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PREFACE

The goal for this research was to develop an efficient hidden-
line algbrithm for a small computer system. A hidden-line aigorithm
published by J. G. Griffith was used as a basis for the research. The
algérithm‘was successfully implemented on a mini-computer and extensive
analysis and'testing were done. This work showed that Griffith's
algorithm was a linéar growth algorithm as compared to the complexity
of the picture environment. Several‘enhancements were added to the
original algorithm to achieve even greater efficiency.
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on the final ‘draft.
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. this paper. My tﬁanks go to all my friends who encouraged me throughout

the entire project, and especially for the support of my dear friends,

Stacy and Paula Rinehart, who provided me with living quarters during

iii



my final month of research. I am very appreciative of Denise Bower,
who did such an excellent job of typing the final draft and for her
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CHAPTER I
INTRODUCTION

Since the beginning developments in computer graphics capabilities,
the problems of representing three‘dimensional objects in a two dimen-
sional pictufe have been étudied in great detail. Initially, in the
early sixties; only the hardware capability for drawing lines existed.
Faces, therefore, were represented as closed loops or "circuits" of
straight lines. Representing objects as pictures in this form, often
called "wire frame" drawings, can cause confusion and even optical
illusions if all lines of an object are presented. The need for an
algorithm to eliminate all lines not "visible" from a particular view
of an object becomes quite apparent. This is the hidden-line problem.
(A version of the hidden-line problem for "ruled surfaces" is a rela-
ﬁively simple problem and is not discussed in this thesis

Beginning in the middle sixties and moving into the early seventies,
the hardware capabilities for graphics greatly improved to make shaded
drawings possible. These advances greatly improved the visual guality
of computer generated pictures but the problem then became how to elimi-
nate nonvisible shaded faces. This is the hidden-surface problem.

In the beginning years of research, several solutions to the hidden-

line problem were developed. However, when the hidden-surface problem



began to receive attention, the emphasis in research shifted almost
entirely in its direction. Little new work has been published on the
hidden-line problem since the nineteen sixties.2 This is unfortunate
because many areas of applications such as architecture and engineering
have a need for efficient three-dimensional line drawings, especially
in applications with mini and micro computers with only line drawing
'capabilitiés. A new algorithm for hidden-line elimination was published
by J. G. Griffith (6) which has possible applications in these areas.

The description of Griffith's algorithm in the article, "Eliminatingv
Hidden Edges in Line Drawings" (6), states that this is a linear growth
algorithm, which means that the computer time required for a drawing
increases in a linear rate as the complexity of the object increases.
(Almost all previous hidden-line algorithms have a "squared-law" growth
rate. Given a drawing with N objects, the computer time required for
hidden-line removal is proportional to N2.) Further research into
Griffith's method is needed to verify his results and to search for
possible improvements to the aigorithm that could enhance its efficiency.
Also, some valid comparison with other previously existing algorithms
must be made to establish Griffith's algorithm as a better or worse
solution to the hidden-line problem. The contents of this thesis
pfesents the resﬁlts of the research done in these areas.

First, a brief history and overview of hidden-line, hidden-surface
algorithms will be discussed for the reader's background information

and later algorithm comparisons. Then, in Chapter III, a description

2J. G. Griffith has published several different papers on these

problems in the seventies besides the one to be studied here. (See
Bibliography.)



of Griffith's algorithm will be presented shqwingbdetails of his data
structure &nd method for hidden-line rgmoval. In Chapter IV, various
changes to improﬁe Griffith's algorithm are discussed and the effects
of these changes are examined. Comparisons are made between Griffith's
algorithm and ten other hidden-line, hiddeh—surface algorithms. The
final chapter.diScusses implemention ovariffith's algorithm, problems
that were encduntered; and suggestions for future work with Griffith's

ideas.



CHAPTER II

HISTORY OF HIDDEN-LINE ALGORITHMS

Categorization

When discussing many different algorithms that solve the same

relative problem, there is a need for an efficient means of comparison.

By categorizing the algorithms, many insights into the hidden-line

problem ‘are made which might be hard to understand if each algorithm

were studied separately. A very nice categorization of ten of the most

prominent hidden-line, hidden-surface algorithms published before 1974

was presented by Sutherland, Sproull, and Shumacker (10). The following

paragraphs are a description of their categorization scheme.

Four criteria are used as a basis for categorization and analysis:

1.

First, a major difference is the resolution, or accuracy, of

the final picture produced by each algorithm. An algorithm is
said to work in object space (10, p. 19) if the final output is
as accurate as the accuracy of the computer used. Almost all
calculations are done to machine accuracy. However, if the
output of a drawing is limited to a certain screen resolution
size, there is no need for this kind of accuracy. Algorithms
that calculate a drawing only to a limited resolution are said

to work in image space.

The types of comparisons for hidden-line determinations are
quite different for each method. Many "tricks" are used to
eliminate as many unnecessary comparisons as possible.

Obviously, if the complicated and time consuming tests for

intersecting or overlapping lines can be reduced to only those

cases that actually have intersections, then much efficiency
can be gained.



3. Each algorithm takes advantage of one (or more) specific
characteristics of the problem to attempt to minimize the
solution process. These common relationships are given the
name coherence. For ecxample, Appel uses the fact that if a
vertex on an edge is visible, then all other edges with this
vertex will very likely be visible (hence, edge to edge
coherence). By taking advantage of coherence relationships,
computations can be reduced and, in some cases, eliminated.

4. Also, to analyze the efficiency of each algorithm, the
various sorting and searching techniques are compared.

Referring to Figure 1 the categoriés for each algorithm can be seen.
Appel, Galimberti, Loutrel, and Roberts solved the hiddén—line problem in
object space, to the nearest accuracy of’the computer used. Warnockl,
Watkins, Romney, and Bouknight solved the h;dden—surface problem in image
space, because their goal was teievision type output which has a fixed
resolution size. Schumacker and Newell also solved the hidden~surface
problem but partly in both "spaces". Their calculations were done to
machine accuracy but the shaded drawings produced must be output to the
limited resolution of a.television type display screen.

Each group of algorithms uses a different method for finding visible
line segments or faces. The object space algorithms use comparison
tests to find intersecting lines and to determine which lines are
visible. These tests require many mathematical calculations and are
often quite time consuming. The Schumackef and Newell algorithms use
a priority schehe to determine facevvisibility. The priorities can be
calculated once for an object regardless of the position of the
observer. By avoiding repetitious calculations for visibility, these

algorithms can produce pictures in real-time; meaning that the time

1 . . . .
There are hidden-line versions of the Warnock algorithm.

2 . .
All above authors are cited in (10).



OPAQUE-OBJECT ALGORITHMS

OBJECT SPACE . (Partly each) IMAGE SPACE
Comparison algorithms List priority algorithms Depth priority algorithms
Edge: Edge » ' Edge: Volume A priori Dynamically Area Point sampling
: priority computed sampling
priority

Appel Galimberti, et al Loutrel Roberts Schumacker, et al . Newell, et al Warnock Watkins Romney, et al Bouknight
1967 . 1969 1967 1963 - 1969 1972 1968 1970 1967 1969

Source:. Sutherland (10, p. 199

Figure 1. Sutherland's Categorization of'.Ten Hidden-line, Hidden-surface Algorithms -



taken for.picture computation is less than the time required for a
single scan of_abraster screen output device (television type screen).
Thé image space algorithms use depth priority schemes to determine
.visibility on a specified area of the screen.  Extensive sorting is
used to givé faces briorities according to their‘dépth, and their
position in these pridrity lists help to determine visibility. It must
be hoted thaf all ten of the algorithms put restrictions on the kind

of objects allowed in their picture environments. The methods used for
visibility determination are valid only within these restrictions.
These environment restrictions are noted in Sutherland's (10) article
but are not used for categorization.

Now that a general overview has been established, a more detailed
look at a few selected algorifhms is needed; The first one will be
Roberts' (9) algorithm, which was the first practical solutién to the
hidden-line problem. Next, a discussion of Appel's (1) method will
illustrate edge by edge comparisons. (Galimberti's and Loutrel's
methods afe variations on this same theme.) Newell's (7) algorithm
-will help explain priority schemes in greater detail. And finally,
Watkins' (11) algorithm will explain scan-line algorithms and depth

priority.
Roberts' Algorithm

Roberts' (9) algorithm solves the hidden-line problem using linear
algebra techniques to compare each edge in an environment with each
spatial volume. A spatial volume is defined by a set of convex

polygon faces. By restricting the shapes to convex polygons, each



face of a solid can be represented by a plane gquation of the form
aX + bY + cZ +d =0. The mathematical relationships between points
along an edge and these planes can determine the visibility of a
given edge.

Roberts' algorithm can be broken into three distinct steps.

1. Clipping against the screen boundary.

2. Rejecting back edges.

3. Testing fhe edge against polygonal volumes.
Pérts of the environment can be outside of the pérticular view of an
observer. Those edges not in view (outside the screen boundary) or
those portioné ofledges partially hidden by the screen bdundary can be
eliminated by multiblying an edge equation times a special volume matrix
which represents the edges of the view boundary. The resulting para-
meters provide the maximum and minimum values which define the visible
portion of an edge. Next, the back edges are eliminated. Any given
vso}id volume will hide some of its own edges. The position of the
observe; determines which edges are automatically hidden. By deter-
mining the direction of a vector normal to the face of a solid, a face
can be recognized as a front face or back face. Edges on back faces are
Véliminated from furthef.testing; they are totally hidden. The remaining
edges after these first two steps must now undergo much more complex
tests to determine visibilify.

Each edge is tested for visibility against every solid volume in
the environment. The edge is represented parametrically as

v=s+t(r - s) 0 £t g1

where r and s are thg two endpoints. For every value of t along the

edge, an imaginary vector is created which points in the direction of



the observer. If any of the vectors pass through a face, then the edge
is totaily or partially hidden. If no face intersections occur, then
the edge is totally visiblé. To determine thesebconditions, the para-
metric equation defining the imaginary vectors is multiplied by a
volume matrix which represents a particular volume. The resulting
parameter vaiues are ﬁésted agaiﬁst boundary values which satisfy the
required conditions for visibility.

Roberts' solution to the hidden-line problem is often called the
,"classical“ solution.because of its use of mathematical relationships.
Although his method is very good, its performance suffers because of
the enormous number of calculations required in the matrix multipli-
cations and because of the number of tests involved. Each edge is
compared to every volume.in the environment which makes the computer
time required grow proportionally to N2, where N is the number of
objects in the environment. For complicated scenes, the algorithm is

not practical.
Appel's Algorithm

' Appel's (1) algorithm works in the same kind of environment as
Roberts': that is, polyhedra made up of planar éolygonal faces. But
Appel's approéch is totally different. The algorithm introduces the
concepts of a material edge, a contour edge, and quantitative invisi-
bility to define the edges in an environment; These properties of
edges hélp determine visibility.

| An edge has three possible élassifications. Edges hidden by their

own volumes are called back edges and they are immediately eliminated.
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Edges bounding two possibly visible faces are referred to as material
edges.. Those edées bounding an invisible face and a potentially visible
face are called contour edges. An edge is broken into segments based
on its intersection with contour edges and eaeh resulting edge segment
is assigned a quantitative invisibility value. A visible edge segment
has an initial value of zero. Each time the edge_crosses'behind a
contour ‘edge the quantitative invisibility is incremented by one and
then correspondingly decremented when it comes out from behind a
contouf edge. -Only those edge segments with a resulting quantitative
invisibility of zero are visible.b
The taskeof finding initial quantitative invisibility values is

time consuminé (an edge endpoint is compared to every face in the
environment). Hewever, for any given point, all cdges emanating from
thiS‘point'have the same quantitative invisibility (normally). This
conerence relationship reduces to a great extent the amount of required
calculations. By followiné "circuits" through the drawing, previous
ending quantitative invisibility valueé are passed on to other beginning
edges. Appel developed an efficient nethod to examine every edge in an
environment using a minimum number of these circuits. Problems arise,
however, when severel special cases can make the quantitative invisi-
bility'valnes wrong. For example, if a point lies on a contour edge,
then some edges emanating from this point will possibly have a higher
quantitative invisibiliti value than others, depending on which edges
'emanate.behind the face and which edges emanate out away from the face.

