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CHAPrER I 

INTRODUCTION AND JUSTIFICATION 

In 1978, it was es-timated that over 30,000 chemical substances 

were in use in the world and the number of new compounds increased by 

1,000 to 2,000 every year (Butler, 1978). The production of 1,500 of 

these substances was estimated to be in excess of 1,000,000 metric tons 

per year and 50 were known to be produced in excess of 1, 000 metric 

tons every year. Based upon these figures, approximately one million. 

metric tons are known to spread over the earth's land surface with an 

estimated average concentration of 6.8 mgm-2 (Butler, 1978). 

The 1972 amendment to the "Clean Water Act" (PL 92-500) estab

lished a national goal of making the waterways of the United States 

fishable. and swimmable by 1983 and also to totally eliminate pollutant 

discharges into navigable waters by 1985. Under provision of the "Clean 

Water Act", EPA is required to promulgate guidelines establishing test 

procedures for determination of toxic action of environmental pollu

tants. The "Clean Water Act" amendment of 1977 emphasized the control 

of toxic pollutants and declared the 65 "priority" pollutants and 

classes of pollutants to be toxic under section 307 (a). The "Toxic 

Sub stances Control Act" of 1976 stated that the environment contained 

mixtures of many chemical substances, thus posed unacceptable risk to 

the environment and human health (Brungs and Mount, 1978). Some of 

these toxic chemicals enter the aquatic environment and contaminate 
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aquatic organisms by ingestion or uptake through respiration or skin 

(Leegangh, 1978). 

Continued synthesis and introduction of many new chemicals into 

the enviromnent, makes it urgently necessary to develop methods for 

rapid toxicity evaluation and assessment. Quantitative structure-activ

ity relationship (QSAR) modeling was developed to determine correlation 

between physical-chemical properties of chemical substances with 

biological effects, primarily acute lethality. As early as 1893, Richet 

had stated about alcohols and ethers that "the more soluble they are, 

the less toxic they are". The application of QSAR using chemical or 

physical properties was proposed first by Overton (1899) and Meyer 

(1899), correlating narcotic activity of some chemicals to their fat

water partition coefficients. 

Quantitative structure-activity relationship analysis is a system

atic approach to the process of relating a biological property or 

activity of a compound to structure, expressed numerically. The struc

ture may be defined in terms of physical properties, such as partition 

coefficient (Topliss, 1983), solubility and Hydrophobic index (Hansch 

et al., 1968). Correlation is sought between the numerical values of 

the properties and the biological activities using regression analysis. 

If a significant correlation is established, it will identify the 

important role of the property and permit prediction of the behavior of 

untested molecules. The relationship between octanol/water partition 

coefficient, molecular weight, and boiling point was shown to be posi

tively correlated with toxicity (Schultz, 1980). 
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Objective of the Study 

Quantitative Structure-Activity Relationships (QSAR) are structure 

analogy-concepts and are established principles in pharmacology and 

drug development. For the latter, the aim is to predict the biological 

activities of non-tested compounds in drug design. Conversely, if we 

transform the basic thought of the models in ecotoxicology it is proba

bly possible to explain the observed enviromnental effects of certain 

classes of chemicals as a function of both the molecular structure and 

changes caused by different toxiphores, defined as a chemical structure 

substituents group or substructure that when present gives rise to an 

adverse effect in exposed organisms. The basic point of this theoreti

cal-methodological concept in ecotoxicology is the description of 

interaction between chemicals and biotic as well as abiotic environmen

tal structures under application of different molecular structure 

parameters and physicochemical properties (Kaiser, 1983). 

Therefore, the principal objective of this Thesis is to develop a 

test to predict the toxicity of a compound based on the relationship of 

the toxicity of known compounds and physicochemical parameters and 

structures. There fore, there is a great responsib i1 ity in developing 

these tests to ensure that they are accurate, predictive, and that 

there is no danger that a chemical that appears environmentally sound 

is not overproduced before it has been tested. 

This study will be carried out using chemicals having similar mode 

of action, from \\hich a data base can be created. This will in turn 

lead to model prediction of toxicities of similar molecules for which 

toxicity data are not available without performing complex, time 
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consum1ng biological toxicity assays. For this study, Kovats retention 

index is the parameter of choice. 

A relationship between gas chromatographic retention index and 

molecular structure of the solute, based on the electrostatic interac

tion has been found. The solute structure was defined by the molecular 

connect iv it y" and dipole moment. Good correlation between these 

theoretical parameters and the retention index was found (Matas et al., 

1979). Also Konemann (1981) reported that there was a good relationship 

between l.C50 and Log P, solubility, and molecular connectivity using 

guppies as test organisms. Considering all these attempts to correlate 

toxicity with QSAR, using those parameters as stated by Konemann 

(1981), determination of the most rapid, efficient, and more reliable 

methods was the justification of this study for selecting Kovats reten

tion index as the physicochemical parameter. Kovats Index expresses the 

retention behavior of the sub stance of interest in a uniform scale 

determined by closely related standard substances (Kovats, 1958). 

Alkylbenzenes and halobenzenes will be compounds of choice in the 

study, using fathead minnows as the test organisms. Laboratory analysis 

of the test chemicals will be carried out including toxicity testing 

using fathead minnows. Kovats Index of each compound (Kovats, 1958) 

will be obtained from the literature based on gas chromatographic 

analysis (Sadtler, 1987). Correlation between the Kovats retention 

index, octanol/water partition coefficient, IC50, molecular weight, and 

hydrophobic constants will be carried out. 

Correlation has been made between the retention index and some 

physicochemical constants of some hydrocarbons using Taft equations 

(Nabivach et al., 1980). Hydrophobic constants, and molecular weight 
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will be applied to Kovats index in the multiple regression analysis. in 

place of log P so as to eliminate the need to determine individual 

partition coefficient of the comPound. 

The overall objective will be to evaluate the correlation between 

Kovats retention index, octanol/water partition coefficient, molecular 

weight and hydrophobic constants as they relate to the toxicity of 

compounds selected for the study. 

Summary of Objectives 

1) Develop QSAR model correlating Kovats Index and other reported 

parameters with "all" published LC50 data on fathead minnows. 

2) Experimentally detennine the 96-hr LC50 of few selected com

pounds using fathead minnows. 

3) Validate Kovats Index model and compare predicted U::50's with 

observed U::50 values. 



CHAPrER II 

LITERATURE REVIEW 

Quantitative structure-activity relationships (QSAR) link the 

biological effects of chemicals to their chemical and physical proper

ties. They are developed for discrete classes of chemicals. Ideally, 

they can predict the biological effects of untested chemicals of each 

class from their chemical structures. Applied to the study of contami

nants, QSAR, may provide empirical models for predicting environmental 

hazards or for identifying those chemicals that should be tested first, 

and the result could be shorter and less expensive hazard evaluations. 

The relationship between chemical structure and biological activ

ity has drawn the attention of many investigators since the end of last 

century. Richet (1893) stated about alcohol and ethers that "The more 

soluble they are, the less toxic they are". A little later, Meyer 

(1899) and Overton (1899) proposed to use the fat/water partition coef

ficient to explain the difference in narcotic activity of many sub

stances. 

The theory covering both ideas was presented by Ferguson (193 9). 

In his idea it is not the concentration of substance in fish that is 

important, but its "chemical potential" (a thermodynamically defined 

quantity), which can be measured outside of the organism in an equilib

rium situation. This method was mainly used for compounds with limited 

chemical reactivity, compounds with "so-called" physical action ( Fergu-

6 
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son, 1939). The investigation of structure-activity relationships has 

received strong attention by the work of Hansch ( 1971). He used an 

empirical equation with several variables to describe quantitative 

activity relationships. His general equation is as follows, 

Log (1/C) = klLog P - k2(Log P)2 + k3PKa + k4Es + ••••• + ks 

where: c is the concentration of a substance required to produce 
a certain biological effects, e.g., the LCSO 

p is a partition coefficient (n-octanol/water system) 
Ka is acid dissociation constant 
Es is a steric parameter. 

The coefficients kn are obtained by fitting the equation to the exper~-

mental data. It is possible to exchange the above parameters for 

others, or to add new parameters (Hansch, 1971; Martin, 1978). Most of 

this research was performed in the field of drugs and pesticide, but 

recently it has also been applied to aquatic toxicology (Veith et al., 

1975), with Log P as a dominating parameter. The significance of Log P 

in aquatic toxicology is strongly determined by the relationship which 

exist between bio-accumulation and Log P (Neely, 1974). Konemann (1981) 

found that the structure-activity correlation between toxicity (LCSO) 

to guppies, Poecillia reticulata, and octanol/water partition coeffi-

cients of individual chemicals can be summarized by the equation: 

Log (1 /LC 50) = 0. 871 Log P - 4. 87 

Also, it is reported that the chemical activity needed to cause narco-

sis in the fathead minnows is similar to that needed to cause narcosis 

in mammals (Veith, 1981). He also indicated in his data, that the fish 
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96-hr LC50 for more than 50 organic chemicals could be estimated by the 

following equation: 

Log (l/LC50) = 1.17 + 0. 94 Log P 

Veith et al. (1983) reported that the relationship between 96-hr 

LC50, fathead minnows, and Log P was not best fit by a linear model but 

by a polynomical regression equation, 

Log (l/LC50) = -1.50 Log P + 0.05(Log P) 2- 1.22 

He also indicated that their models were limited to chemicals with 

a Log P less than 4. 0 while Konemann (1981) indicated that his model 

for predicting LC 50 values ended at Log P = 6. 0. 

Compounds with Log P = 4 are difficult to estimate by standard 

techniques (Veith et al., 1979). For this reason, Konemann (1981), in 

his studies of QSAR, preferred to use only calculated Log P values. 

Hansch and Leo (1979) reported that errors in calculated Log P are of 

the same magnitude as those obtained with HPLC. By the 1960's and early 

1970's a lot of work was performed in quantitative structure-activity 

relationships (Hansch et al., 1963; Hansch and Steward, 1964; Hansch, 

1973; Hansch et al., 1973; Hansch and Fostythe, 1973; Hansch and Yoshi

mah, 1974; Hansch et al., 1977). While in the 1970's already existing 

models in QSAR studies were subjected to modifications (Goldfarb, 1973; 

Davis, 1973; Purcel et al., 1970; Canas-Rodriquez and Tute, 1972). 

Comprehensive reviews in QSAR studies (Albert, 1965; Crisp et al., 

1967; Kanfuman, 1977; and Roth, 1980) have shown narcosis to be a non

specific reversible physiological effect independent of chemical struc

ture. Ferguson (1939) proposed that with narcosis, an equilibrium 
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exists between the organisms and external phase. The physiological 

effect is then related to the external concentration. The physical 

nature of narcosis leads to effects that are chemically non-specific as 

evidenced by the narcotic action of a variety of substances (Hesser et 

al., 1978). Aliphatic and aromatic hydrocarbons, chlorinated hydrocar

bons, alcohols, ethers, ketones, aldehydes, weak acids and bases, and 

some aliphatic nitrocompounds (Albert, 1985) all exhibited narcotic 

action (Roth, 1980). 

QSAR studies have primarily utilized statistical analysis such as 

discriminant analysis, principal component factor analysis, cluster 

analysis, and combined multivariate analysis to determine correlations 

(Blankley, 1983). Kirscher (1979) developed ARTHUR, a model based upon 

pattern recognition. Also other computer models were developed, which 

include STERIMOL parameter, used for molecular shape (Verloop et al., 

1976). Foremost credit goes to Cramer et al. (1974) who applied compu

ter modeling for predicting toxicity of chemicals. Hansch (1971) 

method, to quantitate structure-activity relationship, will be applied 

in this study due to its simplicity. Also those of Veith et al. (1979), 

and Schultz et al. (1982) will be considered. 

Parameters in QSAR 

Kovats Index 

Dr. E. Kovats (1958) proposed the introduction of the retention 

index system. There is a basic difference between the Kovats Retention 

Index (KI) and the other retention indices. Most chromatographic reten

tion indices use retention of a substance as an absolute value or 
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compare with another standard. The Kovats Retention Index, in contrast, 

expressed the behavior of the substance of interest in a uniform scale 

determined by a series of closely related standard substances (Kovats, 

1958). 

Kovats retention system has proved very useful and the discussion 

group of the Institute of Petroleum (1981) has recommended its use 1.n 

standardization of retention data. There is high reproducibility of 

Kovats data, and it depends on various parameters such as polarity of 

support or wall material, polarity of so lutes, constancy of column 

temperature, and gas flow, sample load, also determination of correct 

peak position and the gas holdup of the column, i.e., calculation of 

the net retention time, etc. The reliability of KI values 1.n gas liquid 

chromatography has been investigated (Mathiasson et al., 1978). It was 

concluded that both column loading and sample size ought to be high in 

order to keep the variation in retention indices as small as possible. 

In this respect, it could be compared well to temperature scale where 

arbitrary numbers are assigned to temperatures of two specific transi

tions, and the other temperatures are characterized with the help of 

inter- or extrapolation using an arbitrary scale (e.g., 100 equals 

division between the two fixed points). Harris (1982), in his quanti

tative chemical analysis, noted the relationship between retention 

ratio and partition coefficients. One measure by relative retention 

time by KI, a logarithmic scale on which the adjusted retention time of 

a peak is compared with those of linear alkanes. So the KI relates the 

retention time of a solute to the retention time of linear alkanes. 

Kovats index, for the unknown, is calculated from the formula: 



KI = lOOn Log (unknown- Log r(n)/Log r(N) -Log r(n) 

where: n is the number of carbon atoms in the smaller alkane 
r(n) is the adjusted retention time of the smaller alkane 
r(N) is the adjusted retention time of the larger alkane 

11 

In the calculation of normal paraffins with even carbon atoms 

which was used as fixed points, the retention index k(I) of a particu-

lar substance is calculated using the following equation: 

Vn Vm + KVs 

where: Vn is the net retention volume 
Vm ~s the mobile phase retention volume 
Vs is the stationary phase retention volume 
K is the partition coefficient 

(Harris, 1982) 

The equation above justifies the use of KI as a reliable parameter 

in QSAR studies based on its relationship with partition coefficient 

which has been extensively applied in QSAR studies, but very difficult 

to obtain. 

K (I) = 200 ( Log Vn (substance) - Log Vn( n-c2) ) 
Log Vn( n- cn+2) - Log Vn( n- c2) + lOOz 

where: Vn = the net retention volume 
n-c2 = n-paraffin with 2 carbon atoms 
n-c2+z = n-paraffin with z+2 carbon atoms 
z = an even number; by definition (ASTM, 1971). 

The Kovats retention index system has been widely accepted in the 

chromatographic literature as a means of comparing retention data and 

characterizing stationary phases (Heldt et al., 1980). Kovats index 

compares the retention behavior of a compound with that of n-alkanes 

measured under identical conditions. The KI is approximately independ-

ent of the gas flow rate. The temperature dependence of the KI is 
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usually less than one index unit per degree (Schomburg et al., 1973). 

It is independent of the liquid phase loading (Dahlmann et al., 1979). 

