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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Motivation of Research 

 A rare variant is a Single Nucleotide Polymorphism (SNP) with a minor allele frequency 

(MAF) of 5% or less.  Approximately 60% of human SNPs are rare variants (Gorlov, Gorlova, 

Sunyaev, Spitz, & Amos, 2008).  A debate is playing out as to whether these low frequency 

mutations are important in disease susceptibility (Schork, Murray, Frazer, & Topol, 2009).  

Including rare variants will cost more in terms of money and time as well as make the analysis 

more complex (Hirschhorn & Daly, 2005).  New rapid genotyping technologies now make it 

possible to efficiently survey these rare variants.  Many new statistical methods (Asimit & 

Zeggini, 2010; Bansal, Ondrej, Torkamani, & Schork, 2010) are being developed to analyze the 

associations between rare variants and phenotypes.  Current methods have focused on 

dichotomous phenotypes such as case/control status or quantitative phenotypes such as weight or 

cholesterol level.  The power of these methods depends on the underlying genetic model (Basu & 

Pan, 2011).  Rare variant association methods for multinomial phenotypes, or categorical 

outcomes with more than two possibilities, have not been adequately addressed.  There is one 

published method that can be used for rare variant association when the phenotype is 

multinomial.  This method is the Allele Matching Empirical Locus-specific Integrated 
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Association (AMELIA) method (Zeggini & Asimit, 2010).  However this method has not been 

evaluated using multinomial phenotypes.  It is a modification of the Kernel Based Association Test 

(KBAT) (Mukhopadhyay, Feingold, Weeks, & Thalamuthu, 2010).  The limited simulations on the 

AMELIA test using case control data showed it had a lower power than the KBAT.   

Multinomial phenotypes have occurred in an association study where rare variants were 

included (Sulem, et al., 2007).  Examples of these phenotypes would be hair color, eye color, 

schizophrenia sub-classification, and treatment outcome.  New statistical methods of association need 

to be developed for rare variant association analysis when the phenotype is multinomial. Such a 

method could also be extremely useful in testing for population stratification of rare variants. 

This dissertation proposes and investigates several methods for rare variant association 

analysis when the phenotype is multinomial.  The recommendations contained in a later chapter aid 

geneticists in planning studies and analyzing this type of data.  This work also provides a starting 

point for future researchers to build their own rare variant association methods for multinomial 

phenotypes.   

Sections 1.1.1 through 1.1.3 begins by introducing the background in genetics needed to 

understand the work.  Section 1.2 describes the statistical problems encountered when including rare 

variants in an association study.  Section 1.3 outlines the relevant statistical methods currently 

available.  Section 1.4 reveals the proposed work.  Chapter 2 details the proposed methods.  Chapter 3 

lays out the simulation study of the proposed methods.  Chapter 4 discusses the results of the 

simulation study and makes recommendations on the methods.  Chapter 5 presents the results of 

applying the proposed methods to resequencing data from the Dallas Heart Study.  Chapter 6 provides 

concluding remarks. 
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1.1.1 Common and Complex Disease 

The human genome project finished sequencing the roughly three billion base pairs of the 

human genome in 2003.  Since then there has been a considerable amount of work trying to decode 

what those base pairs do.  Discovering the gene responsible for a simple, or Mendelian, disease is 

straightforward since there is a clear relationship between having the mutated gene responsible for the 

disease and having the disease (Mackay, 2009).  However this relationship does not exist for what are 

called complex diseases.  Here the term penetrance is used to specify the proportion of individuals 

with the gene that exhibit the disease.  Not every individual with the gene will develop the disease.  

Rather an individual with the gene will have a greater probability of developing the disease.  Further 

convoluting the ability to detect genes responsible for complex diseases is allelic heterogeneity, or the 

presence of different mutations at a single locus that produce the same phenotype.  A common disease 

is a disease that occurs frequently in the population.  It is usually assumed that common diseases have 

a complex genetic structure and hence fall under the domain of complex diseases.  These common 

diseases include cancer, diabetes, and schizophrenia as well as many others.  Common diseases are 

the focus of the rest of this paper. 

1.1.2 The Common Disease Common Variant Hypothesis 

There are two separate hypotheses used by current researchers trying to discover the genetic 

components of common diseases.  The first is the Common Disease Common Variant (CDCV) 

hypothesis.  It states that a common disease is the result of one or a few common variants with high 

penetrances in the genome (Reich & Lander, 2001; Pritchard & Cox, 2002; Schork, Murray, Frazer, 

& Topol, 2009).  Supporters of this line of thinking argue that interactions between a small number of 

alleles produce the disease prevalence seen in the population (Smith & Lusis, 2002).  Many early 

studies adopted this hypothesis because it required a smaller number of observations and markers to 

detect associations.  If the CDCV hypothesis is true then with a reasonable sample size current 
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methods of association and linkage analysis should have adequate power to detect a locus responsible 

for a disease (Risch & Merikangas, 1996).  The power of linkage disequilibrium mapping is low 

when common alleles have low penetrance (Hirschhorn & Daly, 2005).  

1.1.3 The Common Disease Rare Variant Hypothesis 

The second hypothesis is the Common Disease Rare Variant (CDRV) hypothesis.  For this 

study a rare variant is defined as an allele that has a MAF of 5% or less.  Some authors define a rare 

variant as an allele that has a MAF of 1% or less (Li & Leal, 2008; Morris & Zeggini, 2010).  The 

CDRV hypothesis states that a number of rare variants and possibly several common variants are 

responsible for the disease (Schork, Murray, Frazer, & Topol, 2009).  These variants have moderate 

to high penetrances (Li & Leal, 2008).   Some researchers assume the variants are independent in the 

CDRV hypothesis (Li & Leal, 2008).  While others assume a dependency called linkage 

disequilibrium (LD), or the phenomenon where a string of DNA tends to be inherited together, is 

present (Madsen & Browning, 2009; Basu & Pan, 2011). 

The difference between two above hypotheses amounts to whether to include or exclude rare 

variants.  A large multi-database study concluded that approximately 60% of human SNPs have a 

MAF of less than 5% (Gorlov, Gorlova, Sunyaev, Spitz, & Amos, 2008).  Yet most studies using 

association methods or linkage mapping are not adequately powered to detect associations with 

variants with a low MAF (Risch & Merikangas, 1996).  Commercially available SNP platforms 

exclude most rare variants (Zeggini & Asimit, 2010).  It is common for studies to not follow up on 

significant SNPs when the MAF is less than 5% (Asimit & Zeggini, 2010, p. 294).  Pritchard showed 

at least theoretically through simulations that rare and common variants could contribute to the 

genetic variation of a complex disease (2001).  The combined results of several simulation studies 

show that for the low penetrance and high allelic heterogeneity seen in many common diseases, the 
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frequency of alleles responsible for that common disease will be near zero or one (Pritchard & Cox, 

2002).   

Some researchers are beginning to adopt the CDRV hypothesis.  A review of all human 

genome wide association studies (GWAS) published up to December 2009 found 43 significant 

associations involving a rare variant with a p-value of 10-7 or less in 28 different studies (Panagiotou, 

Evangelou, & Ioannidis, 2010).  It is important to note that the average sample size of these studies 

was 10,647 individuals.   

1.2 Difficulties with Including Rare Variants 

Since including rare variants means adding many more markers to an analysis, false 

discovery rates, degrees of freedom, and power become problematic.  It has been shown by many 

researchers that single marker analysis adjusted to control the family-wise error rate (FWER) suffers 

from extremely low power to detect a true association (Li & Leal, 2008; Madsen & Browning, 2009; 

Basu & Pan, 2011).  Even with a reasonable FWER control many false positives may still occur.  

Multivariate analysis such as a Hotelling’s T2 test or multiple logistic regression has slightly higher 

power in these studies but it is still not adequate (Li & Leal, 2008).  Since the degrees of freedom in 

the likelihood ratio test of the multiple logistic regression and the numerator degrees of freedom in 

the Hotelling’s T2 test statistic are equal to the number of markers, a large number of markers results 

in a large number degrees of freedom in these tests.  This makes it difficult to detect a true 

susceptibility allele hence reducing the power in these tests. 

Sample size also becomes a huge consideration when including rare variants.  As previously 

mentioned Panagiotou, Evangelou, and Ioannidis (2010) found that published studies that discovered 

a significant rare variant had an average sample size of 10,647.  It has also been shown that for case 

control studies the sample size necessary to achieve a fixed power increases as MAF decreases 
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(Gorlov, Gorlova, Sunyaev, Spitz, & Amos, 2008).  These increases are more dramatic for rare 

variants with marginal effects. 

It has been argued that current methods based on LD are inadequate for rare variant analysis 

(Asimit & Zeggini, 2010).  This stems from the fact that for a strong correlation to exist the MAFs of 

the two variants must be roughly equal (VanLiere & Rosenberg, 2008).  Commercially available SNP 

platforms rely on LD to balance the number of SNPs with the amount of genetic variation captured. 

Since these panels include very few rare variants the ability to detect a causal rare variant is low using 

them. 

1.3 Methods for Detecting Associations with Rare Variants 

Including rare variants in the search for an association has necessitated the development of 

new statistical methods.  While most of the methods available for rare variant association analysis are 

for case control data or a dichotomous response there are some methods for quantitative phenotypes 

(Asimit & Zeggini, 2010).  To date there is only one published method for rare variant analysis when 

the phenotype is multinomial.  Methods for quantitative phenotypes will be discussed first, followed 

by case control data, and lastly multinomial phenotypes. 

1.3.1 Quantitative Phenotypes 

A few methods exist for rare variant association analysis when the phenotype is quantitative.  

Morris and Zeggini (2010) present two methods based on linear regression.  Price and authors (2010) 

propose a variable threshold approach that considers multiple threshold cutoffs at once.  Hoffman, 

Marini, and Witte (2010) illustrate a step-up procedure to build a model relating the quantitative 

phenotype to the variants.  Thalamuthu, Zhao, Keong, Kondragunta, and Mukhopadhyay (2011) have 

extended their previous Kernel-Based Association Test (KBAT) (Mukhopadhyay, Feingold, Weeks, 

& Thalamuthu, 2010) so that quantitative phenotypes could be analyzed.  The new Quantitative Trait 

Kernel Based Association Test (QT-KBAT) and the original KBAT are also modified to better handle 
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rare variants included with common variants in the test.  The simulations for Morris and Zeggini’s 

methods, the variable threshold approach, and the step-up procedure only considered a normally 

distributed phenotype.  The QT-KBAT method was only applied to a single generated data set.  

Hence the behavior of these tests is unknown when the phenotype is non-normal.  Also the variable 

threshold approach, step-up procedure, and quantitative kernel-based association test are all very 

computationally intensive.   

1.3.2 Case Control Designs 

 The majority of the research in rare variant association published to date is for case control 

designs (Asimit & Zeggini, 2010).  In general there is not one method that performs best under all 

situations (Basu & Pan, 2011).  Rather the performance of each of the methods depends on the 

underlying genetic model.    The following pages will lay out some of the available association 

methods for case control designs.  

 The first group of methods considered here are the model type methods.  These methods 

usually have many degrees of freedom in the test or require an adjustment for multiple tests.  A 

majority of the tests are based on the generalized linear model for case control data via multiple 

logistic regression.  Since the degrees of freedom is equal to the number of variants in the model, this 

test can have a large number of degrees of freedom if a large number of variants are used.  Li and 

Leal (2008) found that multiple logistic regression had an inflated Type I Error rate as a method for 

rare variant association.  Han and Pan (2010) proposed the adaptive sum test to strike a balance 

between large number of degrees of freedom in the multiple logistic regression test and large 

adjustment for multiple tests.  The step-up procedure (Hoffmann, Marini, & Witte, 2010) mentioned 

above can also be used for a dichotomous phenotype.  This procedure builds a logit model using a 

step-up algorithm.  Both the adaptive sum test and step-up procedure aim to limit the number of 

variants used in the logit model but still require a large number of degrees of freedom.  The univariate 
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minP test which tests a logit model with each variant individually was considered in simulations by 

Basu and Pan (2011).  This procedure requires a large adjustment for multiple tests.    

Several methods seek to reduce the dimensionality of the data and hence preserve the degrees 

of freedom in the test (Asimit & Zeggini, 2010).  This should theoretically increase the power of the 

tests at the one locus where the combining of the data is made.  Since these methods collapse or pool 

rare variants together they are often called collapsing or pooling methods. 

The Combined Multivariate and Collapsing (CMC) method proposed by Li and Leal groups 

markers by MAF at a locus and collapses within groups by creating a single dummy variable for the 

group (2008).  A Hotellings T2 test is then performed on the collapsed data and any other high 

frequency variants included.  The authors show through simulations that the CMC method has higher 

power than a single marker analysis and the Hotelling’s T2 test without collapsing.  Additionally the 

CMC method controls the Type I error at the desired level. 

A weighted sum statistic (WSS) presented by Madsen and Browning (2009) also combines 

markers within a locus to test for association with rare variants.  In this method the number of rare 

alleles is weighted by the inverse of the standard deviation of the number of rare alleles.  A “genetic 

score” is created for each individual by summing up the weighted number of rare alleles.  The sum of 

the ranks of the genetic scores in cases is then used in a permutation test.  The researchers show 

through simulations that their test has improved power over the CMC method and a single marker 

analysis.   

 Although the WSS and Li and Leal’s CMC method have been the benchmark methods that 

most researchers compare their proposed case control methods to, many other methods also use 

collapsing or pooling to achieve better power.  Feng, Elson, and Zhu (2011) propose a modification to 

Madsen and Browning’s WSS.  They adjust the weight for both sib-pair and case control designs.  

The variable threshold test for quantitative phenotypes previously mentioned can also be applied to 
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dichotomous phenotypes (Price, et al., 2010).  This method considers multiple thresholds for 

collapsing rare variants.  Ionita-Laza, Buxbaum, Laird, and Lange (2011) propose the Replication 

Based Test that groups variants together by minor allele counts.  The Kernel Based Adaptive Cluster 

(KBAC) test (Liu & Leal, 2010) pools individuals together with the same rare variant haplotype and 

looks for differences in the proportions in cases and controls.  The Cumulative Minor-Allele Test 

(CMAT) (Zawistowski, Gopalakrishnan, Ding, Li, Grimm, & Zollner, 2010) pools allele counts for 

cases and controls.  The Kernel Based Association Test (KBAT) for case control data is modified to 

better handle rare variants (Thalamuthu, Zhao, Keong, Kondragunta, & Mukhopadhyay, 2011).  Rare 

variants are pooled to increase power and decrease computation time.   The C-alpha test (Neale, et al., 

2011) uses the distribution between cases and controls of individuals with a rare variant.  Markers are 

pooled by summing over the markers in the locus.   

 A number of methods for analysis of common variants are suggested for rare variant analysis.  

Some of these methods include the kernel-machine test (Wu, et al., 2010), Hotelling’s T2 test (Li & 

Leal, 2008), the SSU test (Basu & Pan, 2011), the Sum test (Basu & Pan, 2011), multivariate distance 

matrix regression (MDMR) (Wessel & Schork, 2006), the ZGlobal Statistic (Schaid, McDonnell, 

Hebbring, Cunningham, & Thibodeau, 2005), Logic regression, ridge regression, and LASSO.  Most 

but not all of these methods are evaluated in simulation studies where rare variants are included as 

both causal and non-causal variants. 

1.3.3 Multinomial Methods 

 To date there is only one method as proposed available for rare variant association testing 

when more than two phenotypic categories are present.  This method is called the Allele Matching 

Empirical Locus-specific Integrated Association (AMELIA) test (Zeggini & Asimit, 2010).  It is a 

modification of the original KBAT method by Mukhopadhyay, Feingold, Weeks, and Thalamughu 

(2010) mentioned above.  The AMELIA method includes genotype quality scores and allows for 
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more than two categories in the phenotype.  The researchers only compare their AMELIA test to the 

original KBAT method on case control data.  Multinomial phenotypes are not used in any of the 

simulations.  Both methods have very low power to detect a true association in the case control data.  

When a region of 342 simulated SNPs is included in the test, the AMELIA test has a power of 8.71% 

and the KBAT has a power of 9.53%.  When a neighborhood of 11 SNPs around the one causal SNP 

is considered the AMELIA test has a power of 17.31% and the KBAT method has a power of 

21.61%.  These limited simulations show that the KBAT test has higher power than the AMELIA 

test.  Additionally the AMELIA test requires SNP quality scores which may not be available.  Thus 

the AMELIA test is not further considered. 

The KBAT method for case control data described above is laid out generally so that more 

than two categories in the phenotype are possible.  However the test statistic used forces two 

categories and an equal number of observations in each category.  The test statistic is easily modified 

to allow for more than two categories and an unbalanced design as was done for the AMELIA test.  

There are no power estimates available for rare variant analysis with multinomial phenotypes in the 

published literature.  Early work on this dissertation considered this modified KBAT method.  An 

attempt to analyze one data set with 320 variants and 1000 individuals on one node of the super 

computer Pistol Pete timed out after 24 hours.  Since 1,000 iterations would need to be run, it was 

decided the method was too computationally intensive to include in the simulation study.  This 

method could be considered in a future simulation study with a much smaller number of individuals 

and SNPs.   

In the study of more than two phenotypic categories, it is possible to collapse to two 

categories and proceed with a case control method.  However information is lost when this is done 

and the results depend on which categories are collapsed.  Another possibility is using a stratified 

approach.  A stratified single marker analysis is used by Sulem et al. (2007) for an analysis of hair 

and eye color.  However the power of these types of approaches to detect a true association has not 
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been evaluated.  Morris and Zeggini’s methods, the threshold tests, the step-up procedure, and the 

QT-KBAT method detailed in section 1.3.1 for quantitative phenotypes can also be used to test for an 

association when the phenotype is categorical.  All of these methods can be applied to the 

multinomial phenotype data as long as the categories are coded as a number.  The methods provided 

by Morris and Zeggini (2010) assume a normal distribution which is violated in the case of 

categorical phenotypes.  The threshold tests, QT-KBAT, and the step-up test use permutations so the 

departure from normality should not be a problem.  However none of these methods have been 

evaluated when the phenotype is a non-normal distribution such as the multinomial distribution.  

Additionally each of these methods is extremely computationally extensive.  In the interest of time 

and brevity none of the quantitative phenotype methods are considered as a method of association 

with a multinomial phenotype.  Proposed methods of association are laid out in the next section. 

1.4 Scope of Study 

It is plausible that rare variants are responsible in some part for common diseases 

(Panagiotou, Evangelou, & Ioannidis, 2010; Pritchard, 2001; Pritchard & Cox, 2002; Schork, Murray, 

Frazer, & Topol, 2009).  Current methods for testing for an association with a nominal response are 

lacking.  Therefore three novel methods of rare variant analysis for genetic data with a multinomial 

response are investigated.  The first method is an extension of the weighted sum statistic by Madsen 

and Browning (2009).  A test statistic for the weighted sum statistic procedure is chosen that can 

incorporate more than two outcomes in the phenotype.  A single marker analysis (SMA) is created to 

work with multinomial data.  A test procedure is developed and the appropriate test statistic is 

determined for each test of association at each marker.  Then a multiple testing procedure is necessary 

to adjust for the large number of tests being run.  Finally the results of all of these tests are put 

together for a single decision about the association at the locus.  Finally multinomial logistic 

regression is investigated as a method of association.  This method is the generalized linear model 

approach so it should be a good baseline for comparison.  The appropriate test statistic is taken from 
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the literature as multinomial logistic regression is a published procedure.  All of the methods are 

developed and evaluated so that recommendations can be made on how to run a rare variant analysis 

when the phenotype is multinomial.   

Simulations are run to assess the performance of each of the methods.  First genetic data is 

generated.  To determine the Type I Error rate, data is produced under the null hypothesis of no 

association.  To determine the power data is simulated under the alternative hypothesis of an 

association between the phenotype and SNPs.  The proposed methods are applied to these data sets to 

detect an association between the markers and phenotypes.  The results are recorded and presented in 

later chapters of this document.  Recommendations based on the simulations are presented. 
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CHAPTER II 
 

 

METHODOLOGY 

 

 This chapter outlines the three proposed methods for testing for an association between a 

multinomial phenotype and multiple rare variants.  In general it is assumed that the Common 

Disease Rare Variant hypothesis detailed in Section 1.1.3 holds.  The first method considered is 

the weighted sum statistic for multinomial data (see Section 2.1).  This is followed by a single 

marker analysis (see Section 2.2).  A false discovery rate controlling method is included for the 

single marker analysis (see Section 2.2.1).  Multinomial logistic regression is considered as a 

method to test for association (see Section 2.3).  The multinomial logistic regression routine fails 

to fit the model at times.  Due to these failures, collapsing of variants in the multinomial logistic 

regression procedure is also considered (see Section 2.4).  The terms variant and marker are used 

interchangeably in this document. 

2.1 A Weighted Sum Statistic for Multinomial Data 

A weighted sum statistic is proposed to test for an association between a multinomial 

response and collectively all rare variants at a locus.  Markers along a chromosome must first be 

grouped into a locus or gene where the test is to be conducted.  Rare variants within the locus will 

be pooled together in the test.  Following the lead of other researchers it is assumed that this 

grouping can be done in a meaningful way (Li & Leal, 2008; Madsen & Browning, 2009).  Since 

multiple loci or genes are tested in a GWAS, a multiple testing control must be used to control 
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either the familywise experiment rate or the false discovery rate.  The hypotheses to test for an 

association at one locus are: 

H0: The mutation frequency is the same for all response groups (k = 1, …, K). 

Ha: The mutation frequency is different for at least one of the response groups. 

These hypotheses are equivalent to testing for association between the multinomial response and 

the variants at a locus since the frequency of the alleles are the same for each response group if 

there is no association.  The test consists of the following steps: 

1. For each variant or marker, j = 1, …, J, identify the mutant allele that is thought to be a 

susceptibility allele.  If it is not known which allele is the mutant one then the rarer allele 

will be used. 

2. Next a weight is calculated for each genotype.  Define mj as the number of mutant alleles 

in individuals at variant j and 𝑛∙𝑗 as the number of individuals genotyped for variant j.  

Since each individual is genotyped on a pair of chromosomes there are 2 ∙ 𝑛∙𝑗 alleles for 

each marker.  The weight is  

𝑤𝑗 = �𝑛∙𝑗𝑞𝑗�1− 𝑞𝑗� 

where 

𝑞𝑗 =
𝑚𝑗 + 1

2𝑛∙𝑗 + 2
. 

Thus qj is the adjusted frequency of mutant alleles at marker j.  The weight is the standard 

deviation of the number of mutant alleles using pseudo counts.  The adjustment in qj is 

necessary since the frequency of mutant alleles is expected to be small possibly zero.  In 

a future step a quantity is calculated where 𝑤𝑗 is used in the denominator.  Hence it is 

undesirable for 𝑤𝑗 to be zero.  Individuals missing the phenotype but possessing 

genotypic information are allowed to contribute to the weights.   
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3. Define Iijk as the number of mutant alleles in variant j for individual i in group k.  Since 

each individual has two copies of each chromosome for an additive model 𝐼𝑖𝑗𝑘 ∈ {0, 1, 2}.  

