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CHAPTER I

INTRODUCTION

The possibility of a binary computer being compatible with 
computers operating with a radix or base greater than two has been 
suggested by several authors [4-6]. Also, much of the motivation to 
study algebras and their realizations comes from the Influence and pre
dominance of switching theory and hardware. Dao, McCluskey, and Russell 
chose to work with four-valued logic because It was a power of two.
They believed that It was Important to be able to easily convert between 

binary systems and multivalued systems [5]. The algebraic relationships 
between Boolean and Post functions have been developed [7]. Comparisons 
between hlgher-order Boolean algebras, B(2^) for N greater than one, and 
Post algebras were developed by Metze and Wo j elk [4]. Su and Sarrls 
have studied relationships between multivalued switching algebra and 
Boolean algebra under different definitions of the complement [8], and 
It has been shown that any multivalued function can be represented by a 
vector Boolean function [9]. It Is well known that the two-valued 

Boolean algebra and two-valued Post algebra are Identical, B(2) = P(2).



Rather than establishing equivalence relationships for B(2) and 
P(m) algebras (m > 2), the motivation is to choose an algebra and a 
realization that would be functionally complete for two radices. The 

suggestion of a dual radix machine has been made [6]. However, to date, 
no serious investigation has been made to show if a dual radix system 
offers any advantages or is even in fact achievable. That is, would a 
dual radix implementation of a MÂX/OR gate, for example, be more compli
cated and difficult to build than the disjoint equivalent of the circuit 

operating as both a MAX and OR gate? If such a circuit can be designed, 
then what special features would it offer over the same disjoint equiva
lent?

Background

The interest in multiple-valued logic (MVL) systems continues 
to grow as understanding of both the algebra and the implementation 
increases. Recent articles are offering hardware realization [18-21], 
where earlier work emphasized the algebra only [22]. However, after 
nearly four decades of hardware and software activity that is firmly 
established in binary switching theory, the transition to higher radix 
systems is slow at best. Some degree of upward compatibility from 3(2) 
machines to multivalued machines would be attractive to those who find 

themselves involved with a computer world which is, for the most part, 
running on binary hardware.

An alternative to hardware upward compatibility would be to 
design new compilers which would allow source code from older base two 

machines to be compiled into object codes which would execute on higher



radix hardware. This will certainly be done when the new hardware's 

advantages outweigh Its disadvantages. All of the burden of upward 
compatibility would then be placed upon the Integrity of the new soft
ware. For that segment of the computer community which prefers to have 
the hardware and the architecture invisible to the user, this alternative 
makes sense. The problems associated with total hardware upward com
patibility Involve complexity, cost, reliability, total burden, etc.
Aside from the purely theoretical motivation, research activity which 
might answer these questions could be valuable to both the hardware 
designer as well as the end user.

To date, several algebras have been formulated and their 
Implementation and application investigated [16]. For purposes of 

comparison and analysis In this paper, one of two algebras will be used 
to describe the F(m) multivalued systems. The algebra of Vraneslc, 
et al. Is described in [1] and the algebra of Allen and Glvone In [10]. 
Both of these algebras share the following definitions:

Let T be a switching algebra with the following characteristics: 
Definition 1.1. T contains a set of variables (x,y...z) which
can assume m logic values from the set (0,1.... m-1)
0 < 1 < ...<m-l.

Definition 1.2. There are two operations, (+) and (•), in T 
such that

X + y = MAX (x,y) where x,yeS = {0,1,...m-1}
X y = MIN (x,y)



Definition 1.3. Given x,y,zeS
Idempotent: x + x = x , x * x « x ;

Commutative: x + y * y  + x , x y = y x ;
Associative: (x + y) + z => x + (y + z) ,

(x • y) • z *■ X • (y • z) ;

Distributive: x + y • z » (x + y) • (x + z),

X  • (y + z) * (x . y) + (x • z) ;
Absorption: x + x * y » x  , x * ( x  + y)*»x
Null Element: x + o = x , x * o » o
Universal

Element : x + p » p  , x p = x , p = m-1 ;
The two algebras differ In the choice of unary operators. Post [7, 17] 
has shown that the cycling operation and the product operation are a 

functionally complete set. Vraneslc has chosen the following unary 
operation to complete his definition.

Definition 1.4. Given x,keS, x a variable In S, 
k a constant In S

a) The M unary "Inverter" operation Is 
x^ = k If X = o

x^ * o otherwise
b) The M unary "clockwise cycling" operation Is

xï “ (x ̂  r) mod M , reS and constant, 0 = arithmetic addition. 
The unary operation proposed by Allen-Glvone to complete their definition 
Is:

Definition 1.5. Given x,a,beS,x a variable In S , 
a,b constants In S , a £ b



.5

The unary operator (a,b) on the variable x, called a literal 
and denoted by ®x^ is;

mrl a g logical value of x 5 b

-
( o  otherwise

Realizations of any of the multivalued algebras has been slow 
to develop [22]. The success of any higher radix logic family will 

depend upon its ability to offer concrete advantages in the areas of 
cost, speed, ease of implementation, etc., over conventional binary 
systems [23]. Recently, [19], the unary operation given by Definition
1.5 has been constructed using GaAs metal semiconductor field effect 
transistors (MESFET). In order for the MVL gates to work, it is 
necessary for the MESFETs to exhibit selectable pinchoff voltages.
Work on selective epitaxial layer etching for modification of MESFET 
pinchoff voltage is currently under way at the State University of 
New York at Buffalo [19]. More predominate in the area of MVL gate 
realization is the integrated injection logic (I^L) technology [5, 12, 
14, 18, 20].

Integrated injection logic was first developed in 1972 by 
separate groups at IBM and Phillips Research Laboratory [14]. I^L 

offers the speed of the bipolar junction transistor (BJT) and the high 
packaging density and low power dissipation of the metal-oxide semi
conductor transistor (MGS). The delay power product is typically 10 
pico-joules with an injector current of 10 microamps. Newer I^L 
technology offers a significant delay-power product improvement by 

the use of a Schottky-base I^L (SBI^L) structure [24J. For the most



part, the I^L family has offered the multiple-valued designer the best 
choice for implementing MVL algebras. I^L gates necessary to realize a 

four-valued logic system were developed in 1977 [51. In 1979 McCluskey 
[18] introduced strong and weak literals which could be used to develop
three connectives (MAX, PLUS, and INHIBIT). Each of these functions 
were combined into a single universal gate. This arrangement stresses a 
closer relationship between the algebra and the actual integrated 
circuit.

Research Objectives
This research will begin with an examination of the relationship 

between binary Boolean algebra and Post algebras. The work will show 
that there exist in every Post algebra, F(m), m = 2^, N an integer 

greater than one, 2^”^ homomorphic mappings of B(2). This is true only 
if the pseudo-conq>lement or strong negation operation is defined in 
F(m). In almost all cases throughout the research, the value of m will 

be four, the smallest Post algebra for which the mappings are defined.
It would be impossible to consider all mappings, not to mention that the 
circuit design and realizations would become particularly troublesome 
and recondite without really offering any additional insight to the 

research. Also, the quaternary logic system, as has been cited, is 
practically achievable and this provides an even greater motivation for 
the choice.

The research will proceed by examining the burden in P(4) which 

is imposed by one or more of the homomorphic images of B(2). It would



be unsafe to assume one mapping.to be more favorable than the other. 

Therefore, consideration will be given to both. At this stage of the 
work the concept of dual radix combinational design and realizations 

will be emphasized. Although it is not required that all P(4) circuitry 
be able to execute as a B(2) circuit, the analysis will be made for both 

bases. While it is unnecessary for functional completeness in both 
radices, it may be necessary for purposes of signal routing or archi

tecture to force a B(2) mapping through a particular P(4) circuit. 

Circuitry which will perform in more than one radix without modification 
will be shown to have no natural radix.

A formal approach to dual radix design will be established.
The algorithm will allow the designer to choose the homomorphic image of 

B(2) in P(m) which will give the lowest cost realization. The method 
will be demonstrated on a dual radix full adder VLSI design using I^L.

A proposed goal of this research is to consider a tightly 
coupled B(2):P(4) processor. Tightly coupled implies that all primary 
signal paths throughout the machine be used for both binary and quater
nary functions, and that dual radix hardware be used in the combinational 
and sequential portions of the processor. Therefore, a memory element 

which can operate in two radices is obviously necessary. It is possible 
that memory elements developed in previous work might accommodate both 

bases. Sequential design considerations will be examined and modified 
if required to meet the B(2):P(4) requirements. Finally, the hardware 
for dual radix buses will be developed and B(2):P(4) machine architecture 
will be discussed.



In an effort to emphasize the practical Implications of this
work, all B(2):F(4) analysis will be done at the gate level using the
Integrated Injection logic family. Standard B(2):P(4) building blocks

2will be designed and constructed using I L. Actual electrical para
meters will be measured for each circuit designed In Chapter II. 
Operating points will be chosen for injection current amplitude which 
will provide the greatest noise immunity and minimize logic level 

deterioration. Quantizers are necessary for practical MVL realizations. 
Hopefully, their usage can be limited to output stage buffering. The 
gate level implementation of dual radix circuitry can be transferred to 
master slice VLSI devices since the I L inverter arrays and PNP/HPN 
transistor arrays used for circuit construction in the appendix are

electrically compatible with the master slice. Suggestions for improve-
2ments in present I L technologies which will enhance MVL dual radix 

implementation will be offered.



CHAPTER II 

B(2):P(4) MAPPINGS AND REALIZATION

The switching algebra defined in Chapter I by Definitions 1.1-
1.5 provides a basis of handling multivalued or nonbinary switching 
functions. In fact, two different algebras were defined [1,10]; how

ever, both of these algebras are structure isomorphic [16]. Moreover, 
the four commonly used multivalued algebras have been shown to be 
isomorphic. This includes the Post algebra developed by Epstein, the 
monotonie system, the free system, and the Herrmann systems. Each of 
these algebras are equivalent in that any algebra may be obtained from 
the other by a transformation and that all are Postian algebras [16].

In Post's work [7], a system of mr-valued logic for finite many

valued prepositional logic was first introduced. By means of two 
primitive functions, the function of negation and the function of 

disjunction, the variable elementary propositions are combined to form 
prepositional functions of the system. In Rosenbloom's work [17], these 
concepts were called the cycle gate, the join (MAX), and the meet (MIN). 
These operations were defined in Definition 1.4(b) (for r = 1) and 
Definition 1.2, respectively.
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When working with Boolean algebras and Post algebras, it has 
been convenient to define additional operations in the Post algebra 
which are closed in P(m) [4,8]. In this work two definitions for a 

complement operation in P(m) will be used so that the homomorphic images 
of B(2) in P(m) can be considered. The Post algebra, P(m) is defined by 
Definitions 2.1 and 2.2.

Definition 2.1. P(m) is a Post algebra with m a fixed integer 
greater than or equal to two. This distributive lattice contains a zero 
element (0) and unit element (u) and elements e^, e^ « i, i » 0,1,2,... 

m-1 such that 0 = eg < e^ < e2 <...< e^^^ “ Also, the lattice opera
tions given by Definition 2.2 hold.

Definition 2.2. For x y e P(m) the following operations exist
a) X + y » MAX (x,y)

b) X y = MIN (x,y)
c) x^ = (x 0 1) MOD m

Since a Boolean algebra is a distributed, complemented lattice with a
zero element and a unit element [11], it is clear that not every pair of
elements in P(4) will satisfy the requireements of B(2). Wojcik and 
Metze have studied the relationships between higher-ordered Boolean 

algebras and Post algebras [4]. In their work they have defined the 
complement operation in P(m) as follows:

Definition 2.3. For x and x* e P, x ’ is the complement of x
if and only if x + x' ■ u and x • x'= 0.

Using Definition 2.3 every Post algebra contains a unique two-element 
Boolean algebra.
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Example 2.1. Let x * 1 and y « 2, x, y e P(4).
x + y = l + 2 = 2?^3 = u = LUB
x » y  = l * 2 « l ? t 0 “ GLB 
X y'

Obviously from Example 2.1 x and y are not complements. In Example 2.2 
X and y are chosen such that Definition 2.3 does hold.

Example 2.2. Let x = 0 and y = 3, x, y e P(4)
x + y = 0 + 3 = 3 = LUB 

x * y « Q  • 3 = 0 =  GLB 
If the 0 and 1 elements of B(2) are mapped to the 0 and 3 elements in 
P(4), which are complements, then P(4) contains a unique two element 
Boolean algebra.

Definition 2.4. Given B(2), a two element Boolean algebra 
with 0 = GLB and 1 = LUB, and P(m) a Post algebra of m elements 

B(2) ->• P(m)^ ^ is a mapping from B(2) to P(m) 
such that

GLB » 0 ->• a a < b; a, b e S,
LUB » 1 b S = {0, 1,... ,m-l}

Using definition 2.4, the six possible mappings of B(2) into P(4) are:

B(2) + P(4)g 1 B(2) -> P(4)^ 2
B(2) -4- P(4)o 2 B(2) - P(4)i 2
B(2) P(4)q^3 B(2) 4. P(4)2 3
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By Definition 2.2 and 2.3 only B(2) -*■ P(4)g ^ Is homomorphic. For each
of the other mappings the complement operation In F (4) does not hold;
therefore, the resulting B(2) lattice Is not complemented.

Theorem 2.1. B(2) -*■ P(4)q ^ Is the only homomorphic mapping
using Definition 2.3.

Proof: Assume that other homomorphic mappings exist. There

are twelve possible ways to map B(2) Into P(4). However, P(4) Is a Post
algebra and thus partial ordering exists. Therefore, by Definition 2.4,

only six possible mappings exist (since a < b). Clearly, B(2) -»• P(4). .u, J
Is homomorphic. Given the operations of "AND," "OR," end complement In 
B(2), and (|) = B(2) -► P(4)g then $ Is a homomorphism and P(4)o g Is the 
homomorphic Image of B(2) If the "AND" function In B(2) Is mapped to the 
MIN function In P(4), and "OR" function In B(2) Is mapped to the MAX 

function In P(4), and the complement function In B(2) Is mapped to the 
complement In P(4).

"AND" MIN
(O'D* » (0)(j) • (1)<|)

(0)0 = 0 ' 3 
0 = 0 = GLB

"OR" 4. MAX

(04-1)0 - (0)0 + (1)0 
(1)0 = 0 -K 3 

3 » 3 - LUB



13

Complement B(2) Complement P(4)
(O')* » (0)*'
(D* = O'

3 - 3  

(1»)* - (1)*'
(0)* = 3'

0 - 0
Likewise, * - B(2) -> P(^)q ,1 to be a homomorphism by
showing

(xy)(j) » (x)* (y)* for x, y e B(2) with the "AND," "OR"

and complement operations.

"AND" -> MIN

(0-1)* - (0)* • (D*
(0)* - 0 * 1  

0 - 0 = GLB

"OR" + MAX

(0+1) * » (0)* + (D*
(D* - 0  + 1 

1 » 1 - LUB
Complement B(2) Complement P(4)

(O')* - (0)*'

(D* » O'
1 3
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Therefore, (J) = B(2) -► P(^)q ^ not a homomorphism since 0, 1 e P(4) 
are not complements. Similarly, the four other possible mappings are 
not homomorphic since 0 ’ f 2, 1* 2, 1’ ^  3, and 2' ^  3. Thus, B(2) -»
P(4) is the only homomorphic mapping using Definition 2.3.U, J.

The six possible mappings from B(2) to P(4) using Definition 2.2 
for the MAX and MIN function are shown in Figure 2.1. An important 
observation can be made from an examination of these mappings. For 

all B(2) -*■ P(m) , the "AND" operation in B(2) will map to the MIN opera-D
tion in P(m), and the "OR" operation in B(2) will map to the MAX operation 
in P(m). The restriction placed upon elements in P(m) by Definition 2.3 
has forced only the B(2) P(4)g ^ mapping to be homomorphic. Because

the "AND" and "OR" operations in B(2) are closed in P(4) for all mappings, 
non-homomorphic mappings are attractive even though Definition 2.3 does 
not hold.

If a different definition of the complement in P(4) is used, 
then it would be interesting to examine the six mappings shown in 
Figure 2.1, for any new homomorphic images. The notion of a new 
definition of the complement in P(4) is given in Definition 2.5 [8].

Definition 2.5. Given P(m) a Post algebra with m elements 
and X a variable in P(m),

X  ■ (m-1) - X = complement of x (also known as the
pseudo-complement or strong negation).

