlled burn (Debano and Conrad 1978).  Within the Cross Timbers, Williams 

(2010) observed total N in the entire litter layer was reduced by 20% and 21% in units 

that were subjected to 2.5 fires per decade and 5 fires per decade, respectively, as 

compared to an unburned control.  This increased the C:N ratio by 25% and 28%, 

correspondingly.  One of the main drivers of the rate of litter decomposition is C:N 

(Hernández and Hobbie 2008; Kurka et al. 2000; Silveira et al. 2011).  Another driver of 

decomposition is lignin:N and a strong correlation has been reported for hardwood litter 

decomposition decreasing as lignin:N increased (Melillo et al. 1982).  In the Cross 

Timbers, lignin:N was found to increase with an increase in fire frequency (Williams 

2010). 

 A similar study to our study was located at Cedar Creek Ecosystem Science 

Reserve in Minnesota that examined how northern pin oak (Quercus ellipsoidalis) litter 



4 

 

decomposed in response to varying burn frequencies.  Hernández and Hobbie (2008) 

found that as fire frequency increased, litter C:N ratio increased resulting in slower 

decomposition.  Their research demonstrated that immobilization was greatest in litter 

originating from the high burn unit (greater than 8 fires per decade) and this reinforced 

the feedback loop of low N availability in the stands (Figure 1).   Additionally, ion 

exchange resin bags were used in their study and they showed that N availability in the 

soil decreased with increasing fire frequency. 

1.3.  Objectives  

The goal of our study was to determine how litter quality (total N concentration, 

C:N, and lignin:N) and decomposition environment (canopy cover and basal area) affect 

litter decomposition and bioavailable N (ammonium and nitrate) in post oak-blackjack 

oak forests under different long-term prescribed burning regimes.  To accomplish this 

goal, measurements were performed on litter mass loss; litter and soil chemistry; and 

decomposition environment characteristics. 

The research objectives included: 

1. Determine whether prescribed burning effects on litter quality alter the 

rate of decomposition. 

2. Determine whether prescribed burning effects on decomposition 

environment alter the rate of decomposition. 

3. Determine the relative importance of decomposition environment and 

litter quality on the rate of decomposition. 
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4. Determine how prescribed fire affects the bioavailable N in the soil. 

Decomposition environment was defined as the physical structure of the forest 

measured through canopy cover and basal area, though decomposition environment 

can also comprise litter depth, microbial community, litter layer temperature and 

moisture, and arthropod population.  These variables were not explored in their relation 

to fire frequency.  A significant finding of a decomposition environment effect might 

require additional measurements to discover the mechanism responsible for 

decomposition rate differences.  

1.4.  Hypotheses 

 Hypotheses addressing the preceding objectives, respectively, are as follows: 

1. Litter TN will decrease as fire frequency increases due to the volatilization of N 

from fire.  It follows that C:N and lignin:N will increase as fire frequency 

increases; the change in these litter quality variables will slow the rate of 

decomposition as compared to unburned control units. 

2. Decomposition environments with high burn frequencies will be more open and 

warmer, consequently increasing microbial activity.  This increase in microbial 

activity will result in slightly higher decomposition rates as compared to 

unburned, shadier, cooler control units. 

3. Litter quality will be the main driver controlling the rate of decomposition with 

decomposition environment playing a minor role. 
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4. The soil ammonium and nitrate concentrations will decrease as fire frequency 

increases as compared to an unburned control due to volatilization and 

immobilization of the N in the soil by microbes to decompose the lower quality 

litter.   

1.5.  Purpose of Study 

 The litter layer and its associated nitrogen dynamics are fundamental ecosystem 

components.  With the increasing popularity of using prescribed fire as a management 

tool, understanding the effects fire has on the rate of decomposition of litter and the 

nitrogen cycle is valuable.  Decomposition in fire driven ecosystems can have broad 

implications for climate change as carbon storage is affected (Knicker 2007).   From a 

wildlife management perspective, nitrogen dynamics play a role in the forage quality for 

ungulates, fowl, and other wildlife (Hensley 2010).  Burning the litter layer and altering 

decomposition can increase the rate of erosion leading to water quality issues and a loss 

of soil fertility (O'Dea and Guertin 2003; Cawson et al. 2012).  Litter N and annual 

litterfall cycling has been found to decrease with an increase in fire frequency leading to 

a decrease in aboveground net primary productivity (Reich et al. 2001).  Burning the 

litter layer has been demonstrated to have a positive effect on avian and arthropod 

species (Boyd and Bidwell 2001; Howard and Hill 2007), though it undoubtedly reduces 

the richness of species intolerant to fire.  Understanding the varied effects of fire on 

litter decomposition and bioavailable N is crucial for land managers to make educated 

decisions on C storage, N storage, forage quality, productivity, and habitat. 
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Some might argue that studying the rate of decomposition is of no use if the 

litter is burned frequently and consumed.  However, the time between burns can vary 

from as little as one year to greater than 37 years.  Even if burned every year, research 

shows that litter can lose approximately 25% of its mass before the next burn 

(Hernández and Hobbie 2008).  Therefore, altering the decomposition rate can have 

profound impacts on nutrient cycling and other ecosystem processes despite periodic 

consumption by fire. 

 

2.  Methods 

2.1.  Study Locations 

Our study was conducted at three wildlife management areas (WMAs) in 

Oklahoma that are situated within the Cross Timbers Ecoregion: Okmulgee WMA, 

Cherokee WMA, and Lexington WMA (Figure 2).  All three WMAs are managed by the 

Oklahoma Department of Wildlife Conservation (ODWC). 

Okmulgee WMA is located in east-central Oklahoma (35°38’N, 96°02’W).  

