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CHAPTER 1 
INTRODUCTION

For over a century, one of the most tantalizing problems in 
all of mathematics was the Four Color Conjecture which 
states that any map on a plane or a sphere can be colored 
using four colors so that no two adjacent countries have 
the same color. The notion of a formula for counting 
colorings was introduced in 1912 by Birkhoff [3] in his 
work on the four-color problem, and later addressed in his 
paper. Chromatic Polynomials, with Lewis [4]. Scores of 
mathematicians worked on the conjecture, which was finally 
settled in the affirmative by Appel, Haken, and Koch ([1] 
and [2]); the proof was first published in 1977. 
Meanwhile, the study of chromatic polynomials had assumed 
a life of its own and continues to be a very active 
research area.

In general it remains an unsolved problem to determine 
which polynomials are chromatic. The purpose of this paper 
is to establish controls over the allowable values and 
patterns in the coefficients of chromatic polynomials.

More specifically, associated to each graph G is its



chromatic polynomial f(G,t) and we associate to f(G, t) the 
sequence a(G) of the norms of its coefficients. A 
stringent partial ordering is established for such 
sequences. First, we show that if a is a subgraph of G 
then a{H) < a(G) . The main result is that for any graph G 
with q edges we have a(R̂ ) < a(G) < a(S^), where and 5̂  
are specified graphs with g edges. The particular partial 
ordering employed illuminates the manner in which the 
coefficients for G can deviate from the coefficients for R̂  
and S,.

When the chromatic polynomial of a graph G is expressed in 
terms of the falling factorials basis (as opposed to the 
standard basis discussed above) , then the polynomial itself 
reveals the chromatic number of G. For this reason and 
others, it is natural to examine the coefficient sequence 
/3(G) of a chromatic polynomial f(G,t) which has been 
expressed in terms of falling factorials. If G has m 
missing edges we find that /3 (Tg,) < j8(G)< /8(X̂ ) where T- and X-

are specified graphs with m missing edges.

Although these bounding conditions do not allow us to 
completely predict all chromatic polynomials, they do serve 
to severely limit the form of polynomials considered to be 
candidates for the chromatic polynomial of some graph.



CHAPTER 2
A SHORT COURSE ON CHROMATIC POLYNOMIALS

In this chapter we establish terminology, review the 
procedures for producing a chromatic polynomial, and 
present some important results from the literature. In 
some cases, the proofs presented here differ from the 
proofs in the cited references.

Basic definitions

Graph theory lacks a universally accepted nomenclature. 
For the sake of completeness and clarity we include here 
all the basic terminology to be used in this paper (see 
Harary [7]).

A graph  G is a finite nonempty set V{G) of points  (or 
vertices)  together with a set E{G) whose elements, called 
edges  (or lines) , are unordered pairs of distinct points of 
G. If X = {u,v} = uv = vu is an edge in G we say that x  is 
incident  with u (and with v), x  joins u and v, and, u and 
V  are adjacent points.  If x  and y are distinct edges of G, 
and both are incident with some point v of G, then x  and y 
are said to be adjacent edges.  It is often convenient to



represent a graph as a diagram with distinguished points 
symbolizing elements of V(G) and connecting line segments 
denoting elements of E(G) . Two graphs 6, and (?2 are
isomorphic, written s Gj or sometimes Gi = G2, if there is
a bijection between their point sets which preserves
adjacencies. A graph with p points and g edges is denoted
as a (p,g) graph. The (1,0) graph is called the trivial 
graph.

The degree of a point v in G, deg v, is the number of lines 
incident with v. If deg v = 0 then v is called an isolated 
point; if deg v = 1 then v is called an endpoint.

A subgraph of G is a graph having all of its points and 
edges in G. If H is a subgraph of G, then G is a 
supergraph of H. If v is a point in G then G — v is the 
maximal subgraph of G not containing v; that is, G — v 
consists of all points of G except v and all edges of G not 
incident with v. Likewise, if x is an edge in G then G — x 
is the maximal subgraph of G not containing x; thus G — x 
contains all the points and edges of G except x. On the 
other hand, if u and v are nonadjacent points in G, and we 
set y = uv, then G + y is the smallest supergraph of G 
containing the line y.



A path is an alternating sequence of points and edges 
V(̂ iViX2 ... comprised of distinct points and in which
Xf = V{_iVi for 1 < i < n. The indicated path would be called 
a Vq - path. A cycle is an alternating sequence of 
points and edges V(pciViX2 ... x̂ v„ in which n > 2, Vq through 

are all distinct, x, = for 1 < i < n, and v, = Vq.
We usually describe a path or cycle simply by listing its
sequence of points, since the edges are evident from 
context. The length of a path or of a cycle is the number 
of edges it contains. P„ denotes the path of length n and 
C„ denotes the cycle of length n (also called an n-cycle). 
C3 is called a triangle.

G is said to be connected if for every pair of points u and 
V there is a u - v path in G. A component of G is a 
maximal connected subgraph. A point v is a outpoint of G 
if G — V has more components than G; an edge x is a bridge
of G if G — X has more components than G. A graph is
nonseparable if it is connected, nontrivial, and has no 
outpoints. The blocks of a graph are its maximal 
nonseparable subgraphs.

If a graph is connected and has no cycles it is called a 
tree. A specific tree which we will use later is the star 
with g edges, which has one central point incident with



each of the q edges, and thus has a total of g + 1 points. 
Harary [7] presents several characterizations of trees; we 
will use the equivalences that G is a tree # G is connected 
and p = q + l«=>Gis connected and every edge is a bridge.

Each graph G has an associated graph G called the
complement of G. V{G) = V(G) . Two points u and v are
adjacent in G if and only if u and v are not adjacent in G. 
The graph with p points and all possible edges , g = , is
called the complete graph on p points, denoted K̂ . Then 
has p points and 0 edges and is said to be totally 
disconnected f except when p = l and then K, = is the 
trivial graph.