Under high resolution conditions, the reproducibility from laboratory 

to laboratory is about one index unit (Sojak, 1976), this is for low 

polarity stationary phases. This result has also been obtained by com-

parison of 11. reference data made by a French group (Loevien 1969), and 

they observed that such deviation can be partially explained through 

erroneous measurements, or inconsistencies in column temperature. For 

high polarity liquid phases column, the capacity ratio of n-alkanes is 

very sensitive to impurities, aging, so lute concentration, and the 

surface to volume ratio of the stationary phase. For this reason, more 

polar homologous series than the n-alkanes must be employed (Hawkes, 

1972) as reference series. For example, primary alcohols (Novak et al., 

1974) n-alkylbenzene (Mathiasson, 1977) and n-alkyl-iodide (Castello 

and Amato, 1977). Also, it is recommended to use reference compounds 

that are chemically similar to those under analysis. 

It has been determined that there is a linear relationship between 

the retention indices and molecular refraction (Nabivach, 1980). Also, 

there is a correlation between the KI and the physicochemical constants 

of hydrocarbons (Nabivach, 1980). From this same study, it is reported 

that the retention index of alkylbenzenes are related to their ioniza-

tion potential. But this study did not apply Kovats retention index. 

KI has been complied in the ASTM (1971) series and Sadtler (1987) and 

calculated based on the equation below. 

Rli (KI) = lOO (Log((TA-TCH4)/(Tz-TCH4)) ) + lOOz 
Log( (Tz +l-TCH4) / Tz -TCH4)) 



where: R1i (KI) = Kovats retention index 
TA = retention time of a sample A 
Tz retention time of hydrocarbon Z eluted just before 

sample A 

13 

Tz+1 = retention time of hydrocarbon Z=1 eluted just after 
sample A 

Z = number of carbon atoms in hydrocarbon Z 
TCH4 = retention time of methane 

Kovats index m the identification of alkylbenzene degradation 

products has been reported (Svob et al., 1974). Matas et al. (1979) 

reported that there is a relationship between the gas chromatographic 

retention index and polarity of a molecule based n the electrostatic 

interaction. 

Partition Coefficient (Log ,!2 

Partition Coefficient (Log P) Log Po/w has been shown by many 

investigators to be associated with bio-accumulation (Neeley, 1974), 

The important points to consider when applying l.Dg Po/w to environmen-

tal QSAR are these: a totally non-polar 1 ipid phase would not be an 

appropriate model, because it completely excludes ions and other very 

polar solutes, and, furthermore, it would need finely-tuned hydrogen 

bonding parameters to represent binding or membrane transport in 

environmental milieu (Leo, 1971; Hansch, 1979). 

Because of their long established use 1n bio-molecular design, 

there exist a useful data base of Log P values (Leo, 1981), but except 

for a sizable number of values for pesticides, most of the partition 

coefficient needed by the U.S. Environmental Protection Agency (EPA) 

have not been measured. The need for reliable methods for calculating 

these values based on structure has long been recognized. Because of 

the problems associated with the mutual saturation of phases referred 
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above, an empirical approach to Log P calculation (Rekker, 1977; 

Hansch, 1979) was important if EPA current problems were to be addres

sed. 

The limitations of obtaining appropriate measured partition coef

ficient are these: The 'standard' shake- flask procedure is the most 

accurate but very time-consuming if the standard error of measurement 

is determined and minimized: more rapid HPLC procedures can yield 

values closely related to Log Po/w but certain solute structures need 

correction factors to account for unique binding to the support (Unger, 

1979). Also for very lipophilic solutes (Log Po/w > 5.5) where analyt

ical procedures place severe limitations on the precision of the shake

flask method, HPLC may be the procedure of choice (Veith, 1975). 

The Log Po/w calculation method being developed by EPA is a varia

tion of one proposed by (Rekker, 1977), modified by Leo (Hansch, 1979) 

and adapted to a computer algorithm by Chou et al. (Yalkowasky, 1980). 

The CLOGP program accepts structural input hand drawn on CRT or, with 

an interfaced WISCT program (Leo, 1981), as Wiswesser Line Notation. 

The output lists all fragment constants and correction factors and 

calculates Log Po/w as the neutral structure. 

Because Log Po/w models nonspecific hydrophobic interactions, it 

can be a useful predictor of certain types of toxicity e.g., for those 

chemicals with narcotic type of effects (Veith, 1983), hemolysis, and 

necrosis, but one should not expect that a 1 inear relationship of the 

sort which is found with lower homologs will be maintained indefinitely. 

Hydrophobic Constants (II) 

Hydrophobic bond has been defined as the way in which molecules do 
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associate with themselves rather than with non-polar constituents 

(Martins, 1978). For this reason, hydrophobic constants were derived to 

calculate effects of substituents and was defined as; 

IIx = Log Px - Log H (Fujita et al., 1964) 

where: Px is the partition coefficient of a derivative 
PH is the partition coefficient 
II is the hydrophobic constants for those compound substi

tuents determined. 

Hydrophobic constants are easy to calculate and have been used for 

the determination of toxicity for some organic compounds (Hansch et 

al., 1979). Also, substituent groups which have a predominant effect on 

the hydrophobicity of a compound will affect the compound's potency. 

This is due to the fact that passive membrane transport process was 

based upon partition over different parts (Ariens, 1971). 

In this study, correlation will be determined between KI, hydro-

phobic constants, and toxicity of alkylbenzene and halobenzene. II was 

selected over Log P because Log Pis related to KI (Harris, 1982). Also 

II values are relatively constant from one system to another as long as 

there are no special steric or electronic interaction of the sub sti-

tuents not contained in the basic reference molecule (Fujita et al. 

1964). 

Test Chemicals in Review 

Alkylbenzenes 

Alkylbenzenes are produced for commercial use throughout the world. 

They are derived directly or indirectly from petroleum (Brownstein, 

1976). Also, they occur as by-product of coke-oven operation. In the 
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United States, alkylbenzene compounds are ubiquitous constituents of 

environment, especially of urban air, due to high use of automobiles. 

Also, they are used as solvents in cleaning preparations, paints, and 

adhesive. 

The monocyclic aromatics such as toluene, xylene, cumene, and 

ethylbenzene are toxic, water soluble components of petroleum and only 

limited attention has been given to quantitation of these compounds in 

marine and freshwater environment (McAuliffe, 1976). 

Pickering and Henderson (1966) conducted acute toxicity tests with 

fish exposed to several alkylbenzenes. The 96-hr LC50 values fall with

in the range of 20-97 mg/1. It was determined that under static condi

tions in soft water (20 mg/1iter) of calcium carbonate at pH 7.5 there 

were slight or minor differences in their toxic effect with those tests 

conducted in hard water (360 mg/liter as calcium carbonate). 

Walsh et al. (1977) reported that rainbow trout exposed to contin

uous flow of xylene in water survived a concentration of 7.1 mg/1 but 

suffered 100% mortality at 16.1mg/l. Studies have shown that sheepshead 

minnow exposed to toluene has a 96-hr LC50 of 277 - 485 mg/1 (EPA, 

1978), so it showed more resistance than other species on which data 

has been reported. An evaluation of the data from relatively few 

studies that have been conducted indicates that high concentration of 

alkyl benzenes produce acute effects in a variety of 1 iving organisms 

(EPA, 1 97 8 ) • 

Wallen et al. ( 1957) reviewed the environmental impact of oil 

refinery effluents and evaluated the comparative toxicity value of 86 

compounds found in refinery effluent. Additional studies have shown 

that fathead minnows exposed to oil refinery effluent became emaciated 
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and died within 32 days (Graham and Dorris, 1968). Most of the toxicity 

studies conducted appear to be acute effects, that result from a rather 

non-specific action causing a breakdown in the structure and functional 

integrity of the membrane (Morrow, 1975). Due to such effects, the 

alkylbenzenes are classified within the larger group of non-specific 

narcotic agents. 

Evidence suggests that their action is related more to their 

physical or coll igative properties than to the presence of specific 

structural characteristics. Consequently, the biological activity of 

the alkyl benzenes can be expected to increase with the number and/ or 

rise of the alkylbenzene substituents (McAuliffe, 1976). This will also 

be part of this investigation. A comprehensive evaluation of hazards of 

alkylbenzenes to non-mammalian species is lacking (EPA, 1980). 

Chlorobenzene 

Chlorinated benzenes will also be incorporated in the study. 

Chlorination of benzenes yield 12 different compounds, monochloroben

zenes, 3 isomers of dichlorobenzenes, 3 trichlorobenzenes, 3 tetrachlo

robenzene, pentachlorobenzenes, and hexachlorobenzenes. The remaining 

chlorinated benzenes are produced mainly as by-products from the pro

duction processes for the above four chemicals (West and Ware, 1977). 

Production and use of chlorinated benzenes results in large quan

tities of chlorinated benzenes entering the aquatic environment yearly 

(Weast et al., 1977). All the chlorinated benzenes are colorless liquid 

or solid with a pleasant aroma. The most important properties imparted 

by chlorine to these compounds are solvent power, viscosity, and moder

ate chemical reactivity (Kirk and Otlnner, 1963). More review of physi-
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cal properties of chlorinated benzenes can be seen ~n West (1975). 

These compounds have high lipid solubility and are expected to accumu

late in ecosystem (Marsden and Mari, 1963; Melhan, 1970). 

The 48-hr U::50 values have been reported by EPA (1978), they con

ducted this test using Daphnia magna as a test organism. They discov

ered that toxicity increases as the degree of chlorination increases. 

They also noticed that there is no marked sensitivity difference 

between fish and invertebrates. Studies also have been conducted using 

goldfish, guppy, and bluegill (Pickering and Henderson, 1966), they 

reported 9 6-hr U:: 50 values of their tests. Also, 96-hr LC 50 of chloro

benzene on fathead minnows were 33.90 to 2 9.12 mg/1 in soft water and 

20.00 to 33.90 mg/1 in hard water). This indicate that hardness does 

not significantly affect the toxicity of chlorinated benzenes (EPA, 

1978). Also, the bioconcentration factor of chlorinated benzenes 

increase with increasing chlorination (EPA, 1978). So the available 

data for chlorinated benzene indicate that acute toxicity to freshwater 

aquatic life occurs at concentrations as low as 250 ug/1 (EPA, 1981). 



CHAPTER III 

METHODS AND PROCEDURES 

This study was divided into three phases. Phase I consisted of 

toxicity tests to obtain experimental LCSO data on selected organic 

compounds to fathead minnows. Phase II consisted of quantitative struc

ture-activity relationship (QSAR) model development to correlate physi

cal-chemical properties of alkyl and chlorinated benzene compounds with 

acute lethal effects using regression analysis facilities at Oklahoma 

State University computer center. Phase III consisted of validation of 

the Kovats Index (KI) model by comparing predicted LCSO's with experi

mentally measured LC 50 values. 

Phase I: Toxicity Tests 

The fathead minnow (P imephales promelas) has been used for many 

years as a test organism for acute toxicity bioassays (Spraque, 1969, 

1970; Tarzwell, 1971). It is conventionally available from most commer

cial fish bait dealers, fish hatcheries, and also it is relatively easy 

to culture in the laboratory. 

Static renewal acute toxicity tests were conducted for 96-hr 

according to standard methodology (Peltier et al., 1985). Fathead min

nows, subadult fish, 90-120 days of age, reared in dechlorinated tap 

water at Water Quality Research Laboratory, Oklahoma State University 

were used as test organisms (see Table I). 
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TABLE I 

SUMMARY OF TEST CONDITION FOR ACurE RENEWAL 
BIOASSAY 

a) Temperature (C) 
b) Light Quality 
c) Light intensity 
d) Photoperiod 
e) Test vessel 
f) Test solution vol 
g) Age of fish 
h) Size of fish 
i) No. an~als/beaker 
j) Replicates/treatment 
k) Feeding reg ~e 
1) Aeration 
m) Dilution water 

n) Test duration 
o) Response criteria 

1 7 to 26 c + I- 1 c 
Ambient laboratory 1 ight 
50 - 100 fc (ambient lab levels) 
8 - 16 h light/24 h period 
Glass container > 10 liters 
10 liters 
> 90 days old 
0. 5 g to 5. 0 g 
10 
2 
Not during exposure 
Not during exposure 
Culture water, accl~ation 

water, or receiving stream water 
96 h for definitive assay 
Mortality = no visible movement 

of gills upon prodding 
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Since the fish had been reared in the dechlorinated tap water 

which was used for dilutions, it was not necessary to acclimate the 

fish. All physical-chemical parameters were adjusted to comply with 

recommended guidelines, i.e., dissolved oxygen (DO), pH, temperature, 

and water hardness (APHA Standard Methods, 1980; EPA, 1978), (see Table 

II). Also, the atomic absorption spectrophotometer (AA) was routinely 

used for determining most heavy metal concentration in water samples. 

The water sample taken before the bioassay was diluted to a specified 

volume with 0.2N nitric acid prior to AA analysis (EPA, 1979). 

Dimethylformamide (DMF) was used as a carrier solvent according to 

the method of APHA (1976). The organic compounds used in the test were 

reagent-grade chemicals. Test nominal solutions were prepared by the 



TABLE II 

AVERAGE CHEMICAL PARAMETERS IN DECHLORINATED 
LABORATORY WATER, WATER USED FOR TESTS AT 

THE WATER QUALITY RESEARCH LABORATORY, 
OKLAHOMA STATE UNIVERSITY 

Parameter 

pH 
Total Hardness* 
Chloride* 
Specific Conductance** 
Dissolved Oxygen 
Alkalinity 
Sodium* 
Calcium* 
Magnesium* 
Potassium* 
Aluminum*** 
Cadmium*** 
Chromi urn*** 
Cobalt** 
Copper*** 
Iron*** 
Lead*** 
Manganese*** 
Nickel*** 
Zinc*** 

* Values in mg/ 1 
**Values in umhos/cm 
***Values in ug/1 

Dechlorinated Laboratory 
Water 

8.3 
60. 7 
0.03 
97.0 
8. 7 at 20 °C 
82 
88 
13. 5 
3. 2 
0.62 
1. 52 
<0. 1 
<0. 1 
<0.5 
<0. 05 
198 
<0.1 
<0. 1 
<1.2 
<0. 05 
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methods of Veith (1983) and EPA (1976). All toxicant concentrations 

were measured daily at each exposure level by gas chromatography (GC). 

After all the test solutions were prepared, ten fish were randomly 

distributed among the test aquaria (duplicate control and five differ-

ent concentrations of each test chemicals). The test water was not 
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aerated, but renewal of test water everyday were carried out so as to 

eliminate the problems with DO concentration, metabolic products, and 

the lowering of the test material concentrations. Complete immobiliza

tion of the fish was considered the biological endpoint and was equated 

with death. Fish mortality was measured after 1, 2, 4, 8, 12, 24, 48, 

and 9 6 hr s of expo sure. 

Chemical Analysis 

All chemicals were high purity primarily purchased from Aldrich 

Chemical Company, Milwaukee and were used without additional purifica

tion. Toxicity modifying factors such as water temperature, DO, pH, 

hardness, and alkalinity were routinely measured on water from control 

and treatment chambers according to standard analytical procedures 

(APHA et al., 1980), see also Table (II) for the average result of the 

water conditions. Samples of all test solutions were extracted with an 

appropriate organic solvent (hexane) utilizing direct solvent extrac

tion GC technique. Gas chromatrography analysis were performed on a 

Tracor 550 gas chromatograph equipped with flame ionization detector 

(see Tables III to XI) for different conditions of the tests. Test 

concentrations were calculated by simple linear regression. Duplicate 

measurements were routinely made with each analytical series to define 

the reproducibility of the measurement. 