This case and others must be tested before quantitative invisibility
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values at an edge endpoint can be passed on to othér edges. These
test§ become quite detailed and inhibit the efficiency of the quanti-
tatiye invisibility scheme.

The algorithm's efficiency is proportional to NZ. Loutrel, and
Galimberti and Montanari used this same basic idea but with special
enhancements. Their algorithms are also proportional to N2. The
problem of-haVing to compare each edge in an environment with every

other edge was still not solved.
Newell's Algorithm

Newell's (7) algoritﬁh solves the hidden-surface problem in what
could be described as the "painter's" algorithm. All polygons in an
environment ‘are ordered according to their distance from the observer.
After proper o:dering, the faces are output or "painted" onto an outbut
screen (or frame buffer) starting with the most distant face and
proceeding. up to the nearest face. Tﬁe.hidden;surface problem becomes
a sqrting problem to deﬁermine the correct order of oufput.

The algorithm is called a priority algorithm because each face is
given a priority based on its distance from the observer} those nearer
faces to the ébserver having higher priorities. Many different tests
are used to assign priority values. The simpler tests are applied
first, and if these fail, more complex tests are used until a priority
can be determined. The initial step ordérs all faces according to
their closest‘point to fhe observer. Using this order of faces, the
followihg tests are‘done between adjacent faces. A face has higher

priority over the next face if any of the following tests are true:
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A depth minimax test shows that there is no overlap in depth.

An XY minimax test shows no overlap in X or Y.

All Qertices of the face are nearer to the observer than the

plane which contains the next
All vertices of the next face
observer thdn the plane which

A complete overlap test which

Once any of these tests are true, none

face.

are farther away from the
éontains the face.

shows no overlap in X or Y.

of the others need to be applied.

Two problems arise which must be solved. First, the priority

relationships are not transitive; that is, faces can obscure other faces

which in turn might "cycle" back-and obscure the original faces

(Figure 2a). Second, because Newell allows concave faces, two faces

can possibly obscure each other (Figure 2b). If a face in the priority

list tries to shift priorities more than once, then one of the above

problems is assumed to be true. The face is subdivided into two

R,

(a)

(b)

Figure 2. Special Cases for Newell's Priority Scheme



13

smaller‘faces and the priority tests are repeated. Subdivisions
continué ﬁntil’no more than one priority shift per face is required
for correct ordering.

Newell's>algorithm is much more efficient than Roberts' or Appel's
algorithms. The development of priority schemes made it feasible for
real-time hidden—surfaée pictures. Schumacker.developed the first
real—timé‘algorithm which has been operational since 1968. His
algorithm used a clustered priority scheme and was implemented in

hardware.
Watkins' Algorithm

Watkins' (11) algorithm solves the hidden-surface problem by the
scanline approaqh; which is based on the output needed for a raster
(television type) screen. Raster type screens have a limited number of
possible dots (technically called pixels) in which to represent a
picture. By taking scan lines horizontally across the screen, those
pixels visible on that line can be determined, and giving each one a
desired shade of gray will create a shaded picture. Obviously this
algorithm works in the image space c;eating a picture only as accurate
as the screen.'

Two steps are involved in determining visible parts of a scan line.
First, all ihtersections between the scan line and the polygon faces that
iﬁ crosses are found. Each polygon face "owns" a segment of the scan
line; that pbrtion of the scan line between face intersection points. If
a face scan line segment has no interscctions with other face segments,
then that.face segment is visible and no other action is required.

However, overlapping segments must be further tested to determine



14

viéibility. The Qverlapping section is divided into "sample spans"
which satisfy the cpndition that the visibility in each span does not
cﬁange (that is; the XZ-plane projections of the faces corresponding
with each span do not'interéect.) The second step involves detérmining
which face is visiﬁle‘in each sample span. Because only one face is
visible'in each plan by definition, then a simple Z depth analysis can
determine visibility; After all scan lines are processed, the picture
can be generated.

| Watkins uses a sort on the Y coordinates to avoid as many compari-
sons as possiLle. By presorting the faces, a face is not tested for
intersections with a scan line until it comes into range and inter-
sections are possible. After all of a face has been examined, the face
can be remo?ed from the list of possible faces and never be compared
again. All unnecessary intersection calculations are eliminated. Going
one step further, scan line algorithms can make use of the coherence
- from one scan line to the next, and further reduce the number of calcu-
lations required.

Real-time pictures have been produced using Watkins' algorithm.
Summary

Many verybdifferent ideas and solutions to the hidden-line,
hidden-gurface problem have been implemented. All of the algorithms
which have produced pictures in real-time are hidden—sdrface algorithms.
Nﬁne of the hiéden—iine algorithms have even come close to such‘speeds.
The needvfor more efficient hi@den—line algorithms, comparable to the

- hidden-surface algorithms, is evident.



CHAPTER III
THE GRIFFITH ALGORITHM
Introduction

Now that a brief summéry of hidden-line algorithms has been
presented, a detailed description of Griffith's algorithm is needed.
Griffith used many of the éame ideas as the previously discussed
algorithms but his combination of these ideas and his introduction of
several néw ideas such as a "masking line" makes his algorithm dis-
tinctively different. Approximately one-half of the compﬁter code
required for the implementation of his algorithm is for the creation of
the data structure, which will be discussed first. Then the hidden-

line removal will be examined.
Data Structure

.The Griffith (6) data structure is the single most important part
of his algorithm for efficient hidden-line removal. To establish the
final data structure as shown in Fighres 5 and 6, the initial vertices
must first go through transformétion equations to create the desired
view of the,object. Then the vertex nodes, face nodes, and edge nodes
are created. Finally the screen area is divided into. a two-dimensional
grid and each face is linked into every grid cell that it covers or

intersects.

15
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Initial input of data for an object uses the following form: the
number of vertices, each vertex given by its X, Y, Z cartesian coordi-
nates, the number of faces, and a list of face descriptions. A face
description is a list of vertex pointers which point to adjacent
vertices of the face perimeter followed by at least one zero to indicate
the end of the list. The vertices are real numbers (having whole and
ffactional parts) and tﬁe vertex pointers are integers. Figure 3 is an
example of input for a simple cube. Any polygon shaped face is allowed,
convex or concave with the assumption that all edges are straight lines;
no curves allowed: It is also assumed that all faces intersect only on
edge boundafies.

The vertices must undergo two transformations to establish a
deéired vieQ;. The observer is assumed to bé on the positive Z axis
looking at the origin, with the positive X axis to the right and the
positive Y axis upwardl (Figure 4). The first transformation requires
as many as three rotations, one around each axis to align the axes to
this orientation. Given.the three angles of rotation, which are part of
the initial input, all three rotations are done at once by multiplying
each vertex by a 3 x 3 rotation matrix. Then the maximum distance of
the object from_the'origin is found. The object lies totally within a
sphere of this radius. To créate the final picture, the second trans-
formation produces a perspective in a two~dimensional picture plane
which is paraliel to the X-Y plane and perpendicular to the surface of

the sphere (Figure 4). This environment makes perspective generation

lMost algorithms have the observer on the negative Z axis as
standard notation. Caution must be used when referring to other
literature in discussing maximum and minimum values of Z.
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©(0,0,1)
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’ a(0,],])
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, (0,1,0)
+ v
(1,0,0) * 3(1,1,0)
0.0000000  0.0000000  0.0000000
1.0000000 0.0000000 0.0000000
1.0000000 1.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
1.0000000 0.0000000 1.0000000
~ 1.0000000 1,0000000 1.0000000

0.0000000 1.0000000 1.0000000

2 3 4 0

5 6 2 0

7 3.2 0

8 4 .3 0

8 5 ] 0

8 7 6 0

Figure 3. Input Requirements
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+Y

Sphere at a radius
of maximum distance
of object from origin.

+X

/1 )
+Z Observer
Picture plane

Figure 4. View of Object After Rotation and Location
of the Picture Plane for Perspective
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very straightforward because the entire object lies inside the sphere
picture plane. If this were not true, then a clipping algorithm would
be needed to "throw away" everything outside of the picture plane.
Therefore,yonly exterior views of any object are possible; close up
views or interior views would require clipping and a different method
for pefspecﬁive generation. (No perspective transformation is done on
the 2 (aepth)‘coordinates. They retain their required depth relation-
ships in three-space.)

The vertex nodes are the first nodes to be established. The X, Y,
and Z real number vertices are mapped into an integer "world" using
linear mdpping functions based on the maximum and minimum values for
each axis. This linear "world"'mﬁst be large enough to retain an
accurate description of the object but small enough to prevent intéger
overflow in math calculations. The last two fields of a vertex node are
links (réferréd to in Figure 5 as L1 and L2). Link L1 is used to
establish an efficient drawing order (to minimize pen movements) for
the final output drawing. To do'this the picture plane is divided up
into a two-dimensional square grid. Each vertex is initially placed
into its appropriate g;id cell, and then link L1 links all the vertices
togetﬁer by tracing tﬂrough the grid, one row at a time. Link L2 is a
pointer fo a list of_edges‘with this vertex as their starting point.
By "visiting" each vertex through link L1 and each edgelof a vertex
throughllink L2, an efficient method is created that guarantees access
to each edge in the drawing.

A_face node contains three fixed fields and a variable number of

vertex pointers. Field three indicates how many vertex pointers make



Vertex node

Xl Yl Z] Ll
Face node
Max|Mark |[No. of - —_—
z |Field|Vertices| T1|YF2|YP3|"P,
P
Edge node

Ending|Face |[Face | Next
Vertex| | 2 Edge

il

" Figure 5. Griffith Data Structure
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up this face. Field two is used as a link in sctting up the data
structure but is used as a "marking ficld" in the hiddon—line removal
process to avoid repefitious face comparisons. Field one stores the
maximum Z value on the face (its nearest point to the observer's eye.)

An edge node has four fields. E;ch edge node is in a linked list
of edges, each having the same‘starting Vertéx. The L2 link in the
vertex noae points to the first edge in the list and the fourth field
in the edge.node (iabeléd "next edgg"‘in Figure 5) points to each
succeeding edge in the list. If thé field is.zero, then no more.edges
exist with this starting vertex. The middle two fields are pointers to
the faces which have this edge as one of its boundaries. If the edge
is used by only one face, then both fields point to the same face. The
first fieid is a vertex pointer to the ending vertex of this edge.
Each edge node is guaranteed to be unique by the restriction that the
starting vertex pointer is always gréater than any of its ending vertex
pointers.

