
A NEW DISTRIBUTED FRAMEWORK FOR CYBER ATTACK

DETECTION AND CLASSIFICATION

By

SANDEEP GUTTA

Bachelor of Engineering in Electronics and
Communication Engineering

Andhra University
Visakhapatnam, Andhra Pradesh, India

2008

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215272794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COPYRIGHT c©

By

SANDEEP GUTTA

December, 2011

A NEW DISTRIBUTED FRAMEWORK FOR CYBER ATTACK

DETECTION AND CLASSIFICATION

Thesis Approved:

Dr. Qi Cheng

Thesis Advisor

Dr. Martin T. Hagan

Dr. Weihua Sheng

Dr. Sheryl A. Tucker

Dean of the Graduate College

iii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 2

1.1 Taxonomy of Cyber Attacks . 3

1.2 Motivation . 5

1.3 Thesis Organization . 5

2 CYBER ATTACK DETECTION SYSTEMS 7

2.1 Proposed Cyber Attack Detection System 9

3 SUPPORT VECTOR MACHINES 14

3.1 Margins and Maximum Margin Classifiers 15

3.2 Nonlinear Feature Space Mapping and Kernel Trick 20

3.3 Regularization and Soft Margins . 23

3.4 Solving the SVM Dual Problem . 26

3.5 Summary . 27

4 FAST AND EFFICIENT SVM TRAINING APPROACHES 29

4.1 Existing Fast SVM Training Approaches 29

4.2 A New Fast SVM Training Approach 31

4.2.1 Training Data Clustering . 32

4.2.2 Training Data Elimination . 40

4.3 Complexity and Performance Analysis 42

5 FUSION RULES BASED ON DEMPSTER-SHAFER THEORY 46

iv

5.1 Basics of Dempster-Shafer Theory . 49

5.2 Dempster’s Rule of Combination . 51

5.3 Local Fusion Rule at Each Sensor . 53

5.4 Global Fusion Rule at the Fusion Center 55

6 EXPERIMENTAL RESULTS 57

6.1 Cyber Attacks Dataset . 57

6.2 Training Phase . 62

6.3 Decision Making Phase . 63

7 CONCLUSIONS 70

BIBLIOGRAPHY 71

A PROBABILISTIC OUTPUTS OF SUPPORT VECTOR MACHINES 75

v

LIST OF TABLES

Table Page

6.1 Types of cyber attacks in the 1999 KDD intrusion detection dataset. 66

6.2 Total training time for the support vector machines. 67

6.3 Confusion matrix of the proposed cyber attack detection system on the

NSL-KDD test set (with only old attacks). 68

6.4 Confusion matrix of the proposed cyber attack detection system (using

SVMs which are trained normally) on the NSL-KDD test set (with only

old attacks). 68

6.5 Confusion matrix of the proposed cyber attack detection system on the

NSL-KDD test set (containing both old and new attacks). 69

vi

LIST OF FIGURES

Figure Page

2.1 Proposed distributed cyber attack detection system. 11

2.2 Local decision at each sensor in the system. 13

3.1 Geometric margins. 16

3.2 Sensitivity of the original SVM (with hard margin) to outliers. 24

4.1 Cluster defined as the convex hull of the data points. 34

4.2 Löwner-John ellipsoid. 35

4.3 Logistic sigmoid curve of the training sample elimination model. . . . 42

5.1 Basic probability assignments (BPAs) of two independent sources of

evidence. 53

5.2 Dempster’s rule of combination of basic probability assignments (BPAs)

of two independent sources of evidence. 54

6.1 The 1998 DARPA intrusion detection evaluation testbed. 58

6.2 Detailed block diagram of the 1998 DARPA evaluation testbed. . . . 59

vii

This work has been supported in part by the Center for Telecommunications and

Network Security (CTANS).

1

CHAPTER 1

INTRODUCTION

With the enormous growth of cyber activity and Internet penetration, the number

of cyber attacks has increased significantly over the last decade. Detection of these

attacks has always been a major concern for many governments and organizations all

over the world. Some of the recent well-known cyber attacks include Nimda attack,

SQL Slammer attack, July 2009 attacks, and Operation Aurora. The Operation

Aurora cyber attacks were launched against major organizations like Google, Yahoo,

Adobe Systems, Morgan Stanley, Dow Chemical Company, etc. in the second half of

2009. Recently in April 2011, a series of cyber attacks were launched against Sony’s

PlayStation Network which made the network go offline for about 24 days. In May

2011, cyber attacks were launched against Citibank and the account information of

about 1% of its 21 million North American credit card customers was stolen. Such

cyber attacks incur great expenses and trouble to several organizations. In April

2009, the Pentagon announced that more than $100 million were spent on repairing

the damage from the cyber attacks over the past six months. In May 2011, Sony

Corporation declared that the cost of its PlayStation Network attack was about $171

million.

Moreover, the computing systems and networks in the critical sectors like military,

banking and finance, telecommunications, transportation, medical etc. are vulnerable

to these growing cyber threats. Military and financial organizations are always the

top target for attackers. The protection of the sensitive data from cyber attacks in

the critical sectors like these, is now the topmost priority for government and other

2

organizations. Nowadays, politically motivated cyber attacks are also increasing in

number. The Economist describes the cyberwarfare as the fifth domain of warfare

after land, sea, air, and space. In May 2010, a new agency called the United States

Cyber Command (USCYBERCOM) was established by the U.S. government to ex-

clusively protect and defend its military networks. Similar agencies were set up by

other countries as well to protect their digital infrastructure.

1.1 Taxonomy of Cyber Attacks

A cyber attack (or intrusion) can be defined as a series of malicious computer activi-

ties that threaten and compromise the security and integrity of a computer/network

system. The cyber attacks disrupt the normal operation of a computer system, and

may illegally access or destroy the information in the computer systems. Most of the

time, a cyber attack is launched through the data stream on the computer networks.

The classification of cyber attacks is helpful for learning the behavior of different at-

tacks, which may be used in the design of cyber attack detection systems. In general,

cyber attacks can be broadly classified into the following four categories:

1. Denial of Service (DoS) Attacks: The Denial of Service (DoS) attacks

are those that make a computer resource (e.g., a Web server) unavailable to

the actual legitimate users. The most common form of the DoS attack involves

making the computer resource too busy and fully loaded with lots of unnecessary

requests, so that the actual users cannot use it. There are many variants of DoS

attacks including TCP-SYN Flood, ICMP/UDP Flood, Smurf, Ping of Death,

Teardrop, Mailbomb, Apache2.

Denial of Service (DoS) attacks are the most common cyber attacks. The most

popular variant of the DoS attack is the Distributed Denial of Service (DDoS)

attack. As the name itself suggests, DDoS attacks are launched in a distributed

3

fashion. Most often in the case of DoS attacks, the victim’s computing resource

is more powerful than the attacker’s computing resource. In such cases, the DoS

attacker launches the attack using several multiple intermediate hosts (generally

called bots).

2. Remote to Local (R2L) Attacks: In this type of attacks, an attacker tries

to illegally gain local access to a computer system, by sending some packets to

the system over a network. Some common ways in which this is accomplished

is guessing passwords through the brute-force dictionary method, FTP Write,

etc.

3. User to Root (U2R) Attacks: In this class of attacks, an attacker with

a normal user privileges illegally tries to gain the root access (administrator

privileges) to a computer system. One common way in which this is done is by

using the buffer overflow methods.

4. Probing Attacks: In this type of attacks, an attacker scans a network/computer

to find possible vulnerabilities through which the attacker can exploit the sys-

tem. This is like some sort of surveillance on the system. One common way in

which this is done is through port scanning. By scanning the different ports of

a computer system, the attacker can get the information about the open ports,

services running, what the hosts in a network are up to, and various other sensi-

tive details like the IP address, MAC address, firewall rules, etc. Some examples

of probing attacks are IPSweep, NMap, MScan, Satan, SAINT.

There are other attacks such as the Man-in-the-middle (MITM) attacks, Social

Engineering attacks, etc. However, these attacks can be prevented by following some

personal security measures. For example, MITM attack is a sort of active eaves-

dropping in which the attacker hears the conversation between the victims. This

is generally done by establishing separate and independent connections with each

4

victim, and relaying messages between them without them even knowing it. This

MITM attack can be prevented by using strong encryption schemes like the Secure

Shell (SSH) protocol, which prevents the attacker from reading the messages.

1.2 Motivation

Cyber attacks have become a major threat nowadays. The cost of damage from a

cyber attack is very huge. Protecting the computer networks from these cyber attacks

has become the topmost priority. Thus, the problem of cyber attack detection is of

great importance. There is an urgent need for an efficient cyber attack detection sys-

tem, which can accurately detect the cyber attacks in time so that proper countering

actions can be taken to protect the vital cyber infrastructure. Most of the current

cyber attack detection systems suffer from two main issues:

1. High computational complexity

2. Low detection accuracy

There is generally a trade-off between these two. In general, the cyber attack detection

system with high detection accuracy suffers from high computational complexity. One

of the main challenges in designing a cyber attack detection system is to decrease the

overall computational complexity of the system without any decrease in its detection

accuracy. The focus of this thesis is to address this challenge. In this thesis, a new

cyber attack detection system is proposed which has relatively less computational

complexity and high detection accuracy.

1.3 Thesis Organization

In this chapter, different types of cyber attacks were introduced. The behavior of

different attacks is presented in detail.

5

In Chapter 2, different cyber attack detection systems are introduced. The relative

merits and demerits of those cyber attack detection systems are discussed. Then, the

proposed distributed cyber attack detection system is described in detail.

In Chapter 3, the support vector machines which are used as the binary classifiers

in the proposed cyber attack detection system are presented. The support vector

machines are generally the best supervised classifiers, and yield the best classification

performance. The support vector machines are discussed in detail in this chapter.

In Chapter 4, several fast training approaches to train the support vector machine

are discussed. Though the support vector machines are the best classifiers, their

training procedure has high computational complexity. This often limits the use of

support vector machines in the real-world applications involving huge data (for e.g.,

cyber attack detection). In this chapter, several existing fast training approaches

for support vector machines are presented. Finally, a new fast and efficient training

approach for support vector machines is proposed which reduces the support vector

machine training complexity without having significant degradation in the classifica-

tion performance of the support vector machine.

In Chapter 5, the fusion rules used in the proposed distributed cyber attack de-

tection system are discussed. Effective fusion rules are proposed using the Dempster-

Shafer theory of evidence.

In Chapter 6, the experimental results are provided. Conclusions are provided in

Chapter 7.

6

CHAPTER 2

CYBER ATTACK DETECTION SYSTEMS

The cyber attack detection system, also referred to as the intrusion detection system

(IDS), continuously monitors the computer/network system trying to identify the

cyber attacks while they are going on a computer/network system. Once an attack

is detected, the cyber attack detection system alerts the corresponding security pro-

fessional who then takes a necessary action. The design of the cyber attack detection

system is generally based on the basic assumption that the cyber attack activities are

different from the normal activities and hence can be detected [1].

Generally the cyber attack detection systems or intrusion detection systems (IDSs)

are classified into two main categories:

1. Signature-based intrusion detection systems

2. Anomaly-based intrusion detection systems

The signature-based intrusion detection system is based on the prior knowledge of

known attack signatures. In this approach, an activity is classified as an attack if it

matches with an already known attack signature. Therefore the performance of this

approach is greatly limited by the signature database available. This approach cannot

detect novel attacks, which are quite different from the known attacks. Moreover,

defining signatures for all the known attacks is in general difficult. There is a great

need for expert knowledge to create the attack signatures. Any error in the attack

signature definitions may lead to a large number of missed detections. The common

techniques adopted include pattern matching, and rule-based techniques. Some best

7

examples of signature-based intrusion detection systems are Snort [2], Bro [3], and

Prelude [4].

In the anomaly-based intrusion detection system, an assumption that a cyber

attack will always show some deviations from normal patterns is made. First, a normal

profile of the system is developed. Then, all the activities that do not match with this

normal profile are considered to be attacks. The major drawback in this approach

is the difficulty in accurately modeling the normal behavior of the system, which

can be highly dynamic. Furthermore, the assumption that the abnormal behavior is

only due to attacks is another limitation. To summarize, though the anomaly-based

intrusion detection system may sometimes detect novel attacks, the biggest drawback

is the lack of accurate profiling of the normal behaviors of a system. This is in general

difficult, and this may lead to a very large number of false alarms.

If we observe the conventional intrusion detection approaches mentioned above,

it is clear that both of them completely rely on explicit pattern matching techniques.

That is, all the activities matching with the known attack signatures are consid-

ered to be attacks in the signature-based detection approach, and all the activities

not matching with the system’s normal profile are considered to be attacks in the

anomaly-based detection approach. It is clear that they perform good when the at-

tacks are somewhat similar and regular. But the attacks in general are not regular.

