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PREFACE 

The goal for this research was to develop an efficient hidden­

line algorithm for a small computer system. A hidden-line algorithm 

published by J .. G. Griffith was used as a basis for the research. The 

algorithm was successfully implemented on a mini-computer and extensive 

analysis and testing were done. This work showed that Griffith's 

algorithm was a linear growth algorithm as ·compared to the complexity 

of the picture environment. Several enhancements were added to the 

original algorithm to achieve even greater efficiency. 
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CHAPTER I 

INTRODUCTION 

Since the beginning developments in computer graphics capabilities, 

the problems of representing three dimensional objects in a two dimen­

sional picture have been studied in great detail. Initially, in the 

early sixties, only the hardware capability for drawing lines existed. 

Faces, therefore, were represented as closed loops or "circuits" of 

straight lines. Representing objects as pictures in this form, often 

called "wire frame" drawings, can cause confusion and even optical 

illusions if all lines of an object are presented. The need for an 

algorithm to eliminate all lines not "visible" from a particular view 

of an object becomes quite apparent. This is the hidden-line problem. 

(A version of the hidden-line problem for "ruled surfaces" is a rela­

tively simple problem and is not discussed in this thesis 

Beginning in the middle sixties and moving into the early seventies, 

the hardware capabilities for graphics greatly improved to make shaded 

drawings possible. 'I'hese advances greatly improved the visual quality 

of computer generated pictures but the problem then became how to elimi­

nate nonvisible shaded faces. This is the hidden-surface problem. 

In the beginning years of research, several solutions to the hidden­

line problem were developed. However, when the hidden-surface problem 
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began to receive attention, the emphasis in research shifted almost 

entirely in its direction. Little new work has been published on the 

hidden-line problem since the nineteen sixties. 2 This is unfortunate 

2 

because many areas of applications such as architecture and engineering 

have a need for efficient three-dimensional line drawings, especially 

in applications with mini and micro computers with only line drawing 

capabilities. A new algorithm for hidden-line elimination was published 

by J. G. Griffith (6) which has possible applications in these areas. 

The description of Griffith's algorithm in the article, "Eliminating 

Hidden Edges in Line Drawings" (6), states that this is a linear growth 

algorithm, which means that the computer time required for a drawing 

increases in a linear rate as the complexity of the object increases. 

(Almost all previous hidden-line algorithms have a "squared-law" growth 

rate. Given a drawing with N objects, the computer time required for 

2 
hidden-line removal is proportional to N .) Further research into 

Griffith •.s method is needed to verify his results and to search for 

possible improvements to the algorithm that could enhance its efficiency. 

Also, some valid comparison with other previously existing algorithms 

must be made to establish Griffith's algorithm as a better or worse 

solution to the hidden-line problem. The contents of this thesis 

presents the results of the research done in these areas. 

First, a brief history and overview of hidden-line, hidden-surface 

algorithms will be discussed for the reader's background information 

and later algorithm comparisons. Then, in Chapter III, a description 

2 J. G. Griffith has published several different papers on these 
problems in the seventies besides the one to be studied here. (See 
Bibliography.) 



of Griffith's algorithm will be presented showing details of his data 

structure and method for hidden-line removal. In Chapter IV, various 

changes to improve Griffith's algorithm are discussed and the effects 

of these changes are examined. Comparisons are made between Griffith's 

algorithm .and ten other hidden-line, hidden-surface algorithms. The 

final chapter discusses implemention of Griffith's algorithm, problems 

that were encountered, and suggestions for future work with Griffith's 

ideas. 

3 



CHAPTER II 

HISTORY OF HIDDEN-LINE ALGORITHMS 

Categorization 

When discussing many different algorithms that solve the same 

relative problem, there is a need for an efficient means of comparison. 

By categorizing the algorithms, many insights into the hidden-line 

problem are made which might be hard to understand if each algorithm 

were studied separately. A very nice categorization of ten of the most 

prominent hidden-line, hidden-surface algorithms published before 1974 

was presented by Sutherland, Sproull, and Shumacker (10). The following 

paragraphs are a description of their categorization scheme. 

Four criteria are used as a basis for categorization and analysis: 

1. First, a major difference is the resolution, or accuracy, of 
the final picture produced by each algorithm. An algorithm is 
said to work in obiect space (10, p. 19) if the final output is 
as accurate as the accuracy of the computer used. Almost all 
calculations are done to machine accuracy. However, if the 
output of a drawing is limited to a certain screen resolution 
size, there is no need for this kind of accuracy. Algorithms 
that calculate a drawing only to a limited resolution are said 
to work in image space. 

2. The types of comparisons for hidden-line determinations are 
quite different for each method. Many "tricks" are used to 
eliminate as many unnecessary comparisons as possible. 
Obviously, if the complicated and time consuming tests for 
intersecting or overlapping lines can be reduced to only those 
cases that actually have intersections, then much efficiency 
can be gained. 
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3. Each algorithm takes advanL1ge of one (or more) specific 
characteristics of the prohlf'm to at.tl·mpl to minimizt~ the 
solution process. Trw~-;e t:(Jmmon relat.i<>11sl1i1>s dre givPn tilt' 

name coherence. F'or l'Xamp tc, Appr?J w:es the fact that if d 

vertex on an edge is visible, then al] other edges with this 
vertex will very 1 ikely be visible (h1_·nce, edge to edge 
coherence). By taking advantage of coherence relationships, 
compl•.tations can be reduced and, in some cases, eliminated. 

4. Also, to analyze the efficiency of each algorithm, the 
various sorting and searching techniques are compared. 

5 

Referring to Figure 1 the categories for each algorithm can be seen. 

Appel, Galimberti, Loutrel, and Roberts solved the hidden-line problem in 

object space, to the nearest accuri1cy of the computer used. 
1 

Wi1rnock , 

Watkins, Romney, and Bouknight solved the hidden-surface problem in image 

space, because their goal was television type c1utput which has a fixed 

resolution size. Schumacker and Newell also solved the hidden-surface 

problem but partly in both "spaces". Their calculations were done to 

machine accuracy but the shaded drawings produced must be output to the 

. 2 
limited resolution of a television type display screen. 

Each group of algorithms uses a different method for finding visible 

line segments or faces. The object space algorithms use comparison 

tests to find intersecting lines and to determine which lines are 

visible. These tests require many mathematical calculations and are 

often quite time consuming. The Schumacker and Newell algorithms use 

a priority scheme to determine face visibi.lity. 1~e 11riorities can be 

calculated once for an object regardless of the position of the 

observer. By avoiding repetitious calculations for visibility, these 

algorithms can produce pictures in real-time; meaning that the time 

1 
There are hidden-line versions of the Warnock algorithm. 

2All above authors are cited in (10). 



OPAQUE~OBJECT ALGORITH}lS 

OBJECT SPACE (Partly each) IMAGE SPACE 

Comparison algorithms List priority algorithms Depth priority algorithms 

I 
Edge: Edge Edge: Volume A priori Dynamically Area Point sampling 

I priority computed sampling I priority 

I 
Appel Galimberti, et al Lout rel Roberts Schumacker, et al Newell, et al Warnock Watkins Romney, et al Bouknight 
1967 1969 1967 1963 1969 1972 1968 1970 1967 1969 

Source: Sutherland (10, p. 19) 

Figure L' Sutherland's Categorization :of'_ Ten Hidden-line, Hidden,;_surface Algorithms ,, 

m 
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taken for picture computation is less than the time required for a 

single scan. of a raster screen output device (television type screen). 

The image space algorithms use depth priority schemes to determine 

visibility on a specified area of the screen .. Extensive sorting is 

used to give faces priorities according to their depth, and their 

position in these priority lists help to determine visibility. It must 

be noted that all ten of the algorithms put restrictions on the kind 

of objects allowed in their picture environments. The methods used for 

visibility detennination are valid only within these restrictions. 

These environment restrictions are noted in Sutherland's (10) article 

but are not used for categorization. 

Now that a general overview has been established, a more detailed 

look at a few selected algorithms is needed. The first one will be 

Roberts' (9) algorithm, which was the first practical solution to the 

hidden-line problem. Next, a discussion of Appel's (1) method will 

illustrate edge by edge comparisons. (Galimberti• s and Lout rel' s 

methods are variations on this same theme.) Newell's (7) algorithm 

will help explain priority schemes in greater detail. And finally, 

Watkins' (11) algorithm will explain scan-line algorithms and depth 

priority. 

Roberts' Algorithm 

Roberts' (9) algorithm solves the hidden-line problem using linear 

algebra techniques to compare each edge in an environment with each 

spatial volume. A spatial volume is defined by a set of convex 

polygon faces. By restricting the shapes to convex polygons, each 



face of a solid can be represented by a plane equation of the form 

aX + bY + cZ + d = 0. The mathematical relationships between points 

along an edge and these planes can determine the visibility of a 

given edge. 

Roberts' algorithm can be broken into three distinct steps. 

1. Clipping against the screen boundary. 

2. Rejecting back edges. 

3. Testing the edge against polygonal volumes. 

8 

Parts of the environment can be outside of the particular view of an 

observer. Those edges not in view (outside the screen boundary) or 

those portions of edges partially hidden by the screen boundary can be 

eliminated by multiplying an edge equation times a special volume matrix 

which represents the edges of the view boundary. The resulting para­

meters provide the maximum and minimum values which define the visible 

portion bf an edge. Next, the back edges are eliminated. Any given 

solid volume will hide some of its own edges. The position of the 

observer determines which edges are automatically hidden. By deter­

mining the direction of a vector normal to the face of a solid, a face 

can be recognized as a front face or back face. Edges on back faces are 

eliminated from further testing; they are totally hidden. The remaining 

edges after these first two steps must .now undergo much more complex 

tests to determine visibility. 

Each edge is tested for visibility against every solid volume in 

the environment .. The edge is represented parametrically as 

v = s + t(r - s) 0 < t < 1 

where r ands are the two endpoints. For every value of t along the 

edge, an imaginary vector is created which points in the direction of 
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the observer. If any of the vectors pass through a face, then the edge 

is totally or partially hidden. If no face intersections occur, then 

the edge is totally visible. To determine these conditions, the para­

metric equation defining the imaginary vectors is multiplied by a 

volume matrix which represents a particular volume. The resulting 

parameter values are tested against boundary values which satisfy the 

required conditions for visibility. 

Roberts' solution to the hidden-line problem is often called the 

"classical" solution because of its use of mathematical relationships. 

Although his method is very good, its performance suffers because of 

the enormous number of calculations required in the matrix multipli­

cations and because of the number of tests involved. Each edge is 

compared to every volume in the environment which makes the computer 

time required grow proportionally to N2 , where N is the number of 

objects in the environment. For complicated scenes, the algorithm is 

not practical. 

Appel's Algorithm 

Appel' s ( 1). algorithm works in the same kind of environment as 

Roberts': that is, polyhedra made up of planar polygonal faces. But 

Appel' s approach is totally different. The algorithm introduces the 

concepts of a material edge, a contour edge, and quantitative invisi­

bility to define the edges in an environment. These properties of 

edges help determine visibility. 

An edge has three possible classifications. Edges hidden by their 

own volumes are called back edges and they are immediately eliminated. 
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Edges bounding two possibly visible faces are referred to as material 

edges. Those edges bounding an invisible face and a potentially visible 

face are called contour edges. An edge is broken into segments based 

on its intersection with contour edges and each resulting edge segment 

is assigned a quantitative invisibility value. A visible edge segment 

has an initial value of zero. Each time the edge crosses behind a 

contour edge the quantitative invisibility is incremented by one and 

then correspondingly decremented when it comes out from behind a 

contour edge. Only those edge segments with a resulting quantitative 

invisibility of zero are visible. 

The task of finding initial quantitative invisibility values is 

time consuming (an edge endpoint is compared to every face in the 

environment). However, for any given point, all edges emanating from 

this point have the same quantitative invisibility (normally). This 

coherence relationship reduces to a great extent the amount of required 

calculations. By following "circuits" through the drawing, previous 

ending quantitative invisibility values are passed on to other beginning 

edges. Appel developed an efficient method to examine every edge in an 

environment using a minimum number of these circuits. Problems arise, 

however, when several special cases can make the quantitative invisi­

bility values wrong. For example, if a point lies on a contour edge, 

then some edges emanating from this point will possibly have a higher 

quantitative invisibility value than others, depending on which edges 

emanate behind the face and which edges emanate out away from the face. 

