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CHAPTER 1

INTRODUCTION

1.1 Motivation

With the rapid development of the internet and mobile technologies, sales effort free

riding [see Shin, 2007, Bernstein et al., 2009] has caused a growing tension between

brick-and-mortar retailers and online stores. In December 2011, Amazon released a

smart phone app called PriceCheck to help shoppers seek out the online retailer’s price

for an item in a brick-and-mortar store by simply scanning its bar code. Amazon even

offered special discounts for smart phone check-outs to encourage “showrooming”, or

so called scan and scram by brick-and-mortar shoppers [Indvik, 2011]. In January

2012, Target issued letters to its suppliers to seek help in curbing showrooming,

according to the Wall Street Journal [Zimmerman, 2012] and the Time Magazine

[Tuttle, 2012]. The letter, signed by Target executives, reads: “What we aren’t willing

to do is let online-only retailers use our brick-and-mortar stores as a showroom for

their products and undercut our prices without making investments, as we do, to

proudly display your brands.” Suppliers are being asked to lower wholesale prices

to enable Target to match the prices of its online competitors, and Target is also

asking suppliers to create unique products only available in Target stores, helping

avoid direct comparisons to online goods. Target is not the only retailer exploring

every method to reduce the lost sales due to showrooming. Best Buy also offers price

match to customers who find a cheaper price on their smartphones [Noguchi, 2011].

Besides the competition from independent online stores, brick-and-mortar retail-

ers also face challenges from the manufacturer owned online channels. The rapid

1



development of e-commerce technology has made it easier for manufacturers to en-

gage in direct sales. For example, Estee Lauder selling its flagship Clinique brand

directly over the Internet was considered a serious threat by the brick-and-mortar

stores carrying Estee Lauder’s products [Machlis, 1998a]. Similar conflicts have been

reported by Avon Products Inc. [Machlis, 1998b], Bass Ale [Bucklin et al., 1997],

IBM [Nasireti, 1998], and others. Some trade groups, such as the National Shoe

Association and the National Sporting Goods Association, have gone to the point

of urging members to reduce or eliminate purchases from manufacturers using online

direct channels [Stern et al., 1996]. According to the survey by Tedeschi [2000] in The

New York Times, about 42% of top suppliers (e.g., IBM, Pioneer Electronics, Cisco

System, Estee Lauder, and Nike) in various industries had begun to sell directly to

consumers through the Internet. At the same time, their brick-and-mortar retailer

partners voice the belief that orders placed through manufacturers’ direct channels

are those should have been placed through them. In a cover story by Fortune mag-

azine [Brooker, 1999], Home Depot issued a letter to all suppliers selling products

over the Internet, saying “We recognize that a vendor has the right to sell through

whatever distribution channels it desires. However, we too have the right to be selec-

tive in regard to the vendors we select and we trust that you can understand that a

company may be hesitant to do business with its competitors.”

No manufacturers can ignore the threats from brick-and-mortar retailers, as they

are indispensable in selling the products. The physical shopping experience in brick-

and-mortar stores is unmatchable by their online competitors. No matter how many

photos, how extensive the description, and how many customer reviews are provided,

buying online always comes with a higher degree of guesswork than buying in per-

son. In addition, brick-and-mortar retailers can also insert efforts to stimulate the

demand by mailing advertisement posters, providing attractive shelf space, offering

trial samples, and educating customers about the product with sales representatives.
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Showrooming reduces brick-and-mortar retailers sales efforts, thus it lowers the

overall market demand and the manufacturer’s sales revenue. Both the brick-and-

mortar retailers and their suppliers want to resolve the problems caused by show-

rooming. However, the current tactics (simply price match or wholesale price dis-

count) employed by the brick-and-mortar retailers are not effective in coordinating

sales effort.

Apparently, the sales effort free riding problem dampens the brick-and-mortar

retailers’ desire to promote the manufacturer’s products. If the manufacturer wants

to retain the dual sales channel, he has to find a solution to mitigate the channel

conflict caused by sales effort free riding. This is the inspiration of our research.

We examine the contracts under two supply chain structures, with independent

or manufacturer-owned online channels. The manufacturer-owned online channels

are favored by many industry leaders. For example, HP started online direct sales

in the late 1990s, and by 2004, 26% of their orders were from the online direct

sales [Burke, 2004]. Apple’s online store sales grew by 90% in 2010, thanks to the

strong demand for iPad2 and iPhone 4s. Independent on-line channels are usually

adopted by manufacturers not in the leading positions, such as ASUS in the PC

industry and CREATIVE in the consumer electronics industry. We show that the

contracts proposed in this dissertation are effective in resolving the sales effort free

riding conflicts between retail channels under both supply chain structures.

We also investigate the contracts under both deterministic and stochastic de-

mands. The deterministic demand model depletes the cost and risk incurred by de-

mand uncertainty. This helps us to focus the research effort on analyzing the impact

of supply chain contracts on players’ profit margin, action coordination, and system

profit division. We are able to develop coordinating contract formula to achieve max-

imum supply chain system profit. In the second part of the dissertation, we also

investigate the supply chain contracts under stochastic demand. The demand uncer-
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tainty is captured and analyzed in the profit models. We are able to show that the

selective rebate with price match contract coordinates the sales effort.

The following sections present overviews of the major results under the two de-

mand models.

1.2 Overview of the Supply Chain Contracts under Deterministic

Demand

Under the deterministic demand, we analyze three contracts, namely the selective

rebate contract with price match, the revenue sharing contract with price match

and the selective target rebate contract with price match, in supply chain coordi-

nation under sales effort free riding. Under the selective rebate contract with price

match, the brick-and-mortar retailer matches the online price if a customer shows

the proof of the lower price. The manufacturer compensates the brick-and-mortar

retailer partially with a rebate for each sale under price match. Notice that the brick-

and-mortar retailer would not offer the lower online price to all customers, since the

manufacturer’s rebate compensates only part of the price difference. We show that

this contract is mathematically equivalent to the revenue sharing contracts with price

match. We show that both contracts can coordinate the supply chain, arbitrarily split

the system profit, and achieve Pareto optimality. Furthermore, in the case where the

manufacturer owns the online channel, there exists a solution regime on the Pareto-

optimal frontier in which both the manufacturer and the brick-and-mortar retailer’s

profits are improved from the baseline case. As for the selective target rebate with

price match, we show that such contract can coordinate the retailer’s sales effort, but

no profit division mechanism can guarantee Pareto improvement on online channel’s

profit. This is contrary to the results from the selective rebate and revenue sharing

contracts.
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1.3 Overview of the Supply Chain Contracts under Stochastic Demand

Under the stochastic demand, we propose a selective rebate contract with a price-

match policy to help the manufacturer coordinate the brick-and-mortar retailer’s sales

effort. In this scheme, the brick-and-mortar retailer will match the online retailer’s

price if a customer shows the proof of the lower price. The manufacturer then offers

a compensation rebate to the brick-and-mortar retailer based on the amount of sales

with price match. We show that when demand is influenced by sales effort, a properly

designed selective rebate contract with price match coordinates the brick-and-mortar

retailer’s sales effort.

We also examined other contracts, including the target rebate contract and the

wholesale price discount contract, both with price match. The numerical analysis

shows that the selective rebate outperforms other contracts in coordinating the brick-

and-mortar retailer’s sales effort and improving supply chain efficiency .
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CHAPTER 2

LITERATURE REVIEW

This dissertation studies supply chain contract design to solve sales effort free riding

between retail channels. In this section, we review the literature our research is related

to: sales effort, free riding, supply chain coordination, supply chain contracts, and

price match.

2.1 Sales Effort

There is a stream of research in operation management that considers the impact of

a retailer’s sales effort on demand expansion [see Chu and Desai, 1995, Lariviere and

Padmanabhan, 1997, Netessine and Rudi, 2000, Taylor, 2002, Mukhopadhyay et al.,

2008, Gilbert and Cvsa, 2003]. Gurnani et al. [2007] investigate the impact of the

timing of investment decisions (sales effort, price, and product quality etc.) on the

supply chain profitability, but they don’t consider contractual incentives to coordinate

the supply chain.

Some researchers show that sales effort can also affect various properties of the

supply chain, such as the demand uncertainty analysis by Heese and Swaminathan

[2003] and risk aversion analysis by Suo et al. [2005]. He et al. [2009] examine a

supply chain facing stochastic demand that is dependent on both sales effort and

retail price. They explore a variety of contracts including joint returns policy with

revenue sharing contract, returns policy with sales rebate and penalty (SRP) contract,

and revenue sharing contract with SRP. They find that only the returns policy with

SRP contract can achieve supply chain coordination. Cachon [2003] surveys the recent
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literature on sales effort and supply chain coordination. He shows that sales effort,

when incorporated with supply chain contracts such as sales rebate, buy back and

revenue sharing, can achieve supply chain coordination. However, none of the past

literature has investigated the sales effort free riding phenomenon.

There are also a number of papers in the marketing and franchising literatures

elaborating on the basic retail effort model. For example, in Chu and Desai [1995] the

supplier can also exert costly effort to increase demand, e.g., brand building adver-

tising, but the impact of effort occurs only with a lag: they have a two period model

and period one effort by the supplier increases only period two demand. They also

enrich the retailer’s effort model to include two types of effort, effort to increase short

term (i.e., current period) sales and long term effort to increase long term customer

satisfaction and demand (i.e., period two sales). They allow the supplier to compen-

sate the retailer by paying a portion of her effort cost and/or by paying the retailer

based on the outcome of her effort, i.e., a bonus for high customer satisfaction scores.

The issue is the appropriate mix between the two types of compensation. Lal [1990]

also includes supplier effort, but, effort again is non-enforceable. Although revenue

sharing (in the form of a royalty payment) continues to distort the retailer’s effort

decision, it provides a useful incentive for the supplier to exert effort: the supplier

will not exert effort if the supplier’s profit does not depend directly on retail sales.

Lal [1990] also considers a model with multiple retailers and horizontal spillovers: the

demand enhancing effort at one retailer may increase the demand at other retailers.

These spillovers can lead to free riding, i.e., one retailer enjoys higher demand due

to the efforts of others without exerting her own effort. He suggests that the fran-

chisor can control the problem of free riding by exerting costly monitoring effort and

penalizing franchisees that fail to exert sufficient effort.

Some recent literature investigates the sales effort in a multi-channel supply chain.

Xie and Neyret [2009] show that the co-op advertising and pricing strategies can max-
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imize the system profit in a one-manufacturer-and-two-retailer supply chain. Karray

[2010] investigates the effects of horizontal joint promotions among retailers and show

that this cost sharing strategy can improve each channel member’s profit through de-

mand expansion and higher margins in all the channels. Xing and Liu [2012] study

sales effort coordination with stochastic demand. They show that the selective re-

bate contract with price match solves the free riding problem and coordinates the

brick-and-mortar retailer’s sales effort. However, none of the literature has achieved

maximum system profit while investigating sales effort free riding and coordination.

2.2 Free Riding

Free riding has been extensively studied in the fields of industrial organization and

marketing (for a survey in a retail channel environment, see Carlton and Chevalier,

2001 and Antia et al., 2004). Sales effort free riding is first noticed by Telser [1960].

He points out that in a competitive retail industry, retailers may free ride other

retailers’ effort. Manufactures can discourage price competition to channel retailers’

focus on such effort competition, which is to the manufacturer’s liking. Jeuland

and Shugan [1983] also analyze promotional retailer effort as an extension to their

channel competition model. Manufacturer’s effort is considered by Narayanan and

Raman [1997] in a supply chain that the retailer stocks competing products while free

rides the manufacturer’s forecast effort. They investigate retailer-managed inventory,

vendor-managed inventory, and buy-backs contract. They show that the best option

depends on the market parameters, but none of them coordinates the supply chain.

Carlton and Perloff [2004] examine how manufacturers take actions to avoid free

riding, but their focus is on vertical restrictions.

There is some recent literature regarding free riding in the field of operation man-

agement. Shin [2007] shows that free riding may benefit both the free rider and the

service provider in that it may soften price competition. Wu et al. [2004] examine
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a retail market where information service is provided by retailers to help consumers

identify their ideal products. Their analysis suggests that a retailer in this setting

needs to develop the capability of and reputation for service provision to obtain pos-

itive profits. A retailer who free rides all the time loses the market share. However,

none of the papers has studied how to coordinate retailer effort with free riding, as

we do in our dissertation. Bernstein et al. [2009] design a supply chain contract to

increase channel competition to improve the manufacturer’s profit. Sigua and Chin-

tagunta [2009] study a problem of sharing advertising cost among the franchisor and

the franchisees, which resembles a supply chain with a manufacturer and multiple

retailers. They show that franchisor’s compensation to coordinate the franchisees’

advertising efforts can maximize the supply chain system profit. However, none of

the papers above consider sales effort free riding among asymmetric retailers, e.g.,

brick-and-mortar/onine retailers.

2.3 Supply Chain Coordination

According to Cachon and Lariviere [2001], supply chain coordination is “to achieve

the optimal performance if the firms coordinate by contracting on a set of transfer

payments such that each firms objective becomes aligned with the supply chain’s

objective.”

Supply chain coordination is a classic topic in the literature. Cachon [2003] ana-

lyzes every contract with their ability to coordinate the players’ decisions across the

supply chain. When coordination is achieved, the system profit of the supply chain

is maximized. The question following supply chain coordination is the division of

system profit. Some contracts have been proved to possess the ability of arbitrary

division of system profit. For example, Cachon and Lariviere [2005] show that the

revenue sharing contract can achieve supply chain coordination while arbitrarily split-

ting the system profit between the manufacturer and the retailer. Cai [2010] studies
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channel coordination in a dual channel supply chain. He shows that revenue sharing

contract can coordinate both the retailer-retailer and retailer-direct channel supply

chains, but at different supply chain efficiencies. To our best knowledge, none of the

previous literature has discussed arbitrary profit division in a multi-channel supply

chain.

The significance of supply chain coordination

Supply chain coordination is to achieve the maximum profit for all the supply chain

players, from manufacturer to retailer. Theoretically, if a contract in a decentralized

supply chain can achieve the same system profit as of a centralized supply chain, this

supply chain contract is coordinating. The major reason that makes supply chain

contract design so appealing is its potential to achieve the maximum system profit.

The values of contract design beyond supply chain coordination

Very few contracts, such as revenue sharing and buy back, can effectively coordinate

the supply chain [see Cachon and Lariviere, 2001]. Many contracts targeting real

world problems, such as the selective rebate contract in Xing and Liu [2012], is not

designed to achieve supply chain coordination but a solution to free riding problem.

There are some other perspectives to demonstrate the values of a contract.

• Supply chain efficiency is the ratio of system profit between the decentralized

supply chain and the centralized supply chain. If the supply chain efficiency is

close to 100%, the contract is comparable to a coordinating contract.

• Pareto improvement means that none of the players is worse off, and at least

one of the player is better off. Such property can guarantee that the contract

can improve the bottom line of the business operations, while all of the supply

chain players are willing to accept the contract.
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Game theory in supply chain coordination

From the prospective of traditional operations research, if the profit functions in a

contract model is jointly concave with respect to its decision variables, the contract

can coordinate the supply chain. But joint concavity is not easy to prove when

the number of variables are large. From the perspective of game theory, if the best

response functions (derived from the first order derivatives of the profit functions)

construct a Nash Equilibrium, then the supply chain contract is coordinating. It

means that if the players rationally optimize their profits, they will spontaneously

choose the Nash Equilibrium point from their respective best response functions and

have no incentive to deviate from it. Comparing with the traditional operations

research methods, there are many simpler game theory methods to prove the existence

of a Nash Equilibrium, such as the quasi-concavity of payoff functions leading to a

pure strategy Nash Equilibrium [Debreu, 1952], and the supermodular game having

at least one Nash Equilibrium [Topkis, 1998].

2.4 Supply Chain Contracts

In this dissertation, wholesale price, channel rebate and revenue sharing contracts

are studied to coordinate the newsvendor and to divide the supply chain’s profit.

Each contract coordinates by inducing the retailer to order more than he would with

just a wholesale price contract. Revenue sharing does this by giving the retailer some

downside protection. The target rebate contract does this by giving the retailer upside

incentive: if demand is greater than the target level; the retailer effectively purchases

the units sold above the level for less than their cost of production.

The various coordinating contracts may not be equally costly to administer. The

wholesale price contract is easy to describe and requires a single transaction between

the firms. The revenue sharing and rebate contracts are more costly to administer:

the supplier must monitor the number of units the retailer has left at the end of the

11



season, or the remaining units must be transported back to the supplier, depending

on where the units are salvaged; the supplier also has to monitor and verify the sales

at the retailer to calculate rebate or shared revenue.

In the following sections, we review the literature on the three supply chain con-

tracts.

2.4.1 Wholesale price contract

In this section, we will discuss the simplest contract–the wholesale price contract: the

supplier merely charges the retailer a fixed wholesale price per unit ordered.

It is well known that the wholesale price contract generally does not coordinate

the supply chain [Cachon, 2003]. It coordinates the channel only if the supplier

earns a non-positive profit. So the supplier clearly prefers a higher wholesale price.

