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ABSTRACT 

 
Futures prices when combined with a basis forecast provide a reliable way to 

forecast cash prices. The most popular method of forecasting basis is historical moving 

averages. Given the recent failure of longer moving averages proposed by previous 

studies, this research reassesses past recommendations about the best length of moving 

average to use in forecasting basis. This research compares practical preharvest and 

storage period basis forecasts for hard wheat, soft wheat, corn and soybeans to identify 

the optimal amount of historical information to include in moving average forecasts. 

Only with preharvest hard wheat forecasts are the best moving averages longer than 3 

years. The structural changes over the period studied lead to the recommendation of 

shorter moving averages than have been found previously. The differences in forecast 

accuracy among the different moving averages are small and in most cases the 

differences are not statistically significant. The recommendation is to use longer moving 

averages during time periods (or at locations) when there have been no structural changes 

and use last year’s basis when it appears that a structural change has occurred. 

Keywords: Basis forecast, grain, Law of One Price, moving averages, structural change 
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I.  

CHAPTER I 

INTRODUCTION 

Background 

 Creating reliable preharvest price expectations and making postharvest storage 

decisions depend heavily on accurate basis forecasts. Without accurate forecasts of basis 

levels “it is impossible to make fully informed decisions about…whether to accept or 

reject a given price; (and) whether and when to store your crop” (CBT, 1990, p.23). 

The most popular method of forecasting the basis is historical moving averages. 

The attractiveness of these models is their ease of application. Access to local prices is 

cheap and readily available, allowing basis values to be localized for specific markets. 

Studies have applied forecasts of various lengths in order to determine the optimal length 

of years to include. These models generally conclude that longer averages ranging from 3 

to 7 years are optimal (Dhuyvetter and Kastens, 1998; Sanders and Manfredo, 2006). The 

idea is that these longer moving averages can smooth out temporary deviations in 

markets. 

In stable market conditions, the longer historical average forecasts proposed by 

previous studies should form the most accurate basis expectations. These methods have 

failed recently as basis values have deviated greatly from previous levels, resulting in 

poor forecasts based on historical basis. Given this recent failure, there is a need to 
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reassess past recommendations about the best length of moving average to use in 

forecasting the basis.  

 
Objective 

The specific objective of this study is to determine which length of moving average has 

been most accurate in forecasting basis in terms of mean absolute error.  

 
Theoretical Model 

One of the primary reasons futures markets were created was to provide market 

participants the opportunity to exchange cash price risk for more manageable basis risk. 

Basis risk is preferred to price risk because price levels are more variable than basis 

levels. This price variability can be shown mathematically as 

௣௥௜௖௘ߪ  (1)
ଶ ൐ ௕௔௦௜௦ߪ

ଶ , 

where ߪ௣௥௜௖௘
ଶ  is the variance of the cash market price and ߪ௕௔௦௜௦

ଶ  is the variance of the 

basis. Basis forecasting seeks to reduce ߪ௕௔௦௜௦
ଶ  by reducing forecast error (ߝ௧): 

௧ߝ (2) ൌ ௧ݏ݅ݏܽܤ െ  ௧ݏ݅ݏ̂ܽܤ

where  ݏ݅ݏܽܤ௧ is the actual basis at time ݐ, and ݏ݅ݏ̂ܽܤ௧ is basis forecast, and 

,௧~ܰሺ0ߝ ௕௔௦௜௦ߪ
ଶ  ) assuming unbiased forecasts.  

The most popular practical approach to forecasting basis is historical moving 

averages (FarmDoc, AgManager). Moving average models use the simple average of the 

previous ܰ years:  

௧ሺܰሻݏ݅ݏ̂ܽܤ (3) ൌ
1
ܰ

෍ ௧ି௜ݏ݅ݏܽܤ

ே

௜ୀଵ

. 
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 By substituting (3) into (2) we can define how the optimal moving average length 

is selected to minimize basis forecast error 

(4) min
ே

ሺ݁̂௧ܧ
ଶሻ ൌ min

ே
௧ݏ݅ݏܽܤሺܧ െ

1
ܰ

෍ ௧ି௜ݏ݅ݏܽܤ

ே

௜ୀଵ

ሻ . 

. 
Rather than take the partial derivative of (4) with respect to ܰ, this equation must be 

solved through enumeration due to the choice variable ܰ being discrete. Once these 

individual forecasts are aggregated, the optimal forecast minimizes the error for the entire 

sample,  ܶ by 

(5)  min
ே

෍ሺ

்

௧ୀଵ

௧ݏ݅ݏܽܤ െ
1
ܰ

෍ ௧ି௜ݏ݅ݏܽܤ

ே

௜ୀଵ

ሻ 

 

The variance minimizing moving average length depends on the underlying 

stochastic process. Under normality and homoskedasticity the stochastic process for basis 

is  

,௧ߤ௧ ~ ܰሺݏ݅ݏܽܤ (6)  ଶሻߪ

where ߤ௧ is the time varying mean and ߪଶ is variance. The optimal moving average 

forecast length depends on ߤ௧. 

Without structural change in the mean basis is ߤ௧ ൌ  and the longest moving ,ߤ

average (largest  ܰ ) would result in the minimum variance forecast. Basis forecast error 

variance in this case is 

௙௢௥௘௖௔௦௧ߪ (7)
ଶ ൌ ఙమ

ே
൅  . ଶߪ

These two sources of error originate in equations (5) and (6), in the variance of the 

moving average forecast, and in the current basis variance. So long as ߤ௧ ൌ  then as ,ߤ
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ܰ ՜ ∞, ఙమ

ே
՜ 0, and the primary source of basis forecast error is ߪଶ. Therefore markets 

that are not prone to structural changes would find longer moving average forecasts 

optimal. 

 Structural changes within grain markets can change the dynamics of price 

relationships, and the resulting basis values. An extreme example of a stochastic process 

that could explain changes in markets is a random walk: 

௧ߤ (8) ൌ  . ௧ିଵݏ݅ݏܽܤ

An example of a random walk process would be a permanent increase in transportation 

costs, which would widen the basis.  With a random walk, as (8) shows, the optimal 

forecast is with N=1.  

A more general stochastic process that includes both the constant mean and 

random walk models as special cases is a variation in a normal jump process. Diffusion-

jump processes that combine a normal and a Poisson jump process are popular processes 

for modeling stochastic volatility in equity, stock and options markets (Anderson et al. 

2002; Chernov et al. 2003; Bates 1996). With this model, the mean is constant and then 

occasionally changes as  

௧ߤ (9) ൌ ௧ିଵߤ ൅ ௧ܬ ௧ܲ 

where ܬ௧~ܰሺߠ,  ଶሻ and ௧ܲ is the jump process that is often assumed to follow a Poissonߜ

distribution. The difficulty in measuring this process is that the jump parameters and 

probability of the jumps occurring varies over time. Equation (9) could result in a random 

walk if  ௧ܲ ൌ 1 and ߜଶ ൌ 0 in (6), and it gives a constant mean if ௧ܲ ൌ 0. Ethanol plants 

are a major source of new demand in corn markets and cause the basis levels near the 

plant to strengthen. The structural change reflected by the jump affects prices initially, 
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making the previous year’s basis the optimal predictor for the year following the jump. 

The size of the shock in basis drastically changes the current basis levels so that all data 

before the change no longer reflect the current market. As the supply feeds the plant and 

markets adjust, bids will gradually decrease and the effects from the initial jump will 

result in a new mean and longer moving averages will then become optimal.  

 Mean-reverting models can also be used to model changes from historical basis 

levels (Jiang and Hayenga 1998; Sanders and Manfredo 2006). The basic mean-reverting 

model is the autoregressive moving average, or ARMAሺ݌,   ,ሻݍ

௧ݏ݅ݏܽܤ  (10) ൌ ߙ ൅ ௧ߝ ൅ ෍ ௧ି௜ݏ݅ݏܽܤ௜׎

௣

௜ୀଵ

൅ ෍ ௧ି௜ߝ௜ߠ

௤

௜ୀଵ

 

 

where ߙ is an intercept,  ׎ଵ …  is the number of ݌ ,௣ are the autoregressive parameters׎

autoregressive terms, ݍ is the number of moving average terms, ߠଵ ڮ  ௤ are the movingߠ

average parameters, and ߝ௧~ܰሺ0, ௜׎ଶሻ. If ሺߪ ൌ 1, ݌ ൌ 1 ሻ and ሺ ݍ ൌ 0ሻ then it is a 

random walk, and if ሺ׎௜ ൌ 1 ⁄݌ ሻ and ( ݍ ൌ 0ሻ then it is a simple moving average.  

If the ARMA model in (10) is stationary, then the basis will converge toward its 

long-run mean of ߙ/ ∑ ߶௜
௣
௜ୀଵ . If the ARMA model is nonstationary (has a unit root) then 

the long-run mean will change over time. While Tomek and Wang (2007) argue that cash 

prices do not have unit roots, it is hard to argue that the mean of the basis is constant over 

time. 

If plenty of observations are available, estimating an ARMA model should 

outperform the simple moving average of basis. But time series are often too short or 

structural changes are too frequent to estimate an ARMA model. Even if ARMA models 
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could provide slightly more accurate forecasts, ARMA models may still not be preferred 

because of the difficulty in estimating and explaining them to producers.  

ARMA ሺ݌,  ሻ models, and another generalization, a seasonal autoregressiveݍ

integrated moving average or SARIMAሺ݌, ݀,  ሻ, have been used to forecast the basisݍ

(Sanders and Manfredo, 2006; Jiang and Hayenga, 1998). These studies found little 

improvement in forecast accuracy when compared to the moving average models. In 

order to identify the correct level of ׎௜, the appropriate covariance function of the process 

must be identified by the partial autocorrelation and autocorrelation plots. This 

econometric technique is too complicated for producers to understand, and is not 

modeled in this study for that reason. Instead, this research focuses on simple moving 

average forecasts, which are ARMA ሺ݌, 0ሻ processes where ׎௜ ൌ 1 ⁄݌  and ߠ௜ ൌ 0.   

  The optimal length of moving average to forecast the basis is expected to depend 

on the size and frequency of structural changes. When conditions are static, longer 

moving averages are optimal. However, after a structural change occurs, the optimal 

length of a moving average is one.  
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II.  

CHAPTER II 

THE THEORY OF THE COST OF STORAGE 

The first attempts to explain the difference between cash and futures market 

prices focused on the components of the futures market price not contained in the cash 

markets. In his explanation of inverse carrying charges Vance (1946) states that cash and 

futures prices, though related, are not equivalents. Although market prices are primarily 

formed in futures markets, cash prices differ, even at delivery, from these levels. This is 

the earliest explanation of a lack of convergence in delivery markets, due to the form 

differences in what the two prices reflect.  

 A narrow interpretation of this divergence in market prices by Working (1948) 

disagrees with Vance’s position that price differences arise from differences in quality or 

location of the commodity or due to uncertainty as to time of delivery. Working believes 

that the true carrying charge reflects the difference between identical commodities, at the 

same location, separated only by differences in time of delivery. However, since the 

quality quoted in most cash wheat contracts exceeds those actually delivered on the 

futures contract, the basis usually reflects both time and quality differences. Since 

Working believes the true carrying charge does not include time and quality differences, 

these two components are in addition to the basis. Working believes that efficient 

arbitrage between cash and futures markets merge the two markets into one. He admits 

that while the two markets may differ due the differing expectations of traders in each 
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market, the practice of basing cash quotations through the basis relationship of the futures 

markets makes the two inseparable. To treat the two markets as separate, according to 

Working, is to incorrectly imply a level of independence that does not actually exist. 

 Another difference in form between cash and futures proposed by Keynes in his 

“Treatise on Money” explains why negative carrying charges in cash and futures markets 

might occur through downward biased futures prices. If futures are indeed downward 

biased, then cash prices exceed the futures price by the risk premium paid by hedgers to 

speculators. This premium is paid by risk-averse hedgers, who participate in futures 

markets to transfer risk. If this is the case, then hedgers sell contracts below the expected 

futures price, and create a downward bias in the price levels. Since uncertainty is a 

decreasing function of the time to contract maturity, the risk premium is a form 

difference that diminishes with time.  

 Later tests of futures price bias and the existence of risk premiums met with 

mixed results. Kolb (1992) identified risk premia in livestock and lumber markets, but 

not in many other markets, while Telser (1958, 1960) found no risk premium in wheat 

and cotton markets. Cootner (1960a, 1960b) used the same data as Telser and found that 

risk premia did exist once the data were divided into pre- and postharvest months. The 

mixed results of these studies show how differences in data and model specification can 

lead to conflicting conclusions. 

Keynes’ explanation for the existence of a risk premium relies on the hedger’s 

motivation to participate in futures markets to transfer their price risk. Unlike Keynes, 

Working believes that hedgers enter futures markets not solely to transfer risk, but to 

profit from changes in the relative cash and futures prices. Working argues that a hedge is 
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arbitrage, through a double transaction in the futures market based on the relation of the 

cash and futures prices (1948). The effectiveness of the transaction is determined 

primarily by the first contract, along with the price difference between the first and 

second contracts (1953). This price difference, along with the initial futures price and the 

final cash price gives the final return from the hedged transaction. Working (1953) 

identifies four reasons for hedging in futures markets: “(1) (to) facilitate buying and 

selling decisions, (2) (to) give greater freedom for business action, (3) (to) give a reliable 

basis for conducting storage of commodity surpluses, and (4) (to) reduce business risk.” 

Although reducing price risk may be an effect of these actions, it is not a primary 

incentive to hedging.   

Working (1949, 1953) does not include a risk premium in his carrying cost, but 

instead argues that basis reflects net carrying cost (including storage costs, insurance, 

opportunity costs, and a convenience yield). The physical cost of storage, insuring the 

grain and the opportunity cost are accepted components of the basis, measured by the 

quotations for commercial storage, insurance and short term interest rates, respectively. 

The final component of Working’s price of storage is Kaldor’s (1939) “convenience 

yield.” To Working, the value of the convenience yield helps explain why stockholders 

hold surplus inventories during times of backwardation, thus relieving the constraints of 

Keynes’ theory described by the risk premium. Rather than having to pay speculators to 

take on the price risk, hedgers may hold their surplus stocks beyond harvest in order to 

gain a return from holding stocks. This stock holding process is important in allocating 

inventories over time, and helps ensure that processors will have raw inputs available 

throughout the year.  
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Brennan (1958) develops the convenience yield as a necessary business cost 

incurred by producers, merchandisers and processors who store inventory in support of 

their primary business. These participants can remove stocks from storage in order to 

meet sudden and unexpected increases in demand resulting from day-to-day fluctuations 

in the market. Thus, the convenience yield lowers the cost of keeping regular customers 

satisfied and provides the advantage of capturing rising demand and prices without 

drastically changing production schedules.  

The presence of risk premia and convenience yields in futures prices are two 

conflicting components used to explain price spreads below the full cost of carry. 

Empirical work has shown that both of these proposed components of the futures price 

are used to explain basis levels below the full cost of storage (Working, 1953; Cootner, 

1960a). Each theory supports a difference in form that exists in the basis to explain the 

difference between empirical findings and the full carry of the market.  