However if a recessive or dominant model is expected then restrict 𝐼𝑖𝑗𝑘 ∈ {0, 1}.  For the 

recessive model only the homozygous mutants receive a 1.  For the dominant model both 

the heterozygous and homozygous mutants receive a 1.  The additive model is the default 

model used.  Any individual which is missing the multinomial response or all genetic 

markers must be eliminated from further calculations.  For the remaining individuals any 

missing Iijk is assumed to be zero. For each individual calculate the genetic score 

following Madsen and Browning (2009) as 

𝛾𝑖𝑘 = �
𝐼𝑖𝑗𝑘
𝑤𝑗

𝐽

𝑗=1

. 

Hence the genetic score is the weighted sum of the number of mutations in each 

individual.  The lower the mutant allele frequency in the sample, the more a mutation at 

that variant contributes to the genetic score.  This allows a mutation at a variant with an 

allele frequency of 1% to contribute more to the genetic score than a mutation at a variant 

with a 5% allele frequency.  It also allows a mutation at a rare variant to contribute more 

than a mutation at a common variant if common variants are included in the test. 

4. Using the genetic scores, 𝛾𝑖𝑘’s, conduct a Kruskal-Wallis test to detect a difference in the 

distribution of the genetic scores between response groups.  A test statistic assuming ties 

is necessary since ties in the genetic scores are possible.  For a tie the average of the 

ranks is assigned.   

5. An observed significance level is obtained either using the asymptotic chi-square 

distribution of the test statistic or through a permutation test.  The method used depends 

on whether it is assumed that the observations are independent or not.  If it can be 

assumed that the observations are independent, then the observed significance level is the 
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probability that a chi-square random variable with K-1 degrees of freedom is greater than 

the test statistic, T.  If it is assumed that there is dependence among the observations, an 

empirical distribution for T is found by permuting the response group among individuals 

and recalculating the test statistic at least 1000 times.  The observed significance level of 

the test statistic is the percentile of the observed test statistic in the empirical distribution.  

2.1.1 The Distribution of the Weights and Genetic Scores 

 The proposed Multinomial Weighted Sum Statistic utilizes the Kruskal-Wallis test 

statistic to test for an association between all rare variants collectively and the phenotype.  This is 

not necessary if the distribution of the genetic scores is known or the central limit theorem applies 

to the sum in the genetic score.  Since the genetic score is a sum of ratios it is not unreasonable to 

expect the central limit theorem to apply.  An empirical study of the genetic scores showed that 

the data is very far from normal.  One thousand data sets were generated using the procedure 

described in chapter 3.  The genetic score was calculated for each individual in each of the data 

sets.  Lilliefors test for Normality (Conover, 1999, p. 443) and the Shapiro-Wilk test for 

Normality (Conover, 1999, p. 450) were both run on each data set to test the null hypothesis that 

the data is normally distributed.  All one thousand times the null hypothesis was rejected for both 

tests.  This provides strong evidence that the central limit theorem does not apply.  Inspection of 

the generated genetic scores revealed that the distribution is skewed and large outliers are 

possible.  Feng, Elson, and Zhu (2011) also reported finding the distribution of the genetic scores 

skewed with possible outliers. 

 Additionally the distribution of the genetic scores is currently unknown.  However it is 

possible to derive the distributions of some of the quantities input into the genetic score.  These 

derivations are produced as part of the work of this dissertation.  For all derivations shown here 

individuals and markers are considered independent.  This may not be the case if pedigree 
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structure or linkage disequilibrium exists.  Let 𝑛∙𝑗 be the number of individuals genotyped for 

variant j.  Also let 𝑁𝑘 be the number of individuals in response group k.  Assuming an additive 

model, use Iijk as the number of mutant alleles at variant j for individual i of group k as before.  

Also assume a fixed probability of a mutant allele at variant j, 𝑝𝑗, in the population.  Then 

𝐼𝑖𝑗𝑘~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙�𝑛 = 2,𝑝 = 𝑝𝑗�.  Now fix j and consider the mutations at variant j.  Since the 

individuals are assumed independent the joint distribution of the Iijk ‘s at variant j is   

𝑓�𝐼1𝑗1, 𝐼2𝑗1, … , 𝐼𝑁𝐾𝑗𝐾� = ���
2
𝐼𝑖𝑗𝑘

�
𝑖,𝑘

� ∙ 𝑝𝑗
∑ 𝐼𝑖𝑗𝑘𝑖,𝑘 ∙ �1 − 𝑝𝑗�

2𝑛∙𝑗−∑ 𝐼𝑖𝑗𝑘𝑖,𝑘 . 

Consider the joint transformation 

𝑦1 = �𝐼𝑖𝑗𝑘
𝑖,𝑘

, 

𝑦2 = 𝐼1𝑗1, 

𝑦3 = 𝐼2𝑗1, …,  

𝑦𝑛∙𝑗 = 𝐼(𝑁𝐾−1)𝑗𝐾 . 

Then the joint distribution of the 𝑦𝑖’s is 

𝑓 �𝑦1,𝑦2, … ,𝑦𝑛∙𝑗� = � 2
𝑦2
� ∙ � 2

𝑦3
� ∙ … ∙ �

2
𝑦𝑛∙𝑗

� ∙ �

2

𝑦1 −�𝑦𝑎

𝑛∙𝑗

𝑎=2

� ∙ 𝑝𝑗
𝑦1 ∙ �1 − 𝑝𝑗�

2𝑛∙𝑗−𝑦1 

where 𝑦𝑎 ∈ {0,1,2} for 𝑎 = 2, 3, … ,𝑛∙𝑗 and 𝑦1 − ∑ 𝑦𝑎
𝑛∙𝑗
𝑎=2 ∈ {0,1,2}.  Notice that 𝑦1 is dependent 

on the 𝑦𝑎’s since there is no way to factor the joint distribution.  Therefore the weights in the 

genetic score which are a function of 𝑦1 will also be dependent on the 𝐼𝑖𝑗𝑘’s.  Randomly choose 

one of the 𝑦𝑎’s 𝑎 = 2, 3, … , 𝑛∙𝑗  to keep.  For convenience 𝑦2 is used in the following derivations 
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but any 𝑦𝑎, 𝑎 = 2, 3, … ,𝑛∙𝑗 can be chosen.  It is desired to find the joint distribution of 𝑦1,𝑦2.  

First find the marginal joint distribution of 𝑦1,𝑦2, … ,𝑦𝑛∙𝑗−1.  

𝑓 �𝑦1,𝑦2, … ,𝑦𝑛∙𝑗−1�

= � 2
𝑦2
� ∙ � 2

𝑦3
� ∙ … ∙ �

2
𝑦𝑛∙𝑗−1

� ∙ 𝑝𝑗
𝑦1 ∙ �1 − 𝑝𝑗�

2𝑛∙𝑗−𝑦1 ∙ �

4

𝑦1 − � 𝑦𝑎

𝑛∙𝑗−1

𝑎=2

�

∙ �
�

2
𝑦𝑛∙𝑗

� ∙ �
2

𝑦1 − �∑ 𝑦𝑎
𝑛∙𝑗−1
𝑎=2 � − 𝑦𝑛∙𝑗

�

�
4

𝑦1 − ∑ 𝑦𝑎
𝑛∙𝑗−1
𝑎=2

�

𝑚𝑖𝑛�2,𝑦1−∑ 𝑦𝑎
𝑛∙𝑗−1
𝑎=2 �

𝑦𝑛∙𝑗=𝑚𝑎𝑥�0,𝑦1−∑ 𝑦𝑎
𝑛∙𝑗−1
𝑎=2 �

 

= � 2
𝑦2
� ∙ � 2

𝑦3
� ∙ … ∙ �

2
𝑦𝑛∙𝑗−1

� ∙ 𝑝𝑗
𝑦1 ∙ �1 − 𝑝𝑗�

2𝑛∙𝑗−𝑦1 ∙ �

4

𝑦1 − � 𝑦𝑎

𝑛∙𝑗−1

𝑎=2

� 

where 𝑦𝑎 ∈ {0,1,2} for 𝑎 = 2, 3, … ,𝑛∙𝑗 − 1 and 𝑦1 − ∑ 𝑦𝑎
𝑛∙𝑗−1
𝑎=2 ∈ {0,1,2, 3, 4} since  

�
2
𝑦𝑛∙𝑗

� ∙ �
2

𝑦1 − ∑ 𝑦𝑎
𝑛∙𝑗−1
𝑎=2 − 𝑦𝑛∙𝑗

�

�
4

𝑦1 − ∑ 𝑦𝑎
𝑛∙𝑗−1
𝑎=2

�
~𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑛,𝑀,𝑁) 

with 𝑛 = 𝑦1 − ∑ 𝑦𝑎
𝑛∙𝑗−1
𝑎=2 , 𝑀 = 2, and 𝑁 = 4 (Bain & Engelhardt, 1992, p. 96).  Continuing find 

the joint distribution of 𝑦1,𝑦2, … ,𝑦𝑛∙𝑗−2.   
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𝑓 �𝑦1,𝑦2, … ,𝑦𝑛∙𝑗−2�

= � 2
𝑦2
� ∙ � 2

𝑦3
� ∙ … ∙ �

2
𝑦𝑛∙𝑗−2

� ∙ 𝑝𝑗
𝑦1 ∙ �1 − 𝑝𝑗�

2𝑛∙𝑗−𝑦1 ∙ �

6

𝑦1 − � 𝑦𝑎

𝑛∙𝑗−2

𝑎=2

�

∙ �
�

2
𝑦𝑛∙𝑗−1

� ∙ �
4

𝑦1 − �∑ 𝑦𝑎
𝑛∙𝑗−2
𝑎=2 � − 𝑦𝑛∙𝑗−1

�

�
6

𝑦1 − ∑ 𝑦𝑎
𝑛∙𝑗−2
𝑎=2

�

𝑚𝑖𝑛�2,𝑦1−∑ 𝑦𝑎
𝑛∙𝑗−2
𝑎=2 �

𝑦𝑛∙𝑗−1=𝑚𝑎𝑥�0,𝑦1−∑ 𝑦𝑎
𝑛∙𝑗−2
𝑎=2 �

 

= � 2
𝑦2
� ∙ � 2

𝑦3
� ∙ … ∙ �

2
𝑦𝑛∙𝑗−2

� ∙ 𝑝𝑗
𝑦1 ∙ �1 − 𝑝𝑗�

2𝑛∙𝑗−𝑦1 ∙ �

6

𝑦1 − � 𝑦𝑎

𝑛∙𝑗−2

𝑎=2

� 

where 𝑦𝑎 ∈ {0,1,2} for 𝑎 = 2, 3, … ,𝑛∙𝑗 − 2 and 𝑦1 − ∑ 𝑦𝑎
𝑛∙𝑗−2
𝑎=2 ∈ {0, 1, 2, 3, 4, 5, 6}.  By induction 

continuing this process until only the joint distribution of 𝑦1 and 𝑦2 remains finds 

𝑓(𝑦1,𝑦2) = � 2
𝑦2
� ∙ �2�𝑛∙𝑗 − 1�

𝑦1 − 𝑦2
� ∙ 𝑝𝑗

𝑦1 ∙ �1 − 𝑝𝑗�
2𝑛∙𝑗−𝑦1 

where 𝑦2 ∈ {0, 1, 2} and 𝑦1 ∈ �𝑦2, … , 2�𝑛∙𝑗 − 1� + 𝑦2�.  Notice that if the process had also 

summed out 𝑦2 the resulting marginal distribution of 𝑦1 would be 

𝑓(𝑦1) = �2𝑛∙𝑗
𝑦1

� ∙ 𝑝𝑗
𝑦1 ∙ �1 − 𝑝𝑗�

2𝑛∙𝑗−𝑦1 . 

Hence the distribution of the sum of the mutant alleles at variant j is 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙�𝑛 = 2𝑛∙𝑗,𝑝 =

𝑝𝑗�.  Now consider the following joint transformation of 𝑓(𝑦1,𝑦2): 

𝑞𝑗1 =
𝑦1 + 1

2𝑛∙𝑗 + 2
, 

𝑞𝑗2 = 𝑦2. 
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Then the joint distribution of 𝑞𝑗1 and 𝑞𝑗2 is 

𝑓�𝑞𝑗1, 𝑞𝑗2� = �
2
𝑞𝑗2

� ∙ �
2�𝑛∙𝑗 − 1�

𝑞𝑗1�2𝑛∙𝑗 + 1� − 1 − 𝑞𝑗2
� ∙ 𝑝𝑗

𝑞𝑗1�2𝑛∙𝑗+2�−1 ∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−𝑞𝑗1�2𝑛∙𝑗+2� 

Where 𝑞𝑗2 ∈ {0, 1, 2} and 𝑞𝑗1 ∈ �
𝑞𝑗2+1
2𝑛∙𝑗+2

, 𝑞𝑗2+2
2𝑛∙𝑗+2

, … , 2�𝑛∙𝑗−1�+𝑞𝑗2+1
2𝑛∙𝑗+2

�.  Now consider the joint 

transformation  

𝑤𝑗1 = �𝑛∙𝑗𝑞𝑗1�1 − 𝑞𝑗1� 

𝑤𝑗2 = 𝑞𝑗2. 

The equation for 𝑤𝑗1 is not one to one and has a maximum at 1 2⁄ .  Using the quadratic formula 

to solve for 𝑞𝑗1 yields 

𝑞𝑗1 =
1
2 �

1 ± �1 − 4𝑤𝑗12 𝑛∙𝑗� �. 

Now define 𝐴1 = � 𝑞2+1
2𝑛∙𝑗+2

, 𝑞2+2
2𝑛∙𝑗+2

, … , 1
2
� and 𝐴2 = � 𝑛∙𝑗+2

2𝑛∙𝑗+2
, 𝑞2+3
2𝑛∙𝑗+2

, … , 2�𝑛∙𝑗−1�+𝑞𝑗2+1
2𝑛∙𝑗+2

�.  Then 𝑤𝑗1 is 

one to one on the sets 𝐴1 and 𝐴2.  On 𝐴1 the inverse is 𝑞𝑗1− = 1
2
�1−�1 − 4𝑤𝑗12 𝑛∙𝑗� � and on 𝐴2 

the inverse is 𝑞𝑗1+ = 1
2
�1 + �1 − 4𝑤𝑗12 𝑛∙𝑗� �.  Define the following sets 

 �𝑤𝑗1,𝑤𝑗2� ∈ 𝐵1 = ���𝑛∙𝑗 �
1

2𝑛∙𝑗+2
� �1 − 1

2𝑛∙𝑗+2
� , 0� ,��𝑛∙𝑗 �

2
2𝑛∙𝑗+2

� �1 − 2
2𝑛∙𝑗+2

� , 0��, 

𝐵2 = ���𝑛∙𝑗 �
2𝑛∙𝑗

2𝑛∙𝑗 + 2��
1 −

2𝑛∙𝑗
2𝑛∙𝑗 + 2�

, 2� ,��𝑛∙𝑗 �
2𝑛∙𝑗 + 1
2𝑛∙𝑗 + 2��

1−
2𝑛∙𝑗 + 1
2𝑛∙𝑗 + 2�

, 2�� 
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𝐵3 = ���𝑛∙𝑗 �
3

2𝑛∙𝑗 + 2��
1 −

3
2𝑛∙𝑗 + 2�

, 0� ,��𝑛∙𝑗 �
4

2𝑛∙𝑗 + 2��
1−

4
2𝑛∙𝑗 + 2�

, 0� , … , 

 ��𝑛∙𝑗 �
𝑛∙𝑗

2𝑛∙𝑗 + 2��
1 −

𝑛∙𝑗
2𝑛∙𝑗 + 2�

, 0�� 

𝐵4 = ���𝑛∙𝑗 �
2

2𝑛∙𝑗 + 2��
1 −

2
2𝑛∙𝑗 + 2�

, 1� , … ,��𝑛∙𝑗 �
𝑛∙𝑗

2𝑛∙𝑗 + 2��
1−

𝑛∙𝑗
2𝑛∙𝑗 + 2�

, 1�� 

𝐵5 = ���𝑛∙𝑗 �
3

2𝑛∙𝑗 + 2��
1 −

3
2𝑛∙𝑗 + 2�

, 2� ,��𝑛∙𝑗 �
4

2𝑛∙𝑗 + 2��
1−

4
2𝑛∙𝑗 + 2�

, 2� , … , 

 ��𝑛∙𝑗 �
𝑛∙𝑗

2𝑛∙𝑗 + 2��
1 −

𝑛∙𝑗
2𝑛∙𝑗 + 2�

, 2��. 

𝐵6 = ��
�𝑛∙𝑗

2
, 0� ,�

�𝑛∙𝑗
2

, 1� ,�
�𝑛∙𝑗

2
, 2�� 

If �𝑤𝑗1,𝑤𝑗2� ∈ 𝐵1 then the joint distribution of 𝑤𝑗1 and 𝑤𝑗2 is 

𝑓�𝑤𝑗1,  𝑤𝑗2� = �
2
𝑤𝑗2

� ∙ �
2�𝑛∙𝑗 − 1�

�1 −�1 − 4𝑤𝑗12 𝑛∙𝑗� � �𝑛∙𝑗 + 1� − 1 −𝑤𝑗2
� ∙ 𝑝𝑗

�1−�1−4𝑤𝑗1
2 𝑛∙𝑗� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1−�1−4𝑤𝑗1

2 𝑛∙𝑗� ��𝑛∙𝑗+1�. 

If �𝑤𝑗1,𝑤𝑗2� ∈ 𝐵2 then the joint distribution of 𝑤𝑗1 and 𝑤𝑗2 is 

𝑓�𝑤𝑗1,  𝑤𝑗2� = �
2
𝑤𝑗2

� ∙ �
2�𝑛∙𝑗 − 1�

�1 + �1 − 4𝑤𝑗12 𝑛∙𝑗� � �𝑛∙𝑗 + 1� − 1 −𝑤𝑗2
� ∙ 𝑝𝑗

�1+�1−4𝑤𝑗1
2 𝑛∙𝑗� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1+�1−4𝑤𝑗1

2 𝑛∙𝑗� ��𝑛∙𝑗+1�. 
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If �𝑤𝑗1,𝑤𝑗2� ∈ 𝐵3,𝐵4,  or 𝐵5 then the joint distribution of 𝑤𝑗1 and 𝑤𝑗2 is 

𝑓�𝑤𝑗1,  𝑤𝑗2� = �
2
𝑤𝑗2

� ∙ �
2�𝑛∙𝑗 − 1�

�1 −�1 − 4𝑤𝑗12 𝑛∙𝑗� � �𝑛∙𝑗 + 1� − 1 −𝑤𝑗2
� ∙ 𝑝𝑗

�1−�1−4𝑤𝑗1
2 𝑛∙𝑗� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1−�1−4𝑤𝑗1

2 𝑛∙𝑗� ��𝑛∙𝑗+1� 

+ �
2
𝑤𝑗2

� ∙ �
2�𝑛∙𝑗 − 1�

�1 + �1 − 4𝑤𝑗12 𝑛∙𝑗� � �𝑛∙𝑗 + 1� − 1 −𝑤𝑗2
� ∙ 𝑝𝑗

�1+�1−4𝑤𝑗1
2 𝑛∙𝑗� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1+�1−4𝑤𝑗1

2 𝑛∙𝑗� ��𝑛∙𝑗+1�. 

If �𝑤𝑗1,𝑤𝑗2� ∈ 𝐵6 then the joint distribution of 𝑤𝑗1 and 𝑤𝑗2 is 

𝑓�𝑤𝑗1,𝑤𝑗2� = �
2
𝑤𝑗2

� ∙ �2�𝑛∙𝑗 − 1�
𝑛∙𝑗 − 𝑤𝑗2

� ∙ 𝑝𝑗
𝑛∙𝑗 ∙ �1 − 𝑝𝑗�

𝑛∙𝑗 . 

Now consider the joint transformation 

𝑟𝑗1 =
𝑤𝑗2
𝑤𝑗1

=
𝐼1𝑗1
𝑤𝑗

 

𝑟𝑗2 = 𝑤𝑗1. 

Define the sets 

�𝑟𝑗1, 𝑟𝑗2� ∈ 𝐶1

= ��0,�𝑛∙𝑗 �
1

2𝑛∙𝑗 + 2��
1 −

1
2𝑛∙𝑗 + 2�

� ,�0,�𝑛∙𝑗 �
2

2𝑛∙𝑗 + 2��
1 −

2
2𝑛∙𝑗 + 2�

�� 

𝐶2 = ��2 �𝑛∙𝑗 �
1

2𝑛∙𝑗 + 2��
1 −

1
2𝑛∙𝑗 + 2�

� ,�𝑛∙𝑗 �
1

2𝑛∙𝑗 + 2��
1 −

1
2𝑛∙𝑗 + 2�

� , 
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�2 �𝑛∙𝑗 �
2

2𝑛∙𝑗 + 2��
1 −

2
2𝑛∙𝑗 + 2�

� ,�𝑛∙𝑗 �
2

2𝑛∙𝑗 + 2��
1 −

2
2𝑛∙𝑗 + 2�

�� 

𝐶3 = ��0,�𝑛∙𝑗 �
3

2𝑛∙𝑗 + 2��
1 −

3
2𝑛∙𝑗 + 2�

� ,�0,�𝑛∙𝑗 �
4

2𝑛∙𝑗 + 2��
1 −

4
2𝑛∙𝑗 + 2�

� , … , 

 �0,�𝑛∙𝑗 �
𝑛∙𝑗

2𝑛∙𝑗 + 2��
1 −

𝑛∙𝑗
2𝑛∙𝑗 + 2�

�� 

𝐶4 = ��2 �𝑛∙𝑗 �
3

2𝑛∙𝑗 + 2��
1 −

3
2𝑛∙𝑗 + 2�

� ,�𝑛∙𝑗 �
3

2𝑛∙𝑗 + 2��
1 −

3
2𝑛∙𝑗 + 2�

� , , … , 

 �2 �𝑛∙𝑗 �
𝑛∙𝑗

2𝑛∙𝑗 + 2��
1 −

𝑛∙𝑗
2𝑛∙𝑗 + 2�

� ,�𝑛∙𝑗 �
𝑛∙𝑗

2𝑛∙𝑗 + 2��
1 −

𝑛∙𝑗
2𝑛∙𝑗 + 2�

�� 

𝐶5 = ��1 �𝑛∙𝑗 �
2

2𝑛∙𝑗 + 2��
1 −

2
2𝑛∙𝑗 + 2�

� ,�𝑛∙𝑗 �
2

2𝑛∙𝑗 + 2��
1 −

2
2𝑛∙𝑗 + 2�

� , , … , 

 �1 �𝑛∙𝑗 �
𝑛∙𝑗

2𝑛∙𝑗 + 2��
1 −

𝑛∙𝑗
2𝑛∙𝑗 + 2�

� ,�𝑛∙𝑗 �
𝑛∙𝑗

2𝑛∙𝑗 + 2��
1 −

𝑛∙𝑗
2𝑛∙𝑗 + 2�

�� 

𝐶6 = ��0,
�𝑛∙𝑗

2 � ,�
2

�𝑛∙𝑗
,
�𝑛∙𝑗

2 � ,�
4

�𝑛∙𝑗
,
�𝑛∙𝑗

2 �� 

If �𝑟𝑗1, 𝑟𝑗2� ∈ 𝐶1 then the joint distribution of 𝑟𝑗1 and 𝑟𝑗2 is 

𝑓�𝑟𝑗1, 𝑟𝑗2� = �
2

𝑟𝑗1𝑟𝑗2
� ∙ �

2�𝑛∙𝑗 − 1�

�1 −�1 − 4𝑟𝑗22 𝑛∙𝑗� � �𝑛∙𝑗 + 1� − 1 − 𝑟𝑗1𝑟𝑗2
� ∙ 𝑝𝑗

�1−�1−4𝑟𝑗2
2 𝑛∙𝑗� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1−�1−4𝑟𝑗2

2 𝑛∙𝑗� ��𝑛∙𝑗+1�. 
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If �𝑟𝑗1, 𝑟𝑗2� ∈ 𝐶2 then the joint distribution of 𝑟𝑗1 and 𝑟𝑗2 is 

𝑓�𝑟𝑗1, 𝑟𝑗2� = �
2

𝑟𝑗1𝑟𝑗2
� ∙ �

2�𝑛∙𝑗 − 1�

�1 + �1 − 4𝑟𝑗22 𝑛∙𝑗� � �𝑛∙𝑗 + 1� − 1 − 𝑟𝑗1𝑟𝑗2
� ∙ 𝑝𝑗

�1+�1−4𝑟𝑗2
2 𝑛∙𝑗� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1+�1−4𝑟𝑗2

2 𝑛∙𝑗� ��𝑛∙𝑗+1�. 