As the face nodes are established,'each face is sorted according
to is maxiﬁum Z value using a "bucket" sort which is a form of a
radix sort. The resulting list of faces begins with the farthest face
from the observer and ends with the nearest face. The next task is to
lihk each face into every grid cell thét it éovers or intersects. To
do this exactly would require many calculations to establish the inter-
sections of each edge of a face with the grid lines of the grid. To
eliminate these costly computa;ions-the maxmin test is used. The
maximum and minimum X and Y values are used to create a surrounding

rectangle and the face is linked into each grid cell that this rectangle
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covers (Figﬁre 6, Rectangle C). Obviously, this is very inaccurate

for slender faces at angles othér than approximately zero or 90 degrees,

but the enormous savings in computation makes it worthwhile. 1In the

final structure, each cell contains a list of faces such that the first

face is the nearest face and each succeeding face is farther and farther

away from the observer (Figure 6). It is possible that two faces may

not be in the correct order in a cell because only the maximum 2 is

used for sorting (Figure 2), but the ordering is good enough to

establish a maxmin'test for the Zvcoordinateé, to be discussed later.
The data structure is now complete and ready for hidden-line

removal.
Hidden-Line Removal

First, a very general description of the method is needed. Each
edge is visited once and cbmpared to every face that could possibly
hide it. If, at any time duriné the comparisons, the edge is deter-
mined to be totally hidden, then comparisons begin on a new edge. If
after all comparisons, there is.still part of the édge visible, then
the visible part is outpﬁt to a storage device for later drawing.

Using L1 and L2 vertex links, a starting vertex is established.
‘Each edge with this vertex is examined before a new starting vertex is
established. All edges are examined in this manner.

To compére an edge to all of the possible faces that cover it, each
face in every cell that the edge crosses must be examined. Constants
are calculated to determine which célls the edge crosses. Three things

- help to eliminate unnecessary face comparisons.



Figure 6.

Note: Sixteen vertices results in the four cells - a two
by two grid (one cell for every four vertices.)

Grid Cell Structure

€Z
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1. A face i1s marked in its "mark field" with a unique marker
associated with the edge being compared. By testing the mark
field, no other comparisons will be made with this face, even
if the face reappears in othe; cells along the edge.

2. A face cannot hide one of‘its own edges. Therefore, using
ﬁhe two‘face pointers in fhe edge node, the faces that the
edge are part of are "marked" and never compared.

3. A maxmin test is used to compare the depth of the edge with a
face; If the minimum Z value on the edge is greater than the
maximum Z value of the face, then the face cannot possibly hide
the edge and no comparisons are neceded with any of the further
faces in this cell.

Comparing a face with an edge is a(costly operation and the above methods
help eliminate many comparisons, along with the fact that only faces in
the edge cells are examined; An édge and all remaining faces which

could possibly hide it undefgo a detailed analysis to determine which
segments are visible and which are hidden.

Individual points on the edge can be represented using the para-

metric equations:

X

xl+ )x(x2 —xl)

Y=Y o+ N(Y, - Y)

1 1

where (Xl, Yl) is the starting vertex,

(X, Y2) is the ending vertex, and

2
0 ANK 1.

By representing intersection points in terms of W values, only one

number must be stored. Intersections not on the actual edge are quickly
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récognized by the conditions A <0 or X >1. Also, the )§'s are
easily sortea to determine consecutive edge segments along an edge.

Visible edge segments are found through the introduction of a
maskiﬁg liné. Given an edge and a face, the face is "cut" by a plane
which is defined by the edge and the viewpoint. The intersection of
the face and this plane is the masking line. Thé endpoints of the
masking line are taken as the intersection points with the face boundary.
Since concave polygons.are allowed, there is the possibility for many
masking line segments. The masking line segments may completely "mask
out" (or cover)'fhe edge, only partially cover the edge, or miss the
edgé entirely. Two conditions must be met for a masking line éegment to
cover an edge or a portion of an edge:

1. The face on which the masking line lies must be in front of the

- edge segment.

"2. The masking line segmént must be inside the boundary of the face.

To determine the depth relationship between the face and an edge, the
depth . on the face along the masking line must be found. This could be
done ﬁsing the plane equation for the face as Roberts' (9) algorithm
does, but a much simpler method is available using the masking line.
Because the masking lineé and the edge lie exactly on top of each other
in the two dimensional picture plane, the same parametric,eguations can
"be used to describe both of them. A linear relationship exists between
the lambda values along the edge and the Z depth alohg the masking line.
This lineérifelationshib is calcﬁlated‘using a least squares approxima-

tion. Once at least two intersection points are known for the masking
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line. As stated earliér, inte;secting faces are not allowed, and
therefore, if part of a masking line segment is in front of an edge,

then all 6f it is. By testing the Z value at the midpoint of the edge
ségment against the corresponding Z value of the masking line (on the
face) the depth is determined. If Zm is greatey than Ze, then the face
can possibly‘hide the edge scegment, and the next test is applied. Other-
wise, the segﬁent is visible and not part of the final masking line
segﬁents._ The next masking line segment is then put through these tests
until all éegments have been examined.

The final test for visibilify is whether the masking line segment is
inside or outéide of the face. To determine this, an "even, odd crossing
test" is used. The number of intersectioﬁs'are counted between the face
and a line which starts.at the midpoint of the edge segment and goes to
some point at -infinity (in practice, éome point near the boundary of
the picture planei. If the number of "crossings" is odd, then the edge
Segmént is inside tﬁe face. 1If thp number is even, then it is outside
the face (Figure 7). If the masking‘line segment is inside the face
boundary, then its endpoints (a lambda pair) are stored as one of the
masking line Segments.

The final results of the masking line tests.are a list of ordered

), (N AN. ), ... which represent the

i A
pairs of lambdas ( %i' 420 N3

i+l
~edge segménts no longer visible. These segments must be ;emoved from
the list of edge segments that are visible. To do this, the lambdas are
merged into a single ordered list. The cdge scgment lambdas are made
negative so that they can‘still be distinguished from the masking edge

segment lambdas. Then, using two switches which change states for each

lambda, Ehe visible edge segments are determined and listed as ordered
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14107 ¢ xi+2')\i+3) ... (See Appendix A for a

pairs of lambdas ( hjf A
more detailed descriptioh of this method using switches.)

This process of detailed face, cdgo analysis is repeated each time
one or more intersections occur on a face. If the edge segments totally
disappear, then no output is done, and a new edge is established for
comparisons. If, after all possible comparisons, some edge segments

still remain, they are output to a storage device for later drawing.

The algorithm is finished after all edges have been examined.

Summary

Each edge that is examined for visibility is compared to a minimum
number of faces. This is the key to the performance of the algorithm.
Minimax tests in the X, Y, and Z directions help to make only those

face comparisons which have possible intersections. Also, faces which

1 intersection 4

,7'0 intersections

Ldge

\ ’ . .
~ ‘_3 intersections

|
|
% 2 intersections

Figure 7. "Even, 0dd Crossing Test"
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include the edge as a side are omitted from the tests. The size of
Griffith's data structure which allows all of this to happen is a major
problem for small computers. This problem will be discussed in chapter

V, but first a discussion of some improvements to Griffith's algorithm.



CHAPTER IV
CHANGES AND IMPROVEMENTS IN GRIFFITH'S ALGORITHM

Aftef thorough study of Griffith's algorithm, four changes were

made:’

1. The method of input‘for‘the rotation angles was changed to
simplify user input and pfogram interaction.

2. Because of integer size and overflow probiems on the small
computers, some of the integer "mapped" values are changed
back to real numbers before calculations are performed.

3. The elimination of all back faces is done while the data
structure is being created.

4. A new maxmin test in the Z (depth) comparisons was implemented.

These will be discussed in detéil and the results of the implementations

given.
View Calculation

To achieve a desired view, Griffith's algorithm simply reads in
three angle valueé for rotation, one for each axis. A 3 x 3 matrix is
set up which is multiplied by each individual vertex for the desired
rotations. Rotations about the three axes are not commutative; that
is, a different view will be computed if the order of rotations is
changed. Therefore, it is very important that the user of the algorithm

can visualize the type of view desired, the rotations needed to obtain

29
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thét view, and the correct order of rotation required.‘ This is not
always an easy task for beginners in computer graphic drawings.

An easier, more straightforward, way of "asking" the user for a
desired view is to establish a line of sight through which an observer
wishes to view an object. This line of sight can be established by
iocating two points; the point being observed and the point position of
the observer. The disténce 5etween these points determines the relative
size of the final drawing and the "amount" of perspective generated.
Only two anéles of rotation are required to d:ient the observer on the
positive axis with the positive X axis to the right and the positive_!
axis upward. (The third angle of rotation is not used.) Another great
flexibility with this method is the ability to look at points other than
the origin. Restricting the view to the origin greatly limits the
possible number of views. If a point other than the origin is specified
as the innf being observed; then a simple translation is required with
the rotation to align the line of sight with the Z axis. In summary,
this method increases the nqmber of views possible and allows the
computer to do the "dirty work" of calculating the correct rotation
angles.

Implementatioh ipto.FORTRAN required approximately 30 lines of
code. Because the program was run interactively, these computations

were not included in the timed portion of the algorithm.
Integer Conversions

Griffith's algorithm converts all vertex coordinates into integers
using linear mapping functions based on the maximum and minimum values

for each axis. Two restrictions control the size of these linear
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mapping functions. If the integer values are too small, then the
accuracy of ﬁhe.final drawing can be distorted, even to the extreme of
making nonvisible lines visible and parallel lines skewed. From experi-
ments usiné.different ranges of values (based on powers of two for
simplicity), the minimum integer range,prqducing no visible distortions
on complex drawings was from -1024 to +1024. However, because of over-
flow problems on various calculations, there is also an upper limit
based on the integer size of the computer being used. The equation
(I*J) - (K*L) prpduced thg largest possible number from any of the
calculations in the algorithm. Therefore, to prevent overflow, each
integer value would need to be restricted to the range —128 to +128

for an integer word size of 16 bits; the range -2048 to +2048 for an
integer word size of 24 bits, etc.

Virtually all small computers today are 8 bit or 16 bit word
machines, aé was the computer used for this thesis, a PDP-11/34.

The largest integer value in the FORTRAN implemented on this computer
was 16 bits. This required a change in Griffith's FORTRAN implemen-
tation of his algorithm,

Two sections of code were changed from integer calculations to real
'calculations: the solution-for intersections betweenilines, and the
_test for an edge seqmeht to determine whether it is in front of or
behind a face. On the PDP-11/34, the ;eal arithmetic calculations are
kboth software and hardware supported. The hardﬁarevsupported arithmetic
was used in all testing. 1In the extensive £esting done, no loss of
accuracy was ever discovered from using real calculations and no

appreciable increase in computing time was evident.
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Back Edge Elimination

The solution to hidden-linc climination can be greatly cnhanced if
all back faces can be eliminated quickly from the view. A back face is
any face on the "back side" of an object. On the average, half of any
given solid quect‘is always not visible and therefore half of its faces
are back faces. Using a certain convention for describing faces and
vector algébra, back faces can be eliminated easily.

