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ABSTRACT 

This dissertation consists of three essays which explore the determinants and 

properties of actual and implied volatilities in the crude oil and natural gas markets. 

The first two essays examine the causes and behavior of price volatility in the US 

crude oil and natural gas markets. I theorize and find that (1) the crude oil and natural 

gas markets are characterized by volatility persistence, (2) in the crude oil market, a 

negative shock has more impact on future volatility than an equal positive shock 

whereas in the natural gas market, predicted volatility increases more following a 

positive shock than an equal negative shock (3) crude oil volatility is lower at higher 

prices, (4) there is a day-of-the-week pattern in both markets, (5) OPEC meeting 

announcements and the Petroleum Status Report releases cause increased volatility in 

the crude oil market, (6) surprises in the change in natural gas in storage cause 

increased volatility in the natural gas market, (7) natural gas volatility tends to be 

higher during and immediately after bid week, (8) there is a month-of-the-year pattern 

in natural gas volatility, (9) natural gas volatility tends to be higher on winter days 

when the temperature is lower than normal, and (10) the conditional covariance and 

correlation between crude oil prices and the value of the dollar vary over time. In these 

two essays, I develop and employ an improved procedure for testing and quantifying 

the hypothesized volatility determinants within a GARCH type model.  

The third essay examines the structure, characteristics, and determinants of 

implied volatilities (IVs) calculated from crude oil and natural gas options from 

September 1999 to June 2006. In several ways, the behavior of IVs in these markets is 

opposite to that observed in most financial options markets.  Crude oil and natural gas 
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IVs tend to increase as the options approach expiration. There is a positive “skew” 

pattern in natural gas IVs and long-term crude oil IVs in which IVs tend to be lowest 

at low strike prices and increase monotonically with strike prices. There is a time-of-

the-year pattern in that natural gas IVs tend to be higher for options expiring in winter 

and crude oil IVs tend to be lower for options expiring in summer. Oil and gas IVs 

tend to decrease from Friday close to Monday close. After May 2002, natural gas IVs 

tend to decrease following the release of the Natural Gas Storage Report. A negative 

futures return has more impact on crude oil IV than an equal positive return while a 

positive futures return has more impact on natural gas IV than an equal negative 

return. IV is a fairly efficient forecast of future volatility in these markets but its 

forecasting power differs across terms-to-maturity and strike prices. 
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Chapter I. Introduction 

This dissertation consists of three essays which explore the determinants and 

properties of actual and implied volatilities in the crude oil and natural gas markets. 

The markets for oil and gas derivatives contracts are becoming increasingly important 

due to the impact of energy on the economy and the high volatility in oil and gas 

prices. Crude oil and natural gas are two of the most essential energy sources in the 

U.S., accounting for about 40% and 25% of the nation’s energy consumption, 

respectively. Since OPEC’s 1973 decision to regulate its oil price independently, crude 

oil prices have been subject to dramatic volatility and this large oil price fluctuation 

tendency has continued in recent years. For example, the crude oil market experienced 

dramatic volatility in 2008 as prices reached an all-time high level of $145 per barrel 

in July and then fell sharply to $50 per barrel in November. Natural gas is also one of 

the most volatile markets, particularly since its evolution from a highly regulated 

market in which government regulations prescribed everything from prices to who 

could buy, sell, and transport natural gas and under what conditions to a largely 

deregulated market in which prices are driven by supply and demand. For example, in 

2008, natural gas prices rose sharply from $7.8 per mmBtu in early January to $13.5 

per mmBtu in July, which was the highest price level for that time of year. Then 

starting around the end of July, natural gas prices fell almost as sharply and were 

approximately $5.5 per mmBtu toward the end of 2008. Crude oil and natural gas 

prices are more volatile than those in most financial markets. In 2007, the annualized 

standard deviation of the daily percentage change in prices was 31.33% for crude oil 

and 49.94% for natural gas. By comparison, that number was only 4.08% for the US 
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dollar-Euro exchange rate, 16.37% for the S&P 500 and 19.10% for the 10-year T-

bond interest rate1

The high volatility in crude oil prices is likely due to actual and anticipated 

fluctuations in supply and the short-term inelasticity of demand. Given that crude oil is 

one of the most essential energy sources, it is very difficult for many oil users to 

reduce their consumption within a short period of time following a price increase. On 

the other hand, there is considerable fluctuation in oil supply which depends on a 

variety of macroeconomic and political factors. For example, in 1997, when the world 

economy was already in a recession, the Organization of Petroleum Exporting 

Countries (OPEC), failing to predict the oil demand correctly, increased its production 

levels which resulted in a huge decrease in oil prices. In June-July 2008, a 

combination of supply uncertainties in oil producing countries and a falling dollar 

caused an unprecedented oil price spike. On the reverse, an appreciation of the dollar 

and signs of worldwide economic slowdown led to a sharp decrease in oil price toward 

the end of 2008. 

.  

The high volatility in the natural gas market is mostly attributable to the short-

term inelasticity of supply and demand. Since natural gas supplies are often 

constrained by storage levels and imports are limited, natural gas suppliers are unable 

to increase production levels in a short period of time. Also, it is difficult for 

consumers to quickly reduce their consumption when a sharp increase in natural gas 

prices occurs, especially during the winter. Since natural gas suppliers cannot rapidly 

                                                      
1The data for the crude oil and natural gas prices are from the Energy Information 
Administration website. The data for the S&P 500, US dollar-Euro exchange rate, and the 10-
year T-bond interest rates are from the CRSP database and the Federal Reserve website 
(http://www.federal reserve.gov). 
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adjust their production levels to match demand changes, supply and demand 

imbalances may result in sharp price changes. 

This high variability in crude oil and natural gas prices makes it extremely 

difficult for consumers to forecast their costs and for producers to forecast their 

profits. The desire to protect market participants against such price fluctuations has led 

to the creation of and active trading in futures, swaps and options where the market 

value of the latter depends on volatility. An understanding of the causes and behavior 

of oil and gas volatility is therefore essential to measuring and managing the risk faced 

by energy producers and major consumers. 

Although it is difficult to forecast the direction of future price changes from 

past price behavior, the absolute magnitude of price changes, i.e. volatility, has been 

proven much more predictable in most financial markets and, consequently, has 

received an immense attention in the literature. However, the vast majority of the 

research on market volatility has focused on the volatility of financial markets such as 

the stock, bond, interest rates and foreign exchange futures markets, etc. Despite the 

fact that crude oil and natural gas markets tend to be more volatile than most financial 

and commodity markets, research into the determinants and properties of actual and 

implied volatilities in these markets is relatively sparse.  

My first two essays, which explore the determinants of oil and natural gas 

price volatilities respectively, are motivated by the limited nature of previous research 

on crude oil and natural gas price volatility. The limited studies on crude oil volatility 

to date focus solely on volatility persistence, i.e., the relation between current and past 

volatility, in this market (see, for example, Wilson, Aggarwal and Inclan, 1996; Yang, 
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Hwang and Huang, 2002; Pindyck, 2004; and Kuper and Soest, 2006). Other possible 

determinants of crude oil volatility, such as a day-of-the-week, levels and 

announcement effects, are neglected in the literature. Previous studies on natural gas 

volatility examine several volatility determinants in isolation. Susmel and Thompson 

(1997), Pindyck (2004) and Murry and Zhu (2004) find that natural gas volatility 

follows an ARCH-GARCH type process, Linn and Zhu (2004) document that the 

release of the Weekly Natural Gas Storage Report announcement causes increased 

natural gas volatility, Murry and Zhu (2004) document that natural gas volatility 

increases on Monday and on days the Storage Report is released, and Mu (2007) 

examines the impact of storage and weather conditions on natural gas volatility.  

As mentioned above, previous studies on oil and gas actual volatility consider 

only one or two possible volatility determinants. In other words, they test for volatility 

persistence, and/or day-of-the-week effects, or announcement effects, or weather 

effects but not all four. Thus it is possible that the determinant they examine is in fact 

proxying for another determinant. For instance a day-of-the-week pattern could be due 

to an announcement pattern. My study extends the research in oil and gas price 

volatility in several dimensions. First, I simultaneously estimate GARCH, volatility 

asymmetry, seasonality, announcement and other effects in a single econometric 

model. This allows me to determine which are the most important volatility 

determinants in these markets. Second, as explained further in the first two essays, my 

model affords a cleaner test of seasonality, announcement and other transitory effects 

than that in previous studies. Third, I test and quantify several possible volatility 

determinants unexplored heretofore, such as a time-of-the-year pattern and bid week 
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effects for natural gas and asymmetric volatility, levels and announcement effects, and 

day-of-the-week pattern for crude oil.  

My third essay, which explores the determinants and behavior of implied 

volatilities in both the crude oil and natural gas markets, is also motivated by the fact 

that research on oil and gas options markets has been quite sparse although energy 

prices tend to be more volatile than most other prices and that oil and gas options have 

become more heavily traded. To my knowledge, the only studies to date which include 

oil and gas implied volatilities (IVs) among other IVs they examine are Day and 

Lewis (1993), Szakmary, Ors and Kim (2003), Martens and Zein (2004), Mahar, 

Peterson and Horan (2004), and Doran and Ronn (2006). Day and Lewis (1993), 

Szakmary et al. (2003), Martens and Zein (2004), and Doran and Ronn (2006) 

document the forecasting performance of oil and gas IVs, i.e., testing (1) whether IV is 

an unbiased forecast of future volatility and (2) whether IV predicts future volatility 

better than historical volatility or a GARCH-type forecast. Mahar, Peterson and Horan 

(2004) examine the behavior of crude oil IV surrounding OPEC meetings. None of 

these papers examine other attributes of oil and gas IVs such as whether IVs vary by 

term-to-maturity or by strike price. This limitation is due to the data sets used in 

previous studies which only include IVs calculated from nearby at-the-money options. 

There are also unexplored questions of a possible seasonality pattern in oil and gas IVs 

and whether oil and gas IVs respond differently to positive and negative return shocks 

of the underlying futures contracts. In the third essay, I construct a dataset that 

includes IVs across various strike prices for a range of terms to maturity. This 

comprehensive data set allows me to compare the behavior of IVs across different 
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strike prices as well as across different terms to maturity and also to address other 

unexplored issues concerning the determinants of oil and gas IVs. Consequently, 

results in this study have implications for option traders who need to better understand 

the behavior of oil and gas IVs for valuation purposes.  

As mentioned above, my dissertation consists of three essays. The first two 

essays examine the causes and behavior of price volatility in the US crude oil and 

natural gas markets from January 1997 through December 2008. In these essays, I 

simultaneously test and quantify the hypothesized determinants of actual volatility in 

these markets using a multiplicative GARCH type model. This model, which separates 

volatility into a persistent part and a transitory part, allows me to implement a much 

cleaner study of the determinants of volatility than that used in several previous 

studies. The third essay explores the structure, characteristics, and determinants of 

implied volatilities calculated from crude oil and natural gas call options from 

September 1999 through June 2006.  

My most important results and contributions to the literature include the 

following. One, crude oil and natural gas markets are characterized by volatility 

persistence where volatile periods are followed by volatile periods and stable periods 

are followed by stable periods. Two, in the natural gas market, there is evidence of 

asymmetric volatility in that an unexpected increase in price increases predicted 

volatility (according to a GARCH type model) more than an equal unexpected 

decrease in price. Consistent with this evidence, natural gas implied volatility, which 

supposedly represents the market’s expectation of future volatility, also increases more 

following a positive return shock. This asymmetry pattern which, to my knowledge, is 
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unique to natural gas is likely caused by the hypothesized shape of the supply and 

demand curves in this market. At low volume and prices, natural gas supply is highly 

elastic, but once storage limits are reached, supply becomes quite inelastic as natural 

gas producers, due to infrastructure constraints, are unable to increase their production 

levels within a short period of time (Krichene, 2002; Burns, 2008). The demand curve 

for natural gas also contains an elastic portion when prices are low and an inelastic 

portion when prices are high (Krichene, 2002; Burns, 2008). Given the hypothesized 

shape of the natural gas supply and demand curves, the same fluctuation in demand 

when prices are low should cause a smaller change in prices than when prices are 

high. Thus, a positive price shock which moves the natural gas market up the supply 

and demand curves is likely to presage higher future volatility than a negative shock 

moving the market down the curves. To a lesser extent and in an opposite pattern, 

there is also an asymmetric volatility in the crude oil market where an unexpected 

decrease in price increases predicted volatility and implied volatility more than an 

unexpected increase in price of similar magnitude.  

Three, oil and gas implied volatilities tend to increase as the options approach 

expiration and the increasing pattern is consistent across strike prices. This term 

structure pattern is opposite to that observed for the stock index, T-bond and foreign 

exchange options markets where IVs tend to decrease as expiration approaches. While 

inconsistent with the pattern for IV in those financial options markets, the oil and gas 

IV term structure pattern is consistent with the actual volatility pattern for different 

maturity futures contracts. Given this term structure pattern, if a financial engineer 
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uses the IV from nearby options, the IV that would normally be calculated, to value 

longer term options, the latter will tend to be overvalued. 

Four, oil and gas IVs tend to differ by strike price. Natural gas IVs exhibit a 

positive skew pattern in that IVs are higher for out-of-the-money calls than for at- and 

in-the-money calls. This upward sloping pattern is unique to natural gas options since, 

to my knowledge, all smile patterns documented to date are either U-shaped or 

downward sloping. There is no evidence that this positive skew pattern is caused by 

the characteristics of the underlying futures return distribution. It is apparent that the 

hedging pressure in this market is at least partly responsible for this pattern. While the 

skew pattern is consistent across terms to maturity for natural gas, the shape of the 

cross-sectional pattern changes with term-to-maturity for crude oil. For nearby and 

second-month crude oil options, IVs are highest for deep in- and out-of-the-money 

calls and lowest for moderately in-the-money calls. For third- and fourth-month 

options, IVs are lowest for deep in-the-money calls and increase monotonically with 

strike prices. 

Five, there is a day-of-the-week volatility pattern in oil and gas markets. In 

both markets, Friday-close-to-Monday-close returns tend to be more volatile than any 

other weekday return, implying that these markets are impacted by sorts of news 

occurring during the weekend such as weather news or geo-political events. There is 

evidence that oil and gas actual volatilities increase on Wednesday and Thursday, 

respectively, which is attributable to the weekly release of the Petroleum Status Report 

and the Natural Gas Storage Report on these days. The oil and gas implied volatilities 
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also exhibit a day-of-the-week pattern which is consistent with the pattern in actual 

volatilities.  

Six, there is an announcement effect in oil and gas markets. As mentioned 

above, crude oil volatility tends to increase on days the Petroleum Status Report is 

released. There is also significant evidence that news from the OPEC meetings cause 

an increase in crude oil volatility. In the natural gas market, surprises in storage report 

news has a significant impact on volatility. In addition, there is strong evidence that 

natural gas volatility increases during and immediately after the “bid week”, the last 

five trading days of a month, as news about prices and volumes being set in the spot 

market becomes public.  

Seven, both actual and implied volatilities in the natural gas market exhibit a 

time-of-the-year pattern in which volatility tends to be higher on contracts expiring in 

the winter months. Consequently, if a financial engineer uses the yearly average 

volatility to value natural gas options, he or she will tend to overestimate the values of 

options expiring in summer and underestimate the values of options expiring in winter. 

Eight, natural gas actual volatility tends to increase on winter days when the 

temperature is lower than normal. Nine, crude oil volatility tends to be high when oil 

prices are historically low and low when prices are historically high. Ten, there is 

strong evidence of a time-varying conditional correlation between crude oil prices and 

the value of the dollar. Eleven, although the unbiasedness of oil and gas IVs depends 

on term-to-maturity and moneyness of the options, IV is a fairly efficient forecast of 

future volatility in these markets. Twelve, I develop and use a variant of the 

multiplicative GARCH type model outlined in Jones, Lamont and Lumsdaine (1998) 
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and show that a GARCH model which fails to control for seasonality, announcement, 

and other transitory effects tends to overestimate the impact of a surprise return shock 

on subsequent volatility.  

The dissertation is organized as follows. Chapter II examines the ex-ante 

determinants of price volatility in the US crude oil market. Chapter III studies the 

determinants of price volatility in the natural gas market. Chapter IV explores the 

structure, characteristics, and determinants of oil and gas implied volatilities. As the 

dissertation consists of separate essays in the format of journal articles, several 

hypotheses, data descriptions, and analyses in Chapters II, III and IV are similar and 

overlapping.  
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Chapter II. Price Volatility in the Crude Oil Market 

1. Introduction 

This paper examines the causes and behavior of price volatility in the US crude 

oil market from January 1997 through November 2008. Crude oil is one of the most 

essential energy sources in the U.S., accounting for about 40% of the nation’s energy 

consumption. Since OPEC’s 1973 decision to regulate its oil price independently of 

large oil companies, crude oil prices have been subject to dramatic volatility. Oil 

prices increased from less than $3 per barrel in mid-1973 to $36 in early 1981.  This 

large oil price fluctuation tendency has continued in recent years. From less than $11 

per barrel in the beginning of 1999, oil prices increased to $38 per barrel in September 

2000, decreased to $18 per barrel in January 2002 and went up to $77 per barrel in 

July 2006. The crude oil market has experienced an unprecedented dramatic volatility 

in 2008 as crude oil prices reached an all-time high level of $145 per barrel in July and 

then fell sharply to $50 per barrel in November.  

Crude oil prices are more volatile than those in most financial markets. In 

2007, the annualized standard deviation of the daily percentage change in prices was 

31.33% for crude oil. By comparison, that number was only 4.08% for the US dollar-

Euro exchange rate, 16.37% for the S&P 500 and 19.10% for the 10-year T-bond 

interest rates2

                                                      
2The data for the S&P 500, US dollar-Euro exchange rate, and the 10-year T-bond interest 
rates were collected from CRSP database and the Federal Reserve website 
(http://www.federalreserve.gov). 

. Figure 1 depicts crude oil prices and historical volatilities from January 

1997 through November 2008 wherein historical volatilities are measured as the 

annualized rolling 30-day standard deviation of returns. As shown in these graphs, the 
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crude oil market has undergone notable price fluctuations during the sample period 

and volatility tends to cluster over time.  

The high volatility in crude oil prices is likely due to actual and anticipated 

fluctuations in supply and the short-term inelasticity of demand. Given that crude oil is 

one of the most essential energy sources, it is very difficult for most oil users to reduce 

their consumption within a short period of time following a price increase. On the 

other hand, there is considerable fluctuation in oil supply which depends on a variety 

of macroeconomic and political factors. For example, in 1997, when the world 

economy was already in a recession, the Organization of Petroleum Exporting 

Countries (OPEC), failing to predict the oil demand correctly, increased its production 

levels which resulted in a huge decrease in oil prices. In June-July 2008, a 

combination of supply uncertainties in oil producing countries and a falling dollar 

caused an unprecedented oil price spike. On the reverse, an appreciation of the dollar 

and signs of worldwide economic slowdown led to a sharp decrease in oil price toward 

the end of 2008. This high variability in crude oil prices makes it extremely difficult 

for consumers to forecast their costs and for producers to forecast their profits. The 

desire to protect market participants against such price fluctuations has led to the 

creation of and active trading in futures, swaps and options where the market value of 

the latter depends on volatility.  

Although it is difficult to forecast the direction of future price changes from 

past price behavior, the absolute magnitude of price changes, i.e. volatility, has been 

proven much more predictable in most financial markets. It is generally found that 

highly volatile markets tend to be followed by volatile markets whereas stable markets 
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tend to be followed by stable markets. The vast majority of the research on market 

volatility has focused on the volatility of financial markets such as the stock, bond, 

interest rates and foreign exchange futures markets, etc. Despite the fact that crude oil 

prices, like any other energy prices, tend to be more volatile than most financial prices, 

research into the cause and behavior of volatility in the crude oil market is limited. For 

instance, in a well-known and comprehensive study of the volatility literature, Poon 

and Granger (2003) surveyed 93 articles examining volatility in all sorts of markets; 

only three of these included crude oil among the markets examined (Day and Lewis, 

1993; Szakmary, Ors and Kim, 2003; and Martens and Zein, 2004).  

An understanding of the causes and behavior of crude oil volatility is essential 

to measuring and managing the risk faced by energy producers and major consumers, 

such as airlines. Also the market value of risk management products such as options 

depends largely on volatility. However, most research on the crude oil market has 

focused on the behavior of oil prices rather than on volatility. The limited studies on 

crude oil volatility to date focus solely on volatility persistence, i.e., the relation 

between current and past volatility, in this market (see, for example, Wilson, 

Aggarwal and Inclan, 1996; Yang, Hwang and Huang, 2002; Pindyck, 2004; and 

Kuper and Soest, 2006). Other possible determinants of crude oil volatility are 

neglected in the literature. In this study, I attempt to fill this gap in our understanding 

by simultaneously testing and quantifying several hypothesized ex-ante determinants 

of crude oil volatility. These determinants consist of volatility persistence, volatility 

asymmetry, oil price levels, announcement, and seasonality effects.  
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My most important results and contributions to the literature include the 

following. One, crude oil volatility is asymmetric in that an unexpected decrease in 

price increases predicted volatility more than an unexpected increase in price of 

similar magnitude. Two, crude oil volatility tends to be high when oil prices are 

historically low and low when prices are historically high. Three, crude oil volatility 

tends to increase on days the OPEC meetings announcements are released. Four, crude 

oil volatility is significantly higher on Monday, implying that the crude oil market is 

impacted by news occurring during the weekend and on Wednesday, possibly because 

Wednesday is the release day of the Weekly Petroleum Status Report. Five, a model 

which fails to control for levels, announcement, and seasonality effects tends to 

overestimate the impact of an unexpected price decrease on predicted volatility. Six, 

there is strong evidence of a time-varying conditional correlation between crude oil 

prices and the value of the dollar.  

I develop and use a variant of the multiplicative GARCH type model outlined 

in Jones, Lamont and Lumsdaine (1998). This model, which separates volatility into a 

persistent part and a transitory part, allows me to implement a much cleaner study of 

the determinants of volatility than that used in several previous studies on other 

markets.  

To the best of my knowledge, my study is the first comprehensive study of the 

ex-ante determinants on volatility within a GARCH framework for the crude oil 

market and also the first study of the time-varying conditional covariance between 

crude oil prices and the value of the dollar. 
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The chapter is organized as follows. In Section 2, I propose and develop my 

hypotheses. The data is presented in Section 3. In Section 4, I analyze the 

multiplicative GARCH type model to quantify the determinants of crude oil volatility 

and the bivariate GARCH model for the conditional covariance between crude oil 

prices and the value of the dollar. Section 5 presents the results and Section 6 

concludes the paper.  

2. Hypotheses  

In this study, I attempt to answer the following questions:  

1. Are crude oil prices characterized by volatility persistence as has been 

documented in other markets? It has been observed that in many other markets volatile 

periods tend to follow volatile periods whereas stable periods tend to follow stable 

periods. Among numerous studies documenting volatility persistence are: Adrian, 

Pagan and Schwert (1990), Andersen, Bollerslev, Diebold and Ebens (2001), Wu 

(2001) and Flannery and Protopapadakis (2002) for the stock market, Ederington and 

Lee (1993, 1995 and 2001) for interest rates, Harvey and Huang (1991), Ederington 

and Lee (1993, 1995 and 2001), Andersen and Bollerslev (1998) and Low and Zhang 

(2005) for the foreign exchange market and Jones et al. (1998) for the Treasury bond 

market. I hypothesize that similar volatility persistence exists in the crude oil market.  

2. Is there volatility asymmetry in the crude oil market? That is, do equal 

positive and negative shocks have different impacts on future volatility? It is generally 

documented that asymmetric volatility exists in a number of financial markets. French 

and Roll (1986), French, Schwert and Stambaugh (1987), Campbell and Hentschel 

(1992), Glosten, Jagannathan and Runkle (1993), Veronesi (1999), Bekaert and Wu 
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(2000) and Wu (2001) and others found that in the stock market, an unexpected 

decrease in price has a bigger impact on predicted volatility than an unexpected 

increase in price of equal magnitude. The asymmetric volatility in the stock market is 

generally attributed to either a leverage effect and/or a volatility feedback effect3

While in the stock market negative shocks tend to have more impact on 

predicted volatility than equal positive shocks, the hypothesized reasons, i.e., leverage 

and/or volatility feedback effects, would not apply to the crude oil market. There are 

reasons to expect that due to the elasticity of the supply and demand curves, a positive 

shock in the energy market could have more impact on predicted future volatility than 

an equivalent negative shock. The supply and demand curves for crude oil are likely to 

be more elastic at low prices than at higher prices. Given the hypothesized shape of 

the supply and demand curves, the same fluctuation in demand when prices are low 

should cause a smaller change in prices than when prices are high. Thus, a positive 

price shock which moves the market up the supply and demand curves is likely to 

presage higher future volatility than a negative shock moving the market down the 

curves.  

. To a 

lesser extent, Brunner and Simon (1996) and Simon (1997) found similar evidence for 

the Treasury bond futures and options markets.  

3. Is there levels effect in crude oil volatility? High oil prices which indicate 

that the supply and demand curves become inelastic should cause an increase in 

volatility. However, as depicted in Figure 1, periods of high volatility tend to be 

associated with low prices and periods of low volatility tend to be associated with high 

                                                      
3Wu (2001) provides a survey on the determinants of asymmetric volatility in the stock 
market. 



 

17 
 

prices. Therefore, the price levels effect on crude oil volatility is an empirical issue to 

be explored. 

4. Do the OPEC meetings cause increased volatility in the crude oil market? 

The Organization of Petroleum Exporting Countries (OPEC), founded in 1960, 

produces about 40 percent of the world’s crude oil. OPEC nations control 

approximately 78% of known reserves and export about 55% of the oil traded 

internationally4

Disagreement exists in the literature about the OPEC’s influence on crude oil 

prices. Loderer (1985) and Gullen (1996) find that OPEC influenced crude oil prices 

in the eighties and nineties but not during the seventies and early eighties. Alhajji and 

Huettner (2000) reject the hypothesis that OPEC has a significant impact on crude oil 

prices. Conversely, Deaves and Krinsky (1992) find that crude oil prices under-react 

to bullish outcomes of OPEC meetings and efficiently react to bearish outcomes. 

Despite the controversial evidence of the OPEC’s influence on oil price levels, there 

are reasons to expect that OPEC news impact crude oil volatility. On days the OPEC 

decisions are coming to the market, market participants adjust prices according to new 

information and thus, the crude oil market should become more volatile. Since the 

OPEC meetings are generally not open to the press and most valuable news are not 

. The Organization is required by its charter to hold a minimum of two 

conferences per year, at which each member nation is to be represented. In addition to 

these regularly scheduled conferences, OPEC holds “extraordinary meetings” on an 

as-needed basis. During these meetings, the OPEC delegates often consider and ratify 

future production levels and therefore OPEC meetings are usually the subject of 

intense media attention.  

                                                      
4What is OPEC? (OPEC, 2006)  
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made known to the public until after the meetings5

5. Are there seasonal effects in crude oil volatility?  

, I hypothesize that volatility will be 

higher on days following the OPEC meetings.  

5.1 Day-of-the-week pattern 

Some academic studies find that the volatility of financial asset returns varies 

across days of the week.6

5.2 Time-of-the-year pattern 

 In some financial markets, the volatility from Friday close to 

Monday close is higher than that of a normal one-day period but not as high as that of 

a three-weekday period presumably because there is not much information coming out 

during the weekend. In this study, I hypothesize that crude oil volatility tends to be 

high on Monday (including weekend) since the crude oil market is likely to be 

affected by news that occurs during the weekend, such as weather or geo-political 

events. I also hypothesize higher crude oil volatility on Wednesday since this is the 

release day of the Weekly Petroleum Status Report. This Report, which is compiled 

and issued by the U.S. Energy Information Administration, is widely considered to be 

one of the most important news in the crude oil market since it provides timely 

information on supply and inventory data of crude oil and principal petroleum 

products in the context of historical information and forecasts.  

                                                      
5 Platts (2002) 
6The literature on day-of-the-week effect on volatility includes French and Roll (1986), 
Berument and Kiymaz (2001) for the stock market, Harvey and Huang (1991), Ederington and 
Lee (1993) for interest rates and the foreign exchange futures market and Jones et al. (1998) 
for the Treasury bond market. 



 

19 
 

It has been documented that returns in some markets differ by month of the 

year7 but little attention has been given to a seasonal pattern in volatility. In this study, 

I investigate the possibility of a time-of-the-year pattern in volatility in the crude oil 

market where part of the demand supposedly depends on weather conditions. For 

example, the demand for gasoline often increases during the summer driving season 

and similarly, the demand for heating oil may increase sharply in the winter season. 

Since gasoline and heating oil are two of the most important products distilled from 

crude oil8

6. Is there evidence of a time-varying conditional covariance between crude oil 

prices and the value of the dollar? It is often argued that because oil prices are 

denominated in dollars, oil prices and the value of the dollar should be negatively 

correlated. An appreciation (depreciation) of the U.S. dollar would tend to make oil 

more (less) expensive in non-dollar currencies and would reduce (increase) demand 

for crude oil thereby possibly lowering (increasing) oil prices in dollars.  

, an increase in product demand supposedly results in an increase in crude oil 

demand and if crude oil supply is essentially fixed in the short run, volatility would 

increase.  

The relationship between crude oil prices and the value of the dollar has been 

examined in prior academic research (see, for example, Amano and Norden, 1998; 

Sadorsky, 2000; Benassy-Quere, Mignon and Penot, 2007). However, while numerous 

studies document strong evidence of 

                                                      
7See, for instance, Keim (1983), Lakonishok and Smidt (1984) for the stock market and Jordan 
and Jordan (1991) for the corporate bond market 

heteroskedastic covariances among other 

8A 42-U.S. gallon barrel of crude oil provides slightly more than 20 gallons of finished motor 
gasoline and 10 gallons of heating oil and diesel fuel. 

http://www.eia.doe.gov/kids/energyfacts/sources/non-renewable/barrel.html�
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financial assets9, none of the previous studies on the correlation between crude oil 

prices and the value of the dollar have explored whether that correlation is constant or 

time-varying. I hypothesize a time-varying conditional correlation between crude oil 

prices and the value of the dollar. While an increase (decrease) in the dollar’s value 

implies more (less) expensive oil prices in non-dollar currencies which should result in 

a downward (upward) pressure on oil demand and hence lower (increase) oil prices in 

dollars, 

3. Data and preliminary analysis 

oil prices are also impacted by international supply-demand shifts not caused 

by changes in the dollar’s value in which case there should be no correlation between 

oil prices and the dollar’s value. Occasionally, there may be forces that simultaneously 

increase or decrease oil prices and the value of the dollar, resulting in a positive 

correlation between the two. Hence, I test whether the covariance and correlation 

between the value of the dollar and oil prices in dollars vary over time.  

These hypotheses are tested using daily closing prices for crude oil futures 

contracts traded on the New York Mercantile Exchange (NYMEX). Crude oil futures 

contracts, which began trading on the NYMEX on March 30, 1983, trade in units of 

1,000 U.S. barrels. My sample period is January 1, 1997 to November 28, 2008 

totaling 2,981 daily observations. Crude oil prices are from the Energy Information 

Administration10

Futures prices are used in place of spot prices for the following reasons. First, 

futures prices are the major prices in the crude oil market. The NYMEX crude oil 

. Details on the OPEC meetings are collected from Dow Jones 

Factiva database.  

                                                      
9See, for example, Bollerslev et al. (1988), Harvey (1989), Bodurtha and Mark (1991). 
10http://tonto.eia.doe.gov 
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futures contract is the world's most liquid forum for crude oil trading and is used as a 

principal international pricing benchmark. Crude oil futures prices are also the prices 

reported in newspapers. Second, the futures market for crude oil is liquid and 

centralized while spot markets are localized and illiquid. Third, futures prices are the 

prices normally used in most oil risk management contracts such as swaps and 

options. 

To examine volatility in a GARCH type framework, I utilize daily log returns11 

defined as rt=ln(Pt/Pt-1) wherein Pt is the price of the futures contract on day t and Pt-1 

is the price of the same contract the previous day. As traders often cover their 

positions on the last trading day of a contract’s life, trading volume and open interest 

decline and price volatility increases substantially. To avoid this “thin market” 

problem, I replace the return of the nearest contract on the last trading day of each 

month with that of the second nearest contract in constructing the rt 

To proxy for the value of the dollar, I use a trade-weighted average of the 

foreign exchange value of the U.S. dollar against a subset of the broad index 

currencies that circulate widely outside the country of issue, including the Euro Area, 

Canada, Japan, United Kingdom, Switzerland, Australia, and Sweden. The exchange 

index data is from the Federal Reserve Statistical releases.

series.  