If �𝑟𝑗1, 𝑟𝑗2� ∈ 𝐶3,𝐶4 or 𝐶5 then the joint distribution of 𝑟𝑗1 and 𝑟𝑗2 is 

𝑓�𝑟𝑗1, 𝑟𝑗2� = �
2

𝑟𝑗1𝑟𝑗2
� ∙ �

2�𝑛∙𝑗 − 1�

�1 −�1 − 4𝑟𝑗22 𝑛∙𝑗� � �𝑛∙𝑗 + 1� − 1 − 𝑟𝑗1𝑟𝑗2
� ∙ 𝑝𝑗

�1−�1−4𝑟𝑗2
2 𝑛∙𝑗� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1−�1−4𝑟𝑗2

2 𝑛∙𝑗� ��𝑛∙𝑗+1� 

+ �
2

𝑟𝑗1𝑟𝑗2
� ∙ �

2�𝑛∙𝑗 − 1�

�1 + �1 − 4𝑟𝑗22 𝑛∙𝑗� � �𝑛∙𝑗 + 1� − 1 − 𝑟𝑗1𝑟𝑗2
� ∙ 𝑝𝑗

�1+�1−4𝑟𝑗2
2 𝑛∙𝑗� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1+�1−4𝑟𝑗2

2 𝑛∙𝑗� ��𝑛∙𝑗+1�. 

If �𝑟𝑗1, 𝑟𝑗2� ∈ 𝐶6 then the joint distribution of 𝑟𝑗1 and 𝑟𝑗2 is 

𝑓�𝑟𝑗1, 𝑟𝑗2� = �
2

𝑟𝑗1𝑟𝑗2
� ∙ �2�𝑛∙𝑗 − 1�

𝑛∙𝑗 − 𝑟𝑗1𝑟𝑗2
� ∙ 𝑝𝑗

𝑛∙𝑗 ∙ �1 − 𝑝𝑗�
𝑛∙𝑗 . 

Now find the marginal distribution of 𝑟𝑗1.  If 𝑟𝑗1 = 0 then  

𝑓1�𝑟𝑗1� = ���2�𝑛∙𝑗 − 1�
𝑡 − 1

� ∙ 𝑝𝑗𝑡−1 ∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−𝑡 + �

2�𝑛∙𝑗 − 1�
2𝑛∙𝑗 + 1 − 𝑡� ∙ 𝑝𝑗

2𝑛∙𝑗+1−𝑡
𝑛∙𝑗

𝑡=3

∙ �1 − 𝑝𝑗�
𝑡−1� + ���2�𝑛∙𝑗 − 1�

𝑡 − 1
� ∙ 𝑝𝑗𝑡−1 ∙ �1 − 𝑝𝑗�

2𝑛∙𝑗+1−𝑡�
2

𝑡=1
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+�2�𝑛∙𝑗 − 1�
𝑛∙𝑗

� ∙ 𝑝𝑗
𝑛∙𝑗 ∙ �1 − 𝑝𝑗�

𝑛∙𝑗 

If 𝑟𝑗1 ∈ �2 �𝑛∙𝑗 �
1

2𝑛∙𝑗+2
� �1 − 1

2𝑛∙𝑗+2
�� , 2 �𝑛∙𝑗 �

2
2𝑛∙𝑗+2

� �1 − 2
2𝑛∙𝑗+2

�� � then the distribution of 𝑟𝑗1 

is 

𝑓2�𝑟𝑗1� = �
2�𝑛∙𝑗 − 1�

�1 + �1 − 16 �𝑟𝑗12𝑛∙𝑗�⁄ � �𝑛∙𝑗 + 1� − 3
� ∙ 𝑝𝑗

�1+�1−16 �𝑟𝑗1
2 𝑛∙𝑗�� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1+�1−16 �𝑟𝑗1

2 𝑛∙𝑗�� ��𝑛∙𝑗+1�
. 

If 𝑟𝑗1 ∈ �1 �𝑛∙𝑗 �
2

2𝑛∙𝑗+2
� �1 − 2

2𝑛∙𝑗+2
�� , … , 1 �𝑛∙𝑗 �

𝑛∙𝑗
2𝑛∙𝑗+2

� �1 − 𝑛∙𝑗
2𝑛∙𝑗+2

�� � then the distribution of 

𝑟𝑗1 is 

𝑓3�𝑟𝑗1� = 2 ∙ �
2�𝑛∙𝑗 − 1�

�1 −�1 − 4 �𝑟𝑗12𝑛∙𝑗�⁄ � �𝑛∙𝑗 + 1� − 2
� ∙ 𝑝𝑗

�1−�1−4 �𝑟𝑗1
2 𝑛∙𝑗�� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1−�1−4 �𝑟𝑗1

2 𝑛∙𝑗�� ��𝑛∙𝑗+1�
+ 2

∙ �
2�𝑛∙𝑗 − 1�

�1 +�1 − 4 �𝑟𝑗12𝑛∙𝑗�⁄ � �𝑛∙𝑗 + 1� − 2
� ∙ 𝑝𝑗

�1+�1−4 �𝑟𝑗1
2 𝑛∙𝑗�� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1+�1−4 �𝑟𝑗1

2 𝑛∙𝑗�� ��𝑛∙𝑗+1�
. 

If 𝑟𝑗1 ∈ �2 �𝑛∙𝑗 �
3

2𝑛∙𝑗+2
� �1 − 3

2𝑛∙𝑗+2
�� , … , 2 �𝑛∙𝑗 �

𝑛∙𝑗
2𝑛∙𝑗+2

� �1 − 𝑛∙𝑗
2𝑛∙𝑗+2

�� � then the distribution of 

𝑟𝑗1 is 
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𝑓4�𝑟𝑗1� = �
2�𝑛∙𝑗 − 1�

�1 −�1− 16 �𝑟𝑗12𝑛∙𝑗�⁄ � �𝑛∙𝑗 + 1� − 3
� ∙ 𝑝𝑗

�1−�1−16 �𝑟𝑗1
2 𝑛∙𝑗�� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1−�1−16 �𝑟𝑗1

2 𝑛∙𝑗�� ��𝑛∙𝑗+1�

+ �
2�𝑛∙𝑗 − 1�

�1 + �1 − 16 �𝑟𝑗12𝑛∙𝑗�⁄ � �𝑛∙𝑗 + 1� − 3
� ∙ 𝑝𝑗

�1+�1−16 �𝑟𝑗1
2 𝑛∙𝑗�� ��𝑛∙𝑗+1�−1

∙ �1 − 𝑝𝑗�
2𝑛∙𝑗+1−�1+�1−16 �𝑟𝑗1

2 𝑛∙𝑗�� ��𝑛∙𝑗+1�
. 

If 𝑟𝑗1 ∈ �2 �𝑛∙𝑗⁄ , 4 �𝑛∙𝑗⁄ � then the distribution of 𝑟𝑗1 is 

𝑓5�𝑟𝑗1� = �
2

𝑟𝑗1 ∙ �𝑛∙𝑗 2⁄ ��
2�𝑛∙𝑗 − 1�

𝑛∙𝑗 − 𝑟𝑗1 ∙ �𝑛∙𝑗 2⁄
� ∙ 𝑝𝑗

𝑛∙𝑗 ∙ �1 − 𝑝𝑗�
𝑛∙𝑗 . 

In order to find the distribution of the genetic score the joint distribution of 𝑟11, 𝑟21, …, 𝑟𝐽1 is 

needed.  Since it is assumed that the variants are independent this joint distribution is 

𝑓�𝑟11, 𝑟21, … , 𝑟𝐽1� = �𝑓�𝑟𝑗1�
𝐽

𝑗=1

. 

However there are five different formulas for 𝑓�𝑟𝑗1� depending on the value of 𝑟𝑗1.  Hence there 

are 5𝐽 different formulas for the joint distribution of 𝑓�𝑟11, 𝑟21, … , 𝑟𝐽1� depending on the values of 

𝑟11, 𝑟21, … , 𝑟𝐽1.  It is possible to classify these distributions into five different cases.  Let there be 

𝑎1 of the 𝑟𝑗1’s such that 𝑟𝑗1 ∈ �2 �𝑛∙𝑗⁄ , 4 �𝑛∙𝑗⁄ �, 𝑎2 of the 𝑟𝑗1’s such that 

𝑟𝑗1 ∈ �2 �𝑛∙𝑗 �
3

2𝑛∙𝑗+2
� �1 − 3

2𝑛∙𝑗+2
�� , … , 2 �𝑛∙𝑗 �

𝑛∙𝑗
2𝑛∙𝑗+2

� �1 − 𝑛∙𝑗
2𝑛∙𝑗+2

�� �, 𝑎3 of the 𝑟𝑗1’s such that 

𝑟𝑗1 ∈ �1 �𝑛∙𝑗 �
2

2𝑛∙𝑗+2
� �1 − 2

2𝑛∙𝑗+2
�� , … , 1 �𝑛∙𝑗 �

𝑛∙𝑗
2𝑛∙𝑗+2

� �1 − 𝑛∙𝑗
2𝑛∙𝑗+2

�� �, 𝑎4 of the 𝑟𝑗1’s such that 
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𝑟𝑗1 ∈ �2 �𝑛∙𝑗 �
1

2𝑛∙𝑗+2
� �1 − 1

2𝑛∙𝑗+2
�� , 2 �𝑛∙𝑗 �

2
2𝑛∙𝑗+2

� �1 − 2
2𝑛∙𝑗+2

�� �, and 𝑎5 = 𝐽 − 𝑎1 − 𝑎2 −

𝑎3 − 𝑎4 of the 𝑟𝑗1’s such that 𝑟𝑗1 = 0.  Let 𝑗′ be an index for reordering the 𝑟𝑗1’s such that 

𝑟𝑗′1 ∈ �2 �𝑛∙𝑗⁄ , 4 �𝑛∙𝑗⁄ � for 𝑗′ = 1, … ,𝑎1, 

𝑟𝑗′1 ∈ �2 �𝑛∙𝑗 �
3

2𝑛∙𝑗+2
� �1 − 3

2𝑛∙𝑗+2
�� , … , 2 �𝑛∙𝑗 �

𝑛∙𝑗
2𝑛∙𝑗+2

� �1 − 𝑛∙𝑗
2𝑛∙𝑗+2

�� � for 𝑗′ = 𝑎1 + 1, … ,𝑎1 +

𝑎2, 𝑟𝑗′1 ∈ �1 �𝑛∙𝑗 �
2

2𝑛∙𝑗+2
� �1 − 2

2𝑛∙𝑗+2
�� , … , 1 �𝑛∙𝑗 �

𝑛∙𝑗
2𝑛∙𝑗+2

� �1 − 𝑛∙𝑗
2𝑛∙𝑗+2

�� � for 𝑗′ = 𝑎1 + 𝑎2 +

1, … ,𝑎1 + 𝑎2 + 𝑎3, 𝑟𝑗′1 ∈ �2 �𝑛∙𝑗 �
1

2𝑛∙𝑗+2
� �1 − 1

2𝑛∙𝑗+2
�� , 2 �𝑛∙𝑗 �

2
2𝑛∙𝑗+2

� �1 − 2
2𝑛∙𝑗+2

�� � for 

𝑗′ = 𝑎1 + 𝑎2 + 𝑎3 + 1, … ,𝑎1 + 𝑎2 + 𝑎3 + 𝑎4, and 𝑟𝑗′1 = 0 for 𝑗′ = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 +

1, … , 𝐽.  Extending the notation, let 𝑛∙𝑗′  be the number of individuals genotyped for variant j’ and 

𝑝𝑗′  be the probability of a mutant allele at variant j’.  The general form of the joint distribution of 

𝑟11, 𝑟21, …, 𝑟𝐽1 can be rewritten as 

𝑓�𝑟11, 𝑟21, … , 𝑟𝐽1�

= �𝑓5�𝑟𝑗′1�
𝑎1

𝑗′=1

∙ � 𝑓4�𝑟𝑗′1�
𝑎1+𝑎2

𝑗′=𝑎1+1

∙ � 𝑓3�𝑟𝑗′1�
𝑎1+𝑎2+𝑎3

𝑗′=𝑎1+𝑎2+1

∙ � 𝑓2�𝑟𝑗′1�
𝑎1+𝑎2+𝑎3+𝑎4

𝑗′=𝑎1+𝑎2+𝑎3+1

∙ � 𝑓1�𝑟𝑗′1�
𝐽

𝑗′=𝑎1+𝑎2+𝑎3+𝑎4+1

. 

Now consider the joint transformation 𝑔1 = ∑ 𝑟𝑗′1
𝐽
𝑗′=1 , 𝑔2 = 𝑟2′1,𝑔3 = 𝑟3′1, … ,𝑔𝐽 = 𝑟𝐽′1.  

Clearly the formulas for most of the variables will be similar since all but one of the 𝑟𝑗′1’s is 

directly transformed to a 𝑔𝑗′ .  However 𝑟1′1 = 𝑔1 − ∑ 𝑟𝑗′1
𝐽
𝑗′=2  thus the distribution of 𝑟1′1 must 

be considered when finding the joint distribution of 𝑔1,𝑔2, … ,𝑔𝐽.  First consider a case 1 where at 

least one 𝑟𝑗′1 ∈ �2 �𝑛∙𝑗⁄ , 4 �𝑛∙𝑗⁄ �.  Then the joint distribution of 𝑔1,𝑔2, … ,𝑔𝐽 is 
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𝑓�𝑔1,𝑔2, … ,𝑔𝐽�

= �
2

�√
𝑛∙1′
2 ��𝑔1 −� 𝑔𝑗′

𝐽

𝑗′=2
���

2(𝑛∙1′ − 1)

𝑛∙1′ − �√
𝑛∙1′
2 ��𝑔1 −� 𝑔𝑗′

𝐽

𝑗′=2
�
� ∙ 𝑝1′

𝑛∙1′

∙ (1 − 𝑝1′)
𝑛∙1′ ∙� 𝑓5�𝑟𝑗′1 = 𝑔𝑗′�

𝑎1

𝑗′=2

∙ � 𝑓4�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1+𝑎2

𝑗′=𝑎1+1

∙ � 𝑓3�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1+𝑎2+𝑎3

𝑗′=𝑎1+𝑎2+1

∙ � 𝑓2�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1+𝑎2+𝑎3+𝑎4

𝑗′=𝑎1+𝑎2+𝑎3+1

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎1+𝑎2+𝑎3+𝑎4+1

 

where 𝑔1 − ∑ 𝑔𝑗′
𝐽
𝑗′=2 ∈ {2 √𝑛∙1′⁄ , 4 √𝑛∙1′⁄ }.  Now sum over 𝑔𝑎1+𝑎2+𝑎3+𝑎4+1, … ,𝑔𝐽.  Since each 

of these values is zero and the 𝑓1�𝑔𝑗′�’s are constants the joint distribution of 

𝑔1, … ,𝑔𝑎1+𝑎2+𝑎3+𝑎4 is 

𝑓�𝑔1,𝑔2, … ,𝑔𝑎1+𝑎2+𝑎3+𝑎4�

= �
2

�√
𝑛∙1′
2 ��𝑔1 −� 𝑔𝑗′

𝑎1+𝑎2+𝑎3+𝑎4

𝑗′=2
���

2(𝑛∙1′ − 1)

𝑛∙1′ − �√
𝑛∙1′
2 ��𝑔1 −� 𝑔𝑗′

𝑎1+𝑎2+𝑎3+𝑎4

𝑗′=2
�
� ∙ 𝑝1′

𝑛∙1′

∙ (1 − 𝑝1′)
𝑛∙1′ ∙� 𝑓5�𝑟𝑗′1 = 𝑔𝑗′�

𝑎1

𝑗′=2

∙ � 𝑓4�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1+𝑎2

𝑗′=𝑎1+1

∙ � 𝑓3�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1+𝑎2+𝑎3

𝑗′=𝑎1+𝑎2+1

∙ � 𝑓2�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1+𝑎2+𝑎3+𝑎4

𝑗′=𝑎1+𝑎2+𝑎3+1

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎1+𝑎2+𝑎3+𝑎4+1

 

where 𝑔1 − ∑ 𝑔𝑗′
𝑎1+𝑎2+𝑎3+𝑎4
𝑗′=2 ∈ {2 √𝑛∙1′⁄ , 4 √𝑛∙1′⁄ }.  Now sum over 

𝑔𝑎1+𝑎2+𝑎3+1, … ,𝑔𝑎1+𝑎2+𝑎3+𝑎4.  Let 
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𝑑𝑖𝑓𝑓1 = 𝑔1 − ∑ 𝑔𝑗′
𝑎1+𝑎2+𝑎3
𝑗′=2 − ∑ 2

�𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′�
𝑢𝑖

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′
+2��1−

𝑢𝑖
2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′

+2�

𝑎4
𝑖=1  for 

𝑢𝑖 ∈ {1, 2}.  Then the joint distribution of 𝑔1, … ,𝑔𝑎1+𝑎2+𝑎3 is 

𝑓�𝑔1,𝑔2, … ,𝑔𝑎1+𝑎2+𝑎3�

= 𝑝1′
𝑛∙1′ ∙ (1 − 𝑝1′)

𝑛∙1′ ∙� 𝑓5�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1

𝑗′=2

∙ � 𝑓4�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1+𝑎2

𝑗′=𝑎1+1

∙ � 𝑓3�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1+𝑎2+𝑎3

𝑗′=𝑎1+𝑎2+1

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎1+𝑎2+𝑎3+𝑎4+1

 

∙ � � … � ����
2�𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′ − 1�

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′ − 1 − 𝑢𝑖
� ∙ 𝑝(𝑎1+𝑎2+𝑎3+𝑖)′

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′+1−𝑢𝑖
𝑎4

𝑖=1

2

𝑢1=1

2

𝑢𝑎4=1

∙ �1 − 𝑝(𝑎1+𝑎2+𝑎3+𝑖)′�
𝑢𝑖−1� 

∙ �
2

�√
𝑛∙1′
2 � (𝑑𝑖𝑓𝑓1)� ∙ �

2(𝑛∙1′ − 1)

𝑛∙1′ − �√
𝑛∙1′
2 � (𝑑𝑖𝑓𝑓1)��� 

where 𝑑𝑖𝑓𝑓1 ∈ {2 √𝑛∙1′⁄ , 4 √𝑛∙1′⁄ }.  Now sum over 𝑔𝑎1+𝑎2+1, … ,𝑔𝑎1+𝑎2+𝑎3.  Let 𝑑𝑖𝑓𝑓2 = 𝑔1 −

∑ 𝑔𝑗′
𝑎1+𝑎2
𝑗′=2 − ∑ 2

�𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′�
𝑢𝑖

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′
+2��1−

𝑢𝑖
2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′

+2�

𝑎4
𝑖=1  

−∑ 1

�𝑛∙(𝑎1+𝑎2+𝑑)′�
𝑣𝑑

2𝑛∙(𝑎1+𝑎2+𝑑)′+2
��1−

𝑣𝑑
2𝑛∙(𝑎1+𝑎2+𝑑)′+2

�

𝑎3
𝑑=1  where 𝑢𝑖 ∈ {1, 2} and 

𝑣𝑑 ∈ �2, … ,𝑛∙(𝑎1+𝑎2+𝑑)′�.  The joint distribution of 𝑔1, … ,𝑔𝑎1+𝑎2 is 
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𝑓�𝑔1,𝑔2, … ,𝑔𝑎1+𝑎2�

= 𝑝1′
𝑛∙1′ ∙ (1 − 𝑝1′)

𝑛∙1′ ∙� 𝑓5�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1

𝑗′=2

∙ � 𝑓4�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1+𝑎2

𝑗′=𝑎1+1

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎1+𝑎2+𝑎3+𝑎4+1

 

∙ � � … � ���2�2�𝑛∙(𝑎1+𝑎2+𝑑)′ − 1�
𝑣𝑑 − 2

� ∙ 𝑝(𝑎1+𝑎2+𝑑)′
𝑣𝑑−1

𝑎3

𝑑=1

𝑛∙(𝑎1+𝑎2+1)′

𝑣1=2

𝑛∙(𝑎1+𝑎2+𝑎3)′

𝑣𝑎3=2

 

∙ �1 − 𝑝(𝑎1+𝑎2+𝑑)′�
2𝑛∙(𝑎1+𝑎2+𝑑)′+1−𝑣𝑑 

+2�
2�𝑛∙(𝑎1+𝑎2+𝑑)′ − 1�
2𝑛∙(𝑎1+𝑎2+𝑑)′ − 𝑣𝑑

� 𝑝(𝑎1+𝑎2+𝑑)′
2𝑛∙(𝑎1+𝑎2+𝑑)′+1−𝑣𝑑�1− 𝑝(𝑎1+𝑎2+𝑑)′�

𝑣𝑑−1� 

� … � ����
2�𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′ − 1�

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′ − 1 − 𝑢𝑖
� ∙ 𝑝(𝑎1+𝑎2+𝑎3+𝑖)′

