
 USING NONCOOPERATIVE POTENTIAL GAMES

 TO IMPROVE NETWORK SECURITY

 By

 PATRICK D. HARRINGTON

Bachelor of Arts, English

Oklahoma Baptist University
Shawnee, OK

1996

Bachelor of Science, Computer Science
Northeastern State University

Tahlequah, OK
1999

Masters of Science, Computer Science

University of Tulsa
Tulsa, OK

2002

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

July, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215274945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

 USING NONCOOPERATIVE POTENTIAL GAMES

TO IMPROVE NETWORK SECURITY

 Dissertation Approved:

 Dr. Johnson Thomas

 Dissertation Adviser

 Dr. George Hedrick

 Dr. Nohpill Park

 Dr. Marilyn Kletke

 Dr. Mark E. Payton

 Dean of the Graduate College

iv

ACKNOWLEDGMENTS

I would like to first and foremost thank my wife, Rayna, for her unfailing support during
my graduate career.

I would also like to thank my advisor, Dr. Johnson Thomas, for his guidance, wisdom,
and perspective for my work, as well as Drs. Hedrick, Kletke, Park, and Chandler for
their help.

I would also like to express thanks to the Department of Mathematics & Computer
Science at Northeastern State University in Tahlequah, and in particular my department
chair, Dr. Darryl Linde, for arranging my work schedule to facilitate making progress
toward a PhD. This would also not have been possible without the support of the faculty,
in particular Dr. Rick Matzen, Bill King, Gordon Shamblin, and Dr. Rad Alrifai. I would
also like to especially acknowledge Bill, Gordon, and Rick for their lending of books and
advice on mathematics. I would also like to thank my parents, Drs. Doug Harrington and
Elisabeth Wentz-Harrington, for encouraging me to pursue a career in computer science
and in teaching; and my late mother, Martha Harrington, who inspired me to live life
fully.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. REVIEW OF LITERATURE..10

III. SECURITY METRICS ..33

 3.1: Problem definition ..37
 3.2: Security metrics ..40
 3.3: Cryptography ..40
 3.4: Data sensitivity ...41
 3.5: Access control ...42
 3.6: Security metrics example ..43

IV. CONSTRAINT SATISFACTION...47

 4.1: Constraint satisfaction problems ...47
 4.2: Costs..52
 4.3: Side payments ...54
 4.4: Objective function...56
 4.5: Constraint satisfaction problems and game subset solvability56
 4.6: Utility ..63
 4.7: Equilibrium in a game...64

V. GAME THEORETIC ANALYSIS ...67

 5.1: Coalition formation for a weighted potential game ..67
 5.2: Attack tree analysis to improve security ...74
 5.3: Pareto optimization ...84
 5.4: Game to optimize network security ..90
 5.5: Pure strategy game ..90
 5.6: Mixed strategy game ...92
 5.7: Game-based architecture ...94

VI. VALIDATION ..101

 6.1: Comparing our algorithm to an established algorithm101
 6.2: O(n) analysis ...112

vi

Chapter Page

VII. FINDINGS ...117

 7.1: Prototype One ...121
 7.2: Prototype Two...145
 7.3: Prototype Three...156
 7.3.1: Prototype Three Version Two..169
 7.4: Prototype Four ..185
 7.4.1: Prototype Four Version Two ...195
 7.5: Kerberos comparison ..197
 7.6: Varying network size: a comparison ..210
 7.7: Detailed summary of results ...225

VIII. CONCLUSION ...231
 8.1: Future work ...235

REFERENCES ..237

vii

LIST OF TABLES

Table Page

 1.1: Prisoners’ dilemma ..8
 3.1: Cartesian product of security metrics converted to real values46
 5.1: Security levels with coalitions ...72
 5.2: Security levels and changes brought about by removing coalitions73
 5.3: Non-coalition security levels ...73
 7.1: Overview of all prototypes’ similarities and differences119
 7.2: Average security comparison, Prototype one ..142
 7.3: Average utility improvement comparison, Prototype one145
 7.4: Table of Prototypes and General Results ...224

viii

LIST OF FIGURES

Figure Page

 2.1: Komali [4] simulation: Utility improvement ...21
 5.1: Attack tree analysis and vulnerability reduction example diagram76
 5.2: Game layer diagram ...100
 7.1: Utility improvement, candidate nodes, prototype one123
 7.2: Average utility improvement of network with homogeneous minimum
 security, prototype one ...125
 7.3: Comparison of candidate nodes' security, prototype one126
 7.4: Average network security, same minimum, prototype one128
 7.5: Average network security, different minima, prototype one128
 7.6: Average security, prototype one ..129
 7.7: Average network utility improvement, prototype one130
 7.8: Candidate nodes' security, different vs. same minimum security,
 prototype one ...131
 7.9: Average utility improvement of three networks, prototype one134
 7.10: Average security of three networks, prototype one136
 7.11: Percent of achieved maximum security for three networks,
 prototype one ..138
 7.12: Average security, selected networks, prototype one......................................140
 7.13: Average utility improvement, selected networks, prototype one143
 7.14: Average security, prototype two ..148
 7.15: Average local neighborhood count, prototype two ..151
 7.16: Average utility improvement, prototype two ...152
 7.17: Average number of nodes forming a coalition, prototype two153
 7.18: Percentage of coalition members with sensitive data access, no
 side payments ...154
 7.19: Average security, prototype three ..158
 7.20: Average local neighborhood count, prototype three161
 7.21: Average utility improvement, prototype three ...162
 7.22: Average number of nodes forming a coalition, prototype three163
 7.23: Percentage of local neighborhood that is in coalition, prototype three164
 7.24: Percentage of coalition members with sensitive data access, prototype
 three..165
 7.25: Percent of nodes making side payments, prototype three167
 7.26: Average security, prototype three v.2 ..170
 7.27: Average security, prototype three v.1 and v.2, max
 security = hetero min+5 ...172

ix

Figure Page

 7.28: Average security, prototype three v.1 and v.2, max
 security = hetero min+6 ..173
 7.29: Percent of nodes making side payments, prototype three v.2175
 7.30: Average local neighborhood count, prototype three v.2176
 7.31: Average local neighborhood count, prototype three v.1 and v.2178
 7.32: Average maximum security, prototype three v.1 and v.2179
 7.33: Average utility improvement, prototype three v.1 and v.2180
 7.34: Average number of nodes forming coalition, prototype three v.1
 and v.2 ...181
 7.35: Average percentage of coalition members granted sensitive data
 access, prototype three v.1 and v.2 ...182
 7.36: Best performing networks per respective prototype184
 7.37: Average security, pure and mixed strategies ..187
 7.38: Average security, prototype four ..189
 7.39: Average utility improvement, prototype four ...191
 7.40: Percent of nodes making side payments, prototype four193
 7.41: Average local neighborhood count, prototype four194
 7.42: Average security, prototype four v.2 ..196
 7.43: Average security, Kerberos...198
 7.44: Percent of all nodes able to participate in Kerberos199
 7.45: Average security for all prototypes, n=43 ..202
 7.46: Security comparison, max = hetero min plus 3 network204
 7.47: Security comparison, max = hetero min plus 4 network205
 7.48: Security comparison, max = hetero min plus 5 network206
 7.49: Security comparison, max = hetero min plus 6 network207
 7.50: Security comparison, max = hetero min plus 7 network208
 7.51: Security comparison, max = hetero min plus 8 network209
 7.52: Prototype 1 security, varying n ...212
 7.53: Prototype 2 security, varying n ...213
 7.54: Prototype 3 v.1 security, varying n ...214
 7.55: Prototype 3 v.2 security, varying n ...215
 7.56: Prototype 4 v.1 security, varying n ...217
 7.57: Prototype 4 v.2 security, varying n ...218
 7.58: Kerberos security, varying network size n..219
 7.59: Average security for all prototypes, n=20 ..221
 7.60: Average security for all prototypes, n=60 ..222
 7.61: Average security for all prototypes, n=80 ..223

x

SYMBOLS

A partition on graph G that divides it into coalitions

c cost

c (si) cost of security value si for vertex vi

c ((sij), σij (sij)) cost of security value sij for edge eij given constraints σij

d (j) data of node j

E set of edges

eij edge from vertex i to vertex j

e-ij all other edges besides vertex i to vertex j

G graph composed of the set of vertices and set of edges

Γ game of G

i node (player) i, represented in the graph by vertex vi

j node (player) j, represented in the graph by vertex vj

∏ potential function

r ij (d(j)) read access from i to j

�� set of positive real numbers

S non-decreasing sequence of nonnegative security levels

si security level of player i

s-i security levels of all other players besides i

sij security level of eij

s-ij security level of e-ij

s*i optimal action for player i

s*-i optimal action for all other players besides i

xi

s* action profile in equilibrium

(sij , σij (sij)) security of sij given constraint σij ; also known as move sij for
player i

����, ������		 suboptimal move for player i

���
, �����
		 optimal (equilibrium) move for player i

cij(sjk , σjk (sjk)) side payment move for player i to j to induce change in sjk

σi constraint of player i

σ-i constraints of all other players besides i

σi (si) constraint of security value si for player i

σ-i (s-i) constraint of security value s-i for all other players besides i

σij (sij) constraint σij of sij

u utility function

V set of vertices

vi vertex i, also referred to as node i or player i

vj vertex j, also referred to as node j or player j

wij (d(j)) write access from i to j

yij current encryption strength of connection eij

xii

DEFINITIONS

• Action: assigning a value to a variable.

• Action profile: a sequence of actions for each player in the game; there is one action

corresponding to each player in the sequence.

• Coalition: a group of players who share a common security level and preferences.

• Constraint: a function which maps the domain of possible values a variable may take

to the codomain or range of values that do not violate the constraints.

• Constraint satisfaction problem: abbreviated CSP, it is a problem defined by a set of

variables and corresponding constraints on the variables.

• Cooperative game: a game in which players make binding commitments that require

the consent of all parties to break the commitment.

• Cost: a measure of lost utility. Cost is denominated in units of security.

• Edge: see Link

• Equilibrium: the best possible move a player can make based on the assumption that

all other players also make their best possible moves. Equilibrium maximizes utility,

and is a partial order on the actions: they are reflexive, anti-symmetric, and transitive

with respect to one another.

xiii

• Finite Improvement Property: all potential games possess this property whereby there

is a best possible move for each state of the game. Neither the game nor the

improvement can go on forever, and there can be no repeated states, as the game must

have a finite end with unique moves and finite utility.

• Game: a game consists of the Players, Information, Actions, and Utilities.

• Game theory: the study of actions by decision-makers who are aware that their

actions have an impact on others.

• Information: a player’s knowledge about the set of variables describing the game,

which includes constraints on what actions can and cannot be taken.

• Incomplete Preferences: see Partial Preferences

• Link: a one-way directed connection between nodes.

• Metric: see Security metric

• Mixed Strategy: a plan that maps a player’s information to a probability distribution

(ranging from 0 to 1) over the set of pure strategies.

• Nash equilibrium: see Equilibrium

• Node: nodes in graph G represent computers in the network. Nodes are the players in

the game.

• Noncooperative game: a game in which any commitments made can be unilaterally

broken.

• Objective function: describes a function to be maximized by all variables in the

constraint satisfaction problem. Not all constraint satisfaction problems have an

objective function.

xiv

• Pareto optimized: a state in which a player can take no action deviating from this state

without decreasing utility for itself or some other player.

• Partial Preferences: equations in which a set of variables may have intermediate or

unassigned values.

• Partition: to form coalitions, the network is divided into non-overlapping subsets

according to a pairwise disjoint function known as a partition.

• Pay: compensation measured in utility to or from another node.

• Player: an individual making decisions and taking actions in the game. See also

Node, as players are represented by nodes or computers in the network.

• Potential function: the potential function takes the same input as the utility function,

and returns a calculation that is either the same sign (for an ordinal potential function)

or equal to (for an exact potential function) the value calculated by the utility function

of each player. The exact potential function is defined as applicable when players

move according to mixed strategies, while the ordinal potential is defined to be

applicable when players move according to pure strategies.

• Potential game: a game possessing a potential function.

• Preferences: the current best values for the variables in the game. Since the variables

in the game represent security levels, the preferences are the current optimal security

levels. They correspond to the environment and its current state.

• Problem state: some, but not necessarily all, variables have values assigned to them.

• Pure strategy: a plan that maps a player’s information to a single action.

• Security: the opposite of vulnerability. In our game, security is optimized by

minimizing vulnerability.

xv

• Security metric: quantitative measurement of some aspect of security. Our metrics

are cryptography, data sensitivity, and access control.

• Side payment: an action that consists of a payment made from node i to node j to

induce j to change the security of its link sjk to another node k.

• Solution: a complete assignment of values to variables in a constraint satisfaction

problem that do not violate the respective constraints.

• Strategy: a plan to take a specific action in a game. Each player has a set of strategies

that govern the player’s actions in every conceivable situation.

• Utility: the quantity of positive feedback (which in our game is security) which a

player receives for taking an action. Utility is denominated in units of security.

• Utility function: the utility function takes as input the set of possible actions available

to a player and determines a player’s preference over the given set of possible actions.

These preferences enable a player to choose the best values that can be assigned to

the game variables and maximize its utility at each turn in the game.

• Vulnerability: a weakness whereby an outsider may destroy, alter, or steal one’s

possessions, which is the data possessed by the nodes as well as the nodes

themselves. Vulnerability is the opposite of security.

• Weighted potential game: a type of potential game that possesses a utility function

which is directly related to other players’ utility functions. A weighted potential

game possesses a potential function for either mixed or pure strategies. We use a

weighted potential game to optimize network security.

1

CHAPTER I

INTRODUCTION

Computer networks have changed significantly since their first invention. In the early

days of the Internet, the network was composed of nearly identical computers connected

to one another by wire, whereas today’s wireless network consists of increasingly

heterogeneous devices ranging from PCs to iPhones to servers. Not only are today’s

networks more complex to secure, but the attacks on the network are far more

sophisticated. The advent of cloud computing and of cyber-physical systems composed

of sensor networks, actuators, and control systems has only increased the heterogeneity

and complexity of securing such a network. While a great deal of work has been reported

on security for individual computers or devices, very little work has been done to

optimize security for the overall network when all devices forming the network are not

only heterogeneous but also autonomous. The security of the entire network itself is

critical and cannot be done piecemeal.

The problem considered in our work is how to maximize an entire network’s

security when it is made up of computers or devices that may be very different from one

another. The computers act independently and autonomously, with no broad or central

coordinator. There has been previous research with focus on individual components

2

forming the network, such as Agah [26,27] and Demirbas [29], but these approaches are

limited as they fail to optimize security for the entire network. In these approaches,

network security is only as good as the security of the weakest component. Our work

proposes to allow individual computers to work together to achieve the optimum security

for the entire network using game theory.

The problem considered in our work centers on a general representation of

heterogeneous computers, each with different hardware and software. We consider

hardware to include all physical, non-software related computer components such as

CPU, RAM, and available power or battery life. Software thus includes both system

software, which refers to the operating system, and application software, which includes

all other software. The hardware and software of a computer will subsequently restrict its

ability to sustain maximum security, which is only possible in an ideal world. The

network under consideration is a wireless network, where connections between nodes are

assumed to exist a priori. The nodes themselves are not physically mobile, but we

assume connections change. These connections change during the network security

optimization process.

Game theory is one solution to address the problem of maximizing security within

a system’s limitations. Game theory, as defined by Rasmusen [8], is the study of actions

by decision-makers who are aware that their actions have an impact on others. A game

consists of the players, information, actions, and utilities. The players are defined as the

individuals making decisions and taking actions in the game. We define the computers in

the network as nodes, and these nodes are the players in our game theoretic security

solution proposed in our thesis. In this situation, the players are the computers, or nodes,

3

in the network. The information is defined as the players’ knowledge about the set of

variables describing the game, which includes constraints on what actions can and cannot

be taken. These variables are input to a player’s utility function, which determines a

player’s preference over a given set of possible actions. The utility function takes as

input the set of possible actions available to a player and determines a player's preference

over the given set of possible actions. These preferences enable a player to choose the

best values that can be assigned to the game variables and maximize its utility at each

turn in the game. This plan of action is its strategy. The player then takes the best action

by assigning these best values to its variables, resulting in a new state of the game. At

each turn in the game the player applies new information to its utility function,

determines its preference over a given set of possible actions, chooses the best values that

can be assigned to the game variables, and maximizes its security.

Game theory as an optimization technique offers several advantages over other

rule-based, linear programming, tree-pruning or backtracking algorithms, as well as

artificial intelligence (AI) techniques. Game theory allows the game designer to arrive at

a solution by developing the model and evaluation criteria for players so they can

determine the optimal next move to make in the game to maximize their utility; as the

game plays out, the solution evolves, giving the optimal configuration for the network.

The designer of the game need only model the moves of the game and their context,

allow the players to act autonomously according to these rules, and an optimization

results.

Furthermore, game theory has the advantage of finding solutions to problems that

would otherwise be difficult to solve using other approaches. Game theory can be used

4

to model complex interactions and environments, which in our problem is a

heterogeneous network. The use of mixed strategies is unique to game theory and allows

for modeling more complex decision-making processes than could be done by other

techniques. Through the use of mixed strategies, the game designer is able to model the

possibility of mistakes made by game players. With pure strategies, players always

choose the optimal strategy. With mixed strategies, however, a player chooses a move

according to a probability distribution over the set of pure strategies, thus taking the

optimal action some percentage of the time and less than optimal otherwise.

In our thesis, we will examine the methodology behind how certain game subsets

have been proven to have mathematical advantages over others and how such game

subsets make it easier to prove a solution is optimal. Furthermore, our thesis will take

advantage of the modeling techniques exclusive to a game theoretic problem-solving

approach through mixed strategies. It will also allow coalitions, which are otherwise

known as groups, to be formed among the game players as part of the game optimization

process. Coalitions can be used to improve efficiency as well as give a broader and

greater overall security than would be possible in the absence of coalitions. We will

develop a heterogeneous game theoretic distributed security model in which game

players choose the move that optimizes security; once a player acts on its choice of

moves, the state of the game changes, and game play leads to security optimization of the

network.

An important aspect of our work is that the security optimization found can be

validated as opposed to existing or traditional solutions, whose effectiveness is

subjective. Traditional security definitions such as “works as expected” [31] are no

5

longer sufficient. An April 2009 report by the Homeland Security Newswire [34]

revealed that because they are now connected to the Internet, a significant number of US

power plants have, over the past few years, had their systems compromised by intruder

programs, and that these potential sleeper agents are still in place in the systems across

the entire US electrical grid. Furthermore, these programs have become embedded in

other parts of the US infrastructure, which includes water treatment plants. To date, no

one is certain how to remove them, or what these programs' function truly serves beyond

gathering intelligence, but the sophistication with which they are embedded suggests a

well-financed organization with skilled members, and is thus most likely related to a

foreign government. If so, it is likely that these programs indeed will become active if

the US goes to war with the foreign government that put the sleeper software there, and

can potentially devastate the US infrastructure. Still, the systems are continuing to work

"as expected," and "officials...do not see an immediate danger" [34].

We believe that statements such as these are representative of the traditional

security paradigm and do not preclude the possibility that these programs will prevent our

power plants to continue to work "as expected" in the future. Clearly, there is a

significant need for paradigm shift in the definition of security from a qualitative

definition to one that can be measured quantitatively. Security metrics can be used as

means to accomplish this paradigm shift. Security metrics is a new field of computer

security and its viability as a field of study was first recognized as serious work only a

few years ago, but it is beginning to become more widely used. The goal of security

metrics is to be able to better analyze security by evaluating a system and quantitatively

representing its inner workings and relationships between entities that form the system

6

itself. Security metrics can thus be used as a basis to give quantitative meaning to the

qualitative definition.

To use metrics in our security solution, we must devise a method of introducing

security metrics themselves to a game. To date, no one has done so. However, we

believe defining the problem itself as a game possessing a system of variables and

constraints on security and energy can allow for the introduction of security metrics.

This type of problem, with constraints and variables, is referred to as a constraint

satisfaction problem.

We define constraints as functions that restrict the domain of values a variable

may take to a subset that forms a codomain or range. Constraint satisfaction problems

are a traditional AI approach and can represent a multi-variable problem with varying

domain and ranges. Constraint satisfaction problems are traditionally solved using

backtracking, tree pruning, or linear programming. In our work, however, game theory

will be used to solve the constraint satisfaction problem, allowing us to model optimal

and suboptimal decisions along with problem constraints, and validate our work using

security metrics. To further validate the security optimization by our algorithm, we will

compare its results with that of the established Kerberos algorithm, which is similar to

our own algorithm in that it is designed to provide security for an entire network and uses

methods of encryption and access control. For a more complete description of Kerberos,

we refer you to [35].

Our work can be generalized to optimize security for almost any network or

system because it can be applied to a network made up of computers that possess any

7

degree of heterogeneity. With regard to the sleeper software in the article mentioned

earlier, since the parties responsible for securing the power plant have not divulged the

manner in which the sleeper agent programs were detected, our only conclusion can be

that their method is not one they wish to divulge to protect classified security methods or

the programs were discovered by accident. We believe that since the past definition of

security is based on the "works as expected" definition in [31], those individuals

responsible for power plant security were simply following this definition. Since even

today there have been no deviations in power plant expected performance, by this old

definition the power plant is secure, and authorities even attest this when they say that

there is "no immediate danger" [34]. We believe this event exemplifies the need to

improve and redefine security; a first step in doing so would be to ensure that definitions

of security are no longer quite as qualitative, as in the "works as expected" definition, but

can be measured quantitatively.

Our work is the first of which we are aware that uses a weighted potential game

for a network security optimization solution. We will use a noncooperative instead of a

cooperative game because it better fits our problem definition: noncooperative games

focus on strategy and utility maximization, whereas cooperative games do not.

Noncooperative games model relationships that may be unilaterally changed by players;

there are thus no binding contracts. At each turn of a game, a player chooses its best

move to maximize its utility. The best possible move a player can make versus all best

possible moves of all other players is defined as an equilibrium, which is also known as

Nash equilibrium. This equilibrium is not necessarily the best outcome, because there

could still be multiple equilibrium or even a solution that goes beyond what is achievable

8

by equilibrium using traditional noncooperative game analysis. Such improved outcomes

and “best” equilibrium are defined as Pareto optimal equilibrium. Potential games are a

subset of the class of noncooperative games that indeed do find these Pareto optimal

solutions to game theoretic problems.

Pareto optimization goes beyond the definition of equilibrium. It is, informally,

the best of the equilibrium or more optimal solution than equilibrium. Pareto optimized

is defined as a state in which a player can take no action deviating from this state without

decreasing utility for itself or some other player. That said, the best way to illustrate the

difference between Pareto optimal and equilibrium is by the example of the game known

as the Prisoners’ dilemma. In the Prisoners’ dilemma, two players are accused of

committing a crime. The players are separated and cannot communicate with one another.

The following Table 1.1 illustrates the respective utilities for each action, with units

measured in years of imprisonment:

Player 1

Player 2

 Stay silent Blame

Stay silent -1,-1 -10,0

Blame 0,-10 -8,-8

Table 1.1: Prisoners’ dilemma

Clearly, the solution in equilibrium is for each player to Blame the other and accept 8

years imprisonment because of the real possibility of being blamed while staying silent,

9

thus receiving 10 years in prison. However, the Pareto optimal solution is for both to

Stay silent because it gives the most utility for all players. If prisoners could cooperate

and had incentive to do so, they could get better than equilibrium. Shapley is recognized

as being the first to develop a technique that can lead to a Pareto optimal solution for all

players and games [2], which will be discussed in greater detail in Chapter II below.

Chapter II contains the literature related to our security solution. In Chapters III - VI, we

present the methodology of our solution and illustrate its improvements over previous

work. Chapter VII contains our prototype simulation and its results, and Chapter VIII

contains our conclusions.

10

CHAPTER II

REVIEW OF LITERATURE

Game theory is the analysis of games. Games can range from simple games, such as

chess or checkers, to more complex games used in economic or strategic planning. While

some roots of game theoretic strategy can be found in the philosophical writings of Plato

and Kant [33], the first real work studying games themselves did not begin until the 19th

century. This initial exploration into game theory was very simple and straightforward.

Working separately, Cournot and Bertrand analyzed simple games where players chose

the optimal move to maximize their utility [32]. While both made only initial

contributions to game theory, Cournot is more widely recognized today due to his work

on games that have an economic application. Regardless, nothing went beyond initial

examination due to the lack of formal mathematical specification. True game theory

began in the 20th century with the work by four men: Von Neumann and Morgenstern,

Nash, and Shapley. In 1944, Von Neumann and Morgenstern wrote the groundbreaking

“The Theory of Games and Economic Behavior” [17], which contained the analysis

techniques, general formula for calculating utility to a player, and game terminology still

in use today. VonNeumann and Morganstern’s work created the tools necessary to

successfully analyze games, which led to a number of future discoveries. In addition,

their work ensured that future explorations of game theory to solve problems were

11

restricted to situations and problems that could be fully described by mathematics. For

example, using games to model computer problems has been largely successful for the

reason that the factors affecting a problem with computers can be modeled with a great

degree of certainty. As we know, although computers can malfunction, they are not

capable of panic. Modeling a computer problem using game theory thus has greater

likelihood of reaching an optimal result.

Building upon VonNeumann and Morganstern’s work, John Nash developed the

noncooperative game and defined game equilibrium in the 1950s. At the same time,

Shapley [21] - [22] took VonNeumann and Morganstern’s work and used it to define the

field of cooperative games. Cooperative games tend to spend little effort focusing on the

strategy of each player in the game; noncooperative games do the exact opposite. While

noncooperative games are now more widely studied than cooperative games, with [8]

devoting an entire textbook to them, Shapley is the only living member of the four

founders of game theory, and he continues to publish to this day. His efforts have turned

toward noncooperative games, but they contain new ideas of how to create

noncooperative games that go beyond their traditional definition, giving these games

cooperative characteristics. His most recent work [6] developed a game that allows

coalitions to form even though variables possess intermediate values. Furthermore,

Shapley has made significant improvements on the class of noncooperative games known

as potential games [2]; this work is one of the foundations of our thesis.

A potential game is a game possessing a function, called a potential function,

which is similar to a players' utility function. The potential function takes the same input

as the utility function and outputs a value; in the case of an exact potential function, the

12

output is equivalent to that of the result given by the utility function; in the case of an

ordinal potential function, the output has only the same sign (positive or negative) as the

result output by the utility function. When players move according to mixed strategies,

games possessing a potential function can have only an exact potential function; when

players move according to pure strategies, the game possesses an ordinal potential

function.

Let us give the definition of a potential function in its relationship with a utility

function as given by Shapley [2]. Given utility function u and potential function v, move

m in the game is an element in the set of moves M, denoted

� �
 (2.1)

where M is a member of the set of positive real numbers, denoted

 � �� (2.2)

When move m is input to the ordinal potential function and also to the utility function, the

value calculated by the ordinal potential function is positive or zero if-and-only-if the

value calculated by the utility function is positive or zero, denoted

���	 � 0 � ���	 � 0 (2.3)

For the same utility function u, let us give the definition for the exact potential function

according to [2]. For the exact potential function, which is also denoted v, the value

calculated by the utility function u is equivalent to the value calculated by the exact

potential function v for input m, denoted

���	 � ���	 (2.4)

13

Before delving further into Shapley’s work with potential games, we must

examine the history of the potential game and its definition. In 1973 Rosenthal [14] did

the earliest work with a type of potential games called congestion games. These games

built upon Cournot’s initial work on analyzing oligopolies, whereby all players are

selling the same item at different prices, and no new players are introduced once the

game begins. The game players were all identical, and contained a finite set of actions.

The utility was dependent upon the actions of other players. A linear inverse demand

function, with respect to the item being sold in the game, was used to calculate utility.

All moves in Rosenthals’ work were considered to be “pure” and were not subject to a

probability distribution. Prior to Shapley’s proof in 1996 [2], showing that congestion

games were an isomorphism of noncooperative games, a considerable amount of work on

potential games was still done using Rosenthal’s work as a foundation. Even today,

much of the research still focuses on Rosenthal’s work [11], [13] to the point that it

contains the flaws that Shapley has pointed out in 1996. In this respect, it is somewhat

myopic; it still follows the pattern of excluding mixed strategies and does not reference

Shapley’s recent work in 1996 [2], with the exception of the recent work by Komali [4].

Shapley’s work with potential games [2] is significant. It improves on

Rosenthal’s work by adding proofs that give enhanced definitions of potential games and

their requirements, making it easier to design a game that has equilibrium and is also

Pareto optimal. Shapley’s research deals with mixed and pure strategies and

heterogeneous players, which was something that Rosenthal was unable to solve.

14

Shapley was also able to develop an improved type of potential game, the weighted

potential game.

Defined by Shapley [2], a game that possesses a utility function which is directly

related to each of the players’ utility functions is a weighted potential game. A weighted

potential game possesses a potential function for either mixed or pure strategies, and has

efficiency and convergence improvements over other potential games or myopic, greedy

strategy games. Weighted potential games possess at least one equilibrium, and are

easier to prove Pareto optimal. Furthermore, the weighted potential game is valid for

both mixed or pure strategies and players with any degree of heterogeneity. Shapley’s

work with potential games extends to graph theory as well, containing a proof that any

game containing a network using weighted potential for utility evaluation is connected, at

minimum, by a simple cycle.