12

                                                      
11The daily crude oil “returns” are used to measure price changes only. These “returns” are not 
investment returns since no money is actually invested.    

  

12The index value is set 100 in March 1973 and calculated using the formula:  
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Table I provides summary statistics for daily crude oil returns on nearby, 

second- and third-month contracts. The annualized standard deviation of the daily 

percentage change in nearby crude oil prices over the January 1997-November 2008 

period is 38.26%, indicating that this market is characterized by very high volatility. 

There is evidence that volatility decreases with time-to-maturity of the futures 

contracts, from 38.26% for the nearby to 34.79% for the second-month and 32.57% 

for the third-month contracts.  

Table I shows preliminary evidence of volatility persistence in that the first-

order autocorrelation coefficients for absolute returns are positive and significant at 

the 0.01 level. For squared returns (not reported), the first-order autocorrelation 

coefficients are also significantly positive at the 0.001 level. Clearly, the crude oil 

market, like many others, is characterized by volatility persistence.  

4. Model Specification and Analysis 

4.1. Ex-ante determinants of crude oil volatility 

In order to test and quantify the determinants of crude oil volatility as 

discussed in section 2, I estimate a model in which the conditional variance follows a 

multiplicative GARCH type process:  

rt = μ + φ1rt -1 + εt

where: 

      (1) 

 εt
2
tσ ~N(0, ) and 2

t t th sσ = ⋅       (2) 

ht = Var(ζt) = ω+ αζt-1
2+βht-1+ γζt-1

2It-1, where ζt =  εt
.5
ts /  (3) 

4

t i,t
i=1

s s=∏        (4) 
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s1,t
κ

t[AP /AP ] =        (4.a)  

s2,t = (1+ δ-1DAt-1)(1+ δ0DAt)(1+ δ1DAt+1

s

)   (4.b) 

3,t

4

,
i=1

(1+ )i i tDWλ∏ =       (4.c) 

s4,t = (1+ θ1DSUMi,t)(1+ θ2DWINi,t

r

)    (4.d) 

t is the log percentage change in price of the futures contract on day t, It-1=1 if ζt-1 >0 

and 0 otherwise. My main interest is in the ex-ante determinants of the variance of the 

surprise oil return, εt

4.1.1 Volatility Persistence and Asymmetric Volatility 

. I model this variance as a multiplicative function of an 

asymmetric GARCH function (equation 3), price levels (equation 4.a), announcement 

effects (equation 4.b), day-of-the-week pattern (equation 4.c) and seasonal effects 

(equation 4.d).  

Equation 3 is the asymmetric GARCH model due to Glosten et al. (1993) often 

referred to as the GJR or TGARCH model.  If volatility persistence is an attribute of 

the crude oil market, α and β should be significantly positive, implying that predicted 

volatility depends on both unexpected price changes and the previous day’s forecast 

volatility. Asymmetric volatility implies γ ≠ 0 in equation (3); γ >0 implies that a 

positive shock increases conditional volatility more than an equivalent negative shock. 

4.1.2 Levels, Announcement and Seasonality effects  
  

Equation 4, the transitory effects equation, estimates the impact of other 

determinants on volatility. Equation 4(a) tests the hypothesis that volatility is sensitive 

to price levels. APt is the inflation-adjusted price = (Pt/CPIT)100 where Pt is the crude 

oil price on day t and CPIT AP is the Consumer Price Index for that month. represents 
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the average inflation-adjusted price over the sample period. κ >0 implies that volatility 

is higher at high price levels and κ <0 implies that volatility is lower at high price 

levels.  

Equation 4(b) estimates the impact of OPEC meetings announcements on 

volatility. DAt is 1 on OPEC meeting days and 0 otherwise. I also include DAt-1 and 

DAt+1 as dummies for the days before and after OPEC meeting days because (1) it is 

often reported in the media that market participants speculate on the OPEC decisions 

and adjust prices prior to the meetings and (2) important OPEC meetings news are 

usually not released to the public until the following day. In equation 4(b), δi

Equations 4(c) and 4(d) estimate the day-of-the-week and time-of-the-year 

patterns in crude oil volatility. DW

 

represents the estimated log percentage increase in volatility normally caused by 

OPEC meetings.  

i,t are zero-one dummies for Monday (which 

includes the weekend), Wednesday, Thursday and Friday with Tuesday being the left-

out day. λi estimates the average percentage difference between volatility on day i and 

volatility on Tuesday. In other words, assuming that s1,t=s2,t=s4,t=1, then the estimated 

variance on Tuesday is ht. On Monday, the estimated variance is ht(1+λM). On 

Wednesday, the estimated variance is ht(1+λW) and so on for other days. If the crude 

oil market is impacted by news occurring over the weekend, Monday return (which is 

a three-day return including the weekend) should be more volatile than any normal 

weekday return and λM >0. I also expect that λW > 0 because Wednesday is the release 

day of the Weekly Petroleum Status Report.  
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DSUMi,t=1 if the futures contract expires in the summer months (from May 

through August); DWINi,t=1 if the futures contract expires in the winter months (from 

November through February). θ1 and/or θ2

4.1.3 Comparison with Previous Models 

 ≠ 0 imply a time-of-the-year pattern in 

crude oil volatility.  

My model improves on that used in several previous studies for non-oil 

markets which seek to simultaneously estimate both GARCH and other determinants 

of volatility. The introduction of a transitory volatility equation st into the 

specification enables me to implement a much cleaner study of the determinants of 

volatility than when announcement and/or day-of-the-week dummies are added to the 

variance equation. For instance, Hsieh (1989), Berument and Kiymaz (2001), 

Ederington and Lee (2001) and Lee (2002) use GARCH type models to examine day-

of-the-week effects on volatility in other markets. In those studies, weekday dummies 

are in the ht equation (equation 3) and the coefficient estimates reflect how conditional 

volatility changes across weekdays. Thus, using their model, there is no st

h

 equation 

(equation 4) and equation (3) becomes: 

t = ω + αεt-1
2 + βht-1 + λMDWM,t + λWDWW,t + λRDWR,t + λFDWF,t

In equation 5, since weekday dummies are in the h

,                               

(5) 

t equation, the dummy for any day 

of the week impacts volatilities on all days of the week through the ht-1 term on the 

right hand side of the equation. Suppose, for instance, that day t is Monday. 

∂ht/∂DWM,t = λM. Now consider the impact of the Monday dummy on volatility on 

Tuesday (day t+1). Since 
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 ht+1 = ω + αεt
2 + βht + λMDWM,t+1 + λWDWW,t+1 + λRDWR,t+1 + λFDWF,t+1

∂h

,                  

(5) 

t+1/∂DWM,t = (∂ht+1/∂ht)(∂ht/∂DWM,t) = βλM. Likewise, the Monday dummy impact 

on the Wednesday’s volatility is ∂ ht+2/∂DWM,t = β2λM.  Therefore, when weekday 

dummies are in the ht equation, as in equation (5), λM does not measure how much 

higher volatility is on Monday than on the omitted day (Tuesday).  Indeed, depending 

on the coefficient pattern, day X which has the highest λX

In contrast, a specification which separates the variance of returns into a 

persistent part, equation (3), and a non-persistent part, equation (4), allows me to 

estimate a model in which any weekday dummy impacts that day’s volatility only. For 

example, λ

 coefficient may not be the 

day with the highest volatility.   

M measures how much higher (or lower) in percentage terms the volatility is 

on Monday than on the omitted day (Tuesday) and λW 

To estimate the announcement impacts on volatility in other markets, several 

previous studies, for example, Hsieh (1989), Berument and Kiymaz (2001), 

Ederington and Lee (2001), De Goeij and Marquering (2006), add an announcement 

dummy to the h

measures how much higher (or 

lower) the volatility is on Wednesday and so on.  

t equation and do not include the st

h

 equation. Thus, the variance 

equation becomes:  

t =  ω+ αεt-1
2+βht-1+ δ0DAt,                

In equation (6), an unscheduled shock on day t-1 impacts volatility on day t 

through the term αε

(6) 

t-1
2. However, since an announcement impact is forced to persist 

on the subsequent days (∂ ht/∂DAt = δ0, ∂ht+1/∂DAt = (∂ ht+1/∂ht)(∂ht/∂DAt) = βδ0, 
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∂ht+2/∂DAt = β2δ0 and so on), the impact of a shock due to scheduled announcement 

on day t-1 on volatility on day t includes not only αεt-1
2 but also βδ0

2
tσ∂

. Consequently, 

models like equation (6) impose much higher persistence for shocks due to scheduled 

announcements than for equivalent shocks due to unscheduled announcements. In 

contrast, in my model, the impact of a shock due to scheduled announcement does not 

persist on the following days ( /∂DAt = δ0 
2
t+1σ∂and /∂DAt

4.2. Bivariate GARCH model of the conditional covariance between crude 

oil prices and the value of the dollar 

 =0) and therefore, the 

estimated impact of a shock on day t-1 on volatility on subsequent days t is the same 

for scheduled and unscheduled announcements.  

I utilize a multivariate GARCH model to test for a time-varying covariance 

between crude oil prices and the value of the dollar. The development of multivariate 

GARCH models represents a major step forward in the modeling of volatility. Among 

various multivariate GARCH models in the literature, the Diagonal VECH model 

introduced by Bollerslev, Engle and Wooldridge (1988) is one of the most popular. In 

the general Diagonal VECH model, the conditional covariance follows a multivariate 

GARCH (1,1) process:  

'
1 1 1 (7)t t t tH A B H− − −= Ω+ ⊗ + ⊗ε ε

  

where the coefficient matrices , andA B Ω  are NxN  symmetric matrices, and 

the operator ⊗  is the element by element (Hadamard) product.  

I hypothesize that the conditional covariance matrix of crude oil and exchange 

index returns follows a bivariate GARCH process and estimate the following Diagonal 

VECH model:  
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(8)
~ (0, )

t t

t tN H
= +rμ ε

ε
 

'
1 1 1 (7)t t t tH A B H− − −= Ω+ ⊗ + ⊗ε ε  

where 1, 2,( , ) 't t tr r=r is a (2x1) vector containing crude oil and exchange index returns 

and tH is a (2x2) conditional covariance matrix. Let tH  follow the most unrestricted 

process among all Diagonal VECH models where the parameters in the matrices 

, , andA BΩ  are allowed to vary without any restriction, the model may be written in 

single equation format as:  

, 1 , 1 , 1( ) ( ) ( ) ( ) ( ) (9)t ij ij ij j t i t i j t ijH A B Hε ε− − −= Ω + +  

where, for instance, ( )t ijH is the i-th row and j-th column of matrix .tH Ω is a (3x1) 

parameter vector; A and B are (3x3) diagonal parameter matrices. 

5. Results 

5.1. Ex-ante determinants of crude oil volatility 

Estimates of the specification (1-4) for returns on nearby futures contracts are 

presented in the third column of Table II.  

5.1.1 Volatility Persistence and Asymmetric Volatility  

As expected, there is evidence of volatility persistence in the crude oil market. 

The estimates of α and β are positive and significant at the 0.001 level, implying that 

predicted volatility depends on both previous shocks and previous volatilities. Hence, 

highly volatile periods in the crude oil market tend to be followed by volatile periods 

in the future and this finding is robust when I control for levels, announcement and 

seasonality effects. There is also evidence of asymmetric volatility in the crude oil 
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market. The estimated γ is significantly negative, indicating that volatility increases 

considerably more following a sudden decline in oil prices than following an equal 

sudden increase in prices.  

Figure 2 presents the impact of a two-standard deviation oil return shock on 

subsequent predicted volatilities. Suppose the conditional variance, ht-1 t-1( )ζ=Var is at 

its steady-state level and suppose there is a shock such that 2
t-1ζ = 4Var t-1( )ζ . Figure 2 

demonstrates the percentage difference in expected volatility on day t+x and on day t-

1, t+x

t-1

Var ( ) -1
Var ( )

ζ
ζ

 
 
 

, assuming E( 2
t+xζ ) = Var( t xζ + ) for x > -1 and that negative and 

positive return shocks are equally likely. For example, the conditional volatility is 

about 14% higher the day after the shock and 7% a week later.  

In the second column of Table II, I present estimates of a GJR model without 

levels, announcement and seasonality effects. In other words, I estimate a model 

consisting of equations (1-3) assuming that st=1. A comparison of the estimates of the 

GJR model (in the second column) and those of the full model (in the third column) 

indicates that determinants of volatility other than volatility persistence and 

asymmetry are important when modeling volatility in the crude oil market. The 

likelihood ratio test statistics is 58.72 with 10 degrees of freedom and therefore, the 

null hypothesis that there are no levels, announcement and seasonality effects is 

rejected at the 0.001 level. The estimate of α in the GJR model is significantly higher 

than that in the full model while the estimates of (α+γ) are not significantly different 

from each other. Figure 3 plots different impacts of equal positive and negative shocks 

on predicted volatility according to the estimates from the GJR and the full models. 
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Again, suppose the conditional variance, ht-1 t-1( )ζ=Var is at its steady-state level. 

According to the estimates in both the GJR and the full models, the conditional 

variance for day t falls 8% if there was no price change on day t-1 and rises about 

17.50% if the price increased 15%. However, if the price fell 15% on day t-1, the 

conditional variance for day t increases 43.06% in the GJR model and only 28.52% in 

the full model. Apparently, failing to control for levels, announcement and seasonality 

effects leads to an overestimation of the impact of a negative oil shock on predicted 

volatility and the overestimation is approximately 41.13%13

To test whether the omission of levels, announcement or day-of-the-week 

effects is responsible for this overestimation, I estimate specifications consisting of 

equations (1-3) and either equation 4(a), 4(b) or 4(c). Results (not reported) indicate 

that the overestimation caused by a model which fails to control for announcement and 

day-of-the-week effects is just 2.73% while the overestimation caused by a model 

which fails to control for levels effects and either announcement or day-of-the-week 

effects is approximately 40%. Apparently, failing to control for levels effects is the 

main cause of the overestimation of the impact of a negative oil shock on predicted 

volatility.  

.  

5.1.2 Levels effect 

Somewhat consistent with the evidence that a positive oil shock has less 

impact on predicted volatility than an equivalent negative shock, the estimate for κ, the 

levels effect, is significantly negative, indicating that volatility is high when oil prices 

                                                      
13This is measured as 1-(Ewo/Ew) where Ewo represents the estimate of α from the GJR model 
where I do not control for seasonality, announcement and levels effects and Ew that from the 
full model where I do.  
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are low and low when prices are high. As shown in Figure 1, crude oil volatilities were 

especially high during the periods 02-07/1998; 11/1998-01/1999; 10/2000-01/2001, 

10-12/2001, and 10-11/2008 which were accompanied by low prices. In contrast, the 

periods 02/2007-07/2007 and 06-08/2008 are characterized by both high prices and 

low volatilities.  

This finding for the crude oil market is opposite to the evidence in the interest 

rates market that volatility is high (low) when interest rates are high (low). One 

possible explanation for this difference is that in most studies on interest rates market, 

the measure of interest rate volatility is the volatility of the rate change while in this 

study, the measure of crude oil volatility is the volatility of the log percentage change 

in price.  

5.1.3 OPEC meetings  

As indicated by the parameter estimates in Table II, decisions made at the 

OPEC meetings tend to contain important information for the crude oil market. On the 

day after OPEC meetings, the standard deviation of crude oil returns increases by 

24.29%14

5.1.4 Seasonality 

. This concurs with the observation that news from OPEC meetings are not 

made known to the market until the following days. Contrary to media assertions that 

market participants adjust prices in speculation of OPEC decisions, there is apparently 

no significant evidence that crude oil volatility increases on or before the OPEC 

meeting days.  

5.1.4.1 Day-of-the-week pattern 

                                                      
14This is calculated as: (1+.5447)1/2-1= 24.29% 
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Since Tuesday is the left-out dummy, the coefficients in Table II measure the 

difference between average volatility on each weekday and on Tuesday. Contrary to 

the findings in some other markets15

As expected, the Monday returns (including weekend) tend to be more volatile 

than any normal weekday return. The standard deviation of the Friday-close-to-

Monday-close return is 18.49%

, there is no significant evidence that crude oil 

volatility increases on Friday. This may be due to the fact that in other markets, 

important economic news is often released on Friday whereas this is not the case in the 

crude oil market.  

16

Crude oil volatility tends to increase on Wednesday in that the standard 

deviation of Wednesday return is 15.15% higher than that of Tuesday return and the 

difference is significant at the 0.001 level. The higher Wednesday volatility is likely 

caused by the release of the Weekly Petroleum Status Report which is widely 

considered as one of the most important announcements in the petroleum market. This 

report provides timely information about current supply and demand conditions in the 

petroleum market and is therefore followed closely by market participants.  

 higher than that on Tuesday and the difference 

between Monday and Tuesday volatilities is significant at the 0.001 level.  

5.1.4.2 Time-of-the-year pattern 

Contrary to my earlier hypothesis, there is no significant evidence that crude 

oil volatility increases during either the summer driving season or the winter heating 

                                                      
15For example, Harvey and Huang (1991) reported higher volatility in interest rate and foreign 
exchange futures market on Friday. Ederington and Lee (1993) further supported these results. 
Jones et al. (1998) and Berument and Kiymaz (2001) found similar evidence for the bond and 
stock markets. 
16This is calculated as: (1+.3663)1/2-1= 16.88% 
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season.17

To further explore a month-of-the-year pattern in crude oil volatility, I re-

estimate specification (1-4) with equation 4(d) expanded to include 11 monthly 

dummies. Results from this expanded specification

 Apparently crude oil volatility is less likely to be determined by the 

fluctuations in demand for petroleum products.  

18

5.1.5 Ex-ante determinants of volatility across terms to maturity  

 indicate that September and 

October are the two least volatile months in a year. As the summer driving season 

ends and the winter does not arrive, this is the period of low crude oil demand. This 

slowdown in demand is often coupled with an increase in supply as numerous oil 

producing countries increase production and shipping of oil before their ports ice over 

during the winter.  

The last two columns of Table II report estimation results of the specification 

(1-4) for returns on second- and third-month futures contracts. There is evidence of 

volatility persistence for returns on these contracts. However, there is no evidence of 

asymmetric volatility for returns on third-month futures contracts.  

The impact of OPEC announcements on crude oil volatility is more 

pronounced for longer term-to-maturity contracts than for nearby contract. On the 

days following OPEC meetings, the standard deviation of nearby returns increases by 

24.29% while the increases for second- and third-month are 30.77% and 29.51%. 

Since announcements from OPEC meetings mostly contain information regarding 

                                                      
17I also estimate the specification (1-4) using gasoline and heating oil data during the sample 
period and find significant evidence that gasoline volatility increases during the summer 
months and heating oil volatility increases during the winter months.   
18Results are available upon request. 
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crude oil production levels, this sorts of information is likely to have more impact on 

prices of longer term-to-maturity contracts than on nearby contracts.  

There also exists a day-of-the-week pattern in volatilities for longer term 

contracts. The increase in Monday volatility (including weekend) is less sizable for 

third-month returns than for nearby and second-month. Apparently, news which 

occurs during the weekend such as weather or geo-political events tends to have more 

implication for crude oil prices in the short term than in the long term. In contrast, the 

increases in Wednesday volatility do not significantly differ across terms to maturity, 

implying that the Petroleum Status Report is viewed by the market as having similar 

impact on crude oil prices in the short run and in the long run. 

5.2. Bivariate GARCH model for crude oil and exchange index returns 

It is often argued that oil prices in dollars and the value of the dollar should be 

negatively correlated. An appreciation (depreciation) of the U.S. dollar would tend to 

make oil more (less) expensive in non-dollar currencies and would reduce (increase) 

demand for crude oil thereby possibly lowering (increasing) oil prices in dollars.  

I hypothesize that the correlation between crude oil prices and dollar value 

varies over time. While an increase (decrease) in the dollar’s value implies more (less) 

expensive oil prices in non-dollar currencies which should result in a downward 

(upward) pressure on oil demand and hence lower (increase) oil prices in dollars, oil 

prices are also impacted by international supply-demand shifts not caused by changes 

in the dollar’s value in which case there should be no correlation between oil prices 

and the dollar’s value. Occasionally, there may be forces that simultaneously increase 

or decrease oil prices and the value of the dollar, resulting in a positive correlation 
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between the two. Hence, I test whether the covariance and correlation between the 

value of the dollar and oil prices in dollars vary over time. 

Estimation results from specification (7-8) are presented in the fourth column 

of Table III. In order to provide some intuition on the bivariate model parameters, I 

present the estimates of the univariate GARCH(1,1) specification for exchange index 

and crude oil volatilities in the second and third columns of Table III. Results from 

Table III indicate that the bivariate GARCH estimates of volatility persistence for 

exchange index and crude oil returns are close to, and not significantly different from, 

the univariate GARCH (1,1) estimates.  

The estimate of Ω (1,2), the unconditional mean of the covariance between 

crude oil and exchange indices returns, is negative and significant at the 0.05 level, 

which is consistent with the observation of a negative correlation between crude oil 

prices and the value of the dollar. The estimates of A(1,2) and B(1,2) (the ARCH and 

GARCH terms in the covariance equation) are both positive and significant at the 0.01 

level, implying that the covariance between crude oil prices and the value of the dollar 

tends to cluster over time.  

The positive estimate for A(1,2), the ARCH term, means that shocks to oil 

prices and exchange rates of the same sign affect the conditional covariance positively, 

while shocks of opposite signs affect the forecasted covariance negatively. Given that 

the unconditional mean of the covariance, Ω(1,2), is significantly negative, two shocks 

of the same sign would decrease and two shocks of opposite signs would increase the 

predicted covariance in absolute value terms. A significantly positive estimate of 

A(1,2) also indicates that causes of the correlation between oil prices and the dollar’s 
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value tend to persist. If on one day the change in the dollar price of oil is largely due to 

a change in the dollar’s value, there is a tendency for the next day’s change in oil 

prices to be primarily caused by changes in the dollar’s value as well. On the other 

hand, if on one day the change in the dollar price of oil is caused primarily by factors 

other than the dollar’s value, there is a tendency for those to be the primary causes of 

changes in the dollar price of oil on subsequent days. 

To examine whether the time variability in the covariance of crude oil and 

exchange index returns is solely due to variation in the two variances, I calculate the 

conditional correlation coefficient at time t+1, 12, 1 :tρ +  
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Figures 4 and 5 present the plots of the conditional covariance forecasts and 

the estimated correlation coefficient over time, based on the estimation results of the 

diagonal VECH model as presented in Table III. The figures show that the conditional 

covariance and the correlation coefficient vary considerably over time.  

 is constant over time, the variability in covariance is solely due to 

variation in variances. To test the null hypothesis of a constant correlation coefficient, 

I estimate the Constant Conditional Correlation (CCC) model and test the Diagonal 

VECH model against the CCC model. The likelihood ratio test statistics is 9.8 with 2 

degrees of freedom and significant at the 0.01 level. Therefore, the Constant 

Conditional Correlation hypothesis is rejected, implying that the correlation between 

oil prices and the value of the dollar tends to change over time.  
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6. Summary and Conclusions 

The contribution this study makes is to provide an empirical examination of 

the causes and behavior of price volatility in the crude oil market.  Daily returns data 

from January 1997 through November 2008 are used to estimate a multiplicative 

GARCH type model. The crude oil market is characterized by volatility persistence 

where highly volatile periods are followed by highly volatile periods and stable 

periods are followed by stable ones. I find that a negative crude oil shock has more 

impact on predicted volatility than an equivalent positive shock. A somewhat 

surprising result is that crude oil volatility is low when prices are high and high when 

prices are low. The OPEC meetings cause increased crude oil volatility on days the 

meetings announcements are released. There is a day-of-the-week pattern in the crude 

oil market in that Monday return (including weekend) is more volatile than any normal 

weekday return. The high weekend/Monday volatility is mainly due to the 

accumulation of information over the weekend. Crude oil volatility tends to increase 

on Wednesday since this is the announcement day of the Petroleum Status Report. In 

contrast to the findings for some financial markets, there is no evidence of higher 

Friday volatility in this market. I also document time-varying conditional covariance 

and correlation between crude oil prices and the value of the dollar. 

In this study, I use a multiplicative asymmetric GARCH type model which 

separates volatility into a persistent part and a non-persistent part. This model allows 

me to implement a much cleaner study of the ex-ante determinants on volatility than 

that used in some previous studies.    
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Chapter III. Price Volatility in the Natural Gas Market 

1. Introduction 

This paper examines the causes and behavior of price volatility in the US 

natural gas market from January 1997 through December 2008. Natural gas is one of 

the most essential energy sources in the U.S., accounting for about 25% of the nation’s 

energy consumption. Trading activity in the natural gas market has increased 

significantly in recent years. In October 2006 the New York Mercantile Exchange 

(NYMEX) reported that the daily trading of natural gas futures reached 54,213 

contracts. By December 2007, the number had nearly tripled to 158,525 and 

subsequently increased to a record high of 403,106 contracts on July 24, 200819

The natural gas market has undergone revolutionary changes since the early 

1990s. From a highly regulated market in which government regulations prescribed 

everything from prices to who could buy, sell, and transport natural gas and under 

what conditions, the natural gas market has evolved into a largely deregulated market 

in which prices are driven by supply and demand. Since then, natural gas has been one 

of the most volatile markets. For example, from less than $2.5 per million British 

thermal units (mmBtu) in July 2002, natural gas prices increased to $9.5 per mmBtu in 

February 2003. This large price fluctuation tendency has continued in recent years. In 

2008, natural gas prices rose sharply from $7.8 per mmBtu in early January to $13.5 

per mmBtu in July, which was the highest price level for that time of year. Then 

starting around the end of July, natural gas prices fell almost as sharply and were 

approximately $5.5 per mmBtu toward the end of 2008. According to the U.S. Energy 

.  

                                                      
19Natural Gas Year-In-Review 2007, Energy Information Administration and NYMEX 
Holdings releases.  
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Information Administration (EIA), this decline in natural gas price resulted from a 

combination of a larger-than-expected increase in domestic gas production and a drop 

in oil prices.   

Natural gas prices are more volatile than those in most financial markets. In 

2007, the annualized standard deviation of the daily percentage price change was 

49.94% for natural gas.  By comparison, that number was only 4.08% for the US 

dollar-Euro exchange rate, 16.37% for the S&P 500, 19.10% for the 10-year T-bond 

interest rates, and 31.33% for crude oil20

The high volatility in natural gas prices is likely due to the short-term 

inelasticity of supply and demand. Since natural gas supplies are often constrained by 

storage levels and imports are limited, natural gas suppliers are unable to increase 

production levels in a short period of time. Also, it is difficult for consumers to 

quickly reduce their consumption when a sharp increase in natural gas prices occurs, 

especially during the winter. As natural gas suppliers cannot rapidly adjust their 

production levels to match demand changes, supply and demand imbalances may 

result in sharp price changes. This high variability in natural gas prices makes it 

extremely difficult for consumers to forecast their costs and for producers to forecast 

. Figure 6 depicts prices and historical 

volatilities of the nearby natural gas futures contract from January 1997 through 

December 2008 wherein historical volatilities are measured as the annualized rolling 

30-day standard deviation of returns. As shown in these graphs, the natural gas market 

has undergone notable price fluctuations during the sample period and there is a time-

of-the-year pattern in which volatility tends to increase in winter. 

                                                      
20The data for the S&P 500, US dollar-Euro exchange rate, and the 10-year T-bond interest 
rates were collected from CRSP database and the Federal Reserve website 
(http://www.federalreserve.gov). 
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their profits. The desire to protect market participants against such price fluctuations 

has led to the creation of and active trading in futures, swaps and options where the 

market value of the latter depends on volatility. An understanding of the causes and 

behavior of natural gas volatility is therefore essential to measuring and managing the 

risk faced by market participants.  

Although it is difficult to forecast the direction of future price changes from 

past price behavior, the absolute magnitude of price changes, i.e. volatility, has been 

proven much more predictable in most financial markets. It is generally found that 

highly volatile periods tend to be followed by volatile periods whereas stable periods 

tend to be followed by stable periods. The vast majority of the research on market 

volatility has focused on the volatility of financial markets such as the stock, bond, 

interest rates and foreign exchange futures markets, etc. Despite the fact that natural 

gas prices tend to be more volatile than most financial and commodity prices, research 

into the causes and behavior of volatility in the natural gas market is limited.  

The limited studies on natural gas volatility to date examine several 

determinants of natural gas volatility in isolation. Susmel and Thompson (1997), 

Pindyck (2004) and Murry and Zhu (2004) find that natural gas volatility follows an 

ARCH-GARCH type process, Linn and Zhu (2004) document that the release of the 

Weekly Natural Gas Storage Report announcement causes increased natural gas 

volatility, Murry and Zhu (2004) document that natural gas volatility increases on 

Monday and on days the Storage Report is released, and Mu (2007) examines the 

impact of storage and weather conditions on natural gas volatility. In this study, I 

combine these volatility determinants into a single econometric model and also test 
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and quantify other hypothesized determinants of natural gas volatility such as 

asymmetric volatility, bid week effect and month-of-the-year volatility pattern.  

My most important results and contributions to the literature include the 

following. One, natural gas volatility is asymmetric in that an unexpected increase in 

price increases predicted volatility more than an unexpected decrease in price of 

similar magnitude. To my knowledge, this asymmetry pattern is unique to natural gas. 

Two, natural gas volatility is significantly higher on Monday, implying that the natural 

gas market is impacted by news occurring during the weekend and on Thursday, 

which is attributable to the fact that Thursday is the release day of the Natural Gas 

Weekly Update. Three, surprises in the change in natural gas in storage tend to cause 

increased volatility. Four, there is a month-of-the-year pattern in natural gas volatility 

in that volatility tends to increase in the winter months. Five, volatility tends to be 

high on winter days when the temperature is lower than normal. Six, volatility tends to 

increase during bid week, the last five trading days of a month, and on days 

immediately following bid week. Seven, a model which fails to control for seasonality, 

announcement, weather and bid week effects tends to overestimate the impact of a 

surprise return shock on subsequent volatility.  

I develop and use a variant of the multiplicative GARCH type model outlined 

in Jones, Lamont and Lumsdaine (1998). This model, which separates volatility into a 

persistent part and a transitory part, allows me to implement a much cleaner study of 

the determinants of volatility than that used in several previous studies on other 

markets as well as on the natural gas market. To the best of my knowledge, my paper 



 

42 
 

is the first comprehensive study of the determinants of volatility within a GARCH 

framework for the natural gas market. 

The chapter is organized as follows. In Section 2, I review the most relevant 

literature and develop additional hypotheses. The data is presented in Section 3. I 

analyze the multiplicative GARCH type model to quantify the determinants of natural 

gas volatility in Section 4 and present the results in Section 5. Section 6 presents 

results from the robustness check. Section 7 concludes the paper.  

2. Hypotheses and other research on natural gas volatility  

Several of the natural gas volatility determinants that I consider have been 

examined before individually. Susmel and Thompson (1997), Murry and Zhu (2004), 

and Mu (2007) have estimated ARCH-GARCH type models of natural gas volatility 

and have consistently found evidence of volatility persistence - that volatile periods 

tend to follow volatile periods whereas stable periods tend to follow stable periods.  

Susmel and Thompson (1997) find that a negative shock in the natural gas 

market has more impact on predicted volatility than a positive shock of the same 

magnitude while Murry and Zhu (2004) and Mu (2007) find no evidence of 

asymmetric volatility in this market. Contrary to the findings in Susmel and 

Thompson (1997), Murry and Zhu (2004), and Mu (2007), there are good reasons to 

expect that a positive shock in the natural gas market could have more impact on 

predicted future volatility than an equivalent negative shock. My reasoning for this 

hypothesis is based on the likely shape of the natural gas supply and demand curves. 

At low volume and prices, natural gas supply is highly elastic, but once storage limits 

are reached, supply becomes quite inelastic as natural gas producers, due to 
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infrastructure constraints, are unable to increase their production levels within a short 

period of time (Krichene, 2002; Burns, 2008). The inelasticity of natural gas supplies 

is also caused by the fact that the U.S. gas market, although tightly integrated with the 

Canadian gas market, is relatively isolated from overseas natural gas supplies21

Regarding the day-of-the-week volatility pattern, Murry and Zhu (2004) find 

higher volatility on Monday which is attributable to the accumulation of information 

over the weekend, and on Wednesday which is explained by the fact that the American 

Gas Association (AGA) released its Weekly Natural Gas Storage Report on 

Wednesday throughout most of their sample period from November 1997 to August 

2003. The Storage Report, which “provides an estimate of the change in inventory 

levels for working gas in storage facilities across the United States”

. The 

demand curve for natural gas also contains an elastic portion when prices are low and 

an inelastic portion when prices are high (Krichene, 2002; Burns, 2008). Given the 

hypothesized shape of the natural gas supply and demand curves, the same fluctuation 

in demand when prices are low should cause a smaller change in prices than when 

prices are high. Thus, a positive price shock which moves the natural gas market up 

the supply and demand curves is likely to presage higher future volatility than a 

negative shock moving the market down the curves.  