As a result, the wholesale price contract is generally not considered a coordinating

contract.

Even though the wholesale price contract does not coordinate the supply chain,

it is worth studying because it is commonly observed in practice. That fact alone

suggests that it has valuable qualities. For instance, the wholesale price contract is

simple to administer. As a result, a supplier may prefer the wholesale price contract

over a coordinating contract if the additional administrative burden associated with

the coordinating contract exceeds the supplier’s potential profit increase.

Another important feature about wholesale price contract is that the supplier’s

share of supply chain profit increases more quickly than supply chain efficiency, with

the increase of demand variation. Intuitively, the larger the demand variation is,

the larger profit share the supplier obtains [Cachon, 2003]. One explanation for this

pattern is that the retailer’s profit represents compensation for bearing risk: with the

wholesale price contract there is no variation in the supplier’s profit, but the retailer’s

profit varies with the realization of demand. As the coefficient of variation decreases
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the retailer faces less demand risk and therefore her compensation is reduced. How-

ever, the retailer is not compensated due to risk aversion. If the retailer were risk

averse, the supplier would have to provide for yet more compensation. Instead, the

retailer is being compensated for the risk that demand and supply do not match. Lar-

iviere and Porteus [2001] demonstrate this argument holds for a broad set of demand

distributions.

There are some interesting extensions to wholesale price contract in the literature.

Anupindi et al. [2001] suppose the supplier sells to a retailer that faces an infinite

succession of identical selling seasons. There is a holding cost on left over inventory at

the end of a season but inventory can be carried over to the next season. The retailer

submits orders between seasons and the supplier is able to replenish immediately.

Within each season the retailer faces a newsvendor problem that makes the trade-off

between lost sales and inventory holding costs. Hence, the retailer’s optimal inventory

policy is to order up to a fixed level that is the solution to a newsvendor problem.

Cachon [2004] and Ferguson et al. [2006] provide another twist on this setting: each

model allows the supplier to produce more than the retailer orders, thereby allowing

the retailer to place a second order after some demand information is received. They

find that both firms may be better off by allowing the retailer to place this second

order.

2.4.2 Channel rebate contract

Channel rebate, a broadly used incentive contract in the retail business, has been ap-

plied to coordinate the retailer’s effort [see Lariviere, 1998, Tsay et al., 1998, Cachon,

2003, for surveys on supply chain contracts]. Taylor [2002] first shows that the target

rebate can coordinate a single channel supply chain, then includes the retailer’s sales

effort and shows that a target rebate and returns contract can achieve coordination.

Krishnan et al. [2004] show that a buy back and manufacturer rebate contract can co-

13



ordinate the supply chain. In that paper, the retailer decides her order quantity first,

then makes her effort decision after detecting a signal of the market demand. Taylor

and Xiao [2009] compare rebate and returns contracts in a single channel supply chain

with retailer’s forecasting effort. They show that the manufacturer can achieve sup-

ply chain coordination with the optimal menu of returns contracts. However, none of

the papers mentioned above has studied a manufacturer rebate based on the sales to

a specific customer group and applied it in a multi-channel supply chain with sales

effort.

2.4.3 Revenue sharing contract

With a revenue sharing contract the supplier charges a fixed amount per unit pur-

chased plus the retailer gives the supplier a percentage of her revenue. Assume all

revenue is shared, i.e., salvage revenue is also shared between the firms. (It is also

possible to design coordinating revenue sharing contracts in which only regular rev-

enue is shared.) Revenue sharing contracts have been applied effectively in the video

rental industry. Cachon and Lariviere [2001] provide an analysis of these contracts in

a more general setting.

Revenue sharing contract has been recognized as an effective supply chain co-

ordinating contract in the literature. The following are the articles that build the

foundation of revenue sharing contracts. Dana and Spier [2001] study revenue shar-

ing contract in the context of a perfectly competitive retail market. Pasternack [2005]

studies a single retailer newsvendor model in which the retailer can purchase some

units with revenue sharing and other units with a wholesale price contract. He does

not consider supply chain coordination in his model. Cachon and Lariviere [2005]

study revenue sharing contract in supply chain coordination. They find that revenue

sharing contract alone cannot coordinate retail effort, so they develop a variation on

revenue sharing, a quantity discount contract, for this setting. Mortimer[2000] pro-
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vides a detailed econometric study of the impact of revenue sharing contracts in the

video rental industry. She finds that the adoption of these contracts increased supply

chain profits by seven percent. Gerchak, Cho and Ray [2001] consider a video retailer

that decides how many tapes to purchase and how much time to keep them. Revenue

sharing coordinates their supply chain, but only provides one division of profit. They

redistribute profits with the addition of a licensing fee. However, none of the papers

have studied revenue sharing contract in the context of sales effort free riding.

2.5 Price Match

The impact of price match has been examined in the economics and marketing lit-

erature. The earliest analysis about price match is in Png and Hirshleifer [1987], in

which a retailer discriminates between two classes of customers who have different

cost of information. The retailer couples a retail price with an offer to match the

lower price of other retailers. They show that the retail price of each retailer is in-

creasing in the number of retailers, and the total sales are decreasing in the number

of retailers. Furthermore, if retailers coordinate, they discriminate more aggressively

and increase their profits by increase their total sales. Hess and Gerstner [1991] show

that price match helps to avoid price competition since the retailer becomes cautious

to use price cut to compete with her price matching rivals. Chen and Narasimhan

[2001] argue that price-match guarantees generate not only a competition-alleviating

effect, but also a competition-enhancing effect. The former case accords to Hess

and Gerstner [1991]. The latter effect comes from the fact that price match encour-

ages consumers’ price search behavior and thus exaggerates price competition. Corts

[1996] studies the fluctuations in equilibrium prices caused by price match policy, and

showed that price match facilitates customer segmentation according to the extent of

the customers’ information about rivals’ prices. However, the previous studies mostly

considered the price match policy as a marketing tactic, and focused on its impact
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on price competition. So far we have not noticed any literature which considers price

match as a tactic to coordinate retailer effort. To the best of our knowledge, this is

the first research effort using price match for sales effort coordination with free riding

between retailers.
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CHAPTER 3

RESEARCH OBJECTIVES AND CONTRIBUTIONS

The objective of the research is to help the manufacturer solve sales effort free riding

problem in a dual channel supply chain.

We study supply chain contracts with price match to solve this business prob-

lem, including selective rebate, wholesale price, revenue sharing and target rebate

contracts. We focus on the selective rebate contract with price match, in which the

brick-and-mortar retailer matches the online retailer’s price if the customers are able

to show proofs of the lower price. The manufacturer then offers a compensation re-

bate to the brick-and-mortar retailer based on the volume of sales with price match.

Our purpose is to show that when demand is influenced by sales effort, a properly

designed selective rebate contract with price match coordinates the brick-and-mortar

retailer’s sales effort. We also show that the other contracts are either equivalent or

inferior to the selective rebate contract. Specifically, the revenue sharing contract is

equivalent to the selective rebate contract. The target rebate contract is less efficient

than the selective rebate contract, while the wholesale price contract alone cannot

coordinate the supply chain.

The selective rebate contract also distinguishes from the classical manufacturer

rebate contracts (e.g. linear rebate and target rebate) in the sense that the rebates

are only given to the sales with price match. The manufacturer uses such a contract

to encourage the brick-and-mortar retailer to exert sales effort.

This research addresses the following issues:

• Sales effort: Sales effort is important in stimulating market demand. For
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example, retailers can influence demand by providing attractive shelf space and

hiring sales representatives to promote the products. However, sales effort is

hard to analyze because of the lack of tractability. We employ a model in which

a retailer makes quantity and effort decisions and then observes demand.

• Free riding: Sales effort free riding has become an important issue with the

increasing popularity of online stores. The online retailer free-rides the brick-

and-mortar retailer’ sales effort. As a result, the brick-and-mortar retailer re-

duces her sales effort, and the manufacturer’ total demand also decreases. In

this research, we provide the manufacturer with a solution to solve this sales

effort free riding problem.

These issues are addressed through a supply chain contracting framework that

can be analyzed in deterministic and stochastic demand. Determining the best com-

bination of supply chain contracts to maximize the total supply chain profit is the

focus of this research.

The contributions of this dissertation are listed below:

• Study the coordination in a dual channel supply chain under sales effort free

riding.

• Study the effectiveness of the selective rebate, target rebate, revenue sharing,

and wholesale price contracts with price match in coordinating the supply chain.

• Study the effectiveness of the aforementioned contracts with price match under

deterministic and stochastic demand.

• Study the properties of the aforementioned contracts, such as flexible division

of system profit and Pareto improvement.
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CHAPTER 4

THE SUPPLY CHAIN CONTRACTS UNDER DETERMINISTIC

DEMAND

4.1 Model with Online Channel Owned by the Manufacturer

4.1.1 Assumptions and notations

In this section, we consider that the online channel is owned by the manufacturer.

We assume exogenous retail price, similar to Cachon and Lariviere [2001] who also

use fixed retail prices to analyze the demand forecast effort. Such assumption is rec-

ommended by Lariviere and Porteus [2001], “A fixed retail price keeps the underlying

inventory problem sufficiently straightforward that one can study many aspects of

supply chain interactions and incentives.”

We assume that the demand is a linear function of sales effort, as in Cachon and

Lariviere [2005], Chu and Desai [1995] and Desiraju and Moorthy [1997]. The linear

demand function has been widely used in the literature of marketing science and

economics. It derives from the empirical regression model which is suited with most

of the normal goods with constant price elasticity of demand.

We also assume that the cost function of sales effort is in the form of V (θ) = hθ2, as

in Taylor [2002]. h is a nonnegative cost coefficient of the sales effort. The increasing

and convex property of the cost function of sales effort is based on the theory of

diminishing return of investment. To output the same level of marginal sales effort

effectiveness, the retailer has to commit more investment.

The market demand is categorized into three customer groups: (1) The traditional
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customers who only shop in the brick-and-mortar stores, has a demand function of

Db = ab+τbθ−pb, where pb is the brick-and-mortar retailer’s retail price, and τb is the

coefficient summarizing the demand boosting effect by sales effort on the traditional

consumers; (2) The free-riding customers who take advantage of the brick-and-mortar

retailer’s sales effort but purchase online at a lower price, has a demand function of

Df = af + τfθ− po, where po is the online retailer’s retail price, and τf is for the free-

riding consumers; (3) The online shoppers who only purchase through online stores

and are barely affected by the brick-and-mortar retailer’s sales effort, has a demand

function of Do = ao + τoθ − po, where τo is for the online only consumers.

We also assume the base demand for the three customer groups satisfy ab − pb ≥

af − po ≥ 0 and ao − po ≥ af − po ≥ 0. This means that, without the influence of

sales effort, the number of the free riding customers should be no greater than the

traditional shoppers and the online shoppers.

In addition, we assume the traditional shoppers’ demand is more sensitive to the

brick-and-mortar retailer’s sales effort than the free-riding and online only customers,

i.e., τb > τf > τo. This assumption is reasonable in that the traditional shoppers

visit the brick-and-mortar retailer more frequently and are loyal to such retailers. On

the other hand, the brick-and-mortar retailer understands the traditional shoppers

better than free riding customers and tends to provide more effective sales effort to

them, e.g., membership discounts are given to Sam’s club members, while free riding

customers are hard to receive such discounts because their purchases are realized

online.

In the following, we study five cases: the selective rebate (S), the target rebate

(T), the revenue sharing (R), the baseline case (B), and the centralized supply chain

(C). We denote Πcase
player as the profit, where case = {T,R, S, B, C}, and player =

{m, b, o, j}, representing the manufacturer, the brick-and-mortar retailer, the online

retailer, and the manufacturer-online retailer joint venture. This notation system is
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applied throughout the chapter. A summary of notations can be found in Table B.1.

4.1.2 The baseline case

The baseline case is the primitive setting of the story. There is no incentive in the

supply chain and the online retailer free rides the brick-and-mortar retailer’s sales

effort. The free-riding customers buy from the online stores.

The brick-and-mortar retailer’s profit

Considering that the demand is deterministic, the brick-and-mortar retailer’s only

decision variable is her sales effort:

ΠB
b (θ) = (pb − w)(ab + τbθ − pb)− hθ2. (4.1)

The first order and second order derivatives of Πb(θ) are:

∂ΠB
b (θ)

∂θ
= (pb − w)τb − 2hθ,

∂2ΠB
b (θ)

∂θ2
= −2h < 0.

Thus Πb(θ) is concave in θ and we can obtain the optimal θ as follows:

θ∗ =
(pb − w)τb

2h
. (4.2)

The manufacturer’s profit

The manufacturer’s sole decision is the wholesale price. His profit is:

ΠB
m(w) = (w − c)(ab + τbθ − pb + ao − po + af + τfθ − po). (4.3)
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After substituting θ with equation (4.2), the first order and second order deriva-

tives of ΠB
m(w) are:

∂ΠB
m(w)

∂w
= ab + ao + af − pb − 2po +

(pb − 2w + c)(τb + τf )τb
2h

,

∂2ΠB
m(w)

∂w2
= −

1

h
< 0.

Thus ΠB
m(w) is concave in w.

The optimal w∗ should be in the form of:

wD∗ =
pb + c

2
−

Dh

τb(τb + τf )
, (4.4)

where D = ab − pb + ao − po + af − po. D can be considered as the initial market

demand. The optimal effort can be obtained:

θD∗ =
(pb − c)τb

4h
+

D

2(τb + τf )
. (4.5)

4.1.3 The centralized supply chain

Before investigating the selective rebate contract, we first look at the centralized

supply chain, which will serve as a benchmark to evaluate the efficiency of the decen-

tralized system. The results of the centralized supply chain also facilitate the analysis

of supply chain coordination under the selective rebate contract with price match.

In the centralized system, the central planner only needs to decide the sales effort:

ΠC(θ) = (pb − c)(ab + τbθ − pb) + (po − c)(ao + (τf + τo)θ − 2po + af)− hθ2. (4.6)

22



The first order and second order derivatives of ΠC(θ) are:

∂ΠC(θ)

∂θ
= (pb − c)τb + (po − c)(τf + τo)− 2hθ,

∂2ΠC(θ)

∂θ2
= −2h < 0.

Thus ΠC(θ) is concave in θ and we can obtain the optimal θ as follows:

θC∗ =
(pb − c)τb + (po − c)(τf + τo)

2h
. (4.7)

Plugging equation (4.7) into equation (4.6), we get the following close-form solu-

tion for ΠC∗:

ΠC∗ =(pb − c)(ab − pb) + (po − c)(ao − 2po + af )

+
((pb − c)τb + (po − c)(τf + τo))

2

4h
.

(4.8)

Equation (4.7) defines the optimal sales effort that maximizes the system profit to

the level of Equation (4.8). These two equations also represent the coordinated sales

effort and system profit, and they are also the upper bounds of the optimal solutions

of the decentralized models.

4.1.4 The selective rebate contract with price match

In this contract, the brick-and-mortar retailer matches the online channel’s price if

a customer shows the proof of the lower price. At the end of the selling season,

the manufacturer who owns the online channel (the joint venture hereafter) offers a

compensation rebate to the brick-and-mortar retailer for each sale under price match.

The manufacturer decides the wholesale price (ws) and rebate (u) to maximize his

profit.
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The brick-and-mortar retailer’s profit

Because of the price match policy, the free-riding customers purchase in the brick-

and-mortar store. The brick-and-mortar retailer’s profit is:

ΠS
b (θ) = (pb − ws)(ab + τbθ − pb)

+ (po − ws + u)(af + τfθ − po)− hθ2.

(4.9)

The first order and second order derivatives of ΠS
b (θ) are:

∂ΠS
b (θ)

∂θ
= (pb − ws)τb + (po − ws + u)τf − 2hθ,

∂2ΠS
b (θ)

∂θ2
= −2h < 0.

Thus ΠS
b (θ) is concave in θ and we can obtain the optimal θ as follows:

θ∗ =
(pb − ws)τb + (po − ws + u)τf

2h
. (4.10)

Equation (4.10) shows that the brick-and-mortar retailer’s optimal sales effort is

independent of the initial market size of the product. With the same sales effort level,

the retailer gains more demand by investing in a product of a larger initial market

size.
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The online retailer and manufacturer joint venture’s profit

Since there is price match, the free-riding customers purchase in the brick-and-mortar

stores. The joint venture’s profit is:

ΠS
j (ws, u) =(po − c)(ao + τoθ − po) + (ws − c− u)(af + τfθ − po)

+ (ws − c)(ab + τbθ − pb).

(4.11)

After substituting θ with equation (4.10), equation (4.11) can be rewritten as:

ΠS
j (ws, u) = (po − ws)(ao − po)

+ (ws − c− u)(af +
(pb − ws)τb(τf + τo) + (po − ws + u)τ 2f

2h
− po)

+ (ws − c)(ab +
(pb − ws)τ

2
b + (po − ws + u)τb(τf + τo)

2h
− pb + ao − po).