Novel attacks are being developed day by day. And the conventional detection ap-

proaches cannot adapt to the new attacks that are being developed. Therefore, there

is a need for an adaptive intrusion detection approach. The above mentioned difficul-

ties lead researchers to apply the pattern classification techniques to the problem of

intrusion detection, where the normal and attack models with appropriate decision

rules are automatically learned by the system. Hence, these systems are adaptive

to new unforeseen attacks. The main advantage of using these pattern classification

techniques is their ability to generalize, learn and adapt.

8

The intrusion detection systems (IDSs) can also be classified into the following

categories based on the type of data they collect:

1. Host-based intrusion detection systems: These IDSs monitor the indi-

vidual host systems in a network. They often collect a number of system level

details like system calls, application logs, incoming and outgoing network events,

system file changes, etc. An example of a host-based intrusion detection system

is OSSEC [5].

2. Network-based intrusion detection systems: A network-based IDS moni-

tors the whole network for signs of an ongoing attack. It examines the overall

network traffic and observes different hosts as well. These network-based IDSs

access the network traffic through a network tap, or by connecting to a network

switch configured for port mirroring. An example of a network-based IDS is the

well known Snort [2]. Another open-source network-based IDS is the Bro [3].

An example of commercial network-based IDS is the McAfee Network Security

Platform [6].

3. Application-based intrusion detection systems: These IDSs monitor only

a specific application by collecting the corresponding necessary data. They

use external sensors that capture the data exchanged between the monitored

application and other third party entities with which the application interacts.

4. Hybrid intrusion detection systems: These IDSs are a combination of two

or more of the above described IDSs.

2.1 Proposed Cyber Attack Detection System

In this thesis, a new network-based cyber attack detection system (intrusion detection

system) is proposed. The proposed cyber attack detection system is designed in a

9

distributed fashion, using multiple sources of information (sensors). The sensing

technology has greatly improved in recent times, and a wide variety of advanced

sensors are now available which can collect a lot of information from the network.

Each sensor is a source of information which independently operates and collects

different types of data from the network. Using a variety of multiple sensors, we can

have a complete view of the network and hence the cyber attacks can be detected

more accurately.

The data collected from all the sensors in the system can be processed in two ways:

centralized approach and decentralized (or distributed) approach. In the centralized

processing approach, each sensor transmits its entire data to a central unit. The

central unit receives the data from all the sensors and processes it to generate a final

decision. This traditional centralized processing approach has high computational

complexity, requires huge bandwidth, and is practically inefficient. On the other

hand, the distributed processing approach is more efficient and has relatively less

computational complexity. In this distributed approach, each sensor first process its

data and generates a local decision. All the local decisions from all the sensors are

then transmitted to the central unit (generally referred to as the fusion center), which

then generates the final decision based on all the available local decisions. Clearly,

this distributed approach is computationally more efficient and requires very less

bandwidth. Moreover with the recent advancements in the field of sensing, currently

available sensors all have computing capabilities. Thus we propose a new distributed

cyber attack detection system which is robust and efficient than the traditional ones.

Let us assume there are L − 1 known types of cyber attacks. Thus there are

a total of L classes including the normal class. Let there be M sensors, which are

distributed wide across the network observing different aspects of the network under

consideration. Each sensor processes the observed data and makes a local decision

regarding the network condition. The local decision of the sensor Sj is uj. All

10

these local decisions are then transmitted to the fusion center, which generates the

final decision about the state of the network using the available local decisions. The

proposed distributed cyber attack detection system is shown in Figure 2.1.

Figure 2.1: Proposed distributed cyber attack detection system.

At each sensor, there are L binary classifiers with each classifier distinguishing

one class from the rest. Let gji (·) denote the binary classifier i at the sensor j. The

binary classifier gji (·) at the sensor j classifies the observed data record into either

“belonging to class i” or “not belonging to class i.” The proposed local fusion rule

11

at each sensor generates the corresponding local decision based on the outputs of the

L binary classifiers. This is clearly shown in Figure 2.2.

The binary classifiers in the proposed system are designed using the machine

learning (statistical learning) approach. In general, we assume that we initially have

data (generally referred to as the training data) of different types of cyber attacks

available. All the binary classifiers are initially trained on this available training

data. Gradually over time, when the data about the new types of cyber attacks

becomes available, the training data is updated and the classifiers are retrained using

the updated training data. In order to decrease the computational complexity of the

classifier training process, a new fast and efficient training method is proposed in this

thesis. Effective fusion rules, at the sensors and the fusion center, are proposed using

the Dempster-Shafer theory of evidence.

12

Figure 2.2: Local decision at each sensor in the system.

13

CHAPTER 3

SUPPORT VECTOR MACHINES

In this chapter, we describe in detail the support vector machine (SVM), which is

used as the binary classifier in our proposed cyber attack detection system. Support

vector machine (SVM) is generally considered to be the best off-the-shelf supervised

classifier. The SVM tends to find a decision boundary (hyperplane) between the two

classes, which lies at a maximum distance from both the classes. The main advantage

of the support vector machines (SVMs) is that the parameters are found by solving

a convex optimization problem, which makes the solution globally optimal.

The support vector machine (SVM) is a sparse kernel method. Kernel methods

are a special class of pattern classification techniques, in which the decisions (or

predictions) are made using the entire training data, or a subset of it. The support

vector machine (SVM) is a kernel method with sparse solution. The SVM decisions

(or predictions) are made using only few training data points.

The problem of supervised binary classification can be formulated as follows. The

training set T = {(xi, yi); i = 1, ..., n} is given. The training sample xi has d features,

i.e., xi ∈ Rd. Thus each training sample xi is a point in Rd space. The label of

the sample xi is yi ∈ {−1,+1} corresponding to two different classes. The SVM

classifier design is to learn a function y = f(x) which not only classifies the training

data accurately but also generalizes well to the new samples (samples with unknown

labels). Mathematically, the SVM classifier can be defined as

y = f(x) = sgn(wTΦ(x) + b), (3.1)

where w and b are the parameters of the SVM, and Φ(·) denotes a nonlinear feature

14

space mapping which transforms the original d-dimensional input space into some

higher dimensional feature (Hilbert) space. From (3.1), it is clear that the SVM

parameters w and b define a linear hyperplane in the feature space corresponding

to the nonlinear mapping Φ(·). The optimal values of the SVM parameters w and

b are found by solving a convex optimization problem which maximizes the margin

between the two classes.

3.1 Margins and Maximum Margin Classifiers

First, we discuss the concept of margins. Figure 3.1 shows the decision boundary be-

tween two classes. The parameter vector w is orthogonal to the decision hyperplane.

Consider a training sample (data point) at A. The geometric margin (or simply mar-

gin) of the decision boundary with respect to this training sample A is the distance of

the point A to the decision boundary. This margin is represented by the line segment

AB in Figure 3.1. Mathematically, the margin of the decision boundary represented

by the parameters (w, b) with respect to a training sample (xi, yi) is defined as

γi = yi

((
w

‖w‖

)T
xi +

b

‖w‖

)
. (3.2)

Using the notion of margins, the optimal classifier with good generalization is

the one which maximizes the margin with respect to the entire training set T =

{(xi, yi); i = 1, ..., n}. Such classifiers that separate the training samples with the

maximum margin (large gap) are called maximum margin classifiers. The support

vector machine (SVM) is one such maximum margin classifier. Given a training set

T = {(xi, yi); i = 1, ..., n}, the support vector machine (SVM) tries to solve the

following optimization problem:

max
w,b

γ

s.t. yi(w
Txi + b) ≥ γ, i = 1, ..., n

‖w‖ = 1.

(3.3)

15

Figure 3.1: Geometric margins.

In the above optimization problem we are trying to maximize the margin γ, subject

to the constraint that every training sample has the margin at least γ. The solution

of the optimization problem (3.3) gives the hyperplane (w, b) with the largest possible

margin with respect to the entire training set.

The above optimization problem (3.3) cannot be solved directly, as the constraint

‖w‖ = 1 is a nonconvex one. We can try to embed the constraint ‖w‖ = 1 into the

objective function, which results in the following optimization problem:

max
w,b

γ̂

‖w‖

s.t. yi(w
Txi + b) ≥ γ̂, i = 1, ..., n

(3.4)

Solving this optimization problem (3.4) is also in general difficult as the objective

function in (3.4) is a nonconvex one. To transform this optimization problem (3.4)

16

into a convex one, we make use of the fact that scaling the parameters (w, b) does

not affect the geometric margin. This is clear from the equation (3.2). We scale the

parameters (w, b) by some factor such that γ̂ = 1. Now the objective function of the

optimization problem (3.4) becomes 1
‖w‖ . Moreover, maximizing 1

‖w‖ is equivalent to

minimizing ‖w‖2. So we now have the following optimization problem:

min
w,b

1

2
‖w‖2

s.t. yi(w
Txi + b) ≥ 1, i = 1, ..., n

(3.5)

The scaling factor 1
2

in the objective function is introduced for mathematical con-

venience. This optimization problem (3.5) is a convex one. More precisely, the

optimization problem (3.5) is a quadratic programming (QP) problem, which tries to

minimize a quadratic function subject to a set of linear inequality constraints.

In practice, the dual problem of the above problem is solved. The Lagrangian of

the above problem (3.5) is

L(w, b,λ) =
1

2
‖w‖2 −

n∑
i=1

λi(yi(w
Txi + b)− 1), (3.6)

where λ = {λi ≥ 0, i = 1, ..., n} are the Lagrange multipliers. The Lagrange dual

function (or simply dual function) is

D(λ) = inf
w,b

L(w, b,λ)

= inf
w,b

(
1

2
‖w‖2 −

n∑
i=1

λi(yi(w
Txi + b)− 1)

)
.

(3.7)

The Lagrange dual function is the minimum value of the Lagrangian over the pa-

rameters (w, b). To find the dual function, we first need to set the derivatives of the

Lagrangian L(w, b,λ) with respect to w and b equal to zero.

∇wL(w, b,λ) = w−
n∑
i=1

λiyixi = 0, (3.8a)

∂

∂b
L(w, b,λ) =

n∑
i=1

λiyi = 0. (3.8b)

17

From (3.8a), we have

w =
n∑
i=1

λiyixi. (3.9)

Plugging the value of w from (3.9) into the Lagrangian (3.6), we get

L(b,λ) =
n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

yiyjλiλj(xi)
Txj − b

n∑
i=1

λiyi. (3.10)

From (3.8b), the last term on the RHS of the above equation is zero. Finally, the

Lagrange dual function is

D(λ) =
n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

yiyjλiλj(xi)
Txj. (3.11)

The Lagrange dual function (3.11) gives lower bounds on the optimal value of the

original primal problem (3.5). If p? is the optimal value of the primal optimization

problem (3.5), then for any λ ≥ 0 we have

D(λ) ≤ p?. (3.12)

It is clear that the Lagrange dual function D(λ) gives lower bound on the optimal

value p? of the primal optimization problem (3.5) for every λ ≥ 0. The best lower

bound that can be given by the dual function can be found by the following optimiza-

tion problem, which is called the Lagrange dual problem (or simply dual problem).

max
λ

D(λ)

s.t. λ ≥ 0.

(3.13)

The dual problem of our original optimization problem (3.5) is

max
λ

D(λ) =
n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

yiyjλiλj(xi)
Txj

s.t. λi ≥ 0, i = 1, ..., n

n∑
i=1

λiyi = 0.

(3.14)

The above dual problem (3.14) is also a quadratic programming (QP) problem, which

tries to minimize a quadratic function subject to a set of inequality and equality

18

constraints. Let d? denote the optimal value of the above dual problem (3.14). Thus,

by definition, we always have d? ≤ p?. The nonnegative quantity p?− d? is called the

duality gap. In order to actually solve the dual problem (3.14) in place of the original

primal problem (3.5), we need to have zero duality gap, i.e., d? = p?. In order to have

zero duality gap, the primal optimal points (w?, b?) and the dual optimal point λ?

must satisfy the Karush-Kuhn-Tucker (KKT) conditions:

yi(w
?Txi + b?) ≥ 1, i = 1, ..., n (3.15a)

λ?i ≥ 0, i = 1, ..., n (3.15b)

λ?i (1− yi(w?Txi + b?)) = 0, i = 1, ..., n (3.15c)

∇(w,b)L(w?, b?,λ?) = 0. (3.15d)

These KKT conditions hold in our case here. The KKT condition (3.15c) is an

important one, which is generally referred to as the KKT dual complementarity con-

dition. It states that, for every data point xi, either the corresponding λi = 0 or

yi(w
?Txi + b?) = 1. Thus we can solve the dual problem (3.14) instead of the original

primal problem (3.5). The various algorithms used to solve the dual problem (3.14)

are discussed later in this chapter.

Once the dual problem (3.14) is solved, we get the dual optimal point λ?. Having

found the dual optimal point λ?, we can find the primal optimal point w? using (3.9).