Elevations range from 195-288 meters.  Soils are characterized by well-drained, stony 

fine sandy loam on slopes of 5-30% (Soil Survey Staff, 2013).  Mean annual temperature 

is 15.2°C with an average monthly low of 2.1°C in January and an average monthly high 

of 27.0°C in July.  Mean annual precipitation is 107.1 cm with an average monthly low of 
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4.3 cm in January and an average monthly high of 14.0 cm in May (Oklahoma 

Climatological Survey, 2000). 

Cherokee WMA is located in eastern Oklahoma (35°40’N, 95°03’W).  Elevations 

range from 170-311 meters.  Soils are characterized by well-drained, stony fine sandy 

loam on slopes of 8-30% (Soil Survey Staff, 2013).  Mean annual temperature is 15.5°C 

with an average monthly low of 2.7°C in January and an average monthly high of 26.9°C 

in July.  Mean annual precipitation is 122.2 cm with an average monthly low of 6.1 cm in 

January and an average monthly high of 14.5 cm in May (Oklahoma Climatological 

Survey, 2000). 

Lexington WMA is located in central Oklahoma (35°03’N, 97°11’W).  Elevations 

range from 323-378 meters.  Soils are characterized by well-drained, fine sandy loam on 

slopes of 3-8% (Soil Survey Staff, 2013).  Mean annual temperature is 15.6°C with an 

average monthly low of 2.4°C in January and an average monthly high of 27.8°C in July.  

Mean annual precipitation is 95.5 cm with an average monthly low of 3.8 cm in January 

and an average monthly high of 13.5 cm in May (Oklahoma Climatological Survey, 2000). 

 The ODWC performs periodic prescribed burning on all three WMAs in an effort 

to increase the quality of habitat for wildlife.  These low-intensity surface fires occur in 

the dormant season, typically February or March.  To ensure a safe and effective burn, 

prescribed burning only takes place under the following weather conditions: wind speed 

less than 25 kph, relative humidity between 30-50%, and temperature below 27°C 

(Weir, 2009). 
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2.2.  Experimental Design 

 Each WMA was divided into numbered management units with varying burn 

frequencies (Table 1).  At each WMA three units were selected: a high burn frequency, 

medium burn frequency, and control/no burn.  High burn frequency was defined as 

greater than 2.5 fires per decade.  Medium burn frequency was defined as less than 2.5 

fires per decade and greater than 1.4 fires per decade.  Control/no burn units have not 

been burned for at least 24 years.  Within each unit, four sites (samples) were randomly 

selected using ArcMap 9.2 for a total of 12 sites at each WMA or 36 total sites among all 

three WMAs.  Extra care was taken to ensure that no points fell within a clearing or 

within 50 meters of the edge of a unit.  

Recently fallen post oak and blackjack oak litter was collected in March 2012 and 

dehydrated in a drying oven at 70°C until no mass loss.  Equal amounts of litter from the 

four sites within each unit were combined and mixed to create a homogenized mixture 

for each unit at every WMA.  In addition, three 10 gram samples from each 

homogenized litter mixture were weighed to determine the proportion of blackjack oak 

to post oak. 

Litterbags were constructed from gray 1 mm mesh fiberglass screen and were 26 

cm by 26 cm.  Litterbags were filled with approximately 10 grams of homogenized litter.  

Our study employed a reciprocal transplant treatment of the litterbags at each WMA.  In 

simplest terms, this means that all of the sites had litter from the other two units as well 

as their own unit.  The purpose of using a reciprocal transplant treatment was to 
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simultaneously assess how decomposition environment and litter quality affect 

decomposition.  

Ion exchange resin bags were assembled from nylon/lycra fabric cut into 15 cm 

by 15 cm squares and filled with 4.5 grams of mixed bead ion exchange resins (Sigma-

Aldrich Dowex Marathon MR-3 hydrogen and hydroxide form).  Resin bags were secured 

with a zip tie and trimmed of excess fabric.  A 1.2 M solution of HCl was used to soak the 

resin bags for 1 hour.  Afterwards, the resin bags were rinsed with deionized water until 

the rinse water was a neutral pH.  Resin bags were refrigerated in sealed plastic bags 

until installation in the field. 

2.3.  Sampling Collection and Processing 

In March 2012, each site received a total of 18 litterbags that were arranged in a 

3 by 6 grid (Figure 3).  At every site, three litterbags were collected each time 

representing the litter quality of all three units.  The litterbags were collected 

approximately every three months for a total of five collections over 15 months with an 

extra set constructed in case of any lost or unidentifiable litterbags.  When collecting the 

litterbags, a random number was generated and that number was used to determine 

which column to pick up to eliminate bias.   In addition to the litterbags, one resin bag 

was installed at each site 10 cm below mineral soil at the beginning of the study.  Each 

collection, a resin bag was removed and a new resin bag was installed in an adjacent 

location. 
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Within each unit at all three WMAs, four 10 gram samples of homogenized litter 

were ground to a fine powder prior to installation to establish initial nutrient values.  

These samples were analyzed by the Soil, Water, and Forage Analytical Laboratory 

(SWFAL) at Oklahoma State University for total nitrogen concentration (TN), total 

carbon concentration (TC), and lignin concentration.  Dry combustion in a LECO TruSpec 

Carbon and Nitrogen Analyzer was used to quantify TN and TC (Bremner, 1996; Nelson 

and Sommers, 1996).  Acid detergent fiber was determined using an Ankom Fiber 

Analyzer and subsequently dissolved by 72% sulfuric acid by weight to quantify lignin 

(ANKOM Technology, 2011; ANKOM Technology, 2013).  Each collection of the litterbags 

was dried in the same way as the initial litter and carefully cleaned of any soil or organic 

matter that was present on the leaves.  Each collection was similarly ground and 

analyzed by SWFAL for TN, TC, and lignin. 