This operation in P(4) is considered to be the closest equivalent to the 

true complement in B(2). The truth table of the complement operation 
given in Definition 2.5 for P(4) is shown in Table 2.1.
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0 1 2  3
0 0 - -  

0 1 —  —

MAX (0,1) , MIN (0,1)
B(2) ^ P(4)o 1

0 1 2  3
0 -  -  0

0 —  —  1
MAX (0,3) MIN (0,3)

B(2) 4. P(4)g 3

0 1 2  3

- 0 - 0

- 0 - 1
MAX (1,3) MIN (1,3)

B(2) 4. P(4)^ 3

0 1 2  3
0 —  0 —

0 -  1 -

MAX (0,2) MIN (0,2)

B(2) 4. P(4)q 2

3

MAX (1,2) MIN (1,2)

B(2) 4. P(4)i 2

0
1
2

3

0 1 2  3

- - 0 0
- - 0 1

MAX (2,3) MIN (2,3)
B(2) 4. P(4)2 3

FIGURE 2.1. Six Possible Mappings from B(2) to P(4)
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Table 2.1. Strong Negation In 
P(4)

0
1
2

3

3
2
1
0

Table 2.2. Complement in P(4) for
a) B(2) - P(4)q 3
b) B(2) 4. p(4)i 2

B(2) P(4) B(2) P(4)

X S’ X X XT

0 3 -
1 2  0 

2 1 1

3 0 -

0
1
2

3

3
2
1
0

a) b)

Using Definition 2.5., the B(2) -*■ P(4) mapping now becomes homo-1,2
morphic. Let (|> « B(2) -► P(4)1,2,

'AND" MIN

"OR" MAX

(O'D*
(0)4

1

(0)4 • (1)4
1 • 2 
1

(0+1)4 " (0)4 + (1)4 
(1)4 = 1 + 2  

2 =  2
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Complement B(2) -*• Complement P(4)

(O')* = (0)*'

(D* - 1' 
2 - 2  

(1')* - (1)*’
(0)* » 2'

1 - 1

The B(2) -*• P(4)q  ̂and B(2) P(4)^ g mappings are obvious first choices
In any consideration for upward compatibility of B(2) algebras into P(4) 
algebras. However, in attempting to minimize the realization burden In 
both algebras all mappings may prove to be interesting, especially for 
special functions. Only the burden of an Independent realization of the 
B(2) complement Is Involved In choosing a non-homomorphlc mapping.

Before leaving this topic to discuss hardware realizations. It 
might be of Interest to examine the more general case of upward compat
ibility. Obviously, a two-valued Boolean algebra has a homomorphic image 
In P(8), P(16), etc.

Theorem 2.2. Given P(m), a Post algebra, m - 2^ , N an Integer 
greater than one, with MAX and MIN operations given in Definition 2.2, 
and the complement operation given In Definition 2.5. Also, B(2), a two
valued Boolean algebra, there exists 2^"^ homomorphic mappings of B(2)
In P(m), as given by Definition 2.4.

Proof: The number of elements In P(m) - 2^"^ ; Given

0 - eg a e^ 3 e^-i = u ; Definition 2.1
%  - (m-1) - X ; Definition 2.5
X - (2^-1) - X ; m » 2^



18

Choose and x^ such that x^ < x^ (i.e., begin with x^ = 0), x^ = e^,

Xj “ ®j* ®i* ®j  ̂ i 1* j such that x^ = ïÿ.
Since m is a power of 2, then m is an even integer and every 

element must have a complement according to Definition 2.5.
Choose a, b € P(m) such that a = e^ and b = ej. (This is not 

a contradiction since a < b by Definition 2.4, and ê  ̂< e^ by the choice 
of Xĵ  and x^.)

Let ((l̂ represent a possible homomorphism
= B(2) + P(m) a, b ; Definition 2.4

= B(2) -► P(m) e^, e^

"AND" 4. MIN

(0'1)$2 “ (0)^^ • (1)(|>2 , Definition 2.4
(0'1)$2 = e^ « Oj , Definition 2.4

(0*l)(jl̂  “ ®i » Definition 2.2
(0*1)$^ = Xĵ  , Choice of x^

[)-j_ a x^ , Definition "AND"

%i

operation in B(2) 
Definition 2.4

"OR" -»• MAX
(0+1)(l)ĵ = (0)#i + (1) <1>3̂ , Definition 2.4
(0+l)(j)̂  = e^ + 6j , Definition 2.4
( 0 + 1 ) =  Oj , Definition 2.2

(0+1)^2 “ > Choice of Xj
(1)^1 = Xj , Definition "OR"

operation in B(2) 

b = Xj , Definition 2.4
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Complement B(2)

(0')*i

(1)*1

Complement P(m)

(o)*l

(1)*1

(0)*1

a =
is a homomorphism. 

If for i = 0 then

""j » (2^-1) - X.
= (2^-1) - e.
= (2**-l) - 0
« 2 ^ - 1 = e

AND

®i ®j since 0 < 2N -  1

®i “

» Definition 2.4 
, Definition 2.4 
, Choice of and Xj 

, Definition of 
complement in B(2)

, Definition 2.4

, Definition 2.4 
, Definition 2.4 

, Choice of x^ and Xj 
, Definition of 
complement in B(2)

, Definition 2.4

; Definition 2.5

; Definition 2.5

If (j)̂ is the next choice for a possible homomorphism, then let 
i « 1
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NXj “ (2 -1) - ; Definition 2.5
N

“ (2 - 1) -
N- (2 -1) - 1

X " 2^-2 = e.
 ̂ N< Sj since 1 < 2 -2 ; N > 1

e^ “ ëj ; Definition 2.5
AND (|)̂ can be shown to be a homomorphism In the same manner
as

NNow the total number of elements In F(m) = 2 , and the total
Nnumber of pairs of complemented elements In P(m) Is **2-1. If the 

(|)g mapping makes a similar choice, a and b, such

that a = eg, b - ^ ; Xg - eg and XgU_^ -
then eg < eg^_g since 2 < 2^-3 ; N > 2

®2 “ ^2N-3 
and Xg = XgN^g

So ({>2 Is a homomorphism In the same manner as and $2» and 
there are clearly 2^-1 choices for (j).

A summary of the results of Theorem 2.2 Is shown In Table 2.3.
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2.3. The Possible Homomorphic Mappings of
B(2) and P(m)

m Mappings
£

4 B(2) f W o . 3 2

B(2) ^ < « 1,2
8 B(2) f (8)0.7 4

B(2)
B(2) ” (8)2.5
B(2) ” (8)3.4

16 B(2) ” (“ )0.15 8

B(2) ” (^«1.14
B(2) ” (18)2.13
B(2) ” (18)3.12
B(2) ” (18)4.11
B(2) ” (18)5.10
B(2) ” (18)6.9
B(2) ” (18)7.8

N .N B(2)

B(2)
P(2^
P(2^)1+1,j-1

,N-1 ,1 = o 
j = m-1

B(2) : P(2®)
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Hardware Realizations Using

Integrated injection logic, commonly referred to as X L  was
developed in 1972 by separate groups at IBM and Phillips Research

2Laboratories [14]. I L offers the speed of the bipolar junction 

transistor (BJT) and the high packaging density and low power dissipation 
of the metal oxide semiconductor transistor (MOS). Since isolation bor
ders and diffused resistors are not required, packaging densities of 
over 300 gates/mm^ are possible [12]. The basic building block is a 

current mirror which is essentially direct-coupled transistor logic 
operating in the current mode. Figure. 2.2 is the schematic of the direct- 
coupled transistor logic (DCTL) which is used in MOS large scale integra
tion. Since the bases of and are connected together they can be

1

R.

R.

Figure 2.2. The Direct-Coupled Transistor Logic Gate
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merged into a single positive region. Also, the emitters of Qg and 
can be merged into a single negative region. Figure 2.3 shows a cross 

section of the output stage after the merging of Qg and Q^. An additional 
P isolation diffusion area is required or all the collectors of Q^, Qg, Q^, 

and would be in a single N epitaxial region [12]. However, since all 
collectors are not at the same potential this is impossible. All emitters 
are at ground potential.

r r t ILS lAi
/ N Epitaxial

^ Z ' y Substrate ////
Figure 2.3. A Cross Section of the Output Stage

The P isolation diffusion area may be omitted if the collectors and 

emitters are interchanged. Thus, a multiple emitter transistor can be 
made and it can be operated in the inverse mode. One of the disadvan

tages of DCTL has now been eliminated. Since Qg and now share the 
same base-emitter junction, their input characteristics are identical.
Figure 2.4 is the new cross section of the output stage.

C,P3'»4

n Epitaxial 
Substrate

I V 4
Figure 2.4. The Output Stage with a Multiple Emitter 

Device Operating in the Inverse Mode
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Ideally, should be eliminated as the collector load for 
and Qg since it requires a lot of the LSI silicon real estate. The 

larger the value of R^ the better the gain of the input states. However, 
an infinite value will not do since this resistor must also provide the 
base current for the output transistors. may be replaced by a current 
source. A PNF transistor operating in the common base mode will provide 
the required source. Figure 2.5 shows the schematic of the current 
source. R^ may now be off of the chip as opposed to a diffused resistor. 
Thus, the current injected into the output stages is completely control
led by the value of and Vcc.

J  ' ' *

% y  \

r \ ________________

'cc

To 83,3^

Figure 2.5. A PNP Current Injector

If the collector of the current injector is merged with the bases of
Q3 and in Figure 2.4 and the base of the injector is merged with the
grounded emitters, the I ^  gate is complete. The final cross section of
both the output and input stage is shown in Figure 2.6.

Injector 
E r  _____

n Epitaxial
n Substrate

J=f3'^4'=s
Figure 2.6. A Cross Section of the I^L Gate
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The Input to the I^L gate can connect to the junction of and Cg.
The schematic of the cross section in Figure 2.6 is shown in Figure 2.7. 
All of the original labels have been carried forward from Figure 2.2 so

Injector

B1 Inputs
B2

Figure 2.7. The I L Gate

that the development from the basic DCTL gate can easily be seen. In
actual construction a single external resistor can be connected to Eg
to provide the injector current for all gates. The P region for the
injector emitter has a lateral configuration; The F-type diffusion line
can connect to all the output transistors which it is adjacent to. These
are called injector rails. The vertical real estate is allocated to the
output NPN transistors. In this way the actual gate layout may grow in
two dimensions to allow an organized LSI device. Figure 2.8 shows a
layout of four I ^  gates. Each square represents an input and each
circle represents and output. In actual construction, a gate array may

2contain a larger number of multiple-output I L inverters grouped together. 
A typical gate array consisting of eight multiple output inverters shar

ing a set of four injectors is currently manufactured by companies 
offering I L master chips [15].
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n Collectors

n
/ / /  / / / /  y / / /  y / / / / / / /  /

/p ' /x /p /  .+ \xy/o/,àA1
Figure 2.8. Injection Logic Layout for Four I L Gates

Complement Gate ^
Hardware realizations for the two homomorphic mappings given 

In Table 2.2 are shown In Figure 2.9. The Inputs and outputs from the 
gate will be characterized using the following notation:

Given logical Inputs (x^,X2t.. and 

logical outputs (y^,y2»***yn)» then 
for Inputs

0 < X2»X2 ..XQ < ^m-l there exists 
a corresponding output 

0 < ŷ ,̂ y2,...yjj < lĝ _̂  such that 
yĵ  Is the response to x^, the

response to x^, etc.
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tôÏ23) (3210) P(4)
P(4) (0123) 
B(2) (03)

(3— 0) B(2) -> P(4)

(a)

0,3

P(4) (0123) 
B(2) (12) i

(0123)

(b)

i
(3210) P(4)

(-21-) Bg + P(4)i 2

Figure 2.9. Complement Gates for Two Mappings 
a) Bg 4. P(4)q;3, b) Bg ->• p(4)% %

Note that for either mapping, the single current mirror which was deve
loped and shown In Figure 2.7 Is capable of realizing the complement 
function In both B(2) and P(4) with no additional gate burden. In 
Figure 2.9(a) It Is shown that for an Input current of = 2, for

example, that the second collector; that Is the one not connected for 
feedback, will mirror the Input. With two units of current flowing to 
the left out of the three unit current source, only one unit of current 

Is free to flow to the right; therefore, y^ » 1 for x^ = 2. In a



28

similar manner, the gate in Figure 2.9(b) can accomplish the complement 

in P(4) or the B(2) P(4)^ g mapping. Notice that the gates in (a) and
(b) are identical.

The MAX/OR Gate 

The realization for a single radix (r * 4) MAX gate was 

first proposed in 1977 [5]. Rigure 2.10 is the MAX gate followed by 
the inverter shown in Figure 2.9. The MAX function was closed in P(4) 

for all six mappings shown in Figure 2.1. Therefore, the single radix 
gate can accomplish the "OR" operation in B(2) for any mapping and thus 
become a dual radix gate with no additional gate burden. Shown in 
Table 2.4 is the truth table of the actual circuit currents which * 

characterize the behavior in P(4) as well as both of the homomorphic 

mappings.

Figure 2.10. MAX Operation in P(4), "OR" Operation 
for All B(2) Mappings
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Table 2.4. Current Characterization of the Dual 
Radix MAX/OR Gate

- 1- 2- 
• 00
01
02
03
10
11
12

20

22

30
31
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The MIN/AND Gate
If the and x^ inputs to the circuit in Figure 2.10 are

complemented and the output is not complemented, then the circuit will
perform the MIN function in P(4). The MIN function was closed in P(4)
for all six mappings shown in Figure 2.1. Therefore, the single radix
gate can accomplish the "AND" operation in B(2) for any mapping and thus
become a dual radix gate with no additional gate burden. The circuit
shown in Figure 2.11 will accomplish the MIN operation in P(4) and the

"AND" operation in B(2) for all mappings. Table 2.5 is the truth table
of the actual currents which characterize the MIN function in P(4) as
well as the B(2) P(4) and B(2) -»• F(4) homomorphic mappings.i,/ 0,3

A functionally complete set of gates now exists for either of 

the binary mappings in P(4) with the complement, MAX/OR gate, and MIN/ 
AND gate. The B(2) P(4) and B(2) P(4). _ mappings can both beÜ J 3 -L * Z

X2

Figure 2.11. MIN Operation in P(4), "AND" Operation 
for all B(2) Mappings
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realized with no additional hardware burden. To establish functional 
completeness in P(4), it is necessary to construct circuitry which can 
perform the unary operations given in Definitions 1.4 and 1.5. Either 
of the unary operations are sufficient for P(4) completeness. Circuit 
design and dual radix considerations will be examined for each definition.

The Unary "Inverter"

To achieve a completeness in F(4) Vranesic chose the unary 
operators given in Definition 1.4. For convenience, that definition 
will be repeated here.

Definition 1.4. Given x,keS, x a variable in S, 
k a constant in S
a) The M unary "inverter" operation is 

x^ = k if X = o 
X a o Otherwise

The truth table for the unary inverter is given in Table 2.6. Examining
the tiruth table reveals that the B(2) + P(4) mapping holds for theU,3
unary "inverter" while the B(2) P(4) mapping does not. In consider-lyZ
ing the consequence of the B(2) P(4)g ^ mapping, it is important to

remember that the unary "inverter" definition is necessary for the 
multivalued case only. For the binary case it is obviously not required. 
However, in an effort to insure common signal paths and enhance the tightly 
coupled feature of any dual radix circuitry, a complete analysis of the 

B(2) P(4)q 2 mapping should be done. The truth table for the binary
case is given in Table 2.7. The conventional realization of this truth 

table with binary gates is shown in Figure 2.12. The function can be
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Table 2,5. Current Characterization of the Dual 
Radix MIN/AND Gate

*1*2 - . A B C y-i P(4)« , P(4), _
00 3 3 3 0 0

-----^-41,2—
X

01 3 2 3 0 X X
02 3 1 3 0 X X
03 3 0 3 0 0 X
10 2 3 3 0 X X
11 2 2 2 1 X 1
12 2 1 2 1 X 1
13 2 0 2 1 X X
20 1 3 3 0 X X
21 1 2 2 1 X 1
22 1 1 1 2 X 2
23 1 0 1 2 X X
30 0 3 3 0 0 X
31 0 2 2 1 X X
32 0 1 1 2 X X
33 0 0 0 3 3 X
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Table 2.6. Unary "Inverter" in P(4)

generated using either the "AND" gate or the "OR" gate. This interpreta
tion of the unary "inverter" function is awkward for two reasons. The 
first being the fact that the "AND" and "OR" gates are mapped to MIN and 
MAX gates in P(4). The second reason is that the function can be realized 
with fewer gates by using a different interpretation of the truth table.
For the case of k » 0, the function is trivial. For k = 1, the 
output is the complement of the input. For the binary case, then, the 
unary "inverter" may be thought of as a gated inverter. With k enabled 
the circuit performs the complement. With k = 0 the circuit is disabled. 

Figure 2.13 shows the gated inverter interpretation of the unary "inverter"
for the binary situation and the B(2) P(4) mapping.