We can take two existing graphs Ĝ  and Gj and form their 
union G, U Ĝ  with point set V(G, U G%) = V(Gi) U y(G;) and 

edge set E(G, U G;) = E(G,) U (̂G;) . Their join, Gy + G;, has 

V(Gi + Gj) = V(G,) UVCGî) and E(G, - i -  G;) = E(G,) U (̂Gj) U

{X I X = aJb with a 6 V(Gj) and b EvCGj)}.

If X = ab is an edge in G then we can define, up to
isomorphism, a new graph G/x by performing an elementary 
contraction along edge x. In the resulting graph we have 
point set V{G/x) = V(G) — a and edge set
E(G/x) = E{G — a) U {X = be I ac SE(G) and c ^ b}. We



visualize this process as releasing the edges at a, 
reattaching them at b, and removing point a. We could of 
course exchange the roles of a and h; the resulting graphs 
are naturally isomorphic under the bijection a #  b with 
identity elsewhere. If G is a (p,g) graph then G/x has 
p — 1 points and at most q — 1 edges. Note that G — a is 
a subgraph of G/x, but, in general, G/x is not a subgraph 
of G.

On the other hand, if u and v are nonadjacent points in G 
then we can produce an elsmentary homomorphism, eG, which 
identifies u and v. Effectively, eG = (G + y)/y where 
y = uv.

Graph coloring and the chromatic polynomial

A proper coloring of a graph G is an assignment of colors 
to its points such that no two adjacent points receive the 
same color. Henceforth we consider only proper colorings 
and so we simply say colorings. The minimum number of 
colors needed for a coloring of G is called the chromatic 
number of G, denoted %(G) . In a coloring of a complete 
graph Kp, a different color is needed for each point 
(because the points are all mutually adjacent) and so 
X(̂ p) = P* In a graph with no edges only one color is



needed so xî p) = 1. In general, the determination of %(G) 
is a lengthy task.

For a fixed graph G and a fixed set of n colors, f{G,n) is 
the number of different colorings of G from the n colors 
(called n-colorings). Two given colorings are considered
distinct if there is any point of G which is colored
differently by them. If n < %(G) then of course
f(G,n) =0. In a coloring of from t > x(̂ p) = P colors
we have t choices for the first point colored, t — 1 
choices for the second point colored (since we cannot use 
any color twice) , t — 2 choices for the third point, thus 
yielding the counting formula f (k̂ , t)=t(t — 1) • • • (t — p + 1). 
We note that this formula produces valid results even when 
0 < t < X î p) / for then it gives 0. Then we have found a 
polynomial function in the variable t which, when evaluated 
at any nonnegative integer n, produces f(Kp,n). The 
expression for f(Kp,t) is called the falling factorial of 
degree p, and is denoted by t̂ . In a coloring of Kp each 
point may be colored independently of the others; if t > 1 
colors are available we have t choices for each point and 
thus f{Kp,t) = V. Once again we have a polynomial formula 
in t that is valid for evaluation at any nonnegative 
integer n for calculating f{Kp,n). It is not immediately 
clear that such a polynomial function should exist for



calculating f(G,n) when G is an arbitrary graph, but the 
following theorem provides the necessary machinery.

Theorem 2.1. If u and v are nonadjacent points in a graph 
G, and e is the elementary homomorphism which identifies 
u with V, then we have f{G,n) = f(G + uv,n) + f(eG,n) for 
any nonnegative integer n.

Proof. (Theorem 12.32 in [7]) The n-colorings of G can be 
partitioned into two sets;
A = {n-colorings in which u and v receive different colors} 

and
B = {n-colorings in which u and v receive the same color}.

The set A is precisely the set of n-colorings of G + uv, so
|A| = f(G + uv,n).

Now we claim that | B | = | {n-colorings of £G} | . Suppose we
have an n-coloring of G in which u and v receive the same
color, say blue. Then no point adjacent to u is blue and 
no point adjacent to v is blue, and so the coloring carries 
directly over to a coloring of eG in which the point 
identifying u and v is colored blue. Since this is 
reversible we have Ib | = f(eG,n).



Then f(G,n) = |A| + |B| = f{G + uv,n) + f{eG,n). ■

We recall that Z[t] is the ring of polynomials in one 
variable with integer coefficients (see Lang [8]).

Corollary 2.2. For each graph G there is a polynomial 
f(G,t) E Z[t] such that evaluation of f(G,t) at any
nonnegative integer n produces f(G,n).

Proof. (Corollary 12.32a in [7]) If G is a complete graph 
on p points then we saw previously that the polynomial 
f (G, t) = (t) (t — 1) • • • (t — p + 1) E Z[t], evaluated at any 
nonnegative integer n, produces f(G,n). If G is not
complete we can find nonadjacent points u and v so that
f{G,n) = f(G + uv,n) + f(eG,n) where e is the elementary 
homomorphism identifying u with v, and n is any fixed 
nonnegative integer. We repeat this procedure if necessary

m
until we arrive at f (G,n) = ^ f  (G,.,n) where jn G N and each G,

i - l

is a complete graph. For each i there is a polynomial 
f{Gi,t) G Z[t] such that f (G,,n) = f(G,,t)(n). Then we

m
def ine f(G, t) f (G,/1) G Z[t], and we have for any nonnegative

i . l

integer n;
f(G,n)=j;f(G,,n)=j;f(G,,t) (n)=(^f(G,,t)) (n)=f(G,t) (n) . ■

I . /  i . l  i . l

f(G,t) is called the chromatic polynomial of G.