(4.12)

The system profit of the supply chain in terms of w and u is:

ΠS
j (ws, u) + ΠS

b (ws, u) =(ws − c− u)(af +
(pb − ws)τb(τf + τo) + (po − ws + u)τ2f

2h
− po)

+ (ws − c)(ab +
(pb − ws)τ

2

b + (po − ws + u)τb(τf + τo)

2h
− pb + ao)

+ (po − ws)(ao − po)

+ (pb − ws)(ab +
(pb − ws)τ

2

b + (po − ws + u)τb(τf + τo)

2h
− pb)

+ (po − ws + u)(af +
(pb − ws)τbτf + (po − ws + u)τ2f

2h
− po)

− h(
(pb − ws)τb + (po − ws + u)τf

2h
)2.

(4.13)

Equation (4.13) doesn’t reveal any information about the optimal decisions for

the manufacturer, rather, it shows how the manufacturer’s decisions affect the system

profit. We will design a coordinating decision formula based on Equation (4.13) in

the following section.
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Supply chain coordination

In this section, we design the contract to achieve supply chain coordination. The

supply chain achieves the maximum system profit, same as the centralized supply

chain, but the individual player’s profit is not guaranteed to be improved. We will

investigate the solution regime under Pareto improvement in a later section.

Here we introduce variable λ. Define u =
τb+τf+τo

τf+τo
λ and ws = λ+ c. Note that by

such design, we actually construct u =
τb+τf+τo

τf+τo
(w − c).

Theorem 4.1 The selective rebate with price match contract achieves supply chain

coordination when u =
τb+τf+τo

τf+τo
(ws − c). It obtains the same system profit as the

centralized supply chain.

Proof. By substituting u =
τb+τf+τo

τf+τo
λ and ws = λ + c into equation (4.13), we can

rewrite (4.13) as follows:

ΠS
j (λ) + ΠS

b (λ) =−
τb

τf + τo
λ(af +

(pb − c)τb + (po − c)τf
2h

τf − po)

+ λ(ab +
(pb − c)τb + (po − c)τf

2h
τb − pb + ao − po)

+ (po − c− λ)(ao − po)

+ (pb − c− λ)(ab +
(pb − c)τb + (po − c)τf

2h
τb − pb)

+ (po − c+
τb
τf
λ)(af +

(pb − c)τb + (po − c)τf
2h

τf − po)

−
((pb − c)τb + (po − c)τf )

2

4h

=(pb − c)(ab − pb) + (po − c)(ao − 2po + af )

+
((pb − c)τb + (po − c)(τf + τo))

2

4h
.

(4.14)

Thus equation (4.14) equals (4.8).

Theorem 4.1 shows that the manufacturer’s optimal rebate only depends on the

manufacturer’s margin (ws − c) and the sales effort-demand sensitivities (τb, τf , τo).
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It is independent of the market sizes, retail prices, and price differences. Particularly,

if the free-riding and online only customers are very responsive to the brick-and-

mortar retailer’s sales effort, the manufacturer can reduce his incentive to achieve

optimality. This implies that the manufacturer should consider the quality of the

sales effort while considering offering the selective rebate contract with price match.

The manufacturer benefits more by identifying the brick-and-mortar retailers whose

sales efforts are more responsive among the free-riding and online only customers.

Arbitrary split of the system profit

Arbitrary allocation of system profit is a property shared by several efficient supply

chain contracts, e.g., buy back contract and revenue sharing contract. In this section,

we show that the selective rebate with price match contract also possesses a similar

property, though each player has a reserved level of profit share.

Theorem 4.2 Under selective rebate with price match contract, the system profit can

be arbitrarily split by varying λ among the supply chain players. Especially, the joint

venture attains his highest profit when:

λ =
(pb − c)(ab − pb) + (po − c)(af − po) +

((pb−c)τb+(po−c)(τf+τo))2

4h

ab − pb + po − af + (τb − τf )
(pb−c)τb+(po−c)(τf+τo)

2h

. (4.15)

Proof. We now transform the optimal decisions in terms of λ. Equation (4.9) can be

changed to:

ΠS∗
b (λ) =ΠC∗ − (po − c)(ao − po)

− λ

(

ab − pb − af + po + (τb − τf )
(pb − c)τb + (po − c)(τf + τo)

2h

)

,
(4.16)

where ΠC∗ is the centralized system profit as equation (4.8).
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Equation (4.11) can be changed to:

ΠS∗
j (λ) =(po − c)(ao − po)

+ λ

(

ab − pb + po − af + (τb − τf )
(pb − c)τb + (po − c)τf

2h

)

.
(4.17)

Equations (4.16) and (4.17) indicate that there is a Pareto-optimal frontier in the

optimal decision regime, determined by the intermediate decision variable λ through

u =
τb+τf+τo

τf+τo
λ and ws = λ + c. On the Pareto-optimal frontier, the solutions are

Pareto-optimal, which means we cannot find a solution to improve either player’s

profit without undermining the other’s. Though the system profit (ΠS∗
b (λ) +ΠS∗

j (λ))

has been maximized and equates ΠC∗, the individual player’s profit share is variable

depending on λ.

From assumption ab − pb > af − po, we know that ab − pb − af + po > 0, thus

in equation (4.16), the brick-and-mortar retailer’s profit is a decreasing function of

λ. Obviously, the joint venture’s profit is increasing with λ as shown in (4.17).

Equation (4.15) is obtained by equating (4.16) to zero. Notice that the nominator

and denominator of equation (4.15) are both positive, thus there always exists a

value of λ that makes the brick-and-mortar retailer obtain zero share of the system

profit.

Pareto improvement

Though we have shown that the selective rebate contract can achieve arbitrary profit

division and Pareto optimality, it is interesting to find out under what condition the

selective rebate contract can improve the profitability for both the manufacturer joint

venture and the brick-and-mortar retailer.

Naturally, after shifting the free-riding customers’ demand from the online channel

to the brick-and-mortar retailer, the brick-and-mortar retailer’s profit will always be
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higher in the selective rebate contract than in the baseline case. The intriguing

question is, under what condition, the joint venture will be better off.

Theorem 4.3 The joint venture’s profitability is affected by the cost coefficient of

sales effort h,

• When h >
τf (cτb−pbτb+cτf−poτf )

−2(af−po)
, the joint venture is always better off in the selec-

tive rebate than in the baseline;

• When h ≤
τf (cτb−pbτb+cτf−poτf )

−2(af−po)
, if pb−po ≤

2hτbτf
af−po

, there exists a threshold whole-

sale price w0
s = pb −

2h(τbτf )

af−po
, such that the manufacturer joint venture’s profit is

higher with the selective rebate contract than in the baseline case when w∗

s ≥ w0
s ;

otherwise the manufacturer is always worse off.

Proof. The difference between the joint venture’s profit under the selective rebate and

the baseline case is:

Πdiff =− (ao − po) (−ws + po) + (−ws + po)

(

af + ao − 2po −
(ws − pb) τbτf

2h

)

+ (−c + ws)

(

ab + af + ao − pb − 2po −
(ws − pb) τ

2
b

2h
−

(ws − pb) τbτf
2h

)

− (−c+ ws) (ab + ao − pb − po)

− (−c+ ws)

(

τb (−wsτb + pbτb − wsτf + poτf + (−c + ws) (τb + τf))

2h

)

−

(

−c + ws −
(−c + ws) (τb + τf )

τf

)

(af − po)

− (−c+ ws)

(

τf (−wsτb + pbτb − wsτf + poτf + (−c + ws) (τb + τf))

2h

)

(4.18)

Set the joint venture’s profit under the selective rebate contract and the baseline

case equal, with condition w∗

s ≥ c, then we have w0
s = pb −

2haf−2hpo
τbτf

. Notice that

w0
s < pb. When pb − po ≤

2hτbτf
af−po

, w0
s is also smaller than po.

Theorem 4.3 shows that when pb−po ≤
2hτbτf
af−po

, there always exists a solution regime
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Figure 4.1: The profit share with c = 3, ab = 30, af = 11, ao = 26, pb = 10, po =
8, τb = 3, τf = 1, under selective rebate.

that guarantees at least one of the player’s profit is improved from the baseline case,

and none of the players is worse off. Intuitively, the wider the gap of pb−po, the harder

it is to find Pareto-improving solutions. This can be easily understood as follows: in

order to stimulate the brick-and-mortar retailer, the manufacturer needs to provide

partial compensation for the price difference pb − po. The larger pb − po implies a

larger profit transfer from the manufacturer to the brick-and-mortar retailer, thus it

is harder to find a solution that doesn’t undermine the manufacturer’s profit share.

Among the parameters that affect the Pareto improvement of the supply chain

players’ profitability, the cost coefficient of sales effort (h) dominates the trend. Figure

4.1 shows the Pareto improvement scenario when c = 3, ab = 30, af = 11, ao = 26, pb =

10, po = 8, τb = 3, τf = 1, with h = 3 in Figure 4.1(a) and h = 1.5 in Figure 4.1(b).

Under this setting, the manufacturer joint venture’s profit is not always higher in the

selective rebate than in the baseline case. The Pareto-improving solution regime is

w∗

s ≥ w0
s . Figure 4.1 shows that when h increases from 1.5 to 3, the manufacturer

joint venture’s profit in the baseline case moves downwards and w0
s becomes smaller.
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Intuitively, when h increases, it is more costly for the brick-and-mortar retailer to exert

sales efforts, thus the market demand and the manufacturer join-venturer’s profit

become smaller. However, with selective rebate, the manufacturer joint venture’s

profit decreases much slower than in the baseline case. When h increases, it is easier

for the manufacturer joint venturer to achieve Pareto improvement by using selective

rebate, thus the Pareto-improving regime becomes larger. In Figure 4.1, we can also

see that the summation of the retailer and manufacturer’s profits under the selective

rebate is constant, an indication of Pareto-optimality.

4.1.5 The revenue sharing contract with price match

Under the revenue-sharing contract, a retailer pays a supplier a wholesale price for

each unit purchased, plus a portion of the revenue the retailer generates. The revenue

sharing contract has become more prevalent in the videocassette rental industry and

among airline alliances relative to the traditional wholesale price contract.

The model

In a supply chain consisted of one brick-and-mortar retailer and one manufacturer

owning an online retail channel, transactions between the retailer and manufacturer

are governed by a revenue sharing contract. This contract contains two decision

terms, µ and wr. µ is the share of retail revenue the manufacturer receives, i.e., given

retail revenues Πb, the retailer must transfer µΠb to the manufacturer but retains the

remaining (1 − µ)Πb. It is natural to assume µ ∈ [0, 1], even though that restriction

is not strictly required. We do not include the administrative costs associated with

monitoring revenues and collecting transfers. In other words, we assume the cost of

implementation has no impact on the contract the supplier oers or the quantity the

retailer purchases. (Implementation costs, of course, may impact whether revenue

sharing is adopted at all.) wr is the wholesale price. Note that a standard wholesale-
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price contract is a revenue-sharing contract with µ = 0.

The brick-and-mortar retailer’s profit is:

ΠR
b (θ) = ((1− µ)pb − wr) (ab + τbθ − pb)

+ ((1− µ)po − wr) (af + τfθ − po)− hθ2
(4.19)

The approach to obtain the optimal decisions based on the first and second order

derivatives is the same as in §4.1.4, thus we omit it.

θ∗(wr, µ) =
−wrτb + pbτb − µpbτb − wrτf + poτf − µpoτf

2h
(4.20)

The joint venture’s profit is:

ΠR
j (wr, µ) =(wr − c) (ao + τoθ − po) + (wr − c+ µpo) (af + τfθ − po)

+ (wr − c+ µpb) (ab + τbθ − pb)

(4.21)

Equivalence to the selective rebate contract

In this section, we show that revenue sharing and selective rebate contracts are equiv-

alent. For any selective contract there exists a revenue sharing contract that generates

the same cash flows between the manufacturer and the brick-and-mortar retailer.

In the selective rebate contract, the brick-and-mortar retailer pays ws − u (ws is

the wholesale price in the selective rebate contract) for each unit sold to the free-riding

customers under price match, and ws for each unit sold to the traditional customers.

In the revenue sharing contract, the brick-and-mortar retailer pays wr + µpo (wr is

the wholesale price in the revenue sharing contract) for each unit sold to the free-

riding customers under price match, and wr+µpb for each unit sold to the traditional

customers.

If the transactions from the brick-and-mortar retailer to the manufacturer are the
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same in both scenarios, that is:

ws − u = wr + rpo, (4.22)

wr + rpb = ws, (4.23)

the two contracts result in the same profits for the retailer and the manufacturer for

any combination of free riding and traditional customers’ demand.

Theorem 4.4 The revenue sharing contract with price match coordinates the supply

chain with r =
(τb+τf+τo)
τf (pb−po)

λ and wr = λ + c−
(τb+τf+τo)pb

τf (pb−po)
λ.

Proof. Solving equations (4.22) and (4.23), we get wr = ws−
pbu

pb−po
. Since the selective

rebate contract with price match coordinates the supply chain with u =
τb+τf+τo

τf+τo
λ and

ws = λ + c, the revenue sharing contract with price match coordinates the supply

chain with wr = λ+ c−
(τb+τf+τo)pb

τf (pb−po)
λ and r =

(τb+τf+τo)
τf (pb−po)

λ.

Notice that wr−c = λ(1−
(τb+τf)pb
τf (pb−po)

) and 1−
(τb+τf)pb
τf (pb−po)

< 0. Considering the revenue

sharing rate µ ≥ 0, we observe that wr ≤ c, which means that in the coordinating

revenue sharing contract, the wholesale price should not be higher than the produc-

tion cost. The manufacturer shares the cost of sales effort with the brick-and-mortar

retailer. The manufacturer’s revenue comes from the brick-and-mortar retailer’s sales

revenue, and thus is directly affected by the retailer’s sales effort. In addition, the

manufacturer shares the risk of demand uncertainty with the brick-and-mortar re-

tailer.

4.1.6 The target rebate contract with price match

In this contract, the manufacturer decides wholesale price (w) and target rebate (r)

to maximize his profit. The rebate is given to the brick-and-mortar retailer based on

its overall sales beyond the target level T , namely ab + τbθ − pb + af + τfθ − po − T .
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The brick-and-mortar retailer’s profit

Because of the price match policy, the free-riding customers purchase in the brick-

and-mortar store. The brick-and-mortar retailer’s profit is hence changed to:

ΠT
b (θ|T ) =(pb − w)(ab + τbθ − pb) + (po − w)(af + τfθ − po)

+ r(ab + τbθ − pb + af + τfθ − po − T )+ − hθ2.

(4.24)

Then the retailer’s profit can be written in two cases as follows:

ΠT
b (θ|T ) = (pb−w)(ab+τbθ−pb)+(po−w)(af+τfθ−po)+r(ab+τbθ−pb+af+τfθ−po−T )−hθ2,

when ab + τbθ − pb + af + τfθ − po ≥ T .

ΠT
b (θ|T ) = (pb − w)(ab + τbθ − pb) + (po − w)(af + τfθ − po)− hθ2,

when ab + τbθ − pb + af + τfθ − po < T .

For the case when ab + τbθ − pb + af + τfθ − po < T , the problem becomes trivial

and thus we omit it.

For the case when ab + τbθ − pb + af + τfθ − po ≥ T , the first order and second

order derivatives of ΠS
b (θ) are:

∂ΠT
b (θ)

∂θ
= (pb − w + r)τb + (po − w + r)τf − 2hθ,

∂2ΠT
b (θ)

∂θ2
= −2h < 0.

Thus ΠT
b (θ) is concave in θ and we can obtain the optimal θ as follows:

θ∗ =
(pb − w + r)τb + (po − w + r)τf

2h
. (4.25)
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The brick-and-mortar retailer’s profit function can be transformed into:

ΠT
b (w, r, T ) =

1

4h
(−4hTr + 4hrab − 4hwab + 4hraf − 4hwaf − 4hrpb

+ 4hwpb + 4habpb − 4hp2b − 4hrpo + 4hwpo + 4hafpo − 4hp2o

+ r2τ 2b − 2rwτ 2b + w2τ 2b + 2rpbτ
2
b − 2wpbτ

2
b

+ p2bτ
2
b + 2r2τbτf − 4rwτbτf + 2w2τbτf

+ 2rpbτbτf − 2wpbτbτf + 2rpoτbτf − 2wpoτbτf

+ 2pbpoτbτf + r2τ 2f − 2rwτ 2f + w2τ 2f + 2rpoτ
2
f − 2wpoτ

2
f

+ p2oτ
2
f ).

(4.26)

The manufacturer’s profit (joint venture)

The manufacturer’s decisions are the wholesale price and the rebate. His profit is:

ΠT
j (w, r, T ) =(w − c− r)(af + τfθ − po + ab + τbθ − pb − T )

+ (po − c)(ao − po).

(4.27)

After substituting θ with equation (4.25), equation (4.27) can be rewritten as:

ΠT
j (w, r, T ) = (ao − po)(−w + po) + (−c− r + w)(−T + ab + af − pb − po

+
τb(rτb − wτb + pbτb + rτf − wτf + poτf )

2h

+
τf (rτb − wτb + pbτb + rτf − wτf + poτf )

2h
).