Intuition says that by removing approximately half of the faces,
the algorithm should run twice as fast and use half as much storage.
This proved to be cdrrect, as shown 1éter in the testing discussion.

Implementation in FORTRAN required four lines of code inserted into
the face node portiéh of the data structure. After a face is read in,
it is immediately tested to determine whether it ié a back face. If it
is, the face is left completely out of the data structure along with
each of its edges. To establish the correct convention for the vertex
pointers order (listed clockwise around the perimeter when looking at
the "exterior" of the face), a few minor changes had to be made in

Griffith's object building pfograms.
New Maxmin Test

_ ‘Thé maxmin test for depth comparisons uses the maximum Z value on a
face compared to the minimum 2z value on an edge. This comparison elimi-
nateé many face tests but there is a conveﬁiént way to make it even better
because of the grid cell structure.

The edge is compared to faces in each cell thét it passes through.

It seems logical then, to compare the maximum Z on a face with the
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minimum 2 in the cell where the face appears on the edge segment.
Whereas a face might fail the bfoad test against the minimum Z of the
edge, it could possibly be eliminated from comparisons by this more
exact test (Figure 8).

This fest required a total change in the Qay cells were found along
an edge.‘ Griffith used an approximation method which did not solve for
exact intersections with the grid cell boundaries. Instead, his method
required the calculatiéh of some copstants and then oniy addition and
some tests to find the next cell. The new test required exact solutions
at the grid line intersections to solve for the Z values at these points.

The implementation in FORTRAN took approximately the same number of
lines of gode as Griffith's original code. However, when considering
efficiency, several mathematical divisions are required in place of his
simple addition; This makes the process of finding cells along an edge
a little more costly. Testing on a single cube sthed an increase in
computer time using this method which was attributed to the added "cost"
- involved in the mathematical computations. But in testing more complex
objects, the néw method was always comparable to, or a little better
than, Griffith's'original algorithm. In some cases fhere was approxi-
mately a 5% incréasg in efficiency. As Table IX shows, the cases
whére this new test helps the most is for "long" faces compared to
fairly close short faces. . From the expériments run, in normal appli-
cétions, thié "improvement" adds substantially nothing to the efficiency
of the algbrithm. But for the occasional special drawing conditions
~which do occur, this new maxmin test does indeed eliminate enough face

comparisons to make it useful.
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Algorithm Testing--Results and Comparisons

AThfee kinds of compariéons and tests were done on the Griffith

algoxrithm:

. 1. The algorithm was compared to ten other hidden-line, hidden-
surface algorithms using the information presented by
Sutherland (10).

2. The same testing that Griffith presents in his published
article was simulated to validate his results.
3. The improvéd versions presented previously were tested against
Griffith's original algorithm to measure their benefits.
Each of these will be discussed in the following paragraphs but refer

to Appendices B and C for actual figures.

Comparison to Other Algorithms

Griffith's algorithm must be categorized somewhere between the
object space algorithms and the image space algorithms. The initial
input and final output are related to the object space in that they have
high accuracy. But the calculations are done to a limited "resolution":
limited; not by the resolution}of an output screen, but by the magnitude
of integers in the computer being used. Also, this is a comparison
algoritﬂm comparing edgesbto faces. This creates‘a difficulty in
linking Griffith's algorithm into the éutherland tree structure. The
best "fit" is between Robefts and Schumacker, linked half way between the
‘object space and "partly each" space and linked to the comparison
algorithms.

The cqhérehce used by Griffith is comparable, in some ways, to

Warnock's objects in local areas on the screen to reduce the number
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of tests and comparisons needed. There are few apparent similarities
with the hidden-line algorithms of Appel, Galiﬁborti, Loutrel, and
Roberts. Griffith does not usc the notion of uantitative invisibility
or edge coherence. Neither is there any of the plane equations as used
by Roberts. Griffith avoids the calculation of the plane equation by
the introduction of his masking line and least squares approximation.
A major distinction of Griffith's method is that it does not have to
take care of the Special conditions that always seem to arise, such as
a face’intersecting.another face at a single point. Griffith's general
masking line concept takes care of all special conditions. The other
algorithms do not even discuss solutions to these problems.

In order to compare Griffith's: algorithm with the same scheme that
. Sutherland uses, the algorithm was»broken‘into its major operations and
sorting and searching routines. 4From this examination, the edge to face
comparisons are the dominant cost of the algorithm. (This was also
erified during early testing of the program by prihting out inter-
mediate test values.) The masking line test for visibility is the only
~other major time consuming task. The figures.show that if excessive
face comparison§ are made with each edge, the results are disastrous.
The way-to incréase the efficiency is to decrease the humber of face
comparisons.

An interesting relationship appeared betweenbthe cost and the depth
coﬁplexity'of the environment. The depth complexity is defined as a
measure of how many front faces are pierced by an arbitrary ray from
the viewpoint, on the average. Because ﬁhe depth complexity remained
constant in each succeedingly more complex environment, the face sizes,

on the average decreased in height and also in the amount of screen area
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that they covered. Since each face still has approximately the same
number of faces around it on the screen area, the number of face
comparisons for each edge remains fairly constant for all three
environménts. Assuming this is correct, the algorithm grows on a

linear basis as a function of the total nuﬁber of edges. Just as
important ié the indication that as the depth complexity increases while
the number of faces stays constant, many more edge-face comparisons
would be required for each édge. The algorithh would tend to grow gore
nearly expone%tially as the depth complexity increased. These are trends
in the data and not exactly éccurate for any given environment. (See
Appendix B for‘an example.) Other factors that could not be included

in the cost calculations  are the amount of overlap amdng faces and the

Z depth relationship between faces. Both of these allow the edge-face
comparisons to be cut short, which contributes much to the efficiency

of Griffith's élgorithh. In coﬁclusion, the algorithm has a much greater
possibility of ‘a linear grthh rate if the-environﬁent depth complexities
stay small. As the depth complexity grows, the analysis becomes less

precise and more dependent on the properties of the particular environ-

ment being drawn.

Comparison to Griffith's Original Results

Griffith's computer was much faster than the PDP-11/34 which was
used for implementation and testing for this thesis. But the same
trends in computation time were received. The FORTRAN timing function
of a‘PDP—ll/34 is not Very accurate and thus the fighres cannot be
taken as exact data but they can be used as relative_indicators of

computing time. The final two test cases were not run because of lack
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of'memory for these large drawings. The results can be seen in Table V
in Appendix C.

| Griffitﬁ's_test case of "a lattice of cubes" takes advantage of thé
grid‘cell structure of the data étructure. Another test case was
constructed which contained long rectangular boxes intermixed with the
cubes. Thié would ténd to make the algorithm "work" harder if the
rectangles were at an angle such that they were linked into many cells
of the grid of thch they did not cover or intersect. This would
increase the number of edge to face cdmparisons and consequently the
amounﬁ of computer time. The results showed an approximately 100%
increase in the time required for calculations if the angle of the
'rectangqlar boxes was from 30 to 45 degrees from the horizontal. (Refer
to Table VI, Appendix C.) This shows so dramatically the importance of
the environment in relation to the performance of the algorithm.
Griffith's algorithm is based on-an area coherence scheme and if the
environment is not area coherent, the algorithm losses much of its
efficiency. Fven though the efficiency dropped drastically as the
environment cﬁanged, the computer time still grew at a lineaf rate.
This seems to prove that the algorithm grows at a linear rate regard-
less of the environment, assuming that the environment's coherence

properties remain fairly uniform.

Comparisons with Improved Versions

Three versions of the algorithm with improvements were tested
against Griffith's original algorithm:
1. New Z depth test for face to edge comparisons.

2. Back faces removed.
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3. Both of the above together.
These were run on thé original test case of "a lattice of cubes" and
on the new test case with long rectangular boxes. The new version's
performances have already been mcntioﬁed in the previous discussion.
The test results can be seen in Table VII and Figures 9 and 10 of

Appendix C.



CHAPTER V
CONCLUSIONS AND SUGGESTIONS

All of the goals of this thesis were accomplished and have been
presented in the previous chapters. A few specifics on how they were
accomplished follows, with comments on the implementation, problems
encountered, and ideas for future work in this area.

After receiving a copy of Griffith's algorithm, it was first
implemented on an IBM 370/168. All of the file processing was changed
to make it cohpatible with the IBM file processing. . No other changes
were necessary and the program ran successfully. No timing was done
because the multiprocessing environment made any timing functions
almost meaningless.

To test the program on a small computer, it was implemented on a
PDP-11/34. The major problems were the 16 bit word size and the small
memory size. Many of the integer calculations had to becqme real calcu-
lations to prevent overflow, as discussed in chapter 4. As for the
memory size, each program run on a PDP-11/34 has 32K of memory for all
of the code and data. This is obviously too small for the array which
holds all of the data structure. The PDP-11/34 allows access to other
in-core memory through what is called "virtual" arrays. By this
technique the data structure was stored in a 32K integer array outside
of the memory partition which ran the program. While the program was

executing, the amount of memory access for it essentially deleted the
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multiprocessing capability of the PDP-11/34; there was no more memory
for other programs. This makes the algorithm very . detrimental to a
multiprocessing environment if it is exccuting for long periods of
time on complex pictures. A new algorithm design is needed such that
only a small necessary part of the data structure is stored in core
memory at any given time and the rest is on some kind of high speed
peripheral storage device. Some breakdown of the data structure would
be required to access the aata efficiently.

Future work is needed in several areas:

1. The environment condition that all faces must intersect on face
boundaries is restrictive. Some way is needed to extend the
general masking line scheme to allow for penetrating faces.

2. Many times three-dimensional environments are created from a
group of basic building blocks, such as a group of cubes to
create a building. A method is needed to eliminate all over-
lapping edges so that a continuous shape is created when the
hidden-lines are removed.

3. More work is needed in implementing such large data requirements
on small computers, as discussed previously.

Many problems. are still to be solved and more problems will arise in
the future.

The ériginal FORTRAN code was not structured in any readable format
and it was. not documented. To allow for easier study during this thesis
work and for future work, the code was rewritten into a more readable
format. All major loops and decision statements were documented. The

resulting code is in Appendix D.



Griffith's algorithm is a very efficient scheme for hidden-line
removal. Its use in the field of computer graphics will grow in the
coming years. Small computer applications will also have many uses

for this algorithm as they'gain more power and memory.
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EXAMPLE OF GRIFFITH'S ALGORITHM
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INTRODUCTION

This appendix is a very simple example of the data structure and
the masking line concept. 1In an attempt to make the example "readable",
subscripted pointers are used instead of actual numbers. Refer to

Chapter III for a more detailed description of the overall concepts.

(X, .Y

10 10Z10)

X
(X3¥324)

Figure 9. Examplc Picture
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The following figures are an example of a masking line compared to
an edge to eliminate hidden edge segments. Edge eleven (Ell) is
compared to faces one (Fl)‘and two (F2). It is not compared to face
three (F3) because a face cannot hide one of its own edges. Face one
is compared first (Figure 1lla). Noﬁe that the masking line lies on the

face and is created by the face intersection with the imaginary plane

- formed by the edge and the viewpoint.