22

                                                      
21U.S. Natural Gas Markets: Mid-Term Prospects for Natural Gas Supply, EIA, 2001.  

, is widely 

considered to be one of the most important information for the natural gas market 

(Linn and Zhu, 2004). Linn and Zhu (2004) find that the release of the Storage Report 

causes increased volatility in the natural gas market for about 30 minutes following the 

announcement. In this study, I attempt to simultaneously test for the day-of-the-week 

22 Issue Brief 2001-03, Policy Analysis Group, American Gas Association. 
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effect and storage announcement effect on volatility. If an increase in volatility on a 

certain day of the week is caused by the storage announcement, that pattern should 

disappear when I control for the impact of the storage surprise on volatility (Andersen 

and Bollerslev, 1998).  

Although it is generally argued that natural gas prices are weather-sensitive, 

(Fleming, Kirby and Ostdiek, 2006; Chiou-Wei, Linn and Zhu, 2007; Mu, 2007), to 

my knowledge, a possible time-of-the-year natural gas volatility pattern has not been 

explored in the literature. I expect natural gas volatility to display a time-of-the-year 

pattern which is possibly caused by periodic imbalances between supply and demand 

during the winter months. The demand for natural gas often displays a substantial 

fluctuation in winter and occasionally spikes during a cold snap. At the same time, 

however, the supply of natural gas is essentially fixed in winter due to storage capacity 

and limited imports (EIA Publication, 2007). Therefore, possible supply and demand 

imbalances in winter may cause large price swings in the natural gas market. This 

observation motivates my hypothesis of high natural gas volatility in the winter 

months.  

Consistent with the argument that natural gas prices are weather-sensitive, Mu 

(2007) finds that weather surprise (the deviation of temperatures from normal) has a 

significant effect on the conditional volatility of natural gas prices. In this study, I 

hypothesize that the impact of weather on natural gas volatility is still robust after 

controlling for the time-of-the-year volatility pattern.  

Another seasonality pattern that I examine is the behavior of volatility during 

the last five trading days of a month, which is known as “bid week” in the natural gas 
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market. Although the daily spot market is active for natural gas and gas transactions 

are done in terms of volume per day, the standard market practice is to deal for a 

month at a time and the majority of gas trading occurs during the bid week. During 

these five trading days, buyers and sellers arrange for the purchase and sale of physical 

natural gas to be delivered throughout the coming month and the average prices set 

during bid week are commonly the prices used in spot contracts over the coming 

month.23

I anticipate that during bid week, as the bids of marketers for natural gas to be 

delivered for the coming month are revealed and spot contracts are signed, this sort of 

news will contain information which is relevant to the futures market. This is akin to 

an announcement effect as documented in Ederington and Lee (1993, 1995) for the T-

bond, interest rates and foreign exchange markets, in Flannery and Protopapadakis 

(2002) for the stock market, and in Linn and Zhu (2004) for the natural gas market, 

among others. However, “bid week” information is different from scheduled 

announcements in that while the latter arrives in the market at the same time, news 

about prices and volumes being set tends to leak out from many spot contract signings. 

I hypothesize that natural gas volatility will be higher during bid week. As 

documented in Ederington and Lee (1993, 1995) and others, volatility tends to 

increase when lots of new information is coming to the market. In addition, the first 

three trading days of the bid week is the period when the nearby futures contract is 

expiring and traders are having to reverse their positions and therefore, could be 

characterized by high volatility.  

  

                                                      
23Understanding Natural Gas Markets, API, 2006. 
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I hypothesize that volatility will continue to increase for the day following bid 

week. Previous studies on scheduled announcement effect (Ederington and Lee, 1993, 

1995; Jones, Lamont and Lumsdaine, 1998, Flannery and Protopapadakis, 2002, Linn 

and Zhu, 2004, among others) have consistently found evidence that prices tend to 

complete adjusting to new information within the announcement day and 

subsequently, volatility tends to fall back to near normal level the following day. 

However, as mentioned above, information about prices and volumes being set in the 

spot market differs from that in scheduled announcements in that while the latter is 

available to all market participants at the same expected time, part of “bid week” 

news, which leak from contract signings, is not public knowledge until the following 

day. Therefore, volatility could increase on the day following bid week as all “bid 

week” news becomes public.  

As noted above, previous studies on natural gas volatility consider only one or 

two possible determinant types. In other words, they test for volatility persistence 

and/or day-of-the-week, for announcement effect or weather effect but not all four. 

My study extends the research in natural gas volatility in several dimensions. First, I 

simultaneously estimate GARCH, seasonality, announcement and weather effects as 

well as testing for a possible volatility asymmetry in one single econometric model. 

Second, as explained further in Section 4, my model affords a cleaner test of 

seasonality, announcement and weather effects than that in previous studies. Third, I 

test and quantify several unexplored determinants of natural gas volatility such as a 

time-of-the-year and bid week volatility patterns. 
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3. Data and preliminary analysis 

3.1 Natural gas prices  

This study examines natural gas volatility using daily prices of the NYMEX 

nearby futures contracts from January 02, 1997 to December 31, 2008. The daily 

trading data is obtained from the Commodity Research Bureau. Natural gas futures 

contracts, which began trading on the NYMEX on April 3, 1990, trade in units of 

10,000 million British thermal units (mmBTu).  

Futures prices are used in place of spot prices for the following reasons. First, 

the NYMEX natural gas futures price is widely used as a national benchmark price. 

Natural gas futures prices are also the prices reported in newspapers. Second, the 

futures market for natural gas is liquid and centralized while spot markets are localized 

and illiquid. Third, futures prices are the prices normally used in most risk 

management contracts such as swaps and options. 

I use two measures of daily natural gas volatility in this study. The first 

volatility measure is based on a GARCH type model. In this framework, I use daily 

log returns24 defined as rt=ln(Pt/Pt-1) wherein Pt is the closing price of the nearby 

futures contract on day t and Pt-1 is the price of the same contract the previous day. As 

traders often cover their positions on the last trading day of a contract’s life, trading 

volume and open interest decline and price volatility increases substantially on that 

day. To avoid this “thin market” problem, I replace the return of the nearest contract 

on the last trading day of each month with that of the second nearest contract in 

constructing the rt 

                                                      
24The daily natural gas “returns” are used to measure price changes only. These “returns” are 
not investment returns since no money is actually invested.    

series.  
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To check the robustness of the GARCH type estimation results, I utilize a 

second volatility measure which is the extreme value estimator developed by 

Parkinson (1980) and used in numerous studies including Wiggins (1992), Martens 

and Van Dijk (2007) and Cao, Chang and Wang (2008), among others.  In the extreme 

value method, intraday volatility on day t is calculated as:  

( ) ,
)2ln(4

)ln()ln( 2
tt

t
LowHighVariance −

=  

where tHigh  and tLow  denote the highest and lowest prices of the nearby futures 

contract on day t, respectively. As Parkinson (1980) shows, this measure can be used 

as an estimator of the variance of the price if the latter follows a random walk with 

zero drift.25

Table IV provides summary statistics for daily returns and extreme value 

estimator of volatility on natural gas nearby futures contracts. The annualized standard 

deviation of the daily percentage change in nearby natural gas prices over the January 

1997-December 2008 period is 62.19%, indicating that this market is characterized by 

very high volatility. Table IV shows preliminary evidence of volatility persistence in 

that the first-order autocorrelation coefficients for absolute returns and for extreme 

value estimator of volatility are positive and significant at the 0.01 level. For squared 

returns (not reported), the first-order autocorrelation coefficient is also significantly 

positive at the 0.001 level. Clearly, the natural gas market, like many others, is 

characterized by volatility persistence.  

  

                                                      
25Wiggins (1991, 1992) document that the efficiency of the extreme value estimator 
significantly exceeds that of the close-to-close estimator of volatility. 
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3.2 Natural gas storage data 

I collect the actual storage announcement data from various issues of the 

Weekly Natural Gas Storage Report issued by the U.S. Energy Information 

Administration (EIA). The Storage Report was compiled and released by the 

American Gas Association (AGA) prior to April 10, 2002 and by the EIA since then. 

The report contains the actual level of natural gas in storage and change in the level in 

storage in three regions, consuming east, consuming west, and producing region, as of 

each Friday. The report was released on Wednesday (prior to May 06, 2002) or 

Thursday (after May 06, 2002) of the subsequent week. 

Several years after the first storage report in 1994, analysts from the consulting 

industry, production companies and investment banks began providing their weekly 

forecasts of storage changes and the implied storage levels to be released in the 

storage report. To facilitate the public dissemination of these analyst forecasts, 

Bloomberg, a major market information vendor, solicits forecasts from analysts, 

computes a consensus estimate and publishes this information electronically in 

advance of the release of the storage report26

                                                      
26The Bloomberg survey procedure is summarized in Gay, Simkins and Turac (2007) as 
follows. By Tuesday of each week, a Bloomberg employee calls each analyst or receives an 
email containing the analyst’s forecast. Many analysts provide a range for their estimated 
change in storage. In these cases, Bloomberg uses the midpoint of the range. Bloomberg then 
computes a “consensus estimate” based on the arithmetic average of the analyst forecasts. The 
first Bloomberg estimate of each week is typically prepared and released on Tuesday morning 
when at least one half of the analysts have reported. Updates are released if additional 
forecasts are received.  

. The Bloomberg survey of predicted 

changes in storage is generally regarded as the best available amongst practitioners 

and represents the forecasts that are most readily available to market participants 

(Chiou-Wei, Linn and Zhu, 2007 and Gay, Simkins and Turac, 2007). Following 
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Chiou-Wei et al. (2007) and Gay et al. (2007), I assume that the natural gas market 

participants condition their expectation of the weekly storage change to equal the 

Bloomberg consensus analyst forecast. Consequently, I use the survey data available 

on Thursday morning prior to the release of the EIA report as a proxy for the market’s 

expectation of natural gas storage change before the announcement. 

3.3 Weather data 

Weather data are obtained from the National Climatic Data Center (NCDC), a 

division of the National Oceanographic and Atmospheric Administration (NOAA), 

Department of Commerce. Following the industry convention I control for weather 

conditions using two measures. A Cooling Degree Day (CDD) is one for which the 

actual temperature minus 65 degrees F is greater than zero. The calendar day is 

assigned the value of the difference when this is the case and 0 otherwise. A Heating 

Degree Day (HDD) occurs when 65 degrees F minus the actual temperature is greater 

than zero. The calendar day is assigned the degree difference when this condition is 

met and 0 otherwise. Therefore, each day receives both a CDD measure and a HDD 

measure. My dataset contains variables measuring daily actual temperature and the 

data on normal condition which is defined as the previous 30 years’ average 

temperature as of the date of relevance. Weather data are obtained from the weather 

reporting stations in the following main consumption regions: Chicago, New York, 

Atlanta, and Dallas.  
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4. Model Specification and Analysis 

In order to test and quantify the determinants of natural gas volatility as 

discussed in section 2, I estimate a model in which the conditional variance follows a 

multiplicative GARCH type process:  

rt = μ +a1Oilrett +a2CddDift + a3HddDift 
{+}+a4 HddDift 

{- }+a5SRFEt ∑
=

4

1
,

i
tiiDWϑ+ + εt

where  

 

(10) 

 εt
2
tσ ~N(0, ) and 2

t t th sσ = ⋅       (11) 

ht = Var(ζt) = ω+ αζt-1
2+βht-1+ γζt-1

2It-1, where ζt = εt
.5
ts /  (12) 

5

,
i=1

t i ts s=∏        (13) 

s1,t

4

,
i=1

(1+ )i i tDWλ∏ =       (13.a) 

s2,t ( )tSR κ =         (13.b) 

s3,t

11

,
i=1

(1+ )i i tDMθ∏ =                                        (13.c) 

s4,t =  (1+ ψWt

s

)      (13.d) 

5,t = (1+ δ0BWt)(1+ δ1ABWt

The purpose of equation 10 (the mean equation) is to remove predictable 

changes in natural gas returns thereby obtaining the surprise return ε

)    

 (13.e) 

t whose volatility 

is examined in the study. The specification of the mean equation is motivated by 

Chiou-Wei et al. (2007) and Mu (2007) who find that (1) changes in natural gas prices 
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are statistically significantly and positively related to changes in crude oil prices (2) 

weather shock, which is a proxy for natural gas demand, tends to have some impact on 

natural gas prices, and (3) natural gas prices strongly react to the “surprise” 

component in the natural gas storage report.  

In equation 10, rt is the log percentage change in price of the nearby natural 

gas futures contract on day t; Oilrett is the log percentage change in price of the 

nearby crude oil futures contract on day t; CddDift is the difference between the actual 

Cooling Degree Day measure and the 30-year average CDD measure for day t; 

HddDift is the difference between the actual Heating Degree Day measure and the 30-

year normal HDD measure for day t, HddDift 
{+} = HddDift if HddDift > 0 and 0 

otherwise, HddDift 
{-} = HddDift if HddDift <0 and 0 otherwise; SRFEt is the surprise 

in the change in storage which is defined as the actual storage change as reported in 

the EIA storage survey minus the consensus expected storage change as reported by 

Bloomberg prior to the EIA report release; DWi,t

The mean equation is not the focus of the paper. My main interest is in the 

determinants of the variance of the surprise natural gas return, ε

 are zero-one dummies for Monday 

(which includes the weekend), Wednesday, Thursday and Friday with Tuesday being 

the left-out day.  

t. I model this variance 

as a multiplicative function of an asymmetric GARCH function (equation 12), day-of-

the-week pattern (equation 13.a), storage announcement effect (equation 13.b), month-

of-the-year pattern (equation 13.c), temperature impact (equation 13.d), and bid week 

effect (equation 13.e).  
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4.1 Volatility Persistence and Asymmetric Volatility 

Equation 12 is the asymmetric GARCH model due to Glosten et al. (1993) 

often referred to as the GJR or TGARCH model in which It-1= 1 if ζt-1 <0 and 0 

otherwise. If volatility persistence is an attribute of the natural gas market, α and β 

should be significantly positive, implying that predicted volatility depends on both 

unexpected price changes and the previous day’s forecast volatility. Asymmetric 

volatility implies γ ≠ 0 in equation 12; γ < 0 implies that a positive shock increases 

conditional volatility more than an equivalent negative shock. 

4.2 Seasonality patterns, storage announcement, weather, and bid week 

effects  

  

Equation 13, the transitory effects equation, estimates the impact of other 

hypothesized determinants on volatility.  

Equation 13(a) estimates the day-of-the-week pattern in natural gas volatility. 

DWi,t are zero-one dummies for Monday (which includes the weekend), Wednesday, 

Thursday and Friday with Tuesday being the left-out day. λi estimates the average 

percentage difference between volatility on day i and volatility on Tuesday. In other 

words, assuming that s2,t= s3,t= s4,t= s5,t= 1, then the estimated variance on Tuesday is 

ht. On Monday, the estimated variance is ht(1+λM). On Wednesday, the estimated 

variance is ht(1+λW) and so on for other days. If the natural gas market is impacted by 

news occurring over the weekend, Monday return (which is a three-day return 

including the weekend) should be more volatile than any normal weekday return and 

λM >0. Also, if the Natural Gas Storage Report contains price moving information, 

volatility should be higher on days the report is released. I do not include a separate 
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dummy variable for storage report announcement days in equation 13 because, since 

this announcement is released weekly, I cannot separate its impact from other possible 

weekly factors. When testing for day-of-the-week volatility pattern, I anticipate that 

this weekly announcement will be part of the reason for the pattern.  

Equation 13(b) tests the hypothesis that natural gas volatility is sensitive to the 

surprise in the change in natural gas in storage. The level of natural gas in storage and 

the change in natural gas in storage often receive a high amount of attention because 

they are widely considered as a measure of supply and demand balance in the market 

(EIA Publication, 2007; Mu, 2007). For example, a low inventory of working gas than 

the market’s expectation may create a perception of supply tightness, which places 

upward pressure on prices. Chiou-Wei, Linn and Zhu (2007) find an inverse relation 

between the change in storage surprise (actual change minus expected change) and 

futures price change on the days of the EIA storage announcement.  

Following Balduzzi, Elton and Green (2001), and Andersen, Bollerslev, 

Diebold and Vega (2003), I define the standardized change in storage surprise as: 

SR

t
t s

SRFE
SSRFE =  where SRFEt

SRs

 is the surprise in the change in storage = the actual 

storage change (reported in the EIA report) - the consensus expected storage change 

(reported by Bloomberg prior to the EIA report release) and is the sample standard 

deviation of tSRFE . I do not include separate variables for positive surprise and 

negative surprise because Chiou-Wei et al. (2007) find no evidence that natural gas 

prices respond differently to positive surprises as compared to negative surprises. The 

variable SRt is then defined as: SRt = SSRFEt on days the storage report announcement 
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is released and SRt 

 In equation 13(c), DM

= 1 on other days since Chiou-Wei et al. (2007) find that the 

market’s assessment of the level of natural gas in storage (as measured by the 

difference between the consensus Bloomberg forecast and the 5-year average volume) 

is unrelated to the price change on non-announcement days. If larger storage surprises 

are associated with larger futures price changes, κ should be > 0. 

i,t=1 if the futures contract observed on day t expires in 

month i. θi ≠ 0 imply a month-of-the-year volatility pattern. In equation 13(d), Wt= 1 

if the difference between the actual Heating Degree Day measure and the 30-year 

normal HDD measure for day t (HddDift) is < 0 and Wt= 0 otherwise. I do not include 

dummy variables for days when CddDift ≠ 0 or when HddDift > 0 since results from 

the mean equation do not indicate that CddDift and HddDift 
{+} 

Equation 13(e) estimates the behavior of natural gas volatility around bid 

week. BW

have significant impact 

on natural gas prices.  

t is 1 if day t is one of the last five trading days in a month and 0 otherwise. 

I hypothesize above that δ0 >0. I also include ABWt as dummy for the day after the bid 

week. If prices and volumes set during bid week leak from contract signings rather 

than being available to market participants at the same time as for scheduled 

announcements, part of the bid week information is not public knowledge until right 

after bid week. Therefore, volatility should increase when all information becomes 

public and δ1 

4.3 Comparison with Previous Models 

>0.  

My model improves on that used in several previous studies for natural gas and 

other markets which seek to simultaneously estimate both GARCH and other 
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determinants of volatility. The introduction of a transitory volatility equation st into 

the specification enables me to implement a much cleaner study of the determinants of 

volatility than when announcement and/or day-of-the-week dummies are added to the 

variance equation. For instance, Hsieh (1989), Berument and Kiymaz (2001), 

Ederington and Lee (2001) and Lee (2002) use GARCH type models to examine day-

of-the-week effects on volatility in the foreign exchange, stock, and interest rates 

markets and Murry and Zhu (2004) in the natural gas market. In those studies, 

weekday dummies are in the ht equation (equation 12) and the coefficient estimates 

reflect how conditional volatility changes across weekdays. Thus, using their model, 

there is no st

h

 equation (equation 13) and equation 12 becomes: 

t = ω + αεt-1
2 + βht-1 +λMDWM,t +λWDWW,t +λRDWR,t +λFDWF,t

In equation 14, since weekday dummies are in the h

,                                 

(14) 

t equation, the dummy for any day 

of the week impacts volatilities on all days of the week through the ht-1 term on the 

right hand side of the equation. Suppose, for instance, that day t is Monday. 

∂ht/∂DWM,t = λM

h

. Now consider the impact of the Monday dummy on volatility on 

Tuesday (day t+1). Since 

t+1 = ω + αεt
2 +βht+λMDWM,t+1+λWDWW,t+1+λRDWR,t+1+λFDWF,t+1

∂h

,                          

(14) 

t+1/∂DWM,t = (∂ht+1/∂ht)(∂ht/∂DWM,t) = βλM. Likewise, the Monday dummy impact 

on the Wednesday’s volatility is ∂ ht+2/∂DWM,t = β2λM.  Therefore, when weekday 

dummies are in the ht equation, as in equation 14, λM does not measure how much 

higher volatility is on Monday than on the omitted day (Tuesday).  Indeed, depending 
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on the coefficient pattern, day X which has the highest λX

In contrast, a specification which separates the variance of returns into a 

persistent part, equation 12, and a non-persistent part, equation 13, allows me to 

estimate a model in which any weekday dummy impacts that day’s volatility only. For 

example, λ

 coefficient may not be the 

day with the highest volatility.   

M measures how much higher (or lower) in percentage terms the volatility is 

on Monday than on the omitted day (Tuesday) and λW 

To estimate the announcement impacts on volatility, several previous studies, 

for example, Hsieh (1989), Berument and Kiymaz (2001), Ederington and Lee (2001), 

De Goeij and Marquering (2006) for other markets and Mu (2007) for the natural gas 

market, add an announcement dummy to the h

measures how much higher (or 

lower) the volatility is on Wednesday and so on.  

t equation and do not include the st

h

 

equation. Thus, the variance equation becomes:  

t =  ω+ αεt-1
2+βht-1+ δ0DAt,             

In equation 15, an unscheduled shock on day t-1 impacts volatility on day t through 

the term αε

(15) 

t-1
2. However, since an announcement impact is forced to persist on the 

subsequent days (∂ht/∂DAt = δ0, ∂ht+1/∂DAt = (∂ht+1/∂ht)(∂ht/∂DAt) = βδ0, ∂ht+2/∂DAt 

= β2δ0 and so on), the impact of a shock due to scheduled announcement on day t-1 on 

volatility on day t includes not only αεt-1
2 but also βδ0

κσ =∂∂ )/ln( 2
tt SR

. Consequently, models like 

equation 15 impose much higher persistence for shocks due to scheduled 

announcements than for equivalent shocks due to unscheduled announcements. In 

contrast, in my model, the impact of a shock due to storage announcement does not 

persist on the following days and ln( 2
1tσ +∂ )/∂SRt =0 and therefore, 
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the estimated impact of a shock on day t-1 on volatility on subsequent days t is the 

same for scheduled and unscheduled announcements.  

5. Results 

Since the data of analysts’ forecast of natural gas storage is available in 

Bloomberg starting May 03, 2002, I estimate the specification (10-13) without storage 

surprise variables in the mean and variance equations for the sample period January 

1997-December 2008 and estimate the full specification (10-13) for the sub-period 

May 2002-December 2008. The last three columns of Panel A and Panel B in Table V 

present the results for the 1997-2008, 1997-2002 and 2002-2008 periods, respectively.  

5.1 The mean equation 

Consistent with the findings in Chiou-Wei et al. (2007) and in Mu (2007), 

natural gas returns are statistically significantly and positively related to crude oil 

returns. There is no significant evidence that departure from normal weather 

conditions in the summer (CddDif) and on winter days when the temperature is higher 

than normal (HddDif{+}) have significant impact on natural gas prices. However, 

departure from the norm on winter days when the temperature is lower than normal 

(HddDif{-}) tends to have a negative impact on natural gas prices. For the period 

05/2002-12/2008, the estimated coefficient for SRFEt is negative and significantly 

different from zero at the 0.001 level, implying that natural gas prices tend to increase 

on days the EIA releases news of a lower than expected gas in storage and tend to 

decrease on news of a higher than expected gas in storage. This result is consistent 

with the findings in Chiou-Wei et al. (2007) and in Mu (2007). There is no significant 

evidence of a day-of-the-week effect in natural gas prices for the sample period 1997-
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2008 but for the sub-period 05/2002-12/2008, natural gas prices tend to decline on 

Thursday and Friday.  

5.2 Volatility Persistence and Asymmetric Volatility  

As expected, there is evidence of volatility persistence in the natural gas 

market. The estimates of α and β are positive and significant at the 0.001 level, 

implying that predicted volatility depends on both previous shocks and previous 

volatilities. Hence, highly volatile periods in the natural gas market tend to be 

followed by volatile periods in the future and this is consistent with the findings in 

Murry and Zhu (2004) and Mu (2007). However, while Murry and Zhu (2004) and Mu 

(2007) find no evidence of asymmetric volatility in the natural gas market, the 

estimated γ in my model is significantly negative, indicating that volatility increases 

considerably more following a sudden increase in natural gas prices than following an 

equal sudden decrease in prices. As hypothesized earlier, the behavior of natural gas 

volatility could mostly be explained by the likely shape of the supply and demand 

curves. Since the same fluctuation in demand when prices are low should cause a 

smaller change in prices than when prices are high, a positive price shock which 

moves the natural gas market up the supply and demand curves is likely to presage 

higher future volatility than a negative shock moving the market down the curves.   

Figure 7(a) plots different impacts of equal positive and negative shocks on 

predicted volatility according to the estimates from the model (10-13) presented in the 

third column of Panel B in Table V. Suppose that the conditional variance, ht-

1 -1( )tζ=Var is at its steady-state level. According to the estimates in the model, the 

conditional variance for day t falls 8% if there was no price change on day t-1, 
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increases 5.97% if the price fell 15%, and increases 21.03% if the price increased 

15%.  

Figure 8 presents the impact of a two-standard deviation natural gas return 

shock on subsequent predicted volatilities. Suppose the conditional variance, ht-

1 t-1( )ζ=Var is at its steady-state level and there is a shock such that 2
t-1ζ = 4Var t-1( )ζ . 

Figure 8 demonstrates the percentage difference in expected volatility on day t+x and 

on day t-1, t+x

t-1

Var ( ) -1
Var ( )

ζ
ζ

 
 
 

, assuming E( 2
t+xζ ) = Var( t xζ + ) for x > -1 and that negative 

and positive return shocks are equally likely. For example, the conditional volatility is 

about 14% higher the day after the shock and 7% a week later.  

In the second column of Panel B in Table V, I present estimates of a GJR 

model as it would normally be estimated, i.e., without storage announcement, 

seasonality, bid week and weather effects. In other words, I estimate a model 

consisting of equations (10-12) only. A comparison of the estimates of the GJR model 

(in the second column) and those of the full model (in the third column) indicates that 

determinants of volatility other than volatility persistence and asymmetry are 

important when modeling volatility in the natural gas market. The likelihood ratio test 

statistics is 338.174 with 18 degrees of freedom and therefore, the null hypothesis that 

there are no announcement, seasonality, bid week and weather effects is rejected at the 

0.001 level. In addition, the estimates of α and (α+γ) in the GJR model are 

significantly higher than those in the full model. Apparently, failing to control for 

announcement, seasonality, bid week and weather effects leads to overestimation of 

the impact of a surprise return shock on subsequent volatility, and the estimate of the 

resulting percentage overestimation is 78.76%. (Assuming negative and positive 
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shocks are equally likely, the estimated average impact of a day t return shock on 

volatility on day t+1 is α+.5γ. The overestimation is measured as: (Ewo/ Ew)-1 where 

Ewo represents the estimates of α+.5γ in the second column of Table V where I do not 

control for these effects and Ew

Figure 7(b) plots different impacts of equal positive and negative shocks on 

predicted volatility according to the estimates from the GJR and the full models. 

Again, suppose the conditional variance, h

 those in the third column where I do).  

t-1 t-1( )ζ=Var is at its steady-state level. 

According to the estimates in the GJR model, the conditional variance for day t 

increases 20.25% if the price fell 15%, and increases 25.20% if the price increased 

15% while according to the estimates in the full model, the increase in conditional 

variance for day t are 5.97% and 21.03%, respectively.  

To test whether the omission of announcement, seasonality, bid week or 

weather effects is responsible for this overestimation, I estimate the full model (10-13) 

dropping equation 13.b and just one of the equations (13.a, 13.c, 13.d or 13.e). When I 

estimate the model dropping equation 13.c, the estimates of equation 12 are virtually 

unchanged from those in the second column and the overestimation of the impact of a 

surprise return shock on subsequent volatility is roughly 60%. Therefore, failing to 

control for a month-of-the-year pattern in natural gas volatility is the main cause of the 

overestimation.  

5.3 Day-of-the-week and Storage announcement 

The null hypothesis that λMonday=λWednesday=λThursday=λFriday is rejected at the 

0.01 level with the χ2 test statistics of 108.90 and 3 degrees of freedom, implying a 

significant day-of-the-week pattern in natural gas volatility. Since Tuesday is the left-
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out dummy, the coefficients in Panel B of Table V measure the difference between 

average volatility on each weekday and on Tuesday. Contrary to the findings in some 

other markets27

As expected, Monday return (including weekend) tends to be more volatile 

than any normal weekday return. During the 1997-2008 period, the variance of the 

Friday-close-to-Monday-close return is 87.72% higher than that of Tuesday return at 

the 0.001 level. Apparently, the natural gas market is impacted by sorts of news 

occurring during the weekend such as weather news.  

, there is no significant evidence that natural gas volatility increases on 

Friday. This may be due to the fact that important economic news for other markets is 

often released on Friday whereas this is not the case in the natural gas market. Indeed, 

Friday tends to be the lowest volatility day of the week in this market.  

Thursday has the second-highest coefficient estimate during the 1997-2008 

period. Since the Natural Gas Storage Report was released on Wednesdays before 

May 06, 2002 (by the American Gas Association) and on Thursdays (by the EIA) 

since then, I examine the day-of-the-week volatility pattern before and after May 06, 

2002. Results in the fourth column of Panel B in Table V indicate that during the 

01/1997-05/2002 sub-period, Thursday is associated with the second-highest 

coefficient estimate. The variance of Thursday return is 28.48% higher than that of 

Tuesday at the 0.05 level. Apparently, although Wednesday is the release day of the 

Storage Report in this period, there is no significant evidence that natural gas volatility 

is higher on Wednesday than on other days of the week. This is explained by the fact 

                                                      
27For example, Harvey and Huang (1991) reported higher volatility in interest rate and foreign 
exchange futures market on Friday. Ederington and Lee (1993) further supported these results. 
Jones et al. (1998) and Berument and Kiymaz (2001) found similar evidence for the bond and 
stock markets. 
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that prior to March 2, 2000, the AGA Storage Report was announced after the close of 

NYMEX trading on Wednesday and from March 2000 to May 2002 it was released at 

the interval of 2:00-2:15 pm on Wednesday during NYMEX trading hours. Therefore, 

even though the Storage Report was announced on Wednesday prior to March 2000, 

apparently storage news from the report did not arrive in the market until the 

following day. 

Results in the fifth column of Panel B in Table V indicate that during the 

05/2002-12/2008 sub-period, the variance of Thursday return is 67.60% higher than 

that of Tuesday at the 0.01 level. Linn and Zhu (2004) and Murry and Zhu (2004) find 

that the high Thursday volatility is caused by the Natural Gas Storage Report 

announcement which is released on Thursday (except for holidays) since May 2002. 

However, if the Storage Report is the only cause of the increased volatility on 

Thursday, estimates from specification (10-13) should indicate no evidence of higher 

volatility on Thursday as the specification also controls for the impact of storage 

report on volatility (Andersen and Bollerslev, 1998). Therefore, evidence of both 

higher Thursday volatility and significant impact of storage report implies that the 

market is impacted by other news on Thursday other than that from the storage report. 

Since May 2002, the EIA releases the Natural Gas Weekly Update at 2:00 pm in 

addition to the Storage Report (which is released at 10:30 am), both on Thursday. The 

Weekly Update summarizes weather conditions, spot and futures prices and other 

market trends over the preceding week. Apparently, certain news in the Weekly 

Update such as rig counts or transportation update is relevant to the natural gas 

market.  
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As mentioned above, the level of working gas in storage often receives a high 

amount of attention in the natural gas market since it is widely considered as a 

measure of supply and demand balance in the market (Linn and Zhu, 2004; Chiou-Wei 

et al., 2007). Consistent with the findings in Chiou-Wei et al. (2007) regarding the 

impact of storage surprises on natural gas prices, results in the last column of Panel B 

in Table V indicate that storage surprise has a significantly positive impact on natural 

gas volatility. During the winter months (withdrawal season), news about a storage 

level which is lower (higher) than the market’s expectation indicates a low (high) 

natural gas supply which causes upward (downward) pressure on market prices. 

During the refill season, news about a storage level which is lower (higher) than the 

market’s expectation may increase (decrease) uncertainty regarding whether storage 

supplies will be sufficient to meet peak demand needs over the following winter. 

While not surprising given the findings in Linn and Zhu (2004) and in Chiou-Wei et 

al. (2007), results in my estimation show a significant evidence of increased natural 

gas volatility in response to storage surprise when I control for the higher Thursday 

volatility often associated with storage announcement.  