Shapley explains why the weighted potential game gives a result that is more

likely to be optimal than other types of potential games. Because the utility function that

determines the weight of benefit between two players is piecewise continuously

differentiable, results can be mathematically analyzed prior to any empirical simulations

by using the equation of the potential. Non-weighted potential games do not possess this

property, as was also proven by Shapley in [2]. Furthermore, the weighted potential

game will lead to an optimal solution regardless of the weight used.

Besides these improvements, Shapley also recognized and established rules for

what leads to optimal solutions for a potential game, which is something not studied by

Rosenthal. Foremost is what Shapley defined as the Finite Improvement Property: all

15

potential games possess this in that there is a best possible move for each state of the

game, but this alone is not enough to guarantee an optimal solution. In addition, neither

the game nor the improvement can go on forever, and there can be no repeated states; the

game must have a finite end with unique moves and finite utility. This particular

property contradicts Rosenthal and Shapley has a mathematical proof to back it up. In

addition, Shapley defined the requirements for non-weighted mixed and pure strategy

potential games.

As a result of his work Shapley discovered that a potential game admits a

cooperative solution to noncooperative game; in theory this would allow the players in

the Prisoners’ dilemma to collaborate indirectly by maximizing the potential function.

To explain this further, the incorporation of a potential function gives the noncooperative

players, which have no binding contract to one another by the nature of the

noncooperative game, a type of motivation and nonverbal collusion which creates a

unique hybrid of noncooperative and cooperative games; if all players try to jointly

maximize the potential function it effectively acts as a binding contract between the

players. Hence in the case of the Prisoners’ dilemma, instead of each accusing the other,

both players play the move to remain silent by jointly maximizing the potential function

between them. The Pareto optimal solution would thus be reached concurrently by both

players because the potential function changed the conditions of the game, allowing for a

more beneficial solution for both players to be reached.

Our understanding of Shapley’s work in [2] is that Pareto-optimality supersedes

equilibrium by its definition. While it is not spelled out in English words, but in

equations, much of his most groundbreaking work takes this form. We have not found

16

any other works that reference this point about Pareto optimality, although the work by

[4] implies that he understands it. However, despite the lack of other sources found,

based upon the fact that much of Shapley’s work is purely in the form of an equation with

little written English-language explanation, and that no authors found thus far are aware

of Shapley’s contributions until referenced second-hand by another author who does

understand Shapley’s equations, we believe that we are correctly reading his work.

Shapley goes on to say in [2] that the existence of a potential function guarantees

the existence of equilibrium. However, there may be several local equilibrium in

addition to the best equilibrium overall. Rosenthal had previously postulated that the way

to find the best equilibrium, which yields the Pareto optimal solution, is to solve for the

maximum of the function, known as the argmax. While it seems obvious, it is not game

theoretic, and defeats the purpose of the game. Still, other authors [4], [11], follow

Rosenthal’s bad example despite this, and even go so far to use it as a method of proof as

suggested by Rosenthal. Shapley’s work in [2] sheds light on Rosenthal’s shortcomings:

experimental results showed that solving for the argmax could be used to determine

which equilibrium is the optimum, but formal proofs demonstrate why solving for

argmax is an invalid proof or predictor of the game itself. If one considers it logically,

Shapley’s reasoning becomes obvious: solving for the maximum value of an equation is

insufficient to describe the complexities of a game. Instead, Shapley said, argmax should

be used as a refinement tool to identify and eliminate any possible false equilibrium. As

stated earlier, authors such as [4], [11] have ignored much of Shapley’s work in this area,

correctly using argmax as a refinement tool but incorrectly using it as a proof of

equilibrium.

17

Komali’s proof for Pareto optimality of the equilibrium is similar to [11]. The

optimal point is examined; once reached, change in utility would result in a player

disconnecting from the network and subsequently cause the player to no longer be

optimal or in equilibrium, which is correct. Ironically, parts of the Pareto optimality

proofs by [4] and [11] are both logically unsound.

Our understanding of logical equivalence leads us to believe that the proofs on

Pareto-optimality in [4], [11] are overworked via proof by contradiction to the point that

they do not prove their original goal; these Pareto optimal proofs instead prove a logical

in-equivalence of their original statement. We refer the reader to [4] and [11] for the

proofs themselves. We select the proof in [4]. To help clarify our own argument, we

reproduce their statements; a game that meets these criteria is considered Pareto optimal:

If the potential function will converge to equilibrium in the game, then no player

can deviate from an action in equilibrium without violating its constraints and

thus decrease utility and make the action not in Pareto optimal equilibrium.

Let us examine the logical statements used in their proof-by-contradiction of a Pareto

optimal game to explain our reasoning. Let the statement p represent the first logical

statement of the proof in [4]

p: the potential function will converge to equilibrium in the game.

Let the statement q represent the first part of the second logical statement of the

proof in [4]

18

q: no player can deviate from its equilibrium action without violating its

constraints.

Let the statement r represent the second part of the second logical statement of the

proof in [4]

r: no player can deviate from Pareto optimal equilibrium action without

decreasing its utility.

Let the statement s represent the third logical statement of the proof in [4]. We

understand the action causing deviation from equilibrium to mean “deviates from

equilibrium action,” giving

s: if a player deviates from its Pareto optimal equilibrium action, then the

action is not in equilibrium.

Note that statements q, r, and s are negations of statements. The first part of

statements q, r and s address deviating from an equilibrium action, which is the

opposite of playing an equilibrium action. The second part of the statements

addresses violating constraints and decreasing utility, which is the opposite of

preserving constraints and maximizing utility, respectively. Let us now break up

q, r, s even smaller using the following statements:

t: player plays action in Pareto optimal equilibrium

u: player preserves constraints of its action

v: player maximizes utility

19

We can now write q, r, and s symbolically:

� � � � �, � � � � � , � � � � �

The latter statement

� � � � �

is what [4], [11] focus their proof-by-contradiction upon. However, proof-by-

contradiction works when the hypothesis and conclusion are different, which is

not what we have here in statement s. Proof-by-contradiction works by assuming

the hypothesis true and conclusion false, and using this to arrive at a contradiction

of the negated conclusion. We understand statement s above to be vacuous as it

literally reads, “if a player plays an action in equilibrium, then a player does not

play an action in equilibrium.” The authors in [4], [11] did not break down

statement s into its sub-statements. Writing the statements symbolically has

exposed the over-complexity of this proof-by-contradiction approach.

This work by Komali in [4] focuses optimizing communications energy consumption in a

network with game theory. In combination with ordinal potential functions, Komali

constructs a game with graphs and greedy strategies where all players are identical and

use pure strategies only. This work builds upon a proof by Shapley stating that said

graphs are connected, at minimum, by a simple cycle. Specifically, Shapley states [2]

that a graph representing a game is connected if the function used to calculate utility and

thereby determine the best strategies is a potential function. Komali’s resulting game is

noncooperative, and achieves an equilibrium that is Pareto optimal. However, its game

20

only addresses homogeneous players and ordinal utility with pure strategies, and does not

examine heterogeneous players or mixed strategies. Its equation to calculate utility using

linear inverse demand is a variation on Shapley’s [2] and Rosenthal’s [14] work: each

player receives diminishing utility for every other player to whom it is connected, but

also receives additional constant utility for maintaining network connectivity. Our

understanding of the utility equation in Komali [4] is that it differs from the work in [2]

because Komali has tailored his solution to fit his greedy strategies that determine player

moves in the game; the utility calculations are only part of the players’ strategy. The

proof that Komali’s algorithm in [4] is in equilibrium is in his earlier work [30]: however

his proof ignores Shapley’s instructions [2] and instead uses argmax as a method of

proof, which is invalid according to [2]. Thus Komali’s work leaves open the possibility

of a subset of solutions not in equilibrium.

In our own simulations of Komali’s algorithm in [4], its utility improvement

fluctuates back and forth in a sine-wave-like pattern around a threshold, never completely

reaching the Pareto optimal equilibrium; see Figure 2.1 below. These results indicate

Komali is indeed taking argmax of the final set of utilities fluctuating around a threshold

to distinguish between optimal and sub-optimal equilibrium. We believe this should have

been incorporated into his algorithm; as it stands, this inability to distinguish between

Pareto and sub-optimal equilibrium is a flaw. We conclude the flaw is most likely caused

by Komali’s greedy strategy used by players, which Shapley [2] says can tend to a

suboptimal solution for potential games. However, Komali’s earlier work in [30]

acknowledges that the optimal utility indeed does transition around a threshold and that

this is sufficient for him for convergence. Regardless, we do not agree as mentioned

21

earlier, and believe improvements could be made in his work. Our own simulation of the

energy optimization algorithm in Komali [4] is shown in Figure 2.1 below.

Figure 2.1: Our own simulation of the energy optimization algorithm in [4]

Besides the work by Komali, other work has been done in the area of tying

noncooperative games to Pareto optimality. Heikkinen [11] examines a quality-of-

service bandwidth allocation scheme in a distributed homogeneous network within the

framework of a pure-strategy noncooperative game, and uses Pareto optimality to prove

that the equilibrium reached is best overall. It also shares a common approach to [4] in

that the algorithm used by the players to maximize utility is a greedy one, and was

successful at achieving results for equilibrium that is also Pareto optimal for the

examined cases. However, the work is applicable to homogeneous players and pure

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

0 2 4 6 8 10 12 14

U
ti

li
ty

 I
m

p
ro

v
e

m
e

n
t

Iterations

Komali [4] simulation: Utility improvement

22

strategies only, as it does not build upon Shapley’s work in [2] despite its publication at a

later date.

In addition to his work with potential games, Shapley also determined how to

combine players in a game into coalitions by using a function that became known as the

Shapley value [8], [21]. The Shapley value ensures that an individual player receives, as

utility, an average of the utilities that other players receive for the player's actions; it acts

as a sort of "golden rule" for players, and it was discovered by Shapley [2] that it is

required for a game to have a potential function. In doing so, Shapley discovered

additional requirements for all games using potential functions that were not listed before

Shapley’s 1996 work. The game must also have a finite end with unique moves and

finite utility. These requirements were not even hinted at in Rosenthal’s work. Shapley's

2008 work on multiplayer utility [6] continues this, examining forming coalitions without

negotiation when only partial player preferences are known. This work assumes that that

preference can be quantified. Preferences are the current best values for the variables in

the game. Since the variables in the game represent security levels, the preferences are

the current optimal security levels of the connections in the graph.

Partial preferences, which are sometimes called incomplete preferences, are

equations in which a set of variables may have intermediate or unassigned values. In the

case of a game, the variables correspond to the players or variables maximized by the

players, and the partial preferences themselves refer to the intermediate states of the game

prior to equilibrium. Coalition formation in [6] is done by quantitatively comparing

partial and complete preferences of players and coalitions.

23

Individual preferences are used to facilitate coalition formation. These

preferences are combined using the mathematical fact that equilibrium is a partial order,

and any remaining unknowns are combined using a weighted sum. This technique is able

to aggregate individual preferences to coalition preferences without needing to arbitrate

between the players. While Shapley does not explain it in words, we understand his

equations to indicate that the reason the coalition formation algorithm works so well with

partial preferences is that it takes advantage of the mathematical foundations of game

theory to form coalitions. Specifically, Shapley’s coalition formation algorithm uses the

property that an equilibrium is a partial order on the strategies as established in the

mathematics of VonNeumann and Morganstern [17].

In addition, Shapley proves in [6] that because the design of a weighted potential

game means the players are already receiving utility based upon the weight used, it leads

more easily to coalition formation because of the collaboration already inherent in the

weighted potential game. Coalition formation involves forming what are known as

coalition preferences. We understand that these coalition preferences are quantified from

a Cartesian product, which defines the actions of the game as described earlier, to a real

number by using a weighted sum of the individual preferences that already exist prior to

coalition formation. This is not the game theoretic weight as defined earlier in the

context of a potential game, but refers to the algebraic definition, whereby a number is

multiplied by each of the elements in the Cartesian product, and then the elements are

added together.

Shapley points out that there is no formula given in past work indicating how to

best determine these weights for coalition preferences, but if there is an already existing

24

schema then it will facilitate easier coalition formation. Since this weight is between two

players, and the coalition examined contains the same two players, it is in and of itself an

optimized coalition preference weight. Coalitions themselves are already in wide use; for

example, any network containing a Windows-NT system divides users into coalitions,

which are usually referred to as groups in a Windows environment. It restricts certain

users in a coalition from having access to resources on the network, while other users

belonging to a different coalition are granted such access. The primary advantage of

using coalitions to grant permissions is its speed: it is faster than other approaches. The

first approach commonly used, a zero-knowledge based system, grants permissions to

individuals if they can prove secret knowledge; but by doing so they do not reveal the

secret itself. A graph isomorphism is a means of implementing a zero-knowledge based

system, whereby a graph representation of knowledge is shown to be identical to another

graph with different vertex names. The problem with this approach is its inefficiency:

proving the two graphs are an isomorphism of one another involves examining all

possible combinations. The other approach commonly used for granting permissions

involves secret-key encryption, but it is expensive to implement.

Other work besides [4], [11] studies Pareto optimal potential games: the work by

Bauso [13] examines this in a network resource sharing game. Bauso builds primarily

upon Rosenthal [14] for potential games. But, like [11], he does not build upon Shapley

[2], [6] despite the later publication date; this in turn causes Bauso’s results to be sub-

optimal. Specifically, Bauso examines pure-strategy noncooperative non-repeated (one-

shot) and repeated games. Bauso correctly uses argmax to refine his answer and select

the best equilibrium, but again like [4], [11] also uses it incorrectly to do an empirical

25

proof for Pareto optimality in one-shot games. This is not all: by overlooking Shapley

[2], [6], Bauso’s work fails to find a Pareto optimal solution for coalitions and repeated

games. Furthermore, Bauso’s coalition formation algorithm does not work. While

Bauso’s game is partially correct in that it uses the Finite Improvement Property,

according to Shapley [2] the Finite Improvement Property does not guarantee that a game

possess a potential function. Rather, as stated above, the game must also have a finite

end with unique moves and finite utility. What Bauso did with a repeated game

possessing a potential function is violate its requirements according to Shapley [2]: the

game is repeated and so each time it is restarted and played again, there exists at least one

state that is not unique as it was played identically the last time around.

Like Komali [4], Johari [1] develops interesting solutions using noncooperative

games represented by a graph, but avoids potential functions altogether. Johari’s work

addresses energy conservation for message passing in networks, and uses both

noncooperative and cooperative games. In these games, all strategies are pure, and all

nodes homogeneous, but unlike Komali uses the idea of bids between nodes to establish

connections between nodes. Bidding takes place using a type of currency and occurs in

sequence from one player to the next. Johari found several types of simple topologies

that result when game theory is applied to graphs for the purpose of reaching some type

of equilibrium. If the cost is applied only to the initiator of a connection, as characterized

by noncooperative games, the star topology has the least cost to all nodes and will form.

Otherwise, if cost is applied to both parties, as in the case of a cooperative game, a simple

cycle or wheel forms. The simple cycle was also found by Johari to be a degenerative

26

topology: soon after the network formed by the noncooperative game degenerated from a

star to a simple cycle, the network disconnected.

While the above work is significant with respect to the game theoretic aspect to

our security optimization solution, it does not address security. All previous game

theoretic work with security deals with individual elements or components in the

network. Only a few authors have examined using game theory to help solve security

problems, and none of these authors have examined optimizing overall security, let alone

overall security in a network. In addition, we are not aware of any previous game

theoretic security optimization that validates its work using security metrics.

For the little work that has been done in the area of game theory and security, the

primary work has been done by Agah [26] - [27] to model a scenario where an attacker

drops packets to cause communication disruption in a network. Here, game players

represent nodes in the network, and players receive utility based on the number of

successfully transferred packets. As a method of defense and attacker detection, each

player individually examines the percentage of its own message packets not forwarded by

other players. If another player fails to forward a percentage of messages beyond a

threshold, then that other player is removed from its network. All other work in the area

[28] - [29] follows a similar pattern.

The work by Demirbas [29] is similar in that it also examines network games that

optimize security for each component. However, their work focuses more on

reconfiguring individual nodes to stabilize the network so that it may address the problem

of defending against a direct attack against each individual player. The third significant

27

work with game theory and security is done by Sun [28], who uses game theory with

security and economics at the component level. Each individual part of a network is

examined, and cost/benefit analysis is done with respect to additional investment.

Results showed that the cost inflicted by an attacker on each component is directly

reduced by the security investment. While interesting in a broad sense, the results are

generic and do not list any particular types of investment, but includes every possibility

in one category.

Recent work in the area of security metrics has examined the shortfall caused by

generic security definitions. Security metrics are based on the idea of going beyond

traditional qualitative security definitions into the area of quantitative measurement and

analysis. Past definitions of security include such phrases as “works as expected” [31].

Such qualitative definitions, while traditional in security, depend upon perceptions of

environment; they do not preclude the possibility of hidden vulnerabilities or sleeper

agents that fail to affect the expected workings of a system until they are activated and

cause destruction, illustrating that the system was never secure even though, up until that

point, it did indeed work “as expected” [31]. Preventing such types of attacks is one of

the purposes of quantitative security metrics.

The earliest work on building a foundation for quantitative security analysis based

on security metrics that received attention is by Almerhag and Woodward in 2005 [10].

The paper describes security levels related to the types of operations or rules of

composition used to define them; these three levels from least important to most

important are neighbor authentication, cryptography, and access control. Authentication

is measured by whether or not a neighboring node computer’s identity is able to be

28

verified by a trusted third party in a network. Cryptography is expensive to implement,

but prevents a transmission from being altered or decoded by an unwanted third party.

Access control is cheaper to implement than cryptography, and works to directly stop

individuals from gaining access to unauthorized information, such as user IDs and

passwords. Payne [23] of the SANS Institute has a somewhat different definition of

security metrics, stating that its core foundation lies in analysis of security data. Here, the

essence of effective security analysis is risk analysis, with three core areas: asset value,

threat, and vulnerability.

Another technique that can be used to quantitatively analyze security is attack

trees, which are sometimes called attack graphs. Attack trees are a data structure with

nodes representing states of the environment; transitions exist between states. These

transitions represent the conditions for moving from one state to another, much like a

finite state automaton. Authors Sheyner [9] and Wang [25] have called for the need to

quantitatively analyze security using attack trees, but their work lacks a means of

quantitatively measuring security for the purpose of attack tree analysis; still, their work

is one more step toward finding a means of tying this quantitative analysis to a practical

security implementation. Existing approaches using attack trees, such as the work by

[40], are representative of the implementation problems attack trees pose, as these works’

analyses degenerate into an NP-complete problem of analyzing all connections between

all nodes in a tree. In fact, much of the work in the area of attack trees, exemplified by

[39], are on finding new ways to improve speedup for analyzing this NP-complete

problem. This work by [39] uses a backtracking and sorting of the relationships between

nodes in the attack tree prior to any actual analysis taking place.

29

 As stated earlier in Chapter I, our thesis will use constraint satisfaction problems

as a means to better describe our problem and tie metrics to our game theoretic solution.

The idea of constraints in games themselves goes back to the coalitions of games

possessing information, capacity, participation, and incentive compatibility constraints.

Information constraints are limitations imposed by a game designer on the players,

whereby they have limited information about some aspect of the game, be it observing or

predicting other players’ moves. As a result, information asymmetry between players

results in these games and players must make decisions accordingly. A classic example

of information constraints is the Prisoners’ dilemma. The second constraint type,

capacity, is generally tied to games involving money or currency, possibly in a generic

sense, and the limited capacity players have to spend or produce to maximize their own

utility while minimizing cost. The third constraint type, participation constraints, is

imposed on players to take part in the game. Last, incentive and compatibility constraints

are related to one another. They are used in repeated games describing participation

incentives; one example is in a game involving players that can produce products of

varying quality to sell, but because other players know that low-quality products are more

likely to be defective but cheaper and high-quality products are less likely to be defective

but more expensive, players know that they must produce high-quality products to have a

chance to generate a profit. As a result, discounts become the focus of the game to

maximize utility.

A constraint satisfaction problem is an AI technique that traditionally has nothing

to do with game theory. Constraint satisfaction problems models variables’ constraints

and variables in a problem, and can be generalized and solved by several different

30

methods. These methods are backtracking or other tree-pruning techniques. The work

by Vickrey [16] was the first to examine the relationship between constraint satisfaction

problems and games with complete information. Players in the game were represented

by variables in the constraint satisfaction problem, and constraints were used as means of

socially forcing players in the game to follow the strategy of other players in their local

neighborhood. Constraints in this work were restricted to unary constraints, and it was

thus limited by the inability to apply the constraints to any binary mathematical

operations.

The work by Soni, Singh, and Wellman [7], however, does apply to binary

constraints. It builds upon the work by Vickrey, examining repeated cooperative games

with complete information for message-passing optimization, and reformulating the

constraint satisfaction problem to allow binary and unary constraints. To do so, the

problem in [7] was changed to take place within a graph so that constraints existed

between each variable; constraints were related to equilibrium. In this, a constraint was

satisfied if the player chose the best strategy to maximize its utility given the other

players in the game also choose the best move. Each player, or variable, had its own

unary constraint. While their work is significant because it is, as far as we are aware, the

first to examine the relationship between constraint satisfaction problems and game

theory, the solution is restricted to traditional constraint satisfaction problem solving

techniques and can only apply to homogeneous players with pure strategies. The solution

uses the authors’ own variation of a backtracking and tree-pruning algorithm from [16],

the foundation of which is a classic AI technique. The work does incorporate game

31

theoretic means of determining tree pruning, but this is secondary to the authors’ own

backtracking algorithm; potential functions and optimization are not considered.

As mentioned in the introduction, we will compare our algorithm’s security

optimization with a known algorithm; the one used will be Kerberos. Again, we refer the

reader to [35] for a complete description. In the body of research with comparing new

network security algorithms to Kerberos, there have been varying approaches to

simulating Kerberos as exemplified by the more recent works of [36] – [38]. Older

research in the field tends to focus on using off-the-shelf software packages to simulate

Kerberos as well as the authors' own algorithms, while newer researchers develop their

own model to study specific aspects of Kerberos compared to their own work. In the

following more widely-referenced recent articles, each explores simulating and

modifying a Kerberos system. The work by [36], which was published in 2007,

apparently marks the beginning of the end of off-the-shelf software use for Kerberos

simulations. Here, the authors used the popular GSS-API software package to simulate

Kerberos and their own algorithm, only to discover that the accuracy and credibility of

anyone’s results from the GSS-API software had come into question by the international

community while the authors (and others) were conducting experiments [36]. The

authors of [36] discontinued and abandoned their experiments with GSS-API, publishing

only their formal model and algorithm with a note about the fate of GSS-API and its

discontinued use by the international community. In [37], which was published in the

following year, the authors compare computation time of their cryptography model with

their own representation of standard Kerberos cryptography by using a different off-the-

shelf software package called Crypto++. One of the most recent works is by [38], a 2009

32

journal article in which the authors abandon the off-the-shelf software approach and

instead focus on building a mathematical model and prototype. These authors model the

Kerberos network through an equation derived from fluid mechanics to study bandwidth

usage in networks; this equation follows similar methodology as the equation used to

represent their own network optimization technique.

33

CHAPTER III

SECURITY METRICS

In this chapter we begin to propose our game theoretic approach to optimize overall

security for a heterogeneous network. As far as we are aware, our thesis is the first in the

area of optimizing overall network security using game theory. Security, as mentioned

earlier in Chapter II, suffers from what we believe to be an insufficiently descriptive

definition. While many authors have had difficulty defining what security is, we believe

it is relatively easy to define what security is not. Security is not vulnerability, whereby

an outsider may destroy, alter, or steal one’s possessions. Possessions are, in the case of

our network, the data stored in the computers, the computers themselves, and the

connections between computers in the network. We assume that maintaining control of

possessions relates to access control, which is itself controlled by user IDs and

passwords. Such data is sensitive and should be guarded carefully. Insensitive data is

less important, but is still vulnerable to theft. There still exists the possibility in any

network that an outsider may intercept or alter data transferred between computers in the

network. These instances involving alteration, destruction, or theft of possessions

characterize a vulnerable network. Since a vulnerable network is clearly not a secure

one, we will define security in terms of what it is not, namely vulnerability. Vulnerability

will thus be used as a foundation for our security definition, and network security will

34

be optimized by minimizing vulnerability.

To solve the problem of optimizing security, we must first quantitatively measure

security so that one can determine whether or not the security has improved.

Measurement of security in the system, and not just an individual component, is essential

if our proposed approach to security optimization is to be validated. To do so, we build

upon existing work in the area of security metrics to come up with our own metrics for

quantitative security measurement. Metrics will enable us to more fully describe the

problem of security maximization and enable us to quantitatively measure security itself

in a meaningful way. Using an approach that allows entities in the network to evaluate

their environment without having to resort to qualitative, nebulous definitions could

significantly improve evaluation of security and security itself. We propose the use of

security metrics as a basis for quantifying security and validating our results. We will

develop our metrics, which can enable us to take definitions of security that are typically

qualitative and quantify them mathematically.

Attack trees are a means of analyzing security. Attack tree analysis is not game

theoretic, but is a way of describing the means by which relationships and vulnerabilities

in an environment are analyzed for decision-making. In our problem, attack trees enable

analysis to take the action that maximizes security. Since actions involve changing the

value of a variable, and the context of our problem is security, we will see that actions

involve changing the values of the security levels between nodes. We develop a

methodology for applying metrics for measuring security. Since the metrics

quantitatively measure security, these can be used as parameters to the analysis. In an

attack tree, the tree root represents the computer whose vulnerability is being assessed.

35

In the tree, if another node or relationship is closer to root it has more access, which can

result in greater vulnerability. It is clearly preferred to address a problem further away

from the root rather than allowing it to reach levels closer to the root before addressing it.

In an ideal world, each computer in the network would be able to implement the

maximum possible security. However, we are attempting to optimize security for a

heterogeneous network in the world of the practical; there are limitations which prevent

the ideal from taking place. The heterogeneity of the computers forming the network

prevents them from reaching the same maximum security and places limitations, or

constraints, with regard to maximum security of the overall network. Since all devices in

the network under consideration are different from one another, there are constraints with

respect to available hardware and software, as well as corresponding constraints of the

hardware and software itself that limit maximum achievable security. We believe that

optimizing security for this type of environment fits the definition of, and at the very least

lends itself to, a constraint satisfaction problem. Constraint satisfaction problems have

variables, corresponding constraints on the variables, and problem state. A state of the

problem represents the current values of some or all variables. Some constraint

satisfaction problems have an objective function maximized by all variables; doing so

leads to its solution.

Thus we will describe the network as a constraint satisfaction problem so that we

may better specify the problem of optimizing security within the security limitations.

Since we propose the application of game theory to optimize security, we will solve our

constraint satisfaction problem using a game. We propose players will use environment

data, represented by variables quantified by security metrics, as input to players’ attack

36

tree analyses to determine vulnerability and thereby measure security. In doing so,

players may choose the move that maximizes security. As connections change in the

network during game play, metrics can be used to measure the changes in the network for

attack tree analysis, choice of optimal move, and overall network security.

But not all constraint satisfaction problems possess an objective function and can

be directly correlated with, and thus be solved by, games. Conversely, not all games can

be directly correlated with, and thus solve, the corresponding subset of constraint

satisfaction problems. We must identify which constraint satisfaction problem subset can

solve a subset of games that fits our problem. Hence we propose to identify the subset of

constraint satisfaction problems that can be directly used with a subset of games that fit

our security problem.

To implement more effective security we will use coalitions. Coalition formation

involves separation of nodes according to preferences, which are represented by current

assignment of values to security levels of all connections. To give an example, complete

preferences for coalition formation takes into account a node i and its links to

neighboring nodes. Partial preferences, which are also known as incomplete preferences,

take into account the links not made by node i but have been made by other coalition

nodes j and k. Partial preferences also include the state of links prior to final

optimization. Coalitions are usually formed only once all variables, or preferences, have

had their final values assigned to them. To integrate the coalition formation process

directly into our security optimization algorithm, we propose using coalition formation

with partial preferences. Approaches to coalition formation relying on complete

preferences would not be able to be directly integrated into the optimization process

37

itself, as they are instead formed after the optimization is complete, which can place a

system in a suboptimal state. Through the above solutions, we propose our work presents

a novel optimization technique that improves overall security for a heterogeneous

network.

3.1 Problem definition

Before examining how to quantitatively measure and optimize security, let us first

define the problem, beginning with the network model and its notation. Assume the

network whose security is to be optimized is represented by an a priori connected

directed graph

G = (V, E) (3.1)

with set of vertices V and set of directed edges E. Vertex vi, an element of the set

vertices, is denoted

vi � V = {v 1, v2, … , vi , vj , vk , … , vn} (3.2)

G is minimally connected with at least one edge between each of the n vertices such that

there are at minimum

� � 1 (3.3)

edges, and thus the set of edges is at minimum denoted

E � ���, ��, … , �!"� # (3.4)

38

Furthermore, let vertices represent computer nodes in the network. Let the vertex vi be

represented by its index i

i = vi � V (3.5)

and let vertex vj be represented by its index j, where

$ % & (3.6)

and likewise for all the other vertices in V.

A directed edge forming a connection from i to j is written

eij � E (3.7)

We define a directed edge to be synonymous with the terms edge, link, and connection.