Masking line with
endpoints on face boundary

Viewpoint

{(a) Masking Line

Up/Off

Down/Of f . Down/Of £ Down/On Up/On

Masking line

Ell

{b) Masking Line Switches

Figure 1l1l. Edge Eleven and Face One Comparison
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The relationship of the masking line to the edge is shown in
Figure |1h, as well as the awitch positions Tor visible segment deter-
mination. Visible segments are created only trom the down/on switch
setting. The masking line segments control tho up/down switch and the
edge segments control the on/off switch. Only a portion of the edge
segment is now visible and only this much is used for future testing

against other faces.

Remaining visible

~dqe e f B
edge segment o 11

/ Masking line

Viewpoint

Figure 12. Edge Eleven and Face Two Comparison

The same relationship for the switches is true for the resulting
masking line and edge segment in F'igure 12. A portion of Ell is still

visible and no other faces remain to be tested. The visible segment

is output for later drawing. Comparisons on a new edge are started.
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Description of Faces

Appendix B cannot be understood without a thorough study of
Sutherland's article "A Characterization of Ten Hidden-surface
Algérithms“L The explanation of this article would require more space
than is available here.

Tables I through IV are copies of tables from Sutherland's (10)
article with additions which refer to Griffith's (6) algorithm. Table I
defines a»set of variables used to describe an environment. As seen in
Table II, some of these values are "given" as initial data to establish
ah envirbnment. The other variables are defined in terms of these
basic given variables. An understanding of each algorithm is needed
to fully understénd the formulas in Table II.

Three environments are set up, each one bein§ twenty—five‘times
more complex than the previous one. The "Roberts' House" has only 100
féces, while "Big Harbor" has 60;000 faces. Using the variables and
their valﬁes_for each environment, the "cost" of computing a hidden-
sﬁrface picture is calculated. This cost is a relative value based on
the number of comparisons an algorithm makes, the kind of mathematics
involved in those comparisons, and fhe types of sorting done. These
costs give some iﬁsight into the efficiéncy of each algorithm. Table
III shows the equations which are used to obtain the final costs for
each algorithm in each environment. The totals are in Table IV.

Note that becapse of the relative nature of the costs assigned to each
algorithm, numbers in Table IV which are within a magnitude of 10 of
each other are considered to be close in efficiency. When the magni-
tudes approach 100, then those algorithms with lower costs are

definitely more efficient.



TABLE 1

ENVIRONMENT STATISTICS
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Total number of faces in the environment.

Number of relevant faces in the environment.

Depth complexity of the environment (average).

Number of relevant clusters in the environment.

Number of faces per cluster (average).

Total number of edges in the environment.

Number of relevant edges in the environment.

Number of relevant edges if sharing is allowed.

Number of contour edges in the environment.

Total number of edge crossings in the viewing plane.

Number of intersections of visible edges.

Number of face intersections.

Height of a face in resolution units (average).

Total number of segments, visible or not.

Number of segments on a scan line, visible or not (average).
Number of visible segments on a scan line (average).

Total length of visible edges (measured in resolution units).
Vertical resolution of screen (number of scan lines).
Horizontal resolution of screen.

New Definitions*

Total number of edges in a cluster. (4F )

Total number of edge intersections in a cluster.
Number of edge intersections on a masking line.
Number of segments on a masking line.

Number of visible segments on a masking line.
Total number of vertices.

*Author's additions

Source: Sutherland (10, p. 47)



TABLE 11

STATISTICS FOR THREE ENVIRONMENTS

Statistic Rule of Roberts' Harbor Big
Thumb House Harbor
(1/25) (1) (25)
n given 500 500 500
m given 500 500 500
Fe given 100 2500 60000
Fe given 10 25 200
D¢ given 3 3 3
Ft 2F, 200 5000 120000
Ct Ft/Fe 20 200 600
E¢ 4F ¢ 800 20000 480000
Er E¢/2 1/2 400 - 10000 240000
Ec Er/(F./2) 180 2800 24000
Eg (Ex-Ec) /2+E, 290 6400 130000
Xy (De-1)Er/4 200 5000 120000
Xy Xy /D 1/2 70 1700 40000
He - (anc/Fr)l/z 86 17 4
S1 (DcFym/n) 17 87 420
Sy S1/De 5 29 140
Ly 2nSy 5000 29000 140000
New Definitions*
Ep 4F . 40 100 800
X5 . (De-1)E./4 20 50 400
Xm X /Ep 1/2 1/2 1/2
Sm 2Xm : 1 1 1
Smv Sm/D¢ 1/3 1/3 1/3
3/2E¢ 1200 30000 720000

*Author's additions

Source:

Sutherland (10, p. 47)
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TABLE III

COSTS FOR THREE ENVIRONMENTS
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Roberts

Newell et al

Back-facing edges cull i 1. Z sort
IS 800 20K 480K ZFr : 200 5K 120K
Clipping cull 2. Newell special
100 g 29K 640K 13M Frz(f+f +100£3) 45K 650K 60M
Edge/volume test f =2 Hg/n
100 K fCy 2.3M 510M 318 3. Segment generator and Y sort
f = 4; split edges, and Cp should be 10 FypHg 86K 420K 2.4M
. higher 4. X merge
o TeHES /4 11K 310K 8.4M
Appel, Loutrael, Galimberti and
Montanari Warnock
Back (and contour edge) cull ) 1. 2 sort
fp 800 20K 480K 2 Fp 200 5K 120K
Inftial visibility search 2. Warnock special cull
100 CgFyp 200K 50M 3.68 100 LD, 1.5M 8.7M 42M
Edge intersection 3. Depth search
0 FgFe 1.6M 540M 938 LyDg 15K 87K . 420K
Invisibility ecorrection
30 (2iig3) 52K 1.2M 23M Romney et al
Sort along edge
Fg(X¢/Eg) loga (Xt/Es) 1. Y sort
: 290 6.4K 130K : 2 F. 200 5K 120K
2. X sort
nSy 8.5K 43K 210K
Criffith™® 3. X priority search
nm 250K 250K 250K
Vertex links for drawing 4, - Depth search
Vi 1.2K 30K 720K 20 n 289D f 510K  2.6M 13M
7 sort f = 1/2; due to depth coherence
My 200 5K 120K
Area covered sort Watkins, Bouknight
4Fy 8§00 20K 480K
Fdge intersectlion 1. Y sort
J0Eg (48-8) 960K  24,6M 590.4M Ey 400 10K 240K
Interscction sort . 2. X merge
Fe (Xpt+3) 2.8K 70K 1.68M ’ £,81/2 3.4K 430K 50M
Masking edge test 3. X sort
50EtSp 40K IM 24M n(S1+10X,./ (nSy))
merge 8.5K 43K 210K
EtSm 800 20K 480K 4, Span cull
- Output n Sy 8.5K 43K 210K
Ee (Spv) 270 6.7K 160K 5. Depth search
30nD min(m. £Sy)
450K  2.6M 13M
Schumacker et al f = 2; spans include not only visible
segments
Intra-cluster priority :
100 Fczct 200K 12M 2.48B Brute-force image space
Inter-=cluster priority )
10 Cy 200 2K 6K No memory:
Back~face cull 100nmF . 2.5B 62B 1500B
Fr 100 2,5K 60K Large mem%ry:
Y cull LOHE“F 7.5M 7.5M 7.5M
n Eg 150K 3.2M 65M :
X sort and priority search
ms 4.2M 22M 100M
(Note: K=1,000; M=1,000,000)
*Author's Additions Source: Sutherland (10, p. 50)



TABLE IV

COST SUMMARY: THREE ENVIRONMENTS

Roberts Appel, Loutrel, Griffith#* Schumackerb Newell  Warnock Romney Watkins, Brute
Galimberti and et al et al et al Bouknight force
Montanari
2.4M 1.8M 1.0M 4.2M 140K 1.5M 770K 470K 2.4B or 7.5M
510M 590M 25 25M 1.4M : IM 2.9M 3M - 62B or 7.5M
31B 97B 618M 170M 71M 43M 14M 64M 1500B or 7.5M
(Note: _K=1,000; M=1,000,000)
*Author's additions
Source: Sutherland (10, p. 54)
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TABLLE V

PROGRAM PERFORMANCE FOR LATTICES OF CUBES

1904S Computer . PDP-11/34
"Number of Time Time per Time Time per

Cubes Taken Cube Taken Cube
1 0.257 0.257 3.33  3.33
8 2.28 0.285 22,04 2.75
27 8.84 0.328 76.9 2.85
64 23.6 0.369 163.1 2.54
125 51.5 0.412 375.5 3.00

216 92.6 0.429 - -

343 161.0 0.469 - -




TABLE VI

PROGRAM PERFORMANCE FOR LATTICE OF CUBES AND
RECTANGLES AT DIFFERENT ANGLES
OF ROTATION

Using Griffith's Original Algorithm

.Number of Drawing at Drawing at Drawing at
Cubes 59 30° 45°
8 _ 23.0 30.8 30.6
27 76.9 117.0 111.6
60 v 163.1 355.9 313.5

120 375.5 705.5 704.9
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TABLE VII

PROGRAM PERFORMANCE FOR LATTICE OF CUBES

Number of Griffith Ne& Z Back Faces Both Improvements
Cubes Original Depth Removed Together
Algorithm Test (Sec) (Sec)
(Sec) (Sec) :
1 3.33  5.13 2.73 2.73
8 - 24.5 22.9 13.88 15.84
27 101.9 101.6 53.5 56.5
64 275. 274. 147.9 139.2
125 620. - 617. 298. 313.

216 - - 573. -
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(Loglo)
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4 Both Improvements Together / s
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Figure 13. Program Performance for Lattice of Cubes
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SYSTEM
POP 11/34

TIME- TAKEN
2.7344

WORDS USED
144

* SIZE OF
RESOLUTION
4895

ORIGINAL NUMBER
'OF VERTICES
8

ORIGINAL NUMBER
OF FACES
6

VERTICES/CELL
4 ‘

Pigure 14.

One Cube

09



SYSTEM
PDOP 11/34

TIME TAKEN
13.8828

WORDS USED
1957

SIZE OF
RESOLUTION
4085

ORIGINAL NUMBER
OF VERTICES
64

ORIGINAL NUMBER
OF FACES
48

VERTICES/CELL
4

Bigure 15. Eight Cubes

19



SYSTEM
PDP 11/34

TIME TAKEN-
181.9141

WORDS USED
5287

SIZE OF
RESOLUTION
.~ 4p95

ORIGINAL NUMBER
OF VERTICES
216

ORIGINAL NUMBER
OF FACES
162

VERTICES/CELL
4

Figure 16. Twenty-seven Cubes
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SYSTEM
POP 11/34

TIME TAKEN
. 275.8703

WORDS USED
12593

SIZE OF
RESOLUT ION
4895

ORIGINAL NUMBER
OF VERTICES
512

ORIGINAL NUMBER
OF FACES
384

VERTICES/CELL
4

Figure 17.