0,3

Table 2.7. Unary "Inverter" in B(2)

X k k

0 0 
0 1 
1 1 
1 0

0
1
0
0
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3>
Figure 2.12. B(2) Unary "Inverter" Realization

 M>o  ̂   [So-
(01) ^  (10) (0— 3) ^  (3— 0)

(a) (b)

Figure 2.13. Gated Inverter a) B(2), b) B(2) P(4)0,3

Using this idea of a gated inverter, the unary "inverter" 
realization in P(4) should perform the gated inverter function for 
B(2) P(4)g g. The l \  circuit shown in Figure 2.14 is capable of
performing the unary "inverter" function in P(4). It is also possible 
for it to perform as a gated inverter for the B(2) ■> P(4)q ^ case. A 

comment concerning Definition 1.4(a) is in order. The idea of the 
definition is that k is a constant in the algebra. For the I ^  circuit 
in Figure 2.14, the k input should be determined by a fixed injector 
current to be compatible with the definition. This would present a 

problem for dual radix circuitry. If the value of k was fixed to a 
logical one or two, then the unary "inverter" in Figure 2.14 could not 
operate as a gated inverter for the B(2) •> P(4) case. However, the 

circuit of Figure 2.14 has a greater flexibility. The value of k can



Figure 2.14. Unary "Inverter"

default to a logical value of three for the blnairy case. This requires 
the burden of a mode control line to accomplish the dual radix concept. 
The suggestion that dual radix circuitry requires a mode line, and thus 

places additional burden on the circuitry, will force this type of 
function to be considered more carefully In Chapter III. The Idea of 
common signal paths and tightly coupled Implementations Is still a bit 
naive at this point and may prove to be of little value if the shared 

function Is an awkward pairing for the dual radix concept.
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The M Unary "Clockwise Cycling" Operation 

The second half of Definition 1.4 describes the "clockwise 
cycling" operation.

Définition 1.4 b) The M  unary "clockwise cycling" operation
is

** (x 0 r) mod M x a variable in S,
r a constant in S.

The truth table for the "clockwise cycling" operation is given in
Table 2.8. Examining the table shows that neither of the homomorphic
mappings of B(2) to P(4) hold. However, there is a column of the table
which is closed. For the case of r = o and the B(2) P(4)_ mapping,0
the function becomes a non-inverting buffer. If the r input to a P(4) 

"cloctwise cycling" operation would default to a logical value of zero 
for the binary case, then common signal paths and the tightly coupled 

concept would be preserved. The idea is similar to the gated inverter 
using the k line as the mode control. In this case, the r input would 
be the mode control line. Once again the notion of r being a constant 
in the algebra is lost here. This does not change the function in P(4) 
to allow r to become a logical zero for the binary case. On the contrary, 
the dual radix pairing of functions is very convenient. That is, the 
"clockwise cycling" operation is simply a non-inverting buffer in either 

radix for r " o. The circuit shown in Figure 2.15 will function as a 
non-inverting buffer. The i^ and ig current sources are shown to be a 
function of r.
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Table 2.8. "Clockwise Cycling" Operation in P(4)

X
(3.5 - r)

(x e 0)

Figure 2.15. Non-Inverting Buffer (r = 0) 
for B(2) and P(4)

The non-inverting buffer is a special case of Definition 1.4(b) 

to accommodate the dual radix concept for the B(2) ->■ P(4)q g case. 
Another special case of "clockwise cycling" has been defined [5] as a 
successor function. For the successor function r has a value of one. 

Bather than constructing several different circuits with different 

current sources for i^ and i^ to perform the special case functions as
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well as the "clockwise cycling" function, the circuit In Figure 2.16 
should be considered. This circuit will perform the M unary "clockwise 

cycling" operation as defined. The value of r could obviously be held at 

a constant logical value to satisfy the Intent of the definition. For 
the dual radix cage It Is especially attractive to at least allow r to 
default to a logical zero for the binary case.

(3210) MOD 4
(3210)X

(0123)

(0123)
3.5 (00004)

(0123)

(3456)
r (3210)

(0123)

Figure 2.16. Universal M Unary "Clockwise Cycling" Operation
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The Literal

To achieve a completeness In F(m) Allen and Glvone chose the 

unary operator given In Definition 1.5. For convenience that definition 
will be repeated here.

Definition 1.5. Given %,a,beS,x a variable In S , 
a,b constants In S , a â b 

The unary operator (a,b) on the variable x,
called a literal and denoted by ®x^ Is;

m-1 a ^ logical value of x a b
®x^ » I

( o otherwise

The truth table for the literal operator Is given In Table 2.9. Since 

the output Is always a logical zero or logical three, the B(2) P(4) 0,3
mapping holds. Notice for this mapping that the a and b Inputs may take 
on values of {0,0}, {0,3}, and {3,3} since a £ b by Definition 1.5. Once 

again, there Is a binary operation for each of these three choices. For 
the {0,0} case, the literal operation In F(4) becomes an Inverter In B(2).
For the {3,3} case, the function becomes a non-inverting buffer In B(2).
The {0,3} Is really a little awkward since It disables the operation with 
a logical one output for the B(2) case. The difficulty with the literal 
operator Is with the physical realization of the truth Table 2.9. Tra
ditionally, only a single column of the table Is realized In a given 
circuit. If common signal paths are to be achieved, then the B(2) signal 

must be able to propagate through any P(4) literal realization. To 

accomplish this, a universal literal realization must be designed which
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Table 2.9. The Literal Operator In P(4)

can perform the functions of all ten of the columns given In Table 2.9.
If such a circuit can be designed, then the a and b Inputs could default 

to {0,0} or {3,3} depending upon the desired circuit response In B(2).
The circuit shown In Figure 2.17 Is capable of performing the literal 

operation In P(4) for any choice of a and b, as well as performing the 
Inverting or non-lnvertlng function In B(2) for the B(2) -*• P(4)q ^ mapping 
for a and b equal to {0,0} and {3,3} respectively. For a and b equal to 
{0,3} the function Is obviously preserved for either radix; however. Its 
usefulness In B(2) Is doubtful.
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2.5

2.5

Figure 2.17. The Literal Operator in P(4), 
Inverter in B(2) -► F(4)g 3 for a,b » {0,0} 

Non-Inverter in B(2) P(4)o 3 for a,b » {3,3}
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Summary
Out of the six possible mappings from B(2) to P(4), It was

shown that using Definition 2.3 only one mapping Is homomorphic, the
B(2) •*" P(4)g g. If Definition 2.5 Is used to define the pseudo-complement
or strong negation, then two homomorphic relationships exist; the B(2)
P(4) as well as the B(2) P(4)« The general extension of this

1.2 *̂'5 N-1
argument given by Theorem 2.2 states that there exist 2 homomorphic

Nmappings of B(2) In P(m), m = 2 , N an Integer greater than one. Table
2.3 Is a summary of the mappings defined by the theorem.

The advantages of Integrated Injection logic were discussed and 
2the basic I L gate was developed. The extension of the basic gate 

architecture to an actual gate array was considered.
The complement, MAX, and MIN functions In P(4) were shown to 

realize the complement, "OR," and the "AND" functions In B(2). The MAX 
and MIN functions hold for all six mappings shown In Figure 2.1. The 
complement holds for the two homomorphic mappings. The circuitry to 
operate In either radix Is Identical. No mode control line Is required 
to change from one base to the other. Also, there Is no additional hard
ware burden. In a sense, then, the circuitry really has no natural 
radix because It will work In either.

The unary operations defined by Vraneslc, et al, and by Allen 
and Glvone were examined under the dual radix concept. It Is obviously 
not required that these circuits perform at all In B(2); however. In an 

effort to Insure common signal paths and enhance the tightly coupled 
feature of any dual radix circuitry, a complete analysis was done.

A functional pairing exists for the B(2) ->• P(4)« mapping for eachU, 3
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unary operation defined for F(m). Table 2.10 is a summary of the 
functional pairing for dual radix circuitry.

The 1 ^  realizations for all of the operations summarized in 
Table 2.10 were developed in this chapter. A detailed analysis of the 
development and all of the electrical design considerations is given in 
Appendix A, Dual Radix Circuit Considerations. Also, some of the 
I L circuits are too awkward to be redrawn many times. Therefore, the 
schematic symbols shown in Figure 2.18 will be used throughout the 
remainder of the text to represent the actual circuitry.



Table 2.10. Summary of Functional Pairing 
for Dual Radix Circuitry

Algebra 

Vranesic 

Et Al

Allen and 

Givone

Function 
in P(4)

"Unary Inverter"

"Clockwise Cycling"

Literal
Literal

Function 
in B(2)

Inverter

Non-Inverting Buffer

Inverter 
Non-Inverting Buffer

Possible
Mapping

P(4)

P(4)
0,3

0.3

P(4)
P(4)

0.3

0.3

Mode Control 
Required
k - 3
r o 0

a,b = {0,0} 

a,b = {3,3}

Figure

2.14

2.16

2.17

2.17

MAX
Both MIN

Complement (Def.2.5)

OR

AND
Complement

ALL

ALL
NONE
NONE
NONE

2.10
2.11
2.9
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{ >

(Figure 2.9) 
a) Complement

(Figure 2.10) 
b) MAX/OR Gate

O X X

(Figure 2.11) 
c) MIN/AND

(Figure 2.14)
d) "Unary Inverter"/Inverter

& JL
1 1

(Figure 2.16)
e) "Clockwise Cycling"/ 
Non-Inverting Buffer

(Figure 2.17)
f) Literal/Inverter (a,b => {0,0}) 

/Non-Inverting Buffer (a,b =* {3,3})

Figure 2.18. Schematic Symbols for Dual Radix Circuitry
a) Complement, b) MAX/OR Gate, c) MIN/AND Gate, d) "Unary Inverter"/ 

Inverter, e) "Clockwise Cycling"/Non-Inverting Buffer
f) Literal/Inverter; Llteral/Non-Invertlng Buffer



CHAPTER III 

B(2):P(4) COMBINATIONAL DESIGN

The motivation In Chapter II was to choose an algebra or 
algebras and realizations that would be functionally complete In two 

radices. The concept Is a stronger marriage than equivalence. The B(2) 
hardware is available In the F (4) realization. Hopefully» the advan

tages of a B(2):P(4) realization outweigh the disadvantages. Although 
no combinational design has been done, as yet. It might be nice to 
examine the pros and cons of this dual radix concept before continuing.

Examination of the burden In P(4) which Is Imposed by one or
more of the homomorphic images of B(2) Is In order. Figure 2.1 clearly
shows no additional hardware burden Is Imposed on MAX/OR and MIN/AND 
B(2):P(4) realizations for any of the six mappings. Definition 2.5 
reduces the mappings from six to two unless some Independent realization 

of the complement In one of the radices Is added, which Is undesirable. 
Thus, the complement requires no hardware burden In B(2) for B(2) -» 

P(4)^ ^ and B(2) P(4)^ g" At this point completeness can be achieved
In B(2) but not In P(4).

46
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Vranesic chose the M unary "inverter” and the M unary "clock
wise cycling" operations to allow completeness in P(4). The unary 

"inverter" shown in Figure 2.13 clearly requires k *» 3 for the circuit 
to perform as an inverter in B(2)for B(2) -► P(4)g y  However, the 
schematic in Figure 2.14 shows that no extra hardware is required for 
the B(2) case. The unary "clockwise cycling" operation will perform as 
a non-inverting buffer with r = 0 for the B(2) -*■ P(4)^ _ mapping. The 
circuit shown in Figure 2.15 requires three current mirrors and a switch 
compared to two current mirrors and two switches for the circuit developed 

by Dao, McCluskey and Russell [5]. Counting collectors, or fan out.
Figure 2.15 requires eight compared to seven in the circuitry by Dao, 
et al. Forcing the hardware to work in B(2):P(4) configurations demands 

that r default to zero for the B(2) case. This complicates the circuitry 
of Figure 2.15, but also provides the motivation for a more universal 
"clockwise cycling" gate which is shown in Figure 2.16. This circuit 

will operate for any r , r = {0, m-1}. Figure 2.16 requires five current 
mirrors and one switch, for a total of thirteen collectors. A direct 
comparison with this circuit and a successor circuit developed in pre
vious work has little relevance.

Combinational Considerations 
What must be addressed now is whether or not the mode control 

lines should be considered additional burden for B(2):P(4) designs. 

Although the collector count does not go up, there is the added require
ment that the k and r lines default to three and zero respectively for 
the B(2) case. To better understand the burden of mode control, or 
defaulting to a constant logic value for B(2), two specific combinational
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designs will be considered. The first design will be for the algebra of 

Vranesic, et al, and the second for Allen and Givone.
Example 3.1. Given the completely specified function of x^ 

and Xg in Table 3.1, find the P(4) realization from the canonical 

expression. Show the B(2):F(4) circuit and discuss the k and r mode 
line considerations.

Table 3.1

Any n-variable m-valued switching function f(x^,...x^) has a "sum of 

products of sums" canonical form which is described in [26]. For the 
function given in Table 3.1 the canonical form is:

f(Xj^,X2> = [(x^ + x,)(x7 + x,)(x, + x,)(xi + x,)]l;
'2^
I3 2 3 __>. -4- ^  2

+  [ (Xĵ  +  X 2 ) (x^ + X 2 ) (x^ +  Xg) (x^ +  Xg) (x^ +  Xg) ]

I .  a..3+  [ ( x ^  +  x p ( X j  +  X g ) ]

Using the theorems in [1] the function can be simplified to:

3 2 I

f(x^,X2) = x^ Xg + x^ X2 + x^ X2

The P(4) realization of the above function is shown in Figure 3.1.
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I r = 3

'1— U>—
k = 2

3 2

X, ^  2 ^ 3Xg + X^ Xg X^ Xg

Figure 3.1. P(4) Realization of 

f (Xi,X2> - %2 + x^ xj + x^ x^
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It has been shown that if r » 0 and k * 3, then a B(2) ■> P(4)0,3
mapping can be realized with the circuitry in Figure 3.1. Figure 3.2 
shows the P(4) realization of Figure 3.1 with the mode control lines 
configured for the B(2) case.

Figure 3.2. B(2):P(4) Realization of

fCx^.Xg) = *2 ^1 ^2
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The function shown in Figure 3.2 can be simplified to:

Obviously, no simplification is possible in B(2) if the F (4) function 
of and x^ is to be preserved. Therefore, a minimized P(4) realiza
tion does not guarantee the B(2) P(4) function will be minimized.0,3

Upon closer examination of the B(2) function shown in Figure 3.2 
it can be seen that the k and r lines are awkward to handle in going 

from P(4) to B(2). Rather than the k and r lines changing, a better 
method would be to define a control signal which changes the hardware 
from P(4) to B(2). In processor architectures, this control signal 
could operate in much the same way that the Interrupt is turned on or 

off in a microprocessor [13]. That is, it could be enabled and disabled 
under the control of a software instruction so that the logic could 
change from P(4) to B(2) "on the fly." The logic shown in Figure 3.3 
could be used to allow the control signal to change the k and r lines 
from variables in P(4) to k = 3 and r =* 0 in B(2). The binary select 

line now becomes the single line which can be used where necessary to 
allow the B(2) :P(4) circuitry to operate in both radices. Each of the 
circuits shown in Figure 3.3(c) contains five collectors. Also, the Bs
line is an obvious burden that is necessary to support the B(2):F(4)
concept. The conclusion is that the mode control line, or B line,s
places an additional burden of five collectors and one control lead on 
the hardware.

Besides additional hardware, two other concepts were introduced 
in Chapter II which seriously affect the appeal of any B(2):P(4) circuitry
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r k
0 r P(4) 0 k
3 0 B(2) 3 3

Bg = Binary Select

(a)

0 , B(2) 
r , P(4)

(x e r) MOD 4 

(b)

TT= 3 , B(2) 
k = k , P(4)

r

(c)

Figure 3.3. Binary Select Function a) Truth Table, 
b) Block Diagram, c) Schematic
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to the designer. First of all, there is the idea of common signal paths 
to insure a tightly coupled machine. Second, the idea of functional 

pairing was introduced in Table 2.10. An awkward pairing would be 
considered an obvious burden. To be unable to bench mark these two 
B(2):F(4) concepts, there is a need for standard building blocks. How
ever, the motivation for standard circuitry is really greater for another 

reason. With LSI and VLSI technology where it is today [24, 25, 26] the 
emphasis is on standardization. Traditionally minimization leads to 

standardization. Today it is probably more important to standardize

even if a design is not minimal than to design a larger number of devices.
2Since so many silicon devices can be placed on one mm of device area, 

the number of gates required to implement a given function is of only 

secondary importance. Of primary importance is reducing the prolifera
tion of expensive art masters and choosing standard functions which will 
insure greater device usage and in turn lower cost.

A function \diich meets the above tests and would be a good 
candidate to bench mark as a B(2):F(4) building block is shown in 
Figure 3.4. For any two-variable four-valued switching function the 
"product of sums" realization can be made using the circuitry shown. 
Outputs from this circuit can be fed into a single MAX/OR gate to achieve 
the canonical "sum of product of sums" form described in Example 3.1.
The binary select function described in Figure 3.3 has been added to 
enhance the mode control feature of the unary operators. Also, Xg is 

an expansion input for the "unary inverter." The output can be
connected to the x^ input of the following stage if more than two 
implicants exist in the switching function specification in the "product
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lA

2A.

