
~NALYSIS OF A HIDDEN-LINE

ALGORITHM

13y

CHARLES WAYNE BHOWN ,,
Bachelor of Science

University of Texas at Arlington

Arlington, Texas

1977

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment o[the requirements
for the Degree of
MASTER OF SCIENCE

December, 1980

ANALYSIS OF A HIDDEN-LINE

ALGORITHM

Thesis Approved:

Dean of the Graduate College

ii

1072092

PREFACE

The goal for this research was to develop an efficient hidden­

line algorithm for a small computer system. A hidden-line algorithm

published by J .. G. Griffith was used as a basis for the research. The

algorithm was successfully implemented on a mini-computer and extensive

analysis and testing were done. This work showed that Griffith's

algorithm was a linear growth algorithm as ·compared to the complexity

of the picture environment. Several enhancements were added to the

original algorithm to achieve even greater efficiency.

Acknowledgements and thanks go to Mr. John Houston of Graphics

Construction, Inc. in Tulsa, Oklahoma, who presented the initial idea

for this research and provided the computer time and facilities used in

the algorithm implementation and testing. My thanks also go to Mr.

Houston for his valuable suggestions during the entire project. I am

appreciative of Dr. J. P. Chandler who, as my thesis adviser, was always

available for help on problems and who ~uided the direction of the work.

I wish to thank Dr. D. Fisher and Dr. R. Phillips for their suggestions

on the final draft.

I am very thankful for the continual love and encouragement of my

parents, and especially my mother for typing the first rough draft of

this paper. My thanks go to all my friends who encouraged me throughout

the entire project, and especially for the support of my dear friends,

Stacy and Paula Rinehart, who provided me with living quarters during

iii

my final month of research. I am very appreciative.of Denise Bower,

who did such an excellent job o[typing the final draft and for her

extra work involved in the final approval.

iv

TABLE. OF CONTENTS

Chapter

I. INTRODUCTION •

II. HISTORY OF HIDDEN~LINE ALGORITHMS

Categorization
Roberts' Algorithm
Appel's Algorithm .
Newell's Algorithm
Watkins' Algorithm
Sununary

III. THE GRIFFITH ALGORITHM

Introduction
Data Structure
Hidden-Line Removal
Summary

IV. CHANGES AND IMPROVEMENTS IN GRIFFITH'S ALGORITHM .

View Calculation
Integer Conversions
Back Edge Elimination
New Maxmin Test . . .
Algorithm Testing--Results and Comparisons

Comparison to Other Algorithms
Comparison to Griffith's Original Results
Comparisons with Improved Versions

V. CONCLUSIONS AND SUGGESTIONS

A SELECTED BIBLIOGRAPHY . .

APPENDIX A - EXAMPLE OF GRIFFITH'S ALGORITHM

APPENDIX B - SUTHERLAND'S ALGORITHM COMPARISONS

APPENDIX C - ALGORITHM COMPARISON RESULTS

APPENDIX D - LISTING OF COMPUTER PROGRAM .

v

Page

1

4

4
7
9

11
13
14

15

15
15
22
27

29

29
30
32
32
35
35
37
38

40

43

44

49

55

74

LIST OF' TABLES

Table

I. Environment Statistics .

II. Statistics for Three Environments

III. Costs for Three Environments . . .

IV. Cost Summary: Three Environments

v.

VI.

VII.

VIII.

IX.

Program Performance for Lattices of Cubes

Program Performance for Lattice of Cubes and
Rectangles at Different Angles of Rotations

Program Performance for Lattice of Cubes

Program Performance for Lattice of Cubl!S
and Rectangles . • • .

Program Performance for Lattice of Cub• ·s and
Rectangles at Different Angles of Rotation

vi

Page

51

52

53

54

56

57

58

65

71

LIST OF FIGURES

Figure

1. Sutherland's Categorization of Ten Hidden-line,
Hidden-surface Algorithms

2. Special Cases for Newell's Priority Scheme

3. Input Requirements .

4. View of Object After Rotation and Location of the
Picture Plane for Perspective

5. Griffith Data Structure

6. Grid Cell Structure

7. Even, Odd, Crossing Test

8. New Depth Z Comparison by Grid Intersections

9. Example Picture

10. Example Data Structure .

11. Edge Eleven and Face One Comparison

12. Edge Eleven and Face Two Comparison

13. Program Performance for Lattice of Cubes

14. One Cube ..

15. Eight Cubes

16. Twenty-seven Cubes

17. Sixty-four Cubes .

18. One Hundred Twenty-five Cubes

19.

20.

Program Performance for Lattice of Cubes
and Rectangles

Eight Cubes and Rectangles

vii

Page

6

12

17

18

20

23

27

34

45

46

47

48

59

60

61

62

63

64

66

67

Figure

21. Twenty-seven Cubes and Rectangles •

Sixty Cubes and Rectangles 22.

23. One Hundred Twenty Cubes and Rectangles •

24. View One

25. View Two

viii

Page

68

69

70

• • 7 2

73

CHAPTER I

INTRODUCTION

Since the beginning developments in computer graphics capabilities,

the problems of representing three dimensional objects in a two dimen­

sional picture have been studied in great detail. Initially, in the

early sixties, only the hardware capability for drawing lines existed.

Faces, therefore, were represented as closed loops or "circuits" of

straight lines. Representing objects as pictures in this form, often

called "wire frame" drawings, can cause confusion and even optical

illusions if all lines of an object are presented. The need for an

algorithm to eliminate all lines not "visible" from a particular view

of an object becomes quite apparent. This is the hidden-line problem.

(A version of the hidden-line problem for "ruled surfaces" is a rela­

tively simple problem and is not discussed in this thesis

Beginning in the middle sixties and moving into the early seventies,

the hardware capabilities for graphics greatly improved to make shaded

drawings possible. 'I'hese advances greatly improved the visual quality

of computer generated pictures but the problem then became how to elimi­

nate nonvisible shaded faces. This is the hidden-surface problem.

In the beginning years of research, several solutions to the hidden­

line problem were developed. However, when the hidden-surface problem

1

began to receive attention, the emphasis in research shifted almost

entirely in its direction. Little new work has been published on the

hidden-line problem since the nineteen sixties. 2 This is unfortunate

2

because many areas of applications such as architecture and engineering

have a need for efficient three-dimensional line drawings, especially

in applications with mini and micro computers with only line drawing

capabilities. A new algorithm for hidden-line elimination was published

by J. G. Griffith (6) which has possible applications in these areas.

The description of Griffith's algorithm in the article, "Eliminating

Hidden Edges in Line Drawings" (6), states that this is a linear growth

algorithm, which means that the computer time required for a drawing

increases in a linear rate as the complexity of the object increases.

(Almost all previous hidden-line algorithms have a "squared-law" growth

rate. Given a drawing with N objects, the computer time required for

2
hidden-line removal is proportional to N .) Further research into

Griffith •.s method is needed to verify his results and to search for

possible improvements to the algorithm that could enhance its efficiency.

Also, some valid comparison with other previously existing algorithms

must be made to establish Griffith's algorithm as a better or worse

solution to the hidden-line problem. The contents of this thesis

presents the results of the research done in these areas.

First, a brief history and overview of hidden-line, hidden-surface

algorithms will be discussed for the reader's background information

and later algorithm comparisons. Then, in Chapter III, a description

2 J. G. Griffith has published several different papers on these
problems in the seventies besides the one to be studied here. (See
Bibliography.)

of Griffith's algorithm will be presented showing details of his data

structure and method for hidden-line removal. In Chapter IV, various

changes to improve Griffith's algorithm are discussed and the effects

of these changes are examined. Comparisons are made between Griffith's

algorithm .and ten other hidden-line, hidden-surface algorithms. The

final chapter discusses implemention of Griffith's algorithm, problems

that were encountered, and suggestions for future work with Griffith's

ideas.

3

CHAPTER II

HISTORY OF HIDDEN-LINE ALGORITHMS

Categorization

When discussing many different algorithms that solve the same

relative problem, there is a need for an efficient means of comparison.

By categorizing the algorithms, many insights into the hidden-line

problem are made which might be hard to understand if each algorithm

were studied separately. A very nice categorization of ten of the most

prominent hidden-line, hidden-surface algorithms published before 1974

was presented by Sutherland, Sproull, and Shumacker (10). The following

paragraphs are a description of their categorization scheme.

Four criteria are used as a basis for categorization and analysis:

1. First, a major difference is the resolution, or accuracy, of
the final picture produced by each algorithm. An algorithm is
said to work in obiect space (10, p. 19) if the final output is
as accurate as the accuracy of the computer used. Almost all
calculations are done to machine accuracy. However, if the
output of a drawing is limited to a certain screen resolution
size, there is no need for this kind of accuracy. Algorithms
that calculate a drawing only to a limited resolution are said
to work in image space.

2. The types of comparisons for hidden-line determinations are
quite different for each method. Many "tricks" are used to
eliminate as many unnecessary comparisons as possible.
Obviously, if the complicated and time consuming tests for
intersecting or overlapping lines can be reduced to only those
cases that actually have intersections, then much efficiency
can be gained.

4

3. Each algorithm takes advanL1ge of one (or more) specific
characteristics of the prohlf'm to at.tl·mpl to minimizt~ the
solution process. Trw~-;e t:(Jmmon relat.i<>11sl1i1>s dre givPn tilt'

name coherence. F'or l'Xamp tc, Appr?J w:es the fact that if d

vertex on an edge is visible, then al] other edges with this
vertex will very 1 ikely be visible (h1_·nce, edge to edge
coherence). By taking advantage of coherence relationships,
compl•.tations can be reduced and, in some cases, eliminated.

4. Also, to analyze the efficiency of each algorithm, the
various sorting and searching techniques are compared.

5

Referring to Figure 1 the categories for each algorithm can be seen.

Appel, Galimberti, Loutrel, and Roberts solved the hidden-line problem in

object space, to the nearest accuri1cy of the computer used.
1

Wi1rnock ,

Watkins, Romney, and Bouknight solved the hidden-surface problem in image

space, because their goal was television type c1utput which has a fixed

resolution size. Schumacker and Newell also solved the hidden-surface

problem but partly in both "spaces". Their calculations were done to

machine accuracy but the shaded drawings produced must be output to the

. 2
limited resolution of a television type display screen.

Each group of algorithms uses a different method for finding visible

line segments or faces. The object space algorithms use comparison

tests to find intersecting lines and to determine which lines are

visible. These tests require many mathematical calculations and are

often quite time consuming. The Schumacker and Newell algorithms use

a priority scheme to determine face visibi.lity. 1~e 11riorities can be

calculated once for an object regardless of the position of the

observer. By avoiding repetitious calculations for visibility, these

algorithms can produce pictures in real-time; meaning that the time

1
There are hidden-line versions of the Warnock algorithm.

2All above authors are cited in (10).

OPAQUE~OBJECT ALGORITH}lS

OBJECT SPACE (Partly each) IMAGE SPACE

Comparison algorithms List priority algorithms Depth priority algorithms

I
Edge: Edge Edge: Volume A priori Dynamically Area Point sampling

I priority computed sampling I priority

I
Appel Galimberti, et al Lout rel Roberts Schumacker, et al Newell, et al Warnock Watkins Romney, et al Bouknight
1967 1969 1967 1963 1969 1972 1968 1970 1967 1969

Source: Sutherland (10, p. 19)

Figure L' Sutherland's Categorization :of'_ Ten Hidden-line, Hidden,;_surface Algorithms ,,

m

7

taken for picture computation is less than the time required for a

single scan. of a raster screen output device (television type screen).

The image space algorithms use depth priority schemes to determine

visibility on a specified area of the screen .. Extensive sorting is

used to give faces priorities according to their depth, and their

position in these priority lists help to determine visibility. It must

be noted that all ten of the algorithms put restrictions on the kind

of objects allowed in their picture environments. The methods used for

visibility detennination are valid only within these restrictions.

These environment restrictions are noted in Sutherland's (10) article

but are not used for categorization.

Now that a general overview has been established, a more detailed

look at a few selected algorithms is needed. The first one will be

Roberts' (9) algorithm, which was the first practical solution to the

hidden-line problem. Next, a discussion of Appel's (1) method will

illustrate edge by edge comparisons. (Galimberti• s and Lout rel' s

methods are variations on this same theme.) Newell's (7) algorithm

will help explain priority schemes in greater detail. And finally,

Watkins' (11) algorithm will explain scan-line algorithms and depth

priority.

Roberts' Algorithm

Roberts' (9) algorithm solves the hidden-line problem using linear

algebra techniques to compare each edge in an environment with each

spatial volume. A spatial volume is defined by a set of convex

polygon faces. By restricting the shapes to convex polygons, each

face of a solid can be represented by a plane equation of the form

aX + bY + cZ + d = 0. The mathematical relationships between points

along an edge and these planes can determine the visibility of a

given edge.