10



It is a well-known result in algebra that if two 
polynomials in g[t] agree in their evaluation at all n € N  

then in fact the two polynomials are identical (see 
Corollary 4.5 in [8]). Then we can restate Theorem 2.1 as 
follows: If u and v are nonadjacent points in G, and e is
the elementary homomorphism that identifies u with v then 
f(G,t) = f(G + uv, t) + f(sG,t). We will call this the 
completion formula because both G + uv and eG are more 
nearly complete than G, in the sense of having fewer 
missing edges.

Corollary 2.3. The Reduction Formula. If x = uv is an 
edge in G then f(G,t) = f(G — x,t) -f(G/x,t).

Proof. Let H = G — X. Then by the completion formula we 
have (*): f(H,t) = f(ff + r,t) + f{eH,t) where u and v are 
identified through the homomorphism e. Since ff + x = G and 
sH s G/x, (★) becomes f{G — x,t) = f(G, t) + f(G/x, t), or 
f(G,t) = f(G — x,t) - f(G/x,t). This is called the 
reduction formula because both G — x and G/x have fewer 
edges than G. ■

Just as we could use the completion formula to eventually 
write f(G,t) in terms of complete graphs, we can use the 
reduction formula to eventually express f(G,t) in terms of

11



totally disconnected and/or trivial graphs. Figure 1 
provides a visual representation of these processes (see 
Zykov [10]) .

Using the completion formula with G = C3 U K,:

f{G,t) = Ù4 + 3tj = t* - 3t̂  + 2t'

Using the reduction formula with G = U K;:

f(G,t) = f  - 3t̂  + 2t

Figure 1 Two determinations of f(G,t)

12



It is of course true that isomorphic graphs have the same 
chromatic polynomial, however it is also true that 
nonisomorphic graphs, and even nonisomorphic blocks, can 
have the same chromatic polynomial.

f(G,t) = - 6t“ + 13t̂  - 12t̂  + 4t

Figure 2
Nonisomorphic graphs with the same chromatic polynomial

f(G,t) = - It* + I8t̂  - 20t̂  + 8t

Figure 3
Nonisomorphic blocks with the same chromatic polynomial

General properties of chromatic polynomials

Chromatic polynomials enjoy many interesting properties. 
All of the known general properties (meaning that they 
apply to every chromatic polynomial f(G,t) regardless of

13



the construction of G) are contained in the following 
theorem. Statements (a) through (g) have all been known 
for at least 30 years. Statement (h) was contained in a 
1986 paper by Chia [5] and is the only known recent 
addition to the list of general properties. The proof of 
(h) is not hard, but it would require an excursion into 
block-cutpoint trees, and so we have omitted it. We note 
that the results to be developed in Chapters 3 and 4 are 
new additions to the list of general properties.

Theorem 2.4. If G is a (p,g) graph then

(a) f(G, t) = JJf(G,, t) where G has the k components
G|, . . . , Gj.

(b) If g > 1 then the sum of the coefficients in f(G, t) is 0.
(c) f(G,t) has degree p.
(d) The coefficient of in f(G,t) is 1.
(e) The coefficient of in f(G,t) is -q.
(f) The coefficients of f(G,t) alternate in sign.
(g) t‘ has nonzero coefficient in f{G,t) <=> k < i < p.

(h) f(G, t) = — — — j  if G is connected and Bj,... are

the blocks of G.

14



Proof. (Whitney [9] discusses (b) and (f) . The remaining 
properties - except (h) - are stated in [7] without proof)

Property (a) follows from the observation that the 
components of G can be colored independently.

For property (b) , we note that if g > 1 then G cannot be 
colored using only one color. Then f(G,l) = 0, and any 
polynomial evaluated at 1 yields the sum of its 
coef f icients.

Properties (c) through (g) will be proved using induction 
on q and the reduction formula. If g = 0 then G is a 
totally disconnected graph with k = p and f(G,t) = and 
we see that properties (c) through (g) hold. Now assume 
g > 1 and let x be an edge in G. By the reduction formula 
we have f(G,t) = f(G - x,t) - f{G/x,t) .

G — X has p points, g — 1 edges and either k or k + 1 
components depending on whether or not x is a bridge. The 
contraction graph G/x has p — 1 points, g' edges for some 
g' < g — 1, and k components. By induction, we may assume 
that properties (c) through (g) are true for G — x and G/x. 
Now we verify properties (c) through (g) for G.

15



(c) and (d) Since f (G - x,t) is monic of degree p (and 
f (G/x, t) has degree p — 1) we know that f(G,t) is 
monic of degree p.

(e) Since f(G — x,t) has coefficient — (g — 1) for and
f(G/x, t) has coefficient 1 for then f(G, t) has
coefficient — (g — 1) — 1 = —g for

(f) Both f(G — X,t) and f(G/x,t) have coefficients which 
alternate in sign, both begin with a positive 
coefficient, and f(G/x,t) has degree one less than 
f(G - X, t), so f (G - X, t) — f (G/x, t) = f(G, t) has 
coefficients which alternate in sign.

(g) When i > p, and when i < k, both f (G — x, t) and
f(G/x, t) have coefficient 0 for t‘, so f(G, t) has
coefficient 0 when i > p and when i < k. When 
k < i < p either f(G -x,t) or f(G/x,t), or both, have 
a nonzero coefficient for t̂. Then it follows from the 
degree and alternation discussion for (f) that f(G,t) 
has a nonzero coefficient for t‘ when k < i < p. ■

We say that a polynomial is chromatic if it is the
chromatic polynomial of some graph. In order for a 
polynomial to be chromatic it must of course satisfy all 
the appearance properties in Theorem 2.4 (parts (b) through
(g) ) . Unfortunately this is not sufficient to guarantee 
that a given polynomial is chromatic. Consider, for

16



exeunple, p(t) = t* — 6t̂  + 15t^ — 18t̂  + 14tf — 6t. Then p(t) 
is monic, with alternating coefficients summing to zero, 
and we might suspect that it is the chromatic polynomial of 
some (6,6) graph. We will prove later that p(t) is not 
chromatic, even if we increment all the exponents by any 
specified amount.