The optimal value b? can be calculated using (3.9) and the KKT dual complementarity

condition (3.15c). In order to classify new samples using the trained SVM (w?, b?),

we just need to evaluate the sign of the quantity f(x) = w?Tx + b?. Using (3.9), we

19

have

f(x) = w?Tx + b?

=

(
n∑
i=1

λ?i yixi

)T

x + b?

=
n∑
i=1

λ?i yi (xi)
T x + b?

=
n∑
i=1

λ?i yi 〈xi,x〉+ b?,

(3.16)

where 〈xi,x〉 represents the inner product between the points xi and x. The optimal

value b? in the above equation can be directly calculated using (3.9) and the KKT dual

complementarity condition (3.15c). The value b? also depends only on the Lagrange

multipliers {λi}, training data points {xi}, and the training data labels {yi}. It is

clear from (3.16) that once the dual optimal point λ? is found by solving the dual

problem (3.14), the new data points can be classified directly using (3.16). There is

no need to explicitly calculate the primal optimal point (w?, b?) for future predictions

about new data points. From (3.16), it is clear that the quantity f(x) mainly depends

on the inner product between the new point x and the points in the training set. From

the the KKT dual complementarity condition (3.15c) and (3.16), it is clear that only

few data points have nonzero λi. Such points in the training set are called support

vectors, and hence the name support vector machine (SVM). All the training

data points except support vectors have λi = 0, and thus does not play any role in

forming the decision boundary and making predictions for new data points.

3.2 Nonlinear Feature Space Mapping and Kernel Trick

From the above discussion, it clear that the support vector machine (SVM) is a

maximum margin classifier which tries to separate the linearly separable data. Most

of the time in real-world situations, the data is not linearly separable in the original d-

dimensional input space I . However, the data can be linearly separable in some higher

20

dimensional feature space (Hilbert space) H . Hence, the original input space I is

transformed into a higher dimensional feature space H through a general nonlinear

feature mapping Φ(·). The SVM is applied in this new higher dimensional space.

In order to do this, we need to replace x everywhere in the SVM algorithm with

Φ(x). Since the SVM algorithm can be expressed entirely using the inner product

〈xp,xq〉, we need to replace all such inner products with 〈Φ(xp),Φ(xq)〉. This new

inner product can be explicitly defined using a kernel function. For a given nonlinear

feature mapping Φ(·), the corresponding kernel function is defined as

K(xp,xq) =〈Φ(xp),Φ(xq)〉=(Φ(xp))
TΦ(xq). (3.17)

Thus, we can just replace the inner product 〈xp,xq〉 everywhere in the SVM algorithm

by the corresponding kernel function K(xp,xq).

Given the nonlinear feature mapping Φ(·), the corresponding kernel K(·, ·) can be

easily calculated. But, sometimes determining the nonlinear feature mapping Φ(·) is

very difficult, especially in very high-dimensional cases. However most of the time,

we can efficiently construct the corresponding kernel function K(·, ·) directly without

even having to find the feature mapping Φ(·) explicitly. This is a huge advantage.

However, we need to make sure that the constructed function is a valid kernel, i.e.,

the constructed kernel function should correspond to a scalar product in some (high-

dimensional) feature space. One way to do this is to expand the chosen kernel function

and identify the corresponding mapping Φ(·). This may be difficult in some situations.

A more simple way to check whether a function is a valid kernel or not is to use the

Mercer’s condition.

For a function K(·, ·) to be valid kernel, corresponding to some nonlinear fea-

ture mapping Φ(·), it needs to satisfy the Mercer’s condition: Given a data set

{x1,x2, ...,xn}, K : Rd ×Rd 7→ R is a valid kernel if the corresponding kernel matrix

K is symmetric positive-semidefinite.

Thus, we can simply replace the inner product between the data points 〈xp,xq〉

21

in the SVM algorithm with the kernel function K(xp,xq) corresponding to a higher

dimensional feature space, where the data is linearly separable, and apply the SVM

algorithm in the new feature space. This is generally referred to as the kernel trick,

which can be used for any classifier learning algorithms that can be explicitly ex-

pressed in terms of inner products between the data points.

Some examples of the kernels include:

• Linear kernel:

K(xp,xq) =
(
xTp xq

)
. (3.18)

This is the simplest kernel corresponding to the feature mapping Φ(x) = x.

• Polynomial kernel:

K(xp,xq) =
(
xTp xq

)d
, (3.19)

where d is the degree.

• Gaussian kernel:

K(xp,xq) = exp

(
−‖xp − xq‖2

2σ2

)
. (3.20)

The Gaussian kernel (3.20) corresponds to an infinite dimensional feature map-

ping. The Gaussian kernel is also referred to as the radial basis function kernel

(RBF kernel).

• Hyberbolic tangent kernel:

K(xp,xq) = tanh(a
(
xTp xq

)
+ b), (3.21)

for some a > 0 and b < 0.

Also new kernels can be constructed from the old kernels using the following

properties. Given valid kernels K1(·, ·) and K2(·, ·), the following kernels will also be

valid:

22

• K(xp,xq) = K1(xp,xq) +K2(xp,xq).

• K(xp,xq) = K1(xp,xq)K2(xp,xq).

• K(xp,xq) = cK1(xp,xq), where c is a constant.

• K(xp,xq) = exp(K1(xp,xq)).

• K(xp,xq) = f(K1(xp,xq)), where f(·) is a polynomial with nonnegative coeffe-

cients.

• K(xp,xq) = f(xp)K1(xp,xq)f(xq), where f(·) is any function.

3.3 Regularization and Soft Margins

Till now, we have assumed that the training data is linearly separable either in the

original input space or in some higher dimensional feature space. However in some

real-world situations, this may not be the case. The data cannot be linearly separable,

even in the higher dimensional spaces. This is due to the fact that the underlying

true class distributions, that generate the data, may have a significant overlap. In

such cases, trying to exactly separate the training data may lead to overfitting and

hence poor generalization. In such cases, we need to allow the SVM to misclassify

some of the training points for good generalization. Also sometimes, there may be

some extreme outliers in the data. The original SVM algorithm, which tries to ex-

actly separate the training data, will be extremely sensitive to such outliers. This

is clearly illustrated in the Figure 3.2. In such cases as well, we need to allow the

misclassification of some of the training points.

In case of linearly separable classes, the original SVM uses an error function that

gives an infinite error when a training sample is misclassified and zero error when

it is correctly classified, which is optimized with respect to the SVM parameters to

maximize the margin [7]. Now we can modify this error function so that the data

23

Figure 3.2: Sensitivity of the original SVM (with hard margin) to outliers.

points are allowed to be on the wrong side of the decision boundary with a penalty

that increases with the distance from the decision boundary. The original SVM

optimization problem (3.5) can be reformulated using L1 regularization as

min
w,b

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n

(3.22)

where the quantities ξi, i = 1, ..., n are called slack variables. They are defined as

follows:

• For the data points that are correctly classified, and which lie on or outside the

correct side SVM margin boundary, ξi = 0.

• For the data points that are correctly classified, and which lie within the correct

24

side SVM margin, 0 < ξi < 1.

• For the data points that lie exactly on the decision boundary, ξi = 1.

• For the data points that are misclassified (i.e., those which lie on the wrong side

of the decision boundary), ξi > 1.

Thus, for every data point xi that is misclassified, the objective function in (3.22)

is penalized by the quantity Cξi. Hence the parameter C > 0 controls the trade-off

between the twin objectives of maximizing the margin and minimizing the number

of data points that are allowed to be misclassified. The parameter C can also be

interpreted as analogous to a regularization parameter which controls the trade-off

between minimizing the number of classification errors and controlling the model

complexity. Thus the SVM is relaxed to include some misclassifications, which leads

to a soft margin instead of a hard margin.

As before, the dual problem of the above problem (3.22) is solved in practice. The

Lagrangian of the above problem (3.22) is

L(w, b, ξ,λ,ν) =
1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑
i=1

λi(yi(w
Txi + b)− 1 + ξi)−

n∑
i=1

νiξi,

(3.23)

where λ = {λi ≥ 0, i = 1, ..., n} and ν = {νi ≥ 0, i = 1, ..., n} are the Lagrange

multipliers. The dual problem is given by

max
λ

D(λ) =
n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

yiyjλiλj(xi)
Txj

s.t. 0 ≤ λi ≤ C, i = 1, ..., n

n∑
i=1

λiyi = 0.

(3.24)

The above dual problem (3.24) is similar to the earlier dual problem (3.14) with the

exception of the constraint on the Lagrange multipliers λ = {λi, i = 1, ..., n}. The

kernel trick can be applied here, and the inner product in the above dual problem is

replaced by the kernel K(xi,xj).

25

3.4 Solving the SVM Dual Problem

We now describe the algorithms used to solve the SVM dual problem (3.24). The

SVM dual problem (3.24) is a quadratic programming (QP) problem, which tries to

minimize a quadratic function subject to a set of inequality and equality constraints.

Though the support vector machine (SVM) is a sparse kernel algorithm which uses

relatively few basis functions (as defined by the support vectors) to make predictions

for new data, the training/learning algorithm of the SVM uses the entire training

data. Thus, some efficient algorithms are required for solving the SVM dual problem.

The dual problem (3.24) is a quadratic programming (QP) problem. The objective

function in (3.24) is a quadratic one, which implies that any local optimal point is also

a global optimal point. Directly solving the quadratic programming (QP) problem

is often difficult and infeasible as the computational and memory requirements are

prohibitively high. The kernel matrix K ∈ Rn×n itself takes huge memory space.

When the size of the training data (n) is large, which is often the case in many real-

world applications, the SVM runs out of memory. Thus, some practical approaches

need to used in solving the SVM dual quadratic programming (QP) problem.

One such method is the chunking method [8]. In the chunking method, the actual

QP problem is broken down into a series of smaller QP problems, which identify the

non-zero Lagrange multipliers. The basic idea in this method is to scale down the

size of the kernel matrix by discarding all those elements which correspond to zero

Lagrange multipliers, and finally the scaled down QP problem is solved. Though this

method scales down the size of the problem, the computational complexity of this

method is still high for large training datasets as the method still involves several

matrix operations, and computation of gradients of the dual function. Decomposi-

tion methods [9] also try to solve a series of series of smaller QP problems. The only

difference is that each of these smaller QP problems is of a fixed size. These meth-

ods also suffer from the same disadvantages, and are not suitable for large training

26

datasets.

In general, these methods are found to have computational complexity O(n3),

where n is the size of the training dataset. These methods clearly does not scale

well with the training data. For arbitrarily large training datasets, these methods

are not suitable. In the next chapter, some fast and efficient training algorithms are

presented which can be applied in applications involving very large datasets.

3.5 Summary

The support vector machine (SVM) is a maximum margin classifier which tries to

separate the data of two classes with maximum possible margin. Since the SVM gen-

erates a linear hyperplane (decision boundary), in order to generalize to nonlinearly

separable data, the kernel trick is employed to transform the input space to a high

dimensional space, where the data becomes linearly separable. Thus theoretically,

the support vector machine (SVM) has two main phases:

1. The d-dimensional original input space I is transformed into a higher dimen-

sional feature space (Hilbert space) H through a general nonlinear mapping

Φ(·). Usually, the kernel trick is used which does not require the explicit com-

putation of the nonlinear mapping Φ(·).

2. The separating hyperplane (decision boundary), with maximum possible mar-

gin, is then constructed in the high dimensional feature space H . This maximum

margin decision hyperplane is obtained by solving the SVM dual quadratic pro-

gramming problem.

The support vector machine (SVM), in general, generates hard classification deci-

sions for the new inputs. That is, the SVM decides whether the new input belongs to

one class or the other. The SVM does not generate probabilistic outputs. However,

in some situations, we are more interested in the probabilistic outputs instead of hard

27

decisions. To address this issue, Platt proposed a post-processing approach in which a

logistic sigmoid is fitted to the outputs of an already trained support vector machine

[10]. This approach is described in detail in Appendix A.

28

CHAPTER 4

FAST AND EFFICIENT SVM TRAINING APPROACHES

Support vector machines (SVMs) are generally considered to be the best off-the-

shelf supervised classifiers. However, the main drawback of support vector machines

is that the training procedure has a very high computational complexity. This high

computational complexity often limits the real-time implementation of support vector

machines, especially in applications involving very large datasets like cyber attack

detection. In this chapter, we first discuss some of the existing approaches which try

to reduce the SVM training complexity, and then present our proposed fast training

approach which further reduces the SVM training complexity without significantly

degrading the classification performance of the SVM.