This case and others must be tested before qua11titative invisibility 



values at an edge endpoint can be passed on to other edges. These 

tests become quite detailed and inhibit the efficiency of the quanti-

tative invisibility scheme. 

2 
The algorithm's efficiency is proportional to N . Loutrel, and 

Galimberti and Montanari use.d this same basic idea but with special 

enhancements. Their algorithms are also proportional to N2• The 

problem of having to compare each edge in an environment with every 

other edge was still not solved, 

Newell's Algorithm 

Newell's (7) algorithm solves the hidden-surface problem in what 

could be described as the "painter's" algorithm. All polygons in an 

11 

environment.are ordered according to their distance from the observer. 

After proper ordering, the faces are output or "painted" onto an output 

screen (or frame buffer) starting with the most distant face and 

proceeding up to the nearest face. The hidden-surface problem becomes 

a sorting problem to determine the correct order of output. 

The algorithm is called a priority algorithm because each face is 

given a priority based on its distance from the observer; those nearer 

faces to the observer having higher priorities. Many different tests 

are used to assign priority values. The simpler tests are applied 

first, and if these fail, more complex tests are used until a priority 

can be determined. The initial step orders all faces according to 

their closest point to the observer. Using this order of faces, the 

following tests are done between adjacent faces. A face has higher 

priority over the next face if any of the following tests are true: 
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1. A depth minimax test shows that there is no overlap in depth. 

2. An XY minimax test shows no overlap in X or Y. 

3. All vertices of the face are nearer to the observer than the 

plane which contains the next face. 

4. All vertices of the next face are farther away from the 

observer than the plane which contains the face. 

5. A complete overlap test which shows no overlap in X or Y. 

Once any of these tests are true, none of the others need to be applied. 

Two problems arise which must be solved. First, the priority 

relationships are not transitive; that is, faces can obscure other faces 

which in turn might "cycle" back and obscure the original faces 

(Figure 2a). Second., because Newell allows concave faces, two faces 

can possibly dbscure each other (Figure 2b). If a face in the priority 

list tries to shift priorities more than once, then one of the above 

problems is assumed to be true. The face is subdivided into two 

(a) (b) 

Figure 2. Special Cases for Newell's Priority Scheme 



smaller faces and the priority tests are repeated. Subdivisions 

continue until no more than one priority shift per face is required 

for correct ordering. 

13 

Newell's algorithm is much more efficient than Roberts' or Appel's 

algorithms. The development of priority schemes made it feasible for 

real-time hidden-surface pictures. Schumacker developed the first 

real-time algorithm which has been operational since 1968. His 

algorithm used a clustered priority scheme and was implemented in 

hardware. 

Watkins' Algorithm 

Watkins' (11) algorithm solves the hidden-surface problem by the 

scanline approach, which is based on the output needed for a raster 

(television type) screen. Raster type screens have a limited number of 

possible dots (technically called pixels) in which to represent a 

picture. By taking scan lines horizontally across the screen, those 

pixels visible on that line can be determined, and giving each one a 

desired shade of gray will create a shaded picture. Obviously this 

algorithm works in the image space creating a picture only as accurate 

as the screen. 

Two steps are involved in determining visible parts of a scan line. 

First, all intersections between the scan line and the polygon faces that 

it crosses are found. Each polygon face "owns" a segment of the scan 

line; that portion of the scan line between face intersection points. If 

a face scan line segment has no ·intersections with other face segments, 

then that face segment is visible and no other action is required. 

However, overlapping segments must be further tested to determine 



14 

visibility. The overlapping section is divided into "sample spans" 

which satisfy the condition that the visibility in each span does not 

change (that is, the XZ-plane projections of the faces corresponding 

with each span do not· intersect.) The second step involves determining 

which face is visible in each sample span. Because only one face is 

visible in each plan by definition, then a simple Z depth analysis can 

detennine visibility. After all scan lines are processed, the picture 

can be generated. 

Watkins uses a sort on the Y coordinates to avoid as many compari­

sons as possible. By presorting the faces, a face is not tested for 

intersections with a scan line until it comes into range and inter­

sections are possible. After all of a face has been examined, the face 

can be removed from the list of possible faces and never be compared 

again. All unnecessary intersection calculations are eliminated. Going 

one step further, scan line algorithms can make use of the coherence 

from one scan line to the next, and further reduce the number of calcu­

lations required. 

Real-time pictures have been produced using Watkins' algorithm. 

Sununary 

Many very different ideas and solutions to the hidden-line, 

hidden-$urface problem have been implemented. All of the algorithms 

which have produced pictures in real-time are hidden-surface algorithms. 

None of the hidden-line algorithms have even come close to such speeds. 

The need for more. efficient hidden-line algorithms, comparable to the 

hidden-surface algorithms, is evident. 



CHAPTER II I 

THE GRIFFITH ALGORITHM 

Introduction 

Now that a brief summary of hidden-line algorithms has been 

presented, a detailed description of Griffith's algorithm is needed. 

Griffith used many of the same ideas as the previously discussed 

algorithms but his combination of these ideas and his introduction of 

several new ideas such as a "masking line" makes his algorithm dis­

tinctively different. Approximately one-half of the computer code 

required for the implementation of his algorithm is for the creation of 

the data structure, which will be discussed first. Then the hidden­

line removal will be examined. 

Data Structure 

The Griffith (6) data structure is the single most important part 

of his algorithm for efficient hidden-line removal. To establish the 

final data structure as shown in Figures 5 and 6, the initial vertices 

must first go through transformation equations to create the desired 

view of the object. Then the vertex nodes, face nodes, and edge nodes 

are created. Finally the screen area is divided into a two-dimensional 

grid and each face 1s linked into every grid cell that it covers or 

intersects. 

15 



16 

Initial input of data for an object uses the following form: the 

number of vertices, each vertex given by its X, Y, Z cartesian coordi-

nates, the number of faces, and a list of face descriptions. A face 

description is a list of vertex pointers which point to adjacent 

vertices of the face perimeter followed by at least one zero to indicate 

the end of the list. The vertices are real numbers (having whole and 

fractional parts) and the vertex pointers are integers. Figure 3 is an 

example of input for a simple cube. Any polygon shaped face is allowed, 

convex or concave with the assumption that all edges are straight lines; 

no curves allowed. It is also assumed that all faces intersect only on 

edge boundaries. 

The vertices must undergo two transformations to establish a 

desired view. The observer is assumed to be on the positive Z axis 

looking at the origin, with the positive X axis to the right and the 

. . . d 1 ( . 4) positive Y axis upwar Figure . The first transformation requires 

as many as three rotations, one around each axis to align the axes to 

this orientation. Given the three angles of rotation, which are part of 

the initial input, all three rotations are done at once by multiplying 

each vertex by a 3 x 3 rotation matrix. Then the maximum distance of 

the object from the origin is found. The object lies totally within a 

sphere of this radius. To create the final picture, the second trans-

formation produces a perspective in a two-dimensional picture plane 

which is parallel to the X-Y plane and perpendicular to the surf ace of 

the sphere (Figure 4). This envirorunent makes perspective generation 

1Most algorithms have the observer on the negative Z axis as 
standard notation. Caution must be used when referring to other 
literature in discussing maximum and minimum values of Z. 
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(0,1,1) 

(1,0,1). G. 

(l,O,O) :i 3 (1,1,0) 

8 
0.0000000 0 •• 0000000 0.0000000 
1 ~0000000 o.ooboooo 0.0000000 
1.0000000 1.0000000 0.0000000 
0;.0000000 I .0000000 0.0000000 
0.0000000 0.0000000 1.0000000 
1.0000000 0.0000000 1.0000000 
1.0000000 l .~0000000 1. 0000000 
0.0000000 I .0000000 I. 0000000 

6 
I 2 3 4 0 
I 5 6 2 0 
6 7 3 2 0 
7 8 4 3 0 
4 8 5 I 0 
5 8 7 6 0 

Figure. 3. Input Requirements 



+z 

+Y 

Sphere at a radius 
of maximum distance 
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of object from origin. 

Picture plane 

Figure 4. View of Object After Rotation and Location 
of the Picture Plane for Perspective 
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very straightforward because the entire object lies inside the sphere 

picture plane. If this were not true, then a clipping algorithm would 

be needed to "throw away" everything outside of the picture plane. 

Therefore, only exterior views of any object are possible; close up 

views or int~rior views would require clipping and a different method 

for perspective generation. (No perspective transformation is done on 

the Z (depth) coordinates. They retain their required depth relation­

ships in three-space.) 

The vertex nodes are the first nodes to be established. The X, Y, 

and Z real number vertices are mapped into an integer "world" using 

linear mapping functions based on the maximum and minimum values for 

each axis. This linear "world" must be large enough to retain an 

accurate description of the object but small enough to prevent integer 

overflow in math calculations. The last two fields of a vertex node are 

links (referred to in Figure 5 as Ll and L2). Link Ll is used to 

establish an efficient drawing order (to minimize pen movements) for 

the final output drawing. To do this the picture plane is divided up 

into a two-dimensional square grid. Each vertex is initially placed 

into its appropriate grid cell, and then link Ll links all the vertices 

together by tracing through the grid, one row at a time. Link L2 is a 

pointer to a list of edges with this vertex as their starting point. 

By "visiting" each vertex through link Ll and each edge of a vertex 

through link L2, an efficient method is cre.ated that guarantees access 

to each edge in the drawing. 

A face node contains three fixed fields and a variable number of 

vertex pointers. Field three indicates how many vertex pointers make 
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Vertex node 

xi YI zl LI 12 -
L ... 

-
Face node .. 
Max Mark No. of -

VP I VP2 VP3 VP4 r-+ z Field Vertices 

-_.., 

-.. 

Edge node 

Ending Face Face Next 
Vertex I 2 Edge ~ 

~ 

i.--

Figure 5. Griffith Data Structure 
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up this face. Fi~ld two is used as a link in setting up the data 

structure but 1.s unccl as a "mnrk.i ng f it·ld" in the h.iudcn-linc removal 

process to avoid repetitious face comparisons. Field one stores the 

maximum Z value on the face (its nearest point to the observer's eye.) 

An edge node has four fields. Each edge node is in a linked list 

of edges, each having the same starting vertex. The L2 link in the 

vertex node points to the first edge in the list and the fourth field 

in the edge node (labeled "next edge" in Figure 5) points to each 

succeeding edge in the list. If the field is zero, then no more.edges 

exist with this starting vertex. The middle two fields are pointers to 

the faces which have this edge as one of its boundaries. If the edge 

is used by only one face, then both fields point to the same face. The 

first field is a vertex pointer to the ending vertex of this edge. 

Each edge node is guaranteed to be unique by the restriction that the 

starting vertex pointer is always greater than any of its ending vertex 

pointers. 

As the face nodes are established, each face is sorted according 

to is maximum Z value using a "bucket" sort which is a form of a 

radix sort. The resulting list of faces begins with the farthest face 

from the observer and ends with the nearest face. The next task is to 

link each face into every grid cell that it covers or intersects. To 

do this exactly would require many calculations to establish the inter­

sections of each edge of a face with the grid lines of the grid. To 

eliminate these costly computations the maxrnin test is used. The 

maximum and minimum X and Y values are used to create a surrounding 

rectangle and the face is linked into each grid cell that this rectangle 
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covers (Figure 6, Rectangle C). Obviously, this is very inaccurate 

for slender faces at angles other than approximately zero or 90 degrees, 

but the enormous savings in computation makes it worthwhile. In the 

final structure, each cell contains a list of faces such that the first 

face is the nearest face and each succeeding face is farther and farther 

away from the observer {Figure 6). It is possible that two faces may 

not be in the correct order in a cell because only the maximum Z is 

used for sorting (Figure 2), but the ordering is good enough to 

establish a maxmin test for the Z coordinates, to be discussed later. 

The data structure is now complete and ready for hidden-line 

removal. 

Hidden-Line Removal 

First, a very general description of the method is needed. Each 

edge is visited once and compared to every face that could possibly 

hide it. If, at any time during the comparisons, the edge is deter­

mined to be totally hidden, then comparisons begin on a new edge. If 

after all comparisons, there is still part of the edge visible, then 

the visible part is output to a storage device for later drawing. 