Much of the research on chromatic polynomials follows a 
particular pattern: a type of graph construction is
described and then properties of the associated chromatic 
polynomial are determined (for a recent example see Chia
[6]). However interesting and useful these results might 
be, we cannot expect that this approach will find all the 
chromatic polynomials because we have no classification 
theorem describing all possible graph constructions.

We have already calculated f{G,t) in the two extreme (and 
easiest) cases: when G has all possible edges and when G 
has no edges at all. We need just one more construction- 
specific result before moving on to our main chapter.

Theorem 2.5. A graph with p points is a tree if and only 
if f(G,t) = t(t-l)f-\

Proof. (Theorem 12.35 in [7]) Suppose G is a tree. If

17



p = 1 then G = JT, and f(G,t) = t = t(t— Now assume 
p > 1. Let P be a longest path in G and suppose u and v 
are the endpoints of P. We note that v must have degree l 
since the existence of a second edge incident to v would 
lead to either a longer path in G or a cycle in G. In a 
coloring of G, v can have any color except the one assigned 
to the adjacent point, so f(G,t) = (t — l)f(G — v,t) . 
G —  V  is a tree with p— 1  points so we may assume by 
induction that f (G — v,t) = t(t — We conclude that
f(G,t) = (t - l)t(t - l)f-2 = t(t-l)^-*.

Now suppose f(G,t) = t(t — Then f(G,t) has degree p,
so G has p points; the coefficient of is so G has
p — 1 edges; and, t has nonzero coefficient, so G is 
connected. Thus G is a tree. ■

18



CHAPTER 3
CONTROLLING THE CHROMATIC COEFFICIENTS 

Chromatic sequences

If G is a ip,q) graph with k components and chromatic 
polynomial f(G,t) = aot̂  — â tP"̂  +•••+(— l)‘’~‘'2ip̂t'' then we 
define the chromatic sequence of G to be a(G) = (ao,a,,... ,a„) 
where m = p — k. It follows from the general properties of 
chromatic polynomials that ag = 1 and â  is the number of 
edges in G, if any exist. If G has no edges, its chromatic 
sequence is simply a(G) = (1). By design, the chromatic 
sequence does not record the number of points in G, and 
graphs with differing numbers of points can have the same 
chromatic sequence. In particular, if H = G U Ki then 
f(H,t) = tf{G,t) and thus a{H) - a(G) ; that is, isolated 
points have no impact on the chromatic sequence. Figure 4 
illustrates the chromatic sequences up to g = 6.

After some initial set-up with sequence operations and 
partial orderings, we will first compare a(H) with a(G) 
when H is a subgraph of G. Then, among all graphs with q 
edges we will identify graphs (containing many cycles) 
and (containing no cycles) whose chromatic coefficients 
form bounds for the chromatic coefficients of any graph

19



q = 0 1 sequence 
(1)

g = 1 
# ' #

1 sequence 
(1,1)

q = 2 1 sequence

(1,2,1)
Ç = 3 2 sequences

(1,3,2)

X (1,3,3,1)

Ç = 4 3 sequences

X (1,4,5,2)

o (1,4,6,3)

X (1,4,6,4,1)

Ç = 5 5 sequences

o (1,5,8,4)

X (1,5,9,7,2)

X (1,5,10,9,3)

Cl (1,5,10,10,4)

(1,5,10,10,5,1)

Figure 4 Chromatic

q — 6 9 sequences

A (1,6,11,6)

X (1,6,13,12,4)

(1,6,14,15,6)

X (1,6,14,16,9,2)

o (1,6,15,17,7)

(1,6,15,19,12,3)

(1,6,15,20,14,4)

o (1,6,15,20,15,5)

X (1,6,15,20,15,6,1)

Note*: Every chromatic
sequence has infinitely many associated graphs.

In the case q - 6, there are over 60 pairwise non-isomorphic graphs without isolated points.

Every graph with 6 edges has one of the above nine sequences as its chromatic sequence.

a-sequences up to q=6
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with q edges. The partial ordering which we employ imposes 
strict conditions on the manner in which the coefficients 
for G can differ from the coefficients for and Ŝ .

Sequence operations and partial ordering

To establish the necessary setting for comparisons of 
chromatic sequences we let <9 be the collection of all 
nonempty finite sequences of positive integers. Given 
A = (ao,ai,... ,a„) E  (P we write f(A) = m and adopt the 
convention that a, = 0 if i > I {A) . Since the indexing of 
the sequence elements begins with 0, t{A) does not exactly 
coincide with our usual understanding of the length of a 
sequence. We will make use of standard sequence addition 
and scalar multiplication, and also define a new sequence 
operation, -F*, in which the elements of the second summand 
are shifted to the right by one index position before being 
added term by term to the first summand. Given sequences 
A = (ao,ai,. . .  ,a„) E (P and B = (Jbo,Jb,,. . .  ,Jb„) E(P and d E  N we 
define

A + B = (ao + Jbo, a, + jbi,..., a, + b̂ ) where t = max(m,n),
A -F* B = (ao, 3i + Jbo,... ,a, + Jb,_J where t = max(m, n + 1) ,
and dA = (dag, da,, ..., da*).
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We also adopt the convention that A + OB = A-F* OB = A even 
though OB ^ (P. We note that -F* is not associative since

(A f* B) -F* C = (ao, 3i + Jbo + ^0/ aj + Jbi + Cl,... ) and
A -F" (B -F* C) = (ao, ai + Jbo , a2 + Jbi + Cq, ... ) .

However, we have the following useful relationship.

Proposition 3.1. If A, B, C, and D G <P then
(A -F* B) -f* (C -F* D) = A -F* [ (B + C) -F* D] .