2A

IB

IB

Figure 3.4. A B(2):F(4) "Product of Sums" Gate
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of sums" term. If not, the output would be f ( x ^ , x ^ ) . The two
outputs are thus defined.as follows:

^14 ^2a ‘ib '21 It

%  "15 %
'2("l'*2)4 " f (*1A + =2a’ klB + *23)]

The subscript four will be used to indicate that the expression is for 
P(4) algebra. Similarly, a subscript of two will be used for the B(2) 

case. The two expressions for the binary case are:

*l *̂l’*2>*3̂ 2 ■ '*1A + ='2Â "̂'lB + =‘2B>«*3>

*2^*1'*2^2 ' (^1A  + ='2A> (:=1B + *2B>

Examination of Figure 3.4, and in turn the individual schematics 
in Figures 2.10, 2.11, 2.14, 2.16, and 3.3, will show that for all func

tions involved the primary signal path is the same for the B(2) and the 
P(4) case. Clearly, the only difference in the circuitry is the logic level 
of the Bg line. In Figure 3.3 B^ = 0 for P(4) and B^ » 3 for B(2). This 
choice was made since the circuitry which is currently being used is for 
the BC2) P(4) _ mapping. To some extent the logic levels are arbitrary.
One of the levels in Figure 3.3 must be a logic zero, but this could be 

changed. The important question is whether control leads, need.to be four 

valued, or can they be binary-? .Host control signals are considered either 
enabled or disabled. However, there may he some motivation for four

valued control. This will be considered in Chapter IV.:
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The functional pairing in Figure 3.4 seems to be well adjusted 
to B(2):F(4) designs. In P(4) the circuitry is a basic gate for the "sum 
of products of sums" canonical form of Vranesic*s algebra. In B(2) the 

function is similar to an SN74LS52 [27]. There are many possible con

figurations for the gates shown in Figure 3.4. The one shown is not
necessarily the best pairing for B(2):P(4) combinational design. However, 
it can be used as a building block for dual radix logic and does meet the 

bench mark tests defined. As a final comment, the circuit shown in 
Figure 3.4 contains nine switches and 49 mirrors for a total of 110 
collectors. Using the smallest master slice, an XR-200, three of the B(2): 
P(4) "product of sums" gates could be placed on a single 98 x 119 mil 

chip.
The second design example will be used to demonstrate a B(2):P(4) 

combinational design for the algebra of Allen and Givone.
Example 3.2. Given the completely specified function of x^ 

and Xg in Table 3.1, find the P(4) realization from the minimized canoni
cal expression. Show the B(2):P(4) circuit and discuss the a and b mode
line considerations.

Any n-variable m-valued switching function f (xj^.Xg.. .x̂ )̂ has a 
"sum of products" canonical form which is described in [10]. For the 
function given in Table 3.1 the canonical form is:
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r/ \ o 0 0  0 0 ^ -  0 0  1 1 . ,  0 0  2 2f(Xj^,X2) » 2 • x^ • Xg + 2 ' x^ ' Xg + 2 ' x^ ' Xj

0 0  3 3 ^ ,  1 1  0 0   ̂ 1 1  1 1+3 • x^ • Xg + 1 ' X]̂  Xg + 2 ' x^ • Xg

1 1 2 2 2 2 0 0 3 3  0 0
+3 • x^ • x^ + 1 * x^ ' Xg + 2 ' x^ ' X2

fCx^/Xg) = 1 • (^x^ • °Xg + ^x^ • ^Xg + ^x^ • ^Xg)

,0 0 00 0 0  1 1  00 22  11  11
+2 • ( x^ • x^ + x^ ' *2 *1 * *2 ■*■ *1 * *2

+3 . (Gx;.3,3 + 1^1 . 2^2^

Following the algorithmic minimization process defined In [2], a product 
term

^1 ^1 ^2 ^2 Si . Si . V  . \

subsumes a second product term

c. d, c- d2
®2 "2 - = 2 - \  • S
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if and only if both

^ S2 and 3 a^ 6 for all x^, i = 1, 2, ...,n

A product term is said to be an implicant of f if and only if n(x) > 0 

for some x e and H(x) s f(x) for all x e  S^. Also, an implicant
is said to be prime if it subsumes no other implicant of f. Thus, the
above function simplifies to:

0 3  G O  3 3  1 2f(x^.xg) = 1 ' ( ' X2 +  x^ • Xg)

,0 0 0 3 ^ 0 1  1 2 ^ 3 3  0 0̂+2 ' ( x^ ' Xg + x^ • Xg + x^ Xg)

,0 0 3 3 ^ 1 1  22^+3 ' ( x^ ' Xg + " *2̂

0 m^lSince x = m-1, the function can be further simplified to:

, , ,0 0 ^ 3 3 12,f(x^,x^) = 1 ' ( X2 + X^ ' Xg)

0 0 0 1  1 2  3 3  0 0+2 ' ( x^ + x^ ' Xg + x^ ' Xg)

_  ,0 0 3 3 ^ 1 1  2 2+3 ' ( x^ ' Xg +  x^ ' Xg)

The P(4) realization of the above function is shown in Figure 3.5.

There are two possible ways to utilize the literal function in 

B(2) for the B(2) -► P(4)g ^ mapping. If a,b = {0,0}, the function 
becomes an inverter. If a,b * {3,3}, the function becomes a non-inverting
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LU

n

fCX^.Xg)

Figure 3.5. P(4) Realization of Example 3.2.
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buffer. Where the mode control lines were allowed to default to a

constant value in the algebra of Vranesic, et al, the mode control lines
could have the flexibility of two default values, and thus two binary
functions, for this case. Changing the function from an inverter to a
buffer would probably be a manual strapping option as opposed to the
line for which software control has been proposed. The circuit shown in

Figure 3.6(a) would allow the mode lines to be controlled as suggested.
The function select line, Fg, controls the default values for a and b.
The truth table for the literal B_ and F control lines is shown ins s
Figure 3.6(b).

Before considering a B(2):P(4) realization for the literal
function, some observations can be made concerning Figure 3.5(a). Each
of the MIN gates, A-E, are a redundant realization of or Xĵ  •

depending on the logical value of the F^ line. Also, the MIN gates F, G,
and H have constant logical inputs which are awkward to handle for the

B(2) P(4) mapping. With this in mind, it would be appropriate for0,3
comparison purposes to construct a standard configuration for the Allen
and Glvone algebra which would be roughly equivalent to B(2):P(4)
"product of sums" gate shown in Figure 3.4 for the Vranesic algebra.

Figure 3.7 is the B(2):P(4) "sum of products" gate for the
Allen and Givone algebra. The MIN gates F, G, and H in Figure 3.5 were
not included in this configuration due to the awkward nature of the
constant logical values. For any two-variable four-valued switching

function the "sum of products" realization can be made. Outputs from
this circuit must be fed into a MIN/AND and MAX/OR gate to achieve the

actual canonical form. The B^ and F control functions shown ins s
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(a)
F,

0 0 
0 3
3 0
3 3

a

a
0
3

b
b
0
3

(b)
Figure 3.6. and for the Literal Function
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2A
2A

IB

2B

Figure 3.7. A B(2);P(4) "Sum of Products" Gate
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Figure 3.6 must be added Co allow proper B(2):P(4) operation. The three 
outputs of the circuit are:

®1A ̂ lA ®2A ̂ 2A ®1B ̂ 1B ®2B ̂ 2B
f(xi,X2)4 » %iA * *2A + *1B ' ^2B

- f(x^,X2>2 - * *2A + *2A * *2B ?s = 3

f(xi'%2)2 “ *1A ‘ ^ A  + *2A * *2B °

Examination of Figure 3.7 and, In turn, the Individual schematics 

In Figures 2.10, 2.11, and 2.17 will show that for all functions Involved 
the primary signal path Is the same for both the B(2) and P(4) case.
The additional hardware burden for the binary select and function select 
lines Is shown In Figure 3.6(a). Four mirrors, four switches, and twelve 
collectors are required. This Is compared to five mirrors, two switches, 

and thirteen collectors for the literal operator shown In Figure 2.17.
The hardware overhead for the B(2):P(4) realization Is nearly 100%.

The functional pairing In Figure 3.7 Is well adjusted to B(2):P(4) 
designs. In P(4) the circuitry Is a basic gate for the "sum of products" 
canonical form for the Allen and Glvone algebra. In B(2) the function Is 
similar to a SN74LS54 [27]. It should be noted that MIN gates F, G, and 
H In Figure 3.5 were omitted from the standard building block of 
Figure 3.7. If the constant logic values are not handled In a manner 
similar to the r, k, a, and b lines, then B(2) signals cannot be routed 
through these gates. The constant lines can be treated as variables In 
B(2) with the addition of two mirrors and one switch. This would allow 

the goal of common signal paths. Since this Is not required for the
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circuitry in Figure 3.7, Che schematic Is not shown here. The circuit 

shown In Figure 3.7 requires 24 switches and 46 mirrors for a total of 
123 collectors. Using the smallest master slice, an XR-200, two of the 
B(2):P(4) "sum of products" gates could be placed on one chip.

Before going to the next topic It would seem to be In order to 
make a comparison of the kinds of Ideas and developments that have been 
made thus far In Chapter III. The notion Is not to discard anything at 
this time, but rather to get a better Idea of just where we might be.
Table 3.2 is a summary of the bench marks which were defined from the 
outset. It Is not an exhaustive comparison; however. It does concisely 
take a snapshot of just where the work has progressed to for the B(2):F(4) 
realizations in both algebras.

Other Operators
The emphasis thus far has been on two algebras and their 

simultaneous realization for both binary and quaternary logic. The 
motivation has been to move from the algebras to the realizations. Work 
has been done by beginning with the practical implementation and moving 

to the algebra [18]. The circuits developed in Chapters II and III used 
current mirrors and switches. Both of these functions are easy to con-

9struct with I L. However, two additional circuit operations are readily 
available when using I^L. They are linear summation and thresholding.
If design of combinational circuits proceeds with the standard circuits 

of Figure 3.4 and Figure 3.7, many realizations would become extremely 

awkward. While it Is true that no single standard set of basic gates 
will be best for every system, it is also true that no one design tech
nique will show which functions to use.



Table 3.2. Summary of B(2):P(4) Bench Marks 
for Both Algebras

Bench Mark Vraneslc Et Al Allen and Glvone
1. B(2):P(4) Hardware 110 Collectors 

49 Mirrors 
9 Switches

123 Collectors 
46 Mirrors 
24 Switches

2. P(4) Hardware Only 85 Collectors 
39 Mirrors 
4 Switches

75 Collectors 
30 Mirrors 
8 Switches

3. B(2) Burden 25 Collectors - 23% 
10 Mirrors - 20% 
5 Switches - 56%

48 Collectors - 39% 
16 Mirrors - 35% 
16 Switches - 67%

4. Common Signal Paths

5. Functional Pairing
P(4)
B(2)

6. Standard Circuit

7. Mode Control

100%

"Product of Sums"
oB-And
OR-AND
Figure 3.4

B(2) Select
0 ; PC4)
3 ; B(2)

100%

f, = "Sum of Products"

o\VI

fl2 - 
^22 “

AND-OR ,
NOT-AND-OR ,
Figure 3.7

= 3 
=  0

B = B(2) Select 
= 0 ; P(4)

B® = 3 ; B(2)
Fg = Function Select 
F = 0 ; a  = b = 0 
F g = 3 ; a = b = 3
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Linear summation can be accomplished using the current mirror.
If the desired signal is nxĵ , where n = 0,1. ..m-1, then n collectors can 
be tied together. The realization of 0 ZXg 0 3xg is shown in Figure 3.8. 
The current sinked by the output collectors of the mirrors can easily be 
tied together.

Thresholding in its simplest form is a switch, or transistor which 
is either saturated or unsaturated. Many unary operations can be imple
mented with threshold circuitry. A Post algebra monotone unary operator 
can be described as [20]:

2Figure 3.8. X L  Realization of x 2x, 3x

D^(x) , i = l,2,...mrl
C  mrl if X S i 

D.(x) = ]
0 if X < i

r  0 if X S i
D (x) = ]

L  mrl if X < i
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Similarly a Post algebra disjoint unary operator can be described as [20]

C,(x) , i = 0,1,...m-1

C  m-1 if X “ i
:i(x) “ I(_0 if X f i

Figure 3.9 shows an implementation of the D^(x) and C^Cx) threshold 
operators.

m—1

♦

(a)

D^(x)

m-1
1- 1/2

1+1/

(b)

Figure 3.9. a) Realization of D.(x) 
b) X L  Realization of C^(x)
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These circuits from Pugsley and Sillo [20], are similar to the strong 
threshold literals, U^(x) and D^(x), and the strong delta literals, 

described by Me Cluskey [18]. The truth tables In P(4) for D^(x) and
C^(x) show that the B(2) 
threshold operators.

P(4)q 2 mapping exists for both of these

Table 3.3. D^(x) and C^(x) In P(4)

Dĵ (x)

a)

C^Cx)
b)

For D^(x) with 1 = 3, the B(2) function Is a non-lnvertlng buffer. For 
C^(x) with 1 = 0 ,  the B(2) function Is an Inverting buffer and with 
1 = 3  the function Is a non-lnvertlng buffer. The design of B(2):P(4) 

circuitry for the monotone and disjoint unary operators would proceed In 

the same manner as the "clockwise cycling" operator. The current source, 
1, must have a default value for the B(2) case. The circuitry for D^(x) 
and C^(x) In B(2):P(4) Is shown In Figure 3.10. The binary select line 
equals three for the B(2) case just as In the other circuits. The 

hardware burden Is a single switch for D^(x) and two switches for C^(x).

Some well known equivalence relationships exist between various 
unary operators. The Post algebra Identity Is:
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C^(x) - D^(x) • 0 i(x)

Also, relationships between Definition 1.5 and the Post monotone nnary 
operators are:

“ Da(*) * \  e i(x)

^x^ » Cg(x)

" D^(x)

V - l  - D ^ W

Relationships between Definition 1.4 and 1.5 are as follows:

R k m-R m-R
(x̂ ) “ k • X

It has already been mentioned that designs of multiple-valued
circuits will take a particular direction depending upon the algebra

chosen. Also, no uniform design technique exists that will guarantee
that a set of gates will provide the best realization. All of this is
further complicated by the B(2):P(4) requirement. Further, while the

B(2) + P(4)_ , mapping offers the best functional pairing for circuits 0,3
examined thus far, the B(2) -»■ P(4) _ mapping may provide a better1,Z
system for some realizations. The following B(2):P(4) design example 
for a full adder will demonstrate many of the dual radix concepts 
developed in Chapters II and III.
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P - T ^
] I t

D^(x)

(a)

2.5

3  'I'

(x)

rC
7 ' f f

s .

(b)

Figure 3.10. (a) D^(x) and (b) C^(x) for B(2);P(4)
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Example 3.3. Design a B(2):P(4) full adder, giving consideration 
to both the B(2) P(4)q g and B(2)->P(A)j^ g tnappings. Determine which
unary operator gives the best realization.

The truth tables for the sum and carry out for a P(4) full adder 
are shown in Table 3.4. Carry in and carry out lines need to take on two 
values only.

Table 3.4. Sum and Carry Out in P(4)

- 1-

^in ' 0
a) Sum

Cin - 1

- 1-

Cin - 0 C

b) Carry Out



72

The truth tables for the sum and carry out for a B(2) full adder 
for B(2) P(4)q 2 B(2) -»• P(4)^ ^ are shown In Table 3.5. First, an

attempt should be made to find the mapping from B(2) to F (4) which offers

Table 3.5. Sum and Carry Out in B(2)

0
3

0 3

0 3 
3 0

0
3

0 3
3 0 

0 3

- 1-

1
2

1 2
1 2 
2 1

- 1-
1
2

1 2
2 1 
1 2

'in "in
B(2) 4. P(4)0,3

a) Sum

'in
B(2) 4. p(4)

"in - 2

1.2

0
3

0 3
0 0 
0 3

- 1-
0
3

0 3

0 3 
3 3

%•
1
2

1 2
1 1 
1 2

%■
1
2

1 2
1 2 
2 2

"in = 0 "in - 3
B(2) 4. P(4) 0,3 B(2) 4- P(4)

"in “ 2

1.2
b) Carry Out

the greatest compatibility. For the sum, the greatest agreement occurs 
for the B(2) P(4)q g mapping. For the carry out, neither mapping is
compatible. If the carry out in P(4) is assigned the logical value of 
three instead of one, then the carry in P(4) is compatible with B(2) for 

B(2) 4- P(4) . For these choices the new truth tables in Table 3.6

show the degree of compatibility for a B(2):P(4) realization. The two 

values enclosed in a square are not compatible in both radices. The two
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In P(4) would be a zero in B(2). The one in P(4) would be a three in 

B(2). In any realization it will be necessary for the B^ line to force 
the value changes in B(2). For ■ 0 the truth table for the sum in 

P(4) is identical to Table 2.8. Thus, strong consideration should be 
given to the "clockwise cycling" unary operator. In Figure 2.16, the

Table 3.6. Sum and Carry Out in B(2):P(4) 
for B(2) . P(4)q 3 , - 0,3

- 1-

C, = 0 in
a) Sum

" i n - 3

- 1- - 1-

"in " 0
b) Carry Out

design was done in such a manner that r could be thought of as a variable. 
Therefore, Figure 2.16 can be thought of as a full adder for two inputs 

X and r. If provisions were made for a carry in and carry out, then a



74

P(4) realization for Table 3.6 would exist. Figure 3.11 Is the reali
zation of a full adder In P(4) which was designed by beginning with 
Figure 2.16. This circuit has 22 collectors compared to 18 for a 

quarternary adder In [5].
In order for the circuit In Figure 3.11 to operate as a B(2) 

full adder for B(2) -*■ P(4)g ^ It Is necessary for the two previously 
mentioned changes In Table 3.6 to be Implemented when Bg = 3. Table 3.7 
gives the conditions precisely. The circuitry In Figure 3.12 will 
Implement Table 3.7. If the sum outputs of Figures 3.11 and 3.12 are 
connected the combined circuit Is a dual radix B(2):P(4) full adder.
Can another unary operator be selected to achieve a better realization? 
What would the circuit look like If It had not been possible "to see" 

the similarity between Tables 3.6 and 2.8.