Data Analysis 

Standard data analysis procedures were used for determining con

centration that would result in 50% mortality (96-hr LCSO) (American 

Public Health Association, 1971; EPA, 1980). The estimated LCSO (con-
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centration causing 50% mortality of the fish) with corresponding 95% 

confidence intervals were calculated using the corrected average of the 

analyzed tank concentrations. Calculations were made for 96-hr of expo

sure and also for intermediate exposure times. Also, the concentration 

of DMF used as a carrier solvent was not determined, because in earlier 

experiment 100% of this compound was always found and was tested to be 

nontoxic to fish at that concentration (APHA, 1976). 

The lC SO values were estimated by binomial test (Sokal, 1969). 

Fortunately, the binomial test, gives the probabilities that a speci

fied or more extreme percentage kill would occur at a particular toxi

cant concentration if that concentration were the ICSO. The binomial 

test, which is often used as the sign test, is an exact method because 

it makes no approximations and no assumptions about the data. The LCSO 

values were estimated by probit method of Finney et al. (1971). Another 

alternative is the UCLA Biomedical program (BMD035) available on many 

mainframe computers, which uses the probit method. 

Finally, the laboratory calculated LCSO were used in the KI model 

development. 

Phase II 

The initial phase of this study include developing QSAR model and 

correlating KI with some published LCSO data on fathead minnows. Chemi

cals evaluated in the study contained an identical parent compound, 

benzene. The substituents on benzene did not have strong electronic 

withdrawing or donating effects on benzene action (Hansch, 1979). 

The study commenced with screening of physicochemical parameters 

already used in QSAR model development. These parameters were used in 
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the model development for the group of compounds in this study. Also, 

these models were compared to models developed using KI as a new QSAR 

physicochemical parameter. Parameters evaluated with KI include Octa-

nol/Water Partition Coefficient, Molecular Weight (MW), and Hydrophobic 

Index. 

Data on octanol/water partition coefficients were obtained from 

the extensive compilation of substituents constants reported by Hansch 

and Leo (1979), Chiou et al. (1977), Nelly et al. (1974), Fujita et al. 

(1964), and Feed et al. (1977). Hydrophobic Constants were obtained 

from a compilation by Hansch and Leo (1979) and estimated by the method 

of Leo et al. (1975) and Fujita et al. (1964). The equation for the 

estimation of Hydrophobic constant (II) is expressed as: 

IIx = Log Px - Log PH 

where: IIx is the hydrophobic index of the unknown, 
Px is the octanol/water partition coefficient of the unknown 
PH is the octanol/water partition coefficient of benzene 

Kovats Index Model Development 

The evaluation of KI as a new parameter in the QSAR model was 

initiated by obtaining KI values from the Sadtler compiled KI of over 

2000 chemicals (Sadtler, 1987). AS1M (1971) have also published compre-

hensive volumes of KI data for thousands of organic compounds, using 

capillary GC alone or combined with GC/MS. The methods of KOvats (1958) 

and Harris (1982) can be used to calculate the KI values of those 

compounds not reported. 

Test chemicals and their toxicity data were selected from the 

handbook of environmental data on organic chemicals (Verschen, 1983). 
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Also obtained from the recent published book on the effect of organic 

chemicals on fathead minnows (Geiger, 1986). 

Toxicity Data Analysis and Model Development 

The model for this study was evaluated with regression analyses 

performed with the facilities available at the Oklahoma State Univer

sity computer center. After obtaining all the physical and chemical 

parameter values of the test chemicals, together with their respective 

LCSO values, correlation analysis was applied. This method was used to 

eliminate the problem of co-linearity between the values of independent 

and dependent variables. The number of test chemicals screened was 

dependent on the availability of their values in the data base or 

literature. The significance of the correlation was established between 

the independent (physico-chemical data) and their I.CSO (dependent) 

values by linear regression, multiple linear regression and polynomial 

regression. Regression is a method of estimating the numerical rela

tionship between variables. The name 'regression' was given by Galton 

in 1886. He developed the technique to investigate the relationship 

between the heights of people and the heights of their parents. He 

observed that if we choose a group of parents of a given height, the 

mean height of their children will be closer to the mean height of the 

population than is the given height. Galton termed this phenomenon 

'regression', meaning 'going back'. It is now called regression towards 

the mean. The method which is used to investigate it and was used in 

this study is called regression analysis (Bland, 1987). 
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Stepwise Regression 

Stepwise regress1on procedure was applied in the study (SAS, 1985). 

This is initiated by constructing sequence of regression equations. At 

each step, an independent variable, e.g., MW, log P and II, is added or 

deleted from the KI model. 

Forward stepwise regression begins by including in the regression 

equation only the single independent variable which, alone, produces 

the largest coefficient of determination R2 as measured by an F test. 

In the second step, another predictor is added to the developing equa

tion, the one which with the predictor of the first step produces the 

largest value of R2 • This second step 1s iterated, including one new 

predictor at each repetition until all are included in the final full 

KI model. The predictors entered first are the most important, and can 

gauge the relative importance of Log P, II, and MW, by watching R2 

increase at each step of the development (Draper and Smith, 1982). 

Also, stepwise regression was applied in removal of independent param

eters from the KI full equation. If subsequent inclusions have made the 

earlier addition unimportant, this assumes that there is a single 

"best" set of predictors and seeks to identify them in KI full model 

(Draper and Smith, 1982). 

The equation developed from the regression analysis will be used 

to develop the QSAR model. Martin et al. (1978) established QSAR 

statistical methods, which was incorporated in this study. In comparing 

the best QSAR model among independent parameters used, the Topliss and 

Castello (1972) method of elimination of chance correlation was consid

ered. Also, the Hansch and Sefan (1973) method for selecting the "Best 
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Equation" criteria was used. Standard deviation (S) was used to evalu

ate the level QSAR model prediction, from where standard error of esti

mate can be determined. The F-value is used to understand how these 

models account for the dependent variable (LC 50) behavior. R-square 

(R 2 ) was applied to measure how much variation in the dependent param

eter (LC 50) can be accounted for by the model. All equations obtained 

at 95% confidence intervals. 

Application of the multiple regression on all the selected vari

ables was per formed in order to drive a good dependent-independent 

variable relationship when other parameters were used together with KI. 

The final equation was chosen as one with the highest R-square value 

(R 2 ), obtained through the use of matrix correlation analysis (by 

adjusting the degree of freedom). The equation that appears most 

frequently as the "best fit" was used in phase III of this study. The 

selection was based only on those equations derived for KI QSAR models 

that have the best prediction of the 96-hr LC50 values. 

In conclusion there is no set procedure for model building, how

ever, models developed were based on the pred ic tab il ity found under 

independent variables and their combinations. When the range is KI as 

the only independent variable, simple linear regression was used, but 

when the range was limited to KI and other variables, a multiple 

regress ion analysis proved useful. 

Summary of Models Screened 

Log LC50 = aLog p + b 

Log lC 50 = ail + b 

Log LC50 = aLog mw + b 



Log LC50 = a1KI + a2MW + a3LOG P + a4II + b 

where: a is the coefficient 
b is the intercept 

Log 

Log 

Log 

Log 

Log 

P is the partition coefficient 
II is the hydrophobic index 
MW is the molecular weight 

Parameters in the Study (Kovats Index Model) 

I.C 50 = a Log pLog I.C 50 = aKI + b 

LC50 = alKI + a2II + b 

l.C 50 = alLog KI + a2II + b 

LC50 = a1KI + a2 (1 /KI) + b 

LC50 = alKI + a2Log (1 /KI) + b 

where: KI = Kovats Index 
II = Hydrophobic Index or Log P 

Phase III: Mode 1 Val ida t ion 
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This phase describe mathematical and statistical methods that were 

used to approach QSAR KI model. Results from the statistical analysis 

were used to guide hypothesis formation, further descriptor develop-

ment, further experimentation, further biological testing, and improve-

ments in methodologies. Such feedback may lead to improved understand-

ing of the problem under investigation: it assumes the existence of 

data matrix Which may include molecular structure descriptors, physico-

chemical parameters, and response. Kovats Index QSAR model was val i.,.. 

dated using these mathematical and statistical methods. However, the 

validity of the model was contingent upon the quality of the elements 

in the data matrix. 

The statistical methods blends data analysis and probability 
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theory. Important goal of the use of statistical analysis is to assess 

the variation in data and to arrive at probability-based summaries such 

as confidence levels and levels of significance of apparent relation

ship. 

A relevant example in this study is the task of predicting end 

points or parameters (Enslein and Craig, 1978), using linear regres

sion, multiple linear regression, polynomial regression analysis, and 

similar (least-square) statistical methods to explain the behavior of 

the set of dependent variables, such as lC 50 observed on a set of test 

chemicals, in terms of a set of independent predictors (KI). In a QSAR 

setting the result is mathematical equation that provides an estimate 

of the variables for untested chemicals. 

In this study, one important goal 1.s to determine the direction 

and magnitude of the change in biological response (I.CSO) corresponding 

to a change in molecular properties. Also, the biological response 

(I.CSO), (Y) is regarded as a linear function of KI and other molecular 

properties, Xl-X2 •. XK (independent variables), e.g., II, Log P, and MW. 

Y = bO + blXl + b2X2 + ••••• b3X3 

The Y and X' s of each compound from the data matrix and the best 

set of coefficients will be determined by a least-squares-regression 

analysis (Daniel and Wood, 1971). The resulting equation can be used to 

predict Y1 s (I.CSO' s) for compounds not used in the regression so far 

their KI are known. 

Also, statistical confidence interval and hypothesis testing 

procedures were applied to assess the validity of the model, to detect 
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outliers, and to select the best dependent variables (Cuthbert and 

Wood, 1980; Draper and Smith, 1981 ). 

Data Requirement In Model Validation 

Independent variables (X) were tested among each other by linear 

regression, so that within the data matrix no single X will be closely 

approximated by a linear combination of the other X's. The Y variable 

were measured on a continuum. The biological test system that produces 

the response Y was designed so that Y values were independent of each 

other. The statistical method of log-1 inear modeling was applied 1.n 

analyzing data with categorical response (Bishop et al., 1975). 

Limitations in Model Validation 

For optimum productivity, the confidence 1 imits of each of the 

independent variable values used in the regression were spread over the 

range for which prediction are desired. Also, there were data on more 

compounds than there were independent variables. This was considered 

after the best fitting of several possible regression equation was 

chosen. These were carried out with the SAS facilities at Oklahana 

State University using stepwise regression procedure (SAS 1985). This 

procedure was used to eliminate possible spurious statistical associa

tion which was more likely to occur when the number of compounds in the 

data matrix equals the number of independent variables. 

Selection of the subsets of variables using regression analysis 

was applied. The purpose of these subset selection was to find a varia

ble which "best" or sometimes, most parsimoniously "explains" the end

point to be modeled (Martin, 1978). The methods applied include step-up 
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and step-down selection, step down ridge regress~on and "optimal" sub

set regression (Ensien et al., 1977; Dixon, 1978). 

In this study, caution was exercised in the use of many predictors 

and were 1 imited to only five independent variables so as to eliminate 

chance correlation (Topliss and Castello, 1972, Kapper et al., 1976; 

Topliss and Edward, 1977). Topliss and Castello (1972) analysis sug

gests that one should have at least five to six data points per varia

ble in order to avoid chance correlations. 

Various plots of data, residual, and predicted values were used as 

part of evaluation of the regression equation and associated distribu

tional assumption. 

Multivariate Consideration In Model Validation 

In comparing different responses, denoted by KI model, with other 

independent variables observed for each compound, and the relationship 

between the independent variables and the dependent variable (LCSO), 

multiple regression analysis was used. 

The Relative Importance .£i Models (Predictors) 

Having found the best KI equation using simple linear regression 

equation, multiple linear equation, and polynomial regression equation, 

their relative importance and validity were compared to those equations 

derived by using Log P or II as independent variables based on R2 

values. The mean standard deviation (S) was used to evaluate the level 

of prediction between KI full model and that of Log P or II reduced 

model. From here standard error of estimate was determined. 

Bottenberg and Christal's (1982) straight forward statistical 



32 

methods for evaluation of different models was applied in the study 

with some modifications using the multiple coefficient of determination 

R2 • In order to discover the importance of KI full model and those of 

Log P and II reduced models as predictors, the values of R2 was calcu-

lated for KI full model and those of Log P and II reduced models. 

The decrease in the value of R2 from the models indicates the 

importance of the omitted predictors. If the drop in R2 is large, the 

Log P or II model is not as effective as the KI full model in predict

ing the values of the dependent variables. If the drop in R2 is small 

the predictive ability of the model is not impaired, and the predictor 

(Kovats Index model) advantage might be effected. But its method of 

analysis may override the drop in R2 • 

2 
Also, a hypothesis test to determine if a drop in R is signifi-

cant was performed with the F statistic using SAS main frame program at 

the Oklahoma State University Computer Center. 

where: 

F = (R 2rm - R2rm) I (dFKI - dFrm) 

(1- R 2KI) /( n - dFKI) 

R2KI = R2 for the KI full model 
R2rm = R2 for Log P or II reduced model 
dFKI = (the number of linearly independent predictors in 

the KI full model)-1 
dFrm = (the number of linearly independent predictors in 

the Log P or II reduced model)-1 
n = number of cases 

The number of degree of freedom associated with the numerator of 

the F statistic 1s dFKI - dFLog P or II model, and with the denomina-

tor, n - dFKI • 

If the coefficient of determination of the Log P or II model is 
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significantly less than that of the KI model, the quantity u R2KI -

R2Log P or II, and, therefore, the F statistic itself, will be large 

values of F near zero-occur when there is 1 ittle difference between 

R2Kr and R2Log P or II. This is an upper-tail test if these hypotheses 

Significance of R2 

Ho: R2KI = R2Log P or II 

Ho: R2KI > R2Log P or II 

The significance of multiple coefficient of determination R2 was 

determined with an F test. As with simple linear regression, the total 

smn of the square deviation of the observed values of the dependent 

variable (LCSO) from the mean value of the dependent variable (LCSO) is 

the sum of the regression a measure of the variability of the dependent 

variable (LCSO) which was related to the predictors, and the residual 

sum of squares. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Phase I Results: Bioassay 

The acute toxicity to fathead minnows was determined for individual 

chemicals. The compounds tested, their grade, method of addition, and a 

summary of the acute toxicity results are shown in Tables III to X. The 

96-hr I.C50 values and 9 5% confidence· limits are reported as milligrams 

per liter of compounds added to the test solution. I.C50 values are 

those obtained after the analysis with gas chromatography. 

Alkylbenzene and chlorobenzene are similar in their toxicity to 

fish, with their 96-hr I.C50 ranging from 3.19 mg/L to 7.23 mg/L except 

for 1, 2,3-Trimethylbenzene with I.CSO value of 10.37 mg/L, which were 

less toxic. In general tert-butylbenzene and n-butylbenzene were more 

toxic with I.C50 values ranging as low as 3.19 to 3. 25 mg/L. So only 

with the alkylbenzenes is there a clear-cut case of one compound being 

more toxic than the others. Otherwise, the two chlorotoluene did not 

differ respectively, with 2-chlorotoluene having the I.C50 value of 5.51 

mg/1, while 4-chlorotoluene has 7.18 mg/L. 