Proof. (A -r B) -F* (C -F* D)
~  ( ̂0, ^0 f ^2 » • • • ) ( ̂0  r do, Cg + di, . . . )
= (ao, ai + Jbo + Cq, a2 + Jbi + Ci + do, â  + Jb2 + C2 + d,,... )
= A -F* (Jbo + Co, jbi + Cl + do, £>2 + C2 + di, )
= A -F* [{B + C) -F* D]. ■

We may compare sequences A and B in (? and write A < B if

(r 1 ) 3q = bo,
{T2 ) a, < jb, for all i, and
(Tj) if etj = bj with 1 < j < ((B) then â  = Jb, for 1 < i < j.

That is, A < B means that either A = B or that A and B
agree for a certain number of entries after which any
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remaining entries in A are strictly smaller than the 
corresponding entries in B. Note that A < B necessitates 
f(A) < 1(B). To specify that A ^ B but A ̂  B we write
A < S; to specify that A < B and â  = b, only for i = 0 we
write A «  B.

To see that < is transitive, suppose A, B, and C from (P 
satisfy A < B and B < C. Then - Cq and a, < b,- < c,
for all i. If aj = Cj for some 1 < j < 1(C) then Cj ^ 0

implies aj ^ 0 and so j < t(A) < t(B) . Then = bj and
j < ((B) imply a, = b,- for 1 < i < j . Likewise bj = Cj and
j < ((C) imply bi = c,- for 1 < i < j, yielding a, = c,- for
1 < i < j. Thus A < C, which shows that < is transitive.

Now suppose A < B and B < C. From the prior discussion we
can immediately conclude that A < C. If A = C we would
have a, = b,. = c,. for 1 < i < ((C), which violates A < B (and 
B < C). Thus A < C, and so < is transitive. In fact it 
easily follows that (A < B and B < C) implies (A < C), and 
(A < B and B < C) implies (A < C) .

Finally, assume A «  B and B «  C. By the arguments in the 
prior paragraph, we may immediately conclude that A < C. 
Suppose for some i > 0 we have a, = c,; then a,. = b, violates 
A «  B. Thus we know A «  C, and so «  is transitive also.
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Caution is required when combining the sequence operations 
with the orderings. For example, (A < B and C < D) does 
not imply {A ^  C < B ^  D) as can be seen with A = (1,2), 
B = (1,2,1) and c = D = (1,2,3). Then A -F* C = (1,3,2,3) 
and B -F* D = (1,3,3,3), two sequences which cannot be
compared using <. All the arithmetic properties which we 
will need are contained in the following proposition.

Proposition 3.2. Let A, B, C E (9 and d,e E N  U{0>.
(a) If A < C and B < C then A -T B < C f* C.
(b) If B < C and f(A) < f(C) + 1  then A -f* B < A -F* c.

(c) If A < B then A -F* dA < B ^  dB.

(d) If A < B and A < C then A + A < B + C.
(e) If d < e then A -F* dA < A F* eA.

Proof, (a) Assume A < C and B < C. The leading term of 
A f*B is 3o, and the leading term of C 4̂  C is Cq, and 

= Cq, which verifies r,. Since a,- < c, for all i, and 
bi < Cl for all i, then a, + b,_j < c,. + ĉ _y for all i > 1 
which verifies Tj.

Now assume that we have a, + bj_i = Cj + Cy_j for some 
l < j < £ ( C F * c ) =  1(C) + 1. Then â  = Cj and bj_i = Cj_i 
where j — 1 < 1(C). If it were true that j — 1 = ((C) 
then we would have b,- = c, for all i < ((C) , giving B = C
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which violates B < C. So we know that j — 1 ^ i(C) — 1. 
Then = Cj with j < £(C) = a, = for 1 3 i < j, and
bj._i = Cj_i with j — 1 < ((C) ̂  bi = C{ for 1 < i < j - 1.
We automatically get Jbo = Cq from B < C, so altogether we 
have + b(_i = C[ + c,_; for 1 < i 2 j. This verifies Tj, 
so we know that A -f* B ^ C -F* C.

Since B < C we know there is some k < ((B) such that
bt < c*. Then ât+i + 6* < 0̂ +1 + c*, so A -F* B ^ C f* a.

Thus A -F* B < C -F* a.

(b) Assume B < C and ((A) <((€)+!. We want to show that 
A F* B < A F* C. T, is easy to confirm since both A F* B 
and A F* C have leading term ag. Since Jb,. < c,. for all i 
we have a,. + Jb ,_ , < a, + C(_̂  for all i > 1, and so Tj is 
verified.

Suppose that a, + bj_i = â  + Cj_i for some j satisfying 
1 < j < ((A F* c) . Then Jb̂_, = Cj_i. Also consider that
((A F* C) = max{£(A), ((C) + 1} = ((C) F 1 and therefore
j - 1 < ((C) . Then Jb, = c, for 1 < i < j — 1, and we 
automatically get Jbo = Cq from B < C, which results in
a, + Jb,-_i = a, + C(_i for 1 < i < j — 1. This confirms Tj
and we conclude that A F* B < A F* C.
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(c) Assume A < B to show A ^  dA < B -f* dB. If d = 0 there 
is nothing to show, so assume d > 1. Since Bq = Bq we 
see that is satisfied. r% is also easy to verify ;

< jb( for all i > 0 =* a, + da,_i < Jb, + dJb,_, for all i > 1.

Assume ay + day_, = Jby + dJby_, for some j which satisfies
1 < j < f(B f* dB) = f(B) +1. Then ay = bj and ay_, = Jby_,
where 0 < j — 1 < f(B) ^ a, = b, for 1 < i < j — 1, and of
course ao = bg. Then we have a, + da,_, = b, + db,_, for 
1 <  i <  J ,  confirming T j .