To process the resin bags, they were first rinsed in deionized water to remove 

loose soil on the exterior.  To extract ammonium and nitrate from the beads, resin bags 

shook on a shaker table for 1 hour in 25 mL of 1 M KCl.  After shaking, the extractant 

was filtered and neutralized by adding a 0.1 M NaOH solution to each sample until a 

neutral pH was reached.  After neutralizing, samples were analyzed for ammonium and 

nitrate by SWFAL using a Lachat Flow Injection Auto-analyzer.  Ammonium was 

measured using the salicylate method and nitrate was measured using the cadmium 

reduction method (Gavlak et al., 2003). 
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Additionally, each site was measured for canopy cover during the growing 

season using a spherical densiometer and basal area using a basal area 10 factor prism. 

2.4.  Post-Burn Experiment 

 In March 2013, the medium burn unit at Lexington was burned by the ODWC.  

This coincided at the time of the fourth collection.  Due to the extra set of litterbags that 

were constructed at the beginning of the study, an opportunity presented itself to split 

the remaining litterbags between the recently burned unit and a similar unit, medium 

(post-burn) (Table 1).  Litterbags were removed prior to the burn and replaced 

afterwards, half in the burned unit and half in the unburned unit.  Although the litter 

had already been decomposing for a year, this smaller experiment allowed a glimpse 

into how the environment of a recently burned unit can affect litter decomposition rates 

and N dynamics in the soil.  

2.5.  Analysis 

 PROC MIXED in SAS 9.3 software was used for all statistical analyses.  Each WMA 

was separately analyzed due to different burn frequencies.  Mass remaining, TN, C:N, 

and lignin:N were analyzed using a split-split plot design with decomposition 

environment as the main plot, litter quality as a sub plot, and collection date as the sub-

sub plot.  Ammonium and nitrate were analyzed as a split plot design with 

decomposition environment as the main plot and collection date as the sub plot.  If an 

interaction effect by collection date was found significant, then each collection date was 

further analyzed separately.  Basal area, canopy cover, and initial litter quality variables 
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were analyzed as a randomized complete block design.  Mass remaining, TN, and C:N 

were also averaged across treatments for each WMA to examine overall trends at the 

WMA scale.  These WMA variables were analyzed as a completely randomized design.  

PROC MEANS was used to compute means and standard errors for all variables.  The 

least significant difference (LSD) test was used to determine if means were significantly 

different at P < 0.05.  Linear regressions of TN, C:N, lignin:N, and percentage of blackjack 

oak compared against mass remaining were created in Sigma Plot 11.0 using the linear 

regression tool. 

 

3.  Results 

3.1.  Initial Litter Quality 

Initial litter quality differences among treatment units were inconsistent among 

WMAs.  Prescribed fire did not significantly affect initial litter TN, C:N, and lignin:N at 

Okmulgee WMA (Table 2).  At Cherokee WMA, TN was significantly lower at the medium 

burn unit than the other treatments, C:N was significantly higher at the medium burn 

unit than the other treatments, while lignin:N was significantly lower at the control unit 

than the other treatments.  At Lexington WMA, the high burn unit had significantly 

higher TN and significantly lower C:N than the other treatments.  The control unit had 

significantly higher lignin:N compared to all other treatments. 
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3.2  Decomposition Environment 

 Very few decomposition environment differences were observed among WMAs.  

Canopy cover and basal area were not significantly different among treatments at 

Okmulgee WMA (Table 3).  At Cherokee WMA, the medium burn unit had significantly 

lower canopy cover than the control unit with the high burn unit not significantly 

different from either.  Basal area was not significantly different among treatments.  At 

Lexington WMA, the medium (post-burn) unit had significantly lower canopy cover and 

basal area.  The high burn unit’s basal area was not significantly different from any 

treatments. 

3.3.  Litter Decomposition 

 Litter decomposition did not exhibit any high-order interactions.  There was no 

significant three-way interaction between decomposition environment, litter quality, 

and collection date at all three WMAs (Tables 4, 5, and 6).   

Overall, decomposition environment exhibited few differences in litter 

decomposition among treatments.  Okmulgee WMA had a significant interaction for 

decomposition environment by collection date whereas the other WMAs had no 

significant interactions or decomposition environment main effects.  The high burn 

environment litter at Okmulgee WMA decomposed significantly faster than the medium 

burn environment litter for the third and fourth collections while the control 

environment litter decomposed significantly faster for the fifth collection than the other 

two treatments (Figure 4). 
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 Litter quality showed a few trends though they were conflicting at different 

WMAs.  A significant interaction between litter quality and collection date was observed 

at Okmulgee WMA and Lexington WMA while Cherokee WMA was non-significant for 

both interaction and litter quality main effect (Tables 4, 5, and 6).  At Okmulgee WMA, 

the high burn litter decomposed at a significantly slower rate from the second through 

the fourth collection while the medium burn litter decomposed significantly faster on 

the fifth collection (Figure 5).  At Lexington WMA, on the second collection, the control 

litter decomposed significantly slower than the other two litters.  On the third and 

fourth collection, the control litter decomposed significantly slower than only the high 

burn litter.  For the final collection, the high burn litter decomposed significantly faster 

than the other litters.  

 Additionally, to ensure that the proportions of post oak to blackjack oak in the 

litter was not a confounding factor in decomposition, final mass remaining versus 

percentage of blackjack oak was analyzed by linear regression to determine if a 

relationship exists.  No significant relationship was observed (Figure 6).  