4.1 Existing Fast SVM Training Approaches

In [11], [12], greedy approximation of the kernel matrix and low-rank kernel repre-

sentation are proposed, respectively. The problem with these approximation-based

approaches is that they have a significant impact on the classification performance

[13]. There other approaches which try to solve the quadratic programming (QP)

problem more efficiently. One such method is the chunking method [8], which was

described in the previous chapter. As mentioned before, this method is found to

have complexity O(n3) [14], where n is the size of the training set, and hence is not

very efficient for training SVM on large datasets. Another popular approach is the

sequential minimal optimization (SMO) [14]. The sequential minimal optimization

(SMO) algorithm is basically a coordinate ascent algorithm. The SMO algorithm is a

29

simpler and more efficient algorithm for solving the QP problem. The SMO basically

takes the previous chunking concept to an extreme limit. The SMO algorithm breaks

the original QP problem into a series of smaller QP subproblems. At every step,

the SMO solves a smaller optimization problem of finding the optimal values of two

Lagrange multipliers, and updates the SVM accordingly. The main advantage of the

SMO lies in the fact that solving for two Lagrange multipliers at each step is done

analytically, thus avoiding the matrix computations and standard QP calculations

on the whole. In general, the SMO method is found to have complexity O(n2) [14],

where n is the size of the training dataset. There are some other approaches which

try to avoid the quadratic program in the SVM algorithm [15]. However they still

involve the kernel trick which has the high complexity, and their performance greatly

depends on factors such as random sampling, selection of the hyperparameter values,

and stopping criteria.

On the other hand, there are improved training approaches which do not require

any type of approximation in the SVM algorithm, but rather focus on the appropriate

training data selection for SVMs [16]. In [16], a reduced SVM (RSVM) is proposed

based on a simple random sampling. Tong and Koller propose an active training

approach where the SVM learner (classifier) sequentially selects the training samples

based on certain criterion [17]. Among the proposed three methods in [17], MaxMin

and Ratio methods are computationally expensive as they tend to train the SVM

multiple times in each iteration. The Simple method, though relatively faster, is

more unstable and performed poorly on the Newsgroup data. Its complexity greatly

depends on the price of each query. Since the decision boundary of an SVM depends

only on a small subset of the training data (support vectors), fast training can be

achieved by identifying and selecting training samples that are support vectors. This

idea has been explored in [18], [19], [13], [20], [21], [22]. In [18], Abe and Inoue extract

the samples close to the boundary using the Mahalanobis distance measure, which

30

generally performs well when the data belonging to each class is clustered together

and when there is a minimal overlap between the data of different classes. In [19], Shin

and Cho propose a method which selects training samples near the boundary using

the neighborhood properties of samples. Their method is based on the k-nearest

neighbor (k-NN) algorithm, and tends to be computationally expensive in case of

large high-dimensional data. Though they used a faster selective k-NN spanning

approach, the performance of their method greatly depends on k, whose value was

randomly chosen in different situations. In [13], Li et al. propose a method based

on edge detection whose performance depends on prefixed parameters including k

(in k-means clustering) and m (the number of neighbors). The method proposed by

Lyhyaoui et al. [20] also depends on some additional parameters that need to be set

beforehand. In [21], the training sample selection is done using the k-means clustering

technique. The performance of their method greatly depends on k, whose value is

randomly chosen for different cases. Fuzzy clustering based training data selection is

proposed in [22]. The proposed fuzzy clustering method works well when the exact

number of clusters in the data is known beforehand. Clearly, the performance of

most of these methods depends on certain key parameters which need to be fixed

beforehand. These methods generally perform well if the preset parameter values

exactly capture the nature of the training data. However, determining these key

parameters is generally a non-trivial task, especially in high-dimensional spaces.

4.2 A New Fast SVM Training Approach

We propose a new fast training method in which there is no need of presetting any

parameters. The basic idea is to reduce the size of the training data by retaining only

the most informative samples that are likely to become support vectors. First, we de-

tect the clusters present in the data. We use the nonparametric Bayesian approach for

clustering which does not require any preset parameters. After forming the clusters,

31

we propose an efficient sample elimination approach based on logistic regression. The

proposed sample elimination approach takes two important factors into account: rel-

ative position of a sample within the cluster and the relative position of a sample with

respect to the other class data. By doing this, the SVM training complexity is shown

to be much reduced without significantly degrading the classification performance of

the SVM.

In the proposed fast training approach, our goal is to scale down the training set

by retaining only the most relevant (most informative) samples and removing the

least relevant samples. The main issue here is to determine which samples are the

most informative and which are not. It is known that the samples which are close

to the decision boundary are more important to form the boundary than the ones

which are far away. In other words, the samples which are close to the boundary

tend to be more informative for SVMs. Eventually such samples tend to become

the support vectors. We make use of this fact to design our fast training approach.

First, we accurately detect the clusters present in the training data. In each cluster,

the outward samples which are closer to the other class samples, tend to be more

informative than the inward samples. We then detect the most informative samples

in each cluster, and retain them in the training set. All the other (least informative)

samples are safely eliminated from the training set.

4.2.1 Training Data Clustering

First, we need to accurately form multiple clusters for each class present in the training

data. One way to do this is to use any existing clustering based technique to form the

clusters. However, this simple and heuristic approach may not perform well. This is

because most of the existing clustering techniques tend to form spherical clusters only.

But the true clusters in the data need not always be spherical. They can exist in any

arbitrary shape. We need to accurately model the true shapes of clusters present in

32

the data, in order to accurately detect the samples which are well inside the clusters.

In this thesis, a more sophisticated method for this task is proposed.

We define a cluster, in a more general way, to be the convex hull of a set of data

points, which is the set of all convex combinations of the points. In other words, it

is the smallest convex set that contains all the points. Thus, the cluster of p points

x1,x2, ...,xp ∈ Rd is defined as

conv{x1,x2, ...,xp}

={λ1x1+λ2x2+...+λpxp | λi ≥ 0, i = 1, ..., p, λ1+λ2+...+λp = 1}.
(4.1)

This is shown in Figure 4.1. In order to determine the center of a cluster, we need

to calculate the center of the convex hull. Since the convex hull of a set of points is

a polyhedron defined by its vertices, finding the exact center of this polyhedron is in

general difficult, especially in high-dimensional spaces. Hence, we approximate the

cluster (convex hull) using the Löwner-John ellipsoid, which is the minimum volume

ellipsoid containing the cluster. There are many nice properties of ellipsoids. They

are generally considered to be an universal geometric approximator of convex sets

as they have sufficient degrees of freedom. Furthermore, ellipsoidal approximation is

invariant under affine coordinate transformations. Finding this Löwner-John ellipsoid

can be formulated as a convex optimization problem. The minimum volume ellipsoid

containing the finite set of points {x1,x2, ...,xp} is the same as the minimum volume

ellipsoid containing the polyhedron conv{x1,x2, ...,xp}. The Löwner-John ellipsoid

approximating a cluster (convex hull) is shown in Figure 4.2.

Generally an ellipsoid in Rd space is defined as

E(c,P) = {x ∈ Rd|(x− c)TP−1(x− c) ≤ 1}, (4.2)

where c ∈ Rd is the center of the ellipsoid and P ∈ Rd×d is a positive definite

matrix which defines the shape and size of the ellipsoid. Using the ellipsoidal (general

33

Figure 4.1: Cluster defined as the convex hull of the data points.

Euclidean) norm ‖·‖P, the above definition is equivalent to

E(c,P) = {x ∈ Rd| ‖x− c‖P ≤ 1}, (4.3)

which represents the ellipsoid as a unit ball about the center c in the corresponding

ellipsoidal norm ‖·‖P. The volume of the ellipsoid E(c,P) is given by

vol(E(c,P)) =
√

det P
πd/2

Γ(d/2 + 1)
, (4.4)

where Γ(·) is the gamma function. The volume of the ellipsoid mainly depends on

the determinant of the matrix P. Using this definition of ellipsoid, the Löwner-John

ellipsoid containing the points x1,x2, ...,xp ∈ Rd can be computed by solving the

34

Figure 4.2: Löwner-John ellipsoid.

following optimization problem:

minimize
√

det P

subject to (xi − c)TP−1(xi − c) ≤ 1, i = 1, ..., p

P � 0,

(4.5)

where c ∈ Rd and P ∈ Rd×d are the variables. The above problem (4.5) is a nonconvex

one. To convert this into a convex problem, we need to parametrize the ellipsoid as

E(A,b) = {x ∈ Rd| ‖Ax + b‖2 ≤ 1}, (4.6)

which is the inverse image of an Euclidean unit ball under affine mapping [23]. Here

A ∈ Rd×d is a positive definite matrix, and the volume of the ellipsoid is now pro-

portional to the determinant of A−1. The new ellipsoid formulation (4.6) can always

be transformed back into the original formulation (4.2) using the following change of

35

variables:

c = −A−1b,

P = A−2.

(4.7)

Using this new definition of ellipsoid, computing the Löwner-John ellipsoid containing

the points x1,x2, ...,xp ∈ Rd can be formulated as

minimize log det A−1

subject to ‖Axi + b‖2≤ 1, i = 1, ..., p

(4.8)

where A ∈ Rd×d and b ∈ Rd are the variables. The above problem (4.8) is a convex

optimization problem with the implicit constraint A � 0. The convex optimization

problem (4.8) can be efficiently solved by the available interior-point methods.

To find the clusters present in the data, we use the nonparametric Bayesian clus-

tering method which does not require any preset sensitive parameters such as the

number of clusters. Let X = {x1, ...,xN}, xn ∈ Rd be the training data of one class.

First, we model this training data X = {x1, ...,xN}, xn ∈ Rd, by a mixture of K

Gaussian components (clusters) given by

p(xn|π,µ,P) =
K∑
k=1

πkN (xn|µk, P−1
k),

p(X|π,µ,P) =
N∏
n=1

p(xn) =
N∏
n=1

K∑
k=1

πkN (xn|µk, P−1
k),

(4.9)

where Pk = Σ−1
k is the precision matrix, πk(k = 1, ..., K) are the mixing parameters

which must be positive and sum to 1.

We now introduce a latent random variable zn corresponding to each data point xn.

The variable zn can take any of the K discrete values {1, ..., K} and thus indicates the

Gaussian distribution (cluster) to which the data point xn belongs. We reformulate

the above mixture model (4.9) using these latent variables. The distribution over zn

36

is given by

p(zn = k) = πk,

p(zn) =
K∏
k=1

πk
1(zn=k).

(4.10)

The conditional distribution of xn given zn is given by

p(xn|zn = k) = N (xn|µk, P−1
k),

p(xn|zn) =
K∏
k=1

N (xn|µk, P−1
k)

1(zn=k)
.

(4.11)

Calculating the marginal distribution of xn from (4.10) and (4.11) gives the original

mixture model (4.9). Considering the whole dataset X = {x1, ...,xN}, we have the

latent variables z = {z1, ..., zN}. We now have

p(z|π) =
N∏
n=1

K∏
k=1

πk
1(zn,k), (4.12a)

p(X|z,µ,P) =
N∏
n=1

K∏
k=1

N (xn|µk, P−1
k)

1(zn=k)
. (4.12b)

For mathematical convenience, we place conjugate priors over the parameters π,

µ and P.

p(π) = p(π1, ..., πK) ∼ Dirichlet
(α0

K
, ...,

α0

K

)
,

p(Pk) ∼ W(m1, V),

p(µk) ∼ N (m2, R
−1),

(4.13)

where W(m1, V) is the Wishart distribution and {α0,m1, V,m2, R} are the hyperpa-

rameters.

The conditional posteriors for the parameters can be obtained from the priors in

(4.13) and the likelihood in (4.9). The conditional posterior for the means is given by

p(µk|X, z, Pk,m2, R) ∼ N
(

xknkPk +m2R

nkPk +R
,

1

nkPk +R

)
, (4.14)

where nk is the number of data points that belong to component (cluster) k, xk is

the mean of these points [24]. Similarly, the conditional posterior for the precisions

37

is given by

p(Pk|X, z, µk,m1, V) ∼ W

m1 + nk, (m1 + nk)

m1V +
∑
n|zn=k

(xn − µk)T (xn − µk)

−1 .

(4.15)

The mixing parameters πk(k = 1, ..., K) have the symmetric Dirichlet prior with

parameter α0/K.

p(π) = p(π1, ..., πK) ∼ Dirichlet
(α0

K
, ...,

α0

K

)
=

Γ(α0)

Γ(α0/K)K

K∏
k=1

π
α0/(K−1)
k . (4.16)

Given the mixing parameters πk(k = 1, ..., K), the latent variables z have the multi-

nomial distribution.

p(z|π) =
N∏
n=1

K∏
k=1

πk
1(zn=k),

p(z|π) =
K∏
k=1

πk
nk , nk =

N∑
n=1

1(zn = k).