Sixty-four Cubes
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SYSTEM
PDP 11734

TIME TAKEN
628.3359

WORDS USED.
24975

SIZE OF
- RESOLUTION
4095

ORIGINAL "NUMBER
OF VERTICES
1000

ORIGINAL NUMBER
OF FACES
750

VERTICES/CELL
4

Figure 18. One Hundred Twenty-five Cubes
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TABLE VIII

PROGRAM PERFORMANCE FOR LATTICE OF CUBES AND RECTANGLES

Number of _ Griffith's New Z Back Faces Both Improvements
Cubes Original Depth Removed - Together
Algorithm Test (sec) (sec)
(sec) (sec) ' ' '
1 3.33 5.13 2.73 v 2.73
8 30.8 29.0 15.9 ' 16.0
27 117.0 114.8 64 .4 59.0
60 355.9 355.7 188.2 190.0
120 705.5 706.1  351.5 359.7

216 - - ' - -
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2007 7
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60T o °® . s e
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Both Improvements Together s o
—W/ e
Back Faces Removed——\, yd 7
e d /‘\«Griffith's Original Algorithm
10& 7 _ < ]
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Figure 19. Program Performance on Lattice of Cubes and Rectangles
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SYSTEM
POP 11734

TIME TAKEN
30.7734

WORDS USED
1599

SIZE OF
RESOLUT 10N
4p95

ORIGINAL NUMBER
OF VERTICES
64

ORIGINAL NUMBER
OF FACES
48

VERTICES/CELL
4

Figure 20. Eight Cubes and Rectangles
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SYSTEM
PDP 11/34

TIME TAKEN
116.90688

WORDS USED
5599

SIZE OF
RESOLUTION
4085

ORIGINAL NUMBER
OF VERTICES
216

ORIGINAL NUMBER
" OF FACES
162

VERTICE%/CELL

Figure 21. Twenty~seven Cubes and Rectangles
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SYSTEM
POP 11/34

TIME TAKEN
355.8667

WORDS USED
13083

SIZE OF
RESOLUTION
4095

DORIGINAL NUMBER
OF VERTICES
480

- ORTGINAL NUMBER
OF FACES
360

VERTICES/CELL
, 4

Figure 22.

Sixty Cubes

and Rectangles
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SYSTEM
PDP t1/34

TIME TAKEN
705.5166

WORDS USED
28437

SIZE OF
RESOLUTION
4095

. ORIGINAL NUMBER
OF VERTICES
960

ORIGINAL NUMBER
OF FACES
720

VERTICES/CELL
4

Figure 23, One Hundred Twenty Cubes and Rectangles

oL



PROGRAM PERFORMANCE FOR LATTICE OF CUBES AND:

TABLE IX

RECTANGLES AT DIFFERENT ANGLES
OF . ROTATION '

Griffith's

View New Z
-2 Original Depth
Algo,rit_.hm Test

1 619.7 1585.2
2 ‘658.4 619.8

71



SYSTEM
POP 11/34

TIME TAKEN

585.1816

. WORDS USED
27397

OF

SIZE
RESOLUTION
4095

ORIGINAL NUMBER
OF VERTICES

968

ORIGINAL NUMBER

OF FACES

728 .

VERTICES/CELL

View One

Figure 24.
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View Two

SYSTEM
PDP 11734

TIME TAKEN
619.8320
WORDS USED
27859

SIZE OF
RESOLUTION
4095

ORIGINAL NUMBER
OF VERTICES

960

ORIGINAL NUMBER

OF FACES
720

VERTICES/CELL

73

Figure 25.
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(02 233282282034 33324312230223243222038203332303 3324222322333 832132¢22232322¢24

No0ccecNeN0NoCNNNONCONCCeDEN0NnNNONO0NO0a0a00NNo0NACn0N00

HIDDEN LINE REMOVABLE :

THE ORIGINAL VEKSIUN OF THIS ALGORITHM WAS

DEVELOFPED RY J.G. GRIFFITH AND PKESENTED IN YHE AKTILLE
“ELIMINATING HIDDEN EDGES IN LINL DRAWINGS®,COMFUTER-AIDED
DESIGN,VOLUME 11 NUMBER 2:MARCH 1979,

THIS VERSIONs W1TH ALGORITHM REVISIUNS AND DUCUMENTATION» WAS
DEVELOPED FOK GRADUATE THESIS WUORK AT. UKLAHUMA STAYE UNIVERSITY
BY WAYNE BROWN.

DATE:SPRING 1980

SEESEXRASERLINES . 1232222223243

ALGOKITHM DESCKIFYIUN

PHASE 13SET UP THE DATA SYRULIURE.
PART 1:TKANSLATIUN, ROTATION,» AND FERSFECTIVE.
PART ZIVERYEY. NUDES. : '
PART 3:FACL NUDES.
PART 4:LDGE NUDES.
PART S:ITESY GRID SET UF.

PHASE 2:HIDDEN LINE REMOVABLE.
PART 1:SET UF AN EDGE.
PART 2:COMPAKE EDGE 10 EACH INDIVIDUAL EDGE OF A FACE.
PART 3:SURT INYERSECTIUNS IN ASCENDING ORDER.
PART AIDEPTH ANALYSIS.
PART SiMERGE TWU LISTS OF INTERSECTIUN FOINIS.
PART &6:FRUM MASKING LINE SAVE VISIBLE LINE SEGMENTS.
PART 7:KtPETE FUR EAUH FACE IN EACH CELL THAT
THE EDGE PASSES THRU.
PART 8I0UTPUY VISIBLE LINE SEGMENTS-]1F ANY.
PART YIREPEAT 1 THRU & FUK EACH ELGE.

XSRS REBL LRSS : ) . (223232234224

HAJOR VUARIABLE LIST

S - ARRAY FOK ALL DAYA STRULTURE AND CALULATIONS.
(MAKE THIS AS RIG AS FOSSIBLE)

NVSIZE- SIZE OF VERTEX NUDE

NFSIZE- SIZE OF FALCE NODE

NESIZE- SIZE OF EDGE NUDE

BITS -~ LARGEST ABSOLUTE VALUE OF INFEGERS FOR MAFFING

LIMIT - RANGE UF INTFERGER VALUES

HX - TRANSLAYION VALUE FOR THE X VALUES

HY ~ TRANSLATION VALUE FUK THE Y VALUES

HZ - TRANSLATION VALUE FOR THE 2 VALUES

R - RADIUS OF SPHERE THAY ENVELOPES TYHE ORJECT VIEWED
NV - NUMBER OF VERTICES

NF - NUMBER OF FACES

Al - ANGLE OF RATATIUN ABOUT Z AXIS

ococnoocO000n

1000

1001

1002

10

2

30

40

S0

60
1003

NBUCK -
STEF -
START -

EIXSIRABLRLRLELALELS

ANGLE OF ROTAYION ABOUT Y AXIS
SCALE FOR X MAPPING
BIAS FOR MAPF1ING(HALF POUSITIVE - HGLF NEGATIVE)

‘SCALE FOR Y MAPPING

BIAS FOR MAFFING Y(HALF PUSITIVE - HALF NEGATIVE)
NUMBER UF BUCKETS(NUMBER OF ROWSsCOLUMNS IN GKID)
SIZE OF EACH BUCLKET(GRID SUUARE)

BIAS ‘FOK STARTING POINS IN VHE GKID

IMPLICIY INYEGEREA (Ir»JsKrLoMrN)
VIRTUAL N(32767)

DIMENSIUN BUFF (60)

DATA NYI/S5/9NF2/2/yNF3/3/NFA/A/

122332322223 23 222230220 22203 23232343242
PART 1:TRANSLATIUR:ROTATIUNFERSPECTIVE.
FINU THE ANGLES OF KOTATYIUN.

WRITE(NYI»1000) .
FORMAY(‘ 1NFUT POINT BEING OBSERVED - F10°/

|

1 1 : I

READ(NTI»1001)X»Y»2Z

FORHAT(3F10.0)

WRITE(NTFI»1002)

FOKRMAT(* INFUT PUSITUN OF OBSERVER - F10)
READ(NTI,1001)XPrYP22F

X1=XP-X
Yi=YF-Y
Zi=2P-2
HX=-X
HY=-Y
HI=~Z

RD=ATAN(1.0)/45.0
RXY=SQRT(X1¢82 + Yie2l)
IF(RXY.EQ.0.0) GG TO SO
IF(X!.EQ.0.0) GU TOU 10
IF(Y1.£G.0.0) GO TU 20
A=ATAN(Y1/X1)/RD
A1=%0,0%(2.0-X1/ABS(X1)) + A

GO T0O 30

Al=90%(1.0+Y1/ABS(Y1))

GO TO0 30
AL=208(2,

-X1/ABS(X1))

IF(Z1.NE.0.0) GO TU 40

G1=90.0
GO TO &0

G=ATAN(Z1/RXY)/RD

G1=%0-6
G0 TO &0
A1=0.0
G1=0.0

WRITE(NTI,1003) Al,G1
FORMAT(‘ A1’,F10.5:" G1°»F10.5)

(1223222282 32¢44
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1004
1005

1006

1007

1008

Al=A1¥RD
G1=G1%RD
INPUT POWER OF 2 FOR RESOLUTION S1ZE.
EXAMFLE! & - 254» 13(NMAX) - 32767,
WRITE(NTI»1004)

FORMAT(’ INFUT S1ZE OF 1INTEGERS - 12)
READ(NTI»1005) NRITS
FORMAT(12)
WRITE(NTI»1006)
FORMAT (“ INPUY NUMBER OF “ERTICES PER CELL - I2/)
READC(NT1y1005)NC
. INITIALIZE CONSTANTS.
BF=1,0/FLOAT(NC)
TIME=SECNDS(0.)
HAX=0
NVSIZE=5
NFSIZE=3
NESIZE=5
KBITS=2XENBITS-1
LBITS=2¥KBITS
BITS=FLOAT(LBITS)
LIMIT=2%LB1TS+3
ZF=1.0E20
ZN=-1,0€20"
R=0.0 )
OPEN (UNIT=2yNAME='OFJECT.DATF1‘»TYPE='0LD"»
ACCESS="SEQUENTIAL s FORM="FORMATTED’ )
OPEN (UNIT=3»NAME='SCRATCH1 ,DAT 1’ s TYPE="NEW'»
ACCESS='SEQUENTIAL ‘ » FORKM="UNFORMATTED )
OPEN (UNIT=4;NAME='SCRATCH2.DAT 1y TYPE='NER’»
ACCESS='SEQUENTI1AL * » FORM="UNFORMATTED "}
ROTATION MATRIX.
SINA=SIN(AL)
COSA=COS(A1)
SING=SIN(G1)
C0S6=C0S(G61)
R1=C0OSA
R2=SINA
R3=0.0
R4=COSGX(-SINA)
RS=COSG*COUSA
R6=SING
R7=(-SING) X (-SINA)
R8=(-SING)XCOSA
R9=C0S6
READ THE NUMBER OF VERYICES,
READ(NF271007}NV
FORMAT (2014)
DD 70 Ji=1:NV
READ(NF2,1008)X»Y»2
FORMAT(5F16.0)
TRANSLATION,
X=X+HX
Y=Y+HY

Z=Z+HZ :
RH=XZE2 + YXEZ + ZXE2
IF (RM.GT.R) R=RM
c ROTATION,
TX=R1%X + R22Y + R3&Z
TY=RAZX + RS2Y + R&XZ
TZ=R7%X + RBRY + K9LZ
WRITE (NF3) TXsTY,TZ
IF(TZ.GT.ZN)ZN=YZ
- IF(TZ.LV,ZF)ZF=TZ
REWIND 3 »
R=SORT(R)

c ' HALF ANGLE OF VIEW FOR PERSFECTIVE.