Table 3.7. Additional Requirements for B(2)

0 0 
3 3
0 0 
3 3

3 0
0 0 
3 3
0 3

Sum
1
2

3
0

(Otherwise Table 3.6.)



3.5

out

Sum

In

3.5

Figure 3.11. P(4) Full Adder , = 0,3

While the circuits of Figures 3.4 and 3.7 offer standard B(2): 

P(4) circuitry for two algebras, a systematic approach is needed to 
determine what basic set of gates offers the best realization. No such 
approach exists now for P(m) algebras [20]. However, many minimization 

schemes have been reviewed by Smith [28, 29, 30] \diich provide a minimal 
or near minimal solution for P(m) algebras. Any method for finding the 
best B(2):P(4) realization must begin by finding the maximum compatible 
mapping from B(2) to P(4) and identifying any incompatibilities. The 

two classes of problems which will be considered are completely and
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To Sum Output 
of Figure 3.11

in

Figure 3.12. Requirements for B(2):P(4)

incompletely specified functions. A procedure for finding the maximum 
compatible mapping and all incompatibilities for completely specified 

functions in P(4) and B(2) can proceed as follows:

Given: An n variable four-valued function in P(4) and an
n variable two-valued function in B(2) such that

*14**24»•••^4  ̂P(4)

*12**22»''*n2  ̂®(2)

h  * ^(*14'*24»'"*n4)
^2 ** ^ ̂*12 * *22 * ' ' ' *n2 ̂
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From Table 2.3, there are two possible mappings for m = 4,

B(2) 4. P(4) 1 = j and l,j

Find all mapping compatibilities:

Step 1. Set 1 = 0 , j = 3
Step 2. fgXi.j) “ ^4 (l,j) set » fgXl.j) =

or = B(2):P(4) impllcant
set « fgXl.j)

«1. = B(2) term

Si. - 24(1 ,3)

Si, *» P(4) term
Step 3. Find the remaining impllcants for

11, jj, and ji
Step 4. If » 4 , then B(2) -»• P(4)q ^ exists for f^

If Zôĵ j < 4 , then save all terms and repeat 

process for 1 = 1, j = 2 .

Notice that this procedure assumes the number of variables In each radix 

Is the same. This Is not restrictive since every effort has been made 

thus far to Insure common signal paths. That Is, every signal path In 
P(4) Is a signal path In B(2). Also, this procedure can easily be 
generalized for F(m).

Given: An n variable m-valued function In P(m) and an n
variable two-valued function In B(2) such that

*lm»''2m»'--̂ nm ̂
*12'*22''''*h2  ̂B(2)
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For m N an Integer greater than one

B(2) 4. p(m)

i ■ 0 , j “ m-1 

1 ® 1 , j - 1

.1 «• , j - 2^"^-l

Find all mapping compatibilities:
Step 1. Set i » 0 , j “ m-1

*1, * fgCi.j) -
or = B(2):P(m)

tjd.j) * set =
or = B(2) term
set -
or *» P(m) term

Step 3. Find the remaining impllcants:

Repeat Steps 1 and 2 2-1 times for each mapping.
Step 4. If E6 2 , then B(2) P(m), . exists

If EÔ. . < 2 , then save all terms and repeatJ
N-1the process 2 -1 times to check

all mappings, (i * 1 , j » m-2, etc.)

This procedure can be programmed easily to provide a systematic and 
automated method for finding mappings. For n > 2, it becomes difficult 

to identify compatibilities even in P(4). For n > 2 in P(m) algebras 
with N > 2, the task becomes extremely difficult. From the above pro
cedure the following observations can be made:
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If 5. , =» 2*̂  , then B(2) P(m), . exists for f
1 , 3  1 , 3  m

6. . < 2” , then B(2) -+ P(4) . exists if and only ifJ J *
there is a function F^(i,j) such that

for every

*
The form which F^(i,j) takes depends upon which algebra or basic

set of gates has been chosen to represent fg and f^. All of the informa-
*

tion necessary to determine F (i,j) is contained in a. . and B. . . For 
Z6 = 3 , a single set of a and 6 tenas exist and

F*(l,j) - S y  • *i.j ■ h i

For Z6 = 0 , 2^ sets of a and B terms exist and for n = 2 ,

+ M m  • M m  ^ 4 .
ff

Clearly, F^(i,j) can be expanded for n > 2. Also, there exists 
a unique F^(i,j) such that

fgfi.j) = t F*(1,3)
for every

*
The expansion for F^(i,j) is in the canonical form for the algebra of 
Allen and Givone. Using the equivalence relationships established earlier
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*
in this chapter, F^(i,j) can be expressed in the canonical form of the 

algebra of Vranesic, et al. For = 3 ,

* ç-i mr^ k
• *2m “l.j ■ %!.]

For Z6 = 0 , 2^ sets of a and g terms exist and for n = 2 ,

s-J k 5‘3 . k
+ • *2m + ‘̂im ='zm

The full adder described in Table 3.6 of Example 3.3 will be
used to demonstrate the procedure just defined.

Given: A two-variable four-valued function in P(4) and a two-
variable two-valued function in B(2) such that

For C . = 0xn

sum - 1 • ’xj + ’xj ^x|]

+ 2 • [“xj  ̂+ ̂ x^  ̂ “xj + ̂

+ 3 • [®xj + '■*1 ^*2 M  M

«4 =o.t - 3 " 4  + M  ”  + M  '4]

fg sum » x^Xg + x^Xg

*2 =.ut ' %
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For - 3

. - . 0  0 0 2 ^ 1 3  3 3 ^ 3 3 1 3 ^  2 3 2  3,sum = 1 [ %2 + Xg + x^ + x^ x^l

+ 3 • [% 1,1 + 1,1 1,1 + 1,1 »,» + 1,1 1,1]

«4 <=out-1 • t M  + '4 + M  M  + M  '4:

h  W ’ ^  ==2

. ,3
For m = 4 i,j

.2[:::
Test for f _ sum, f, sum with ?= 0 2 4 in

Step 1. Set i = 0 , j = 3
Step 2. sum (0,3) = sum (0,3) , ëg ^ = 3

Step 3. fg sum (3,0) = sum (3,0) , =* 3
sum (0,0) = sum (0 ,0) , Ôq^q « 0

£2 sum (3,3) f £^ sum (3,3) * “3 3 “ ° , Bg 3 = 2

Step 4. 25 = 3 = «o,3*^3,OÎ«o,0
Z6 < 4
Repeat Steps 1-4 for i = 1 , j = 2 

Step 1. Set i “ 1 , j « 2

Step 2. f^ sum (1,2) f^ sum (1,2) * \  2 “  ^  * ^ 1 2 * ^



82

Step 3. fg sum (2,1) f sum (2,1) , Og ^ = 2 » 1 “ ^
sum (1,1) ^ sum (1,1) , ^ = 1 ®1 1 “ ^

^2 sum (2,2) f sum (2,2) , Og g = 1 ^ 2 2 “ °
Step 4. Z6 = 0

Test for fg sum, sum with * 3 

Step 1. Set 1 » 0 , j * 3
Step 2. fg sum (0,3) = sum (0,3) , 6^ ^ = 0

Step 3. fg sum (3,0) = sum (3,0) , 6^ 0 0
^2 sum (0,0) +  sum (0,0) , ^ = 3 , Bq q “ 1

sum (3,3) = sum (3,3) , 5^ g = 3

step 4. Î5 « 3 = «o ,3Î'’3,o !®3.3
SÔ < 4

/.Repeat steps 1-4 for i = 1 , j » 2 
Step 1. Set i = 1 , j = 2

Step 2. fg sum (1,2) # f^ sum (1,2) , g = 1 * ^1 2 “ ®

Step 3. fg sum (2,1) # sum (2,1) ' "2 1 " ^ * ®2 1 “ ^
sum (1,1) f sum (1,1) , ^ = 2 , B^ ^ = 3

sum (2,2) f f^ sum (2,2) , Og g = 2 , Bg 2 " 1
Step 4. EÔ = 0

Test for f^ , f^ with = 0. Following the same procedure
the results are:

For i = 0 , j = 3

Z« » 4 = ^o,3’“3,0**3,3*®0,0

«0.3 - °
«3.0 ‘ “
«3.3 ' 3 
«0.0 = °
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Similarly, the test for f^ with » 3 yields;

For i » 0 , j » 3

E« - 4 - \ ÿ i 3 ^ o - \ r \ o
*0.3 - =

*3,0 - :
*3,3 ■ 3 
*0,0 - «

Summarizing the tests above for

For B(2) ->■ P(4)q 3 
25 » 4

h  ":..t ' *4 “out “in - “
*2 “out ■ *4 “out “in - 3

Summarizing the tests for sum.

For B(2) •> P(4)Q 3 For B(2) ->■ P(4)^ %
For = 0 For = 0

25 « 3 25 = 0

«3,3 * “ • *3,3 ' 2 *1,2 - 2 . @1,2 ' 3

«2,1 " ^ ’ “2,1 ■ 3
«1,1 ” ^ • *1,1 = :

«2,2 " ^ ’ *2,2 * “
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For C. « 3 For C. = 3in in
ZÔ = 3 26 = 0

*0,0 “ ^ ’®0 ,0 - 1 “1.2 - 1 ' *1,2 ' °
“2,1 • 1 * *2,1 = °
“i.i ■ : * *1,1 ' *
“2,2 ■ ^ ' *2,2 “ 1

The apparent choice for the sum is the B(2) + P(4)Q 3 mapping.
For C. * 0  in
fg sum (3,3) ^  f^ sum (3,3)

fg sum (3,3) = sum (3,3) t F*(3,3)

For C. = 3 in
fg sum (0,0) f^ sum (0,0)
fg sum (0,0) => f^ sum (0,0) t F^ (0,0)

For the full adder the
*

two F^(i,j) terms can be computed:

F*(3,3) = 0 ' ^^14 ^*24 ' the sum, = 0

F*(0,0) = 3 • °%24 ’ the sum, = 3

Some interpretation of these terms and how they can be used to

a total B(2):P(4) solution is necessary. First of all there is no need
in a single radix solution to realize a zero term. For this example 

*
the F^(0,0) term is necessary to force a value of zero In B(2) which is 
otherwise two in P(4). There are two ways to accommodate this term in 
a straightforward manner. The first method takes advantage of the 
definition of the binary select line.
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<(3,3) .

Since the line has a value of either zero or m-1, it can be included
in the MIN term without modifying its behavior in F(4). Likewise, when

Bg » 3, for the B(2) case, it will insure that the term goes to zero.
This method is fine for the case where it is required for the term to
become zero in B(2). However, a general solution which will accommodate

either logic value for B(2) P(4)g ^ available. The standard B(2);
P(4) "sum of products" gate in Figure 3.7 will allow any MIN term in the

*
canonical form to be modified by F^(i,j) with no additional hardware.

* *
Shown in Figure 3.13 is the realization of F^(0,0) and F^(3,3) which 
allows the full adder to become B(2):P(4) compatible.

F.(0,0) =

Figure 3.13. F.(0,0) and F.(3,3) for Full Adder

0 0 0 0 
*24

Solution in B(2);P(4)
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The hardware shown in Figure 3.13 realized the following terms in P(4);

and

%  <=in ” 3

The ability to modify any term in the canonical form is accomplished 

through the and F^ lines. Remembering that the logical values of 
zero and three are the only valid levels for B(2) P(4)_ logic values0, J
of one and two can be treated as "don't cares" for the mapping. There
fore, for any single variable it is necessary to map the valid B(2) 

inputs to a zero or three while allowing the P(4) algebra to function 
normally. The truth table in Table 3.8 demonstrates how the B(2):P(4) 
literal in Figure 3.7 will perform as described by properly choosing the 

Bg and F^ values. For B^ * 0, the circuit of Figure 3.7 will operate as 
a P(4) literal according to Table 2.9. This is indicated in Table 3.8 
by showing that will take on its normal P(4) value while being a 
"don't care" in B(2). For B^ = 3, the circuit will become an inverter 
or non-inverter in B(2) depending on the value of the F^ line. Thus, any 
valid input in B(2) can be forced to either a logic zero or three by 
properly selecting the B^ and F^ values. This is precisely the function

itof F^(i,j). Note that even though a logic value of one or two is illegal 
in B(2) -*■ P(4)g the circuit will insure the output is a zero. While 
this has no immediate consequence for the example, it may be of value in 
minimizing hazards in B(2):P(4) circuits.

In summary, for the full adder, two terms are necessary for the 
B(2):P(4) realization using the B(2) P(4)g g mapping with * 3.
These two terms are:
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F*(3,3) = 0 • ^2 4  ^4 > ^in “ ®4

?*(0,3) - 3 • °x^° °%24 £4 sum , - 3

While the standard circuit o£ Figure 3.7 was shown to be capable of 
modifying any term in the canonical form with no hardware burden or 

modification, solutions should be chosen with the smallest value of 
5. .. Actually, two inverters were added to the standard circuit (FigureJ
3.13) to show the convenient realization of B and F for the full adders s
solution.

Table 3.8. B(2);P(4) Literal of Figure 3.7
for a. . , i = 0,3 (x » don't cares)j

14
P(4) P(4)

P(4) P(4)

P(4) P(4)

P(4) P(4) X
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The first solution offered in Figures 3.11 and 3.12 requires 
112 collectors, 37 mirrors, and 9 switches to build. The motivation for 
this solution comes from the fact that the "clockwise cycling" operation 
provides a truth table very similar to Table 3.6(a). Figure 3.11 takes 
complete advantage of linear summation and threshold detection. On the 

other hand, the second approach to a solution began by expressing Table 
3.6(a) and (b) in a near minimal form using the literal unary operation.
If this approach were used, approximately 15 circuits similar to the 
standard "sum of products" circuit of Figure 3.7 would be required. This 

would require over 1500 collectors, 600 mirrors, and 300 switches. The 
literal unary operator has more than an order of magnitude greater hard
ware burden than the "clockwise cycling" operator. This example clearly 
demonstrates that no uniform design technique exists that will guarantee 
that a set of gates will provide the best realization.

The basic set of gates or unary operators which are chosen 
to realize a given F (4) truth table are totally invisible to the method 

proposed for finding maximum compatibility in P(4) for a particular B(2) 
function. Even so, the functions proposed by the algorithm (Figure 3.13) 
are very similar to those developed for the first solution using the 

intuitive approach (Figure 3.12).
Clearly this procedure for finding the maximum compatible 

mapping and all incompatibilities for completely specified functions 
makes no attempt to minimize either the P(4) or B(2) realization. It 
does minimize the B(2):P(4) circuitry by choosing the best mapping and 
defining the functions required for total compatibility, if any. If 

incompletely specified functions in either P(4) or B(2) are to be analyzed, 
the procedure can be altered to accommodate "don't cares."
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If

Or

or 6^ j = B(2):P(m) implicant

Otherwise fgCi.j) f^Ci.j)

set “1,1 fgCi'j)
or “1.J B(2) term
set «

and ^1.3
38

set ®i,3 fm(l'j)
or «1.3

3 P(m) term
if «1.3 35 i or j
set *1.3 «1.3
and «1.3 «1.3
otherwise
set *1.3 38 (2(1.3)
or *1.3 B(2) Don't Care

no don't cares are involved
set *1.3

53

or *1.3 38 B(2) term
set «1.3 «*(1.3)
or «1.3 P(m) term

Summary
In this chapter B(2):P(4) combinational design was done for 

the two algebras of Vranesic, et al, and Allen and Givone. Two designs 

were considered to help expand the dual radix concepts. An example 
examined a completely specified P(4) function for Vranesic's algebra. 

The idea of the k and r lines being made to default to a logic value
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necessary for B(2) using a binary select line was introduced. The burden 
of the binary select on the B(2):P(4) hardware was considered . Also, a 

standard B(2):P(4) "product of sums" gate for this algebra was designed 
and is shown in Figure 3.4. The standard circuit was bench marked against 
the concepts of functional pairing and common signal paths, as well as 
hardware burden.

The second example is a B(2):P(4) combinational design for 
Allen and Givone*s algebra. For the literal operator the a and b lines 
can default to two different values for B(2) -*■ P(4)g y  This requires 
the introduction of a function select line to determine the a and b 
values for each case. Figure 3.6 shows the additional hardware and the 
truth table for the binary select and function select lines for the 
literal operator. A standard B(2):P(4) "sum of products" gate for this 
algebra was designed and is shown in Figure 3.7. Table 3.2 is a summary 
of the B(2):F(4) bench marks for both algebras.