In about all the alkylbenzenes, there were increase in fish 

mortality between 48 to 96 hrs of the bioassay. In fact, mortalities by 

many of these compounds increased slightly after the first 6 to 8 hrs, 

but more rapidly after 48 to 96 hrs (Tables XI to XVIII). It is only 

34 
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TABLE III 

ACUfE TOXICITY RESULTS 

Chemical: 1, 2, 3-Trimethyl benzene Test Date: 11-17-87 

Toxicant Concentrations (mg/L) and Mortality 

-----------------------------------------------------------------
Concentration (mg/L) 1h 2h 3h 12h 24h 48h 72h 96h 

-----------------------------------------------------------------
1 ) Nominal Cone: 5.00 

Ave Test Cone: 2. 86 0 0 0 0 0 0 0 0 

2) Nominal Cone: 7.SO 
Ave Test Cone: 3. 84 0 0 0 0 0 0 0 0 

3) Nominal Cone 10.00 
Ave Test Cone: 8. 04 0 0 0 0 0 0 0 0 

4) Nominal Cone: 12. so 
Ave Test Cone 10. 77 0 0 0 0 0 1 s 5 

5) Nominal Cone: 17. so 
Ave Test Cone: 12. 27 0 0 0 6 11 16 20 20 

Control Cone: o.oo 
Ave Test Cone: <0. 00 0 0 0 0 0 0 0 0 
Calculated LC50 = 10.38 
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TABLE IV 

ACUfE TOXICITY RESULTS 

Chemical: 1,2,3,4-Tetramethylbenzene Test Date: 11-9-87 

Toxicant Concentrations (mg/L) and Mortality 

------------------------------------------------------------------
Concentration ( mg/L) 1h 2h 3h 12h 24h 48h 72h 96h 

------------------------------------------------------------------
1) Nominal Cone: 5.00 

Ave Test Cone: 3. 05 0 0 0 0 0 0 0 0 

2) Nominal Cone: 10.00 
Ave Test Cone: 6. 41 0 0 0 0 5 15 18 19 

3) Nominal Cone 15.00 
Ave Test Cone: 11.46 0 0 0 14 20 20 20 20 

4) Nominal Cone: 17.50 
Ave Test Cone 18.47 0 0 0 20 20 20 20 20 

5) Nominal Cone: 20.00 
Ave Test Cone: 20. 02 0 0 0 20 20 20 20 20 

Control Cone: 0.00 
Ave Test Cone: <0, 01 0 0 0 0 0 0 0 0 
Calculated I..CSO = 5.99 
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TABLE V 

ACUTE TOXICITY RESULTS 

Chemical: tert-Butylbenzene Test Date: 11-26 87 

Toxicant Concentrations (mg/L) and Mortality 

----------------------------------------------------------------
Concentration (mg/L) 1h 2h 3h 12h 24h 48h 72h 96h 
----------------------------------------------------------------
1) Nominal Cone: 5.00 

Ave Test Cone: 2. 16 0 0 0 0 0 0 0 0 

2) Nominal Cone: 10.00 
Ave Test Cone: 5. 44 0 0 0 0 0 2 8 17 

3) Nominal Cone 15.00 
Ave Test Cone: 5. 74 0 0 0 0 0 4 20 20 

4) Nominal Cone: 20.00 
Ave Test Cone 6. 97 0 0 0 0 0 6 20 20 

5) Nominal Cone: 30.00 
Ave Test Cone: 10.57 0 0 0 0 2 11 20 20 

Control Cone: 0.00 
Ave Test Cone: <0. 01 0 0 0 0 0 0 0 0 
Calculated LC50 = 3. 93 
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TABLE VI 

ACUfE TOXICITY RESULTS 

Chemical: n-Butylbenzene Test Date: 12-1-87 

Toxicant Concentrations ( mg/L) and Mortality 

--------------------------------------------------------------
Concentration (mg/L) 1h 2h 3h 12h 24h 48h 72h 96h 

--------------------------------------------------------------
1 ) Nominal Cone: 2.50 

Ave Test Cone: 1. 53 0 0 0 0 0 0 0 0 

2) Nominal Cone: s.oo 
Ave Test Cone: 2. 68 0 0 0 0 0 0 2 4 

3 ) Nominal Cone: 7. so 
Ave Test Cone: 3.40 0 0 0 0 0 0 1 4 

4) Nominal Cone: 10.00 
Ave Test Cone: 4.18 0 0 0 0 0 1 4 8 

5) Nominal Cone: 15.00 
Ave Test Cone: 4. 41 0 0 0 1 8 12 18 18 

Control Cone: o.oo 
Ave Test Cone: <0. 01 0 0 0 0 0 0 0 0 
Calculated u::so = 4.22 
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TABLE VII 

ACUfE TOXICITY RESULTS 

Chemical: 2-chlorotoluene Test Date: 12-8-87 

Toxicant Concentrations (mg/L) and Mortality 

---------------------------------------------------------------
Concentration ( mg/L) lh 2h 3h 12h 24h 48h 72h 96h 

---------------------------------------------------------------
1) Nominal Cone: 2. 50 

Ave Test Cone: 1. 41 0 0 0 0 0 0 0 0 

2) Nominal Cone: 5.00 
Ave Test Cone: 2. 27 0 0 0 0 0 0 1 1 

3) Nominal Cone 7.50 
Ave Test Cone: 3. 82 0 0 0 0 0 1 3 4 

4) Nominal Cone: 10.00 
Ave Test Cone: 4.69 0 0 0 0 0 1 2 4 

5) Nominal Cone: 15.00 
Ave Test Cone: 7. 90 0 0 0 0 2 4 20 20 

Control Cone: o.oo 
Ave Test Cone: <0. 01 0 0 0 0 0 0 0 0 
Calculated I.C50 = 5.51 
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TABLE VIII 

ACUTE TOXICITY RESULTS 

Chemical: 4-<::h 1 oro to 1 uene Test Date: 12-12-87 

Toxicant Concentrations ( mg/L) and Mortality 

---------------------------------------------------------------
Concentration (mg/L) 1h 2h 3h 12h 24h 48h 72h 96h 

---------------------------------------------------------------
1 ) Nominal Cone: 5.00 

Ave Test Cone: 1. 46 0 0 0 0 0 0 0 0 

2) Nominal Cone: 10.00 
Ave Test Cone: 3. 32 0 0 0 0 0 0 0 0 

3) Nominal Cone 12. 50 
Ave Test Cone: 5.02 0 0 0 0 0 3 3 3 

4) Nominal Cone: 15.00 
Ave Test Cone 6. 62 0 0 0 0 0 2 4 4 

5) Nominal Cone: 20.00 
Ave Test Cone: 8. 61 0 0 0 2 12 20 20 20 

Control Cone: o.oo 
Ave Test Cone: <0. 01 0 0 0 0 0 0 0 0 
Calculated LC50 = 7.18 
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TABLE IX 

ACUTE TOXICITY RESULTS 

Chemical: 1,2,4-Trimethylbenzene Test Date: 12-16-87 

Toxicant Concentrations ( mg/L) and Mortality 

---------------------------------------------------------------
Concentration (mg/L) 1h 2h 3h 12h 24h 48h 72h 96h 

---------------------------------------------------------------
1) Nominal Cone: 7. 50 

Ave Test Cone: 3. 74 0 0 0 0 0 0 0 0 

2) Nominal Cone: 10.00 
Ave Test Cone: 5. 03 0 0 0 0 0 0 0 0 

3) Nominal Cone: 12.50 
Ave Test Cone: 6. 15 0 0 0 0 0 0 0 0 

4) Nominal Cone: 15.00 
Ave Test Cone: 6.40 0 0 0 0 0 0 0 4 

5) Nominal Cone: 20.00 
Ave Test Cone: 8. 60 0 0 0 0 2 8 15 18 

Control Cone: o.oo 
Ave Test Cone: <0. 01 0 0 0 0 0 0 0 0 
Calculated LCSO = 7.23 
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TABLE X 

ACUTE TOXICITY RESULTS 

' 
Chemical: 1,2,4,5-Tetramethylbenzene Test Date: 12-20-87 

Toxicant Concentrations ( mg/L) and Mortality 

---------------------------------------------------------------
Concentration (mg/L) 1h 2h 3h 12h 24h 48h 72h 96h 

---------------------------------------------------------------
1) Nominal Cone: 2.50 

Ave Test Cone: o. 87 0 0 0 0 0 0 0 0 

2) Nominal Cone: 5.00 
Ave Test Cone: 2. 22 0 0 0 0 0 0 0 1 

3) Nominal Cone: 7.50 
Ave Test Cone: 5. 06 0 0 0 0 0 0 2 10 

4) Nominal Cone: 10.00 
Ave Test Cone: 5. 75 0 0 0 1 1 1 5 17 

5) Nominal Cone: 15.00 
Ave Test Cone: 7. 53 0 0 0 1 1 5 18 20 

Control Cone: o.oo 
Ave Test Cone: <0. 00 0 0 0 0 0 0 0 0 
Calculated U::50 = 5.06 



TABLE XI 

STATIC RENEWAL BIOASSAY 

Chemical: 1,2,3-Trimethylbenzene 
Chemical Source: Aldrich 
Purity: 90% 
Method of Chemical Analysis: Gas Chromatography 
Column: S% OV-1 80/100 on Supelcaport 
Detector: FID 
Inj Temp: 220 

Concentration 
( mg/L) 

1) Nominal Cone: 
Cone in Water: 

2) Nominal Cone: 
Cone in Water: 

3) Nominal Cone 
Cone in Water 

4) Nominal Cone: 
Cone in water: 

S) Nominal Cone: 
Cone in Water : 

Nominal Cone: 
Cone Water: 

Toxicant Concentrations (MG/L) 

Start 

s.oo 
4.20 

7. so 
6.89 

10.00 
8.27 

12.SO 
10.08 

17. so 
16.90 

o.oo 
<0.01 

24h 

s. 00 
1.96 

7. so 
2.46 

10.00 
7. 77 

12. so 
9. 70_ 

17. so 
10.77 

o. 00 
<0. 01 

48h 

s. 00 
3.S2 

7. so 
4.40 

10.00 
7.98 

12. so 
9.60 

17. so 
11.79 

o. 00 
<0.01 
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Test Date: 11-17-87 
Density: 0. 894 
MW: 120. 20 

Temp: 86 
Temp: 208 
Carrier Gas: He 

72h 

s.oo 
1.77 

7.SO 
1.71 

10.00 
6. 1S 

12. so 
9.67 

17. so 
9. 62 

o. 00 
<0. 01 

96h 

s. 00 

7. so 

10.00 

12. so 

12.SO 

o.oo 

Ave Cone: 1 = 2.86 2 = 3.84 3 = 7.S4 4 = 9. 76 S = 12.27 
Control = 0.00 



TABLE XII 

STATIC RENEWAL BIOASSAY 

Chemical: 1,2,3,4-Tetramethylbenzene 
Chemical Source: Aldrich 
Purity: 95% 
Method of Chemical Analysis: Gas Chromatography 
Column: 5% OV-1 80/100 - Supelcaport 
Detector: FID 
Inj Temp: 220 

Toxicant Concentrations (mg/L) 
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Test Date: 11-9-87 
Density: Oo901 
MW: 134o 22 

Temp: 86 
Temp: 214 
Carrier Gas: He 

----------------------------------------------------------------
Concentration ( mg/L) Start 24h 48h 72h 96h 
----------------------------------------------------------------
1 ) Nominal Cone: SoOO SoOO SoOO SoOO SoOO 

Cone in Water: 2o 83 2o 47 3033 3o18 2o 9S 

2) Nominal Cone: 10o00 10o00 10o00 10o00 10o00 
Cone in Water: 6o41 10o 59 9o 82 8o 93 

3) Nominal Cone 1So 00 lSoOO 15o00 1So00 15o00 
Cone in Water 11o 46 8o2 9o 83 

4) Nominal Cone: 17 0 s 17o s 17 0 so 17o so 17 0 so 
Cone 1n Water: 18o 47 

s) Nominal Cone: 20o00 20o 00 20o00 20o00 20o00 
Cone in Water: 20o 02 

' Control Cone: OoOO Oo 00 OoOO OoOO OoOO 
Cone Water: <Oo 01 <Oo 01 <Oo 01 <Oo 01 <Oo 01 

Ave Cone: 1 = 3oOS 2 = 10o06 3 = 11.46 4 = 18o 47 s = 20o02 
Control = <Oo 01 



TABLE XIII 

STATIC RENEWAL BIOASSAY 

Chemical: tert-Butylbenzene 
Chemical Source: Aldrich 
Purity: 99% 
Method of Chemical Analysis: Gas Chromatography 
Column: 5% OV-1 80/100 on Supelcaport 
Detector: FID 
Inj Temp: 200 

Toxicant Concentrations (mg/L) 

Concentration (mg/L) Start 

1 ) Nominal Cone: 
Cone in Water: 

2 ) Nominal Cone: 
Cone in Water: 

3) Nominal Cone: 
Cone in Water: 

4 ) Nominal Cone: 
Cone in Water: 

5 ) Nominal Cone: 
Cone in Water: 

Control Cone: 
Cone Water: 

s.oo 
2. 15 

10.00 
5.80 

15.00 
s. 24 

20.00 
6. 68 

30.00 
10. 57 

0.00 
<0.01 

24h 

s.oo 
2. 01 

10.00 
2. 27 

15.00 
s. 68 

20.00 
5. 84 

30.00 
8. 23 

o.oo 
<0. 01 

48h 

s.oo 
2.45 

10.00 
s. 44 

15.00 
6. 66 

20.00 
8. 20 

30.00 

o.oo 
<0. 01 
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Test Date: 11-26-87 
Density: 0. 86 7 
MW: 134. 22 

Temp: 86 
Temp: 208 
Carrier Gas: He 

72h 

s.oo 
2. 04 

10.00 
5.28 

15.00 
s. 39 

20.00 
7. 19 

30.00 

0.00 
<0. 01 

96h 

5.00 

10.00 

15.00 

20.00 

30.00 

o.oo 
<0. 01 

Ave Cone: 1 = 2.16 2 = 5.44 3 = 5.74 4 = 6.97 5 = 9.40 
Control= <0.01 



TABLE XIV 

STATIC RENEWAL BIOASSAY 

Chemical: n-Butylbenzene 
Chemical Source: Aldrich 
Purity: 99%+ 
Method of Chemical Analysis: Gas Chromatography 
Column: 5% OV-1 80/100 on Supelcaport 
Detector: FID 
Inj Temp: 200 

Toxicant Concentrations (mg/L) 

Concentration (mg/L) Start 

1 ) Nominal Cone: 
Cone in Water: 

2 ) Nominal Cone: 
Cone in Water: 

3 ) Nominal Cone 
Cone in Water 

4 ) Nominal Cone: 
Cone 1n Water: 

5 ) Nominal Cone : 
Cone 1n Water: 

Control Cone: 
Cone Water: 

2. 50 
1.77 

5.00 
3. 17 

7.50 
4. 97 

10.00 
6. 11 

15.00 
7. 77 

o.oo 
<0. 01 

24h 

2.50 
1. 67 

s.oo 
3. OS 

7. 50 
4. 31 

10.00 
5. 08 

15.00 

o.oo 
<0.01 

48h 

2.50 
1. 31 

s.oo 
2. 56 

7. 50 
2. 87 

10.00 
3.39 

15.00 
2. 92 

o.oo 
<0. 01 
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Test Date: 12-1-87 
Density: 0.860 
MW: 134. 22 