(4.28)
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The system profit in the supply chain in terms of w, r and T is:

ΠT
j +ΠT

b =−
1

4h
(−4chT + 4hTw + 4hwao + 4hab (c− pb)− 4chpb + 4hp2b

+ 4haf (c− po)− 4chpo − 4hwpo − 4haopo

+ 8hp2o + 2crτ 2b + r2τ 2b − 2cwτ 2b

− 2rwτ 2b + w2τ 2b + 2cpbτ
2
b − p2bτ

2
b + 4crτbτf + 2r2τbτf

− 4cwτbτf − 4rwτbτf + 2w2τbτf + 2cpbτbτf + 2cpoτbτf

− 2pbpoτbτf + 2crτ 2f + r2τ 2f − 2cwτ 2f − 2rwτ 2f + w2τ 2f + 2cpoτ
2
f − p2oτ

2
f )

(4.29)

Coordinating decisions

We hereby define r =
2hT+pbτb+poτf

τf+τb
and w =

pbτb+poτf+2hT

τf+τb
+ c.

Theorem 4.5 The target rebate with price match contract achieves supply chain co-

ordination. It obtains the same system profit as the centralized supply chain.

Proof. We obtain the coordinating formula by solving the following equations:

− T + ab + af − pb − po +
τb (rτb − wτb + pbτb + rτf − wτf + poτf )

2h

=
τf (rτb − wτb + pbτb + rτf − wτf + poτf )

2h
,

(4.30)

and

rτb − wτb + pbτb + rτf − wτf + poτf
2h

=
−cτb + pbτb − cτf + poτf

2h
. (4.31)

Equation (4.30) is the first order condition of optimal T derived from the manu-

facturer’s profit function, and equation (4.31) is the condition for sales effort coordi-

nation. We have two equations and three variables, so the solutions are functions of

T , r =
2hT+pbτb+poτf

τf+τb
and w =

pbτb+poτf+2hT

τf+τb
+ c.

By substituting r =
2hT+pbτb+poτf

τf+τb
and w =

pbτb+poτf+2hT

τf+τb
+ c into equation (4.29),
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we can rewrite (4.29) as follows:

ΠT
j (T ) + ΠT

b (T ) =−
τb
τf
T (af +

(pb − c)τb + (po − c)τf
2h

τf − po)

+ T (ab +
(pb − c)τb + (po − c)τf

2h
τb − pb + ao − po)

+ (po − c− T )(ao − po)

+ (pb − c− T )(ab +
(pb − c)τb + (po − c)τf

2h
τb − pb)

+ (po − c+
τb
τf
T )(af +

(pb − c)τb + (po − c)τf
2h

τf − po)

−
((pb − c)τb + (po − c)τf )

2

4h

=(pb − c)(ab − pb) + (po − c)(ao − 2po + af)

+
((pb − c)τb + (po − c)τf)

2

4h
.

(4.32)

Thus equation (4.32) equals (4.8), the system profit in the centralized supply

chain.

We can transform other optimal results in term of T .

Equation (4.26) can be changed to:

ΠT
b (T ) =ΠC∗ − (po − c)(ao − po)

− (T − ab + pb − ao + af −
pbτb + poτf
τb + τf

)
(pb − c)τb + (po − c)τf

2h
,

(4.33)

where ΠC∗ is the centralized system profit as equation (4.8).

Equation (4.28) can be changed to:

ΠT
j (T ) = (T − ab + pb − ao + af −

pbτb + poτf
τb + τf

)
(pb − c)τb + (po − c)τf

2h
. (4.34)

Voluntary compliance

Voluntary compliance requires the profits of all players are nonnegative.
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Theorem 4.6 The target rebate with price match contract satisfies voluntary com-

pliance when T ≤ 2h(ΠC∗
−(po−c)(ao−po))

(pb−c)τb+(po−c)τf
+ ab − pb + ao − af +

pbτb+poτf
τb+τf

and T ≥ ab − pb + ao − af +
pbτb+poτf

τb+τf
.

Proof. First, from equation (4.33), we can see ΠS∗
b (T ) is positive when

T ≤
2h(ΠC∗ − (po − c)(ao − po))

(pb − c)τb + (po − c)τf
+ ab − pb + ao − af +

pbτb + poτf
τb + τf

.

When T ≥ ab − pb + ao − af +
pbτb+poτf

τb+τf
, ΠS∗

m (T ) ≥ 0.

4.2 Models with an Independent Online Channel

In this section, we discuss the supply chain with an independent online retailer. The

manufacturer sells products through both retail channels with the same wholesale

price. The reason to extend the previous model to include an independent online retail

is twofold: 1) practically, many manufacturers sell their products through independent

online retails, such as Amazon.com. By analyzing the behavior of the selective rebate

contract in this extended scenario, we can increase the practical value of the selective

rebate since it can be applied in a wider market context; 2) theoretically, no contracts

have been revealed to coordinate a supply chain with channel conflicts on sales effort

free riding. In this section, we show that the selective rebate contract is the first

contract to achieve the aforementioned property.

4.2.1 The selective rebate with price match contract

The model

The manufacturer decides wholesale price (ws) and target rebate (u) to maximize

his profit. The brick-and-mortar retailer’s profit is identical to that in §4.1.4 thus

omitted.
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Since there is price match, the free-riding customers purchase in the brick-and-

mortar stores. The online retailer’s profit becomes:

ΠS
o = (po − ws)(ao + τoθ − po). (4.35)

The manufacturer’s decisions are the wholesale price and the rebate. His profit is:

ΠS
m(ws, u) = (ws − c− u)(af + τfθ − po) + (ws − c)(ab + τbθ − pb + ao − po).(4.36)

Supply chain coordination

We introduce variable λ. Define u =
τb+τf+τo

τf+τo
λ and ws = λ + c. Note that by such

design, we actually construct u =
τb+τf+τo

τf+τo
(w − c).

Theorem 4.7 The selective rebate with price match contract achieves supply chain

coordination. It obtains the same system profit as the centralized supply chain.

Proof. The proof is similar to that of Theorem 1, thus omitted.

The brick-and-mortar retailer’s profit as a function of λ is:

ΠS∗
b (λ) =ΠC∗ − (po − c)(ao − po)

− λ(ab − pb − af + po + (τb − (τf + τo))
(pb − c)τb + (po − c)(τf + τo)

2h
),

(4.37)

where ΠC∗ is the centralized system profit as equation (4.8).

The online retailer’s profit is:

ΠS∗
o (λ) = (po − c)(ao − po)− λ(ao − po). (4.38)
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The manufacturer’s profit is:

ΠS∗
m (λ) = λ(ab − pb + ao − af + (τb − (τf + τo))

(pb − c)τb + (po − c)(τf + τo)

2h
). (4.39)

Division of the system profit

Theorem 4.8 Under selective rebate with price match contract, the system profit

can be arbitrarily split by varying λ among the supply chain players. Especially, when

λ = po − c, the manufacturer attains his highest profit.

Proof. From assumption ab − pb > af − po, we know that ab − pb − af + po > 0, thus

in equation (4.37), the brick-and-mortar retailer’s profit is a decreasing function of

λ. Obviously, the online retailer’s profit is also decreasing with λ as shown in (4.38).

Since we assume ao − po ≥ af − po, thus ao > af , then the manufacturer’s profit is

increasing in λ as shown in (4.39).

In the selective rebate with price match contract, by increasing λ, the manufac-

turer increases ws and u altogether and obtains a higher profit, based on equation

(4.39).

Let’s consider two borderline cases: λ = 0 and λ = po − c. When λ = 0, u = 0

and ws = c, then we have ΠS∗
b = ΠC∗ − (po − c)(ao − po), Π

S∗
o = (po − c)(ao − po),

ΠS∗
m = 0. In this case, manufacturer sells at the marginal cost, eliminating double

marginalization, and naturally the supply chain coordinates. But the manufacturer’s

share of system profit is 0. When λ = po − c, u =
τb+τf+τo

τf+τo
(po − c) and ws = po, then

we have ΠS∗
b = ΠC∗ − (po − c)(ab − pb + ao − af + (τb − τf)

(pb−c)τb+(po−c)τf
2h

), ΠS∗
o = 0,

ΠS∗
m = (po − c)(ab − pb + ao − af ). We can see that the division of system profit is not

as flexible as from 0 to 100%. Though the manufacturer and the online retailer could

get a zero share of system profit (but not at the same time), the brick-and-mortar

retailer is reserved for a minimum profit as ΠC∗ − (po − c)(ab − pb + ao − af + (τb −
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τf )
(pb−c)τb+(po−c)τf

2h
), thanks to the sales to the traditional shoppers who always bring

net profit to the brick-and-mortar retailer.

4.2.2 The revenue sharing contract with price match

This section considers a revenue sharing contract with an independent online retailer.

The online retailer loses her free riding customers to the brick-and-mortar stores due

to price match. The manufacturer doesn’t directly compensate the online stores for

her demand drain, but by coordinating wholesale price and sales effort to achieve so.

The model

The revenue sharing contract with price match contains two decision terms, µ and

wr. µ is the share of retail revenue the manufacturer receives, and wr is the wholesale

price.

The brick-and-mortar retailer’s profit is identical to that in §4.1.5, thus omitted.

The online retailer’s profit is:

ΠR
o = (po − wr)(ao + τoθ − po). (4.40)

The manufacturer’s profit is:

ΠR
m(wr, µ) = (wr − c+ µpo) (af + τfθ − po)

+ (wr − c+ µpb) (ab + τbθ − pb) + wr(ao + τoθ − po)

(4.41)

Equivalence to the selective rebate contract

To get ws − u = wr + µpo and wr + µpb = ws, we introduce µ =
τb+τf+τo

τf (pb−po)
λ and

wr = λ + c −
(τb+τf+τo)pb

τf (pb−po)
λ into wr + µpo and wr + µpb, and u =

τb+τf+τo

τf+τo
λ and

ws = λ + c into ws − u and ws, thus the two contracts result in the same profits for
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the retailer and the manufacturer for any combination of free riding and traditional

customers’demand.

By now, we have shown that the revenue sharing contract is equivalent to the

selective rebate contract when the online channel is independent of the manufacturer.

However, such equivalence only effects the coordinated sales effort and the system

profit.

4.2.3 The target rebate contract with price match

In this contract, the manufacturer decides wholesale price (w) and target rebate (r)

to maximize his profit. The rebate is given to the brick-and-mortar retailer based on

its overall sales beyond the target level T , namely ab + τbθ − pb + af + τfθ − po − T .

The independent online retailer orders to satisfy the demand from the online-only

customers.

The retailers’ profit functions

Because of the price match policy, the free-riding customers purchase in the brick-

and-mortar store. The brick-and-mortar retailer’s profit is:

ΠT
b (θ|T ) =(pb − w)(ab + τbθ − pb) + (po − w)(af + τfθ − po)

+ r(ab + τbθ − pb + af + τfθ − po − T )+ − hθ2.

(4.42)

Notice that equation (4.42) is the same as equation (4.24) when the manufacturer

owns the online channel. For simplicity, we omit the analysis process since it is the

same as in §4.1.6, and only show the optimal sales effort below:

θ∗ =
(pb − w + r)τb + (po − w + r)τf

2h
. (4.43)
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The online retailer’s profit is:

ΠT
o = (po − w)(ao + τoθ − po). (4.44)

The manufacturer’s profit

The manufacturer’s decisions are the wholesale price, the rebate and target level. His

profit is:

ΠT
m(w, r, T ) =(w − c− r)(af + τfθ − po + ab + τbθ − pb − T )

+ (w − c)(ao − po).

(4.45)

The analysis process for the manufacturer’s profit function is the same as in §4.1.6,

thus omitted. We only show the system profit in the supply chain in terms of w, r

and T :

ΠT
m +ΠT

o +ΠT
b =−

1

4h
(−4chT + 4hTw + 4hwao + 4hab (c− pb)

+ 4haf (c− po)− 4chpo − 4hwpo − 4haopo − 2cwτ 2b

− 2rwτ 2b + w2τ 2b + 2cpbτ
2
b − p2bτ

2
b + 2r2τbτf

− 4cwτbτf − 4rwτbτf + 2w2τbτf + 2cpbτbτf + 2cpoτbτf

− 2pbpoτbτf − 2cwτ 2f − 2rwτ 2f + w2τ 2f + 2cpoτ
2
f − p2oτ

2
f )

(4.46)

Coordinating decisions

We hereby define r =
2hT+pbτb+poτf

τf+τb
and w =

pbτb+poτf+hT

τf+τb
+ c.

Theorem 4.9 The target rebate with price match contract achieves supply chain co-

ordination with an independent online retailer. It obtains the same system profit as

the centralized supply chain.
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Proof. We obtain the coordinating formula by solving the following equations:

− T + ab − pb +
τb (rτb − wτb + pbτb + rτf − wτf + poτf )

2h

=
τf (rτb − wτb + pbτb + rτf − wτf + poτf )

2h
,

(4.47)

and

rτb − wτb + pbτb + rτf − wτf + poτf
2h

=
−cτb + pbτb − cτf + poτf

2h
. (4.48)

Equation (4.47) is the first order condition of optimal T derived from the manu-

facturer’s profit function, and equation (4.48) is the condition for sales effort coordi-

nation. We have two equations and three variables, so the solutions are functions of

T , r =
2hT+pbτb+poτf

τf+τb
and w =

pbτb+poτf+hT

τf+τb
+ c. Notice that equation (4.47) is slightly

different from equation (4.30) in §4.1.6 because of the difference in the manufacturer’s

profit functions.

By substituting r =
2hT+pbτb+poτf

τf+τb
and w =

pbτb+poτf+hT

τf+τb
+ c into equation (4.46),

we can rewrite (4.46) as follows:

ΠT
m(T ) + ΠT

b (T ) + ΠT
o (T ) =−

τb
τf
T (af +

(pb − c)τb + (po − c)τf
2h

τf − po)

+ T (ab +
(pb − c)τb + (po − c)τf

2h
τb − pb + ao − po)

+ (po − c− T )(ao − po)

+ (pb − c− T )(ab +
(pb − c)τb + (po − c)τf

2h
τb − pb)

+ (po − c+
τb
τf
T )(af +

(pb − c)τb + (po − c)τf
2h

τf − po)

−
((pb − c)τb + (po − c)τf )

2

4h

=(pb − c)(ab − pb) + (po − c)(ao − 2po + af )

+
((pb − c)τb + (po − c)τf)

2

4h
.

(4.49)
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Thus equation (4.49) equals (4.8), the system profit in the centralized supply

chain.

Notice that the coordinating formula w =
pbτb+poτf+hT

τf+τb
+ c is smaller than that in

§4.1.6, because the manufacturer does not own the online channel. The manufacturer

has to transfer profit to the retailers as a result of less market power over the retail

channels, comparing with the case that the manufacturer owns the online channel.

Pareto improvement

Though we have shown that the target rebate contract can achieve supply chain

coordination, it is interesting to find out under what condition the target rebate

contract can improve the profitability for all of the supply chain players.

Naturally, after shifting the free-riding customers’ demand from the online channel

to the brick-and-mortar retailer, the brick-and-mortar retailer’s profit will be higher

under the target rebate with price match contract. The intriguing question is, under

what condition, the manufacturer and online retailer will be better off.

Theorem 4.10 There exists a range of T that achieves pareto improvement for all

of the supply chain players.

Proof. The difference between the manufacturer’s profit under the target rebate and

the baseline case is:

Πdiff =− (ao − po) (−T + po) + (−T + po)

(

af + ao − 2po −
(T − pb) τbτf

2h

)

+ (ab − pb + T )

(

ab + af + ao − pb − 2po −
(T − pb) τ

2
b

2h
−

(T − pb) τbτf
2h

)

− (ab − pb + T ) (ab + ao − pb − po)

− (ab − pb + T )

(

τb (−wτb + pbτb − wτf + poτf + (−c + w) (τb + τf))

2h

)

− (−c + T )

(

τf (−wτb + pbτb − wτf + poτf + (−c + w) (τb + τf))

2h

)

.

(4.50)
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Figure 4.2: The profit share with h = 1.4, c = 3, ab = 30, af = 11, ao = 26, pb =
10, po = 8, τb = 3, τf = 1, under target rebate

Let equation (4.50) equate 0, there are two solutions for T ∗, af +ao−2po+
cτb+cτf

2h

and ab + ao +
2haf−2hpo+pbτbτf

h
. The larger one ab + ao +

2haf−2hpo+pbτbτf
h

is defined as

Tx.

The difference between the online retailer’s profit under the target rebate and the

baseline case is:

Πdiff =
(ab + af + ao − T )τb

2h
−

(pb − po)τb + (po − c)τf
2h

(4.51)

So when T ≤ ab + af + ao +
(pb−po)τb+(po−c)τf

τb
, Πdiff ≥ 0, and the online retailer is

better off under the target rebate contract.