 Another confounding factor that was examined is the home-field advantage 

which is defined as litter decomposing at a faster rate in its own decomposition 

environment or where the litter originated.  This effect would have been indicated by a 

three-way interaction between decomposition environment, litter quality, and 

collection date.  The three-way interaction was non-significant at all three WMAs 

(Tables 4, 5, and 6). 
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3.4.  Litter Chemistry 

 All litter quality variables displayed no high-order interactions.  At all three 

WMAs, there were no significant three-way interactions between decomposition 

environment, litter quality, and collection date for TN, C:N, and lignin:N (Tables 4, 5, and 

6). 

Decomposition environment had no effect on litter TN.  All three WMAs showed 

no significant interactions between decomposition environment and collection date as 

well as no significant decomposition environment main effects (Tables 4, 5, and 6). 

Litter quality had an effect on litter TN.  A significant interaction between litter 

quality and collection date was observed at Okmulgee WMA and Lexington WMA while 

Cherokee WMA was non-significant (Tables 4, 5, and 6).  The medium burn litter at 

Okmulgee WMA had a significantly higher TN than the high burn litter on the first 

collection and a significantly higher TN than the other two litters for the second through 

the fifth collection (Figure 8).  At Lexington WMA, the high burn litter had significantly 

higher TN than the control litter on the fifth collection.  At Cherokee WMA, medium 

burn litter TN had a significant main effect of being lower than the other two litters. 

 Litter C:N showed a lack of response to decomposition environment.  At all three 

WMAs, there were no significant interactions between decomposition environment and 

collection date, in addition to no significant decomposition environment main effects 

(Tables 4, 5, and 6). 
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 Litter quality exhibited several trends for litter C:N.  An interaction between litter 

quality and collection date was significant at only Cherokee WMA and the other two 

WMAs it was non-significant (Tables 4, 5, and 6).  At Cherokee, the medium burn litter 

had significantly higher C:N than the other two litters for the first through third 

collection.  At Okmulgee WMA, the main effect was significant for all litter qualities 

being different from each other in the following order of decreasing C:N: high burn, 

control, medium burn (Figure 10).  At Lexington WMA, there was a significant litter 

quality main effect of the high burn litter C:N being lower than the other two litters.  

 Decomposition environment affected litter lignin:N in only a few cases.  An 

interaction between decomposition environment and collection date was observed only 

at Lexington WMA with the other two WMAs non-significant (Tables 4, 5, and 6).  At 

Lexington WMA, the high burn litter lignin:N was significantly lower than the other two 

litters on the third collection and the high burn litter lignin:N was significantly higher 

than the medium burn litter on the fourth collection (Figure 11).  No significant 

decomposition environment main effects were found at Okmulgee WMA or Cherokee 

WMA. 

Litter quality played a major role in litter lignin:N differences among treatments.  

All three WMAs had a significant interaction between litter quality and collection date 

(Tables 4, 5, and 6).  At Okmulgee WMA, the high burn litter lignin:N was significantly 

higher than the other treatments for the first through fourth collection (Figure 12).  The 

medium burn litter lignin:N was significantly lower than the other treatments for all 
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collections, except for the second collection.  At Cherokee WMA, the medium burn litter 

lignin:N was significantly higher than the other treatments for all collections except the 

fifth collection where it was only significantly higher than the control litter.  At Lexington 

WMA, the control litter lignin:N was significantly higher than the other treatments for 

the second collection and higher than only the high burn litter for the third and fifth 

collections. 

3.5.  Resin Bags 

 Bioavailable N was highly variable within treatment units and few differences 

were observed among treatment units.  At all three WMAs, no significant interactions 

between decomposition environment and collection date were detected for soil 

ammonium as well as no significant decomposition environment main effects (Figure 

13).  For nitrate, Lexington WMA had the only significant interaction between 

decomposition environment and collection date while the other two WMAs were non-

significant (Figure 14).  At Lexington WMA, the medium burn unit had significantly 

higher nitrate than the other treatments on the second collection.  Cherokee WMA had 

a significant main effect with the control unit nitrate higher than the high burn unit.  

Okmulgee WMA had a non-significant decomposition environment main effect. 

3.6.  Post-Burn Experiment 

 Comparing litterbags placed in an unburned unit with the same historical burn 

frequency to those in a recently burned unit at Lexington WMA, no significant 

differences were observed (Table 7).  Mass remaining, TN, C:N, and lignin:N all showed 
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no significant differences between the two treatments.  Soil ammonium was over 6 fold 

greater in the burned unit than the unburned unit.  Soil nitrate was not significantly 

different among the two treatments. 

3.7.  Regression Analysis 

 Results of the linear regressions indicated strong relationships of litter mass 

remaining to litter quality variables.  Mass remaining showed a strong negative relation 

to TN (Figure 15), a strong positive relation to C:N (Figure 16), and a positive relation to 

lignin:N (Figure 17).  Mass remaining was most strongly related to C:N and least to 

lignin:N. 

3.8.  General Trends 

 When litter data was averaged across treatments within WMAs, the results 

yielded interesting comparisons.  Mass remaining was 3% lower at Okmulgee WMA than 

the other two WMAs after 15 months (Table 8).  Initially before litterbag installation, 

Lexington WMA litter had significantly higher TN and significantly lower C:N than the 

other WMAs.  At the end of the study, all three WMAs had converged to very similar 

non-significant values for TN and C:N.   

Across all WMAs, litter TN increased over 60% from an initial content of 0.80% to 

1.29% while litter C:N decreased from 60 to 35 and litter lignin:N decreased from 33 to 

26 (Figures 7-12).  Litter mass loss decreased linearly other than during the period of the 

fourth collection (December-March) when mass loss was flat; this corresponded with 
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the period when temperatures were at their lowest (Figures 4, 5, and 18).  Soil 

ammonium and nitrate spiked during the second collection (June-September) and a 

smaller spike during the fifth collection (March-June) that coincided with the warmer 

periods of the year (Figures 13, 14, and 18).  Despite fairly consistent overall trends in 

ammonium and nitrate, the magnitude over WMAs is quite different.  Lexington WMA 

had a huge spike on the second collection compared to the other two WMAs and 

Okmulgee WMA had much higher nitrate than the other WMAs on the fourth and fifth 

collections. 