Roberts' algorithm can be broken into three distinct steps.

1. Clipping against the screen boundary.

2. Rejecting back edges.

3. Testing the edge against polygonal volumes.

8

Parts of the environment can be outside of the particular view of an

observer. Those edges not in view (outside the screen boundary) or

those portions of edges partially hidden by the screen boundary can be

eliminated by multiplying an edge equation times a special volume matrix

which represents the edges of the view boundary. The resulting para­

meters provide the maximum and minimum values which define the visible

portion bf an edge. Next, the back edges are eliminated. Any given

solid volume will hide some of its own edges. The position of the

observer determines which edges are automatically hidden. By deter­

mining the direction of a vector normal to the face of a solid, a face

can be recognized as a front face or back face. Edges on back faces are

eliminated from further testing; they are totally hidden. The remaining

edges after these first two steps must .now undergo much more complex

tests to determine visibility.

Each edge is tested for visibility against every solid volume in

the environment .. The edge is represented parametrically as

v = s + t(r - s) 0 < t < 1

where r ands are the two endpoints. For every value of t along the

edge, an imaginary vector is created which points in the direction of

9

the observer. If any of the vectors pass through a face, then the edge

is totally or partially hidden. If no face intersections occur, then

the edge is totally visible. To determine these conditions, the para­

metric equation defining the imaginary vectors is multiplied by a

volume matrix which represents a particular volume. The resulting

parameter values are tested against boundary values which satisfy the

required conditions for visibility.

Roberts' solution to the hidden-line problem is often called the

"classical" solution because of its use of mathematical relationships.

Although his method is very good, its performance suffers because of

the enormous number of calculations required in the matrix multipli­

cations and because of the number of tests involved. Each edge is

compared to every volume in the environment which makes the computer

time required grow proportionally to N2 , where N is the number of

objects in the environment. For complicated scenes, the algorithm is

not practical.

Appel's Algorithm

Appel' s (1). algorithm works in the same kind of environment as

Roberts': that is, polyhedra made up of planar polygonal faces. But

Appel' s approach is totally different. The algorithm introduces the

concepts of a material edge, a contour edge, and quantitative invisi­

bility to define the edges in an environment. These properties of

edges help determine visibility.

An edge has three possible classifications. Edges hidden by their

own volumes are called back edges and they are immediately eliminated.

10

Edges bounding two possibly visible faces are referred to as material

edges. Those edges bounding an invisible face and a potentially visible

face are called contour edges. An edge is broken into segments based

on its intersection with contour edges and each resulting edge segment

is assigned a quantitative invisibility value. A visible edge segment

has an initial value of zero. Each time the edge crosses behind a

contour edge the quantitative invisibility is incremented by one and

then correspondingly decremented when it comes out from behind a

contour edge. Only those edge segments with a resulting quantitative

invisibility of zero are visible.

The task of finding initial quantitative invisibility values is

time consuming (an edge endpoint is compared to every face in the

environment). However, for any given point, all edges emanating from

this point have the same quantitative invisibility (normally). This

coherence relationship reduces to a great extent the amount of required

calculations. By following "circuits" through the drawing, previous

ending quantitative invisibility values are passed on to other beginning

edges. Appel developed an efficient method to examine every edge in an

environment using a minimum number of these circuits. Problems arise,

however, when several special cases can make the quantitative invisi­

bility values wrong. For example, if a point lies on a contour edge,

then some edges emanating from this point will possibly have a higher

quantitative invisibility value than others, depending on which edges

emanate behind the face and which edges emanate out away from the face.

This case and others must be tested before qua11titative invisibility

values at an edge endpoint can be passed on to other edges. These

tests become quite detailed and inhibit the efficiency of the quanti-

tative invisibility scheme.

2
The algorithm's efficiency is proportional to N . Loutrel, and

Galimberti and Montanari use.d this same basic idea but with special

enhancements. Their algorithms are also proportional to N2• The

problem of having to compare each edge in an environment with every

other edge was still not solved,

Newell's Algorithm

Newell's (7) algorithm solves the hidden-surface problem in what

could be described as the "painter's" algorithm. All polygons in an

11

environment.are ordered according to their distance from the observer.

After proper ordering, the faces are output or "painted" onto an output

screen (or frame buffer) starting with the most distant face and

proceeding up to the nearest face. The hidden-surface problem becomes

a sorting problem to determine the correct order of output.

The algorithm is called a priority algorithm because each face is

given a priority based on its distance from the observer; those nearer

faces to the observer having higher priorities. Many different tests

are used to assign priority values. The simpler tests are applied

first, and if these fail, more complex tests are used until a priority

can be determined. The initial step orders all faces according to

their closest point to the observer. Using this order of faces, the

following tests are done between adjacent faces. A face has higher

priority over the next face if any of the following tests are true:

12

1. A depth minimax test shows that there is no overlap in depth.

2. An XY minimax test shows no overlap in X or Y.

3. All vertices of the face are nearer to the observer than the

plane which contains the next face.

4. All vertices of the next face are farther away from the

observer than the plane which contains the face.

5. A complete overlap test which shows no overlap in X or Y.

Once any of these tests are true, none of the others need to be applied.

Two problems arise which must be solved. First, the priority

relationships are not transitive; that is, faces can obscure other faces

which in turn might "cycle" back and obscure the original faces

(Figure 2a). Second., because Newell allows concave faces, two faces

can possibly dbscure each other (Figure 2b). If a face in the priority

list tries to shift priorities more than once, then one of the above

problems is assumed to be true. The face is subdivided into two

(a) (b)

Figure 2. Special Cases for Newell's Priority Scheme

smaller faces and the priority tests are repeated. Subdivisions

continue until no more than one priority shift per face is required

for correct ordering.

13

Newell's algorithm is much more efficient than Roberts' or Appel's

algorithms. The development of priority schemes made it feasible for

real-time hidden-surface pictures. Schumacker developed the first

real-time algorithm which has been operational since 1968. His

algorithm used a clustered priority scheme and was implemented in

hardware.

Watkins' Algorithm

Watkins' (11) algorithm solves the hidden-surface problem by the

scanline approach, which is based on the output needed for a raster

(television type) screen. Raster type screens have a limited number of

possible dots (technically called pixels) in which to represent a

picture. By taking scan lines horizontally across the screen, those

pixels visible on that line can be determined, and giving each one a

desired shade of gray will create a shaded picture. Obviously this

algorithm works in the image space creating a picture only as accurate

as the screen.

Two steps are involved in determining visible parts of a scan line.

First, all intersections between the scan line and the polygon faces that

it crosses are found. Each polygon face "owns" a segment of the scan

line; that portion of the scan line between face intersection points. If

a face scan line segment has no ·intersections with other face segments,

then that face segment is visible and no other action is required.

However, overlapping segments must be further tested to determine

14

visibility. The overlapping section is divided into "sample spans"

which satisfy the condition that the visibility in each span does not

change (that is, the XZ-plane projections of the faces corresponding

with each span do not· intersect.) The second step involves determining

which face is visible in each sample span. Because only one face is

visible in each plan by definition, then a simple Z depth analysis can

detennine visibility. After all scan lines are processed, the picture

can be generated.

Watkins uses a sort on the Y coordinates to avoid as many compari­

sons as possible. By presorting the faces, a face is not tested for

intersections with a scan line until it comes into range and inter­

sections are possible. After all of a face has been examined, the face

can be removed from the list of possible faces and never be compared

again. All unnecessary intersection calculations are eliminated. Going

one step further, scan line algorithms can make use of the coherence

from one scan line to the next, and further reduce the number of calcu­

lations required.

Real-time pictures have been produced using Watkins' algorithm.

Sununary

Many very different ideas and solutions to the hidden-line,

hidden-$urface problem have been implemented. All of the algorithms

which have produced pictures in real-time are hidden-surface algorithms.

None of the hidden-line algorithms have even come close to such speeds.

The need for more. efficient hidden-line algorithms, comparable to the

hidden-surface algorithms, is evident.

CHAPTER II I

THE GRIFFITH ALGORITHM

Introduction

Now that a brief summary of hidden-line algorithms has been

presented, a detailed description of Griffith's algorithm is needed.

Griffith used many of the same ideas as the previously discussed

algorithms but his combination of these ideas and his introduction of

several new ideas such as a "masking line" makes his algorithm dis­

tinctively different. Approximately one-half of the computer code

required for the implementation of his algorithm is for the creation of

the data structure, which will be discussed first. Then the hidden­

line removal will be examined.

Data Structure

The Griffith (6) data structure is the single most important part

of his algorithm for efficient hidden-line removal. To establish the

final data structure as shown in Figures 5 and 6, the initial vertices

must first go through transformation equations to create the desired

view of the object. Then the vertex nodes, face nodes, and edge nodes

are created. Finally the screen area is divided into a two-dimensional

grid and each face 1s linked into every grid cell that it covers or

intersects.

15

16

Initial input of data for an object uses the following form: the

number of vertices, each vertex given by its X, Y, Z cartesian coordi-

nates, the number of faces, and a list of face descriptions. A face

description is a list of vertex pointers which point to adjacent

vertices of the face perimeter followed by at least one zero to indicate

the end of the list. The vertices are real numbers (having whole and

fractional parts) and the vertex pointers are integers. Figure 3 is an

example of input for a simple cube. Any polygon shaped face is allowed,

convex or concave with the assumption that all edges are straight lines;

no curves allowed. It is also assumed that all faces intersect only on

edge boundaries.

The vertices must undergo two transformations to establish a

desired view. The observer is assumed to be on the positive Z axis

looking at the origin, with the positive X axis to the right and the

. . . d 1 (. 4) positive Y axis upwar Figure . The first transformation requires

as many as three rotations, one around each axis to align the axes to

this orientation. Given the three angles of rotation, which are part of

the initial input, all three rotations are done at once by multiplying

each vertex by a 3 x 3 rotation matrix. Then the maximum distance of

the object from the origin is found. The object lies totally within a

sphere of this radius. To create the final picture, the second trans-

formation produces a perspective in a two-dimensional picture plane

which is parallel to the X-Y plane and perpendicular to the surf ace of

the sphere (Figure 4). This envirorunent makes perspective generation

1Most algorithms have the observer on the negative Z axis as
standard notation. Caution must be used when referring to other
literature in discussing maximum and minimum values of Z.

17

(0,1,1)

(1,0,1). G.

(l,O,O) :i 3 (1,1,0)

8
0.0000000 0 •• 0000000 0.0000000
1 ~0000000 o.ooboooo 0.0000000
1.0000000 1.0000000 0.0000000
0;.0000000 I .0000000 0.0000000
0.0000000 0.0000000 1.0000000
1.0000000 0.0000000 1.0000000
1.0000000 l .~0000000 1. 0000000
0.0000000 I .0000000 I. 0000000

6
I 2 3 4 0
I 5 6 2 0
6 7 3 2 0
7 8 4 3 0
4 8 5 I 0
5 8 7 6 0

Figure. 3. Input Requirements

+z

+Y

Sphere at a radius
of maximum distance

18

of object from origin.

Picture plane

Figure 4. View of Object After Rotation and Location
of the Picture Plane for Perspective

19

very straightforward because the entire object lies inside the sphere

picture plane. If this were not true, then a clipping algorithm would

be needed to "throw away" everything outside of the picture plane.

Therefore, only exterior views of any object are possible; close up

views or int~rior views would require clipping and a different method

for perspective generation. (No perspective transformation is done on

the Z (depth) coordinates. They retain their required depth relation­

ships in three-space.)

The vertex nodes are the first nodes to be established. The X, Y,

and Z real number vertices are mapped into an integer "world" using

linear mapping functions based on the maximum and minimum values for

each axis. This linear "world" must be large enough to retain an

accurate description of the object but small enough to prevent integer

overflow in math calculations. The last two fields of a vertex node are

links (referred to in Figure 5 as Ll and L2). Link Ll is used to

establish an efficient drawing order (to minimize pen movements) for

the final output drawing. To do this the picture plane is divided up

into a two-dimensional square grid. Each vertex is initially placed

into its appropriate grid cell, and then link Ll links all the vertices

together by tracing through the grid, one row at a time. Link L2 is a

pointer to a list of edges with this vertex as their starting point.

By "visiting" each vertex through link Ll and each edge of a vertex

through link L2, an efficient method is cre.ated that guarantees access

to each edge in the drawing.

A face node contains three fixed fields and a variable number of

vertex pointers. Field three indicates how many vertex pointers make

20

Vertex node

xi YI zl LI 12 -
L ...

-
Face node ..
Max Mark No. of -

VP I VP2 VP3 VP4 r-+ z Field Vertices

-_..,

-..

Edge node

Ending Face Face Next
Vertex I 2 Edge ~

~

i.--

Figure 5. Griffith Data Structure

21

up this face. Fi~ld two is used as a link in setting up the data

structure but 1.s unccl as a "mnrk.i ng f it·ld" in the h.iudcn-linc removal

process to avoid repetitious face comparisons. Field one stores the

maximum Z value on the face (its nearest point to the observer's eye.)