Using Ll and L2 vertex links, a starting vertex is established. 

Each edge with this vertex is examined before a new starting vertex is 

established. All edges are examined in this manner. 

To compare an edge to all of the possible faces that cover it, each 

face in every cell that the edge crosses must be examined. Constants 

are calculated to determine which cells the edge crosses. Three things 

help to eliminate unnecessary face comparisons~ 
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1. A face is marked in its "mark field" with a unique marker 

associated with the edge bPin~1 compared. Hy t:esti ng the mnrk 

field, no other compari_sons wjll be made with th.is f.:icc, even 

if the face reappears in 0U1cr cells along the edge. 

2. A face cannot hide one of its own edges. Therefore, using 

the two face pointers in the edge node, the faces that the 

edge are part of are "marked" and never compared. 

3. A maxmin test is used to compare the depth of the edge with a 

face. If the minimum z value on the edge is greater than the 

maximum Z value of the face, then the face cannot possibly hide 

the edge and no comparisons are needed with any of the further 

faces in this cell. 

Comparing a face with an edge is a costly operation and the above methods 

help eliminate many comparisons, along with the fact that only faces in 

the edge cells are examined. An edge and all remaining faces which 

could possibly hide it undergo a detailed analysis to determine which 

segments are visible and which are hidden. 

Individual points on the edge can be represented using the para-

metric equations: 

where 

x = xl + )\ (X2 - x ) 
1 

y = y + 
1 ~ (Y2 - y ) 

1 

(Xl, Yl) is the starting vertex, 

(X2 , Y2 ) is the ending vertex, and 

o~ ">-."-1. 

By representing intersection points in terms of ). values, only one 

number must be stored. Intersections not on the actual edge are quickly 



recognized by the conditions A < 0 or >-. > 1. Also, the )..• s are 

easily sorted to determine consecutive edge segments along an edge. 

Visible edge segments are found through the introduction of a 

masking line. Given an edge and a face, the face is "cut" by a plane 

which is defined by the edge and the viewpoint. The intersection of 
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the face and this plane is the masking line. The endpoints of the 

masking line are taken as the intersection points with the face boundary. 

Since concave polygons are allowed, there is the possibil1ty for many 

masking line segments. The masking line segments may completely "mask 

out" 0or cover) the edge, only partially cover the edge, or miss the 

edge entirely. Two conditions must be met for a masking line segment to 

cover an edge or a portion of an edge: 

1. The face on which the masking line lies must be in front of the 

edge segment. 

2. The masking line segment must be inside the boundary of the face. 

To determine the depth relationship between the face and an edge, the 

depth on the face along the masking line must be found. This could be 

done using the plane equation for the face as Roberts' (9) algorithm 

does, but a much simpler method is available using the masking line. 

Because the masking line and the edge lie exactly on top of each other 

in the two dimensional picture plane, the same parametric equations can 

be used to describe both of them. A linear relationship exists between 

the lambda values along the edge and the Z depth along the masking line. 

This linear relationship is calculated using a least squares approxima­

tion. Once at least two intersection points are known for the masking 
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line. As stated earlier, intersecting faces are not allowed, and 

therefore, if part of a masking line segment is in front of an edge, 

then all of it is. By testing the Z value at the midpoint of the edge 

segment against the corresponding Z value of the masking line (on the 

face) the depth is determined. If Z is greater than Z , then the face 
m e 

can possibly hide the edge segment, and the next test is applied. Other-

wise, the segtnent is visible and not part of the final masking line 

segments. The next masking line segment is then put through these tests 

until all segments have been examined. 

The final test for visibility is whether the masking line segment is 

inside or outside of the face. To determine this, an "even, odd crossing 

test" is used. The number of intersections are counted between the face 

and a line which starts at the midpoint of the edge segment and goes to 

some point at infinity (in practice, some point near the boundary of 

the picture plane). If the number of "crossings" is odd, then the edge 

segment is inside the face. If the number is even, then it is outside 

the face (Figure 7). If the masking line segment is inside the face 

boundary, then its endpoints (a lambda pair) are stored as one of the 

masking line segments. 

The final results of the masking line tests are a list of ordered 

pairs of lambdas ( )-.i, /\i+l), ()\i+Z' }.i+3), ... which represent the 

edge segments no longer visible. These segments must be removed from 

the list of edge segments that are visible. To do this, the lambdas are 

merged into a single ordered list. The edge segment lambdas arc made 

negative so that they can still be distinguished from the masking edge 

segment lambdas. Then, using two switches which change states for each 

lambda, the visible edge segments are determined and listed as ordered 
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pairs of lambdas ( >-. . , >-... 1 ) , ( ).. . 2 , °>I. . 3 ) . • . (See Appendix A for a 
i i+ i+ i+ 

more detailed description of this method using switches.) 

This process of detailed face, edge analysis is repeated each time 

one or more intersections occur on a face. If the edge segments totally 

disappear, then no output is done, and a new edge is established for 

comparisons. If, after all possible comparisons, some edge segments 

still remain, they are output to a storage device for later drawing. 

The algorithm is finished after all edges have been examined. 

Summary 

Each edge that is examined for visibility is compared to a minimum 

number of faces. This is the key to the performance of the algorithm. 

Minimax tests in the X, Y, and z directions help to make only those 

face comparisons which have possible intersections. Also, faces which 

1 intersection ' 
I 

I 

I 

/ 
/ 

/ 
/ 

/ 

,,, -r 0 intersections 

-.... ...._ 3 intersections 

f 2 intersections 

Figure 7. "Even, Odd Crossing Test" 
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include the edge as a side are omitted from the tests. The size of 

Griffith's data structure which allows all of this to happen is a major 

problem for small computers. This problem will be discussed in chapter 

V, but first a discussion of some improvements to Griffith's algorithm. 
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CHAPTER IV 

CHANGES AND IMPROVEMLNTS IN GRIFFITH'S ALGORITHM 

After thorough study of Griffith's algorithm, four changes were 

1. The method of input for the rotation angles was changed to 

simplify user input and program interaction. 

2. Because of integer size and overflow problems on the small 

computers, some of the integer "mapped" values are changed 

back to real numbers before calculations are performed. 

3. The elimination of all back faces is done while the data 

structure is being created. 

4. A new maxrnin test in the Z (depth) comparisons was implemented. 

These will be discussed in detail and the results of the implementations 

given. 

View Calculation 

To achieve a desired view, Griffith's algorithm simply reads in 

three angle values for rotation, one for each axis. A 3 x 3 matrix is 

set up which is multiplied by each individual vertex for the desired 

rotations. Rotations about the three axes are not commutative; that 

is, a different view will be computed if the order of rotations is 

changed. Therefore, it is very important that the user of the algorithm 

can visualize the type of view desired, the rotations needed to obtain 

29 



that view, and the correct order of 'rotation required. This is not 

always an easy task for beginners in computer graphic drawings. 
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An easier, more straightforward, way of "asking" the user for a 

desired view is to establish a line of sight through which an observer 

wishes to view an object. This line of sight can be established by 

locating two points; the point being observed and the point position of 

the observer. The distance between these points determines the relative 

size of the final drawing and the "amount" of perspective generated. 

Only two angles of rotation are required to orient the observer on the 

positive axis with the positive X axis to the right and the positive Y 

axis upward. (The third angle of rotation is not used.) Another great 

flexibility with this method is the ability to look at points other than 

the origin. Restricting the view to the origin greatly limits the 

possible number of views. If a point other than the origin is specified 

as the point being observed, then a simple translation is required with 

the rotation to align the line of sight with the Z axis. In summary, 

this method increases the number of views possible and allows the 

computer to do the "dirty work" of calculating the correct ;rotation 

angles. 

Implementation into FORTRAN required approximately 30 lines of 

code. Because the program was run interactively, these computations 

were not included in the timed portion of the algorithm. 

Integer Conversions 

Griffith's algorithm converts all vertex coordinates into integers 

using linear mapping functions based on the maximum and minimum values 

for each axis. Two restrictions control the size of these linear 

\ 
\ 
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mapping functions. If the integer values are too small, then the 

accuracy of the final drawing can be distorted, even to the extreme of 

making nonvisible lines visible and parallel lines skewed. From experi­

ments using different ranges of values (based on powers of two for 

simplicity), the minimum integer range producing no visible distortions 

on complex drawings was from -1024 to +1024. However, because of over­

flow problems on various calculations, there is also an upper limit 

based on the integer size of the computer being used. The equation 

(I*J) - (K*L) produced the largest possible number from any of the 

calculations in the algorithm. Therefore, to prevent overflow, each 

integer value would need to be restricted to the range -128 to +128 

for an integer word size of 16 bits; the range -2048 to +2048 for an 

integer word size of 24 bits, etc. 

Virtually all small computers today are 8 bit or 16 bit word 

machines, as was the computer used for this thesis, a PDP-11/34. 

The largest integer value in the FORTRAN implemented on this computer 

was 16 bits. This required a change in Griffith's FORTRAN implemen­

tation of his algorithm. 

Two sections of code were changed from integer calculations to real 

calculations: the solution.for intersections between lines, and the 

test for an edge segment to determine whether it is in front of or 

behind a face. On the PDP-11/34, the real arithmetic calculations are 

bdth software and hardware supported. The hardware supported arithmetic 

was used in all testing. In the extensive testing done, no loss of 

accuracy was ever discovered from using real calculations and no 

appreciable increase in computing time was evident. 
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Back Edge Elimination 

The solution to hidden-line elimination can be greatly enhanced if 

all back faces can be eliminatC'd quickly from the view. A back face is 

any face on the "back side" of an object. On the average, half of any 

given solid object is always not visible and therefore half of its faces 

are back faces. Using a certain convention for describing faces and 

vector algebra, back faces can be eliminated easily. 

Intuition says that by removing approximately half of the faces, 

the algorithm should run twice as fast and use half as much storage. 

This proved to be correct, as shown later in the testing discussion. 

Implementation in FORTRAN required four lines of code inserted into 

the face node portion of the data structure. After a face is read in, 

it is immediately tested to determine whether it is a back face. If it 

is, the face is left completely out of the data structure along with 

each of its edges. To establish the correct convention for the vertex 

pointers order (listed clockwise around the perimeter when looking at 

the "exterior" of the face), .a few minor changes had to be made in 

Griffith's object building programs. 

New MaXIllin Test 

The maxrnin test for depth comparisons uses the maximum Z value on a 

face compared to the minimum Z value on an edge. This comparison elimi~ 

nates many face tests but there is a convenient way to make it even better 

because of the grid cell structure. 

The edge is compared to faces in each cell that it passes through. 

It seems logical then, to compare the maximum Z on a face with the 



minimum Z in the cell where the face appears on the edge segment. 

Whereas a face might fail the broad test against the minimum Z of the 

edge, it could possibly be eliminated from comparisons by this more 

exact test (Figure 8). 
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This test retjuired a total change in the way cells were found along 

an edge. Griffith used an approximation method which did not solve for 

exact intetsections with the grid cell boundaries. Instead, his method 

required the calculation of some constants and then only addition and 

some tests to find the next cell. The new test required exact solutions 

at the grid line intersections to solve for the Z values at these points. 

The implementation in FORTRAN took approximately the same number of 

lines of code as Griffith's original code. However, when considering 

efficiency, several mathematical divisions arc required in place of his 

simple addition. This makes the process of finding cells along an edge 

a little more costly. Testing on a single cube showed an increase in 

computer time using this method which was attributed to the added "cost" 

involved in the mathematical computations. But in testing more complex 

objects, the new method was always comparable to, or a little better 

than, Griffith's original algorithm. In some cases there was approxi­

mately a 5% increase in efficiency. As Table IX shows, the cases 

where this new test helps the most is for "long" faces compared to 

fairly close short faces. From the experiments run, in normal appli­

cations, this "improvement" adds substantially nothing to the efficiency 

of the algorithm. But for the occasional special drawing conditions 

which do occur, this new maxmin test does indeed eliminate enough face 

comparisons to make it useful. 
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Algorithm Testing-~Results and Comparisons 

Three kinds of comparisons and tests were done on the Griffith 

algorithm: 

1. The algorithm was compared to ten other hidden-line, hidden­

surface algorithms using the information presented by 

Sutherland ( 10). 