(d) Suppose A < B and A < C. Since ag = bg = Cg we see that 
A + A has the same leading term as B + C, so r, is
verified. For all i we have a, < b, and a, < c, and thus
a, + a, < b, + c, for all i, so is satisfied.

Suppose ay + ay = by + Cy for some 1 < j < 1{B + C) . Then 
bj Cj ?£ 0 => ay + ay î<£ 0 yielding j < f(A) < f(B) and 
j < f(A) < f(C). Now ay = by and 1 < j < f(B) implies 
a, = b, for 1 < i < j . Likewise ay = Cy and 1 < j < t{C) 
implies a, = c, for 1 < i < j . Then a, + a, = b, + c, for 
1 < i < j, which verifies T j ,  and we conclude that
A + A < B + C.
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(e) It is surely clear in this case that d = e => A -f* dA = 
A -f* eA and d <e=»A- F*dA<A-F* eA. ■

The chromatic sequence of a subgraph

Our first task is to translate the reduction formula, 
f(G, t) = f(G — x,t) — f(G/r,t), into a related statement 
about chromatic sequences. Consider for example G = and 
X an edge in G. Then

f(K^,t) = f(K^ -  X,t) - f { K J x , t )  =  t* -  5t^ + 8t̂  - 4t
r  -  3 t f  +  2t)

t* - 6t̂  + Ilf: - 6t.

Examining the associated chromatic sequences, we see that 
(1,6,11,6) = (1,5,8 ,4) -r (1,3,2) ; a(jCJ = a{K^-x) +~* a(KJx) .

It is true in general that a(G) = a (G — x) -f* a(G/x) because
both f(G — x,t) and f{G/x,t) have coefficients which 
alternate in sign, and f{Gfx,t) has degree one less than 
f (G — x,t) .

Lemma 3.3. If g is a subgraph of G then a{H) «  a(G) 
unless H and G have the same edges, and then a(H) = a(G).
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Proof. If H and G have the same edges then they differ only 
in their isolated points. Since isolated points have no 
impact on the chromatic sequence we have a(H) = a(G).

Otherwise H is obtained, up to isolated points, by removing 
edges from G. Assume that H has n fewer edges than G for 
some n > 1, and let be the edges of G which do not
belong to H. Since G/x̂  has the same number of components 
as G, and one less point, then the length of e(G/xJ is 
exactly one less than the length of a(G) . The reduction 
formula says a(G) = a(G — Xj) f* e(G/xJ and we can conclude 
that a(G) and a(G — xj have the same leading term while any 
subsequent terms in a(G — xj are strictly smaller than the 
corresponding terms in a(G). That is, a(G — xj «  a(G). 
With n applications of this procedure we eventually arrive 
at a{H) = a(G—X, — • • • - x„) «  • • • «  a (G — xj «  a(G) . ■

By the technique of the proof we know the following: if
H C G with a(H) = (l,hj,... anda(G) = (l,g,,... ,g„), and 
H has n fewer edges than G, then h, < g, — n for 1 < i < k. 
Consider the special case when g„ = 1 and H = G — x, where 
X  is any edge in G; then necessarily k < m so we conclude 
that H has more components than G and thus x is a bridge. 
Therefore, whenever a(G) has terminal value 1 we know that 
G has no cycles. The converse follows from the upcoming
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proof of Theorem 3.4.

The upper bound for chromatic sequences

For g > 0 we could choose to be any acyclic graph with g 
edges; for the sake of being specific, we choose to be
the star. If x is an edge of S, then the reduction formula
gives a(S,) = a(S, - x )  -F* a(S,/x) = a(S,_,) f *  . If
m < n we have S„ C S„ and Lemma 3.3 implies a(S„) «  a(S„) .

Theorem 3.4. If G has g edges then a(G) < a(Ŝ ) . Equality 
occurs if and only if G has no cycles.

Proof. From Theorem 12.35 in [7] we have: A graph G with 
p points is a tree if and only if f{G,t) = t(t — In
particular, f{S^,t) = t(t - 1)̂ .

If a(G) = a(Ŝ ) then a(G) has a terminal value 1, and thus
G has no cycles. If G has no cycles, we apply Theorem
12.35 to the k components of G and since the chromatic 
polynomial is multiplicative over components, we have 
f(G,t) = t*(t -1)’ yielding a(G) = a(Ŝ ) .

What remains is to show that if G has g edges and at least 
one cycle then a(G) < a{S). There is nothing to show when

29



g = 0,1, or 2. Assume g > 3. Let C be a cycle in G and
let X G^(C) . Since G — x has g — 1 edges and Gjx has g'
edges for some g' ^ g — 1 we may assume, by induction, that 
ol{G — X) < a(S,_i) and a(G/x) < a (S,.)* If G/x has a cycle 
then, again by induction, a(G/x) < a (S,.) < a(S,_j). If not, 
then collapsing edge x caused the cycle C in G to
dissipate, and so C is a triangle. Therefore g' < g — 2
giving a(G/x) = a(Ŝ ,) < a(S,_2) < q:(5,_,). Then either way 
a(G/x) < a(Ŝ _i), and the reduction formula and Proposition 
3.2 (a) provide the desired result:

a(G) = a(G - X )  -r a(G/x) < a(S,_,) -T = a(S,) . ■

This result would allow us to say, for example, that the 
sequence A = (1,6,15,18,14,6) is not the chromatic sequence 
of any graph. If A were the chromatic sequence for some 
graph G, then G would necessarily have 6 edges and by 
Theorem 3.4 we would have a(G) < a(Ŝ ) = (1,6,15,20,16,6,1). 
Since A does not compare properly with a(Sg) we know that no 
such graph exists. It is this result which allows us to 
say that the polynomial p(t) = t* — 6t̂  + 15t̂  — 18t̂  + 14t̂  — 6t 
cannot be the chromatic polynomial of any graph, even if 
every exponent is raised by the same increment.
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The lover bound for chromatic sequences

Having shown that graphs with no cycles produce upper 
bounds for the chromatic sequences, it is natural to expect 
that graphs with many cycles produce lower bounds.