 More recent explanations of the “storage at a loss phenomenon” cite 

mismeasurement as the source of storage at a loss, not a difference between empirical 

results and studies. Wright and Williams (1989) account for spatial and grade differences 

of stocks in the measurement of their supply-of-storage curve. Their results support the 

ability of greater precision in defining relevant prices and stocks to reduce the occurrence 

of holding stocks under backwardation.  By studying locations within a spatially 

dispersed market, Benirschka and Binkley (1995) show that optimal storage for a firm 

depend upon the site’s distance from the terminal market. Since transportation costs 

lower the realized price as distance increases from the terminal market, firms farther from 

the market experience lower opportunity costs and less pressure to liquidate stocks. By 
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discouraging storage closer to the terminal markets, through higher opportunity costs, 

markets efficiently supply stocks from storage. Instead of incurring storage at a loss, the 

basis efficiently allocates storage and marketing over space and time. Wright and 

Williams (1989) and Benirschka and Binkley (1995) show that, when modeled with 

disaggregate data, the storage at a loss paradox disappears. Klumpp, Brorsen, and 

Anderson (2007) using local prices, however, find that storage at a loss does occur and so 

the mismeasurement hypothesis is not sufficient to explain the occurrence of holding 

stocks at returns below full carry. 

 
Explanatory Basis Models 

Several variables have been used to explain the basis. Most of these variables correspond 

to differences in time, form, and space, but the theoretical basis for some of these 

variables is not as clear. Differences in form are explained through components of the 

futures price not reflected in the cash market price. Cost of storage and transportation 

measures are accepted components of the basis from literature that explain the 

transformation of prices over time and space, but the theoretical support for supply and 

demand variables used to explain the basis over space is not as clear. 

 Naik and Leuthold (1991) empirically examined differences in form in the corn 

basis using components of cost of storage theory apart from storage costs. Evidence of a 

risk premium, a speculative component, and an expected basis level at maturity is tested 

on the underlying assumption of constant storage costs. According to the authors, if the 

absolute value of the correlation coefficient between cash and futures prices is one during 

maturity then no risk premium exists. The presence of a speculative component in the 
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maturity basis is supported when, by regressing the cash price on the futures price during 

the maturity month, the resulting coefficient is 1. The third component, the expected basis 

level at maturity, was regressed using lagged basis, cash prices, lag export, and contract 

dummy variables. These three components of the basis are used to explain the basis apart 

from the physical storage costs, opportunity costs, and convenience yield. 

 Seasonality in the basis has been identified throughout the explanatory literature 

(Martin, Groenewegen, and Pigeon, 1980; Jiang and Hayenga, 1997). Since this 

seasonality has identified certain supply and demand variables as only being significant 

during certain periods, dummy variables have been used to indicate different periods 

within the marketing year (Martin et al., 1980; Jiang and Hayenga, 1997; Dykema, Klein, 

and Taylor, 2002). Monthly dummy variables (Martin, Groenewegen, and Pigeon, 1980), 

futures contract maturity variables (Jiang and Hayenga, 1997), and quarterly dummy 

variables (Dykema, Klein, and Taylor, 20002) are included in explanatory models. 

Spatial differences are explained in different ways by explanatory models. Martin, 

Groenewegen, and Pigeon (1980) subtract transportation costs, tariffs, and loading fees 

from their explanatory model before estimation. Spatial differences between the various 

markets can also be measured in the model using barge rates (Jiang and Hayenga, 1997) 

and a seasonally adjusted producer price index for intermediate energy has also been used 

as a proxy for transportation costs (Dykema, Klein, and Taylor, 20002).  

Differences in space are also measured using supply and demand variables at 

local markets. Supply variables for markets include crop production levels, a dummy 

variable for the presence of loan deficiency payments (LDP), the ratio of Eastern 

Canadian corn production to consumption, and Western feed grain availability (Dykema, 
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Klein, and Taylor, 2002; Martin, Groenewegen, and Pigeon, 1980; Jiang and Hayenga, 

1997). Soybean crushing levels, animal units consuming grain (corn), corn usage 

estimates, and export volumes were all used as demand variables to identify the 

differences in markets (Jiang and Hayenga, 1997, Dykema, Klein, and Taylor, 2002). 

These supply and demand variables represent proxy variables used to identify the factors 

that constitute the basis at a particular location. 

Various attempts to explain the basis have identified several variables used to 

explain the basis. A risk premium and a speculative component existed in just over 50 

percent of corn contracts, and lagged variables explained 49-63 percent of the maturity 

basis (Naik and Leuthold, 1991). By removing the spatial aspects of the basis, and 

studying only nearby futures prices for each month of the year, Martin, Groenewegen, 

and Pigeon (1980) were able to explain 66-82 percent of the basis residual through 

variables that reflect differences in form between Chicago futures markets and the cash 

prices at Chatham, Ontario.  All three aspects of the Law of One Price are used to explain 

50 to 80 percent of the corn and soybean basis (Jiang and Hayenga, 1997). The futures 

price, local supply and demand variables, the dummy variable to account for LDP, and 

seasonal dummies explained 75.7 percent of the South Dakota corn basis (Dykema, 

Klein, and Taylor, 2002).    

From these explanatory models, we can see how a wide variety of variables are 

used to explain the basis. Some of these variables lacked any clear theoretical basis, but 

correspond to differences in the cash and futures price over time, form, and space. All of 

these variables correspond to aspects of the Law of One Price, and explaining the basis 

through time, form, and space supports these variables in accepted theory. Structural 
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changes in grain markets affect the impact of these variables on the basis. These changes 

can be explained when they occur by the Law of One Price through changes in terms of 

time, form, or space.    

 
Basis Forecasting Studies 

 Historical moving average models are the most popular method of forecasting the 

basis. The attractiveness of these models lies in their simplicity. No advanced modeling 

or econometric techniques are necessary, only historical basis values. Jiang and Hayenga 

(1997) compared more advanced time series techniques against the simple 3-year moving 

average. Although the advanced techniques were more accurate in most cases, the simple 

moving average was optimal for 51 percent of corn contracts, and 46 percent of the 

soybean models studied. These findings support the use of historical average forecasts in 

producing basis expectations. 

Several studies have applied moving averages of various lengths to identify the 

most accurate method of forming basis expectations. Hauser et al. (1990) compared 

several naïve models in forming their soybean basis expectations for ten Illinois 

elevators. Models included: expected basis is current basis, expected basis is previous 

year’s expiration basis, and the expected basis is the average of the previous 3 years’ 

expiration basis. Optimal forecast methods differed over periods, but these simple models 

provided reliable forecasts.  

Dhuyvetter and Kastens (1998) forecast nearby basis for wheat, corn, soybeans 

and milo for multiple Kansas locations. Some models included 1-7 years in the historical 

average, and some incorporated futures price spreads and a 3-year average with the 
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current basis deviation from the 3-year average. Sanders and Manfredo (2006) tested 

models of varying complexity in forecasting basis within the soybean complex in Central 

Illinois. A 5-year moving average, previous year’s basis, and the expected nearby basis is 

the ending basis models are compared against more advanced times series methods. 

Taylor, Dhuyvetter, and Kastens (2004) revisited Dhuyvetter and Kastens (1998), and 

included models to determine the optimal amount (weight) of current market information, 

i.e. the current basis deviation from the moving average, needed to improve forecast 

accuracy.  

Forecast horizon is another important determinant of forecast accuracy. 

Dhuyvetter and Kastens (1998) forecast basis over 4 week increments from 4 weeks to 32 

weeks before contract expiration, and the results indicated that the horizon to expiration 

dictated the optimal forecast method. Over the shorter horizons, models that included 

current market information outperformed historical average methods, but longer term 

forecasts did not benefit from the additional information. Taylor, Dhuyvetter, and 

Kastens (2004) forecast the harvest basis in 4 week increments from 4 to 32 weeks prior 

to harvest, and the nearby basis 24 weeks after harvest in 4 week increments up to 20 

weeks prior to expiration. The benefit of the additional information varied within crops 

and over periods. When the additional current market information increased accuracy, the 

optimal amount to include increased as the forecast length shortened. The results of these 

studies show the influence of uncertainty over time on forecast accuracy. However, a lack 

of any clear pattern over time indicates that time is not the only determinant of optimal 

forecasts methods. 
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Ward and Dasse (1977) have shown that different factors determine the basis at 

delivery and nondelivery locations. If the basis is effective in pricing at nondelivery 

points, it should reflect the value of the commodity at the local market (Martin, 

Groenewegen, and Pigeon, 1980). Forecasting models study the impact of spatial 

differences on the basis over different locations. To better represent the U.S. corn and 

soybean markets, Jiang and Hayenga (1997) forecast the basis at both delivery and 

nondelivery locations. Spatially dispersed locations allow Dhuyvetter and Kastens (1998) 

and Taylor, Dhuyvetter, and Kastens (2004) to study delivery and nondelivery locations 

within Kansas. By including multiple locations in each study, these models can determine 

patterns in the accuracy of basis forecasting over separated markets. 

Practical forecasting approaches to forecasting the basis use current market 

information to identify any additional accuracy through differences in basis form. Current 

basis deviations from historical levels are used to determine whether the current basis 

reflects any differences from historical levels (Dhuyvetter and Kastens, 1998; Taylor, 

Dhuyvetter and Kastens, 2004). If the difference in the current basis from the historical 

level for a particular location can increase forecast accuracy, then what the basis reflects 

has changed and the models can benefit from the additional market information. 

Table II-1 lists the results from these forecasting studies. These results do not 

provide a clear pattern in what forecast performs the best. From the table we can see that 

practical forecasts perform comparably to more complex forecasts. The optimal amount 

of historical data included in the forecasts does not follow any rule of thumb. And the 

inclusion of current information is shown to increase forecast accuracy over short 

horizons, but its effectiveness diminishes greatly with time. No clear patterns in the 
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amount nor kind of current information to consistently improve basis forecasts exists. 

These inconsistent findings reveal that no clear patterns exist in forming optimal 

forecasts.  
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Table II-1. Results from Previous Basis Forecasting Studies  
Study Optimal Forecasts Conclusions 

“Forecasting Crop Basis: Practical 
Alternatives” -Dhuyvetter and 
Kastens (1997) 

 4-year moving average for wheat. 
 7-year moving average for corn. 
 7-year moving average for soybeans. 
 5-year moving average for milo. 

Futures price spreads and current nearby basis 
increased accuracy, but futures price spreads were 
best. The benefit from incorporating current 
market information diminished beyond 4-12 
weeks.  

“Incorporating Current Information 
into Historical-Average-Based 
Forecasts to Improve Crop Price 
Basis Forecasts” – Taylor, 
Dhuyvetter, and Kastens (2004) 

 3-year moving average for wheat. 
 2-year moving average for corn. 
 3-year moving average for soybeans. 
 2-year moving average for milo. 

Futures price spreads and current basis deviations 
from historical levels helpful in post-harvest and 
harvest (only 4 weeks prior to harvest). As the 
post harvest horizon approached, the optimal 
amount of current market information increased. 

“An Analysis of Anticipatory Short 
Hedging Using Predicted Harvest 
Basis” - Kenyon and Kingsley (1980) 

 Regression equation using initial local 
cash and Chicago futures market 
prices, the Chicago cash price at 
planting, and the residual of open 
interest.  

The regression estimates predicted 73-81% of the 
change in corn basis, and 95%-97% of the change 
in soybean basis as harvest approached using 
initial basis and the difference between actual and 
predicted open interest. 

“Basis Expectations and Soybean 
Hedging Effective” – Hauser, Garcia, 
and Tumblin (1990) 

 1 or 3-year historical basis during 
preharvest. 

 Futures price spreads after the harvest. 

Forecasts that include the implied return to 
storage outperform historical averages in 2 of the 
3 contract periods. Historical average models 
perform comparably to models incorporating 
current market information. 

“Corn and Soybean Basis Behavior 
and Forecasting: Fundamental and 
Alternative Approaches” - Jiang and 
Hayenga (1998) 

 3-year moving average plus current 
market information best for corn. 

 Seasonal ARIMA best for soybeans.  

Although the 3-year moving average performs 
relatively well, it is out performed by models that 
include current market information and seasonal 
ARIMA models. 

“Forecasting Basis Levels in the 
Soybean Complex: A Comparison of 
Time Series Methods” - Sanders and 
Manfredo (2006) 

 ARMA model best for soybeans. 
 VAR model best for soybean meal. 
 Previous year’s basis best for soybean 

oil. 

Over time, the accuracy of the 1 and 5-year 
moving averages do not diminish.  Even within 
closely related markets there is no rule-of-thumb 
for producing the most accurate forecasts. 
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III.  

CHAPTER III 

MODEL 

Data 

The commodities considered are corn, soybeans, soft wheat, and hard wheat. To 

create the basis data, futures prices must be subtracted from their corresponding cash 

price.  

Two basis values are used for each year. One is selected to represent the basis for 

a preharvest hedge and the other for a storage hedge. For corn, the December contract in 

October represents the harvest basis, while the May contract in April represents storage 

hedges. For soybeans, the November contract in October represents the harvest basis, 

while the May contract in April represents storage hedges. The basis values used for soft 

and hard wheat are the July contract in June and the December contract in November. 

  Cash and futures prices consist of second Wednesday or Thursday prices for corn, 

soybeans and wheat, and when unavailable, monthly-average prices are used. Daily #2 

corn and #1 soybean cash prices are from the Illinois Agricultural Marketing Service, and 

reflect the midrange of elevator bids for each region on the second Thursday of each 

month from 1975-2008 (FarmDoc, 2009). When the second Thursday fell on a holiday, 

the third Thursday was used. Second Wednesday daily Oklahoma reported prices paid to 

producers for #2 hard red winter wheat were taken from the Oklahoma Department of 
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Agriculture, Food and Forestry’s weekly “Oklahoma Market Report” from 1974 through 

2008. This report also provides the Galveston Gulf Port prices. When a holiday prevented 

the release of the report, the third Wednesday was used. Second Wednesday prices from 

an additional Oklahoma location, the Port of Catoosa, are for 1988-2008 (Peavey Grain, 

1988-2008). Second Wednesday Kansas cash prices cover 1982-2007 (Dhuyvetter, 1982-

2007). Simple average monthly wheat prices were taken from the USDA AMS “Grain 

and Feed Market News” for #2 soft red winter wheat at Chicago, IL, Toledo, OH,  and St. 

Louis, MO, along with  #1 hard red winter wheat at Kansas City, MO over 1970-2008. 

Figure 1 shows the Kansas and Oklahoma hard red winter wheat locations studied.

 

 

Figure III-1. Kansas and Oklahoma Hard red winter wheat locations studied 
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Futures prices reflect daily closing prices at the CBT and KCBT for each 

commodity    (R & C Data), and match the same days as the cash prices. When only 

monthly cash prices were available, average monthly futures prices were used. Corn, 

soybeans, and soft wheat futures prices are reflected by CBT contracts, while KCBT 

wheat contracts reflect hard wheat. These futures prices, along with their corresponding 

cash prices, provide the nearby basis values used in this study. 