Likewise, an edge representing a connection from j to i is written

eji � E (3.8)

Let the sequence of all k possible security levels of eij be represented by S, an n-tuple

containing a non-decreasing sequence of nonnegative real numbers, denoted

' � ���, ��, … , �(, �� � 0 (3.9)

Let all eij have numerical values associated with them. These are commonly called edge

weights; this definition of a weight from graph theory is not to be confused with the type

of game described in Chapter II called a weighted potential game. Therefore, we will

define the edge weight as the security level of the connection between two nodes, and

henceforth refer to it as such to avoid confusion. Thus, let

39

 ��) � ' (3.10)

denote security level of connection eij between nodes i and j.

Changing a security level sij will be a valid move, or action, in our security optimization

game. Hence, the moves in our game are changing the security levels of each sij.

If we denote all nodes other than i as

�& (3.11)

And, likewise, all nodes other than j as

�$ (3.12)

where

�$ % & (3.13)

We define the security levels of all direct connections node i makes to its neighbors

forming the local network of node i as the union of the security of its connection to node j

and its connections to nodes other than j, �$, denoted

��) * ��") (3.14)

And if we assume for all direct connections i makes to its neighbors, we can define si, the

security level of node i, as the weakest of all the direct connections from node i. The

40

security level of node i is defined as the minimum of the union of the security levels of all

direct connections node i makes to its neighbors, written

�� � �&� +��) * ��"), (3.15)

3.2 Security metrics

We shall define our metrics to measure security. These metrics will consider

cryptography, data sensitivity, and access control, but exclude authentication.

Authentication is excluded because, in our model, all aspects of the network are visible to

all nodes. We therefore assume that any node in the network has authenticated.

However, we reserve exploration of the issue of authentication and false impersonation

for future work.

The following metrics have binary representations. We define the binary representation

of each metric as corresponding to security strength; thus if the vulnerability is high, the

metric is assigned the binary number 0.

3.3 Cryptography

Cryptography allows computers to send data to one another along eij in a way that

any outsider or third-party who intercepts the data cannot read it. Encryption enables

computers to implement cryptography. With weak encryption, there is a greater chance

for vulnerability since it is relatively easy for a third-party intercepting messages sent

41

along eij to use the message to gain access to a node. An example of weak encryption,

which we define as low encryption, would be a connection secured using a 32-bit key.

An example of strong encryption, which we define as high encryption, would be a

connection secured using a 256-bit key. Let all connections eij have encryption. Current

encryption strength of connection eij is represented by

-�) � .0, /01 ��2�-3�&0� 1, 4&54 ��2�-3�&0�6
 (3.16)

Since connection eij has been defined as a directed or one-way connection from node i to

node j, according to the definition of eij, yij ≠ yji.

3.4 Data sensitivity

The data stored at each node can be either sensitive or insensitive. With sensitive

data there is a greater possibility for vulnerability, such as if an intruder gained access to

passwords, than with insensitive data. Sensitive data includes, for example, passwords

and usernames. Insensitive data excludes sensitive data by definition. Insensitive data

includes, for example, time of day, schedules, or other data that does not increase

vulnerability if it is stolen. Let all nodes have data; all data of node j, is written

7�$	 � 80, ����&�&��1, &�����&�&�� 6 (3.17)

42

3.5 Access control

Permissions to read and write a node’s data also affect security. Access to read

and write data increases the vulnerability as it increases the possibility of an attacker

stealing or modifying the data. Let write access from i to j be represented by

1�)�7�$		 (3.18)

Again, the binary number relates to security strength. Consequently, if a node i has write

access to data of node j, then it indicates that decreased vulnerability is false, or 0. Thus,

1�)�7�$		 � .0, �07� & 49� 1�&�� 922��� �0 7�$	1, �07� & 70�� �0� 49�� 1�&�� 922��� �0 7�$	6 (3.19)

Let read access from i to j be represented by

��)�7�$		 (3.20)

The binary number relates to security strength. Consequently, if a node i has read access

to data of node j, then it indicates that decreased vulnerability is false, or 0.

��)�7�$		 � .0, �07� & 49� ��97 922��� �0 7�$	1, �07� & 70�� �0� 49�� ��97 922��� �0 7�$	 6 (3.21)

With our metrics we can define sij using security metrics

��) � -�) : ��)+7�$, : 1�)+7�$, � ' (3.22)

43

We will use algebra for translating a Cartesian product to a real number by

applying an algebraic weighted sum to achieve a clearer security level conceptualization,

translating a binary Cartesian product to a security value ranging from 0 to 10. In this

context, the term “weight” will always be used with the word “sum” since it refers to the

algebraic weighted sum and not the game theoretic definition of weight.

For node i having connection to j we translate the security definition of sij, which

is a Cartesian product, to a real number according to the formula

��) � ;< · -�) > ;? · ��)+7�$, > ;@ · 1�)+7�$, (3.23)

3.6 Security metrics example

To give an example of translating encryption, read, and write metrics to a real

number according to equation (3.23), let us assign nonnegative real numbers to the

coefficients of each of the metrics in the weighted sum to give a range of integer security

values from 0 through 10, such that

' � �0, 1, 2, … , 10	 (3.24)

Also, to aid in clarifying our example, we will separate the metric of data sensitivity from

the read and write metrics. Thus we redefine sij as

��) � ;< · -� > ;? · �� > ;@ · 1� > ;B · 7�$	 (3.25)

We denote the set of all security levels of all h direct links from node i to all other nodes

–i, forming the local neighborhood of i, as

44

C ��)D)E) (3.26)

Thus, for example, if node i has direct connections to nodes $, F, 9, G, 2, then

H ��)
D

)E)
� ���), ��(, ��I, ��J , ��K#

Next we determine the values of each weight so security ranges from 0…10,

chosen for convenience, according to equation (3.24). We assume that data sensitivity is

foremost in determining vulnerability. Since theft of data is of little consequence when it

is insensitive and of great consequence when it is sensitive, we weigh data sensitivity the

most heavily. Hence we shall assign the numerical value of 5 (out of 10) to ;B.

Next, we consider data tampering to be the second greatest vulnerability. Data

tampering can cause lost passwords or system failure if data is sensitive, and is

accomplished by writing. Access control can be used to prevent an outsider from

tampering with data. Encryption can also be used to prevent an outsider from tampering

with data. We shall thus assign the same numerical value to the encryption and write

metrics, 2 to ;< and ;@. Restricting read access can prevent an outsider from viewing

data, which we consider to be less of a possible vulnerability than any of the other

metrics, and we shall thus assign the numerical value of 1 to ;?.

While encryption can also prevent an outsider from reading data, we consider its

ability to prevent data tampering to be more important, and so it outweighs any security

consideration for an outsider reading data. Thus, the weights add up to 10, the maximum

security level that we assumed:

45

;< > ;? > ;@ > ;B � 2 > 1 > 2 > 5 � 10 (3.27)

And in combination with the binary representation of our metrics, security levels

will range from 0 to 10. We can now draw up a table, Table 3.1, which contains the

Cartesian product of security metrics converted to real values using our algebraic

weighted sum in equation (3.27), to represent the weighted sum and metrics to derive the

security values of sij. Note in Table 3.1, if encryption is high and read and write access is

restricted, the data sensitivity is irrelevant; hence the same security value for cases 14 and

15. The same can be said of the data for cases 6 and 7, as again, read and write access is

denied. We denote these “don’t care” statuses using an X in the respective table cell.

46

 Encryption

(high)

Read

(restricted)

Write

(restricted)

Data

(insensitive)

Security

s

Weights

Case

2 1 2 5

15. 1 1 1 X 10

14. 1 1 1 X 10

13. 1 1 0 1 8

12. 1 1 0 0 3

11. 1 0 1 1 9

10. 1 0 1 0 4

9. 1 0 0 1 7

8. 1 0 0 0 2

7. 0 1 1 X 8

6. 0 1 1 X 8

5. 0 1 0 1 6

4. 0 1 0 0 1

3. 0 0 1 1 7

2. 0 0 1 0 2

1. 0 0 0 1 5

0. 0 0 0 0 0

Table 3.1: Cartesian product of security metrics converted to real values

47

CHAPTER IV

CONSTRAINT SATISFACTION

To describe our model in further detail, we will specify its constraints and explain how

we can use it to improve representation of the requirements of our optimization problem.

We will show how our problem can be modeled as a constraint satisfaction problem,

which will act as an intermediate step in designing our game.

4.1 Constraint satisfaction problems

Constraints represent the limitations of security for each computer in our network,

and consequently, constraints are related to the overall network security limitations. A

constraint is a function that maps the domain of possible security values S to the range of

allowed security values for a computer. It thus restricts the domain of security values S

to a subset of S that is achievable by the node given its hardware and software. There

may be a great deal of difference in the processing power and other physical

computational limits of the computers forming our heterogeneous network we are

optimizing in our problem. These hardware and software limitations lead to actual

security limits that each computer in the network can achieve. A constraint function is

48

thus itself a function of the hardware and software of a computer. Each kind of software

provides a range of security levels, and each kind of hardware provides another range of

security levels. The actual range of security values achievable by a computer is

somewhat complicated, as it is related to whether the hardware and software

independently provide security, or are dependent upon one another. If we consider the

domain of security values as the Cartesian product of the set of all computer hardware

and software, trying to enumerate all the possibilities would be difficult. The security

function depends upon the relationship between hardware and software. In some

situations where hardware and software are dependent upon one another for security, if

one element is defeated, the other may be worthless. For example, if a security feature of

the hardware is defeated, the software could be worthless for providing security. For an

example of a problem (outside the scope of this work) such as laptop theft, in this case if

a laptop is stolen and hard drive erased, then any software encryption of data on the hard

drive is worthless. In other cases, the hardware and software may make each other

stronger, such as a physical lock on an office door combined with a password on the

computer in the office. Here, an attacker would have to spend time getting past the lock

before spending time getting past the password on the computer. Because of the

difficulty in deriving a function for all possible combinations of hardware and software,

we will characterize the properties the function will have to develop a heuristic that is a

reasonable model for our problem.

For our problem, we can consider our definition of security as described above

using metrics as first being software-related, since encryption and access control to data

are related to software. However, we may safely reason that a hand-held device such as a

49

cell phone is capable of a lower and smaller range of security than a server due to the

hardware and the software differences. Hence, we believe that for most cases related to

our problem of optimizing a heterogeneous network, the hardware and software are

dependent upon one another. Granted, it is possible that in certain cases our model fails

to make sense; we are assuming that computers in our network will have security

constraints whereby hardware and software are dependent upon one another, and that all

computers being optimized can be characterized by our definitions of security and

constraints.

If we first characterize unary constraints, which form an essential part of a

constraint satisfaction problem, we consider that this relates to the security of one

computer’s hardware and software. Unary constraints pertain to the limitations on

maximum achievable security of one computer, or rather one node in the network. If we

say that a function f1 takes as input the hardware of a node i, 49�719���, and produces a

range of security values that is a subset of S, and a second function f2 takes the software

of a node i, �0M�19���, and produces another range of security values that is a subset of

S, and we assume that these two subsets of f1 and f2 overlap with values in common

between them; and if we have software that worsens overall security if the software is

weaker, and hardware that worsens overall security if the hardware is weaker, then we

can say that the unary constraint function �N!IOP�49�719���, �0M�19���	 is at least as

good as the weakest of the hardware and software for node i,

�N!IOP�49�719���, �0M�19���	 � �&� �M��49�719���	, M���0M�19���		

50

What the security is less than or equal to is another matter. If the quality of the software

and hardware are good, giving high security, then we will say that this is a best-case

scenario and consequently represents the maximum security. Here, we assume that we

can characterize the maximum security all the possible nodes in our network with this

equation, whereby the security is less than or equal to

�N!IOP�49�719���, �0M�19���	 Q �9R �M��49�719���	, M���0M�19���		

Putting these together to characterize unary constraints, we have the inequality

�&�+M��49�719���	, M���0M�19���	, Q �N!IOP�49�719���, �0M�19���	

Q �9R �M��49�719���	, M���0M�19���		

(4.1)

There are exceptions to this model, however, because it is possible that combined

hardware and software can work together to give a maximum security value that is

greater than the maximum of either the hardware or software. For example, if we have a

computer that uses protected memory on a CPU to prevent processes from accessing

unauthorized data in combination with encryption on the data, this computer would

achieve a security level beyond the maximum of encryption and protected memory, since

even if a process was able to view data it was not supposed to, it would then have to get

past the encryption on the data. This type of system would represent a significantly

reduced vulnerability. However, we are assuming that the computers optimized stay

within our model of unary constraints on security in equation (4.1).

51

For ease of notation and to more clearly see the node to which the unary

constraint function is being applied, let us denote an abbreviation for constraints in

equation (4.1) for each node i as

�����	 � �N!IOP �M��49�719���	, M���0M�19���		 (4.2)

Binary constraints are the other type of constraints in a constraint satisfaction

problem, and pertain to the security value of an edge between two nodes. Here, we are

dealing with constraints on a network, albeit a small network that is between two nodes.

Interactions are complicated, and thus the safest assumption is to base the range of values

on the weakest node forming the link. Here, the binary constraints range from the

minimum of the weakest node to the maximum of the weakest node. For a connection eij

from node i to node j at security sij,

�&� S�&�+M��49�719���	, M���0M�19���	, ,
�&� TM�+49�719��),, M�+�0M�19��),UV Q

�J�!IOP+49�719���, �0M�19��� , 49�719��), �0M�19��), Q

�9R S�&�+M��49�719���	, M���0M�19���	, ,
�&� TM�+49�719��),, M�+�0M�19��),UV

(4.3)

We shall denote an abbreviation for binary constraints of connection eij in equation (4.3)

as

��)+��), � �J�!IOP+49�719���, �0M�19���, 49�719��), �0M�19��), (4.4)

52

Note that if the set of constraints of node i and the set of constraints of node j have

something in common between them, a link can be formed between the two nodes.

Mathematically, this is written as the intersection of the set of constraints of node i and

the set of constraints of node j, denoted

�����	 W �)+�), % X (4.5)

then a link eij at sij can be formed between nodes i and j.

Because security levels have to be determined within their constraints, we denote security

given its constraints as an ordered pair

+��, �����	, (4.6)

and

T��), ��)+��),U (4.7)

4.2 Costs

We define cost as a way of measuring lost security. We define pay, or payment,

as compensation measured in utility to or from another node. Both payment and cost are

denominated in units of security. To give an example, payment from one node i to

another node j for creating link eij would come in the form of security gained by j through

i allocating some of its CPU time to j. Because granting CPU time to node j restricts the

available resources of node i, it decreases available resources for i to implement security,

but increases the available resources of j to implement security. The cost to i for making

53

the payment would be lost security. For the connection, node i receives utility for the

link since it is connected to the rest of the network, but node j will incur cost in the future

from retransmitting messages sent by node i. Therefore, future cost to j is offset by

payment from i for establishing the link. In doing so, our game fits the definition of a

noncooperative game. Cost c of payment from i to j for forming eij shall be denoted as

cost of eij, written

2+��) , (4.8)

The cost c of payment from node i to node j to form eij is determined by a varying

price scheme, which is accomplished by bidding. The bidding process is tied to strength

of need to establish a link measured by the effect it has on security. If a node benefits

more by establishing the link, it would be willing to pay more than if little benefit was

received. Bidding schemes include iterative or linear movement from the minimum to

maximum amount a node is willing to pay. This scheme allows the player to move only

some fixed amount each time it raises or lowers a bid; in other words, if a bid starts at 1,

its next bid is at 2, then 3, etc… Another type of bidding scheme implements an

exponential movement from minimum to maximum amount a node is willing to pay.

This bidding scheme follows the pattern of an exponential function, whereby bidding

increments are slow initially and increase exponentially as each bid is made. Finally,

there exists the possibility of nodes implementing a scheme whereby bids follow a

logarithmic movement from minimum to maximum amount willing to pay.

54

4.3 Side payments

The calculation to decide the move that gives the most utility may indicate that it

is not beneficial for that node to raise its security beyond some level. In addition to

payment from node i to node j to form a link eij, we define a second type of payment

called a side payment. Side payments are used to induce a node to move beyond its

selfish motivations to benefit another node. A side payment is defined as an action that

consists of payment made from node i to node j to induce j to change the security, sjk, of

its link ejk to node k. If analysis shows that a node i gains the most utility by another

node j altering a link to node k, where i is not connected to k, node i can take action to

maximize its utility by paying node j to alter its link to node k. Adding side payments to

the set of possible moves has the possibility of raising the security level of i as well as

other nodes connected to j beyond what would be possible without a system of side

payments, swaying the utility calculation of an individual node in favor of distributed

security over local security, therefore benefiting the network as a whole. We denote a

side payment action from node i to another node j to induce action T�)(, �)(+�)(,U that

changes security of j’s connection to node k as

2�) T�)(, �)(+�)(,U (4.9)

Since a side payment is an action node i takes that changes a link, which in this

case is altering link sjk, it is considered to be a move for node i. As such, it must take

place within the constraints of i, �����	. Since cost for the action is applied to i since i

55

must pay j to take action altering link sjk, cost c is additionally notated for clarity to

indicate that cost is applied to i as it must pay j to take the action. We assume that j

cannot refuse an action once it agrees to take the action.

By having nodes pay other nodes to make changes in security that do not affect

the other nodes directly but can cause them to become more vulnerable, a type of

cooperation takes place. Side payments act as a facilitator of a form of cooperation,

regardless of coalition membership, to increase overall security. The end result of this

payment is that overall security of the nodes along the attack tree from payee to payer is

increased. Without side payments between nodes, there may be areas in the graph or

particular nodes for which this solution is sub-optimal. This sub-optimality can be

brought on by individual nodes’ strategies or security limits due to the computers’

constraints. However, we believe side payments help in avoiding these sub-optimal

scenarios in a network.

Besides helping form links, payments between players denominated in the same

unit of measure as utility aid in applying attack tree analysis to improve security via side

payment. For the above scenario for nodes i, j, and k, if a node i wishes to implement a

change between nodes j and k, it corresponds to making a change further down the attack

tree. This is cheaper than implementing changes higher up in the tree; changes further

down (node k) correspond to earlier changes versus later changes when the problem is

imminent (node j) and vulnerability is greater. As a result, not only would it be cheaper

to make earlier changes or fixes in the tree, more nodes (such as other nodes connected to

node j) can benefit from these changes. Such a payment should only make sense in the

context of utility: node i that received benefit should ensure the node j that made the

56

change also benefit, especially when one considers that the node j making the change

may not directly benefit from the change. Carrying out attack tree analyzed security

changes through side payments enables the cooperation among the nodes. Algorithm 5.2

addresses how nodes perform attack tree analysis.

4.4 Objective function

The objective function is a function maximized in a constraint satisfaction

problem. Since we have not yet specified all aspects of our approach, describing the

objective function beyond any general notation would be premature at this point. We

thus say that the objective function, u, is used by all nodes to maximize security given its

constraints.

4.5 Constraint satisfaction problems and game subset solvability

The use of constraint satisfaction has aided in specifying our solution in more

detail, but we must identify a subset of games that work with a constraint satisfaction

problem subset for mathematical proof of optimization. This is achieved, explained in

detail below, through a noncooperative potential game and constraint satisfaction

problem possessing an objective function. Our reasoning is explained in Proof 4.1 below.

57

Theorem 4.1:

A potential game that maximizes security can be used to solve a constraint

satisfaction problem to maximize security if-and-only if the constraint satisfaction

problem has an objective function that maximizes security.

Proof 4.1 Proof of Theorem 4.1

Proving this Theorem 4.1 by contradiction is inappropriate as it creates a logical

in-equivalence that is difficult to resolve due to the use of negation with if-and-only-if.

Thus, we will use a direct proof.

We will represent the statement in Theorem 4.1 symbolically.

p: game with potential function

q: constraint satisfaction problem with an objective function

Since a constraint satisfaction problem with an objective function by definition

maximizes the function per its input, let us define input as security value according to

equation (3.9) as

� � '

And also define the objective function of the constraint satisfaction problem as

maximization of s given constraint ���	

�9R+�, ���	,

58

Statement q is thus written symbolically

�: �9R��, ���		

Each player has its own variable that it maximizes, which we shall also call s because we

are examining optimizing the same security domain as the constraint satisfaction

problem. The domains of p and q are the same. Since a potential function by definition

represents a function to be maximized by all parties, it is written

�9R��	

But if we consider that there is a corresponding function that restricts s to an allowed set

of values that map the domain to a range of allowed values

���	

Then we are using the maximization function

�9R��, ���		

which is the potential function.

Since

�9R+�, ���	, � �9R+�, ���	,

 the objective and potential functions are equivalent and we can write statement p as

3: �9R��, ���		

Next we need to prove
Z3 , Z� 3 � �

59

Since we are not trying to prove that all potential games solve all constraint satisfaction

problems with objective functions, but that a constraint satisfaction problem with an

objective function is solvable by a game with a potential function addressing the same

problem, we thus have

Z3 , Z� 3 � �

Where

p: game with a potential function

q: constraint satisfaction problem with an objective function

With the above, we have

3: �9R��, ���		

which, as before, is a potential function. We also have a constraint satisfaction problem

with objective function, which as stated above is written

�: �9R��, ���		

For the case of an exact potential function, the potential function is equivalent to the

utility function u,

���, ���		 � �9R��, ���		
Then we do not need to break p into sub-statements describing ���, ���		 and

�9R��, ���		 since they are equivalent. We can now write symbolically what we are

trying to prove as

60

Z3 , Z� 3 � � [�9R��, ���		 � �9R��, ���		

which gives, using a truth table to examine logical equivalence for the exact potential

function written above

 p q p ↔↔↔↔ q

3. T T T

2. T F F

1. F T F

0. F F T

All but case 3 above are vacuous to some degree or are false.

We must now prove true for an ordinal potential function and objective function. We

have

p: game with a potential function

q: constraint satisfaction problem with an objective function

where

3: �9R��, ���		

and constraint satisfaction problem with objective function

61

�: �9R��, ���		

Unlike exact potential, an ordinal potential function by definition does not have equality

with utility. Instead, the potential function is greater than or equal to zero if-and-only-if

the utility function is greater than or equal to zero, meaning p is actually written as

3: �9R��, ���		 � 0 � ���, ���		 � 0

Unlike the proof for exact potential, where ���, ���		 � �9R��, ���		, we must break

statement p into sub-statements. Since the sub-statements are not equal but are the same

sign (positive or negative) if-and-only-if the other is the same sign, we must first

construct a truth table to prove this before moving on to the larger proof for an ordinal

potential function and objective function. Let us represent statement p as the sub-

statements

�: ���, ���		 � 0

�: �9R��, ���		 � 0

Then p can be written as

Z� , Z� � � �

From the definition of p, q, r, and s, we can write what we are trying to prove as

Z� , Z�, Z� �� � �	 � �

which gives, using a truth table to examine logical equivalence

62

 q r t (r ↔↔↔↔ t) (r ↔↔↔↔ t) ↔↔↔↔q

7. T T T T T

6. T T F F F

5. T F T F F

4. T F F T T

3. F T T T F

2. F T F F T

1. F F T F T

0. F F F T F

We thus have four cases in the truth table where the result is true. Since cases 1, 2, and 4

are vacuous, but case 7 is valid when all exist, we drop the vacuous cases since they are

not applicable. Case 7, however, is true and also valid for our problem definition. Thus

because we proved true for the ordinal and exact potential functions, we can conclude

that only potential games can be used to solve a constraint satisfaction problem if-and-

only if the constraint satisfaction problem has an objective function.

 Q.E.D.

63

4.6 Utility

Because utility is measured in security, choice of the action that gives maximum

utility is the choice that maximizes security. To maximize security, node i must analyze

the security of existing connections to itself as well as those to its neighbors to which it is

directly connected, in order to determine whether connections should be modified. In

addition, a node also estimates whether making a new connection or making a side

payment to alter a connection would be the best decision to maximize security. We have

already denoted the security levels of all existing connections. With their constraints this

is denoted

T��), ��)+��),U * T��"), ��")+��"),U (4.10)

The security levels of non-existing connections from i, with their constraints, shall be

denoted

+�"�), �"�)+�"�), , (4.11)

The utility function is a mathematical function used by all players to make an optimal

decision at each point in a game. The utility function allows a player to choose the best

values that can be assigned to the game variables and maximize its reward, or utility, at

each turn in the game. Utility in our game is measured in security. Since the purpose of

our work is optimizing security, and any game theoretic solution optimizes utility, utility

is measured in terms of security. As game variables are represented by all sij, then the

utility function allows a player to choose the action that gives maximum security. Since

64

actions involve changing security levels of connections, for connection eij the utility

function u is defined as

� T��), ��)+��),U � T��), ��)+��),U � 2+��) , (4.12)

4.7 Equilibrium in a game

The optimal action ��
 for node i given its constraints �����
	 is to choose the

security level that maximizes equations (4.10) – (4.12), denoted

���
, �����
		 � �9R \T��), ��)+��),U * T��"), ��")+��"),U * +�"�), �"�)+�"�), ,]

 (4.13)

The rationale for decision-making to maximize security is made according to Algorithm

5.2, which uses attack tree analysis.

The utility received for this optimal action is denoted

����
, �����
		 (4.14)

An action profile is a sequence containing each player’s move at that particular

turn in the game. In some game-theoretic literature an action profile is referred to as a

tuple or vector; this type of vector is not one with magnitude or direction, but instead

refers to a row or column in a matrix. Hence we refer to this sequence of actions as

simply an action profile in order to avoid confusion. This is not to be confused with a

strategy, which is an action plan. An action profile is in equilibrium if it contains the

65

best, or optimal, move for each player versus all other best actions of the other players.

An action profile in equilibrium, denoted s*, is written

�
 � +���
, �����
		, ���
, �����
		, … , ��!
 , �!��!
		, (4.15)

In this equation, for example, ���
, �����
		 refers to the equilibrium action of

player 1 given its constraints, and ���
, �����
		 refers to the equilibrium action of player 2

given that player’s constraints.

Recall that actions involve changing security levels of links to other nodes. For

example, if we assume best action for player i is forming a connection to player j at

security level sij, then in this case ���
, �����
		 refers to

T��), ��)+��),U

which involves bidding to establish or change the security sij of eij.

To give another example, it is also possible that since a side payment is an action which

does not involve bidding but alters a connection, it can be an optimal action si* for node i.

In this case, if node i is directly connected to node j but not directly connected to node k,

if the side payment to j to have j change sjk is calculated to be the optimal action

���
, �����
		, then in this case ���
, �����
		 refers to

2�) T�)(, �)(+�)(,U

The definition of equilibrium for player i means that its utility, or security, is

maximized. No player has any incentive to change its action given no other player

66

changes its action. An action that is not in equilibrium is a sub-optimal action. A sub-

optimal action is defined, given its constraints, for player i as

����, ������		 (4.16)

where the sub-optimal action is never the equilibrium action, denoted

 ����, ������		 % ���
, �����
		 (4.17)

The following equation describes the best action, or equilibrium, of player i;

security of i is maximized if it takes the best action when all other players take their best

action, thereby maximizing the utility function u, denoted

�+���
, �����
		, ��"�
 , �"���"�
 		, � �+����, ������		, ��"�, �"���"�		, (4.18)

67

CHAPTER V

GAME THEORETIC ANALYSIS

The best action a node can take is determined by attack tree analysis. However, before

examining attack tree analysis to determine the best action, we need to address the

reasoning behind the decision-making for granting other nodes access to data, which

forms an essential component of attack tree analysis. Read and write access form two of

the three security metrics. We have not specified whether or not access is granted on a

case-by-case basis, and if it is, we need to address the reasons behind granting access.

Addressing this raises the need for a refined security definition and analysis algorithm,

which will be made possible through coalitions.

5.1 Coalition formation for a weighted potential game

Coalitions have the advantage of allowing aggregated or broad security levels and

access control, which will be made possible in combination with security metrics and

attack tree analysis. Without coalitions there is a less efficient method of analysis than is

available with them. Without coalitions, the reasoning for nodes granting access to its

own data is made on a case-by-case basis. To form coalitions, the network is divided into

non-overlapping subsets according to a pairwise disjoint function known as a partition.

68

Coalition formation involves using the partition to combine preferences from

individual nodes into a common coalition with one set of common constraints and

preferences. First, we must define what we mean by preferences. Preferences are

defined as the current best values for the variables in the game, which in other words is

the current optimal security levels sij of the connections in the graph. They correspond to

the environment and its current state. In our model these are the current values assigned

to each variable within its constraints. Coalition formation can take place during the

game, when preferences are being formed prior to stabilization. Otherwise, waiting for

stabilization of preferences, which corresponds to final value assignment to all variables

in the game once optimization is complete, could have the effect of placing the game into

a non-equilibrium or non-Pareto optimal state.

Integrating the coalition formation process into our optimization algorithm

without disturbing the optimization requires that coalitions be formed despite partial or

incomplete preferences. Partial preferences in our algorithm are handled by the

evaluation criteria for coalition formation, as well as the definition security si for each

node i. Instead of treating a node as just a sum of its links to other nodes, security si of

each node i is evaluated to determine coalition membership. Although nodes of different

coalitions can communicate, each node can belong to only one coalition. Our definition

of security si and its constraints includes criteria that indirectly takes into account security

levels and constraints of other nodes connected to i, in which the nodes have shared

preferences and privileges. Since si is defined as the minimum of all direct connections

from node i to its neighbors, and each connection sij takes place within its constraints

69

which include constraints of both i and j, our definition of si is related to the constraints

of the other node j.