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′+1−𝑢𝑖
𝑎4

𝑖=1

2

𝑢1=1

2

𝑢𝑎4=1

∙ �1 − 𝑝(𝑎1+𝑎2+𝑎3+𝑖)′�
𝑢𝑖−1� 

∙ �
2

�√
𝑛∙1′
2 � (𝑑𝑖𝑓𝑓2)� ∙ �

2(𝑛∙1′ − 1)

𝑛∙1′ − �√
𝑛∙1′
2 � (𝑑𝑖𝑓𝑓2)���� 

where 𝑑𝑖𝑓𝑓2 ∈ {2 √𝑛∙1′⁄ , 4 √𝑛∙1′⁄ }.  Now sum over 𝑔𝑎1+1, … ,𝑔𝑎1+𝑎2.  Let 𝑑𝑖𝑓𝑓3 = 𝑔1 −

∑ 𝑔𝑗′
𝑎1
𝑗′=2 − ∑ 2

�𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′�
𝑢𝑖

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′
+2��1−

𝑢𝑖
2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′

+2�

𝑎4
𝑖=1 −

∑ 1

�𝑛∙(𝑎1+𝑎2+𝑑)′�
𝑣𝑑

2𝑛∙(𝑎1+𝑎2+𝑑)′+2
��1−

𝑣𝑑
2𝑛∙(𝑎1+𝑎2+𝑑)′+2

�

𝑎3
𝑑=1 − ∑ 2

�𝑛∙(𝑎1+𝑒)′�
𝑥𝑒

2𝑛∙(𝑎1+𝑒)′+2
��1− 𝑥𝑒

2𝑛∙(𝑎1+𝑒)′+2
�

𝑎2
𝑒=1  
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where 𝑢𝑖 ∈ {1, 2}, 𝑣𝑑 ∈ �2, … ,𝑛∙(𝑎1+𝑎2+𝑑)′�, and 𝑥𝑒 ∈ �3, … ,𝑛∙(𝑎1+𝑒)′�.  Then the joint 

distribution of 𝑔1, … ,𝑔𝑎1 is 

𝑓�𝑔1,𝑔2, … ,𝑔𝑎1� = 𝑝1′
𝑛∙1′ ∙ (1 − 𝑝1′)

𝑛∙1′ ∙� 𝑓5�𝑟𝑗′1 = 𝑔𝑗′�
𝑎1

𝑗′=2

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎1+𝑎2+𝑎3+𝑎4+1

 

∙ � � … � ����2�𝑛∙(𝑎1+𝑒)′ − 1�
𝑥𝑒 − 3

�𝑝(𝑎1+𝑒)′
𝑥𝑒−1 �1− 𝑝(𝑎1+𝑒)′�

2𝑛∙(𝑎1+𝑒)′+1−𝑥𝑒
𝑎2

𝑒=1

𝑛𝑎1+1

𝑥1=3

𝑛𝑎1+𝑎2

𝑥𝑎2=3

+ �
2�𝑛∙(𝑎1+𝑒)′ − 1�

2𝑛∙(𝑎1+𝑒)′ − 𝑥𝑒 − 1�𝑝(𝑎1+𝑒)′
2𝑛∙(𝑎1+𝑒)′+1−𝑥𝑒�1 − 𝑝(𝑎1+𝑒)′�

𝑥𝑒−1� 

∙ � … � ���2 �2�𝑛∙(𝑎1+𝑎2+𝑑)′ − 1�
𝑣𝑑 − 2

� ∙ 𝑝(𝑎1+𝑎2+𝑑)′
𝑣𝑑−1

𝑎3

𝑑=1

𝑛∙(𝑎1+𝑎2+1)′

𝑣1=2

𝑛∙(𝑎1+𝑎2+𝑎3)′

𝑣𝑎3=2

 

∙ �1 − 𝑝(𝑎1+𝑎2+𝑑)′�
2𝑛∙(𝑎1+𝑎2+𝑑)′+1−𝑣𝑑 

+2�
2�𝑛∙(𝑎1+𝑎2+𝑑)′ − 1�
2𝑛∙(𝑎1+𝑎2+𝑑)′ − 𝑣𝑑

� 𝑝(𝑎1+𝑎2+𝑑)′
2𝑛∙(𝑎1+𝑎2+𝑑)′+1−𝑣𝑑�1− 𝑝(𝑎1+𝑎2+𝑑)′�

𝑣𝑑−1� 

� … � ����
2�𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′ − 1�

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′ − 1 − 𝑢𝑖
� ∙ 𝑝(𝑎1+𝑎2+𝑎3+𝑖)′

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′+1−𝑢𝑖
𝑎4

𝑖=1

2

𝑢1=1

2

𝑢𝑎4=1

∙ �1 − 𝑝(𝑎1+𝑎2+𝑎3+𝑖)′�
𝑢𝑖−1� 

∙ �
2

�√
𝑛∙1′
2 � (𝑑𝑖𝑓𝑓3)� ∙ �

2(𝑛∙1′ − 1)

𝑛∙1′ − �√
𝑛∙1′
2 � (𝑑𝑖𝑓𝑓3)���

⎭
⎪
⎬

⎪
⎫

⎦
⎥
⎥
⎥
⎤
 

where 𝑑𝑖𝑓𝑓3 ∈ {2 √𝑛∙1′⁄ , 4 √𝑛∙1′⁄ }.  Now sum over 𝑔2, … ,𝑔𝑎1.  Let 

𝑑𝑖𝑓𝑓4 =
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𝑔1 − ∑ 2

�𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′�
𝑢𝑖

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′
+2��1−

𝑢𝑖
2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′

+2�

𝑎4
𝑖=1 −

∑ 1

�𝑛∙(𝑎1+𝑎2+𝑑)′�
𝑣𝑑

2𝑛∙(𝑎1+𝑎2+𝑑)′+2
��1−

𝑣𝑑
2𝑛∙(𝑎1+𝑎2+𝑑)′+2

�

𝑎3
𝑑=1 − ∑ 2

�𝑛∙(𝑎1+𝑒)′�
𝑥𝑒

2𝑛∙(𝑎1+𝑒)′+2
��1− 𝑥𝑒

2𝑛∙(𝑎1+𝑒)′+2
�

𝑎2
𝑒=1 −

∑ 2𝑠ℎ
�𝑛∙ℎ′

𝑎1
ℎ=2  where 𝑢𝑖 ∈ {1, 2}, 𝑣𝑑 ∈ �2, … ,𝑛∙(𝑎1+𝑎2+𝑑)′�, 𝑥𝑒 ∈ �3, … ,𝑛∙(𝑎1+𝑒)′�, and 𝑠ℎ ∈ {1, 2}.  

Then the distribution of 𝑔1, the genetic score, for this case is 

𝑓(𝑔1) = 𝑝1′
𝑛∙1′ ∙ (1 − 𝑝1′)

𝑛∙1′ ∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎1+𝑎2+𝑎3+𝑎4+1

 

∙ � � … � ���� 2
𝑠ℎ
� �2(𝑛∙ℎ′ − 1)

𝑛∙ℎ′ − 𝑠ℎ
� 𝑝ℎ′

𝑛∙ℎ′(1 − 𝑝ℎ′)
𝑛∙ℎ′�

𝑎1

ℎ=2

2

𝑠2=1

2

𝑠𝑎1=1

 

� … � ����2�𝑛∙(𝑎1+𝑒)′ − 1�
𝑥𝑒 − 3

�𝑝(𝑎1+𝑒)′
𝑥𝑒−1 �1 − 𝑝(𝑎1+𝑒)′�

2𝑛∙(𝑎1+𝑒)′+1−𝑥𝑒
𝑎2

𝑒=1

𝑛𝑎1+1

𝑥1=3

𝑛𝑎1+𝑎2

𝑥𝑎2=3

+ �
2�𝑛∙(𝑎1+𝑒)′ − 1�

2𝑛∙(𝑎1+𝑒)′ − 𝑥𝑒 − 1�𝑝(𝑎1+𝑒)′
2𝑛∙(𝑎1+𝑒)′+1−𝑥𝑒�1− 𝑝(𝑎1+𝑒)′�

𝑥𝑒−1� 

∙ � … � ���2 �2�𝑛∙(𝑎1+𝑎2+𝑑)′ − 1�
𝑣𝑑 − 2

� ∙ 𝑝(𝑎1+𝑎2+𝑑)′
𝑣𝑑−1

𝑎3

𝑑=1

𝑛∙(𝑎1+𝑎2+1)′

𝑣1=2

𝑛∙(𝑎1+𝑎2+𝑎3)′

𝑣𝑎3=2

 

∙ �1 − 𝑝(𝑎1+𝑎2+𝑑)′�
2𝑛∙(𝑎1+𝑎2+𝑑)′+1−𝑣𝑑 

+2�
2�𝑛∙(𝑎1+𝑎2+𝑑)′ − 1�
2𝑛∙(𝑎1+𝑎2+𝑑)′ − 𝑣𝑑

� 𝑝(𝑎1+𝑎2+𝑑)′
2𝑛∙(𝑎1+𝑎2+𝑑)′+1−𝑣𝑑�1− 𝑝(𝑎1+𝑎2+𝑑)′�

𝑣𝑑−1� 
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∙ � … � ����
2�𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′ − 1�

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′ − 1 − 𝑢𝑖
� ∙ 𝑝(𝑎1+𝑎2+𝑎3+𝑖)′

2𝑛∙(𝑎1+𝑎2+𝑎3+𝑖)′+1−𝑢𝑖
𝑎4

𝑖=1

2

𝑢1=1

2

𝑢𝑎4=1

∙ �1 − 𝑝(𝑎1+𝑎2+𝑎3+𝑖)′�
𝑢𝑖−1� 

∙ �
2

�√
𝑛∙1′
2 � (𝑑𝑖𝑓𝑓4)� ∙ �

2(𝑛∙1′ − 1)

𝑛∙1′ − �√
𝑛∙1′
2 � (𝑑𝑖𝑓𝑓4)���

⎭
⎪
⎬

⎪
⎫

⎭
⎪
⎬

⎪
⎫

⎦
⎥
⎥
⎥
⎤

 

where 𝑑𝑖𝑓𝑓4 ∈ {2 √𝑛∙1′⁄ , 4 √𝑛∙1′⁄ }. 

 Now consider a second case where 𝑎1 = 0 and 𝑎2 > 0.  Then 

𝑟1′1 ∈ �2 �𝑛∙1′ �
3

2𝑛∙1′+2
� �1 − 3

2𝑛∙1′+2
�� , … , 2 �𝑛∙1′ �

𝑛∙1′
2𝑛∙1′+2

� �1 − 𝑛∙1′
2𝑛∙1′+2

�� �.  Transforming to 

𝑔1,𝑔2, … ,𝑔𝐽 gives 

𝑓�𝑔1,𝑔2, … ,𝑔𝐽�

= �𝑓4�𝑟𝑗′1 = 𝑔𝑗′�
𝑎2

𝑗′=2

∙ � 𝑓3�𝑟𝑗′1 = 𝑔𝑗′�
𝑎2+𝑎3

𝑗′=𝑎2+1

∙ � 𝑓2�𝑟𝑗′1 = 𝑔𝑗′�
𝑎2+𝑎3+𝑎4

𝑗′=𝑎2+𝑎3+1

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎2+𝑎3+𝑎4+1
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∙

⎣
⎢
⎢
⎢
⎡

⎝

⎜
⎛

2(𝑛∙1′ − 1)

�1−�1 − 16 �𝑛∙1′ �𝑔1 −� 𝑔𝑗′
𝐽

𝑗′=2
�
2

�� � (𝑛∙1′ + 1) − 3

⎠

⎟
⎞

∙ 𝑝1′

�1−�1−16 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′
𝐽
𝑗′=2

�
2
�� ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1−�1−16 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′

𝐽
𝑗′=2

�
2
�� ��𝑛∙1′+1�

+

⎝

⎜
⎛

2(𝑛∙1′ − 1)

�1 + �1 − 16 �𝑛∙1′ �𝑔1 −� 𝑔𝑗′
𝐽

𝑗′=2
�
2

�� � (𝑛∙1′ + 1) − 3

⎠

⎟
⎞

∙ 𝑝1′

�1+�1−16 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′
𝐽
𝑗′=2

�
2
�� ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1+�1−16 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′

𝐽
𝑗′=2

�
2
�� ��𝑛∙1′+1�

⎦
⎥
⎥
⎥
⎤
 

where 𝑔1 − ∑ 𝑔𝑗′
𝐽
𝑗′=2 ∈ �2 �𝑛∙1′ �

3
2𝑛∙1′+2

� �1 − 3
2𝑛∙1′+2

�� , … , 2 �𝑛∙1′ �
𝑛∙1′

2𝑛∙1′+2
� �1 − 𝑛∙1′

2𝑛∙1′+2
�� �.  

Now sum over 𝑔𝑎2+𝑎3+𝑎4+1, … ,𝑔𝐽.   These variables are all equal to zero and 𝑓1�𝑔𝑗′� is a 

constant so 

𝑓�𝑔1,𝑔2, … ,𝑔𝑎2+𝑎3+𝑎4�

= �𝑓4�𝑟𝑗′1 = 𝑔𝑗′�
𝑎2

𝑗′=2

∙ � 𝑓3�𝑟𝑗′1 = 𝑔𝑗′�
𝑎2+𝑎3

𝑗′=𝑎2+1

∙ � 𝑓2�𝑟𝑗′1 = 𝑔𝑗′�
𝑎2+𝑎3+𝑎4

𝑗′=𝑎2+𝑎3+1

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎2+𝑎3+𝑎4+1
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∙

⎣
⎢
⎢
⎢
⎡

⎝

⎜
⎛

2(𝑛∙1′ − 1)

�1 −�1 − 16 �𝑛∙1′ �𝑔1 −� 𝑔𝑗′
𝑎2+𝑎3+𝑎4

𝑗′=2
�
2

�� � (𝑛∙1′ + 1) − 3

⎠

⎟
⎞

∙ 𝑝1′

�1−�1−16 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′
𝑎2+𝑎3+𝑎4
𝑗′=2

�
2
�� ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1−�1−16 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′

𝑎2+𝑎3+𝑎4
𝑗′=2

�
2
�� ��𝑛∙1′+1�

+

⎝

⎜
⎛

2(𝑛∙1′ − 1)

�1 + �1 − 16 �𝑛∙1′ �𝑔1 −� 𝑔𝑗′
𝑎2+𝑎3+𝑎4

𝑗′=2
�
2

�� � (𝑛∙1′ + 1) − 3

⎠

⎟
⎞

∙ 𝑝1′

�1+�1−16 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′
𝑎2+𝑎3+𝑎4
𝑗′=2

�
2
�� ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1+�1−16 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′

𝑎2+𝑎3+𝑎4
𝑗′=2

�
2
�� ��𝑛∙1′+1�

⎦
⎥
⎥
⎥
⎤
 

where 

𝑔1 − ∑ 𝑔𝑗′
𝑎2+𝑎3+𝑎4
𝑗′=2 ∈ �2 �𝑛∙1′ �

3
2𝑛∙1′+2

� �1 − 3
2𝑛∙1′+2

�� , … , 2 �𝑛∙1′ �
𝑛∙1′

2𝑛∙1′+2
� �1 − 𝑛∙1′

2𝑛∙1′+2
�� �. 

Now sum over 𝑔𝑎2+𝑎3+1, … ,𝑔𝑎2+𝑎3+𝑎4.  Let 

𝑑𝑖𝑓𝑓5 = 𝑔1 − ∑ 𝑔𝑗′
𝑎2+𝑎3
𝑗′=2 − ∑ 2

�𝑛∙(𝑎2+𝑎3+𝑖)′�
𝑢𝑖

2𝑛∙(𝑎2+𝑎3+𝑖)′
+2��1−

𝑢𝑖
2𝑛∙(𝑎2+𝑎3+𝑖)′

+2�

𝑎4
𝑖=1  where 𝑢𝑖 ∈ {1, 2}.  

Then the joint distribution of 𝑔1,𝑔2, … ,𝑔𝑎2+𝑎3 is 
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𝑓�𝑔1,𝑔2, … ,𝑔𝑎2+𝑎3�

= �𝑓4�𝑟𝑗′1 = 𝑔𝑗′�
𝑎2

𝑗′=2

∙ � 𝑓3�𝑟𝑗′1 = 𝑔𝑗′�
𝑎2+𝑎3

𝑗′=𝑎2+1

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎2+𝑎3+𝑎4+1

 

∙ � � … � ����
2�𝑛∙(𝑎2+𝑎3+𝑖)′ − 1�

2𝑛∙(𝑎2+𝑎3+𝑖)′ − 1 − 𝑢𝑖
� ∙ 𝑝(𝑎2+𝑎3+𝑖)′

2𝑛∙(𝑎2+𝑎3+𝑖)′+1−𝑢𝑖 ∙ �1 − 𝑝(𝑎2+𝑎3+𝑖)′�
𝑢𝑖−1�

𝑎4

𝑖=1

2

𝑢1=1

2

𝑢𝑎4=1

 

��
2(𝑛∙1′ − 1)

�1 −�1 − 16 (𝑛∙1′(𝑑𝑖𝑓𝑓5)2)⁄ � (𝑛∙1′ + 1) − 3� ∙ 𝑝1′
�1−�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓5)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1−�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓5)2�⁄ ��𝑛∙1′+1� 

+�
2(𝑛∙1′ − 1)

�1 + �1 − 16 (𝑛∙1′(𝑑𝑖𝑓𝑓5)2)⁄ � (𝑛∙1′ + 1) − 3� ∙ 𝑝1′
�1+�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓5)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1+�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓5)2�⁄ ��𝑛∙1′+1���� 

where 𝑑𝑖𝑓𝑓5 ∈ �2 �𝑛∙1′ �
3

2𝑛∙1′+2
� �1 − 3

2𝑛∙1′+2
�� , … , 2 �𝑛∙1′ �

𝑛∙1′
2𝑛∙1′+2

� �1 − 𝑛∙1′
2𝑛∙1′+2

�� �.  Now sum 

over 𝑔𝑎2+1, … ,𝑔𝑎2+𝑎3.  Let 

𝑑𝑖𝑓𝑓6 =

𝑔1 − ∑ 𝑔𝑗′
𝑎2
𝑗′=2 − ∑ 2

�𝑛∙(𝑎2+𝑎3+𝑖)′�
𝑢𝑖

2𝑛∙(𝑎2+𝑎3+𝑖)′
+2��1−

𝑢𝑖
2𝑛∙(𝑎2+𝑎3+𝑖)′

+2�

𝑎4
𝑖=1 −

∑ 1

�𝑛∙(𝑎2+𝑑)′�
𝑣𝑑

2𝑛∙(𝑎2+𝑑)′+2
��1−

𝑣𝑑
2𝑛∙(𝑎2+𝑑)′+2

�

𝑎3
𝑑=1  where 𝑢𝑖 ∈ {1, 2} and 𝑣𝑑 ∈ �2, … ,𝑛∙(𝑎2+𝑑)′�.  Then the 

joint distribution of  𝑔1, … ,𝑔𝑎2 is 
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𝑓�𝑔1, … ,𝑔𝑎2� = �𝑓4�𝑟𝑗′1 = 𝑔𝑗′�
𝑎2

𝑗′=2

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎2+𝑎3+𝑎4+1

 

∙ � � … � ���2�2�𝑛∙(𝑎2+𝑑)′ − 1�
𝑣𝑑 − 2

� ∙ 𝑝(𝑎2+𝑑)′
𝑣𝑑−1

𝑎3

𝑑=1

𝑛∙(𝑎1+𝑎2+1)′

𝑣1=2

𝑛∙(𝑎1+𝑎2+𝑎3)′

𝑣𝑎3=2

∙ �1 − 𝑝(𝑎2+𝑑)′�
2𝑛∙(𝑎2+𝑑)′+1−𝑣𝑑 

+2�
2�𝑛∙(𝑎2+𝑑)′ − 1�
2𝑛∙(𝑎2+𝑑)′ − 𝑣𝑑

� 𝑝(𝑎2+𝑑)′
2𝑛∙(𝑎2+𝑑)′+1−𝑣𝑑�1 − 𝑝(𝑎2+𝑑)′�

𝑣𝑑−1� 

� … � ����
2�𝑛∙(𝑎2+𝑎3+𝑖)′ − 1�

2𝑛∙(𝑎2+𝑎3+𝑖)′ − 1 − 𝑢𝑖
� ∙ 𝑝(𝑎2+𝑎3+𝑖)′

2𝑛∙(𝑎2+𝑎3+𝑖)′+1−𝑢𝑖 ∙ �1 − 𝑝(𝑎2+𝑎3+𝑖)′�
𝑢𝑖−1�

𝑎4

𝑖=1

2

𝑢1=1

2

𝑢𝑎4=1

 

��
2(𝑛∙1′ − 1)

�1 −�1 − 16 (𝑛∙1′(𝑑𝑖𝑓𝑓6)2)⁄ � (𝑛∙1′ + 1) − 3� ∙ 𝑝1′
�1−�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓6)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1−�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓6)2�⁄ ��𝑛∙1′+1� 

+�
2(𝑛∙1′ − 1)

�1 + �1 − 16 (𝑛∙1′(𝑑𝑖𝑓𝑓6)2)⁄ � (𝑛∙1′ + 1) − 3� ∙ 𝑝1′
�1+�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓6)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1+�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓6)2�⁄ ��𝑛∙1′+1����� 

where 𝑑𝑖𝑓𝑓6 ∈ �2 �𝑛∙1′ �
3

2𝑛∙1′+2
� �1 − 3

2𝑛∙1′+2
�� , … , 2 �𝑛∙1′ �

𝑛∙1′
2𝑛∙1′+2

� �1 − 𝑛∙1′
2𝑛∙1′+2

�� �.  Now sum 

over 𝑔2, … ,𝑔𝑎2.  Let 𝑑𝑖𝑓𝑓7 = 𝑔1 − ∑ 2

�𝑛∙(𝑎2+𝑎3+𝑖)′�
𝑢𝑖

2𝑛∙(𝑎2+𝑎3+𝑖)′
+2��1−

𝑢𝑖
2𝑛∙(𝑎2+𝑎3+𝑖)′

+2�

𝑎4
𝑖=1 −

∑ 1

�𝑛∙(𝑎2+𝑑)′�
𝑣𝑑

2𝑛∙(𝑎2+𝑑)′+2
��1−

𝑣𝑑
2𝑛∙(𝑎2+𝑑)′+2

�

𝑎3
𝑑=1 − ∑ 2

�𝑛∙𝑒′�
𝑥𝑒

2𝑛∙𝑒′+2
��1− 𝑥𝑒

2𝑛∙𝑒′+2
�

𝑎2
𝑒=2  where 𝑢𝑖 ∈ {1, 2}, 
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𝑣𝑑 ∈ �2, … ,𝑛∙(𝑎2+𝑑)′�, and 𝑥𝑒 ∈ {3, … ,𝑛∙𝑒′}.  Then the distribution of the genetic score, 𝑔1, for 

this case is 

𝑓(𝑔1) = � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎2+𝑎3+𝑎4+1

 

∙ � � … � ����2(𝑛∙𝑒′ − 1)
𝑥𝑒 − 3 � 𝑝𝑒′

𝑥𝑒−1(1− 𝑝𝑒′)
2𝑛∙𝑒′+1−𝑥𝑒

𝑎2

𝑒=2

𝑛2

𝑥2=3

𝑛𝑎2

𝑥𝑎2=3

+ � 2(𝑛∙𝑒′ − 1)
2𝑛∙𝑒′ − 𝑥𝑒 − 1� 𝑝𝑒′

2𝑛∙𝑒′+1−𝑥𝑒(1− 𝑝𝑒′)𝑥𝑒−1� 

� … � ���2 �2�𝑛∙(𝑎2+𝑑)′ − 1�
𝑣𝑑 − 2

� ∙ 𝑝(𝑎2+𝑑)′
𝑣𝑑−1

𝑎3

𝑑=1

𝑛∙(𝑎1+𝑎2+1)′

𝑣1=2

𝑛∙(𝑎1+𝑎2+𝑎3)′

𝑣𝑎3=2

∙ �1 − 𝑝(𝑎2+𝑑)′�
2𝑛∙(𝑎2+𝑑)′+1−𝑣𝑑 

+2�
2�𝑛∙(𝑎2+𝑑)′ − 1�
2𝑛∙(𝑎2+𝑑)′ − 𝑣𝑑

� 𝑝(𝑎2+𝑑)′
2𝑛∙(𝑎2+𝑑)′+1−𝑣𝑑�1 − 𝑝(𝑎2+𝑑)′�

𝑣𝑑−1� 

∙ � … � ����
2�𝑛∙(𝑎2+𝑎3+𝑖)′ − 1�

2𝑛∙(𝑎2+𝑎3+𝑖)′ − 1 − 𝑢𝑖
� ∙ 𝑝(𝑎2+𝑎3+𝑖)′

2𝑛∙(𝑎2+𝑎3+𝑖)′+1−𝑢𝑖 ∙ �1 − 𝑝(𝑎2+𝑎3+𝑖)′�
𝑢𝑖−1�

𝑎4

𝑖=1

2

𝑢1=1

2

𝑢𝑎4=1

 

��
2(𝑛∙1′ − 1)

�1 −�1 − 16 (𝑛∙1′(𝑑𝑖𝑓𝑓7)2)⁄ � (𝑛∙1′ + 1) − 3� ∙ 𝑝1′
�1−�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓7)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1−�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓7)2�⁄ ��𝑛∙1′+1� 

+�
2(𝑛∙1′ − 1)

�1 + �1 − 16 (𝑛∙1′(𝑑𝑖𝑓𝑓7)2)⁄ � (𝑛∙1′ + 1) − 3� ∙ 𝑝1′
�1+�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓7)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1+�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓7)2�⁄ ��𝑛∙1′+1����

⎭
⎪
⎬

⎪
⎫

⎦
⎥
⎥
⎥
⎤
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where 𝑑𝑖𝑓𝑓7 ∈ �2 �𝑛∙1′ �
3

2𝑛∙1′+2
� �1 − 3

2𝑛∙1′+2
�� , … , 2 �𝑛∙1′ �

𝑛∙1′
2𝑛∙1′+2

� �1 − 𝑛∙1′
2𝑛∙1′+2

�� �. 