2. The same testing that Griffith presents in his published 

article was simulated to validate his results. 
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3. The improved versions presented previously were tested against 

Griffith's original algorithm to measure their benefits. 

Each of these will be discussed in the following paragraphs but ref er 

to Appendices B and C for actual figures. 

Comparison to Other Algorithms 

Griffith's algorithm must be categorized somewhere between the 

object space algorithms and the image space algorithms. The initial 

input and final output are related to the object space in that they have 

high accuracy~ But the calcul~tions are done to a limited "resolution": 

limited, not by the resolution of an output screen, but by the magnitude 

of integers in the computer being used. Also, this is a comparison 

algorithm comparing edges to faces. This creates a difficulty in 

linking Griffith's algorithm into the Sutherland tree structure. The 

best "fit" is between Roberts and Schumacker, linked half way between the 

object space and "partly each" space and linked to the comparison 

algorithms. 

The coherence used by Griffith is comparable, in some ways, to 

Warnock's objects in local areas on the screen to reduce the number 
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of tests and comparisons needed. There are few apparent similarities 

with the hidden-line algorithms of Appel, Galimberti, Loutrcl, and 

Roberts. Griffith does not use the notion of quantitntivc invisibility 

or edge coherence. Neither is there any of the plane equations as used 

by Roberts. Griffith avoids the calculation of the plane equation by 

the introduction of his masking line and least squares approximation. 

A major distinction of Griffith's method is that it does not have to 

take care of the special conditions that always seem to arise, such as 

a face intersecting another face at a single point.. Griffith's general 

masking line concept takes care of all special conditions. The other 

algorithms do not even discuss solutions to these problems. 

In order to compare Grif.fi th' s algorithm with the same scheme that 

. Sutherl~nd uses, the algbrithm was broken into its major operations and 

sorting and searching routines. From this examination, the edge to face 

comparisons are the dominant cost of the algorithm. (This was also 

verified during early testing of the program by printing out inter­

mediate test values.) The masking line test for visibility is the only 

other major time consuming task. The figures show that if excessive 

face comparisons are made with each edge, the results are disastrous. 

The way to increase the efficiency is to decrease the number of face 

comparisons. 

An interesting relationship appeared between the cost and the depth 

complexity of the environment. The depth complexity is defined as a 

measure of how many front faces are pierced by an arbitrary ray from 

the viewpoint, on the average. Because the depth complexity remained 

constant in each succeedingly more complex environment, the face sizes, 

on the average decreased in height and also in the amount of screen area 
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that they covered. Since each face still has approximately the same 

number of faces around it on the screen area, the number of face 

comparisons for each edge remains fairly constant for all three 

environments. Assuming this is correct, the algorithm grows on a 

linear basis as a function of the total number of edges. Just as 

important is the indication that as the depth complexity increases while 

the number of faces stays constant, many more edge-face comparisons 

would be required for each edge. The algorit~m would tend to grow more 
I 

nearly exponehtially as the depth complexity increased. These are trends 

in the data and not exactly accurate for any given environment. (See 

Appendix B for an example.) Other factors that could not be included 

in the cost calculations are the amount of overlap among faces and the 

z depth relationship between faces. Both of these allow the edge-face 

comparisons to be cut short, which contributes much to the efficiency 

of Griffith's algorithm. In conclusion, the algorithm has a much greater 

possibility of a linear growth rate if the environment depth complexities 

stay small. As the depth complexity grows, the analysis becomes less 

precise and more dependent on the properties of the particular environ-

ment being drawn. 

Comparison to Griffith's Original Results 

Griffith's computer was much faster than the PDP-11/34 which was 

used for implementation and testing for this thesis. But the same 

trends in computation time were received. The FORTRAN timing function 

of a PDP-11/34 is not very accurate and thus the figures cannot be 

taken as exact data but they can be used as relative indicators of 

computing time. The final two test cases were not run because of lack 
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of memory for these large drawings. 'l'he results can be seen in Table V 

in Appendix c. 

Griffith's test case of "a lattice of cubes" takes advantage of the 

grid cell structure of the data structure. Another test case was 

constructed which contained long rectangular boxes intennixed with the 

cubes. This would tend to make the algorithm "work" harder if the 

rectangles were at an angle such that they were linked into many cells 

of the grid of which they did not cover or intersect. This would 

increase the number of edge to face comparisons and consequently the 

amount of computer time. The results showed an approximately 100% 

increase in the time required for calculations if the angle of the 

rectangular boxes was from 30 to 45 degrees from the horizontal. (Refer 

to Table VI, Appendix C.) This shows so dramatically the importance of 

the environment in relation to the performance of the algorithm. 

Griffith's algorithm is based on an area coherence scheme and if the 

environment is not area coherent, the algorithm losses much of its 

efficiency. Even though the efficiency dropped drastically as the 

environment changed, the computer time still grew at a linear rate. 

This seems to prove that the algorithm grows at a linear rate regard­

less of the environment, assuming that the environment's coherence 

properties remain fairly uniform. 

Comparisons with Improved Versions 

Three versions of the algorithm with improvements were tested 

against Griffith's original algorithm: 

1. New Z depth test for face to edge comparisons. 

2. Back faces removed. 



3. Both of the above together. 

These were run on the original test case of "a lattice of cubes" and 

on the new test case with long rectangular boxes. The new version's 

performances have already been mentioned in the previous discussion. 

The test results can be seen in Table VII and Figures 9 and 10 of 

Appendi~ c. 
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CHAPTER V 

CONCLUSIONS AND SUGGESTIONS 

All of the goals of this thesis were accomplished and have been 

presented in the previous chapters. A few specifics on how they were 

accomplished follows, with comments on the implementation, problems 

encountered, and ideas for future work in this area. 

After receiving a copy of Griffith's algorithm, it was first 

implemented on an IBM 370/168. All of the file processing was changed 

to make it compatible with the IBM file processing. No other changes 

were necessary and the program ran successfully. No timing was done 

because the multiprocessing environment made any timing functions 

almost meaningless. 

To test the program on a small computer, it was implemented on a 

PDP-11/34. The major problems were the 16 bit word size and the small 

memory size. Many of the integer calculations had to become real calcu­

lations to prevent overflow, as discussed in chapter 4. As for the 

memory size, each program run on a PDP-11/34 has 32K of memory for all 

of the code and data. This is obviously too small for the array which 

holds all of the data structure. The PDP-11/34 allows access to other 

in-core memory through what is called "virtual" arrays. By this 

technique the data structure was stored in a 32K integer array outside 

of the memory partition which ran the program. While the program was 

executing, the amount of memory access for it essentially deleted the 

40 
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multiprocessing capability of the PDP-11/34; there was no more memory 

for other programs. This makes the algorithm very detrimental to a 

multiprocessing environment if it is executing for long periods of 

time on complex pictures. A new algorithm design is needed such that 

only a small necessary part of the data structure is stored in core 

memory at any given time and the rest is on some kind of high speed 

peripheral storage device. Some breakdown of the data structure would 

be required to access the data efficiently. 

Future work is needed in several areas; 

1. The environment condition that all faces must intersect on face 

boundaries is restrictive. Some way is needed to extend the 

general masking line scheme to allow for penetrating faces. 

2. Many times three-dimensional environments arc created from a 

group of basic building blocks, such as a group of cubes to 

create a building. A method is needed to eliminate all over­

lapping edges so that a continuous shape is created when the 

hidden-lines are removed. 

3. More work is needed in implementing such large data requirements 

on small computers, as discussed previously. 

Many problems are still to be solved and more problems will arise in 

the future. 

The original FORTRAN code was not structured in any readable format 

and it was not documented. To allow for easier study during this thesis 

work and for future work, the code was rewritten into a more readable 

format. All major loops and decision statements were documented. The 

resulting code is in Appendix D. 



Griffith's algorithm is a very efficient scheme for hidden-line 

removal. Its use in the field of computer graphics will grow in the 

coming years. Small computer applications will also have many uses 

for this algorithm as they gain more power and memory. 
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APPENDIX A 

EXAMPLE OF GRIFFITH'S ALGORITHM 
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INTRODUCTION 

This appendix is a very simple example of the data structure and 

the masking line concept. In an attempt to make the example "readable", 

subscripted pointers are used instead of actual numbers. Refer to 

Chapter III for a more detailed description of the overall concepts. 

Figure 9. Example Picture 
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Figure 10. Example Data Structure 
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The following figures are an example of a masking line compared to 

an edge to eliminate hidden edge segments. Edge eleven (Ell) is 

compared to faces one (F1 ) and two (F2 ). It is not compared to face 

three (F3 ) because a face cannot hide one of its own edges. Face one 

is compared first (Figure lla). Note that the masking line lies on the 

face and is created by the face intersection with the imaginary plane 

·formed by the edge and the viewpoint. 

Masking line with 
endpoints on face boundary 

Viewpoint 

(a) Masking Line 

Up/Off 

Down/Off j Down/Off
0 

Down/On Up/On 

Masking line 

Ell 

( b) Masking Line Switches 

Figure 11. Edge Eleven and Face One Comparison 



48 

The relationship of the m<1skinq l inc• to the Pdgn is shown in 

mination. Visible segments arc crcutcd only from the down/on switch 

setting. The masking line segments control thr~ up/down switch and the 

edge segments control the on/off switch. Only a portion of the edge 

segment is now visible and only this much is used for future testing 

against other faces. 

/ ' 

/ i 

I , 
i i 

Remaining visible 
edge segment of E11 

F 
2 

I J 
I I 
I I 

/~ Masking line 

/Viewpoint 

Figure 12. Edge Eleven and Face Two Comparison 

The same relationship for the switches is true for the resulting 

masking line and edge segment in Figure 12. A portion of E11 is still 

visible and no other faces remain to be tested. The visible segment 

is output for later drawing. Comparisons on a new edge are started. 
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Description of Faces 

Appendix B cannot be understood without a thorough study of 

Sutherland's article "A Characterization of Ten Hidden-surface 

Algorithms". The explanation of this article would require more space 

than is available here. 

Tables I through IV are copies of tables from Sutherland's (10) 

article with additions which refer to Griffith's (6) algorithm. Table I 

defines a set of variables used to describe an environment. As seen in 

Table II, some of these values are "given" as initial data to establish 

an environment. The other variables are defined in terms of these 

basic given variables. An understanding of each algorithm is needed 

to fully understand the formulas in Table II. 

Three environments are set up, each one being twenty-five times 

more complex than the previous one. The "Roberts' House" has only 100 

faces, while "Big Harbor" has 60,000 faces. Using the variables and 

their values for each environment, the "cost" of computing a hidden­

surface picture is calculated. This cost is a relative value based on 

the number of comparisons an algorithm makes, the kind of mathematics 

involved in those comparisons, and the types of sorting done. These 

costs give some insight into the efficiency of each algorithm. Table 

III shows the equations which are used to obtain the final costs for 

each algorithm in each environment. The totals are in Table IV. 

Note that because of the relative nature of the costs assigned to each 

algorithm, numbers in Table IV which are within a magnitude of 10 of 

each other are considered to be close in efficiency. When the magni­

tudes approach 100, then those algorithms with lower costs are 

definitely more efficient. 



Ti\Bl.E I 

ENVIRONMENT STATISTICS 

F Total number of faces in the environment. 
Ft Number of relevant faces in the environment. 
Dr Depth complexity of the environment (average). 
Cc Number of relevant clusters in the environment. 

t F Number of faces per cluster (average). 
Ee Total number of edges in the environment. 
Et Number of relevant edges in the environment. 
Er Number of relevant edges if sharing is allowed. 
Es Number of contour edges in the environment. 
Xe Total number of edge crossings in the viewing plane. 
Xr Number of intersections of visible edges. 
Xv Number of face intersections. 
Hf Height of a face in resolution units (average). 
Sf Total number of segments, visible or not. 
Sr Number of segments on a scan line, visible or not (average). 
s1 Number of visible segments on a scan line (average). 
Lv Total length of visible edges (measured in resolution units). 

v n Vertical resolution of screen (number of scan lines). 
m Horizontal resolution of screen. 