 In order to create accurate basis values based upon the available data, several 

stages of data cleansing were necessary.  The Oklahoma Market Report is a weekly 

newsletter containing agricultural prices for Oklahoma producers, but did not previously 

exist in electronic format.  Prices were compiled by location in a single spreadsheet, and 

were checked against the original reports to ensure accuracy. Numerous mistakes (20-50) 

in the original report were found and corrected, but none of these corrections were in the 

data used in this study. Missing bids accounted for approximately 0.3% (3 of 945 

observations) of the Oklahoma time series, and were substituted with the third 

Wednesday prices.   

The data series was checked to ensure that none of the days studied happened to 

fall on days when the futures price hit the daily limit. The earliest reported historical daily 

price limits for the CBT were found to be 30 cents per bushel for soybeans, 10 cents per 

bushel for corn, and 20 cents per bushel for both soft and hard wheat as of 1982 (CBT, 

1982). The earliest change to KCBT daily price limits occurred when the limit increased 

from 10 cents per bushel in 1973, and it is assumed that these levels rose to the CBT limit 

of 20 cents per bushel. These values were assumed to have remained constant in the 

preceding years.  Price limits remained stable until March 12, 1992 when CBT corn price 
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limits increased from 10 to 12 cents per bushel, while soybean and wheat limits remained 

at 30 and 20 cents per bushel, respectively (Park, 2000). On August 14, 2000 daily price 

limits increased at the CBT from 12 to 20 cents per bushel for corn, from 30 to 50 cents 

per bushel for soybeans, and from 20 to 30 cents per bushel for wheat (CFTC).  The 

KCBT limit changed when the wheat price limit was raised from 25 to 30 cents on 

October 9, 2000 (KCBT). On March 28, 2008 the KCBT and CBT both doubled the 30 

cent price limit for wheat futures to 60 cents, while the CBT also expanded trading limits 

from 50 to 70 cents for soybeans and 20 to 30 cents for corn (CMEGroup). None of the 

limit days occurred on one of the days of interest to this study. 
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Procedures 

Basis values were created by taking the cash market price less the futures market price. 

Basis forecasts were created using equation (3), where N=1,… ,5.  The resulting forecast 

errors from each model were then evaluated.  

Dhuyvetter and Kastens (1998) compare forecast accuracy with mean absolute 

error: 

ܧܣܯ (11) ൌ
1
ܶ

෍|ݏ݅ݏܽܤ௧ െ |௧ݏ݅ݏ̂ܽܤ
்

௧ୀଵ

 

where the absolute value of each forecast error is averaged over the forecast period. This 

measure of forecast accuracy will be used in this study to identify the optimal historical 

period to include in basis forecasts.  

 Another popular determinant of forecast accuracy is the root mean squared error 

(RMSE) and is calculated as: 

ܧܵܯܴ  (12) ൌ ඩ
1
ܶ

෍ሺݏ݅ݏܽܤ௧ െ ௧ሻଶݏ݅ݏ̂ܽܤ

்

௧ୀଵ

.  

 
Jiang and Hayenga (1997) identified the RMSE as a popular measure of forecast 

accuracy as it penalizes the cost of larger errors with the square of the forecast error. The 

RMSE is included in the appendix because optimal forecasts may not only minimize 

forecast error, but also minimize the size of any potential errors. The RMSE identifies 

these models through its increased penalty of large errors.  

The complex nature of modeling time-series, cross sectional data makes 

misspecification a concern when modeling basis forecast errors and interpreting their 



 

24 
 

results. Econometric problems prevalent with this type of data include spatial 

autocorrelation, cross correlations, and heteroskedasticity. Failing to correct for these 

correlations and unequal error variance can lead to misleading standard errors and 

hypothesis testing. Dhuyvetter and Kastens (1998) tested for heteroskedasticity, and 

identified groupwise heteroskedasticity amongst forecast methods and time horizon 

variables for corn, soybeans, and wheat forecasting models. To correct for this 

heteroskedasticity, interaction terms of methods and forecast time horizon squared were 

included in each of their separate models. Although the dependence of the errors amongst 

competing forecast models could not be corrected, Dhuyvetter and Kastens (1998) 

conclude that a 4-year moving average was more accurate than the 3-year benchmark at 

0.01 significance, while acknowledging that their significance levels are overstated. 

When independence across observations is incorrectly assumed, the standard errors and 

their ensuing t-tests can lead to overstated significance (Irwin, Good, and Martines-Filho, 

2006).  

A variation of the Dhuyvetter and Kastens (1998) approach to correct for 

heteroskedasticity was attempted with both the aggregate dataset and the individual 

commodities in this study. The pooled data set contains 15,180 observations. To correct 

for unequal variance using random effects, combinations of variables such as 

period*location and location*year, where period represented the preharvest or storage 

contract, location identified the market, and year identified the year of the forecast, were 

considered. However, these interaction terms resulted in too many parameters, which 

prevented the model from converging. As an alternative, we follow Irwin, Good, and 

Martines-Filho (2006) and pool the data, leaving only the absolute error, the dependent 
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variable, the forecast length N, the only independent variable, and the year for the random 

effect and regressed using PROC MIXED. This model was also run for the individual 

commodities by period to identify any patterns that would be lost in the pooled model. 

The final mixed model is: 

௜௧ܧܣ (13) ൌ ଴ߚ ൅ ෍ ௜௝ܦ௝ߚ ൅ ௧ݒ ൅ ௜௧ߝ

ସ

௝ୀଵ

 

 

where ܧܣ௜௧ is the absolute error of the ݄݅ݐ forecast, at time ߚ ,ݐ଴ is an intercept term 

created for the 5-year moving average to serve as a benchmark for model comparison, 

and ߚ௝ , ݆ ൌ 1, … ,4, are the coefficients for moving averages of j length, where ܦ௜௝=1 

when ݅ ൌ  ௜௧ is the stochasticߝ ௧ is the random-effects vector for years at time t  andݒ  ,݆

error term for the observation ݅ at time ݐ.  The random-effects vector and stochastic error 

term are uncorrelated, and are distributed ݒ௧~ܰሺ0, ௩ߪ
ଶሻ and ߝ௜௧~ܰሺ0, ఌߪ

ଶሻ.  
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IV. TEST 

CHAPTER IV 

MODEL RESULTS 

 
Pooled Model Results 

Table IV-1 shows the optimal forecast length by year for the pooled data. From 

this table we can see that the previous year’s basis provides the optimal forecast for 

37.51% (1144/3,050) of the values. The 5-year moving average produces the second most 

optimal forecasts at 25.77%, while the 2, 3, and 4-year moving averages account for 

14.59, 11.64, and 10.49% of the sample, respectively.  

Table IV-1. Number of Locations with a Given Length of Moving Average Having 
the Lowest Root Mean Squared Forecast Error, 1975-2008 

Commodity Period N=1 N=2 N=3 N=4 N=5 

Hard wheat Preharvest 25 2 5 7 6 

 Storage 34 2 4 1 4 

Soft wheat Preharvest 3 0 0 0 0 

 Storage 0 2 0 0 1 

Corn Preharvest 0 0 0 0 7 

 Storage 7 0 0 0 0 

Soybeans Preharvest 2 5 0 0 0 

 Storage 7 0 0 0 0 
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Figure IV-2 graphs the number of optimal forecasts produced by the previous 

year’s basis and 5-year moving average for the pooled data. The one-period forecast is 

usually close to the 5-year forecast, but following periods of structural change like the 

early 1980’s (inflation, collapse of land prices, oil price shocks, etc.), 1988 (US-Canada 

free trade) and 2006 (lack of convergence at contract expiration) there are many more 

optimal forecasts using the one-period forecast. These large gaps in the amount of 

optimal forecast methods identified show the inferiority of basing expectations on longer 

period models after times of structural change.  

 

Figure IV-1. Number of minimum MAE forecasts produced by the previous year’s 
basis vs. the 5-year moving average, 1979-2008 
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Table IV-2 shows the results from the pooled model of absolute forecast errors for 

the entire study. The F-test value of 0.92 fails to reject any difference amongst the 

competing forecast methods. The intercept term is the benchmark in the error model, the 

5-year moving average, and is 12.89 cents/bu. Forecast accuracy increases as the amount 

of historical information used decreases, with the previous year’s basis providing the 

lowest pooled MAE at 12.34 cents/bu. These results are generally within the range of the 

MAE’s found by previous studies. Dhuyvetter and Kastens (1998) find the pooled 

MAE’s of moving average forecasts to be between 10-13 cents/bu. for wheat, corn, and 

soybeans. The individual t-tests show that all shorter moving averages outperform the 5-

year moving average, although the parameter estimates only differ by 0.50 cents/bu. 

between the previous year and 4- year averages.  

Table IV-2. Absolute Error (cents/bu.) of Basis Forecasts as a Function of Number 
of Years in the Moving Average, Pooled Data, 1975-2008 

Effect Estimate t-value p-value 

Intercept 12.34 12.06 0.000 

N=1 -0.57 -2.06 0.040 

N=2 -0.22 -0.79 0.427 

N=3 -0.16 -0.58 0.562 

N=4 -0.05 -0.18 0.858 

N=5 - - - 

F-statistica 1.31 -  0.263 

 a The null hypothesis is that all values of N have the same forecast accuracy. 
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#2 Hard Wheat Model Results 

Preharvest and storage hard wheat basis forecasting model results are listed in 

Table IV-3. For the preharvest forecasts, only the 2-year moving average is statistically 

different from the 5-year benchmark. The only preharvest model to produce a lower 

MAE than the benchmark is the 4-year moving average, which improves by only 0.04 

cents/bu. These results indicate that, over the sample, any of the 5 preharvest models 

considered would result in a forecast error of approximately 15 cents/bu.  

Table IV-3. Absolute Error (cents/bu.) of Hard Wheat Basis Forecasts as a 
Function of Number of Years in the Moving Average, 1978-2008 

Period Effect Estimate t-value p-value 

Preharvest Intercept 12.77 8.71 0.000 

 N=1 0.35 1.06 0.291 

 N=2 0.68 2.06 0.040 

 N=3 0.41 1.24 0.216 

 N=4 -0.06 -0.19 0.853 

 N=5 - - - 

 F-statistica 1.73 - 0.141 

Storage Intercept 13.03 9.06 0.000 

 N=1 -1.94 -5.90 0.000 

 N=2 -1.09 -3.32 0.001 

 N=3 -0.77 -2.33 0.020 

 N=4 -0.23 -0.70 0.481 

 N=5 - - - 

 F-statistica 10.85 - 0.000 

 a The null hypothesis is that all values of N have the same forecast accuracy. 
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The storage model results for hard wheat support a significant difference in 

results from competing basis forecasting models with an F-statistic of 10.85. 

Individual t-tests of no difference from the 5-year benchmark are rejected for all but 

the 4-year moving average. The previous year’s basis lowers the benchmark MAE 

from 13.03 cents/bu. to 11.09 cents/bu. The improvement in accuracy as the historical 

period shortens supports using shorter moving averages used to forecast the hard 

wheat storage basis. 

 Table IV-3 shows a pattern consistent throughout the results of these forecasts. By 

studying the preharvest and storage basis separately, we can see that MAEs are greater 

for preharvest than storage models. One possible explanation of this difference comes 

from Dhuyvetter and Kastens (1998), who found that forecast errors peak during critical 

production periods. Local conditions are much more variable around harvest, and spatial 

differences between cash and futures markets do not reflect the same supply and demand.  

Modeling forecast accuracy for individual locations may prevent any significant 

findings from being lost in the aggregation of the larger models. Dhuyvetter and Kastens 

(1998) identified differences in forecast accuracy over several of the locations studied, 

admitting that their significance levels were overstated, but were unable to determine the 

effect of location on forecast errors. Absolute error was modeled for each location to 

identify any differences in accuracy across space. 

Appendix Table 2 shows the model results by location for the preharvest 

forecasts. Consistent with Dhuyvetter and Kastens (1998), there is a tendency for Kansas 

location forecasts to generate optimal forecasts with longer moving averages. Of all the 

models, only the preharvest basis models for Hays, KS showed a difference in forecast 
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accuracy with an F-statistic of 2.89. The previous year’s basis is significantly worse than 

the 5-year benchmark at 0.05% for Hays and Great Bend, KS. MAE for Hays would 

increase by 5.51 cents/bu., while the MAE for Great Bend would increase from 10.73 to 

14.06 cents/bu.  

Preharvest forecasts for Oklahoma locations, on the other hand, tend to benefit 

from models based on shorter historical periods. The greatest reduction in the MAE 

by any model occurs when the previous year’s basis at Muskogee, OK reduces the 

benchmark from 21.52 to 15.08 cents/bu. using the previous year’s forecast. 

Oklahoma markets are farther from delivery points, and grain does not flow to a 

delivery point. This allows more structural changes across space in Oklahoma 

markets than Kansas.  

Storage forecasts in Appendix Table IV-3 indicate that the previous year’s 

basis is the most accurate method for Oklahoma. Significant improvement is 

identified from using the previous year’s basis instead of the 5-year benchmark for 16 

of the 26 Oklahoma locations. Davis, OK experiences the greatest reduction in the 

storage MAE, 4.87 cent/bu., when the previous year’s basis is used instead of the 

benchmark.  

The same pattern exists in Kansas markets. Using the previous year’s storage 

basis forecast lowered the benchmark MAE in 14 of the 19 Kansas locations.    
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Hard Wheat Changes over Time 

Figure IV-2 is a map of the 1975-1980 average harvest basis values from the beginning 

of the Oklahoma Market Report. Basis values tend to be weakest in the northern part of 

the state, and grow stronger when moving south.  

Figure IV-3 shows the 2008 harvest basis values. The trend from the first map is 

now reversed, with basis strengthening from the southern to the northern part of the state. 

A major shift in the primary market for Oklahoma wheat occurred over the period 

studied. Oklahoma wheat was shipped via rail to the Gulf Port at Houston, but now 

travels by barge to New Orleans. This change in the transportation of Oklahoma wheat 

over the time period studied explains why Oklahoma wheat basis changed over the 30 

plus years studied.  

 
 

 
 
Figure IV-2. 1975-1980 average Oklahoma wheat harvest basis 
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Figure IV-3. 2008 Oklahoma wheat harvest basis  
 

 Figure III-4 shows the 5-year average basis for Kansas locations over 1982-1986. 

The trend in this map is that the basis weakens the further south and west you move away 

from Kansas City.  

 

 
Figure IV-4. 1982-1986 Average Kansas wheat harvest basis 
 

The 2007 Kansas harvest basis is shown in Figure III-5. Similar to the 

relationships in Figure 3, the harvest basis tends to weaken as you move from Kansas 

City southwest.  
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Figure IV-5. 2007 Kansas wheat harvest basis  
 

The greatest difference between the two time periods is that most locations seem 

to be aligned with the markets surrounding them. In Figure III-3 there were isolated 

markets that experienced much stronger basis than their closest neighbors. Figure III-4 

shows that nearly all of the locations are within a few cents of their surrounding 

locations.      