An edge node has four fields. Each edge node is in a linked list

of edges, each having the same starting vertex. The L2 link in the

vertex node points to the first edge in the list and the fourth field

in the edge node (labeled "next edge" in Figure 5) points to each

succeeding edge in the list. If the field is zero, then no more.edges

exist with this starting vertex. The middle two fields are pointers to

the faces which have this edge as one of its boundaries. If the edge

is used by only one face, then both fields point to the same face. The

first field is a vertex pointer to the ending vertex of this edge.

Each edge node is guaranteed to be unique by the restriction that the

starting vertex pointer is always greater than any of its ending vertex

pointers.

As the face nodes are established, each face is sorted according

to is maximum Z value using a "bucket" sort which is a form of a

radix sort. The resulting list of faces begins with the farthest face

from the observer and ends with the nearest face. The next task is to

link each face into every grid cell that it covers or intersects. To

do this exactly would require many calculations to establish the inter­

sections of each edge of a face with the grid lines of the grid. To

eliminate these costly computations the maxrnin test is used. The

maximum and minimum X and Y values are used to create a surrounding

rectangle and the face is linked into each grid cell that this rectangle

22

covers (Figure 6, Rectangle C). Obviously, this is very inaccurate

for slender faces at angles other than approximately zero or 90 degrees,

but the enormous savings in computation makes it worthwhile. In the

final structure, each cell contains a list of faces such that the first

face is the nearest face and each succeeding face is farther and farther

away from the observer {Figure 6). It is possible that two faces may

not be in the correct order in a cell because only the maximum Z is

used for sorting (Figure 2), but the ordering is good enough to

establish a maxmin test for the Z coordinates, to be discussed later.

The data structure is now complete and ready for hidden-line

removal.

Hidden-Line Removal

First, a very general description of the method is needed. Each

edge is visited once and compared to every face that could possibly

hide it. If, at any time during the comparisons, the edge is deter­

mined to be totally hidden, then comparisons begin on a new edge. If

after all comparisons, there is still part of the edge visible, then

the visible part is output to a storage device for later drawing.

Using Ll and L2 vertex links, a starting vertex is established.

Each edge with this vertex is examined before a new starting vertex is

established. All edges are examined in this manner.

To compare an edge to all of the possible faces that cover it, each

face in every cell that the edge crosses must be examined. Constants

are calculated to determine which cells the edge crosses. Three things

help to eliminate unnecessary face comparisons~

A A

c c

2

4 3

A A

B B

c c

D

2

./
,/

/T--
/

/

D

4 3

Note: Sixteen vertices results in the four cells - a two

by two grid (one cell for every four vertices.)

Figure 6. Grid Cell Structure N
w

24

1. A face is marked in its "mark field" with a unique marker

associated with the edge bPin~1 compared. Hy t:esti ng the mnrk

field, no other compari_sons wjll be made with th.is f.:icc, even

if the face reappears in 0U1cr cells along the edge.

2. A face cannot hide one of its own edges. Therefore, using

the two face pointers in the edge node, the faces that the

edge are part of are "marked" and never compared.

3. A maxmin test is used to compare the depth of the edge with a

face. If the minimum z value on the edge is greater than the

maximum Z value of the face, then the face cannot possibly hide

the edge and no comparisons are needed with any of the further

faces in this cell.

Comparing a face with an edge is a costly operation and the above methods

help eliminate many comparisons, along with the fact that only faces in

the edge cells are examined. An edge and all remaining faces which

could possibly hide it undergo a detailed analysis to determine which

segments are visible and which are hidden.

Individual points on the edge can be represented using the para-

metric equations:

where

x = xl +)\ (X2 - x)
1

y = y +
1 ~ (Y2 - y)

1

(Xl, Yl) is the starting vertex,

(X2 , Y2) is the ending vertex, and

o~ ">-."-1.

By representing intersection points in terms of). values, only one

number must be stored. Intersections not on the actual edge are quickly

recognized by the conditions A < 0 or >-. > 1. Also, the)..• s are

easily sorted to determine consecutive edge segments along an edge.

Visible edge segments are found through the introduction of a

masking line. Given an edge and a face, the face is "cut" by a plane

which is defined by the edge and the viewpoint. The intersection of

25

the face and this plane is the masking line. The endpoints of the

masking line are taken as the intersection points with the face boundary.

Since concave polygons are allowed, there is the possibil1ty for many

masking line segments. The masking line segments may completely "mask

out" 0or cover) the edge, only partially cover the edge, or miss the

edge entirely. Two conditions must be met for a masking line segment to

cover an edge or a portion of an edge:

1. The face on which the masking line lies must be in front of the

edge segment.

2. The masking line segment must be inside the boundary of the face.

To determine the depth relationship between the face and an edge, the

depth on the face along the masking line must be found. This could be

done using the plane equation for the face as Roberts' (9) algorithm

does, but a much simpler method is available using the masking line.

Because the masking line and the edge lie exactly on top of each other

in the two dimensional picture plane, the same parametric equations can

be used to describe both of them. A linear relationship exists between

the lambda values along the edge and the Z depth along the masking line.

This linear relationship is calculated using a least squares approxima­

tion. Once at least two intersection points are known for the masking

2 f,

line. As stated earlier, intersecting faces are not allowed, and

therefore, if part of a masking line segment is in front of an edge,

then all of it is. By testing the Z value at the midpoint of the edge

segment against the corresponding Z value of the masking line (on the

face) the depth is determined. If Z is greater than Z , then the face
m e

can possibly hide the edge segment, and the next test is applied. Other-

wise, the segtnent is visible and not part of the final masking line

segments. The next masking line segment is then put through these tests

until all segments have been examined.

The final test for visibility is whether the masking line segment is

inside or outside of the face. To determine this, an "even, odd crossing

test" is used. The number of intersections are counted between the face

and a line which starts at the midpoint of the edge segment and goes to

some point at infinity (in practice, some point near the boundary of

the picture plane). If the number of "crossings" is odd, then the edge

segment is inside the face. If the number is even, then it is outside

the face (Figure 7). If the masking line segment is inside the face

boundary, then its endpoints (a lambda pair) are stored as one of the

masking line segments.

The final results of the masking line tests are a list of ordered

pairs of lambdas ()-.i, /\i+l), ()\i+Z' }.i+3), ... which represent the

edge segments no longer visible. These segments must be removed from

the list of edge segments that are visible. To do this, the lambdas are

merged into a single ordered list. The edge segment lambdas arc made

negative so that they can still be distinguished from the masking edge

segment lambdas. Then, using two switches which change states for each

lambda, the visible edge segments are determined and listed as ordered

27

pairs of lambdas (>-. . , >-... 1) , ().. . 2 , °>I. . 3) . • . (See Appendix A for a
i i+ i+ i+

more detailed description of this method using switches.)

This process of detailed face, edge analysis is repeated each time

one or more intersections occur on a face. If the edge segments totally

disappear, then no output is done, and a new edge is established for

comparisons. If, after all possible comparisons, some edge segments

still remain, they are output to a storage device for later drawing.

The algorithm is finished after all edges have been examined.

Summary

Each edge that is examined for visibility is compared to a minimum

number of faces. This is the key to the performance of the algorithm.

Minimax tests in the X, Y, and z directions help to make only those

face comparisons which have possible intersections. Also, faces which

1 intersection '
I

I

I

/
/

/
/

/

,,, -r 0 intersections

-...._ 3 intersections

f 2 intersections

Figure 7. "Even, Odd Crossing Test"

28

include the edge as a side are omitted from the tests. The size of

Griffith's data structure which allows all of this to happen is a major

problem for small computers. This problem will be discussed in chapter

V, but first a discussion of some improvements to Griffith's algorithm.

made:

CHAPTER IV

CHANGES AND IMPROVEMLNTS IN GRIFFITH'S ALGORITHM

After thorough study of Griffith's algorithm, four changes were

1. The method of input for the rotation angles was changed to

simplify user input and program interaction.

2. Because of integer size and overflow problems on the small

computers, some of the integer "mapped" values are changed

back to real numbers before calculations are performed.

3. The elimination of all back faces is done while the data

structure is being created.

4. A new maxrnin test in the Z (depth) comparisons was implemented.

These will be discussed in detail and the results of the implementations

given.

View Calculation

To achieve a desired view, Griffith's algorithm simply reads in

three angle values for rotation, one for each axis. A 3 x 3 matrix is

set up which is multiplied by each individual vertex for the desired

rotations. Rotations about the three axes are not commutative; that

is, a different view will be computed if the order of rotations is

changed. Therefore, it is very important that the user of the algorithm

can visualize the type of view desired, the rotations needed to obtain

29

that view, and the correct order of 'rotation required. This is not

always an easy task for beginners in computer graphic drawings.

30

An easier, more straightforward, way of "asking" the user for a

desired view is to establish a line of sight through which an observer

wishes to view an object. This line of sight can be established by

locating two points; the point being observed and the point position of

the observer. The distance between these points determines the relative

size of the final drawing and the "amount" of perspective generated.

Only two angles of rotation are required to orient the observer on the

positive axis with the positive X axis to the right and the positive Y

axis upward. (The third angle of rotation is not used.) Another great

flexibility with this method is the ability to look at points other than

the origin. Restricting the view to the origin greatly limits the

possible number of views. If a point other than the origin is specified

as the point being observed, then a simple translation is required with

the rotation to align the line of sight with the Z axis. In summary,

this method increases the number of views possible and allows the

computer to do the "dirty work" of calculating the correct ;rotation

angles.

Implementation into FORTRAN required approximately 30 lines of

code. Because the program was run interactively, these computations

were not included in the timed portion of the algorithm.

Integer Conversions

Griffith's algorithm converts all vertex coordinates into integers

using linear mapping functions based on the maximum and minimum values

for each axis. Two restrictions control the size of these linear

\
\

31

mapping functions. If the integer values are too small, then the

accuracy of the final drawing can be distorted, even to the extreme of

making nonvisible lines visible and parallel lines skewed. From experi­

ments using different ranges of values (based on powers of two for

simplicity), the minimum integer range producing no visible distortions

on complex drawings was from -1024 to +1024. However, because of over­

flow problems on various calculations, there is also an upper limit

based on the integer size of the computer being used. The equation

(I*J) - (K*L) produced the largest possible number from any of the

calculations in the algorithm. Therefore, to prevent overflow, each

integer value would need to be restricted to the range -128 to +128

for an integer word size of 16 bits; the range -2048 to +2048 for an

integer word size of 24 bits, etc.

Virtually all small computers today are 8 bit or 16 bit word

machines, as was the computer used for this thesis, a PDP-11/34.

The largest integer value in the FORTRAN implemented on this computer

was 16 bits. This required a change in Griffith's FORTRAN implemen­

tation of his algorithm.

Two sections of code were changed from integer calculations to real

calculations: the solution.for intersections between lines, and the

test for an edge segment to determine whether it is in front of or

behind a face. On the PDP-11/34, the real arithmetic calculations are

bdth software and hardware supported. The hardware supported arithmetic

was used in all testing. In the extensive testing done, no loss of

accuracy was ever discovered from using real calculations and no

appreciable increase in computing time was evident.

32

Back Edge Elimination

The solution to hidden-line elimination can be greatly enhanced if

all back faces can be eliminatC'd quickly from the view. A back face is

any face on the "back side" of an object. On the average, half of any

given solid object is always not visible and therefore half of its faces

are back faces. Using a certain convention for describing faces and

vector algebra, back faces can be eliminated easily.

Intuition says that by removing approximately half of the faces,

the algorithm should run twice as fast and use half as much storage.

This proved to be correct, as shown later in the testing discussion.

Implementation in FORTRAN required four lines of code inserted into

the face node portion of the data structure. After a face is read in,

it is immediately tested to determine whether it is a back face. If it

is, the face is left completely out of the data structure along with

each of its edges. To establish the correct convention for the vertex

pointers order (listed clockwise around the perimeter when looking at

the "exterior" of the face), .a few minor changes had to be made in

Griffith's object building programs.

New MaXIllin Test

The maxrnin test for depth comparisons uses the maximum Z value on a

face compared to the minimum Z value on an edge. This comparison elimi~

nates many face tests but there is a convenient way to make it even better

because of the grid cell structure.

The edge is compared to faces in each cell that it passes through.

It seems logical then, to compare the maximum Z on a face with the

minimum Z in the cell where the face appears on the edge segment.

Whereas a face might fail the broad test against the minimum Z of the

edge, it could possibly be eliminated from comparisons by this more

exact test (Figure 8).

33

This test retjuired a total change in the way cells were found along

an edge. Griffith used an approximation method which did not solve for

exact intetsections with the grid cell boundaries. Instead, his method

required the calculation of some constants and then only addition and

some tests to find the next cell. The new test required exact solutions

at the grid line intersections to solve for the Z values at these points.