 In combination with the definition of link formation, whereby both nodes in a

link receive benefit, the definition of si will cause our game to be a weighted potential

game. Because si takes into account the preferences of node i and all other nodes –i to

which it is connected, the utility of node i is directly related to the utility of these other

nodes. In addition, the partition that evaluates si for coalition membership must consider

the preferences, in our case partial preferences, of both i and the other nodes to which i is

connected in the coalition. Despite the partitioning of nodes into non-overlapping

subsets, the graph G of our network is connected because graphs of weighted potential

games are, by definition, connected. Although each node can belong to only one

coalition, in which the nodes have more access privileges to each other, nodes of different

coalitions can still communicate.

Coalitions can be used with constraints and metrics to form a type of access

control list, which makes coalitions an essential part of security metrics. Once coalitions

are formed, there is a common set of constraints for members of the coalition. For

example, members of the coalition might have read access to all other members, or write

access. Coalition membership can be revoked if a node i changes si to violate coalition

constraints σA which are a range of security levels for each member to belong to the

coalition. The node is then removed from the coalition and all rights as a coalition

member are revoked. The node can choose to change si or try to join another coalition.

70

Algorithm 5.1: Coalition formation

Algorithm 5.1 divides nodes into coalitions according to security. To form

coalitions, the network is divided into non-overlapping subsets according to a pairwise

disjoint function known as a partition. Each subset has a minimum security level which

is a function of the partition. To do so, it applies the partition A to each node’s security

level si and sij to place each node into a subset, or coalition, and thus determine coalition

membership. The partition A is a threshold function, which we assume has to be

calculated, that gives the maximum security difference between nodes in G that can be

members of the same coalition. The partition gives coalition constraints σA which are a

range of security levels for each member to belong to the coalition. The partition ensures

that any messages sent through the coalition are at that coalition’s minimum level of

security. Note that according to the definitions of security, link formation, utility, and

potential, membership in a coalition according to the partition does not prevent a node

from connecting to another node outside its coalition, as the determination as to whether

to connect to another node is done according to these equations.

Define A as a pairwise disjoint function, or partition, dividing G into non-

overlapping subsets; these subsets are coalitions on A = {{a1}, {a 2}, …, {a κ},… , {a η}}.

Note that according to the definition of a partition that *A = G, and each coalition {aκ}

may contain more than one node, e.g. |{aκ}| ≥ 1. The number of coalitions formed is

dependent on the partition chosen for A.

71

Algorithm 5.1: Coalition formation:

Input: G = (V, E),
 partition A,
 difference_threshold, security tolerance for coalition membership

Output: set of coalitions AQ for each node i � V

Coalition_formation(G, A, difference_threshold)
1. for each node i � V
2. {
3. for each node j = -i � V
4. {
5. if (eij)
6. {
7. Q = A(sij)
8. if (Q ≤ difference_threshold)
9. {
10. Add i to same coalition as j:
11. AQ = {{i , j}}
12. }
13. else
14. {
15. Add i to different coalition from j:
16. AQ = {{i }, {j }}
17. }
18. }
19. if (! eij || si < sij)
20. {
21. Q = A(si)
22. if (Q ≤ difference_threshold)
23. Add i to same coalition as j: AQ ={{i , j}}
24. else
25. Add i to different coalition from j: AQ = {{i }, {j }}
26. }
27. }
28. }
29. return (AQ)

72

The advantage of our coalition formation algorithm is, by introducing coalitions, security

of connections can be better described. We use a table, shown below in Table 5.1, as an

example to show the effect of coalitions on security. Contrast this table with Tables 5.2

and 5.3, which reflects changes made to the security when coalitions are removed; note

the less descriptive security characterized by the data in the Table 5.3.

 Level Security for connection Read self data Write self data

Low 1 Minimum All All

 2 Maximum All All

 3 Minimum All None

 4 Maximum All None

 5 Minimum Coalition Coalition

 6 Maximum Coalition Coalition

 7 Minimum Coalition None

 8 Maximum Coalition None

 9 Minimum None None

High 10 Maximum None None

Table 5.1: Security levels with coalitions

In the absence of coalitions, security levels are less precise: coalitions are an

essential part of fulfilling the requirements for a secure network per the security metrics.

Changes to security when coalitions are removed are shown in Table 5.2.

73

 Level Security for connection Read self data Write self data

Low 1 Minimum All All

 2 Maximum All All

 3 Minimum All None

 4 Maximum All None

 5 Minimum Coalition Coalition

 6 Maximum Coalition Coalition

 7 Minimum Coalition None

 8 Maximum Coalition None

 9 Minimum None None

High 10 Maximum None None

Table 5.2: Security levels and changes brought about by removing coalitions

Comparing Tables 5.1, 5.2, and 5.3, we see the changes that occur to the security

definition if coalitions are removed. The example presented by Table 5.3 below reflects

this, as quantization of security is less precise, and shows the final result of changes from

Table 5.1 to Table 5.2.

 Level Security for

connection

Read self data Write self data

Low 1 Minimum All All

 2 Maximum All All

 3 Minimum All None

 4 Maximum All None

 5 (was 9) Minimum None None

High 6 (was 10) Maximum None None

Table 5.3: Non-coalition security levels

74

5.2 Attack tree analysis to improve security

Attack trees model inter-relatedness of players’ securities, which we will use for

decision-making regarding connections. Attack trees can identify sensitive and

insensitive data and can allow a node or a coalition of nodes to identify and fix security

hazards, such as access to sensitive data by an intruder. In some cases it may be

beneficial for a node performing attack tree analysis, node i, to pay another node j at

further distance away in the tree to address a situation that has little or no bearing to the

further node j, but could lead to the node i’s compromise by an attacker. Quantization of

payment in terms of utility has the means to overcome any selfish calculations by a node j

closer to some other node i’s problem, and induce that node j to help the other node i by

taking action to solve a security issue related to i. Algorithm 5.2 addresses how nodes

perform attack tree analysis.

Algorithm 5.2: Attack tree analysis

The purpose of Algorithm 5.2 is to use security metrics with attack tree analysis

to determine vulnerability to a node. This algorithm analyzes each path to node i from

any node k to j and j to i for the purpose of establishing vulnerabilities. The level of

vulnerability indicates the weakness in security, as security is the opposite of

vulnerability. Algorithm 5.2 is called by each node at each turn in the game to analyze

75

all the other connections to other nodes, within the parameters of the algorithm. In

general, the vulnerability posed by another node decreases as distance from self

decreases; it also decreases if another node belongs to the same coalition as the node

performs the analysis by calling Algorithm 5.2.

In addition to examining coalition membership, each node examines each sij

according to its metrics: encryption of the link, read or write permissions between nodes

(both direct and indirect), and corresponding data sensitivity. This includes examining

which nodes have direct or indirect access. The danger_threshold input to the algorithm

is a threshold that describes vulnerability tolerance, and is not determined by any game

theoretic means, but is established by the node doing the analysis. Consequently, if the

threshold is too low, it will result in disconnecting from the network and having to

subsequently raise the tolerance to vulnerability so that it will stay connected. The

vulnerability is referred to as the threat_level; it represents the calculated vulnerability to

node i. We assume node i represents the node performing the analysis.

Recall that connections to other nodes outside the coalition are a necessary part of

preserving graph connectivity, but this does not mean that they are granted the same

privileges as coalition members. Because of access control policies and coalition

membership formation, other members of the coalition are assumed to be a decreased

threat.

The advantage of our algorithm is each node examines the connections in the

local neighborhood and local plus one (distance of two), which is realistic to analyze.

Consequently, however, the disadvantage of our algorithm is the lack of

76

comprehensiveness, as not all connections beyond this point are examined. Examining

all connections has the disadvantage of decreased efficiency. We assume, however, that

this attack tree analysis algorithm is sufficient to analyze and make the optimal decision,

provided coalitions are used to provide information about the rest of the network. Our

reasoning is explained in Proof 5.2, which follows after Algorithm 5.2 below. Figure 5.1,

shown below, contains an example of a node i performing attack tree analysis according

to Algorithm 5.2, followed by vulnerability reduction according to Algorithm 5.3.

Figure 5.1: Attack tree analysis and vulnerability reduction example diagram

i

j

k x

j has write access

to sensitive data

of i

k has read access

to sensitive data

of j
x has write access

to sensitive data

of j

Action taken:

1. i examines

connection to j,

and j’s

connection to k

and x

2. i calculates

vulnerability

greater than

threshold

3. i pays j to revoke

x’s write access

to j’s sensitive

data

4. vulnerability

diminished

77

Algorithm 5.2: Attack tree analysis:

Input: G= (V, E),
 Partition A,
 difference_threshold,
 danger_threshold

Output: X, set containing all subsets of nodes connected to i with read/write permissions
to sensitive data on a path to node i and their respective threat_level
[0…1]

Attack_tree_analysis(G, A, difference_threshold, danger_threshold)
1. X = X
2. for each node j � V
3. {
4. Yj = X
5. threat_level = 0.0
6. if +�)� && |$ � &| �� 1,//if edge to self and distance is one
7. {

8. if T 1)�+7�&	,U//if write access to self

9. {

10. if T+7�&	, �� 0U//if data is sensitive

11. {
12. Add 1)��7�&		 as member of set X
13. for each node k � V
14. {
15. if +�() && |F � &| �� 2,//if indirect edge to self, distance is two
16. {

17. if T 1()+7�$,U//if write access to node with direct access

18. {

19. if T+7�$, �� 0U//if data of that node is sensitive

20. {
21. Add 1()+7�$, as member of set X
22. if (ykj = 0 || yji = 0)
23. threat_level += danger_threshold / (|k-i|)
24. else if (ykj = 0 && A(sij) ≤ difference_threshold)
25. threat_level += danger_threshold / (|k-i|+2)
26. else

78

27. threat_level += danger_threshold / (|k-i|+1)
28. }
29. }

30. if T�()+7�$,U//if read access to node with direct access

31. {

32. if T+7�$, �� 0U //if data of that node is sensitive

33. {
34. Add �()+7�$, as member of set X
35. if (ykj = 0 || yji = 0)
36. threat_level += danger_threshold / (|k-i|+2)
37. else if (ykj== 0 &&
38. A(sij) ≤ difference_threshold)
39. threat_level += danger_threshold / (|k-i|+4)
40. else
41. threat_level += danger_threshold / (|k-i|+3)
42. }
43. }
44. }
45. }
46. }
47. }

48. if T �)�+7�&	,U//if read access to self

49. {

50. if T+7�&	, �� 0U // if data is sensitive

51. {
52. Add �)��7�&		 as member of set X
53. for each node k � V
54. {
55. if +�() && |F � &| �� 2,//if indirect edge to self, distance is two
56. {
57. if +�()+7�$, ,//if read access to node with direct access
58. {

59. if T+7�$, �� 0U//if data is sensitive

60. {
61. Add �()+7�$, as member of set X
62. if +-() �� 0 || -)� �� 0 ,
63. threat_level += danger_threshold / (|k-i|+2)
64. else if �-() �� 0 && `���)	 Q
65. difference_threshold)
66. threat_level += danger_threshold / (|k-i|+4)
67. else
68. threat_level += danger_threshold / (|k-i|+3)

79

69. }
70. }

71. if T 1()+7�$,U//if write access to node with direct access

72. {

73. if T+7�$, �� 0U// if data of that node is sensitive

74. {
75. Add 1()+7�$, as member of set X
76. if +-() �� 0 || -)� �� 0 ,
77. threat_level += danger_threshold / (|k-i|)
78. else if �-() �� 0 && `���)	 Qdifference_threshold)
79. threat_level += danger_threshold / (|k-i|+2)
80. else
81. threat_level += danger_threshold / (|k-i|+1)
82. }
83. }
84. }
85. }
86. }
87. }
88. Add threat_level to Yj
89. Add Yj to X
90. }
91. }
92. return (X)

Theorem 5.1

With coalitions the attack tree analysis of local, one-hop neighbors is sufficient

for decision-making if information about the rest of the network G is provided by the

local neighborhood, i = C ��)D)E) , with at least one of the nodes belonging to the same

coalition as node i.

Proof 5.1 Proof of Theorem 5.1

80

Basis Step:

According to Algorithm 5.2, node i receives information directly by examining its local

neighbors to which it is directly connected,

H ��)
D

)E)

having distance equal to one with one edge between i and each of its h neighbors forming

its local graph,

|4 � &| � 1

Because it is directly connected, node i receives information from each of its h neighbors.

at

& > 1

Inductive Step:

Assume the basis step is true for n, and show true for n+1.

Since we assumed true for n, node i is directly connected to its h neighbors with

|4 � &| � 1

and receives information from these nodes at

& > 1

81

with neighbors of i+1 connected to each of their h neighbors at

& > 2

with

H ����)��
D

)E)��

from which they receive information, with successive steps of information propagation

along from nodes at

& > �

having distance or number of edges equal to

|� � &| � �

with

H ���!)�!
D

)E)�!

from which nodes at & > � receive information, giving

'! � �& > �	 · �& > � � 1	 · �& > � � 2	 · … · �& > 2	 · �& > 1	 · &
For successive steps of n+1 we have number of edges

|� > 1 � &| � � > 1

82

 or, using the sequence notation for Sn above, is written

'!�� � �& > � > 1	 · �& > �	 · �& > � � 1	 · �& > � � 2	 · … · �& > 2	 · �& > 1	 · &
Because we assumed true for n, we have the well-known formula

'! � � · �� > 1	2

Then for n+1 we have successive steps of information propagation along the edges of the

graph

���!��)�!��

from n+1 to i equal to

|� > 1 � &| � � > 1

which is

'!�� � �� > 1	 · �� > 2	2

And because we assumed true for n, we have

'!�� � �& > � > 1	 · �& > �	 · �& > � � 1	 · �& > � � 2	 · … · �& > 2	 · �& > 1	 · &

'!�� � �& > � > 1	 · � · �� > 1	2

And since

83

�� > 1 � &	

is equivalent to the distance from node i

�� > 1 � &	 � |� > 1 � &| � �� > 1	

Then

'!�� � �� > 1	 · � · �� > 1	2

'!�� � �� > 1	 · �� > 2	2

And, because node i is also connected directly

H ��)
D

)E)

and indirectly to its coalition members, denoted

�a�

node i is able to get information

λ

on other coalition nodes along the sum of all neighbors of coalition members

 H ��) W �a� % X
D

)E)

84

thus allowing information λ to propagate to i to analyze network G according to

Algorithm 5.2.

Q.E.D.

Note that this proof does not guarantee that node i has comprehensively analyzed all

connections in G through direct analysis and indirect information passed to it by coalition

members. While coalition members pass along their own analysis of other nodes to

which i is not directly connected or at distance greater than two, it is not necessarily

comprehensive with respect to all nodes and connections in G. We believe the tradeoff of

time versus comprehensive analysis by each node of each connection, which is

essentially a variation of the traveling salesperson problem, is a more than fair one. It

thus gives our approach the advantage with respect to time versus comprehensiveness.

5.3 Pareto optimization

Recall that Pareto optimized is defined as a state in which a player can take no

action deviating from this state without decreasing utility for itself or some other player.

Recall that Pareto optimization goes beyond the definition of equilibrium. It the best of

the equilibrium or is more optimal than equilibrium. Pareto optimization is used to

simultaneously minimize or maximize a finite set of real-valued functions, which in our

optimization problem refers to each player choosing a move that maximizes the utility

function. In the specific context of the problem our work is trying to solve, that of

85

maximizing overall network security, the security of each node or player is Pareto

optimal for that turn in the game if no player can increase its utility, or security, without

decreasing the utility and consequently security of itself or another player. The Pareto

optimal move for player i is denoted

���b, �����b		 (5.1)

The Pareto optimal move is

���b, �����b		 � ���
, �����
		 c ����, ������		 (5.2)

where all moves are members of the set of moves S. Recall that

����, ������		

represents any of the other sub-optimal moves. Thus, both the Pareto optimal and

equilibrium move are better than a sub-optimal move.

The Pareto optimal move can be the equilibrium move, but it is always at least as

good as or better than equilibrium, written

���b, �����b		 � ���
, �����
		

Despite the possibility that the Pareto optimal and equilibrium moves may be the same

move, the Pareto optimal move supersedes equilibrium because it is always at least as

optimal or more optimal.

 Recall that our game is a weighted potential game for either mixed or pure

strategies. In a potential game, a player choosing the move that maximizes the utility

function is also maximizing the potential function: for mixed strategies the two functions

86

are equal, and for pure strategies the two functions have output that is positive if the other

is positive. Hence, if a player chooses a move that maximizes the utility, hence playing

the equilibrium move, it also maximizes the potential function. Since a Pareto optimized

move means that if the player deviates from this move it decreases utility for itself or

some other player, a player cannot play a move that decreases utility for some other

player because it would not maximize the potential function. Hence, players who

maximize utility maximize their security, and in doing so maximize the potential function

and consequently are making a Pareto optimal move. It is impossible to not maximize

the potential function without also making a Pareto optimal move. We will use this

reasoning for our proof of Pareto-optimality below.

Theorem 5.2

If the game is a weighted potential game, then a player maximizing the utility

function also maximizes the potential function and by doing so chooses the equilibrium

action which is Pareto optimal.

Proof 5.2 Proof of Theorem 5.2

Let us break Theorem 5.2 into smaller statements. Let the statement p represent

p: If the game is a weighted potential game, then a player maximizes the potential

function

And let statements q, r, and s represent

87

q: If a player maximizes the potential function, then a player maximizes the utility

function.

r: If a player maximizes the utility function, the player chooses the equilibrium

action.

 s: If a player maximizes the utility function, it chooses the Pareto optimal action.

The definition of a potential game is that it possesses a potential function, which is

maximized by all players. The definition of a weighted potential game is a potential

game that possesses a utility function which is directly related to other players’ utility

functions. A weighted potential game possesses a potential function for either mixed or

pure strategies. Thus we know statement p is true according to the definition of a

weighted potential game. Furthermore, we also know by the definition of a potential

function that players maximizing the utility function maximize the potential function.

Thus, we also know statement q is true according to the definition of potential. And

statement r is true because of the definition of equilibrium. However, proving statement

s true is somewhat more involved.

The definition of a Pareto optimized action means that if the player deviates from

this action, then it decreases utility for itself or some other player. But according to

statements p, q, and r, a player cannot maximize the potential function without

maximizing utility, and if it is not maximizing utility then it is not choosing the

equilibrium action. If a player plays a move that decreases utility for some other player,

it is not maximizing the potential function because the potential function is maximized by

88

all players maximizing the utility function, and players maximizing utility choose the

equilibrium action. If a player is not maximizing the potential function, the game is not a

weighted potential game, which is a contradiction. Therefore, since a player maximizing

utility in a weighted potential game chooses the equilibrium action, this action is Pareto

optimal, and the weighted potential game is Pareto optimal.

Q.E.D.

Algorithm 5.3: Reduce vulnerability

This algorithm is used by each node to act upon the information generated by

calling the above Attack_tree_analysis Algorithm 5.2. After calling the

Attack_tree_analysis algorithm, nodes executing Algorithm 5.3 determine the best way to

improve security by reducing vulnerability per the definition of security from equation

(3.25). If the node performing the analysis determines that threat_level is greater than its

tolerance for vulnerability, danger_threshold, the node can pay another node in the

network to change the nature of its connection, or simply change the connection itself,

provided it is already connected. Actions possible are related to the activities for the

connection: security level could be increased, permissions could be revoked, or the

connection could be broken in favor of another node. The disadvantages are the

possibility that the graph splits into disconnected segments, or that coalition membership

is inadvertently revoked due to actions taken by other nodes or the node itself via acting

to change a connection on the prompting of another node. This algorithm allows a node

89

to maximize its utility, or security by determining which action maximizes utility, thereby

taking the equilibrium action.

Algorithm 5.3: Reduce vulnerability:

Equations 1 and 2 are either equations (3.25) and (4.18) if playing according to the pure
strategies of Algorithm 5.4, or equations (3.25) and (5.6) if playing according to the
mixed strategies of Algorithm 5.5

Input: X, set containing all subsets of nodes connected to i with read/write permissions

to sensitive data on a path to node i and their respective threat_level
[0…1],

danger_threshold,
Output: maximized utility ui

Reduce_ vulnerability(X, danger_threshold)

1. max_ vulnerability = 0
2. X_vulnerable = X
3. for each subset Yj from Ystart…Yend � d
4. {
5. get threat_level of Yj
6. if (threat_level > max_vulnerability)
7. {
8. max_vulnerability = threat_level
9. X_vulnerable = Yj
10. }
11. }
12. get threat_level of X_vulnerable
13. if (threat_level > danger_threshold)
14. {
15. pay j to revoke 1()+7�&	, || pay j to revoke �()+7�&	,
16. || pay j to increase sjk || revoke 1)��7�&		 || revoke �)�+7�&	,
17. }
18.
19. best_new_action = 0
20. for each node j == -i
21. {
22. if (��) e d)
23. {
24. analyze theoretic sij according to equations 1 and 2

90

25. if(sij > best_new_action)
26. best_new_action = sij
27. }
28. }
29. take best_new_action to maximize ui:
30. preserve connection eij at sij || break connection eij ||
31. bid to form connection eij at sij || change security level of sij ||
32. receive payment from j
33. return ui

5.4 Game to optimize network security

We denote a game using the symbol Γ. Game Γ is composed of the players,

which are nodes in the graph G; the actions that the players can take, which involve

choosing security levels from S; and utility function u, with the symbols f g are used

instead of parentheses to indicate this is a game. Hence the game is denoted

 Γ = fh, ', �g (5.3)

5.5 Pure strategy game

A game whereby players move according to their equilibrium action is a pure

strategy game. Players always choose the equilibrium action in a pure strategy game.

Ordinal potential games are used to optimize pure strategy games. We define a game Γ

using pure strategies as a weighted ordinal potential game if there exists a potential

function ∏ such that the result calculated by potential function ∏ is greater than or equal

91

to zero if-and-only-if the result calculated by the utility function u is greater than or equal

to zero, which is denoted for the equilibrium action of node i and the equilibrium actions

of all other nodes –i,

Π+���
, �����
		, ���&
 , ��&���&
 		, � 0 if-and-only-if

�+���
, �����
		, ���&
 , ��&���&
 		, � 0 (5.4)

Algorithm 5.4: Pure strategy game

This algorithm is the actual game played to optimize security for the entire

network. The players play according to pure strategies per equation (5.4) to maximize

their security. Players form coalitions and perform attack tree analysis to determine the

best move to maximize security, and in so doing choose the Pareto optimal equilibrium

action. We assume that each node -i examined does not change state until after node i

takes action. We denote the game using the symbol Γ as defined earlier.

Algorithm 5.4: Pure strategy game:

This algorithm references equations (3.25) and (4.18) for players acting according to pure
strategies.

Input: Γ = fh, ', �g,

G = (V, E) of game Γ connected a priori,
partition A,
difference_threshold for coalition membership

Output: G, the network optimized for overall security

Pure_strategy_game(Γ, G, A, difference_threshold)

92

1. while improvement to each player’s security si can be made
2. {
3. call Algorithm 5.1: Coalition formation(G, A, difference_threshold)
4. for each player i � V
5. {
6. call Algorithm 5.2: Attack_tree_analysis(G, A, difference_threshold,
7. danger_threshold)
8. // Algorithm 5.3 is used with equation (4.18) whereby players move
9. // according to their pure strategy:
10. call Algorithm 5.3: Reduce_vulnerability (X, danger_threshold)
11. receive utility ui
12. }
13. }
14. return (G)

5.6 Mixed strategy game

A mixed strategy game is identical to a pure strategy game with the exception that

players choose an action according to a probability distribution over the pure strategies.

In other words, players choose the equilibrium action some percentage of the time, and a

less than optimum (non-equilibrium) action the remaining percentage of the time. The

percentage is chosen by the game designer, and has to do with the rate of player error the

designer wants to model in a game. Exact potential games are used to optimize mixed

strategy games. Our mixed strategy game algorithm, Algorithm 5.5, is identical to

Algorithm 5.4 above with the exception that players move according to mixed strategies.

The equilibrium action by player i within its constraints, ���
, �����
		, given the

probability of taking the equilibrium action, is denoted with the symbol | to indicate

probability of that action as

+���
, �����
		 j ��
, (5.5)

93

where the probability of taking the equilibrium action ranges from 0 to 1.

Utility of i is maximized if it takes the best action within its constraints, +��
, �����
	,,

given the probability of taking that action ��
, when all other players take their best action

��"�
 , �"���"�
 		 given the probability of taking that action. Again, the symbol | indicates

probability of that action, where

� \ T+��
, �����
	, k ��
U , +��"�
 , �"���"�
 		 j �"�
 ,]
� � T +����, ������		 j ���,, +��"�, �"���"�		 j �"�,U

 (5.6)

We define a game Γ using mixed strategies as a weighted exact potential game if

there exists a potential function ∏ such that the result calculated by potential function ∏

is equal to the result calculated by the utility function, which is for the equilibrium action

of node i and the equilibrium actions of all other nodes –i, denoted

Π \ T+��
, �����
	, k ��
U , +��"�
 , �"���"�
 		 j �"�
 ,]
� � T +���
, �����
		 j ��
,, +��"�
 , �"���"�
 		 j �"�
 ,U

 (5.7)

Algorithm 5.5: Mixed strategy game:

This algorithm references equations (3.25) and (5.6) for actions according to a probability
distribution over the mixed strategies.

Input: Γ = fh, ', �g,

G = (V, E) of game Γ connected a priori,
partition A,
difference_threshold for coalition membership

Output: G, the network optimized for overall security

94

Mixed_strategy_game (Γ, G, A, difference_threshold)
1. while improvement to each player’s security si can be made
2. {
3. call Algorithm 5.1: Coalition formation(G, A, difference_threshold)
4. for each player i � V
5. {
6. call Algorithm 5.2: Attack_tree_analysis(G, A, difference_threshold,
7. danger_threshold)
8. // Algorithm 5.3 is used with equation (5.6) whereby players move
9. // according to a probability distribution over the pure strategies:
10. call Algorithm 5.3: Reduce_vulnerability (X, danger_threshold)
11. receive utility ui
12. }
13. }
14. return (G)

5.7: Game-based architecture

If we are to apply our game theoretic network security optimization algorithm to

optimize an actual physical network, we need to develop an architecture to accomplish

this task. While our simulations in prototypes one through four allowed us to use metrics

to test and evaluate our work and its ability to optimize network security, these are

simulations nonetheless.

If we were to implement our algorithm, and extend our prototypes, to an actual

network composed of PCs and other devices that make up a heterogeneous wireless

network, then we could better evaluate our algorithm’s performance and possibly gain

insight into additional ways our prototype might be improved. In addition,

implementing our algorithm on an actual network would allow us to better test any future

game theoretic work whereby we extend our definitions of security to include

95

authentication as a metric, and implement this in the heterogeneous network. We did not

consider authentication in our model due to the fact that our game uses only symmetric

information; all the nodes in the network can observe all events in the game, including

the identities of the other nodes. Computers in an actual network would likely have

asymmetric information and therefore would often need to authenticate other nodes

before sharing data or extending other privileges.

As a first step in accomplishing these tasks, we will specify an architecture that

describes the relationship between hardware, software, the network, and our game

theoretic algorithm. First, we must examine our assumptions and specifications in

developing our architecture. We assume that the nodes forming the network do not

change during the network lifetime. As such, we will not deal with new nodes entering

the network at this time. Adding this capability to our architecture will be considered in

future work. In addition, we will only address the top level layer of the TCP reference

model; our work is considered to take place at a layer above the application layer of the

TCP protocol stack. How our architecture interacts with the lower layers of the TCP

reference model is considered to be beyond the scope of this work. This includes the

interactions brought about by routing protocols and the topology extractor as detailed

below, as these take place at the application layer of the TCP stack, which is the next

layer beneath our work.

We must reiterate that our security architecture is for a network without a

centralized coordinator. All nodes in the network are independent from one another and

are heterogeneous. All of the nodes have the capability to implement our game based

architecture as shown below in Figure 5.2, enabling the nodes to improve their own

96

security in addition to improving the overall security of the network. Furthermore, the

ability to independently construct an attack tree is available to each node in the network,

and each node can consequently analyze the network using its implementation of an

attack tree per Algorithm 5.2: Attack tree analysis.

In addition, we must detail our assumptions relating to the symmetry of

information in our game, and how this symmetry is implemented in our architecture. As

mentioned above, nodes are able to see the other nodes and the actions taking place in the

game. Information in this network is symmetric. In our architecture, we assume routers

are located in the network, and routing tables are used to show which neighboring nodes

in the network are reachable. These nodes to which another node is connected form the

local neighborhood, or local network, of a node and are the nodes with which any direct

communication takes place. A topology extractor is used to determine which nodes are

connected to other nodes. The topology extractor works by extracting information from

the routing tables. This information describes any connections in the network, including

node IP addresses and the characteristics or attributes of the links between nodes in the

network. These attributes describe the encryption strength of the connection, the

constraints on the link with regard to minimum and maximum security values of each

node forming the link, and any hardware information used in creating the link itself.