 
#1 Hard Wheat Model Results 

The Kansas City price data allows this study to compare the differences in 

forecasting both the regular protein #1 hard red wheat, and 13% protein #1 hard red 

wheat. Table IV-4 shows the model results for the Kansas City ordinary protein #1 hard 

wheat basis models.  
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Table IV-4. Absolute Error (cents/bu.) of Kansas City Ordinary Protein, #1 Hard 
Wheat Basis Forecasts as a Function of Number of Years in the Moving Average, 
1976-2008 

Period Effect Estimate t-value p-value 

Preharvest Intercept 15.72 8.33 0.000 

 N=1 0.47 0.29 0.770 

 N=2 0.21 0.13 0.897 

 N=3 -0.12 -0.07 0.942 

 N=4 -0.96 -0.60 0.552 

 N=5 - - - 

 F-statistica 0.23 - 0.923 

Storage Intercept 12.99 5.24 0.000 

 N=1 2.17 1.35 0.180 

 N=2 1.89 1.17 0.244 

 N=3 1.83 1.14 0.259 

 N=4 0.76 0.47 0.638 

 N=5 - - - 

 F-statistica 0.65 - 0.629 

 a The null hypothesis is that all values of N have the same forecast accuracy. 

 

 Table IV-5 reports the results of the model for the 13 percent #1 hard wheat. 

When compared to the results of Table IV-3, we can see how forecasting two subclasses 

of the same commodity affect forecast accuracy with little variation due to space. The 

benchmark intercept for the 13 percent protein model is 3.22 cents/bu. higher than the 

ordinary protein forecast model. This best preharvest forecast is still 1.22 cents/bu. more 

than the worst ordinary protein forecast model.  
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Table IV-5. Absolute Error (cents/bu.) of Kansas City 13% Protein, #1 Hard 
Wheat Basis Forecasts as a Function of Number of Years in the Moving Average, 
1976-2008 

Period Effect Estimate t-value p-value 

Preharvest Intercept 18.94 4.11 0.000 

 N=1 0.26 0.18 0.856 

 N=2 -1.37 -0.95 0.344 

 N=3 -1.53 -1.07 0.289 

 N=4 -0.32 -0.22 0.824 

 N=5 - - - 

 F-statistica 0.64 - 0.636 

Storage Intercept 19.34 3.75 0.001 

 N=1 5.52 1.88 0.064 

 N=2 3.55 1.20 0.231 

 N=3 1.06 0.36 0.721 

 N=4 0.77 0.26 0.793 

 N=5 - - - 

 F-statistica 1.21 - 0.310 

  a The null hypothesis is that all values of N have the same forecast accuracy. 

 
Comparing the forecast results of ordinary and 13% protein #1 hard wheat shows 

the effect of differences in grain form on forecast accuracy. Forecast errors are lower in 

both periods for ordinary protein. Higher forecast errors for 13% protein are likely the 

result of changes in the variable premiums for protein content at KCBT. Rather than 

using a fixed premium similar to what exists between #1 and #2 grade wheat, the market 

posts a protein premium scale that allows for market adjustments to premiums (KCBT). 
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These differences in supply and demand for wheat qualities differentiate the form of 

ordinary and 13% protein hard wheat markets.   

 
Soft Wheat Model Results  

Table IV-6 displays the model results for the soft wheat basis forecasting 

models. Using the previous year’s basis to predict soft wheat preharvest basis would 

lead to an average forecast error of 25.95 cents/bu., while the most accurate method, the 

2-year moving average, only lowers the MAE to 23.42. Only the 2-year moving 

average proves to be a better forecast of the storage basis than the benchmark for soft 

wheat.  Although it decreases the MAE to nearly 13 cents/bu., the 2-year moving 

average is not significantly different from the benchmark. At nearly 10 cents/bu. below 

the preharvest forecast intercept, the storage model intercept helps support the ability to 

forecast the storage basis more accurately than the preharvest basis.   

 Appendix Table 4 lists the basis forecast error model for the soft wheat 

preharvest period. When looking at the models by location, some interesting results 

become apparent. The Chicago, IL MAEs range from 11.81 to 13.73 cents/bu., while 

the St. Louis, MO and Toledo, OH MAEs more than double to 35.13 to 41.33 and 

28.60 to 32.78 cents/bu., respectively. The only forecast significantly different from 

the 5-year moving average over these locations is the previous year’s basis for St. 

Louis, which is 6.20 cents/bu. worse, and statistically different than the benchmark at 

0.10 significance. 
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Table IV-6. Absolute Error (cents/bu.) of Soft Wheat Basis Forecasts as a 
Function of Number of Years in the Moving Average, 1975-2008 

Period Effect Estimate t-value p-value 

Preharvest Intercept 23.45 4.64 0.000 

 N=1 2.50 0.78 0.434 

 N=2 -0.03 -0.01 0.991 

 N=3 0.20 0.06 0.951 

 N=4 0.48 0.15 0.882 

 N=5 - - - 

 F-statistica 0.22 - 0.926 

Storage Intercept 13.91 8.52 0.000 

 N=1 0.59 0.45 0.654 

 N=2 -0.93 -0.71 0.479 

 N=3 0.16 0.13 0.900 

 N=4 0.51 0.39 0.696 

 N=5 - - - 

 F-statistica 0.43 - 0.788 

 a The null hypothesis is that all values of N have the same forecast accuracy. 

 
 Appendix Table 5 shows the individual model comparisons by location for the 

soft wheat storage absolute error models. The only location to reject to the null 

hypothesis of difference in forecast accuracy is Toledo, with an F-statistic of 4.34. If the 

previous year’s basis is used to forecast the storage basis instead of the 5-year 

benchmark, the MAE will increase by over 50 percent from 9.27 to 14.38 cents/bu. Only 

the Toledo model does not increase accuracy by applying a 3-year or shorter moving 

average to the basis forecast.  
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All three of these locations represent current CBT delivery locations, but have not 

been delivery points over the entire period studied. In 1982, the only locations accepting 

CBT wheat were Chicago and Toledo, at par and a 2 cent/bu. discount, respectively. As 

of 1997, Toledo, OH received delivery at a discount of 2 cent/bu., and St. Louis, MO at 

an 8 cent/bu. premium to Chicago (CFTC).  

A market undergoes structural change when it is made a delivery point on a 

futures contract. Delivery point cash prices are set by a set premium or discount aligned 

with the Chicago cash market. Grain qualities above the contract minimum no longer 

flow to delivery points, and the market price adjusts to reflect the cheapest to delivery 

grains specified in the futures contract. These changes over time help explain the higher 

MAEs for Toledo and St. Louis found by this study.  

 
Corn Model Results 

Table IV-7 shows the results for the corn models across all regions of Illinois. Results 

from the preharvest model indicate that using the previous year’s basis outperforms the 5-

year benchmark over all Illinois locations. The F-statistic and individual t-tests both fail 

to indicate any significant differences in forecast choice. The F-statistic of 4.10 for the 

storage models rejects the null hypothesis, and concludes that model forecast accuracy 

does differ over the sample for corn storage basis. Significant differences from the 5-year 

benchmark exist in every model except the 4-year moving average at a 0.05 level. This 

result indicates that shorter moving averages can outperform the 5-year moving average 

at forecasting the corn storage basis. The best model, using the previous year’s basis, 

lowers the MAE from the 5-year moving average of 7.59 cents/bu. to 6.32 cents/bu.  
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Table IV-7. Absolute Error (cents/bu.) of Corn Basis Forecasts as a Function of 
Number of Years in the Moving Average, 1980-2008a 

Period Effect Estimate t-value p-value 

Preharvest Intercept 11.74 9.60 0.000 

 N=1 -0.12 -0.21 0.836 

 N=2 0.63 1.07 0.286 

 N=3 0.55 0.94 0.349 

 N=4 0.52 0.87 0.385 

 N=5 - - - 

 F-statisticb 0.70 - 0.594 

Storage Intercept 7.49 7.59 0.000 

 N=1 -1.17 -3.63 0.000 

 N=2 -0.68 -2.12 0.034 

 N=3 -0.66 -2.05 0.041 

 N=4 -0.18 -0.56 0.574 

 N=5 - - - 

 F-statisticb 4.10 - 0.003 

  a Storage model forecasts begin in 1981, due to the time-series available. 

 b The null hypothesis is that all values of N have the same forecast accuracy. 
 

Corn preharvest forecasting results by region are listed in Appendix Table 6. 

These results show that the 5-year moving average is the optimal forecast method. The 

range of MAEs between the competing models is consistently below 2 cents/bu. across 

each region. Individual t-tests do not find any significant differences in model accuracy 

for any region. 

Appendix Table 7 lists the corn storage basis forecast comparisons by region. The 

results of the individual regions indicate that the previous year’s basis is significantly 
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more accurate than the 5-year benchmark for the South-Central region of Illinois at 0.05 

significance. Using the previous year to forecast the storage basis results in a 1.69 

cent/bu. reduction in the MAE of the benchmark. Three other regions, the Northern, 

Western, and West-Southwest regions all showed significant reductions from the 5-year 

benchmark using the previous year’s basis at 0.10 significance.  

Taylor, Dhuyvetter, and Kastens (2004) also found that shorter moving average 

models resulted in lower MAEs based on their sample of the nearby Kansas corn basis 

forecasts 24 weeks after preharvest. The previous year’s basis resulted in a MAE of 

10.57 cents/bu. for Kansas compared to the 6.32 cents/bu. for Illinois found in this 

study.  

 
Soybean Model Results 

Table 7 shows the results from the absolute error models for the Illinois soybean 

basis. The preharvest 5-year benchmark MAE is 11.23 cents/bu., and can be improved by 

all of the shorter moving-average models. The most improvement comes from the 2-year 

moving average, which lowers the MAE to 10.62 cents/bu. Although the benchmark can 

be improved upon, the improvement is not enough to be statistically different based on 

the t-test comparisons. The narrow range (< 0.61 cents/bu.) of MAEs shows that little 

difference exists across preharvest basis models over the period studied. 

It is clear from the results of the storage basis error model that the choice of 

forecasting models results affects the accuracy of the Illinois soybean storage basis. The 

F-statistic of 8.58 indicates that the choice of models can result in different forecasting 

accuracies. While all of the shorter moving average models outperform the benchmark, 
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both the previous year’s basis and the 2-year moving average result in 1.98 and 1.16 

cents/bu. lower forecasts, respectively. Compared to the soybean preharvest model, the 

storage basis forecasts result in decreased MAEs of over 1.6 cents/bu.  

 
Table IV-8. Absolute Error (cents/bu.) of Soybean Basis Forecasts as a Function 
of Number of Years in the Moving Average, 1980-2008a 

Period Effect Estimate t-value p-value 

Preharvest Intercept 11.23 8.58 0.000 

 N=1 -0.47 -0.78 0.438 

 N=2 -0.61 -1.00 0.318 

 N=3 -0.50 -0.82 0.410 

 N=4 -0.20 -0.32 0.748 

 N=5 - - - 

 F-statisticb 0.43 - 0.852 

Storage Intercept 9.61 8.25 0.000 

 N=1 -1.98 -4.99 0.000 

 N=2 -1.16 -2.92 0.004 

 N=3 -0.66 -1.66 0.100 

 N=4 -0.08 -0.19 0.846 

 N=5 - - - 

 F-statisticb 8.58 - 0.000 

 a Storage model forecasts begin in 1981, due to the time-series available. 

 b The null hypothesis is that all values of N have the same forecast accuracy. 

 
 According to Appendix Table 8, the shorter moving average models perform 

the best at forecasting soybean preharvest basis for each region in Illinois. The 2-year 

moving average produces optimal forecasts in 5 of the 7 regions, while the previous 
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year’s basis performs the best in the remaining 2. The lowest MAE from the models is 

8.78 cents/bu. using the previous year’s basis in North Central Illinois. Not every 

region benefits from using shorter moving averages in the MAE models. While 

coefficients for some models indicate that one of the shorter forecast lengths would 

result in greater MAEs, the South-Central region’s benchmark forecast accuracy 

improves with the 4-year moving average. However, none of the competing models 

for the Illinois regions show a significant difference from the 5-year benchmark.     

 Appendix Table 9 shows the results when absolute error is modeled by 

location for soybean storage basis forecasting. Only one region, Western Illinois, 

rejects the F-test of no difference in forecast accuracy at 0.10 significance. In this 

region, forecasting the soybean storage basis with the previous year’s basis results in 

a 2.24 cent/bu. reduction in the MAE from the 5-year benchmark. Similar reductions 

of over 1 cent/bu. occur across all locations when choosing the previous year’s basis 

over the 5-year benchmark. The overall trend across every region is an improvement 

in forecast accuracy as the length of the moving average model decreases.      

 
Model Effects from Recent Years 

 Recent events have lead to erratic basis levels across commodity markets over 

the last three years. A combination of inconsistent basis levels at expiration, weather 

complications, and an abnormal shock in oil prices has created abnormal basis 

conditions.  

The erratic basis at expiration was first identified in the CBT July 2006 wheat 

contract, when inconsistent convergence between cash and futures markets began. 
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Poor soybean contract convergence first occurred in the March 2007 contract. Corn 

contract convergence had also been erratic, but was generally better than wheat and 

soybeans over the same period (Irwin et al. 2009).  

Irwin et al. (2009) propose that this lack of convergence is due to: 1) 

commercial storage rates below CBT maximum storage rates, 2) the presence of 

“long-only” index funds in commodity markets, and 3) an a larger risk premium in 

futures prices due to increased uncertainty. Another explanation of this can be tied to 

differences in form. In some cases, the wheat specified on the futures warehouse 

receipt was not equal to the quality of the market available in the market. These four 

factors can explain the convergence problems that have occurred in futures markets 

over the last 2-3 years.   

World wheat and feed stocks experienced tight stocks in the 2007/2008 

marketing year, and reacted sharply to small changes in supply and demand 

(Anderson, 2007). U.S. crops could have been affected by the dramatic increase in 

fuel costs during the first half of 2008 resulting in wide basis values. Commodity 

markets might have also been affected by the credit crunch and recession that 

occurred in the second half of 2008.  

These irregular market conditions could affect the results of this study. Table 9 

shows the results of the pooled model without the 2006-2008 data. Compared to the 

model of the entire dataset, the model that does not include the recent years shows a 

1.78 cent/bu. improvement in the benchmark model. This shows the impact of the 

higher forecasts errors common in recent years. Parameter estimates for the 2-4 year 

moving averages no longer improve the accuracy of the benchmark, and the 
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improvement of the previous year’s basis on the benchmark is reduced. Excluding 

2006-2008 does not change the most important finding of the full model, that no 

significant difference exists in forecast accuracy over the period studied. 

 
Table IV-9. Absolute Error (cents/bu.) of Basis Forecasts as a Function of Number 
of Years in the Moving Average, Pooled Data, 1975-2005 

Effect Estimate t-value p-value 

Intercept 11.01 17.14 0.000 

N=1 -0.12 -0.50 0.615 

N=2 0.17 0.71 0.476 

N=3 0.08 0.33 0.740 

N=4 0.06 0.24 0.813 

N=5 - - - 

F-statistica 0.40 - 0.807 

 a The null hypothesis is that all values of N have the same forecast accuracy. 