The implementation in FORTRAN took approximately the same number of

lines of code as Griffith's original code. However, when considering

efficiency, several mathematical divisions arc required in place of his

simple addition. This makes the process of finding cells along an edge

a little more costly. Testing on a single cube showed an increase in

computer time using this method which was attributed to the added "cost"

involved in the mathematical computations. But in testing more complex

objects, the new method was always comparable to, or a little better

than, Griffith's original algorithm. In some cases there was approxi­

mately a 5% increase in efficiency. As Table IX shows, the cases

where this new test helps the most is for "long" faces compared to

fairly close short faces. From the experiments run, in normal appli­

cations, this "improvement" adds substantially nothing to the efficiency

of the algorithm. But for the occasional special drawing conditions

which do occur, this new maxmin test does indeed eliminate enough face

comparisons to make it useful.

34

+Z

Edge ,

Max Z on face ~ ·
Min Z on edge~ =--:_ -_::-- - _ - _ - _?s_-_ - ..=--:_ 1 Fails Z depth test.

_:, _J Satisfies Z depth
Max Z on face ;r
in this cell~ Face test for this cell.

'.

--~~--'~i~--~!~3----~~---------11-·X-Y plane
Grid divisions

Figure 8. New Depth Z Comparison by
Grid Intersections (Grid 3)

Algorithm Testing-~Results and Comparisons

Three kinds of comparisons and tests were done on the Griffith

algorithm:

1. The algorithm was compared to ten other hidden-line, hidden­

surface algorithms using the information presented by

Sutherland (10).

2. The same testing that Griffith presents in his published

article was simulated to validate his results.

35

3. The improved versions presented previously were tested against

Griffith's original algorithm to measure their benefits.

Each of these will be discussed in the following paragraphs but ref er

to Appendices B and C for actual figures.

Comparison to Other Algorithms

Griffith's algorithm must be categorized somewhere between the

object space algorithms and the image space algorithms. The initial

input and final output are related to the object space in that they have

high accuracy~ But the calcul~tions are done to a limited "resolution":

limited, not by the resolution of an output screen, but by the magnitude

of integers in the computer being used. Also, this is a comparison

algorithm comparing edges to faces. This creates a difficulty in

linking Griffith's algorithm into the Sutherland tree structure. The

best "fit" is between Roberts and Schumacker, linked half way between the

object space and "partly each" space and linked to the comparison

algorithms.

The coherence used by Griffith is comparable, in some ways, to

Warnock's objects in local areas on the screen to reduce the number

36

of tests and comparisons needed. There are few apparent similarities

with the hidden-line algorithms of Appel, Galimberti, Loutrcl, and

Roberts. Griffith does not use the notion of quantitntivc invisibility

or edge coherence. Neither is there any of the plane equations as used

by Roberts. Griffith avoids the calculation of the plane equation by

the introduction of his masking line and least squares approximation.

A major distinction of Griffith's method is that it does not have to

take care of the special conditions that always seem to arise, such as

a face intersecting another face at a single point.. Griffith's general

masking line concept takes care of all special conditions. The other

algorithms do not even discuss solutions to these problems.

In order to compare Grif.fi th' s algorithm with the same scheme that

. Sutherl~nd uses, the algbrithm was broken into its major operations and

sorting and searching routines. From this examination, the edge to face

comparisons are the dominant cost of the algorithm. (This was also

verified during early testing of the program by printing out inter­

mediate test values.) The masking line test for visibility is the only

other major time consuming task. The figures show that if excessive

face comparisons are made with each edge, the results are disastrous.

The way to increase the efficiency is to decrease the number of face

comparisons.

An interesting relationship appeared between the cost and the depth

complexity of the environment. The depth complexity is defined as a

measure of how many front faces are pierced by an arbitrary ray from

the viewpoint, on the average. Because the depth complexity remained

constant in each succeedingly more complex environment, the face sizes,

on the average decreased in height and also in the amount of screen area

37

that they covered. Since each face still has approximately the same

number of faces around it on the screen area, the number of face

comparisons for each edge remains fairly constant for all three

environments. Assuming this is correct, the algorithm grows on a

linear basis as a function of the total number of edges. Just as

important is the indication that as the depth complexity increases while

the number of faces stays constant, many more edge-face comparisons

would be required for each edge. The algorit~m would tend to grow more
I

nearly exponehtially as the depth complexity increased. These are trends

in the data and not exactly accurate for any given environment. (See

Appendix B for an example.) Other factors that could not be included

in the cost calculations are the amount of overlap among faces and the

z depth relationship between faces. Both of these allow the edge-face

comparisons to be cut short, which contributes much to the efficiency

of Griffith's algorithm. In conclusion, the algorithm has a much greater

possibility of a linear growth rate if the environment depth complexities

stay small. As the depth complexity grows, the analysis becomes less

precise and more dependent on the properties of the particular environ-

ment being drawn.

Comparison to Griffith's Original Results

Griffith's computer was much faster than the PDP-11/34 which was

used for implementation and testing for this thesis. But the same

trends in computation time were received. The FORTRAN timing function

of a PDP-11/34 is not very accurate and thus the figures cannot be

taken as exact data but they can be used as relative indicators of

computing time. The final two test cases were not run because of lack

38

of memory for these large drawings. 'l'he results can be seen in Table V

in Appendix c.

Griffith's test case of "a lattice of cubes" takes advantage of the

grid cell structure of the data structure. Another test case was

constructed which contained long rectangular boxes intennixed with the

cubes. This would tend to make the algorithm "work" harder if the

rectangles were at an angle such that they were linked into many cells

of the grid of which they did not cover or intersect. This would

increase the number of edge to face comparisons and consequently the

amount of computer time. The results showed an approximately 100%

increase in the time required for calculations if the angle of the

rectangular boxes was from 30 to 45 degrees from the horizontal. (Refer

to Table VI, Appendix C.) This shows so dramatically the importance of

the environment in relation to the performance of the algorithm.

Griffith's algorithm is based on an area coherence scheme and if the

environment is not area coherent, the algorithm losses much of its

efficiency. Even though the efficiency dropped drastically as the

environment changed, the computer time still grew at a linear rate.

This seems to prove that the algorithm grows at a linear rate regard­

less of the environment, assuming that the environment's coherence

properties remain fairly uniform.

Comparisons with Improved Versions

Three versions of the algorithm with improvements were tested

against Griffith's original algorithm:

1. New Z depth test for face to edge comparisons.

2. Back faces removed.

3. Both of the above together.

These were run on the original test case of "a lattice of cubes" and

on the new test case with long rectangular boxes. The new version's

performances have already been mentioned in the previous discussion.

The test results can be seen in Table VII and Figures 9 and 10 of

Appendi~ c.

39

CHAPTER V

CONCLUSIONS AND SUGGESTIONS

All of the goals of this thesis were accomplished and have been

presented in the previous chapters. A few specifics on how they were

accomplished follows, with comments on the implementation, problems

encountered, and ideas for future work in this area.

After receiving a copy of Griffith's algorithm, it was first

implemented on an IBM 370/168. All of the file processing was changed

to make it compatible with the IBM file processing. No other changes

were necessary and the program ran successfully. No timing was done

because the multiprocessing environment made any timing functions

almost meaningless.

To test the program on a small computer, it was implemented on a

PDP-11/34. The major problems were the 16 bit word size and the small

memory size. Many of the integer calculations had to become real calcu­

lations to prevent overflow, as discussed in chapter 4. As for the

memory size, each program run on a PDP-11/34 has 32K of memory for all

of the code and data. This is obviously too small for the array which

holds all of the data structure. The PDP-11/34 allows access to other

in-core memory through what is called "virtual" arrays. By this

technique the data structure was stored in a 32K integer array outside

of the memory partition which ran the program. While the program was

executing, the amount of memory access for it essentially deleted the

40

41

multiprocessing capability of the PDP-11/34; there was no more memory

for other programs. This makes the algorithm very detrimental to a

multiprocessing environment if it is executing for long periods of

time on complex pictures. A new algorithm design is needed such that

only a small necessary part of the data structure is stored in core

memory at any given time and the rest is on some kind of high speed

peripheral storage device. Some breakdown of the data structure would

be required to access the data efficiently.

Future work is needed in several areas;

1. The environment condition that all faces must intersect on face

boundaries is restrictive. Some way is needed to extend the

general masking line scheme to allow for penetrating faces.

2. Many times three-dimensional environments arc created from a

group of basic building blocks, such as a group of cubes to

create a building. A method is needed to eliminate all over­

lapping edges so that a continuous shape is created when the

hidden-lines are removed.

3. More work is needed in implementing such large data requirements

on small computers, as discussed previously.

Many problems are still to be solved and more problems will arise in

the future.

The original FORTRAN code was not structured in any readable format

and it was not documented. To allow for easier study during this thesis

work and for future work, the code was rewritten into a more readable

format. All major loops and decision statements were documented. The

resulting code is in Appendix D.

Griffith's algorithm is a very efficient scheme for hidden-line

removal. Its use in the field of computer graphics will grow in the

coming years. Small computer applications will also have many uses

for this algorithm as they gain more power and memory.

42

A SELECTED Bil3LIOGRAPllY

(1) Appel, A. "The Notion of Quantitiltive Invisibility and the
Machine Rendering of Solids." Proc. 1967 ACM Nat. Cont.,
22 (1967)' 387-393.

(2) Giloi, Wolfgang K. Interactive Computer Graphics. New Jersey:
Prentice-Hall, Inc., 1978.

(3) Griffith, J. G. "A Data Structure for the Elimination of
Hidden Surfaces by Patch Subdivision." Computer Aided
Design, 7, 3 (1975), 171-178.

(4) Griffith, J. G. "Bibliography of Hidden-line and Hidden-surface
Algorithms." Computer Aided Design, 10, 3 (May, 1978),
203-206.

(5) Griffith, J. G. "A Surface Display Algorithm." Computer Aided
Design, 10, 1 (January, 1978), 65-73.

(6) Griffith, J. G. "Eliminating Hidden Edges in Line Drawings."
Computer Aided Design, 11, 2 (March, 1979), 71-78.

(7) Newell, M. E., Newell, R. G., and Sancha, T. L. "A Solution
to 1:he Hidden Surface Problem." Proc. ACM 1972 Nat. Conf.,
1972, 443-450.

(8) Newman, W. M. and Sproull, R. F. Principles of Interactive
Computer Graphics. 2nd Ed. New York: McGraw-Hill Book Co.
Inc., 1979.

(9) Roberts, L. G. "Machine Perception of Three Dimensional Solids."
In J. T. Tippet, et al (eds), Optical and Electro-optical
Information Processing. Cambridge: MIT Press, 1964, 159-197.

(10) Sutherland, I. E., Sproul, R. F., and Schumacker, R. A. "A
Characterization of Ten Hidden-surface Algorithms." ACM
Computing Surveys, 6 (1974), 1-55.

(11) Watkins, G. s. "A Real-time Visible Surface Algorithm." University
of Utah Dept. of Computer Science, UTEC-CSC-70-101. (June,
1970), NTIS AD-762 004.

(12) Williamson, H. "Hidden-line Plotting Problem." Communications of
the ACM, 15 (February, 1972), 100-103.

43

APPENDIX A

EXAMPLE OF GRIFFITH'S ALGORITHM

44

45

INTRODUCTION

This appendix is a very simple example of the data structure and

the masking line concept. In an attempt to make the example "readable",

subscripted pointers are used instead of actual numbers. Refer to

Chapter III for a more detailed description of the overall concepts.

Figure 9. Example Picture

Face Nodes

zl 3

z4 6

ZA 4

vl

v4

v4

El

E2

E3

E4

E s
E6

E7

EB

E9

ElO

Ell

El2

v2 v3

vs v6 v7

VB v9 VlO

Edge Nodes

vl Fl Fl

v2 Fl F2

vl Fl Fl

v4 F2 F3

vs F2 F2

v6 F
2

F
2

v2 F2 F2

v3 F
2 F2

v4 F3 F3

VB F3 F3

v9 F3 F3

v4 F3 F3

v2 I v3 I

0

E3
0

0

0

E
7

0

0

0

Ell

El2
0

vl

v2

v3

v4

vs

v6

v7

VB

v9

VlO

Vertex Nodes

\ yl zl

x2 y2 z2

x3 y3 z3

x4 y4 z4

XS Ys ZS

x6 y6 z6

x7 y7 z7

XB YB ZB

x9 y9 z9

XlO ylO ZlO

Figure 10. Example Data Structure

46

0

E
1

E
2

EB

E4

ES

E6

E9

ElO

Ell

47

The following figures are an example of a masking line compared to

an edge to eliminate hidden edge segments. Edge eleven (Ell) is

compared to faces one (F1) and two (F2). It is not compared to face

three (F3) because a face cannot hide one of its own edges. Face one

is compared first (Figure lla). Note that the masking line lies on the

face and is created by the face intersection with the imaginary plane

·formed by the edge and the viewpoint.