5.4 Time-of-the-year pattern and Weather effect 

Consistent with my earlier hypothesis, natural gas volatility exhibits a strong 

seasonality (Figure 9). The null hypothesis that  θJan= θFeb=θMarch=θApril=θMay= 

θJuly= θAugust=θSept=θOctober=θNovember=θDecember is rejected at the 0.01 level with the χ2 

test statistics of 23.93 and 10 degrees of freedom, implying that natural gas volatility 

significantly differs by month of the year.  
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Volatility tends to be highest from October through February. As heating needs 

dominate the market from December through February (Fleming, Kirby and Ostdiek, 

2006), demand for natural gas may rise sharply during these months and at the same 

time, natural gas supply is essentially fixed due to storage constraint. Consequently, 

the inelasticity of natural gas supply and demand can cause large price swings in order 

to balance supply and demand in cold winter. As November is the first month of the 

heating season28

Surprisingly October tends to have the highest volatility in a year. During 

October, the last month of the injection season, storage capacity owners may be 

competing heavily to inject natural gas for the winter season. This increased 

competition from storage facilities looking to meet injection refill goals is often 

coupled with uncertainty regarding whether or not there will be sufficient supplies to 

meet heating needs in the upcoming heating season (EIA’s Publication, 2007). 

, decisions made during this month tend to impact the volumes in 

storage for the rest of the upcoming heating season. Since natural gas suppliers are 

uncertain about the supply and demand later in the winter whose overall severity is 

unknown this early in the withdrawal season, fluctuations in demands are not 

necessarily met readily with working gas in storage (EIA’s Publication, 2007). 

Consequently, price spikes may occur during this month.  

The more mild spring and summer months exhibit the lowest average levels of 

natural gas volatility. During March and April, the peak winter demand is generally 

complete and thus, there is less uncertainty regarding supply and demand imbalance 

(EIA’s Publication, 2007). Although winter-like temperatures sometimes persist into 

                                                      
28Using data reported in the EIA’s Natural Gas Weekly Storage Report (various issues), I 
determine that natural gas withdrawals normally begin in November and end in March.  
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April, it is during this month that natural gas activities tend to switch from storage 

withdrawals towards storage injection29

Overall, there is a strong month-of-the-year pattern in natural gas volatility. 

During the winter months, both supply and demand are relatively inelastic and 

therefore, natural gas prices tend to swing more in order to balance supply and 

demand. Given that natural gas supplies may not keep pace with the increased demand 

or a prediction of high demand may not materialize because of mild weather during 

winter season, months with higher levels of market tightness and/or market 

uncertainty often exhibit higher volatility. 

.  

The coefficient estimate of κ is positive and significant at the 0.01 level 

implying that natural gas volatility tends to be higher on winter days when the average 

temperature in the main consumption regions falls below the 30-year average and this 

result is robust after controlling for month-of-the-year pattern.  

5.5 Bid week effect 

There is strong evidence that volatility in the natural gas futures market 

increases during bid week. For the 1997-2008 period, the estimated average volatility 

increase during the last five trading days of the month relative to other days is 65.92%, 

which is significant at the 0.01 level. As hypothesized above, this increased volatility 

during bid week is attributable to two reasons. First, as the bids of marketers for 

natural gas to be delivered for the coming month are revealed and spot contracts are 

signed, this sort of news contains information which moves prices in the futures 

market. Second, the first three trading days of the bid week could be a high volatility 

                                                      
29Using data reported in the EIA’s Natural Gas Weekly Storage Report (various issues), I 
determine that natural gas injections normally begin in April. 
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period for the futures market as the nearby futures contract is expiring and traders are 

having to reverse their positions.  

There is also significant evidence that natural gas volatility increases on the 

day following bid week (the first trading day of a month). As mentioned above, bid 

week news differs from scheduled announcement in that while the latter is available to 

all market participants at the same expected time, prices and volumes being set during 

bid week leak from contract signings and therefore, part of this information may not 

be public knowledge until the following day. Therefore, volatility could continue to be 

higher following bid week as this information becomes public. Results from an 

expanded specification with dummy variables for both the first and the second trading 

days of a month (not reported) show no significant evidence that volatility continues to 

increase on the second day. Apparently, all bid week news arrive in the futures market 

and market participants complete price adjustments by the end of the first trading day 

of a month. 

6. Robustness check 

The results documented in sections 5 are obtained from the estimation of a 

GARCH-type specification. To test the validity of these results, I use a different 

measure of volatility, the extreme value estimator developed by Parkinson (1980) and 

used in numerous studies including Wiggins (1992), Martens and Van Dijk (2007) and 

Cao, Chang and Wang (2008), among others. The extreme value estimator of volatility 

on day t is calculated as: ( ) ,
)2ln(4

)ln()ln( 2
tt

t
LowHighVariance −

=  where tHigh and tLow  

denote the highest and the lowest prices on day t, respectively.  

From the hypotheses in Section 2, I develop the following specification: 
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 are zero-one dummies for Monday, Wednesday, Thursday and Friday with 

Tuesday being the left-out day. on days the storage report announcement 

is released and 0 otherwise where SRFEt

SRs

 is the surprise in the change in storage = the 

actual storage change (reported in the EIA report) - the consensus expected storage 

change (reported by Bloomberg prior to the EIA report release) and is the sample 

standard deviation of tSRFE . DMk,t=1 if the futures contract observed on day t 

expires in month k. Wt = 1 if the difference between the actual Heating Degree Day 

measure and the 30-year normal HDD measure for day t (HddDift) is < 0 and Wt= 0 

otherwise. BWt is 1 if day t is one of the last five trading days in a month and 0 

otherwise. ABWt =1 if day t is the first trading day in a month. 
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= , tOilHigh and tOilLow  denote the highest and 

the lowest prices of the nearby crude oil futures contract on day t, respectively.  

Equation (16) is estimated by OLS with Newey and West (1987) correction for 

both heteroskedasticity and autocorrelation. Results are presented in Table VI. 

Consistent with the results in Section 5.2, there is significant evidence of volatility 

persistence when volatility is estimated by the extreme-value method. The coefficients 

of the five lagged Std are positive and significant at the 0.05 level, indicating that high 

volatility days tend to be followed by high volatility days and low volatility days tend 

to be followed by low volatility days. There is evidence that a positive return shock 

leads to higher Std at the 0.05 level but there is no significant evidence that a negative 

shock leads to higher Std, indicating that natural gas volatility is more responsive to 

previous positive shocks than to negative shocks.  

The null hypotheses that '
Mondayλ = '

Wednesdayλ = '
Thursdayλ = '

Fridayλ = 0 and '
Janθ = '

Febθ  

= '
Marchθ = '

Aprilθ    = '
Mayθ = '

Julyθ = '
Augustθ = '

Septθ = '
Octθ = '

Novθ = '
Decθ =0 are both rejected at the 

0.01 level, indicating a day-of-the-week and time-of-the-year patterns in natural gas 

volatility as documented in Section 5. There is no significant evidence that Monday is 

the highest volatility day when volatility is measured by the extreme value method. 

Apparently, the high Monday/weekend volatility as documented in Section 5.3 is 

mainly attributable to the accumulation of information over the weekend. Thursday 

tends to be the most volatile day of the week which is consistent with the fact that 

Thursday is the release day of the storage report after May 2002 and was the day news 

about storage report came into the market before April 2000. Over the 1997-2008 
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sample period, there is significant evidence at the 0.05 level that natural gas volatility, 

as measured by the extreme value method, is higher on winter days with a lower than 

normal temperature and on days during the bid week. However, there is no significant 

evidence that volatility is higher on days immediately following the bid week. 

Consistent with the findings in Section 5, natural gas volatility tends to be high for 

futures contracts expiring in the months from September to March. There is significant 

evidence that volatility in the crude oil market has a positive impact on natural gas 

volatility which is consistent with the findings above that crude oil prices is a 

significant predictor of natural gas prices. 

The last two columns in Table VI present the estimation results for the May 

2002- December 2008 sub-period and these results are similar to those for the entire 

sample period. The coefficient estimate of 'κ is positive and significant at the 0.01 

level, which is consistent with the findings above that surprises in the change in 

natural gas in storage has a positive impact on volatility.  

7. Summary and Conclusions 

The contribution this paper makes is to provide an empirical examination of 

the causes and behavior of price volatility in the natural gas market.  Daily returns data 

from January 1997 through December 2008 are used to estimate a multiplicative 

GARCH type model. This model, which separates volatility into a persistent part and a 

non-persistent part, allows me to implement a much cleaner study of the determinants 

of natural gas volatility than that used in some previous studies.  

The natural gas market is characterized by volatility persistence where highly 

volatile periods are followed by highly volatile periods and stable periods are followed 
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by stable ones. I find that a positive shock in the natural gas market has more impact 

on predicted volatility than an equivalent negative shock. There is a day-of-the-week 

pattern in natural gas volatility. Monday return (including weekend) is more volatile 

than any other weekday return. The high weekend/Monday volatility is mainly due to 

the accumulation of information over the weekend. In contrast to the findings for some 

financial markets, Friday is the lowest volatility day in this market. Volatility tends to 

increase on Thursday which is attributable to the announcement of the Weekly Natural 

Gas Storage Report and Natural Gas Update. The “surprise” news about the level of 

natural gas in storage has a significantly positive impact on natural gas volatility.  

There is a strong time-of-the-year volatility pattern in that volatility tends to be 

highest from October through February, which is likely caused by the inelasticity of 

natural gas supply and demand during winter. Volatility also tends to be high on 

winter days when the temperature is lower than normal. Natural gas volatility tends to 

increase during bid week as news on prices and volumes being set in the spot market 

leaks to the futures market and continues to be higher on the day immediately 

following the bid week when all bid week news becomes public.  

To check the robustness of the above findings, I estimate a different 

specification wherein volatility is measured by the extreme-value method. Results 

from the robustness check indicate that (1) natural gas volatility is significantly 

determined by volatility level on previous days, (2) a positive return shock has a 

significantly positive impact on volatility, (3) there are day-of-the-week and time-of-

the-year patterns in volatility, (4) “surprise” news about the change in natural gas in 

storage has a significantly positive impact on volatility, (5) volatility tends to increase 
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during bid week and (6) crude oil volatility has a significantly positive impact on 

natural gas volatility.  
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Chapter IV. Implied Volatility in the Crude Oil and Natural Gas Markets 

1. Introduction 

This paper explores the structure, characteristics, and determinants of implied 

volatilities calculated from crude oil and natural gas call options traded on the New 

York Mercantile Exchange (NYME) from September 1999 through June 2006. 

According to financial theory, implied volatility, the volatility that equates the 

theoretical price of an option according to an option pricing formula with the observed 

market price, reflects the market’s expectation of future volatility over the life of the 

option and therefore, an understanding of the cause and behavior of implied volatility 

is essential to market participants.  

The markets for crude oil and natural gas derivatives contracts are becoming 

increasingly important due to the impact of energy on the economy and the high 

volatility in oil and gas prices. Crude oil and natural gas are two of the most essential 

energy sources in the U.S., accounting for about 40% and 25% of the nation’s energy 

consumption, respectively. Since OPEC’s 1973 decision to regulate its oil price 

independently, crude oil prices have been subject to dramatic volatility. Natural gas is 

also one of the most volatile markets, particularly since its evolution from a highly 

regulated market to a largely deregulated market in which prices are driven by supply 

and demand. In 2007, the annualized standard deviation of the daily percentage 

change in prices was 31.33% for crude oil and 49.94% for natural gas. By comparison, 

that number was only 4.08% for the US dollar-Euro exchange rate, 16.37% for the 
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S&P 500 and 19.10% for the 10-year T-bond interest rates30

The empirical properties associated with implied volatility calculated from 

option prices have been a subject of intense research activity in recent decades. The 

vast majority of the research on implied volatility has focused on financial options 

markets such as the stock, stock index, interest rate, Eurodollar, T-Bond futures and 

foreign exchange options markets. In contrast to the literature on equity and other 

financial options, research on crude oil and natural gas options markets has been quite 

sparse despite the fact that energy prices tend to be more volatile than most other 

prices and that oil and gas options have become more heavily traded. For instance, in a 

well-known and comprehensive study of the volatility literature, Poon and Granger 

(2003) survey 52 articles examining implied volatilities in all sorts of options markets; 

only 3 of these include crude oil among the volatilities they examine (Day and Lewis, 

1993; Szakmary, Ors and Kim, 2003 and Martens and Zein, 2004). Szakmary et al. 

(2003) is the only study on natural gas implied volatility in that survey. 

. This high variability in 

crude oil and natural gas prices makes it extremely difficult for consumers to forecast 

their costs and for producers to forecast their profits. The desire to protect market 

participants against such price fluctuations has led to the creation of and active trading 

in oil and gas risk management products such as swaps and options.  

My study is motivated by the limited nature of previous research on crude oil 

and natural gas implied volatilities. Day and Lewis (1993), Szakmary, Ors and Kim 

(2003), Martens and Zein (2004), and Doran and Ronn (2006) focus on the forecasting 

                                                      
30The data for the crude oil and natural gas prices are from the Commodity Research Bureau. 
The data for the S&P 500, US dollar-Euro exchange rate, and the 10-year T-bond interest rates 
are from the CRSP database and the Federal Reserve website (http://www.federal 
reserve.gov). 
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performance of oil and gas IVs, i.e., testing (1) whether IV is an unbiased forecast of 

future volatility and (2) whether IV predicts future volatility better than historical 

volatility or GARCH-type forecast. Mahar, Peterson and Horan (2004) examine the 

behavior of crude oil IV surrounding OPEC meetings. None of these papers examine 

other attributes of crude oil and natural gas IVs such as whether IVs vary by strike 

price, by day-of-the-week or by time-of-the-year. This limitation is due to the data sets 

used in previous studies which only include IVs calculated from nearby at-the-money 

options. On the contrary, in this study, I construct a dataset that includes IVs across 

various strike prices for a range of terms to maturity. This comprehensive data set 

allows me to compare the behavior of IVs across different strike prices and terms to 

maturity and also to address other unexplored issues concerning the determinants of 

oil and gas IVs. Consequently, results in this study have implications for option 

traders who need to better understand the behavior of oil and gas IVs for valuation 

purposes.  

My results and contributions to the literature include the following. One, there 

is a term structure in crude oil and natural gas implied volatilities in that IVs tend to 

increase as the options approach expiration and this pattern is consistent across strike 

prices. This term structure pattern is opposite to that observed for the stock index, T-

bond and foreign exchange options markets where IVs tend to decrease as expiration 

approaches. While opposite to the pattern for IV in those financial options markets, the 

oil and gas IV term structure pattern is consistent with the actual volatility pattern for 

different maturity futures contracts. There is no evidence of a mean-reversion in oil 

and gas futures prices which could cause IVs to decline with maturity. Given this term 
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structure pattern, if a financial engineer uses the IV from nearby options, the IV that 

would normally be calculated, to value longer term options, the latter will tend to be 

overvalued.  

Two, crude oil and natural gas IVs tend to differ by strike price. Natural gas 

IVs exhibit a positive skew pattern in that IVs are higher for out-of-the-money calls 

than for at- and in-the-money calls. While the shape of the cross-sectional pattern is 

consistent across terms-to-maturity for natural gas options, it changes with term-to-

maturity for crude oil. For nearby and second-month crude oil options, IVs are highest 

for deep in- and out-of-the-money calls and lowest for moderately in-the-money calls. 

For third- and fourth-month options, IVs are lowest for deep in-the-money calls and 

increase monotonically with strike prices. The positive skew pattern in natural gas 

options and in longer term-to-maturity crude oil options is a rough mirror image of the 

negative skew pattern in post-1987 stock index options. Contrary to the theory that the 

“smile” and “smirk” patterns observed in Black-Scholes IVs (1973) are due to 

erroneous assumptions in the B-S model regarding the returns distribution, I find that 

the “smile” and positive “skew” patterns in crude oil and natural gas IVs are not 

caused by excess kurtosis or skewness in oil and gas return distribution. The hedging 

pressure hypothesis – in particular, hedgers buying out-of-the-money call options to 

protect against a sharp price increase, could partially explain the positive “skew” 

pattern in natural gas IVs. However, there is no evidence that the cross-sectional IV 

pattern in crude oil options is caused by hedging pressures in that market.  

Three, there is a time-of-the-year pattern in oil and gas IVs. I find that natural 

gas IVs are significantly higher on options expiring in the winter months than on those 
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expiring in other months. This seasonality effect is consistent with the high actual 

volatility in winter when demand for natural gas may increase dramatically and supply 

of natural gas is essentially fixed. Consequently, if a financial engineer uses the yearly 

average volatility to value natural gas options, he or she will tend to overestimate the 

values of options expiring in summer and underestimate the values of options expiring 

in winter. To a lesser extent, crude oil IVs are lower on options expiring in the 

summer months than on those expiring in other months.  

Four, crude oil and natural gas IVs exhibit a day-of-the-week pattern. 

Consistent with the findings for oil and gas actual volatilities, (1) IV significantly 

decreases from Friday close to Monday close indicating that weekend/Monday returns 

is more volatile than any weekday returns, and (2) after May 2002, natural gas IV 

tends to decline from Wednesday close to Thursday close, which is likely caused by 

the release of the Weekly Natural Gas Storage Report on Thursday. Contrary to earlier 

findings for actual volatilities, there is no significant evidence that crude oil IV 

declines following the release of the Petroleum Status Report and that natural gas IV 

declines following the release of the Storage Report prior to May 2002. 

Five, crude oil and natural gas IVs respond asymmetrically to positive and 

negative futures return shocks31

                                                      
31The futures “returns” are used to measure price changes throughout this study. These 
“returns” are not investment returns since no money is actually invested.    

. Crude oil IV tends to increase more following an 

unexpected negative return than a positive return of equal magnitude while natural gas 

IV tends to increase more following an unexpected positive return than an equal 

negative return. While it is left unexplained why crude oil IV increases more 

following a negative return shock, the finding that natural gas IV increases more 



 

78 
 

following a positive return shock is attributable to the hypothesized shape of the 

supply and demand curves which are likely to be inelastic at high volumes and prices. 

Given this inelasticity, the same fluctuation in demand when prices are low should 

cause a smaller change in prices than when prices are high and therefore, a positive 

price shock which moves the market up the supply and demand curves is likely to 

presage higher future volatility than a negative shock moving the market down the 

curves.   

 Six, although the unbiasedness of crude oil and natural gas IVs depends on 

term-to-maturity and moneyness of the options, IV is a fairly efficient forecast of 

future volatility in these markets. While the forecasting performance of oil and gas IVs 

from nearby at-the-money options has been the subject of previous research, I expand 

this strand in the literature by examining IV’s unbiasedness and efficiency across 

strike prices for a range of terms to maturity. This enables me to consequently explore 

the differences in the forecasting power of oil and gas IVs by strike price and maturity. 

Regression results indicate that the common practice of using IVs calculated from at-

the-money options to represent the volatility expectations of market participants is 

justifiable for oil and gas nearby options but not for longer term options.  

The chapter is organized as follows. The hypotheses are developed in the next 

Section. The data and sampling procedure are presented in Section 3. The term 

structure and the smile patterns are documented in Section 4. Section 5 presents the 

time-of-the-year and day-of-the-week patterns in implied volatility. Section 6 

documents the asymmetric impact of positive and negative return shocks on implied 
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volatility. The forecasting performance of implied volatility is reported in Section 7. 

Section 8 concludes the paper.  

2. Hypotheses 

In this study, I attempt to answer the following questions: 

First, is there a term structure pattern in crude oil and natural gas implied 

volatilities and, if so, what is the pattern and why? Several studies have examined the 

term structure of implied volatilities in the stock index, T-bond and currency options 

markets. It has been documented that IVs on stock index futures options generally 

decrease as the options get closer to expiration. Park and Sears (1985) find that IVs on 

NYSE and S&P 500 options generally decline over the lives of the options, yielding 

higher volatilities for longer term-to-maturity options. Becker and Tucker (1991) 

document that IVs on S&P 100 options tend to decrease until the last week before 

expiration and increase thereafter. Consistent with these findings, Dumas, Fleming and 

Whaley (1998) report that IVs on S&P 500 options differ by term-to-maturity where 

IVs for the 17-day options are lower than for the 45-day options which are, in turn, 

lower than for the 80-day options. Xu and Taylor (1994) show that the slope of the 

term structure of IVs on foreign exchange options traded on the Philadelphia Stock 

Exchange changed frequently during the 1985-1989 period. Campa and Chang (1995) 

also find that the term structure of IVs on currency options changes the slope over 

time. On the contrary, Backus, Foresi and Wu (2004) find that IVs on at-the-money 

options on major foreign currencies increase, on average, with maturity. Tompkins 

(2003) finds that for options on T-bond futures, longer term options have higher IVs 

than shorter term options.  
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Different hypotheses have been developed to account for the term structure 

pattern in financial options markets. Park and Sears (1985) argue that the longer the 

time to maturity of a given stock index futures contract, the higher the uncertainty and 

hence, volatility, of futures returns which is impounded in option prices. Stein (1989) 

posits that the IV term structure pattern is attributable to a strongly mean-reverting 

process in volatility. Therefore, if IV on a short-term option is higher than the average 

volatility, IV on a longer-term option should be somewhat lower than the average 

volatility and conversely, if IV on a short-term option is lower than the average 

volatility, the longer-term option should have a higher IV. This hypothesis is 

supported by the empirical evidence in the currency options markets as documented in 

Xu and Taylor (1994) and Campa and Chang (1995). However, Backus et al. (2004) 

explain the tendency for average ATM IVs on currency options to rise with maturity 

by the changes in the underlying return distribution by term-to-maturity. They argue 

that as a call option’s maturity approaches infinity, skewness and excess kurtosis 

approach zero and call prices approach the Black-Scholes formula.  

Contrary to the evidence for the stock index, bonds, and foreign exchange 

options markets, there are reasons to expect that average oil and gas IVs increase as 

the options approach expiration. Since IV is generally considered as the forecast of 

actual future volatility, the term structure pattern of IV should be consistent with that 

of the underlying asset’s actual volatilities. Consequently, if actual volatilities of oil 

and gas futures returns increase as the futures contracts approach expiration, there 

should be a similar pattern in IVs. In his seminal article, Samuelson (1965) formulates 

the proposition that the volatility of futures returns increases as the contract 
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approaches expiration. The Samuelson hypothesis (more recently termed the “maturity 

effect”) is predominantly explained by associating futures returns volatility with the 

amount of information available in a market. That is, little information is known 

regarding distant contracts compared to contracts closer to expiration and as maturity 

approaches, the amount of information reflecting the fundamentals of the asset 

increases, causing large changes in the futures prices and consequently intensifying 

volatility. There has been a wide range of research documenting the existence of the 

maturity effect in various commodities markets (see, for example, Castelino and 

Francis, 1982; Milonas, 1986; Galloway and Kolb, 1996). Compared to findings for 

commodity futures, the evidence of the maturity effect in financial futures markets 

seems weaker (see, for example, Grammatikos and Saunders, 1986; Han and Misra, 

1990; Galloway and Kolb, 1996; Han, Kling and Sell, 1999). In the area of energy 

futures, Serletis (1992) finds support for the Samuelson hypothesis in NYMEX energy 

futures for the period 1987 to 1990. Walls (1999) and Mu (2007) also find strong 

evidence of the maturity effect in energy futures.  

An analysis of crude oil and natural gas futures returns indicates that oil and 

gas actual volatilities tend to go up as the futures contracts get closer to expiration. 

The annualized standard deviations of futures daily returns over the 1999-2006 sample 

period are 38.59%, 35.27%, 32.84% and 31.78% for nearby, second-, third-, and 

fourth-month futures contracts, respectively, in the crude oil market. In the natural gas 

market, the numbers are: 63.11%, 57.69%, 53.43%, and 47.45%. Therefore, as IV is 

widely considered the forecast of future volatility, the term structure pattern of IVs 
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should be consistent with that of actual futures volatilities and average IVs on short-

term options should be higher than on long-term options.  

An alternative explanation for the hypothesized declining IVs with maturity is 

the likely mean-reversion in oil and gas prices. The presumption underlying most 

option pricing models, such as Black-Scholes (1973), is that price movements are 

independent so that the annualized volatility should be the same whether return is 

estimated from weekly, monthly, or quarterly data. However, that seems unlikely to be 

the case for oil and gas prices which are found to be mean-reverting. Intuitively, if oil 

or gas price runs up one month, supply tends to go up and demand fall so that price 

tends to decrease the following month. For example, Bessembinder, Coughenour, 

Seguin and Smoller (1995) find that investors anticipate mean reversion in prices of 11 

commodities including crude oil. Indeed, the magnitude of the estimated mean 

reversion is large for crude oil in that 44 percent of a typical oil price shock is 

expected to be reversed over the subsequent eight months. Furthermore, 

Bessembinder, Coughenour, Seguin and Smoller (1996) argue that the maturity effect 

is more likely to be explained by the mean reversion in assets prices than by the 

information clustering towards a futures contract’s expiry date as stated in Samuelson 

(1965). The evidence in Bessembinder et al. (1995) is further supported by 

Litzenberger and Rabinowitz (1995), Schwartz (1997) and Pindyck (2001). 

Consequently, if oil and gas prices are mean-reverting as found in previous studies, 

volatility of futures returns should decline with term to maturity of the futures 

contracts: Var (A+B)= [ ]B)Var(A)Var(2 Var(B)Var(A) ρ++  < Var(A) + Var(B) as 
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ρ <0 where Var(A) and Var(B) are variances over one-month period and Var (A+B) 

is the variance over two-month period. 

Second, is there a “smile” pattern in crude oil and natural gas implied 

volatilities and, if so, what causes IVs to be different across strike prices? As the 

Black-Scholes IVs calculated from different strike options with the same expiration 

date supposedly represent the market’s expectation of volatility over the same period, 

there should be no significant difference in those IVs. However, contrary to this 

hypothesis, previous studies document sizable and persistent cross-sectional 

differences in IV in various markets. IVs calculated from stock and stock index 

options, for example, form a “smile” pattern prior to the October 1987 market crash 

where options that are deep in the money or out of the money have higher IVs than at-

the-money options. After the crash, a negative skew or “smirk” pattern appears in the 

stock and stock index options where IVs decrease monotonically as the exercise price 

increases (see, for example, Canina and Figlewski, 1993; Rubinstein, 1994; Dumas, 

Fleming and Whaley, 1998; Das and Sundaram, 1999; Ederington and Guan, 2005). 

Many studies on the foreign exchange options market, including Rosenberg (1996), 

Malz (1996), Campa, Chang, and Reider (1997), Backus, Foresi and Wu (2004), and 

Carr and Wu (2007) document that the time-series average of IVs on currency options 

display a smile pattern where IVs are lowest for ATM options. There is also a smile 

pattern for bond futures options (Belongia and Gregory, 1984 and Tompkins, 2003) 

and for interest rate options. (Jarrow, Li, and Zhao, 2007 and Deuskar, Gupta and 

Subrahmanyam, 2008).   
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The most popular explanation of the "smile" or “smirk” pattern observed in 

Black-Scholes IVs is that the pattern is due to erroneous assumptions in the B-S model 

regarding the return distribution. The B-S model makes the parsimonious assumption 

that stock returns are normally distributed with known mean and variance. However, it 

has been documented that stock return distributions are kurtotic (before the 1987 stock 

market crash) and skewed (after the crash) relative to a normal distribution. Hull and 

White (1987), Stein and Stein (1991), and Heston (1993) show that the “smile” or 

other cross-sectional patterns in IVs are caused by the kurtosis and skewness in the 

underlying assets’ return distribution. For bond and currency options, Heston (1993) 

documents that while kurtosis in the return distribution affects the pricing of near-the-

money versus far-from-the-money options, skewness affects the pricing of in-the-

money options relative to out-of-the-money options. Similarly, it is argued that the 

negative skewness in S&P 500 index returns causes the B-S model to overprice low-

strike options and underprice high-strike options (see, for example, Corrado and Su, 

1996). For foreign exchange options, Bates (1996) documents that the “smile” pattern 

results from the leptokurtic unconditional distribution of log-differenced exchange 

rates.  

An alternative explanation for the implied volatility “smile” or “smirk” pattern 

is the hedging pressure hypothesis by Ederington and Guan (2002) and Bollen and 

Whaley (2004). According to Bollen and Whaley (2004), it is the net buying pressure 

of the options market that drives the index options prices to be higher. Hence, the IVs 

calculated from options prices become non-constant across exercise prices. 

Specifically, they contend that, in the S&P 500 index options market, institutional 
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investors usually purchase large quantities of out-of-the-money index put options in 

hedging their underlying cash positions. Since the demand is strong in this segment of 

the index options market, to mitigate risk, the market makers would raise the index put 

options prices (particularly the OTM put) higher. As a result, the IVs increase, which 

results in the inverse relation between IV and exercise price. Bollen and Whaley 

(2004) show that the evidence from the S&P 500 index options is consistent with their 

net buying pressure hypothesis. Subsequently, Chan, Chen and Lung (2004), 

Ederington and Guan (2005), Han (2008) and Deuskar, Gupta and Subrahmanyam 

(2008), among others, document evidence to support the hedging pressure hypothesis 

in Bollen and Whaley (2004).  

Although the literature is replete with studies on the implied volatility “smile” 

or “smirk” pattern for various financial options markets, none of the previous studies, 

to the best of my knowledge, have explored the possible pattern for any commodity, 

including crude oil or natural gas, futures options. Again, this is due to the limited 

dataset in previous studies on commodity options which only examine ATM options 

(see, for example, Szakmary, Ors and Kim, 2003). In this study, I attempt to fill this 

gap in our understanding by exploring whether there is a smile pattern in crude oil and 

natural gas implied volatilities. If a pattern is found, I will explore the reasons.  

Third, is there a month-of-the-year pattern in crude oil and natural gas 

implied volatilities and, if so, why? Fleming, Kirby and Ostdiek (2006) posit that 

natural gas prices are among the most sensitive to weather conditions. The U.S. 

typically consumes twice as much natural gas in winter as in summer (due to space 

heating) while the supply of natural gas is essentially fixed in winter because the U.S. 
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natural gas production is relatively constant throughout the year and imports is very 

limited. Therefore, natural gas prices can spike during peak periods in winter in order 

to balance supply and demand. As noted in Doran and Ronn (2008), natural gas 

volatility displays a pronounced seasonality pattern. Consistent with Doran and Ronn 

(2008), in an earlier paper on actual volatility in the natural gas market, I find that the 

average variance of nearby futures returns is 58.45% higher for futures contracts 

expiring in the winter months (from November through February) than in other 

months.  

Consequently, I hypothesize that average natural gas IVs should be higher on 

options expiring in the winter months than in other months. As the market participants 

expect higher natural gas volatility in winter, that expectation should be impounded in 

IV calculated from options expiring in winter. In addition, given large price swings in 

winter, there may be more natural gas users buying call options to hedge against price 

increases leading to higher prices and IVs on call options expiring in winter. The 

findings of higher IVs for options with winter expiry would be meaningful for option 

valuation. If a financial engineer uses the yearly average volatility to value natural gas 

options, he or she will tend to overestimate the values of options expiring in summer 

and underestimate the values of options expiring in winter.  

While there are reasons to expect higher natural gas IV for options expiring in 

the winter months, the answer is less obvious for crude oil IV. According to Fleming, 

Kirby and Ostdiek (2006), crude oil prices are not typically weather sensitive because 

over 90% of U.S. oil consumption is for transportation and industrial uses which are 



 

87 
 

not sensitive to the weather. Therefore, the issue concerning a seasonal pattern in 

crude oil IV is subject to empirical evidence.  

Fourth, is there a day-of-the-week pattern in crude oil and natural gas implied 

volatilities and, if so, why? Many studies have documented an intraweek pattern in 

various options markets. In a study of the S&P 100 index options, Harvey and Whaley 

(1992) report that the IV (calculated based on calendar days) tends to increase on 

Mondays and decrease on Fridays32

Murry and Zhu (2004) and Mu (2007) document that the natural gas actual 

volatility is higher for Friday-close-to-Monday-close returns than for any other 

 and they hypothesize that the weekday pattern is 

due to buying/selling pressure as traders open position on Monday and close them on 

Friday. Fleming, Ostdiek and Whaley (1995) report that although the CBOE Market 

Volatility Index (VIX) calculated using calendar days increases significantly on 

Mondays and decreases throughout the week, this intraweek pattern disappears when 

the VIX is calculated using trading days. Ederington and Lee (1996) also show that in 

the T-Bond and Eurodollar markets, Monday IVs tend to be high when they are 

computed based on calendar days, and this Monday effect disappears with trading-day 

adjusted IVs. In addition, Ederington and Lee (1996) provide evidence that the 

scheduled announcements could explain the IV intraweek pattern in that IVs tend to 

decline on Fridays with scheduled announcements, but not on Fridays without 

announcements. Kim and Kim (2003) document that foreign exchange IVs calculated 

based on trading days tend to be low on Mondays (Friday close to Monday close) and 

high on Wednesdays for all currencies.  