Furthermore, the topology extractor is able to provide information on the physical

relationships and locations of the nodes in the network, including any path information

describing available routes to a node.

The routing protocols used to disseminate information available in the routing

tables include BGP and RIP over TCP or UDP. Border Gateway Protocol, or BGP, is

97

used to exchange routing information regarding nodes, links, and destinations in the

network. Routing Information Protocol, or RIP, is used to exchange information

regarding the distance or number of nodes from a path to a destination. We assume that

these routing tables are kept updated as the network changes during the optimization

phase. The actual implementation of the routing tables and any packet information sent

between nodes and routers is beyond the scope of this work, but will make for interesting

future work. We also assume there are no errors in the routing tables and that no

information has been falsified. Consideration of any errors in the routing table is

reserved for future exploration, as these errors in addition to false node identities, are

what would cause asymmetric information in our game theoretic architecture. We are

currently considering only symmetric information. In using a topology extractor and

routing tables in such a scenario, our assumptions allow us to fulfill the architectural

implementation corresponding to the symmetric information in our game.

The diagram shown below in Figure 5.2 illustrates how our architecture will work

and its relationship to the lower levels of the TCP stack. Our architecture forms a new

layer, which we call the Game layer, and contains the actual implementations of our

Algorithms 5.1 – 5.5 above. Each node is assumed to possess this layer. In its diagram

below, we can see the relationship between the attack tree analysis of Algorithm 5.2, the

coalition formation of Algorithm 5.1, and the subsequent actions taken by a node to

increase its security by reducing its vulnerability through taking the optimal action. The

topology extractor plays an essential role. It gathers, or extracts, all information about

the topology of the network, including hardware and route information, distance between

nodes, security levels, constraints of nodes and links, and encryption of links.

98

The order of execution of each part of our architecture is shown, listed by number,

in Figure 5.2 below. The numbers on the arrows specify the order of the steps. The

arrows themselves show the relationship between the algorithms, whereby the direction

of the arrows show the input to that part of the architecture. When a node performs

attack tree analysis of the network using Algorithm 5.2, the information previously

gathered by the topology extractor is assumed to be current. As such, the topology

extractor is run just prior to attack tree analysis in step 1. At step 2, attack tree analysis is

performed. At steps 3 and 4, the information gathered by the topology extractor and the

attack tree analysis is input to both the bidding and side payments aspects of Algorithm

5.3: Reduce vulnerability. Here in our architecture, these aspects of our Algorithm 5.3

are separated in order to better show their relationship. In addition, if an optimal action

for a node is specified as including bidding to form a link and, if needed, a side payment,

it would be separated as shown in our diagram. Such a separation is considered to be

valid within the specifications of our game.

The two components of Algorithm 5.3: Reduce vulnerability are executed. First,

the network is evaluated to determine the best action; actions will involve bids, and prices

for actions must be determined. This work is done by the component identified as the

bidding algorithm, and must take place prior to any side payments; hence its location and

order in Figure 5.2. Whether the optimal action is determined to be a side payment or

creating a link, bids must be made between nodes to agree upon the price. Then, this

information is passed on to the latter component of Algorithm 5.3, which is represented

in our architectural diagram as the side payments algorithm. Here, evaluation of the

possibility of side payments takes place. The information gathered by the topology

99

extractor regarding the current state of the network is essential, as this information will be

used to route a message and payment regarding the action induced by the side payment.

Once the optimal action is determined through the bidding and side payments

algorithms, the node moves on to step 6 in Figure 5.2 and re-evaluates its coalition

membership and updates it if needed according to Algorithm 5.1: Coalition formation.

Finally, the node executes its optimal action by moving through step 7 to steps 8 or 9,

depending upon whether or not our node is executing a mixed strategy or pure strategy.

If a node is executing a pure strategy, it takes the optimal action according to Algorithm

5.4. However, as detailed in Algorithm 5.5, nodes can use mixed strategies whereby they

take a suboptimal action instead of an optimal action some percentage of the time. Mixed

strategies can be deliberately used by nodes because there is the possibility that the

exploration induced by the suboptimal action, in combination with the optimal action

itself, can lead to a higher level of security than a node always choosing the optimal

action. Determining the best percentage of the time that nodes correctly choose the

optimal action is not addressed in our work; however, we assume it to be high. We did

not consider the scenario in our prototype implementations where some nodes play mixed

and some play pure strategies, but this can be explored in future work.

100

Figure 5.2: Game layer diagram

Topology

Extractor

Attack

Tree

Bidding

algorithm

Side-

payments

algorithm

Coalition

Formation

Optimization

Pure-Strategy

game

Mixed-Strategy

game

2 1

4
3

5

6

7

8
9

G
a

m
e

 l
a

y
e

r

To lower layers in protocol stack

101

CHAPTER VI

VALIDATION

This chapter deals with describing an architecture which is very different from our own

architecture; its purpose is enhanced evaluation and validation of our own architecture’s

performance by comparing the two using similar measurements. As detailed above, our

work takes place at a very high layer of the TCP protocol stack. Kerberos, the

architecture which is used to compare to our own, pervades all layers of the TCP

reference model. Kerberos has just enough in common with our definition of security

that it can be described using our own security metrics, and hence its performance can be

quantitatively evaluated and measured using these same metrics that describe and

quantitatively evaluate the security optimization of our algorithm. As a result, we can

quantitatively compare our architecture with Kerberos, with the ultimate goal of showing

how well our algorithm optimizes network security in our simulated networks.

6.1 Comparing our algorithm to an established algorithm

While this section involves describing the Kerberos system using our metrics of

encryption and authentication, any comparison to our work beyond utilizing our metrics

for evaluation ends there. If we compare our network security optimization algorithm

102

to an established network security optimization algorithm, we may more effectively study

and evaluate the performance of our own algorithm, if the same measurements are used

to gauge performance. We chose Kerberos over other algorithms because it is well-

known and has some similarities to our own algorithm, enough to be measured using

metrics. Like our algorithm, Kerberos is designed to optimize security of an entire

network, uses encryption, and has a means of access control. However, the similarities

end there as Kerberos has an unrefined system of access control, whereby other nodes

have all access to all data if they are connected. Furthermore, unless a node can achieve

high encryption, it cannot join the network. And, Kerberos access control is implemented

via a centralized controlling server. Our algorithm is not.

While we know its specifications, we must determine the methodology to

represent the Kerberos system in a way that it can be fairly and appropriately compared

to our game theoretic algorithm in both its mathematical model and prototype

implementation simulations for actual tests and analysis. Kerberos will be represented

using a mathematical model in the same vein as our own algorithm, but will stay faithful

to the pure Kerberos algorithm. In no way will the Kerberos algorithm be massaged to

look better than it actually is, as the purpose of this part of our work is to compare, as

accurately as possible, our algorithm with another algorithm for the purposes of

evaluating our own algorithm’s security optimization. This will allow us to use metrics

to measure its security and better compare Kerberos to our own algorithm. We will

define and analyze Kerberos and implement a Kerberos prototype simulation to compare

to the prototype simulations of our algorithm. We believe this is an effective way to

103

measure the Kerberos system’s optimization of network security and compare it to our

own, and better measure our algorithm’s own performance.

The Kerberos system consists of a ticket-granting server and the participating

computers in the network. As we will see in the short proofs below, Kerberos cannot be

characterized by a potential game and is not Pareto-optimal. In fact, developing a

Kerberos game is not nearly as sophisticated or interesting as the game of our own

algorithm. The game that characterizes Kerberos is barely a game at all; it has some

striking similarities to a game with only one player since the valid moves are severely

limited. The Kerberos system is entirely dependent on a node in the Kerberos network

having high encryption: if it cannot achieve high encryption, it cannot participate in the

network. Thus, without high encryption, there is no valid move for a node to join the

network, and if no nodes can reach high encryption Kerberos is useless, and the network

disintegrates.

The Kerberos system consists of the computers to be optimized in the network

and the Kerberos server. The Kerberos server is not optimized; it is a centralized

controller that grants tickets to computers which give access privileges to other

computers in the Kerberos network. These access privileges are not at all refined, but

according to the pure Kerberos specification, can be characterized by an almost

sledgehammer-like approach to granting privileges: if a computer i has a ticket to get

access to another computer j, then i has both read and write access to all data of j, both

sensitive and insensitive. Unlike our own algorithm which has no central controller,

allows nodes to have high or low encryption, and distinguishes between granting access

to read or write of sensitive or insensitive data, Kerberos does not possess any of these

104

characteristics; any distinction which goes beyond this level of permissions is beyond the

definition of the Kerberos system and is instead defined by the operating system of a

computer in the network, which is outside the scope of our work. We will thus use the

level of permissions as specified by the pure Kerberos system.

Since the Kerberos server granting tickets is not optimized, we assume that the

computers in the network that are attempting to participate in the Kerberos network are

the same computers in our own network. Ticket-granted permissions for node i to have

read and write access to all data of j we shall denote using a different notation from our

own model. K represents Kerberos-granted per the ticket from the server, where

l��, 1	�) � ��)+7�$, m 1�) +7�$, (6.1)

l��, 1	�) � .0, �07� & 49� ��97 9�7 1�&�� 922��� �0 9// 7�$	1, �07� & 70�� �0� 49�� ��97 9�7 1�&�� 922��� �0 9// 7�$	6 (6.2)

We will denote 7�$	= 0 and 1 in equation (6.1) because any node that has access to

another node’s data has access to all of it, both sensitive and insensitive. Because the

nodes in the Kerberos network implement encryption, but we already defined our

encryption metric yij earlier, we can use the same encryption metric to describe the

encryption of connections between nodes i and j in the Kerberos network. Thus, security

provided by Kerberos can be defined using security metrics as

l+��), � l��, 1	�) : -�) � ' (6.3)

105

Which denote the existence of a one-way link from node i to j at security level l+��),

with possession of Kerberos ticket l��, 1	�) granting i access to all data of j. Kerberos

security for a node i will be thus defined using a two-tuple Cartesian-product of access

control and encryption. Access control is represented by the possession of a ticket

granted by the central server to some node i to have access to node j, encryption pertains

to the encryption for the connection from i to j. Since nodes in a Kerberos network must

use high levels of encryption to contact the Kerberos server in order to get a Kerberos

ticket l��, 1	�) granting i access to all data of j, and then use high encryption to connect

to j, without high encryption the node cannot join the network.

Lemma 6.1

A node i can participate in the Kerberos network to get the ticket l��, 1	�) if-

and-only-if -�) � 1.

Proof of Lemma 6.1

 We will first write the statement symbolically whereby

q: l��, 1	�)
r: -�) � 1

and is thus denoted

 �� � �)

106

If:

 Since we are not trying to prove that all tickets grant access to all nodes because

all nodes have high encryption, but rather that a node possessing high encryption can

obtain a ticket, we have the existential quantifier whereby

Z� � Z�

According to the requirements for a high level of encryption for connections between

nodes in the Kerberos network, if a node i possesses a ticket to node j, written

 Z�: l��, 1	�)
then the node i has high encryption,

Z�: -�) � 1

Since according to the definition of the Kerberos system requirements, if

 �: -�) � 0

node i cannot participate in the Kerberos network to create a link to node j since

n�: l��, 1	�)

because Kerberos excludes low encryption -�) � 0 thus preventing the Kerberos server

from granting a ticket to allow Z�: l��, 1	�). Thus, if

-�) � 1

then the server allows for a node i to obtain a ticket whereby

107

Z�: l��, 1	�)

yielding the existence of statements q and r for the Kerberos system making

Z� � Z�

true.

Only-if:

According to the requirements for a high level of encryption for connections

between nodes in the Kerberos network, if a node i has high encryption,

Z�: -�) � 1

then it can have a ticket, written

Zq: l��, 1	�)
According to the requirements for a Kerberos server to grant a ticket to some node i for

connection to node j, whereby

Z�: l��, 1	�)
can exist only if

�: -�) � 1

meaning there exists a high level of encryption for connections between nodes i and j in

the Kerberos network, allowing for node i to participate in the Kerberos network for

108

connection to j, since the Kerberos server excludes nodes who have links with low

encryption, making

Z� � Z�

true.

Q.E.D

Note that -�) � 0 (low encryption) is not a valid action that a computer, or node, i

can choose from the domain of actions to participate in the Kerberos network. This

makes Kerberos significantly different from our own algorithm. Unless encryption is

high, node i cannot possess a Kerberos ticket to connect to any other computer; if it

cannot connect to any other computer, it only uses part of the definition of its security,

whereby security is equal to its low encryption.

Connection is only possible with -�) � 1. As such, any game definition of

Kerberos has a primitive utility function, since a player either has high encryption and

maximizes security, or it does not and gets the security equal to its low encryption. All

metrics, including read and write, thus require that encryption be high. Only then can a

node i be granted, by the Kerberos server, possession of ticket l��, 1	�). Since all

metrics pertain to the need for node i to possess encryption level -�) � 1 in order to

subsequently possess Kerberos ticket l��, 1	�), this Kerberos requirement (constraint)

for high encryption we denote

109

�o (6.4)

which applies to all Kerberos-server granted security connections, l+��),. We shall thus

denote this interdependence pertaining to the whole of Kerberos security as

�o Tl+��),U (6.5)

If we assume for all direct connections i makes to its neighbors, we can define K(si), the

Kerberos security level of node i, as the weakest of all the direct connections from node i

l���	 � �&� +l���)	 * l���")	, (6.6)

Keep in mind that a node i defining security in equation 3.58 has an incomplete definition

unless encryption is high. We next write the action profile in equilibrium for Kerberos.

However, this is somewhat of a trivial definition since the truly best actions in a Kerberos

network are all depending upon high encryption. Still, for completeness’ sake, we define

a Kerberos action profile in equilibrium as

l��
	 � T�o+l���
	,, �o+l���
	,, … , �o+l��!
	,U (6.7)

We define Kerberos equilibrium for player i as player i’s best action (yielding maximum

utility) given the actions of all the other players –i,

l�� T�o+l���
	,, �o+l��"�	,U � l�� T�o+l����	,, �o+l��"�	,U (6.8)

However, the Kerberos game is not a potential game. Our reasons for this are discussed

below.

110

Theorem 6.1:

The Kerberos game is not a potential game.

Proof 6.1 Proof of Theorem 6.1

The Kerberos game is not a potential game due to its lack of potential function. By the

definition of Kerberos constraints in Lemma 6.1 which requires

yij = 1

for a node i to participate in the Kerberos network and form a link to any other node j;

and by the definition of G all nodes are heterogeneous, and thus

Z � &: -"�) % 1

making nodes –i unable to join the network. Since the definition of a potential game is

one in which the potential function is maximized by all players, then to participate in the

Kerberos network

p � &: -"�) � 1

in order to maximize the potential function, which contradicts the definition of a

heterogeneous network. Thus any players –i ≠ 1 fail to maximize the function, which

would otherwise have been the potential function, if their encryption level y–ij = 0. Thus,

the Kerberos game is not a potential game as it lacks a potential function maximized by

all players.

Q.E.D.

111

Theorem 6.2:

The Kerberos game is not Pareto-optimal.

Proof 6.2 Proof of Theorem 6.2

This proof is given using a direct proof.

While the Kerberos game is a game possessing an equilibrium function, Pareto

optimization is more optimal than equilibrium. Since according to Lemma 6.1 players –i

having weak encryption

y-ij = 0

cannot form a connection to the network, they cannot maximize the utility; there is no

potential function. And, since any player i with high encryption taking an equilibrium

action to maximize its utility Kui causes all other players -i with low encryption to have

utility Ku-i decreased, the Kerberos game is not Pareto-optimal.

Q.E.D.

We consider implementing a mixed strategy game for Kerberos to be beyond the

scope of our work. While doing so might help us better evaluate the performance of our

prototype four, we are unsure whether implementing a mixed strategy version of

Kerberos is faithful to the algorithm. Kerberos is not a potential or Pareto optimal game,

as it has high inter-dependability of the variables and constraints which restrict the moves

112

of the game. We believe that a mixed strategy game would be unfaithful to the pure

Kerberos algorithm and its moves, and thus create a new algorithm altogether.

6.2 O(n) analysis

An O(n) analysis of our algorithm and Kerberos is below. We begin by

examining the process of forming a connection from node i to node j for n nodes in the

network. The actions taken for link formation in the Kerberos network are:

1. Node i sends request to central server node, presenting its credentials.
2. Node i receives answer from server.
3. Node i sends request to j presenting credentials (ticket and key) from central

server node.
4. Node j sends request to central server node, presenting its credentials and those of

i.
5. Node j receives response from server, allowing i to log in.
6. Node j sends message to i and grants permissions to i all that server allows, thus

forming link eij.

Thus applying eij for n nodes, there are at most six actions, which can be written using

O(n) notation

O(6n)

Furthermore, there are at least six actions, meaning the Kerberos network is

Ω(6n)

and thus making it

θ(6n)

113

or, more commonly

θ(n)

However, this fails to account for the number of m nodes not allowed to participate in

Kerberos at all due to their low encryption, thus making the more likely case

O(6n-m)

and

Ω(6n-m)

giving thus

θ(6n-m)

for Kerberos.

The actions taken in to form a link our game theoretic security algorithm are:

 Best-case scenario:

1. Node i sends request and bid to j which includes its � � - : � : 1
2. Node j accepts bid, and thus allows i to connect, granting access to its data per

its constraints.

Thus extrapolating for n nodes, there are at least two actions, which can be written

 Ω(2n)

 or, rather,

 Ω(n)

114

 Worst-case scenario:

1. Node i sends request and bid to j which includes its � � - : � : 1.
2. Node j rejects bid.
3. Bidding continues for some b number of iterations, whereby b < n or b ≥ n

depending on how soon j accepts the bid.
4. Node j accepts bid, and thus allows i to connect, granting access to its data per

its constraints.

Thus for n nodes, there are at most � · G actions, which can be written

 O(� q G)

 Which, to give greater meaning to b, can be refined using the following:

 Best-case for number of iterations in b, whereby

G r �

G Q � � 1

 Using O(n) notation, we write the best or “omega” case of O(n) as

O�� q G	 Q O�� q �� � 1		 = O(��	

And similarly,

Worst-case for number of iterations in b, whereby

G c �

 G � � > 1

Then using O(n) notation, we write the worst or “big-oh” case of O(n) as

O�� q G	 = O(��	

115

= O�� q 2�	

= O+� q �� > �	,

≥ O+� q �� > � � 1	, � … � O+� q �� > 2	,

 � O+� q �� > 1	, � O�� q ��		 ≥ O�� q �� � 1		

And thus we can conclusively say, in a worst-case scenario our algorithm

is O(��	. Since it is also Ω(n), there is no way to write our algorithm

using theta-notation θ(n).

For O(n) analysis of time, Kerberos has the advantage, whereas for Ω(n) analysis

our algorithm has the advantage in some cases, but Kerberos has the advantage in

other cases. Kerberos has the advantage when

� Q �

Giving

Ω�6� � �	 r u��	
Since

Ω�6� � �	 � Ω�1	 as m � n

However, our algorithm has the advantage, or performs not worse than Kerberos,

when

116

� c �

Giving

Ω�6� � �	 c u��	
Since in this case

Ω�6� � �	 � Ω��	 as m � 1

This O(n) analysis demonstrates that under optimum conditions, our algorithm

performs as quickly as the Kerberos algorithm, but in a worst-case scenario is slower than

Kerberos. However, our algorithm’s worsened performance is partially due to the fact

that all nodes participate, whereas Kerberos will exclude those nodes that fail to have

high encryption. Thus, the O(n) analysis shows the tradeoff between speed and security

in Kerberos versus our own algorithm.

117

CHAPTER VII

FINDINGS

We used the C++ programming language to write the prototype simulations for our game

theoretic network security optimization algorithm, as well as the Kerberos system. The

network consisted of n = 43 nodes; this number was chosen because of its Gaussian

distribution over a 10 by 10 matrix, but we will later examine varying node population to

study the effects on network security at the end of this chapter. Constraints of our

networks were related to hardware and software of each node, and were quantified

numerically. For each prototype, the networks tested consisted of nodes that were

general representations of heterogeneous computers, each with different hardware and

software. The hardware and software differences between each node, and thus the

differences in constraints, were represented numerically by positive real numbers. Any

more specific hardware or software details beyond this general representation were not

considered. In light of the fact that as discussed regarding constraints, we understand that

there are a large number of hardware and software combinations that can result in

different constraints, we felt that until we are able to confidently represent the actual

numerical quantization of hardware and software, or even a subset of the domain of all

computer hardware and software, the approach we would take is to follow from the

118

definitions in equations (4.1) – (4.4). These functions take as input hardware and

software of a node and map the domain of possible security values, which consist of the

combination of all hardware and software, to a range of allowed security values for that

particular node’s hardware and software. This range of values is the node’s constraints

on security. We can confidently examine what is common and what is different among

nodes according to equations (4.1) – (4.4). We refer to what is common among nodes as

what is similar, and as such measures the homogeneity. We refer to what is not in

common among nodes as what is different, and as such measures the heterogeneity. In

our simulations, we can say for example node (1,7) is 36% similar to node (4,5). We can

also say node (1,7) is 46% similar to the average of the constraints of the nodes of the

network. The network consisted of 43 nodes with lowest possible minimum security of 1

and maximum of 10. Homogeneous minimum security means that all had minimum

security of 1, and homogeneous maximum security means that all had maximum security

of 10. Heterogeneous, or different, minimum security is defined as follows: thirty-three

nodes started at minimum security of 1, seven nodes started at minimum security of 2,

two nodes started at minimum security of 3, and one node started at minimum security of

5, for an average heterogeneous minimum security of 1.3. Results shown in the figures

below are for the end of each iteration. Since all simulations began counting at zero,

improvement at iteration zero is the improvement at the end of the “first” iteration versus

previous improvement, which for that iteration was none.

The different prototypes one through four incorporated some or all of Algorithms

5.1 – 5.5 listed above; preliminary tests were made in prototype one before moving on to

the intermediate prototype two and the complete prototypes three and four to model our

119

game theoretic security optimization algorithm. Our initial tests of the first prototype

were primarily confidence-building exercises to determine if our prototype was correct

and the results made sense. In the second prototype, we implemented nearly all aspects

of our game theoretic security optimization, with the exception of side payments.

Prototypes three and four fully implemented our game theoretic network security

optimization technique. The following table, Table 7.1, shows an overview of the

similarities and differences between our prototypes. The details are below in the

description of each prototype. See Table 7.4 for an overview on prototypes, networks,

and results of security.

 Strategies Side

Payments

Minimums Maximums Coalitions Algorithms

Proto

1

Pure None Hom./Het. Hom.(10)/Het.(Min.+

6 to 8)

N 5.2-5.4

Proto

2

Pure None Het. Het. Y 5.1-5.4

Proto

3.1

Pure Effective Het. Het. Y 5.1-5.4

Proto

3.2

Pure More

Effective

Het. Het. Y 5.1-5.4

Proto

4.1

Mixed Effective Het. Het. Y 5.1-5.3, 5.5

Proto

4.2

Mixed More

Effective

Het. Het. Y 5.1-5.3, 5.5

Kerb. Pure N/A Het. Het. N/A N/A

Table 7.1: Overview of all prototypes’ similarities and differences

120

Here, for example, we see that prototype three version two (labeled “proto 3.2”) had side

payments that were able to decrease vulnerability to a greater extent than prototype three

version one (labeled “proto 3.1”). In doing so, the utility for the side payment was

increased. Likewise, we tested a similar scenario for prototype four, which contained a

game where players moved according to mixed strategies. This is discussed in greater

specification in each prototype below. Table 7.1 is meant to serve as an overview and as

a guide for the reader to aid in sorting out the differences between the prototypes while

examining the details below.

 The networks considered in our tests varied according to heterogeneity. For our

initial tests in prototype one, we used homogeneous networks whereby all nodes could

reach the maximum security, followed by semi-heterogeneous networks with nodes

having different minimum security from one another, but the same maximum security.

The third type of network tested in prototype one contained nodes possessing both

different minimum and maximum security, where the maximum security was a function

of the minimum security. In the first network tested for prototype one, the maximum

security of each node was equal to its minimum security plus six levels above it, followed

by a second network with maximum security equal to the minimum plus seven, and a

third network with maximum security equal to the minimum plus eight. Prototype one

was primarily a confidence-building exercise, and as such we only tested it on these

networks; these heterogeneous networks tested for prototype one were but a subset of the

entirety of the heterogeneous networks tested on prototypes two through four. For the

complete or nearly-complete implementations of our algorithm as done by prototypes two

through four, as well as Kerberos, we tested only heterogeneous networks since the

121

purpose of our algorithm is to optimize security of a heterogeneous network, and the

purpose of Kerberos is to better evaluate how well our algorithm optimizes security. We

will examine each prototype in detail and its results, and compare the results between

them. After doing so, we compare all prototypes’ performance with different network

sizes, n.

7.1 Prototype One

The objective of our first prototype test is to examine utility improvement for

individual nodes, and overall utility improvement. Prototype one was based on

Algorithm 5.2: Attack_tree_analysis, Algorithm 5.3: Reduce_ vulnerability, and

Algorithm 5.4: Pure_strategy_game. Algorithm 5.1 was not included as all nodes

belonged to the same coalition from the beginning and no coalitions were formed during

the game. An analysis of the output produced by our first prototype is shown below. The

game is initialized at security level 1, all constraints and bids are assumed to have been

resolved, and the utility function excluded side payments from calculations. As such it

does not entirely implement our game theoretic security model, but will be used for

preliminary tests before moving on to the intermediate second prototype and the final,

complete model implemented by the third and fourth prototypes.

The simulation data from prototype one is found in Figures 7.1 through 7.13, as

well as Tables 7.2 and 7.3. Some networks tested for prototype one were theoretically

capable of reaching the maximum security level of ten, giving a homogeneous maximum.

Other networks tested for prototype one had heterogeneous maximums, giving different

122

maximum security levels for each node depending upon their minimum security level.

These heterogeneous networks were a subset of the networks tested for prototypes two

through four. All nodes were able to observe all G = (V, E) and, consequently, moves in

the game. Nodes had varying degrees of heterogeneity with respect to one another’s

security.

When we initially started testing, we chose two nodes to observe whether our test

results were turning out in a way that made sense. After this confidence-building

exercise, we switched to showing just our average network data, since the purpose of our

work is to test whether our algorithm improves overall network security. Two candidate

nodes are first examined, chosen at random, one with more heterogeneity compared to

other nodes in the network (46% similar to the average of all security constraints of all

nodes in the network, as described earlier according to equations (4.1) – (4.4)), and a

second node with less heterogeneity (37% similar to the average of all security

constraints of all nodes in the network, as described according to equations (4.1) – (4.4)).

These two nodes differed from one another, with respect to each other’s security

constraints, by 36%, as according to equations (4.1) – (4.4). Figure 7.1, shown on the

next page below, gives utility improvement for these two candidate nodes.

123

Figure 7.1: Utility improvement, candidate nodes, network consisting of nodes

with a homogeneous minimum security level, prototype one, n = 43

0%

20%

40%

60%

80%

100%

120%

140%

0 2 4 6 8 10

U
ti

li
ty

 i
m

p
ro

v
e

m
e

n
t

Iteration

Utility improvement, candidate nodes,

Prototype one

more heterogeneous node (46%) more homogeneous node (37%)

124

Utility improvement is studied because it shows the improvements in security

during game play, which aids in evaluating the performance of our game theoretic

algorithm. These results show greater initial improvement by the heterogeneous node

(130% vs. 110%), but both have comparable utility improvement after the first few

iterations. This pattern indicates stabilization for the nodes and demonstrates equilibrium

for varying degrees of heterogeneity.

Next we examine the result for average utility improvement for all nodes in the

network, shown in Figure 7.2 below. We can compare these results with the above chart

to see that the utility improvement of the two candidate nodes stabilized at the same

number of game turns (iterations), but the initial utility improvement of the candidate

nodes was greater than the average of the network utility improvement. The result shown

in the graph confirms that the utility improvement demonstrated by the two candidate

nodes is representative of the network average. Security levels are compared similarly in

Figures 7.3 – 7.5.

125

Figure 7.2: Network where all nodes had a homogeneous minimum security level,

 prototype one, n = 43. This is the average security of the entire network which

contained the two candidate nodes in Figure 7.1

0%

20%

40%

60%

80%

100%

120%

140%

0 2 4 6 8 10

U
ti

li
ty

 I
m

p
ro

v
e

m
e

n
t

%

Iteration

Average utility improvement of network

with homogeneous minimum security,

Prototype one

126

Figure 7.3: Candidate nodes security level (1 - 10), homogeneous minimum

security level, prototype one, n = 43

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Comparison of candidate nodes' security,

Prototype one

more heterogeneous node (46%) more homogeneous node (37%)

127

The above chart compares the security of the two candidate nodes. We see that

the more heterogeneous node achieved a greater maximum security at stabilization, but

took longer to stabilize than the more homogeneous node which had less security. As we

will see later in prototype four, there exists a correlation between extended convergence

time and greater security. Our initial tests of prototype one only hinted at this possibility

at this point.