New Definitions* 

E Total number of edges in a cluster. (4F ) 
xP Total number of edge intersections in a ~luster. 
xP Number of edge intersections on a masking line. 
Sm Number of segments on a masking line. 
Sm Number of visible segments on a masking line. 
Vmv Total number of vertices. 

t 

*Author's additions 

Source: Sutherland (10, p. 47) 
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TABLE TI 

STATISTICS FOR THREE ENVIRONMENTS 

Statistic Rule of Roberts' Harbor Big 
Thumb House Harbor 

(1/25) (1) (25) 

n given 500 500 500 
m given 500 500 500 
Fr given 100 2500 60000 
Fe given 10 25 200 
De given 3 3 3 
Ft 2Fr 200 5000 120000 
Ct Ft/Fe 20 200 600 
Et 4Ft 800 20000 480000 
Er Etf2 400 10000 240000 
Ee Er/(Fc/2) 1/ 2 180 2800 24000 
E s (Er-Ec)/2+Ec 290 6400 130000 
Xr (Dc-l)Er/4 200 5000 120000 
Xv Xr/Dc 1/2 70 1700 40000 
Hf (nmDc/Fr)l/2 86 17 4 
Sl (DcFrm/n) 17 87 420 
sv S1/Dc 5 29 140 
Lv 2nSv 5000 29000 140000 

New Definitions* 

Ep 4Fc 40 100 800 
Xp (Dcl)Ec/4 20 50 400 
Xm XX/Ep 1/2 1/2 1/2 
Sm 2 m 1 1 1 
Smv Sm/De 1/3 1/3 1/3 
Vt 3/2Et 1200 30000 720000 

*Author's additions 

Source: Sutherland ( 10, p. 47) 
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TABLE III 

COSTS FOR THREE ENVIRONMENTS 

Rof)('rtS Newell et al 

l. llack-f;iclnp, edges cull 1. z sort 
r.t: 800 20K 480K 2Fr 200 5K l20K 

/. CI I pp Ing cu 11 2. N<•we 11 s~eel.al 
100 EA 29K 640K 1 3~1 Fr2(f+f +ioo(l) 45K 650K 60M 

'l. Edg.,/vnlume tPHt: f = 2 Hf /n 
JOO E8 fCt 2.1M SIOM 311~ J. Segment generator and y sort 
f . 4; spilt edg('9, and Ct should lw 10 FrHf 86K 420K 2.4M 

ht~~her 4. x merge 
FrHfSv/4 11 K 310K 8.4M 

Appel, Lout rel, Gnl Imbert:! :111d 
Mnntan;irl Warnoek 

,, . ll;i1:k (:ind eon tour t'dg<') cull 1. z sort 
Et 800 20K 480K 2 F r 200 SK 120K 

2. In l.t In I vlslhflity search 2. Warnock special cull 
100 Ct l'r 200K 50M 3.6!1 100 LvDc l. SM 8. 7M 42M 

3. l~dge frHPr1-H~l'l ion 3. Depth 8earch 
I() EH Ee I .6M 540M 9'lll LvDc 15K 87K 420K 

4. lnvlsihl Llty corn•ct Lon 
10 (2Es]) .'i2K I. iM 23M Romney E't al 

Sort alnng o.clp.c 
Es(Xtff:s) logz (XL/E!'I) 1. y sort 

290 6.4K lJOK 2 Fr 200 SK 120K 
2. X sort 

Griffith* 
nS1 8.5K 43K 210K 

3. X priority searc.h 
nm 250K 250K 250K 

I. Vertex ·11 nks for <Ir awing 4, Depth search 
Vt I. 2K 30K 720K 20 n 2S 1Dcf S lOK 2.6M 13M 

z sort f = 1/2; due to depth coherenl'e 
ft 200 SK 120K 

/\rl-'a C'i'lVC' rr:~d 80rt Watkins, Bouknight 
4Ft BOO 20K 480K 

4. ledge intersect Ion l. Y sort 
'.lO!Ct ( 48-8) %OK 24.6M S90. 4M Er 400 lOK 2401< 

5. I nters<•c:t Inn Ao rt 2. X merge 
let (Xm+l) 2.BK 70K l.68M ErS1/2 3.4K 4JOK SOM 

6. M:iskini.; t\df?,C:.' test 3. X sort 
'.iOEtSm l10K lM 24M 

7. merge 
n(S1+lOXr/ (nS1)) 

8.SK 43K 210K 
!Ct Sm 800 20K 480K 4. Span cull 

8. ' 011tput n S1 8.SK 43K 210K 
Et(Smv) 2 70 6, 7K 160K 5. Depth search 

30nDcmin(m.fSv) 
450K 2.6M 13M 

SrhumackPr et nl f z 2; spans include not only visible 
segments 

I. Int rn-c fu,..ter priority 
100 Fc2ct 200K 12M 2. 4 ll Brute-force image space 

2. lnter~cluster priorlty 
I 0 Ct 200 2K 6K No memory: 

3. lh1~k-face cull lOOnmFr 2.SB 62B !SOOB 
Fr 100 2.SK 

4. Y cul 1 
n F.8 I '.>OK 'l. 2M 

60K Large mem~ry: 
1 OHr Fr 7.SM 7 .S"I 7.SM 

65M 
5. X sort ;ind priority search 

nms 1 4. 2M 22M JOOM 

(Noll': Kai .000; M~l ,000,000) 

*Author's Additions Source: Sutherland (10, p. 50) 



TABLE IV 

COST SUMMARY: THREE ENVIRONMENTS 

Roberts Appel, Loutrel, Griffith* Schumacker Newell Warnock Romney Watkins, Brute 
Galimberti and et al et al et al Bouknight force 

Montanari 

2.4M l.8M 1. OM 4.2M 140K l.SM 770K 470K 2.4B or 7.SM 

510M 590M 25M 25M l.4M 9M 2.9M 3M 62B or 7.SM 

31B 97B 618M 170M 71M 43M 14M 64M 1500B or 7.SM 

(Note: K=l.000; M=l,000,000) 

*Author's additions 

source: Sutherland (10, p. 54) 
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'.1'/\B Lt·: V 

PROGRAM PERFORMANCE FOR LATTICES OF CUBES 

19045 Computer PDP-11/34 

··Number of Time Time per Time Time per 
Cubes Taken Cube Taken Cube 

1. 1 0.257 0.257 3.33 3.33 

2. 8 2.28 0.285 22.04 2.75 

3. 27 8.84 0.328 76.9 2.85 

4. 64 23.6 0.369 163. 1 2.54 

5. 125 51. 5 0.412 375.5 3.00 

6. 216 92.6 0.429 

7. 343 161. 0 0.469 



Number of 
Cubes 

8 

27 

60 

120 

TABLE VI 

PROGRAM PERFORMANCE FOR LATTICE OF CUBES AND 
RECTANGLES AT DIFFERENT ANGLES 

OF ROTATION 

Using Griffith's Original Algorithm 
Drawing at Drawing at Drawing at 

5° 30° 45° 

23.0 30.8 30.6 

76.9 117.0 111.6 

163.1 355.9 313.5 

375.5 705.5 704.9 
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TABLE VII 

PROGRAM PERFORMANCE FOR LATTICE OF CUBES 

Number of Griffith New Z Back Faces Both Improvements 
Cubes Original Depth Removed Together 

Algorithm Test (Sec) (Sec) 
(Sec) (Sec) 

1 3.33 5.13 2.73 2.73 

8 24.5 22.9 13.88 15.84 

27 101. 9 101.6 53.5 56.5 

64 275. 274. 147.9 139.2 

125 620. 617. 298. 313. 

216 573. -
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300 600 1000 

U1 
l.O 



SYS'EM 
PDP i 1 /34 

TIME7AKEN 
2.7344 

WORDS USED 
144 

SIZE OF 
RESOLUTION 

4095 

ORIGINAL NUMBER 
. OF VE.RT ICES 

8 

ORIGINAL NUMBER 
OF FACES 

6 

VERTICES/CELL 
4 

!--------------~-----------------~ 

Figure 14. One Cube 
CTI 
0 



SYSTEM 
POP 11/34 

TIME TAl'\EN 
13.8828 

WORDS USED 
1057 

SIZE OF 
RESOLUTION 

4095 

ORIGINAL NUHBER 
OF VEl;H ICES 

64 

ORIGINAL NUMBER 
OF FACES 

48 

VERTICES/CELL 
4 

Eigure 15. Eight Cubes 
m 
1-' 



SYSTEM. 
POP ll/34 

TIME TAl(.EN · 
101 .9141 

WORDS USED 
5287 

SIZE OF 
RESOLUTION 

4095 

ORIGINAL NUMBER 
OF VEIH rces 

216 

ORIGINAL NUMBER 
OF FACES 

162 

VERTICES/CELL 
4 

Figure 16. Twenty-seven Cubes 



SYSTEM 
PDP 11134 

TIME TAKEN 
• 275. 0703 

WORDS USED 
12593 

SIZE OF 
RESOLUTION 

4095 

ORIGINAL NUMBER 
OF VERTICES 

512 

ORIGINAL NUMBER 
OF FACES 

384 

VERTICES/CELL 
~ 

Figure 17. Sixty-four Cubes 



SYSTEM 
POP 11134 

TIME TAKEN 
620.3359 

WORDS USED. 
24975 

SIZE OF 
RESOLUTION 

4095 

ORIGINAL. NUMBER 
OF VEfH I cE:s 

1000 

ORIGINAL NUMBER 
OF FACES 

750 

VERTICES/CELL 
4 

> 

Fi9ure 18. One Hundred Twenty-five Cubes 



TABLE VIII 

PROGRAM PERFORMANCE FOR LATTICE OF CUBES AND RECTANGLES 

Number of 
Cubes 

8 

27 

60 

120 

216 

Griffith's 
Original 
Algorithm 

(sec) 

3.33 

30.8 

I 17. 0 

355.9 

705.5 

New Z 
Depth 
Test 
(sec) 

5. 13 

29.0 

114. 8 

355.7 

704. I 

Back Faces Both Improvements 
Removed Together 

(sec) (sec) 

2.73 2.73 

15.9 16.0 

64.4 59.0 

188.2 190.0 

351.5 359.7 
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SYSTEM 
POP 11/34 

TIME TAK.EN 
30.7734 

WORDS USED 
1599 

SIZE OF 
RESOLUTION 

4095 

ORIGINAL NUMBER 
OF VERTICES 

"64 

ORIGINAL NUMBER 
OF FACES 

48 

VERTICES/CELL 
4 

Figure 20. Eight Cubes and Rectangles 



SYSTEM 
POP 11134 

TIME TAl(..EN 
116. 9688 

WORDS USED 
5599 

SIZE OF 
RESOLUTION 

4095 

ORIGINAL NUMBER 
OF VERTICES 

216 

ORIGINAL NUMBER 
OF FACES 

162 

VERTICES/CELL 
4 

Figure 21. Twenty-seven Cubes and Rectangles . 



SYSTEM 
PDP 11 /34 

TIME TAKEN 
355.9667 

WORDS USED 
13083 

SIZE OF 
RESOLUTION 

4095 

ORIGINAL NUMBER 
OF VERTICES 

480 

ORTCINAL NUMBER 
OF FACES 

360 

VERTICES/CELL 
4 

Figure 22. Sixty Cubes and Rectangles 



SYSTEM 
POP 11134 

TIME TAK.EN 
705.5166 

WORDS USED 
28437 

SIZE OF 
RESOLUTION 

4095 

. OR I G i NAL NUMBER 
OF VERTICES 

960 

ORIGINAL NUMBER 
OF FACES 

720 

VERTICES/CELL 
4 

> 

Figure 23. One Hundred Twenty Cubes and Rectangles 
-J 
0 



TABLE IX 

PRQG:RAM PERFORMANCE .FOR LATTICE OF CUBES AND 
RECTANGLES AT DIFFEREN'r ANGLES 

View 

2 

OF ROTATION 

Griffith's 
Original 
Algorithm 

619.7 

658.4 . 