 Next consider case 3 where 𝑎1 = 𝑎2 = 0 and 𝑎3 > 0.  In this case 

𝑟1′1 ∈ �1 �𝑛∙1′ �
2

2𝑛∙1′+2
� �1 − 2

2𝑛∙1′+2
�� , … , 1 �𝑛∙1′ �

𝑛∙1′
2𝑛∙1′+2

� �1 − 𝑛∙1′
2𝑛∙1′+2

�� �.  Thus the joint 

distribution of 𝑔1,𝑔2, … ,𝑔𝐽 is 

𝑓�𝑔1,𝑔2, … ,𝑔𝐽� = �𝑓3�𝑟𝑗′1 = 𝑔𝑗′�
𝑎3

𝑗′=3

∙ � 𝑓2�𝑟𝑗′1 = 𝑔𝑗′�
𝑎3+𝑎4

𝑗′=𝑎3+1

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎3+𝑎4+1

 

∙

⎣
⎢
⎢
⎢
⎡
2 ∙

⎝

⎜
⎛

2(𝑛∙1′ − 1)

�1 −�1 − 4 �𝑛∙1′ �𝑔1 −� 𝑔𝑗′
𝐽

𝑗′=2
�
2

�� � (𝑛∙1′ + 1) − 2

⎠

⎟
⎞

∙ 𝑝1′

�1−�1−4 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′
𝐽
𝑗′=2

�
2
�� ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1−�1−4 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′

𝐽
𝑗′=2

�
2
�� ��𝑛∙1′+1�

 

+

⎝

⎜
⎛

2(𝑛∙1′ − 1)

�1 + �1 − 4 �𝑛∙1′ �𝑔1 −� 𝑔𝑗′
𝐽

𝑗′=2
�
2

�� � (𝑛∙1′ + 1) − 2

⎠

⎟
⎞

∙ 𝑝1′

�1+�1−4 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′
𝐽
𝑗′=2

�
2
�� ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1+�1−4 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′

𝐽
𝑗′=2

�
2
�� ��𝑛∙1′+1�

⎦
⎥
⎥
⎥
⎤
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where 𝑔1 − ∑ 𝑔𝑗′
𝐽
𝑗′=2 ∈ �1 �𝑛∙1′ �

2
2𝑛∙1′+2

� �1 − 2
2𝑛∙1′+2

�� , … , 1 �𝑛∙1′ �
𝑛∙1′

2𝑛∙1′+2
� �1 − 𝑛∙1′

2𝑛∙1′+2
�� �.  

Now sum out 𝑔2, … ,𝑔𝑎3.  Let 𝑑𝑖𝑓𝑓8 = 𝑔1 − ∑ 𝑔𝑗′
𝐽
𝑗′=𝑎3+1

− ∑ 1

�𝑛∙𝑑′�
𝑣𝑑

2𝑛∙𝑑′+2
��1−

𝑣𝑑
2𝑛∙𝑑′+2

�

𝑎3
𝑑=2  where 

𝑣𝑑 ∈ {2, … ,𝑛∙𝑑′}.  Then the joint distribution of 𝑔1,𝑔𝑎3+1, … ,𝑔𝐽 is 

𝑓�𝑔1,𝑔𝑎3+1, … ,𝑔𝐽� = � 𝑓2�𝑟𝑗′1 = 𝑔𝑗′�
𝑎3+𝑎4

𝑗′=𝑎3+1

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎3+𝑎4+1

 

∙ � � … � ���2 �2(𝑛∙𝑑′ − 1)
𝑣𝑑 − 2 � 𝑝𝑑′

𝑣𝑑−1(1− 𝑝𝑑′)
2𝑛∙𝑑′+1−𝑣𝑑

𝑎3

𝑑=2

𝑛2

𝑣2=2

𝑛𝑎3

𝑣𝑎3=2

+ 2 �2(𝑛∙𝑑′ − 1)
2𝑛∙𝑑′ − 𝑣𝑑

� 𝑝𝑑′
2𝑛∙𝑑′+1−𝑣𝑑(1− 𝑝𝑑′)𝑣𝑑−1� 

∙ �2 ∙ �
2(𝑛∙1′ − 1)

�1 −�1 − 4 (𝑛∙1′(𝑑𝑖𝑓𝑓8)2)⁄ � (𝑛∙1′ + 1) − 2� ∙ 𝑝1′
�1−�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓8)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1−�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓8)2�⁄ ��𝑛∙1′+1� 

+�
2(𝑛∙1′ − 1)

�1 + �1 − 4 (𝑛∙1′(𝑑𝑖𝑓𝑓8)2)⁄ � (𝑛∙1′ + 1) − 2� ∙ 𝑝1′
�1+�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓8)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1+�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓8)2�⁄ ��𝑛∙1′+1���� 

where 𝑑𝑖𝑓𝑓8 ∈ �1 �𝑛∙1′ �
2

2𝑛∙1′+2
� �1 − 2

2𝑛∙1′+2
�� , … , 1 �𝑛∙1′ �

𝑛∙1′
2𝑛∙1′+2

� �1 − 𝑛∙1′
2𝑛∙1′+2

�� �.  Now sum 

over 𝑔𝑎3+1, … ,𝑔𝑎3+𝑎4.  Let 𝑑𝑖𝑓𝑓9 = 𝑔1 − ∑ 𝑔𝑗′
𝐽
𝑗′=𝑎3+𝑎4+1

− ∑ 1

�𝑛∙𝑑′�
𝑣𝑑

2𝑛∙𝑑′+2
��1−

𝑣𝑑
2𝑛∙𝑑′+2

�

𝑎3
𝑑=2 −
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∑ 2

�𝑛∙(𝑎3+𝑖)′�
𝑢𝑖

2𝑛∙(𝑎3+𝑖)′
+2��1−

𝑢𝑖
2𝑛∙(𝑎3+𝑖)′

+2�

𝑎4
𝑖=1  where 𝑢𝑖 ∈ {1, 2} and 𝑣𝑑 ∈ {2, … ,𝑛∙𝑑′}.  The joint 

distribution of 𝑔1,𝑔𝑎3+𝑎4+1, … ,𝑔𝐽 is 

𝑓�𝑔1,𝑔𝑎3+1, … ,𝑔𝐽� = � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎3+𝑎4+1

 

∙ � � … � ����
2�𝑛∙(𝑎3+𝑖)′ − 1�

2𝑛∙(𝑎3+𝑖)′ − 1 − 𝑢𝑖
� ∙ 𝑝(𝑎3+𝑖)′

2𝑛∙(𝑎3+𝑖)′+1−𝑢𝑖 ∙ �1 − 𝑝(𝑎3+𝑖)′�
𝑢𝑖−1�

𝑎4

𝑖=1

2

𝑢1=1

2

𝑢𝑎4=1

 

� … � ���2 �2(𝑛∙𝑑′ − 1)
𝑣𝑑 − 2 � 𝑝𝑑′

𝑣𝑑−1(1 − 𝑝𝑑′)
2𝑛∙𝑑′+1−𝑣𝑑

𝑎3

𝑑=2

𝑛2

𝑣2=2

𝑛𝑎3

𝑣𝑎3=2

+ 2 �2(𝑛∙𝑑′ − 1)
2𝑛∙𝑑′ − 𝑣𝑑

�𝑝𝑑′
2𝑛∙𝑑′+1−𝑣𝑑(1− 𝑝𝑑′)𝑣𝑑−1� 

∙ �2 ∙ �
2(𝑛∙1′ − 1)

�1 −�1 − 4 (𝑛∙1′(𝑑𝑖𝑓𝑓9)2)⁄ � (𝑛∙1′ + 1) − 2� ∙ 𝑝1′
�1−�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓9)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1−�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓9)2�⁄ ��𝑛∙1′+1� 

+�
2(𝑛∙1′ − 1)

�1 + �1 − 4 (𝑛∙1′(𝑑𝑖𝑓𝑓9)2)⁄ � (𝑛∙1′ + 1) − 2� ∙ 𝑝1′
�1+�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓9)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1+�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓9)2�⁄ ��𝑛∙1′+1���� 

where 𝑑𝑖𝑓𝑓9 ∈ �1 �𝑛∙1′ �
2

2𝑛∙1′+2
� �1 − 2

2𝑛∙1′+2
�� , … , 1 �𝑛∙1′ �

𝑛∙1′
2𝑛∙1′+2

� �1 − 𝑛∙1′
2𝑛∙1′+2

�� �.  Now sum 

over 𝑔𝑎3+𝑎4+1, … ,𝑔𝐽.  These variables are all equal to zero and the 𝑓1�𝑔𝑗′�’s are all constants.  
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Let 𝑑𝑖𝑓𝑓10 = 𝑔1 − ∑ 1

�𝑛∙𝑑′�
𝑣𝑑

2𝑛∙𝑑′+2
��1−

𝑣𝑑
2𝑛∙𝑑′+2

�

𝑎3
𝑑=2 − ∑ 2

�𝑛∙(𝑎3+𝑖)′�
𝑢𝑖

2𝑛∙(𝑎3+𝑖)′
+2��1−

𝑢𝑖
2𝑛∙(𝑎3+𝑖)′

+2�

𝑎4
𝑖=1  

where 𝑢𝑖 ∈ {1, 2} and 𝑣𝑑 ∈ {2, … ,𝑛∙𝑑′}.  Thus the distribution of the genetic score, 𝑔1, for this 

case is 

𝑓(𝑔1) = � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎3+𝑎4+1

 

∙ � � … � ����
2�𝑛∙(𝑎3+𝑖)′ − 1�

2𝑛∙(𝑎3+𝑖)′ − 1 − 𝑢𝑖
� ∙ 𝑝(𝑎3+𝑖)′

2𝑛∙(𝑎3+𝑖)′+1−𝑢𝑖 ∙ �1 − 𝑝(𝑎3+𝑖)′�
𝑢𝑖−1�

𝑎4

𝑖=1

2

𝑢1=1

2

𝑢𝑎4=1

 

∙ � … � ���2 �2(𝑛∙𝑑′ − 1)
𝑣𝑑 − 2 � 𝑝𝑑′

𝑣𝑑−1(1− 𝑝𝑑′)
2𝑛∙𝑑′+1−𝑣𝑑

𝑎3

𝑑=2

𝑛2

𝑣2=2

𝑛𝑎3

𝑣𝑎3=2

+ 2 �2(𝑛∙𝑑′ − 1)
2𝑛∙𝑑′ − 𝑣𝑑

�𝑝𝑑′
2𝑛∙𝑑′+1−𝑣𝑑(1− 𝑝𝑑′)𝑣𝑑−1� 

∙ �2 ∙ �
2(𝑛∙1′ − 1)

�1 −�1 − 4 (𝑛∙1′(𝑑𝑖𝑓𝑓10)2)⁄ � (𝑛∙1′ + 1) − 2� ∙ 𝑝1′
�1−�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓10)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1−�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓10)2�⁄ ��𝑛∙1′+1� 

+�
2(𝑛∙1′ − 1)

�1 + �1 − 4 (𝑛∙1′(𝑑𝑖𝑓𝑓10)2)⁄ � (𝑛∙1′ + 1) − 2� ∙ 𝑝1′
�1+�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓10)2�⁄ ��𝑛∙1′+1�−1

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�1+�1−4 �𝑛∙1′(𝑑𝑖𝑓𝑓10)2�⁄ ��𝑛∙1′+1���� 

where 𝑑𝑖𝑓𝑓10 ∈ �1 �𝑛∙1′ �
2

2𝑛∙1′+2
� �1 − 2

2𝑛∙1′+2
�� , … , 1 �𝑛∙1′ �

𝑛∙1′
2𝑛∙1′+2

� �1 − 𝑛∙1′
2𝑛∙1′+2

�� �. 



43 
 

 Next consider case 4 where 𝑎1 = 𝑎2 = 𝑎3 = 0 and 𝑎4 > 0.  Then the joint distribution of 

𝑔1,𝑔2, … ,𝑔𝐽 is  

𝑓�𝑔1,𝑔2, … ,𝑔𝐽�

= �𝑓2�𝑟𝑗′1 = 𝑔𝑗′�
𝑎4

𝑗′=2

∙ � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎4+1

∙

⎝

⎜
⎛

2(𝑛∙1′ − 1)

(𝑛∙1′ + 1)�1 + �1 − 16 �𝑛∙1′ �𝑔1 −� 𝑔𝑗′
𝐽

𝑗′=2
�
2

�� � − 3

⎠

⎟
⎞

∙ 𝑝1′

�𝑛∙1′+1��1+�1−16 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′
𝐽
𝑗′=2

�
2
�� �−1

 

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�𝑛∙1′+1��1+�1−16 �𝑛∙1′�𝑔1−∑ 𝑔𝑗′

𝐽
𝑗′=2

�
2
�� �

 

where 𝑔1 − ∑ 𝑔𝑗′
𝐽
𝑗′=2 ∈ �2 �𝑛∙1′ �

1
2𝑛∙1′+2

� �1 − 1
2𝑛∙1′+2

�� , 2 �𝑛∙1′ �
2

2𝑛∙1′+2
� �1 − 2

2𝑛∙1′+2
�� �.  

Now sum out 𝑔2, … ,𝑔𝑎4.  Let 𝑑𝑖𝑓𝑓11 = 𝑔1 − ∑ 𝑔𝑗′
𝐽
𝑗′=𝑎4+1

− ∑ 2

�𝑛∙𝑖′�
𝑢𝑖

2𝑛∙𝑖′+2
��1−

𝑢𝑖
2𝑛∙𝑖′+2

�

𝑎4
𝑖=2  where 

𝑢𝑖 ∈ {1, 2}.  Then the joint distribution of 𝑔1,𝑔𝑎4+1, … ,𝑔𝐽 is 
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𝑓�𝑔1,𝑔𝑎4+1, … ,𝑔𝐽�

= � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎4+1

∙ � � … � ����
2(𝑛∙𝑖′ − 1)

2𝑛∙𝑖′ − 𝑢𝑖 − 1� 𝑝𝑖′
2𝑛∙𝑖′+1−𝑢𝑖(1− 𝑝𝑖′)𝑢𝑖−1�

𝑎4

𝑖=2

2

𝑢2=1

2

𝑢𝑎4=1

∙ �
2(𝑛∙1′ − 1)

(𝑛∙1′ + 1) �1 + �1 − 16 (𝑛∙1′(𝑑𝑖𝑓𝑓11)2)⁄ � − 3�

∙ 𝑝1′
�𝑛∙1′+1��1+�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓11)2�⁄ �−1

 

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�𝑛∙1′+1��1+�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓11)2�⁄ �

�� 

where 𝑑𝑖𝑓𝑓11 ∈ �2 �𝑛∙1′ �
1

2𝑛∙1′+2
� �1 − 1

2𝑛∙1′+2
�� , 2 �𝑛∙1′ �

2
2𝑛∙1′+2

� �1 − 2
2𝑛∙1′+2

�� �.  Now sum 

over 𝑔𝑎4+1, … ,𝑔𝐽.  Let 𝑑𝑖𝑓𝑓12 = 𝑔1 − ∑ 2

�𝑛∙𝑖′�
𝑢𝑖

2𝑛∙𝑖′+2
��1−

𝑢𝑖
2𝑛∙𝑖′+2

�

𝑎4
𝑖=2  where 𝑢𝑖 ∈ {1, 2}.  Then the 

distribution of the genetic score, 𝑔1, for this case is 
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𝑓(𝑔1) = � 𝑓1�𝑟𝑗′1 = 𝑔𝑗′�
𝐽

𝑗′=𝑎4+1

∙ � � … � ����
2(𝑛∙𝑖′ − 1)

2𝑛∙𝑖′ − 𝑢𝑖 − 1� 𝑝𝑖′
2𝑛∙𝑖′+1−𝑢𝑖(1− 𝑝𝑖′)𝑢𝑖−1�

𝑎4

𝑖=2

2

𝑢2=1

2

𝑢𝑎4=1

∙ �
2(𝑛∙1′ − 1)

(𝑛∙1′ + 1) �1 + �1 − 16 (𝑛∙1′(𝑑𝑖𝑓𝑓12)2)⁄ � − 3�

∙ 𝑝1′
�𝑛∙1′+1��1+�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓12)2�⁄ �−1

 

∙ (1 − 𝑝1′)
2𝑛∙1′+1−�𝑛∙1′+1��1+�1−16 �𝑛∙1′(𝑑𝑖𝑓𝑓12)2�⁄ �

�� 

Where 𝑑𝑖𝑓𝑓12 ∈ �2 �𝑛∙1′ �
1

2𝑛∙1′+2
� �1 − 1

2𝑛∙1′+2
�� , 2 �𝑛∙1′ �

2
2𝑛∙1′+2

� �1 − 2
2𝑛∙1′+2

�� �. 

Now consider case 5 where 𝑟11 = ⋯ = 𝑟𝐽1 = 0, then 𝑔1 = 0 and the joint distribution of 

𝑔1,𝑔2, … ,𝑔𝐽 is 

𝑓�𝑔1,𝑔2, … ,𝑔𝐽�

= �����2�𝑛∙𝑗′ − 1�
𝑡 − 1

� ∙ 𝑝𝑗′
𝑡−1 ∙ �1 − 𝑝𝑗′�

2𝑛∙𝑗′+1−𝑡 + �
2�𝑛∙𝑗′ − 1�

2𝑛∙𝑗′ + 1 − 𝑡�

𝑛∙𝑗′

𝑡=3

𝐽

𝑗′=1

∙ 𝑝𝑗′
2𝑛∙𝑗′+1−𝑡 ∙ �1 − 𝑝𝑗′�

𝑡−1�+ ���2�𝑛∙𝑗′ − 1�
𝑡 − 1

� ∙ 𝑝𝑗′
𝑡−1 ∙ �1 − 𝑝𝑗′�

2𝑛∙𝑗′+1−𝑡�
2

𝑡=1

+ �2�𝑛∙𝑗′ − 1�
𝑛∙𝑗′

� ∙ 𝑝𝑗′
𝑛∙𝑗′ ∙ �1 − 𝑝𝑗′�

𝑛∙𝑗′�. 

Notice that the above distribution does not depend on the individual 𝑔𝑗′’s and for each 𝑔𝑗′  there 

is only one possible value of zero.  Hence when the ancillary variables are summed out the 

marginal distribution of the genetic score when 𝑔1 = 0 is 
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𝑓(𝑔1) = �����2�𝑛∙𝑗′ − 1�
𝑡 − 1

� ∙ 𝑝𝑗′
𝑡−1 ∙ �1 − 𝑝𝑗′�

2𝑛∙𝑗′+1−𝑡 + �
2�𝑛∙𝑗′ − 1�

2𝑛∙𝑗′ + 1 − 𝑡� ∙ 𝑝𝑗′
2𝑛∙𝑗′+1−𝑡

𝑛∙𝑗′

𝑡=3

𝐽

𝑗′=1

∙ �1 − 𝑝𝑗′�
𝑡−1� + ���2�𝑛∙𝑗′ − 1�

𝑡 − 1
� ∙ 𝑝𝑗′

𝑡−1 ∙ �1 − 𝑝𝑗′�
2𝑛∙𝑗′+1−𝑡�

2

𝑡=1

+ �2�𝑛∙𝑗′ − 1�
𝑛∙𝑗′

� ∙ 𝑝𝑗′
𝑛∙𝑗′ ∙ �1 − 𝑝𝑗′�

𝑛∙𝑗′�. 