(4.17)

Integrating out the mixing parameters using the Dirichlet integral, we get the prior

on z directly as

p(z) = p(z|α0) =
Γ(α0)

Γ(N + α0)

K∏
k=1

Γ(nk + α0/K)

Γ(α0/K)
. (4.18)

Writing the conditional prior (suitable for Gibbs sampling), we have

P (zn = k|z−n, α0) =
n−n,k + α0/K

N − 1 + α0

, (4.19)

where subscript −n denotes all indices except n and n−n,k is the number of data

points (excluding xn) associated with the component (cluster) k. As we do not know

the number of clusters (K) beforehand, we take the limit K →∞ on the conditional

prior in (4.19). This yields the following conditional prior:

P (zn = k|z−n, α0) =
n−n,k

N − 1 + α0

, (4.20a)

P (zn 6= zm∀m ∈ {−n}|z−n, α0) =
α0

N − 1 + α0

. (4.20b)

38

This conditional prior is often interpreted as the Chinese Restaurant Process (CRP).

From the Bayes’ theorem, the posterior of the latent variables z is given by

p(z|X) ∝ p(X|z)p(z). (4.21)

From the conditional priors in (4.20a)-(4.20b) and the likelihood in (4.12b), we get

the conditional posteriors for the latent variables z:

P (zn = k|z−n,xn, α0, µk, Pk) ∝
n−n,k

N − 1 + α0

N (xn|µk, P−1
k), (4.22a)

P (zn 6= zm∀m ∈ {−n}|z−n,xn, α0,m1, V,m2, R)

∝ α0

N − 1 + α0

∫
p(xn|µk, Pk)p(µk, Pk|m1, V,m2, R)dµkdPk,

∝ α0

N − 1 + α0

∫
N (xn|µk, P−1

k)p(µk|m2, R)p(Pk|m1, V)dµkdPk.

(4.22b)

We use a Gibbs sampling method [25] and repeatedly sample from the posterior

(4.22a)-(4.22b):

• For all k, sample µk and Pk according to the equations (4.14)-(4.15). Calculate

the RHS of (4.22a).

• Draw 50 samples of µk and Pk from their priors in (4.13) to approximately

calculate the integral on the RHS of (4.22b). And then calculate the RHS of

(4.22b).

• Draw a sample for z from the multinomial distribution with the above calculated

event probabilities.

• Remove a component (cluster) when it becomes empty. A new component

(cluster) is added when a new unrepresented component from (4.22b) is chosen.

• We initially start with a single cluster and preset hyperparameters.

• Stopping criterion: Stop when the components are neither removed nor added

for five consecutive iterations.

39

The convergence and the accuracy of the above sampling method depends mainly

on the hyperparameter α0. If α0 is too low, we may get less number clusters. On the

other hand, if it is too high, we may get more number of clusters. We empirically

set α0 = N
100

. The remaining hyperparameters are set according to the hyperpriors

suggested in [24] 1. After the convergence, the components obtained are considered

to be the clusters present in the data. The Löwner-John ellipsoid for each cluster is

then calculated by (4.8). This clustering process is done for the data of each class

separately.

4.2.2 Training Data Elimination

With the above clustering algorithm, every cluster in the training data is accurately

modeled by its Löwner-John ellipsoid. We now make use of the fact that the samples

which are close to the decision boundary are more informative than the ones which

are far away. The relative informativeness of a sample is determined by the following

two factors:

1. Relative position of the sample in the cluster.

2. Relative position of the sample with respect to the other class data.

In other words, the samples which are well inside the clusters and far away from the

other class data are considered to be least informative and hence can be eliminated.

All such samples which are considered to be least informative among each cluster

are eliminated from the training set. Only the most informative samples stay in the

training set. The probability that a sample xn stays in the training set is given by a

1The presetting of these parameters has minimal effect on the final SVM classification perfor-

mance.

40

logistic regression model:

Pstay(xn) =
eG

1 + eG
,

where

G = α1(2v1 − 1) + α2(2v2 − 1),

v1 = ‖xn − c‖P ,

v2 =

∥∥∥∑koth
j=1 zij

∥∥∥
‖zmax‖

,

(4.23)

where α1 and α2 are the parameters of the logistic regression model, c and ‖·‖P are

respectively the center and the ellipsoidal norm of the cluster to which the sample

xn belongs, koth is the number of other class clusters, zij is the force vector which

represents the closeness of the sample xn to the other class cluster j, zmax is the

maximum force vector of all the samples within the cluster to which the sample xn

belongs. The force vector between the sample xn and the cluster j is given by

zij =
cj − xn

‖cj − xn‖2
2

, (4.24)

where cj is the center of the cluster j. The numerator of v2 gives the magnitude of

the resultant force between the sample xi and the other class cluster centers, and

the denominator is a normalization factor. Infact the indepenent variables v1 and v2

in the logistic model are measures of the aforementioned factors. The above defined

variables vary in the interval [0,1]. So the logistic model using the above variables

directly will not span the entire probability space of [0,1]. Hence we first apply the

affine transformation (·) 7→ 2(·)− 1 to the variables.

The logistic model parameters are empirically chosen to be α1 = 10 and α2 = 20.

The values of these parameters govern the final probability of stay (Pstay) values. As

we intend to make hard decisions about the sample selection, the probability of stay

(Pstay) values need to be either 0 or 1. Hence, relatively higher values were given to

the parameters. The corresponding sigmoid curve is shown in Figure 4.3. The values

41

of these parameters can be adjusted to make the sigmoid curve more smoother, and

more probabilistic decisions can be made about the sample selection as required.

Also, we gave relatively more importance to the second variable v2 which measures

the closeness of the sample to the other class data. We retain all the training samples

whose probability of stay (Pstay) is equal to 1. All the other samples are eliminated

from the training set. Finally the support vector machine is trained using this new

training set which contains only the most informative training samples.

Figure 4.3: Logistic sigmoid curve of the training sample elimination model.

4.3 Complexity and Performance Analysis

Computing the Löwner-John ellipsoid is the key to the proposed training sample

selection method. The Löwner-John ellipsoid for each cluster in the data is computed

by solving the convex optimization problem (4.8). The problem (4.8) is a second-order

cone programming (SOCP) problem which can be efficiently solved using the available

42

interior-point methods. In this work, we have used the self-dual minimization method

whose complexity is about O(
√
dp), where p is the number of points and d is the

dimension [26]. However, the Löwner-John ellipsoid is usually determined by at most

d2+3d
2

points out of the p points [27]. Thus, the complexity of computing the Löwner-

John ellipsoid can be further reduced by intelligently selecting these points. For this

purpose, we use the active-set strategy based on Sample Covariance Initialization

(SCI) proposed by [28]:

1. Define an initial active set X0
a = {x1, ...,xL} such that the affine hull of x1, ...,xL

spans the space Rd. The Sample Covariance Initialization (SCI) scheme in [28]

is used.

2. (ith iteration) Solve (4.8) for the active set Xi
a. Let (ci,Pi) be the solution.

3. If din = ‖xn − ci‖Pi ≤ 1 for n ∈ X\Xi
a, stop. Otherwise, proceed to the next

step.

4. Update the active set to Xi+1
a :

• (Adding points to the active set) Xi+1
a = Xi

a ∪∆Xa. We intend to add the

points xn /∈ Xi
a whose distance from current center ci in the ellipsoidal

norm ‖·‖Pi (din) ≥ 1 and largest. To further reduce the redundancy, we

intend to add the points that are well spread around the current ellip-

soid E(ci,Pi). For this purpose, we gradually consider the points in the

descending order of din, and add a point xn to ∆Xa if

∑
j∈∆Xa

(xn − ci)TP i−1
(xj − ci) < 0. (4.25)

• (Removing the points that are no longer necessary) We delete all the points

xn whose din < 0.99.

Go to step 2.

43

Using this active-set strategy, the complexity in computing the Löwner-John ellipsoid

is greatly reduced.

For the analysis purpose, the proposed fast training method is divided into the

following four phases where most of the computation happens:

1. Clustering the data.

2. Computing the Löwner-John ellipsoids for each cluster.

3. Training sample elimination.

4. Training the SVM using the new training set.

For the nonparametric Bayesian clustering approach, we first evaluate the complexity

of each iteration. The total amount of computation involved in each iteration can be

typically divided into the following parts:

• Sampling the mean vectors and precision matrices from normal and Wishart

distributions respectively.

• Calculating the posterior probabilities for each sample.

• Sampling the latent variables z from the multinomial distribution.

The complexity of sampling from normal and Wishart distributions is on the order of

O(d), where d is the dimension of the data. The complexity of calculating the posterior

probabilities for n samples is O(n). The complexity of sampling the latent variables

from multinomial distribution is O(n). Thus the complexity of each iteration in the

nonparametric Bayesian clustering is O(n). Generally, the total number of iterations

is much smaller than the size of the training data. Thus, the overall complexity of

the nonparametric Bayesian clustering approach can be approximated to O(n). After

clustering, computing the Löwner-John ellipsoids for the clusters has the complexity

O(n) at most. The sample elimination approach involves calculating the probability

44

of stay for each sample, and hence has the complexity O(n). After reducing the

training set to m (m � n) training samples, the SVM is trained using this new

training set. The complexity of this phase is O(m2), as we use the SMO method.

Thus the total complexity of our SVM training algorithm is at most

O(n) +O(n) +O(n) +O(m2), (4.26)

whereas the complexity of conventional SVM training (using the SMO method) is

O(n2). With m � n, this clearly demonstrates the reduction in the computational

complexity achieved by using the proposed fast training approach.

Our main objective in designing the fast training approach is to decrease the

computational complexity of SVM training without having huge degradation in the

classification performance of the SVM. This is clearly taken care of in the design of

our fast training approach, where we retain only the most relevant samples that are

likely to become support vectors, thus greatly reducing the size of the training set

and the SVM training complexity.

45

CHAPTER 5

FUSION RULES BASED ON DEMPSTER-SHAFER THEORY

In this chapter, we present the data fusion rules which are used at each sensor and

the fusion center of the proposed cyber attack detection system. The fusion rules are

designed using the Dempster-Shafer theory of evidence. The Dempster-Shafer theory

can be considered as a generalized version of the traditional probability theory. The

Dempster-Shafer theory is a result of the work by Arthur P. Dempster [29] and Glenn

Shafer [30].

The Dempster-Shafer theory is both a theory of evidence and a theory of probable

reasoning. It exactly quantifies the amount of evidence available from a source. Also,

the Dempster-Shafer theory effectively combines evidence from different sources and

defines the degree of belief based on the total evidence available from different sources.

Probability theory is the most widely used mathematical framework to represent

uncertainty. Generally, uncertainty can be of two types:

1. Aleatoric Uncertainty (Objective or Stochastic Uncertainty): It is the

uncertainty due to the random behavior of a system. This type of uncertainty

can be described using the idea of chances in general.

2. Epistemic Uncertainty (Subjective Uncertainty): It is the uncertainty

due to the lack of information or knowledge about a system. In other words,

it is the uncertainty due to ignorance. Generally, it can be described using the

idea of beliefs.

The traditional probability theory is based on the theory of chance, which is generally

46

used to describe the aleatoric uncertainties. The probability theory, when applied in

aleatoric situations, is generally referred to as the objective (or frequency) probability

theory. Hence, the traditional probability theory can handle the aleatoric uncertainty

very well. However, the traditional probability theory has been directly extended to

characterize the epistemic uncertainty as well (through the Bayesian theory). In

the Bayesian theory of probability, the probability is defined and interpreted as the

degree of belief in a particular proposition (or hypothesis) on the basis of the available

evidence. Thus, the probability P (A) represents the degree of belief in the proposition

A based on the available evidence. And the probability distribution (probability

density function or probability mass function) is used to represent the amount of

available evidence.

The (Bayesian) probability theory cannot accurately characterize the epistemic

uncertainty. The basic idea in the Bayesian theory that the degrees of belief always

tend to be like the objective probabilities (chances) in their mathematical structure,

is not true in general. The degrees of belief do not, in general, have the same mathe-

matical properties of objective probabilities (chances). However, the Bayesian theory

explicitly forces that the degrees of belief (represented by the Bayesian probabilities)

must obey all the mathematical rules of the chances (objective probabilities). The

Bayesian theory directly adopts the three basic axioms of (objective) probability to

the Bayesian probability (which are the degrees of belief in the Bayesian theory). This

makes the Bayesian theory too restrictive and less flexible in modeling epistemic un-

certainty (or ignorance). The mathematical rule that makes the Bayesian probability

theory too restrictive is the third axiom of probability:

• Additivity axiom of probability: The probability of the union of mutually

exclusive (disjoint) events must be equal to the sum of the probabilities of the

individual events. Let E1, E2, ..., EN be the mutually exclusive events of the

sample space Ω. Then, according to the additivity axiom of the probability

47

theory,

P (E1 ∪ E2 ∪ ... ∪ EN) = P (E1) + P (E2) + ...+ P (EN) =
N∑
i=1

P (Ei). (5.1)

This rule is not appropriate for modeling the epistemic uncertainty. Due to this

assumption, the Bayesian probability theory cannot exactly represent the ignorance.