New Z 
Depth 
Test 

585.2 

619.8 

·.-1 71 



SYSTEM 
POP 11/34 

TIME TAl'..EN 
585. 1816 

WORDS USED 
27397 

SIZE OF 
RESOLUTION 

4095 

ORIGIN*L NUMBER 
OF VERTICES 

960 

ORIGINAL NUMBER 
OF FACES 

720 

VERTICES/CELL 
4 

I 
I 
I 

Figure 24. View One 



SYSTEM 
POP 11134 

TIME TAKEN 
619.8320 

WORDS USED 
27859 

Sf ZE OF 
RESOUJT I ON ' 

4095 

ORIGINAL NUMBER 
OF V£.RTICES 

960 

ORIGINAL NUMBER 
OF FACES 

720 

VERTICES/CELL 
·4 

s 

Figure 25. View Two 
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C*************''*****************************'************************* 
C HIDDlN LINE REMOVAltLI:: 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THE ORIGINAL Vl::kSIUN CJF THIS AL&Ol<Il'HH WAS 
DEVELOPED BY J.i;. 61<JFFilH ANli Pl<l!>EN-TED IN lHI:: Al<l IC.LI:: 
'ELIMINATING HIDl.ll::N E.DGES IN LINL l.IRAWINUS' .t.:CJMPUTER-AWl::IJ 
l.lt:SJGN• VCJLUl!t 11 NUl'tlllR .2, Hl'IRCH 1 y;c;.. . 

THIS VERSICJNr WllH ALGORITHM Rl::VISJUNS ANll DOCUHl::NlAlIONr WAS 
llEVELOPED FOi< 6Rl\DUATE THESIS WORK AT. CJKLAHUHA !HA'E UHlVl::RSITY 
BY WAYNE BllCJllN. 
DATE:SPRillG 1c;.Bo 

C******'********** aassrrtrarat 
C ALGOl<IIHH l•l::SLl<If'lION 
c 
C PHASE 1 : SET UP THI:: Dllf A S lRULl UR£ • 
c PART 1:T1<1\HSLArICJNr wurnTIUNr AHi) PERSf'l::CllVL 
c 
c 
c 
c 
c 
c PHASl 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PART 2:v1::1nEr. NUl.IE.S. 
PART J:FACI:. NUl.ll::S. 
PART 4:llXiE NUDES. 
PART 5:Tl::Sl GRil.I SET UP. 

2:HIDDEN LIN!:: Rl::HOVl\l!Ll. 
PART 1 :SET UI' AH EDOL. 
PART 2:cOHPl\l<l EDu[ lU ll\CH INIJIVIDUAL l:.D6t: OF A Ff>CE. 
PART J:SURl INTERSECIIONS IN ASCl::NDIN& OR~R. 
PART 4:1.1£PTH ANALYSIS. 
PART 5:H£1<ul TllCJ LISIS m IHTERSlCllUN f'UINIS. 
PART 6!FROl'I Hl\SKIN[; LIHI:. Sl'IVI:: VISIBLl LINE SlGHEHfS. 
PART 7!1<lPlfE FUR El'ICH FllCE IN El'ILH CELL THAT 

THE ED<lE Pl'l!>SES THRU. 
PART a:ourPUl VlSlltLl LIN£ S£W11::1HS-H ANY. 
PART c;.: RlPl::IH 1 THRU El FUI< ll'ICH El.IGl, 

c 
Ctsssssssstssrssts 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

HAJOR Vlll<IAllLE LIST 

s - ARRAY FUf< ALL l.IAlA STRULTU1<£ ANU CALULAH~. 
!ltAK£ lHIS AS BI& AS PUSSIBLll 

HVSIZE- SIZE OF Vl:.RTEX HUD£ 
Nf'SIZE- SIZE CIF HICE NODE 
NESIZE- SIZE OF ED61:: HUI.II:. 
BITS - LAAGCST ABSCILUTE VALUE OF lNfl::uE.RS FOR HAf'f'IN6 
LIMIT - RANu[ OF INfERGE.R Vl'ILUl::S 
HX - TRAHSLAllOH VALIJt:: f UR THI:: X Vl\LU£S 
HY - TRAHSLATIOH VALUE FOi< THE. Y VllLUl::S 
HZ - TRAHSLATIUH VALUE. FUR THE Z Vl\LUE.S 
R - RADIUS OF SPHl::Rl THAl ENVl::LUl"ES lHl Ol:<J£CT VlElll:.D 
NV - HUtll'lR OF VERTICES 
HF - NUttBER Of FllCES 
Al - AHGLE OF F<l\Tf>TICJH AllUUI Z AXIS 

c Gl - ANGLE OF l\:OTl\llUN A&OUT Y. AXIS 
c A - SCALE FCJR X Hl\f'f'!Hu 
c Ee - BIAS FOi\: HAPf'IN6CHltLF f'CJSITIVI:: - .Hf1LF Nl:.GATlVll 
c C - SCALE FCJk Y HAPPIN[; 
c D - E<IAS FOR HAf"f'IH6 YCHl\U' POSITIVE - HALF Hl:.GATlVll 
c NltUCK - NU11l<lR UF BUC:KETS(NU1111ER OF RUllSrCULUl1NS IN GF<IDl 
c STEf' - SIZE OF EACH BULKl::lluHIO SllUARl::l 
c START - BIAS FOF< STl\RTING' POINf IN TH£ GRHJ 
c.: 
c••••••••••••t••••••• 
c 
c 

c 
c.: 
c 

1000 

1001 

1002 

Il1f'LICil INlEGERt'I CirJ,Krl,.rl'trNl 
VIRTUAL N!J2767l 
Dil1ENSICJN BUFF!60l 
DATA IHI/~/, NF2/2/ rNF3/J/ rNl'"/'I/ 

WRITE< Nll, I 000 > 

.,,, ....... ,.,,,,,.,, .. , ... , ....... ,,,. 
PllRT 1 :TRANSLl\TlUN.RUfl\TllJHrf'l::RSP[CTIV[. 

fl NI! TH£ ANGLES 01-' F<OTl\l ION. 

FORMAH' INPUT POINT l:<UHG OllSlRV[D - F10 'I 
' I l l I· > 

READ<NTir!OOl>XrYrZ 
FORl1AT Of 10. 0 l 
llflI TE<Nfl • 1002) 
FOkHAT!' INf'UT PCJSITUH Of OBSERVlM - flO'l 
READ!NTirlOOJ>Xf'•Yl"rZf' 
Xl•XP-X 
Yl•YP-Y 
Zl•ZF'-Z 
HX•-X 
HY•-Y 
HZ•-Z 
RD•AlAHl1.0l/4S.O 
RXY•SDRT<X1SS2 t Y1St~> 

IF<RXY.EU.O.Ol GO TO SO 
IF!Xl.EO.O.Ol GO TCJ JO 
IF<Yl.EQ.O.Ol GO TU ~O 

A•ATANIYl/Xll/RD 
A1•90.0t<2.0-Xl/l\llS!Xlll t A 

GO TO JO 
10 Al•90ac1.o+Yl/l\B&<Yl)l 

GO TO JO 
20 Al•90S!~.O-Xl/A~S!X1ll 

JO IF<Zl.NE,O.Ol GO TU '10 
G1•90.0 

GO TO 60 
40 G•ATAN<Zl/RXYl/RD 

GJ=c;.O-G 
GO TO 60 

SO Al=O.O 

60 
1003 

Gl=O.O 
llRITEINTio1003) A1rG1 
FORMAT!' Al' rF10.Sr' Gl 'oFtO.Sl 

-J 
LJl 



c 
t: 

Al=Al*RD 
Gl~GURD 

WRITE<NTI' 1004> 

INPUT POWER OF 2 FOR RESOLUTION SlZL 
EXAHf'LE: 6 - 2S4• 13<HAX> - 32767. 

1004 FORHAT<' INPUT SlZE OF INTEGERS - 12' > 
READ<NTZ, 1005> Nl:lITS 

·1005 FORHAT<I2> 
WRITE< NTI, 1006 > 

1006 FORHAH' INPUT NUHBER OF '..!EIHICES PER CELL - I2' > 
READ<NTlr1005>NC 

C INITI/\LIZE CONSTANTS. 

c 

c 

1007 

1008 
c 

BF=l.O/FLOAT<NCl 
Tilt£=SECNllS < 0, > 
HAX=O 
NVSIZE=5 
NFSIZE=3 
NESIZE"'5 
KBITS•2**NBITS-1 
LEIITS=2*KBITS 
EIITS=FLOAT<LEIITS> 
LIHIT=2•LBl TS+J 
ZF=1.0E20 
ZN=-1.0E20 
R=O.O 

OPEN <UNIT=2•NAHE='Ol<JECT ,1.JAHl '.TYPE='OLD' • 
& ACCESS=' SEQUENTIAL ,- ,FORH= 'FDRKA TTED' > 

OPEN <UNIT=3tNAHE='SCR/\lCH1.DA1ll'rTYPE='~W'• 
& ACCESS=' SEQUENT 1 (;L' , FORH= 'UNfllRHATTED' > 

OPEN CUNIT=4,NAHE='SCRAlCH2.llAH 1 'rTYPE= 'NEW'• 
& ACCESS=' SEOOENTI /IL ' t FORH=' UNFORHI\ TTED' > 

SINA=SIN<All 
COSA=COS<Al> 
SING=SlN<Gl> 
COSG=COS<Gl> 
Rl=COSA 
R2=SINA 
R3=0.0 
R4=COSG•<-SINA> 
R5=COSG*COSA 
R6=SING 
R7=<-SING>•<-SINA> 
RB=C-SING>•COSA 
R9=COSG 

READ<NF2•1007>NV 
FORHAH2014) 
DO 70 Jl=lrNV 

READCNF2•1008lX•YrZ 
FORHA T< 5F16, 0 > 

X=X+HX 
Y=Y+HY 

ROTATION HAlRIX. 

READ THE NUHBER OF VERTICES, 

TRANSLATION, 

c 

70 

c 

1009 

BO 
c 

c 

c 

90 

c 

c 

c 
c; 

Z=Z+HZ 
RH=X**2 + Y*f.2 t Z•t.2 
IF<RH.Gl~RI R•RH 

TX=Rl•X + R2f.Y + RJf.l 
TY=R4*X + R5tY + R6*l 
TZ=R7*X t RB*Y + RYtl 
WRITE <NF3l TX•TYrTZ 
If. ( TZ. GT. ZHI ZN=rz 
IFlTZ.Ll,ZF>ZF=TZ 

REWIND 3 
R=SDRT<R> 

ROTATION, 

HALF ANGLE OF VIEW FOR Pl::RSf'El:TIVI;. 
ANG=R/SURT<Xl*t.2 + Y1**2 + Zltf.2) 
IF<ANG.LT,l.O> GO TO BO 

WRITECNTl•l009> ANG 
FORHAH' ANGLE=',flo.6~' TOO CLOSE JO lHE OBJECl"') 
STOP 

H=Rf.<1,0-ANG> 

A=EIITSl<ZN-ZF> 
El•-At<ZN+ZF>t0.5+0,5 
XL=R 
XR=-R 
YU=-R 
YD=R 
DO '10 Jl=l r NV 

READ <NF3l R1,R2rRJ 

R4=H I <R-R3tANG> 
Rl=RUR4 
R2=R2f.f<4 
R3=AtRJHI 
WRITE <NF4> R1•R2rRJ 

IF<Rl.LT.XLl XL=Rl 
IF<Rl.Gl-,XRl XR=R1 
IF<R2.GT,YU> YU=R2 
IF<R2.LT.YD> YDzR2 

CONTINUE 
H=H/SDRTCl,O-ANGtANG> 

BUFFC1>= 2,0*H+<Z1-R>*D,25 
NBP=5 
REWIND 3 
REWIND 4 

A"'EIITS/ ( XR-XLl 
Etz-A*<XLtXRl*O.St0,5 
C=EIITS/CYU-YDl 
D=-C*<YU+YD>f.O.s+o.s 

LINEAR HAP~lN6 FOR THE z. 

PERSPECTl VE, 

FIND RANGE Of X AND Y FUR H(;Pf'ING. 

SCALE FOR FIN~L DRAWING. 

LINEAR HAF"f'lNG FOR X ANll Y. 