We have seen that for the complete graphs we have f (K,, t) = t 
andf(JT^,t) = t(t - 1) ' (t - p + 1) = (t - (p - l ) ) f t )
if p > 2; that is a(X,) = (l) and whenever p > 2 we have 
a(K̂ ) = a(JCp_i) -r (p

For a fixed q we let n{q)= max{i | < q} so that 9 = (%) + z"
with m = ir{q) and 0 < r < m — 1. Then define to be the 
unique connected graph (up to isomorphism) with q edges 
such that If r = 0  then = JT„, and if r > 0
then R̂  = K^KJ {a point} U {r edges}. Hence f{R^,t) = f(K„,t) 
if r = 0, and f{R^,t) = (t - r)f(K„,t) if r > 0, yielding 
a(Rg) = a{K„) -f* ra{K„) . If j < k we have Rj C R̂  and
conclude from Lemma 3.3 that a (Rj) «  a (R̂ ) .

The following rather tedious numerical result provides a 
crucial step in the upcoming Theorem 3.7.

Proposition 3.5. When g > 1 and 0 < d < n(q) - l, then 
a(i?,) < a{R̂ _,) +-" da(R̂ _,).
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Proof. We have g = + r where m = n{q) and 0 < r < m - 1.
If d < r then g - d = ^ " j + r - d  where 0 ^ r - d < m — 1.
Thus, writing A = and using Propositions 3.1, 3.2(b)
and 3.2(e) we have

+■* da(V«/) = CA -r (r - d)A] -T d[A (r - d)A]
= A -r [rA +-* d(r - d)A]
> A -F* r A

= a (̂ ,) •

Thus we may suppose that d > r. Then q-d = |"J+r-d = 

where 0 < 5 = m — 1 + r — d < m — 2. I f z  = d — r > 0  then

dS = d ( m — 1 + r — d)

= (r + z) (m - 1 - z)
= r(m — 1) + z(m — 1 — r — z)
> r(m - 1) ( ♦ )

since r + z = d < m -1. Writing A = a(K„) and B = a(JC„_i) 
and using Propositions 3.1, 3.2(b) and 3.2(e) we have

a(Rg) = A -r rA
= [B -F* (m - 1)B] +-* r[B +-̂ (m - 1)B]
= B -r [ (m - 1 + r)B -r r(m - 1) B]
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and
«(Vrf) = [B -r fB] -r d[B +-* SB]

= B -f* [(f + d)B -F* dSB]

> a (a,)

since 5 + d = m — l + r  and dS ^ r{m — 1) by ( ♦ ) . ■

Proposition 3.5 fails if d > n(g). Consider q = 5 (so 

?(g) = 3) and d = 3. Then a(B$) = (1,5,8 ,4) i (1,5,7,3) =

(1,2,1) -r 3 (1,2,1) = a(l?2) -r 3a(i?2).

Proposition 3.6. If 6 has g > 1 edges then there is some 
point in G with degree d satisfying 0 < d < 7r(g) — 1.

Proof. Let H be the subgraph of G consisting of all of G's 
edges and all of G's nonisolated points. H has g edges. 
Among all graphs with g edges, has the fewest points, so 
the average degree in H cannot exceed the average degree in 
Rg (see Theorem 2.1 in [7]). is a proper subgraph of the 
complete graph on n{q) + 1 points and thus the average 
degree in Rg is strictly less than Jr(g) . Then H has average 
degree strictly less than ?(g), which guarantees the 
existence of a point w with 0 < deg w < n(q) - 1. ■
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Now we can prove the main result.

Theorem 3.7. If G has q edges then a(N,) ^ a(6) .

Proof. We proceed by induction on g. If g=0 we have 
<̂ (Rq) = (1) = a(G) . Now assume that g ^ 1 and write g=^"J+r 
where m = n(q) and 0 < r < m — 1. By Proposition 3.6 there 
is a point w in G with degree d satisfying 0 < d < m — 1. 
Let L = G — w and let Xi,... ,Xj be the edges incident with w. 
Repeated application of the reduction formula and 
Proposition 3.1 yields a(G) = a(G—rJ -F* a(G/r,) when d = 1, 
and when d > 2:

a(G) = a (G — Xi) -F* a(G/Xi)

= (a(G - Xi - X2) -F* a ((G - /%;) ) f* a(G/Xi)
= a(G - Xi - X2) -r (a((G -Xi)/X2) + a{G/Xi))

d
=  a ( G - X i  -Xi) -F* (G/Xj + ^ a ( ( G - % , -  ••• /%,. ) )

i  . 2

Note that a(L) = a(G — Xj — ••• — x̂ ) . Furthermore, L is 
a subgraph of each of the contraction graphs in the 
summation, so by Lemma 3.3 and Proposition 3.2(d) we have
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d

da(L) < a(G/Xi)+J^a((G-Xi- -• - x , _ i ) / x , ) )  .
/-2

By Proposition 3.2(b) we have a (G) > a(L) -F* da(L) . Since 
\E(L) I = q — d < q — l w &  may assume, by induction, that 

< a(L) and thus Propositions 3.5 and 3.2(c) yield: 
a(R̂ ) < -r da(iî,_J < a(L) -T da(L) < a(G) . ■

Summary

Theorems 3.4 and 3.7 combine to produce the main result : if 
G is a graph with q edges then a(J?,) < a(G) < a(Ŝ ) .
Continuing our prior discussion we know, for example, that 
if G is a graph with 6 edges then its chromatic sequence 
must satisfy (1,6,11,6) < a(G) < (1,6,15,20,15,6,1). We 
should bear in mind that there are sequences which satisfy 
the required inequalities but are not chromatic. For 
example, a(R̂ ) < (1,6,12,7) < a(Sg), but (1,6,12,7) is not 
the chromatic sequence for any graph. However the chromatic 
sequences for the R̂  and graphs are particularly easy to 
calculate, and the bounding conditions provide us with a 
rapid means for dispensing with many polynomials which 
might otherwise appear to be potentially chromatic.
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CHAPTER 4
CHROMATIC COEFFICIENTS IN THE FALLING FACTORIALS BASIS 

f{G,t) with respect to falling factorials

Recall that f{Kj,,t) = t(t - 1) - (t - (p — 1)) = t̂ , the 
falling factorial of degree p. These falling factorials 
form a basis of Z[t] relative to which every chromatic 
polynomial is expressed entirely with nonnegative 
coefficients, as evidenced in the proof of Corollary 2.2. 
What follows are well-known properties.