Temp: 86 
Temp: 208 
Carrier Gas: He 

72h 

2. 50 
1. 37 

s.oo 
1. 98 

7.50 
1. 46 

10.00 
2.14 

15.00 
3. 26 

o. 00 
<0. 01 

96h 

o.so 

s.oo 

7.50 

10.00 

15.00 

0.00 

Ave Cone: 1 = 1.53 2 = 2.68 3 = 3.40 4 = 4.18 5 = 4.41 
Control= <0.01 



TABLE XV 

STATIC RENEWAL BIOASSAY 

Chemical: 2-chlorotoluene 
Chemical Source: Aldrich 
Purity: 99% 
Method of Chemical Analysis: Gas Chromatography 
Column: 5% OV-1 80/100 on Supelcaport 
Detector: FID 
Inj Temp: 200 

Toxicant Concentrations (mg/L) 
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Test Date: 12-8-87 
Density: 1. 083 
MW: 126. 59 

Temp: 100 
Temp: 244 
Carrier Gas: He 

----------------------------------------------------------------
Concentration (mg/L) Start 24h 48h 72h 96h 
---------------------------------------·-------------------------

1) Nominal Cone: 2.50 2.50 2.50 2.50 
Cone in Water: 1. 40 1. 47 1. 16 1. 60 

2) Nominal Cone: s.oo s.oo s.oo s.oo s. 00 
Cone in Water: 2.38 2.38 2.42 1. 90 

3) Nominal Cone 7. 5 7. 5 7. 5 7. 5 7.5 
Cone in Water 3. 66 3. 85 4. 32 3. 46 

4) Nominal Cone: 10.00 10.00 10.00 10.00 10.00 
Cone in Water: 4.53 5.06 s. 13 4. 06 

5) Nominal Cone: 15.00 15.00 15.00 15.00 15.00 
Cone in Water: 7.45 8.34 

Control Cone: o.oo o.oo o.oo o.oo o.oo 
Cone Water: <0.01 <0. 01 <0. 01 <0. 01 <0. 01 

Ave Cone: 1 =1.41 2 = 2. 27 3 = 3. 82 4 = 4.69 5 = 7.90 
Contra 1 <0. 01 



TABLE XVI 

STATIC RENEWAL BIOASSAY 

Chemical: 4-Ghlorotoluene 
Chemical Source: Aldrich 
Purity: 98% 
Method of Chemical Analysis: Gas Chromatography 
Column: 5% OV-1 80/100 on Supelcaport 
Detector: FID 
Inj Temp: 200 

Toxicant Concentrations (mg/L) 

Concentration (mg/L) Start 

1 ) Nominal Cone : 
Cone in Water: 

2 ) Nominal Cone: 
Cone in Water: 

3 ) Nominal Cone 
Cone in Water 

4) Nominal Cone : 
Cone in Water: 

5) Nominal Cone: 
Cone in Water: 

Control Cone: 
Cone Water: 

5.00 
2. 43 

10.00 
3. 09 

12. 50 
5. 31 

15.00 
8. 00 

20.00 
8. 56 

o.oo 
<0.01 

24h 

5.00 
1. 04 

10.00 
4. 48 

12. 50 
4. 69 

15.00 
6. 86 

20.00 
8. 66 

0.00 
<0. 01 

48h 

5.00 
1. 37 

10.00 
2. 70 

12. 50 
5. 53 

15.00 
5. 90 

20.00 

o.oo 
<0. 01 
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Test Date: 12-12-87 
Density: 1. 070 
MW: 126.59 

Temp: 100 
Temp: 204 
Carrier Gas: He 

72h 

5.00 
1. 01 

10.00 
2. 99 

12. 50 
4. 54 

15.00 
5. 73 

20.00 

o.oo 
<0.01 

96h 

5.00 

10.00 

12.50 

15.00 

20.00 

0.00 
<0.01 

Ave Cone: I= 1.46 2 = 3.32 3 = 5.02 4 = 6.62 5 = 8.61 
Control =<0. 01 



TABLE XVII 

STATIC RENEWAL BIOASSAY 

Chemical: 1,2,4-Trimethylbenzene 
Chemical Source: Aldrich 
Purity: 99%+ 
Method of Chemical Analysis: Gas Chromatography 
Column: 5% OV-1 80/100 on Supelcaport 
Detector: FID 
Inj Temp: 220 

Toxicant Concentrations (mg/L) 

Concentration (mg/L) Start 

1 ) Nominal Cone: 
Cone in Water: 

2 ) Nominal Cone: 
Cone 1n Water: 

3 ) Nominal Cone : 
Cone in Water: 

4) Nominal Cone : 
Cone in Water: 

5 ) Nominal Cone : 
Cone in Water: 

Control Cone: 
Cone Water: 

7. 50 
3. 08 

10.00 
4. 50 

12. 50 
4. 91 

15.00 
6. 09 

20.00 
7. 30 

o.oo 
<0. 01 

24h 

7.50 
1. 62 

10.00 
3. 00 

12. 50 
4. 74 

15.00 
5. 95 

20.00 
8. 29 

o.oo 
<0. 01 

48h 

7.50 
4. 77 

10.00 
5. 90 

12. 50 
6. 34 

15.00 

20.00 
10. 50 

o.oo 
<0. 01 
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Test Date: 12-16-87 
Density: 0. 889 
MW: 120. 20 

Temp: 86 
Temp: 208 
Carrier Gas: He 

72h 

7.50 
5.51 

10.00 
6. 75 

12. 50 
8. 64 

15.00 
7.2 

20.00 
8.45 

o.oo 
<0. 01 

96h 

7.50 

10.00 

12.50 

15.00 

20.00 

o.oo 
<0. 01 

Ave Cone: 1 = 3.74 2 = 5.03 3 = 6.15 4 = 6.40 5 = 8.60 
Control= <:.0.01 



TABLE XVIII 

STATIC RENEWAL BIOASSAY 

Chemical: 1,2,4,5-Tetramethylbenzene 
Chemical Source: Aldrich 
Purity: 98% 
Method of Chemical Analysis: Gas Chromatography 
Column: 5% OV-1 80/100 on Supelcaport 
Detector: FID 
Inj Temp: 201 

Toxicant Concentrations (mg/L) 

Concentration (mg/L) Start 

1) Nominal Cone: 
Cone in Water: 

2 ) Nominal Cone : 
Cone ~n Water: 

3 ) Nominal Cone 
Cone in Water 

4) Nominal Cone: 
Cone in Water: 

5 ) Nominal Cone : 
Cone in Water: 

Control Cone: 
Cone Water: 

2. 25 

5.00 

7. 50 

10.00 

15.00 

o.oo 

24h 

2. 25 

5.00 
1. 57 

7.50 
4. 79 

10.00 
6. 59 

15.00 
8. 72 

o.oo 
<0.01 

48h 

2.25 
o. 26 

5.00 
2. 30 

7.50 
6. 07 

10.00 
6. 00 

15.00 
8. 34 

o.oo 
<O. 01 
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Test Date: 12-20-87 
Density: 0. 838 
MW: 134. 22 

Temp: 86 
Temp: 209 
Carrier Gas: He 

72h 

2. 25 
1. 47 

5.00 
2. 81 

7.50 
4. 35 

10.00 
4. 66 

15.00 
5. 54 

o.oo 
<O.Ol 

96h 

2.25 

5.00 

7.50 

10.00 

15.00 

0.00 
<O. 01 

Ave Cone: 1 = 0. 87 2 = 2. 22 3 = 5. 06 4 = 5. 75 5 = 7. 53 
Contro 1 = <O. 01 
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only 1, 2, 3,4-tetramethylbenzene that toxicity was rapid following the 

bioassay, between 12 to 24 hrs. Attempt to increase the dilution did 

not yield a significant results. 

Note: - In the bioassay, result means one of the following: 

1) Total death of fish 

2) Loss of water samples 

3) Termination of tests 

The test fishes behavior reactions to most of the compounds, were 

somewhat similar. The time of reaction to most of the compounds were 

very rapid. With the high concentrations, especially the chlorobenzene 

group, there was almost immediate reaction of excitation and increased 

activity, followed by depression similar to general anesthesia. Most of 

the chemicals are solvents that have special affinity for nerve tissue 

and in sufficient concentrations have a narcotic or anesthetizing 

actions on mammals. 

In the test with chlorinated benzenes, fish lost schooling behavior 

and swam near the bottom of the aquaria. They were hyperactive and 

over-reactive to external stimuli, had convulsions, and lost equilib

rium. Loss of equilibrium frequently disappeared for minnows surviving 

beyond 24 to 48 hrs. The lethal and locomotive observations can be 

related to the static method employed and the compound's vapor pres

sure. These results support the recommendation by the American Pub 1 ic 

Health Association (1971, pg 570) that test solutions of volatile or 

unstable compounds be renewed every 24 hrs or less. 

The test chemicals were extremely volatile - measured concentra

tions were less than one half of the nominal values. While in the 

alkyl benzene group, the affected fish were hyperactive and also lost 
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equilibrium prior to death, but it usually followed after a longer 

exposure period and also showed some erratic swimming behavior. LCSO 

data for 1, 2,4-trimethylbenzene vary only very slightly from previously 

published literature values using flow-through bioassay (Gieger et al., 

1986). 

Phase II: Model Development Results 

This phase of the study was designed to develop regression equa

tion to predict acute toxicity of alkyl benzene and chlorobenzene from 

Kovats Index (KI). Secondly, different prediction equation developed 

with other independent variables like octanol-water partition coeffi

cients (Log P), molecular weight (MW), and hydrophobic index were also 

determined. 

The results are presented as follows: different 1 isting s of the 

compounds used in the study (Tables XIX to XXI). Results of linear 

regression equation, multiple regression equation and use of different 

existing variables and their equations on the present group of 

compounds, their comparison with KI for model validation will follow 1n 

phase III results. 

So to develop an appropriate model that fits a set of data, as 

listed in Tables XIX to XXI, the initial step involved an all possible 

equation approach. The next step involved a correlation analysis of the 

dependent variables that were used in the regression analysis for the 

combined compounds and for the different groups of compounds. Table XXV 

shows the correlation matrix between the independent variables. The 

result of the correlation analysis and the probability levels at which 

the relationship is significant is indicated beneath each correlation 



TABLE XIX 

LIST OF CCMBINED CCMRlUNDS USED IN THE 
QSAR ANALYSIS 

Compound LC50 (mg/L) Kovats MW 

tert-Butylbenzene 3. 93 971.58 134.22 

Benzene 33o 47 639o 00 78. 11 

Chlorobenzene 2 9o 12 820o00 112o 56 

Ethyl benzene 12. 10 83 9. 30 106. 16 

Methyl benzene 2 7. 70 744.00 92.14 

n-Butyl benzene 4o 22 1035 0 92 134. 22 

Toluene 36.20 820.00 112. 56 

Xylene 26. 70 84 7 0 12 106. 16 

1,2-Chlorobenzene 9o47 974o 00 147.00 

1,2,3-Trimethylbenzene 10. 37 948. 77 120.20 

1,2,3,4-Tetrach1orobenzene 1. 10 1150.00 215.90 

1,2,3,4-Tetramethylbenzene 5o 99 1094o 00 134. 22 

1, 2,4-Trichlorobenzene 2o 90 11430 00 181.45 

1,2,4-Trimethylbenzene 7 0 23 972. 16 120. 20 

1,2,4,5-Tetramethylbenzene 5o06 1096o00 134.22 

1, 3-Dichlorobenzene 8. 03 974. 74 147. 00 

1, 4-Dichlorobenzene 4.00 1001.00 147o00 

2-Ghlorotoluene 5o 51 926o 84 126. 59 

3,4-Dichlorotol uen.e 2. 91 1113.32 161.03 

4-Chloroto luene 7 0 18 930o 27 126. 59 
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Log P II 

4. 11 1.98 

2o 13 o. 00 

2.84 o. 71 

3. 15 1. 02 

3. 69 1. 56 

4o28 2. 15 

2. 13 0.00 

3o 15 1. 02 

3o38 1. 25 

3. 55 1. 42 

4.99 2.86 

4o 93 2. 80 

4o28 2. 15 

3. 55 1. 42 

4o 93 2. 80 

3o 38 1. 25 

3.38 1.25 

3o 31 1. 18 

4.22 2. 09 

3o 31 1. 18 



TABLE XX 

LIST OF ALKYLBENZENE CCMIDUNDS USED IN THE 
QSAR ANALYSIS 

Compound LC50 ( mg/L) Kovats MW 

tert-Butylbenzene 3. 93 971.58 134.22 

Benzene 33.47 639.00 78. 11 

Ethyl benzene 12. 10 83 9. 30 106. 16 

Methyl benzene 27. 70 744. 00 92. 14 

n-But ylben zene 4.22 1035.92 134.22 

Toluene 36.20 820. 00 ll2. 56 

Xylene 26. 70 847.12 106. 16 

1,2,3-Trimethylbenzene 10. 37 948. 77 120. 20 

1,2,3,4-Tetramethylbenzene 5.99 1094.00 134. 22 

1,2,4-Trimethylbenzene 7. 23 972.16 120. 20 

1,2,4,5-Tetramethylbenzene 5.06 1096.00 134.22 
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Log P II 

4. ll 1. 98 

2. 13 o.oo 

3. 15 1. 02 

3. 69 1. 56 

4. 28 2.15 

2. 13 o.oo 

3. 15 1. 02 

3. 55 1. 42 

4. 93 2. 80 

3. 55 1. 42 

4.93 2.80 



TABLE XXI 

LIST OF CHLOROBENZENE CCMOOUNDS USED IN 
THE QSAR ANALYSIS 

Compound LC50 (mg/L) Kovats MW 

Benzene 33.47 63 9. 00 78.11 

Chlorobenzene 29. 12 820. 00 112. 56 

1,2-Chlorobenzene 9.47 974.00 147.00 

1,2,3,4-Tetrachlorobenzene 1. 10 1150. 00 215. 90 

1,2,4-Trichlorobenzene 2.90 1143. 00 181.45 

1,3-Dichlorobenzene 8. 03 974. 74 147. 00 

1,4-Dichlorobenzene 4.00 1001.00 147.00 

2-Chlorotoluene 5.51 926. 84 126. 59 

3,4-Dichlorotoluene 2. 91 1113. 32 161. 03 

4-Chlorotoluene 7. 18 930. 27 126. 59 
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Log P II 

2.13 0.00 

2. 84 o. 71 

3.38 1. 25 

4. 99 2. 86 

4. 28 2. 15 

3. 38 1. 25 

3.38 1. 25 

3. 31 1. 18 

4.22 2.09 

3. 31 1. 18 

coefficient. Kovats index showed good correlation with log P, MW and 

II, with R value of 0.84, 0.87 and 84 respectively for the canbined 

compounds, alkylbenzene and chlorobenzene, with a probability of 

0.0001. Kovats Index showed a good correlation also with the Log LC50 

values, having the R values of 0. 91 for the combined group and with a 

probability of 0. 0001. The alkyl benzene and chlorobenzene groups sepa-

rately showed a good correlation also with R values of 0. 91 and 0. 95, 

while their probabilities were 0.0002 and 0.0001 respectively. With 
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such good correlation, it means that KI can be used to predict Log LCSO 

values for fathead minnows. 