ANG=R/SGRT(X1%22 + Y1¥R2 + Z1XX2)
IFCANG.LT.1.0) GO TO 80
WRITE(NTI»1009) ANG
1009 FORMAT(* ANGLE='1F10.6s"
‘ STOP
80 H=RX(1,0-ANG)
€ .

TOO CLOSE TO THE ORJECY’)

LINEAR MAPPING FOR THE Z.
A=BITS/(ZN-ZF)
B=-A¥(ZN+ZF)20.5+0.5
XL=R
XR=~kK
YU=-R
YD=R
DO 90 Ji=1 » NV
READ (NF3)} R1sRZ2:R3
c ) FERSFECT1IVE.
: RAx=H / (R-R3¥ANG)
R1=Ri¥R4
R2=R2%R4
R3=A¥R3+R
WRITE (NF4) R1,R2:R3

IF(R1.LT.XL) XL=K1
IF(R1.6T.XR) XR=K1
IF(R2,6Y,YU) YU=kZ
IF(R2.LT.YD) YD=RZ
90 CONTINUE
H=H/SART (1,0-ANGXANG)
[ - SCALE FOR F1NAL DRAMWING.
BUFF(1)= 2,0%H+(Z1-R)20.25
NBP=5
REWIND 3
REWIND 4
c . LINEAR MAFFING FOR X AND Y.
A=BITS/ (XR~XL)
Be-AX(XL+XK)%0.5+0.5
C=BITS/(YU-YD)
D=-CX(YU+YD)%0,540.5
j 22242232224 ¢223323232033334
PART 2!SET UP VERTEX NODES.

co0

J1=1-NVSIZE

FIND RANGE OF X AND Y FUR MAPFING.
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100

110

120

2=2-NVSI2E
J3=3-NVUS1ZE i 130
JA=4-NVSIZE
J5=0
DO 100 J9=1sNV
J1=J1+NVS1ZE
J2=J24NVSIZE 140
J3=J3+NVS1ZE : :
J4=J4+NVUSTZE
J5=J5+NVSIZE
REAI' (NF4)
N(J1)=AXR1+E
N(J2)=CERZ+D
N(J3)=R3
N(J4)=0 - 150
N(J5)=0
CONTINUE

O

R1sR2sR3

REVERSE MAFPING CONSTANIS.
A=1,0/4
R=-~(B-0.5)%A
c=1.0/C
D=-(D-0.5)%C

o0on

SET UP TEST GR1D.
NBUCK=SQRT (BFXFLOAT(NV))
IF (MOD(NEUCK »2) «NE . 0) NBUCK=NBUCK+1
STEP=FLOAT (NBUCK)/BITS
START=-0,5%RITS2(1.0+1.0/FLUAT (NRUCK))
NBUCK=NBUCK+1
K1=NVENVS1ZE+1
K2=K1+NBUCKXNBUCK-1
1IN1T1AL1ZE GRID TO ZERODES.
DO 110 J1=K1,K2 c
N(J1)=0
ASSIGN EACH VERTEX TOU AN AFPROFRIATE
CELL LIST. :
J1=K2~1
J2=K2
J3=K1+1-NVSIZE
OO0 120 J4=1,J3sNVSIZE
J5=(FLDOAT(N(J4))-8START)IXSTEF c
J6=(FLUAT(NCJ4+1))-START)IXSTEF . 160
IF(J6/2%2.NE,J6) J5=NBUCK-1-JS5
J7=J6XNBUCK+J5+K1
Ji=J1+2
J2=J242
N(J2)=N(JI7)
N(J7)=J1
N(J1)=J4

MINIMIZE FINAL DRAWING FEN
MOVEMENT - LYINK VERTICES.
J32=0 c
D0 140 J1=K1,K2
J2=N(J1)

Lo

IF(J2.EQ.0> GOTOD 140

J3I=N(I2)

N(J3+3)=J32

J32=43

J2=N(I241)

IF(J2.NE.O) GUYO 130

CONTINUE

FREHAVE SUREEN AREA FUR SURTING FACES
RY DEFTH. :

NFS=K2+1

J1=(NFS-K1)/2

J2=K142¥(J1i-1)

DO 150 J¥=K1:,J2»2
N{J3)=-LINMIY
NCJI+1)=J3

R1=FLUAY (1-J1)/RITS

R2=FLUAT (J1}%0.5

f323233222323 3893

PARYT 3{FACE NOLE.

: READ NUMBER OF FACES.

REAR(NF2r1007)NF

DO 240 J3=1»NF
JA=NFS
J6=NFS+NFSIZE
J8=J56420
JS=Jé-1
J7=J8-1
REAB(NF2y1007) (N(J%) » JY=36+J7)

JUI=(N(J&)-1) . X NVUSIZE +1

JU2=(N(J6+1)-1) ¥ NVSIZE +1

JU3=(N(J61+2)-1) ¥ NVSIZE +1

REMOVE RACK FACES.

IF(FLOAT(NC(JVI)-N(JVZ2)) X FLOAT(NCJVZ+1)-NCIU3+1)) -

FLOAT (N(JU2)=N(JV3)) X FLOAT(N(IVI+1)-N(JV2+1))
+.GE. 0.0) GO TO 10 - . oo T

N(J8)=0

J7=J6

IZN=—-L IMIT

JB=N(J7)

. FIND THE NEAREST FOINT ON THE. FACE.
J8=(J8~1)XNVSIZE+1
N(J7)=J8
JE=N(J8+2)
IF(JB.GT.IZN) 12N=J8
J7=J7+1
J8=N(J7)

IF(JB.NE.O) GUTO 160
N(J4)=1ZN
N(JA+2)=J7-Jé
NFS=J7
J7=J7-1

HUCKET ADDRESS FOR FACE.

JO=R1XFLOAT(IZN)+R2

J9=2%J9+K1

LL



170

180

190

3
-
<

OOR

230
240

C

SEARCH BUCKET TO PLACE THE FALE.
J8=J?
JE=N(JIP+L)
IF(N(J9),B1.IZN) GOTO 170
N(JB8+1)=J4
N(Ja+1)- 39
JP=N(I7)
EDGES.
DO 230 J10=J&5J7
NCENLI
JP=N(J10)
IF(J8.6Y.JF) GUTD 18O
Jit=Us
J12=J9
GO TO 150
Ji1=Jy
J1z=08
J13=N(J12+4)
IF (J13.EQ.0) GUTD 220
IF(N(J13),EC. J11) GOTO 210
J13=N(J13+3)
IF(J13.NE.O) GOTO 200
GOTO 220
N(J1342)=J4
G6TO 230
N(NFS)=J11
FERELRLELLLLLLLRAK
FART A:EDGE NODES.
N(NFS+1)=J4
N(NFS+2)=J4
N(NFS+3)=N(J12+4)
N(J1244)=NFS
NF S=NFS+NES1ZE
CONTINUE
CONTINUE
Jé=0
TRAGE THRU THE FACES AND
LINK TOGETHER.
D0 270 J3=K1»J2:2
J4=N(J3+1)
IF (J4.EQ.J3) GOTO 260
J5=N(JA+1)
N(Ja+1)=J6
J6=Ja
Ja=J5
IF (J4,NE.J3) GUID 250
N(J3)=0
N(J3+1)=0
N(K2)=0
Jisfi
FLACE EACH FACE IN ITS AFFRUFRIATE
CELL LIST,
IXL=LIMIT
IXR=-LIMIT

IYu=-LIMIT
IYD=LIHIT
J2-J14NFSIZE
J3=U2ENCI1+2) -1
C FIND THE RANGE OF THE FACE.
DO 290 J4=J2rJd3
J5=N(J4)
JE=N(IS?
JZ=N(J5+1)
IFCI6. LT IXL) IXL=Jé
IF(J6.GTIXR) IXR=Jé
IF(J7.LT.IYD) 1YD=J7
290 IF(JZ.GT.IYL) IYu=J7
[ COORIDINAYES OF GR1bR CELLS.
IXL=(FLOAY (IXL)-START)¥STEP '
IXR=(FLOAT(IXR)-STARY) ¥5TEF
IYU=(FLOAT(IYU)~START)XSTEFR
IYD=(FLOATCIYI)~STARY)XSTER .
C HAF INTG GRIL..
Jé=1YLRNBUCK+1XL+K1
J7=46-IXL+1XR
c FUT PUINTER TO FACE IN EACH
[ CELL LIST,
g 210 Je=IYL,IYU
N0 300 J9=J6,J7
N(NFS)=J1
"NINFS+1)=N(J?)
N(J?)=NFS
200 HFS=NFS+2
Jé=J6+NBUCK
310 T JZ=J7+NBUCK
Ji=N(JI1+1)
IF(J1.NE,O) GUTO 280
CLOSE (UNIT=3,DISF=’'SAVE’)
CLOSE (UNIT=4,DISF="DELETE")

[
cC DATA STRUCTURE COMPLETELY SET UF
C
CRERRXKXXREKEXREXKKKERRKE b2 332320228220 0223 232222
C
c BEGIN HILDEN LINL CUMPARSIONS.
c
OFEN (UNIT=4,NAME='DRAW.DAT1’ s TYPE="UNKNOWN’ y
& ACCESS='SEQUENT1AL ’ y FORM="UNFORMAYTED )
K=NFS
J1=0 .
5 J2 POINTS TO A STARTING VERTEX.
J2=J432
[ X¥x  LOOF 1 ¥xx
c DO FOR EVERY STARTING VERTEX.
c J3 PUINTS TO A EDGE NUDE.
320 J3=N(J2+4)
c IF THERE AKE NO MODRE EDGES W1TH
c TH1S STARTING VERTEX THEN GO TO

8L



wooo (2]

o0

a0

I40

THE NEXT STARTING VERTEX.
IF(J3.EG.0) GUTU 670
STAKTING VERTEX X1sY1,21.
E1=N(J2)
E2=N(J2+1)
E3=N(J2+42)
2% LOUP 2 22%
DO FOR EVERY EDGE WITH THIS STAKTING VERTEX.
EDGE NODE FOR CURRENI EDGE.
Ja=N(JID)
JSEN(JI3+41)
J6=N(JS+42)
MARKER TO MARK FACES TO AVOID
DUPLICATE COMPARISONS.
J1=Jg-1
N(JS+1)mJ1
N(J6+1)=Jt
NFS=K
ENDING VERTEX XZ:Y2,22.
E4=N(J4)
ES=N(JA+1)
E6=N(J4+2)
XF=E4
YF=ES
IF=Es
CALCULATE THE CELL ADDKESS IN THE
GR1D FOR THE ENBING VER(EX.
J4=(E4A-START)SSTEP
J7=(ES-START)SSTEP
J67 JTENBUCK+ J6+K1
E4=E4-E1
ES=E£S-E2
E6=E6-E3
K3aNF§
KasN$S+2
NFS=NFS+3
INITIALIZE MASKING LINE.
N(K3)=0
N(K3+1)rLKITS
N(K) =LIMT
SET CONSTANTS FOK OBTAINING
CELLS ALONS THE EDGE.
26€3
KYS=1
KAS=1
IF(E2.LE.YF) GO TO 340
KYS=0
NASe-1
KPS=1
KXS=1
IFCEL.LE.XF) GO TU 350
KBS=-1
KX$=0
JC7=(E1-START)SSIEP