Masking line with
endpoints on face boundary

Viewpoint

(a) Masking Line

Up/Off

Down/Off j Down/Off
0

Down/On Up/On

Masking line

Ell

(b) Masking Line Switches

Figure 11. Edge Eleven and Face One Comparison

48

The relationship of the m<1skinq l inc• to the Pdgn is shown in

mination. Visible segments arc crcutcd only from the down/on switch

setting. The masking line segments control thr~ up/down switch and the

edge segments control the on/off switch. Only a portion of the edge

segment is now visible and only this much is used for future testing

against other faces.

/ '

/ i

I ,
i i

Remaining visible
edge segment of E11

F
2

I J
I I
I I

/~ Masking line

/Viewpoint

Figure 12. Edge Eleven and Face Two Comparison

The same relationship for the switches is true for the resulting

masking line and edge segment in Figure 12. A portion of E11 is still

visible and no other faces remain to be tested. The visible segment

is output for later drawing. Comparisons on a new edge are started.

APPENDIX B

SUTHERLAND'S ALGORITHM COMPARISONS

49

50

Description of Faces

Appendix B cannot be understood without a thorough study of

Sutherland's article "A Characterization of Ten Hidden-surface

Algorithms". The explanation of this article would require more space

than is available here.

Tables I through IV are copies of tables from Sutherland's (10)

article with additions which refer to Griffith's (6) algorithm. Table I

defines a set of variables used to describe an environment. As seen in

Table II, some of these values are "given" as initial data to establish

an environment. The other variables are defined in terms of these

basic given variables. An understanding of each algorithm is needed

to fully understand the formulas in Table II.

Three environments are set up, each one being twenty-five times

more complex than the previous one. The "Roberts' House" has only 100

faces, while "Big Harbor" has 60,000 faces. Using the variables and

their values for each environment, the "cost" of computing a hidden­

surface picture is calculated. This cost is a relative value based on

the number of comparisons an algorithm makes, the kind of mathematics

involved in those comparisons, and the types of sorting done. These

costs give some insight into the efficiency of each algorithm. Table

III shows the equations which are used to obtain the final costs for

each algorithm in each environment. The totals are in Table IV.

Note that because of the relative nature of the costs assigned to each

algorithm, numbers in Table IV which are within a magnitude of 10 of

each other are considered to be close in efficiency. When the magni­

tudes approach 100, then those algorithms with lower costs are

definitely more efficient.

Ti\Bl.E I

ENVIRONMENT STATISTICS

F Total number of faces in the environment.
Ft Number of relevant faces in the environment.
Dr Depth complexity of the environment (average).
Cc Number of relevant clusters in the environment.

t F Number of faces per cluster (average).
Ee Total number of edges in the environment.
Et Number of relevant edges in the environment.
Er Number of relevant edges if sharing is allowed.
Es Number of contour edges in the environment.
Xe Total number of edge crossings in the viewing plane.
Xr Number of intersections of visible edges.
Xv Number of face intersections.
Hf Height of a face in resolution units (average).
Sf Total number of segments, visible or not.
Sr Number of segments on a scan line, visible or not (average).
s1 Number of visible segments on a scan line (average).
Lv Total length of visible edges (measured in resolution units).

v n Vertical resolution of screen (number of scan lines).
m Horizontal resolution of screen.

New Definitions*

E Total number of edges in a cluster. (4F)
xP Total number of edge intersections in a ~luster.
xP Number of edge intersections on a masking line.
Sm Number of segments on a masking line.
Sm Number of visible segments on a masking line.
Vmv Total number of vertices.

t

*Author's additions

Source: Sutherland (10, p. 47)

51

52

TABLE TI

STATISTICS FOR THREE ENVIRONMENTS

Statistic Rule of Roberts' Harbor Big
Thumb House Harbor

(1/25) (1) (25)

n given 500 500 500
m given 500 500 500
Fr given 100 2500 60000
Fe given 10 25 200
De given 3 3 3
Ft 2Fr 200 5000 120000
Ct Ft/Fe 20 200 600
Et 4Ft 800 20000 480000
Er Etf2 400 10000 240000
Ee Er/(Fc/2) 1/ 2 180 2800 24000
E s (Er-Ec)/2+Ec 290 6400 130000
Xr (Dc-l)Er/4 200 5000 120000
Xv Xr/Dc 1/2 70 1700 40000
Hf (nmDc/Fr)l/2 86 17 4
Sl (DcFrm/n) 17 87 420
sv S1/Dc 5 29 140
Lv 2nSv 5000 29000 140000

New Definitions*

Ep 4Fc 40 100 800
Xp (Dcl)Ec/4 20 50 400
Xm XX/Ep 1/2 1/2 1/2
Sm 2 m 1 1 1
Smv Sm/De 1/3 1/3 1/3
Vt 3/2Et 1200 30000 720000

*Author's additions

Source: Sutherland (10, p. 47)

53

TABLE III

COSTS FOR THREE ENVIRONMENTS

Rof)('rtS Newell et al

l. llack-f;iclnp, edges cull 1. z sort
r.t: 800 20K 480K 2Fr 200 5K l20K

/. CI I pp Ing cu 11 2. N<•we 11 s~eel.al
100 EA 29K 640K 1 3~1 Fr2(f+f +ioo(l) 45K 650K 60M

'l. Edg.,/vnlume tPHt: f = 2 Hf /n
JOO E8 fCt 2.1M SIOM 311~ J. Segment generator and y sort
f . 4; spilt edg('9, and Ct should lw 10 FrHf 86K 420K 2.4M

ht~~her 4. x merge
FrHfSv/4 11 K 310K 8.4M

Appel, Lout rel, Gnl Imbert:! :111d
Mnntan;irl Warnoek

,, . ll;i1:k (:ind eon tour t'dg<') cull 1. z sort
Et 800 20K 480K 2 F r 200 SK 120K

2. In l.t In I vlslhflity search 2. Warnock special cull
100 Ct l'r 200K 50M 3.6!1 100 LvDc l. SM 8. 7M 42M

3. l~dge frHPr1-H~l'l ion 3. Depth 8earch
I() EH Ee I .6M 540M 9'lll LvDc 15K 87K 420K

4. lnvlsihl Llty corn•ct Lon
10 (2Es]) .'i2K I. iM 23M Romney E't al

Sort alnng o.clp.c
Es(Xtff:s) logz (XL/E!'I) 1. y sort

290 6.4K lJOK 2 Fr 200 SK 120K
2. X sort

Griffith*
nS1 8.5K 43K 210K

3. X priority searc.h
nm 250K 250K 250K

I. Vertex ·11 nks for <Ir awing 4, Depth search
Vt I. 2K 30K 720K 20 n 2S 1Dcf S lOK 2.6M 13M

z sort f = 1/2; due to depth coherenl'e
ft 200 SK 120K

/\rl-'a C'i'lVC' rr:~d 80rt Watkins, Bouknight
4Ft BOO 20K 480K

4. ledge intersect Ion l. Y sort
'.lO!Ct (48-8) %OK 24.6M S90. 4M Er 400 lOK 2401<

5. I nters<•c:t Inn Ao rt 2. X merge
let (Xm+l) 2.BK 70K l.68M ErS1/2 3.4K 4JOK SOM

6. M:iskini.; t\df?,C:.' test 3. X sort
'.iOEtSm l10K lM 24M

7. merge
n(S1+lOXr/ (nS1))

8.SK 43K 210K
!Ct Sm 800 20K 480K 4. Span cull

8. ' 011tput n S1 8.SK 43K 210K
Et(Smv) 2 70 6, 7K 160K 5. Depth search

30nDcmin(m.fSv)
450K 2.6M 13M

SrhumackPr et nl f z 2; spans include not only visible
segments

I. Int rn-c fu,..ter priority
100 Fc2ct 200K 12M 2. 4 ll Brute-force image space

2. lnter~cluster priorlty
I 0 Ct 200 2K 6K No memory:

3. lh1~k-face cull lOOnmFr 2.SB 62B !SOOB
Fr 100 2.SK

4. Y cul 1
n F.8 I '.>OK 'l. 2M

60K Large mem~ry:
1 OHr Fr 7.SM 7 .S"I 7.SM

65M
5. X sort ;ind priority search

nms 1 4. 2M 22M JOOM

(Noll': Kai .000; M~l ,000,000)

*Author's Additions Source: Sutherland (10, p. 50)

TABLE IV

COST SUMMARY: THREE ENVIRONMENTS

Roberts Appel, Loutrel, Griffith* Schumacker Newell Warnock Romney Watkins, Brute
Galimberti and et al et al et al Bouknight force

Montanari

2.4M l.8M 1. OM 4.2M 140K l.SM 770K 470K 2.4B or 7.SM

510M 590M 25M 25M l.4M 9M 2.9M 3M 62B or 7.SM

31B 97B 618M 170M 71M 43M 14M 64M 1500B or 7.SM

(Note: K=l.000; M=l,000,000)

*Author's additions

source: Sutherland (10, p. 54)

APPENOIX C

ALGORITHM COMPARISON RESULTS

55

56

'.1'/\B Lt·: V

PROGRAM PERFORMANCE FOR LATTICES OF CUBES

19045 Computer PDP-11/34

··Number of Time Time per Time Time per
Cubes Taken Cube Taken Cube

1. 1 0.257 0.257 3.33 3.33

2. 8 2.28 0.285 22.04 2.75

3. 27 8.84 0.328 76.9 2.85

4. 64 23.6 0.369 163. 1 2.54

5. 125 51. 5 0.412 375.5 3.00

6. 216 92.6 0.429

7. 343 161. 0 0.469

Number of
Cubes

8

27

60

120

TABLE VI

PROGRAM PERFORMANCE FOR LATTICE OF CUBES AND
RECTANGLES AT DIFFERENT ANGLES

OF ROTATION

Using Griffith's Original Algorithm
Drawing at Drawing at Drawing at

5° 30° 45°

23.0 30.8 30.6

76.9 117.0 111.6

163.1 355.9 313.5

375.5 705.5 704.9

57

58

TABLE VII

PROGRAM PERFORMANCE FOR LATTICE OF CUBES

Number of Griffith New Z Back Faces Both Improvements
Cubes Original Depth Removed Together

Algorithm Test (Sec) (Sec)
(Sec) (Sec)

1 3.33 5.13 2.73 2.73

8 24.5 22.9 13.88 15.84

27 101. 9 101.6 53.5 56.5

64 275. 274. 147.9 139.2

125 620. 617. 298. 313.

216 573. -

200

100

60

C/l
E-4 30 u
Ltl .,
p:::i
o...-..

0

ii. b.J)
0 0

.....l
'-'

ci::: 10 Ltl

~
:=> z

/
/

/
Both Improvements Together~/

. ,.,
/

/

/
/

e/

/

/

/~
/

/
/

/

/

/

/
.....

/

• /

/

Back Faces Removed---;..., /
/

/.
/

./

/ / /"'-Griffith's Original Algorith:n

/

/
/

/

/ /
/ /

/

/
/

/
/

/

/

/

IO

/
•/

/

/

/
/

/

•/
/

/

30

/ ~New Z Depth Test

60 100

TIME IN SECONDS (Log IO)

Figure 13. Program Performance for Lattice of Cubes

300 600 1000

U1
l.O

SYS'EM
PDP i 1 /34

TIME7AKEN
2.7344

WORDS USED
144

SIZE OF
RESOLUTION

4095

ORIGINAL NUMBER
. OF VE.RT ICES

8

ORIGINAL NUMBER
OF FACES

6

VERTICES/CELL
4

!--------------~-----------------~

Figure 14. One Cube
CTI
0

SYSTEM
POP 11/34

TIME TAl'\EN
13.8828

WORDS USED
1057

SIZE OF
RESOLUTION

4095

ORIGINAL NUHBER
OF VEl;H ICES

64

ORIGINAL NUMBER
OF FACES

48

VERTICES/CELL
4

Eigure 15. Eight Cubes
m
1-'

SYSTEM.
POP ll/34

TIME TAl(.EN ·
101 .9141

WORDS USED
5287

SIZE OF
RESOLUTION

4095

ORIGINAL NUMBER
OF VEIH rces

216

ORIGINAL NUMBER
OF FACES

162

VERTICES/CELL
4

Figure 16. Twenty-seven Cubes

SYSTEM
PDP 11134

TIME TAKEN
• 275. 0703

WORDS USED
12593

SIZE OF
RESOLUTION

4095

ORIGINAL NUMBER
OF VERTICES

512

ORIGINAL NUMBER
OF FACES

384

VERTICES/CELL
~

Figure 17. Sixty-four Cubes

SYSTEM
POP 11134

TIME TAKEN
620.3359

WORDS USED.
24975

SIZE OF
RESOLUTION

4095

ORIGINAL. NUMBER
OF VEfH I cE:s

1000

ORIGINAL NUMBER
OF FACES

750

VERTICES/CELL
4

>

Fi9ure 18. One Hundred Twenty-five Cubes

TABLE VIII

PROGRAM PERFORMANCE FOR LATTICE OF CUBES AND RECTANGLES

Number of
Cubes

8

27

60

120

216

Griffith's
Original
Algorithm

(sec)

3.33

30.8

I 17. 0

355.9

705.5

New Z
Depth
Test
(sec)

5. 13

29.0

114. 8

355.7

704. I

Back Faces Both Improvements
Removed Together

(sec) (sec)

2.73 2.73

15.9 16.0

64.4 59.0

188.2 190.0

351.5 359.7

65

::z... e.o
0 0

....:i

200

10

60

30

10

Figure 19.