As demonstrated in the previous derivations the distribution of the genetic score can be 

tedious to calculate.  It requires the values of 𝑟11, 𝑟21, … , 𝑟𝐽1 in order to know which case the 

resulting distribution the function lies in.  Additionally there exist nuisance parameters, 𝑝𝑗′  , 

𝑗′ = 1, . . , 𝐽.  Since these are unknown the exact probabilities in the distribution cannot be 

calculated.  Additionally the functions are sensitive to the 𝑝𝑗′’s.  For example if a 𝑝𝑗′  is increased 

then the probability the genetic score equals zero is decreased.  For these reasons the distribution 

of the genetic scores is not used to calculate a test statistic rather a Krusal-Wallis test is used since 

the distribution of the genetic scores is skewed and possibly contains outliers. 

The multinomial weighted sum statistic has the advantage that it simultaneously 

considers all variants at a locus.  This is not the only approach to take.  A marker by marker 

approach such as the one detailed in the next section can pinpoint associations at variants. 

2.2 Single Marker Analysis for Multinomial Data 

 A Single Marker Analysis (SMA) is also proposed to perform association analysis.  The 

hypotheses tested are: 

 H0: The phenotype and marker are statistically independent. 

 Ha: There is an association between the phenotype and marker. 
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In this method each marker is tested individually then a multiple testing correction is used to 

determine if the result is significant enough to warrant rejecting the null hypothesis.   

 First a phenotype by genotype contingency table is constructed.  Observations missing 

the phenotype or genotype are excluded from the test.  As in the typical contingency analysis, for 

each cell in the table the estimated expected cell count is calculated as the row total times the 

column total divided by the number of observations in the table.  If the expected cell count for 

any cell in the table is less than five then an exact test is used.  This routine returns the exact p-

value for an observed contingency table using the hypergeometric distribution with fixed row and 

column totals.  If all of the cell counts were five or greater then a Chi-square test of independence 

is run using Pearson’s statistic. 

2.2.1 Multiple Testing Correction 

The above described SMA only provides results for a single test at a single marker.  In 

practice these tests are used multiple times at different markers to search for an association across 

the locus.  Therefore it is important to use a multiple testing correction when making conclusions.  

The False Discovery Rate (FDR) controlling procedure proposed by Benjamini and Hochberg 

(1995) is used to adjust for the large number of tests being simultaneously run.  This method 

differs from a Family-Wise Error Rate (FWER) control in that it controls the number of false 

positives rather than the probability of making a single Type I error.  This method has been 

shown to have higher power than a traditional FWER control (Benjamini & Hochberg, 1995).  In 

general this method assumes the test statistics are independent.  There are special cases of 

dependency of the test statistics where the results still hold (Benjamini & Yekutieli, 2001).  One 

of these cases is for positively correlated tests.  When linkage disequilibrium exists the tests are 

positively correlated (Verhoeven, Simonsen, & McIntyre, 2005).  An adjustment can be made to 

the procedure if dependency outside of the special cases exists (Benjamini & Yekutieli, 2001).   
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Define Q as the proportion of false rejections among all rejections, then the Benjamini 

and Hochberg FDR is the 𝐸(𝑄).  The Benjamini and Hochberg procedure considers testing D null 

hypotheses, 𝐻01, … ,𝐻0𝐷, using observed significance levels, 𝑃1, … ,𝑃𝐷.  The first step in the 

procedure is to order the observed significance levels so that 𝑃(1) ≤ ⋯ ≤ 𝑃(𝐷).  Denote the null 

hypothesis corresponding to the ordered observed significance level 𝑃(𝑙) as 𝐻0(𝑙).  Find 

𝑑 = 𝑚𝑎𝑥 �𝑙:𝑃(𝑙) ≤
𝑙
𝐷
𝛼� 

and reject 𝐻0(1), … ,𝐻0(𝑑).  If the above d does not exist then none of the null hypotheses are 

rejected.  Let 𝐷0 be the number of true null hypotheses.  For this procedure it is the case that 

(Benjamini & Hochberg, 1995) 

𝐸(𝑄) ≤
𝐷0
𝐷
𝛼 ≤ 𝛼. 

Hence the procedure controls the FDR at the 𝛼 ∙ 𝐷0 𝐷⁄  level. 

2.3. Multinomial Logistic Regression 

 Multinomial logistic regression is also proposed to test for an association between a 

nominal phenotype with more than two categories and rare variants.  This method is the 

multivariate generalized linear model approach.  Multinomial logistic regression is called many 

different names.  It can also be called polychotomous, polytomous, or baseline-category logistic 

regression.   The model begins by choosing a baseline category.  Continuing the notation above 

let the categories in the phenotype be indexed with k = 1, …, K.  Any category can be chosen as 

the baseline.  For clarity let the baseline category by the Kth category.  The multinomial logistic 

model simultaneously compares category K with the other K – 1 categories.  Let Y be the 

phenotype.  Dummy variables were created for the genotypes at the variants.  Normally two 

dummy variables would be needed for each marker since there are three genotypic categories.  
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However since these markers are rare variants it is possible only one dummy variable is necessary 

for a given marker.  Let 𝑗∗ = 1, … , 𝐽∗ index the dummy variables of genotypes.  Let 𝑋𝑖𝐽∗  be the 

𝑗∗th dummy variable for the ith individual.  Let 𝑿𝑖 = �𝑋𝑖1, … ,𝑋𝑖𝐽∗�′ be the column vector for the 

ith individual.    Extending the notation from a logistic model, let for category k 

𝜋𝑘(𝑿𝑖) = 𝑃(𝑌 = 𝑘|𝑿𝑖) 

with ∑ 𝜋𝑘(𝑿𝑖)𝑘 = 1.  Under this set up for an arbitrary 𝑿, the counts in the K categories have a 

multinomial distribution with probabilities 𝜋1(𝑿), . . . ,𝜋𝐾−1(𝑿) such that 𝜋𝐾(𝑿) = 1 −

∑ 𝜋𝑘(𝑿)𝑘 .  The baseline category is paired with each other category in a logit model.  The model 

is then K– 1 simultaneous models 

𝑙𝑛
𝜋𝑘(𝑿)
𝜋𝐾(𝑿) = 𝑎𝑘 + 𝜷𝑘′ 𝑿 

for k = 1, …, K – 1 with 𝑎𝑘 an intercept term and 𝜷𝑘 a column vector of coefficients for the kth 

model (Agresti, 2002).  Rewriting the above equations, the probability of category k is 

𝜋𝑘(𝑿) =
𝑒𝑥𝑝(𝑎𝑘 + 𝜷𝑘′ 𝑿)

1 + ∑ 𝑒𝑥𝑝(𝑎ℎ + 𝜷ℎ′ 𝑿)𝐾−1
ℎ=1

 

where 𝛼𝐾 = 0 and 𝜷𝐾 = 0.  For the phenotype of the ith individual let 𝒚𝑖 = (𝑦𝑖1, … ,𝑦𝑖𝐾) where 

𝑦𝑖𝑘 is one if the phenotype is in category k and zero otherwise.  Notice for each individual 

∑ 𝑦𝑖𝑘𝑘 = 1.  Formally define the parameters for the kth logit as 𝜷𝑘 = �𝛽𝑘1, … ,𝛽𝑘𝐽∗�′.  Also note 

that 𝜋𝐾(𝑿𝑖) = 1 − ∑ 𝜋𝑘(𝑿𝑖)𝐾−1
𝑘=1 , 𝜋𝐾(𝑿𝑖) = 1 �1 + ∑ 𝑒𝑥𝑝(𝑎𝑘 + 𝜷𝑘′ 𝑿)𝐾−1

𝑘=1 �⁄  and 𝑦𝑖𝐾 = 1 −

∑ 𝑦𝑖𝑘𝐾−1
𝑘=1 .  To find the log likelihood first consider the contribution of individual i 

ln ��𝜋𝑘(𝑿𝑖)𝑦𝑖𝑘
𝐾

𝑘=1

� = �𝑦𝑖𝑘 ln𝜋𝑘(𝑿𝑖)
𝐾−1

𝑘=1

+ �1 −� 𝑦𝑖𝑘

𝐾−1

𝑘=1

� ln𝜋𝐾(𝑿𝑖) 
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= �𝑦𝑖𝑘 ln𝜋𝑘(𝑿𝑖)
𝐾−1

𝑘=1

− � 𝑦𝑖𝑘

𝐾−1

𝑘=1

 ln𝜋𝐾(𝑿𝑖) + ln𝜋𝐾(𝑿𝑖) 

= �𝑦𝑖𝑘[ln𝜋𝑘(𝑿𝑖) − ln𝜋𝐾(𝑿𝑖)]
𝐾−1

𝑘=1

+ ln
1

1 + ∑ exp(𝑎𝑘 + 𝜷𝑘′ 𝑿)𝐾−1
𝑘=1

 

= �𝑦𝑖𝑘 ln
𝜋𝑘(𝑿𝑖)
𝜋𝐾(𝑿𝑖)

𝐾−1

𝑘=1

− ln �1 + � exp(𝑎𝑘 + 𝜷𝑘′ 𝑿)
𝐾−1

𝑘=1

� 

= �𝑦𝑖𝑘 exp(𝑎𝑘 + 𝜷𝑘′ 𝑿)
𝐾−1

𝑘=1

− ln �1 + � exp(𝑎𝑘 + 𝜷𝑘′ 𝑿)
𝐾−1

𝑘=1

� 

Note that the constant term 𝑛! [𝑦𝑖1! … 𝑦𝑖𝐾!]⁄  in the multinomial distribution was excluded above 

since it does not contribute to the information about the parameters.  Now consider the full log 

likelihood based on n independent observations.   

ln���𝜋𝑘(𝑿𝑖)𝑦𝑖𝑘
𝐾

𝑘=1

�
𝑛

𝑖=1

= � ln ��𝜋𝑘(𝑿𝑖)𝑦𝑖𝑘
𝐾

𝑘=1

�
𝑛

𝑖=1

 

= ��� 𝑦𝑖𝑘 exp(𝑎𝑘 + 𝜷𝑘′ 𝑿)
𝐾−1

𝑘=1

− ln �1 + � exp(𝑎𝑘 + 𝜷𝑘′ 𝑿)
𝐾−1

𝑘=1

��
𝑛

𝑖=1

 

The model is fit and maximum likelihood estimates are found by maximizing the log likelihood 

function using the Newton-Raphson or similar algorithm (Croissant).  The null hypothesis of no 

association is 𝐻𝑜:𝜷1 = ⋯ = 𝜷𝐾 = 0.  A likelihood ratio test is used to test this hypothesis.  The 

log likelihood of the full model, ln𝐿, is compared to the log likelihood under the null hypothesis, 

ln𝐿0.  The test statistic is (Hosmer & Lemeshow, 2000, p. 270) 

−2(ln𝐿0 − ln 𝐿) ∼̇ 𝜒𝐽∗(𝐾−1)
2  

and 𝐻0is rejected for large values of the test statistic. 
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2.4 Multinomial Logistic Regression with Collapsing 

The genotypes of the rare variants are converted to dummy variables for use in the 

multinomial logistic regression.  Since the rare allele made some genotypes occur only a few 

times in the data set it is possible that all individuals in a phenotypic category had the same value 

of the dummy variable.  This phenomenon is called quasi-complete separation.  Due to the nature 

of the data, quasi-complete separation occurs frequently.  Quasi-complete separation is 

unavoidable in the data sets since dummy variables for the rare variants are necessary.  When 

quasi-complete separation occurs between an independent variable and the dependent variable in 

multinomial logistic regression, the maximum likelihood estimate for the coefficient to the 

independent variable does not exist (Albert & Anderson, 1984).  Since the MLE does not exist a 

maximum point of the log likelihood function does not exist.  Rather the log likelihood is 

maximized in the limit.  This leads to problems when the maximization routine tries to find a 

maximum that does not exist.  Combining variables together is recommended by Allison (2008) 

as a possible way to allow the routine to find a solution.  Using this suggestion any dummy 

variables with quasi-complete separation are collapsed together to form one dummy variable.  

This dummy variable takes the value of one if at least one variant from the collapsing group 

contains the rare allele and is zero otherwise.  Multinomial logistic regression is then used to test 

for an association as described in the previous section.
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CHAPTER III 
 

 

SIMULATIONS 

 

 To assess the performance of the previously proposed tests, simulations were run under 

different scenarios that might affect the type I error and power.  Section 3.1 gives the factors 

considered.  Section 3.2 details the steps in the simulation process.       

3.1 Scenarios Considered 

 The factors considered in the simulations were sample size, number of phenotypic 

categories, and heritability under the alternative hypothesis.  Initially sample sizes of 500, 1000, 

and 2000 were utilized in the simulations.  Three, five, and seven phenotypic categories were 

considered.  For simulations under the alternative hypothesis the heritability in the broad sense 

was varied with lambda set as 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, or 0.8.   

In order to make recommendations on sample sizes additional simulations were run for 

the heritability in the broad sense of 5%, 10% and 20%.  These heritability levels were chosen 

based on the fact that most genome wide association studies using common variants can account 

for 5% to 10% of the heritability (Asimit & Zeggini, 2010).  Sample sizes were chosen so that the 

proposed weighted sum test and SMA could achieve at least 80% power with three, five, and 

seven phenotypic categories.
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3.2 Steps in the Simulations 

Generation of genetic markers and phenotypes was accomplished by modifying a 

procedure described by Morris and Zeggini (2010).  The goal in generating the data was to 

simulate sampling diploid individuals with rare variants and a multinomial phenotype from a 

population of 20,000.  One thousand iterations were run for each combination of the parameters 

given in the previous section.  The following steps describe how a single iteration of the 

algorithm was run.  The steps include the details used for simulating under the null or alternative 

hypothesis. 

1. A population of 40,000 haplotypes in a 50,000 base pair region is created using the ms 

program (UNIX platform) by Hudson (2002).  Recombination is assumed and a crossover 

rate of 1 cM per million base pairs is used as in Morris and Zeggini.  Additionally a per 

base mutation rate of 10-8 and an effective population size of 10,000 is also taken from 

Morris and Zeggini.  Justification for these choices of parameters is not provided by 

Morris and Zeggini.  It is assumed these parameters are reasonable for simulating a 

population of haplotypes.  Two parameters, θ and ρ, are required in the call to the ms 

program.  The first is calculated as 𝜃 = 4𝑁0𝜇 where 𝑁0is the diploid effective population 

size and 𝜇 is the locus neutral mutation rate.  The second parameter is the cross over rate 

parameter, ρ.  It is calculated as 𝜌 = 4𝑁0𝑟 where r is the probability of crossover 

between ends of the locus.  The correctly scaled parameters as used by Morris and 

Zeggini aee calculated as: 

𝜃 = 4(10,000)(50,000)(10−8) = 20 

𝜌 = 4(10,000)(50,000 − 1)�
1 100⁄

1,000,000�
= 19.9996 ≈ 20 
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The call to the ms program is “./ms nsam nrep –t 𝜃 –r 𝜌 nsites > output/temp1” where 

nsam = 40000, nrep = 1, 𝜃 = 20, 𝜌 = 20, and nsites = 50000.  The “> ouput/temp1” 

section of the call saves the ms data to an external file for later.  

2. The data set produced by ms is read into R (R Development Core Team, 2011).  The 

minor allele frequency (MAF) is calculated for each marker.  Only rare variants, markers 

with a MAF of 5% or less, are kept for analysis.  It is important to note that Morris and 

Zeggini (2010) as well as Li and Leal (2008) define a rare variant as a marker with a 

MAF of 1% or less.  For simulations under the alternative hypothesis of association, 

markers are randomly selected to be causal so that the total MAF of the markers is 

approximately 10%.   

3. At this point it is necessary to capture a population parameter for simulations under the 

alternative before the sample is collected.  The use of this parameter is explained in a 

later step.  It is desired to calculate the probability that all causal alleles are the wild type 

in the individual.  Let 𝑏𝑖 be the number of rare causal alleles across the whole locus for 

diploid individual i.  Hence it is desired to calculate 𝑃(𝑏𝑖 = 0) in the population.  Since 

the data set contains haplotypes not individuals the probability can not be directly 

calculated.  Originally, pairing of all 40,000 haplotypes was considered to create 

individuals so this quantity could be calculated.  However the procedure proved to be too 

computationally intensive to run in a reasonable amount of time.  A theoretical equivalent 

is produced using the haplotypes.  Let 𝐵1𝑖 be the number of causal rare alleles in 

haplotype 1 and 𝐵2𝑖 be the number of causal rare alleles for haplotype 2 paired with 

haplotype 1.  Then 𝑏𝑖 = 𝐵1𝑖 + 𝐵2𝑖 since the sum in the individual can be broken into the 

haplotypes.  Due to the fact that haplotypes are randomly paired and assumed 

independent it can be shown: 

𝑃(𝑏𝑖 = 0) = 𝑃(𝐵1𝑖 = 0 ∩ 𝐵2𝑖 = 0) 
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= 𝑃(𝐵1𝑖 = 0) ∙ 𝑃(𝐵2𝑖 = 0) 

= [𝑃(𝐵1𝑖 = 0)]2 

Hence the only differences between 𝑃(𝑏𝑖 = 0) and [𝑃(𝐵1𝑖 = 0)]2 are due to the exact 

random pairing performed.  The final equation is simply the square of the probability that 

all causal alleles are wild type on one haplotype.  The quantity [𝑃(𝐵1𝑖 = 0)]2 is 

calculated from the generated population and saved for later in the simulation process 

when the parameter 𝑃(𝑏𝑖 = 0) is needed.  Under the null hypothesis this quantity is not 

calculated since there are no causal alleles. 

4. A sample of 2N haplotypes is randomly selected.  These haplotypes are randomly paired 

together to create diploid organisms.  Since a sample is taken from the population it is 

possible that a rare variant had a MAF of greater than 5%.  It is also possible that for 

some markers no rare alleles made it into the sample. 

5. For generating phenotypic data under the alternative hypothesis of association, 𝑏𝑖, the 

number of rare causal alleles across the whole locus for each individual is calculated.  

The quantity λ is defined as the heritability in the broad sense.  Morris and Zeggini 

(2010) simulate the phenotype from a 𝑁(𝐼(𝑏𝑖 > 0),𝜎2) but do not give a formula for the 

variance or standard deviation.  They simply state that “the standard deviation, σ, is 

determined by the spectrum of causal variants and their joint contribution, λ, to the 

phenotypic variance” (Morris & Zeggini, 2010).  To derive the formula for the variance it 

may be helpful to recall from Bain and Englehardt (Introduction to Probability and 

Mathematical Statistics, 1992) Theorem 5.4.3: 

𝑉𝑎𝑟(𝑌) = 𝐸𝑋[𝑉𝑎𝑟(𝑌|𝑋)] + 𝑉𝑎𝑟𝑋[𝐸(𝑌|𝑋)]. 

The conditional distribution 𝑦𝑖|𝑏𝑖~𝑁(𝐼(𝑏𝑖 > 0),𝜎2) is the normal variable that Morris 

and Zeggini generated in their simulations.  Note that for the mean in the normal variable 

it is the case that 𝐼(𝑏𝑖 > 0)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖�𝑃(𝑏𝑖 > 0)�.  It is desired to avoid making any 
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assumptions about the individual markers.  Linkage disequilibrium is possible under the 

following results.  Given the above conditional distribution it is necessary to know the 

variance of the resulting, 𝑦𝑖’s.  The variance is: 

𝑉𝑎𝑟(𝑦𝑖) = 𝐸𝑏𝑖[𝑉𝑎𝑟(𝑦𝑖|𝑏𝑖)] + 𝑉𝑎𝑟𝑏𝑖[𝐸(𝑦𝑖|𝑏𝑖)] 

= 𝐸𝑏𝑖[𝜎
2] + 𝑉𝑎𝑟𝑏𝑖[𝐼(𝑏𝑖 > 0)] 

= 𝜎2 + 𝑃(𝑏𝑖 > 0)�1 − 𝑃(𝑏𝑖 > 0)� 

= 𝜎2 + [1 − 𝑃(𝑏𝑖 = 0)][𝑃(𝑏𝑖 = 0)] 

The first term in the last equality is the variance of the environmental effects, 𝑉𝑎𝑟(𝐸), in 

the usual equation 𝑉𝑎𝑟(𝑃) = 𝑉𝑎𝑟(𝐺) + 𝑉𝑎𝑟(𝐸).  The second term is the variance of the 

genetic effects.  The heritability in the broad sense is written as: 

𝜆 =
𝑉𝑎𝑟(𝐺)

𝑉𝑎𝑟(𝐺) + 𝑉𝑎𝑟(𝐸). 

Solving for the 𝑉𝑎𝑟(𝐸) obtains 

𝑉𝑎𝑟(𝐸) =
1 − 𝜆
𝜆

𝑉𝑎𝑟(𝐺). 

Thus the variance in the conditional distribution needed to be  

𝜎2 =
1 − 𝜆
𝜆

[1 − 𝑃(𝑏𝑖 = 0)][𝑃(𝑏𝑖 = 0)] 

in order to have the correct heritability in 𝑦𝑖.  Recall it was not computationally efficient 

to calculate 𝑃(𝑏𝑖 = 0) in the population.  Thus the theoretical equivalent [𝑃(𝐵1𝑖 = 0)]2 

saved in step 3 is used in its place.  Under the null hypothesis of no association a random 

variable from a standard normal distribution is generated in place of 𝑦𝑖.  To obtain the 

categorical phenotypes, the empirical percentiles of the 𝑦𝑖’s are used to divide the data 

into the desired number of categories.  For example when five categories are needed the 

quintiles are used to divide the 𝑦𝑖’s into five categories.  The generated data set thus 

consists of a categorical phenotype and all rare variants.  For simulations under the null 
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hypothesis these rare variants are all non-causal.  For simulations under the alternative 

hypothesis these rare variants are a mixture causal and non-causal variants.   

6. The proposed methods from Chapter 2 are applied to the generated data set.   

a. The proposed weighted sum statistic test deriving a p-value from the appropriate 

chi-square distribution is the test of interest.  The p-value is compared to a 0.05 

level to determine a decision.  In addition to this version of the test, a 

permutation test is run to find an empirical p-value for the weighted sum test 

statistic.  This is done to show that the permutation test is not necessary when the 

observations are independent.     

b. The previously described single marker analysis (SMA) is also performed.  If the 

expected cell count for any cell in the contingency table is less than five then an 

exact test through the fisher.test() function in R was used.  This function uses the 

FEXACT routine created by Mehta and Patel (1986) and modified by Clarkson, 

Fan, and Joe (1993) to run the Fisher’s exact test when the table is larger than 

2 × 2.  If all of the expected cell counts are greater than five then the usual Chi-

square test is run in R.  A false discovery rate (FDR) of α = 0.05 is used in the 

algorithm.  The procedure results in a decision for each test.  If any decision is to 

reject then the whole SMA is counted as significant.  Thus a significant result 

does not mean that all variants were rejected.  Rather it means that at least one 

test on the locus produced a decision to reject.   

c. Two versions of multinomial logistic regression (with and without collapsing) are 

also considered to test for association as described in Chapter 2.  Linear 

dependencies and dummy variables with only one value are eliminated by using a 

Gaussian elimination function provided by John Fox (2007) on the R help forum.  