The next chart, Figure 7.4, shows the average security for the entire network,

which contained the candidate nodes. This is the same simulation, but different data, in

the above figures. If we compare the chart below showing the average network security

to the one above showing the individual candidate node security, we observe that the

average network security is slightly higher than if we calculated the average security

between the two candidate nodes. These charts illustrated to us that our network and

algorithm’s results made sense, and we began to move on to testing our prototype on

networks with increasingly greater heterogeneity. By same minimum we mean

homogeneous minimum of security of 1 for all nodes in the network, and by different

minimum we mean heterogeneous minimum of security for the nodes forming the

network, as defined at the start of this chapter.

128

Figure 7.4: Average security, same (homogeneous) minimum security level, n = 43

Figure 7.5: Average security, different (heterogeneous) minimum security levels, n = 43

0

1

2

3

4

5

6

7

8

0 5 10 15 20

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average network security, same

minimum, Prototype one

0

1

2

3

4

5

6

7

8

0 5 10 15 20

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average network security, different

minima, Prototype one

129

The chart above, Figure 7.5, represents data for new simulations from in the previous

figures. It shows the average network security for a new network with heterogeneity; the

nodes had different, but not necessarily unique, minimum security. In the next chart we

see this data compared to the security of the previously-tested homogeneous network.

This chart combines data in Figure 7.4 and 7.5, the initial tests of prototype one.

Figure 7.6: Comparison of average security for network with homogeneous minimum

(same minimum) vs. heterogeneous minimum (different minimum) security, n = 43

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security, Prototype one

Different minimums Same minimum

130

Figure 7.6, shown above, illustrates that the more heterogeneous network starting at

different minimum security reached a somewhat higher level of security (6.9) than the

network that had the same minimum security (6.7). We hypothesize that greater

differences might lead to even higher security, which will be examined in further tests.

However, this graph illustrates that our work is applicable to any level of security and

will give similar results regardless of a node’s achievable security level.

Figure 7.7: Average utility improvement for networks with different minimum security

level, prototype one, n = 43

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 1 2 3 4 5 6 7 8 9

U
ti

li
ty

 i
m

p
ro

v
e

m
e

n
t

Iteration

Average network utility improvement,

Prototype one

Different minimum security Same minimum security

131

Figure 7.7, shown above, illustrates the difference in utility improvement when all nodes

start at different minimum security versus the same minimum security, as in Figure 7.6.

The graph of the network containing nodes starting at different minimum security

converged somewhat similarly to the one starting at the same minimum security.

Figure 7.8: Security level comparison, candidate nodes, different versus same minimum

security (prototype one, n = 43)

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Candidate nodes' security, different vs.

same minimum security, Prototype one

heterogeneous node, different minimum security

homogeneous node, different minimum security

heterogeneous node, same minimum security

homogeneous node, same minimum security

homogeneous node, different minimum security

and homogeneous node, same minimum security

132

Figure 7.8, shown above, returns to showing the performance of the two candidate nodes

and relates them to the network variations in which all nodes have the same or different

minimums. In Figure 7.8, we examine our two candidate nodes’ performance in

networks where they had homogeneous (same) minimum security and networks with

heterogeneous (different) minimum security. Both sets of nodes, the set with the

different minimum security and the set with the same minimum security, reached the

same overall maximum securities, respectively. The homogeneous node with a different

minimum security converged to the same maximum security by one iteration faster than

its counterpart with the same minimum security. It is interesting to note that the faster

convergence corresponds to the higher security level from which the network started.

Since our tests of our candidate nodes showed similarity to the average network

security and utility, we were confident that our algorithm was working as expected. We

moved on to the focus of our work, that of evaluating the improvement in average

network made by our algorithm. In the next chart, Figure 7.9, we see the utility

improvement for networks with varying minimum and maximum security. This chart

takes the networks shown in Figure 7.7 and adds tests of prototype one on a third network

containing nodes with different minimum and maximum security. This new network was

our first test of any truly heterogeneous network, as each node had a different minimum

and maximum security compared to the other nodes.

For this initial test, we did not want the maximum to be overly different from the

other networks, so we chose a heterogeneous maximum which gave some nodes the

capability to reach the same maximum as the nodes in the other networks (a theoretical

maximum of 10), and made other nodes so they reached a lower maximum. However,

133

this being our first test of a network with this degree of heterogeneity, we did not want

the nodes starting out at a minimum security of 1 to be capable of less than 70% of the

theoretical maximum as the nodes in the other networks. Therefore, we established the

theoretical maximum security of each node to be 6 levels of security above a node’s

minimum security, enabling all nodes to have a theoretical maximum of at least 7. For an

average minimum security of 1.3, the average theoretical maximum security of the

network was calculated to be 7.3, or 6 levels of security above the minimum of 1.3.

Regardless of a node’s minimum security, it could not exceed a maximum theoretical

security of 10. The performance of the new network with greatest heterogeneity was

almost identical to that of the previous networks in Figure 7.7.

134

Figure 7.9: Average utility improvement comparison, different versus same minimum

and different maximum security (prototype one, n = 43)

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 2 4 6 8 10

U
ti

li
ty

 I
m

p
ro

v
e

m
e

n
t

Iteration

Average utility improvement of three

networks, Prototype one

Different minimum security

Same minimum security

Different minimum and maximum security

Different minimum security, Different

minimum and maximum security

135

In Figure 7.10, shown below, we see the average security of the same three

networks from Figure 7.9. Since the network containing nodes with different minimum

and maximum security (most heterogeneity) had slightly lower security than the network

where all nodes could reach the same maximum security, lowering maximum security for

some nodes affects the maximum network security. This is consistent with what we

would expect. However, our algorithm still maximizes overall security to a quantity that

is comparable to the network where all nodes can reach the same maximum. More

importantly, at six iterations the new network with the most heterogeneity converges at

least 33% faster than the other two networks with less heterogeneity. These results

indicate that the algorithm is robust and actually improves as networks become more

heterogeneous, causing faster convergence as the heterogeneity increases.

136

Figure 7.10: Comparison of average security for same minimum vs. different minimums

vs. different minimums and maximums (prototype one, n = 43)

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

S
e

cu
ri

ty
 L

e
v

e
l

Iteration

Average security of three networks,

Prototype one

Different minimum security

Same minimum security

Different minimum and maximum security

Different minimum

security, Different

minimum and maximum

security

137

As in Figure 7.9, Figure 7.10 demonstrates that the network with heterogeneous

minimum and maximum security matched almost perfectly that of the heterogeneous

minimum and homogeneous maximum network, but only until six iterations are reached.

At that point the heterogeneous minimum and maximum security network stabilizes and

the other networks continue to improve. The most heterogeneous network, having

different minimum and maximum security, reached the lowest maximum average

security of 6.5, while the next most heterogeneous network, having the same minimum

and different maximum security, reached the highest maximum security of 6.9. The

network with the most homogeneity, having the same minimum and maximum security,

was between the two other networks with maximum average security equal to 6.7.

We examined the actual versus theoretical performance of the networks in order

to determine how well our algorithm is improving overall network security for a

heterogeneous network with different minimum and maximum security. This test was

another confidence-building exercise prior to moving on to testing our algorithm on

exclusively heterogeneous networks. Since this heterogeneous network tested will have a

lower achievable security than a network where all nodes can theoretically reach the

upper limit of security (10), comparison of average security values does not reflect how

well the heterogeneous network is performing. Figure 7.11 shows the actual performance

relative to the theoretical performance of the three networks we have evaluated. Since

the most heterogeneous network, having the different minimums and maximums,

demonstrated an actual average security level of 6.5 out of a theoretical average of 7.3 (6

greater than the average minimum of 1.3), its performance far exceeded that of either of

the previous two networks, which had a theoretical maximum of 10.

138

Figure 7.11: Comparison of maximum achievable vs. achieved security for networks with

varying heterogeneity (prototype one, n = 43)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Different minimum security Same minimum security Different minimum and

maximum security

P
e

rc
e

n
t

o
f

a
ch

ie
v

e
d

 s
e

cu
ri

ty

Network

Percent of achieved maximum security for

three networks, Prototype one

139

The next chart, Figure 7.12, shows results for the networks from in Figure 7.9 and

adds a fourth network containing nodes with different minimum and a higher

heterogeneous maximum security. We label the networks from above: “Different

minimum security” is “Heterogeneous minimum,” “Same minimum security” is

“Homogeneous minimum security,” and “Different minimum and maximum security” is

“Max = hetero min +6.” The latter network name, “Max = hetero min +6,” identifies

what the maximum security is for each node in that network in order to better distinguish

that network from the fourth network we add to our examinations below. The

“heterogeneous min” refers to the heterogeneous minimum security of the nodes forming

that network; in other words, the nodes in the network have minimum security according

to the statistics of minimum security as described at the start of this chapter. For

example, for a node in the network of “Max = hetero min +6,” if the node has minimum

security of 1, then its maximum security is 1 + 6 = 7. No node has security greater than

10 regardless of its minimum. The introduction of the fourth network is to test whether

increasing the maximum heterogeneous security yields a better tradeoff between speed

and security versus the third network. Like the third network, the fourth network

contains nodes with varying minimum and maximum security. However, the fourth

network enables a higher heterogeneous maximum than the nodes in the third network.

With the third network, the heterogeneous maximum security was equal to the six levels

above the heterogeneous minimum, or in other words, was equal to the heterogeneous

minimum plus six. The fourth network has heterogeneous maximum security equal to the

heterogeneous minimum plus seven. For example, nodes that had minimum security of 1

were able to reach a theoretical maximum of 8.

140

Figure 7.12: Comparison of maximum overall network security, selected networks with

varying heterogeneity and security (prototype one, n = 43)

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security, selected networks,

Prototype one

Heterogeneous minimum Homogeneous minimum

Max = hetero min + 6 Max = hetero min + 7

Heterogeneous

minimum, Max =

hetero min +6, +7

Heterogeneous

minimum (highest)

Max = hetero min +6

(lowest)

141

The results in Figure 7.11 and 7.12 show that the new network, which increased the

maximum possible security to seven greater than the heterogeneous minimum, gave an

increased average maximum from 6.5 to 6.7. However, the performance of the new

network was decreased as the third network (maximum security equal to minimum plus

six) converged faster.

 For additional tests, we added a fifth network with increased heterogeneous

maximum security, where the maximum security was equal to the heterogeneous

minimum plus eight. As shown below in Table 7.2, the new network yielded nearly

identical results to the heterogeneous minimum network. All nodes in the heterogeneous

minimum network were capable of reaching the theoretical maximum security of 10; this

network had been labeled “different minimums” in earlier charts, and is re-labeled

“heterogeneous minimum” for comparison in subsequent tables and figures. These

results of varying maximum security, as shown in Table 7.2, indicate that there exists an

optimum network configuration for fastest convergence with the maximum average

network security. However, the heterogeneity of the new network still paid off in terms

of maximum security, as the network achieved a maximum average of approximately 6.9,

the highest of the tests thus far.

142

Average security comparison, Prototype one

Iteration

Heterogeneous

minimum

Homogeneous

minimum

Max =

hetero min

+ 6

Max =

hetero min

+ 7

Max =

hetero min

+ 8

0 1.372 1.000 1.349 1.349 1.349

1 2.372 2.000 2.349 2.349 2.349

2 3.349 2.930 3.326 3.326 3.326

3 4.279 3.860 4.256 4.256 4.256

4 5.163 4.744 5.14 5.14 5.14

5 5.953 5.581 5.953 5.953 5.953

6 6.535 6.233 6.535 6.512 6.512

7 6.767 6.512 6.535 6.744 6.744

8 6.86 6.628 6.535 6.744 6.86

9 6.884 6.674 6.535 6.744 6.907

10 6.884 6.698 6.535 6.744 6.907

Table 7.2: Comparison of average security and iteration time for the varying degrees of

maximum security (prototype one, n = 43)

143

Figure 7.13: Average Utility Improvement comparison, varying security and

heterogeneity (prototype one, n = 43)

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 2 4 6 8 10

U
ti

li
ty

 I
m

p
ro

v
e

m
e

n
t

Iteration

Average utility improvement, selected

networks, Prototype one

Heterogeneous minimum Homogeneous minimum

Max = hetero min + 6 Max = hetero min + 7

Max = hetero min + 8

All except Homogeneous minimum

144

Average utility improvement comparison, Prototype one

Iteration

Heterogeneous

minimum

Homogeneous

minimum

Max =

hetero

min + 6

Max =

hetero

min + 7

Max =

hetero

min + 8

0 142% 118% 144% 144% 144%

1 63% 78% 63% 63% 63%

2 26% 32% 25% 25% 25%

3 13% 13% 12% 12% 12%

4 10% 11% 10% 10% 10%

5 5% 6% 5% 5% 5%

6 3% 3% 3% 3% 3%

7 1% 1% 0% 1% 1%

8 0% 1% 0% 0% 1%

9 0% 0% 0% 0% 0%

10 0% 0% 0% 0% 0%

Table 7.3: Average utility improvement comparison, varying degrees of heterogeneity.

This is the same data as is presented in Figure 7.13.

In the above Table 7.3 and, in graphical form, Figure 7.13, we see nearly identical utility

improvement performance for the varying degrees of heterogeneous maximum security,

nearly matching that of the homogeneous maximum where all nodes could reach the

same maximum of 10. While a security and convergence optimization occurred for

networks with heterogeneous maximum plus seven or plus eight, this was not the case for

145

utility improvement as shown in Figure 7.13 and Table 7.3. Here, networks performed

similarly. These results ultimately show that the game theoretic algorithm presented in

this work gives robust performance in terms of utility for varying degrees of maximum

achievable security on the part of the nodes that make up the network, demonstrating that

implementing our algorithm is feasible in terms of security improvement versus cost, as

utility is largely unaffected by network heterogeneity.

7.2 Prototype Two

The objective of our second prototype is to test the effect on convergence time,

utility improvement, and maximum overall security for a nearly complete implementation

of our game theoretic security algorithm. Networks have greater and varying degrees of

heterogeneity versus those tested for prototype one, which was a preliminary model.

Nodes forming the networks have heterogeneous minimum and maximum security,

which is representative of our heterogeneous network to be optimized. When performing

our initial tests on our algorithm in prototype one, we used two networks with

homogeneous and nearly-homogeneous nodes to observe whether our results were

logical. After we were confident that our algorithm was working properly, we moved on

to tests with truly heterogeneous networks. For our tests of prototype two, we used

heterogeneous networks which included the networks from the latter tests of prototype

one, and added networks with a maximum security equal to three, four, five, and six

levels above the heterogeneous minimum security of each node. We will use these

146

results for prototype two as a basis for comparison to the complete implementation of our

algorithm in prototype three.

 Like prototype one, prototype two does not entirely implement our game

theoretic security model. However, with the exception of side payments, prototype two

completely implements our game theoretic security model. Thus our second prototype

implements Algorithm 5.3: Reduce_ vulnerability, with the exception lines 13-17, which

relate to side payments. As it includes all else in Algorithm 5.3, as well as Algorithm

5.2: Reduce_ vulnerability and Algorithm 5.1: Coalition_formation, prototype two

includes coalitions. Furthermore, in the prototype simulations all nodes have knowledge

of all other nodes in G = (V, E) and are thus able to observe events in the game in the

same way that the nodes were able to for prototype one; all nodes in prototype two

correspondingly have knowledge of nodes’ maximum bidding price which in effect

resolves the bidding scheme in our prototype from any iterative, logarithmic, or

exponential process to immediate bid maximization. Also, as mentioned above each

node has varying minimum and maximum security levels. This varying security and

heterogeneity is representative of the heterogeneous network we seek to optimize; thus

the networks examined in prototype one are a subset of the ones examined henceforth.

The nodes are otherwise the same as the simulations for prototype one, with a network

again consisting of n = 43 nodes.

As described in Algorithm 5.1: Coalition_formation and Algorithm 5.2:

Attack_tree_analysis, at each turn of the game a node must re-examine its security and

that of its neighbors through attack tree analysis and by applying the partition function.

Those nodes that meet the security requirements for joining a coalition are added, those

147

that no longer meet the requirements are removed, and the others are kept within the

coalition. Those nodes that meet the security criteria and fall within difference_threshold

from Algorithm 5.1: Coalition_formation, will join the coalition and be given access to

insensitive data. Through the attack tree analysis of Algorithm 5.2, those nodes whose

security is evaluated to be even higher are granted access to sensitive data. The

simulation data for results from prototype two is displayed in Figures 7.14 through 7.18

below. In the first graph of prototype two, shown in Figure 7.14, we see average security

for the network compared for variations on maximum achievable security; compare this

to prototype one results from Figure 7.12.

148

Figure 7.14: Average security comparison for varying maximum security, full prototype

minus side payments (prototype two, n = 43)

0

1

2

3

4

5

6

7

0 5 10 15 20

S
e

cu
ri

ty
 L

e
v

e
l

Iteration

Average security, Prototype two

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +6 through +8

max = hetero min +5

149

Comparing the security data for prototype two shown in Figure 7.14 versus prototype one

in Figure 7.12, we see a nearly consistent maximum for prototype one among all

variations on heterogeneous maximum available security, reaching maximum of

approximately 6.5 to 6.9. However, with prototype two there exists a divergent

maximum among all variations on heterogeneous maximum achievable security for the

network. In this graph, Figure 7.14, we see the difference achieved by the addition of

coalitions, bidding, and analysis according to Algorithms 5.2 through 5.3. While the best

two networks that had maximum security equal to minimum plus five through plus eight

were slightly lower than that of prototype one, having a maximum of approximately 6.0,

this is not a huge divergence from the average maximum of the same networks for

prototype one at approximately 6.7. Because of the similarity, we believe it demonstrates

the consistency of the foundation of our game theoretic algorithm for improving overall

network security for the heterogeneous network. Furthermore, we believe that the

marked difference between the performance on the network maximum plus four versus

plus five shows that there is a point at which the optimum security can be reached, and

that compressing the overall maximum security for the network has a detrimental effect

on overall security, but only to a point, at which the algorithm is able to perform nearly as

well as if all nodes had the same homogeneous maximum.

In Figures 7.15 through 7.18 shown below, we see the data generated for

prototype two regarding relationships between nodes. Figure 7.15 shows average local

neighborhood count and in the next chart, Figure 7.16, we see average utility

improvement for the same simulation. Figure 7.17 shows corresponding information

regarding the number of nodes forming a coalition, and Figure 7.18 the percentage of

150

coalition members with sensitive data access. We examined the number of nodes to

which a node is connected, number of nodes forming a coalition, and percentage of

coalition members granted sensitive data access in order to better evaluate what is going

on in the system, with respect to whether there exists any correlation between these

statistics and network security. Also, by examining the number of connections, we are

able to ensure the network is staying fully connected with the introduction of coalitions in

prototype three. We are able to examine whether all nodes in a coalition are granted

sensitive data access, or what percentage of nodes were granted sensitive data access.

Recall that sensitive data access is granted to coalition members who meet more stringent

security requirements than those to simply belong to a coalition. As it turns out, most,

but not all coalition members are granted sensitive data access. Analysis and discussion

of the data in these figures follows Figure 7.18 below.

151

Figure 7.15: Comparison of average number of nodes making up local neighborhood for

varying maximum security and heterogeneity, full prototype minus side payments

(prototype two, n = 43)

0

5

10

15

20

25

0 5 10 15 20

N
u

m
b

e
r

o
f

N
o

d
e

s

Iteration

Average local neighborhood count,

Prototype two

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +4, +6, +7, +8

152

Figure 7.16: Average utility improvement comparison, varying maximum security and

heterogeneity, full prototype minus side payments (prototype two, n = 43)

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 2 4 6 8 10

P
e

rc
e

n
t

im
p

ro
v

e
m

e
n

t

Iteration

Average utility improvement, Prototype

two

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +4 through +8

153

Figure 7.17: Comparison of average number of nodes forming a coalition, varying

maximum security and heterogeneity, full prototype minus side payments (prototype two,

n = 43)

0

5

10

15

20

25

0 2 4 6 8 10

N
u

m
b

e
r

o
f

n
o

d
e

s

Iteration

Average number of nodes forming a

coalition, Prototype two

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +4

max = hetero min +6 through +8

154

Figure 7.18: Comparison of coalition nodes granted sensitive data access, full prototype

minus side payments (prototype two, n = 43)

80%

82%

84%

86%

88%

90%

92%

94%

96%

0 2 4 6 8 10

P
e

rc
e

n
t

o
f

co
a

li
ti

o
n

 m
e

m
b

e
rs

Iteration

Percentage of coalition members with

sensitive data access, no side payments

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +6 through +8

max = hetero min +4

max = hetero min +5

155

In Figures 7.15 and 7.17, the average number of nodes forming a coalition for prototype

two was the same as its average local neighborhood count. However, this was not the

case for prototype three. In Figure 7.16, we see utility improvement, which shows

decreasing improvement as the game progresses. In general, this pattern was observed

for all prototypes. In Figures 7.14, 7.17, and 7.18, we see that there is an inverse

relationship between network security and number of nodes granted sensitive data access,

as well as between network security and the number of nodes forming a coalition. We

hypothesize that as the difference in the nodes' maximum security increases, the

minimum security required to join a coalition increases and consequently includes fewer

nodes. Beyond these observations, there was no network-for-network correlation

between number of neighbors and security.

In the above Figure 7.18, showing the percentage of nodes granted access to

sensitive data, we see a great deal of divergence among the different networks with

varying degrees of maximum heterogeneous security at approximately five to six

iterations. If one examines the above graphs in Figures 7.14 through 7.18 for the same

simulation, we see that approximately five iterations is the point at which stabilization of

the network takes place for security, utility, coalition, or nodes forming a local area

network. This finalization of decision-making by each node is most likely the cause of

the divergence among the networks with varying degrees of maximum security as shown

in Figure 7.15, which simply represents the near-finalization of partial preferences by

each node in the network. This stabilization is thus most likely related to the utility

equation itself, and not necessarily restricted to coalition formation with partial

preferences, because in addition to the data presented in Figures 7.14 through 7.18, the

156

previous figures for the prototype as represented in Figures 7.1 through 7.13 shows

stabilization at approximately the same number of iterations.

7.3 Prototype Three

The objective of prototype three is to study the effect on overall network security

and convergence by adding side payments to simulations, yielding a full implementation

of our game theoretic security Algorithm 5.4: Pure_strategy_game. We examine

convergence time, utility improvement, and maximum overall network security and

compare our results with those of prototype two. Like prototype two, prototype three

includes coalitions, and all nodes have knowledge of events in the game and network.

This knowledge includes maximum bidding price. Network size was the same as for

earlier prototypes, consisting of 43 nodes. Side payments, which established the

difference between prototype three and prototype two, are denominated in terms of

security; this is described earlier in Algorithm 5.3: Reduce_ vulnerability. The decision

to make a side payment is based on attack tree analysis, whereby nodes prefer to solve

possible vulnerabilities when they are close to nodes which currently have diminished

vulnerability rather than allow a possible vulnerability to become an immediate problem

to a node with sensitive data. We chose the cost of payments in our prototype simulation

as equivalent to twice the immediate security benefit; while this is cynical it is more

representative of the principal of delayed gratification which is at the core of the

reasoning behind attack tree decision-making which leads nodes to address problems

sooner rather than later, receiving less immediate benefit. Again, while addressing a

157

problem late after its manifestation will likely yield more immediate gross benefit, it

represents greater vulnerability and cost to the node itself. Besides being poor attack tree

analysis, addressing a problem late also gives lower net benefit after costs are considered.

The results from tests of prototype three are found in Figures 7.19 through 7.36 below.

The first chart of the results for prototype three, shown in Figure 7.19, compares

average security among the networks with the same variations in heterogeneous minima

and maxima as found in the tests of prototype two. Compared to maximum security for

prototype two in Figure 7.14, we see results that show similar if not improved maximum

security for the networks that could reach the highest security levels. Like prototype two,

networks that had a maximum equal to heterogeneous minimum plus five and higher

achieved a consistent maximum security. This similarity of performance, with marked

improvement starting at plus five above minimum security, again demonstrates that our

game theoretic security algorithm can perform equally well under less than optimum

conditions.

158

Figure 7.19: Comparison of average overall network security for networks with

varying security and heterogeneity, full implementation of our algorithm (prototype three,

n = 43)

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security, Prototype three

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +5 through +8

159

Security for prototype three, represented in Figure 7.19, shows similar stabilization as the

corresponding security graph for prototype two in Figure 7.14. Both stabilized after

approximately five iterations. Prototype three had higher security, however. Since the

only difference between prototypes two and three was the introduction of side payments,

these test results show the effectiveness of side payments in improving security.

In general, utility for prototypes two and three showed similar convergence, as

shown in Figures 7.16 and 7.21. However, we observed under repeated tests that utility

for prototype three worsened at iterations 5 and 6 for two of the networks. These

networks had the maximum security equal to the heterogeneous minimum plus five and

plus eight. We do not know why this occurred for these specific networks.

Even though we see generally similar security and utility stabilization with (for

prototype three) or without (for prototype two) side payments, this is not the case for the

number of interactions taking place between nodes. In Figures 7.20 and 7.22 through

7.24 below, we see that prototype three takes nearly double the time to converge versus

prototype two; see the corresponding graphs for prototype two in Figures 7.15 and 7.17.

Since the only difference between prototypes two and three is the addition of side

payments, we must conclude that side payments lengthen the stabilization time with

respect to forming a local network and coalition. The increased time is likely a result of

the added overhead to make and accept side payments.

For Figures 7.19 and 7.21 we see a pattern that after the same number of

iterations, some of the networks diverged from other networks. This divergence was not

based entirely on how similar the networks were to one another. In fact, security

160

maximization was nearly identical for the networks with maximum security equal to the

heterogeneous minimum plus five and plus eight. These are the same two networks that

had the unusual decrease in utility at approximately iterations 5 and 6, which coincides

with the point at which these networks began to outperform the others. For all networks,

stabilization and convergence takes place after the same number of iterations, regardless

of the graph, for the security, utility, and side payments made in different simulations of

prototype three. Again, this stabilization is exemplar of the network being optimized

according to our game theoretic algorithm. Despite the differences in prototypes one

through three, the fundamental algorithm is the same, and we see this represented in the

similarity of stabilization with respect to utility and security among the three prototypes.

These results again show that our fundamental game-theoretic algorithm has the greatest

effect on network performance with respect to security and utility, and the fundamental

algorithm has greater significance than any other variations on the algorithm itself as in

the early prototypes one and two.

161

Figure 7.20: Comparison of average number of nodes forming a local neighborhood for

networks with varying security and heterogeneity, full implementation of our algorithm

(prototype three, n = 43)

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

N
u

m
b

e
r

o
f

N
o

d
e

s

Iteration

Average local neighborhood count,

Prototype three

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +5 through +8

162

Figure 7.21: Comparison of average utility improvement for same networks as above, full

implementation of our algorithm (prototype three, n = 43)

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 2 4 6 8 10 12 14 16

P
e

rc
e

n
t

im
p

ro
v

e
m

e
n

t

Iteration

Average utility improvement, Prototype

three

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +5 through +8

(lowest point)

163

Figure 7.22: Comparison of average number of nodes forming a coalition, varying

maximum security and heterogeneity, full implementation of our algorithm (prototype

three, n = 43)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

N
u

m
b

e
r

o
f

n
o

d
e

s

Iteration

Average number of nodes forming a

coalition, Prototype three

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +5 through +8

164

Figure 7.23: Comparison of percentage of local neighborhood (directly connected nodes)

forming coalition, varying network heterogeneity, full implementation of our algorithm

(prototype three, n = 43)

40%

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10 12 14 16

P
e

rc
e

n
ta

g
e

 o
f

lo
ca

l
n

e
ig

h
b

o
rh

o
o

d

Iteration

Percentage of local neighborhood that is in

coalition, Prototype three

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +5 through +8

165

Figure 7.24: Percentage of coalition members granted access to a node’s sensitive data,

d(i) = 1, for networks with different maximum security and heterogeneity, full

implementation of our algorithm (prototype three), n = 43

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10 12 14 16

P
e

rc
e

n
t

o
f

co
a

li
ti

o
n

 m
e

m
b

e
rs

Iteration

Percentage of coalition members with

sensitive data access, Prototype three

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +5

max = hetero min +6 through +8

166

In Figure 7.25, shown below, we see data unique to prototype three, that of the

percentage of nodes making side payments. After twelve iterations, the network

variations converge to stabilization and no more side payments are made. Since for the

data shown in Figures 7.20 and 7.22 through 7.24 shows convergence after ten iterations

and we hypothesized that this longer convergence time versus prototype two was directly

related to the addition of side payments, we can see that there is some correlation

between the percentage of nodes making side payments and stabilization of the related

interactions between nodes in a graph.

In addition, we believe that there may be a point at which the percentage of nodes

making side payments has no further effect on convergence time, as the side payment

stabilization took two iterations longer than the security and utility stabilization. At

iterations 11 and 12, the percentage of nodes making side payments dropped below 20%

of the total number of nodes; this may be the point at which the percentage of nodes

making side payments has no further effect on convergence time.

167

Figure 7.25: Comparison of percentage of network nodes making side payments, full

implementation of our algorithm (prototype three), n = 43

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14 16

P
e

rc
e

n
t

o
f

n
o

d
e

s

Iteration

Percent of nodes making side payments,

Prototype three

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +5 through +8

168

It is interesting to note, in Figure 7.25 above, the correlation between side

payments and the best-performing networks, in terms of security, as shown earlier in

Figure 7.19: networks that maximized the use of side payments had the highest security.