/
/

/
/

/
/

•/

Both

/

>
/

/
/ /

/ • ,,,.
/ /

/
/ /

/ ./

•/
./

/

Improvements Together~ ~

Back Faces Removed~ /

/~Griffith's Original
/

/
/

./
} /

/ '-New Z Depth Test

/ /
/ /

/ /
/

/ /
/

/

/
/

10 30 60 100 300
TIME IN SECONDS (Log 10)

Program Performance on Lattice of Cubes and Rectangles

/
/

/

Algorithm

600 1000

O'I
O'I

SYSTEM
POP 11/34

TIME TAK.EN
30.7734

WORDS USED
1599

SIZE OF
RESOLUTION

4095

ORIGINAL NUMBER
OF VERTICES

"64

ORIGINAL NUMBER
OF FACES

48

VERTICES/CELL
4

Figure 20. Eight Cubes and Rectangles

SYSTEM
POP 11134

TIME TAl(..EN
116. 9688

WORDS USED
5599

SIZE OF
RESOLUTION

4095

ORIGINAL NUMBER
OF VERTICES

216

ORIGINAL NUMBER
OF FACES

162

VERTICES/CELL
4

Figure 21. Twenty-seven Cubes and Rectangles .

SYSTEM
PDP 11 /34

TIME TAKEN
355.9667

WORDS USED
13083

SIZE OF
RESOLUTION

4095

ORIGINAL NUMBER
OF VERTICES

480

ORTCINAL NUMBER
OF FACES

360

VERTICES/CELL
4

Figure 22. Sixty Cubes and Rectangles

SYSTEM
POP 11134

TIME TAK.EN
705.5166

WORDS USED
28437

SIZE OF
RESOLUTION

4095

. OR I G i NAL NUMBER
OF VERTICES

960

ORIGINAL NUMBER
OF FACES

720

VERTICES/CELL
4

>

Figure 23. One Hundred Twenty Cubes and Rectangles
-J
0

TABLE IX

PRQG:RAM PERFORMANCE .FOR LATTICE OF CUBES AND
RECTANGLES AT DIFFEREN'r ANGLES

View

2

OF ROTATION

Griffith's
Original
Algorithm

619.7

658.4 .

New Z
Depth
Test

585.2

619.8

·.-1 71

SYSTEM
POP 11/34

TIME TAl'..EN
585. 1816

WORDS USED
27397

SIZE OF
RESOLUTION

4095

ORIGIN*L NUMBER
OF VERTICES

960

ORIGINAL NUMBER
OF FACES

720

VERTICES/CELL
4

I
I
I

Figure 24. View One

SYSTEM
POP 11134

TIME TAKEN
619.8320

WORDS USED
27859

Sf ZE OF
RESOUJT I ON '

4095

ORIGINAL NUMBER
OF V£.RTICES

960

ORIGINAL NUMBER
OF FACES

720

VERTICES/CELL
·4

s

Figure 25. View Two

I

....J
VJ

APPENDIX D

LISTING OF COMPUTER PROGRAM

74

C*************''*****************************'*************************
C HIDDlN LINE REMOVAltLI::
c
c
c
c
c
c
c
c
c
c
c

THE ORIGINAL Vl::kSIUN CJF THIS AL&Ol<Il'HH WAS
DEVELOPED BY J.i;. 61<JFFilH ANli Pl<l!>EN-TED IN lHI:: Al<l IC.LI::
'ELIMINATING HIDl.ll::N E.DGES IN LINL l.IRAWINUS' .t.:CJMPUTER-AWl::IJ
l.lt:SJGN• VCJLUl!t 11 NUl'tlllR .2, Hl'IRCH 1 y;c;.. .

THIS VERSICJNr WllH ALGORITHM Rl::VISJUNS ANll DOCUHl::NlAlIONr WAS
llEVELOPED FOi< 6Rl\DUATE THESIS WORK AT. CJKLAHUHA !HA'E UHlVl::RSITY
BY WAYNE BllCJllN.
DATE:SPRillG 1c;.Bo

C******'********** aassrrtrarat
C ALGOl<IIHH l•l::SLl<If'lION
c
C PHASE 1 : SET UP THI:: Dllf A S lRULl UR£ •
c PART 1:T1<1\HSLArICJNr wurnTIUNr AHi) PERSf'l::CllVL
c
c
c
c
c
c PHASl
c
c
c
c
c
c
c
c
c
c

PART 2:v1::1nEr. NUl.IE.S.
PART J:FACI:. NUl.ll::S.
PART 4:llXiE NUDES.
PART 5:Tl::Sl GRil.I SET UP.

2:HIDDEN LIN!:: Rl::HOVl\l!Ll.
PART 1 :SET UI' AH EDOL.
PART 2:cOHPl\l<l EDu[lU ll\CH INIJIVIDUAL l:.D6t: OF A Ff>CE.
PART J:SURl INTERSECIIONS IN ASCl::NDIN& OR~R.
PART 4:1.1£PTH ANALYSIS.
PART 5:H£1<ul TllCJ LISIS m IHTERSlCllUN f'UINIS.
PART 6!FROl'I Hl\SKIN[; LIHI:. Sl'IVI:: VISIBLl LINE SlGHEHfS.
PART 7!1<lPlfE FUR El'ICH FllCE IN El'ILH CELL THAT

THE ED<lE Pl'l!>SES THRU.
PART a:ourPUl VlSlltLl LIN£ S£W11::1HS-H ANY.
PART c;.: RlPl::IH 1 THRU El FUI< ll'ICH El.IGl,

c
Ctsssssssstssrssts
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

HAJOR Vlll<IAllLE LIST

s - ARRAY FUf< ALL l.IAlA STRULTU1<£ ANU CALULAH~.
!ltAK£ lHIS AS BI& AS PUSSIBLll

HVSIZE- SIZE OF Vl:.RTEX HUD£
Nf'SIZE- SIZE CIF HICE NODE
NESIZE- SIZE OF ED61:: HUI.II:.
BITS - LAAGCST ABSCILUTE VALUE OF lNfl::uE.RS FOR HAf'f'IN6
LIMIT - RANu[OF INfERGE.R Vl'ILUl::S
HX - TRAHSLAllOH VALIJt:: f UR THI:: X Vl\LU£S
HY - TRAHSLATIOH VALUE FOi< THE. Y VllLUl::S
HZ - TRAHSLATIUH VALUE. FUR THE Z Vl\LUE.S
R - RADIUS OF SPHl::Rl THAl ENVl::LUl"ES lHl Ol:<J£CT VlElll:.D
NV - HUtll'lR OF VERTICES
HF - NUttBER Of FllCES
Al - AHGLE OF F<l\Tf>TICJH AllUUI Z AXIS

c Gl - ANGLE OF l\:OTl\llUN A&OUT Y. AXIS
c A - SCALE FCJR X Hl\f'f'!Hu
c Ee - BIAS FOi\: HAPf'IN6CHltLF f'CJSITIVI:: - .Hf1LF Nl:.GATlVll
c C - SCALE FCJk Y HAPPIN[;
c D - E<IAS FOR HAf"f'IH6 YCHl\U' POSITIVE - HALF Hl:.GATlVll
c NltUCK - NU11l<lR UF BUC:KETS(NU1111ER OF RUllSrCULUl1NS IN GF<IDl
c STEf' - SIZE OF EACH BULKl::lluHIO SllUARl::l
c START - BIAS FOF< STl\RTING' POINf IN TH£ GRHJ
c.:
c••••••••••••t•••••••
c
c

c
c.:
c

1000

1001

1002

Il1f'LICil INlEGERt'I CirJ,Krl,.rl'trNl
VIRTUAL N!J2767l
Dil1ENSICJN BUFF!60l
DATA IHI/~/, NF2/2/ rNF3/J/ rNl'"/'I/

WRITE< Nll, I 000 >

.,,, ,.,,,,,.,, .. , ... , ,,,.
PllRT 1 :TRANSLl\TlUN.RUfl\TllJHrf'l::RSP[CTIV[.

fl NI! TH£ ANGLES 01-' F<OTl\l ION.

FORMAH' INPUT POINT l:<UHG OllSlRV[D - F10 'I
' I l l I· >

READ<NTir!OOl>XrYrZ
FORl1AT Of 10. 0 l
llflI TE<Nfl • 1002)
FOkHAT!' INf'UT PCJSITUH Of OBSERVlM - flO'l
READ!NTirlOOJ>Xf'•Yl"rZf'
Xl•XP-X
Yl•YP-Y
Zl•ZF'-Z
HX•-X
HY•-Y
HZ•-Z
RD•AlAHl1.0l/4S.O
RXY•SDRT<X1SS2 t Y1St~>

IF<RXY.EU.O.Ol GO TO SO
IF!Xl.EO.O.Ol GO TCJ JO
IF<Yl.EQ.O.Ol GO TU ~O

A•ATANIYl/Xll/RD
A1•90.0t<2.0-Xl/l\llS!Xlll t A

GO TO JO
10 Al•90ac1.o+Yl/l\B&<Yl)l

GO TO JO
20 Al•90S!~.O-Xl/A~S!X1ll

JO IF<Zl.NE,O.Ol GO TU '10
G1•90.0

GO TO 60
40 G•ATAN<Zl/RXYl/RD

GJ=c;.O-G
GO TO 60

SO Al=O.O

60
1003

Gl=O.O
llRITEINTio1003) A1rG1
FORMAT!' Al' rF10.Sr' Gl 'oFtO.Sl

-J
LJl

c
t:

Al=Al*RD
Gl~GURD

WRITE<NTI' 1004>

INPUT POWER OF 2 FOR RESOLUTION SlZL
EXAHf'LE: 6 - 2S4• 13<HAX> - 32767.

1004 FORHAT<' INPUT SlZE OF INTEGERS - 12' >
READ<NTZ, 1005> Nl:lITS

·1005 FORHAT<I2>
WRITE< NTI, 1006 >

1006 FORHAH' INPUT NUHBER OF '..!EIHICES PER CELL - I2' >
READ<NTlr1005>NC

C INITI/\LIZE CONSTANTS.

c

c

1007

1008
c

BF=l.O/FLOAT<NCl
Tilt£=SECNllS < 0, >
HAX=O
NVSIZE=5
NFSIZE=3
NESIZE"'5
KBITS•2**NBITS-1
LEIITS=2*KBITS
EIITS=FLOAT<LEIITS>
LIHIT=2•LBl TS+J
ZF=1.0E20
ZN=-1.0E20
R=O.O

OPEN <UNIT=2•NAHE='Ol<JECT ,1.JAHl '.TYPE='OLD' •
& ACCESS=' SEQUENTIAL ,- ,FORH= 'FDRKA TTED' >

OPEN <UNIT=3tNAHE='SCR/\lCH1.DA1ll'rTYPE='~W'•
& ACCESS=' SEQUENT 1 (;L' , FORH= 'UNfllRHATTED' >

OPEN CUNIT=4,NAHE='SCRAlCH2.llAH 1 'rTYPE= 'NEW'•
& ACCESS=' SEOOENTI /IL ' t FORH=' UNFORHI\ TTED' >

SINA=SIN<All
COSA=COS<Al>
SING=SlN<Gl>
COSG=COS<Gl>
Rl=COSA
R2=SINA
R3=0.0
R4=COSG•<-SINA>
R5=COSG*COSA
R6=SING
R7=<-SING>•<-SINA>
RB=C-SING>•COSA
R9=COSG

READ<NF2•1007>NV
FORHAH2014)
DO 70 Jl=lrNV

READCNF2•1008lX•YrZ
FORHA T< 5F16, 0 >

X=X+HX
Y=Y+HY

ROTATION HAlRIX.