The following numerical analysis aims to further elaborate the pareto-improving

domain. The standard setting for the parameters in the numerical analysis is as

follows: c = 2, ab = 30, af = 11, ao = 26, pb = 10, po = 8, τb = 3, τf = 1.

Figure 4.2 shows the pareto improvement scenario when h = 1.4. The x axis is

w other than T because the baseline does not have T . The T values in the rebate
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is converted to w values using the coordinating formula. There is a short range of

w values that achieves pareto improvement for all of the three players. The brick-

and-mortar retailer’s profit is always better in the target rebate. When w ≥ 5.5, the

manufacturer’s profit is better off in the target rebate.

4.3 Summary of Chapter 4

This chapter examines the effectiveness of selective rebate contract with price match

in coordinating a supply chain with retail channel conflicts caused by sales effort free

riding, under deterministic demand. The price match policy diverts the demand of

the free-riding customers from the online channel to the brick-and-mortar retailer. By

doing so, the brick-and-mortar retailer’s sales effort is rewarded with the free-riding

customer’s demand. In addition, the manufacturer provides partial compensation to

the brick-and-mortar retailer to offset her loss due to price match. Such selective

rebate boosts the brick-and-mortar retailer’s order quantity and sales effort, achieves

supply chain coordination and maximum system profits, and thus increase the supply

chain efficiency.

In addition, revenue sharing contract with price match is also studied in this

chapter. The deep root of equivalence between the selective rebate and revenue

sharing contract with price match explains why both contracts can coordinate the

supply chain with the manufacturer owning the online channel, and arbitrarily split

the system profit. For any selective contract there exists a revenue sharing contract

that generates the same cash flows. However, if the administrative costs associated

with monitoring revenues and collecting transfers are considered in implementing the

revenue sharing contract, the manufacturer will prefer selective rebate contract over

revenue sharing contract. In addition, we show that the wholesale price contract is

a special case of the revenue sharing contract, but the coordinating term requires

the wholesale price equates the production cost, thus the manufacturer will not use
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wholesale price contract to tackle the sales effort free riding problem.

This chapter also demonstrates the superiority of the selective rebate over a tradi-

tional target rebate in achieving supply chain coordination in a way that is attractive

to the supply chain players involved. Under a target rebate, the manufacturer induces

the retailer to exert additional effort and order a larger quantity by increasing the

retailer’s marginal revenue. However, the manufacturer compensates for the entire

sales if the retailer’s order quantity exceeds the target level. A selective rebate offers

an advantage to the manufacturer. The manufacturer only compensates for the sales

to the free-riding customers.
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CHAPTER 5

THE SUPPLY CHAIN CONTRACTS UNDER STOCHASTIC

DEMAND

In this chapter, we study sales effort coordination for a supply chain with one man-

ufacturer and two retail channels, where an online retailer offers a lower price and

free-rides a brick-and-mortar retailer’s sales effort. The free riding effect reduces brick-

and-mortar retailer’s desired effort level, and thus hurts the manufacturer’s profit and

the overall supply chain performance. To resolve the free riding problem, we design

a contract with price match and selective compensation rebate.

We also examine other contracts, including the target rebate contract and the

wholesale price discount contract, both with price match. The numerical analysis

shows that the selective rebate outperforms other contracts in coordinating the brick-

and-mortar retailer’s sales effort and improving supply chain efficiency .

5.1 Assumptions and Notations

We consider a manufacturer who sells one product through an online retailer and

a brick-and-mortar retailer, in a single selling season. The manufacturer produces

prior to the selling season at a unit cost (c), and offers the same wholesale price (w)

to the retailers. The brick-and-mortar retailer’s unit retail price (pb) is greater than

the online retailer’s (po) due to the former’s higher operational cost. The wholesale

price and the retail prices are exogenous. We use θ to represent the brick-and-mortar

retailer’s sales effort and V (θ) for the effort cost.

Assumption 5.1 V (θ) is an increasing and convex function of θ, θ ≥ 1.
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When θ = 1, the retailer does not insert extra sales efforts. The brick-and-mortar

and the online retailers decide their order quantities, Qb and Qo, before the selling

season. A summary of all the notations can be found in Appendix B.

The customers are classified into three groups according to their shopping habits:

• Online only customers are not affected by the brick-and-mortar retailer’s sales

effort. This is a reasonable assumption in that the online only shopper don’t

visit local stores and hence the local stores’ effort has little to ignorable effect

on online only shoppers. Their demand is denoted by D, a random variable

with density ψ(·) and distribution Ψ(·).

• Traditional customers only shop in the brick-and-mortar stores. Their demand

is Db = kbθ
rbD, where kb is the scaling factor for the relative initial market size

compared with the online only customers, and rb is the scaling factor of market

expansion by extra sales efforts.

• Free-riding customers are internet savvy. They visit the local brick-and-mortar

store to experience the product, and then search for a cheaper price online.

However, if the brick-and-mortar retailer matches the lower price, free-riding

customers will purchase in the brick-and-mortar store to avoid waiting for the

shipment and the risk of online payment. Their demand is defined by Df =

kfθ
rfD.

The major assumptions regarding the market demand are:

Assumption 5.2 The demand is an increasing and concave function of the sales

effort, i.e., rb ≤ 1.

Such multiplicative form of demand function is commonly used in the literature (see

Agrawal and Seshadri, 2000, and a survey by Petruzzi and Dada, 1999).
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Assumption 5.3 The market expansion effect on the free-riding customers is no

higher than the traditional customers, i.e., rf ≤ rb.

Assumption 5.4 The market size of the free-riding customers is no bigger than that

of the traditional customers, i.e., kf < kb.

In the following, we study five cases: the selective rebate (S), the target rebate

(T), the wholesale price discount (D), the baseline case (B), and the integrated supply

chain (I). We denote Πcase
player as the profit, where case = {T,D, S,B, I}, and player =

{m, b, o, a}, representing the manufacturer, the brick-and-mortar retailer, the online

retailer, and the overall supply chain. This notation system is applied throughout

the chapter. A summary of notations can be found in Table B.2.

5.2 The Baseline Case

The baseline case is the primitive setting of this research. There is no incentive in

the supply chain and the online retailer free rides the brick-and-mortar retailer’s sales

effort. The internet savvy (free-riding) customers buy from the online stores.

The brick-and-mortar retailer’s profit model is:

ΠB
b

(

Qb, θ
)

= −wQb + pb maxE[min
(

Qb, kbθ
rbD

)

]− V
(

θ
)

.

Theorem 5.1 In the baseline case, the brick-and-mortar retailer’s profit is jointly

concave in her order quantity and sales effort. The optimal order quantity and sales

effort satisfy:

Q∗

b = kbθ
rbΨ−1

(pb − w

pb

)

V ′
(

θ
)

|θ∗ =
kbrbθ

rb−1pb
(

kbθrb
)2 E[min

(

Dkbθ
rb, Qb

)

].
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And the online retailer’s profit equation is:

ΠB
o

(

Qo

)

= −wQo + poE[min
(

Qo,
(

1 + kfθ
rf
)

D
)

].

The optimal order quantity is Q∗

o =
(

1+ kfθ
rf
)

Ψ−1
(

po−w

po

)

. Given the optimal orders

of both retailers, we can obtain the manufacturer’s profit as follows:

ΠB
m =

(

w − c
)(

Q∗

b +Q∗

o

)

=
(

w − c
)

(

(

1 + kfθ
rf
)

Ψ−1
(po − w

po

)

+ kbθ
rbΨ−1

(pb − w

pb

)

)

.

5.3 The Integrated Supply Chain

The integrated supply chain is also called the centralized supply chain, in which there

is a central planner determines the decision variables to optimize the overall supply

chain profit. The overall supply chain profit can be modeled as:

ΠI
a

(

Qb, Qo, θ
)

= −c
(

Qb +Qo

)

+ pbE[min
(

Qb, kbθ
rbD

)

]

+ poE[min
(

Qo,
(

1 + kfθ
rf
)

D
)

]− V
(

θ
)

.

(5.1)

Theorem 5.2 In the integrated supply chain, and the system profit is concave in the

sales effort. The optimal θ satisfies:

V ′
(

θ
)

|θ∗ = pbkbrbθ
rb−1

∫

Q∗

b
kbθ

rb

0

Dψ
(

D
)

dD + pokfrfθ
rf−1

∫
Q∗

o

1+kfθ
rf

0

Dψ
(

D
)

dD. (5.2)

5.4 The Selective Rebate Contract with Price Match

Under the selective rebate and price match contract, the brick-and-mortar retailer

sells the product to the traditional customers at pb. As for free-riding customers

who provide an evidence of a lower online price (po), the brick-and-mortar retailer

will match the online price. For each unit sold at po, she will get a unit rebate u
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(0 ≤ u ≤ pb − po) from the manufacturer as a compensation for her loss due to price

match. We also assume u ≤ w − c such as the manufacturer will not have negative

net revenue due to the rebate.

We study a Stackelberg game, where the manufacturer is the leader and the retail-

ers are the followers. The sequence of events is as follows: 1) The manufacturer offers

a rebate contract to the brick-and-mortar retailer; 2) The brick-and-mortar retailer

chooses her order quantity and sales effort. The online retailer also chooses the order

quantity. The manufacturer produces to meet the retailers’ demand; 3) Demand is

realized and payments are made according to the contract.

5.4.1 The brick-and-mortar retailer’s profit function

We assume that the customers arrive homogenously and the brick-and-mortar retailer

satisfies demands on a FCFS basis. Though traditional customers pay a higher price,

the brick-and-mortar retailer will not reject free-riding customers’ demand to reserve

the products for traditional customers. The brick-and-mortar retailer’s profit is as

follows:

ΠS
b

(

Qb, θ
)

= −wQb +
pbkbθ

rb−rf +
(

po + u
)

kf

kbθrb−rf + kf
E[min

(

D
(

kbθ
rb + kfθ

rf
)

, Qb

)

]

− V
(

θ
)

.

(5.3)

The first term −wQb is the purchasing cost. The second term summarizes the

sales revenue from free-riding and traditional customers, where E[min
(

D
(

kbθ
rb +

kfθ
rf
)

, Qb

)

] is the volume of the overall sales. The margin for selling to traditional

customers is pb, while po + u is the margin to sell to free-riding customers. V
(

θ
)

is

the cost of effort.

Theorem 5.3 The brick-and-mortar retailer’s profit function is jointly quasi-concave,

and furthermore, unimodal in Qb and θ. The optimal order quantity and sales effort
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satisfy:

Q∗

b =
(

kbθ
rb + kfθ

rf
)

Ψ−1
(

1−
kbθ

rb−rf + kf

pbkbθrb−rf +
(

po + u
)

kf
w
)

, (5.4)

V ′
(

θ
)

|θ∗ =
kfkb

(

rb − rf
)

θrb−rf
(

pb − po − u
)

(

kbθrb−rf + kf
)2 E[min

(

D
(

kbθ
rb + kfθ

rf
)

, Qb

)

]. (5.5)

Please refer to Appendix A for all the proofs. Equation (5.5) is an implicit func-

tion. The optimal θ∗ can be attained by satisfying (5.5), given explicit forms of

demand distribution and V (θ).

5.4.2 The online retailer’s profit model

Due to price match, free-riding customers’ demand is diverted to the brick-and-mortar

retailer. The online only shoppers are the sole customers of the internet retailer. The

internet retailer’s demand is D, and she offers no sales effort. Her profit model is as

follows:

ΠS
o

(

Qo

)

= −wQo + poE[min
(

D,Qo

)

].

It’s a standard newsvendor problem and the optimal order quantity is Q∗

o =

Ψ−1
(

po−w

po

)

. The optimal order quantity for the online retailer also holds in the target

rebate and wholesale price discount contracts with price match.

5.4.3 The manufacturer’s profit model

With Q∗

b and Q∗

o, we can now model the manufacturer’s profit:

ΠS
m

(

u
)

=
(

w − c
)(

Q∗

b

(

u
)

+Q∗

o

(

u
))

− u
kfQ

∗

b

(

u
)

kbθ
∗rb−rf + kf

,

=
(

w − c
)

Ψ−1
(po − w

po

)

+
(

w − c− u
)

Ψ−1
(

1−
kbθ

rb−rf + kf

pbkbθ
rb−rf +

(

po + u
)

kf
w
)

.

(5.6)
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Theorem 5.4 The manufacturer’s profit function is concave in u.

Theorem 5.4 guarantees that there is a unique optimal solution to the manufacturer’s

rebate.

5.4.4 Analytical results

To obtain more analytical results, in this section, we assume the cost function of sales

effort as V
(

θ
)

= aθ2, and the demand is uniformly distributed as U
(

α − β, α + β
)

,

such assumptions have appeared in several articles such as Taylor [2002].

Order quantity and sales effort analysis

Different from supply chain coordination which pursues the same system profit as the

centralized supply chain, action coordination instead focuses on optimizing a single

action for one player. Action coordination is non-trivial in supply chain contract

analysis [Cachon, 2003]. Lariviere [2002] shows that a manufacturer can obtain a

large share of supply chain profit by coordinating the forecasting effort of its dual

channel retailers, although at the cost of supply chain efficiency. We find that the

selective rebate with price match achieves action coordination for sales effort.

Theorem 5.5 The optimal sales effort in the selective rebate and price match con-

tract is the same as in the integrated supply chain. The optimal decisions satisfy:

θS∗ =
(

(

pb − c
)

kbrb +
(

po − c
)

kfrf

4a

)

1

2

(

rf+rb

)

, (5.7)

uS∗ =
kb
(

po − w
)

(

(pb−c)kbrb+(po−c)kfrf
4a

)

rb−rf

2(rf+rb) + kfpo

(

pbkb

(

(pb−c)kbrb+(po−c)kf rf
4a

)

rb−rf

2(rf+rb) + pokf

)2
. (5.8)
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Theorem 5.5 implicates that under the selective rebate, the brick-and-mortar re-

tailer provides the optimal sales effort as in the centralized supply chain. Next, we

compare the brick-and-mortar retailer’s order quantity and sales effort in the following

scenarios: the integrated supply chain and the selective rebate contract with price

match. We will see how the selective rebate contract affects the brick-and-mortar

retailer’s decisions regarding effort and order quantity.

Theorem 5.6 With the same sales effort, the brick-and-mortar retailer will order

less under the selective rebate contract with price match than in the integrated supply

chain.

Since the brick-and-mortar retailer’s profit function is unimodal in the order quan-

tity and the sales effort, we can obtain the following corollary from Theorem 5.5 and

5.6 directly.

Corollary 5.1 Given the same order quantity as in the integrated supply chain, the

brick-and-mortar retailer will exert more sales effort under the selective rebate con-

tract with price match than in the integrated supply chain.

Impact of demand variation

In this section, we examine the relationship between order quantity and demand

variation under the selective rebate. With a uniform distribution U
(

α − β, α + β
)

,

the demand variation can be measured by β. Denote Cu

Co+Cu
as the critical ratio,

where Cu and Co represent the underage and overage costs respectively. We first

introduce Proposition 5.1 to discuss the impact of demand variation on the optimal

order quantities in the basic newsvendor model with one retailer only and no sales

effort involved.

Proposition 5.1 In a basic newsvendor model with a uniform demand distribution

U
(

α − β, α + β
)

, when the critical ratio < (>) 0.5, the optimal order decreases
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(increases) in β.

Next, let’s examine the impact of demand variation on the brick-and-mortar re-

tailer’s optimal order quantity.

Theorem 5.7 Under the selective rebate with price match contract, the brick-and-

mortar retailer’s optimal order quantity is affected by the demand variation as follows:

(1) When w ∈ (0, pb+po+u

4
], the brick-and-mortar retailer’s optimal order quantity

increases with β;

(2) When w ∈ (0.5pb, pb), the optimal order quantity decreases with β;

(3) When w ∈ (pb+po+u

4
, 0.5pb], the optimal order quantity increases (decreases) with

β if
(

0.5pb − w
)

kbθ
rb−rf +

(

0.5po + 0.5u− w
)

kf is positive (negative).

Theorem 5.7 can be explained by the impact of critical ratio based on Propo-

sition 5.1. In the selective rebate contract, the brick-and-mortar retailer offers two

retail prices (po and pb) to the two customer groups respectively. Thus, conceptually,

her total order could be considered as the summation of the orders from these two

customer groups. The critical ratios for the traditional shoppers and the internet

savvy shoppers are pb−w

pb
and po+u−w

po
respectively. When w > 0.5pb, the critical ra-

tios of both customer groups are smaller than 0.5, hence the optimal order quantity

decreases in β. When w < po+u

2
, the critical ratios of both are bigger than 0.5, thus

the optimal order quantity increases in β. Because the assumption of kbθ
rb ≥ kfθ

rf ,

when w ∈ (po+u

2
, pb+po+u

4
], the total optimal order quantity still increases in β. How-

ever, when w ∈ (pb+po+u

4
, 0.5pb], the impact of β is not easy to see and needs to be

determined numerically by
∂Q∗

b

∂β
.
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5.5 The Revenue Sharing Contract with Price Match

Under a revenue-sharing contract, the brick-and-mortar retailer pays a manufacturer

a fixed wholesale price w for each unit purchased, plus a percentage µ of the revenue

the retailer generates.