                                                      
32However, it is unclear whether this pattern still holds if trading day is used instead of 
calendar day as the discount factor in calculating the implied volatility using Black-Scholes 
(1973) formula. 
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weekday returns. In my earlier papers, I also document the high volatility of 

weekend/Monday futures returns in both oil and gas markets. In addition, I find that 

actual volatility tends to increase on Wednesday (for crude oil) and on Thursday (for 

natural gas) which is likely caused by the announcements of the Petroleum Status 

Report and the Natural Gas Storage Report. These announcements are reportedly 

among the most important scheduled news influencing the oil and gas markets (see, 

for example, Susmel and Thompson, 1997 and Linn and Zhu, 2004).  

In this paper, I examine whether IV calculated from crude oil and natural gas 

options differs by day of the week. Consistent with the findings in my earlier papers 

on oil and gas actual volatilities, I hypothesize that weekend/Monday actual volatility 

is higher than any other weekday’s volatility and therefore, the IV should decline from 

Friday to Monday. Since Friday’s IV includes the expected weekend/Monday’s 

volatility whereas Monday’s IV does not, Monday’s IV should drop because the 

period over which it is calculated no longer includes the anticipated high 

weekend/Monday volatility. Similarly, if the announcements of the Petroleum Status 

Report and the Natural Gas Storage Report significantly impact oil and gas prices, IV 

should decrease following the release of these announcements. As documented in 

Ederington and Lee (1996), in the T-Bond and Eurodollar markets, IV tends to fall 

following the release of important scheduled announcements. Since the pre-release IV 

impounds the anticipated impact of important releases on volatility, IV will normally 

decline post-release as this uncertainty is resolved.  

Fifth, do positive and negative futures return shocks have an asymmetric 

impact on crude oil and natural gas implied volatilities and, if so, what possibly 
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explains the asymmetry? In the equity markets, as demonstrated by Black (1976), 

Christie (1982), and French et al. (1987), there exists a negative relationship between 

stock returns and changes in volatility. Schwert (1989, 1990) documents the 

asymmetric relationship between stock returns and expected volatility changes in that 

the expected volatility is more sensitive to negative than positive equity returns. Under 

the assumption that implied volatility proxies for future volatility, Fleming et al. 

(1995) show that CBOE Market Volatility Index (VIX), an average of the S&P 100 

option implied volatilities, is inversely related to the contemporaneous S&P 100 index 

returns. They find that both daily and weekly VIX changes are more sensitive to the 

negative than positive stock market moves. Dumas et al. (1998) report the similar 

findings between the implied volatility from the S&P 500 index and the index itself. 

Conditional volatility asymmetry in the equity market is generally attributed to either a 

leverage and/or volatility feedback effect. However, Simon (1997) reports the same IV 

asymmetry in the Treasury bond market, where there is no leverage or volatility 

feedback effect, indicating that conditional volatility asymmetry exists more broadly 

and results from more general factors than financial leverage or volatility feedback. 

Contrary to the findings in the equity and bond markets, Kim and Kim (2003) find no 

evidence of asymmetric IV in the foreign exchange markets.   

Previous studies have explored whether there exists a conditional volatility 

asymmetry in the crude oil and natural gas markets (Susmel and Thompson, 1997; 

Murry and Zhu, 2004; and Mu, 2007) and find no evidence of such asymmetry in 

these markets. To my knowledge, the impact of positive and negative return shocks on 

oil and gas IVs has not been explored in the literature. Contrary to the findings in 
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earlier studies, I hypothesize that positive and negative returns in the energy market 

have different impacts on expected future volatility. My reasoning for this hypothesis 

is based on the likely shape of the supply and demand curves in this market. At low 

volume and prices, the supply is highly elastic, but once storage limits are reached, 

supply becomes quite inelastic as producers, due to infrastructure constraints, are 

unable to increase their production levels within a short period of time. The demand 

curve may also have an elastic portion when prices are low and an inelastic portion 

when prices are high. Given the hypothesized shape of the energy supply and demand 

curves, the same fluctuation in demand when prices are low should cause a smaller 

change in prices than when prices are high. Thus, an unexpected price increase which 

moves the market up the supply and demand curves is likely to presage higher future 

volatility than a negative shock moving the market down the curves.  

In my earlier chapters which use an expanded GARCH type model to examine 

oil and gas actual volatilities, I find that positive and negative return shocks tend to 

have asymmetric impacts on forecast volatility in these markets. There is evidence that 

in the crude oil market, predicted volatility increases more following a negative return 

shock than an equal positive return shock while in the natural gas market, predicted 

volatility increases more following a positive return shock than an equal negative 

return shock. Therefore, as IV supposedly represents the market participants’ forecast 

of future volatility, unexpected positive and negative returns should have asymmetric 

impacts on oil and gas IVs.   

Sixth, how well do crude oil and natural gas implied volatilities predict future 

volatility across different strike prices and terms to maturity? Furthermore, I examine 
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whether IV calculated from a moneyness and maturity group is an unbiased and/or 

efficient forecast of actual volatility.  

The volatility implied in an option’s price is widely regarded as the market’s 

forecast of future volatility over the remaining life of the option. If option markets are 

efficient, IV should be an efficient forecast of future volatility, i.e., IV should subsume 

all other information in explaining future volatility. The literature is replete with 

studies on whether IV predicts future volatility and whether it does so efficiently in 

various markets, including the stock and stock index options market33, foreign 

exchange options market34, futures options markets35, Eurodollar options market36

For the energy markets, Day and Lewis (1993) and Martens and Zein (2004) 

find that crude oil IV outperforms historical volatility in forecasting future volatility 

and Szakmary et al. (2003) document that IV calculated from crude oil and natural gas 

options is biased but still efficient forecast of future volatility. However, the results in 

Day and Lewis (1993), Szakmary et al. (2003) and Martens and Zein (2004) are 

limited to IVs calculated from nearby at-the-money options. In this study, I use a 

comprehensive data set to (1) examine the forecasting power of IV across strike prices 

and terms to maturity and (2) explore whether IV from any group is the best forecast 

of future volatility. This study is motivated by the findings in Ederington and Guan 

(2005) who, contrary to the conventional notion of at-the-money IVs being the most 

informative, find significant evidence that for stock index options, IVs calculated from 

, 

etc.  

                                                      
33See, for example, Day and Lewis (1993), Lamoureux and Lastrapes (1993). Canina and 
Figlewski (1993), Christensen and Prabhala (1998), etc.  
34Jorion (1995) 
35See, Day and Lewis (1993), Martens and Zein (2004),  Szakmary, Ors and Kim (2003) 
36Amin and Ng (1997) 
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moderately high strike options are both unbiased and efficient predictors of future 

volatility whereas those from at-the-money options are biased and less efficient.  

3. Data and Sampling procedure 

Actual and implied volatilities are calculated from daily closing prices of crude 

oil and natural gas futures and call options on futures traded on the New York 

Mercantile Exchange from September 01, 1999 through June 30, 2006. An advantage 

of using options on futures is that I can avoid the nonsynchronous data problem. Since 

futures and futures’ options are both traded on the NYME, both closing prices are 

observed at the same time37

Two exclusionary criteria are applied to the data. First, I eliminate options with 

less than one week or more than 4 months to expiration. The shorter-term options have 

relatively small time premiums, so a one-tick change (perhaps due to bid-ask bounce) 

leads to a jump in IVs calculated from very short term options imparting noise in the 

IVs. Second, I exclude options with {C - [F-PV(X)]} ≤ 10 cents where C is the call 

price, F is the underlying futures price and PV(X) is the present value of the strike 

price. If, for an option, {C - [F-PV(X)]} ≤ 10 cents, trading in that option is likely light 

and its IV is sensitive to a minimal change in its price, especially for short time-to-

expiration options. Since the price changes in 1-cent increments, if {C - [F-PV(X)]} ≤ 

10 cents, the price and IV either change by more than 10% or not at all whereas they 

should be continuous. Also, when {C - [F-PV(X)]} ≤ 10 cents, if the equilibrium price 

. The trading volumes of crude oil and natural gas options 

are extracted from the Dow Jones Factiva database. 

                                                      
37Hentschel (2003) documents that for stock index options, a large error typically comes from 
using closing prices for the options and index that are measured 15 minutes apart.  
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and IV are unchanged but the transaction price changes by 1 cent due to bid-ask 

bounce, the IV will appear to change by more than 10%.  

This exclusion process left a total of 74,604 observations for crude oil call 

options and 79,162 observations for natural gas call options. For each market, the 

sample is broken into four maturity groups corresponding to options’ term-to-

maturity: near-, second-, third- and fourth- month. Each maturity group is then divided 

into “moneyness” bins corresponding to the amount the options are in or out of the 

money. The extent to which the options are in or out of the money is represented by 

the “moneyness” which is defined as X/F-1, where X is the call option’s strike price 

and F is the underlying futures price on any given day.  

I denote the “moneyness” bin as GIk or GOk, where “I” or “O” indicates 

whether the option is in or out of the money and k reports the moneyness where 1 is 

the closest to the money and 15 is the furthest in- or out-of-the-money. GOk represents 

out-of-the-money options whose strike prices are in the interval, 4( 1)1
100
kF − ⋅ + 

 
, 

41
100

kF  ⋅ + 
 

 and closest to 4( 1)1
100
kF − ⋅ + 

 
 where F is the underlying futures price 

that day. Thus GO1 represents the options whose strike prices are just above the 

current underlying futures prices but not more than 4% higher than F. GO5 represents 

the options whose strikes are at least 16% and not more than 20% above F.  Similarly, 

GIk indicates in-the-money options whose strikes are in the interval 4( 1)1
100
kF − ⋅ − 

 
, 

4( 1)1
100
kF − ⋅ − 

 
 and closest to 4( 1)1 .

100
kF − ⋅ − 

 
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I do not necessarily have a price observation in each “moneyness” group each 

day, because (1) trading is light in far in- and out-of-the-money options and (2) 

exclusionary process has eliminated options whose implied volatilities are very 

sensitive to price changes. 
 

Using Black’s (1976) model for options on futures, day t closing prices for 

both the futures and futures’ call options, and 3-month T-bill rates, I solve for the 

implied standard deviation, CtjiISD ,,,  on each option (i,j) observed on day t, where i 

denotes the maturity group and j denotes the “moneyness” bin in each maturity group, 

and C is the number of calendar days to expiration.38

As pointed out by Ederington and Lee (1996), if Friday’s ISD is calculated 

using C calendar days, Monday’s ISD is calculated using C-3 calendar days. This 

assumes that the variance of returns from Friday’s close to Monday’s close is three 

times the normal weekday close-to-close variance. The evidence in financial markets 

such as stock, stock index, T-Bond, Eurodollar does not support this assumption (see, 

for example, French and Roll, 1986; Fleming et al., 1995, Ederington and Lee, 1996). 

In my previous studies on oil and gas actual volatilities, I find that the three-day 

weekend return variances are 18.32% and 46.56% higher than the average weekday 

variance for crude oil and natural gas, respectively, which is still not as large as the 

calendar day assumption implies. 

  

                                                      
38While Black’s (1976) model is for European options, crude oil and natural gas futures 
options are American. However, like the S&P 500 futures options, early exercise is rare for 
crude oil and natural gas options. Also the bias in implied volatility due to the use of a 
European option model for American options is small (Jorion, 1995).  
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Consequently, I adjust CtjiISD ,,,  to a trading day basis. In particular, I follow 

Ederington and Lee (1996) and calculate TtjiISD ,,, = mcCtji TTISD /,,, where 

TtjiISD ,,, and CtjiISD ,,,  are the trading-day and calendar-day ISDs, cT and mT are 

calendar days and trading days to expiration. As noted in Fleming et al. (1995), this 

trading-day adjustment of ISD is more appropriate than simply using the number of 

trading days in valuing the option. The time-to-expiration parameter affects an 

option’s value not only through total volatility, but also through the expected rate of 

appreciation in the underlying asset’s value and through the length of time over which 

the option’s expected payoff is discounted to the present. Both of these latter factors 

are more appropriately measured using calendar days. I use TtjiISD ,,, throughout this 

study and omit the subscript T for simplicity.  

Table VII reports the summary statistics of crude oil and natural gas ISDs for 

the entire sample and for each year from 1999 through 2006. 

I measure the actual realized volatility over the life of the option observed on 

day t, , ,i j tσ , as the annualized standard deviation of returns over the period from day t 

through the expiration date t τ+ for option i,j. 
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where 1ln( / )s s sR F F −= , sF is the closing price of the underlying futures contract on day 

s, 1sF − is the closing price of the same futures contract on day s-1, and ,i jt τ+ is the 

expiration date of option i,j.  
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4. The implied volatility surface 

4.1. The implied volatility term structure 

I hypothesized above that average oil and gas implied volatilities increase as 

the options approach expiration either due to the likely mean reversion in oil and gas 

prices or because the actual oil and gas volatility is greater for shorter than for longer 

term futures. Results in Table VIII are consistent with this term structure pattern 

hypothesis. As indicated in the second and the third columns of Panel A in Table VIII, 

all-strike average IVs (across all options with .2 ( / 1) .2X F− ≤ − ≤  where X is the 

option’s strike price and F is the underlying futures price39

As presented in Panel B of Table VIII and Figure 10, the declining IV term 

structure pattern is consistent across all moneyness groups (the only exception is the 

natural gas GI6 group). This term structure pattern is opposite to that in the stock 

index options as documented in Park and Sears (1985), Becker and Tucker (1991) and 

Dumas, Fleming and Whaley (1998) and in the foreign exchange and bond futures 

options as documented in Xu and Taylor (1994), Campa and Chang (1995), Tompkins 

) and average at-the-money 

IVs on nearby options tend to be higher than those on second-month options which are 

higher than those on third-month options, etc. Apparently oil and gas IVs tend to 

increase as the options approach expiration, yielding lower IVs from options at longer 

term to maturity. This findings would be meaningful for option valuation. Since the 

IVs that are normally reported are IVs from nearby options, if a financial engineer 

uses these nearby IVs to value options, he or she will tend to overestimate the value of 

longer-term options.  

                                                      
39Deep in- and out-of-the-money options are not actively traded in the market so even a small 
change in call price may result in a big variation in the option’s IV. 
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(2003), and Backus, Foresi and Wu (2004). In each moneyness group, the difference 

in average IV from nearby, second-, third-, and fourth-month options is significant at 

the .01 level. As can be seen in Figure 10, while the slope of the IV term structure 

pattern is consistent across strike prices for natural gas, it tends to be steepest for in- 

and out-of-the-money call options than for near-the-money options for crude oil.  

IVs across different terms to maturity do not represent the market’s expectation 

of future volatility over the same period of time. For example, IV from nearby options 

represents the market’s forecast of future volatility over an average 15-day period 

whereas IV from second-month options represents the forecast of future volatility over 

an average 45-day period. To compare IVs on a more consistent basis, I calculate 

forward IVs on options expiring in two, three and four months. On a given day, if the 

ISD from an option expiring in t1 days is x, and that from an option in the same 

“moneyness” group maturing in t2 days is y (t2 > t1), the forward implied standard 

deviation over the period from day t1+1 through day t2  

1 2 1

2 2

t t ty x
t t

   −
−   

   

is calculated as 

. In the “Forward ISD” column of Panel A in Table VIII, the 

second-month forward ISD, which is the average of forward ISDs calculated from 

ISDs on nearby and second-month options with [ .2 ( / 1) .2X F− ≤ − ≤ ], represents the 

market’s expectation of future volatility over the period from the nearby option’s 

expiry to the second-month option’s expiry. Likewise, the third-month forward ISD, 

which is the average of forward ISDs calculated from ISDs on second-month and 

third-month options with [ .2 ( / 1) .2X F− ≤ − ≤ ], represents the market’s expectation 

of future volatility over the period from the second-month option’s expiry to the third-

month option’s expiry.  
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As indicated in the “Forward ISD” column of Panel A in Table VIII, the 

average forward volatility from oil and gas options consistently decreases with time to 

maturity, and the declining slope in the forward ISD pattern is steeper than in the ISD 

pattern. Consider the natural gas forward ISDs. According to these forward IVs, the 

market expects that average natural gas volatility is 57.2% for the first month, 51.5% 

for the second month, 46.25% for the third month and 41.8% for the fourth month 

where the first month ends on the nearby option’s expiry, the second month is from 

the nearby option’s expiry to the second month option’s expiry and so on. 

As hypothesized above, the declining pattern in IV term structure may be 

attributable to two possible reasons. First, if oil and gas prices are mean-reverting as 

documented in Bessembinder et al. (1995), Litzenberger and Rabinowitz (1995), 

Schwartz (1997) and Pindyck (2001), returns in successive periods should be 

negatively correlated and therefore, volatility over a 2-month period will be less than 

the sum of volatilities over the first and the second months; Var(A+B) = Var(A) + 

Var(B) + 2ρ B)Var(A)Var( < Var(A) + Var(B) as ρ <0. However, in the oil and gas 

futures markets, as shown in Panel C of Table VIII, the relation between monthly 

returns over different periods of time is more complicated where monthly returns tend 

to be positively correlated at the lag of one but negatively at some other lags, although 

the coefficient estimates are not significant.  

Panel D of Table VIII presents the volatility of returns on nearby futures 

contracts when returns are measured over different periods of time. The “1-month 

returns” row presents the annualized standard deviations of returns on nearby futures 

contracts over the 1-month period (from the day the contract becomes the nearby 
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contract to the day the contract expires). The “2-month returns” row presents the 

annualized standard deviations of returns on the same futures contracts over the 2-

month period (from the day the contract becomes the second-month contract to the day 

the contract becomes the nearby contract) and so on for other rows. As shown in this 

Panel, volatility of the nearby futures returns generally increases with length of the 

period over which the returns are measured, implying that Var(A+B) = Var(A) + 

Var(B) + 2ρ B)Var(A)Var( > Var(A) + Var(B) and therefore, there is no evidence 

that ρ <0 in these markets.  

The results in Panels C and D of Table VIII are somewhat consistent with 

Geman (2007) who shows statistical evidence that there is a mean-reversion in crude 

oil and natural gas prices before 1999 but since 2000, prices in both markets follow a 

random walk (arithmetic Brownian motion) model. Consequently, with no significant 

evidence of a mean-reversion in oil and gas prices as indicated in Panels C and D of 

Table VIII and in Geman (2007), it is unlikely that the declining IV term structure 

pattern is caused by a mean-reversion in oil and gas prices. 

Since oil and gas options are options on futures and not on cash prices, there 

would seem to be another possible explanation for the declining IV term structure 

pattern. As IV is widely considered as the forecast of future actual volatility, the term 

structure pattern of IVs from futures options should be consistent with that of actual 

futures volatilities. Therefore, if volatility of oil and gas futures returns goes up as the 

futures contracts get closer to expiration, that tendency could explain the IV term 

structure pattern. As reported in the “Different futures contracts volatility” column in 

Panel A of Table VIII, the volatility of oil and gas futures returns tends to increase as 
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the contract approaches expiration. Volatility of nearby futures returns tends to be 

higher than that of the second-month futures returns which is higher than that of the 

third-month futures returns and so on. As the IV on an x-month futures option should 

be consistent with the actual volatility of the x-month futures contract and there is 

evidence of an increase in actual volatility when the futures contracts get closer to 

expiration, this would explain the term structure pattern in oil and gas IVs.  

This term structure pattern in the oil and gas futures markets is consistent with 

the “maturity effect” hypothesis in Samuelson (1965) which is supported by the 

findings in Serletis (1992) and Walls (1999). Samuelson (1965) argues that as the 

futures contract approaches expiration, the amount of information reflecting the 

fundamentals of the asset increases, causing large changes in futures prices and 

consequently increasing volatility. In addition, certain news in futures markets is likely 

to have more impact on near-term contracts than on longer-term ones, causing larger 

price changes for the former. For example, in the previous paper on natural gas futures 

volatility, I find that sorts of news occurring over the weekend such as weather news 

tends to have more impact on nearby contracts than on longer-term ones in this 

market.  

Backus et al. (2004) argue that the tendency for average at-the-money IVs 

from currency options to rise with maturity is attributable to the changes in the 

underlying return distribution by term-to-maturity. Specifically, they argue that as the 

maturity of an option approaches infinity, the skewness and excess kurtosis of the 

underlying return distribution approach zero and the option’s price approaches the 

value given by the Black-Scholes formula. However, this hypothesis does not hold for 



 

101 
 

oil and gas futures return distribution. As indicated in Panel B of Table IX, there is no 

evidence that the skewness and kurtosis of oil and gas return distributions consistently 

decline by term to maturity.  

As mentioned in Section 2, many studies find that IVs from stock index, bonds 

and foreign exchange options generally decrease as the options get closer to 

expiration, which is opposite to the evidence regarding the term structure pattern in oil 

and gas IVs. This difference is likely explained by two possible reasons. First, oil and 

gas options are options on futures and futures price volatility may differ from spot 

price volatility. Second, as stated in Grammatikos and Saunders (1986), Han and 

Misra (1990), Galloway and Kolb (1996), and Han, Kling and Sell (1999), the 

evidence of a maturity effect is weaker for financial futures than for commodity 

futures.  

4.2. The implied volatility smile 

Since an implied volatility supposedly represents the market’s expectation of 

likely volatility over the life of an option, the calculated IVs should be the same for all 

options expiring on the same date and observed at the same time if the option pricing 

model is correct. In many markets, however, IVs calculated from options with the 

same expiration date according to Black-Scholes (1973) model tend to differ across 

exercise prices, often displaying a persistent “smile” or “skew” pattern on a graph. 

These “smile” or “skew” patterns are documented in, among others, Canina and 

Figlewski (1993), Rubinstein (1994), Dumas, Fleming and Whaley (1998), Das and 

Sundaram (1999) and Ederington and Guan (2005) for stock index options markets, in 

Rosenberg (1996), Malz (1996), Campa, Chang, and Reider (1997), Backus, Foresi 
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and Wu (2004), and Carr and Wu (2007) for currency options market, in Belongia and 

Gregory (1984) and Tompkins (2003) for options on bond futures, and in Jarrow, Li, 

and Zhao (2007) and Deuskar, Gupta and Subrahmanyam (2008) for interest rate 

options market. To my knowledge, all cross-sectional patterns documented in the 

literature to date are either U-shaped or downward-sloping.  

The oil and gas IV cross-sectional patterns are reported in Table IX and Figure 

11. For each option j in maturity group i on day t, I calculate both the implied standard 

deviation ISDi,j,t

( ), , ,/ 1i j t i tX F −

, and the relative percentage “moneyness” of option j measured as 

where , ,i j tX  is option j’s strike price and ,i tF is the underlying futures 

price on day t. The ISDs are then grouped into different bins according to the option’s 

“moneyness”. Each bin is denoted GIk or GOk, where “I” or “O” indicates whether 

the option is in or out of the money and k reports the option’s “moneyness” where 1 is 

the closest to the money and the higher k is, the further the option is in or out of the 

money. Thus GO1 represents call options whose strike prices are just above the 

current underlying futures prices but no more than 4% higher than F. GO2 represents 

call options whose strikes are at least 4% and not more than 8% above F. Similarly, 

GI1 contains options whose lowest strike is 4% lower than F and highest strike is F. 

To obtain a complete shape of the smile, I include options in all “moneyness” bins 

across terms to maturity until a bin’s trading becomes too light, i.e., a “moneyness” 

bin is not included if the number of observations in that bin falls below 50.  

Time series means of ISDs across all “moneyness” bins are reported in Panel A 

of Table IX. Since the number of observations in each bin varies, the mean ISDs for 

different bins could differ because they are calculated over different samples. To 
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correct for this, I follow Ederington and Guan (2005) and calculate the mean ISD ratio 

for each “moneyness” bin. For each day t, I calculate the average ISD, ISDa,i, of the 

two nearest-the-money bins GO1 and GI1 in the maturity group i. For each moneyness 

bin observed on day t, I then calculate the ratio: Ri,j,t = ISDi,j,t / ISDa,i,t

As shown in Figure 11, the cross-sectional pattern in natural gas options is 

consistent across all four maturity groups in that IVs are lowest when strikes are low 

and increase monotonically with strikes. To my knowledge, this upward-sloping 

pattern is unique to natural gas options since, as mentioned above, all cross-sectional 

patterns documented in the literature to date are either U-shaped or downward-sloping. 

For example, this positive “skew” pattern is opposite to the “sneer”, or “smirk” pattern 

in the stock and stock index options markets where IVs monotonically decrease with 

strikes.  

. Time series 

means of this ratio are reported in the “Mean ISD Ratio” columns of Panel A in Table 

IX and graphed against each maturity in Figure 11. 

 It is worth noting that the curvature of the “skew” pattern in natural gas IVs 

tends to be consistent across terms to maturity. For most financial options markets, the 

degree of curvature of the IV “smile” or “skew” pattern varies by options’ maturity. 

As noted in Das and Sundaram (1999), it appears indisputable that the IV smile in 

most markets is deepest at short maturities and flattens out monotonically as maturity 

increases. In the post-1987 stock index options market, the IVs decrease 

monotonically as the exercise price rises, with the rate of decrease increasing for 

options with shorter time to expiration (see, for example, Dumas et al., 1998 and 

Doran, Peterson and Tarrant, 2007). Similarly, for foreign exchange and bond futures 



 

104 
 

options markets, Bates (1996), Tompkins (2003) and Backus et al. (2004), among 

others, document that the degree of curvature in volatility smile is more extreme when 

the options are closest to expiration. 

While the cross-sectional pattern is consistent across terms to maturity for 

natural gas, it varies by term to maturity for crude oil. For crude oil nearby group, IVs 

are lowest when options are near the money and increase as call options become 

increasingly in or out of the money. For the second-month group, IVs are lowest for 

moderately low strike (ITM calls) options (GI1 to GI5) and increase for out-of-the-

money (OTM) and deep in-the-money (ITM) call options. The IVs in the third- and 

fourth-month groups exhibit a positive skew pattern where IVs are lowest for deep 

ITM calls and increase as the option strikes increase. The only other options market 

that displays a change in the shape of the IV smile pattern, to my knowledge, is the 

interest rates options market. Deuskar, Gupta and Subrahmanyam (2008) show that 

long-term options in this market display more of a ‘smirk’’ than a smile as in short-

term ones.   

The most popular explanation of the "smile" or “smirk” pattern observed in 

Black-Scholes IVs is that the pattern is due to the B-S model’s assumption that returns 

are normally distributed with known mean and variance. Hull and White (1987), Stein 

and Stein (1991), and Heston (1993) show that the smile or “smirk” patterns in IVs are 

often attributed to the kurtosis and skewness in the underlying assets return 

distribution. While kurtosis affects the pricing of near-the-money versus far-from-the-

money options, skewness affects the pricing of in-the-money relative to out-of-the-

money options. For example, there is evidence that the negative skewness in the S&P 
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500 index returns causes the B-S model to overprice low-strike options and underprice 

high-strike options (Corrado and Su, 1996). Similarly, the “smile” pattern in foreign 

exchange options is attributable to the leptokurtic unconditional distribution of log-

differenced exchange rates (Bates, 1996 and Backus et al., 2004). Moreover, Bates 

(1996) and Backus et al. (2004) document that the excess kurtosis of log-differenced 

exchange rates increases rapidly as the option approaches expiration which results in a 

less sharply curved smile in long term options.  

If the “smile” and “skew” patterns in oil and gas IVs are mainly caused by the 

excess kurtosis and skewness in the underlying return distributions, I expect to find the 

following. First, since natural gas options display a positive skew pattern in all 

expiries, natural gas futures returns should be positively skewed across terms to 

maturity. Second, as the slope of the cross-sectional pattern in crude oil IVs differs by 

term to maturity, the skewness in oil futures returns distribution should differ across 

terms to maturity.  

Panel B in Table IX reports descriptive statistics for crude oil and natural gas 

daily returns from September 01, 1999 to June 30, 2006. The Kolmogorov-Smirnov 

D-statistics all exceed 0.026 and therefore, the null hypothesis of normality is rejected 

at the 0.01 level for oil and gas returns across all maturities. Oil and gas daily return 

series show leptokurtic behavior in that the level of kurtosis differs from the level of 

normal kurtosis by approximately five times the standard error (under the assumption 

of asymptotic normality) across all maturities. Sample statistics for skewness (two-

tailed) also indicate the presence of significant skewness at the 5 percent level for oil 

and gas returns at all maturities.  
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While the crude oil IV pattern changes from a “smile” pattern for nearby and 

second-month series to a positive “skew” pattern for third- and fourth-month series, 

the existence of significant excess kurtosis and negative skewness is consistent across 

maturities for crude oil returns. Moreover, the significant negative skewness in longer-

term crude oil futures returns would imply a negative skew pattern in oil IVs 

(similarly to the argument for the “sneer” pattern in the stock index options market) 

while, in fact, the opposite pattern is observed. For natural gas options, while the 

positive “skew” pattern and the degree of curvature in gas IVs are consistent across 

maturities, the underlying return statistics show a significant positive skewness for 

nearby and second-month series and a significant negative skewness for third- and 

fourth-month series. Therefore, there is no evidence that the excess kurtosis and 

skewness in oil and gas return distribution are responsible for the “smile” and “skew” 

patterns observed in oil and gas IVs.  

An alternative explanation for the “smile” or “smirk” pattern is the hedging 

pressure hypothesis by Bollen and Whaley (2004) and Ederington and Guan (2002) 

who argue that it is the net buying pressure of the options market that drives the index 

options prices to be higher. Specifically, they contend that, in the stock index options 

market, demand for out-of-the-money puts to hedge against stock market declines 

pushes up implied volatilities on low strike options.  

The positive skew pattern across terms to maturity in natural gas options may 

be attributable to hedging pressures in this market. Given that demand for natural gas 

can increase dramatically in winter while natural gas production is essentially fixed, 

there are often large price swings in winter. However, it is extremely difficult for 
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consumers to quickly reduce their consumption when a sharp increase in natural gas 

prices occurs. Therefore, there may be more natural gas users hedging against a 

natural gas increase than there are natural gas sellers hedging against a price decrease, 

leading to higher prices and implied volatilities on high strike call options. If this 

hedging pressure theory holds for the natural gas market, IVs of high strike call 

options whose prices are supposedly impacted heavily by hedging pressures should be 

less representative of the market’s volatility expectation than IVs calculated from 

options with lower strikes whose prices should be less subject to hedging pressures.  

Panel C in Table IX and Figure 12 present the average daily trading volume of 

crude oil and natural gas call and put options during the sample period. For natural 

gas, the average daily OTM call volume is higher than the average daily OTM put 

volume across terms to maturities, indicating that there tends to be more natural gas 

users hedging against a price increase by buying OTM calls than natural gas sellers 

hedging against a price decrease by buying OTM puts.  

The regression results regarding the information content of IVs, which are 

presented in detail in Section 7, are somewhat consistent with the view that hedging 

pressures are largely responsible for the skew pattern in natural gas IV. While natural 

gas IVs calculated from near-the-money options, specifically strikes ranging from 8% 

below to 4% above the underlying futures price, are both unbiased and efficient 

predictors of future volatility, IVs calculated from high strikes (OTM calls) are biased 

predictors of future volatility and significantly less informative. This pattern implies 

that prices of high strike options are heavily determined by demand for those options 
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for hedging purposes in the natural gas market and that IVs at high strikes are partially 

influenced by factors other than the market’s expectation of future volatility.  

However, there is no evidence that the smile pattern in crude oil options is 

consistent with the hedging pressures argument. As presented in Figure 11, crude oil 

IVs, except for nearby options, tend to be lowest for low strike options and increase 

monotonically with strike prices. If the positive skew pattern in longer term crude oil 

options is caused by hedging pressures in this market, IVs of high strike options 

whose prices are supposedly impacted heavily by hedging pressures should be less 

representative of the market’s volatility expectation than IVs calculated from lower 

strike options whose prices should be less subject to hedging pressures. Conversely, 

the regression results regarding the information content of crude oil IVs in Section 7 

are opposite to this prediction. For second-, third-, and fourth-month groups, high 

strike IVs are the best forecast of future volatility while low strike IVs are the least 

informative. In addition, Panel C in Table IX shows that for crude oil options, there is 

no evidence that trading is higher in OTM calls than in OTM puts across terms to 

maturity.  

5. Seasonality 

5.1. Month-of-the-year IV pattern 

A unique winter effect likely exists in the natural gas market due to the 

dependence of gas prices on weather conditions. The demand for natural gas may 

increase dramatically in winter, especially when the weather is severe. At the same 

time, the supply of natural gas may not increase accordingly because gas supplies are 

constrained by storage capacity and imports are limited. Consequently, supply and 
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demand imbalances in the natural gas market during winter may cause large price 

swings. I hypothesized above that the average natural gas IV is higher for options 

expiring in the winter months than for those expiring in other months because (1) the 

market expects higher volatility in winter, and (2) there may be more users buying call 

options to hedge against a price spike in winter which could result in higher prices and 

IVs on options expiring in the winter months.    