 

4. Discussion 

4.1.  Decomposition Environment 

Across all WMAs and all collections, decomposition environment generally had 

no effect on decomposition or litter quality variables.  The absence of a treatment 

environment effect on decomposition can be explained when comparing the treatment 

unit’s canopy cover and basal area in Table 3.  Very few differences exist suggesting that 

the low-intensity and low-severity of these prescribed fires are not modifying the 

structure of the forest.  Therefore, the litter microclimate is similar at all treatment units 

regardless of fire frequency.  Thus, the hypothesis of treatment units becoming more 

open and warmer as fire frequency increases is not supported.   
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The finding of an absence of a decomposition effect by decomposition 

environment was similar to what Hernández and Hobbie (2008) observed in a study 

conducted in Minnesota even though they found differences in the canopy cover along 

a fire frequency gradient.  They speculated the lack of decomposition response to more 

open, higher fire frequency sites was the opposing forces of higher temperature and 

lower moisture in the litter layer that together equaled no net effect.  Another study in 

semi-arid Africa found increasing canopy cover slowed decomposition suggesting 

photodegradation was a major factor in differences observed (Mlambo and Mwenje 

2010).  Conversely, research in British Columbia saw decreased pine litter 

decomposition in areas that were in a clearcut opening (Prescott et al. 2000).  Mixed 

results of previous research demonstrate the multitude of environmental factors 

affecting decomposition and the site specific responses. 

4.2.  Litter Quality 

 Initial litter quality did not show evidence of being affected by increasing fire 

frequency.  A high fire frequency would be expected to show reduced litter TN.  This 

effect was not observed suggesting these low-intensity prescribed fires were not hot 

enough to volatilize measurable amounts of N.  As a result, fire was not the primary 

driver for the differences observed in initial litter quality. 

Decomposition exhibited responses to litter quality though the responses varied 

depending on the WMA.  The high burn unit litter at Okmulgee WMA decomposed the 

slowest while the control unit litter at Lexington WMA decomposed the slowest (Figure 
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5).  These inconsistent trends suggest a factor other than initial litter quality was 

responsible for the differences observed. 

Despite fire not being a clear driver in the rate of decomposition, litter quality 

may explain the differences in rates of decomposition observed at Okmulgee WMA.  The 

high burn unit at Okmulgee WMA decomposed the slowest and also had the lowest 

litter quality over time (Figures 5, 8, 10, and 12).  The linear regressions of mass 

remaining by litter quality variables revealed mass remaining had a strong negative 

relation with TN and a strong positive relation with C:N suggesting that as 

decomposition proceeds litter quality improves and this may have positive implications 

for further decomposition (Figures 15 and 16).   

Pinpointing the litter quality variable most important in the rate of 

decomposition is useful because different drivers are found across different ecosystems.  

Melillo et al. (1982) found lignin:N to be the main driver in decomposition in a Northeast 

hardwood forest.  Another study in Minnesota found that C:N was the primary driver in 

decomposition (Hernández and Hobbie 2008).  In the Missouri Ozarks, research showed 

that lignin:N and TN had the strongest relationship with mass loss (Li et al. 2009).  A 

large synthesis of 110 litter decomposition studies found that N, P, K, Ca, Mg, and C:N 

explained 70.2% of the variation in litter decomposition rates (Zhang et al. 2008).  A 

study in the southeast United States found TN and C:N to be the main drivers in 

decomposition (Silveira et al. 2011).  Clearly, determining a general primary driver for 

rates of decomposition is difficult and each ecosystem has drivers that are unique to its 
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environment.  In our study, the lack of a clear effect of litter quality determining 

decomposition rates underscores the strong likelihood that another mechanism is 

responsible for decomposition rate differences observed. 

4.3. Bioavailable Nitrogen 

 Soil available ammonium and nitrate showed no clear differences among 

treatment units across WMAs.  It was predicted that a lower amount of ammonium and 

nitrate would be observed as fire frequency increased.  Observing no long-term effect 

on bioavailable N further reinforces the implication that fire is not affecting this system 

in any profound way.  This finding also supports the lack of differences observed in the 

initial litter quality; if there are no differences in the soil N between treatments then no 

differences would be expected with tree uptake and subsequently litter N. 

 One resin bag was present at each sample site for a total of four per treatment 

unit; this may have been too few samples to accurately depict the bioavailable N in each 

unit, especially with the high variability among resin bags.  This was further exacerbated 

as some resin bags were unearthed throughout the study, presumably by small 

mammals, and these resin bags were not included in the mean calculations. 

 Other studies have reported mixed results in bioavailable N as a result of fire.  A 

study in Kruger National Park, South Africa reported no change in soil N with varying fire 

frequencies (Coetsee et al. 2010).  Their explanation was the relatively low amount of N 

volatilized in fire was balanced by N fixation and wet deposition resulting in no net long-

term change.  In research conducted at Cedar Creek Long-Term Ecological Research 
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Station in Minnesota, bioavailable N was shown to decrease as fire frequency increased 

(Hernández and Hobbie 2008).  A study in a southwestern Oregon conifer forest 

observed substantial soil N loss during fire and noted that burn severity was strongly 

correlated with the magnitude of N loss (Homann et al. 2011). 

 Despite not finding differences in bioavailable N between treatments, 

differences were observed in the post-burn experiment.  The flush of ammonium in the 

recently burned unit appears to not have an effect on long-term litter quality; therefore, 

more examination is needed to determine the fate of the soil N increase.  Possible 

explanations include, but are not limited to: leaching from the soil, uptake by the 

herbaceous layer or trees, and/or bonding with soil organic matter and clay particles 

rendering the N inaccessible to plants. 