 
 From Table III-10, we can see the error model for the 2006-2008 period. 

Parameter estimates indicate that the 5-year benchmark can be outperformed by shorter 

forecasts, with the improvement proportional to the reduction in years included in the 

forecast. Only using the previous year’s forecast is significantly different from the 

benchmark, and reduces the MAE by 4.89 cents/bu. to 27.6 cents/bu. Even with the 

reduction in forecast error by models including 1-4 years of historical data, the reduction 

does not lead to a significant difference in forecast model accuracy. 
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Table IV-10. Absolute Error (cents/bu.) of Basis Forecasts as a Function of Number 
of Years in the Moving Average, Pooled Data, 2006-2008 

Effect Estimate t-value p-value 

Intercept 26.02 3.56 0.070 

N=1 -4.87 -2.64 0.009 

N=2 -3.92 -2.12 0.034 

N=3 -2.44 -1.32 0.187 

N=4 -1.05 -0.57 0.569 

N=5 - - - 

F-statistica 2.33 -  0.054 

a The null hypothesis is that all values of N have the same forecast accuracy. 
 

 Table III-11 shows the descriptive statistics of the absolute forecast error over 

the time period studied. These results allow us to see how including the 2006-2008 

crop years affects the level of absolute forecast error. From this table we can see that 

the absolute errors for the 2006-2008 crop years experience considerably larger 

forecast errors. The recent forecasts constitute only 9.5 percent of the total forecast 

absolute errors, but are large enough to raise the mean absolute error by 1.52 cents/bu. 

and increase the standard deviation by 5.30 cents/bu.  
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Table IV-11. Descriptive Statistics of the Absolute Forecast Error for the Pooled 
Data over Different Time Periods  

Period Optimal Forecasts N Mean S.D. Minimum Maximum 

1975-2005  13740 11.13 9.37 0.00 146.76 

 N=1  10.97 9.62 0.00 146.76 

 N=2  11.26 9.34 0.00 135.80 

 N=3  11.17 9.36 0.00 129.97 

 N=4  11.15 9.26 0.00 126.95 

 N=5  11.09 9.26 0.00 127.52 

2006-2008  1440 27.13 34.64 0.00 234.72 

 N=1  24.71 34.42 0.02 223.88 

 N=2  25.67 33.31 0.00 174.81 

 N=3  27.14 35.17 0.08 211.29 

 N=4  28.53 34.91 0.50 218.71 

 N=5  29.60 35.36 0.10 234.72 

1975-2008  15180 12.65 14.67 0.00 234.72 

 N=1  12.27 14.56 0.00 223.88 

 N=2  12.63 14.20 0.00 174.81 

 N=3  12.68 14.77 0.00 211.29 

 N=4  12.80 14.79 0.00 218.71 

 N=5  12.85 15.00 0.00 234.72 
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 However, these results do not affect the main conclusion that can be drawn from 

the 1975-2008 pooled model results, which indicates that shorter moving averages 

decrease the forecast MAE.      

  



 

49 
 

 
 
 
 

V.  

CHAPTER V 

CONCLUSIONS 

The most popular method of forecasting the basis is historical moving averages. 

Given the recent failure of longer moving averages proposed by previous studies, this 

research reassesses past recommendations about the best length of moving average to use 

in forecasting basis. Our study uses a longer time series with more locations and crops 

than these previous studies to determine the optimal length of historical data to forecast 

basis. The hypothesis testing procedure using the pooled data is valid in the presence of 

cross correlations. 

 Basis values for hard wheat, soft wheat, corn and soybeans were used to create 

basis forecasts. The methods considered included the previous year’s basis and moving 

averages of the previous 2-5 years. Mean absolute error was modeled for the pooled data 

following Irwin, Good, and Martines-Filho (2006). The mean absolute error was the 

dependent variable, the forecast length was the independent variable, and year was the 

random effect. This model was also run for the individual commodities by period to 

identify any patterns that would be lost in the pooled model.   

 This research found the size of most MAEs to be consistent with previous studies 

(Dhuyvetter and Kastens, 1998; Taylor, Dhuyvetter and Kastens, 2002). These values 

were generally between 10 and 17 cents/bu. 
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The optimal forecast length found for each commodity is generally shorter than 

previous recommendations. Using a 4-year moving average produced the minimum MAE 

preharvest wheat forecast, consistent with Dhuyvetter and Kastens (1998), but the 

optimal storage forecast model has lower forecast error using shorter historical 

information. This study finds that the optimal amount of historical data included in corn 

and soybean forecasts have shortened to one or two years for both preharvest and storage 

periods. Significant differences in forecast accuracy among the different models are rare, 

and in most cases the differences are not statistically significant.    

Another important component of this study is a synthesis of basis literature, which 

explains the basis through the Law of One Price. Given the recent structural changes in 

basis, there is a need to better understand what causes structural changes even when using 

moving averages to forecast the basis. Explaining the basis in terms of time, form, and 

space can help identify structural changes, and helps select the correct amount of 

historical information to include in historical moving averages. 

Structural changes over the time period studied have led to recommending shorter 

historical moving average to forecast the basis. Markets within this study undergo 

varying amounts of structural change for different reasons. Kansas wheat markets, for 

example, maintained consistent basis relationships over space, which may be due to their 

proximity to the KCBT hard wheat market delivery points. Toledo, OH and St. Louis, 

MO experienced more structural change when they became futures contract delivery 

points. Prices at delivery points are more sensitive to changes in transportation costs, and 

change from being determined by local supply and demand to reflecting the cheapest to 

deliver commodity on futures contracts. The structural changes apparent in the basis data 
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in this study identifies that shorter moving averages produce the most accurate basis 

forecast in terms of mean absolute error.   

Although our individual models produced varied results, the general rule of thumb 

supported by this research is: When a location or time period does not undergo structural 

change longer moving averages produce optimal forecasts, but when it appears that a 

structural change has occurred, the previous year’s basis should be used.  
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VI.  

CHAPTER VI 

RECOMMENDATIONS FOR FUTURE STUDY 

 The narrow scope of the time series methods used in this study allows future 

projects to expand these results. Advanced time series modeling techniques have their 

advantages, and are not considered in this research. Future studies may find a benefit in 

forecasting accuracy from techniques such as ARIMA and other time series models.  

Another potential avenue of further study would be to develop a hypothesis 

testing approach that could use disaggregate data. One of the restrictions in modeling 

forecast error in this study was the inability to get forecast error covariance matrices to 

converge. Correcting for random effects in disaggregate data might lead to more 

powerful statistical tests. 

These opportunities provide some, but not all, of the possible extensions that can 

be made to this comparison of practical basis forecasting methods. 

 

 

 



53 
 

  



 

54 
 

 
 
 
 
 
 

REFERENCES 

Anderson, T.G., L. Benzoni, and J. Lund. 2002. “An Empirical Investigation of 
Continuous-Time Equity Return Models.” Journal of Finance 57:1239-1284.  

Bates, D.S. 1996. “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit 
in Deutsche Mark Options.” Review of Financial Studies 9:69-107. 

Benirschka, M., and J. Binkley. 1995. “Optimal Storage and Marketing over Space 
and Time.” American Journal of Agricultural Economics 77:521-24. 

Breeden, D.T. 1980. “Consumption Risks in Futures Markets.” Journal of Finance 
35:503-20. 

Brennan, M.J. 1958. “The Supply of Storage.” American Economic Review 48:50-72. 

CBT. 1982. “Statistical Annual: Futures Data, Part 1.” Chicago Board of Trade.  

Commodity Futures Trading Commission. 2000. “CFTC Approves CBT Proposal to 
Increase Maximum Daily Price Fluctuation Limits for its Agricultural and 
Precious Metal Futures and Option Contracts.” Release: #4435-00.  

CME Group. February 8, 2008. “CME Group, KCBT and MGEX Announce Price 
Limit Expansion for Wheat Futures.”  

Chernov, M., A.R. Gallant, E. Ghysels, and G. Tauchen. 2003. “Alternative Models 
for Stock Price Dynamics.” Journal of Econometrics 116:225-257. 

Chicago Board of Trade (CBT). Understanding Basis-The Economics of Where and 
When. Chicago, 1990. 

Cootner, P.H. 1960b. “Rejoinder.” Journal of Political Economy 68:415-418. 

— 1960a. “Returns to Speculators: Telser Versus Keynes.” Journal of Political 
Economy 68:396-404. 

Dhuyvetter, K. July 10, 2008. “WheatCash—Wade.” Kansas State University 
Extension. 



 

55 
 

Dhuyvetter, K. C., and T. L. Kastens. 1998. “Forecasting Crop Basis: Practical 
Alternatives.” Paper presented at the NCR-134 Conference on Applied 
Commodity Price Analysis, Forecasting, and Market Risk Management. 
Chicago, IL, April.  

Dykema, A., N.L. Klein, and G. Taylor. 2002. “The Widening Corn Basis in South 
Dakota: Factors Affecting and the Impact of the Loan Deficiency Payment.” 
Paper presented at WAEA annual meeting, Long Beach, California, 28-31 
July. 

Farm.Doc. 2009. “Illinois Regional Cash Price Database.” University of Illinois.  

Hauser, R.J., P. Garcia, and A.D. Tumblin. 1990. “Basis Expectations and Soybean 
Hedging Effectiveness.” North Central Journal of Agricultural Economics 
12:125-136. 

Irwin, S.H., D.L. Good, and J. Martines-Filho. 2006. “The Performance of 
Agricultural Market Advisory  Services in Corn and Soybeans.” American 
Journal of Agricultural Economics 88:162-181. 

Irwin, S.H., P. Garcia, D.L. Good, and E.L. Kunda. 2009. “Poor Convergence 
Performance of CBOT Corn, Soybean and Wheat Futures Contracts: Causes 
and Solutions." Marketing and Outlook Research Report 2009-02, Department 
of Agricultural and Consumer Economics, University of Illinois at Urbana-
Champaign, March [http://www.farmdoc.uiuc.edu/marketing/reports] 

Jiang, B., and M. Hayenga. 1997. “Corn and Soybean Basis Behavior and 
Forecasting: Fundamental and Alternative Approaches.” Paper presented at the 
NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and 
Market Risk Management. Chicago, IL, April. 

Kaldor, N. 1939. “Speculation and Economic Stability,” Review of Economic Studies 
7:1-27. 

KCBT. 1974-1976. “Historical Data.” Accessed at 
[http://www.kcbt.com/historical_data.asp] in June, 2008. 

KCBT. March 10, 2009. Via e-mail “60 Cent Limit.” Sheila Summers. VP of 
Marketing,  

Kenyon, D.E. and S.E. Kingsley. 1973. “An Analysis of Anticipatory Short Hedging 
Using Predicted Harvest Basis.” Southern Journal of Agricultural Economics 
5:199-203. 

Kolb, R.W. 1992. “Is Normal Backwardation Normal?” Journal of Futures Markets 
12:75-91. 



 

56 
 

Klumpp, J.M., B.W. Brorsen, and K.B. Anderson. 2007. Journal of American 
Agricultural Economics 39:571-579. 

Martin, L. J.L. Groenewegen and E. Pidgeon. 1980. “Factors Affecting Corn Basis in 
Southwestern Ontario.” American Journal of Agricultural Economics 62:107-
112. 

Naik, G. and R.M. Leuthold. 1991. “A Note on the Factors Affecting Corn Basis 
Relationships.” Southern Journal of Agricultural Economics 23:147-153. 

Oklahoma Department of Agriculture, Food and Forestry. 1974-2008. “Oklahoma 
Market Report.” 

Park, C.L. 2000. “Examining Futures Price Changes and Volatility on the Trading 
Day After a Limit-lock Day.” Journal of Futures Markets 20:445-466. 

Peavey Grains. 1988-2008. “Peavey Catoosa Basis Bids.” 

R & C Data. 1970-2008. “Financial Price Data.” 

Sanders, D.R. and M.R. Manfredo. 2006. “Forecasting Basis Levels in the Soybean 
Complex: A Comparison of Time Series Methods.” Journal of Agricultural 
and Applied Economics 38:513-523. 

Taylor, M., K.C. Dhuyvetter, and T.L. Kastens. 2004. “Incorporating Current 
Information into Historical-Average-Based Forecasts to Improve Crop Price 
Basis Forecasts.” Paper presented at NCR-134 Conference on Applied 
Commodity Price Analysis, Forecasting, and Market Risk Management, St. 
Louis, MO, 19-20 April. 

Telser, L.G. 1958. “Futures Trading and the Storage of Cotton and Wheat.” Journal 
of Political Economy 66:233-55. 

—. 1960. “Reply.” Journal of Political Economy 68:404-415. 

U. S. Department of Agriculture. 1970-2008. “Grain and Feed Market News.” 
Agricultural Market Service. 

Vance, L.L. 1946. “Grain Market Forces in the Light of Inverse Carrying Charges.” 
Journal of Farm Economics 28:1036-1040. 

Wang, D., and W.G. Tomek. 2007. “Commodity Prices and Unit Root Tests.” 
American Journal of Agricultural Economics 89:873-889. 

Ward, R.W. and F.A. Dasse. 1977. “Empirical Contributions to Basis Theory: The 
Case of Citrus Futures.” American Journal of Agricultural Economics 59: 71-
80. 



 

57 
 

Working, Holbrook. 1953. “Hedging Reconsidered.” Journal of Farm Economics 
35:544-61.  

— 1934. “Price Relationships Between May and New-Crop Futures at Chicago Since 
1885.” Wheat Studies 10:183-228. 

— 1949. “Theory of the Price of Storage.” American Economic Review 39:1254-1262. 

Wright, B.D. and J.C. Williams. 1989. “A Theory of Negative Prices for Storage.” 
Journal of Futures Markets 20:1-13. 