This is necessary because the multinomial logistic regression function in R does 

not tolerate linear dependencies or redundant variables.  To run the multinomial 
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logistic regression the R package mlogit (Croissant) is utilized.  The package can 

only handle eighty-five variables at a time so if necessary the independent 

variables are split into two groups and two models are run.  In this case eighty-

five variables are included in the first model and the remaining in the second 

model.  If splitting the variables is necessary then a Bonferonni correction to a 

0.05 level is used to adjust the type I error for the two tests.  In the case of two 

models if either of the decisions are to reject then the result is counted as 

significant.  If only one test is needed then a 0.05 level is used for making a 

decision. 

7. A tally of the number of significant tests is kept.  If a test is significant then one is added 

to the counting variable for that test.  During initial testing it became clear that there is a 

huge problem with using the mlogit package for the multinomial logistic regression.  The 

model fitting failed numerous times when the hessian became computationally singular.  

For both versions of the multinomial logistic regression routines the number of times the 

routine succeeded are counted.   

As noted above these steps were run 1000 times for each combination of the parameters.  

The proportion of significant tests was used to estimate the type I error under the null hypothesis 

and power under the alternative.  Estimates for the multinomial logistic regression methods used 

the number of times the routines succeeded not the number of tests attempted to calculate these 

proportions.  The results of the simulations are presented in the following chapter.
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CHAPTER IV 
 

 

RESULTS 

 

 The results of the simulations described in chapter III are detailed here.  Section 4.1 

discusses of the number of rare variants generated in the simulations as well as the number of 

causal variants simulated.  Section 4.2 presents the Type I error estimates of the methods 

considered.  Power estimates are provided and discussed for the viable methods in section 4.3.  

Section 4.4 gives sample size recommendations for the recommended methods. 

4.1 Number of Markers and Causal Markers 

 In order for this work to be comparable to future work, the number of variants considered 

in each test is needed.  Many previous researchers fixed the number of variants generated in each 

data set and the number of causal variants (Basu & Pan, 2011; Li & Leal, 2008; Madsen & 

Browning, 2009).  The data generation procedure used in these simulations allows the number of 

variants and causal variants to fluctuate.  Table 4.1 provides the five number summaries plus the 

standard deviation of the number of rare variants and causal variants generated in the simulations 

and testing.  The number of rare variants includes 101,900 iterations of the data generation 

procedure (due to a failure in the file system on Pistol Pete at Oklahoma State University 100 

iterations of the data was lost).  The number of rare variants was generated under both the null  
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Number of Rare Variants 

Minimum 
1st 

Quartile Median Mean 
3rd 

Quartile Maximum Standard Deviation 
218 310 328 329.3 348 476 29.1 

       Number of Causal Rare Variants 

Minimum 
1st 

Quartile Median Mean 
3rd 

Quartile Maximum Standard Deviation 
3 13 17 18.4 23 69 7.7 

Table 4.1: Statistics for the Number of Rare Variants and Causal Variants 

 
Figure 4.1: Histogram of the Number of Rare Variants 

and alternative hypothesis.  The number of causal variants came exclusively from simulations 

under the alternative hypothesis.  The histogram of the number of rare variants generated in each 

simulation is provided in Figure 4.1.  Both Table 4.1 and Figure 4.1 show the empirical 

distribution is bell shaped.  The mean is approximately 329.3 rare variants generated.  This is 

many more than the 100 variants that Madsen and Browning used in their simulations (2009).  It 

is also many more than the 5 to 20 variants Li and Leal (2008) simulated and the 8 to 72 variants 

Basu and Pan (2011) used.  Figure 4.2 gives the histogram of the number of causal variants 

generated under the alternative hypothesis.  The number of causal rare variants is slightly right 
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skewed.  Recall from the description of the data generation process that the total MAF of causal 

variants is set to 10%.  Hence a large number of causal variants means that many of them are 

extremely rare.   

 

Figure 4.2: Histogram of the Number of Causal Variants  

4.2 Comparison of Type I Error 

The Type I error estimates for all of the methods applied to the simulated data are 

presented in Table 4.2.  Each estimate is based on 1000 iterations.  The data for these simulations 

are generated under the null hypothesis of no association.  Table 4.2 gives the proportion of false 

rejections for each method considered for all tests at a 0.05 level.  The multinomial logistic 

regression methods encountered failures in the routine for some iterations.  The symbol † is used 

to mark scenarios where failures occurred.  The estimates given in these cells are based on the 

successful iterations not the number of iterations tried.  Additionally estimates that are 

significantly different from 0.05 at a 0.05 level are marked with the symbol *.  Estimates different 
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from 0.05 are determined using the appropriate rejection region for a z-test of 𝐻0:𝑝 = 0.05 

versus 𝐻𝑎:𝑝 ≠ 0.05.  

    Number of Phenotypic Categories 
Sample 

Size Method 3 5 7 
500 MNWSS 0.045 0.055 0.040 

 
NMWSSP 0.045 0.058 0.043 

 
SMA 0.01* 0.012* 0.009* 

 
MLOGIT 0.3567†* 0.0951†* 0.0089†* 

  MLOGITC 0.019* 0.019* 0.0130†* 
1000 MNWSS 0.042 0.040 0.055 

 
NMWSSP 0.042 0.042 0.056 

 
SMA 0.013* 0.013* 0.018* 

 
MLOGIT 0.232* 0.0911†* 0.0067†* 

 
MLOGITC 0.018* 0.0285†* 0.0311†* 

2000 MNWSS 0.055 0.050 0.060 

 
NMWSSP 0.053 0.052 0.053 

 
SMA 0.018* 0.013* 0.012* 

 
MLOGIT 0.2142†* 0.0612†* 0.0115†* 

  MLOGITC 0.006* 0.019* 0.0262†* 
†A portion of these tests failed and the results are most likely biased 
*The Type I Error Rate is significantly different from 0.05 at a 0.05 level. 
Estimates based on 1000 iterations. 

Table 4.2: Type I Error Estimates for All Methods at a 0.05 Level 

First note that the multinomial weighted sum statistic (MNWSS) gives a Type I error rate 

at the desired level of 0.05.  Also note that the results are very similar to the results for the 

multinomial weighted sum statistic with a permutation test (MNWSSP).  This shows that there is 

not a bias in using the distribution based test over the permutation test for these sample sizes.  

Since the distribution based test is computationally simpler, it is recommended over the 

permutation test.   Madsen and Browning used a permutation test in their method and did not 

consider using a distributional quantity.  Given the results of this study it may be possible to 

simplify their procedure by using a distribution based test. 
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The single marker analysis (SMA) for a multinomial phenotype is very conservative for 

all sample sizes and number of categories included in the simulation study. This is expected since 

an adjustment was made for multiple tests.  Basu and Pan found that their SMA on case control 

data was conservative (2011).   

The multinomial logistic regression (MLOGIT) had an inflated Type I Error rate when 

the phenotype had three and five categories.  This is consistent with results for logistic regression 

on case control status (Li & Leal, 2008).  For this reason Li and Leal excluded logistic regression 

from power simulations.  Since multinomial logistic regression has an extremely inflated type I 

error rate it is not a viable method for determining an association between genetic markers and a 

multinomial phenotype.  The method appears to be conservative when the phenotype has seven 

categories.  This might be due to the large number of failures in the routine for seven phenotypic 

categories versus three or five phenotypic categories.  For a sample size of 2000 the multinomial 

logistic regression routine failed in 0.1% of the simulations for 3 phenotypic categories, 0.4% for 

five phenotypic categories, and 30.6% for seven phenotypic categories.  Failures in the 

multinomial logistic regression routine also make it unreliable as a method of association.  For 

these reasons multinomial logistic regression is excluded from consideration in the power 

simulations. 

    Number of Phenotypic Categories 
Sample 

Size Method 3 5 7 
500 MLOGIT 0.002 0.001 0.217 

  MLOGITC 0 0 0.001 
1000 MLOGIT 0 0.001 0.258 

  MLOGITC 0 0.002 0.002 
2000 MLOGIT 0.001 0.004 0.306 

 
MLOGITC 0 0 0.007 

Estimates Based on 1000 iterations. 

Table 4.3: Proportion of Failures in the Multinomial Logistic Regression Routine 
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The multinomial logistic regression with collapsing (MLOGITC) was considered as an 

alternative to the multinomial logistic regression.  Recall that variants with quasi-complete 

separation were collapsed together into a single variable in this method.  The Type I Error 

estimates for MLOGITC are conservative instead of inflated as in the multinomial logistic 

regression.  Unfortunately the method still experiences failures in the multinomial logistic 

regression routine.  These failures make the MLOGITC unreliable.  Hence it is not considered in 

the subsequent power simulations. 

4.3 Comparison of Power 

 This section examines the power estimates of the multinomial weighted sum statistic 

(MNWSS), the multinomial weighted sum statistic with a permutation test (MNWSSP), and a 

single marker analysis for multinomial phenotypes (SMA).  The multinomial logistic regression 

methods are excluded for the previously mentioned reasons.  Results will be grouped together by 

sample size since this factor influenced the power the most. 

 Figure 4.3 illustrates the power estimates for a sample size of 500 with three, five, and 

seven phenotypic categories as heritability is increased.  The multinomial weighted sum statistic 

and multinomial weighted sum statistic with a permutation test have very similar results for most 

of the simulations.  Hence the two lines are overlaid in these figures and many subsequent ones.  

This further illustrates the fact that a permutation test is not necessary.  In each of these figures 

the multinomial weighted sum statistic starts out with a higher power than the SMA.  Recall that 

the multinomial weighted sum statistic had the correct Type I Error rate while the SMA was 

conservative.  The single marker analysis overtakes the multinomial weighted sum statistic 

between a heritability of 1% and 10%.  The single marker analysis quickly reaches a power of 1 

while the multinomial weighed sum statistic increases but does not reach a power of 1.  The 
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similarity of these three figures shows that the methods are only slightly influenced by the 

number of phenotypic categories for a sample size of 500.   

 

Figure 4.3: Power Comparison for a Sample Size of 500 with Three, Five, and Seven Phenotypic 
Categories 

 Figure 4.4 gives the power estimates of the methods for a sample size of 1000 with three, 

five, and seven phenotypic categories.  Again the multinomial weighted sum statistic starts out 

with a higher power than the single marker analysis at a heritability of 1%.  Here the SMA 
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overtakes the MNWSS for the heritability between 1% and 5%.  Again the SMA quickly reaches 

a power of 1 while the MNWSS increases but never reaches a power of 1.     

 

Figure 4.4: Power Comparison for a Sample Size of 1000 with Three, Five, and Seven 
Phenotypic Categories 

 Figure 4.5 gives the power comparisons for a sample size of 2000 with three, five, and 

seven phenotypic categories.  Again for a heritability of 1% the MNWSS has higher power than 

the SMA.  The SMA overtakes the WSS for the heritability between 1% and 5%.  The single 

marker analysis reaches a power of 1 quickly while the MNWSS increases but does not reach 1.    
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Figure 4.5: Power Comparison for a Sample Size of 2000 with Three, Five, and Seven 
Phenotypic Categories 

Figure 4.6 gives a side by side comparison of power for all of the sample sizes and 

phenotypic categories.  This figure illustrates that as sample size increases, the power of the 

methods increase and stabilize at or near one faster.  This figure also shows that there are only 

small differences between the plots for the different number of phenotypic categories.  These 

differences were detailed earlier.   
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Figure 4.6: Side by Side Power Comparison for Sample Size and Phenotypic Categories 

 For each scenario considered above the single marker analysis has a lower power than the 

multinomial weighted sum statistic when the heritability is at 1%.  Recall that the multinomial 

weighted sum statistic had the correct type I error rate while the single marker analysis was 

conservative due to the adjustment for multiple tests.  The single marker analysis quickly gains 

power and over takes the multinomial weighted sum statistic as the heritability increases.  The 

single marker analysis reaches and maintains a power of 1 while the multinomial weighted sum 

statistic increases in power more slowly and never reaches one.  These results are very contrary to 



69 
 

the findings reported by Madsen and Browning for their study of the dichotomous case (2009).  

Madsen and Browning reported that the power of their weighted sum statistic for case control 

data increased quickly to 1 and remained there as the population attributable risk increased.  They 

also showed that their single marker analysis always had a power less than 20% for any level of 

population attributable risk.  These results may be specific to the way the data was generated.  

Madsen and Browning started with the case control status then generated the genotypes at each 

variant independently.  The data simulation process for this dissertation study generated a 

population of haplotypes using a coalescent process then allowed the alleles to help determine the 

phenotype.  This process should result in a population that is more realistic of the genetic 

structure of a real population.  Madsen and Browning only used a Fisher’s exact test on each 

variant in their single marker analysis.  This dissertation proposes using the chi-square test of 

independence when all cell counts are five or greater and an exact test when a cell count fall 

below this threshold.  Also Madsen and Browning used the Dunn-Sidak correction (Abdi, 2007) 

on the smallest p-value to determine the significance of the single marker analysis results.  This 

work proposes using the False Discovery Rate controlling procedure of Benjamini and Hochberg 

(1995).  The Benjamini and Hochberg procedure has been shown to be more powerful than the 

Bonferonni correction. 

4.4 Sample Size Recommendations 

 It is intended that these methods will be used by future researchers.  Therefore sample 

size recommendations are necessary for each of the methods.  Since the power heavily depends 

on the heritability of the phenotype it is extremely important to have a good estimate of the 

heritability before proceeding.  The heritability of the trait will vary from phenotype to 

phenotype.  Asimit and Zeggini report that current GWAS on common variants can “explain at 

most 5% - 10% of the heritable component of disease” (2010).  In the absence of an estimated 

heritability due to rare variants, heritability levels of 5%, 10%, and 20% will be investigated.  The 
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highest heritability level is added since it is believed that rare variants can collectively contribute 

more than common variants to the variation of the phenotype.  For heritability levels of 30% and 

above a sample size of 500 will be enough to give a power greater than 80% for both the 

multinomial weighted sum statistic and the single marker analysis.  Results will be discussed by 

the heritability of the phenotype below.  For all of the results below a size 0.05 test is considered. 

 Figure 4.7 visualizes the power versus sample size for a heritability level of 5% with 

three, five, and seven phenotypic categories.  It is desired to determine approximately how many 

observations are necessary to achieve 80% power for both the multinomial weighted sum statistic 

method and the single marker analysis.  The horizontal dashed gray line marks 80% power.   

 First consider three phenotypic categories.  For the multinomial weighted sum statistic 

just a little over 2500 observations are needed to reach 80% power.  The single marker analysis 

needs between 1000 and 1500 observations to reach this power.  Interpolation between these two 

points gives approximately 1294 observations to reach 80% power.  Slightly increasing this 

estimate and the estimates based on interpolation below would be prudent since this is a straight 

line interpolation of a convex line.  Also the points used in the interpolation are estimates of the 

true power.  The large sample sizes required by both methods are mostly due to the low 

heritability of the phenotype.  The large number of non-causal variants in the simulated data 

might also be affecting the power of the multinomial weighted sum statistic. 

Next consider the sample sizes for a heritability of 5% and five phenotypic categories.  

The multinomial weighted sum statistic needs significantly more than 2500 observations to 

achieve an 80% power.  Interpolation between 2500 and 3000 yields a sample size of 

approximately 2654.  Similar to the results for three categories the single marker analysis requires 

between 1000 and 1500 observations to achieve 80% power.  Again using interpolation 

approximately 1393 observations are needed. 
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Figure 4.7: Power versus Sample Size for a Heritability of 5% with Three, Five, and Seven 
Phenotypic Categories 

Finally consider the power curves for a heritability of 5% and seven phenotypic 

categories.  No interpolation is needed for this scenario.  The multinomial weighted sum statistic 

requires approximately 3000 observations to reach a power of 80%.  The single marker analysis 

only needs 1500 observations to reach this power.  Hence the multinomial weighted sum statistic 

requires double the observations needed by the single marker analysis to reach 80% power when 

the heritability is 5% and there are seven categories in the phenotype. 
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Overall for a heritability of 5% as the number of phenotypic categories increased the 

sample size requirement to reach 80% power also increased.  The single marker analysis uses 

either a chi-square test or an exact test at each variant.  These tests are dependent on the number 

of observations in each cell.  Including more phenotypic categories in the test increases the 

number of cells.  Hence the data gets spread over more cells as the phenotypic categories 

increase.  The multinomial weighted sum statistic uses the Kruskal-Wallis test in the procedure.  

Increasing the number of phenotypic categories increases the number of populations the test.  So 

once again the data is spread out as the number of phenotypic categories increases. This spreading 

out of the data could account for the larger sample size requirements in both methods as the 

number of phenotypic categories increases. 

 Next study a heritability level of 10%.  Figure 4.8 gives the power curves for a 

heritability of 10% with three, five, and seven phenotypic categories.  For three phenotypic 

categories the multinomial weighted sum statistic requires between 1000 and 1500 to reach the 

threshold while the single marker analysis needs between 500 and 750 observations.  Again using 

interpolation an approximation can be found for a more exact sample size required.  For the 

multinomial weighted sum statistic approximately 1183 observations are needed.  For the single 

marker analysis approximately 675 observations are needed. 

 Next review the power curves for a heritability of 10% and five phenotypic categories 

displayed in Figure 4.8.  To reach 80% power the multinomial weighted sum statistic needs 

between 1000 and 1500 observations.  Interpolating as before, approximately 1255 individuals 

are needed.  For the single marker analysis between 500 and 750 observations are required to 

reach an 80% power.  Straight line interpolation yields approximately 695 observations. 
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Figure 4.8: Power versus Sample Size for a Heritability of 10% with Three, Five, and Seven 
Phenotypic Categories 

 The final plot in Figure 4.8 maps the power versus sample size for seven phenotypic 

categories when the heritability is 10%.  No interpolation is necessary for this set of parameters.  

The multinomial weighted sum statistic requires approximately 1500 observations to achieve 

80% power.  The single marker analysis only requires 750 observations to achieve this same 

level.  Hence with seven phenotypic categories and a heritability of 10%, the single marker 
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analysis requires only half as many observations to reach 80% power as the multinomial weighted 

sum statistic. 

 Overall the sample size requirements for a heritability of 10% were less than for a 

heritability of 5%.  This is expected since the heritability is a measure of the strength of the 

association between the phenotype and variants.  Similar to the results for the heritability at 5%, 

the sample size requirements increased as the number phenotypic categories increased. 

 Finally examine the power versus sample size for the heritability at 20%.  Figure 4.9 

plots the power curves for three, five, and seven categories in the phenotype.  Once again the gray 

dashed line represents the desired 80% power.  These curves show that both methods reach 80% 

power with smaller sample sizes than considered above.  Also the trend of increasing sample size 

with increasing phenotypic categories continues.   

 Start with the results for three phenotypic categories.  The multinomial weighted sum 

statistic needs between 500 and 750 observations to reach 80% power.  Interpolation gives 

approximately 623 observations.  A sample size of 500 is more than adequate to achieve 80% 

power for the single marker method. 

 The middle plot in Figure 4.9 displays the power versus sample size for a heritability 

level of 20% and five phenotypic categories.  Once again the multinomial weighted sum statistic 

requires between 500 and 750 individuals to achieve 80% power.  Approximating using straight 

line interpolation yields 643 observations.  Similar to before a sample size of 500 is more than 

enough for the single marker analysis to achieve 80% power. 

 The top plot in Figure 4.9 displays the power curves for seven phenotypic categories with 

a heritability level of 20%.  The sample size to reach 80% power for the weighted sum statistic 

lies between 500 and 750 observations.  Interpolating once again finds an approximate sample 
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size of 685.  A sample size of 500 is more than enough to achieve 80% for the single marker 

analysis. 

 

Figure 4.9: Power versus Sample Size for a Heritability of 20% with Three, Five, and Seven 
Phenotypic Categories 

4.5: Summary 

 The multinomial weighted sum statistic and the single marker analysis have a reasonable 

or conservative Type I Error rate.  However the power for these methods is low when the 

heritability is less than 10%.  The results presented here are dependent on the structure of the 
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simulated data.  The large number of non-causal variants in the simulated data may have reduced 

the power for the MNWSS.  It has been demonstrated that pooling methods lose power when a 

large number of non-causal variants are included in the test (Basu & Pan, 2011).  For a 

heritability of 10% to 20% the single marker analysis is recommended even though it is very 

conservative.  For heritability greater than 20% both the multinomial logistic regression and the 

single marker analysis reach reasonably high power.  This does not mean that the multinomial 

weighted sum statistic has a higher power than the single marker analysis for this heritability.  

Rather both have approximately 80% power or greater when the heritability is greater than 20%. 

The multinomial logistic regression is not recommended.  The inflated Type I Error rate 

of the method makes it unsuitable as a method of association.  Additionally the unpredictability of 

the multinomial logistic regression routine makes it unreliable as a method.  Collapsing of 

variants that had quasi-complete separation helped in fixing the inflated Type I Error rate but it 

did not completely resolve the issues with failures in the routine.  For this reason it is also not 

recommended as a method for association.  Further research is needed to devise modifications to 

the multinomial logistic regression methods to make them viable. 

Sample size recommendations were made for heritability levels of 5%, 10%, and 20%.  

Estimates based on straight line interpolation should be slightly increased as noted above.  The 

heritability levels used in the sample size study were arbitrarily chosen.  Other levels may better 

suit the expectations of researchers.  Since the power greatly depends on the heritability, 

additional simulations may be necessary for a given heritability level.  The results of the 

simulation study showed that the proposed single marker analysis required many less 

observations than the multinomial weighted sum statistic to reach 80% power.  The simulation 

study also revealed that as the number of phenotypic categories increases the required sample size 

to reach 80% power increases for both methods.
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CHAPTER V 
 

 

APPLICATION 

 

 In the previous chapter it was shown that the proposed multinomial weighted sum 

statistic (MNWSS) and the single marker analysis (SMA) performed well in simulations for 

reasonable sample sizes.  Ultimately the methods should be applied by analyzing real data.  The 

purpose of this chapter is to show that the methods are viable for analysis on an empirical data 

set.  The data analyzed here is a resequencing study of participants in the Dallas Heart Study at 

the University of Texas Southwestern.  Section 5.1 will begin by describing the data sets 

(including phenotypes in Section 5.1.1 and genotypes in Section 5.1.2) and findings other 

researchers have published on the same data sets.  Section 5.2 will describe the analysis of the 

data using the proposed methods.  Section 5.3 will present the results.  Lastly section 5.4 

compares the results of the proposed methods with other researchers’ findings and provides a 

discussion of the conclusions. 