4.4.  Fire’s Impact 

 The fire regime was expected to influence the ecosystem in a similar way that 

Hernández and Hobbie (2008) observed in Minnesota (Figure 1).  Nitrogen volatilizes in 

fire, reducing tree uptake and litter N.  This lower litter quality causes greater 

immobilization that results in less soil N available and more N consumed when a fire 

returns.  This process is a positive feedback loop further intensifying N loss than just N 

volatilization alone.  In our study, none of these processes were observed indicating that 

either fire is not volatilizing measurable amounts of N from this system or that any N 

volatilized is offset by microbial fixation or nitrogen-fixing legumes. 
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Examining the results, it becomes clear that fire does not strongly influence 

decomposition.  Prescribed fires at the three WMAs are conducted under very mild 

weather conditions: moderate temperatures, low wind speed, and moderate relative 

humidity.  As a result of these conditions, fires are of low-intensity and low-severity.  

When fires are of low-intensity the flame temperatures are lower, resulting in less N 

volatilized (Knicker 2007), or in the case of our study, an undetectable amount.  Another 

potential reason N loss might not have been detected is because N volatilization could 

have been offset by microbial N fixation as was speculated in a South African study 

(Coetsee et al. 2010) or by the increased presence of nitrogen-fixing legumes in higher 

fire frequency units as was observed in a prior Cross Timbers study (Burton 2009).  

These low-severity fires may also not reach the temperatures needed to cause mortality 

in trees.  If the fires are not altering tree recruitment rate, then the canopy cover and 

basal area would be expected to remain the same as was observed in Table 3 with 

decomposition consequently unaffected. 

 Fire is often thought of as a homogenous force that moves across the landscape 

unchecked, but in current prescribed burning that is far from the truth.  Fire is 

inherently patchy (Turner 2010), yet in our study the assumption was made that all units 

burned completely and homogenously.  The problem in doing this was some sample 

points that were thought to be a high burn, for example, might have had some fires not 

burn that sample point, in effect, skewing the results.  A higher sampling size might have 

ameliorated this effect. 
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 Another consideration is the length of fire regime.  These WMAs have had a 

prescribed burning regime for 24-29 years.  The study by Hernández and Hobbie (2008) 

at Cedar Creek Long-Term Ecological Research Station observed strong relationships 

among soil N, immobilization rates, and decomposition along an increasing fire gradient.  

The difference between their study and our study is the prescribed burning regime was 

a decade longer at Cedar Creek Long-Term Ecological Research Station.  Perhaps 

prescribed fire has not been present in these Oklahoma WMAs long enough for a 

measurable amount of N to be volatilized from the system to affect processes. 

4.5.  Lexington WMA Land Use History 

Lexington WMA had a few unexpected results: the initial litter N at the high burn 

unit was very high, the control litter decomposed the slowest, and the initial lignin:N 

started out much lower than the subsequent collections.  These might be explained by 

land use history.  Compared to Okmulgee and Cherokee WMAs (old-growth Cross 

Timbers), Lexington WMA has much younger trees and more even-aged stands, 

suggesting relatively recent disturbances (personal observation). 

In the late 1800s, the area where Lexington WMA sits was settled in the 

Oklahoma Land Run.  Cotton was primarily farmed in this region with possible tillage 

and fertilizing effects.  Fertilizer applications could have increased N availability.  Tillage 

could have increased mineralization of N (Lupwayi et al. 2006).  In 1941, 2/3 of the 

current WMA was condemned by the United States War Department for use as a Naval 

Bombing Range during World War II.  This included the high burn unit that had very high 
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initial litter TN values.  In 1949, the majority of the Naval Bombing Range was deeded to 

ODWC for use as a WMA.  The medium burn unit was a ranch that was later acquired in 

the 1960s (Rex Umber, personal communication).  Grazing has been shown to increase 

soil organic matter C:N resulting in an N limited system (Piñeiro et al. 2010).  The control 

unit has always been private land making it difficult to determine land use history, but 

similar land use is likely because of the prevalence of even-aged stands and young trees.   

A report containing an erosion map of Oklahoma showed that Lexington WMA is 

located in the most severely eroded area in the entire state (Oklahoma Conservation 

Commission 2002).  When the topsoil layer is lost, fundamental changes can take place 

with nutrient cycling as well as plant uptake responses.  Recent research found soil 

carbon at 0–20 cm was 40% higher at Okmulgee WMA and 90% higher at Cherokee 

WMA than at Lexington WMA.  The same study found soil nitrogen at 0–20 cm was 50% 

higher at Okmulgee WMA and 80% higher at Cherokee WMA than at Lexington WMA 

(Dustin Logan, personal communication).  If the soils at Lexington WMA were degraded 

by agriculture as the historical record and these data suggest, that may explain the 

seemingly inconsistent results. 

4.6.  Management Implications 

Due to prescribed fire’s lack of effect on the rate of decomposition observed in 

our study, land managers in the Cross Timbers should be able to manipulate fire 

frequency with no effect on decomposition rates, though this statement has a few 

caveats.  The highest burn frequency in all of the WMAs was at Okmulgee WMA where 



28 

 

burns occurred approximately every other year.  An increase in the burn frequency to 

annual burning might begin to alter the rate of decomposition.  The low-intensity and 

low-severity of these fires could also be a factor in the lack of a response.  If land 

managers increased the intensity of prescribed fires through lower moisture fine fuel 

loads and changing the seasonality to growing season burns, decomposition rates could 

greatly differ due to stand modifications as well as increased fire temperatures 

(Twidwell et al. 2013). 