  



 

58 
 

 
 
 
 
 

APPENDIX 

Appendix Table 1. Locations and Time Periods Studied by Commodity 
 

Commodity Location Time Period 

#2 Soft Red Winter Wheat Chicago, IL 1970-2008 
 St. Louis, MO 1970-2008 
 Toledo, OH 1970-2008 
#1 Hard Red Winter Wheat Kansas City, MO 1976-2008 
#2 Hard Red Winter Wheat Andale, KS 1982-2007 
 Beloit, KS 1982-2007 

Colby, KS 1982-2007 
 

 
 

Dodge City, KS 1982-2007 
Emporia, KS 1983-2004 
Garden City, KS 1982-2004 
Great Bend, KS 1982-2007 
Hays, KS 1982-2007 
Hutchinson, KS 1982-2007 
Liberal, KS 1974-1999 
Pratt, KS 1982-2007 
Salina, KS 1982-2007 
Scott City, KS 1982-2007 
Wellington, KS 1982-2007 
Whitewater, KS 1982-2007 

 Wichita, KS 1982-1999 
 Afton, OK 1974-2005 
 Banner, OK 1976-2008 
 Catoosa, OK 1993-2008 

 Clinton, OK 1974-2008 
Davis, OK 1984-2008 

 El Reno, OK 1974-2008 
 Eldorado, OK 1976-2008 

 Frederick, OK 1980-2008 
 Geary, OK 1974-2008 
 Hobart, OK 1974-2008 
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Appendix Table 1. Locations and Time Periods Studied by Commodity 
 

Commodity Location Time Period 

 Keyes, OK 1974-2008 
 
 

 
 
 
 
 
 
 

 

Kingfisher, OK 1974-2005 
Lawton, OK 1977-2008 
Manchester, OK 1974-2008 
Medford, OK 1974-2008 
Miami, OK 1982-2008 
Muskogee, OK 1975-2008 
Okeene, OK 1974-2008 
Pauls Valley, OK 1975-2008 
Ponca City, OK 1975-2008 
Stillwater, OK 1988-2008 
Temple, OK 1980-2008 
Watonga, OK 1975-2008 
Weatherford, OK 1974-2008 
Yukon, OK 1974-2005 
Perryton, TX 1974-1999 

Corn 
 

Northern, IL 1970-2008 
Western, IL 1970-2008 
North Central, IL 1970-2008 
South Central, IL 1970-2008 
Wabash, IL 1970-2008 
West-Southwest, IL 1970-2008 
Little Egypt, IL 1970-2008 

Soybeans 
 

Northern, IL 1970-2008 
Western, IL 1970-2008 
North Central, IL 1970-2008 
South Central, IL 1970-2008 
Wabash, IL 1970-2008 
West-Southwest, IL 1970-2008 

 Little Egypt, IL 1970-2008 
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Appendix Table 2. 1978-2008 Hard Wheat Preharvest Basis Forecasting Model 
Comparisons 
 

Location Optimal MAa Effect Estimate t-Value P-Value 

Afton, OK 1 Intercept 10.89 5.15 0.000 
  N=1 1.02 0.71 0.482 
  N=2 1.66 1.15 0.254 
  N=3 1.41 0.98 0.332 
  N=4 0.35 0.24 0.810 
  N=5 0.00 - - 
  F-statisticb 0.47 - 0.758 

Andale, KS 1 Intercept 11.55 5.30 0.000 
  N=1 0.68 0.39 0.698 
  N=2 1.11 0.64 0.527 
  N=3 0.90 0.52 0.605 
  N=4 -0.12 -0.07 0.946 
  N=5 0.00 - - 
  F-statisticb 0.20 - 0.939 

Banner, OK 1 Intercept 15.09 3.24 0.003 
  N=1 -0.21 -0.17 0.863 
  N=2 0.85 0.70 0.488 
  N=3 1.07 0.88 0.380 
  N=4 0.53 0.44 0.664 
  N=5 0.00 - - 
  F-statisticb 0.40 - 0.807 

Beloit, KS 4 Intercept 12.61 6.06 0.000 
  N=1 3.12 1.82 0.073 
  N=2 1.16 0.68 0.500 
  N=3 1.37 0.80 0.428 
  N=4 0.02 0.01 0.990 
  N=5 0.00 - - 
  F-statisticb 1.10 - 0.360 

Catoosa, OK 5 Intercept 10.09 5.51 0.000 
  N=1 2.16 1.53 0.132 
  N=2 0.14 0.10 0.919 
  N=3 0.01 0.01 0.995 
  N=4 0.62 0.44 0.663 
  N=5 0.00 - - 
  F-statisticb 0.84 - 0.507 

Clinton, OK 1 Intercept 15.13 3.53 0.001 
  N=1 -1.22 -1.04 0.300 
  N=2 0.56 0.48 0.634 
  N=3 0.22 0.19 0.852 
  N=4 -0.43 -0.37 0.713 
  N=5 0.00 - - 
  F-statisticb 0.69 - 0.603 

Colby, KS 5 Intercept 12.63 7.58 0.000 
  N=1 1.19 0.78 0.436 
  N=2 0.40 0.26 0.792 
  N=3 -0.09 -0.06 0.955 
  N=4 0.39 0.26 0.798 
  N=5 0.00 - - 
  F-statisticb 0.22 - 0.927 
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Appendix Table 2. 1978-2008 Hard Wheat Preharvest Basis Forecasting Model 
Comparisons 
 

Location Optimal MAa Effect Estimate t-Value P-Value 

Davis, OK 4 Intercept 12.37 2.29 0.033 
  N=1 2.06 1.62 0.109 
  N=2 1.51 1.19 0.239 
  N=3 0.87 0.68 0.498 
  N=4 0.09 0.07 0.945 
  N=5 0.00 - - 
  F-statisticb 0.99 - 0.420 

Dodge City, KS 5 Intercept 9.66 6.02 0.000 
  N=1 1.35 1.04 0.304 
  N=2 1.02 0.78 0.437 
  N=3 0.33 0.26 0.799 
  N=4 0.39 0.30 0.766 
  N=5 0.00 - - 
  F-statisticb 0.36 - 0.839 

El Reno, OK 1 Intercept 15.43 2.84 0.009 
  N=1 0.55 0.50 0.618 
  N=2 1.62 1.46 0.148 
  N=3 0.52 0.47 0.641 
  N=4 0.13 0.12 0.903 
  N=5 0.00 - - 
  F-statisticb 0.66 - 0.625 

El Dorado, OK 1 Intercept 15.20 3.29 0.003 
  N=1 -1.08 -0.93 0.357 
  N=2 0.57 0.49 0.623 
  N=3 0.52 0.45 0.657 
  N=4 -0.10 -0.09 0.930 
  N=5 0.00 - - 
  F-statisticb 0.65 - 0.627 

Emporia, KS 3 Intercept 13.65 6.25 0.000 
  N=1 2.81 1.34 0.185 
  N=2 0.85 0.41 0.685 
  N=3 1.05 0.50 0.617 
  N=4 0.61 0.29 0.771 
  N=5 0.00 - - 
  F-statisticb 0.50 - 0.733 

Frederick, OK 1 Intercept 16.93 3.12 0.005 
  N=1 -0.54 -0.39 0.699 
  N=2 0.49 0.35 0.729 
  N=3 0.18 0.13 0.898 
  N=4 -0.35 -0.25 0.805 
  N=5 0.00 - - 
  F-statisticb 0.17 - 0.952 

Garden City, KS 5 Intercept 10.90 5.44 0.000 
  N=1 1.64 1.14 0.258 
  N=2 0.43 0.30 0.768 
  N=3 0.15 0.11 0.916 
  N=4 0.14 0.10 0.922 
  N=5 0.00 - - 
  F-statisticb 0.44 - 0.783 
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Appendix Table 2. 1978-2008 Hard Wheat Preharvest Basis Forecasting Model 
Comparisons 
 

Location Optimal MAa Effect Estimate t-Value P-Value 

Geary, OK 1 Intercept 14.23 3.22 0.003 
  N=1 0.09 0.09 0.925 
  N=2 1.30 1.32 0.188 
  N=3 0.53 0.54 0.589 
  N=4 -0.21 -0.22 0.827 
  N=5 0.00 - - 
  F-statisticb 0.75 - 0.561 

Great Bend, KS 4 Intercept 10.73 6.52 0.000 
  N=1 3.33 2.19 0.031 
  N=2 2.28 1.50 0.137 
  N=3 1.50 0.99 0.326 
  N=4 0.34 0.23 0.822 
  N=5 0.00 - - 
  F-statisticb 1.64 - 0.173 

Gulf of Mexico 1 Intercept 13.72 4.92 0.000 
  N=1 -1.85 -1.50 0.136 
  N=2 -0.14 -0.11 0.912 
  N=3 -0.57 -0.46 0.648 
  N=4 -0.40 -0.32 0.747 
  N=5 0.00 - - 
  F-statisticb 0.72 - 0.583 

Hays, KS 5 Intercept 14.21 6.11 0.000 
  N=1 5.51 3.02 0.003 
  N=2 1.33 0.73 0.467 
  N=3 1.03 0.57 0.573 
  N=4 0.61 0.33 0.740 
  N=5 0.00 - - 
  F-statisticb 2.89 - 0.027 

Hobart, OK 1 Intercept 16.35 3.72 0.001 
  N=1 -1.69 -1.42 0.157 
  N=2 0.13 0.11 0.911 
  N=3 -0.18 -0.15 0.878 
  N=4 -0.51 -0.43 0.666 
  N=5 0.00 - - 
  F-statisticb 0.76 - 0.551 

Hutchinson, KS 1 Intercept 9.47 4.98 0.000 
  N=1 1.16 0.83 0.408 
  N=2 0.94 0.67 0.505 
  N=3 0.94 0.67 0.505 
  N=4 -0.07 -0.05 0.961 
  N=5 0.00 - - 
  F-statisticb 0.34 - 0.847 

Keyes, OK 1 Intercept 19.20 5.32 0.000 
  N=1 -1.91 -1.29 0.201 
  N=2 -1.64 -1.10 0.272 
  N=3 -0.73 -0.49 0.623 
  N=4 -0.20 -0.14 0.892 
  N=5 0.00 - - 
  F-statisticb 0.65 - 0.625 
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Appendix Table 2. 1978-2008 Hard Wheat Preharvest Basis Forecasting Model 
Comparisons 
 

Location Optimal MAa Effect Estimate t-Value P-Value 

Kingfisher, OK 4 Intercept 9.98 6.75 0.000 
  N=1 -0.01 -0.01 0.996 
  N=2 1.33 1.25 0.214 
  N=3 0.32 0.31 0.760 
  N=4 -0.36 -0.34 0.736 
  N=5 0.00 - - 
  F-statisticb 0.74 - 0.568 

Lawton, OK 1 Intercept 15.96 3.47 0.002 
  N=1 -1.71 -1.29 0.200 
  N=2 -0.09 -0.07 0.943 
  N=3 -0.05 -0.04 0.971 
  N=4 -0.40 -0.30 0.764 
  N=5 0.00 - - 
  F-statisticb 0.59 - 0.669 

Liberal, KS 1 Intercept 13.89 6.38 0.000 
  N=1 -0.24 -0.15 0.879 
  N=2 -0.13 -0.08 0.934 
  N=3 -0.55 -0.35 0.726 
  N=4 -0.28 -0.18 0.858 
  N=5 0.00 - - 
  F-statisticb 0.03 - 0.998 

Manchester, OK 1 Intercept 12.78 3.57 0.001 
  N=1 -0.77 -0.78 0.435 
  N=2 0.65 0.66 0.512 
  N=3 0.13 0.13 0.897 
  N=4 -0.46 -0.46 0.645 
  N=5 0.00 - - 
  F-statisticb 0.62 - 0.651 

Medford, OK 1 Intercept 12.38 3.47 0.002 
  N=1 0.83 0.84 0.404 
  N=2 1.45 1.47 0.145 
  N=3 0.62 0.62 0.534 
  N=4 -0.38 -0.38 0.701 
  N=5 0.00 - - 
  F-statisticb 1.05 - 0.386 

Miami, OK 4 Intercept 11.90 2.36 0.028 
  N=1 1.32 1.44 0.154 
  N=2 0.84 0.91 0.364 
  N=3 0.83 0.91 0.365 
  N=4 0.06 0.07 0.945 
  N=5 0.00 - - 
  F-statisticb 0.76 - 0.555 

Muskogee, OK 1 Intercept 21.52 4.40 0.002 
  N=1 -6.44 -1.76 0.088 
  N=2 -2.51 -0.68 0.499 
  N=3 -1.20 -0.33 0.745 
  N=4 -0.24 -0.07 0.947 
  N=5 0.00 - - 
  F-statisticb 1.03 - 0.407 
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Appendix Table 2. 1978-2008 Hard Wheat Preharvest Basis Forecasting Model 
Comparisons 
 

Location Optimal MAa Effect Estimate t-Value P-Value 

Okeene, OK 1 Intercept 13.56 3.22 0.003 
  N=1 0.23 0.24 0.811 
  N=2 1.57 1.64 0.103 
  N=3 0.54 0.57 0.569 
  N=4 -0.38 -0.40 0.691 
  N=5 0.00 - - 
  F-statisticb 1.20 - 0.316 

Pauls Valley, OK 4 Intercept 11.46 3.67 0.004 
  N=1 2.27 1.13 0.263 
  N=2 1.69 0.84 0.405 
  N=3 0.87 0.43 0.666 
  N=4 -0.15 -0.08 0.939 
  N=5 0.00 - - 
  F-statisticb 0.54 - 0.705 

Perryton, TX 3 Intercept 15.29 7.42 0.000 
  N=1 -0.06 -0.04 0.969 
  N=2 -0.61 -0.37 0.713 
  N=3 -0.81 -0.49 0.626 
  N=4 0.01 0.00 0.997 
  N=5 0.00 - - 
  F-statisticb 0.11 - 0.979 

Ponca City, OK 1 Intercept 13.36 3.86 0.001 
  N=1 1.25 1.19 0.237 
  N=2 1.76 1.68 0.096 
  N=3 0.69 0.66 0.513 
  N=4 -0.04 -0.03 0.972 
  N=5 0.00 - - 
  F-statisticb 1.11 - 0.354 

Pratt, KS 3 Intercept 9.94 6.27 0.000 
  N=1 0.31 0.22 0.824 
  N=2 -0.01 -0.01 0.995 
  N=3 -0.14 -0.10 0.923 
  N=4 0.23 0.17 0.868 
  N=5 0.00 - - 
  F-statisticb 0.04 - 0.998 

Salina, KS 2 Intercept 12.92 5.72 0.000 
  N=1 2.33 1.21 0.230 
  N=2 0.45 0.23 0.816 
  N=3 1.75 0.91 0.367 
  N=4 0.68 0.35 0.724 
  N=5 0.00 - - 
  F-statisticb 0.50 - 0.735 

Scott City, KS 3 Intercept 10.26 5.01 0.000 
  N=1 2.11 1.49 0.141 
  N=2 0.60 0.42 0.676 
  N=3 0.26 0.18 0.854 
  N=4 0.45 0.31 0.754 
  N=5 0.00 - - 
  F-statisticb 0.68 - 0.608 
      



 

65 
 

Appendix Table 2. 1978-2008 Hard Wheat Preharvest Basis Forecasting Model 
Comparisons 
 

Location Optimal MAa Effect Estimate t-Value P-Value 

Stillwater, OK 1 Intercept 15.71 2.40 0.030 
  N=1 0.07 0.05 0.961 
  N=2 1.21 0.84 0.407 
  N=3 1.32 0.91 0.368 
  N=4 0.20 0.14 0.888 
  N=5 0.00 - - 
  F-statisticb 0.40 - 0.809 

Temple, OK 1 Intercept 16.83 4.12 0.000 
  N=1 -0.86 -0.62 0.536 
  N=2 -0.05 -0.03 0.974 
  N=3 0.21 0.15 0.877 
  N=4 -0.35 -0.26 0.799 
  N=5 0.00 - - 
  F-statisticb 0.18 - 0.948 

Watonga, OK 1 Intercept 14.23 3.13 0.004 
  N=1 0.12 0.12 0.905 
  N=2 1.32 1.33 0.185 
  N=3 0.42 0.42 0.672 
  N=4 -0.36 -0.36 0.719 
  N=5 0.00 - - 
  F-statisticb 0.82 - 0.515 