For example, let E ∈ Ω represent a proposition and the complement E ∈ Ω represent

the negation of the proposition. Since E ∪ E = Ω, from the above rule of additivity,

the Bayesian probabilities which represent the degrees of belief must satisfy condition:

P (E) + P (E) = 1. This implies that the P (E) cannot be low unless the P (E) is

sufficiently high. Thus, the main difficulty of the Bayesian probability theory is that

it cannot distinguish between the lack of belief and disbelief. The Bayesian probability

theory does not allow to withhold belief from a hypothesis without giving it to the

negation of the hypothesis. This leads to the Laplace’s principle of insufficient reason

in the Bayesian theory, which restricts that the complete ignorance is always modeled

by the uniform probability distribution. Hence the (Bayesian) probability theory

cannot accurately characterize the epistemic uncertainty. A more general and flexible

mathematical framework is required to accurately model the epistemic uncertainty

(or ignorance).

The Dempster-Shafer theory is a more generalized mathematical framework that

can be applied to accurately characterize the epistemic uncertainty. In a finite dis-

crete space, the Dempster-Shafer theory can be considered as a generalization of

the probability theory, where the degree of beliefs (represented by probabilities in

the probability theory) are assigned to sets of events besides individual events. The

(Bayesian) probability theory is a special case of the Dempster-Shafer theory. The

greater flexibility of the Dempster-Shafer theory is valuable and essential for an ade-

quate representation of evidence and probable reasoning [30].

48

5.1 Basics of Dempster-Shafer Theory

Let Θ = {θ1, θ2, ..., θN} be the set of all possible hypotheses (or propositions). The

set Θ is called the frame of discernment. Let 2Θ be the power set of Θ, i.e., the set of

all possible subsets of Θ. A real function m : 2Θ 7→ [0, 1] is called a basic probability

assignment (BPA) if

m(∅) = 0,

and
∑
A∈2Θ

m(A) = 1.
(5.2)

The basic probability assignment (BPA) function is sometimes referred to as the mass

function. The quantity m(A) is called the basic probability number of A (or sometimes

called the mass number).

The basic probability number of A can be interpreted as the measure of belief

that is committed exactly to A. The above conditions reflect the facts that no belief

should be committed to the empty set ∅ and the total belief must be equal to 1.

For a given set A, the basic probability number m(A) represents belief that the true

hypothesis lies in the set A. In other words, m(A) represents the proportion of the

total available evidence that supports the claim that the true hypothesis lies in the

set A but not in any particular subset of A. Thus in other words, the BPA m(·) is

a measure of evidence. For singletons A = {θi}, the basic probability number m(A)

represents our confidence that the hypothesis θi is true. For non-singletons A 6= {θi},

the basic probability number m(A) represents our ignorance, as we are not exactly

sure which hypothesis in the set A is actually true. The important thing to note is

that the basic probability number m(A) makes claims only about the set A. It does

not make any additional claims about the subsets of A. Any additional evidence or

information about the subsets of A should be represented by another BPA function.

For a given set A, m(A) +m(A) ≤ 1, where A is the complement of A. When the

inequality holds, the amount of belief assigned neither to A nor to A represents the

49

degree of ignorance. In general, the BPA m(·) is not same as the classical probability.

However in some special cases, the BPA m(·) can be equivalent to the classical prob-

ability. For example, for a given frame of discernment Θ, m(A) 6= 0 for all A = {θi}

and m(A) = 0 for all A 6= {θi}, the BPA m(·) is equivalent to the classical probability.

Given a BPA m(·), a real function Bel : 2Θ 7→ [0, 1] called a belief function is

defined as follows:

Belief of a set B, Bel(B) =
∑
A⊆B

m(A). (5.3)

The belief of a set B is defined as the sum of the basic probability numbers of all the

subsets of B. Thus, the belief function Bel(·) represents the total belief that is com-

mitted to a particular hypothesis (or proposition). The BPA function m(·) represents

the belief that is committed to a particular hypothesis (or proposition), not the total

belief. The BPA m(·) can be considered as a generalization of the probability distri-

bution (probability density function or probability mass function), whereas the belief

function Bel(·) can be considered as a generalization of the probability function. For

singletons A = {θi}, Bel(A) = m(A). Given a subset A of the frame of discernment

Θ, it is called a focal element of a belief function if m(A) > 0. The union of all the

focal elements of a belief function is called the core of the belief function.

Given a BPA m(·), a real function Pl : 2Θ 7→ [0, 1] called a plausibility function is

defined as follows:

Plausibility of a set B, Pl(B) =
∑

A∩B 6=∅

m(A). (5.4)

The plausibility of a set B is defined as the sum of all the basic probability numbers

of the sets that intersect B. The plausibility function can be defined using the belief

function as follows:

Plausibility of a set B, Pl(B) = 1−Bel(B), (5.5)

where B is the complement of B. This clearly implies that the amount of belief not

assigned to B is not automatically assigned to B, like in the probability theory. This

50

belief (not assigned to B) makes B more probable or plausible and is represented by

the plausibility of B, Pl(B).

The Dempster-Shafer framework uses these two measures, belief Bel(·) and plau-

sibility Pl(·), to deal with the epistemic uncertainty. These two measures, belief

Bel(·) and plausibility Pl(·), generally form the lower and upper bounds of the clas-

sical probability measure. That is, the classical probability of an event lies within the

lower and upper bounds of belief and plausibility. Given a set A,

Bel(A) ≤ P (A) ≤ Pl(A). (5.6)

For this reason, the belief and the plausibility values are sometimes called the lower

and upper probabilities.

5.2 Dempster’s Rule of Combination

Another main advantage in the Dempster-Shafer theory is the ability to combine the

evidences from difference sources using the Dempster’s rule of combination. Demp-

ster’s rule of combination provides a way for effectively changing our (prior) beliefs

in the light of new evidence. The Dempster’s rule of combination deals symmetri-

cally with the new and the old evidence, unlike the Bayesian theory which represents

the new evidence as a proposition and conditions the prior (Bayesian) belief on that

proposition using the Bayes’ rule of conditioning. There is no symmetry in dealing

the new and the old evidence in the Bayesian theory. Also in the Bayesian theory,

when combining new and old evidence, an assumption that the new evidence always

establishes a single proposition with certainty is made. This further restricts the

Bayesian theory in effectively combining different evidences. On the other hand, the

Dempster’s rule of combination in the Dempster-Shafer theory treats both the new

and the old evidence equally, and provides a method to effectively combine them

without making any restrictive assumptions.

51

Let m1(·) and m2(·) be the two basic probability assignments (BPAs) on the

frame of discernment Θ corresponding to two independent sources of evidence. Then

from the Dempster’s rule of combination, we can fuse those two basic probability

assignments (BPAs) into a single new BPA m12(·) as

m12 = m1 ⊕m2,

m12(A) =

∑
B∩C=Am1(B)m2(C)

1−
∑

B∩C=∅m1(B)m2(C)
.

(5.7)

The operator ⊕ represents the orthogonal sum.

The Dempster’s rule of combination is illustrated geometrically in the following

figures. Let m1(·) be the basic probability assignment (BPA) over a frame of discern-

ment Θ, and m2(·) be another independent basic probability assignment (BPA) over

the same frame of discernment Θ. Let A1, ..., Ak be the focal elements of m1(·) and

B1, ..., Bl be the focal elements of m2(·). The corresponding BPA values of these focal

elements can be depicted as segments of the line segment from 0 to 1, as shown in

Figure 5.1. Figure 5.2 shows the unit square obtained by orthogonally combining the

individual line segments m1 and m2. The unit square represents the total basic proba-

bility mass. The BPA m1(·) commits the vertical stripes to its focal elements, and the

BPA m2(·) commits the horizontal stripes to its focal elements. Now the Figure 5.2

shows the total combined belief (the shaded rectangle) that is committed exactly to

Ai ∩Bj, which is given by the quantity m1(Ai)m2(Bj). Similarly the total combined

belief of every rectangle in the Figure 5.2 can be calculated. Now a set A in general

may have one or more than one of these rectangles in it, and hence the total combined

probability mass that is exactly committed to A is given by
∑

B∩C=Am1(B)m2(C).

Since some of the rectangles in the unit square may always lie in the empty set ∅,

some belief is always assigned to the empty set ∅. In order to avoid this, all such

rectangles are discarded and the basic probability masses of the remaining rectangles

need to be increased by the factor
(
1−

∑
B∩C=∅m1(B)m2(C)

)−1
, so that the total

probability mass will be equal to 1.

52

Figure 5.1: Basic probability assignments (BPAs) of two independent sources of evi-

dence.

The Dempster’s rule of combination (5.7) can be generalized to combine the basic

probability assignments (BPAs) from multiple independent sources of evidence.

m = m1 ⊕m2 ⊕ ...⊕mL. (5.8)

5.3 Local Fusion Rule at Each Sensor

At each sensor, we have a binary classifier (SVM) trained for each class. For the ith

SVM gi(·) at a sensor, which decides whether a sample x belongs to class i or not, the

output of the SVM is y = sgn(fi(x)), where fi(x) is the corresponding SVM decision

function. Clearly this SVM function fi(x) is evidence available at the ith SVM gi(·).

Hence the BPA function can be defined based on this SVM function.

53

Figure 5.2: Dempster’s rule of combination of basic probability assignments (BPAs)

of two independent sources of evidence.

The BPA function mi(·) for the ith SVM gi(·) is defined as:

mi(A)


= P (y = 1|fi(x)) = Pi, if A = {θi}

= 1− P (y = 1|fi(x)) = 1− Pi, if A = Θ\{θi}

= 0, otherwise

(5.9)

where Pi = P (y = 1|fi(x)) is the posterior probability of class i given the ith SVM

output function fi(x). This probability represents the total amount of evidence that

supports the hypothesis θi (sample x belongs to class i). All the remaining evidence

does not support any other hypothesis in particular, and hence is assigned to all the

remaining hypotheses Θ\{θi}. The posterior probability P (y = 1|fi(x)) for support

54

vector machines can be calculated in different ways. One such method of calculating

the posterior probabilities is presented in Appendix A.

After calculating the posterior probabilities P (y = 1|fi(x)), the BPAs correspond-

ing to the different SVMs at each sensor can be fused using the Dempster’s rule of

combination (5.8). The new combined BPA at each sensor m(·) is

m(A)


= (1−P1)(1−P2)...(1−Pi−1)Pi(1−Pi+1)...(1−PL)

R
, if A = {θi}

= 0, otherwise

(5.10)

where i = 1, ..., L and R is a normalization factor which satisfies the condition∑
A∈2Θ m(A) = 1. Based on this new BPA m(·), the belief function Bel(·) at each

sensor can be defined as

Bel(A) =
(1− P1)(1− P2)...(1− Pi−1)Pi(1− Pi+1)...(1− PL)

R
, if A = {θi} (5.11)

where i = 1, ..., L. For singletons, the belief function is same as the BPA.

Finally at each sensor, a sample x is classified into the class with the highest

belief. The local decision at sensor Sj is given by

uj = arg max
i=1,...,L

Bel({θi}). (5.12)

Clearly from (5.11), for 1 ≤ i, j ≤ L, we have Bel({θi}) ≥ Bel({θj}) iff Pi ≥ Pj.

Hence the local decision at sensor Sj is given by

uj = arg max
i=1,...,L

Bel({θi}) = arg max
i=1,...,L

Pi. (5.13)

5.4 Global Fusion Rule at the Fusion Center

Each sensor transmits its local decision uj and the corresponding posterior probability

Pi to the fusion center. Based on the available local decisions, the fusion center takes

the final (global) decision regarding the state of the network. The fusion center takes

55

the final decision u0 using the majority voting rule. The final decision u0 at the fusion

center, given all the local decisions {uj, j = 1, ...,M}, is given by

u0 = ul,

where

l = arg max
j=1,...,M

M∑
i=1

1(uj = ui), and i 6= j,

(5.14)

and 1(H) = 1 when condition H is true and 1(H) = 0 when condition H is false.

In case of tie between the sensors, the final decision is made based on the corre-

sponding posterior probability value. This posterior probability value plays the role

of a confidence score of the corresponding local decision. In case of tie between the

sensors, the final decision u0 at the fusion center is given by

u0 = ul,

where

l = arg max
j

Pj,

(5.15)

and Pj is the posterior probability corresponding to the local decision uj.

56

CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, the proposed distributed cyber attack detection system is evaluated

on the widely used 1999 KDD intrusion detection dataset [31]. The results of both

the training phase and the decision making phase are presented.

6.1 Cyber Attacks Dataset

The 1999 KDD intrusion detection dataset [31] is the popular publicly available cyber

attacks dataset. The 1999 KDD intrusion detection dataset is a version of the 1998

DARPA Intrusion Detection Evaluation Program data, which is developed by MIT

Lincoln Laboratory. In the 1998 DARPA Intrusion Detection Evaluation Program by

the MIT Lincoln Laboratory, the normal and attack data was recreated on a private

network using real hosts, live attacks, and live background traffic.