4.7.  Further Research 

 The hypothesis that fire was the mechanism driving changes in decomposition 

was not supported by the results, though fire could be affecting decomposition in an 

unexplored indirect way.  One suggested avenue of further research would be to 

determine the mechanism for differences observed in litter quality decomposition rates.  

Potential variables that could explain differences include abundance of saprophytic 

fungi on litter, differences in initial litter P, and differences in microbial colonization on 

litter.   

Second, exploring the fate of the nitrogen flush observed at Lexington WMA in 

the post-burn experiment would help elucidate nutrient cycling in this ecosystem.  

Possible outcomes for the nitrogen flush include uptake by the herbaceous layer, 

leaching from the system, and/or forming bonds with soil organic matter and clay 

particles becoming inaccessible to plants. 
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A final direction for subsequent research would be examining the responses of 

litter decomposition under a more intense or severe burning regime.  The lack of 

responses observed in our study could be a function of the fires simply not being hot 

enough or frequent enough to elicit a response.  Burning at lower fuel moisture, burning 

in the growing season, or under higher wind speeds could change the decomposition 

environment as well as litter quality resulting in a decomposition rate change. 

4.8.  Conclusion 

Even at 4.6 fires per decade, prescribed fire does not modify the decomposition 

environment or the litter quality enough to affect decomposition in this system.  The 

low-intensity of these fires might not create the heat needed to volatilize measurable 

amounts of nitrogen or modify the structure of the forest.  The effect of litter quality on 

decomposition rates could be explained by some other unexplored variable such as 

saprophytic fungi, litter P, or soil microbial communities.
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TABLES 

 

Table 1.  Burn history of selected units in three wildlife management areas. 

Unit Total Fires Fires Per Decade Years Since Last Fire 

Okmulgee WMA 

High 11 4.6 1 

Medium 5 2.1 1 

Control/no burn 0 0 24+ 

Cherokee WMA 

High 8 2.8 1 

Medium 5 1.7 3 

Control/no burn 0 0 29+ 

Lexington WMA 

High 7 2.7 4 

Medium (post-burn)
1
 5 1.9 4 

Medium (pre-burn)
2
 4 1.5 4 

Control/no burn 0 0 26+ 
1
 The litterbags from Medium (pre-burn) were relocated to Medium (post-burn) for the final collection 

due to a prescribed burn. 
2 

Burn history shown does not reflect the burn that occurred near the end of the experiment. 
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Table 2.  Initial litter quality of homogenized units prior to installation of litterbags.  

Values shown are means ± 1 standard error.  Means followed by different letters in 

columns are significantly different (P<0.05, LSD) for each respective wildlife 

management area. 

Unit TN (%) C:N Lignin:N 

Okmulgee WMA 

High 0.78 ± 0.04 61.06 ± 3.57 34.40 ± 2.43 

Medium 0.78 ± 0.05 60.29 ± 3.63 30.24 ± 1.79 

Control 0.76 ± 0.03 62.64 ± 2.74 38.28 ± 4.01  

Cherokee WMA 

High 0.79 ± 0.03 a 60.34 ± 2.35 b  38.63 ± 2.02 a 

Medium 0.70 ± 0.02 b 67.35 ± 1.27 a 41.17 ± 1.20 a 

Control 0.83 ± 0.02 a 57.45 ± 1.85 b 31.71 ± 0.82 b 

Lexington WMA 

High 0.94 ± 0.04 a 50.93 ± 1.88 b 24.13 ± 1.41 b 

Medium 0.78 ± 0.01 b 60.64 ± 0.96 a 27.80 ± 0.76 b 

Control 0.79 ± 0.03 b 59.68 ± 1.55 a 33.75 ± 1.96 a 
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Table 3.  Decomposition environment characteristics of units.  Values shown are 

means ± 1 standard error.  Means followed by different letters in columns are 

significantly different (P<0.05, LSD) for each respective wildlife management area. 

Unit Canopy Cover (%) Basal Area (m
2
/ha) 

Okmulgee WMA 

High 81.8 ± 1.3 29.3 ± 2.7 

Medium 87.2 ± 2.6 30.5 ± 3.8 

Control 85.6 ± 1.3 25.9 ± 0.6 

Cherokee WMA 

High 86.4 ± 2.1 ab 29.9 ± 1.9 

Medium 84.5 ± 1.0 b 21.3 ± 3.4 

Control 90.6 ± 1.2 a 28.8 ± 4.5 

Lexington WMA 

High 83.7 ± 3.0 a 25.9 ± 2.2 ab 

Medium (pre-burn) 84.1 ± 1.3 a 29.3 ± 0.6 a 

Medium (post-burn) 75.8 ± 2.7 b 21.3 ± 2.0 b 

Control 87.5 ± 0.9 a 27.6 ± 2.3 a 
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Table 4.  Results of litterbag split-split plot analysis for Okmulgee WMA.  

DE=decomposition environment, LQ=litter quality, CD=collection date 

Mass Remaining TN C:N Lignin:N 

Source of Variation DF P-value P-value P-value P-value 

DE 2 0.1282 0.6246 0.1643 0.2720 

LQ 2 <0.0001 <0.0001 <0.0001 <0.0001 

CD 5 <0.0001 <0.0001 <0.0001 <0.0001 

DE*LQ 4 0.4150 0.9378 0.9715 0.9998 

DE*CD 10 0.0004 0.5616 0.8525 0.3330 

LQ*CD 10 0.0265 0.0158 0.0729 0.0069 

DE*LQ*CD 20 0.9894 0.9004 0.9842 0.9531 
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Table 5.  Results of litterbag split-split plot analysis for Cherokee WMA.  