In fact, the networks with heterogeneous maximum of five or more above the minimum

security had nearly identical graphs for side payments. This shows that side payments

indeed do improve security beyond what would be achievable in their absence, thus

benefitting network security as a whole.

There is also an interesting correspondence between local network size (and

coalition size) and side payments in prototype three: those networks making more side

payments tend to have smaller local area networks. Nodes are thus granting fewer other

nodes access to sensitive or insensitive data. Because of the decrease in the number of

nodes forming a local area network in prototype two versus prototype three by a factor of

two or three (see Figures 7.15 and 7.20, respectively), in addition to the similar decrease

in the percentage of nodes allowed sensitive data access in the best-performing

heterogeneous networks (heterogeneous maximum of plus five through eight, see Figures

7.18 and 7.24), we hypothesize that the nodes in the network, through the feedback

mechanism of side payments to reduce vulnerability to other nodes, are in effect learning

to reduce their own vulnerability by communication via the side payment mechanism.

This hypothesis merits future study. As above in prototype two, there was no network-

for-network correlation between number of neighbors and security in prototype three.

However, there was a pattern for the networks having highest security, those of max =

hetero min +5 through +8. With the exception of the two lowest-security networks,

169

networks with the highest security had fewer connections. The max = hetero min +5

through +8 networks had a smaller average local neighborhood count, smallest average

number of nodes forming a coalition, smallest percentage of local neighbors in coalition,

and smallest percentage of coalition members with sensitive data access.

7.3.1 Prototype Three Version Two

The purpose of prototype three, version two is to study the impact of more

effective side payments on the network as a whole. It is otherwise identical to the earlier

version of prototype three, which we shall henceforth denote as prototype three version

one. Effectiveness is measured in terms of a two-fold increase in security versus side

payments for prototype three version one. We chose to alter this side payment

effectiveness quantization to determine whether our logic for choosing to denominate

earlier side payments more closely to the principal of delayed gratification was correct,

and also to see whether allowing nodes the capability of making changes to security that

are more effective have an impact on overall network security. The data shown in Figure

7.26 gives the security of the network for this change in side payments.

170

Figure 7.26: Average overall network security, more effective side payments, full

implementation of our algorithm (prototype three version two), n = 43

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security, Prototype three v.2

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +6 through +8

171

Henceforth we label prototype three as prototype three version one, or, in short,

prototype three v.1. If we compare the data in Figure 7.26 for prototype three version

two to the corresponding data in Figure 7.19 for prototype three version one, we see little

difference in improvement in overall network security for the best performing

heterogeneous networks. However, we do see a marked decrease in convergence time for

networks in prototype three version two, the network with more effective side payments,

by a factor comparable to the increase in side payment effectiveness. Figure 7.27 below

compares the performance of the fastest-converging network (heterogeneous maximum

equal to the minimum plus five) in prototype three version one and prototype three

version two. The data shown in Figure 7.27 illustrates the decrease in convergence time

by almost half for prototype three version two, seven versus 11 iterations. We see nearly

identical results in Figure 7.28 for the second-fastest converging network, with a

maximum security equal to the heterogeneous minimum plus six. We also see similar

results for the remainder of the heterogeneous maxima as shown in Figure 7.26 compared

to the corresponding results for prototype three version one in Figure 7.19.

172

Figure 7.27: Average security comparison for prototype three versions one and two, (full

implementations of our algorithm), network maximum security equal to minimum plus

five, n = 43

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security, Prototype three v.1 and

v.2, Max security = hetero min+5

Prototype 3: less effective side payment

Prototype 3 version 2: more effective side payment

173

Figure 7.28: Average security comparison for prototypes three versions one and two, (full

implementations of our algorithm), network with maximum security equal to minimum

plus six, n = 43

0

1

2

3

4

5

6

7

0 5 10 15 20

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security, Prototype three v.1 and

v.2, Max security = hetero min+6
Prototype 3: less effective side payment

Prototype 3 version 2: more effective side payment

174

Note in Figures 7.27 and 7.28 that security maximization is similar between the two

prototypes. From these results we conclude that increased effectiveness of side payments

decreases convergence time of the network by a comparable amount, almost half.

Figure 7.29, shown below, shows the percentage of nodes making side payments

for prototype three, version two. If we compare this data with that of the corresponding

data for prototype three version one as shown in Figure 7.25, we see a decrease in the

number of side payments for prototype three version two. This decrease in side payments

corresponds with the decreased convergence time of this variation on prototype three.

175

Figure 7.29: Percent of nodes making side payments, (full implementation of our

algorithm), prototype three version two, n = 43

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16

P
e

rc
e

n
t

o
f

n
o

d
e

s

Iteration

Percent of nodes making side payments,

Prototype three v.2

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +5 through +8

176

Figure 7.30: Average local neighborhood count, (full implementation of our algorithm),

prototype three version two, n = 43

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20

N
u

m
b

e
r

o
f

N
o

d
e

s

Iteration

Average local neighborhood count,

Prototype three v.2

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +5 through +8

177

Comparing an average of the networks’ results shown above in Figure 7.30 for

number of nodes forming a local neighborhood with the average of the same data for the

less effective side payments of prototype three version one in Figure 7.20, as shown in

Figure 7.31 we see there is an increase in the number of nodes forming a local

neighborhood when effectiveness of side payments is increased. There does exist,

however, an initial increase by prototype three version one over that of version two. We

hypothesize that this is caused by the effectiveness of side payments themselves in

combination with nodes’ initial perceived improvement, which gives way to the observed

effect of side payments after a few iterations, whereby nodes learn that the increased side

payments’ effectiveness are not as predicted. It is also possible, and we believe more

likely, that the nodes with less effective side payments are making more of them in order

to overcome their deficiency in security improvement; whereas when side payments are

more effective in improving security, nodes do not have to make as many payments to

achieve the same effect.

178

Figure 7.31: Number of nodes forming local neighborhood comparing side payment

effectiveness in full implementation of our algorithm, (prototype three), n = 43

Compared to average security as shown in Figure 7.32 below, the difference is not

as apparent as it is in Figure 7.31; instead the networks have similar results for maximum

average security despite the decreased convergence time for networks with more

effective side payments in prototype three version two.

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

N
u

m
b

e
r

o
f

n
o

d
e

s

Iteration

Average local neighborhood count,

Prototype three v.1 and v.2

Prototype three version 2 Prototype three version 1

179

Figure 7.32: Average maximum security comparing side payment effectiveness in full

implementation of our algorithm (prototype three), n = 43

0

1

2

3

4

5

6

7

0 5 10 15 20

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average maximum security, Prototype

three v.1 and v.2

Prototype three version 2 Prototype three version 1

180

In Figure 7.33 below we again see nearly identical utility improvement for the averages

of prototypes three versions one and two, again illustrating that despite the increased

convergence time the more effective side payments have almost no other effect. Note

also that at six iterations, the utility improvement drops below zero, indicating a loss of

utility, but recovers at the next iteration. Future work should include further study of the

possible causes of this anomaly, as it was not predicted by any of our mathematical

models.

Figure 7.33: Utility improvement, comparing side payment effectiveness in full

implementation of our algorithm (prototype three), n = 43

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 2 4 6 8 10 12 14 16 18

U
ti

li
ty

 i
m

p
ro

v
e

m
e

n
t

Iteration

Average utility improvement, Prototype

three v.1 and v.2

Prototype three version 2 Prototype three version 1

181

In Figure 7.34 below, we examine side payment effectiveness on coalition size.

We see nearly identical results as in Figure 7.31 above, local neighborhood count. Again,

prototype three version one, implementing less effective side payments, had more nodes

in the coalition early on, but fewer nodes in the coalition at the stable maximum. This

correlation indicates that increasing effectiveness in side payments has the most impact

on improving network connectivity.

Figure 7.34: Average quantity of nodes forming coalition, comparing side payment

effectiveness in full implementation of our algorithm (prototype three), n = 43

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18

N
u

m
b

e
r

o
f

n
o

d
e

s

Iteration

Average number of nodes forming

coalition, Prototype three v.1 and v.2

Prototype three version 2 Prototype three version 1

182

Figure 7.35 below shows the percentage of coalition members granted access to

sensitive data for the continuing averages comparison. Here we observe that networks

with more effective side payments have an increase in terms of number of coalition

members granted sensitive data access. Based on these results and those described above

for Figures 7.31 and 7.34, we conclude that the side payment effectiveness acts as a

measure of increasing trust and collaboration between nodes.

Figure 7.35: Percent of coalition granted sensitive data access, comparing side payment

effectiveness in full implementation of our algorithm (prototype three), n = 43

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10 12 14 16

P
e

rc
e

n
t

o
f

co
a

li
ti

o
n

 m
e

m
b

e
rs

Iteration

Average percentage of coalition

members granted sensitive data access,

Prototype three v.1 and v.2

Prototype three version 2 Prototype three version 1

183

If we examine the best performing networks for prototype two, prototype three

version one, and prototype three version two, we may be able to see how well each

prototype compares to the other’s security improvement. Because prototype one made

the assumption that all costs, constraints, and bids were resolved ahead of time and all

nodes belonged to the same coalition, and no side payments took place, as such it did not

implement several key points in our fully mature algorithm that are needed to effectively

compare its results with those of prototypes two and three. Prototype one lacks the fully

mature cost function and utility calculation of Algorithms 5.2 through 5.4. Thus

prototype one is omitted from the graphs below as in Figure 7.36. As demonstrated in

prototype three, version two, we see an improvement in security as shown in Figure 7.36

when side payments are used versus no side payments. We also see a slight increase in

security when these side payments are more effective, but again not corresponding to the

rate of improvement. Again, improved side payments decreased the convergence time,

giving speedup nearly equivalent to omitting side payments from consideration

altogether. The prototype that had the fastest convergence, prototype three version 2, had

largest average local neighborhood count, average number of nodes forming a coalition,

and average percentage of coalition members granted sensitive data access.

184

Figure 7.36: Maximum security comparison of best performing networks on prototypes

that fully or nearly-fully implement our game theoretic algorithm for pure strategies,

n=43

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Best performing networks per respective

prototype

Prototype two (max = hetero min+6 through max = hetero min+8)

Prototype three version 1 (max = hetero min +5 through max = hetero min+8)

Prototype three version 2 (max = hetero min +7 through max = hetero min+8)

185

7.4 Prototype Four

The objective of prototype four is to implement Algorithm 5.5:

Mixed_strategy_game in its entirety, and compare its results with prototype three. With

the exception of players moving according to a mixed strategy, prototype four is

otherwise identical to prototype three. Side payments are again used in the context of the

same networks tested in prototype three. Coalitions are formed and nodes follow the

same rules as prototype three. As with prototype three, nodes in prototype four are able

to observe all events.

Since the players are moving according to a mixed strategy, they by definition

move according to a probability distribution over the set of pure strategies. The

probability distribution chosen for prototype four was for the players to choose the

optimal strategy approximately 97% of the time. We implemented at least five runs of all

variations on prototype four and visually inspected the results to ensure that the players

did indeed choose the correct strategy, on average, 97% of the time. The actual

numerical percentage we observed ranged from approximately 95% to 99% for an

average of 97%; hence it is identified as the average percentage of the time that players in

prototype four chose the optimal strategy. We chose this probability distribution because

it gave the most consistent and repeatable results with random number generation. For

more detail on the random number generator, we refer the reader to [41], [42], [47], and

[48].

186

While the increased side payment effectiveness in prototype three version two

directly decreased convergence time versus prototype three version one, we did not know

whether this would hold true for the mixed strategies of prototype four. We tested the

same variation in side payment effectiveness for prototype four version two. Prototype

four version one kept all side payments at the same level as version one of prototype

three, whereby the cost is equal to twice the security benefit. But in either prototype, if a

node receiving a side payment chooses a suboptimal strategy, it will fail to receive or act

upon the side payment. Its mistake also influences the node that made the side payment

because the benefit to security is lost and never recovered.

Since the players in prototype four are moving according to a mixed strategy, we

would expect there to be a decrease in overall security for prototype four versus prototype

three. However, this was not the case. Instead, we found that convergence time

increased significantly, but so did average security. Our results are shown in Figure 7.37,

below, where we compare average security for prototypes two through four, this time

averaged over all the networks’ security for each prototype. Each chart below that lists

average security by prototype means it represents the average of the security of all

networks tested by prototype, ranging from maximum security equal to heterogeneous

minimum plus three to maximum security equal to the heterogeneous minimum plus

eight.

187

Figure 7.37: Average maximum security comparison, prototypes fully or nearly-fully

implementing our game theoretic security algorithm, n = 43

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security, pure and mixed

strategies

Prototype two Prototype three version 1

Prototype three version 2 Prototype four

prototype three versions 1 and 2

188

As shown above in Figure 7.37, which gives the average security per prototype, we see

that the introduction of side payments in prototype three improve average security by

approximately 10%. Prototype two, which fully implemented our game theoretic

algorithm with the exception of side payments, had an average security of approximately

5.5, while prototype three versions one and two had an average security of approximately

5.9. As mentioned earlier in comparing prototypes two and three, the introduction of side

payments also caused an increased convergence time to stable network security.

However, its convergence time is not nearly as significant as the convergence time for a

prototype of a game using mixed strategies. While the average security for prototype

four, using mixed strategies, took the longest time to stabilize at approximately 90

iterations, its security was greater than any other prototype.

In Figure 7.38 we see that each network’s maximized security in prototype four is

near or at its theoretical average maximum. Recall that networks made up of nodes with

lower maximum theoretical security (e.g., maximum security equal to the heterogeneous

minimum plus 3) had smaller maximum achievable average security. For example, since

the average minimum security for each network was approximately 1.3, the average

theoretical maximum for the network with maximum security equal to the heterogeneous

minimum plus 3 would be equal to 1.3 (the heterogeneous minimum) plus 3, giving a

theoretical maximum of 4.3. The theoretical maximum is reached for this network as

shown in Figure 7.38. With the exception of the network that had a maximum security

equal to the heterogeneous minimum plus seven, the networks shown in Figure 7.38

reached their theoretical maximum.

189

Figure 7.38: Average network security, full implementation of our algorithm for mixed

strategies, prototype four, varying heterogeneous networks, n = 43

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security, Prototype four

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

190

We hypothesize that the improvement in security for prototype four is either related to the

extended iterations and thus interactions between nodes, or is related to players

attempting to compensate for mistakes via additional side payments. It is also possible

that the side payments may be acting as a sort of feedback mechanism for learning.

Recall that through side payments, utility is decreased while security is increased

for a node paying a second node to make a security change; but if the player who

received the payment (payee) makes an error according to the mixed strategy, the action

to improve the payer’s security is not made, causing the security improvement and utility

to be lost and the payer to recalculate its security to correct for the other node’s mistake.

However, we observed no correlation with the decrease in utility and increase in side

payments as shown in Figure 7.39.

 When we compare security for prototype four shown in Figure 7.38 with the

security for prototype three in Figure 7.26, we see some similarity in the network security

distributions. In both prototypes three and four, the network with maximum security

equal to the heterogeneous minimum plus eight is highest, the network with maximum

security equal to the heterogeneous minimum plus four is in the midrange, and the

network with maximum security equal to the heterogeneous minimum plus three is

lowest, which is generally consistent with what we would expect. However, we did not

expect the marked improvement in security made by prototype four. Since each

network’s security approaches its theoretical maximum in prototype four, we do not see

the grouping of similar maximum securities for some of the networks as occurred in

prototype three, shown in Figure 7.26.

191

Figure 7.39: Mixed strategy utility improvement, full implementation of our algorithm

for mixed strategies, (prototype four), n = 43

Figure 7.40 shown below shows the percentage of nodes making side payments.

We examined the percentage of nodes making side payments in order to determine

whether there was any correlation between it and security improvement. Note that side

payments continue past security stabilization, and once past approximately 15 iterations

do not follow the pattern for pure strategies as shown in Figure 7.25 above. Furthermore,

the percentage of nodes making side payments for the network where the maximum was

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 5 10 15 20

P
e

rc
e

n
t

im
p

ro
v

e
m

e
n

t

Iteration

Average utility improvement, Prototype

four

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

192

equivalent to four levels higher than a node’s minimum security had an unusual spike at

approximately 45 iterations, even after repeated tests. We hypothesize that this occurred

as a result of the network’s attempt to increase its own security through side payments in

order to overcome its own security limitations. It is interesting to note that this

phenomenon occurred exclusively to this network at approximately 45 iterations, which

is approximately halfway through the optimization process (stabilization occurs at

approximately 90 iterations). In this network, many nodes have a maximum security of 5

out of 10. Whether there is a correlation between convergence, maximum security, and

side payment interaction is to be determined in future work.

193

Figure 7.40: Percent of nodes making side payments, full implementation of our

algorithm for mixed strategies, prototype four, n = 43

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 20 40 60 80 100

P
e

rc
e

n
t

o
f

n
o

d
e

s

Iteration

Percent of nodes making side payments,

Prototype four

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

194

Figure 7.41: Average local neighborhood count, full implementation of our algorithm for

mixed strategies, prototype four, n = 43

Figure 7.41, shown above, gives the average number of nodes to which another node is

directly connected. We examined the local neighborhood count in order to study whether

there was any correlation between the number of nodes to which another node is directly

0

5

10

15

20

25

0 20 40 60 80 100

N
u

m
b

e
r

o
f

N
o

d
e

s

Iteration

Average local neighborhood count,

Prototype four

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

195

connected and the overall network security. In this case the performance of prototype

four is similar to that of prototype three versions one and two, as shown earlier in Figures

7.20 and 7.30. However, the networks with the greatest maximum security, as shown in

Figure 7.38, were the networks with the smallest average local neighborhood count.

7.4.1 Prototype Four Version Two

The objective of prototype four version two was to test whether the increased

effectiveness in side payments had the same decrease in convergence time as with

prototype three version two. Henceforth we shall identify the previous prototype four as

prototype four version one. As shown in Figure 7.42 below, there was generally little or

no effect. This is most likely caused by the mixed strategies extending the time to

converge to maximum security. However, in some cases the more effective side

payments actually increased convergence time versus the less effective side payments,

which we did not expect. We hypothesize that this is the result of increased error in

security calculations when a node makes a side payment to a second node, but the second

node chooses a suboptimal decision and thus fails to act on the side payment. However,

we do not know why the extended convergence time occurred for some networks but not

others. Compare these results with the same diagram for prototype four version one as

shown in Figure 7.38 above. This phenomenon bears future study.

196

Figure 7.42: Average security, full implementation of our algorithm for mixed strategies,

prototype four version two, n = 43

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security, Prototype four v.2

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

197

7.5 Kerberos comparison

The objective of developing a prototype of the well-known Kerberos algorithm is

to compare our own algorithm’s effectiveness versus an established algorithm in a

manner that can be consistently and accurately measured. Using the Kerberos algorithm

which implements the Kerberos system, we developed a prototype and compared its

results with that of the prototypes of our own game theoretic algorithm. We normalized

the definition of high security as defined by our metric onto Kerberos, thus correlating

with the three highest security levels which correspond to eight through ten. Since until a

ticket K(r, w) is granted by the Kerberos server for the session, the definition of security

for a node is incomplete as it consists only of encryption y; thus until the ticket is granted

encryption strength y represents security.

 The first result of testing the Kerberos prototype is shown in Figure 7.43 below

for the nodes able to participate; here we see the advantages and disadvantages of

Kerberos exemplified. Kerberos performs very well when nodes in a network can reach a

sufficiently high level of security, but its exclusivity as shown in Figure 7.44 prevents

other nodes from participating in the network at all, resulting in a loss of network

connectivity. Note that in Figure 7.44, even when all nodes in a network can reach

security level eight (as can be done with the max = hetero min plus 7 network), a

sufficiently high number of nodes are still excluded from joining the Kerberos network.

We did not expect this to happen. While it is possible we established constraints on

security that were too high, we attempted to follow the pure Kerberos system as closely

as possible, and believe that that the high security constraints of the system are what is

indeed excluding those nodes from participating in the network.

198

Figure 7.43: Kerberos network average security, participating nodes, n = 43

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security, Kerberos

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

199

Figure 7.44: Kerberos network, variations on maximum security, percent of all nodes

able to participate, n = 43

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 2 4 6 8 10 12 14 16 18 20

P
e

rc
e

n
t

o
f

to
ta

l
n

o
d

e
s

Iteration

Percent of all nodes able to participate in

Kerberos

max = hetero min +3 max = hetero min +4 max = hetero min +5

max = hetero min +6 max = hetero min +7 max = hetero min +8

max = hetero min +6, +7

max = hetero min +3 through +5

200

As demonstrated above in Figure 7.44, a significant number of nodes are unable to

participate in the Kerberos network. In all but one of the networks tested, less than 10%

of the nodes were able to join the network. Even for the network where all nodes were

able to reach high encryption, 20% of the nodes were unable to join the Kerberos network

due to security restrictions imposed by the Kerberos ticket-granting server. Contrast this

with the definition of our own algorithm designed to optimize security for heterogeneous

networks, in which no node is excluded. Our prototypes three and four have no graph

corresponding to Figure 7.44 because no nodes are excluded by our algorithm.

In Figure 7.45, we extend the average security comparison of Figure 7.37 from

earlier to include Kerberos. This chart will be used for comparison to Figures 7.59 –

7.61, which contain tests of all prototypes on different network sizes. Prototype one,

while not fully implementing our security algorithm with respect to cost function, bids,

coalitions, and side payments, is included in Figure 7.45 because of this comparison

which is below. However, when one examines its numerical quantization, prototype

one’s performance is thus somewhat deceptive compared to the other prototypes. Again,

this is due to the fact that prototype one was used for initial tests, and only considered a

limited number of networks versus later prototypes. Recall that the networks tested in

prototype one had high security. Networks had either homogeneous maximum security,

where all nodes could reach the maximum theoretical security of ten, or high

heterogeneous maximum security that was six or seven levels above the heterogeneous

minimum. Prototype one was designed to perform initial tests of our basic game

theoretic algorithm. Prototype two and later prototypes were designed to fully test our

201

algorithm. Because of its differences with the more fully developed prototypes,

prototype one’s security quantization should be considered more ordinal than exact and

can thus be considered similar to the performance of the prototypes two through four.

In Figure 7.45, Kerberos performs poorly compared to our algorithm’s prototypes.

In most cases fewer than 10% of the nodes met the security requirements to join the

Kerberos network, leaving the remainder to have a decreased level of security. As shown

in Figure 7.44, at least 20% of all nodes are unable to participate and join the Kerberos

network.

202

Figure 7.45: Average security comparison, all prototypes, n = 43. Compare with Figures

7.59 – 7.61 below for n = 20, 60, and 80, respectively.

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security for all prototypes, n=43

Prototype one Prototype two

Prototype three version 1 Prototype three version 2

Prototype four v1 Prototype four v2

Kerberos

prototype four v1, v2
prototype three versions 1 and 2

203

As shown in Figures 7.45 through 7.50, Kerberos’ weakness due to its

inapplicability to heterogeneous networks is apparent. But comparing Kerberos to the

performance of our own security algorithm in the same figures, the strength of our

algorithm is apparent. No nodes are excluded in our algorithm’s prototypes, and security

is improved overall, for all possible members of the network. Still, for a more

homogeneous network where most or all nodes are able to reach high levels of

encryption, as in Figure 7.51, Kerberos can provide improved average security and much

faster convergence versus our own security algorithm. Kerberos performs better when

the nodes in the network can reach the highest security. Note that prototype one is

excluded from the graphs in Figures 7.46 through 7.51 as it did not test all of these

networks. These graphs are below.

204

Figure 7.46, n = 43, security comparison for a network where the maximum security is

equivalent to three levels above a node’s minimum security.

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Security comparison, Max = hetero min plus

3 network

kerberos prototype two

prototype three version 1 prototype three version 2

prototype four version 1 prototype four version 2

prototype three versions 1 and 2

prototype two, prototype four versions 1 and 2

205

Figure 7.47, n = 43, security comparison for a network where the maximum security is

equivalent to four levels above a node’s minimum security

0

1

2

3

4

5

6

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Security comparison, Max = hetero min

plus 4 network

kerberos prototype two

prototype three version 1 prototype three version 2

prototype four prototype four version 2

prototype three versions 1 and 2

prototype two, prototype four versions 1 and 2

206

Figure 7.48, n = 43, security comparison for a network where the maximum security is

equivalent to five levels above a node’s minimum security

0

1

2

3

4

5

6

7

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Security comparison, Max = hetero min

plus 5 network

kerberos prototype two

prototype three version 1 prototype three version 2

prototype four prototype four version 2

prototype three versions 1 and 2, prototype four versions 1 and 2

prototype two

207

Figure 7.49, n = 43, security comparison for a network where the maximum security is

equivalent to six levels above a node’s minimum security

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Security comparison, Max = hetero min

plus 6 network

kerberos prototype two

prototype three version 1 prototype three version 2

prototype four prototype four version 2

prototype four versions 1 and 2

prototype three versions 1 and 2

208

Figure 7.50, n = 43, security comparison for a network where the maximum security is

equivalent to seven levels above a node’s minimum security

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Security comparison, Max = hetero min

plus 7 network

kerberos prototype two

prototype three version 1 prototype three version 2

prototype four prototype four version 2

prototype four version 2

prototype four version 1

prototype three versions 1 and 2

prototype two

209

Figure 7.51, n = 43, security comparison for a network where the maximum security is

equivalent to eight levels above a node’s minimum security

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Security comparison, Max = hetero min

plus 8 network

kerberos prototype two

prototype three version 1 prototype three version 2

prototype four prototype four version 2

prototype three version 1 and 2

prototype two

210

In Figure 7.51, we see that Kerberos is ideal for a network composed primarily of nodes

that can reach maximum security. However, prototype four performed nearly as well

despite the longer convergence time. This may not be a fair comparison, however, since

prototype four implements mixed strategies while Kerberos only implements pure

strategies.

7.6 Varying network size: a comparison

The purpose of the following tests of security for prototypes one through four is to

examine whether varying the size of the network, n, has an effect on the network security

for our game theoretic algorithm. The above prototypes were run on our first network,

which as mentioned earlier, had 43 nodes. To determine the effect increasing or

decreasing the number of nodes has on the network security, we will examine networks

with 20, 60, and 80 nodes in our 10 by 10 matrix averaged over the networks with

varying heterogeneous maxima, as applicable. Similar tests for Kerberos are also shown

below. All nodes were heterogeneous. For the network of 20 nodes, fourteen nodes

started at minimum security of 1, three nodes started at minimum security of 2, two nodes

started at minimum security of 3, and one node started at minimum security of 5. The

average minimum security was 1.55. For the network of 60 nodes, fifty nodes started at

minimum security of 1, seven nodes started at minimum security of 2, two nodes started

at minimum security of 3, and one node started at minimum security of 5. The average

minimum security was 1.25. For the network of 80 nodes, seventy nodes started at

minimum security of 1, seven nodes started at minimum security of 2, two nodes started

211

at minimum security of 3, and one node started at minimum security of 5. The average

minimum security was 1.1875. These graphs follow below.

 Our first graph, Figure 7.52, shows the effect varying the size of the network has

on our first prototype, prototype one. Here we see a fairly consistent level of security

among the varying network sizes; note that for 20 nodes the security was lowest, but

beyond this size of network there was no significant difference between the average

network security levels. This same phenomenon occurred for prototype two as well,

which is shown in Figure 7.53. We believe that these results demonstrate the robustness

of our core game theoretic security algorithm. Discussion of these results in Figure 7.52

– 7.55 follows Figure 7.55.

212

Figure 7.52: Security for prototype one, varying network size n

0

1

2

3

4

5

6

7

8

0 5 10 15 20

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Prototype 1 security, varying n

n=20 n=43 n=60 n=80

n=80

n=43, n=60

213

Figure 7.53: Security for prototype two, varying network size n

0

1

2

3

4

5

6

7

0 5 10 15 20

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Prototype 2 security, varying n

n=20 n=43 n=60 n=80

n=60,n=80

214

Figure 7.54: Security for prototype three version one, varying network size n

0

1

2

3

4

5

6

7

0 5 10 15 20

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Prototype 3 v.1 security, varying n

n=20 n=43 n=60 n=80

n=20, n=43

215

Figure 7.55: Security for prototype three version two, varying network size n

0

1

2

3

4

5

6

7

0 5 10 15 20

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Prototype 3 v.2 security, varying n

n=20 n=43 n=60 n=80

n=60,n=80

216

The results shown in Figures 7.52 and 7.53 indicate that varying the network size

had little or no effect on prototypes one or two. The introduction of side payments

brought on in prototype three versions one and two, shown in Figures 7.54 and 7.55,

respectively, demonstrate improvements in security for all network sizes versus prototype

two. The smallest network, n=20, showed the most improvement with the more effective

side payments of prototype three version two. The larger networks, n=60 and n=80, had

higher security than the smaller sized networks for either prototype. However, the

middle-sized network, n=43, had the lowest or nearly the same security as the smallest

network, n=20. For prototype four, however, we did not observe the phenomenon of

larger networks having greater average security. See Figures 7.56 and 7.57 below. For

prototype four version one, which had less effective side payments than prototype four

version two, the smallest network of n=20 performed the best. However, for prototype

four version two, all networks performed similarly. Note in Figure 7.57 (prototype four

version two) there is a tighter bound in maximum security variations for network size

versus prototype four version one in Figure 7.56. This tighter bound is clearly related to

the more effective side payments, since that is the only difference between the two

prototypes. It is evident in these graphs that the more effective side payments decreased

security for larger networks, if only by a small amount.