READ THE NUHBER OF VERTICES,

TRANSLATION,

c

70

c

1009

BO
c

c

c

90

c

c

c
c;

Z=Z+HZ
RH=X**2 + Y*f.2 t Z•t.2
IF<RH.Gl~RI R•RH

TX=Rl•X + R2f.Y + RJf.l
TY=R4*X + R5tY + R6*l
TZ=R7*X t RB*Y + RYtl
WRITE <NF3l TX•TYrTZ
If. (TZ. GT. ZHI ZN=rz
IFlTZ.Ll,ZF>ZF=TZ

REWIND 3
R=SDRT<R>

ROTATION,

HALF ANGLE OF VIEW FOR Pl::RSf'El:TIVI;.
ANG=R/SURT<Xl*t.2 + Y1**2 + Zltf.2)
IF<ANG.LT,l.O> GO TO BO

WRITECNTl•l009> ANG
FORHAH' ANGLE=',flo.6~' TOO CLOSE JO lHE OBJECl"')
STOP

H=Rf.<1,0-ANG>

A=EIITSl<ZN-ZF>
El•-At<ZN+ZF>t0.5+0,5
XL=R
XR=-R
YU=-R
YD=R
DO '10 Jl=l r NV

READ <NF3l R1,R2rRJ

R4=H I <R-R3tANG>
Rl=RUR4
R2=R2f.f<4
R3=AtRJHI
WRITE <NF4> R1•R2rRJ

IF<Rl.LT.XLl XL=Rl
IF<Rl.Gl-,XRl XR=R1
IF<R2.GT,YU> YU=R2
IF<R2.LT.YD> YDzR2

CONTINUE
H=H/SDRTCl,O-ANGtANG>

BUFFC1>= 2,0*H+<Z1-R>*D,25
NBP=5
REWIND 3
REWIND 4

A"'EIITS/ (XR-XLl
Etz-A*<XLtXRl*O.St0,5
C=EIITS/CYU-YDl
D=-C*<YU+YD>f.O.s+o.s

LINEAR HAP~lN6 FOR THE z.

PERSPECTl VE,

FIND RANGE Of X AND Y FUR H(;Pf'ING.

SCALE FOR FIN~L DRAWING.

LINEAR HAF"f'lNG FOR X ANll Y.

********'"**************'-*** PARl 2:sEr u~· Vl::RTEX NODES.
J1=1-NVSIZE

100
c

c

c

110
c
c

120
c
c
c

J2=2-NVSIZE
J3=3-NVS1ZE
J4=4-NVSIZE
J5=0
DO 100 J9=1•NV

Jl=JltNVSlZE
J2=J2+NVSIZE
J3=J3tNVSlZE
J4=J4tNV5IZE
J5=J5tNVSIZE
READ INl'41 R1,R2,R3
N<Jl l=A*R1t1<
N (J2) =C:f.R2tl•
N<J3l=R3 .
N<J4l=O
N<J5l=O

CONTINUE

A=l.O/A
B=-< B-0, Sl*'1
C=l.O/C
D=-<D-0.Sl*C

Rl:::Vt.li:!>E Mf'PIN!l CDNST(IN rs.

SET UP TEST GRID.
Nl:lUCK=SORTCl<F*FLOAT<NVl l
IF<l1DD<Nl<UCK, 2>, NE. OHIFUCK•Nl:lUCKt 1
STEP=FLOATCNl:lUCKl/IHTS
START=-0. 5*1<ITS:f. (1. Otl, O/l'LOATCNf!UCK>)
Nf!UCKzNflUCK+l
Kl=NV;f:NVSlZEtl
K2=Kl+Nl:1UCK*NBUCK-l

DO 110 Jl=Kl ,t\2
NCJl>=O

Jl=K2-1
J2=K2
J3=Kl+l-NVSIZE

lNlTlALIZE GRID TO ZEROES.

ASSIGN E.flCH VERTEX TO AN Af'PROf'RIATE
CELL LIST.

DO 120 J4=1,J3,NVSIZE
J5=CFLOATCNCJ4ll-STARTl*STEP
J6=CFLOATCN<J4tl>>-START>*STEP
IFCJ6/2*2•NE.J6l JS-NBUCK-l-J5
J7=J6*Nl:1UCKtJ5tKl
Jl=Jlt2
J2=J2+2
NCJ21=NCJ71
NCJ71=Jl
NCJ1l=J4

J32=0
DO 140 Jl=K1,K2

J2=NCJll

MINil11ZE FlNl\L DRl\WIN6 PEN
110VEMl'.NT - LINK VERTICES•

IF<J2.EO.OI GOTO 140
130 J3=NIJ21

NCJ3t31=J32
J32~_13

J2=N<J2tl l
IFCJ2.NE.OI GOTO 130

140 CONTINUE
C f·REHAVE Sl:Rl:::EN AREA FOR SllRHN6 FACES
C BY Dl:YTH.

NF5=K2tl
Jl=CNl'S-Kll/2
J2=K1+2*CJ1-11
DO 150 J3=Kl•J2•2

N<J3>=-Lil1H
150 NIJ3t1l=J3

Rl=FLOATI 1-Jl l/f!ITS
R2=FLOATIJ1l*0.5

c ***"'*"'**********
C PAkl 3 :FACE NODE,
C REM• NUMBER OF FACES,

READ CNF2 '1007 >l"F
DO 240 JJ=l•NF

J4=NFS
J6=NFStNFSIZE
JSzJ6t20
J5=J6-1
J7=JS-1
REAl•CNF2• 1007 > <N<J9 > ,J9,"J6,JJ>
JVl•CNCJ61-11 * NVSIZE +1
JV2•CNCJ6+1>-11 ;f: NVSIZE tl
JV3=CNCJ6+2>-1> ;f: NVSIZE t1

C REMOVE l<l\CK FflCE.S.
IFCFLOATCNCJV1>-N<JV2)) * FLOATCNCJV2t1 l-IHJV3t1) l -

& FLOATCNCJV21-NCJV3ll * FLOATCNCJVlt1>-NCJV2tlll
I .GE. o.o> GO TO 10

NCJ8l=O
J7=J6
IZN=-LIMIT
JS=NCJ7)

C FIND THI'. NE.l\REST POINT ON THE FflCE.
160 J8=CJ8-ll*NVSIZEtl

c

NCJ71=J8
J8=NCJ8t21
Il'<JB.Gl.IZN> 1ZN=J8
J7=J7tl
J8=NCJ7)
IFCJS,NE.Ol GOT0·160

NCJ4l=IZN
NCJ4t2l=J7-J6
NFS=Jl
J7=J7-l

J9=Rl*FLOATCIZNltR2
J9=2*J9tKl

l:IUCKl'.l AL1URESS FOR FflCE.

c
1/(J

c

180

190

~OU

210

220
c
c

230
240

c
c

250

260
270

c
c
280

J8=J9
J9=N<J9tl)
IF<N<J9),Gl,IZNI GOTO 110

N<J8tl)=J4
NCJ4t11~J9

J9=NIJ7>

DO 230 J!O=J6,J7
JB~J9

J9=N<J10)
IFIJ8,GT,J9) DOTO 100

Jll=JB
J12=J9

GO TO 190
J11=Jc;>
J! 2=JB

J13=NCJ12+4l
IFIJ13,EQ,Ol GOTO 220

UluES,

IFCNIJ13>,EU.J11> DOTO 210
J13=NIJ13t3)
IHJ13.NE.Ol GOTO 200
GOTO 220

NCJ13t2>=J4
DOTO 230

N<Nf'S)=J11

f'l\RT 41EDGE NODES,

N<NFStll=J4
N INFSt2 > =J4
NINFSt3>=NIJ12t~l
NIJ12+4>=NFS
NfS=NFStNESIZE

CONTINUE
CONTINUE
J6=0

DO 270 J3=K1,J2o2
J4=NIJ3+1 l
IFIJ4,EQ,J3l GOTO 260
J~=NIJ4t1 l
NIJ4+1 l=J6
J6=J4
J4=J5
IFIJ4,NE,J3l GCllO 250

NIJJl=O
NIJ3+1)=0

NIK1l=O
J1~6

IXL=LIHIT
IXR=-,.LIHIT

TRl\CE THRU THE FACES AND
LINK TOGETHl::R,

f'LACE EAl:H FACE IN Il'S Af'f'RCIF'fllATE
CE:LL LIST,

c

IYU=-LHIIT
IYD=LIHIT
J2~J1+Nf5IZE

J3=.!2tNIJ1t2)-1

DD 290 J4=J2rJJ
JS=NCJ4l
J6=NIJ51
J/=NIJSt!l
If(J6;LT.IXL> IXL=J6
IF<J6,GT.IXR> IXR=J6
IFIJ7.LT.IYDl lYD=J/

290 IFIJ7,GT,JYUl IYU=JJ
C COCIRll!INl\lES Of GR!ll CELLS.

IXL= I FLOAT< IXLl-STl\RT>t.STEP
IXR= <FLOAT< !XR >-START) :t:STEf•
IYU=IFLOATC IYUl-STIHH) tSTEP
I'l'D=IFLOAT<IYII l-'S'll\Rl) *STEP

c Hl'>P IIHO rm111 ..
J6=IYD*HPUCKtlXLfK1
J7=J6-IXL+IXR

C PUT PU!NTEN TO Fl'IC!o: HI EACH
C CELL LIST.

DO 310 JB=IYDoIYU
DO 300 Jc;>=J6,J7

N(NFS>=J1
·11<NFS+1 >=N<J9l
NCJ9l=NFS

300 NFS=NFSt2
J6=J6tNBUCK

310 J7=J7+NBUCK

c

Jl=N(J1tll
!F(Jl,NE,Ol GOTO 280

CLOSE <UNIT~3rDISf'='SAVE' l
CLOSE CUNIT~41D-ISF'='D£LETE' l

C DATA STRUCTURE COHf'LE TEL Y Sf'T UP
c
C**************"'********* ********"'****~ftttttttt
t:
C BEDlN HiltflEN LINE CUMl'ARSIONS.
c

OPEN IUNIT=4rNAHE~ 'DRflW, ltl\TI 1' .TYPE~' UNKNOWN' r
& ACCESS=' SEOUEN'fl AL' r FORM~' UNHJF<Hl\HE!l')

K=NFS
J1=0

c J2 POINTS HI A STARTING VERTEX.
J2=JJ2

C *** LCIOf' 1 **"'
C ltU FDR EVERY STAfffINI> VERTEX,
C J3 POINTS TO A EDGE NODE,
320 J3=N<J2t4l
C IF THERC: ARE NO HORE EDGlS WlTH
t: THIS STARTING VERTEX THEN GU TO

-.J
co

c

c

c
c
c
J:.<O

c
(;

c
c

c

c
c

"140

IF<JJ.[O.O> GOTO 670

El•N<J21
E2•NCJ2+1 I
E3•N<J2+2>

THE HLXT STARTING VERTEY. •

STAl<TlH6 VERTEX XloYloZl.

Ua LWP :.! na

J4•NCJ3>
J5•NCJ3+1 l
J6•N< J;,1+2)

Jl•Jl-1
NC~+l>~Jl
NCJ6tl>;.JI
NFS•K

[4•NCJ41
E5•NCJ4+1 I
E6•NCJ4+21
XF•£4
YF-£5
ZF•E6

J6•<E4-!iTART>asTEP
J7•<E5-SlART>•STEP
J6•J7SN»UC;K+J6tKJ
[4•[4-[1
E5•E5-E2
[6-£6-EJ
KJ•...-1
K4•Nf"S+2
NFl-IU

NCKJ>•O
N<KJ+J >~urns
NCK41•LIIU T

Z6-E3
KYl•I
KAS•I

00 FOR Evt.llY EDGE WITH THll; !iTN<T.lH6 llERTEX.
lll6l l!Oll£ FOR CIJRRlH r EDGE.

llAllKEll TD KARK FACES TD AYOID
llUPLICATE COtlPMlSONS.

ENDIN9 Y!.RTEX x2.r2.i2.

CALC;ULATE THE CELL ADPJ<ES!i IN THE
6RlD FDR THI; ENBIHU 11£Rf[X.

INITillLIZE ltl\SKIN6 LIHE.

SET CDHSlAIHS Hlf< D»TAININ8
CELLS l\l.ON8 THE [Dell.