5.5.1 The brick-and-mortar retailer’s profit function

We assume that the customers arrive homogenously and the brick-and-mortar retailer

satisfies demands on a FCFS basis. Though traditional customers pay a higher price,

the brick-and-mortar retailer will not reject free-riding customers’ demand to reserve

the products for traditional customers. The brick-and-mortar retailer’s profit is as

follows:

ΠR
b

(

Qb, θ
)

=−wQb +
(1− µ)pbkbθ

rb−rf + po(1− µ)kf
kbθ

rb−rf + kf
E[min

(

D
(

kbθ
rb + kfθ

rf
)

, Qb

)

]

− V
(

θ
)

.

(5.9)

The first term −wQb is the purchasing cost. The second term summarizes the

sales revenue from free-riding and traditional customers, where E[min
(

D
(

kbθ
rb +

kfθ
rf
)

, Qb

)

] is the volume of the overall sales. The margin for selling to traditional

customers is pb(1− µ), while po(1− µ) is the margin to sell to free-riding customers.

V
(

θ
)

is the cost of effort.

Theorem 5.8 The brick-and-mortar retailer’s profit function is jointly quasi-concave,

and furthermore, unimodal in Qb and θ. The optimal order quantity and sales effort

satisfy:

Q∗

b =
(

kbθ
rb + kfθ

rf
)

Ψ−1
(

1−
kbθ

rb−rf + kf
pb(1− µ)kbθrb−rf + po(1− µ)kf

w
)

, (5.10)

V ′
(

θ
)

|θ∗ =
kfkb

(

rb − rf
)

θrb−rf
(

pb − po
)

(1− µ)
(

kbθ
rb−rf + kf

)2 E[min
(

D
(

kbθ
rb + kfθ

rf
)

, Qb

)

]. (5.11)
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Please refer to Appendix A for all the proofs of the dissertation. Equation (5.11)

is an implicit function. The optimal θ∗ can be attained by satisfying (5.11), given

explicit forms of demand distribution and V (θ).

5.5.2 The online retailer’s profit model

Due to price match, free-riding customers’ demand is diverted to the brick-and-mortar

retailer. The online only shoppers are the sole customers of the internet retailer. The

internet retailer’s demand is D, and she offers no sales effort. Her profit model is as

follows:

ΠR
o

(

Qo

)

= −wQo + poE[min
(

D,Qo

)

].

It’s a standard newsvendor problem and the optimal order quantity is Q∗

o =

Ψ−1
(

po−w

po

)

. The optimal order quantity for the online retailer also holds in the target

rebate and wholesale price discount contracts with price match.

5.5.3 The manufacturer’s profit model

With Q∗

b and Q∗

o, we can now model the manufacturer’s profit:

ΠR
m

(

µ
)

=
(

w − c
)(

Q∗

b

(

µ
)

+Q∗

o

(

µ
))

+
µpbkbθ

rb−rf + poµkf
kbθrb−rf + kf

Q∗

b

(

µ
)

=
(

w − c
)

Ψ−1
(po − w

po

)

+
(

w − c
)

Ψ−1
(

1−
kbθ

rb−rf + kf
pbkbθrb−rf + µpokf

w
)

.

(5.12)

Theorem 5.9 The manufacturer’s profit function is concave in µ. We assume the

cost function of sales effort as V
(

θ
)

= aθ2, and the demand is uniformly distributed

as U
(

α− β, α+ β
)

, and the optimal µ∗ is:

µ∗ =
kfkbθ

∗rb−rf + pbkbθ
∗rb−rf

4a(pokf)2
. (5.13)
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Theorem 5.9 guarantees that there is a unique optimal solution to the manufacturer’s

rebate.

5.5.4 Equivalence to the selective rebate contract

Consider that the remaining products owned by the brick-and-mortar retailer at the

end of the selling season have zero savage value. In other words, the manufacturer

doesn’t share demand uncertainty risk with the brick-and-mortar retailer. Thus we

can use similar tactic to relate the selective rebate and revenue sharing contracts. To

get ws−u = wr+µpo and wr+µpb = ws, we need to assume the cost function of sales

effort as V
(

θ
)

= aθ2, and the demand is uniformly distributed as U
(

α − β, α + β
)

,

thus we can introduce Equations (5.13) and (5.8) into wr +µpo and wr +µpb, and we

show that

u− µ(pb − po) =− (pb − po)
kfkbθ

∗rb−rf + pbkbθ
∗rb−rf

4a(pokf)2

+
kbpo

(

(pb−c)kbrb+(po−c)kf rf
4a

)

rb−rf

2(rf+rb) + kfpo

(

pbkb

(

(pb−c)kbrb+(po−c)kfrf
4a

)

rb−rf

2(rf+rb) + pokf

)2

=0.

Thus the two contracts result in the same profits for the retailer and the manufacturer

for any combination of free riding and traditional customers’demand.

By now, we have shown that the revenue sharing contract is equivalent to the

selective rebate contract when the online channel is independent of the manufacturer.

However, since the manufacturer doesn’t share demand risk with the brick-and-mortar

retailer, the brick-and-mortar retailer orders less than optimal and the supply chain

efficiency is lost.
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5.6 The Target Rebate Contract with Price Match

Target rebates are paid by the manufacturer to the retailer for the sales quantity

beyond a specified target level. In Taylor [2002], a target rebate and returns contract

is designed to coordinate the supply chain with retailer effort. In this section, we

study the contract with target rebate and price match, without returns.

The sequence of events is as follows: (1) The manufacturer offers a target rebate

(r) contract with a threshold (T ) to the brick-and-mortar retailer; (2) The brick-

and-mortar retailer chooses her order quantity and effort. The online retailer also

chooses her order quantity. The manufacturer produces to meet the retailers’ order;

(3) Demand is realized and payments are made according to the contract. If the brick-

and-mortar retailer’s order quantity exceeds the target threshold, the manufacturer

will pay a unit rebate (r) to the retailer.

5.6.1 The brick-and-mortar retailer’s profit

The brick-and-mortar retailer’s profit is:

ΠT
b

(

Qb, θ|T
)

=− wQb + pbE[min
(

(kfθ
rf + kbθ

rb)D,Qb

)

]

+ rE[min
(

(kfθ
rf + kbθ

rb)D,Qb

)

− T ]+ − V
(

θ
)

,

where T is the target rebate threshold.

Theorem 5.10 For a given T , ΠT
b

(

Qb, θ|T
)

is concave in Qb in intervals [0, T ] and

(T,∞), respectively. The optimal order quantity is uniquely determined by Q∗

b =

(kfθ
rf + kbθ

rb)Ψ−1
(

pb−w+r

pb+r

)

.
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5.6.2 The manufacturer’s profit model

The manufacturer’s profit is:

ΠT
m

(

r|T
)

=















(

w − c
)(

Qb +Qo

)

Qb < T

(

w − c
)(

Qb +Qo

)

− rE[min
(

Qb,
(

kfθ
rf + kbθ

rb)D
)

− T ]+ Qb > T.

Proposition 5.2 ΠT
m

(

r|T
)

is concave in r, and r∗
(

T
)

=
(

pb − w
)T−Ψ−1

(

pb−w

pb

)

Ψ−1(
pb−c

pb
)

.

Theorem 5.11 ΠT
m

(

T
)

is concave in T .

As shown in Theorem 5.11, the optimal decision of u is a function of T , and

the manufacturer’s profit can be converted into a single decision T . The concavity

guarantees that there is a unique solution to maximize his profit.

5.7 The Wholesale Price Discount Contract with Price Match

Wholesale price discount contract is commonly used in the retail business. Though

wholesale price discount alone cannot coordinate the supply chain, it is still favored

by the management due to its ease of implementation. Thus we include the wholesale

price discount into this contract comparison.

In this section, a wholesale price discount (d) is provided to the brick-and-mortar

retailer together with the price match policy. The profit model of the brick-and-

mortar retailer is as follows:

ΠW
b

(

Qb, θ
)

=− (w − d)Qb +
pbkbθ

rb−rf + pokf
kbθrb−rf + kf

E[min
(

D
(

kbθ
rb + kfθ

rf
)

, Qb

)

]− V
(

θ
)

.

Proposition 5.3 Under the wholesale discount contract with price match, the brick-

and-mortar retailer’s profit function is unimodular in her order quantity and sales
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effort. The optimal order quantity and sales effort satisfy:

Q∗

b =
(

kbθ
rb + kfθ

rf
)

Ψ−1
(

1−
kbθ

rb−rf + kf

pbkbθrb−rf +
(

po + u
)

kf
(w − d)

)

,

V ′
(

θ
)

|θ∗ =
kfkb

(

rb − rf
)

θrb−rf−1
(

pb − po + d− w
)

(

kbθrb−rf + kf
)2 E[min

(

D
(

kbθ
rb + kfθ

rf
)

, Qb

)

].

With Q∗

b and Q∗

o, we can model the manufacture’s profit as follows:

ΠW
m

(

d
)

=
(

w − c− d
)

Q∗

b +
(

w − c
)

Q∗

o,

=
(

w − c
)

Ψ−1
(po − w

po

)

+
(

w − c− d
)

Ψ−1
(

1−
kbθ

rb−rf + kf

pbkbθ
rb−rf +

(

po + u
)

kf
(w − d)

)

.

Theorem 5.12 Under the wholesale discount contract with price match, the manu-

facturer’s profit is concave in d.

5.8 Numerical Analysis

In this section, we will examine the impacts of the sales effort cost coefficient (a) and

the proportion of free riding consumers (
kf
kb
) on the supply chain performance and the

optimal sales effort.

The standard setting for the parameters in the numerical analysis is as follows:

kf = 1, kb = 1.25, rf = 0.25, rb = 0.5, pb = 10, po = 7, w = 4, c = 3, a = 0.5, α = 1200,

and β = 200. In each following section, one parameter may vary from the standard

setting to reveal its impact.

5.8.1 Impacts of the sales effort cost coefficient (a)

In this subsection, we study the impacts of the sales effort cost coefficient (a) on the

supply chain performance, by increasing a from 0.1 to 1.

Figure 5.1 shows the impact of changing a on the optimal sales effort. Note
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Figure 5.1: The impact of changing a on the optimal sales effort.
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Figure 5.2: The optimal incentive values with increasing a.
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that the curves of the integrated and the selective rebate scenarios overlap with each

other. It confirms Theorem 5.5 that the selective rebate contract can coordinate

sales effort. As a result, the selective rebate always achieves the highest optimal

effort level, followed by the target rebate and wholesale price discount contracts. The

selective rebate is more effective than the target rebate because it targets the free

riding customers. Another observation is that the increase of a results in the decrease

of the optimal sales effort among all the contracts charted. We also notice that the

optimal sales effort under the selective and target rebate stay stable at the beginning

and decline sharply when a hits a critical level, which can be explained by Figure 5.2.

Figure 5.2 shows the impact of the sales effort cost coefficient on the optimal con-

tract incentives. With the increase of a, all the incentives are declining, though at

different speeds. Contract incentives are provided by the manufacturer to boost the

retailer’s sales effort. When a increases, the incentive’s effectiveness to boost sales

effort declines and thus the manufacturer reduces his incentive. Shrinking manufac-

turer support will certainly dampen the retailer’s desire to promote the products,

thus sales effort diminishes as shown in Figure 5.1. Another observation in Figure 5.2

is that with the increase of a, the optimal selective and target rebates remain stable

at first, then drop sharply after a hits a critical value, which explains Figure 5.1. On

the other hand, the optimal wholesale discount decreases steadily. This reflects that

the performance of the selective rebate and target rebate is more sensitive to a.

The impact of the sales effort cost coefficient on the supply chain efficiency is

plotted in Figure 5.3. The supply chain efficiency is defined as the ratio of the system

profit under each contract divided by the profit in the integrated supply chain.

Figure 5.3 shows that the supply chain efficiency decreases in a. Different from

the integrated supply chain, the retailer in a decentralized system orders less than in

the integrated supply chain due to double marginalization. The contract incentives

increase the retailer’s marginal revenue and thus increase her order quantity and sales
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Figure 5.3: The impact of changing a on the supply chain efficiency.

effort. However, with a higher a, the incentives under all contracts decrease as shown

in Figure 5.2. With a smaller incentive, the retailer has to order a smaller quantity

than in the integrated case and the supply chain efficiency is lowered.

5.8.2 Impacts of the proportion of free riding customers

In this section, we will study the impact of the proportion of free riding customers

on supply chain efficiency, sales effort, and incentives.

For this purpose, we set kf ∈ [0.125, 1.25], kb = 1.25. The ratio kf/kb represents

the proportion of free riding customers in the total demand for the brick-and-mortar

retailer.

Figure 5.4 shows the impact of the proportion of free riding customers on the op-

timal sales effort. With the increase of kf/kb, the brick-and-mortar retailer’s optimal

sales effort increases in all the contracts, but steadily decreases in the baseline case.

It seems counter-intuitive at first glance. When the scale of free riding increases, the

brick-and-mortar retailer’s sales effort might decrease. However, notice that all of the

three contracts have employed price match policy. With the increase of kf/kb, the
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Figure 5.4: The optimal sales effort with changing kf/kb.

brick-and-mortar retailer’s market share expands as well, thus the retailer is willing

to boost her sales effort.

Figure 5.4 also shows that the optimal sales effort in the selective rebate is smaller

than in the target rebate at the beginning. However, with the increase of kf/kb, the

effort in the selective rebate surpasses the target rebate’s effort curve. The major

difference between the selective rebate and the target rebate is that the rebate is

given for the sales to the internet savvy customers in the former case and the total

sales in the latter case. When kf/kb is very small, the total incentive given to the

retailer under the selective rebate contract is much smaller than in the target rebate.

Thus the optimal sales effort under the selective rebate contract, which is affected by

incentives, is smaller than that of the target rebate. However, with the increase of

kf/kb, the effort curve of the selective rebate soon surpasses the target rebate.

Figure 5.5 plots the impact of the proportion of free riding customers on the

optimal incentives. The selective rebate is always higher than the target rebate.

Considering that the selective rebate is given for the sales to the internet savvy

customers while the target rebate is given to both the internet savvy and traditional
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shoppers, the manufacturer can afford a higher rebate rate in the selective rebate

than in the target rebate.

Figure 5.6 compares the supply chain efficiency among the three contracts and

the baseline case with changing ratio of kf/kb. The general trend is that the supply

chain efficiency improves under all contracts with the increase of kf/kb, but decreases

in the baseline case. Notice that all of the three contracts have applied price match

policy. With the increase of the scale of free riding, a larger proportion of demand

goes to the brick-and-mortar retailer, the sales effort contributor. Her sales effort is

appropriately rewarded with market demand.

On another note, the efficiency of the selective rebate is much lower than the

target rebate at the beginning. But it grows at the fastest speed until it crosses the

curve of the target rebate. Then its increase rate falls to a moderate level but is still

slightly higher than the target rebate. This is because the selective rebate is the most

sensitive to the proportion of internet savvy customers. With the increase of kf/kb,

the selective rebate with price match can most efficiently stimulate the brick-and-

mortar retailer’s sales effort, as shown in Figure 5.4. It also offers a higher incentive
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Figure 5.6: The supply chain efficiency with changing kf/kb.

than any other contract. Thus it excels in driving the retailer’s decisions into the

favored direction: more sales effort stimulates a larger demand; and a higher rebate

increases the retailer’s order quantity to better satisfy the expanded market.

5.9 Summary of Chapter 5

This chapter examines the effectiveness of different contracts in coordinating brick-

and-mortar retailer’s sale effort with free-riding online retailers, under stochastic de-

mand. Among the contracts discussed, the selective rebate with price match contract

has the best system performance, unless the proportion of free-riding customers is

very small. Price match policy diverts the demand of the internet savvy customers

from the online retailer to the brick-and-mortar retailer. By doing so, the brick-and-

mortar retailer’s sales effort is rewarded with the internet savvy customer’s demand.

In addition, the manufacturer provides partial compensation to the brick-and-mortar

retailer to offset her loss due to price match. Such selective rebate boosts the brick-

and-mortar retailer’s order quantity and sales effort, and thus increase the supply

chain efficiency. We also show that the selective rebate with price match coordi-
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nates the sales effort, and the contract performance is sensitive to the sales effort cost

coefficient and the proportion of free-riding customers.

70



CHAPTER 6

CONCLUSIONS

This dissertation examines the effectiveness of different contracts in coordinating

brick-and-mortar retailer’s sale effort with free-riding online retailers. Our efforts

are divided into two parts: supply chain contracts under deterministic and stochastic

demand models.

Under the deterministic demand, we emphasize on the effectiveness of selective

rebate contract with price match in coordinating a supply chain with retail channel

conflicts caused by sales effort free riding. The price match policy diverts the demand

of the internet savvy customers from the online channel to the brick-and-mortar

retailer. By doing so, the brick-and-mortar retailer’s sales effort is rewarded with the

internet savvy customer’s demand. In addition, the manufacturer provides partial

compensation to the brick-and-mortar retailer to offset her loss due to price match.