Results in Table X and Figure 13 are consistent with the winter effect 

hypothesis. The average natural gas ISDs display a U-shaped curve in which ISDs are 

significantly higher on options expiring in the winter months than in other months and 

this time-of-the-year pattern is consistent across all maturities. Consequently, if a 

financial engineer uses the yearly average volatility to value natural gas options, he or 

she will tend to overestimate the values of options expiring in summer and 

underestimate the values of options expiring in winter. The IV time-of-the-year pattern 

documented in Table X is consistent with the evidence in my earlier paper that the 

average variance of natural gas nearby futures returns increases by 58.45% in the 

winter months (from November through February). 

While there are reasons to expect a strong seasonality pattern in natural gas 

IVs, it is interesting that there is also a month-of-the-year effect in crude oil IVs, 

although the pattern in the oil market is less pronounced than in the gas market. For 

example, the all-strike average IVs (across all options with .2 ( / 1) .2X F− ≤ − ≤  where 

X is the option’s strike price and F is the underlying futures price) from nearby natural 

gas options expiring in the winter peak (January) is approximately 63.75% higher than 

that in the summer trough (May) whereas for crude oil options, the peak (February) is 
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19.21% higher than the trough (September). Apparently IV tends to be lower on crude 

oil options expiring in the summer months despite the fact that the demand for 

gasoline, a distilled product from crude oil, often increases during the summer driving 

season.  

The null hypothesis that average ISDs from options expiring each month are 

equal is rejected at the 0.01 level for both crude oil and natural gas markets. For the 

natural gas market, there is significant evidence that the average ISD is higher on 

options expiring in the winter months than on options expiring in other months 

wherein winter is defined as the period from November through February40

5.2. Day-of-the-week IV pattern 

. Similarly, 

for the crude oil market, there is significant evidence that the average ISD is lower on 

options expiring in the summer (from May through September) than on options 

expiring in other months.  

Table XI reports the mean values of the log percentage change in the ISDs, 

ln(ISDa,t/ISDa,t-1), where ISDa,t

In both markets, there is a significant tendency for the ISD to decline from 

Friday close to Monday close. This evidence likely implies the market’s expectation 

that the volatility of nearby futures returns from Friday close to Monday close is 

higher than that of a normal weekday returns. Consider the change in the ISD from the 

 is the average of the two nearest-the-money options 

GO1 and GI1 in the nearby group on day t and the sample is stratified by day-of-the-

week. As mentioned earlier, the ISDs are calculated based on a trading-day basis.  

                                                      
40My definition of winter months is based on the months in which natural gas is withdrawn 
from storage and therefore supply is constrained. Using data reported in various issues of the 
Weekly Natural Gas Storage Report, I determine that natural gas withdrawals normally start in 
November and end in early March.   
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close on Friday to the close on Monday. On Friday, it is known that the market is more 

volatile over the three days ending on Monday and therefore, the anticipated 

weekend/Monday volatility is impounded in Friday’s ISD. However, this anticipated 

weekend/Monday volatility is dropped from Monday’s ISD since Monday’s ISD 

reflects the market’s expectation of volatility from Tuesday to the options’ expiration 

date. Consequently, the ISD will tend to decline from Friday close to Monday close 

because the period over which Monday’s ISD is calculated will no longer include the 

(anticipated) high weekend/Monday volatility.  

The result that the ISDs decline from Friday close to Monday close in the 

crude oil and natural gas options markets is consistent with the findings in my earlier 

papers for oil and gas actual volatilities. In these papers, I find that Friday-close-to-

Monday-close returns are more volatile than any other weekday returns for crude oil 

and particularly for natural gas.  

I hypothesized earlier that oil and gas IVs fall following the release of the 

Petroleum Status Report and the Natural Gas Storage Report, which are considered 

one of the most important announcements impacting these markets (see, for example, 

Susmel and Thompson, 1997 and Linn and Zhu, 2004). As documented in Ederington 

and Lee (1996), in the T-Bond and Eurodollar markets, IV tends to fall following the 

release of important scheduled announcements. Ederington and Lee (1996) argue that 

since the pre-release IV impounds the anticipated impact of important releases on 

volatility, IV declines post-release as this uncertainty is resolved.  

The Natural Gas Storage Report was released on Wednesdays before May 06, 

2002 and on Thursdays since then. Consequently, I examine the behavior of natural 
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gas ISDs before and after May 06, 2002. Results are in the last two columns of Table 

XI. There is evidence that the behavior of Thursday natural gas ISD differs before and 

after May 2002. After May 06, 2002, when Thursday became the release day of the 

Storage Report, the mean percentage change in Thursday ISD is negative and 

significantly lower than that for other weekdays at the 0.01 level while not significant 

before. However, there is no significant evidence that before May 2002, natural gas 

ISD declines from Tuesday close to Wednesday close although Wednesday is the 

release day of the Storage Report during this period. These results imply that the 

release of the Storage Report has a stronger impact on natural gas prices after May 

2002. For crude oil ISD, contrary to the evidence in my earlier paper that actual 

volatility tends to increase on Wednesday, the release day of the Petroleum Status 

Report, there is no significant evidence that oil ISD declines from Tuesday close to 

Wednesday close.  

6. Implied Volatility Asymmetry  

I hypothesized above that positive and negative return shocks have an 

asymmetric impact on oil and gas IVs. This hypothesis is motivated by the findings 

that IVs from stock index and Treasury bond futures options have an asymmetric 

response to returns of the underlying assets (see, for example, Fleming et al., 1995; 

Simon, 1997 and Dumas et al., 1998) and by the findings in my earlier papers that 

positive and negative return shocks have asymmetric impact on predicted volatility in 

the oil and gas markets.  
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To explore the impact of positive and negative return shocks on oil and gas 

IVs, I examine the times series of ISDs from the nearby nearest-the-money options. 

Specifically, I use the following model:  

( ) ( )
4 0 0

{ } { }
, 0 , 1 , 1

1 1 1
/ 252 / 252

(19)

a t i i j t j a t j j t j a t j
i j j

t

ISD D R ISD R ISD

u

α α δ κ+ −
+ + − + + −

= =− =−

   ∆ = + + +   

+

∑ ∑ ∑
 

where ΔISDa,t is the change in average ISDs of the two nearby nearest-the-money 

options, GI1 and GO1. Rt = ln(Ft/Ft-1) where Ft is the price of the nearby futures 

contract on day t and Ft-1 is the price of the same contract on day t-1.
 {+}

 and {-}
 denote 

positive and negative returns, and ut

In this model, the change in ISD from the close of day t-1 to the close of day t 

is driven by day-of-the-week effects, separate variables for positive and negative 

scaled returns from day t-1 to day t and lagged of those variables. Separate variables 

for positive and negative returns are included to determine whether ISD responds 

differently to positive and negative returns. R

 is an error term. The positive and negative returns 

are scaled by lagged ISD on the previous days, expressed on a daily basis by dividing 

the lagged ISD by the square root of 252 (the number of trading days in a year). 

Equation (19) is specified similarly to the asymmetric GARCH model due to Glosten 

et al. (1993) (often referred to as the GJR model) which is used in my earlier papers on 

oil and gas price volatility.  

t
{+} (Rt

{-}) can be thought of as the actual 

returns times a dummy variable =1 if the return is positive (negative) and 0 otherwise. 

As stated in Simon (1997), the reason for scaling returns, Rt, is that market 

participants should revise their forecasts of volatility more, and, consequently, ISD 

changes should be greater when the magnitude of returns diverges from that predicted 



 

114 
 

by ISD the previous day. For example, a larger-than-expected return of a given size 

should result in greater ISD increases when smaller absolute price changes, reflected 

by low ISD, are expected. Also noted by Simon (1997), if the daily returns are 

normally distributed with a mean equal to zero and a standard deviation equal to 

estimated ISD expressed on a daily basis, then Rt/(ISDa,t-1 252/ ) ~ N(0,1). If a 

contemporaneous unexpected increase in both positive and negative returns (in 

absolute value) causes a higher ISD, δ0 should be significantly positive and κ0 should 

be significantly negative. If ISD increases more in response to contemporaneous 

unexpected positive returns than to unexpected negative returns, |δ0 |>|κ0

Equation 19 differs from that in Simon (1997) in that I include dummy 

variables to control for the day-of-the-week effects discussed in Section 5 and lagged 

values of scaled returns since Kim and Kim (2003) document that IVs also respond to 

lagged returns.  

|.  

Equation 19 is estimated using an ARMA (2,1) model. Results in Table XII 

indicate that unexpected positive and negative futures returns lead to higher ISD at the 

0.05 significance level in both crude oil and natural gas markets. Consistent with my 

hypothesis above, unexpected positive and negative returns have asymmetric impacts 

on oil and gas ISDs. Crude oil ISD is more responsive to unexpected negative returns 

than to positive returns of equal magnitude while natural gas ISD is more responsive 

to unexpected positive returns than to negative returns of equal magnitude. The null 

hypotheses that δ0+κ0 = 0 and δ0-κ0 = 0 are both rejected at the 0.01 level. In addition, 

|κ0|> |δ0|  for crude oil| and |δ0 |>|κ0| for natural gas, both at the 0.01 significance level. 

For crude oil, a 1% unexpected positive return results in a 0.27% increase in ISD 



 

115 
 

while a 1% unexpected negative return results in a 0.81% increase in ISD. For natural 

gas, a 1% unexpected positive return causes a 2.7% increase in ISD while a 1% 

unexpected negative returns only causes a 0.74% increase in ISD. The null hypothesis 

that (δ0+ δ1) + (κ0+κ1

The results regarding the asymmetric impact of unexpected positive and 

negative returns on IV are consistent with the findings in my earlier papers. Using the 

GJR model, I find that a negative return shock in the crude oil market tends to have 

more impact on predicted volatility than an equal positive shock. On the contrary, a 

positive shock in the natural gas market tends to have more impact on predicted 

volatility than an equal negative shock. While it is left unexplained why crude oil 

volatility increases more following a negative return shock, the findings that natural 

gas volatility increases more following a positive return shock is likely attributable to 

the inelasticity of the supply and demand curves at high prices in this market. 

Consequently, as the same fluctuation in demand when prices are low should cause a 

smaller change in prices than when prices are high, a positive price shock which 

moves the natural gas market up the supply and demand curves is likely to presage 

higher future volatility than a negative shock moving the market down the curves.   

) =0 is rejected at the 0.001 level for natural gas and at the 0.1 

level for crude oil.  

To test the possibility that the pronounced IV asymmetry with respect to 

unexpected positive and negative returns may be caused by extreme returns, I re-

estimate the model in Equation 19 with separate variables for positive and negative 

scaled returns that are more than two standard errors from the mean absolute scaled 

returns. 
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The expanded model is:  
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where Tailt is a dummy variable =1 when the absolute magnitude of scaled return is 

more than 2 standard errors away from the mean, and 0 otherwise. If the asymmetric 

impact of positive and negative returns on ISD is caused by the tails of the return 

distributions, (1) positive and negative scaled returns in the central part of the 

distribution should have the same effect on ISD, and therefore δ0 should be > 0, κ0 

should be < 0, and these coefficients should be of the same magnitude; (2) positive 

and negative scaled returns in the tails of the distribution have an incrementally greater 

effect on ISD than those that are not, and therefore δ1 should be significantly positive 

and κ1

The results from this expanded specification (not reported) indicate that while 

δ

 should be significantly negative.  

0 is significantly positive and κ0 is significantly negative, the estimates of δ1 and κ1

7. The Forecasting Performance of Implied Volatility 

 

are insignificantly different from 0, implying that the asymmetric impact of 

unexpected positive and negative futures returns on IV is not caused by extreme 

returns.  

If markets are efficient and the option pricing model is correct, then the 

implied volatility calculated from an option’s price should represent the average 

forecast of the underlying asset’s future volatility over the remaining life of the option. 

Consequently, IVs should be unbiased forecasts of future volatility and should fully 
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impound all available information, including the asset’s price history. The information 

content of IV is typically determined by estimating one or both of the following 

specifications, which are known as the Mincer-Zarnowitz regression (Mincer and 

Zarnowitz, 1969) in the forecasting literature (see, for example, Canina and Figlewski, 

1993; Jorion, 1995; Christensen and Prabhala, 1998; Szakmary et al., 2003; 

Ederington and Guan, 2005).  

, 1 , , , (21) andj t j t j tISD uσ α β= + ⋅ +  

' '
, 1 , 2 , ,' , (22)j t j t j t j tISD HIS uσ α β β= + ⋅ + ⋅ +  

where ,j tσ denotes the realized volatility from day t through the expiration of option j, 

ISDj,t

,j tHIS

 denotes the implied volatility (normally the standard deviation) on option j 

observed on day t, and is a measure of historical volatility (usually either the 

standard deviation of returns over some recent period or a forecast based on GARCH-

type estimation). 

If IV is an unbiased forecast of realized volatility, we should find that α = 0 

and 1β =1 in Equation 21 and 'α = 0, '
1β =1 in Equation 22. If IV efficiently impounds 

all available information included in historical volatility, '
2β should be zero in 

Equation 22. Virtually all studies find that 0< 1β <1 and 0< '
1β <1 and most find that 

α >0 (Ederington and Guan, 2005). Thus, the evidence in most options markets 

implies that IV is a biased predictor of realized volatility. There is mixed evidence on 

whether IV is efficient, i.e., on whether '
2β  is significant in Equation 2241

                                                      
41Canina and Figlewski (1993), Day and Lewis (1993), Ederington and Guan (2002) and 
Martens and Zein (2004) observe significant values for 

.  

'
2β  in Eq. (3) in at least some data sets 
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I estimate the following specifications on each “moneyness” bin across all four 

maturity groups.  

, 1 , , , ,( ) , (21)i t i j t i j tISD uσ τ α β= + ⋅ +        and 

' '
, 1 , , 2 , , , ,( ) ' , (22)i t i j t i j t i j tISD HIS uσ τ α β β= + ⋅ + ⋅ +  

where , ,i j tISD is the implied standard deviation computed on day t from the option in 

maturity group i  and “moneyness” group j , and , ,i j tu  represents the regression error. I 

include ISDs from all “moneyness” bins across terms to maturity until a bin’s number 

of observations falls below 500. , ( )i tσ τ is the realized volatility of log returns over the 

period between t and t τ+ , the option’s expiration date, annualized by multiplying the 

standard deviation calculated per day by 252.  Log return is defined as: 
1

Ln t
t

t

FR
F −

 
=  

 
 

where Ft is the price of the underlying futures contract on day t and Ft-1 

A common problem in most studies on the forecasting power of implied 

volatility is that due to considerable overlap in the data set, the forecast errors 

is the price of 

the same futures contract on day t-1.  

, ,i j tu  are 

serially correlated. On any day ,t , ,i j tISD  represents expected volatility from day t+1 to 

day t+τ, the day the option expires. Likewise, on day t+1, , , 1i j tISD +  represents 

expected volatility from day t+2  to day t+τ. Observations on realized volatility ( )tσ τ  

and 1( )tσ τ+  have 1τ −  days in common, observations on ( )tσ τ  and 2 ( )tσ τ+  have 

2τ −  days in common, etc. which cause serious autocorrelation. When the data set 

                                                                                                                                                         
while Christensen and Prabhala (1998), Fleming (1998), Blair et al. (2001), Szakmary et al. 
(2003), and Corrado and Miller (2003) find no evidence that historical volatility or GARCH 
forecasts contain additional information.  
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contains overlapping observations, ordinary least squares (OLS) regression coefficient 

estimates are still unbiased but OLS estimates of the coefficients’ standard errors are 

biased downward. To correct for serial correlation, I employ Hansen’s correction, the 

most common procedure in the literature42

Define 

.  

nX as the row vector of the independent variables for observation n in 

the sample; that is (1 IV)n nX =  [ (1 IV HIS)n nX =  for regressions based on 

Equation 22]. X  is the 2N ×  matrix of the nX . [ X  is the 3N ×  for regressions based 

on Equation 22].  Let nu  be the regression error for observation n, and let u denote the 

N vector of the un

 

. Following Hansen (1982) and others, I compute 

2

1 1 1

ˆ ˆ ˆ ˆ( ) ' ( , ) ( ' ' ), (23)
N N N

n n n n n nk k k
n k n k

u X X Q k n u u X X X X
= = = +

Ψ= + +∑ ∑ ∑  

where uk and un

( , )Q k n

 are the regression residuals for observations k and n from the OLS 

regression. is an indicator function taking the value 1 if there is an overlap 

between the periods to expiration for the two options, and 0 otherwise.  

The corrected variance-covariance matrix for the estimated coefficients is 

1 1ˆ ˆ( ' ) ( ' ) , (2 4)X X X X− −Ω= Ψ  

7.1. Bias and information content differences across maturities and 

moneyness 

Estimations of Equation 21 for oil and gas IVs are reported in Table XIII and 

Figures 14 and 15. Apparently, the patterns of the parameter estimates differ by time 

to expiration. Consider the results for crude oil ISDs. For the nearby group, the 

                                                      
42Examples are Canina and Figlewski (1993), Jorion (1995), Ederington and Guan (2005) and 
others.  
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intercepts, ˆ 'sα , are not significantly different from zero for all “moneyness” bins 

except for the deep ITM call options. For the second- and third-month groups, ˆ 'sα  are 

only indistinguishable from zero for deep OTM call options. 

Of more interest are the ISD coefficients. For the nearby group, 1̂ 'sβ , the ISD 

coefficients,  are close to and insignificantly different from 1.0 for all “moneyness” 

bins except for the deep ITM calls. For the second-, third- and fourth-month groups, 

1̂ 'sβ are significantly less than 1.0.  

I plot 1̂β  for crude oil options as a function of “moneyness” in Figure 14. For 

the nearby group, 1̂ 'sβ  display a “frown” image43

1̂ 'sβ

 that is approximately a reverse 

image of the volatility smile where are highest for near-the-money options. 

However, for longer term groups, 1̂β  pattern is not a reverse image of the volatility 

smile as 1̂ 'sβ  are generally highest for deep OTM calls. 

For natural gas options, the intercepts, ˆ 's,α are not significantly distinguishable 

from zero in most “moneyness” bins of the nearby and second-month groups. ˆ 'sα  are 

significantly different from zero for the third-month group and ITM calls in the fourth-

month group. The slope coefficients 1̂ 'sβ  are close to and insignificantly different 

from 1.0 for near-the-money nearby options and for most options in the second-month 

subsamples. 

As exhibited in Figure 14, the ISD coefficients for natural gas nearby options 

also displays a “frown” pattern where 1̂β  is highest for the near-the-money groups.  1̂β  

                                                      
43The information “frown” is first explored in Ederington and Guan (2005). 
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is less variable in the second-month group. For the third- and fourth-month 

subsamples, 1̂β  is generally higher for OTM options.   

As shown in Table XIII, adjusted R2 statistics pattern also varies by time to 

expiration. Adjusted R2 statistics for nearby crude oil options display a frown pattern 

in that they are small at deep ITM or OTM calls and peak at near-the-money calls. For 

the longer term crude oil options, adjusted R2 generally increases with strike price. For 

natural gas nearby and second-month options, adjusted R2 statistics are generally 

higher for ITM options and decreases with strike prices. For natural gas third- and 

fourth-month groups, adjusted R2

As noted in Ederington and Guan (2005), comparing R

 is highest for ATM options.  

2 across different 

“moneyness” groups is problematic in that the samples differ somewhat. On a given 

day there might be an observation for ATM group but not for ITM or OTM so R2 

could be different because one “moneyness” group is observed on a day with small 

error and another on a day with a large error. To compare the information content of 

ISDs from different “moneyness” groups on a more consistent basis, I follow 

Ederington and Guan (2005) and calculate the relative forecasting power for each 

“moneyness” group. First I form an un-weighted average ISDai,t

, ( )i tσ τ

 of the ISDs for the 

two ATM subsamples: GI1 and GO1 in maturity group i on day t. is then 

regressed on ISDai,t. Let u(ATMa)i,t  be the residual from this regression on day t and 

ui,j,t

2 2
, , , ,(ATMa)i j i t i j tY u u=∑ ∑

 be the residual from one of the individual “moneyness” regressions in Table XIII, 

I then form the ratio  where both summations are over only 

those daily observations where both u(ATMa)i,t and ui,j,t are observed. So Yi,j measures 

the relative explanatory power of an individual ISD from “moneyness” group j versus 
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the average ISD of the two ATM options. If Yi,j <1, the average ATM ISDs predicts 

future volatility over the life of the option better than the individual ISD. If Yi,j

As reported in Table XIII and graphed in Figure 15, Y pattern varies by time-

to-maturity. For crude oil nearby options, relative R

 >1, the 

individual ISD predicts future volatility better than the ATM average.  

2’s are highest for ATM options. 

However, for longer term crude oil options, R2’s are generally higher for OTM 

options. For natural gas nearby options, relative R2’s are highest for moderately low 

strike options in the “moneyness” bins GI1, GI2 and GI3. For longer term natural gas 

options, relative R2

In summary, the information content in oil and gas IVs varies considerably by 

time-to-maturity and by options’ “moneyness”. For crude oil options, the most 

informative in terms of predicting future volatility are ISD’s calculated from the prices 

of nearby group, except for deep ITM options. For natural gas options, the most 

informative in terms of forecasting future volatility are ISD’s calculated from the 

prices of near-the-money options in the nearby group and of most options in the 

second-month group. For these “most informative” options, the regression evidence in 

Table XIII is consistent with the hypothesis that IVs are unbiased predictors of actual 

volatility in that the slope coefficients, 

’s are higher for ATM options than for ITM or OTM options.  

1̂ 'sβ  are close to and insignificantly different 

from 1.0 and the intercepts, ˆ 'sα  are close to and insignificantly different from zero. 

For other options groups, the hypothesis that the ISD’s are unbiased predictors of 

future volatility is rejected. Thus, ISDs on other options are influenced by something 

other than the market’s volatility expectation.  
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Both academic researchers and market participants normally use IV calculated 

from ATM options to represent the volatility expectations of market participants. 

However, results in Table XIII indicate that while that practice is justifiable for natural 

gas options and for nearby crude oil options, it is problematic for longer term crude oil 

options.  

7.2. Efficiency 

Next I test whether oil and gas IVs efficiently impound all the historical 

information by estimating Equation 22 where a measure of historical volatility is 

added to the equation. For historical volatility, I use the volatility forecast over the life 

of the options generated by the GJR model44

'
2

ˆ sβ

. Results are reported in Table XIV. For 

the three far ITM crude oil nearby groups (GI3, GI4, GI5), , the coefficients of 

historical volatility forecast, are significantly different from zero and relatively 

sizable, implying that the ISDs for these groups are influenced by factors other than 

the market’s volatility expectation. Except for these three groups, '
2

ˆ sβ  are 

insignificantly different from zero across all other options groups, implying that crude 

oil and natural gas implied volatilities generally impound information in historical 

volatility fairly efficiently.  

The evidence that IV from oil and gas options is a fairly efficient forecast of 

future volatility is consistent with the findings in Christensen and Prabhala (1998), 

                                                      
44I use a GJR model to forecast historical volatility over the life of the option. The GJR 
specification is 2 2

1 1 2 1 3 1 where(26),t t t t th hω γ ε γ γ η ε
− − −

= + + +  
1if and 0 otherwise1 0 .t tη ε

−
= <  

The regression estimates from (26) are used to generate ht+1, volatility forecast for the next 
day. ht+1 is then substituted back into the equation to generate a volatility forecast for the 
following day, ht+2. This substitution continues for each day through the life of the option.  
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Fleming (1998), Blair et al. (2001), Szakmary et al. (2003), Corrado and Miller (2003) 

and Ederington and Guan (2005).  

8. Summary 

This paper explores the structure, characteristics, and determinants of crude oil 

and natural gas implied volatilities. Using the IVs calculated from crude oil and 

natural gas futures and futures’ call options prices from September 1999 through June 

2006, I find that the behavior of IV in these two markets is much different from that in 

most financial options markets that we are more familiar with.  In both markets, IVs 

tend to increase as the options approach expiration, yielding lower IVs on options at 

longer terms to maturity. This term structure pattern is opposite to that in the stock, 

stock index, currency and T-bond futures options markets. While inconsistent with the 

pattern for IV in those financial options markets, the oil and gas IV term structure 

pattern is consistent with the actual volatility pattern for different maturity futures 

contracts. 

The cross-sectional pattern in crude oil options varies by term to maturity. For 

the nearby group, IVs are lowest when options are near the money and increase as call 

options become increasingly in or out of the money. For the second-month group, IVs 

are lowest for moderately low strike options and increase for out-of-the-money and 

deep in-the-money call options. The IVs in the third- and fourth-month groups exhibit 

a positive “skew” pattern where IVs are lowest for deep ITM calls and increase as the 

option strikes increase. The “smile” pattern in natural gas options is consistent across 

all maturity groups in that IVs are lowest when strikes are low and increase 

monotonically with strikes. This “smile” or positive “skew” pattern is opposite to the 
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“sneer”, or “smirk” pattern in the stock and stock index options markets where IVs 

monotonically decrease with strikes. The hedging pressure hypothesis – in particular, 

hedgers buying out-of-the-money call options to protect against a sharp price increase, 

could partially explain the positive “skew” pattern in natural gas IVs. However, there 

is no evidence that the cross-sectional IV pattern in crude oil options is caused by 

hedging pressures in that market.  

There is evidence of a winter effect in natural gas IVs in that IVs are 

significantly higher on options expiring in the winter months than on those expiring in 

other months. This seasonality effect is consistent with the high actual volatility in 

winter during which demand for natural gas may increase dramatically while supply of 

natural gas is essentially fixed. To a lesser extent, crude oil IVs are significantly lower 

on options expiring in the summer months than on those expiring in other months.  

Oil and gas IVs tend to decrease from Friday close to Monday close, implying 

that volatility tends to be high over the three-day weekend in both markets. This is 

consistent with the findings for oil and gas actual volatilities. There is evidence that 

the Weekly Natural Gas Storage Report has significant impact on gas IV after May 

2002. Contrary to earlier findings for actual volatilities, there is no significant 

evidence that crude oil IV declines following the release of the Petroleum Status 

Report and that natural gas IV declines following the release of the Storage Report 

prior to May 2002. 

There is evidence that oil and gas IVs have an asymmetric response to positive 

and negative futures returns. Crude oil IV tends to increase more following an 

unexpected negative return than a positive return of equal magnitude while natural gas 
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IV tends to increase more following an unexpected positive return than an equal 

negative return. While it is left unexplained why crude oil IV increases more 

following a negative return shock, the finding that natural gas IV increases more 

following a positive return shock is likely attributable to the hypothesized shape of the 

supply and demand curves which are likely to be inelastic at high volumes and prices. 

Oil and gas IVs are efficient forecast of future volatility across terms to 

maturity. For crude oil options, the most informative in terms of predicting future 

volatility are IVs on nearby group, except for deep ITM options. For natural gas 

options, the most informative are IVs calculated from the near-the-money options in 

the nearby group and in the second-month group.  
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Table I. Summary Statistics: Crude oil returns 

This table presents summary statistics for crude oil returns where rt=ln(Pt/Pt-1); Pt is 
the price of the futures contract on day t and Pt-1 is the price of the same futures 
contract on the previous day. The third, fifth and seventh columns present summary 
statistics for absolute values of daily returns. (**) and (*

 

) on Rho designate estimates 
significantly different from zero at the 0.01 and 0.05 levels, respectively. The sample 
extends from January 1, 1997 to November 28, 2008.  

 Nearby Second-month Third-month 

 
Returns Absolute 

Returns 
Returns Absolute 

Returns 
Returns Absolute 

Returns 

Mean (x102 0.0249 ) 1.8033 0.0243 1.6534 0.0283 1.5486 

Maximum 0.1454 0.1654 0.1379 0.1572 0.1166 0.1216 

Minimum -0.1654 0.0000 -0.1572 0.0000 -0.1216 0.0000 

Std Dev 0.0242 0.0162 0.0220 0.0145 0.0206 0.0136 

Annualized Std 

Dev 

0.3826 0.2561 0.3479 0.2293 0.3257 0.2150 

Skewness -0.2598 0.2283 -0.2512 0.2104 -0.2398 0.1972 

Kurtosis 6.3969 12.9479 5.8826 11.9163 5.4104 10.0491 

Rho (First order  
Autocorrelation 
coefficient) 

-0.0114 0.0529 -0.0279 ** 0.0340 0.0043 * 0.0492* 
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Table II. The multiplicative GARCH-type model of volatility determinants 

Estimates of the model:  
 

  

rt = μ + φ1rt -1 + εt
where: 

     (1) 

 εt
2
tσ ~N(0, ) and 2

t t tσ h s= ⋅      (2) 
ht = Var(ζt) = ω+ αζt-1

2+βht-1+ γζt-1
2It-1, where ζt =  εt

.5
ts /  (3) 

4

t i,t
i=1

s s=∏       (4) 

s1,t κ
t[AP /AP ] =       (4.a)  

s2,t = (1+ δ-1DAt-1)(1+ δ0DAt)(1+ δ1DAt+1

s

)  (4.b) 

3,t

4

i i,t
i=1

(1+λ DW )∏ =      (4.c) 

s4,t = (1+ θ1DSUMi,t)(1+ θ2DWINi,t
 

)   (4.d) 

are presented where rt is the log percentage change in price of the futures contract on 
day t, εt is a normally distributed random variable with conditional mean zero and 
conditional variance ht. It-1=1 if εt-1 >0 and 0 otherwise. APt

AP
 is the inflation-adjusted 

price,  represents the average inflation-adjusted price over the sample period. DAt 
is 1 on OPEC meeting days and 0 otherwise. DAt-1 (DAt+1) is 1 on the day before 
(after) the OPEC meeting days. DWi,t are zero-one dummies for Monday (including 
weekend), Wednesday, Thursday and Friday. SUMt =1 if the contract expires in 
summer months (from May through August) and 0 otherwise; WINt =1 if the contract 
expires in winter months (from November through February) and 0 otherwise. 
Standard errors are shown in parentheses. (***), (**), (*

 

) designate estimates 
significantly different from zero at the 0.001, 0.01 and 0.05 levels, respectively. The 
sample extends from January 01, 1997 to November 28, 2008.  

 
GJR 
model 

 Full model 

   Nearby Second-month Third-month 

 
  futures contract futures contract futures 

contracts 
ω 0.1847  *** 0.2114 0.2639*** 0.2361*** 

 

*** 

(0.0387)  (0.0629) (0.0791) (0.0719) 

α 0.0829  *** 0.0586 0.0700*** 0.0656*** 

 

*** 

(0.0089)  (0.0123) (0.0136) (0.0129) 

β 0.9066  *** 0.8974 0.8681*** 0.8636*** 

 

*** 

(0.0111)  (0.0220) (0.0296) (0.0306) 

γ -0.0413  *** -0.0179 -0.0318* -0.0182 * 

 (0.0107)  (0.0089) (0.0137) (0.0148) 
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Level   -0.5354 -0.3960*** -0.3095*** 

 

** 

  (0.1134) (0.1035) (0.1040) 

OPEC meetings   0.0605 0.1132 0.1251 

   (0.2014) (0.2145) (0.2143) 

OPEC meetings (+1)   0.5447 0.7101* 0.6772* 

 

* 

  (0.2619) (0.2858) (0.3023) 

OPEC meetings (-1)   0.4663 0.4471 0.4513 

   (0.2919) (0.2930) (0.2845) 

Monday   0.4040 0.3902*** 0.3293*** 

 

*** 

  (0.0936) (0.0968) (0.0981) 

Wednesday   0.3260 0.3282*** 0.3169** 

 

** 

  (0.0902) (0.0982) (0.0964) 

Thursday   0.0474 0.1084 0.1042 

   (0.0774) (0.0899) (0.0893) 

Friday   -0.0525 0.0370 0.0555 

   (0.0681) (0.0815) (0.0831) 

Summer   -0.0467 -0.1226 -0.1148 

   (0.0885) (0.0816) (0.0815) 

Winter   0.0629 0.0684 0.1259 

   (0.0931) (0.0933) (0.0979) 

      

Log-likelihood -6716.549  -6687.190 -6423.765 -6219.350 
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Table III. The Diagonal VECH model of the crude oil and exchange index 

covariance matrix 

Estimates of the model 

 
, 1 , 1 , 1

~ (0, )
( ) ( ) ( ) ( ) ( ) (7)

t t

t t

t ij ij ij j t i t i j t ij

N H
H A B Hε ε− − −

= +

= Ω + +

rμ ε
ε

 

are presented where 1, 2,( , ) 't t tr r=r is a (2x1) vector where r1 and r2

tH
 are crude oil and 

exchange index returns, respectively and is a (2x2) conditional covariance matrix. 

tH  is presumed to follow the most unrestricted Diagonal VECH process where the 
parameters in the matrices , , andA BΩ  are allowed to vary without any restriction. Ω  
is a (3x1) parameter vector; A and B are (3x3) diagonal parameter matrices. For 
comparison, the estimates from univariate GARCH(1,1) model are presented in the 
first column. Returns are expressed in log percent. Standard errors are shown in 
parentheses. (***), (**) and (*

 

) designate estimates significantly different from zero at 
the 0.001, 0.01 and 0.05 levels, respectively. The sample extends from January 01, 
1997 through November 28, 2008. 