DE=decomposition environment, LQ=litter quality, CD=collection date 

Mass Remaining TN C:N Lignin:N 

Source of Variation DF P-value P-value P-value P-value 

DE 2 0.1302 0.0670 0.1050 0.2238 

LQ 2 0.2136 <0.0001 <0.0001 <0.0001 

CD 5 <0.0001 <0.0001 <0.0001 <0.0001 

DE*LQ 4 0.4248 0.1849 0.1743 0.2635 

DE*CD 10 0.0594 0.3444 0.3944 0.2011 

LQ*CD 10 0.5369 0.8283 0.0266 <0.0001 

DE*LQ*CD 20 0.8423 0.5551 0.7820 0.9379 
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Table 6.  Results of litterbag split-split plot analysis for Lexington WMA.  

DE=decomposition environment, LQ=litter quality, CD=collection date 

Mass Remaining TN C:N Lignin:N 

Source of Variation DF P-value P-value P-value P-value 

DE 2 0.8639 0.8956 0.8868 0.8120 

LQ 2 0.0002 0.0159 0.0157 <0.0001 

CD 5 <0.0001 <0.0001 <0.0001 <0.0001 

DE*LQ 4 0.2011 0.5766 0.6473 0.2195 

DE*CD 10 0.7779 0.4109 0.2567 0.0182 

LQ*CD 10 0.0170 0.0102 <0.0001 0.0023 

DE*LQ*CD 20 0.0729 0.9610 0.8968 0.7702 
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Table 7.  Litterbag and resin bag comparison of burned and unburned units at 

Lexington WMA during final three month period.  Values shown are means ± 1 

standard error.  Means followed by different letters in columns are significantly 

different (P<0.05, LSD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit 

Mass 

Remaining 

(%)  TN (%) C:N Lignin:N 

Ammonium 

(ppm) 

Nitrate 

(ppm) 

Burned 72.36 ± 0.90 1.29 ± 0.02 33.70 ± 0.65 25.75 ± 0.48 16.57 ± 4.37 a 37.27 ± 22.20 

Unburned 71.46 ± 1.07 1.27 ± 0.03 35.22 ± 0.74 25.24 ± 0.69 2.58 ± 0.46 b 6.41 ± 1.19 
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 Table 8.  Litter mass remaining and initial/final litter quality variables averaged over 

all treatment units for each wildlife management area.  Values shown are means ± 1 

standard error.  Means followed by different letters in columns are significantly 

different (P<0.05, LSD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mass 

Remaining (%) Initial TN (%) Final TN (%) Initial C:N Final C:N 

Okmulgee WMA 69.93 ± 0.69 b 0.77 ± 0.01 b 1.26 ± 0.03 61.33 ± 0.99 a 35.53 ± 0.75 

Cherokee WMA 73.37 ± 0.68 a 0.78 ± 0.01 b 1.30 ± 0.02 61.72 ± 0.89 a 35.09 ± 0.51 

Lexington WMA 72.29 ± 0.97 a 0.84 ± 0.02 a 1.30 ± 0.02 57.08 ± 0.86 b 34.53 ± 0.53 
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FIGURES 

 

Figure 1.  Diagram of a positive feedback loop for nitrogen that demonstrates through 

the use of fire, nitrogen reduction is reinforced and becomes less bioavailable to the 

system.  Adapted from Hernández and Hobbie 2008. 
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Figure 2.  Map of Oklahoma Cross Timbers showing locations of three study areas.
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Figure 3.  Diagram of litterbag and resin bag site establishment.  High, Medium, and 

Control indicate the litter origin.  Numbered columns denote randomly selected 

collections. 
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Figure 4.  Litter mass remaining by decomposition environment over five collections at 

three wildlife management areas.  Values shown are means ± 1 standard error.   
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Figure 5.  Litter mass remaining by litter quality over five collections at three wildlife 

management areas.  Values shown are means ± 1 standard error. 
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Figure 6.  Relation of litter mass remaining after 15 months to percentage blackjack 

oak in litterbags at three wildlife management areas.  Regression line not shown due 

to non-significance. 
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Figure 7.  Litter total N by decomposition environment over five collections at three 

wildlife management areas.  Values shown are means ± 1 standard error.   
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Figure 8.  Litter total N by litter quality over five collections at three wildlife 

management areas.  Values shown are means ± 1 standard error.   
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Figure 9.  Litter C:N by decomposition environment over five collections at three 

wildlife management areas.  Values shown are means ± 1 standard error.   
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Figure 10.  Litter C:N by litter quality over five collections at three wildlife 

management areas.  Values shown are means ± 1 standard error.   
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Figure 11.  Litter lignin:N by decomposition environment over five collections at three 

wildlife management areas.  Values shown are means ± 1 standard error.   
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Figure 12.  Litter lignin:N by litter quality over five collections at three wildlife 

management areas.  Values shown are means ± 1 standard error.  
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Figure 13.  Soil ammonium over five collections at three wildlife management areas.  

Values shown are means ± 1 standard error.  Note y-axes are different. 
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Figure 14.  Soil nitrate over five collections at three wildlife management areas.  

Values shown are means ± 1 standard error.  Note y-axes are different. 
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Figure 15.  Relation of litter mass remaining to total N at three wildlife management 

areas. 
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Figure 16.  Relation of litter mass remaining to C:N at three wildlife management 

areas. 
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Figure 17.  Relation of litter mass remaining to lignin:N at three wildlife management 

areas. 
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Figure 18.  Daily temperature and monthly precipitation over study duration at three 

wildlife management areas.  Line graph is temperature and bar graph is precipitation.  

Data obtained from the nearest Oklahoma Mesonet station for each wildlife 

management area. 
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Figure 19.  Photo point of the control unit in Cherokee Wildlife Management Area 

throughout four different seasons.  Clockwise from upper left: spring, summer, winter, 

and fall.     
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