Using KI in the 1 inear regression equation, the following pred ic

tions were obtained (see Table XXII) for the ccmbined ccmpounds, while 

Tables XXIII and XXIV are the predictions made with KI with alkylben

zene and chlorobenzene groups separately. Their residual values ranges 

from -0.0006 to 0.3274. 

The following equations delineate a summary of the models used in 

the study for quantitative structure-activity relationship (QSAR) based 

on linear regression for alkylbenzene and chlorobenzene combined. While 

others portrays the summary of the equation use when alkylbenzene and 

chlorobenzene were modeled with linear regression analysis individual

ly, using KI (see Equations 1, 2, 3). 

Equation (1) represents the linear regression analysis of combined 

alkylbenzene and chlorobenzene as in Table XXII using only KI as the 

only independent variable. 

(1) Log LCSO = -0. 00334KI - 1. 020608 0. 83 R o. 91 

Equations (2) and (3) below, represent regression analysis for 

alkylbenzene and chlorobenzene respectively using only KI as the only 

independent descriptor (see Tables XXI II and XXIV). 

(2) Log LC50 = -0.002747KI- 1.5023996 n = 11 R2 = 0.82 R = 0.91 

(3) Log LC50 -0.00342794KI - 1.02582141 n = 10 R2 0.90 R = 0.95 

R-square (R 2 ) statistics were used as a measure of the most single 

individual independent variable, which alone produces the largest coef

ficient of determination R2 (Table XXV). In this particular case KI has 



TABLE XXII 

ACUTE TOXICITY PREDICTION WITH KOVATS INDEX 
TO FATHEAD MINNCMS 

Log LCSO Log LC 50 
Compound Observed Predicted 

tert-Butylbenzene -4. 5334 -4. 2686 

Benzene -3. 3681 -3.1568 

Chlorobenzene -3. 5872 -3. 7619 

Ethyl benzene -3.9432 -3.8264 

Methyl benzene -3. 5220 -3.5078 

n-Buty1benzene -4.5025 -4.4837 

Toluene -3.4927 -3.7619 

Xylene -3.5994 -3.8525 

1,2-chlorobenzene -4. 1910 -4.2767 

1,2,3-Trimethylbenzene -4.0641 -4.1923 

1,2,3,4-Tetrachlorobenzene -5. 292 9 -4. 8650 

1, 2, 3,4-Tetramethy1benzene -4.3504 -4. 6 778 

1,2,4-Trichlorobenzene -4. 7964 -4.8416 

1,2,4-Trimethy1benzene -4.2208 -4.2705 

1,2,4,5-Tetramethylbenzene -4. 4237 -4. 6845 

1, 3 -Dichlorobenzene -4. 2626 -4.2791 

1,4-Dich1orobenzene -4.5653 -4. 3669 

2-Chlorotoluene -4.3612 -4. 1190 

3,4-Dich1orotoluene -4. 7430 -4. 7424 

4-Chlorotol uene -4.2463 -4.1305 
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Residual 

-0. 26481 

-0. 2113 

o. 1747 

-o. 1168 

-0. 0142 

-o. 0188 

0. 2692 

o. 2531 

o. 08 57 

0.1282 

-0.4278 

o. 3274 

o. 0453 

0.0498 

o. 2609 

0.0165 

-0. 1983 

-0.2422 

-0. 0006 

-0. 1158 



TABLE XXIII 

ACUTE TOXICITY PREDICTION WITH KOVATS INDEX 
ALKYLBENZENES ONLY 

Log LC50 Log LC50 
Compound Observed Predicted 

tert-Butylbenzene -4. 5334 -4.1716 

Benzene -3. 3681 -3.2579 

Ethyl benzene -3. 9432 -3. 8081 

Methyl benzene -3.5220 -3.5463 

n-Butyl benzene -4.5025 -4.3483 

Toluene -3.4927 -3. 7551 

Xylene -3. 5994 -3.8296 

1,2,3-Trimethylbenzene -4.0641 -4. 1089 

1,2,3,4-Tetramethylbenzene -4. 3504 -4.5079 

1, 2,4-Trimethylbenzene -4.2208 -4.1731 

1,2,4,5-Tetramethylbenzene -4. 4237 -4. 5134 
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Residual 

-0. 3619 

-0. 1102 

-0. 1351 

0.0244 

-0. 1542 

o. 2625 

0.2302 

0.0448 

0.1575 

0.0476 

o. 0897 



TABLE XXIV 

ACUTE TOXICITY PREDICTION WITH KOVATS INDEX 
CHLOROBENZENES ONLY 

Log lC 50 Log I.C50 
Compound Observed Predicted 

Benzene -3. 3681 -3.2163 

Ch loroben zene -3.5872 -3.8367 

1,2-Ghlorobenzene -4. 1910 -4. 3646 

1,2,3,4-Tetrachlorobenzene -5.2 929 -4.9680 

1,2,4-Trich1orobenzene -4. 7964 -4. 9440 

1, 3-Dichlorobenzene -4.2626 -4.3672 

1,4-Dichlorobenzene -4. 5653 -4.4572 

2 -Chlorotol uene -4.3612 -4.2030 

3,4-Dichlorotoluene -4. 7430 -4. 8422 

4-Chlorotol uene -4.2463 -4.2147 
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Residual 

-0. 1518 

0.2495 

o. 1737 

-o. 3249 

0.1476 

0.1046 

-0. 1080 

-0.1583 

0.0992 

-0.0315 



n = 20 

No. ~n 

1 

1 

1 

2 

3 

4 

TABLE XXV 

R-SQUARE STATISTICS FOR DIFFERENT COMBINATIONS 
OF INDEPENDENT VAR !ABLES USING S'I'E !WISE 

AtJrOMATIC PROCEDURE 

Regression Models for Dependent Variables Y 

Model R-Square Variables in Model 

0.83308903 KI 

0.60600000 Log p 

0.81150000 Log 10 (KI) 

o. 8893 0000 KI MW 

0.89626856 KI MW Log P 

0.89635936 KI LoglO (KI) Log P 

the largest value of R2 when compared to Log P and MW individually. 

Phase III Results: Model Validation 
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The correlation matrices showed that significant relationships 

existed among other variables and KI (Table XXVI). Given the nature of 

the variables, such correlations were to be expected. For example, the 

correlation between Log P or II and KI is related to Polarity. The high 

correlation between some variables resulted in eliminating some equa-

tions. Also a minimum of five chemicals per independent variable must 

be maintained to obtain statistically significant equations. So having 



KI 

Log p 

Log 10 (KI) 

MW 

II 

TABLE XXVI 

CORRElATION MATRIX FOR VARIABLES TESTED AGAINST 
TOXICITY ALKYLBENZENES AND CHLOROBENZENES 

(KI = KOVATS INDEX) 

KI Log P Log 10 (KI) MW 

1.000000 o. 83959 0.99566 0.86458 
0.0000 0.0001 0.0001 0.0001 

1. 00000 o. 82058 o. 65820 

0.0000 0.0001 0.0016 
1.00000 o. 84862 
0.0000 0.0001 

1. 00000 
0.0000 
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II 

o. 83 959 
0,0001 
1. 00000 

0.0001 
o. 82058 
0.0001 
0.65820 
0.0016 
1. 00000 
0.0000 

the maxl.Illtnn munber of 20 compounds, only 4 independent variables per 

equation was regarded valid. 

Considering KI as a valid QSAR parameter, the regress1.on analysis 

as in Equation (1) gave a higher coefficient of determination result 

when compared with Log P. So KI is a highly significant descriptor (P > 

F (1,18) 0.0001). Equation (4) is the result of linear regression anal-

ysis using Log P: 

(4) Log I.C50 = -0.4775242(Log P)- 2.4677392 n = 20 R2 =0.61 = 0.78 

Screening of the data set involved a scatter plot of the dependent 

versus independent variables (Figure 1). The result showed a linear 

relationship between KI and Log I.C50, which also looks more like the 

linear relationship between Log P, and MW (Figures 2 and 3). Regression 
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Figure 1. A scatter plot of Log LC 50 versus Kovats Index 
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and correlation analysis with KI results to Equations (5) and (6) 

respectively: 

(5) Log P = 0, 005013 KI - 11381 

(6) MW = 0.19444263 KI - 53.24230 

n = 20 R 2 = 0, 71 R = 0, 84 

n = 20 R 2 = 0, 7 4 R = 0, 86 

Again, KI is a highly significant descriptor (P ::> F (1, 18) 0, 0001), 

Another scatter plot of KI vs Log I.C50 values for alkylbenzene and 

chlorobenzene respectively gave a linear relationship (Figures 4 and 

5), Also, the relationship between Log P and KI was validated through 

their scatter plot. This plot established a good linear relationship 

between the two independent variables (Figure 2), 

A collate examination of Equations ( 1) and (4) reveals that the 

slopes of these two linear models are not significantly different. 

Molecular weight was also shown to have have a linear relationship with 

Log I.C50 (Figure 3). The predicted and observed values of the biologi

cal response using KI showed a linear relationship through a scatter 

plot (Figure 6), There were no significant variation between the actual 

and the predicted Log I.C50 values (Figure 7), 

A scatter plot of KI and residual values obtained by subtracting 

actual Log I.C50 values from the predicted values with KI as the only 

descriptor. gave random values and did not signify any systematic devi

ation (Figure 8). 

When the actual Log I.C50 values were plotted against the predicted 

Log l.CSO values using KI and Log Pas predictor variables, Very slight 

deviation was noticed between the predicted values of the two Log IC50 

values obtained from 1, 2, 3,4-tetramethylbenzene, 1, 2, 3,4-tetrachloro

benzene and 1,2,4,5-tetramethylbenzene (Figure 9), The reason of such 
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deviation will be discussed later. The result of the plot of Log LC50 

values versus predicted values of Log LC50 using KI and MW predictor 

variables, gave a less significant variation when compared to those of 

Log P values (Figure 10). In this particular case the predicted Log 

LC50 values with MW as the only predictor variable showed a linear 

relationship with both actual Log LC50 and KI predicted Log LC50. 

Linear regression analysis with these data yield Equation (7): 

(7) Log LC50 -0.01479l(MW) - 2.52269422 n= 20R 2 = 0.82R = 0.908 

Another plot of Log LC50 vs Log LC50 predicted values using KI, 

Log P and MW is shown in Figure 11. This also indicates that KI as a 

predictor variable for this kind of compounds is very 

also shown very good linearity with Log P and MW. 

good and has 

A scatter plot of Log LC50 vs KI-predicted Log LC50, Log P-pre-

dieted Log LC50 with alkylbenzene group of compounds is shown in Figure 

12. With Log P Log LC50-predicted, Log P was slightly significant as 

indicated in its slightly low R2 of 0. 69 when compared with KI (Equa

tions 2 and 8). 

(8) Log LC50 = -0.3851593(Log P) - 2.6152665 n = 11 R2 = 0.69 R 0.83 

Another plot of Log LC50 vs KI-predicted Log LC50 and Log P-pre

d ic ted Log LC 50 shown in Figure 13 with c hloroben zene group of 

compounds showed the same pattern due to tetrachlorobenzene but their 

difference was less significant. Applying a linear regression analysis 

of these data using only Log P results to 

(9) Log LC50 = -0. 6772875Log P - 1. 95598 n 10 R2 = 0.92 R = 0.966 
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In this particular group of compounds one can say that KI also 

showed a very high significant value of R 2 (R 2 = 0. 91) with a correla

tion coefficient (R, R = 0. 95) using KI when compared to alkylbenzene 

group model and the combined group model (P > F (1,9) = 0.0001). 

Figures 14 and 15 are scatter plots of KI versus Log P and MW respec

tively, and both showed good linear relationship with KI (Table XXVI). 

Comparison of the Pred ic tab i1 ity of Various 

Equations on the Present Group 

of Subjects 

For this comparison a Log P, MW, II, Log10 (KI), 1/KI, Log 10 

(1 /KI), and a generalized full equation or model were used. Through 

regression analysis, the R2 of the predicted Log I.C50 values of the 20 

compounds were obtained by various regression equations mentioned above 

and the new developed regression equation (KI) was compared with the 

true observed Log LC50 values. The results (Table XXVII) revealed that 

there were no significant differences at the 0. 05 level, due to high 

correlation between the variables, and it was not possible to identify 

the contribution of various substituents of KI in the equation. Also it 

is important to report that the correlation coefficient of the new KI 

equation to the observed Log LC50 values was higher (R = 0. 913) when 

compared to Log P, MW, II and other KI substituents (Table XXVII). The 

high carrel ation must be attributed to the capab i1 ity of KI in predict

ing acute toxicity of highly non-polar compounds which Log P can not 

predict. Although all the equations have low standard of error of esti

mate or standard deviation (S), but KI equation has the lowest, with 

the S value of 0. 00035. Also the predicted and observed values of the 
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Equations 

Log LcSO = 

Log LcSO = 

Log LcSO 

Log LcSO 

Log LcSO = 

Log LcSO = 

Log LcSO = 

TABLE XXVII 

LOG (KI), 1/KI, LOG10 (1 /KI), REGRESSION EQUATION 
ON THE FATHEAD MINNCMS LOG LC 50 (ALKYLBENZENE 

AND CHLOROBENZENE) 

R2 F n s 

-0.0033 KI - 1.021 0.83 90.00 20 0.00035 

-0.4775 Log P - 2.467 o. 61 27 0 68 20 o. 09076 

-o. 0148 MW - 2. 25269 o. 82 84.79 20 0.0016 

-0.4775 II - 2. 4677 o. 61 27 0 68 20 o. 09076 

-6.8430 Log10 (KI) + 16.1484 o. 81 77.49 20 o. 777 36 

25 36. 42 (1 /KI) - 6. 92638 o. 77 61. 38 20 323. 75 

6. 843 Log10 (1 /KI) - 16. 1484 o. 81 77.49 20 o. 7736 

80 

R 

o. 91 

o. 78 

0.90 

o. 77 

0.90 

0.88 

0.90 

actual acute response (Log LCSO) and those of Log P, MW, and II were 

within the 9 5% confidence 1 imi t. 

Although Log P has been we 11 documented in the literature as the 

best possible parameter in QSAR studies today (Veith, 1983; Konemann, 

1981; Shultz et al., 1980), compounds with Log P values above 4.00 have 

always been poorly predicted. So may be the use of KI may help solve 

this problem. Also this might even eliminate the need of determining 

Log P of individual canpound by the strenuous high pressure liquid 

chromatography. 

Combining all the Kovats substituents with KI, did not not signif-
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icantly improve the predictability of the full equation (see Equation 

10) below: 

(10) Log LC50 = 1. 83KI-3746. 9 ~og KI-474437. 5(1/KI) - 0. 00034(KI )2 + 

10219.25 R = 0.87 F = 23.95 n = 20 

Another multiple regression analysis was carried out with differ-

ent variables (see Equation 11) and no significant improvement was 

noticed. 

(11) Log I.C50 -0.877 Log KI - 0. 0085 MW - 0. 000756 KI - O. 102 Log P + 
0. 6171 R = 0. 90 F = 32.43 n = 20 

Result of multiple regression equations for alkylbenzene group of com-

pounds are give below in Equations 12-15. 