Such a selective rebate boosts the brick-and-mortar retailer’s order quantity and sales

effort, achieves supply chain coordination and maximum system profit, and thus

increases the supply chain efficiency.

This dissertation also demonstrates the superiority of the selective rebate over a

traditional linear rebate in achieving supply chain coordination in a way that is at-

tractive to the supply chain players involved. Under a linear rebate, the manufacturer

induces the retailer to exert additional effort and order a larger quantity by increasing

the retailer’s marginal revenue. However, the manufacturer fully bears the financial

burden of increasing the retailer’s marginal revenue. A selective rebate offers an ad-

vantage to the manufacturer. By setting the partial rebate value, the manufacturer
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can induce the retailer to exert more sales effort without covering the full cost of

doing so.

Revenue sharing contract with price match is also studied. The deep root of equiv-

alence between the selective rebate and revenue sharing contract with price match

explains why both contracts can coordinate the supply chain with the manufacturer

owning the online channel, and arbitrarily split the system profit. For any selec-

tive contract there exists a revenue sharing contract that generates the same cash

flows. However, if the administrative costs associated with monitoring revenues and

collecting transfers are considered in implementing the revenue sharing contract, the

manufacturer will prefer selective rebate contract over revenue sharing contract.

We also show that the target rebate contract with price match is able to coordinate

the supply chain. The manufacturer gives rebate to the brick-and-mortar retailer

based on her overall sales beyond a target level. The system profit can be divided

among the supply chain players if the target level is changed within a feasible range.

The second part of the dissertation studies the supply chain contracts under the

stochastic demand. Among the selective rebate, target rebate and wholesale price

contracts, the selective rebate with price match contract has the best system per-

formance, unless the proportion of free-riding customers is very small. Price match

policy diverts the demand of the internet savvy customers from the online retailer

to the brick-and-mortar retailer. By doing so, the brick-and-mortar retailer’s sales

effort is rewarded with the internet savvy customer’s demand. In addition, the man-

ufacturer provides partial compensation to the brick-and-mortar retailer to offset her

loss due to price match. The selective rebate contract with price match boosts the

brick-and-mortar retailer’s order quantity and sales effort, and solves the sales effort

free riding problem.

There are several areas that can be further explored with the selective rebate

contract. This dissertation captures a fundamental way that the retailer can influence
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her demand by exerting sales effort. However, we have taken the retail price to

be exogenous. Exploring the manufacturer’s use of rebates as an instrument that

influences the retailer’s pricing decision (e.g., to stimulate demand by driving down

retail prices) may be a promising area for research. Finally, the analysis suggests that

price matching, which is commonly used by retailers for price competition, can be

used productively in a supplier-retailer rebate contract to mitigate channel conflicts.

The idea of price competition can be extended to the areas of quality and service

competition, and it may be fruitful for researchers to combine price/quality/service

match with supply chain contracts to mitigate channel competition.
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APPENDIX A

ADDITIONAL PROOFS

Proof of Theorem 5.1

The proof is similar to that of Theorem 5.3. To emphasize on the selective rebate,

we omit the proof of the simpler baseline case here.

Proof of Theorem 5.2

The first and second order derivatives of equation (5.1) are:

∂ΠI
a

∂Qb

= pb − c− pbΨ
( Qb

kbθrb

)

,
∂2ΠI

a

∂Q2
b

=
−pb
kbθrb

ψ
( Qb

kbθrb

)

,

∂ΠI
a

∂Qo

= po − c− poΨ
( Qo

1 + kfθrf

)

,
∂2ΠI

a

∂Q2
o

=
−po

1 + kfθrf
ψ
( Qo

1 + kfθrf

)

,

∂ΠI
a

∂θ
= pbkbrbθ

rb−1

∫

Qb
kbθ

rb

0

Dψ
(

D
)

dD + pokfrfθ
rf−1

∫
Qo

1+kf θ
rf

0

Dψ
(

D
)

dD − V ′
(

θ
)

.

The optimal Q∗

b

(

θ
)

and Q∗

o

(

θ
)

are as follows:

Q∗

b

(

θ
)

= kbθ
rbΨ−1

(pb − c

pb

)

, Q∗

o

(

θ
)

=
(

1 + kfθ
rf
)

Ψ−1
(po − c

po

)

.

By substituting Q∗

b

(

θ
)

and Q∗

o

(

θ
)

, we can obtain the profit function of θ:

ΠI
a

(

θ
)

=− c
(

kbθ
rbΨ−1

(pb − c

pb

)

+
(

1 + kfθ
rf
)

Ψ−1
(po − c

po

))

,

+ pbkbθ
rbΨ−1

(pb − c

pb

)

+ po
(

1 + kfθ
rf
)

Ψ−1
(po − c

po

)

− V
(

θ
)

.
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Its first and second order derivatives w.r.t. θ are:

∂ΠI
a

∂θ
= pbkbrbθ

rb−1

∫

Q∗

b
kbθ

rb

0

Dψ
(

D
)

dD + pokfrfθ
rf−1

∫
Q∗

o

1+kfθ
rf

0

Dψ
(

D
)

dD − V ′
(

θ
)

|θ∗ .

∂2ΠI
a

∂θ2
=Ψ−1

(pb − c

pb

)(

pb − c
)

rb
(

rb − 1
)

kbθ
rb−2

+Ψ−1
(po − c

po

))(

po − c
)

rf
(

rf − 1
)

kfθ
rf−2 − V ′′

(

θ
)

< 0,

since rf , rb < 1.

Therefore ΠWea
(

θ
)

is concave in θ. The optimal θ satisfies:

V ′
(

θ
)

|θ∗ = pbkbrbθ
rb−1

∫

Q∗

b
kbθ

rb

0 Dψ
(

D
)

dD + pokfrfθ
rf−1

∫

Q∗

o

1+kf θ
rf

0 Dψ
(

D
)

dD.

Proof of Theorem 5.3

We use the bordered Hessian matrix to prove that Π(Qb, θ) is jointly quasi-concave.

The bordered Hessian of Π
(

Qb, θ
)

is as follows:

B =













∂2Π
∂Q2

b

∂2Π
∂Qb∂θ

∂Π
∂Qb

∂2Π
∂Qb∂θ

∂2Π
∂θ2

∂Π
∂θ

∂Π
∂Qb

∂Π
∂θ

0













.

If |B| = 2∂Π
∂θ

∂Π
∂Qb

∂2Π
∂Qb∂θ

−
(

∂Π
∂θ

)2 ∂2R
∂Q2

b

−
(

∂Π
∂Qb

)2 ∂2Π
∂θ2

> 0, then Π
(

Qb, θ
)

is quasi-concave.

Thus we need to know the signs of ∂Π
∂θ

∂Π
∂Qb

, ∂Π
∂θ
, ∂2Π
∂Qb∂θ

, ∂
2R

∂Q2
b

, and ∂2Π
∂θ2

.

The first order and second order derivatives of Π
(

Qb, θ
)

w.r.t. Qb are:

∂Π

∂Qb

= −w +
pbkbθ

rb−rf +
(

po + u
)

kf

kbθrb−rf + kf

(

1−Ψ
( Qb

kbθrb + kfθrf

))

, (A.1)
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∂2Π

∂Q2
b

= −ψ
( Qb

kbθrb + kfθrf

) pbkbθ
rb−rf +

(

po + u
)

kf
(

kbθrb−rf + kf
)(

kbθrb + kfθrf
) < 0.

The first order and second order derivatives of Π(Qb, θ) w.r.t. θ are:

∂Π

∂θ
=
kfkb

(

rb − rf
)

θrb−rf
(

pb − po − u
)

(

kbθrb−rf + kf
)2 E[min

(

D
(

kbθ
rb + kfθ

rf
)

, Qb

)

]

− V ′
(

θ
)

,

(A.2)

∂2Π

∂θ2
=E[min

(

β
(

kbθ
rb + kfθ

rf
)

, Qb

)

]

kfkb
(

rb − rf
)2(

pb − po − u
)

θrb−rf
(

k2f − k2bθ
2(rb−rf )

)

(kbθrb−rf + kf )4
− V ′′

(

θ
)

.

Since V ′′
(

θ
)

> 0, rf < rb < 1, po + u ≤ pb, and kf < kb, we can determine that

∂2Π
∂θ2

< 0.

∂2Π

∂Qb∂θ
=

(

1−Ψ
( Qb

kbθrb + kfθrf

)

)kfkb
(

rb − rf
)

θrb−rf
(

pb − po − u
)

(

kbθrb−rf + kf
)2 .

It is easy to see that ∂2Π
∂Qb∂θ

≥ 0, Π(Qb, θ) is supermodular and thus ∂Π
∂θ

∂Π
∂Qb

≥ 0

[Milgrom and Roberts, 1990].

As shown above, ∂2Π
∂θ2

< 0, ∂2Π
∂Q2

b

< 0, ∂Π
∂θ

∂Π
∂Qb

≥ 0 and ∂2R
∂Qb∂θ

≥ 0, then |B| > 0, so

Π
(

Q, θ
)

is quasi-concave.

Next, let’s denote Q∗

b =
(

kbθ
rb + kfθ

rf
)

Ψ−1
(

1 −
kbθ

rb−rf+kf

pbkbθ
rb−rf+

(

po+u

)

kf

w
)

, such that

∂Π
∂Qb

|Q∗

b
= 0. Since Ψ−1(·) is a monotonically increasing function, we can easily verify

from (A.1) that ∂Π
∂Qb

≥ 0 if Qb ≤ Q∗

b , and
∂Π
∂Qb

< 0 if Qb > Q∗

b .

Hence Π
(

Qb, θ
)

is not monotone, and since it is quasi-concave inQb and θ, Π
(

Qb, θ
)

is unimodal. Thus Q∗

b is the optimal order quantity. From Equation (A.2), we can

obtain the optimal effort which satisfies:
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V ′
(

θ
)

|θ∗ =
kfkb

(

rb−rf

)

θ
rb−rf

(

pb−po−u

)

(

kbθ
rb−rf+kf

)2 E[min
(

D
(

kbθ
rb + kfθ

rf
)

, Qb

)

].

Proof of Theorem 5.4

With the two retailers’ optimal order quantities and the brick-and-mortar retailer’s

sales effort, we can obtain the manufacturer’s profit function as follows:

Π
(

u
)

=
(

w − c
)(

Q∗

b +Q∗

o

)

− u
Q∗

b

kbθ∗rb−rf + kf
,

=
(

w − c− u
)

Ψ−1
(

1−
kbθ

rb−rf + kf

pbkbθrb−rf +
(

po + u
)

kf
w
)

+
(

w − c
)

Ψ−1
(po − w

po

)

.

(A.3)

We denote the first term by
(

w − c − u
)

Ψ−1
(

g(u)
)

, and the first and second order

derivatives of g(u) w.r.t u are:

∂g(u)

∂u
=

kfkbθ
∗rb−rf + k2fw

(pbkbθ∗rb−rf +
(

po + u
)

kf )2
> 0,

∂2g(u)

∂u2
= −

2k3fw + 2kbk
2
fθ

rb−rfw

(kbpbθrb−rf + kf(po + u))3
< 0.

thus g(u) is increasing and concave in u. Since Ψ−1
(

·
)

is a monotonically increasing

function, then Ψ−1
(

g(u)
)

is concave in u, thus
∂2Ψ−1

(

g(u)

)

∂u2 < 0. The second term in

(A.3) is a constant, thus Π
(

u
)

is concave in u.

Proof of Theorem 5.5

We have shown that ΠW ea
(

θ
)

is concave in θ, thus we can obtain the optimal effort

satisfying:

V ′
(

θ
)

|θ∗ = pbkbrbθ
rb−1

∫

Q∗

b
kbθ

rb

0

Dψ
(

D
)

dD + pokfrfθ
rf−1

∫
Q∗

o

1+kfθ
rf

0

Dψ
(

D
)

dD.
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After plugging in Q∗

b

(

θ
)

= kbθ
rbΨ−1

(

pb−c

pb

)

and Q∗

o

(

θ
)

=
(

1 + kfθ
rf
)

Ψ−1
(

po−c

po

)

,

and uniform distribution, the closed form solution to the integrated supply chain

sales effort is:

θI∗ =
(

(

pb − c
)

kbrb +
(

po − c
)

kfrf

2a

)

1

2

(

rf+rb

)

. (A.4)

The manufacturer’s profit equation (5.6) in the selective rebate can be simplified as:

ΠS
m =

(

w − c
)

β
(po − w

po

)

+
(

w − c− u
)

β
(

1−
kbθ

rb−rf + kf

pbkbθrb−rf +
(

po + u
)

kf
w
)

.

After obtaining the first order derivative, we can get the optimal rebate uS∗ =

kb

(

po−w

)

θ
∗rb−rf+kfpo

(

pbkbθ
∗rb−rf+pokf

)2 .

By plugging the optimal uS∗ into equations (5.4) and (5.5), we can obtain:

θS∗ =
(

(

pb−c

)

kbrb+
(

po−c

)

kf rf

4a

)

1

2

(

rf+rb

)

= θI∗.

Proof of Theorem 5.6

The optimal order quantity as a function of θ for the integrated supply chain is as

follows.

In the integrated supply chain:

QI∗
b = kbθ

rbΨ−1
(pb − c

pb

)

. (A.5)

In the selective rebate contract:

QS∗
b =

(

kbθ
rb + kfθ

rf
)

Ψ−1
(

1−
kbθ

rb−rf + kf

pbkbθrb−rf +
(

po + u
)

kf
w
)

. (A.6)
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We compare QI∗
b and QS∗

b :

QI∗
b −QS∗

b =kbθ
rbΨ−1

(pb − c

pb

)

−
(

kbθ
rb + kfθ

rf
)

Ψ−1
(

1−
kbθ

rb−rf + kf

pbkbθrb−rf +
(

po + u
)

kf
w
)

Compare the two terms inside Ψ−1(·),

pb − c

pb
− 1 +

kbθ
rb−rf + kf

pbkbθrb−rf +
(

po + u
)

kf

=

(

pb − c
)

pbk2θ
rb−rf +

(

po
(

pb − c
)

+ u
(

pb − c
))

kf

pb
(

pbk2θrb−rf +
(

po + u
)

kf
) > 0.

Since Ψ−1
(

.
)

is an increasing function, and kbθ
rb > kfθ

rf , we have QI∗
b −QS∗

b > 0.

Proof of Proposition 5.1

In a basic newsvendor model, the optimal order is Q∗ = Ψ−1( Cu

Cu+Co
). Given the

uniform distribution, the order formula can be further specified as Q∗ = Cu−Co

Cu+Co
β +α,

and ∂Q∗

∂β
= Cu−Co

Cu+Co
. So when the critical ratio Cu

Cu+Co
< (>) 0.5, the optimal order

decreases (increases) in β.

Proof of Theorem 5.7

The closed form solution of the brick-and-mortar retailer’s optimal order quantity is:

Q∗

b =
(

kbθ
rb + kfθ

rf
)

Ψ−1
(

1−
kbθ

rb−rf + kf

pbkbθrb−rf +
(

po + u
)

kf
w
)

(A.7)

By applying uniform distribution U(α− β, α+ β) to the closed form solution, we

have Ψ(x) = x−α+β

2β
for x ∈ [α−β, α+β]. The inverse function is x = 2βΨ(x)+α−β.
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Plug it into Equation (A.7), we have:

Q∗

b = 2
(

kbθ
rb + kfθ

rf
)

(

0.5β −
kbθ

rb−rf + kf

pbkbθrb−rf +
(

po + u
)

kf
wβ + 0.5α

)

.

The first order derivative of Q∗

b w.r.t. β is:

∂Q∗

b

∂β
= 2

(

kbθ
rb + kfθ

rf
)

(

0.5−
kbθ

rb−rf + kf

pbkbθrb−rf +
(

po + u
)

kf
w
)

= 2
(

kbθ
rb + kfθ

rf
)

[

(

0.5pb − w
)

kbθ
rb−rf +

(

0.5po + 0.5u− w
)

kf

pbkbθrb−rf +
(

po + u
)

kf

]

Let’s consider 4 intervals of w: (0, 0.5po+0.5u], (0.5po+0.5u, pb+po+u

4
], (pb+po+u

4
, 0.5pb],

and (0.5pb, pb).

When w ∈ (0, 0.5po + 0.5u], it’s easy to see that
∂Q∗

b

∂β
> 0.

When w ∈ (0.5po + 0.5w, pb+po+u

4
], 0 ≤ −(0.5po + 0.5u−w) ≤ 0.5pb −w, and also

kbθ
rb ≥ kfθ

rf leads to kbθ
rb−rf ≥ kf , thus

∂Q∗

b

∂β
is positive.

When w ∈ (pb+po+u

4
, 0.5pb], −(0.5po + 0.5u− w) ≥ 0.5pb − w ≥ 0, thus the sign of

∂Q∗

b

∂β
is dependant on the actual value of

(

0.5pb − w
)

kbθ
rb−rf +

(

0.5po + 0.5u− w
)

kf .