********'"**************'-*** PARl 2:sEr u~· Vl::RTEX NODES. 
J1=1-NVSIZE 



100 
c 

c 

c 

110 
c 
c 

120 
c 
c 
c 

J2=2-NVSIZE 
J3=3-NVS1ZE 
J4=4-NVSIZE 
J5=0 
DO 100 J9=1•NV 

Jl=JltNVSlZE 
J2=J2+NVSIZE 
J3=J3tNVSlZE 
J4=J4tNV5IZE 
J5=J5tNVSIZE 
READ INl'41 R1,R2,R3 
N<Jl l=A*R1t1< 
N ( J2) =C:f.R2tl• 
N<J3l=R3 . 
N<J4l=O 
N<J5l=O 

CONTINUE 

A=l.O/A 
B=-< B-0, Sl*'1 
C=l.O/C 
D=-<D-0.Sl*C 

Rl:::Vt.li:!>E Mf'PIN!l CDNST(IN rs. 

SET UP TEST GRID. 
Nl:lUCK=SORTCl<F*FLOAT<NVl l 
IF<l1DD<Nl<UCK, 2>, NE. OHIFUCK•Nl:lUCKt 1 
STEP=FLOATCNl:lUCKl/IHTS 
START=-0. 5*1<ITS:f. ( 1. Otl, O/l'LOATCNf!UCK>) 
Nf!UCKzNflUCK+l 
Kl=NV;f:NVSlZEtl 
K2=Kl+Nl:1UCK*NBUCK-l 

DO 110 Jl=Kl ,t\2 
NCJl>=O 

Jl=K2-1 
J2=K2 
J3=Kl+l-NVSIZE 

lNlTlALIZE GRID TO ZEROES. 

ASSIGN E.flCH VERTEX TO AN Af'PROf'RIATE 
CELL LIST. 

DO 120 J4=1,J3,NVSIZE 
J5=CFLOATCNCJ4ll-STARTl*STEP 
J6=CFLOATCN<J4tl>>-START>*STEP 
IFCJ6/2*2•NE.J6l JS-NBUCK-l-J5 
J7=J6*Nl:1UCKtJ5tKl 
Jl=Jlt2 
J2=J2+2 
NCJ21=NCJ71 
NCJ71=Jl 
NCJ1l=J4 

J32=0 
DO 140 Jl=K1,K2 

J2=NCJll 

MINil11ZE FlNl\L DRl\WIN6 PEN 
110VEMl'.NT - LINK VERTICES• 

IF<J2.EO.OI GOTO 140 
130 J3=NIJ21 

NCJ3t31=J32 
J32~_13 

J2=N<J2tl l 
IFCJ2.NE.OI GOTO 130 

140 CONTINUE 
C f·REHAVE Sl:Rl:::EN AREA FOR SllRHN6 FACES 
C BY Dl:YTH. 

NF5=K2tl 
Jl=CNl'S-Kll/2 
J2=K1+2*CJ1-11 
DO 150 J3=Kl•J2•2 

N<J3>=-Lil1H 
150 NIJ3t1l=J3 

Rl=FLOATI 1-Jl l/f!ITS 
R2=FLOATIJ1l*0.5 

c ***"'*"'********** 
C PAkl 3 :FACE NODE, 
C REM• NUMBER OF FACES, 

READ CNF2 '1007 >l"F 
DO 240 JJ=l•NF 

J4=NFS 
J6=NFStNFSIZE 
JSzJ6t20 
J5=J6-1 
J7=JS-1 
REAl•CNF2• 1007 > <N<J9 > ,J9,"J6,JJ> 
JVl•CNCJ61-11 * NVSIZE +1 
JV2•CNCJ6+1>-11 ;f: NVSIZE tl 
JV3=CNCJ6+2>-1> ;f: NVSIZE t1 

C REMOVE l<l\CK FflCE.S. 
IFCFLOATCNCJV1>-N<JV2)) * FLOATCNCJV2t1 l-IHJV3t1) l -

& FLOATCNCJV21-NCJV3ll * FLOATCNCJVlt1>-NCJV2tlll 
I .GE. o.o> GO TO 10 

NCJ8l=O 
J7=J6 
IZN=-LIMIT 
JS=NCJ7) 

C FIND THI'. NE.l\REST POINT ON THE FflCE. 
160 J8=CJ8-ll*NVSIZEtl 

c 

NCJ71=J8 
J8=NCJ8t21 
Il'<JB.Gl.IZN> 1ZN=J8 
J7=J7tl 
J8=NCJ7) 
IFCJS,NE.Ol GOT0·160 

NCJ4l=IZN 
NCJ4t2l=J7-J6 
NFS=Jl 
J7=J7-l 

J9=Rl*FLOATCIZNltR2 
J9=2*J9tKl 

l:IUCKl'.l AL1URESS FOR FflCE. 



c 
1/(J 

c 

180 

190 

~OU 

210 

220 
c 
c 

230 
240 

c 
c 

250 

260 
270 

c 
c 
280 

J8=J9 
J9=N<J9tl) 
IF<N<J9),Gl,IZNI GOTO 110 

N<J8tl)=J4 
NCJ4t11~J9 

J9=NIJ7> 

DO 230 J!O=J6,J7 
JB~J9 

J9=N<J10) 
IFIJ8,GT,J9) DOTO 100 

Jll=JB 
J12=J9 

GO TO 190 
J11=Jc;> 
J! 2=JB 

J13=NCJ12+4l 
IFIJ13,EQ,Ol GOTO 220 

UluES, 

IFCNIJ13>,EU.J11> DOTO 210 
J13=NIJ13t3) 
IHJ13.NE.Ol GOTO 200 
GOTO 220 

NCJ13t2>=J4 
DOTO 230 

N<Nf'S)=J11 

****************** 
f'l\RT 41EDGE NODES, 

N<NFStll=J4 
N INFSt2 > =J4 
NINFSt3>=NIJ12t~l 
NIJ12+4>=NFS 
NfS=NFStNESIZE 

CONTINUE 
CONTINUE 
J6=0 

DO 270 J3=K1,J2o2 
J4=NIJ3+1 l 
IFIJ4,EQ,J3l GOTO 260 
J~=NIJ4t1 l 
NIJ4+1 l=J6 
J6=J4 
J4=J5 
IFIJ4,NE,J3l GCllO 250 

NIJJl=O 
NIJ3+1)=0 

NIK1l=O 
J1~6 

IXL=LIHIT 
IXR=-,.LIHIT 

TRl\CE THRU THE FACES AND 
LINK TOGETHl::R, 

f'LACE EAl:H FACE IN Il'S Af'f'RCIF'fllATE 
CE:LL LIST, 

c 

IYU=-LHIIT 
IYD=LIHIT 
J2~J1+Nf5IZE 

J3=.!2tNIJ1t2)-1 

DD 290 J4=J2rJJ 
JS=NCJ4l 
J6=NIJ51 
J/=NIJSt!l 
If(J6;LT.IXL> IXL=J6 
IF<J6,GT.IXR> IXR=J6 
IFIJ7.LT.IYDl lYD=J/ 

290 IFIJ7,GT,JYUl IYU=JJ 
C COCIRll!INl\lES Of GR!ll CELLS. 

IXL= I FLOAT< IXLl-STl\RT>t.STEP 
IXR= <FLOAT< !XR >-START) :t:STEf• 
IYU=IFLOATC IYUl-STIHH) tSTEP 
I'l'D=IFLOAT<IYII l-'S'll\Rl) *STEP 

c Hl'>P IIHO rm111 .. 
J6=IYD*HPUCKtlXLfK1 
J7=J6-IXL+IXR 

C PUT PU!NTEN TO Fl'IC!o: HI EACH 
C CELL LIST. 

DO 310 JB=IYDoIYU 
DO 300 Jc;>=J6,J7 

N(NFS>=J1 
·11<NFS+1 >=N<J9l 
NCJ9l=NFS 

300 NFS=NFSt2 
J6=J6tNBUCK 

310 J7=J7+NBUCK 

c 

Jl=N(J1tll 
!F(Jl,NE,Ol GOTO 280 

CLOSE <UNIT~3rDISf'='SAVE' l 
CLOSE CUNIT~41D-ISF'='D£LETE' l 

C DATA STRUCTURE COHf'LE TEL Y Sf'T UP 
c 
C**************"'********* ********"'****~ftttttttt 
t: 
C BEDlN HiltflEN LINE CUMl'ARSIONS. 
c 

OPEN IUNIT=4rNAHE~ 'DRflW, ltl\TI 1' .TYPE~' UNKNOWN' r 
& ACCESS=' SEOUEN'fl AL' r FORM~' UNHJF<Hl\HE!l') 

K=NFS 
J1=0 

c J2 POINTS HI A STARTING VERTEX. 
J2=JJ2 

C *** LCIOf' 1 **"' 
C ltU FDR EVERY STAfffINI> VERTEX, 
C J3 POINTS TO A EDGE NODE, 
320 J3=N<J2t4l 
C IF THERC: ARE NO HORE EDGlS WlTH 
t: THIS STARTING VERTEX THEN GU TO 

-.J 
co 



c 

c 

c 
c 
c 
J:.<O 

c 
(; 

c 
c 

c 

c 
c 

"140 

IF<JJ.[O.O> GOTO 670 

El•N<J21 
E2•NCJ2+1 I 
E3•N<J2+2> 

THE HLXT STARTING VERTEY. • 

STAl<TlH6 VERTEX XloYloZl. 

Ua LWP :.! na 

J4•NCJ3> 
J5•NCJ3+1 l 
J6•N< J;,1+2) 

Jl•Jl-1 
NC~+l>~Jl 
NCJ6tl>;.JI 
NFS•K 

[4•NCJ41 
E5•NCJ4+1 I 
E6•NCJ4+21 
XF•£4 
YF-£5 
ZF•E6 

J6•<E4-!iTART>asTEP 
J7•<E5-SlART>•STEP 
J6•J7SN»UC;K+J6tKJ 
[4•[4-[1 
E5•E5-E2 
[6-£6-EJ 
KJ•...-1 
K4•Nf"S+2 
NFl-IU 

NCKJ>•O 
N<KJ+J >~urns 
NCK41•LIIU T 

Z6-E3 
KYl•I 
KAS•I 

00 FOR Evt.llY EDGE WITH THll; !iTN<T.lH6 llERTEX. 
lll6l l!Oll£ FOR CIJRRlH r EDGE. 

llAllKEll TD KARK FACES TD AYOID 
llUPLICATE COtlPMlSONS. 

ENDIN9 Y!.RTEX x2.r2.i2. 

CALC;ULATE THE CELL ADPJ<ES!i IN THE 
6RlD FDR THI; ENBIHU 11£Rf[X. 

INITillLIZE ltl\SKIN6 LIHE. 

SET CDHSlAIHS Hlf< D»TAININ8 
CELLS l\l.ON8 THE [Dell. 

IF<E2.Ll.YFI OD TD 340 
KYS•O 
l(Af;r-1 

KH•I 
l<XS•I 
ffCEl.LE.Xfl GO lU l:SO 

KH•-1 
KXl•O 

JC7•<lJ-START>fblEP 

360 

365 

370 

c 
c 
3110 

390 

c 
400 

c 

c 
c 
c 
c 
410 

c 
c 
c 
c 
c 

c 

JCB•<E2-START>SST€P 
XD•FLDAT<JC7tKXSl/STEP t SlAkT 
YD•FL~T<JCB+KYB>/STEP + SJART 
IF<E4.NE.O.O> GO TD 360 

Xll•llITS 
YL l• < YD-E2 l/C Yf"-l2 l 
SD TD 370 

IFIE5.NE.O.OI 00 TD 365 
YLl•llITS 
XLlrCXD-El l/E4 
80 TD 370 

Xll•<XD-El>/E4 
Yll • <YD-E2 I /[5 
R6-0.0 
KTX-KXS+KH 
KTY•KYS+KAS 

au LUOP 3 en 
DO FOR EVlrllY Clrll Ill.OHO AH ED<;£, 

115"'16 
IF<XLl.Ll.Yll> flU TU 3~0 

R6•Yll 
YD-FL~T<JCB+KTYl/STE~ + STAJ<T 
YLl•<YD-E2>/E5 
KTY•KTYtKAS 
00 TO 400 

R6•XLl 
Xll-f\.OAT<JC7+KTXl/STEI' t ITAl<T 
Xll•IXll-El )/[4 
KTX•KlXtKH 

lt7• llt5+R6 > ao. 5 
J7•CEl+R7S£4-STN<TlSITEP 
.Jll•<E2+R7el5-STARTlS!iTEP 
J7•.J8eNllUCK + J7+K r 
.J8-tf(J7) 
Z5•Z6 
IF<lt6.IH .1.0llt6•1.0 
Z6•E3+R6SE6 

K5•Z5 
IFCZ6.LT.Z5>~Z6 

GET THI: Nt.XT Clrll UH THIS EDGE, 

K5 IS THE NINI- Z OH THl EDGE. 