(12) Log I.C50 = -0.0022KI - 0.0930Log P -1.6397 
n = 11 

(13) Log I.C50 -0.001275KI - 0.01196MW - 1.479 
n = 11 

(14) Log I.C50 = -0.0022KI - 0.093II - 1.8374 
n = 11 

R2 = 0.83 F = 19.98 

R2 = 0.84 F = 21.24 

R2 = 0. 83 F = 19. 98 

(15) Log I.C50 = 10.0038KI + 2.1456Log (KI)- 6.864R 2 = 0.82F = 18.60 

Kovats index again proved its validity when compared to log P, MW, 

II, and other KI substituents used in the model (see Table XXVIII). 

Also multiple regression analysis with these variables did not signifi-

cantly reduce the predictability of KI, but it increased its prediction 

potential (see Equations 16-19) for these· group compounds ( chloroben-

zene). 

(16) -0.00129KI -0.4377II- 2.4830 

(17) -0.00182KI - 0.0070MW - 1.5618 

R2 0.93F 47.67 n= 10 

R 2 = 0. 92 F = 40. 37 n = 10 



Equations 

Log LC50 = 

Log LC50 = 

Log LC50 = 

Log LC50 = 

Log LC50 = 

Log LC50 = 

Log LC50 = 

TABLE XXVIII 

II, LOG (KI), 1/KI, LOG10 (1/KI), REGRESSION 
EQUATION ON THE FATHEAD MINNOWS 

LOG LC50 (ALKYLBENZENES) 

R2 F n s 

-0.00275 KI - 1.502 0.82 41.68 11 0.0004 

-o. 385 Log P - 2. 615 o. 69 19. 83 11 o. 0865 

-0.0212 MW -1.548 0~ 83) 43.36 11 0.0032 

-0. 385 II - 3.4357 o. 69 19. 83 11 0.0865 

-5.443 Log (KI) + 12.07 o. 81 38.87 11 o. 87 31 

1961. 4(1 /KI) - 6. 21 o. 79 33.06 11 341. 12 

5.44 Log (1/KI) + 12.08 o. 81 38.87 11 o. 87 31 

R 

0.91 

o. 83 

o. 91 

o. 83 

0.90 

0.89 

0.90 

(18) -0.00129KI - 0.4377II - 1.55068 R2 = 0.93 F = 47.67 n = 10 

(19) -0.0074KI + 8.178Log10(KI)- 21.5 R2 = 0.91 F = 34.59 n = 10 
n = 20R2 = 0.97 
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After all the analytical results, it will be proper to say that KI 

should be considered as a viable parameter in QSAR analysis which is a 

systematic approach to the process of relating a biological property or 

activity of a compound to structure, expressed numerically. The struc-

ture may be defined in terms of physical properties, such as partition 

coefficient (Topliss, 1983), solubility (Hansch, 1968), hydrophobic 

index (Hansch, et al., 1963, 1968, 1971, 1973, 1973b, and 1974). Corre-

lation is sought between the numerical values of the properties and the 
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biological activities using regression analysis. If successful correla

tion is established, it will identify the important role of the 

property and permit prediction of the behavior of untested molecules. 

The relationship between octanol/water partition coefficient, MW, and 

hydrophobic index were shown to be positively correlated with an 

increasing linear relationship to toxicity 

When the above criteria was considered, KI can be regarded as a 

QSAR predictor variable. Equation (1) is selected to be appropriate for 

the group of compounds analyzed. Also, equations 6 and 8 are considered 

to be highly significant when individual group like alkylbenzene and 

chlorobenzene are analyzed. The equation developed through the use of 

KI gave a higher R2 value (R 2 = 83) and R value (R = 91) when compared 

to MW and log KI. Table 1 signifies that KI can predict toxicity at 

0.05 significance level. 

Considering equation (1) in Table XXIX, KI provided a good linear 

regression analysis for chlorobenzene when it was used alone. From 

Figure 14, it is very clear that KI can be exchanged for Log P in 

predicting the acute toxicity of these group of chemicals due to their 

high correlation (R = 84) and linearity. The assumption of homoscedas

ticity was not violated when the scatter plot was generated between the 

residual value versus KI as in Figure 8. To verify the relationship 

between KI predicted Log LCSO value and those predicted by other 

predictor variables, a scatter plot as in Figures 9, 10, and 11 were 

made. This analysis indicate that Log ICSO values predicted using KI 

has a linear relationship with both actual log ICSO and log P-pred log 

ICSO and with MW-pred Log ICSO. This corresponds with Schultz's QSAR 

analysis with MW (Schultz et al., 1980), also with Veith using log Pas 
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a QSAR parameter (Veith, 1983). Combined model between KI, MW, Log P or 

II, did not significantly increase the R2 at any significance level in 

predicting toxicity due to high correlation with each other (R2 = 90). 

Equation (4) generated using only Log P differs significantly from that 

of fish narcosis model (Log l.CSO = 0.94 (Log Kow) + 0.94 Log (0.000068 

P+l)- 1.25. R2 = 0.999 (Veith el al., 1983). This was attributed to 

the 1 imitations of compounds with Log P greater than 4. 00 in Veith's 

model. Also, other combination of variables did not significantly 

change the coefficient of determination. It is also essential to report 

that the result generated from the regression analysis can be compared 

to other study reported with the use of Log P, MW (Schultz et al., 

1980), where they reported a R2 value of 0.96 for nitrogenous heterocy

clic compounds. Konemann (1981) reported a R2 values of 0.96 when log P 

was used as a predictor variable.But R2 value of 0.314 and 0.64 was 

reported by Konemann et al. (1981) when they used molecular connectiv

ity index. 
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TABLE XXIX 

SUMMARY OF THE PREDICTABILITY OF KOVATS INDEX (KI) 
LOG P, MW, II, LOG (KI), 1 /KI, LOG10 (1 /KI), 

REGRESSION EQUATION ON THE FATHEAD MINNOWS 
LOG LC50 (CHLOROBENZENE) 

Equations R2 F n s R 

Log LC50 = -0.0034KI - 1.0258 o. 90 68.42 10 0.0004 0.95 

Log LC50 = -0.6772Log P - 1.956 o. 92 91. 50 10 o. 0708 o. 96 

Log :u::: so = -0.0142MW - 2. 2 996 0.89 65. 93 10 0.0017 0.94 

Log LC 50 = -0. 6772II - 3. 3986 o. 92 91.50 10 o. 0708 o. 96 

Log :U::: 50 = -6. 86 8Log10 (KI) + 16.124 0.86 50.98 10 0.9619 0.93 

Log LC50 = 2474.49(1/KI)- 6.9724 o. 82 35.49 10 o. 961 9 o. 96 

Log :U:::50 = 6.8681Log10(1/KI) + 16.12 o. 86 50.98 10 0.9619 0.93 



CHAPrER V 

SUMMARY AND COOCLUSIONS 

The prediction of the biological activity of organic chemicals 

through correlations of structural parameters and the biological activ

ity of related chemicals has been of considerable value to the pharma

ceutical industry in the development of new drugs. The data presented 

and studied in this research has shown that structure-activity rela

tionships have been successfully applied to toxicity testing with fat

head m1nnows. 

The structure-activity correlations are relatively inexpensive and 

the needed statistical analysis can be performed at most computer 

installations. Applying QSAR models can, therefore, provide the time 

and cost effective method of screening industrial chemicals. 

The structural parameter used in this study is Kovats Retention 

Index. Other most useful parameters like Log P, molecular weight and 

hydrophobic index were applied in the study. 

This study reveal that Kovats Index is a useful parameters for the 

assessment of environmental toxicity organic compounds. Linear rela

tionships were shown between Kovats Retention Index, Log toxicity to 

fathead minnows, and Log of partition coefficient between octanol and 

water and relatively good relationship with molecular weight. Kovats 

Index is easier to derive experimentally than Log P. Although Kovats 

Index system can not be made to be structurally pure representative of 
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a biological membrane, but when substituted for Hansch II model in the 

biological system, then, Kovats Index might be a good measure of the 

ability of an organic chemical to pass through biological tissue. Also 

because of less uniformed acute toxicity studies in the data base, it 

has limited the observation to only 20. But as more data base is estab

lished, it should be substituted in the model to extend its predictive 

power. 

The final regression equation developed was: 

Log LCSO = -0.0033KI - 1.021 R2 0. 83 F = 90 R = 0. 90 n 20 

This equation is for alkyl and chlorobenzene combined. For the 

alkylbenzene only, the final regression equation developed was: 

Log LCSO = -0. 00275KI - 1. 502 R2 = 0. 82 F 41 R = 0.91 n = 11 

Also the final equation developed for the chlorobenzene was: 

Log LC 50 = -0. 0034KI - 1. 028 

where: KI = Kovats Index 

R2 = 0. 90 F = 68. 42 R = 0. 95 n = 10 

Recommendations 

Realizing the limitation and the delimitations of this study, the 

following recommendations are made with regard to further studies to 

obtain more accurate regression equations to predict Log LCSO: 

1. Necessary tests should be done to ensure the reliability and 

validity of the model by increasing the number of dependent variables 

used in this study, as variables were limited to only 20 due to lack of 

data base for this class of compounds. 
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2. All bioassay should be uniformly conducted. Unlike this study, 

for example, were flowthrough results were combined with static renewal 

results. 

3. Another study with a complex effluent will be good and Kovats 

Index of the compound calculated for those identified compounds and 

also used for the determination of possible toxicity of the complex 

mixtures in the effluent. The use of Kovats Index in QSAR needs more 

study so that the problem of structure activity studies in the unknown 

complex mixtures can be solved. This will be the area that the use of 

Kovats Index might have the greatest advantage over other QSAR pred ic

tor variables. Knowing the retention time of your unknown compound when 

injected into gas chromatography (GC) or GC/MS you can at the same time 

calculate your Kovats Index for such an unknown compound and use it to 

predict its toxic effect. 

The norms developed through this study for the toxicity predic

tion, may not be the most accurate, or even better than Log P, but in 

comparison to ease of derivation and urgency in assessment of toxicity, 

Kovats Index appears to offer several attractive advantage over Log P 

and is certainly equivalent to Log P in many respects. 



LITERATURE CITED 

Albert, A. 1965. Selective Toxicity. New York:John Wiley and Sons. 5:3-
380. 

American Public Health Association, American Water Works Association 
and Pollution Control Federation. 1976. Standard Methods for the 
Examination of Water and Wastewater, 14th Ed. Washington, 
D.C. :American Public Health Association. pg. 1193. 

Ariens, E. J. 1971. A general introduction to the field of drug design. 
In: Medical Chemistry. A series of monograph. 1:1-269. 

ASTM. 1967, 1971. Gas Chromatographic Data Compilation. Special Techni
cal Publication No. DS. 25A 1916. Race Street, Philadelphia, PA. 

Bishop, Y.M.M., Bienberg, S.E., and Roland, P.W. 1975. Discrete Multi
variate Analysis: Theory and Practical. The MIT Press. 

Bland, M. 1987. An Introduction to Medical Statistics. Oxford Univer
sity Press. 

Blankley, J. 1983. Introduction: a review of QSAR methodology. In: QSAR 
..£!Drugs. Top1iss, J.G., ed. New York:Academic Press. pp. 1-21-.--

Bottenberg, R.A. and Christal, R.E. 1961. An Interactive Technique for 
Clustering Criteria Which Retains Optimum Predictive Efficiency. 
WADD-1-IN-61-3, ASTIA Document AS-261-615. 

Brownstein, A.M. 1977. Evaporation and solution of C2 to ClO from crude 
oil in sea sur face. In: Fate and Effects ..£! Petroleum Hydrocarbons 
in Marine Organisms and Ecosystem. Wolfe, D.A., ed. New York:Perg
amon Press. pp. 363-372. 

Brownstein, A.M. 1976. Trends in Petrochemical Technology: The Impact 
..£! the Energy q ris is • Tulsa: Pet role urn Pub. Co. 2 7 5 pp • 

Brungs, W.A. and Mount, D.I. 1967. A simplified dosing apparatus for 
fish toxicology studies. Water Res. 1:21-26. 

Butler, G. C. 1978. Principles of Ecotoxicology. New York: John Wiley and 
Sons. 

Canas-Rodriquez, A. and Tute, M.S. 1972. Pitfalls in the use of con
stants. In: Biological Correlations- The Hansch Approach. Gould, 
R.F., ed. ~ Amer. Chem. Soc. pp. 41-50-.-

89 



90 

Castello, G. and Amanto, G.D. 1977. Retention index 1n chromatography • 
.:!..:_ Chromatogr. 131:41. 

Chou, J.T. and Peter, C.J. 1980. Computation of partition coefficients 
from molecular structure by fragment addition method. In: Physical 
Chemical Properties 2!_ Drugs. Yalkowasky, Sinkula, and Valvani, 
eds. New York:Mercel Dekker, Inc. pp. 163-199. 

Chiou, C. T., et al. 1977. Partition coefficients and bioaccumulation of 
selected organic chemicals. Env. Sci. and Tech. 11:475-478. 

Craig, P.N. and Enslein, K.J. 1981. Structure-Activity in Hazard 
Assessment 2!_ Chemicals .:. Current Developments, Vol. 1. Saxena, J. 
and Fisher, F., eds. New York:Academic Press. pp. 389-420. 

Cramer, et al. 1974. Substructural analysis. A novel approach to the 
problem of drug design • .:!..:_ Med. Chern. 17:533-535. 

Crammer, R. 1980. III: BC(DEF) parameter. 1. The intrinsic dimensional
ity of intermolecular interactions in the liquid state. .:!..!_ Am. 
Chern. Soc. 102:1837. 

Crisp, et al. 1965. Narcotic and toxic action of organic compounds on 
barnacle larvae. Camp. Biol. Physiol. 22:629-645. 

Cuthbert, D. and Wood, F.S. 1980. Fitting Equations ~ Data: Computer 
Analysis of Multifactor Data, 2nd ed. New York: John Wiley and 
Sons. 

Dahimann, G., et al. 1979. Detection of adsorption 1n gas-liquid 
chromatography.~ Chromatogr. 171:398. 

Daniel, C., Wood, F.S. 1971. Fitting Equation to Data: Computer Analy
sis of Multi factor Data, 2nd ed. New York: John Wiley and Sons. 

Davis, S. s. 1973. Use of sub sti tuents constants in structure-activity 
relations and the importants of the choice of standard state. J. 
Pharm. Pharmacal. 25:293-296. 

Dixon, W.J. and Massey, F.J. 1969. Introduction to Statistical Analy
sis, 3rd ed. New York:McGraw. 

Draper, N. R. and Smith, H. 1981. Applied Regression Analysis, 2nd ed. 
New York:John Wiley and Sons. 

Draper, N.R. and Van Nostrand, R.C. 1979. Ridge regression and James 
Stain estimation: review and comments. Technomatrics 21:451-466. 

Everitt, B. 1974. Cluster Analysis. New York:John Wiley and Sons. 

Ferguson, J. 1939. The use of chemical potential as indices of toxi
city. Proc. ~~Soc., London, Ser. B. 127:395-399. 



91 

Finney, D.J. Probit Analysis, 3rd ed. London, New York:Cambridge Uni
versity Press. 

Fujita, T. P., et al. 1964. A new substituent constant derived from 5 
partition coefficient. J. Amer. Chern. Soc. 86:5175-5180. 

Geiger, et al. 1987. Acute Toxicity .£i Organic Chemicals _!£ Fathead 
Minnows. Brooke, T.L., et al., eds. Superior, WI:Center for Lake 
Superior Environmental Studies. 