Other operators were considered since no single standard set of
gates will be best for every situation and no one design technique will
show which functions to use. Linear summation and thresholding are

2operations which can be easily realized in I L. Both Post algebra mono
tone and disjoint operators were introduced. The circuitry for D^(x) and 
C^(x) in B(2):P(4) is shown in Figure 3.10. Equivalence relationships 

for each of the unary operators were given.
A third example in this chapter was a B(2):P(4) full adder. A 

P(4) adder was designed taking advantage of the "clockwise cycling" 

operation. The schematic for this P(4) circuit is shown in Figure 3.11. 

This circuit can be modified by the literals shown in Figure 3.12 to
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accomplish a B(2);P(4) full adder for B(2) -► P(4)g ^ with = 3.

Also, the realization in Figures 3.11 and 3.12 is an order of magnitude
less costly than one using the literal only.

Finally, an algorithm for finding the maximum compatible

mapping from B(2) to P(m) for completely and incompletely specified
functions was developed. It also identifies the incompatibilities in

Asuch a way as to define a function F^(i,j). This algorithm for both 

classes of problems is given here for purposes of clarification and 
summarization.

Given: An n variable m-valued function in P(m) and an n
variable two-valued function in B(2) such that

"‘lm’''2m»**-''nm  ̂ m = 2^ , N > 1

*12**22''"'*n2  ̂B(2)
i » 0 , j = m-1
i e 1 , j - 1

For B(2) 4. P(m)j^ j , i,j

i e 2^"^-l , j-2**"l-l
Step 1. Set 1 * 0 , j = m-1

Step 2. f2(i,j) = fĝ (i,j) set = fgCi.j) =
or 6^ j = B(2):P(m) implicant

fgd'j) *

If f^(i,j) = "Don't care" set j “
or o. . = B(2) termJ

®l,3 ' “1,3 

^  *1.3 ' “1.3
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Or set «i.3
or P(m) term
if =1.3 S i or j
set “1.3 =1.3
and =1.3 =1.3
otherwise

set *1.3 *2 (1.3)
or *1.3 B(2) Don’t Care
set *1.3 S3

or *1.3 B(2) term
set =1.3
or =1.3 P(m) term

Step 3. Find the remaining implicants. Repeat Steps 1 and 2 
2^-1 times for each mapping.

Step 4. If 26. . = 2” , then B(2) P(m). . exists
If 25. . < 2^ , then save all terms and repeat steps1» J
1 to 4 2^ ^-1 times to check all mappings (i = 1 ,

j = m-2, etc.).
Step 5. If 25. . < 2” for all mappings then B(2) + P(m). .^9J

exists if and only if there is a function F^(i,j) 
such that

for every
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For the worse case E5. = 0 , 2^ sets of a and 6

terms exist and for n = 2 (for Allen and Givone*s 

algebra)

’'2m + :]] ■

where

Or for Vranesic, et al

F*(i,j> »
m-i m-j m-i m-i
*lm ^2m *lm ^2m

*lm
g-i 

‘ *2m
%-j
*lm *2m jj

Step 6. Choosing the largest 6. . in Step 5 will minimize
itthe number of F^(i,j) terms necessary to guarantee 

B(2) -»• P(m). . exists.J



CHAPTER IV 

DUAL RADIX PROCESSOR CONSIDERATIONS 

B(2):P(4)

The motivation for much of the work done thus far has been to 
propose and design hardware and methods for dual radix logic. While 

the examples demonstrate the feasibility for the B(2):P(4) case. It has 
been shown that P(m) designs can also be considered. Beyond the combi

national work of Chapters II and III, additional development needs to be 
done In the sequential area to allow dual radix processor considerations 
to become a reality. Since many of the combinational circuits proposed 
have been constructed and reported on In Appendix A, hopefully the attempt 
to keep the work practically oriented Is obvious. However, from the out
set nearly every author who has considered multi-valued memory elements 
has dealt with the Inability to compete with their B(2) counterparts.
This work will be no different. It has been projected that B(2) memory 
elements will continue to decrease In price by two orders of magnitude 

by 1990 [31]• This fact may not diminish the academic appetite for HVL 
memory design, but It does call for an awareness that higher radix 
processors may have a hybrid architecture initially. That Is, from a

94
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practical sense, parts of a F (4) processor m a y  be constructed from a B(2) 
component. At this point the direction of the work on memory devices is 

potentially schizophrenic. The idea is to examine the difficulty of 
"bringing along" a B(2) machine into a higher radix architecture. The 

antithesis of this thinking is to force portions of a higher radix machine 

back into B(2) constructions. Nevertheless, both ideas will be examined.

MVL Memory Elements

Irving and Nagle [32] have proposed a family of memory devices 

based on several multi-valued logic operators. They have described five 
properties that an NVL memory element must exhibit. They are:

1. The device must be defined for any N^. (N^ an 

integer greater than two.)
2. The device must have N stable states.s
3. The device must have at least one output which 

presents a different logic value for each of 

the Ng stable states.
4. The device must remain in each stable state 

indefinitely in the absence of external excitation.

5. The device must be able to obtain any stable state 
A from any other stable state B in a single transi

tion with proper excitation.

The four-valued memory device suggested in [32] is shown in 
Figure 4.1(a) and the table of next states for each combination of inputs 

and present state is shown in Figure 4.1(b). The next-state equation 

for this circuit is;

Q(t ® 1) = S + C • Q(t)
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(a)

Q(t e 1)

(b)
Figure 4.1. (a) Four-Valued Memory, (b) Next-State

Truth Table

An X entry for the next state in Figure 4.1(b) indicates that the output 
is not deterministic for the given inputs. For a memory circuit using 
the MAX/OR gate, the non-deterministic input conditions occur in P(4) 
when the arithmetic sum of the uncomplemented inputs is greater than or 
equal to four [32].

Much analysis has been done on the cross-coupled MAX MVL memory 

element. Wills has developed a behavioral model for MVL memory elements
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[36]. Sheafor has studied the problem of state assignment for multiple- 
valued circuits [34]. Tull has reported on a circuit instability for the 
S transition from 0 to 2 and back to 0 [6]. While the circuit has been 
thoroughly examined, it is necessary to see how easily it can be adapted 
to the B(2):F(4) case. First of all, the next-state equation needs to 
be tested for both mappings. The next-state table of Figure 4.1(b) is 

shown in Table 4.1 for B(2) P(4)^  ̂and B(2) -»• P(4)g From Table 4.1

Table 4.1. Next-State Table for B(2) -»• P(4). - 
and B(2) P(4)q 3

s 1 1 2  2

c 1 2  1 2

0 1 1  2 X

Q(t) 1 1 1 2 X

2 2 1 2 X

3 2 1 2 X

S 0 0 3 3
C 0 3 0 3
0 0 0 3 X

Q(t) 1 1 0 3 X

2 2 0 3 X

3 3 0 3 X

Q(t e 1) 

B(2) 4- P(4) 1,2

Q(t * 1 ) 

B(2) 4. P(4)0.3

it can be seen that any possible sequence in either mapping exists. That 
is. for any legal input sequence, the output sequence is legal for the 
same mapping. An additional property for B(2) -► P(m). . compatible MVL 
memory is required.

6. An MVL memory device is B(2) P(m)i.j compatible
if for any input sequence such as
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*1*2’ *1*2’ *1*2’ *1*2’ *1*2’ *1*2}

Xg 6 P(m)^ j

there exists an output sequence fCx^.Xg) such that

fCx^.Xg) € P(m)^ j

and there is at least one f(x^,X2) = 1 and fCx^.Xg) = j.
If a single Input can send the MVL memory device to a stable state con
tained In the same mapping as the Input for all present states, not 
necessarily In the same mapping, the device Is said to have total mapping 
recovery.

7. If for every Q(t) ^  e P(m). . there exists at leastJ
one Input function {x^,X2), x^,X2 e P(m)^  ̂ such
that Q(t @ 1) € P(m), . then the MVL memory device^>3
Is said to have total mapping recovery, TMR, for 
B(2) 4. P(m)^ j.

The cross-coupled MAX MVL memory device In Table 4.1 Is B(2) -»• p(4)_ _Ü, J
and B(2) -*• P(4)^ ^  compatible according to Property 6. Also, this 
memory device has TMR for B(2) 4- P(4)q ^ B(2) 4. P(4)^ 2* The I ^
realization of Figure 4.1(a) Is shown In Figure 4.2. A single EXAR 
XR-500 I ^  master chip, 122 x 135 mils, can accommodate 128 cross
coupled MAX MVL memory devices. This makes no allowances for address 

and data bus multiplexing and decoding. However, even with this over
head, the approximate cost per bit Is ten cents. The cost of binary 
storage was In this range about 1972 to 1975 [31].
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Figure 4.2. Four-Valued MAX Cross-Coupled
Memory Device

The cross-coupled MAX MVL memory element is well suited for 
dual radix work for either mapping for B(2):P(4) work. The only feature 
which compromises its usefulness is the presence of non-deterministic 

next-states. The RS flip-flop has non-deterministic next-states in B(2). 

The same method for eliminating these states in B(2) will work in F(m).
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The solution is the J-K flip-flop. The Q output is "ADDED" with the 

J input for S, and the Q output is "ADDED" with the K input for C. Wojcik 

[33] has reported on an MVL analog of the binary J-K flip-flop. The next- 
state equation is given as:

Q(t ® 1) » J • Q(tT + K • Q(t) + J • K 
Based upon his model for asynchronous combinational circuits [35], Wojcik 

has developed a method of state assignment for defining asynchronous 

sequential behavior [33]. The next-state table for B(2) P(4)g ^ and
B(2) -► P(4)^ 2 for the J-K MVL memory device is given in Table 4.2. Since

Table 4.2. Dext-State for B(2) P(4)^ g and
B(2) P(4)g 2 for J-K MVL Memory

J 1 1 2  2

K 1 2  1 2

0 1 1 2  2

Q(t) 1 1 1 2  2

2 2 1 2  1

3 2 1 2  1

J 0 0 3 3
K 0 3 0 3
0 0 0 3 3

Q(t) 1 1 0  3 2
2 2 0 3 1
3 3 0 3 0

Q(t e 1) 
B(2) P(4)1.2

Q(t e 1) 
B(2) -»• P(4) 0,3

a memory device could have been in any previous state, all values of Q(t) 

are valid. However, once an input sequence in a given mapping occurs 
the present state and next-state must reside in the same domain. Thus, 

while there are no non-deterministic next-states for the J-K MVL memory 
device, there are input values which will never occur. For any B(2):P(4) 
circuitry these inputs are {01, 02, 10, 13, 20, 23, 31, 32}. If it is
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assumed that the MVL memory device operates in the fundamental mode, then 

these Inputs present no problems for B(2):P(4) circuitry.

The J-K MVL memory device is well-suited for dual radix work.
It satisfies the seven properties for B(2) -»• P(4)^ g and B(2) P(4)q y

It has no non-deterministic next-states. If two MIN gates (Figure 2.11) 
are included in the schematic of Figure 4.2, a J-K MVL memory device can 

be constructed at a cost of 28 collectors and 12 mirrors.

Bus Design
In a P(m) machine (m = 2^ , N > 1) there are 2^”^ B(2) machines 

available for consideration. Since there can be m different logic values 
on a given signal path, it would be convenient to allow all B(2) circuitry 
access to any mapping. This is easily accomplished with an m-valued bus. 

Figure 4.3 is a block diagram picturing an m-valued bus communicating to 
several B(2) P(m). . circuits.J

m-Valued
BusAny 

|B(2) 4. P(m),

B(2) 4- p(m)

Figure 4.3. M-Valued Bus Connections

If all B(2) machines operating within a single host P(m) machines 
use the same mapping (iĵ  « ig, = jg in Figure 4.3), then the bus
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structure is completely defined. Greater flexibility in B(2);P(4) 
circuitry would demand that all B(2) circuits operating within a 

single host P(m) machine be allowed to communicate regardless of the 

mapping. For P(4) the situation of two different mappings communicating 
with one another is shown in Figure 4.4. The circuits which will permit 
two different mappings to communicate are shown in Figure 4.5. If a P(4)

{1,2}{0,3}

{1,2}{0,3}

B(2) -V P(4)i 2B(2) . f(4)g , to
P(4),̂

P(4).

P(4),

to

0,3

Figure 4.4. Bus Connection for Two Mappings

bus is driving the P(4)q ^  P(4)^ 2 circuit, the only possible output is
{12}. Likewise, when a P(4) bus drives the P(4), « P(4)_ _ circuit0,3
the only possible output is {03}. In actual operation it should be 
encumbent upon the driving circuitry to output only logical values valid 
for the mapping under which it is functioning. Having B(2) buses which 

allow disjoint machines to interface is desirable. However, proliferation 
of the P(m) bus structure into binary buses should be done for additional 

flexibility and should enhance the overall architecture.
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(12)
(03)

P(4)o,s + P(4)i,2
(a)

1.5

(03)

(12)

P(4),^^ - F(4)o,3
(b)

Figure 4.5. (a) P(4)Q ^ P(4)^ % . (b) P(4)i % P(4)Q ^

A single P(m) bus line could be allowed to have all m signals 
represented by N binary lines (m = 2^). For P(4) the decoding/encoding

Table 4.3. P(4) to B(2) Decoding/Encoding
P(4) B(2) P(4)

AB
0
1
2
3

00
01
10
11

0
1
2

3
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method shown in Table 4.3 is logical. Circuits which will accomplish 
the decoding/encoding scheme were proposed by Edwards [37]. The sche

matics are shown in Figure 4.6. The circuits in Figure 4.6 expect the

1.5

(0011)P(4) 
Bus •

(0123)

2.5

(0101)
(3210) (0011)

(a) Decoder

A (0123)(0022) (0123)(3210)(0011)
1(0101)

B
(0101)

(b) Encoder

Figure 4.6. (a) P(4) -*• B(2) Decoder, (b) B(2) -*■ P(4) Encoder
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bus to "source" current. Also, the A and B outputs in Figure 4.6(a) 

"source" the values of current shown. Thus, the circuitry in Figure 4.6

(a) and (b) could be cascaded and the original P (4) signal would be 
obtained. In Edwards'work [37], a sink to source conversion needs to
be added to the A output to allow cascading of his design. Also, Edwards 
chose to treat inputs as "sources" and outputs as "sinks." Throughout 
this work, inputs have been treated as "sinks” and outputs as "sources."

As mentioned in the introduction of this chapter, parts of a 
P(4) machine might be constructed from B(2) components. The obvious B(2) 
component is the memory element. Using the circuits of Figure 4.6(a) and

(b) the necessary interfacing can be accomplished. Shown in Figure 4.7 is 

a 256 X 8 B(2) memory interfaced to F(4) address and data buses.

Data 
Bus P(4)

Address 
Bus - P(4) 
0000 - 3333

Data
Bus - P(4)

4 ea.
P(4) » 
B(2:

Decoder

4 ea.
B(2) -» 
P(4)

Encoder

256
Memory
B(2)

Figure 4.7. 256 x 8 B(2) Memory Interfacing to P(4)
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P(4) Bus

{0,3}
{0,3}

{1,2}
{1,2}

Any
B(2)
Func
tion

Any B(2) 4. p(4)

P(4) 4. B(2)

B(2) 4- p(4)

B(2) 4. P(4)

B(2) 4. P(4)0,3

Figure 4.8. Summary of Bus Structure

Figure 4.8 Is a summary of the Interfacing and bus circuitry developed in 
this section.

A common problem involving bus structures which must be handled 
concerns directing signals onto and off of the buses. Gating or enabling 
signals from a control unit tell multiplexing devices how to direct the 

traffic. The problems of control signals and multiplexing will both be
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dealt with separately. A four-valued multiplexer or T-gate has been 

described in [5]. The T-gate can be used to realize any multivalued 
function [38]. Shown in Figure 4.9 is the I^L realization for the T-gate, 

this circuit can be used to allow four different signals to be gated onto

(a) Four-to-One Multiplexer

0.5

5 X

(0123)

2(b) I L Four-Valued Multiplexer

Figure 4.9. Four-to-One Multiplexer (a) Diagram, (b) Schematic.
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a single bus, or it can be used to allow several different registers to 
talk to a special register such as the accumulator. An enable line can 
be added to the circuit of Figure 4.9(b), permitting more than one multi
plexer to be tied to a bus and still have common S Inputs. The circuit 
shown In Figure 4.10 will cause the T-gate to be disabled for E = 0 and 
selected for E 2 1. This could easily become complemented for design 

convenience. Reversing the concept, a one-to-four demultiplexer would

Figure 4.10. T-Gate Select Circuit

allow the bus to fan out to four destinations. In Figure 4.11 Is a 
one-to-four demultiplexer with an enable lead. The threshold detecting 

circuitry contained within the dashed lines of Figure 4.9(b) Is used In 
this demultiplexer; however, for simplicity only a block diagram Is shown 
In Figure 4.11.
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Control Unit
The control unit of any processor often times is a "catchall" 

in the machine architecture. It is usually responsible for such things 
as instruction decoding, machine cycle encoding, and various timing and 
control lines that help enable and disable the major components in the 

machine. The traditional approach toward this section of a processor is 

that control functions are inherently binary in nature. That is, a con
trol line is either active or inactive and the thing which is being 
controlled requires no more. Vranesic has reported on the use of multi
valued signalling in daisy chain bus control [39]. His conclusion is 
that, "It may be wise to look for possibilities of using multivalued 
circuits in such ways that they improve the performance of binary schemes, 
but can also revert to the basic binary mode of operation as a default 
situation." Upon closer examination of the control signals used thus 
far, both B(2) and P(4) lines have been employed. The and lines 

defined in Chapter III took on values of zero and three. While this 
assignment was somewhat arbitrary, the only other choice was logical 
one and two. The first choice of {0,mr-l} seems more natural. Besides 

the B(2) + P(4)q ^ mapping offers some real advantages in some of the 
B(2):P(4) hardware designed. The full adder is a good example. On the 
other hand, for multiplexing and demultiplexing, the S line is a four
valued control line. The idea of routing more output and input 
primary signal paths with a single control line is desirable. Clock 
signals for memory devices might be best handled with either B(2) or 

P(4) control lines, depending upon the memory type. An edge-triggered 
flip-flop would use a B(2) control line. A master-slave flip-flop could
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yo

(a) One-to-Four Demultiplexer

(0123)

(0123)

Select

Figure 4.11. One-to-Four Demultiplexer (a) Diagram, (b) Schematic.
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take advantage of the F (4) control line to define the four clocking 
steps which are necessary to provide total input and output isolation. 