SSS LUOI' 4 SU 

lf<JIO.LE.~1 GOTO 630 

00 FOR EVERY Fn<:l IN THIS CELL, 
KIJN C~MIHO FACE EDGlS TU THE 
EDGE - Diil: AT A Tiii£, 

IF ~ MXllltlfl Z ON THl!i Fl\Cl IS 
FllJ<THER -y Tllolll THE &N.LLLlST l 
ON Tltl; E- THEN THIS FACl Cl\Nl!Ol 
HIDE MY PllllT Ot- THE E- -··GO TO 
THE NEXT CUL FOlt ltllllE FflCES. 

H Fl\Cl IS ~I THEN NI.I COlll'.VCiliOH. 



c 

c 

c 

420 
c 
c 

c 

430 
c 
c 

c 

1flNIJ9+ll.ED,Jll GOTO 620 

N<J9+1>=Jl 
Jl0=J9+3 
Jll=JlO+N<J9+21-t 
Jl2=NFS 
Jl3=NFS-l 

R7=0.0 
RS=O,O 
R9=0.0 
RlO=O.O 
J!6=NIJ111 

DO 430 Jl7=Jf0,Jll 
J15=Jl6 
Jl6=NCJ17l 
T7=FLOATCN<Jl51) 
TB=FLOAT<NCJlS+lll 
TlOzFLOATCNCJ16)}-T7 
T1l=FLOAT<NCJ16tl ))-TB 
T9=T7-El 
Tl2=T8-E2 
Tl3•TlO•T12-T9*Ill 
T14•E4•Tl2-E5*T9 
Tl5s£5•TlO-E.4*T11 
IFCTlS,GT,0.0160 TO 420 

Tl3=-T13 
TH~-TH 

Tl5=-T15 

HflRK TH£ F llCE. 

lNITil\LlZE SUHS FOR U:f\ST SUUARE FIT. 

COHPAh'E EflCH EDGE OF THIS Fl\CE. 

JFCT14.LT.o.o .OH. Tl4.GT.T15 .DR. T15.EU.O.OI GU TO 130 
SOLVE FOR llffERS£CTIUN USING 
CRl\H£R'S RULE, 

Rl 1=T13/T15 
R12=T1~/T15 
Rl3=FLOATCN(J15t2)1 t R12*FLOAT(N(J16f21-N(J15t211 

LEAST SUUl\RE F Ir SUHS. 
R7=R7tR11*H11 
R8=R8tR11 
R9=R9tR13*R11 
R10=R10tR13 
F20=FLOAT<N<K31 l 
F21=FLOATCNCK4-11l 
F22=R11*BITSto.s 
IF CF22. LT. F20)F22:·-=F20 
IFCF22,GT,F21>F22~F21 
J13=J13tl 
N<J131=F22 

CONTINUE 

JF(Jl3.LE,J121 GOTO 620 
Jl4=Jl3-1 

IF NO lN'f£RS£C'f IONS OCCURED -
GO TO NlXT FllCE IN THIS CELL. 

SORT lNfERSE.CHON POINTS IN 

c 

440 

450 
c 
c 
c 
c 

c 

DO 450 Jl5=J12•Jl~ 
J16=Jl5 
_tt7~N<Jl5> 

JlB=JJStl 

1tscnwrNG OfWER - SELEUION SUI<(. 

DD 440 Jl9=Jl8•Jl3 
IF<NCJJ91.G£,JJ71 GOTO 440 
J16=J19 
Jl7=N<JJ91 

CONTINUE 
NCJ16l=N<J15) 
ll<J1Sl=Jl7 

ARE Vl\Ll.1£5 OF lNlERSECTIONS 
llITHHI THE EN!) POINTS OF THE 
Hl'ISKING UNE? - IF No·r GU TO 
TH£ N£XT F (lC£. 

JFCNCJ13l.LE..N<K3> .OR, ll(Jl2l.G£.N<K4-IJ> GU TO 620 
LEl\Sl SGUARES FIT. 

Rll=FLOATCJ13-JI2tll 
R12=R9*R!l-RB*Rl0 
R13=R7*kIO-kB*R9 
R14=R7tk11-RB*RB 
JF(R14.G£,O.Ol60TO 460 

R12=-R12 
Rl3=-R13 
R14=-R14 

• 4'60-· J14•J13t1 
J15=J14 
Rl5=0.0 
Jl9=NCJI2l 
J12=JI2tl 

C LOOK AT l/'\CH EDGE Sl'GH£NI -
C COUNf NUl'll!ER OF INTERSECTIONS TU 
C ffETERMil'IE WHETHER £ffGE SEGE.H£NT IC. C POSSI.!ILY HUtll£N; 

DO 510 J20=Jl2•J13 
Jl8=Jl9 
J!9=NCJ20J 
IFCJ18.EG.J19l GOTO 510 
TEHP=FLOAT(J18tJ19l*<R12-1<14*E6l 

& +2.0•llITS*<Rl3-R14*E3l 
IF<TEHP.LE,O.OlGO TO 510 

F21=<J1BtJ19l/2 
F22=E1t<F21tE4l/BlTS 
F23=E2+<F2l*E5J/BITB 

470 R15=Rl5tf.O 
IF<R!S.GT .6.SJ GOTO 510 

F24=BlTS*COS<R1Sl 
F25=8ITS*SillCR15l 
J26=0 
J2B=FLOl'lT<N<J111J 
F29=FLOAT<N(J28ll 
F30=N <J2Bt1 l 
DO 490 J32=J!O,J11 

00 
0 



480 

490 

500 

510 
c 

c 

520 
530 

540 

550 

560 

F27:=F29 
F28=F30 
JJO=NCJ32> 
F29=NCJ30! 
F30=N<J30t!) 
F33=F29-F'..:7 
F34=f JO-F28 
F35=F27-f 22 
F3"6=F28-F23 
J37=<F36•F33-F31tf35!/BlTS + O,S 
J3B=CF21tF36-F2StF35>/fllTS + O.S 
JJ9=CF25*F33-f2~*F34l/Bll!; t O.S 
IFCJJ9,GE, 0) GOTO 4!10 

J37=-JJ7 
J3B=-J38 
JJ9=-'JJ9 

IFCJJB.L r.o .or<. J3B.&l.J39) 1.iU"fO ~90. 
IFCJ38,E<l,O .OR. J38,H1.JJ'i')GU TO ~?O 

Jf(J37.LT.0) &Uro 490 
IFCJ3/,[0,0! GOTO 500 
J26=J26+1 

CONTINUE 
IFCJ26/2•2,EG,J26l GU TU 510 

N<J1Sl=J18 
NCJ1Stll=J19 
J15=J15+2 

CONTINUE. 

IF<J15.EG.J14l GOTO 620 
N<J15l=LIHIT 
NFS=J15+1 

J1B=K3 
J19=J14 
J16=NFS 
J17=NFS-1 

NO INTERl'IC.:TlON - GU TO NEXT Fl\CE, 

MERGE THE TWU INJERSfCTIUN LISTS. 

IF<NCJ18J-NcJ19> > s:30,5<10.s50 
Jl 7=Jl 7+1 
NCJ17l=-1-NCJ1B> 
J1B=J18+1 

GOTO 520 
lfCN<JlB>.EO.LIMlTlGUTD 560 
N(J17tll=-1-NCJ1Bl 
Jl7=J17t2 
NCJ17l=N<J19) 
J18=Jl8+1 
J1·9=Jl9t! 

GOTO 520 
J17=J17+1 
N<Jl7l=NcJ19> 
Jl9=J19tl 

GOTO 520 
K3=Jl7+1 
N<K3l=-l 

L 

c 

570 

580 

590 

600 

c 

c 
c 

c 
c 
c.: 

610 

620 
c 

c 
c 
6:10 
c 
c 
610 

J12=0 
Jl3=! 
JlS=! 

DO 600 J1B=Jl6•J1/ 
J!~=JlS 

J19=N<J18) 
IFcJ19.LT.0l GOTO 570 

J12=1-Jl:: 
GO TO 580 

J19--J19-l 
Jl3=1-J13 

Jl5=Jl2+Jl3 
IFcJ15.E0.2) J!S=l 
IF<J14.EO,J15> GOTO 600 

S~T PEN S~ITCHLS. 

IF<J19.NE.N<K4>> GOTO 590 
1(4=K4-l 

GO TO 600 
1(4=KH1 
NCK4l=Jl9 

CONTINUE 
K3=K3"tl 
1(4=1(4+1 
N<K4 l =LIMIT 

lf(l(4.GT.HAXl Ml'IX=K4 

JTEST=K4-1(3-2 
IF(l(4-K3~2·LT.Ol GOTO 660 
J14=K-1 

DO 610 J15=K3,1(1 
,J14=J14tl 
N<J14l=N<JlS> 

K3"=K 
K4=J14 
NFS=K4+1 
JB=N<JBtl) 

IFCJB.NE.Ol GOTO 410 

Hi'IXIHUH NUHBER OF AkRf'IY N USED. 

IF TRUE. - EDGE HlDl.lEN ENI lRl':L Y, 
GO TO NEY.I FACE, 

HOV£ THE FRl\t;H£NTE£• EI•(;[ Ilf'ICK TU 
TH[ POSITION OF THE OklGINl\L 
Er•GE FOR MURE COHPA!<l!;ONs. 

ARE THE.RE ANY HUkE FACES IN THE CELL? 

*** END LOOP 4 *'* ANY HUkE C[LLS ALONG EDGl? 
IFCJ7.NE.J6l GUTO 380 

*** END LOOP 3 *~* 

J12=(1\4-l(J)/2 
J13=1(3-2 
Jl4=K3-1 
R12=At.E1H< 

DRAW WHAI IS LEFT, 



c 

R13=A*E4/BITS 
R14=C*E2tD 
R15=C•E5/81TS 

DO 650 J15•1•J12 
J13•J13+2 
J14•J14t2 
R16•FLOAT<N<J13ll 
BUFF <NIW >=Rl 2+R13*R16 
8UFFCNBP+1>=R14+Rl~*R16 

R16=FLOAT<N<Jl~ll 

BUFF<NBf't2l•Rl~tk13*R16 

8UFF<N8f'+J>-R14tk15tR16 
NBP•Nf1Pt4 
IF<NBP.Nl.61> GUlO 6~0 

WR llE < lfl 4 > 8Uff 
N!lf'• 1 

650 CONTINUE 

OUTf'UT £nt:H LIH£ SEGMEHT, 

C ARE THU?£ AllY ltl.IRE EDGt.S WITH THIS 
!: STARTIN& f'UlNf• 
660 J3•N<J3+3l 

IF<JJ,Nt:.O> GOTO 330 
C ttt ENU LUOf' 2 *'' 
C Nt:Xl SlM!lING vt:RT[)(, 
61() 
c 

c 
c 

J~•H<J:?+J> 
A~E THt~l ftNY HORE SfAkTING VlkfEX? 

IF<J2.NE.O> GOTU 3~0 

•tr [Nil LU(lf-- I •U 

BUFF <N9P > -O 
BUFF< NE<f'+I > •O 
l'UFF C N!Wt:< > •0 
E<UFF<Ntcf"+J>•O 
WRITE <N~4> fl~F 

DTINE•St:CNOS<TINE> 
E<UFF <I »D f IHl 
BUFF c 2 >=MAX 
BUFF< 3 >•LIN! T 
E<UFF< 4 »NV 
!IUFF <5> =NF 
E<UFF<6>•NC 
WR!TE<N~4l <9UFF<J>•J•l•6> 
CLOSE <UN!T-4oDlSf'•'SnVl'> 
CLOSE <UNI1•2oDISP•'SAVE'> 
NCUBE•Nf/6 
STOP 
ENO 

KARI< UH' OF DRhW IN&. 

00 
N 
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