Goldfarb, P. J. 197 3. Prediction of pharmacological activity by the 
method of physicochemical-activity relationships. Adv. ~harmacol 

Chemotherapy. 11:51-71. 

Graham, L. S. and Doris, T.C. 1968. Long term bioassay of oil refinery 
effluents. Water Res. 2:648-663. 

Hansch, C. and Leo, A.J. 1979. Substituent Constants for Correlation 
Analysis in Chemistry and Biology. New York: John Wiley and Sons. 
339 pp. 

Hansch, C. and Yoshimoto, M. 1974. Structure-activity relationships in 
irrnnunochemistry. 2: Inhibition of complement by benzamidenes. J. 
Med. Chern. 17:1160-1167. 

Hansch, C. 1973. Quantitative approaches to pharmacological structure
ac tw1ty relationships. In: Structure-Activity Relationships. 
Cavallito, C.J., ed. Oxford:Pergamon. 1:75-165. 

Hansch, C., Unger, S. H., and Forsythe, A. B. 197 3. Strategy in drug 
design. Cluster analysis as an aid in the selection of substitu
ents. J. Med. Chern. 16:1217-1222. 

Hansch, C., Leo, A.J., Unger, S.H., Kim, K.H., Nikatani, D., and Lien, 
E.J. 1973. Aromatic substituents constants for structure-activity 
correlationa. J. Med. Chern. 16:1207-1216. 

Hansch, C. 1971. Quantitative structure-activity relationships in drug 
design. In: QSAR ~Drugs. Topliss, J.G., ed. New York:Academic 
Press. pp. 123-245. 

Hansch, C. and Helmer, F. 1968. An extra thermodynamic approach to the 
study of the ad sorption of organic molecules by membranes. J. 
Polymer Sci. V.A-1:3295. 

Hansch, C., Muir, R.M., Fujita, T.P., Maloney, P.D., Geiger, F., and 
Streich, M. 1963. The correlation of biological activity of plant 
growth regulators and chloromycetin derivatives with hammett con
stants and partition coefficients. :!..:_ Ame-r~ Chern. Soc. 85:2817-
2824. 

Harris, E. D. 1982. Quantitative Chemical Analysis. San Francisco :W. H. 
Freeman and Co. 748 pp. 



92 

Hartingan, J.A. 1975. Clustering Algorithm. New York. 

Hawks, S.J. 1972. letters to the editor .• .:!.=_ Chromatogr. 10:536. 

Hesser, C.M., et al. 1978. Role of nitrogen, oxygen, and carbon dioxide 
compressed air narcosis under sea. Bio. Med. Res. 5:391. 

Heldth, U. and Koser, J.K. Different bases for the gas chromatographic 
retention index system • .:!.=_ Chromatogr. 192:107-116. 

Kaiser, K.L.E. 1983. QSAR in Environmental Toxicology. Boston:D. Reidel 
Pub 1 ishing Co. 406 pp-.-

Kanfuman, R.D. 1977. Biophysical mechanism of anesthetic action: 
historical perspective and review of current theories. Anesthesi
ology. 46:49-62. 

King, S.R. and Julstrom, B. 1982. Applied Statistics Using Computers. 
Alfred Publishing Company, Inc. 

Kirk, R.E. and Othmer, D.F. 1963. Encyclopedia of Chemical Technology, 
2nd ed. New York: John Wiley and Sons. 

Kirschner, G.L. and Kowalski, B.R. 1979. The application of pattern 
recognition to drug design. Drug Design. 8:73-129. 

Konemanu, H. 1981. ~anti tative structure-activity relationship in fish 
toxicity studies. Part 1 and 2. Toxicol. 19:209-228. 

Kovats, E. 1958. Retention index. Chim. Acta. 42:1915. 

Kowalski, B.R. and Bender, C.F. 1974. The application of pattern recog~ 
nit ion to screening prospective anticancer drugs • .:!.=_ Amer. rhem. 
Soc. 93:916-918. 

Kupper, L.L., Stewart, J.R., and Williams, K.A. 1976. A note on con
trolling significant levels in stepwise regression. Am. :!...=_ Epid. 
103:13-15. 

Leegangh, P. 1978. Toxicity test with Daphnia magna. Is application in 
the management of water quality. Hydrobio1ogy. 59:155-158. 

Leo, A. 1981. Data Base and Parameter Listing, Issue No. 18. Pomona 
College Medicinal Chemistry Project. 

Leo, A., Yow, P. Y.C., Silipo, C., and Hansch, c. 1975. Calculations of 
hydrophobic constant (Log P) from II and FF constants. :!...=_ Med. 
Chem. 18:865-868. 

Leo, A., et al. 1975. Methods for Measuring the Acute Toxicity of 
Effluents to Freshwater and Marine Organisms, 3rd ed. 



93 

Leo, A., Hansch, C., and Elins, D. 1971. Partition coefficients and 
their uses. Chern. Rev. 71:525. 

Leo, A., Hansch, C., and Church, C. 1969. Comparison of parameters 
currently used in the study of structure-activity relationships. 
J. Med. Chern. 12:766-771. 

Loewenguth, J.C. 1969. Column chromatography. In: Kovats, E., ed. 5th 
International Symposium on Separation Methods, Lansane. Supplemen
tum to Chemia, 1970. 

Mardsen, C. and Marr S. 1963. Solvents Guide. London:Cleaver-Hume 
Press, Ltd. 

Martin, C. 1978. Quantitative Drug Design. A Critical Introduction. New 
York:Mercel Dekker, Inc. 

Matas, G. M. and Firpo panics, G. Relationships between gas chromato
graphic retention index and molecular structure. J. Chromatogr. 
1: 4-10. 

Mathiason, J.A., et al. 1978. Sensitivity of retention index to varia
tions in column liquid loading and sample size. J. Chromatogr. 
152: 11. 

McAuliffe, C.D. 1977. Evaporation and solutions of C2 to ClO hydro
carbons from crude oil in sea surface. In: Fate and Effects of 
Petroleum Hydrocarbons in Marine Organisms and Ecosystem. Wolfe:
D.A., ed. New York:Pergamon Press. pp. 363-372. 

McAuliffe, C.D. 1976. Surveillance of the marine environment for hydro
carbons. Marine Sci. Commun. 2: 13-42. 

Mellan, I. 1970. Industrial Solvents. New Jersey:Noyes Data Corporation. 

Meyer, H. 1899. In: Konemann, H., ed. 1981. Quantitative structure
activity relationships in fish toxicity studies. Part I: relation
ships for 50 industrial pollutants. Toxicol. 19:209-221. 

Morrow, J.E., et al. Effects of some components of crude oil on young 
Coho salmon. Copeia. 2:326-331. 

Nabivach, V.M. and Kirileriko, A. V. 1980. Relationship between the gas 
chromatographic behavior and the molecular structure of the carbon 
samples and various stationary phases. ~ Chromatogr. 13:94-100. 

Neely, W.B., et al. 1974. Partition coefficient to measure bioconcen
tration potential of organic chemicals in fish. Environ. Sci. 
Tech. 8:1113. 

Novak, J., et al. 1974. Generalization of the gas chromatographic 
retention index system.~ Chromatogr. 91:79. 



94 

Nys, G. G. and Rekker, R.F. 1-97 3. Statistical analysis of series of 
partition coefficients with special reference to predictability of 
folding of drug molecules. The introduction to hydrophobic frag
mental constants (f values). Chemic Therapeutique. 8:521-535. 

017erton, H. 1899. In: Konemann, H., ed. 1981. Quantitative structure
activity relationships in fish toxicity studies. Part I: relation
ships for 50 industrial pollutants. Toxicol. 197209-221. 

Pel tier, W.H., et al. 1985. Methods for Measuring the Acute Toxicity~ 
Effluents _!£ Freshwater and Marine Organisms, 3rd Ed. Environ. 
Monitor. and Support Lab., Environmental Protection Agency, Cin
e innati, OH. EPA-600 /4-85-003. 

Peltier, W.H. 1978. Methods for Measuring the Acute Toxicity~ Efflu
ents _!£ Freshwater and Marine Organisms. Environ. Monitor. and 
Support Lab., Environmental Protection Agency, Cincinnati, OH. 
EPA-600 /4-78-012. 

Pickering, Q.H. and Henderson, H. 1966. Acute tox~c~ty of some impor
tant petrochemicals to fish. J. Water Pollut. Control Fed. 38:142 9. 

Purcel, W.P., Bass, G.E., and Clayton, J.M. 1970. Strategy.~ Drug 
Design: A Guide _!£ Biological Activity. New York: John Wiley and 
Sons. 

Rekker, R. 1977. The Hydrophobic Fragmental Constant. New York:Elsevier. 

Richet, c. 1893. ~Soc. Biol. 54:775. 

Roth, S. H. 1980. Membrane and cellular action of anesthetic agents. 
Fed. Proc. Am. Soc. Ex!?...!. Biol. 39:1595-1599. 

Sadtler. 1987. The Sadtler Atlas of Capillary Gas Chromatography Reten
tion Index. 3316 Spring Garden Street, Philadelphia, PA 19104, 
(215 )382-1800. 

SAS Institute Inc. 1985. SAS Users Guide: Statistics, 5th Ed. Cary, 
N.C. :SAS Institute Inc. 

Schomburg, et al. 1973. Retention index.~ Chromatogr. 11:151. 

Schultz, T.W., et al. 1982. Structure-toxicity relationships of 
selected nitrogenous heterocyclic compounds. III. Relation using 
molecular connectivity. Bull. of Environ. Contam. and Toxicol. 
28: 373-3 78. 

Schultz, T.W., et al. 1980. Structure-toxicity relationships of 
selected nitrogenous hetrocyclic compounds. Arc. Environ. Contam. 
Toxicol. 9:591-598. 

Stephan, C. E. 1977. Methods for Calculating ~ LCSO. Philadelphia :AS'IM, 
STP 634. pp. 65-84. 



95 

Sojak, L. and Rijiks, A. J. 1976. Capillary gas chromatography of alkyl
benzenes • .:!...:_ Chromatogr. 119: 505. 

Sakal, R.R. and Rohif, F.J. 1969. Biometry. San Francisco:Freeman. pp. 
71-59 5. 

Spraque, J.B. and Fogel, A. 1977. Watch the Y in Bioassay. Proc. 3rd 
Aquatic Toxicity Workshop, Environmental Protection Service Tech
nical Report No. EPS-5-AR-77-1, Halifax, Canada. pp. 107-118. 

Spraque, J.B. 1970 Measurement of pollutant toxicity to fish. II. Uti
lizing and applying bioassay results. Water Res. 4:3-32. 

Spraque, J.B. 1969. Measurement of pollutant toxicity to fish. I. Bio
assay methods for acute toxicity. Water Res. 3:793-821. 

Titmn, N. 1975. Multivariate analysis with application in education and 
psychology. In: Brooks/Cole (esp Chapter 4 in Multivariate Regres
sion and Chemical Analysis). 

Topl iss, J. G. and Edwards, R. P. 1979. Chance factors in studies of 
quantitative structure-activity relationships. :!..!. Med. Chern. 22: 
1238-1244. 

Topliss, J.G. and Costello, R.J. 1972. Chance correlation ~n structure
activity studies using multiple regression analysis.:!..!. Med. Chern. 
15: 1066-1068. 

Unger, s. and Feuerman, T. 1979. Oc tano 1-aqueous partition, d istribu
tion and ionization coefficients of lipophilic acids and their 
anions by reversed-phase high-performance liquid chromatography. 
:!..!. Chromatogr. 176:426. 

U.S. Environmental Protection Agency. 1981. Contract No. 68-01-4655. 
Washington, D.C. 

U.S. Environmental Protection Agency. 1981. Contract No. 440-15-80-028. 
Washington, D.C. 

U.S. Environmental Protection .Agency. 1978. Contract No. 68-01-4656. 
Washington, D.C. 

U.s. Environmental Protection Agency. Methods for Chemical Analysis and 
Wastes. Washington, D.C.:U.S. Government Printing Office. EPA-
600/4-79-020. 430 pp. 

Veith, G. D., et al. 1983. Structure toxicity relationships for the fat
head minnow P imephales promelas: narcotic industrial chemicals. 
Can. :!..!. Fish Aquatic Sci. 40: 743-748. 

Veith, G.D., et al. 1979. Measuring and estimating the bioconcentration 
factor in fish. J. Fisheries Res Board Canada. 36(9): 1040-1048. 



96 

Veith, G. D. and Konasewich, D. E. 1975. Structure-Activity Correlation 
in Studies ~ Toxicity and Bioconcentration with Aquatic Organ
isms. Ontario: Great Lakes Research Advisory Board. 

Verloop, et al. 1976. Development and application of new substituent 
parameters in drug design. Drug Design. 7:164-207. 

Verschmenen, K. 1983. Handbook of Environmental Data on Organic Chemi
cals, 2nd Ed. New York:Van~strand Reinhold Co.--

Wallen, et al. 1957. Toxicity of Gambusters affines of certain pure 
chemicals in turbid water. Sew. Ind. Waste. 29:695-711. 

Walsh, E. F., et al. 1977. Residues of Emulsified Xylene in Aquatic Weed 
Control and Their Impact on Rainbow Trout. National Tech. Infor. 
Ser. Sp. Va. PB-267:270. 

Weast, R.C. 1975. Handbook of Chemistry and Physics. Cleveland, OH:The 
Chemical Rubber Co. 

Weast, W.L. and Ware, S.A. 1977. Preliminary Report on the Selected 
Potential ~ Environmental Contaminants •. H~elia'tecr-Benzenes. 
Washington, D.C.:Environmental Protection Agency. 

Yalkowasky, S. and Chou, J. 1980. Solubility and partitioning in drug 
design. In: Physical Chemical Properties of Drugs. Yalkowasky, 
Sinkula, Valvani, eds. New York:Mercel Dekker. pp. 201. 



Thesis: 

VITA J 
FESTUS NNAMDI MGBEME 

Candidate for the Degree of 

Doctor of Education 

KOVATS INDEX, A RAPID NEW PHYSICAL QSAR PREDICTOR OF ACUTE 
TOXICITY OF BENZENE DERIVATIVES TO FATHEAD MINNOWS 

Major Field: Higher Education 

Area of Specialization: Toxicology 

Biographical: 

Personal Data: Born in Akatta via Orlu, Imo State, Nigeria, August 
22, 1956, the son of Jacob and Juliana Mgbeme. 

Education: Graduated from Uli High School, Uli, Nigeria, in May, 
1975; attended Howard University in 1977 to 1978 and received 
Bachelor of Science degree from University of Science and 
Arts of Oklahoma in December, 1979; received Master of 
Science degree in Physiological Sciences (Toxicology) from 
Oklahoma State University in December, 1981; completed 
requirements for the Doctor of Education degree in Higher 
Education/Toxicology at Oklahoma State University in July, 
1989. 

Professional Experience: Graduate Research Assistant and tutor, 
Water Quality Research Laboratory and Department of Zoology, 
Oklahoma State University, 1984-1985 and 1987-1989; Consul
tant and member of Board of Directors, AGROCIN Nigeria 
Limited, 1982-1989; Graduate Research Assistant, Department 
of Physiological Sciences, Oklahoma State University, 1980-
1981. 

Professional Organizations: American Institute of Chemists, Ameri
can Chemical Society, Society of Environmental Toxicology and 
Chemistry, Oklahoma Academy of Science, Knight of Columbus 