Weatherford, OK 1 Intercept 14.97 3.49 0.002 
  N=1 -0.85 -0.74 0.461 
  N=2 0.77 0.67 0.502 
  N=3 0.46 0.40 0.691 
  N=4 -0.12 -0.11 0.915 
  N=5 0.00 - - 
  F-statisticb 0.58 - 0.678 

Wellington, KS 1 Intercept 10.29 5.23 0.000 
  N=1 -0.55 -0.32 0.751 
  N=2 0.14 0.08 0.937 
  N=3 -0.01 -0.01 0.996 
  N=4 -0.40 -0.23 0.819 
  N=5 0.00 - - 
  F-statisticb 0.06 - 0.994 

Whitewater, KS 2 Intercept 12.79 5.89 0.000 
  N=1 0.79 0.46 0.647 
  N=2 -0.12 -0.07 0.943 
  N=3 0.23 0.13 0.896 
  N=4 -0.05 -0.03 0.976 
  N=5 0.00 - - 
  F-statisticb 0.09 - 0.984 

Witchita, KS 1 Intercept 9.78 5.33 0.000 
  N=1 -1.07 -0.75 0.459 
  N=2 -0.39 -0.27 0.788 
  N=3 -0.02 -0.02 0.986 
  N=4 -0.28 -0.19 0.848 
  N=5 0.00 - - 
  F-statisticb 0.18 - 0.946 
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Appendix Table 2. 1978-2008 Hard Wheat Preharvest Basis Forecasting Model 
Comparisons 
 

Location Optimal MAa Effect Estimate t-Value P-Value 

Yukon, OK 5 Intercept 10.67 7.35 0.000 
  N=1 0.34 0.28 0.779 
  N=2 1.14 0.94 0.349 
  N=3 1.01 0.84 0.402 
  N=4 0.36 0.30 0.766 
  N=5 0.00 - - 
  F-statisticb 0.32 - 0.862 
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Appendix Table 3. 1978-2008 Hard Wheat Storage Basis Forecasting Model 
Comparisons 
 

Location Effect Estimate t-value p-value 

Afton, OK Intercept 12.75 8.22 0.000 
 N=1 -1.77 -1.34 0.182 
 N=2 -0.84 -0.64 0.525 
 N=3 -0.03 -0.02 0.981 
 N=4 0.18 0.14 0.891 
 N=5 0 - - 
 F-statistica 0.77 - 0.549 

Andale, KS Intercept 13.83 6.97 0.000 
 N=1 -0.81 -0.55 0.586 
 N=2 -0.35 -0.24 0.815 
 N=3 -0.91 -0.61 0.541 
 N=4 -0.46 -0.31 0.760 
 N=5 0 - - 
 F-statistica 0.12 - 0.974 

Banner, OK Intercept 12.39 7.34 0.000 
 N=1 -1.67 -1.46 0.147 
 N=2 -1.53 -1.34 0.183 
 N=3 -0.70 -0.61 0.543 
 N=4 -0.07 -0.06 0.951 
 N=5 0 - - 
 F-statistica 0.95 - 0.439 

Beloit, KS Intercept 15.11 5.90 0.000 
 N=1 -0.58 -0.29 0.771 
 N=2 1.02 0.52 0.606 
 N=3 0.65 0.33 0.742 
 N=4 -0.12 -0.06 0.950 
 N=5 0 - - 
 F-statistica 0.21 - 0.933 

Catoosa, OK Intercept 18.43 4.88 0.000 
 N=1 -4.25 -2.27 0.027 
 N=2 -1.80 -0.96 0.341 
 N=3 -0.29 -0.15 0.878 
 N=4 0.22 0.11 0.909 
 N=5 0 - - 
 F-statistica 1.98 - 0.109 
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Appendix Table 3. 1978-2008 Hard Wheat Storage Basis Forecasting Model 
Comparisons 
 

Location Effect Estimate t-value p-value 

Clinton, OK Intercept 12.12 5.70 0.000 
 N=1 -3.15 -2.81 0.006 
 N=2 -1.92 -1.71 0.090 
 N=3 -1.10 -0.98 0.327 
 N=4 -0.14 -0.12 0.904 
 N=5 0 - - 
 F-statistica 2.73 - 0.032 

Colby, KS Intercept 15.49 4.83 0.000 
 N=1 0.30 0.14 0.892 
 N=2 1.83 0.81 0.418 
 N=3 1.33 0.59 0.554 
 N=4 0.36 0.16 0.874 
 N=5 0 - - 
 F-statistica 0.24 - 0.915 

Davis, OK Intercept 17.07 4.24 0.000 
 N=1 -4.87 -3.39 0.001 
 N=2 -2.79 -1.94 0.056 
 N=3 -1.03 -0.72 0.475 
 N=4 0.22 0.15 0.881 
 N=5 0 - - 
 F-statistica 4.43 - 0.003 

Dodge City, KS Intercept 17.22 6.12 0.000 
 N=1 -3.11 -1.54 0.129 
 N=2 -1.97 -0.98 0.331 
 N=3 -2.63 -1.31 0.197 
 N=4 -1.07 -0.53 0.598 
 N=5 0 - - 
 F-statistica 0.76 - 0.554 

El Reno, OK Intercept 11.68 6.90 0.000 
 N=1 -1.17 -1.07 0.289 
 N=2 -1.02 -0.93 0.353 
 N=3 -0.46 -0.42 0.677 
 N=4 0.06 0.06 0.956 
 N=5 0 - - 
 F-statistica 0.53 - 0.711 
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Appendix Table 3. 1978-2008 Hard Wheat Storage Basis Forecasting Model 
Comparisons 
 

Location Effect Estimate t-value p-value 

Eldorado, OK Intercept 12.00 6.31 0.000 
 N=1 -2.69 -2.64 0.009 
 N=2 -2.04 -2.01 0.047 
 N=3 -1.21 -1.19 0.236 
 N=4 -0.03 -0.02 0.980 
 N=5 0 - - 
 F-statistica 2.78 - 0.030 

Emporia, KS Intercept 16.94 6.26 0.000 
 N=1 -2.38 -1.09 0.281 
 N=2 -0.40 -0.18 0.856 
 N=3 -1.42 -0.65 0.519 
 N=4 -1.20 -0.55 0.586 
 N=5 0 - - 
 F-statistica 0.36 - 0.835 

Frederick, OK Intercept 13.06 4.96 0.000 
 N=1 -3.29 -2.26 0.026 
 N=2 -1.51 -1.04 0.300 
 N=3 -0.52 -0.36 0.722 
 N=4 0.07 0.05 0.964 
 N=5 0 - - 
 F-statistica 1.86 - 0.124 

Garden City, KS Intercept 16.98 6.16 0.000 
 N=1 -1.93 -0.92 0.364 
 N=2 -0.83 -0.39 0.695 
 N=3 -1.92 -0.91 0.367 
 N=4 -1.48 -0.70 0.487 
 N=5 0 - - 
 F-statistica 0.3 - 0.875 

Geary, OK Intercept 10.79 6.75 0.000 
 N=1 -1.98 -2.06 0.042 
 N=2 -1.48 -1.54 0.126 
 N=3 -0.71 -0.74 0.461 
 N=4 0.09 0.10 0.924 
 N=5 0 - - 
 F-statistica 1.78 - 0.137 
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Appendix Table 3. 1978-2008 Hard Wheat Storage Basis Forecasting Model 
Comparisons 
 

Location Effect Estimate t-value p-value 

Great Bend, KS Intercept 16.25 5.87 0.000 
 N=1 -1.93 -0.97 0.334 
 N=2 -1.05 -0.53 0.599 
 N=3 -1.61 -0.81 0.420 
 N=4 -1.39 -0.70 0.487 
 N=5 0 - - 
 F-statistica 0.28 - 0.890 

Gulf of Mexico Intercept 11.86 7.39 0.000 
 N=1 -1.99 -1.66 0.100 
 N=2 -1.34 -1.12 0.266 
 N=3 -1.22 -1.02 0.312 
 N=4 -0.60 -0.50 0.619 
 N=5 0 - - 
 F-statistica 0.8 - 0.529 

Hays, KS Intercept 15.84 5.92 0.000 
 N=1 -2.59 -1.38 0.172 
 N=2 -0.79 -0.42 0.676 
 N=3 -1.71 -0.91 0.365 
 N=4 -1.07 -0.57 0.568 
 N=5 0 - - 
 F-statistica 0.54 - 0.704 
     

Hobart, OK Intercept 11.33 5.32 0.000 
 N=1 -1.96 -1.89 0.061 
 N=2 -1.36 -1.31 0.192 
 N=3 -0.63 -0.61 0.542 
 N=4 -0.08 -0.07 0.942 
 N=5 0 - - 
 F-statistica 1.33 - 0.264 

Hutchinson, KS Intercept 13.96 5.62 0.000 
 N=1 -1.34 -0.79 0.435 
 N=2 -0.21 -0.12 0.904 
 N=3 -0.67 -0.40 0.694 
 N=4 -0.64 -0.37 0.710 
 N=5 0 - - 
 F-statistica 0.18 - 0.946 
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Appendix Table 3. 1978-2008 Hard Wheat Storage Basis Forecasting Model 
Comparisons 
 

Location Effect Estimate t-value p-value 

Keyes, OK Intercept 12.94 7.91 0.000 
 N=1 -2.97 -2.57 0.011 
 N=2 -1.69 -1.46 0.146 
 N=3 -0.33 -0.29 0.774 
 N=4 0.08 0.07 0.947 
 N=5 0 - - 
 F-statistica 2.61 - 0.039 

Kingfisher, OK Intercept 9.07 6.36 0.000 
 N=1 -0.03 -0.03 0.976 
 N=2 -0.43 -0.42 0.679 
 N=3 -0.04 -0.04 0.967 
 N=4 0.24 0.23 0.821 
 N=5 0 - - 
 F-statistica 0.11 - 0.980 

Lawton, OK Intercept 11.64 4.89 0.000 
 N=1 -2.30 -1.81 0.073 
 N=2 -1.19 -0.94 0.351 
 N=3 -0.83 -0.66 0.514 
 N=4 -0.10 -0.08 0.936 
 N=5 0 - - 
 F-statistica 1.08 - 0.369 

Liberal, KS Intercept 11.11 7.55 0.000 
 N=1 -2.34 -1.99 0.050 
 N=2 -1.43 -1.21 0.228 
 N=3 -0.75 -0.64 0.523 
 N=4 -0.33 -0.28 0.778 
 N=5 0 - - 
 F-statistica 1.26 - 0.294 
     

Manchester, OK Intercept 12.73 6.92 0.000 
 N=1 -1.39 -1.07 0.288 
 N=2 -0.95 -0.73 0.466 
 N=3 -0.83 -0.64 0.523 
 N=4 0.00 0.00 1.000 
 N=5 0 - - 
 F-statistica 0.45 - 0.774 
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Appendix Table 3. 1978-2008 Hard Wheat Storage Basis Forecasting Model 
Comparisons 
 

Location Effect Estimate t-value p-value 

Medford, OK Intercept 12.06 7.48 0.000 
 N=1 -2.20 -1.93 0.055 
 N=2 -1.46 -1.29 0.201 
 N=3 -1.05 -0.92 0.360 
 N=4 -0.01 -0.01 0.993 
 N=5 0 - - 
 F-statistica 1.40 - 0.238 

Miami, OK Intercept 15.76 7.83 0.000 
 N=1 -3.51 -2.36 0.021 
 N=2 -2.37 -1.59 0.115 
 N=3 -1.30 -0.87 0.385 
 N=4 -0.24 -0.16 0.873 
 N=5 0 - - 
 F-statistica 1.96 - 0.108 

Muskogee, OK Intercept 11.19 3.61 0.004 
 N=1 4.52 1.92 0.060 
 N=2 4.35 1.85 0.070 
 N=3 1.91 0.81 0.420 
 N=4 0.27 0.11 0.909 
 N=5 0 - - 
 F-statistica 1.69 - 0.168 

Okeene, OK Intercept 11.84 6.51 0.000 
 N=1 -2.82 -2.54 0.013 
 N=2 -2.01 -1.81 0.074 
 N=3 -0.90 -0.81 0.419 
 N=4 -0.09 -0.08 0.939 
 N=5 0 - - 
 F-statistica 2.45 - 0.050 

Pauls Valley, OK Intercept 6.28 5.82 0.000 
 N=1 1.93 2.46 0.017 
 N=2 0.23 0.29 0.772 
 N=3 0.17 0.22 0.827 
 N=4 0.02 0.02 0.981 
 N=5 0 - - 
 F-statistica 2.20 - 0.079 
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Appendix Table 3. 1978-2008 Hard Wheat Storage Basis Forecasting Model 
Comparisons 
 

Location Effect Estimate t-value p-value 

Perryton, TX Intercept 12.65 6.29 0.000 
 N=1 -1.90 -1.38 0.173 
 N=2 -0.99 -0.72 0.476 
 N=3 -0.77 -0.56 0.580 
 N=4 -0.54 -0.39 0.695 
 N=5 0 - - 
 F-statistica 0.51 - 0.729 

Ponca City, OK Intercept 12.14 7.29 0.000 
 N=1 -2.25 -1.91 0.059 
 N=2 -1.23 -1.04 0.300 
 N=3 -0.68 -0.58 0.566 
 N=4 -0.18 -0.15 0.879 
 N=5 0 - - 
 F-statistica 1.18 - 0.321 

Pratt, KS Intercept 14.57 5.88 0.000 
 N=1 -2.62 -1.41 0.163 
 N=2 -1.29 -0.69 0.490 
 N=3 -1.98 -1.07 0.291 
 N=4 -1.31 -0.71 0.483 
 N=5 0 - - 
 F-statistica 0.55 - 0.698 

Salina, KS Intercept 13.83 6.28 0.000 
 N=1 -2.25 -1.34 0.184 
 N=2 -1.01 -0.61 0.547 
 N=3 -1.98 -1.18 0.241 
 N=4 -1.08 -0.64 0.522 
 N=5 0 - - 
 F-statistica 0.57 - 0.687 

Scott City, KS Intercept 15.36 5.93 0.000 
 N=1 -2.24 -1.14 0.259 
 N=2 -0.84 -0.43 0.670 
 N=3 -1.96 -1.00 0.322 
 N=4 -1.24 -0.63 0.529 
 N=5 0 - - 
 F-statistica 0.42 - 0.795 
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Appendix Table 3. 1978-2008 Hard Wheat Storage Basis Forecasting Model 
Comparisons 
 

Location Effect Estimate t-value p-value 

Stillwater, OK Intercept 16.98 7.22 0.000 
 N=1 -3.91 -1.94 0.057 
 N=2 -1.61 -0.80 0.426 
 N=3 -0.27 -0.13 0.895 
 N=4 0.26 0.13 0.897 
 N=5 0 - - 
 F-statistica 1.47 - 0.221 

Temple, OK Intercept 12.33 4.66 0.000 
 N=1 -3.60 -2.75 0.007 
 N=2 -2.34 -1.79 0.077 
 N=3 -1.24 -0.94 0.347 
 N=4 0.02 0.01 0.991 
 N=5 0 - - 
 F-statistica 2.83 - 0.029 