IF<E2.Ll.YFI OD TD 340
KYS•O
l(Af;r-1

KH•I
l<XS•I
ffCEl.LE.Xfl GO lU l:SO

KH•-1
KXl•O

JC7•<lJ-START>fblEP

360

365

370

c
c
3110

390

c
400

c

c
c
c
c
410

c
c
c
c
c

c

JCB•<E2-START>SST€P
XD•FLDAT<JC7tKXSl/STEP t SlAkT
YD•FL~T<JCB+KYB>/STEP + SJART
IF<E4.NE.O.O> GO TD 360

Xll•llITS
YL l• < YD-E2 l/C Yf"-l2 l
SD TD 370

IFIE5.NE.O.OI 00 TD 365
YLl•llITS
XLlrCXD-El l/E4
80 TD 370

Xll•<XD-El>/E4
Yll • <YD-E2 I /[5
R6-0.0
KTX-KXS+KH
KTY•KYS+KAS

au LUOP 3 en
DO FOR EVlrllY Clrll Ill.OHO AH ED<;£,

115"'16
IF<XLl.Ll.Yll> flU TU 3~0

R6•Yll
YD-FL~T<JCB+KTYl/STE~ + STAJ<T
YLl•<YD-E2>/E5
KTY•KTYtKAS
00 TO 400

R6•XLl
Xll-f\.OAT<JC7+KTXl/STEI' t ITAl<T
Xll•IXll-El)/[4
KTX•KlXtKH

lt7• llt5+R6 > ao. 5
J7•CEl+R7S£4-STN<TlSITEP
.Jll•<E2+R7el5-STARTlS!iTEP
J7•.J8eNllUCK + J7+K r
.J8-tf(J7)
Z5•Z6
IF<lt6.IH .1.0llt6•1.0
Z6•E3+R6SE6

K5•Z5
IFCZ6.LT.Z5>~Z6

GET THI: Nt.XT Clrll UH THIS EDGE,

K5 IS THE NINI- Z OH THl EDGE.

SSS LUOI' 4 SU

lf<JIO.LE.~1 GOTO 630

00 FOR EVERY Fn<:l IN THIS CELL,
KIJN C~MIHO FACE EDGlS TU THE
EDGE - Diil: AT A Tiii£,

IF ~ MXllltlfl Z ON THl!i Fl\Cl IS
FllJ<THER -y Tllolll THE &N.LLLlST l
ON Tltl; E- THEN THIS FACl Cl\Nl!Ol
HIDE MY PllllT Ot- THE E- -··GO TO
THE NEXT CUL FOlt ltllllE FflCES.

H Fl\Cl IS ~I THEN NI.I COlll'.VCiliOH.

c

c

c

420
c
c

c

430
c
c

c

1flNIJ9+ll.ED,Jll GOTO 620

N<J9+1>=Jl
Jl0=J9+3
Jll=JlO+N<J9+21-t
Jl2=NFS
Jl3=NFS-l

R7=0.0
RS=O,O
R9=0.0
RlO=O.O
J!6=NIJ111

DO 430 Jl7=Jf0,Jll
J15=Jl6
Jl6=NCJ17l
T7=FLOATCN<Jl51)
TB=FLOAT<NCJlS+lll
TlOzFLOATCNCJ16)}-T7
T1l=FLOAT<NCJ16tl))-TB
T9=T7-El
Tl2=T8-E2
Tl3•TlO•T12-T9*Ill
T14•E4•Tl2-E5*T9
Tl5s£5•TlO-E.4*T11
IFCTlS,GT,0.0160 TO 420

Tl3=-T13
TH~-TH

Tl5=-T15

HflRK TH£ F llCE.

lNITil\LlZE SUHS FOR U:f\ST SUUARE FIT.

COHPAh'E EflCH EDGE OF THIS Fl\CE.

JFCT14.LT.o.o .OH. Tl4.GT.T15 .DR. T15.EU.O.OI GU TO 130
SOLVE FOR llffERS£CTIUN USING
CRl\H£R'S RULE,

Rl 1=T13/T15
R12=T1~/T15
Rl3=FLOATCN(J15t2)1 t R12*FLOAT(N(J16f21-N(J15t211

LEAST SUUl\RE F Ir SUHS.
R7=R7tR11*H11
R8=R8tR11
R9=R9tR13*R11
R10=R10tR13
F20=FLOAT<N<K31 l
F21=FLOATCNCK4-11l
F22=R11*BITSto.s
IF CF22. LT. F20)F22:·-=F20
IFCF22,GT,F21>F22~F21
J13=J13tl
N<J131=F22

CONTINUE

JF(Jl3.LE,J121 GOTO 620
Jl4=Jl3-1

IF NO lN'f£RS£C'f IONS OCCURED -
GO TO NlXT FllCE IN THIS CELL.

SORT lNfERSE.CHON POINTS IN

c

440

450
c
c
c
c

c

DO 450 Jl5=J12•Jl~
J16=Jl5
_tt7~N<Jl5>

JlB=JJStl

1tscnwrNG OfWER - SELEUION SUI<(.

DD 440 Jl9=Jl8•Jl3
IF<NCJJ91.G£,JJ71 GOTO 440
J16=J19
Jl7=N<JJ91

CONTINUE
NCJ16l=N<J15)
ll<J1Sl=Jl7

ARE Vl\Ll.1£5 OF lNlERSECTIONS
llITHHI THE EN!) POINTS OF THE
Hl'ISKING UNE? - IF No·r GU TO
TH£ N£XT F (lC£.

JFCNCJ13l.LE..N<K3> .OR, ll(Jl2l.G£.N<K4-IJ> GU TO 620
LEl\Sl SGUARES FIT.

Rll=FLOATCJ13-JI2tll
R12=R9*R!l-RB*Rl0
R13=R7*kIO-kB*R9
R14=R7tk11-RB*RB
JF(R14.G£,O.Ol60TO 460

R12=-R12
Rl3=-R13
R14=-R14

• 4'60-· J14•J13t1
J15=J14
Rl5=0.0
Jl9=NCJI2l
J12=JI2tl

C LOOK AT l/'\CH EDGE Sl'GH£NI -
C COUNf NUl'll!ER OF INTERSECTIONS TU
C ffETERMil'IE WHETHER £ffGE SEGE.H£NT IC. C POSSI.!ILY HUtll£N;

DO 510 J20=Jl2•J13
Jl8=Jl9
J!9=NCJ20J
IFCJ18.EG.J19l GOTO 510
TEHP=FLOAT(J18tJ19l*<R12-1<14*E6l

& +2.0•llITS*<Rl3-R14*E3l
IF<TEHP.LE,O.OlGO TO 510

F21=<J1BtJ19l/2
F22=E1t<F21tE4l/BlTS
F23=E2+<F2l*E5J/BITB

470 R15=Rl5tf.O
IF<R!S.GT .6.SJ GOTO 510

F24=BlTS*COS<R1Sl
F25=8ITS*SillCR15l
J26=0
J2B=FLOl'lT<N<J111J
F29=FLOAT<N(J28ll
F30=N <J2Bt1 l
DO 490 J32=J!O,J11

00
0

480

490

500

510
c

c

520
530

540

550

560

F27:=F29
F28=F30
JJO=NCJ32>
F29=NCJ30!
F30=N<J30t!)
F33=F29-F'..:7
F34=f JO-F28
F35=F27-f 22
F3"6=F28-F23
J37=<F36•F33-F31tf35!/BlTS + O,S
J3B=CF21tF36-F2StF35>/fllTS + O.S
JJ9=CF25*F33-f2~*F34l/Bll!; t O.S
IFCJJ9,GE, 0) GOTO 4!10

J37=-JJ7
J3B=-J38
JJ9=-'JJ9

IFCJJB.L r.o .or<. J3B.&l.J39) 1.iU"fO ~90.
IFCJ38,E<l,O .OR. J38,H1.JJ'i')GU TO ~?O

Jf(J37.LT.0) &Uro 490
IFCJ3/,[0,0! GOTO 500
J26=J26+1

CONTINUE
IFCJ26/2•2,EG,J26l GU TU 510

N<J1Sl=J18
NCJ1Stll=J19
J15=J15+2

CONTINUE.

IF<J15.EG.J14l GOTO 620
N<J15l=LIHIT
NFS=J15+1

J1B=K3
J19=J14
J16=NFS
J17=NFS-1

NO INTERl'IC.:TlON - GU TO NEXT Fl\CE,

MERGE THE TWU INJERSfCTIUN LISTS.

IF<NCJ18J-NcJ19> > s:30,5<10.s50
Jl 7=Jl 7+1
NCJ17l=-1-NCJ1B>
J1B=J18+1

GOTO 520
lfCN<JlB>.EO.LIMlTlGUTD 560
N(J17tll=-1-NCJ1Bl
Jl7=J17t2
NCJ17l=N<J19)
J18=Jl8+1
J1·9=Jl9t!

GOTO 520
J17=J17+1
N<Jl7l=NcJ19>
Jl9=J19tl

GOTO 520
K3=Jl7+1
N<K3l=-l

L

c

570

580

590

600

c

c
c

c
c
c.:

610

620
c

c
c
6:10
c
c
610

J12=0
Jl3=!
JlS=!

DO 600 J1B=Jl6•J1/
J!~=JlS

J19=N<J18)
IFcJ19.LT.0l GOTO 570

J12=1-Jl::
GO TO 580

J19--J19-l
Jl3=1-J13

Jl5=Jl2+Jl3
IFcJ15.E0.2) J!S=l
IF<J14.EO,J15> GOTO 600

S~T PEN S~ITCHLS.

IF<J19.NE.N<K4>> GOTO 590
1(4=K4-l

GO TO 600
1(4=KH1
NCK4l=Jl9

CONTINUE
K3=K3"tl
1(4=1(4+1
N<K4 l =LIMIT

lf(l(4.GT.HAXl Ml'IX=K4

JTEST=K4-1(3-2
IF(l(4-K3~2·LT.Ol GOTO 660
J14=K-1

DO 610 J15=K3,1(1
,J14=J14tl
N<J14l=N<JlS>

K3"=K
K4=J14
NFS=K4+1
JB=N<JBtl)

IFCJB.NE.Ol GOTO 410

Hi'IXIHUH NUHBER OF AkRf'IY N USED.

IF TRUE. - EDGE HlDl.lEN ENI lRl':L Y,
GO TO NEY.I FACE,

HOV£ THE FRl\t;H£NTE£• EI•(;[Ilf'ICK TU
TH[POSITION OF THE OklGINl\L
Er•GE FOR MURE COHPA!<l!;ONs.

ARE THE.RE ANY HUkE FACES IN THE CELL?

*** END LOOP 4 *'* ANY HUkE C[LLS ALONG EDGl?
IFCJ7.NE.J6l GUTO 380

*** END LOOP 3 *~*

J12=(1\4-l(J)/2
J13=1(3-2
Jl4=K3-1
R12=At.E1H<

DRAW WHAI IS LEFT,

c

R13=A*E4/BITS
R14=C*E2tD
R15=C•E5/81TS

DO 650 J15•1•J12
J13•J13+2
J14•J14t2
R16•FLOAT<N<J13ll
BUFF <NIW >=Rl 2+R13*R16
8UFFCNBP+1>=R14+Rl~*R16

R16=FLOAT<N<Jl~ll

BUFF<NBf't2l•Rl~tk13*R16

8UFF<N8f'+J>-R14tk15tR16
NBP•Nf1Pt4
IF<NBP.Nl.61> GUlO 6~0

WR llE < lfl 4 > 8Uff
N!lf'• 1

650 CONTINUE

OUTf'UT £nt:H LIH£ SEGMEHT,

C ARE THU?£ AllY ltl.IRE EDGt.S WITH THIS
!: STARTIN& f'UlNf•
660 J3•N<J3+3l

IF<JJ,Nt:.O> GOTO 330
C ttt ENU LUOf' 2 *''
C Nt:Xl SlM!lING vt:RT[)(,
61()
c

c
c

J~•H<J:?+J>
A~E THt~l ftNY HORE SfAkTING VlkfEX?

IF<J2.NE.O> GOTU 3~0

•tr [Nil LU(lf-- I •U

BUFF <N9P > -O
BUFF< NE<f'+I > •O
l'UFF C N!Wt:< > •0
E<UFF<Ntcf"+J>•O
WRITE <N~4> fl~F

DTINE•St:CNOS<TINE>
E<UFF <I »D f IHl
BUFF c 2 >=MAX
BUFF< 3 >•LIN! T
E<UFF< 4 »NV
!IUFF <5> =NF
E<UFF<6>•NC
WR!TE<N~4l <9UFF<J>•J•l•6>
CLOSE <UN!T-4oDlSf'•'SnVl'>
CLOSE <UNI1•2oDISP•'SAVE'>
NCUBE•Nf/6
STOP
ENO

KARI< UH' OF DRhW IN&.

00
N

VITA

Charles Wayne Brown

Candidate for the Degree of

Master of Science

Thesis: ANALYSIS OF A HIDDEN-LINE ALGORITHM

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Paris, Texas, October 14, 1954, the son
of Mr. and Mrs. Lynn A. Brown.

Education: Graduated from Arlington High School, Arlington,
Texas, in May, 1973; received Bachelor of Science degree in
Architecture from the University of Texas at Arlington in
December, 1977; completed requirements for Master of Science
at Oklahoma State University in December, 1980.

Professional Experience: Self-employed Professional Model Builder,
1974-1977; self-employed Building and Remolding Contractor
and Designer; 1976-1977; Graduate Teaching Assistant, Oklahoma
State University, Department of Computer Science, 1978-1980;
Computer Prograrmner (part time), Graphics Constructions, Inc.,
Tulsa, Oklahoma, 1980.