 Univariate GARCH (1,1) Diagonal VECH 
 Exchange index Crude oil  
Ω(1,1) 0.0015  ** 0.0015** 
 (0.0005)  (0.0005) 
Ω(1,2)   -0.0035
 

* 
  (0.0020) 

Ω(2,2)  0.2051 0.1935*** 
 

*** 
 (0.0437) (0.0421) 

A(1,1) 0.0376  *** 0.0362
 

*** 
(0.0053)  (0.0050) 

A(1,2)   0.0268
 

*** 
  (0.0074) 

A(2,2)  0.0693 0.0651*** 
 

*** 
 (0.0067) (0.0064) 

B(1,1) 0.9549  *** 0.9563
 

*** 
(0.0074)  (0.0071) 

B(1,2)   0.9290
 

*** 
  (0.0275) 

B(2,2)  0.8968 0.9026*** 
 

*** 
 (0.0123) (0.0118) 
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Table IV. Summary Statistics: Natural gas returns and extreme value estimators 

This table presents summary statistics for natural gas returns, absolute returns and 
extreme value estimators of volatility. The second column presents summary statistics 
for daily returns, rt, where rt=ln(Pt/Pt-1); Pt is the price of the nearby futures contract 
on day t and Pt-1  is the price of the same futures contract on the previous day. The 
third column presents summary statistics for absolute values of daily returns. The 
fourth column presents summary statistics for extreme value estimators of volatility, 
Stdt

)2ln(2
)ln()ln( tt

t
LowHigh

Std
−

=, where , tHigh and tLow  denote the highest and the lowest 

prices of the nearby natural gas futures contract on day t, respectively. (**

 

) on Rho 
designates estimates significantly different from zero at the 0.01 level. The sample 
extends from January 02, 1997 to December 31, 2008.  

Returns Absolute 
Returns 

Extreme 
value 

estimator 
Mean (x102 0.0340 ) 2.7597 2.8610 

Maximum 0.3244 0.3244 0.1950 

Minimum -0.1990 0.0000 0.0012 

Std Dev 0.0382 0.0264 0.0148 

Annualized Std Dev 0.6219 0.4298  

Skewness 0.4570 2.6122 2.7047 

Kurtosis 8.0764 16.6902 21.9202 

Rho (First order  
autocorrelation coefficient) 

-0.0614 0.1151 0.3941** ** 
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Table V. The multiplicative GARCH-type model of volatility determinants 

Table V presents the estimates of the following model:  

rt = μ + a1Oilrett + a2CddDift + a3HddDift 
{+} + a4 HddDift 

{- }+ a5SRFEt ∑
=

4

1
,

i
tiiDWϑ+  + ε t 

ε
    (10) 

t
2
tσ ~N(0, ) and 2

t t th sσ = ⋅      (11) 

ht = Var(ζt) = ω+ αζ t-1
2+βh t-1+ γζ t-1

2It-1, where ζ t = ε t
.5
ts /  (12) 

5

,
i=1

t i ts s=∏       (13) 

s1,t

4

,
i=1

(1+ )i i tDWλ∏ =      (13.a) 

s2,t ( )tSR κ =        (13.b) 

s3,t

11

,
i=1

(1+ )i i tDMθ∏ =                                        (13.c) 

s4,t =  (1+ ψW t
s

)      (13.d) 
5,t = (1+ δ0BWt)(1+ δ1ABWt

 
)    (13.e) 

rt is the log percentage change in price of the nearby natural gas futures contract on 
day t, εt

2
tσ

 is a normally distributed random variable with conditional mean zero and 
conditional variance . Oilrett is the log percentage change in price of the nearby 
crude oil futures contract on day t. CddDift is the difference between the actual 
Cooling Degree Day measure and the 30-year average CDD measure for day t; 
HddDift is the difference between the actual Heating Degree Day measure and the 30-
year normal HDD measure for day t, HddDift 

{+} = HddDift if HddDift > 0 and 0 
otherwise, HddDift 

{-} = HddDift if HddDift <0 and 0 otherwise; SRFEt is the surprise 
in the change in storage = the actual storage change as reported in the EIA storage 
survey - the consensus expected storage change as reported by Bloomberg prior to the 
EIA report release; DWi,t are zero-one dummies for Monday (which includes the 
weekend), Wednesday, Thursday and Friday with Tuesday being the left-out day. It-

1=1 if εt-1
SR

t
t s

SRFE
SR = <0 and 0 otherwise.  on days the storage report announcement 

is released and 1 otherwise where SRs is the sample standard deviation of tSRFE . 
DMi,t=1 if the futures contract observed on day t expires in month i. Wt= 1 if the 
difference between the actual Heating Degree Day measure and the 30-year normal 
HDD measure for day t (HddDift) is < 0 and Wt= 0 otherwise. BWt is 1 if day t is one 
of the last five trading days in a month and 0 otherwise. ABWt is 1 if day t is the first 
trading day in a month and 0 otherwise. Standard errors are shown in parentheses. 
(***), (**), (*

 

) designate estimates significantly different from zero at the 0.001, 0.01 
and 0.05 levels, respectively. The sample extends from January 02, 1997 to December 
31, 2008.  
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Panel A. Mean equation 

 

 1997-2008  1997-2002  2002-2008 

µ 0.1580  -0.003   0.2398 

 (0.1565)  (0.2324)  (0.1648) 

Oilret 0.4632  *** 0.3320  *** 0.5329

 

*** 

(0.0304)  (0.0416)  (0.0502) 

CddDif 0.0443  0.0145  0.0870 

 (0.0435)  (0.0307)  (0.0715) 

HddDif 0.0016 {+}  -0.0023  0.0060 

 (0.0221)  (0.0309)  (0.0304) 

HddDif -0.0362{- }  * 0.0216  -0.0559

 

* 

(0.0188)  (0.0269)  (0.0230) 

Monday -0.1523  0.06262  -0.3291 

 (0.2269)  (0.3369)  (0.2803) 

Wednesday -0.2572  -0.4183  -0.0500 

 (0.2214)  (0.3284)  (0.2261) 

Thursday -0.2759  0.17503  -0.6216

 

** 

(0.2225)  (0.3299)  (0.2453) 

Friday -0.0356  0.34631  -0.4796

 

** 

(0.2248)  (0.3336)  (0.2037) 

SRFE     -0.0636

  

*** 

        (0.0148) 
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Panel B. Variance Equation 

 

 

GJR 

model Full model 

  1997-2008  1997-2002  2002-2008 

ω 0.3673 0.1668**  *** 0.1677  * 0.1677* 

 (0.0652) (0.0483)  (0.0742)  (0.0660) 

α 0.0995 0.0691**  *** 0.0681  *** 0.0714

 

** 

(0.0077) (0.009)  (0.0159)  (0.0137) 

β 0.8869 0.9235***  *** 0.9244  *** 0.9007

 

** 

(0.0104) (0.0119)  (0.0193)  (0.0235) 

γ -0.0158 -0.0359*  ** -0.0239  -0.0396

 

* 

(0.0088) (0.0125)  (0.0214)  (0.0174) 

Monday  0.8772  *** 0.7047  *** 0.8201

 

*** 

 (0.1434)  (0.1914)  (0.1839) 

Wednesday  0.1080  0.1678  -0.0422 

  (0.0843)  (0.1288)  (0.0967) 

Thursday  0.4752  *** 0.2848  * 0.6760

 

*** 

 (0.1187)  (0.1462)  (0.2016) 

Friday  -0.2575  *** -0.2640  ** -0.2740

 

* 

 (0.0576)  (0.0849)  (0.0742) 

January  1.2836  ** 1.2888  * 1.5620

 

** 

 (0.3979)  (0.5925)  (0.5736) 

February  1.0768  ** 0.8148  * 1.5867

 

** 

 (0.3663)  (0.4635)  (0.5825) 

March  0.4082  * 0.1985  1.7769

 

** 

 (0.2371)  (0.3270)  (0.6602) 

April  -0.1847  -0.1062  0.9597

 

* 

 (0.1277)  (0.2351)  (0.4115) 

May  -0.3292  -0.3109  * 0.0804 

  (0.1031)  (0.1758)  (0.2203) 
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July  -0.2519  ** -0.1702  -0.0954 

  (0.0946)  (0.1779)  (0.1753) 

August  0.0157  -0.1635  0.3141 

  (0.1455)  (0.1705)  (0.2302) 

September  0.3961  * 0.1688  0.9475

 

* 

 (0.2178)  (0.2564)  (0.4355) 

October  1.5795  *** 1.3393  * 1.8148

 

** 

 (0.3985)  (0.5977)  (0.6055) 

November  1.2622  *** 1.2646  * 3.4377

 

*** 

 (0.3626)  (0.5809)  (0.8879) 

December  0.6336  * 0.7675  2.0524

 

** 

 (0.2926)  (0.5106)  (0.6494) 

W  0.3158  ** 0.1051  0.3032

 

** 

 (0.1093)  (0.1629)  (0.1067) 

BW  0.6592  *** 0.3065  ** 0.8004

 

*** 

 (0.0925)  (0.1190)  (0.1292) 

ABW  0.4802  ** 0.6451  * 0.4595

 

* 

 (0.1829)  (0.2789)  (0.2525) 

SR  t     0.2167

 

** 

     (0.0774) 

Log-Likelihood -7116.32 -6947.23   -3560.01  -4277.48 
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Table VI. Robustness check 

Table VI presents the estimates of the following model:  

5 4 11
' { } { } ' ' ' ' '

1 1 2 1 , , 0
1 1 1

'
1 (16)

t i t i t t j j t t k k t t t
i j k

t t t

Std Std DW SR DM W BW

ABW OilStd e

ω α γ ε γ ε λ κ θ ψ δ

δ ρ

+ −
− − −

= = =

= + + + + + + + +

+ + +

∑ ∑ ∑  

)2ln(2
)ln()ln( tt

t
LowHigh

Std
−

= , tHigh and tLow  denote the highest and the lowest prices of 

the nearby natural gas futures contract on day t, respectively. rt = ln(Pt/Pt-1) where Pt 
is the price of the nearby futures contract on day t and Pt-1

}{
1
+
−tε

 is the price of the same 
contract the previous day. = εt-1 if εt-1 ≥ 0 and 0 otherwise; }{

1
−
−tε = εt-1 if εt-1 < 0 and 

0 otherwise and εt

r

 is the residual from the mean equation: 

t = μ + a1Oilrett + a2CddDift + a3HddDift 
{+} + a4 HddDift 

{- }+ a5SRFEt ∑
=

4

1
,

i
tiiDWϑ+  

+ εt 
 DW

    (10) 
j,t

 
 are zero-one dummies for Monday, Wednesday, Thursday and Friday.  

SR

t
t s

SRFE
SR =  on days the storage report announcement is released and 0 otherwise 

where SRFEt

SRs

 is the surprise in the change in storage = the actual storage change 
(reported in the EIA report) - the consensus expected storage change (reported by 
Bloomberg prior to the EIA report release) and is the sample standard deviation of 

tSRFE . DMk,t =1 if the futures contract observed on day t expires in month k. Wt = 1 if 
the difference between the actual Heating Degree Day measure and the 30-year 
normal HDD measure for day t (HddDift) is < 0 and Wt= 0 otherwise. BWt is 1 if day t 
is one of the last five trading days in a month and 0 otherwise. ABWt

)2ln(2
)ln()ln( tt

t
OilLowOilHigh

OilStd
−

=

 =1 if day t is the 

first trading day in a month. , tOilHigh and tOilLow  

denote the highest and the lowest prices of the nearby crude oil futures contract on day 
t, respectively. (**) and (*

 

) designate estimates significantly different from zero at the 
0.01 and 0.05 levels, respectively. The sample extends from January 02, 1997 to 
December 31, 2008.  
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 1997-2008 1997-2002 2002-2008 

  Estimate 
Std. 
error Estimate 

Std. 
error Estimate 

Std. 
error 

 

ω' (x102

 

) 0.2922 0.1331 * -0.0442 0.2326 0.4472 0.1803 * 

Std(-1) 0.1828 0.0546 ** 0.1929 0.0637 ** 0.1083 0.0417 ** 

Std (-2) 0.1379 0.0324 ** 0.0937 0.0411 * 0.1724 0.0325 ** 

Std (-3) 0.0604 0.0291 * 0.0732 0.0349 * 0.0588 0.0329 * 

Std (-4) 0.1119 0.0265 ** 0.0929 0.0387 * 0.1148 0.0323 ** 

Std (-5) 0.0805 0.0299 ** 0.0830 0.0345 * 0.0599 0.0319 * 
}{+

tε  0.0862 0.0428 * 0.0913 0.0715 0.0874 0.0223 ** 
}{−

tε  -0.0009 0.0222 0.0084 0.0371 -0.0261 0.0247 

Monday (x102 0.3482) 0.1172 ** 0.4871 0.1768 ** 0.2512 0.1161 * 

Wednesday (x102 0.1761) 0.0877 * 0.1845 0.1195 0.1945 0.1122 * 

Thursday (x102 0.5971) 0.0924 ** 0.7274 0.1298 ** 0.2243 0.1335 * 

Friday (x102 -0.2200) 0.0863 * -0.2812 0.1136 * -0.1311 0.1134 

W (x102 0.1227) 0.0721 * 0.1512 0.1133 0.1057 0.0923 

January (x102 0.2617) 0.1375 * 0.5075 0.2221 * 0.3099 0.1738 * 

February (x102 0.4132) 0.1322 ** 0.5651 0.2062 ** 0.1803 0.1875 

March (x102 0.4182) 0.2471 * 0.6282 0.4563 0.3499 0.1885 * 

April (x102 -0.0693 ) 0.0929 -0.0672 0.1382 0.0287 0.1786 

May (x102 0.0918 ) 0.0866 -0.0253 0.1166 0.0654 0.1696 

July (x102 0.1477 ) 0.0954 0.2673 0.1288 * 0.1178 0.1719 

August (x102 0.2414) 0.1132 * 0.1937 0.1496 0.3945 0.1767 * 

September (x102 0.4985) 0.1201 ** 0.3825 0.1312 ** 0.8041 0.1797 ** 

October (x102 0.6022) 0.1352 ** 0.5978 0.1667 ** 0.8272 0.1947 ** 

November (x102 0.2732) 0.1261 * 0.4056 0.1571 ** 0.2815 0.1738 

December (x102 0.3724) 0.1219 ** 0.6243 0.1862 ** 0.3424 0.1766 * 

BW (x102 0.1658) 0.0736 * 0.2661 0.1116 * 0.1177 0.0848 

ABW (x102 0.2039 ) 0.1363 0.0482 0.1669 0.2653 0.1739 

OilStd 0.1431 0.0337 ** 0.2943 0.0591 ** 0.1265 0.0298 ** 

SRt (x102  )    0.4746 0.1542 ** 

Adjusted R 0.3221 2   0.3334   0.3562 
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Table VII. Summary Statistics 
This table presents the summary statistics of crude oil and natural gas implied standard 
deviations calculated from daily closing prices of nearby, second-, third-, and fourth-month 
futures and call options on futures from September 01, 1999 to June 30, 2006.  
 

Crude Oil 
1999-
2006 1999 2000 2001 2002 2003 2004 2005 2006 

          
Mean 0.329 0.351 0.315 0.350 0.370 0.359 0.341 0.320 0.247 

Median 0.323

 

0.357

 

0.311

 

0.315

 

0.361

 

0.329

 

0.344

 

0.320

 

0.252

 Maximum 1.222

 

0.545

 

0.579

 

0.983

 

0.858

 

0.796

 

1.222

 

1.184

 

0.344

 Minimum 0.063

 

0.109

 

0.121

 

0.084

 

0.191

 

0.192

 

0.063

 

0.085

 

0.085

 Std. Dev. 0.065

 

0.042

 

0.050

 

0.098

 

0.049

 

0.079

 

0.049

 

0.032

 

0.028

 Skewness 1.297 -.692 0.334 1.097 0.627 1.605 2.719 0.541 -1.078 

Kurtosis 8.58 4.15 3.73 3.50 4.04 5.49 4.01 6.50 5.12 

Number of 
Obs 

74604 1756 7050 6989 8647 10085 13195 18143 8739 

2nd 0.281

 

 decile 0.318

 

0.275

 

0.275

 

0.328

 

0.301

 

0.303

 

0.298

 

0.228

 4th 0.312

 

 decile 0.346

 

0.301

 

0.302

 

0.350

 

0.320

 

0.332

 

0.314

 

0.246

 6th 0.335

 

 decile 0.367

 

0.322

 

0.329

 

0.375

 

0.343

 

0.357

 

0.327

 

0.258

 8th 0.370

 

 decile 0.387

 

0.354

 

0.453

 

0.417

 

0.418

 

0.379

 

0.343

 

0.270

 Natural Gas          

Mean 0.515 0.551 0.555 0.603 0.540 0.536 0.470 0.402 0.561 

Median 0.510

 

0.564

 

0.551

 

0.596

 

0.540

 

0.526

 

0.433

 

0.386

 

0.552

 Maximum 1.480

 

0.727

 

1.480

 

1.429

 

1.026

 

1.202

 

0.973

 

0.937

 

0.888

 Minimum 0.112

 

0.238

 

0.112

 

0.182

 

0.262

 

0.203

 

0.150

 

0.129

 

0.203

 Std. Dev. 0.131

 

0.077

 

0.169

 

0.133

 

0.062

 

0.107

 

0.137

 

0.088

 

0.103

 Skewness 0.710 -0.704 1.204 0.524 0.046 0.961 0.821 0.988 0.091 

Kurtosis 4.63 3.48 6.21 3.16 3.55 5.52 2.81 4.13 2.36 

Number of 
Obs 

79162 1425 8111 8481 10883 15615 15384 11938 7324 

2nd 0.422

 

 decile 0.486

 

0.423

 

0.486

 

0.490

 

0.451

 

0.351

 

0.332

 

0.467

 4th 0.475

 

 decile 0.542

 

0.521

 

0.562

 

0.525

 

0.502

 

0.398

 

0.368

 

0.516

 6th 0.530

 

 decile 0.582

 

0.581

 

0.623

 

0.556

 

0.552

 

0.471

 

0.405

 

0.597

 8th 0.602

 

 decile 0.617

 

0.647

 

0.703

 

0.592

 

0.613

 

0.599

 

0.460

 

0.660
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Table VIII. The implied volatility term structure 

Panel A. The term structure pattern 

The “All-strike ISD Mean” and the “ATM ISD Mean” columns report the average 
implied standard deviations (ISDs) over all options with -.2 ≤ (X/F-1) ≤ .2 where X is 
the option’s strike price and F is the underlying futures price and the average ISDs on 
ATM options when the sample is stratified by time to expiration. ISDs are calculated 
from daily closing prices of futures and call options on futures.  
The “Forward ISD” column reports the average forward ISDs calculated from ISDs on 
nearby, second-, third- and fourth-month options with -.2 ≤ (X/F-1) ≤ .2. The forward 
ISDs are calculated as follow. If on a given day, the ISD of an option expiring in t1 
days is x, and that of an option in the same “moneyness” group maturing in t2 days is 
y, the forward ISD over the period from day t1+1through day t2

1 2 1

2 2

t t ty x
t t

   −
−   

   

 is calculated as 
. Thus, the second-month forward group contains forward ISDs 

calculated from ISDs on nearby and second-month options, the third-month forward 
group contains forward ISDs calculated from ISDs on second- and third-month 
options and so on.  
The “Different futures contracts volatility” column presents the annualized standard 
deviation of nearby, second-, third- and fourth-month futures contracts over the next 
month which are calculated according to the following formula: 82

1

1 252
82j j

j
σ σ

=

 
= ⋅ 
 

∑  

where jσ = ∑
=

−
−

k

t
t rr

k 1

2)(
1

1 ; )/ln( 1−= ttt FFr ; Ft is the closing futures price on day t; k is 

the next month’s number of days; Fk is the futures price on the day the nearby futures 
expires, F1

0F

 is the price of the same contract on the day the contract switches from 
second-month to nearby contract (for nearby futures), from third- to second-month 
(for second-month futures), from fourth- to third-month (for third-month futures) and 
from fifth- to fourth-month (for fourth-month futures).  is the price of the same 
contract on the previous day. Therefore, 0.3645 is the average of annualized standard 
deviations of nearby futures returns over next month, 0.3353 is the average of 
annualized standard deviation of second-month futures returns over next month and so 
on. 82 is the number of months in the sample from September 1999 through June 
2006. 
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Crude Oil                  

Time to 
expiration 

All-
strike  
ISD 
Mean 

ATM 
ISD 
Mean 

 Forward 
ISD 

 Different 
futures 
contracts 
volatility 

       
Near-
month 

0.3556 0.3442 Nearby 0.3556 Nearby 0.3645 

Second-
month 

0.3468 0.3406 Second-
month 
forward 

0.3477 Second-
month 

0.3353 

Third-
month 

0.3333 0.3308 Third-
month 
forward 

0.3180 Third-
month 

0.3125 

Fourth-
month 

0.3212 0.3194 Fourth-
month 
forward 

0.2915 Fourth-
month 

0.3005 

 
Natural Gas 
 

Time to 
expiration 

All 
strike  
ISD 
Mean 

ATM 
ISD 
Mean 

 Forward 
ISD 

 Different 
futures 
contracts 
volatility 

Near-
month 

0.5720 0.5614 Nearby 0.5720 Nearby 0.6010 

Second-
month 

0.5432 0.5369 Second-
month 
forward 

0.5150 Second-
month 

0.5520 

Third-
month 

0.5088 0.5072 Third-
month 
forward 

0.4625 Third-
month 

0.4978 

Fourth-
month 

0.4757 0.4750 Fourth-
month 
forward 

0.4180 Fourth-
month 

0.4462 
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Panel B. ISDs by time to expiration and option’s strike price 

This panel reports the average implied standard deviations (ISDs) when the sample is 
stratified by time to expiration and by the option’s strike price. In the “Group” 
column, the second letter (I or O) refers to In-the-money (low-strike calls) or Out-of-
the-money (high-strike calls); and the last digit indicates the “moneyness” of that 
group where 1 indicates that the group is the nearest-to-the-money and 2 indicates that 
the group is 4% in or out of the money, etc. The “moneyness” of a group is measured 
by (X/F – 1) where X is the strike price and F is the underlying futures price. 
 

  Crude Oil 

  Mean ISD 

Group   Moneyness 
(X/F – 1) 

Nearby Second 
month 

Third month Fourth 
month 

      
GI7 (0.28)-(0.24) 0.4579 0.3792 0.3297 0.3094 

GI6 (0.24)-(0.20) 0.4031 0.3508 0.3242 0.3026 

GI5 (0.20)-(0.16) 0.3788 0.3488 0.3321 0.3147 

GI4 (0.16)-(0.12) 0.3575 0.3372 0.3218 0.3044 

GI3 (0.12)-(0.08) 0.3442 0.3381 0.3254 0.3111 

GI2 (0.08)-(0.04) 0.3451 0.3401 0.3288 0.3175 

GI1 (0.04)-0.00 0.3429 0.3404 0.3298 0.318 

GO1 0.00-0.04 0.3456 0.3429 0.3318 0.3207 

GO2 0.04-0.08 0.3513 0.3467 0.3346 0.3233 

GO3 0.08-0.12 0.3619 0.3509 0.3378 0.3269 

GO4 0.12-0.16 0.3796 0.3565 0.3415 0.3315 

GO5 0.16-0.20 0.404 0.366 0.3475 0.3365 

GO6 0.20-0.24 0.4342 0.3777 0.356 0.3403 

GO7 0.24-0.28 0.4818 0.3959 0.3705 0.3463 

GO8 0.28-0.32 0.5302 0.4179 0.3912 0.3567 
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  Natural Gas 

  Mean ISD 

Group   Moneyness 
(X/F – 1) 

Nearby Second 
month 

Third month Fourth 
month 

      
GI6 (0.24)-(0.20) 0.481 0.496 0.4597 0.4293 

GI5 (0.20)-(0.16) 0.5115 0.4954 0.4642 0.433 

GI4 (0.16)-(0.12) 0.5148 0.4975 0.4677 0.4393 

GI3 (0.12)-(0.08) 0.5339 0.514 0.4822 0.45 

GI2 (0.08)-(0.04) 0.5433 0.5219 0.4935 0.462 

GI1 (0.04)-0.00 0.5548 0.5308 0.5024 0.4704 

 

 

GO1 0.00-0.04 0.5679 0.5429 0.5119 0.4796 

GO2 0.04-0.08 0.5826 0.5569 0.5201 0.4882 

GO3 0.08-0.12 0.612 0.5652 0.5282 0.4954 

GO4 0.12-0.16 0.6546 0.5783 0.5391 0.5014 

GO5 0.16-0.20 0.6938 0.5962 0.5493 0.5106 

GO6 0.20-0.24 0.6968 0.6159 0.5626 0.5219 
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Panel C 
 
Correlation in monthly returns 
 
This panel presents the results from the following specification: 
Returnst = µ + a1Returnst-1 + a2Returnst-2 + a3Returnst-3 + et 
where Returns

          (18) 
t

 
 represents the monthly returns in month t.  

 Crude oil returns Natural gas returns 
 Estimate Std. Error Estimate Std. Error 
µ 0.0106 0.0076 0.0100 0.0118 
a 0.0796 1 0.0964 0.1300 0.0893 
a -0.0355 2 0.0954 -0.1227 0.0870 
a -0.0240 3 0.0958 -0.0539 0.0865 

 

Panel D 
 
Volatility of nearby futures returns over different periods 
 
This Panel presents the annualized standard deviations of monthly, two-, three- and 
four-month nearby futures returns which are calculated according to the following 
formula: 83

2
,

1

1 ( ) 12 /
83 1

i

i month returns T i monthreturns
T

R R i
i

σ
−

− −
=

= − ⋅
− − ∑  where )/ln(, ireturnsmonthiT FFR −− = ττ

; τF is 

the nearby futures price on the expiration date and iF −τ  is the price of the same contract 
on the day it switches from second-month to nearby contract (i=1), from third- to 
second-month (i=2), from fourth- to third-month (i=3) and from fifth- to fourth-month 
(i=4).  
 

 Annualized Standard 
Deviation 

 Crude oil Natural gas 
   
1-month 
returns 

0.2763 0.5042 

2-month 
returns 

0.3083 0.5507 

3-month 
returns 

0.3149 0.5531 

4-month 
returns 

0.3167 0.5523 
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Table IX. The implied volatility smile 

This table presents the implied standard deviation (ISD) pattern when the sample is stratified 
by maturity and by the options’ strike price. ISDs are calculated from daily closing prices of 
futures and call options on futures. The sample ranges from September 01, 1999 to June 30, 
2006. In the “Group” column, the second letter (I or O) refers to In-the-money (low-strike 
calls) or Out-of-the-money (high-strike calls); and the last digit indicates the “moneyness” of 
that group where 1 indicates that the group is the nearest-to-the-money and 2 indicates that the 
group is 4% in or out of the money, etc. The “moneyness” of a group is measured by (X/F – 1) 
where X is the strike price and F is the underlying futures price. The “Mean ISD ratio” 
measures the ratio of the mean ISD on the options in the “Group” column to the average ISD 
of the two nearest-the-money groups: GI1 and GO1.  
 
Panel A. The smile 
 
Crude Oil  
 

  Nearby Second 
 X/F – 1 

 
 

Mean 
ISD 
 

Mean 
ISD 
ratio 

Obs 
 
 

Mean 
ISD 
 

Mean 
ISD 
ratio 

Obs 
 
 

GI7 (0.28)-(0.24) 0.4579 1.0974 104 0.3792 1.0273 265 

GI6 (0.24)-(0.20) 0.4031 1.0988 316 0.3508 1.0158 625 

GI5 (0.20)-(0.16) 0.3788 1.0700 668 0.3488 0.9997 931 

GI4 (0.16)-(0.12) 0.3575 1.0252 1102 0.3372 0.9820 1290 

GI3 (0.12)-(0.08) 0.3442 1.0026 1432 0.3381 0.9936 1505 

GI2 (0.08)-(0.04) 0.3451 1.0052 1532 0.3401 0.9966 1565 

GI1 (0.04)-0.00 0.3429 0.9962 1569 0.3404 0.9968 1594 

GO1 0.00-0.04 0.3456 1.0038 1599 0.3429 1.0032 1618 

GO2 0.04-0.08 0.3513 1.0176 1585 0.3467 1.0149 1624 

GO3 0.08-0.12 0.3619 1.0351 1372 0.3509 1.0275 1628 

GO4 0.12-0.16 0.3796 1.0554 955 0.3565 1.0435 1605 

GO5 0.16-0.20 0.4040 1.0719 552 0.3660 1.0603 1449 

GO6 0.20-0.24 0.4342 1.0784 290 0.3777 1.0697 1183 

GO7 0.24-0.28 0.4818 1.0906 132 0.3959 1.0866 867 

GO8 0.28-0.32 0.5302 1.1100 71 0.4179 1.1016 543 

GO9 0.32-0.36    0.4447 1.1189 300 

GO10 0.36-0.40    0.4838 1.1333 151 



 

155 
 

  Third Fourth 
 X/F – 1 

 
 

Mean 
ISD 
 

Mean 
ISD 
ratio 

Obs 
 
 

Mean 
ISD 
 

Mean 
ISD 
ratio 

Obs 
 
 

GI7 (0.28)-(0.24) 0.3242 0.9771 632 0.3026 0.9501 572 

GI6 (0.24)-(0.20) 0.3321 0.9786 917 0.3147 0.9683 800 

GI5 (0.20)-(0.16) 0.3218 0.9686 1285 0.3044 0.9595 1218 

GI4 (0.16)-(0.12) 0.3254 0.9886 1499 0.3111 0.9830 1452 

GI3 (0.12)-(0.08) 0.3288 0.9956 1592 0.3175 0.9982 1577 

GI2 (0.08)-(0.04) 0.3298 0.9965 1636 0.3180 0.9961 1628 

GI1 (0.04)-0.00 0.3318 1.0035 1648 0.3207 1.0039 1645 

GO1 0.00-0.04 0.3346 1.0130 1640 0.3233 1.0130 1641 

GO2 0.04-0.08 0.3378 1.0227 1621 0.3269 1.0233 1636 

GO3 0.08-0.12 0.3415 1.0334 1550 0.3315 1.0341 1592 

GO4 0.12-0.16 0.3475 1.0487 1440 0.3365 1.0475 1535 

GO5 0.16-0.20 0.3560 1.0550 1267 0.3403 1.0578 1471 

GO6 0.20-0.24 0.3705 1.0709 1017 0.3463 1.0708 1361 

GO7 0.24-0.28 0.3912 1.0833 723 0.3567 1.0841 1073 

GO8 0.28-0.32 0.4086 1.0869 466 0.3687 1.0949 855 

GO9 0.32-0.36 0.4274 1.0918 308 0.3828 1.1053 611 

GO10 0.36-0.40 0.4522 1.0919 188 0.3946 1.1100 440 
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Natural Gas  

  Nearby Second 
 
 

X/F – 1 
 
 

Mean 
ISD 
 

Mean 
ISD 
ratio 

Obs 
 
 

Mean 
ISD 
 

Mean 
ISD 
ratio 

Obs 
 
 

GI8 (0.32)-(0.28)    0.4465 0.7702 220 

GI7 (0.28)-(0.24)    0.4830 0.8445 563 

GI6 (0.24)-(0.20) 0.4810 0.8287 206 0.4960 0.8758 946 

GI5 (0.20)-(0.16) 0.5115 0.8855 543 0.4954 0.9097 1235 

GI4 (0.16)-(0.12) 0.5148 0.9206 867 0.4975 0.9345 1386 

GI3 (0.12)-(0.08) 0.5339 0.9566 997 0.5140 0.9611 1434 

GI2 (0.08)-(0.04) 0.5433 0.9784 1016 0.5219 0.9774 1472 

GI1 (0.04)-0.00 0.5548 0.9888 1049 0.5308 0.9903 1508 

GO1 0.00-0.04 0.5679 1.0113 1040 0.5429 1.0095 1533 

GO2 0.04-0.08 0.5826 1.0331 1000 0.5569 1.0307 1507 

GO3 0.08-0.12 0.6120 1.0546 834 0.5652 1.0479 1479 

GO4 0.12-0.16 0.6546 1.0692 586 0.5783 1.0664 1435 

GO5 0.16-0.20 0.6938 1.0819 312 0.5962 1.0819 1321 

GO6 0.20-0.24 0.6968 1.0922 155 0.6159 1.0961 1162 

GO7 0.24-0.28    0.6411 1.1101 934 

GO8 0.28-0.32    0.6431 1.1252 613 

GO9 0.32-0.36    0.6475 1.1340 334 

GO10 0.36-0.40    0.6416 1.1526 117 
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  Third Fourth 
 
 

X/F – 1 
 
 

Mean 
ISD 
 

Mean 
ISD 
ratio 

Obs 
 
 

Mean 
ISD 
 

Mean 
ISD 
ratio 

Obs 
 
 

GI8 (0.32)-(0.28) 0.4655 0.8227 553 0.4307 0.8147 683 

GI7 (0.28)-(0.24) 0.4618 0.8515 849 0.4245 0.8471 1008 

GI6 (0.24)-(0.20) 0.4597 0.8831 1154 0.4293 0.8813 1203 

GI5 (0.20)-(0.16) 0.4642 0.9123 1305 0.4330 0.9085 1347 

GI4 (0.16)-(0.12) 0.4677 0.9363 1406 0.4393 0.9335 1431 

GI3 (0.12)-(0.08) 0.4822 0.9622 1458 0.4500 0.9577 1442 

GI2 (0.08)-(0.04) 0.4935 0.9797 1504 0.4620 0.9770 1488 

GI1 (0.04)-0.00 0.5024 0.9908 1551 0.4704 0.9911 1540 

GO1 0.00-0.04 0.5119 1.0091 1563 0.4796 1.0087 1561 

GO2 0.04-0.08 0.5201 1.0277 1565 0.4882 1.0268 1562 

GO3 0.08-0.12 0.5282 1.0452 1543 0.4954 1.0446 1557 

GO4 0.12-0.16 0.5391 1.0613 1508 0.5014 1.0607 1510 

GO5 0.16-0.20 0.5493 1.0783 1456 0.5106 1.0765 1461 

GO6 0.20-0.24 0.5626 1.0932 1390 0.5219 1.0916 1415 

GO7 0.24-0.28 0.5747 1.1121 1304 0.5322 1.1063 1331 

GO8 0.28-0.32 0.5927 1.1220 1148 0.5440 1.1208 1241 

GO9 0.32-0.36 0.6097 1.1371 1018 0.5598 1.1368 1110 

GO10 0.36-0.40 0.6236 1.1526 810 0.5722 1.1488 951 
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Panel B. Sample Statistics for crude oil and natural gas daily returns 
 
This Panel reports some descriptive statistics for crude oil and natural gas daily return series 
from September 01, 1999 to June 30, 2006. ** on D-statistic indicates rejection at the 0.01 
level. For a .01 significance level, the critical value of the D-statistic is given by 0.026. Under 
the assumption of normality, the asymptotic standard errors for kurtosis and skewness are 
respectively given by (24/N).5 and (6/N).5

 

 where N denotes the number of observations. For N 
= 1702, these standard errors are calculated as 0.1187 and 0.0594, respectively.  