The testbed used by the MIT Lincoln Laboratory is shown in Figure 6.1 [32]. The

testbed simulates network traffic similar to the one seen between a Air Force base

and the Internet. Custom software is used to simulate hundreds of different types

of users like programmers, managers, workers, system administrators, attackers, etc.,

running the common UNIX applications. The user operations include typical day-

to-day operations like sending and receiving email, browsing the Web, sending and

receiving files using FTP, remote logging in using Telnet to work, chatting using

Internet Relay Chat (IRC), etc. The custom software also allows the small number

of hosts present to appear as thousands of hosts with different IP addresses. Large

amount of network traffic is generated using different network services and protocols.

57

The total proportion and variability in the generated network traffic are similar to

that of a typical Air Force base. All the attacks are launched from the outside of the

simulated Air Force base.

Figure 6.1: The 1998 DARPA intrusion detection evaluation testbed.

In Figure 6.2 [32], a more detailed block diagram of the testbed is shown. The

simulated Air Force base contains three UNIX machines (Linux 2.0.27, SunOS 4.1.4,

Sun Solaris 2.5.1) which are the frequent victims of the attacks, and a gateway to

hundreds of other computers and workstations. The outside part shown in the figure

contains several workstations and Web servers, which simulate the Internet. A sniffer

is used to capture the traffic. The total data used in the evaluation program is

collected from the following three sources:

1. Network sniffing data from the sniffer.

2. Sun Solaris Basic Security Module (BSM) audit data from the Solaris host.

3. Disk dump data from the three UNIX victim machines.

58

Figure 6.2: Detailed block diagram of the 1998 DARPA evaluation testbed.

A large amount of background traffic is generated between the inside PCs and

workstations and the outside workstations and Web servers. A lot of user operations

are performed on the three victim machines inside from the outside using various net-

work protocols like Telnet. The three gateway machines used contain some operating

system kernel modifications, which together with the custom software allows the small

number of hosts present to appear as thousands of hosts with different IP addresses.

The contents of the network traffic for some services like SMTP, FTP, and HTTP

are ensured to be statistically similar to that of a live network traffic. For instance,

the email message contents are created using the statistical bigrams frequencies pre-

serving the one-word and two-word sequence statistics from a sample of 10,000 actual

email messages from different computer professionals, which are initially filtered using

a 40,000 word dictionary to remove names and other sensitive private information.

Some of other email messages are the actual messages which are taken from a variety

of public domain mail list servers. The FTP file transfers content is also generated

using the similar approaches.

59

The content of the web servers is generated using a custom web automaton run

on the real Internet. The custom web automaton used is initially programmed to

visit several thousands of websites with a frequency proportional to the website’s

popularity, and to visit some random number of links at each website before moving

to another website. Thus, it generated a large database of public domain website

content, which is then used in the testbed. As the testbed is not connected to the

Internet for security reasons, this automaton process ensures that the outside part

of the testbed simulates the real Internet. During the experiments, the browsing

automata accessed different web pages on the web servers through the outside web

gateway. Again, custom software is used in the outside web gateway to emulate

thousands of websites. Also, custom software is used to generate user automata which

simulates some simple scenarios like the one in which there are different users typing

at the keyboards. Actual humans performed more complex tasks like upgrading

the software, changing passwords, remotely accessing the programs, some system

administration tasks, sending and receiving email, etc.

A total of 32 different cyber attacks were generated in the evaluation program.

All the attacks fall into the following four categories:

1. Denial of Service (DoS) attacks

2. Remote to Local (R2L) attacks

3. User to Root (U2R) attacks

4. Probe attacks

The generation of the attacks is a complex process. First the attack mechanism was

studied and analyzed, and then a working attack is developed on the testbed. The

working attack developed is further analyzed and tuned to determine the software

and/or services required to run the attack. This analysis is also used to develop

60

new stealthy versions of the attack. Novel attacks were generated using the network

weaknesses in the developed testbed. The novel (unseen) attacks were used only in

the test data, to facilitate the evaluation of the cyber attack detection system’s ability

in detecting the new never-before-seen attacks.

A total of nine weeks of raw data is collected and used as the training data.

The raw training data was about 4 GB of compressed binary TCP dump data of

network traffic. This raw data is finally processed into five million connection records.

Similarly, two weeks of data is collected and used as the test data. The final processed

test data contains around two million connection records. A connection is defined as

“a sequence of TCP packets starting and ending at some well defined times, between

which data flows to and from a source IP address to a target IP address under some

well defined protocol.” [31] Each connection is labeled as either normal, or as an

attack, with exactly one specific attack type. Each connection record is about 100

bytes in size.

The 1999 KDD intrusion detection dataset [31] is a version of this 1998 DARPA

Intrusion Detection Evaluation Program data. Each record (connection record) in

the KDD dataset has 41 features. All the features come from three different sources

(or sensors). All the 41 features are divided into three different groups corresponding

to each sensor. The different types of cyber attacks in the KDD dataset are listed in

the Table 6.1. The first column (Old) lists all the attack types that are present in

the training data. The second column (New) list all the new (novel) attacks that are

present only in the test data but not in the training data. All the attacks are grouped

into the four general cyber attack categories. We evaluate the proposed distributed

cyber attack detection system on this KDD dataset. However recently, a statistical

analysis of the KDD dataset exposed some issues with the original KDD dataset,

which highly affects the performance of the evaluated systems [33]. The main issues

found were:

61

• A number of duplicate records are present in the test dataset, which makes the

evaluation biased towards some detection systems.

• The training set includes huge number of redundant records of some attack

types.

To eliminate these issues, a new dataset NSL-KDD is proposed [33]. The NSL-KDD

dataset consists of selected records of the entire KDD dataset and does not suffer from

the above mentioned problems. We evaluated the proposed cyber attack detection

system on this NSL-KDD dataset.

The NSL-KDD dataset contains 125,973 records in the training set, and 22,544

records in the test set. Initially 10% of the training set is set aside as the validation set,

and the remaining data is used for training the classifiers (support vector machines).

6.2 Training Phase

As mentioned before, we have a total of three sensors. As we try to classify the cyber

attacks into the four general categories (DoS, R2L, U2R, and Probe), we have a total

of five classes including the normal class. Thus the proposed cyber attack detection

system has a total of fifteen binary classifiers (support vector machines), with five

binary classifiers at each sensor. In the training phase, all the binary classifiers (sup-

port vector machines) under all the sensors are trained on the training set. Support

vector machines with the Gaussian kernel are used. The Gaussian kernel function is

given by

K(xp,xq) = exp

(
−‖xp − xq‖2

2σ2

)
. (6.1)

The Gaussian kernel (6.1) corresponds to an infinite dimensional feature mapping.

Hence the resulting feature space is a Hilbert space of infinite dimensions.

The support vector machine finally has two parameters which need to be preset:

the regularization parameter C and the Gaussian kernel parameter σ. The choice of

62

these parameters really depends on the problem at hand and the corresponding data.

In order to pick the best parameter values for each support vector machine, we adopt

a model selection approach. We adopt the simple and effective grid-search using

cross-validation. Several pairs of the parameters (C, σ) are used and the one with the

best cross-validation accuracy is finally picked for the support vector machine. The

grid-search is done using the following values of C and σ:

• C = 0.125, 0.5, 2, 8, 32, 128, 512.

• σ = 0.25, 0.5, 1, 2, 4, 8, 16.

Generally this grid-search based model selection is time consuming. But with our

proposed fast training approach, this is not a problem as the model selection is done

using the new training set which contains relatively few samples. This further high-

lights the advantage of the proposed fast training approach.

All the 15 support vector machines are trained on the training set using the

proposed fast training approach. For comparison, the support vector machines were

also trained in the normal way (i.e., by using the entire training set). The total

training time for all the 15 support vector machines using both the approaches is

given in Table 6.2. From the table, it is clear that the proposed fast SVM training

approach greatly reduces the computational complexity of training the support vector

machines (SVMs).

6.3 Decision Making Phase

Once all the binary classifiers (support vector machines) are trained, the posterior

class probabilities need to be estimated. As mentioned before, this is done as ex-

plained in the Appendix A. As suggested, the unused part of the training set and the

validation set are used to fit the sigmoid. The Newton’s method with backtracking

63

line search is used for solving the unconstrained optimization problem. This is done

for all of the support vector machines (SVMs).

After obtaining the posterior probability model for each SVM, the local and the

final decisions are made using the proposed fusion rules. The following tables show

the final confusion matrices on the NSL-KDD test set. Table 6.3 shows the confusion

matrix of the proposed distributed cyber attack detection system on the NSL-KDD

test set (using only the old attack types). Table 6.4 shows the confusion matrix of

the proposed distributed cyber attack detection system, using the SVMs which are

trained normally using the entire training set, on the NSL-KDD test set (using only

the old attack types). From the tables, it is clear that the proposed cyber attack

detection system (with the SVMs trained using the proposed fast training approach)

is more effective in detecting the cyber attacks than the system (with the SVMs

trained normally). This is due to the fact that in the case of SVMs trained using

the proposed fast training approach, more training data is available to fit the sigmoid

of the SVM posterior probability model, as only a subset of the whole training data

is used to actually train the SVMs. All the remaining training data along with the

validation data is available for fitting the sigmoid of the SVM posterior probability

model. Whereas in the case of SVMs trained normally, all the training data is used

for training the SVMs, and only the validation data is left for fitting the sigmoid of

the SVM posterior probability model. This results in the poor posterior probability

models for the SVMs which are trained normally. Thus, the proposed fast SVM

training approach efficiently uses the available training data.

Also the proposed cyber attack detection system is evaluated on the NSL-KDD

test set using the old as well as the new attacks. The Table 6.5 shows the confusion

matrix of the proposed cyber attack detection system on the NSL-KDD test set

containing both old and new (novel) attacks. From the table, it is clear that the

proposed cyber attack detection system performs well on detecting the novel attacks.

64

Actually, the proposed cyber attack detection system can detect all the new attacks

which are statistically similar or close to the old attacks. The proposed system cannot

accurately detect the new attacks which are completely different from the old attacks.

The detection accuracies for R2L and U2R attacks are very low when compared

to others, because of the less training data available for these types of attacks. The

R2L and U2R cyber attacks occur rarely in general. So, we have less training data

available for them.

65

Table 6.1: Types of cyber attacks in the 1999 KDD intrusion detection dataset.

Attack Old New

Category

Denial of Service (DoS) back udp storm

land process table

neptune mailbomb

pod apache2

smurf

teardrop

7 write

Remote to Local (R2L) ftp write snmpgetattack

guess password sendmail

imap xlock

multihop xsnoop

phf httptunnel

spy named

warezclient

warezmaster

User to Root (U2R) buffer overflow sqlattack

loadmodule xterm

perl snmpguess

rootkit worm

ps

Probe ip sweep saint

nmap mscan

port sweep

satan

66

Table 6.2: Total training time for the support vector machines.

SVM Training Time Training Time

using the proposed using the normal

fast training approach training approach

(in min.) (in min.)

SVM (Normal, Sensor 1) 69 108

SVM (DoS, Sensor 1) 66 112

SVM (R2L, Sensor 1) 36 56

SVM (U2R, Sensor 1) 28 49

SVM (Probe, Sensor 1) 51 89

SVM (Normal, Sensor 2) 61 105

SVM (DoS, Sensor 2) 58 104

SVM (R2L, Sensor 2) 35 62

SVM (U2R, Sensor 2) 24 46

SVM (Probe, Sensor 2) 45 87

SVM (Normal, Sensor 3) 56 106

SVM (DoS, Sensor 3) 49 99

SVM (R2L, Sensor 3) 31 51

SVM (U2R, Sensor 3) 20 38

SVM (Probe, Sensor 3) 41 79

67

Table 6.3: Confusion matrix of the proposed cyber attack detection system on the

NSL-KDD test set (with only old attacks).

Predicted → Normal DoS R2L U2R Probe Correct Detection

Actual ↓ Rate

Normal 9430 88 41 26 126 97.11%

DoS 119 5441 22 19 140 94.77%

R2L 852 147 796 15 389 36.20%

U2R 8 3 2 19 5 51.35%

Probe 106 19 27 12 942 85.17%

Table 6.4: Confusion matrix of the proposed cyber attack detection system (using

SVMs which are trained normally) on the NSL-KDD test set (with only old attacks).

Predicted → Normal DoS R2L U2R Probe Correct Detection

Actual ↓ Rate

Normal 9412 112 29 23 135 96.92%

DoS 167 5341 45 34 154 93.03%

R2L 1293 96 551 17 242 25.06%

U2R 12 6 3 10 6 27.03%

Probe 165 55 41 12 833 75.32%

68

Table 6.5: Confusion matrix of the proposed cyber attack detection system on the

NSL-KDD test set (containing both old and new attacks).