When w ∈ (0.5pb, pb), clearly
(

0.5pb −w
)

kbθ
rb−rf +

(

0.5po +0.5u−w
)

kf < 0, and

thus
∂Q∗

b

∂β
is negative.

Proof of Theorem 5.8

We use a similar method as the proof of Theorem 5.3. First, we use the bordered

Hessian matrix to prove that ΠR(Qb, θ) is jointly quasi-concave. In the proof, we use

Π to represent ΠR for simplicity. The bordered Hessian of Π
(

Qb, θ
)

is as follows:

B =













∂2Π
∂Q2

b

∂2Π
∂Qb∂θ

∂Π
∂Qb

∂2Π
∂Qb∂θ

∂2Π
∂θ2

∂Π
∂θ

∂Π
∂Qb

∂Π
∂θ

0













.
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If |B| = 2∂Π
∂θ

∂Π
∂Qb

∂2Π
∂Qb∂θ

−
(

∂Π
∂θ

)2 ∂2R
∂Q2

b

−
(

∂Π
∂Qb

)2 ∂2Π
∂θ2

> 0, then Π
(

Qb, θ
)

is quasi-concave.

Thus we need to know the signs of ∂Π
∂θ

∂Π
∂Qb

, ∂Π
∂θ
, ∂2Π
∂Qb∂θ

, ∂
2R

∂Q2
b

, and ∂2Π
∂θ2

.

The first order and second order derivatives of Π
(

Qb, θ
)

w.r.t. Qb are:

∂Π

∂Qb

= −w +
pb(1− µ)kbθ

rb−rf + po(1− µ)kf
kbθrb−rf + kf

(

1−Ψ
( Qb

kbθrb + kfθrf

))

, (A.8)

∂2Π

∂Q2
b

= −ψ
( Qb

kbθrb + kfθrf

)(1− µ)pbkbθ
rb−rf + po(1− µ)kf

(

kbθrb−rf + kf
)(

kbθrb + kfθrf
) < 0.

The first order and second order derivatives of Π(Qb, θ) w.r.t. θ are:

∂Π

∂θ
=
kfkb

(

rb − rf
)

θrb−rf
(

pb − po
)

(1− µ)
(

kbθrb−rf + kf
)2 E[min

(

D
(

kbθ
rb + kfθ

rf
)

, Qb

)

]

− V ′
(

θ
)

,

(A.9)

∂2Π

∂θ2
=E[min

(

β
(

kbθ
rb + kfθ

rf
)

, Qb

)

]

kfkb
(

rb − rf
)2(

pb − po
)

(1− µ)θrb−rf
(

k2f − k2bθ
2(rb−rf )

)

(kbθrb−rf + kf )4
− V ′′

(

θ
)

.

Since V ′′
(

θ
)

> 0, rf < rb < 1, po ≤ pb, and kf < kb, we can determine that

∂2Π
∂θ2

< 0.

∂2Π

∂Qb∂θ
=

(

1−Ψ
( Qb

kbθrb + kfθrf

)

)kfkb
(

rb − rf
)

θrb−rf
(

pb − po
)

(1− µ)
(

kbθrb−rf + kf
)2 .

It is easy to see that ∂2Π
∂Qb∂θ

≥ 0, Π(Qb, θ) is supermodular and thus ∂Π
∂θ

∂Π
∂Qb

≥ 0.

As shown above, ∂2Π
∂θ2

< 0, ∂2Π
∂Q2

b

< 0, ∂Π
∂θ

∂Π
∂Qb

≥ 0 and ∂2R
∂Qb∂θ

≥ 0, then |B| > 0, so

Π
(

Q, θ
)

is quasi-concave.
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Next, let’s denote Q∗

b =
(

kbθ
rb + kfθ

rf
)

Ψ−1
(

1 −
kbθ

rb−rf+kf

(1−µ)pbkbθ
rb−rf+po(1−µ)kf

w
)

, such

that ∂Π
∂Qb

|Q∗

b
= 0. Since Ψ−1(·) is a monotonically increasing function, we can easily

verify from (A.8) that ∂Π
∂Qb

≥ 0 if Qb ≤ Q∗

b , and
∂Π
∂Qb

< 0 if Qb > Q∗

b .

Hence Π
(

Qb, θ
)

is not monotone, and since it is quasi-concave inQb and θ, Π
(

Qb, θ
)

is unimodal. We can obtain the optimal effort which satisfies:

V ′
(

θ
)

|θ∗ =
kfkb

(

rb−rf

)

θ
rb−rf

(

pb−po

)

(1−µ)
(

kbθ
rb−rf+kf

)2 E[min
(

D
(

kbθ
rb + kfθ

rf
)

, Qb

)

].

Proof of Theorem 5.9

In the proof, we use Π to represent ΠR for simplicity. With the two retailers’ optimal

order quantities and the brick-and-mortar retailer’s sales effort, we can obtain the

manufacturer’s profit function as follows:

Π
(

µ
)

=
(

w − c
)(

Q∗

b +Q∗

o

)

+
µpbkbθ

rb−rf + poµkf
kbθrb−rf + kf

Q∗

b

(

µ
)

,

=
(

w − c
)

Ψ−1
(

1−
kbθ

rb−rf + kf
pbkbθrb−rf + µpokf

w
)

+
(

w − c
)

Ψ−1
(po − w

µpo

)

.

(A.10)

We denote the first term by
(

w−c
)

Ψ−1
(

g(µ)
)

, and the first and second order deriva-

tives of g(µ) w.r.t u are:

∂g(µ)

∂µ
=

µkfkbθ
∗rb−rf + k2fw

(pbkbθ∗rb−rf + µpokf)2
> 0,

∂2g(µ)

∂µ2
= −

2k3fwµ
2 + 2kbk

2
fθ

rb−rfw

(kbpbθrb−rf + kfpoµ)3
< 0.

thus g(µ) is increasing and concave in µ. Since Ψ−1
(

·
)

is a monotonically increasing

function, then Ψ−1
(

g(µ)
)

is concave in µ, thus
∂2Ψ−1

(

g(µ)

)

∂µ2 < 0. The second term in

(A.10) is a constant, thus Π
(

µ
)

is concave in µ,
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We assume the cost function of sales effort as V
(

θ
)

= aθ2, and the demand is

uniformly distributed as U
(

α− β, α+ β
)

and we can obtain the optimal µ∗:

µ∗ =
kfkbθ

∗rb−rf + pbkbθ
∗rb−rf

4a(pokf)2
.

Proof of Theorem 5.10

We analyze the brick-and-mortar retailer’s effort and order quantity by considering

two cases for a given T > 0: Qb ≤ T and Qb > T . In the following, we prove that

ΠT
b

(

Qb, θ|T
)

is concave in Qb in each interval. Note that:

when Qb ≤ T

∂ΠT
b

(

Qb, θ|T
)

∂Qb

= −w + pb
(

1−Ψ
( Qb

kfθrf + kbθrb

))

,

∂2ΠT
b

(

Qb, θ|T
)

∂Q2
b

= −pbψ
( Qb

kfθrf + kbθrb

) 1

kfθrf + kbθrb
≤ 0,

and when Qb > T

∂ΠT
b

(

Qb, θ|T
)

∂Qb

= pb − w + r −
(

pb + r
)

Ψ
( Qb

kfθrf + kbθrb

)

,

∂2ΠT
b

(

Qb, θ|T
)

∂Q2
b

= −
(

pb + r
)

ψ
( Qb

kfθrf + kbθrb

) 1

kfθrf + kbθrb
≤ 0.

For the sales effort, we only give the first order derivative when Qb > T , since we will
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rule out the trivial scenario of Qb ≤ T later.

∂ΠT
b

(

Qb, θ|T
)

∂θ
= kfkb

(

rb − rf
)

θrb−rf
(

pb + r
)

E[min
(

β
(

kbθ
rb + kfθ

rf
)

, Qb

)

]− V ′
(

θ
)

.

The optimal θ satisfies:

V ′
(

θ
)

|θ∗ = kfkb
(

rb − rf
)

θrb−rf
(

pb + r
)

E[min
(

β
(

kbθ
rb + kfθ

rf
)

, Qb

)

]. (A.11)

Therefore ΠT
b

(

Qb, θ|T
)

is concave in Qb in each interval [0, T ] and (T,∞). In

these two intervals, the optimal order quantity is: When Qb ≤ T , Q∗

b = (kfθ
rf +

kbθ
rb)Ψ−1

(

pb−w

pb

)

; when Qb > T , Q∗

b = (kfθ
rf + kbθ

rb)Ψ−1
(

pb−w+r

pb+r

)

. However, the first

case indicates that the rebate is not used by the retailer, and the manufacturer should

avoid offering such target level. To address this issue, we introduce Lemma A.1 as

follows.

Lemma A.1 There is a unique target threshold τ(T ) such that: If T > τ(T ), the

retailer orders less than T , and hence the rebate will never be used; if T < τ(T ), the

retailer orders more than T ; and if T = τ(T ), the retailer feels indifferent on the

target rebate.

Proof. Denote · to the cases when Q∗

b ≤ T , and · to the notations when Q∗

b > T .

When Q∗

b ≤ T , the retailer’s profit is:

ΠT
b

(

Qb, θ|T
)

= (pb − w)(kfθ
rf + kbθ

rb)Ψ−1
(pb − w

pb
)− V (θ).

When Q∗

b > T , the profit is:

Π
T

b

(

Qb, θ|T
)

= (pb − w + r)(kfθ
rf
+ kbθ

rb
)Ψ−1

(pb − w + r

pb + r

)

− V (θ)− rT.

By comparing the profit functions, the retailer chooses wether or not to order a
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higher quantity than T .

Π
T

b

(

Qb, θ|T
)

− ΠT
b

(

Qb, θ|T
)

=(pb − w + r)(kfθ
rf
+ kbθ

rb
)Ψ−1

(pb − w + r

pb + r

)

− (pb − w)(kfθ
rf + kbθ

rb)Ψ−1
(pb − w

pb
)

− V (θ) + V (θ)− rT.

(A.12)

Divide both sides of (A.12) by r and denote:

τ(T ) =
(pb − w + r)(kfθ

rf
+ kbθ

rb
)Ψ−1

(

pb−w+r

pb+r

)

r

−
(pb − w)(kfθ

rf + kbθ
rb)Ψ−1(pb−w

pb
)− V (θ) + V (θ)

r
.

(A.13)

τ(T ) is a function of T because r and θ are functions of T . Equation (A.12) can

be rewritten as:

Π
T

b

(

Qb, θ|T
)

− ΠT
b

(

Qb, θ|T
)

r
= τ(T )− T. (A.14)

Now we can compare τ(T ) − T instead of Π
T

b

(

Qb, θ|T
)

− ΠT
b

(

Qb, θ|T
)

. The sign

of τ(T ) − T is dependent on the setting of parameters. For example, when the cost

of effort is ignorable, and T = 0, then we have T ≤ τ(T ); if rf , rb are extremely

small and T is extremely large, then τ(T ) < 0 and τ(T ) < T , intuitively speaking, if

T is unreasonably large, the retailer will ignore the manufacturer’s rebate offer. So

for each T , there is a unique τ(T ) such that: If T > τ(T ), the retailer rejects the

target rebate contract, i.e., ordering less than T ; if T < τ(T ), the retailer accepts the

contract and makes an order quantity above T ; and if T = τ(T ), the retailer feels

indifferent to the target rebate.

Lemma A.1 tells us that there is a upper bound of T for the manufacturer to offer

an effective rebate contract to the brick-and-mortar retailer. To avoid trivial scenarios
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like the retailer refusing to participate, the manufacturer offers a target T < τ(T ).

By doing so, the brick-and-mortar retailer’s profit is concave in Qb and the optimal

order quantity is uniquely determined by Q∗

b = (kfθ
rf + kbθ

rb)Ψ−1
(

pb−w+r

pb+r

)

.

Proof of Proposition 5.2

With Q∗

b = kfθ
rfΨ−1

(

pb−w+r

pb+r

)

and Q∗

o = Ψ−1
(

po−w

po

)

, considering the case of Qb > T ,

we have:

ΠT
m

(

r|T
)

=
(

w − c
)(

kfθ
rfΨ−1

(pb − w + r

pb + r

)

+ uΨ−1
(po − w

po

))

+ r
(

kfθ
rfΨ

(pb − w + r

pb + r

)

− T
)

,

=
(

w − c+ r
)

kfθ
rfΨ−1

(pb − w + r

pb + r

)

− rT +
(

w − c
)

Ψ−1
(po − w

po

)

.

(A.15)

Since
∂2

(

pb−w+r

pb+r

)

∂r2
= −w

(pb+r)2
< 0, pb−w+r

pb+r
is concave in r. Ψ−1

(

pb−w+r

pb+r

)

is concave in

r because Ψ−1(·) is an increasing function, thus ΠT
m

(

r|T
)

is concave in r. Based on

the first order condition, we can obtain r∗ w.r.t. T as follows:

r∗
(

T
)

=
(

pb − w
)
T −Ψ−1

(

pb−w

pb

)

Ψ−1(pb−c

pb
)

(A.16)

Though (A.16) satisfies the first order condition, we are not sure that (A.16) is the

optimal solution since r is also bounded by [0, pb − po]. If r∗
(

T
)

> pb − po, then

the optimal is at the border point r∗ = pb − po, so
T−Ψ−1

(

pb−w

pb

)

Ψ−1(
pb−c

pb
)

> 1, thus T >

Ψ−1(pb−c

pb
) + Ψ−1(pb−w

pb
). Since the system optimal is Ψ−1(pb−c

pb
), if T is bigger than

the system optimal, the retailer will reject the contract, contradicting the assumption

that the manufacturer offers the contract to effectively seduce the retailer to order

more than the target threshold. So r∗
(

T
)

≤ pb − po, and r
∗
(

T
)

is optimal.
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Proof of Theorem 5.11

In Equation (A.16), obviously T −Ψ−1
(

pb−w

pb

)

is linear in T , thus r∗(T ) is linear in T .

Considering that ΠT
m

(

r|T
)

is concave in r∗(T ), so ΠT
m

(

r|T
)

is concave in T . Substitute

(A.16) into (A.15), the manufacturer’s profit is a function of T only. Provided the

explicit forms of demand distribution and V (θ), we can obtain T ∗ numerically.

Note that Ψ−1
(

pb−w

pb

)

approximates the brick-and-mortar retailer’s order quantity

in the baseline case. To ensure r∗
(

T
)

is feasible, T ≥ Ψ−1
(

pb−w

pb

)

, which indicates

that T has to be at least as large as the order quantity in the baseline case to ensure

the manufacturer’s profitability under the target rebate contract.

Remark A.1 Considering that Lemma A.1 offers a upper bound of T to ensure the

brick-and-mortar retailer’s profitability, here we can summarize the boundaries of T

as: For the target rebate threshold T , there exist an upper bound and a lower bound

to ensure the brick-and-mortar retailer and the manufacturer’s profitability.

Proof of Proposition 5.3.

The proof is similar to that of Theorem 5.3, thus omitted.

Proof of Theorem 5.12

Note that Ψ−1
(

1−
kbθ

rb−rf+kf

pbkbθ
rb−rf+pokf

(w−d)
)

is increasing and quasi-convex in d, therefore
(

w − c − d
)

Ψ−1
(

1 −
kbθ

rb−rf+kf

pbkbθ
rb−rf+pokf

(w − d)
)

is quasi-concave in d, and thus ΠW
m

(

d
)

is quasi-concave in d. Since d is bounded by [0, w], there exists a unique d that

maximizes the manufacturer’s profit. The value of optimal d can be obtained given

the explicit forms of demand distribution and V (θ).
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APPENDIX B

TABLE OF NOTATIONS

Table B.1: Notations for the Deterministic Demand Model
Notation Description

w Wholesale price.
θ Sales effort.
u Selective rebate.
µ Revenue sharing rate.
r Target rebate.
T Target level.

V
(

θ
)

Cost function of sales effort.
c Unit production cost.

pb, po Retail prices
ab, af , ao Base demand

h Sales effort cost coefficient.
τb,τf The scaling factor of sales effort on demand

of the traditional (free-riding) customers.
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Table B.2: Notations for the Stochastic Demand Model
Notation Description

c Unit production cost.
D Base random demand.
w Wholesale price.
θ Sales effort.

V
(

θ
)

Cost function of sales effort.
a Sales effort cost coefficient.

pb(po) Brick-and-mortar (online) retailer’s unit retail price.
Qb(Qo) Brick-and-mortar (online) retailer’s order quantity.
kb(kf) The scaling factor for the relative initial market size

of the traditional (free-riding) customers.
rb(rf) The scaling factor of market expansion by extra sales

efforts of the traditional (free-riding) customers.
u The selective rebate given by the manufacturer to

the brick-and-mortar retailer.
r The target rebate given by the manufacturer to the

brick-and-mortar retailer.
T The order threshold for the brick-and-mortar retailer

to receive target rebate.
d The wholesale price discount given by the manufacturer

to the brick-and-mortar retailer.
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