5.1 Dallas Heart Study Data 

An association between multiple rare variants in the ANGPTL4 gene and plasma 

triglyceride was reported in a resequencing study of Dallas Heart Study participants (Romeo, et 

al., 2007).  Further research using the same cohort found an association between rare variants in 

the ANGPTL3 and ANGPTL5 genes with plasma triglyceride level (Romeo, et al., 2009).  These 
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rare variant associations were further confirmed in an investigation of several case control 

methods (Price, et al., 2010).  In each of these studies the quantitative phenotype, plasma 

triglyceride level, was adjusted for race and gender.  Then a categorical phenotype was created 

using the quartile membership.  Only individuals in the top and bottom quartiles of the adjusted 

plasma triglyceride distribution were included in the tests for association.  This was necessary 

since the tests (see below) could only accommodate two categories.  Excluding the middle fifty 

percent of the distribution decreased the significance of the tests compared to a quantitative test 

on all of the observations (Price, et al., 2010).  The original studies performed at the University of 

Texas Southwestern used a Fisher’s exact test on the number of individuals with nonsynonymous 

variants (nucleotide mutations that change the amino acid sequence) in the categories.  Several 

proposed case control methods were run on the data by Price et al. (2010). 

5.1.1 Phenotype Data Set 

The data consists of two separate data sets.  The first is a set of phenotypic variables and 

several covariates.  The second is a data set of genotypes.  The phenotypic data set contains 3557 

observations, including 1986 females and 1571 males.  For each research participant a subject ID, 

gender, ethnicity, age, body mass index (BMI), statin, and plasma triglyceride were given.  Some 

of the observations included missing values for one or more of the variables.  Treatment of 

missing values is discussed in Section 5.2.  The ethnic groups break down as follows: 603 

Hispanic, 1832 Non-Hispanic Black, 1047 Non-Hispanic White, and 75 other.  The ages of the 

participants ranged from 18 to 65 years old.  Body mass index was also considered as a 

phenotype by the original researchers.  Their studies found no significant associations between 

BMI and any of the genes (Romeo, et al., 2007; Romeo, et al., 2009).  The BMI ranges between 

14.45 and 65.23.  A histogram of the variable of interest, plasma triglyceride level, is presented in 

figure 5.1.  This histogram was generated using the provided data.  The plasma triglyceride level 

ranges from 21 to 1669.   
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Figure 5.1: Histogram of Triglycerides 

5.1.2 Genotype Data Set 

The second data set contains genotypes.  The data set is a list of mutant genotypes.  There 

are 15819 records in the data set.  For each record the gene, subject ID, mutation ID, mutation 

type, and genotype are given.  The genotypes are coded as 1 for heterozygous and 2 for 

homozygous for the mutant allele.  None of the wild type homozygous genotypes are listed in the 

data set.  Rather they are implied by their absence.  There are three separate genes with genotype 

data available.  They are ANGPTL3, ANGPTL4, and ANGPTL5.  The subject ID is not unique in 

this data set since some subjects have multiple mutations.  Subjects with only wild type alleles are 

not listed in the genotype data set.  The mutation ID gives the name of the mutation.  There are 

282 unique mutations in the data set.  They are typed as frame shift, intronic, missense, 

noncoding, nonsense, or synonymous.  The minor allele frequencies of the mutations are 
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presented in figure 5.2.  There are eleven mutations that are not rare variants.  The remaining 271 

mutations are rare variants.  The inclusion/exclusion of these variants in the analysis is discussed 

in section 5.3. 

 

Figure 5.2: Histogram of Minor Allele Frequencies 

5.2 Analysis Methods 

The phenotype, plasma triglyceride level, was adjusted and categorized by previous 

researchers prior to analysis.  Before adjusting the phenotype individuals taking statins, lipid 

lowering medicines, were excluded from the analysis.  This was also done by the original studies 

(Romeo, et al., 2007; Romeo, et al., 2009).  The original studies also excluded individuals with 

diabetes, men consuming more than 30g of alcohol a day, and women consuming more than 20g 

of alcohol a day.  Since diabetes information and alcohol consumption were not made available it 

is unknown whether these individuals remain in the data set for this analysis.  The adjustment and 

categorization described below was adapted from the procedure used by Price et al. (2010).  First 

eight groups were formed by the combinations of gender and ethnicity.  Within each group the 
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plasma triglyceride was standardized.  This adjusted triglyceride level was then categorized using 

the quartiles.  The first category is the lowest quartile.  The second category is the middle 50% of 

the distribution.  The last category is the upper quartile.  Previous researchers discarded the 

second category (Romeo, et al., 2007; Romeo, et al., 2009; Price, et al., 2010).  For this research 

it is kept and included in the analysis since the methods previously proposed can accommodate 

more than two categories.  Individuals missing plasma triglyceride were given a missing value for 

the phenotype. 

The genotype data was not in a commonly used format and required some restructuring.  

As mentioned before, the genotype data is a list of mutant genotypes and does not include wild 

type genotypes.  An individual will have multiple observations in the genotype file if the 

individual has a mutant genotype at multiple SNPs.  Likewise an individual will have no 

observations in the genotype file if all genotypes are the wild type homozygous.  This 

necessitated some additional processing so that the proposed methods could be applied.  Prior to 

running the analysis a data set containing one observation for each participant and one variable 

for each variant was created from the genotype data file.  For each variant the genotype is coded 

as “0” for the homozygous wild type, “1” for heterozygous, or “2” for mutant homozygous.   

The original researchers analyzed each gene separately (Romeo, et al., 2007; Romeo, et 

al., 2009).  They also did not use all 282 mutations found in the genotype file.  Only 

nonsynonymous sequence variants were considered for analysis.  In addition to excluding 

individuals in the middle 50% of the distribution, variants that contained individuals in both the 

top and bottom quartiles of adjusted plasma triglycerides were also excluded.  A list of the 

variants in the reduced data set is provided in Romeo et. al. 2009.  Table 5.1 below gives the 

number of variants for the full and reduced data sets.   Of the 88 variants in the ANGPTL3 gene 

only 17 were included in the original analysis.  For the ANGPTL4 gene only 14 of the 94 variants 

were used.  Only nine of the 100 variants in the ANGPTL5 gene were utilized in the original test.  
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For comparison purposes the proposed methods were applied to both the full set and reduced set 

of variants for each gene.  It should be noted that for the reduced set of variants the MAF’s are all 

less than 0.1%. 

  Number of Variants 
Gene Full Reduced 

ANGPTL3 88 17 
ANGPTL4 94 14 
ANGPTL5 100 9 

Table 5.1: Number of Variants in the Full and Reduced Data Sets 

Price and authors (2010) took a different approach when analyzing the data set.  Rather 

than analyzing each gene individually they applied their methods to the whole data set.  They did 

not specify whether they used the full set of variants or the reduced set of variants.  Additionally 

they excluded individuals in the ethnic group “Other”.  Although analyzing each gene 

individually is more informative, for comparison purposes the proposed tests were run using all 

three genes together with the ethnic group “Other” excluded.  Both the full set and reduced set 

were considered in this analysis. 

5.3 Results 

For information purposes the MNWSS and SMA were first run on the full variant sets for 

each gene.  This approach represents a naïve use of the data and does not require any information 

on the type or functionality of the mutations.  Results for the full and reduced data sets by gene 

are provided in table 5.2.  For the MNWSS none of the tests are significant after correcting for 

multiple tests.  The observed significance levels for ANGPTL3, ANGPTL4, and ANGPTL5 

genes were 0.2646, 0.4454, and 0.0237 respectively.  For the SMA none of the tests produced a 

decision to reject the null hypothesis of no association after adjusting for the multiple tests.  Since 

the original studies only considered the reduced set of variants, a comparison cannot be made 

with these observed significance levels.   
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    Data Set 
Gene Method Full Reduced 

ANGPTL3 MNWSS 0.2624 0.0165 

 
SMA All "Do Not Reject" All "Do Not Reject" 

  Romeo, et. al. 2009   0.064 
ANGPTL4 MNWSS 0.4454 0.0044 

 
SMA All "Do Not Reject" All "Do Not Reject" 

  Romeo, et. al. 2007   0.016 
ANGPTL5 MNWSS 0.0237 0.119 

 
SMA All "Do Not Reject" All "Do Not Reject" 

  Romeo, et. al. 2009   0.022 

Table 5.2: Results for the Full and Reduced Data Sets by Gene 

The original study only provides results for the reduced set of variants.  They also did not 

account for the multiple tests being simultaneously performed.  For the ANGPTL3 gene the 

researchers report an observed significance level of 0.064 for the test of association (Romeo, et 

al., 2009).  Although this is not significant at the researchers’ chosen 0.05 level it is close to 

significance.  The MNWSS run on the reduced set produces a p-value of 0.0165 for the test of 

association between the ANGPTL3 gene and triglycerides.  The SMA did not produce any 

decisions to reject.  The original study reports a p-value of 0.016 for the test of association 

between the ANGPTL4 gene and triglycerides (Romeo, et al., 2007).  The MNWSS run on the 

reduced set of variants in the ANGPTL4 gene produces a p-value of 0.0044.  The SMA did not 

produce any decisions to reject.  For the ANGPTL5 gene the original study reports a p-value of 

0.022 for their test of association (Romeo, et al., 2009).  The MNWSS gains an observed 

significance level of 0.1190 when run on this reduced set.  The SMA again did not produce any 

decisions to reject the null hypothesis of no association.  The original researchers did not correct 

for the multiple tests being performed.  If they had used the Benjamini and Hochberg (1995) FDR 

controlling method on the three tests considered here they would have found the results of the 

tests for the ANGPTL4 and ANGPTL5 genes significant.  The observed significance levels for  

the MNWSS for the ANGPTL3 and ANGPTL4 genes are significant after using the Benjamini 
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and Hochberg (1995) FDR controlling method to account for the multiple tests.  Also the 

MNWSS yields p-values below the reported p-values in the original studies for these two genes.  

The SMA did not find any significant associations for any of the genes.  Further inspection shows 

that the individual tests in the SMA tend to yield high p-values.  It should be noted here that the 

data set analyzed by the proposed methods may be slightly different from the one used in the 

original study.  Since information on diabetes and alcohol consumption is not contained in the 

data set analyzed by the proposed methods, individuals excluded in the original analysis may be 

included for the new results.  This could result in some differences between the results of the 

original studies and the results of the proposed methods. 

As mentioned before Price et al. did not consider the genes separately but rather ran one 

test combining all three genes (2010).  They also did not relay whether they used the full or the 

reduced set of genes or whether they excluded individuals taking statins.  Their work proposes 

five different tests of association for case control data.  Their results (assuming the reduced data 

set) and the results of the proposed methods are presented in table 5.3.  Their proposed fixed 

threshold tests produced p-values of 0.013 for a one percent threshold and 0.00007 for a five 

percent threshold.  Price et al.’s weighted approach yields a p-value of 0.0020.  Their variable 

threshold test outputs a p-value of 0.00038.  Their recommended variable threshold test plus 

Polyphen weights yields a p-value of 0.00002.  Now consider the tests proposed in this work.  

The SMA did not produce any rejections of the null hypotheses of no association for either the 

full or reduced set of variants.  Using the full set of variants the MNWSS finds a p-value of 

0.1092 when all three genes are combined.  Running the MNWSS test on only the reduced set of 

variants with all three genes together produces a p-value of 0.00000393.  These results suggest 

that Price et al. (2010) uses only the reduced set of variants when running their analyses since 

their weighed approach is very similar to Madsen and Browning’s (2009).  Comparing the results 
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for the reduced set of variants, the MNWSS has a p-value lower than any of the tests proposed by 

Price et al.  

  Data Set 
Method Full Reduced 
MNWSS 0.1092 0.00000393 
SMA All "Do Not Reject" All "Do Not Reject" 
Fixed Threshold 1%† 

 
0.013 

Fixed Threshold 5%† 
 

0.00007 
Weigthed† 

 
0.002 

Variable Threshold† 
 

0.00038 
Variable Threshold + Polyphen†   0.00002 
†Price, et. al. 2010 

  Table 5.3: Results of Combining All Genes in the Full and Reduced Data Sets 

5.4 Discussion 

 This chapter demonstrates that the proposed methods are viable for data analysis.  The 

MNWSS was able to detect associations in two of the three genes at a 0.05 level after adjusting 

for the multiple tests.  The original studies report associations in two of the three genes at a 0.05 

level without adjusting for multiple tests.  Additionally for the genes where the MNWSS 

produces a significant result, the p-values are smaller than the p-values from the original studies.  

When the MNWSS is applied to all three genes together on the reduced set of variants the result 

is more significant than any of the results presented by Price and authors (2010) in their analysis 

of the data.   

 The SMA did not produce any decisions to reject the null hypothesis of no association 

after correcting for multiple tests.  Further analysis revealed that the individual p-values at each 

variant were high.  Thus no one variant is strongly associated with plasma triglyceride levels.  

Rather collectively the rare variants are associated with the phenotype.   

Comparing the results for the full and reduced set of variants highlights the importance of 

choosing which variants to include in the test.  The reduced set excludes synonymous variants 
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which do not alter the resulting protein structure and hence are not likely to have an effect.  The 

reduced set also excludes variants for which there are individuals in both the top and bottom 

quartiles that had the mutation.  This in effect excluded all of the common variants.  This cherry 

picking of variants reversed the decisions on all of the tests for the MNWSS.  For the ANGPTL3 

and ANGPTL4 genes the p-values were reduced from 0.2646 to 0.0165 and from 0.4454 to 

0.0044 by selecting variants for inclusion in the test.  On the other hand for the ANGPTL5 gene 

the p-value was increased from 0.0237 to 0.1190.  Recall for this gene that 100 different 

mutations were collected.  However, only nine of them made it into the reduced set of variants.  

In this case the researchers may have thrown out some important mutations.  
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CHAPTER VI 
 

 

CONCLUSIONS 

 

 This dissertation study investigated three new methods to test for an association between 

a nominal phenotype and multiple rare variants.  Since methods in this area were lacking the 

proposed methods came from extending methods currently used to test for an association between 

a dichotomous phenotype and multiple rare variants.  The methods proposed and evaluated here 

provide a starting point into association analysis for data with a multinomial phenotype and 

multiple rare variants.   

There is still room for a great deal of exploration in this area.  Since the inception of this 

project there has been an explosion of methods for association between a dichotomous phenotype 

and multiple rare variants.  Many of these methods could be extended to the case of a multinomial 

phenotype.  Also this project encountered difficulties in using multinomial logistic regression as a 

method of association.  Collapsing of variants with quasi-complete separation was tested as a 

quick fix to the problems.  However this fix did not solve all of the issues.  Additional 

modifications to multinomial logistic regression are necessary for it to be a viable method of 

association.  There are many variations on logistic regression to test for association between a 

dichotomous phenotype and multiple rare variants (Basu & Pan, 2011).  Some of these methods 

might be modified for the multinomial case. 
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The methods proposed here ignored possible epistasis, or interactions between variants.  

This assumption is common in rare variant association methods.  Research into how rare variant 

methods behave in the presence of epistasis is needed. 

Another area that needs to be addressed in methods of rare variant analysis is the 

inclusion of covariates.  Most data sets contain covariates such as age, gender, and ethnicity that 

affect the phenotype.  Neither of the proposed methods can accommodate covariates.  There are 

methods of rare variant analysis for dichotomous and quantitative phenotypes that can include 

covariates.  For dichotomous phenotypes the weighted SSU test with permutations (Basu & Pan, 

2011) and kernel-machine test (Wu, et al., 2010) specifically allow for including multiple 

covariates.  For quantitative phenotypes Morris and Zeggini’s (2010) tests can include covariates.  

However these methods may not be suited to all data sets.  For example the SSU test with 

permutations and the kernel-machine test are both very computationally intensive.  These 

methods would not be suited for analyzing a large data set.  Rare variant analysis methods for 

both dichotomous and multinomial phenotypes that can include covariates without computational 

complexity would be extremely useful. 
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APPPENDICES 
 

 

 

Table A.1: Power Comparison for a Sample Size of 500  
    Lambda 
Categories Method 0.01 0.05 0.1 0.2 0.3 0.5 0.8 

3 MNWSS 0.086 0.271 0.51 0.735 0.869 0.944 0.963 

 
MNWSSP 0.086 0.277 0.506 0.739 0.869 0.944 0.963 

 
SMA 0.023 0.2 0.616 0.974 1 1 1 

 
MLOGIT 0.454 0.781 0.9599† 1.0† 1 1.0† 1.0† 

  MLOGITC 0.057 0.257 0.661 0.9590† 0.997 0.999 0.998 
5 MNWSS 0.078 0.238 0.454 0.732 0.871 0.967 0.98 

 
MNWSSP 0.078 0.239 0.453 0.732 0.874 0.965 0.98 

 
SMA 0.014 0.172 0.591 0.97 1 1 1 

 
MLOGITC 0.0250† 0.188 0.505 0.833 0.963 0.9940† 0.9990† 

7 MNWSS 0.073 0.214 0.406 0.724 0.87 0.95 0.98 

 
MNWSSP 0.073 0.216 0.408 0.731 0.875 0.951 0.98 

 
SMA 0.022 0.141 0.505 0.956 0.997 1 1 

  MLOGITC 0.019 0.114 0.292 0.6167† 0.855 0.9920† 0.9970† 
†A portion of these tests failed and the results are most likely biased 
MNWSS = Multinomial Weighted Sum Statistic, MNWSSP = Multinomial Weighted Sum Statistic with 
Permutation Test, SMA = Single Marker Analysis, MLOGIT = Multinomial Logistic Regression, 
MLOGITC = Multinomial Logistic Regression with Collapsing of Variants with Quasi-Complete 
Separation 

 
  



94 
 

Table A.2: Power Comparison for a Sample Size of 1000 
    Lambda 
Categories Method 0.01 0.05 0.1 0.2 0.3 0.5 0.8 

3 MNWSS 0.131 0.471 0.765 0.932 0.961 0.989 0.987 

 
MNWSSP 0.134 0.473 0.758 0.933 0.961 0.989 0.985 

 
SMA 0.039 0.609 0.972 1 1 1 1 

 
MLOGIT 0.355 0.84 0.997 1.0† 1.0† 1.0† 1.0† 

  MLOGITC 0.056 0.577 0.974 1 1 1 1 
5 MNWSS 0.105 0.417 0.746 0.913 0.976 0.991 0.995 

 
MNWSSP 0.109 0.423 0.744 0.911 0.974 0.991 0.995 

 
SMA 0.046 0.563 0.969 1 1 1 1 

 
MLOGITC 0.053 0.557 0.951 0.999 1 1 1.0† 

7 MNWSS 0.102 0.379 0.685 0.909 0.956 0.985 0.989 

 
MNWSSP 0.104 0.385 0.681 0.904 0.956 0.986 0.989 

 
SMA 0.039 0.509 0.948 1 1 1 1 

  MLOGITC 0.0662† 0.4769† 0.8739† 0.9990† 1.0† 1.0† 1.0† 
†A portion of these tests failed and the results are most likely biased 
MNWSS = Multinomial Weighted Sum Statistic, MNWSSP = Multinomial Weighted Sum Statistic with 
Permutation Test, SMA = Single Marker Analysis, MLOGIT = Multinomial Logistic Regression, 
MLOGITC = Multinomial Logistic Regression with Collapsing of Variants with Quasi-Complete 
Separation 
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Table A.3: Power Comparison for a Sample Size of 2000 
    Lambda 
Categories Method 0.01 0.05 0.1 0.2 0.3 0.5 0.8 

3 MNWSS 0.214 0.728 0.913 0.981 0.994 0.992 0.999 

 
MNWSSP 0.22 0.727 0.911 0.98 0.993 0.992 0.999 

 
SMA 0.161 0.965 1 1 1 1 1 

 
MLOGIT 0.415 0.969† 0.9990† 1 1.0† 1.0† 1.0*† 

  MLOGITC 0.1 0.941 1 1 1 1.0† 1 
5 MNWSS 0.189 0.68 0.898 0.972 0.985 0.997 0.998 

 
MNWSSP 0.187 0.685 0.897 0.973 0.985 0.997 0.998 

 
SMA 0.121 0.962 1 1 1 1 1 

 
MLOGITC 0.114 0.938 1 1 1 1 1.0† 

7 MNWSS 0.149 0.653 0.886 0.974 0.988 0.994 0.997 

 
MNWSSP 0.153 0.662 0.886 0.972 0.989 0.994 0.998 

 
SMA 0.115 0.935 1 1 1 1 1 

  MLOGITC 0.1247† 0.9057† 0.9990† 1.0† 1.0† 1.0† 1.0† 
†A portion of these tests failed and the results are most likely biased 
MNWSS = Multinomial Weighted Sum Statistic, MNWSSP = Multinomial Weighted Sum Statistic with 
Permutation Test, SMA = Single Marker Analysis, MLOGIT = Multinomial Logistic Regression, 
MLOGITC = Multinomial Logistic Regression with Collapsing of Variants with Quasi-Complete 
Separation 
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Table A.4: Power versus Sample Size for a Heritability of 5% 
    Sample Size 
Categories Method 500 1000 1500 2000 2500 3000 

3 MNWSS 0.271 0.471 0.613 0.728 0.796 0.849 

 
MNWSSP 0.277 0.473 0.612 0.727 0.799 0.848 

 
SMA 0.200 0.609 0.934 0.965 0.996 0.999 

5 MNWSS 0.238 0.417 0.599 0.680 0.777 0.852 

 
MNWSSP 0.239 0.423 0.604 0.685 0.780 0.850 

 
SMA 0.172 0.563 0.865 0.962 0.990 0.998 

7 MNWSS 0.214 0.379 0.532 0.653 0.770 0.800 

 
MNWSSP 0.216 0.385 0.526 0.662 0.768 0.801 

  SMA 0.141 0.509 0.804 0.935 0.980 0.998 
 
Table A.5: Power versus Sample Size for a Heritability of 10% 
    Sample Size 
Categories Method 500 750 1000 1500 2000 

3 MNWSS 0.510 0.632 0.765 0.861 0.913 

 
MNWSSP 0.506 0.633 0.758 0.867 0.911 

 
SMA 0.616 0.879 0.927 0.998 1.000 

5 MNWSS 0.454 0.593 0.746 0.852 0.898 

 
MNWSSP 0.453 0.594 0.744 0.851 0.897 

 
SMA 0.591 0.859 0.969 1.000 1.000 

7 MNWSS 0.406 0.540 0.685 0.807 0.886 

 
MNWSSP 0.408 0.548 0.681 0.804 0.886 

  SMA 0.505 0.806 0.948 0.999 1.000 
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Table A.6: Power versus Sample Size for a Heritability of 20% 
    Sample Size 
Categories Method 500 750 1000 2000 

3 MNWSS 0.735 0.868 0.932 0.981 

 
MNWSSP 0.739 0.866 0.933 0.980 

 
SMA 0.974 0.997 1.000 1.000 

5 MNWSS 0.732 0.851 0.913 0.972 

 
MNWSSP 0.732 0.846 0.911 0.973 

 
SMA 0.970 0.999 1.000 1.000 

7 MNWSS 0.724 0.827 0.909 0.974 

 
MNWSSP 0.731 0.827 0.904 0.972 

  SMA 0.956 1.000 1.000 1.000 
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