Predicted → Normal DoS R2L U2R Probe Correct Detection

Actual ↓ Rate

Normal 9430 88 41 26 126 97.11%

DoS 369 6654 60 34 341 89.22%

R2L 1022 287 801 25 419 31.36%

U2R 248 77 14 24 37 6.00%

Probe 318 121 43 27 1912 78.98%

69

CHAPTER 7

CONCLUSIONS

In this thesis, a new distributed cyber attack detection system is proposed. The

proposed cyber attack detection system has relatively less computational complexity

and high detection accuracy. The proposed system uses multiple sensors across the

network. At each sensor, local processing is done and a local decision is generated.

All the local decisions are then sent to the fusion center, where the final decision

regarding the state of the network is generated.

Support vector machines are used as the supervised binary classifiers at each

sensor. Though the support vector machines are the best supervised classifiers, their

training is often a computationally intensive process. A new fast and efficient training

approach is proposed which greatly reduces the computational complexity of the sup-

port vector machine training process without significantly affecting the classification

performance.

Finally, the fusion rules are designed using the Dempster-Shafer framework, which

is a more generalized mathematical framework. The main advantage of using the

Dempster-Shafer framework is that it exactly characterizes the amount of evidence

available at each sensor. The Dempster’s rule of combination effectively combines the

evidence from the multiple sensors (sources of evidence).

70

BIBLIOGRAPHY

[1] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on Software

Engineering, vol. 13, pp. 222–232, 1987.

[2] Sourcefire, Snort. http://www.snort.org/.

[3] V. Paxson, The Bro Network Security Monitor. http://www.bro-ids.org/.

[4] Y. Vandoorselaere, Prelude Intrusion Detection System. http://prelude-ids.org/.

[5] TrendMicro, OSSEC. http://www.ossec.net/.

[6] McAfee, McAfee Network Security Platform. http://www.mcafee.com/.

[7] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[8] V. N. Vapnik, Estimation of Dependencies Based on Empirical Data. Springer,

1982.

[9] E. Osuna, R. Freund, and F. Girosi, “Support vector machines: Training and

applications,” MIT AI Memo AIM-1602, 1997.

[10] J. C. Platt, “Probabilistic outputs for support vector machines and comparison

to regularized likelihood methods,” Advances in Large Margin Classifiers, 2000.

[11] A. Smola and B. Schölkopf, “Sparse greedy matrix approximation for machine

learning,” Proceedings of the Seventeenth International Conference on Machine

Learning, pp. 911–918, June 2000.

[12] S. Fine and K. Scheinberg, “Efficient svm training using low-rank kernel repre-

sentations,” Journal of Machine Learning Research, vol. 2, pp. 243–264, 2001.

71

[13] B. Li, Q. Wang, and J. Hu, “A fast svm training method for very large datasets,”

Proceedings of International Joint Conference on Neural Networks, June 2009.

[14] J. C. Platt, “Sequential minimal optimization: A fast algorithm for training sup-

port vector machines,” Advances in Kernel Methods - Support Vector Learning,

1998.

[15] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines: Fast svm

training on very large data sets,” Journal of Machine Learning Research, 2005.

[16] Y. J. Lee and O. L. Mangasarian, “Rsvm: Reduced support vector machines,”

Proceedings of the First SIAM International Conference on Data Mining, 2001.

[17] S. Tong and D. Koller, “Support vector machine active learning with applications

to text classification,” Journal of Machine Learning Research, 2001.

[18] S. Abe and T. Inoue, “Fast training of support vector machines by extracting

boundary data,” Proceedings of the International Conference on Artificial Neural

Networks, 2001.

[19] H. Shin and S. Cho, “Fast pattern selection for support vector classifiers,” Lecture

Notes in Computer Science, Springer, 2003.

[20] A. Lyhyaoui, M. Martinez, I. Mora, M. Vazquez, J. L. Sancho, and A. R.

Figueiras-Vidal, “Sample selection via clustering to construct support vector-like

classifiers,” IEEE Transactions on Neural Networks, vol. 10, no. 6, pp. 1474–1481,

1999.

[21] R. Koggalage and S. Halgamuge, “Reducing the number of training samples

for fast support vector machine classification,” Neural Information Processing -

Letters and Reviews, vol. 2, no. 3, pp. 57–65, 2004.

72

[22] J. Cervantes, X. Li, and W. Yu, “Support vector machine classification based

on fuzzy clustering for large data sets,” Lecture Notes in Computer Science,

Springer, vol. 4293, 2006.

[23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University

Press, 2004.

[24] C. E. Rasmussen, “The infinite gaussian mixture model,” Advances in Neural

Information Processing Systems, pp. 554–560, 2000.

[25] R. M. Neal, “Markov chain sampling methods for dirichlet process mixture mod-

els,” Journal of Computational and Graphical Statistics, vol. 9, no. 2, pp. 249–

265, 2000.

[26] Y. Ye, M. J. Todd, and S. Mizuno, “An o(
√
nl)-iteration homogeneous and self-

dual linear programming algorithm,” Mathematics of Operations Research, 1994.

[27] F. John, “Extremum problems with inequalities as subsidiary conditions,” Stud-

ies and Essays Presented to R. Courant on his 60th Birthday, pp. 187–204, 1948.

[28] P. Sun and R. M. Freund, “Computation of minimum-volume covering ellip-

soids,” INFORMS Operations Research, vol. 52, no. 5, pp. 690–706, 2004.

[29] A. P. Dempster, “A generalization of bayesian inference,” Journal of the Royal

Statistical Society, Series B (Methodological), vol. 30, no. 2, pp. 205–247, 1968.

[30] G. Shafer, A Mathematical Theory of Evidence. Princeton University Press, 1976.

[31] S. Hettich and S. D. Bay, The UCI KDD Archive. University of California Irvine,

Department of Information and Computer Science, 1999.

[32] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung,

D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham, and M. A. Ziss-

man, “Evaluating intrusion detection systems: the 1998 darpa off-line intrusion

73

detection evaluation,” Proceedings of the 2000 DARPA Information Survivability

Conference and Exposition, vol. 2, 2000.

[33] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A detailed analysis of the

kdd cup 99 data set,” Proceedings of the IEEE Symposium on Computational

Intelligence for Security and Defense Applications (CISDA), 2009.

[34] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on platt’s probabilistic outputs

for support vector machines,” Machine Learning, vol. 68, no. 3, pp. 267–276,

2007.

74

APPENDIX A

PROBABILISTIC OUTPUTS OF SUPPORT VECTOR MACHINES

The support vector machine (SVM) does not provide probabilistic outputs. It just

makes hard decisions (predictions) about the new inputs, i.e., the support vector

machine (SVM) just gives a hard decisions whether the new input belongs to one

class or the other. Though these hard decision are based on the value of the SVM

function f(x), this value is an uncalibrated value and is not a probability. Posterior

probabilities, which gives the probability of a new sample belonging to a particular

class, are extremely useful in many practical applications. The posterior probabilities

are also very useful in situations when a particular SVM makes a small portion of the

overall decision, and the final classification decision is based on combining all such

individual SVM decisions.

Platt proposes a post-processing approach to calculate the posterior probabilities,

after training the support vector machine [10]. The proposed approach is a post-

processing step, and hence can be applied on already trained support vector machines

(SVMs). The basic idea is to fit a logistic sigmoid function to the outputs of an already

trained support vector machine. The proposed sigmoid model is

P (y = +1|f(x)) =
1

1 + exp(Af(x) +B)
, (A.1)

where A and B are the parameters of the model. The logistic sigmoid model (A.1)

is equivalent to the assumption that the output of the support vector machine is

proportional to the log-odds of the positive data sample. The parameters A and B of

the model (A.1) are found by minimizing the negative log-likelihood of the training

75

data:

min
A,B

−
q∑
i=1

ti log(pi) + (1− ti) log(1− pi),

where

ti =
1 + yi

2
,

pi =
1

1 + exp(Af(xi) +B)
.

(A.2)

The training set used above is R = {(f(xi), yi); i = 1, ..., q}. The above optimization

problem (A.2) is an unconstrained one. The targets which are actually used in the

above optimization problem (A.2) are ti ∈ {0, 1}. However, more effective targets can

be derived. These new targets ti represent the probability of the positive and negative

labels. The new targets are actually the MAP estimates for the target probabilities

of positive and negative samples, which are given by

ti


= N++1

N++2
, if yi = +1

= 1
N−+2

, if yi = −1

(A.3)

where N+ and N− are the number of positive and negative labels respectively. Thus,

the actual optimization problem that is solved is

min
A,B

−
q∑
i=1

ti log(pi) + (1− ti) log(1− pi),

where

ti


= N++1

N++2
, if yi = +1

= 1
N−+2

, if yi = −1

pi =
1

1 + exp(Af(xi) +B)
,

(A.4)

where N+ and N− are the number of positive and negative labels respectively.

The training set used in the above optimization problem (A.4), R = {(f(xi), yi); i =

1, ..., q}, needs to be different from the actual training set used for training the SVM.

This is due to the fact that using the same training set often leads to disastrously

biased fits. In [10], Platt proposes two different methods for deriving an unbiased

76

training set: hold-out set method and cross-validation method. Here in our case,

the support vector machine (SVM) is trained on a subset of the actual training set.

Hence, we can use the other unused training set to fit the sigmoid. However, using

the entire unused training set at once may sometimes lead to wrong estimates of the

target probabilities, especially when one class dominates the other class. To eliminate

this difficulty, we divide the unused training set into three parts, and the trained SVM

is evaluated each of these three parts separately. Finally, the union of all these three

different sets of SVM outputs forms the new unbiased training set which is used to

fit the sigmoid.

Platt proposes a Levenberg-Marquardt (LM) algorithm to solve the optimization

problem (A.4). However, it is found that the proposed approach suffers from some

severe drawbacks [34]. In [34], Lin et al. propose a Newton’s method with backtrack-

ing line search for solving the optimization problem (A.4), which is found to be more

efficient. We adopt the Newton’s method with backtracking line search for solving

the unconstrained optimization problem (A.4).

77

VITA

Sandeep Gutta

Candidate for the Degree of

Master of Science

Thesis: A NEW DISTRIBUTED FRAMEWORK FOR CYBER ATTACK DETEC-
TION AND CLASSIFICATION

Major Field: Electrical Engineering

Biographical:

Personal Data:
Born in Kakinada, Andhra Pradesh, India on September 10, 1987.

Education:
Received the B.E. degree from Andhra University, Visakhapatnam, Andhra
Pradesh, India, in Electronics and Communication Engineering in 2008.

Completed the requirements for the degree of Master of Science with a
major in Electrical Engineering, Oklahoma State University, Stillwater,
OK, in December 2011.

Experience:
Worked as Research Assistant at the Statistical Signal Processing Labo-
ratory, Oklahoma State University, Stillwater, OK, from August 2009 to
December 2011.

Professional Memberships:
Institute of Electrical and Electronics Engineers (IEEE)
Golden Key International Honour Society

Name: Sandeep Gutta Date of Degree: December, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A NEW DISTRIBUTED FRAMEWORK FOR CYBER ATTACK
DETECTION AND CLASSIFICATION

Pages in Study: 77 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

With the fast growing cyber activity day by day, the threat from cyber attacks has
increased enormously. The timely detection of these cyber attacks has been a major
concern to many governments and organizations all over the world. A number of cy-
ber attack detection systems have been developed in the past decade. However, most
of them tend to suffer from two main issues: high computational complexity and low
detection accuracy. In this thesis, a new distributed framework is proposed for cyber
attack detection. Besides detecting the attacks, the proposed system also classifies
the attacks into different categories so that corresponding proper counteraction can
be taken in time. The proposed system uses multiple sensors which are deployed at
various parts of the network, thus providing a complete view of the network. The
traditional centralized processing approach, in which all the sensors transmit their
entire data to a central decision making unit, has high computational complexity and
requires huge bandwidth. Hence, the proposed system employs distributed process-
ing, where each sensor processes the observed data and generates a local decision.
All the local decisions from all the sensors are then transmitted to the fusion center,
which generates a final decision based on all the available local decisions. At each
sensor, multiple supervised binary classifiers are employed. Support vector machines,
which are one of the best, are used as the classifiers. A new fast and efficient training
approach for support vector machines is proposed, which greatly reduces the com-
putational complexity of training the support vector machines without significantly
affecting the classification performance. Effective fusion rules, at each sensor and
at the fusion center, are proposed using the Dempster-Shafer theory. The proposed
cyber attack detection system is evaluated using the popular 1999 KDD intrusion de-
tection dataset, which is a version of the 1998 DARPA intrusion detection evaluation
program data.

ADVISOR’S APPROVAL: Dr. Qi Cheng