Taking advantage of both the edge and the level in F (4) gives the logic 

designer six possible triggering mechanisms in a single transition from 
zero to three as compared to only two for the B(2) case. Many other 

specific examples can be cited; however the fact is that there are 
situations in a B(2):F(m) machine where control lines other than binary 
can make a significant contribution to the architectural improvement.

ALU

The arithmetic logic unit is the last section of the B(2):F(4) 
processor to be considered here. The dual radix full adder designed in 

Chapter III is a fundamental part of any ALU. Other functions include 
the logical operations, shifts both right and left, and circuitry to 
detect certain flag conditions. Sufficient combinational hardware and 
design techniques were presented in Chapter III to allow a total B(2) :

F (4) ALU to be designed and constructed. Kabat and Wojcik have reported 
on the design of a four-valued ALU [40]. With the penalty of a signifi
cant amount of extra logic, binary operations could be simulated with 

F (4) logic. Their conclusion was that learning base four is not that 

difficult and it wouldn't be necessary to carry the extra burden if this 
were done. The B(2):F(4) hardware allows the operator to function at 
either base. No simulation is involved.

The transition to higher radices is not a trivial problem. A 

well thought out ALU suitable for B(2):F(4) adaptation is a recondite 

topic. How much influence should traditional B(2) ALU organization have 

on higher radix architecture? It is the author's contention that
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intuition is not a good guide here. A single set of gates and design 

methodology m i ^ t  not render an elegant solution. VIhere the literal 
operator vas an order of magnitude more costly than the "clockwise 

cycling" operator for the full adder design, it might prove less costly 

in another area of the ALU. This section of any processor is complicated 
enough that a good realization could easily be a hybrid one using the 
best of several gate sets. All of the work in [40] was done with T- 
gates. Those P(4) circuits could be compared with B(2);P(4) circuits 
for the same functions to establish a bench mark for future work. First 
of all, the full adder of Rabat and Wdjcik should be modified for 

B(2):P(4). Then a comparison of the B(2):P(4) full adder, a significant 
part of any ALU, could be made. Modifying the full adder of Rabat and 
Wojcik [40] to implement Table 3.6 yields the schematic in Figure 4.12. 

The entire circuit is constructed using the multiplexer of Figure 4.9. 
Notice that the S input has become one of the input variables. The B^ 
line is used to force the two necessary default values for the B(2) 

case. Each multiplexer requires 23 collectors, 9 mirrors, and 3 switches. 

Since a total of 13 multiplexers are required for the B(2):P(4) full 
adder, the circuit complexity is more complicated than the "clockwise 
cycling" realization and less complicated than the literal realization. 
Table 4.4 is a hardware comparison at the gate level for each of the 
B(2):P(4) adders considered. Since all designs have been done at the 
gate level and many of the circuits proposed have been constructed 
(Appendix A), to design the entire ALU in this work seems Impractical.
The statement that a gate level design is non-trivial should have been 

adequately substantiated based upon the full adder results. However,
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Unused

Sum

Unusei

in

out

Figure 4.12, B(2);P(4) Full Adder, T-Gate Realization
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the fact that an entire gate level realization is not presented here, 

neither diminishes the author's enthusiasm toward the effort, nor does 

it lessen the practicality or reality of this section of a processor. 
The tools have been provided.

Table 4.4. Hardware Comparison for Full Adders

Operator B(2)!P(4) P(4) B(2) Burden
"Clockwise Cycling" 166 Collectors 21 Collectors 145 Collectors

57 Mirrors 7 Mirrors 50 Mirrors
28 Switches 3 Switches 25 Switches

Literal >1622 Collectors >1500 Collectors 122 Collectors
> 646 Mirrors > 600 Mirrors 46 Mirrors
>324 Switches > 300 Switches 24 Switches

Multiplexer 299 Collectors 253 Collectors 46 Collectors
117 Mirrors 99 Mirrors 18 Mirrors
39 Switches 33 Switches 6 Switches

Total Architecture 
Having examined memory elements, bus design, control signals, 

and a portion of the ALU, it is now possible to briefly comment on total

processor architecture. As each of the different sections of a B(2):F(m)
/machine becomes a hardware reality, the designer is given a greater 

motivation to consider applications. Some ideas are presented here to 

encourage the use of MVL and demonstrate potential advantages which MVL 
architectures offer above conventional B(2) machines. There are the 

obvious improvements in line count and through put. In the area of
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fault diagnosis It would appear that greater resolution could be 
achieved In designing test vectors and test sets If each possible B(2) 
machine residing In a P(m) host were allowed to do a separate logical 
audit. Since the logical values for every B(2) sub machine are disjoint, 
each diagnosis would contain a different set of test vectors. Another 
Idea suggests the possibility of simultaneous activities by using logic 

levels not required by the "active" B(2) machine to handle peripheral or 

secondary requirements. For example, a B(2) P(4)g g mapping could take
advantage of the fact that the logic one and two values occur twice dur
ing a single clock cycle. Even though these values have no responsibil
ities to the B(2) machine, they could be used to report on Its welfare 
by gating self-diagnostic Information to the "outside world." Input/ 
output requirements often tax a small machine beyond Its real time 

capabilities. The flexibility of having additional logic levels existing 
In a fixed relationship with the required levels gives an added dimension 
to the processor's capability. Software polling loops that are Inherently 
controlled by machine cycle time could execute more quickly by taking 
advantage of the adjacent pair of logic levels existing In a P(4) machine.

These ideas point out the fact that a B(2) machine operating 
under a P(m) host Is a more powerful architecture than a stand-alone 
B(2) processor. Upward capability of B(2) machines also presents the 

designer with greater flexibility and adaptability. Hopefully, the B(2): 
P(m) concept will encourage a gradual migration of emphasis to MVL 
circuits, processors, and applications.
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Summary

Two types of memory devices previously designed for usage in 
multiple-value work were examined. Both the set-clear and J-K flip-flop 

were found to be compatible for both mappings in P(4). Two additional 

properties for MVL memory devices were defined to insure their ability 

to operate in any B(2) -*■ P(m). . These properties check the memory for
mapping compatibility and recovery. The J-K flip-flop is more desirable 
since there are no non-determlnistic next-states.

Next m-valued bus designs were considered. The circuits shown 
in Figure 4.5 allow each of the mappings in P(4) to communicate. Table 

4.3 defines the encoding/decoding scheme required to do a total mapping 

from P(4) to B(2) and back again. The circuits to do this are shown in 
Figure 4.6. This allows B(2) components to be interfaced with P(4) 
circuits. Multiplexers and demultiplexers capable of handling fan-in 
and fan-out for the bus were shown in Figures 4.9 and 4.11.

The control unit and arithmetic logic unit were both mentioned 
briefly. There are situations in a B(2):P(m) machine where control 

lines other than binary can make a significant architectural improvement. 
An additional P(4) full adder designed by Kabat and Wojcik, using T- 
gates was modified for B(2):P(4), and is shown in Figure 4.12. The gate 
level design of an entire B(2):P(4) ALU was not attempted; however, a 
comparison of three B(2):P(4) full adders was made in Table 4.4.

Finally, a few comments were made with regard to total B(2):P(m) 
processor architecture. Several potential applications were mentioned. 

With the greater flexibility offered by the upward compatibility of B(2) 

machines operating under a P(m) host, hopefully the dual radix concept
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provides a synergistic approach to circuit and systems design that is 
impossible to achieve with stand-alone architecture.



CHAPTER V 

CONCLUSIONS

Summary of Results 
This dissertation examines the upward compatibility of binary 

Boolean algebras, B(2), with Post algebras, P(m), m * 2^, N an integer 
greater than one. Theorem 2.2 states that there are homomorphic 

mappings of 3(2) in P(m). Table 2.3 shows the possible mappings. 
Although much of the work considers the general case for P(m), all of 
the examples are for P(4). Using Definition 2.5 the relationships for 
P(4) are 3(2) -*• P(4) _ and 3(2) •> P(4)_ . These are the only two
mappings for which the complement holds for 3(2). The MAX and MIN 

functions in P(4) were shown to realize the "OR" and the "AND" functions 
in 3(2) for all six mappings (see Figure 2.1). For these functions the 
circuitry will operate in either radix, thus the 3(2):P(4) hardware 

places no additional burden on the P(4) realization. The unary opera

tors defined by Vranesic, et al, and by Allen and Givone to obtain 
functional completeness in P(m) were examined under the dual radix 
concept. Even though it is not required for these operators to have a 
function in 3(2), the 3(2) :P (4) circuits were submitted to the bench

118



119

marks of 1) all primary signal paths be used for both B(2) and P(4) 

signals, 2) convenient functional pairing, and 3) minimal B(2) hardware 
burden. A summary of the functional pairing for all B(2):P(4) circuitry 

developed in Chapter II is summarized in Table 2.10. All of the circuit 
designs in this work were done at the gate level using integrated injec
tion logic, l \ .  The actual construction, a detailed analysis of the 

development, and all of the electrical design considerations for all of 
the circuits developed in Chapter II are given in Appendix A.

In Chapter III combinational designs for the two algebras were 
done for B(2):P(4) circuits. Actual design examples helped expand the 
dual radix concept and the binary select, Bg, and function select, F^, 

lines were introduced. Two standard B(2):P(4) circuits were proposed.
A "Product of Sums" gate for Vranesic's algebra and a "Sum of Products" 
gate for Allen and Givone were designed and Table 3.2 is a summary and 
comparison of the I^L realizations against the bench marks.

Since no single set of gates will always provide the best 
circuit realization, and no one design technique will show which 
operators to use, other unary operators were considered. The Post 

algebra monotone and disjoint operators were defined. Also, equivalence 

relationships were given for each of the unary operations.
A B(2):P(4) full adder was designed taking advantage of the 

"clockwise cycling" operation. The P(4) adder of Figure 3.11 can be 
modified by the literals shown in Figure 3.12 to accomplish a dual radix 

design. The same example was solved again using an algorithm for finding 

the maximum compatible mapping from B(2) to P(m). It is designed to 

work for both completely and incompletely specified functions. The
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*algorithm will find all F^(i,j) terms necessary to guarantee that 
B<2) -*■ P(m)^ j exists. Also, it will determine the mapping which 
requires the minimum number of terms.

Chapter IV examines the necessary components to construct a 
dual radix machine. The memory elements, bus structure, control unit, 

and arithmetic logic unit are each dealt with. Two types of memory 
devices previously designed for usage in MVL work were examined. The 

set-clear and J-K flip-flop were found to be compatible for both map

pings in P(4). To insure that any MVL memory device will operate for 
all B(2) -»• P(m) - ., two properties were defined. These properties check 

the memory for mapping compatibility and recovery. Next, m-valued bus 

designs were done which allow all P(m)^ j machines to communicate.
Table 4.3 defines the encoding/decoding scheme required to do a total 
mapping from P(4) to B(2) and back. The circuits to do this are shown 
in Figure 4.6. Multiplexers and demultiplexers capable of handling fan- 
in and fan-out for the bus were shown In Figures 4.9 and 4.11. A 

comparison of three B(2):P(4) full adders was made in Table 4.4. A few 
comnents were made with regard to total B(2):P(m) architecture and 
several potential applications were discussed. Synergism is available 

for the B(2) machine operating under a P(m) host as well as for the dual 

radix machine.

Suggestion for Further Studies
Clearly, the idea of a dual radix machine and the hardware to 

support it has been conceived and brought to a practical level of 

existence. Many of the sophisticated features of a single radix machine 
need to be examined under the dual radix design concept. Features such
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as direct memory access, memory bank switching and memory mapped I/O are 
Interesting topics. Much effort can be expended In the area of select
ing the best gate set In the P(m) algebra for realizing a given function. 
Obviously, any Improvements here are similarly Improvements for B(2);P(m), 
Ifore work can be done to explore other unary operators and their binary 
mappings in an effort to build additional "standard" B(2):P(4) building 
blocks. If minimization techniques become less important due to the 
influence of VLSI technology, then algorithms to test a function against 
several standard building blocks would be in order.

Beyond the hardware, the influence of dual radix processing on 
the overall processor and the programmer is overwhelming. It's almost 
as if they can begin again to Investigate the computing possibilities 

presented by the rich set of hardware and design methods made available 
to them by allowing a B(2) machine to operate under a P(m) host. .
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APPENDIX A

DUAL RADIX I^L CIRCUIT CONSIDERATIONS

Introduction

Actual construction of each of the circuits designed In previous
chapters will be done In this section. Due to the nature of Integrated

2Injection logic. It Is not possible to realize the basic I L gate shown 
In Figure 2.7 with discrete devices. Matching the device characteristics 
of the output section Is not likely. Therefore, the design of multi
valued gates must proceed with available I^L circuitry.

The design will be done with Integrated circuits offered by 
EXAR Integrated systems In their custom IC design kit [15]. Several

9conventional monolithic I L circuits are offered as basic building blocks.
Included In these are I^L Inverter arrays and PNP/NPN transistor arrays

which have electrical characteristics compatible with the I ^  circuits.
Any circuit Implementalon which Is done using these Integrated circuits
can be transferred to a VLSI master slice. The master slice has a high

packaging density of I^L gate structures which can be customized to
realize the design done at the building block level using three masking

2steps. The first mask Is used to define the collectors of the I L gates.
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The second mask opens the contact windows on the chip. The third mask 
defines the desired metal interconnection pattern.

Electrical Characteristics 

The typical electrical characteristics of gatea in the
custom design kit are shown in Table A.l [15]. One of the first choices

2in designing with I L circuits, whether for binary circuits or higher 

radices, is the Injector current amplitude. In looking at Table A.l, it 
can be seen that as the injector current increases the propagation delay 
decreases. All of the other parameters remain fairly constant as injector 
current increases, compared to the rapid decrease in propagation delay. 

Shown in Figure A.l, is the basic gate which was originally discussed 
in Figure 2.7. The fan-out capability of the I^L gate is a measure of 

its ability to sink output current, I^. The loop gain must be specified 
for each of the gate outputs. Obviously a minimum loop gain of unity is
required for a fan out of one. Figure A.2 is a typical curve of loop

2gain versus injector current for a five output X L gate.
The loop gain of the basic gate is a problem for the 

designer when using the device in multiple value logic designs. As 

shown in Figure A.2, the product of a and g is low. The common base 
current gain of the PNP transistor is low because this stage is operated 
near saturation. Also, the common emitter gain of the output state is 

small since the device is operating in the inverse mode. The base 
current, I^, is shared among the multiple outputs; therefore, the loop 

gain varies inversely with the number of outputs. If it is assumed that 

the output current of each collector is the same, then the following 
equations hold:
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I.J, = The total output sink current of a five 
output gate

* The output sink current of collector one

^ci “ ^c2 " ̂ c3 “ ̂c4 “ ^c5 “
“ I d  ® ^c2 ® ^c3 » ^c4 ̂  ̂ c5

4  = 5:'
It = NI^ , where N = the fan out of the output 

Stage

Therefore since
= aglj and 1^ = I^/N

Then = Naglj or

It
—  = Na6
h

For an l \  gate with five outputs, the loop gain must be greater than 
five or the current gain will not be adequate to prevent signal deterio
ration. In looking at Figure Â.2, one can see that for the output 
closest to the injector one should operate between lyÂ and lOOuA of 

injector current. At low levels of injector current the loop gain falls 
off due to carrier recombination and injection efficiency. At high 
currents, debiasing of the output stage emitter occurs due to base 
resistance [15].

A second problem which affects the ability of I ^  gates to be 
used in MVL applications is the decrease in loop gain as the distance 

of the output collector from the injector increases. As can be seen in 

Figure A.2, this loop gain drops off rapidly as the injector current



Table A.l. Typical Electrical Characteristics of Five-Output I^L Gates. 
(Note: Output Characteristics refer to each output.)