 Crude oil 
 Nearby Second-

month 
Third-
month 

Fourth-
month 

Observations 1702 1702 1702 1702 

Mean return  0.0654 0.0681 0.0706 0.0730 

Standard 
Deviation 

0.0239 0.0219 0.0204 0.0197 

Skewness -0.6059 -0.4715 -0.3768 -0.4674 

Kurtosis 6.0133 5.6260 4.8176 6.0415 

D-Statistic 0.0380 0.0265** 0.0294** 0.0313** 

Skewness/s.e 

** 

-10.20 -7.94 -6.34 -7.87 

Excess kurtosis 
/ s.e 

25.39 22.12 15.31 25.62 

  
Natural gas 

 Nearby Second-
month 

Third-
month 

Fourth-
month 

Observations 1702 1702 1702 1702 

Mean return  0.0595 0.0621 0.0656 0.0770 

Standard 
Deviation 

0.0390 0.0355 0.0326 0.0291 

Skewness 0.4528 0.1316 -0.5064 -0.1606 

Kurtosis 8.4198 6.1718 9.6408 7.0398 

D-Statistic 0.0536 0.0506** 0.0510** 0.0497** 

Skewness/s.e 

** 

7.62 2.21 -8.53 -2.70 

Excess kurtosis 
/ s.e 

45.66 26.72 55.95 34.03 
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Panel C: Average trading volume 

This panel reports the average number of crude oil and natural gas call and put options traded 
per day during the period from September 1999 through June 2006. The options are stratified 
by term-to-maturity and the options’ moneyness. Deep ITM calls and deep OTM puts are 
options with (X/F)-1 ≤ -.10; ITM calls and OTM puts are options with -.10<(X/F)-1 < -.02. 
ATM calls and puts are options with -.02 ≤ (X/F) -1 ≤ .02. OTM calls and ITM puts are 
options with .02 < (X/F)-1 < .10. Deep OTM calls and deep ITM puts are options with (X/F)-1 
≥ .10. 
 
  Call options   Put options 

Crude Oil 
Deep 
ITM ITM ATM OTM 

Deep 
OTM   

Deep 
OTM OTM ATM ITM 

Deep 
ITM 

Nearby 7,009 899 4,169 6,865 1,823  4,275 11,643 8,367 265 112 
Second-month 1,301 777 2,974 2,604 5,289  7,148 4,645 2,997 176 86 
Third-month 4 16 2,892 2,227 3,068  4,232 3,572 813 28 5 
Fourth-month 2 7 545 469 698  1,693 1,358 366 17 2 
            
Natural Gas            
Nearby 7 37 131 674 1,026  295 834 410 236 82 
Second-month 48 39 19 814 485  260 437 46 27 3 
Third-month 14 68 273 27 387  288 55 22 4 2 
Fourth-month 6 4 15 17 225   196 23 11 3 1 
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Table X. Month-of-the-year pattern 

This table reports mean values of the forward implied standard deviations where the sample is 
stratified by month-of-the-year. ISDs are calculated from daily closing prices of futures and 
call options on futures. The second-, third- and fourth-month forward columns represent the 
average forward ISDs over all options with -.2 ≤ (X/F-1) ≤ .2 (where X is the option’s strike 
price and F is the underlying futures price) for the expiration month in the first column. For 
example, the figure of .3133 in the first row is the average forward ISD over all options with -
.2 ≤ (X/F-1) ≤ .2 for January expiration month calculated from the ISDs observed in October 
of fourth-month options expiring in January and of third-month options expiring in December. 
Winter is from November to February. Summer is from May to September. The sample ranges 
from September 01, 1999 to June 30, 2006. **

 

 on F- and t-test statistics denote rejection at the 
0.01 level. 

 
Expiration month  
of the option 
 

Nearby 
 

Second-
month 
forward 

Third-
month 
forward 

Fourth-
month 
forward 

Panel A. Crude oil     

January (F) 0.3768 0.3825 0.3785 0.3133 

February (G) 0.3841 0.3754 0.3756 0.3251 

March (H) 0.3612 0.3325 0.3282 0.3443 

April (J) 0.3835 0.3543 0.2996 0.3008 

May (K) 0.3734 0.3258 0.2995 0.2549 

June (M) 0.3372 0.3063 0.2916 0.2647 

July (N) 0.3249 0.3139 0.2758 0.2708 

August (Q) 0.3232 0.3189 0.2841 0.2573 

September (U) 0.3222 0.3138 0.3004 0.2716 

October (V) 0.3362 0.3369 0.3031 0.2898 

November (X) 0.3712 0.3673 0.3132 0.2893 

December (Z) 0.3758 0.3839 0.3443 0.2892 

F-Statistic 14.70 26.63** 32.49** 22.87** 

(H

** 

0: μF=μG =μH =μJ=μK =μ  M     

=μN=μQ =μU=μV=μX=μZ  )    

t-statistic     

(H0: μSummer =μNon-Summer 11.71) 13.95** 12.27** 11.16** 

 

** 
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Panel B. Natural Gas  

 

January (F) 0.7292 0.6909 0.5928 0.5017 

February (G) 0.7085 0.5778 0.5305 0.4177 

March (H) 0.6153 0.4263 0.2825 0.2749 

April (J) 0.5250 0.3905 0.3459 0.2672 

May (K) 0.4453 0.4117 0.3737 0.3492 

June (M) 0.4741 0.4552 0.4154 0.3668 

July (N) 0.5116 0.4934 0.4686 0.4282 

August (Q) 0.4898 0.4991 0.5173 0.4791 

September (U) 0.4877 0.5105 0.5074 0.5040 

October (V) 0.5351 0.5067 0.4828 0.4762 

November (X) 0.5721 0.5648 0.5126 0.4896 

December (Z) 0.6422 0.6448 0.5898 0.5351 

 

F-Statistic 184.09 56.72** 106.50** 697.94** 

(H

** 

0: μF=μG =μH =μJ=μK =μ  M    

=μN=μQ =μU=μV=μX=μZ  )    

t-statistic 33.40 19.33** 19.05** 12.88** 

(H

** 

0: μWinter =μNon-winter   )       
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Table XI. Day-of-the-week pattern 

This table reports mean values of the log percentage change in the implied standard 
deviations, ln(ISDa,t/ISDa,t-1), calculated from nearby near-the-money options where the 
sample is stratified by day-of-the-week. ISDs, based on trading days, are calculated from daily 
closing prices of futures and call options on futures. ISDa,t is the average ISD of the two 
nearest-the-money options (GO1 and GI1) in the nearby group on day t. The sample ranges 
from September 01, 1999 to June 30, 2006. * and ** 

 

on t-statistics denote rejection, at the 0.05 
and 0.01 levels. 

   Natural Gas 

 Crude Oil Natural 

Gas 

Before 

May 2002 

After May 

2002 

Monday (M) -0.0381 -0.0198 -0.0157 -0.0217 
Tuesday (T) 0.0145 0.0197 0.0257 0.0171 
Wednesday (W) -0.0035 0.0139 0.0021 0.0197 
Thursday (R) -0.0136 -0.0107 -0.0021 -0.0149 
Friday (F) -0.0113 0.0107 0.0111 0.0105 
F-Statistic 7.5592 17.9749** 4.1975** 16.0246** 
(H

** 

0: µM= µT= µW= µR= µF  )    

t-Statistic  (H0: µM= µT,W,R,F -4.3319) -5.9401** -2.8356** -5.2422** 
t-Statistic  (H

** 

0: µT= µM,W,R,F 4.0631) 4.4274** 3.0965** 3.2735** 
t-Statistic  (H

** 

0: µW= µM,T,R,F 0.9679 ) 3.1093 -0.2944 ** 4.0247
t-Statistic  (H

** 

0: µR= µM,T,W,F -0.7466 ) -3.9286 -1.0201 ** -4.0970
t-Statistic  (H

** 

0: µF= M,T,W,R -0.3306 ) 2.2362 1.0791 * 2.0076* 
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Table XII. Impact of unexpected positive and negative returns on implied 

volatility 

 
Estimates from specification:  

( ) ( )
4 0 0

{ } { }
, 0 , 1 , 1

1 1 1
/ 252 / 252 (19)a t i i j t j a t j j t j a t j t

i j j
ISD D R ISD R ISD uα α δ κ+ −

+ + − + + −
= =− =−

   ∆ = + + + +   ∑ ∑ ∑  

are reported where ΔISDa,t is the change in average implied standard deviations of the 
two nearby nearest-the-money options, GI1 and GO1; Di’s are dummy variables to 
control for day-of-the-week effects; Rt=ln(Ft/Ft-1) where Ft is the price of the nearby 

futures contract on day t and Ft-1 is the price of the same contract on day t-1.
 {+}

 and {-}
 

denote positive and negative returns, and ut is an error term. The model is estimated 
using an ARMA (2,1) model. Standard errors are in parentheses. The coefficient 
estimates and standard errors are multiplied by 100. * and **

 

 denote rejection at the 
0.05 and 0.01 levels.  

 

 

 

 Crude oil Natural gas 
α -0.7211 0 

(0.5358) 
-1.1271 
(0.9446) 

Monday -0.4344
(0.1609) 

** -2.1067
(0.4415) 

** 

Tuesday 0.1790 
(0.1478) 

-0.3746 
(0.4498) 

Wednesday -0.1385 
(0.1314) 

 

Thursday  -1.4905
(0.4417) 

** 

Friday -0.2120 
(0.1373) 

0.0120 
(0.4332) 

δ 0.26920 
(0.1491) 

* 2.7033
(0.2241) 

** 

δ 0.44271 
(0.0841) 

** 0.4960
(0.2235) 

* 

κ -0.80500 
(0.1363) 

** -0.7480
(0.2636) 

** 

κ -0.19811 
(0.0813) 

* -0.7066
(0.2624) 

** 
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Table XIII.  Realized volatility regressed on implied volatility 

The table reports regression results from Equation 21: 1 , , , ,( ) ,t i j t i j tISD uσ τ α β= + ⋅ +  for 
each of the subsample defined by maturity and “moneyness” of oil and gas options between 
September 01, 1999, and June 30, 2006. The coefficients are fitted by OLS, but the standard 
errors (labeled s.e) are corrected for intercorrelation. ISDi,j,t

t τ+ is the implied standard deviation 
computed from the price of the call option from maturity group i (expiring at ) and 
“moneyness” group j on date t. ( )tσ τ is the realized standard deviation of the underling futures 
log returns from date t  to t τ+ . , ,t i ju  is the regression error. * and ** designate parameters 
which are significantly different from zero at the 0.05 and 0.01 levels, respectively and † and †† 

, ,i j tISDdesignate coefficients of  which are significantly different from 1.0 at the 0.05 and 0.01 
levels, respectively. Tests are two-tailed for intercept and one-tailed for slope coefficient. Υ is 
the reciprocal of the ratio of the sum of squared errors (SSE) from the regression for strike j to 
the SSE from a regression with the average ISD for ATM options as the independent variable 
over observations common to both regressions. 

Crude Oil 

Nearby GI4 GI3 GI2 GI1 GO1 GO2 GO3 
α 0.1561 0.0928** 0.0497 * 0.0342 0.0283 0.0314 0.0285 
s.e 0.0430 0.0448 0.0456 0.0462 0.0473 0.0481 0.0522 
β 0.49301 0.6917**

 

0.8179**

 

0.8717** 0.8851** 0.8614** 0.8486** ** 
s.e 0.1321 0.1418 0.1439 0.1473 0.1498 0.1497 0.1581 
Adj.R 0.1085 2 0.1727 0.2158 0.2287 0.2304 0.2303 0.2257 
Υ ratio 0.9212 0.9379 0.9662 0.9993 1.0002 0.9990 0.9890 

Second 

 

       
α 0.2059 0.1442** 0.1214** 0.1075* 0.1066* 0.0981* 0.0924 * 
s.e 0.0532 0.0514 0.052 0.0504 0.0492 0.048 0.0481 
β 0.41441 0.5924**

 

0.6584**

 

0.7024**

 

0.7031**

 

0.7211**

 

0.7283**

 

**

 
s.e 0.1599 0.1509 0.1539 0.1493 0.1438 0.1388 0.1376 
Adj.R 0.1362 2 0.2285 0.2541 0.2780 0.2774 0.2908 0.2972 
Υ ratio 0.9020 0.9434 0.9734 1.0011 1.0012 1.0213 1.0259 

Third        
α 0.2474 0.2113** 0.1826** 0.1642** 0.1513* 0.1471* 0.1371 * 
s.e 0.0525 0.0612 0.0635 0.0689 0.0706 0.0715 0.0717 
β 0.27231 0.3803*,

 

0.4732*,

 

0.5341**

 

0.5711**

 

0.5787**

 

0.6023**

 

**

 
s.e 0.1648 0.1774 0.1868 0.2076 0.212 0.2135 0.2117 
Adj.R 0.082 2 0.1222 0.1646 0.1927 0.2114 0.2158 0.229 
Υ ratio 0.9152 0.9638 0.9798 0.9859 1.0103 1.0134 1.0240 
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Fourth        
α 0.2797 0.2627** 0.2410** 0.2257** 0.2143** 0.2029** 0.1973* * 
s.e 0.0659 0.065 0.0706 0.0804 0.0832 0.0825 0.0816 
β 0.1393 1 0.2044 0.2858 0.3390 0.3738 0.4062 0.4199*,

 
s.e 0.2098 0.1969 0.2092 0.2453 0.2542 0.2506 0.2445 
Adj.R 0.0269 2 0.0428 0.0706 0.0855 0.1001 0.1161 0.1258 
Υ ratio 0.9796 0.9819 0.9886 0.9914 1.0009 1.0153 1.0239 

 

Natural Gas 

Nearby GI4 GI3 GI2 GI1 GO1 GO2 GO3 
α 0.1180 0.0752 * 0.0622 0.0587 0.0488 0.0693 0.1065 
s.e 0.0578 0.0463 0.0509 0.0514 0.0559 0.0640 0.0747 
β 0.81931 0.8581**

 

0.8709**

 

0.8685** 0.8684** 0.8092** 0.7458**

 

**

 
s.e 0.0955 0.0712 0.0829 0.0775 0.0851 0.0953 0.1106 
Adj. R 0.2613 2 0.3465 0.3188 0.3276 0.3174 0.2676 0.2255 
Υ ratio 0.9991 1.0116 1.0072 1.0030 0.9993 0.9947 0.9878 

Second 

  

       
α 0.1136 0.0892 0.0810 0.0824 0.0760 0.0841 0.0742 
s.e 0.0588 0.0606 0.0622 0.0598 0.0638 0.0644 0.0700 
β 0.80841 0.8412** 0.8436** 0.8276** 0.8279** 0.7935** 0.7982** ** 
s.e 0.1234 0.1252 0.1274 0.1211 0.1275 0.1252 0.1348 
Adj. R 0.4485 2 0.4554 0.4516 0.4487 0.4347 0.4201 0.4036 
Υ ratio 0.9921 0.9868 0.9950 1.0113 0.9961 0.9771 0.9740 

Third 

  

       
α 0.2084 0.1908** 0.1843** 0.1715** 0.1668* 0.1546* 0.1533* * 
s.e 0.0614 0.0645 0.0644 0.0702 0.0717 0.0759 0.0748 
β 0.52771 0.5613**

 

0.5671**

 

0.5937**

 

0.5928**

 

0.6081**

 

0.5985**

 

**

 
s.e 0.1319 0.1381 0.1358 0.1484 0.1487 0.1572 0.1526 
Adj. R 0.3125 2 0.3199 0.3236 0.3239 0.3209 0.3160 0.3099 
Υ ratio 0.9861 0.9896 0.9948 1.0027 0.9983 0.9921 0.9819 

Fourth 

  

       
α 0.2145 0.1842* 0.1778* 0.1605 * 0.1454 0.1345 0.1278 
s.e 0.0865 0.0863 0.0859 0.0850 0.0856 0.0860 0.0869 
β 0.51801 0.5790**

 

0.5788**

 

0.6145**

 

0.6367**

 

0.6473**

 

0.6482**

 

**
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s.e 0.2049 0.1998 0.1949 0.1904 0.1887 0.1871 0.1863 
Adj. R 0.2245 2 0.2648 0.2679 0.2898 0.3076 0.3171 0.3202 
Υ ratio 0.9407 0.9609 0.9815 0.9890 1.0057 0.9981 0.9946 
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Table XIV. Realized volatility regressed on implied volatility and historical 

volatility 
The table reports regression results from Equation 22: 

1 , , 2 , , , ,( )t i j t i j t i j tISD HIS uσ τ α β β= + ⋅ + ⋅ +  . ISDi,j,t

t τ+
 is the implied standard deviation computed 

from the price of the call option from maturity group i (expiring at ), and “moneyness” 
group j on date t . HISi,j,t

( )tσ τ

 is the volatility forecast over the life of the option generated by the 
Glosten et al. (1993) model. The coefficients are fitted by OLS, but the standard errors 
(labeled s.e) are corrected for intercorrelation. is the realized standard deviation of the 
underlying futures log returns from date t to t τ+ . ui,j,t is the regression error. * and ** 

designate parameters which are significantly different from zero at the 0.05 and 0.01 levels, 
respectively and † and †† designate coefficients of ISDi,j,t

 

 which are significantly different from 
1.0 at the 0.05 and 0.01 levels, respectively. Tests are two-tailed for intercept and one-tailed 
for slope coefficient.  

Crude Oil 

Nearby GI4 GI3 GI2 GI1 GO1 GO2 GO3 
α 0.0202 0.0069 -0.0107 -0.0107 -0.0049 -0.0011 -0.0143 
s.e 0.0607 0.0582 0.0527 0.0538 0.0600 0.0642 0.0652 
β 0.43431 0.5678**,

 

0.7045**,

 

0.7774**,

 

0.8040** 0.7820** 0.7455** ** 
s.e 0.1263 0.1509 0.1699 0.1793 0.1865 0.1857 0.1939 
β 0.41782 0.3428**,

 

0.2643 *,†

 

0.2039 0.1609 0.1581 0.2086 
s.e 0.1597 0.1709 0.1774 0.1802 0.2035 0.2187 0.2244 
Adj.R 0.1419 2 0.1861 0.2235 0.2336 0.2336 0.2335 0.2313 

Second        
α 0.1569 0.1242* 0.1221* 0.1098* 0.1062* 0.1001* 0.0964* * 
s.e 0.0613 0.0548 0.0505 0.0461 0.0436 0.0437 0.0441 
β 0.36381 0.5633*,†

 

0.6418**,

 

0.7079**,

 

0.7018** 0.7266** 0.7395** ** 
s.e 0.1843 0.1797 0.1923 0.1888 0.1869 0.1781 0.1737 
β 0.1941 2 0.0869 0.0146 -0.0122 0.0026 -0.0113 -0.0228 
s.e 0.2046 0.1751 0.1654 0.1422 0.1359 0.1296 0.1213 
Adj.R 0.1428 2 0.2299 0.2500 0.2781 0.2774 0.2908 0.2974 
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Third         
α 0.2132 0.1917** 0.1689** 0.1541* 0.1463* 0.1452 * 0.1341 
s.e 0.0772 0.0721 0.0730 0.0747 0.0739 0.0766 0.0766 
β 0.2399 1 0.3537 0.4473*,†

 

0.5134*,†

 

0.5595*,† 0.5744*,† 0.5949**,

 

**,

 
s.e 0.1829 0.2036 0.2092 0.2360 0.2468 0.2419 0.2399 
β 0.1406 2 0.0881 0.0686 0.0522 0.0271 0.0103 0.0170 
s.e 0.2536 0.2278 0.2072 0.2072 0.2077 0.2043 0.1999 
Adj.R 0.0870 2 0.1242 0.1659 0.1934 0.2116 0.2158 0.2291 

Fourth         
α 0.2741 0.2514** 0.2350** 0.2172** 0.2037** 0.1946* 0.1857* * 
s.e 0.0626 0.0643 0.0758 0.0821 0.0852 0.0867 0.0854 
β 0.1371 1 0.2003 0.2832 0.3338 0.3659 0.4006 0.4101*,† 
s.e 0.2132 0.1990 0.2096 0.2469 0.2556 0.2505 0.2437 
β 0.0203 2 0.0405 0.0217 0.0324 0.0421 0.0325 0.0472 
s.e 0.0785 0.0809 0.0834 0.0757 0.0781 0.0813 0.0795 
Adj.R 0.0271 2 0.0436 0.0707 0.0859 0.1008 0.1165 0.1269 

Natural Gas 

Nearby GI4 GI3 GI2 GI1 GO1 GO2 GO3 
α 0.1022 0.0618 0.0507 0.0505 0.0420 0.0627 0.1044 
s.e 0.0584 0.0483 0.0542 0.0524 0.0571 0.0655 0.0772 
β 0.69401 0.7492**,

 

0.7593** 0.7579** 0.7694** 0.7097** 0.6326** **,

 
s.e 0.1813 0.1587 0.1501 0.1631 0.1723 0.1792 0.1893 
β 0.1303 2 0.1173 0.1187 0.1132 0.1029 0.1050 0.1126 
s.e 0.1553 0.1559 0.1472 0.1492 0.1569 0.1554 0.1493 
Adj. R 0.2647 2 0.3511 0.3236 0.3316 0.3208 0.2715 0.2302 

Second        
α 0.1395 0.1174 * 0.1076 0.1086 0.0927 0.0987 0.0899 
s.e 0.0694 0.0682 0.0680 0.0657 0.0717 0.0719 0.0757 
β 0.87921 0.9287** 0.9296** 0.9094** 0.8798** 0.8364** 0.8492** ** 
s.e 0.1578 0.1638 0.1685 0.1607 0.1724 0.1712 0.1865 
β -0.1111 2 -0.1323 -0.1292 -0.1258 -0.0809 -0.0694 -0.0803 
s.e 0.1548 0.1506 0.1487 0.1460 0.1693 0.1708 0.1788 
Adj. R 0.4513 2 0.4597 0.4558 0.4527 0.4360 0.4210 0.4049 
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Third        
α 0.1984 0.1803** 0.1715* 0.1592* 0.1596* 0.1433 * 0.1436 
s.e 0.0693 0.0742 0.0748 0.0763 0.0806 0.0832 0.0833 
β 0.50621 0.5382**,

 

0.5393**,

 

0.5631**,

 

0.5759**,

 

0.5777**,

 

0.5714**,

 

**,

 
s.e 0.1732 0.1783 0.1747 0.1987 0.1922 0.2105 0.2088 
β 0.0400 2 0.0431 0.0527 0.0548 0.0315 0.0537 0.0478 
s.e 0.1641 0.1759 0.1791 0.1906 0.1935 0.2103 0.2199 
Adj. R 0.3130 2 0.3204 0.3247 0.3243 0.3210 0.3163 0.3099 

Fourth        
α 0.2228 0.1999** 0.1894* 0.1716* 0.1591 * 0.1478 0.1415 
s.e 0.0854 0.0849 0.0831 0.0837 0.0837 0.0833 0.0839 
β 0.53651 0.6190*,† 0.6065** 0.6410** 0.6707** 0.6815** 0.6846** ** 
s.e 0.2670 0.2633 0.2571 0.2483 0.2491 0.2486 0.2490 
β -0.0363 2 -0.0744 -0.0538 -0.0519 -0.0660 -0.0659 -0.0701 
s.e 0.2083 0.2073 0.2047 0.2018 0.2040 0.2055 0.2085 
Adj. R 0.2247 2 0.2673 0.2690 0.2908 0.3094 0.3188 0.3222 
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Figure 1. Crude oil prices and historical volatilities from January 1997 to 

November 2008 

 

 

 

 

This figure presents crude oil prices and historical volatilities from January 1997 through 

November 2008. The vertical axes depict nearby futures prices and annualized rolling 30-day 

standard deviations of returns. 
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Figure 2. The change in conditional volatility following an oil return shock 

 

 

This figure presents the impact of a two-standard deviation oil return shock on the 

predicted volatility. Suppose the conditional variance, ht-1 t-1ζ=Var( ) is at its steady-

state level and suppose there is a shock such that 2
t-1ζ = 4Var( t-1ζ ). This figure 

demonstrates the percentage difference in expected volatility on day t+x and on day t-

1, t+x

t-1

Var ( ) -1
Var ( )

ζ
ζ

 
 
 

, assuming E( 2
t+xζ ) = Var( t xζ + ) for x > -1 and that negative and 

positive return shocks are equally likely. 



 

172 
 

Figure 3. Estimated News Impact Curves 

 

 

 

This figure depicts how equal positive and negative return shocks at time t-1 impact 

predicted volatility in the crude oil market according to the estimates of the GJR 

model and those of the full model. These curves demonstrate how a return shock in 

time t-1, εt-1, is incorporated into volatility estimates (as measured by Δht, the 

percentage change in conditional variance from day t-1 to day t). ht-1 

 

is assumed to be 

equal the unconditional variance.  

 

Δht 
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Figure 4. Conditional covariance between crude oil prices and the value of the 
dollar 

 

 

Figure 5. Conditional correlation between crude oil prices and the value of the 
dollar 
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Figure 6. Natural gas prices and historical volatilities from January 1997 to 
December 2008 
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This figure presents natural gas prices and historical volatilities from January 1997 

through December 2008. The vertical axes depict nearby futures prices and annualized 

rolling 30-day standard deviations of returns. 

$/mmBtu 

Natural gas historical volatilities 

Natural gas prices 
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Figure 7. Estimated News Impact Curves 
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7.b 
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This figure depicts how equal positive and negative return shocks at time t-1 impact 
predicted volatility in the natural gas market according to the estimates of the GJR 
model and those of the full model (in the second and third columns of Panel B in 
Table 2). These curves demonstrate how a return shock in time t-1, εt-1, is incorporated 
into volatility estimates (as measured by Δht), the percentage change in conditional 
variance from day t-1 to day t). ht-1 is assumed to be equal the unconditional variance.  

εt-1 

 

εt-1 

 

ht 

ht 
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Figure 8. The change in conditional volatility following a return shock 

 

 

This figure presents the impact of a two-standard deviation natural gas return shock on 

the predicted volatility. Suppose the conditional variance, ht-1 t-1ζ=Var( ) is at its 

steady-state level and suppose there is a shock such that 2
t-1ζ = 4Var( t-1ζ ). This figure 

demonstrates the percentage difference in expected volatility on day t+x and on day t-

1, t+x

t-1

Var ( ) -1
Var ( )

ζ
ζ

 
 
 

, assuming E( 2
t+xζ ) = Var( t xζ + ) for x > -1 and that negative and 

positive return shocks are equally likely. 
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Figure 9. Time-of-the-year pattern 
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This figure presents the month-of-the-year pattern according to the estimates in the 

third column of Panel B in Table 2. The vertical axis depicts the ratio of the average 

variance of natural gas volatility on the futures contract expiring in a certain month to 

that on the futures contract expiring in June.  
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Figure 10. Implied Volatility Term Structure 

This figure presents the mean ISD of each “moneyness” subsample in each maturity 
group. “I” or “O” indicates whether the call option is ITM (low-strike calls) or OTM 
(high-strike calls) and the third digit denotes the “moneyness” where “1” is the closest 
to the money. The Y-axis measures the mean ISD for each strike price at each 
maturity. 

0.3

0.35

0.4

0.45

0.5

0.55

GO8

GI6

GO5

GO6

GI7

GO7

GI5

GI4

GI1

 

0.4

0.45

0.5

0.55

0.6

0.65

0.7

 

GO6 

GO4 

GO2 

GI2 

GI4 

GI6 

Nearby 

Second-
month 

Third-
month 

Fourth-
month 

Nearby 

Second-
month 

Third-
month Fourth-

month 

Crude Oil 

Natural Gas 



 

179 
 

Figure 11. Volatility Surface 

This figure presents surface plots showing the mean relative ISD graphed against each 
“moneyness” group and time-to-maturity. “I” or “O” indicates whether the call option 
is ITM (low-strike calls) or OTM (high-strike calls) and the third digit denotes the 
“moneyness” where “1” is the closest to the money. The vertical axis measures the 
mean ratio of the ISD for that strike price relative to the average of the two nearest-
the-money options, i.e, GI1 and GO1. 
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Figure 12. Average Trading Volume 

This figure presents the average number of crude oil and natural gas call and put 
options traded per day during the period from September 1999 through June 2006.  
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Figure 13. Time-of-the-year pattern in implied volatility 

These graphs present mean values of the implied forward volatility by month-of-the-
year. The horizontal axis presents the expiration month of the option contract.  
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Figure 14. The Slope Coefficient of Implied Volatility by “Moneyness” 

The slope coefficient, 1̂β  from estimation results of the equation 

1 , , , ,( ) ,t i j t i j tISD uσ τ α β= + ⋅ + is graphed against the “moneyness” bin for each 
maturity group. The  X-axis represents the “moneyness” bin and the Y-axis measures 
the slope coefficient of implied volatility for that “moneyness” bin.  
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Figure 15. The information “frown” in option prices: relative forecasting power 

of the implied volatility by “moneyness” 

The forecasting power of the equation 1 , , , ,( ) ,t i j t i j tISD uσ τ α β= + ⋅ + is graphed against 
the “moneyness” for each maturity group. The X-axis represents each “moneyness” bin, the Y-
axis measures relative forecasting power as the reciprocal of the ratio of the sum of squared 
errors (SSE) from the regression (2) for each “moneyness” bin j to the SSE for a regression 
with the average ISD for ATM options as the independent variable over observations common 
to both regressions.  
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