Overall, however, the maximized average security for all networks stabilized

between 6 and 7 for both prototypes. However, the network with n=43 nodes performed

poorest. We do not know why this network had the lowest security. It may be possible

that small networks optimized by mixed strategy games perform best, but if so there is no

correlation beyond what we observed for a network of 20 nodes.

217

Figure 7.56: Security for prototype four version one, varying network size n

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Prototype 4 v.1 security, varying n

n=20 n=43 n=60 n=80

218

Figure 7.57: Security for prototype four version two, varying network size n

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Prototype 4 v.2 security, varying n

n=20 n=43 n=60 n=80

n=20, n=60, n=80

n=43, n=60

n=20, n=80

n=43

219

As shown below in Figure 7.58, Kerberos is also relatively consistent for varying

network size, but shows an inverse relationship between network size and achieved

security. This may be caused by the decreased overhead of a smaller Kerberos network

resulting in improved efficiency and security.

Figure 7.58: Security for Kerberos network, varying network size n

0

1

2

3

4

5

6

0 5 10 15 20

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Kerberos security, varying network size n

n=20 n=43 n=60 n=80

220

In Figures 7.59 through 7.61 we see the average security compared for all of our

prototypes, including Kerberos. Network size varied from 20 to 60 to 80 nodes. The

graph for the network of 43 nodes is in Figure 7.45 above. In Figure 7.45 and Figures

7.59 through 7.61, we observe Kerberos is consistently poorest when averaged over

networks varying by heterogeneity, with the exception of the network consisting of 20

nodes. Instead, Kerberos performs approximately as well for security as prototype two,

which implemented coalitions but no side payments; prototype two, however, converged

more quickly to stable network security.

221

Figure 7.59: Average security comparison of all prototypes, n = 20

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security for all prototypes,

n=20

prototype two prototype three v1 prototype three v2

prototype four v1 prototype four v2 kerberos

prototype four v1, v2

222

Figure 7.60: Average security comparison of all prototypes, n = 60

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security for all prototypes,

n=60

prototype one prototype two prototype three v1

prototype three v2 prototype four v1 prototype four v2

kerberos

prototype four v1, v2

223

Figure 7.61: Average security comparison of all prototypes, n = 80

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

S
e

cu
ri

ty
 l

e
v

e
l

Iteration

Average security for all prototypes,

n=80

prototype one prototype two prototype three v1

prototype three v2 prototype four v1 prototype four v2

kerberos

224

These graphs in Figure 7.45 and Figures 7.52 – 7.61 demonstrated the

improvement in network security made by prototype implementations of our game

theoretic algorithm regardless of network size. Again, our algorithm includes all nodes in

any network, regardless of heterogeneity, which is something that Kerberos fails to do.

As a result, our algorithm improves network security and is better suited to optimize

security for a more heterogeneous network than Kerberos. Our detailed summaries are

discussed below the overview of our results is given in Table 7.4.

 Theor. Max. Security Levels Avg. Security Convergence Nodes Included in Network

Proto 1 Minavg + 6 to 8 High Fast All

Proto 2 Minavg + 3 to 8 Mid Fast All

Proto 3.1 Minavg + 3 to 8 Mid Fast All

Proto 3.2 Minavg + 3 to 8 Mid Fast All

Proto 4.1
Minavg + 3 to 6 Mid Fast All

Minavg + 7 to 8 High Slow All

Proto 4.2
Minavg + 3 to 5 Mid Fast All

Minavg + 6 to 8 High Slow All

Kerb.

Minavg + 3 to 5 Low Fast <10%

Minavg + 6 to 7 Mid Fast <10%

Minavg + 8 High Fast 80%

Table 7.4: Table of Prototypes and General Results

225

7.7 Detailed summary of results

When comparing different networks with varying heterogeneity with respect to

minimum and maximum security, the results of our first prototype show that our game

theoretic security algorithm converges faster for more heterogeneous networks. The

achieved security for this network was, naturally, somewhat decreased when nodes could

not reach the same maximum, but the security was not very different from the network

where all nodes could reach the same maximum. Varying the size of the network had

little effect on the overall network security.

The objectives of our second prototype were to develop a baseline before studying

the effect of side payments and to study the results of a near-full implementation of our

game theoretic security algorithm. As with prototype one, our second prototype was

largely unaffected by variations in network size. With regard to the relationships

between nodes forming the network, in particular coalitions, we saw a great deal of

divergence among the different networks with varying degrees of maximum

heterogeneous security. Nodes with a greater heterogeneous maximum granted fewer

nodes access to sensitive data once security stabilization was reached.

The objective of prototype three was to study the effect on overall network

security by adding side payments to implement a full version of our game theoretic

security algorithm. As in prototype two, the third prototype achieved a consistent

maximum security nearly equal to their theoretical maximum for the respective network.

This similarity between prototypes demonstrates that the core of our security algorithm is

sound, improving overall network security regardless of the degree of heterogeneity. We

226

observed a correlation between those networks that maximized the use of side payments

with those that performed best in terms of security. We conclude that there may be an

optimum percentage of nodes making side payments which allow a network to maximize

its overall security, since we observed that once side payments dropped below 20% they

had little overall effect on security. Whether this can be used to reduce energy

consumption or improve security will need to be explored in the future.

Comparing prototypes two and three with respect to convergence time, prototype

three took longer to converge to stable network security. This extended convergence

time is clearly brought on by the introduction of side payments, which are the only

difference between prototypes two and three. However, when we increased the

effectiveness of the side payment itself in terms of security, convergence time decreased

substantially. In some tests this prototype converged to maximum security nearly 50%

faster than the prototype with less effective side payments. We also observed, for the

same prototype, faster convergence with respect to maximum security, utility, and

coalition formation.

The introduction of side payments in prototype three resulted in a significant

decrease in the number of nodes to which another node is directly connected versus in

prototype two. We also observed a corresponding decrease in the percentage of nodes

that were granted sensitive data access for the same. We hypothesize that through the

feedback mechanism of side payments, the nodes in the network are in effect learning

more about the other nodes in the graph and in turn act to reduce their own vulnerability

by revoking sensitive data access to a greater number of nodes, going beyond the

requirements of coalition membership to do their own vulnerability analysis. In studying

227

the effect of changing side payments' effectiveness, we would expect to see similar

improvement as in both versions of prototype three. However, because of the observed

decrease in coalition members and nodes forming a local network for prototype three

version two, we hypothesize there may be a point at which the network would degenerate

if side payments' effectiveness was sufficiently increased. Such a threshold would be

detrimental to the network. As such, we believe there is a corresponding maximum

security level that is detrimental because of unrealistic security constraints; this

hypothesis is further supported by the evidence of the Kerberos prototypes. These

hypotheses should be explored further in future work.

Prototype two was consistent with regard to security regardless of network size;

prototype three, which implemented side payments, was affected by network size with

larger networks generally reaching higher security. This difference would make sense in

the context of quantitative effect of side payments on network security, except we

observed that this was not always the case: the lowest security was observed for the

middle-sized network made up of 43 nodes. Furthermore, increasing side payment

effectiveness caused a tie for networks made up of 60 and 80 nodes, which may indicate

that there is an ideal network size for our algorithm, or possibly the existence of an ideal

size for any network. Still, the increased security for the network via side payments

demonstrates that side payments improve network security overall for pure strategies.

In prototype four which used mixed strategies, however, we observed a different

phenomenon with respect to side payments. Increase in side payment effectiveness had

no observed effect on convergence time in the way that it did for prototype three,

indicating that the effect is nullified by the increased number of interactions and possibly

228

lost side payments brought on by mixed strategies. In addition, security for each network

in prototype four approached its maximum theoretical average security, but only did so

after a substantially larger number of iterations when compared to pure strategy

prototypes. While it is possible such manifestation may be due to some sort of error in

our prototype implementation, we believe the following three theories most likely. First,

it is possible that the improved security is caused simply by the added interactions

between the nodes. Or, the improved security may be resulting from an attempt to

recover from mistakes made by playing mixed strategies. Furthermore, it is also possible

that the combination of extended interactions with side payments may be creating a

mechanism for nodes to learn from one another via the side payments, passing on

information about other nodes in the network. While such occurrence was not observed

for pure strategies, it is possible the nodes may need an extended number of interactions

to learn from one another, much like a neural network. This hypothesis will need to be

explored in future work.

We also observed prototype four had a spike in the percentage of nodes making

side payments for networks at approximately 45 iterations, but only for a network with

maximum security equal to four levels above the heterogeneous minimum security. We

repeated our tests to verify this phenomenon. In this network, many nodes have a

maximum security of 5 out of 10, and the spike in side payments occurred at slightly less

than halfway through convergence to stable network security. Whether there is a

correlation between convergence, maximum security, and side payment interaction has

yet to be determined. Its repeatability combined with the fact that it is only observed for

prototype four, implementing mixed strategies, leads us to conclude that it is related to

229

the mixed strategies in combination with maximum average security for the network; this

phenomenon merits further study in future endeavors.

We compared our work with the Kerberos security system to better measure the

results generated by our network security algorithm. We measured the effectiveness of

Kerberos and our own algorithm with the security metrics we developed. Metrics

allowed us to verify and compare the security optimization generated by each very

different approach in a manner that allowed us to substantiate the results. In our

prototypes’ experimental results, we found that while Kerberos did very well when the

network was able to reach high levels of security, converging faster and reaching higher

overall average network security levels than any of our own solutions, it excluded some

nodes from the network because of the constraints imposed by the Kerberos server and

system security requirements. In other cases where an increasing number of nodes

forming the network were unable to reach high levels of security, Kerberos excluded 80-

90% of the nodes from the network due to security constraints, and consequently had

much lower average network security versus our own. Our approach always included

nodes regardless of their maximum achievable security, allowing all nodes to join the

network and receive improved security not to mention preventing any network from

splitting apart. In this respect Kerberos was a failure, as the definition and purpose of a

network is to connect computers so that they may share resources, communicate, and

receive security benefit from one another. While it is possible the security constraints in

our Kerberos prototype were higher than needed, our goal in designing the simulation

was to stay as close as possible to the Kerberos system and avoid going beyond it to some

sort of relaxed Kerberos that stretches the requirements to the point of creating a new

230

security system. We felt our Kerberos model was fairly representative of the actual

Kerberos system. Kerberos lacks the ability to restrict access to sensitive or insensitive

data. Once the node in the Kerberos network accepts tickets it cannot reject access to

specific items, such as allowing access to sensitive or insensitive data that were granted

by the Kerberos server.

The experimental results of our own prototypes versus Kerberos matched our

analysis. Prototypes implementing our algorithm were consistent with the mathematical

models and proofs of our work, in particular regarding weighted potential games and

Pareto-optimality. Our results exemplified a game possessing a Pareto optimal weighted

potential game equilibrium, which eliminates any sub-optimal equilibrium. Contrast

these results with those of Kerberos, wherein there were always some nodes unable to

join the network; this is consistent with our mathematical proofs that Kerberos is neither

a potential game nor is it Pareto optimal.

For prototype two and prototype three versions 1 and 2, among the networks with

highest security was observed an inverse relationship between network security and the

number of nodes forming a coalition and granted sensitive data access. Both prototype

three versions 1 and 2 showed that these same networks with highest security had

smallest local neighborhood count, but this was not consistent for prototype two. We can

conclude that side payments affect the security and can reduce the number of neighbors,

thereby reducing the number of connections in the network overall. Based upon the

results of prototype three version 1 and 2, we can also conclude that side payments affect

coalition size, as well as number of nodes granted sensitive data access.

231

CHAPTER VIII

CONCLUSION

We considered the problem of maximizing security for an entire network when it

is made up of heterogeneous computers or devices that act autonomously, and attempted

to solve this problem by our game theoretic solution with a potential function. We chose

game theory because it can solve problems that would otherwise be difficult using

traditional AI approaches, as game theory has the advantage that once the problem and

corresponding game are properly specified, the players of the game act on their own

according to the game specifications, resulting in a solution to the problem. Furthermore,

we identified a subset of constraint satisfaction problems that can be used with a subset of

games to solve our security problem, and laid out the game theoretic approaches to solve

the problem. We determined that the subset of games known as noncooperative weighted

potential games fit the subset of constraint satisfaction problems possessing an objective

function. Our work differed from previous approaches to constraint satisfaction problems

and games by taking into account the requirements of optimizing overall security for the

entire network, and using a game to solve the problem itself. We also devised a new

system for measuring network security using security metrics, allowing for a quantitative

rather than qualitative measurement of security; we believe metrics are essential in

improving the definition of security itself. We were able to introduce security metrics to

232

our problem by defining the problem itself as a game possessing a system of variables

and constraints. Using our metrics, we developed several equations defining network

security, which enabled us to validate our work and create an algorithm that integrates

attack tree analysis for the entire network at each step of network formation. Our work

contrasts with previous works that focus on analyzing only network components, or

perform late evaluation of security.

The results of our prototypes demonstrate the effectiveness of our game theoretic

security algorithm with regard to optimizing overall network security in a heterogeneous

environment. Our results also empirically demonstrate the validity of our theorems and

proofs, showing the applicability of our game theoretic algorithm to improving the

security of the heterogeneous computer network of today, with computers acting

independently without a central coordinator. As opposed to Kerberos, our work can be

generalized to optimize security for almost any network or system because it can be

applied to a network made up of devices that possess any degree of heterogeneity.

Determining whether there may be an optimum configuration or percentage of nodes

making side payments that leads to faster convergence and greater utility bears further

study.

Our work was able to show improved security and efficiency through the

introduction of coalition formation with partial preferences for our game. By forming

coalitions with partial preferences, we were able to integrate coalition formation into the

optimization process during the game itself. Previous approaches to coalition formation

depended heavily on knowing complete preferences prior to coalition formation and were

not able to be directly integrated into the optimization process itself, leading to a system

233

in a sub-optimal state. However, it may be possible to alter the definition of equilibrium

itself so that coalition formation could be postponed until after this new equilibrium state

had been reached, and subsequent formation of coalitions would not change the

optimality of the solution for the system. In this, if we were to redefine equilibrium as

imposing a total order instead of a partial order on the actions, so that every action in the

set of actions is comparable instead of reflexive, anti-symmetric, and transitive, then it

may be possible to postpone coalition formation until stabilization. This hypothesis

should be explored in future work.

Granted that Pareto optimal equilibrium assumes that every element in an action

profile is comparable, meaning there exists a total ordering on its elements, it does not

necessarily mean that all elements between different action profiles are comparable. To

address this issue, it may be possible to redefine the Pareto optimal solution using a

definition whereby it is not just a total order within an action profile, but also a total order

between all elements of all action profiles. We know that a potential function, by

definition, reduces the number of all possible actions and action profiles to one action

profile in equilibrium; within that action profile there must be a total order. Thus all

nodes maximizing the potential should also have a total order on the actions. However,

achieving this definition may be difficult, since we understand what we are defining is a

solution that is already optimized, and we would be working backwards from an already

optimal solution to a suboptimal problem. We are thus uncertain whether or not this is a

paradox, as it is likely that the action profiles need to be comparable to one another or

proven to be comparable, so that each element of every action profile is comparable,

giving a total order between the action profiles. Exploring this possibility and its

234

implication of equality or improvement will need to be done in the future; it could speed

up the network optimization process as well as possibly strengthen the definition of an

optimized network.

Overall, our solution improved overall security for any measured degree of

heterogeneity in a network. Prototypes empirically demonstrated our mathematical

models for Pareto-optimality. The introduction of coalitions and side payments to form

connections showed approximately 10% security improvement, but somewhat slower

convergence to stable network security. Our prototype also demonstrated that our

approach was largely unaffected by variations in network size. Computers with greater

maximum security granted fewer nodes access to sensitive data once security

stabilization was reached. A correlation existed between networks that maximized the

use of side payments with those that performed best in terms of security. Convergence

time was observed to decrease as much as 50% when side payment effectiveness was

improved in terms of security. With mixed strategies, increase in side payment

effectiveness had no observed effect on convergence time. Security for mixed strategy

prototypes approached the theoretical maximum after a substantially larger number of

iterations when compared to pure strategy prototypes.

Through the solutions presented in our work, we were able to model and

successfully test our network security optimization technique for a network formed of

heterogeneous computers. Furthermore, by comparing its results to the known Kerberos

algorithm, we were able to demonstrate the usefulness of our approach. We hope that our

work can be used in the future to improve network security, and that our work in

235

quantitative security measurement will be applied to other areas for a paradigm shift in

the definition of security from the qualitative to the quantitative.

8.1 Future work

Because of the observed decrease in coalition members and nodes forming a local

network for prototype three version two, we hypothesize there may be a point at which

the network would degenerate if side payments' effectiveness was sufficiently increased.

Such a threshold would be detrimental to the network. We also believe there is the

possibility of hardware and software combinations that are harmful to a heterogeneous

network because they can lead to unrealistic security constraints compared to the rest of

the nodes in the network. This hypothesis is supported by the evidence of the Kerberos

prototypes’ performance on a network with low security. These hypotheses should be

explored further in future work, as they may characterize limitations of our game

theoretic algorithm. We also do not know why security for networks playing mixed

strategies was so high versus corresponding networks playing pure strategies, or why it

stabilized after a substantially large number of iterations. We believe future work should

be done to determine its cause. In addition, we would like to consider the scenario where

some nodes play mixed and some play pure strategies for the purpose of evaluating its

effect on network security.

We would also like to evaluate the effect on convergence time and overall

security using a hypothesis that may enable coalition formation to be postponed until

after equilibrium has been reached. In this, it may be possible to alter the definition of

236

equilibrium itself so that it imposes a total order instead of a partial order on the actions,

so that every action in the set of actions is comparable instead of reflexive, anti-

symmetric, and transitive. Future work should also include developing games with

asymmetric information. Games with asymmetric information are more complicated than

games with symmetric information, but as part of implementing such a game the issue of

authentication and false impersonation can be explored as it fits the description of

asymmetric information.

Furthermore, we would like to continue strengthening the relationship between

our architecture and its application to a hardware and software security scheme in an

actual network implementation. In particular, we would like to further develop our

architecture to implement it on the TCP reference model. This work would involve

specifying the relationship of our game theoretic algorithm with the lower layers of the

TCP reference model, as well as specifying greater detail regarding packets and

protocols. Furthermore, we would like to extend our work to optimize new nodes

entering the network. All of these issues to be explored in future work can contribute to

improving the means of optimizing network security through game theory and security

metrics.

237

REFERENCES

[1] R. Johari, S. Mannor, and J. Tsitsiklis, “A contract-based model for directed
network formation,” Games and Economic Behavior 56, pp. 201–224, 2006.

[2] D. Monderer and L.S. Shapley. “Potential games,” Games and Economic Behavior
14, pp.124-143, 1996.

[3] V. Bala and S. Goyal, “A noncooperative model of network formation,”
Econometrica, vol. 68, no. 5, pp. 1181-1229, 2000.

[4] R.S. Komali, A.B. MacKenzie, and R.P. Gilles, “Effect of selfish node behavior on
efficient topology design,” IEEE Trans. Mobile Computing, vol. 7, no. 9, pp.1057-
1070, 2008.

[5] L.S. Shapley, “Cardinal utility from intensity comparisons,” RAND report R-1683-
NSF, Santa Monica, CA, 1975.

[6] M. Baucells and L.S. Shapley, “Multiperson utility,” Games and Economic
Behavior, vol. 62, pp. 329–347, 2008.

[7] V. Soni, S. Singh, and M. Wellman, “Constraint satisfaction algorithms for
graphical games,” Sixth Int. Joint Conf. Autonomous Agents and Multi-Agent
Systems, article no. 67, 2007.

[8] E. Rasmusen, Games and Information, Blackwell Publishing, 2007.

[9] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated
generation and analysis of attack graphs,” Proc. IEEE Symp. Security and Privacy,
pp. 273- 284, 2002.

[10] I.A. Almerhag and M.E. Woodward, “Security as a quality-of-service routing
problem,” Proc. ACM Conf. Emerging network experiment and technology, pp.
222-223, 2005.

[11] T. Heikkinen, “Distributed scheduling and dynamic pricing in a communication
network,” Wireless Networks, vol. 10, pp. 233–244, 2004.

238

[12] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific
Computing, 3rd ed., Brooks/Cole, 2001.

[13] D. Bauso, L. Giarre, and R. Pesenti, “Consensus in noncooperative dynamic
games: a multiretailer inventory application,” IEEE Trans. Automatic Control, vol.
53, no. 4, pp. 998-1003, 2008.

[14] R.W. Rosenthal, “A class of games possessing pure-strategy Nash equilibria,” Int.
J. Game Theory, vol. 2, pp. 65–67, 1973.

[15] T.H. Hai and E.-N Huh, “Detecting selective forwarding attacks in wireless
sensor networks using two-hops neighbor knowledge,” Seventh IEEE Int. Symp.
Network Computing and Applications, pp. 325–331, 2008.

[16] D. Vickrey and D. Koller, “Multi-agent algorithms for solving graphical games,”
Eighteenth Natl. Conf. Artificial Intelligence, American Association for Artificial
Intelligence, pp. 345–351, 2002.

[17] J. Von Neumann and O. Morgenstern, The Theory of Games and Economic
Behavior, Wiley, 1944.

[18] J. Nash, “The bargaining problem,” Econometrica, vol. 18, no. 2, pp.155-162,
1950.

[19] J. Nash, “Equilibrium points in n-person games,” Proc. National Academy
Sciences, vol. 36, no. 1, pp. 48-49, 1950.

[20] J. Nash, “Non-cooperative games,” Annals of Mathematics, vol. 54, no. 2, pp.
286-295, 1951.

[21] L. Shapley, “Open questions,” Report of an Informal Conference on the Theory of
n-Person Games, Princeton Mathematics mimeo, p. 15, 1953.

[22] L. Shapley, “A value for n-person games,” Kuhn & Tucker, pp. 307-317, 1953.

[23] S.C. Payne. “A Guide to Security Metrics,” SANS Institute InfoSec Reading
Room, 2006. [Online]. Available:
http://www.sans.org/reading_room/whitepapers/auditing/a_guide_to_security_metri
cs_55?show=55.php&cat=auditing

[24] A. Tucker, “A two-person dilemma,” Stanford University mimeo, May 1950.

[25] L. Wang, A. Singhal, and S. Jajodia, “Toward measuring security using attack
graphs,” Proc. ACM QoP, pp. 49-54, 2007.

[26] A. Agah, S. K. Das and K. Basu, “A game theory based approach for security in
wireless sensor networks,” IEEE Int. Conf. Performance, Computing, and
Communications, pp. 259 - 263, 2004.

239

[27] A. Agah, K. Basu, and S. K. Das, “Security Enforcement in Wireless Sensor
Networks using Non-Cooperative Game Theory Framework,” Pervasive and
Mobile Computing Journal, vol. 2, no. 2, pp.137-158, 2006.

[28] W. Sun, X. Kong, et. al., “Information security game analysis with penalty
parameter,” Proc. IEEE Int. Symp. Electronic Commerce and Security, pp. 453-
456, 2008.

[29] M. Demirbas, A. Arora, and M. Gouda, “A pursuer-evader game for sensor
networks,” Proc. Sixth Symp. Self-Stabilizing Systems (SSS'03), Springer, pp. 1-
16, 2003.

[30] R.S. Komali and A.B. MacKenzie, “Distributed Topology Control in Ad-Hoc
Networks: A Game Theoretic Perspective,” Proc. Third IEEE Consumer Comm.
and Networking Conf. (CCNC ’06), vol. 1, pp. 563-568, 2006.

[31] C. Kaufman, R. Perlman, M. Speciner, Network Security: Private Communication
in a Public World, Prentice-Hall, 1995.

[32] D. Fudenberg and J. Tirole, Game Theory, MIT Press, 1991.

[33] S.E. Stumpf, Socrates to Sartre: A History of Philosophy, 5th ed, McGraw-Hill,
1993.

[34] “Hackers of U.S. electrical grid left behind ‘sleeper’ software programs,”
Homeland Security Newswire, 2009. [Online]. Available:
http://homelandsecuritynewswire.com/hackers-us-electrical-grid-left-behind-
sleeper-software-programs

[35] “Kerberos: The Network Authentication Protocol,” MIT press, 2010. [Online].
Available: http://web.mit.edu/kerberos/

[36] S. Zrelli and Y. Shinoda, "Specifying Kerberos over EAP: Towards an integrated
network access and Kerberos single sign-on process," 21st Int. Conf. Advanced
Networking and Applications, pp. 490-497, 2007.

[37] C.-K. Han, H.-K. Choi, “An Adoption of Kerberos to 3G Network for Mutual
Authentication: Challenges and Evaluations,” Int. Symp. Performance Evaluation
of Computer and Telecommunication Systems (SPECTS), pp. 448-455, 2008.

[38] A. Prasad S., K. J. Park, et. al., "Kerberos Based Authentication Protocol with
Improved Identity Protection in 3G Network," Pacific-Asia Conference on Circuits,
Communications and Systems, pp. 771-774, 2009.

240

[39] F. Chen, J.-S. Su, “A Flexible Approach to Measuring Network Security Using
Attack Graphs,” IEEE Int. Symp. Electronic Commerce and Security, pp. 426-431,
2008.

[40] J. Homer, A. Varikuti, et. al., “Improving Attack Graph Visualization through
Data Reduction and Attack Grouping,” 5th Int. Workshop Visualization for Cyber
Security (VizSEC 2008), pp. 68-79, 2008.

[41] B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd ed,
Prentice Hall, 1988.

[42] H.M. Deitel and P.J. Deitel, C++ How to Program, Prentice Hall, 1994.

[43] A. Agah, S. K. Das and K. Basu, “Enforcing security for prevention of DoS attack
in wireless sensor networks using economical modeling ,” 2nd IEEE Int. Conf.
Mobile Ad-Hoc and Sensor Systems (MASS), pp. 137-158, 2005.

[44] S. Jha , O. Sheyner , J. Wing, “Two Formal Analyses of Attack Graphs,” Proc.
15th Computer Security Foundation Workshop, pp. 49-63, 2002.

[45] R. Johnsonbaugh, Discrete Mathematics, 7th ed, Prentice Hall, 2009.

[46] A. Feldmann, "Netdb: IP Network Configuration Debugger/Database," tech. rep.,
AT&T Research, July 1999.

[47] "Rand - C++ Reference," 2010. [Online]. Available:
http://www.cplusplus.com/reference/clibrary/cstdlib/rand/

[48] “The C++ standard library,” 2010. [Online]. Available:
http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-3.3/cstdlib-
source.html

VITA

Patrick D. Harrington

Candidate for the Degree of

Doctor of Philosophy

Thesis: USING NONCOOPERATIVE POTENTIAL GAMES TO IMPROVE

NETWORK SECURITY

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Computer Science
at Oklahoma State University, Stillwater, Oklahoma in July, 2010.

Completed the requirements for the Master of Science in Computer Science at
the University of Tulsa, Tulsa, OK, 2002.

Completed the requirements for the Bachelor of Science in Computer Science at
Northeastern State University, Tahlequah, OK, 1999.

Completed the requirements for the Bachelor of Arts in English at Oklahoma
Baptist University, Shawnee, OK, 1996.

Experience: Instructor, Northeastern State University, 2001- present

Professional Memberships:

Association for Computing Machinery
Kappa Mu Epsilon National Mathematics Honor Society
Rho Theta Sigma Academic Honorary Society
Sigma Tau Delta International English Honor Society
Phi Eta Sigma National Honor Society

ADVISER’S APPROVAL: Dr. Johnson Thomas

Name: Patrick D. Harrington Date of Degree: July, 2010

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: USING NONCOOPERATIVE POTENTIAL GAMES TO IMPROVE

NETWORK SECURITY

Pages in Study: 240 Candidate for the Degree of Doctor of Philosophy

Major Field: Computer Science

Scope and Method of Study:

Our work puts forth a game theoretic global security mechanism to optimize
security in a large heterogeneous network consisting of autonomous devices. Our
work is applicable to a network that includes various computing devices such as
PCs, cell phones, sensors, and control systems. Constraint satisfaction is used to
fulfill the requirements of the differing computers in the network. Security
metrics are used to quantify network security in a meaningful way. Attack tree
analysis of the quantified security measurements is performed for decision-
making to maximize security by altering links that form the network. Coalitions
of the computers forming the network are used to improve efficiency, as well as
give a broader and greater overall security than would be possible in their
absence. Side payments are used to induce a computer to move beyond its selfish
motivations to benefit another computer. In keeping with noncooperative game
rules, costs to form links are imposed only on the initiator of the link.

Findings and Conclusions:

Our solution is presented as a noncooperative weighted potential game using pure
or mixed strategies. Findings showed that our game theory model of optimization
improved overall security for heterogeneous networks, and demonstrated the
viability of quantitative security analysis using metrics. Our game theory model
of side payments and coalitions increased security by 10% in our experiments.
Side payments more than doubled convergence time to optimal network security;
however, side payments that were twice as effective in terms of security
improvement reduced convergence time by 50%. Our game theory model of
mixed strategies showed longer convergence time but overall improved security
versus our pure strategy model. Findings also demonstrated that our game theory
model of optimization improved security for networks of varying size. Through
these solutions, our work presents a novel optimization technique that improves
overall security for a heterogeneous network.