Watonga, OK Intercept 11.00 6.41 0.000 
 N=1 -1.79 -1.72 0.088 
 N=2 -1.26 -1.21 0.228 
 N=3 -0.48 -0.46 0.649 
 N=4 0.03 0.03 0.978 
 N=5 0 - - 
 F-statistica 1.19 - 0.319 

Weatherford, OK Intercept 12.43 6.28 0.000 
 N=1 -3.51 -3.08 0.003 
 N=2 -2.07 -1.82 0.072 
 N=3 -1.08 -0.95 0.346 
 N=4 -0.22 -0.19 0.849 
 N=5 0 - - 
 F-statistica 3.21 - 0.015 

Wellington, KS Intercept 16.12 4.65 0.002 
 N=1 -2.56 -0.95 0.351 
 N=2 -1.81 -0.67 0.508 
 N=3 -1.31 -0.48 0.632 
 N=4 -1.03 -0.38 0.706 
 N=5 0 - - 
 F-statistica 0.25 - 0.909 
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Appendix Table 3. 1978-2008 Hard Wheat Storage Basis Forecasting Model 
Comparisons 
 

Location Effect Estimate t-value p-value 

Whitewater, KS Intercept 14.50 5.69 0.000 
 N=1 -0.40 -0.21 0.836 
 N=2 -0.45 -0.23 0.817 
 N=3 -2.23 -1.15 0.256 
 N=4 -1.48 -0.76 0.451 
 N=5 0 - - 
 F-statistica 0.45 - 0.775 

Witchita, KS Intercept 12.96 5.48 0.000 
 N=1 0.64 0.37 0.710 
 N=2 0.78 0.46 0.648 
 N=3 -0.42 -0.25 0.807 
 N=4 -0.65 -0.38 0.705 
 N=5 0 - - 
 F-statistica 0.27 - 0.893 
     

Yukon, OK Intercept 9.48 7.23 0.000 
 N=1 0.66 0.65 0.517 
 N=2 -0.16 -0.16 0.873 
 N=3 -0.03 -0.03 0.979 
 N=4 0.24 0.23 0.816 
 N=5 0 - - 
 F-statistica 0.20 - 0.936 
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Appendix Table 4. 1976-2008 Soft Wheat Preharvest Basis Forecasting Model 
Comparisons 

Location Effect Estimate t-value p-value 

Chicago, IL Intercept 13.73 4.81 0.000 

 N=1 -1.92 -1.64 0.104 
 N=2 -1.18 -1.00 0.317 
 N=3 -0.42 -0.36 0.718 
 N=4 -0.02 -0.02 0.988 
 N=5 0 - - 
 F-statistica 1.00  0.410 

St. Louis, MO Intercept 35.13 4.02 0.000 
 N=1 6.20 1.73 0.087 
 N=2 0.47 0.13 0.897 
 N=3 0.27 0.07 0.941 
 N=4 0.73 0.20 0.840 
 N=5 0 - - 
 F-statistica 1.07  0.374 

Toledo, OH Intercept 28.60 4.56 0.000 
 N=1 4.18 1.11 0.270 
 N=2 0.85 0.23 0.822 
 N=3 0.89 0.23 0.815 
 N=4 0.82 0.22 0.827 
 N=5 0 - - 
 F-statistica 0.37  0.828 

a The null hypothesis is that all values of N have the same forecast accuracy. 
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Appendix Table 5. 1975-2008 Soft Wheat Storage Basis Forecasting Model 
Comparisons 

Location Effect Estimate t-value p-value 

Chicago, IL Intercept 13.62 8.41 0.000 
 N=1 -0.73 -0.52 0.604 
 N=2 -1.58 -1.12 0.264 
 N=3 -0.43 -0.30 0.761 
 N=4 0.67 0.48 0.634 
 N=5 0 - - 
 F-statistica 0.71 - 0.587 

St. Louis, MO Intercept 16.37 7.28 0.000 
 N=1 -1.06 -0.60 0.547 
 N=2 -1.60 -0.91 0.365 
 N=3 -0.17 -0.10 0.924 
 N=4 0.39 0.22 0.823 
 N=5 0 - - 
 F-statistica 0.43 - 0.784 

Toledo, OH Intercept 9.27 3.68 0.001 
 N=1 5.11 3.71 0.000 
 N=2 1.09 0.79 0.431 
 N=3 1.57 1.14 0.256 
 N=4 0.45 0.33 0.745 
 N=5 0 - - 
 F-statistica 4.34 - 0.003 

a  The null hypothesis is that all values of N have the same forecast accuracy. 
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Appendix Table 6. 1980-2008 Corn Preharvest Basis Forecasting Model 
Comparisons 

 

Location Effect Estimate t-value p-value 

Northern, IL Intercept 13.21 8.97 0.000 
 N=1 -1.90 -1.46 0.148 
 N=2 -0.62 -0.47 0.636 
 N=3 -0.25 -0.20 0.845 
 N=4 0.06 0.05 0.962 
 N=5 0 - - 
 F-statistica 0.76 - 0.551 

Western, IL Intercept 11.54 7.69 0.000 
 N=1 -0.47 -0.36 0.718 
 N=2 0.55 0.42 0.673 
 N=3 0.47 0.36 0.716 
 N=4 0.43 0.33 0.742 
 N=5 0 - - 
 F-statistica 0.22 - 0.927 

North Central, IL Intercept 10.08 7.37 0.000 
 N=1 -0.44 -0.40 0.688 
 N=2 0.38 0.34 0.732 
 N=3 0.23 0.21 0.836 
 N=4 0.48 0.44 0.659 
 N=5 0 - - 
 F-statistica 0.22 - 0.924 

South Central, IL Intercept 10.37 8.11 0.000 
 N=1 -0.11 -0.10 0.923 
 N=2 0.80 0.69 0.489 
 N=3 0.62 0.54 0.592 
 N=4 0.53 0.46 0.646 
 N=5 0 - - 
 F-statistica 0.24 - 0.914 

Wabash, IL Intercept 12.90 7.09 0.000 
 N=1 0.26 0.18 0.858 
 N=2 1.01 0.70 0.482 
 N=3 1.21 0.84 0.401 
 N=4 0.71 0.49 0.622 
 N=5 0 - - 
 F-statistica 0.25 - 0.910 
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Appendix Table 6. 1980-2008 Corn Preharvest Basis Forecasting Model 
Comparisons 

 

Location Effect Estimate t-value p-value 

West-Southwest, IL Intercept 12.34 6.74 0.000 
 N=1 0.59 0.44 0.659 
 N=2 1.09 0.82 0.413 
 N=3 0.47 0.35 0.726 
 N=4 0.57 0.43 0.669 
 N=5 0 - - 
 F-statistica 0.17 - 0.953 

Little Egypt, IL Intercept 11.77 6.59 0.000 
 N=1 1.21 0.92 0.357 
 N=2 1.22 0.93 0.352 
 N=3 1.14 0.87 0.385 
 N=4 0.82 0.63 0.531 
 N=5 0 - - 
 F-statistica 0.31 - 0.869 

a The null hypothesis is that all values of N have the same forecast accuracy. 
  



 

80 
 

Appendix Table 7. 1980-2008 Corn Storage Basis Forecasting Model 
Comparisons 

 

Location Effect Estimate t-value p-value 

Northern, IL Intercept 8.48 6.53 0.000 
 N=1 -1.53 -1.85 0.067 
 N=2 -1.18 -1.43 0.156 
 N=3 -0.99 -1.20 0.232 
 N=4 -0.21 -0.25 0.802 
 N=5 0.00 - - 
 F-statistica 1.25 - 0.296 

Western, IL Intercept 7.40 5.88 0.000 
 N=1 -1.28 -1.87 0.064 
 N=2 -1.03 -1.49 0.138 
 N=3 -0.84 -1.23 0.222 
 N=4 -0.24 -0.35 0.726 
 N=5 0.00 - - 
 F-statistica 1.24 - 0.300 

North Central, IL Intercept 7.62 6.81 0.000 
 N=1 -0.68 -0.92 0.360 
 N=2 -0.78 -1.05 0.295 
 N=3 -0.94 -1.26 0.209 
 N=4 -0.37 -0.50 0.620 
 N=5 0.00 - - 
 F-statistica 0.51 - 0.731 

South Central, IL Intercept 7.52 7.06 0.000 
 N=1 -1.69 -2.44 0.016 
 N=2 -0.76 -1.09 0.278 
 N=3 -0.49 -0.71 0.480 
 N=4 -0.15 -0.22 0.827 
 N=5 0.00 - - 
 F-statistica 1.86 - 0.122 

Wabash, IL Intercept 7.11 6.47 0.000 
 N=1 -1.06 -1.36 0.175 
 N=2 -0.11 -0.14 0.891 
 N=3 -0.28 -0.36 0.717 
 N=4 -0.03 -0.04 0.970 
 N=5 0.00 - - 
 F-statistica 0.64 - 0.632 

West-Southwest, IL Intercept 7.34 6.99 0.000 
 N=1 -1.18 -1.67 0.097 
 N=2 -0.80 -1.13 0.261 
 N=3 -0.55 -0.78 0.436 
 N=4 -0.24 -0.34 0.736 
 N=5 0.00 - - 
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Appendix Table 7. 1980-2008 Corn Storage Basis Forecasting Model 
Comparisons 

 

Location Effect Estimate t-value p-value 

 F-statistica 0.86 - 0.490 
Little Egypt, IL Intercept 6.96 6.75 0.000 

 N=1 -0.72 -1.03 0.305 
 N=2 -0.12 -0.17 0.869 
 N=3 -0.50 -0.72 0.475 
 N=4 -0.02 -0.03 0.972 
 N=5 0.00 - - 
 F-statistica 0.42 - 0.792 

a The null hypothesis is that all values of N have the same forecast accuracy. 
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Appendix Table 8. 1980-2008 Soybean Preharvest Basis Forecasting Model 
Comparisons 

 

Location Effect Estimate t-value p-value 

Northern, IL Intercept 10.53 7.76 0.00 
 N=1 -1.30 -1.17 0.24 
 N=2 -0.09 -0.08 0.94 
 N=3 0.01 0.01 0.99 
 N=4 -0.07 -0.06 0.95 
 N=5 0 - - 
 F-statistica - 0.52 0.72 

Western, IL Intercept 11.57 6.23 0.00 
 N=1 0.06 0.04 0.97 
 N=2 -0.74 -0.59 0.56 
 N=3 -0.24 -0.19 0.85 
 N=4 -0.24 -0.19 0.85 
 N=5 0 - - 
 F-statistica - 0.12 0.97 

North Central, IL Intercept 9.48 7.34 0.00 
 N=1 -0.70 -0.73 0.46 
 N=2 -0.52 -0.55 0.59 
 N=3 -0.40 -0.42 0.68 
 N=4 -0.20 -0.21 0.83 
 N=5 0 - - 
 F-statistica - 0.16 0.96 

South Central, IL Intercept 9.65 7.02 0.00 
 N=1 0.04 0.04 0.97 
 N=2 0.05 0.05 0.96 
 N=3 0.07 0.06 0.95 
 N=4 -0.34 -0.31 0.75 
 N=5 0 - - 
 F-statistica - 0.05 1.00 

Wabash, IL Intercept 13.07 7.98 0.00 
 N=1 -1.38 -1.16 0.25 
 N=2 -1.46 -1.23 0.22 
 N=3 -1.51 -1.27 0.21 
 N=4 -0.34 -0.29 0.77 
 N=5 0 - - 
 F-statistica - 0.72 0.58 
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Appendix Table 8. 1980-2008 Soybean Preharvest Basis Forecasting Model 
Comparisons 

 

Location Effect Estimate t-value p-value 

West-Southwest, IL Intercept 11.76 5.46 0.00 
 N=1 0.37 0.26 0.80 
 N=2 -0.09 -0.06 0.95 
 N=3 -0.18 -0.13 0.90 
 N=4 0.24 0.17 0.87 
 N=5 0 - - 
 F-statistica - 0.05 0.99 

Little Egypt, IL Intercept 12.54 6.59 0.00 
 N=1 -0.40 -0.35 0.73 
 N=2 -1.43 -1.23 0.22 
 N=3 -1.28 -1.10 0.27 
 N=4 -0.42 -0.36 0.72 
 N=5 0 - - 
 F-statistica 0.56 - 0.69 

a
 The null hypothesis is that all values of N have the same forecast accuracy. 
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Appendix Table 9. 1980-2008 Soybean Storage Basis Forecasting Model 
Comparisons 

 

Location Effect Estimate t-value p-value 

Northern IL Intercept 10.11 7.91 0.00 
 N=1 -1.94 -2.20 0.03 
 N=2 -1.30 -1.47 0.14 
 N=3 -0.80 -0.90 0.37 
 N=4 -0.13 -0.15 0.88 
 N=5 - - - 
 F-statistica - 1.69 0.16 

Western IL Intercept 8.84 6.99 0.00 
 N=1 -2.24 -2.51 0.01 
 N=2 -0.96 -1.08 0.28 
 N=3 -0.72 -0.81 0.42 
 N=4 -0.02 -0.02 0.98 
 N=5 - - - 
 F-statistica - 2.11 0.08 

North Central IL Intercept 10.02 7.71 0.00 
 N=1 -2.14 -2.34 0.02 
 N=2 -1.19 -1.30 0.19 
 N=3 -0.82 -0.90 0.37 
 N=4 -0.15 -0.17 0.87 
 N=5 - - - 
 F-statistica - 1.79 0.14 

South Central IL Intercept 9.50 6.84 0.00 
 N=1 -1.86 -1.97 0.05 
 N=2 -0.74 -0.78 0.44 
 N=3 -0.18 -0.19 0.85 
 N=4 -0.04 -0.04 0.96 
 N=5 - - - 
 F-statistica - 1.37 0.25 

Wabash IL Intercept 10.27 6.95 0.00 
 N=1 -2.11 -2.21 0.03 
 N=2 -1.34 -1.41 0.16 
 N=3 -0.78 -0.81 0.42 
 N=4 -0.14 -0.15 0.88 
 N=5 - - - 
 F-statistica - 1.68 0.16 

West-Southwest IL Intercept 9.04 6.01 0.00 
 N=1 -2.19 -2.32 0.02 
 N=2 -1.08 -1.15 0.25 
 N=3 -0.58 -0.62 0.54 
 N=4 0.04 0.04 0.97 
 N=5 - - - 
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Appendix Table 9. 1980-2008 Soybean Storage Basis Forecasting Model 
Comparisons 

 

Location Effect Estimate t-value p-value 

 F-statistica - 1.90 0.12 
Little Egypt IL Intercept 9.47 7.62 0.00 

 N=1 -1.40 -1.60 0.11 
 N=2 -1.49 -1.71 0.09 
 N=3 -0.74 -0.84 0.40 
 N=4 -0.09 -0.10 0.92 
 N=5 - - - 
 F-statistica - 1.30 0.28 

a The null hypothesis is that all values of N have the same forecast accuracy. 
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