Parameter
Typical Characteristics at Various Injector Currents

Ij = lOOnA Ij - lüA Ij = lOpA Ij = lOOpA

Output Sink Current, 1^ 300nA 4]iA 40pA 350pA
Output Sat. Voltage, V 3mV 3mV 4mV lOmV
Input Threshold 0.48mV 0.54mV 0.60mV 0.66mV
Pwr.-Delay Product (V^=l V) 0.6pJ 0.6pJ l.OpJ 3pJ
Average Prop. Delay 6ysec 0.6visec lOOnsec SOnsec
Max. Toggle Freq. (D F/F) 6kHz 60kHz 400kHz 2MHz
Input OFF Current (V_ =0)IN ISOnA l.SpA ISiiA 130pA
Output Breakdown Voltage 3V 3V 3V 3V

H*NJVO
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V+

Input BE

Given:

Figure A.l. Basic I^L Gate

a = Common base current gain of the PNP transistor 

B = Common emitter current gain of the NPN transistor 
Ij * Injector current
I^ “ Maximum output sink current of a single collector 
Iĵ  » Input base current of the output stage 

R = External resistor for injector biasing
V.BE Base to emitter voltage of the output stage

V"*" - V.BE
R

B al.

—2. = go ; the loop gain of the I^L gate
:j
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Output Closest to 
Injector

Output Farthest 
From Injector

lOnA lOOnA IpA lOyA lOOyA 
Injector Current

1mA

Figure A.2. Loop Gain Versus Injector Current 
for a Five Output I^L Gate

c4

0.602 13 cl3
cl2
cll

0.602 10 clO

0.580

Figure A.3. XR-C501 I L Inverter Array

+5.00 Volts

R = 27 kn 

16 0.712 Volts

! ■



132

goes beyond lOOyÂ. When working with the individual integrated circuits,
the loop gain as a function of separation can be easily measured. Table

2A.2 shows the circuit response of the XR-C501 I L inverter array. The 
array was connected as shown in Figure A.3.

Table A.2. XR-C501 Circuit Response

Output Collector Sink Current

c3
c4

c5

cl3
cl2

cll

clO
c9

14.35yA
14.33yA
14.32yA

14.39yA
14.39vA

14.35yA

16.40yA 
15.03pA

Pin 16 of the XR-C501 is connected to +5.00 volts through a 27.6 K 0 
resistor. This external resistor is used to establish the injector cur
rent amplitude for all three of the inverter arrays on the integrated 
circuit. Since the base emitter voltage of the output stage is directly 

proportional to I^, it can be seen that the base current decreases as the 
fan out decreases. For the XR-C501, the average injector current is 

equal to 1/4 of the total injector current applied to Pin 16 [15]. Thus, 
= 39pA for the inverter array in Figure A.3. Obviously, the 

empirical data of Table A.2 does not agree with this rough approximation. 
Since the arrays are connected as current mirrors, the output current
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should equal Thus, to accurately adjust on the XR-C501, the 

stage should he connected as a current mirror and the adjustment can be 
made measuring the output current. The actual selection of the value of 
R when designing with gate arrays at the master slice level will be 
discussed in much greater detail in the specific design offered later in 
this appendix. In looking at the sink current amplitudes in Table A.2 
it can be seen that the lowest individual collector current is 13% 
smaller than the highest. This points up the fact that the loop gain is 
smaller for the higher fan out array. Also, it can be seen that the 
outputs on Pin 3, 13, and 10 are physically closest to the injector.

The information in Table A.2 is important in selecting the 
operating point for MVL. In binary applications the sensitivity of loop 

gain to fan out and physical separation is not as critical. Also, there 
are ways of correcting the inaccuracy of the mirror due to the low gain. 

One way proposed by Dao [25] is to undersize the feedback collector with 
respect to the others. This is not achievable with master slice layouts. 
In prototyping MVL circuitry using the XR-C501 inverter array, close 
attention will be given to the loop gain problem and how it affects the 
final master slice layout.

In selecting the proper values of Injector currents, pull-up 
resistors, and operating voltage for the dual radix circuits developed 
in Chapter II, one must accurately specify the electrical characteristics 
of the current mirror. Since the basic I^L gate has design limitations 
as were just discussed, any practical design must begin by quantifying 

these limitations. It was shown in Table A.2 that the current mirror 
with the smaller fan out offered the better gain. All of the dual radix
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circuitry developed in Chapter II can be constructed using this array on 
the XR-C501. In transferring this construction to the jnaster slice 

technology no problem exists even though the gate array is comprised of 

devices with a fan out of five. If a higher loop gain is required, thus 

demanding a lower fan out which is alright, then the emitters on the 

output stage may be opened with little difficulty.
The first choice to be made is the operating voltages. It would

2be nice if any of the I L gates could interface with TTL logic since it 
has the greatest usage as a logic family. Therefore, a +5.0 volt supply 
for the injectors would be appropriate. However, the maximum breakdown 
voltage from collector to emitter is 2.5 volts. Â second supply is 

required for external collector pull-ups if voltage interfacing is 

desirable. A voltage of +2.1 volts will be used for the second supply.
If 100 kO resistors are used for collector pull-ups, the I^max = 21pA.
In B(2):P(4) circuitry this would be equivalent to a logical three.

Table A.3 shows the ideal values of currents and voltages for the voltages 
and resistance chosen for B(2):F(4) circuits. Obviously, these values

Table A.3. Ideal Voltages and Currents for 
B(2):P(4) Circuitry

Vj, = +5.0 volts , = +2.1 volts , Rg = 100 kO

Logic Value Current Voltage

0 OpA 0 Volts
1 7pA 0.700 Volts

2 l4pA 1.400 Volts

3 21pA 2.100 Volts
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cannot be obtained due to current mirror Inaccuracies. The circuit In 

Figure A.4 Is capable of measuring the ability of the current mirror to 
accurately propagate logical values. Gate arrays A1 and A2 are wired as 

Inverters. The following procedure can be used to measure any deterio
ration between the Input and output.

1. With = Sg = Closed and = Open

Adjust Rj2 so I out 21pA (V out S 0.500 volts)
3. Adjust so = 0 (Vg = + 2.1 volts)
4. With = Open and Sg = Closed
5. Measure I out and V out
6. Repeat steps 1, 3, 4, and 5 with = 7pA, 14tjA,

and I. 21pA In Step 3
+5.0 +5.0

c3
12c2 Output

(0123)

Input
(0123)

R . = 267 kOR » 100 kOR R R R R“cl c3
^Ij “ ^12 500 kO
V = + 2.1 volts c

Rjl = Rj2 = ImO
V = + 2.4 volts c

Figure A.4. Current Mirror, Test Circuit

The above procedure can be modified slightly to allow a better match 
between the A1 and A2 array.
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1. With S, » S * Closed and S„ = Open1 3 2
2. Adjust so = l%iA (Vg = 0.700 volts)
3. With “ Open and Sg = = Closed

4. Adjust so I out » 7pA (V out =» 1.400 volts)
5. With = Sg = Closed and = Open

6. Adjust R^2 so ■ OpA (Vg = + 2.1 volts)

7. With = Open and Sg = = Closed
8. Measure I out and V out

9. Repeat Steps 5 to 8 with = 7pA and = 21yA 
in Step 6.

The data collected using the modified procedure is given in Table A.4.

In looking at the voltages it can be seen that the actual values differ 

from the ideal values considerably. The greatest differences are due to

Table A. 4. Current Mirror Accuracy Measurements
for V =+2.1 volts, R * 100 kO c c

INPUT ARRAY A1 OUTPUT ARRAY A2
^9 \ o  "̂ 9 ?10

0.534 0.200 2.080 2.080
0.910^077001 1.5841i .4o61

1.465 1.400 0.858 0.530

2.090 2.090 0.415 0.098

Value Set Point for Rj2 I I
the gain variations of the two output collectors. Obviously Ĉ q̂ is 
physically closer to the injector. The output voltage associated with a
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logical three is not a problem depending on how the tolerances of each 
of the values are defined. If the criteria for acceptable logic values 

Is as defined In Table A.5, then there Is a minimum of 200mV or 2yA of 
noise Immunity between logic bands. The bands established In Table A.5 

will allow the measured values of Table A.3 to become acceptable logic 

levels for B(2);P(4) circuitry. The gain variations are more pronounced 

at higher levels of collector current. It was shown In Figure A.2 that 
the gain of the collector furthest from the Injector falls off more 

rapidly than the closer ones. The collector current may be reduced by

Table A.5. B(2):P(4) Logic Values for V = +2.1 Volts
and R ■ 100 kO °c

BAND TYPICAL TOLERANCE
0 a I 3 3viA 2viA +lpA

° -2pA
5yA 3 3 9yA 7pA ±2yA

12yA 3 Ig 3 16yA 14yA ±2yA
18vA a I S 21yA 19pA +2pA

^ -IpA

Increasing R . This would eliminate the possibility of greater gain c
variations at higher currents. At higher values of R^, the leakage
current which Is approximately 0.2pA, cannot be Ignored. Also, the
propagation delay will necessarily go up.

If a second set of values for V and R are chosen, there Is ac c
possibility of Improving the width of the logic bands and noise Immunity

by decreasing the sensitivity to gain variations. In Figure A.4 set the
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value of to +2.4 volts and to 267 kfl. Table A.6 shows the Ideal 
values of currents and voltages for these new parameters.

Table A.6. Ideal Voltages and Currents for 
B(2):P(4) Circuitry

■ +5.0 volts , = +2.4 volts , » 267 kfl

logic Value Current Voltage
0 OyA 0 Volts
1 3yA 0.8 Volts
2 6yA 1.6 Volts

3 9pA 2.4 Volts

Table A.7 shows the current mirror inaccuracies after following the same 

modified procedure for gathering the data in Table A.4. If the bands 

shown in Table A.8 are established for each logic value, the measured

Table A.7. Current Mirror Accuracy Measurements 

for Vg = +2.4 Volts , Rg = 267 kS2

INPUT ARRAY A1 OUTPUT ARRAY A2
vg ?10 ?9 ?10

0.592 0.400 2.210 2.200
0.931 0.800 1.616 1.504
1.638 1.600 0.876 0.700

2.330 2.340 0.455 0.264

values in Table A.7 are acceptable for B(2):P(4) circuitry. Each of the 

circuits developed in Chapter II will be built using the XR-C501 inverter 
array and the XR-C506 l \  compatible NPN transistor array.



139

Table A.8. B(2):P(4) Logic Values for V = +2.4 Volts
and R » 267 kO c

Band Typical Tolerance
Q ^ 2.2pA l.SyA +0.7pA

-l.SpA
^  5 3.7pA 3.2pA +p.5pA
2 S 6.3pA 6.0pA +0.3pA
g S 8.9yA 8.2yA 4^. 7pA

Dual Radix Circuitry 

Each of the circuits will be checked by generating logic levels 
from zero to three using the circuit shown in Figure A. 5. The typical 

values in Table A.8 will become the (x^,...x^) input currents for the 
circuit under test. The output values (y^,...y^) will then be given in 
the truth table for that function. The circuit in Figure A. 5 will source 

each logic current value depending upon the position of switch S^.
Testing the complement gate of Figure 2.9 yields the values 

given in Table A. 9. The measured currents meet the logic bands and

+5.0

+2.4

478 kfl

141 kfl
(0123)

Figure.A.5. . Logic Generator for Values, of 0 to m-1
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Table À. 9. B(2):F(4) Logic Values for the Complement Gate

-%1—
0.2yÂ S.OyÂ 
3.O11Â 6.3pÂ
6.OyA 3.2yA 

8.OyA 0.2yA

typical values established in Table A.8. The schematic in Figure A.6 
shows the complement gate, with necessary resistor values, constructed 
from an XR-C501 inverter array. The 2.39 mO resistor helps to bias the 

current mirror to allow for inverter inefficiency on the integrated 
circuit. +2.4 Volts

+5.0

2.39 mO
10

Figure A.6. Complement Gate Construction

The MAX/OR gate shown in Figure 2.10 is redrawn in Figure A.7 
showing actual values. Table A.10 gives the measured output currents 

obtained when exciting the circuit with two of the logic generators of 
Figure A.5. All values are within the logic bands of Table A.8 except 
the two noted. A quantizer on the output signal would allow the circuit 
to be constructed as shown. The two currents which are out of band
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could be brought into limits by adjusting the values of the 1.6 mO

resistors. These resistors set the quiescent operating point of the
current mirror making allowances for injector inefficiencies as was done

+2.4
+2.4 +5.0 67 ka

2.39 mO
101.6 mi

Figure Â.7. MAX/OR Gate Construction 

Table A.10. B(2):F(4) Logic Values for MAK/OR Gate

0 1 2 3
0 2.4* 3.3 6.0 7.9
1 3.2 3.5 6.0 7.9
2 5.8 6.0 6.7* 7.9
3 7.5 7.7 8.3 8.6

Output, in pAmps 

*2.4 pAmps is 9.0% out of the band given in Table A.8. 
6.7 pAmps is 6.3% out of the band given in Table A.8.
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with the 2.39 mQ resistor on the complement gate. The resistors used 
in constructing the MAX/OR gate had a 5% tolerance. The resistors could 
have been 1% tolerance; however, in a way, the resistor value foreshadows 
the real problem. Variation in current mirrors from device to device 
(different XR-C501 inverter arrays) requires different resistor values 
for setting injector levels. This is a phenomena which will not exist 
when working with the master slice. Also, the injector resistor can be 

either on or off of the actual master slice layout.

If switch in Figure A.7 is opened and the output is taken
at this point, then by inverting the x^ and x^ inputs the data for the 
MIN/AMD gate may be taken. Table A.11 gives the measured current values 

for the MIN/AND gate. Once again, two of the measured currents are 
slightly out of the logic bands of Table A.8. For the same reasons 
previously stated this does not present a serious problem.

The unary "inverter" of Figure 2.14 is shown as it was actually 
constructed in Figure A.8. Comparing the values of injector resistors 
to those in Figure A.7 will demonstrate the wide range in electrical 
characteristics from device to device. Table A.12 is the actual 
measured output currents for all possible input combinations. All of the 

currents are within the logic bands of Table A.8. The low current values 
and zero readings occur due to the switching action of the XR-C506 NPN 
compatible transistor.
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Table A. 11. B(2):P(4) Logic Values for the MIN/AND Gate

0 1 2 3
0 1.3 1.6 2.0 2.2
1 i.9 2.8 3.3 3.6
2 1.9 3.3 6.3 6.9*
3 1.9 3.3 6.6* 8.6

Output , in pAmps 
*6.9 pAmps in 9.5% out of the band given in Table 8. 
6.6 pAmps is 4.7% out of the band given in Table 8.

+2.4
+5..0

+5.0

10720

Figure A.8. Unary "Inverter” Construction
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Table A.12. B(2);P(4) Logic Values for the Unary
"Inverter" Gate

0 1 2 3

0 2.1 3.2 5.8 7.5

1 0.2 0.2 0.3 0.4

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

Output, X in pAmps

The universal M unary "clockwise cycling" operation originally 
shown in Figure 2.16 is shown as it was actually constructed in Figure A.9. 
Five different XR-C501 integrated circuits were used. The resistors,

are selected to match the electrical characteristics of the 
individual circuits.

The literal operation shown in Figure 2.17 was modified in 

Chapter III to accommodate the and F^ lines (Figure 3.6). The B(2):
P(4) full adder designed in Chapter III used a modified "clockwise cycling" 
operation and the literal operation. The complete schematic is shown in 
Figures 3.11 and 3.12. This circuit can be duplicated on an XR-20O 
master slice. The layout for a one bit B(2);P(4) full adder is shown in 
Figure A.10. Special consideration must be given to the injector rail 
configuration to minimize the series resistance. (Electrical measurements 
of the master slice performance are not available at the time of writing.) 
Also, on a prototype layout the injector bias resistor should be external. 

In fact, several different injector resistors should be used to help 
"fine tune" any new design. The design rules for master slice construc

tion are intended to aid in binary applications. For multiple-valued
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logic the layout and variation in gate array electrical parameters are 
more critical.

is the most promising logic family for MVL design today. 
However, current mirror inaccuracies and problems associated with injector 
layout need to be overcome. It would be nice if some amount of flex
ibility could be achieved in the basic gate array and still maintain the 
master slice concept. For example, rather than all devices having a fan 
out of five, in situations where higher loop gain is necessary it would be 
nice to open various emitters on the output stage as needed. Also, if 
the feedback collector could be identified and undersized to correct for 

mirror inaccuracies, then MVL designs would be greatly improved. Neither 

of these suggestions really contradict the master slice concept. Several 
arrays with varying numbers of fan out collectors and previously deter

mined feedback elements could be provided in a standard configuration.
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+2.4 +5.0

267 ko+5.0

II

+2.4 • +5.0

+2.4 200 kO

+2.4

+2.4+5.0
10

15

Figure A.9. Universal M Unary "Clockwise Cycling" 
Operation Construction
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Figure A.10. X L  Master Slice Layout 
for a B(2):P(4) Full Adder