360

345
370

3u0

390

o0

0O o000 :ﬂﬂﬂn
-]

JCO=(E2-START)SSTEP
XD=FLOAY(JC74KXS)/STEP + S1AKY
YD=FLOAT(JCB4KYS) /STEP + START
IF(E4.NE.0.0) B0 TO 360
XL1=BITS
YL1=(YD-E2)/(YF-E2)
60 TO 370
IF(ES.NE.O0.0) GO TO 365
YL1=BITS
XL1r(XD-E1)/E4
60 TO 370
XLi=(XD-E1)/E4
YL1=(YD-E2)/ES
Ré=0.0
KTX=KXS+KBS
KTY=KYS+KAS
82 LUOP 3 382
DO FOR EVERY CELL ALONG AN EDGE.
RY=R6
IF(XL1.LY.YL1) BU YO 390
Ré=YL1
YD=FLOAT(JCB4KTY)/STEP 4 STAKT
YL1=(YD-E2)/ES
KTY=KTY+KAS
60 TO 400
Ré=XL1
XD=FLOAT(JC74KTX)/STEP ¢ STAKY
XLi=(XD-E1)/E4
KTX=KIX$+KPS
BET THE NtXT CELL ON THIS EDGE.
R7=(RS+R6)80.S
J7=(E1HR78EA-STAKY ) SSTEP
JB=(E2+R7BES-START)SHTEP
J7=JB8ENBUCK + J74K1'
JO=N(J7)
I5=26
IF(R6.GY.1.0)Ré6>1..0
26=E3+R6SES
K3 IS THE MINIMUM Z ON THE EDGE.
KS=2S5
IF(Z6.LT.Z3)K3=26
: 8¢ LOOP 4 23T
DU FOR EVERY FACE IN TH1S CELL.
DEGIN COMPARING FACE EDGES TU THE
EDGE - ONE AT A TIME.
JO=N(J®)
J10=N(J?)
IF THE MAXIMUM Z ON THIS FACE IS
FAKTHER AMAY THAT THE SMALLLESY 7
ON THE EDUE THEN THIS FACE CANNOY
HIDE ANY PART OF THE EDGE -" GO TO
THE MEXT CELL FOR MURE FACES.
IF(J10.LE.K3) GOTO 430
. IF FACE 1S MARKED THEN NQ COMPAKISON.

6L
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430

IF(N(JP+1) . EQ.J1) GUYO 620
MARK THE FACE.
NCJR+1)=U1
J10=U9+3 .
J11=2104N(J9+2) -1
J12=NFS .
J13=NFFS-1

R7=0.0
R8=0.0
R9=0.0
R10=0.0
J1é6=N(J11)
. COMPARE ENCH EDGE OF TH1S FACE.
DO 430 J17=J10,J11
J15=J16
J16=N(J17)}
T7=FLOAT(N(J15))
T8=FLOAT(N(J15+1))
T10=FLOAT(N(J16))-T7
T11=FLOAT(N(J16+1))-T8
T9=T7-E1
T12=T8-E2
T13=T10¥T12-TP%T11
T14=EAXT12-ESXT?
T1S=ESKT10-E4%T11
IF(T15.6T.0.0)G0 TO 420
Ti3=-T13
T1 T14
T15=-T15
IF(T14.LT.0.0 .OR. T14.67.7T15 .OR. T15.EC.0.0) GO TO 430
SOLVE FOR INTERSECTION USING
CRAMER’S RULE.,

R11=T13/T15

R12=T14/715

R13=FLOAT(N(J15+42)) + R12XFLOAT(N(J16+2)-N(J1542))
LEAST SQUARE FIV SUMS.

R7=R7+R11x%K11
R8=R8+R11
R9=R9+R13%K11
R10=R10+R13

F22=R11¥RITS+0.5
IF(F22,LT.F20)F
IF(F22,6T.,F21)FZ
J13=J13+1
N(J13)=F22
CONTINUE
IF NO INTERSECTIUNS OCCURED -
GO TO NEXT FACE IN THIS CELL.
IF(J13.LE.J12) GOTO 620
J14=J13-1
SORT INTERSECYION POINTS IN

INITIAL1ZE SUMS FOR LEAST SQUARE FIT.

440

450

O o000

T 460

aooco

470

ASCENDING ORUER - SELECTION SURCF.
DO 450 J15=J12.J14
J1é=U15
J7=N(J15)
J18=U15+1
DO 440 J19=J18,J13
IF(N(J19).6E.J17) GOTO 440
J16=J19
J17=N(J19)
CONTINUE
N(J16)=N(J15)
N(J15)=417
ARE VALUES OF INVERSECTIONS
WITHIN THE END FOINTS OF THE
MASKING LINE? - IF NOT GU 10
’ . THE NEXT FACE.
IF(N(J13).LE.N(K3)  OR. N(J1Z).6E.N(KA-1}) GU TO 620
LEAST SQUARES FIT.
R11=FLOAT(J13~-J12+1)
R12=R?XR11-R8%R10
R13=R7XR10-R8%R?
R14=R72R11-R8XR8
IF(R14.6E.0.0)G0OTO 440
R12=-R12
R13=-R13
R14=-R14
J14=J13+1
J15=U14
R15=0.0
J19=N(J12)
J12=J12+1 .
LUOK AT EACH ERGE SEGMEN) -
COUNT NUMBER OF INTERSECTIONS TO
DETERMIME WHETHER EDGE SEGEMENT I:
. POSSIBLY HIIDEN,
DO 510 J20=J12,J13
Ji8=J1¢
J19=N(J20)
IF(J18.ER.J19) GOTO S10
TEMP=FLOAT(J18+J19)X(R12~R14XE&)
+2.0%BITSX(R13-R14XE3)
IF(TEMP.LE.0.0)G0D 70 510
F21=(J18+J19)/2
F22=E14+(F21¥E4)/B1TS
F23=E2+(F21XES)/HITS
R15=R15+1.0
IF(R15.6T.6.5) GOT0 510
F24=B1TS¥COS(R15)
F25=RITSXSIN(R15)
J26=0
J28=FLOAT(N(J11))
F29=FLOAT(N(J28))
F30=N(J28+1)
L0 490 J32=J10,J11

08



480

520
330

F30=N(J30+1)

F33=F29-Fu7

J37=(F36%F33-F342F35)/F1TS + 0.5
J38=(F24xF36-F25¥F35) /RITS + 0.5
J39=(F25XF33-F2AXF34)/RITS + 0.5
IF(J39.6E.0) GOYO 480
J37=-J37
J3B=-J38
J39=-J39
IF(J38.LT.0 .OR. J3B.GT.J3%) GUTO 470
IF(J3B.EQR.0 .OR. -J3B.,EQ.J39)G0 YO 470
IF(J37.LT.0) GOIQ 490
IF(J37.EQ.0) GOTO 300
J26=426+41
CONTINUE
IF(J26/2%2.EQ.J26) GO TO 510
NCJ15)=J18
N(J15+12=019
J15=U1542
CONTINUE

NU INTERACTION - GU TO NEXT FACE.
IF(J15.EQ.J14) GOTOD 420
N(JI15)=LIMIT
NFS=J15+1
MERCE THE TWU INIERSECTION L1STS.
J18=K3
J19=J1i4
J186=NFS
J17=NFS5-1
IF(N(JIB)-N(J19)} 530:540:550
J17=J17+1
N(J17)=-1-NCJ18)
J18=J18+1
GOTO 520
IF(N(J18).EQ.LIMITIGUTO 560
N(J17+41)=-1-N(J1B)
J17=J1742
N(J17)=N(J19)
J18=J18+1
J19=J19+1
GOTO 520
J17=J17+41
N(J17)=N(J1?)
J19=J19+1
GOTO 520
K3=J17+1
N(KZ)=-1

cO O

KN4=K3

Ji12=0
J13=1
J15=1

DD 600 J18=J1&rJ17
J14=J15
J19=N(J18?
IF(119.LT.0) GOTO 570
S12=1-J12
50 To S80
J19=-J19-1
J13=1~J13
J15=J123+J413
IF(J1S.EQ.2) J15=1
IF(J14.EQR.J15) BOTCG 400

StT PEN SWITCHLS.

TRAVERSE THE MASKING LINE AND EDGES.

IF(J19.NE.N{(K4)) BGOTO S¥0

K4=K4~-1
GO TD 600
K4=K4+1
N(K4)=J19
CONTINUE
K3=K3+1
K4=K4+1
N(K4)=LIMIT

IF(KA.GT.HAX) MAX=K4

JTEST=K4-KI-2
IF(K4-K3-2.LT.0) GOTG 660

~J14=K-1

DO 610 J1S5=K3,K4
J14=J1441
N(J14)=N(J15)

K3=K

K4=J14

NFS=K4+1

JB=N(J8+1)

IF(JB.NE.Q) GOTO 410
¥r¥x END LOOF

IF(J7.NE.J6) GOTO 380
*X¥x END LOOP

R12=A%E1+k

MAXIMUHM NUMBER OF ARRAY N USED.

I} TRUE - EDGE HIDMEN ENT1RELY,.
GO TU NEXT FACE.

HMOVE THE FRAGMENTED' EIGE BACK TO
THE FOS1T10ON OF THE ORIGINAL
EDGE FOR MOURE CUMFAR1ISONS.

ARE THERE ANY MUKE FACES IN THE CELL?T

4 XXk
ANY MURE CELLS ALONG EDGLET?

3 XX
DRAW WHAT IS LEFT.

T8



R13=A%E4/BITS
R14=C¥E2+D
R15=CXE5/RB1TS

OUTFUT EACH LINE SEGMENT.

DO 650 J1S=1,J12
J13=J13+2
J14=J14+42
R16=FLOAT(N(J13))
RUFF (NBF)=R12+R13%R16
BUFF (NBF+1)=R14+R10%R16
R16=FLOAT(N(J14))
BUFF (NBF+2)=R12+K13%R16
BUFF (NBF+35)-R14+K158%R16
NRP=NBP+4
IF(NBF.NL.61) GUI0 650

WRIYE (NI 4) BUFF

NBF=1
CTONTINUE
ARE THERE ANY MURE EDGLS WITH THIS
STARTING FUINT?
JI=N(JI3I+3)

IF(J3.NE.O) GOTO 330
38 ENU LUOFP 2 588
NEX) SIARTING VERTEX.
J2=NCI24D)

AKE THERE ANY MORE STAKTING VERTEX?

IF(J2.NE.O) GOTU 320

sre END LUUF § 888

MARK ENL' OF DRAWING.

RUFF (NBP) -0
BUFF (NBP+1)320
RUFF (NRF+Z) =0
BUFF (NBF$3)=0
WRITE (NF4) RUFF
DTIME=SECNDS(TIME)
RUFF (1) =DrINMt
BUFF (2) =MAX
RUFF (3)=LIMIT
EBUFF (4) 2NV
BUFF (S5) =NF
KUFF (6)=NC
WRITE(NFA) (BUFF(J)»J=1+6)
CLOSE (UNIT=4,D1SkH=’SAVE ")
CLOSE (UNIV=2,DISKx’SAVE’)
NCUBE =NF /6
STOP
END
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