Theorem 4.1. If G is a (p,g) graph and f(G,t) is expressed 
with falling factorials then
(a) tj has a positive coefficient if x(G) < j < p, and

otherwise the coefficient is zero.
(b) tp has coefficient 1 .

(c) tp_i has coefficient ^j-g.

Proof. We proceed by induction on m = - q, the number of
edges missing from G. If m = 0 then G is a complete graph, 
so f(G, t) = tp, and we see that (a), (b) , and (c) are true.

Now suppose m > 1 and let x = uv be an edge missing from G.
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By the completion formula, f(G,t) - f(G+x,t) + f{{G+x)/x,t) 
where both G + x and (G+x) /x have fewer missing edges than 
G. G + X is a ip,q+l) graph and (G+x)/x is a (p— l,g') for 
some q' < q.

By induction we may assume that f(G+x, t) expressed in 
falling factorials has coefficient 1 for t̂ , coefficient 
(j)-(g+l) for tp_i, and positive coefficients for tj whenever 
X(G+x) < j < p, with all other coefficients zero. Likewise 
f((G+x)/x,t) expressed in falling factorials has 
coefficient 1 for tp_i, positive coefficients for tj whenever 
X((G+x)/x) < j < p — 1 and coefficients equal to zero
otherwise.

From the completion formula we determine that 
X(G) = min{ n | f(G,n) > 0> = min{ n | f(G+x,n) > 0 or
f ( (G+x) /X, n) > 0} = min{ x(G+x) , x((G+x)/x)}. Also, the 
coefficient of tj in f(G, t) is the sum of the coefficients 
of tj in f (G+x, t) and in f ( (G+x)x, t) . We conclude that 
f(G,t), when expressed with falling factorials:
(a) has a positive coefficient for tj when x(G) < j < p, 

and otherwise the coefficient is zero,
(b) has coefficient 1 for t̂ ,
(c) has coefficient M  - q for ■
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The ^-sequences and duality

For a (p,g) graph G we earlier defined the sequence a(G) of 
the norms of the coefficients from the chromatic polynomial
f (G,t) = aot̂  - a,t̂ -1 + (— l)̂ "*a,_tt*. Now we define
/S(G) to be the sequence (Jbo, hi,..., iJp-xio) of positive

# edges 
missing

# edges 
missing j3-sequences 

1 sequence 
(1)

/3-sequences 
4 sequences

1 sequence

(1,1) (1,3,1)

2 sequences K> (1,3,2)

X (1,3,3,1)

Figure 5 /3-sequences up to m = 3

coefficients from f(G,t) = bĝ p + + ... + bp-x(G)̂ x(0 )'

where bg = 1 and Jb̂ is the number of edges missing from G. 
Figure 5 illustrates the /3-sequences for graphs with up to 
3 missing edges.
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The jS-sequences belong to (P and so they are subject to the 
arithmetic properties and partial ordering developed in 
Chapter 3.

In studying the a-sequences we worked with a translation of 
the reduction formula: a(G) = a(G—x) -F* a{G/x) where x is 
an edge in G. Now we will work primarily with a 
translation of the completion formula for ^-sequences : 
jS(G) = |3(G + x) -F* ^{{G + x)/x) where x is an edge missing 
from G. We found that a-sequences are unaffected by 
isolated points; the counterpart with respect to falling 
factorials is that ^-sequences are unaffected by points of 
full degree.

Lemma 4.2. #(G) = + G) for any graph G.

Proof. We proceed by induction on the number of edges 
missing from G. If G has 0 missing edges then both G and 
Ki + G are complete graphs and thus j8(G) = (1) = #(G + KJ. 
Otherwise, G has m missing edges for some m > 1. Let x be 
one of the missing edges. j8(G) = /3(G + x) -F* /3((G + x) /x) 
where both G + x and (G + x) /x have fewer than m missing 
edges. Thus we may assume jS(G + x) = + (G + x)) and
/S ( (G + X)/X) = jS (X, + ( (G + X) /X) ) . Then
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^(G) - (̂JTi + (G + x)) +-» + ( (G + X)/X ) )

= /3((JTi + G) + X) -r /3(((JTi + G) + x)/x)
= /3 (JTi + G) . ■

The general result, /3(G) = /3(Jî + G) for j > 1, follows from 
the observation that Kj G = (Ĵ  + (• • • (ITi + (JTi + G) ) • • • ) ) 
where there are a total of j copies of Ki in the iterated 
join.

We do not have a counterpart in the ^-sequences for every 
result we found for the a-sequences. Recall that g Ç G =» 
a (H) < a (G) . If the duality we have seen between the a and 
/3 sequences were complete, we would expect to find that 
R Ç G =» /3(G) < /8(H), but unfortunately this is not true; 
consider the graphs P, SC 4 where we have /3(P;) = (1,3,1) and 
/8(Q) = (1,2,1). It is likewise tempting to suspect that 
a(G) = /8(G) since adding edges to G seems complimentary to 
subtracting edges from G. This is true when G = and for 
another class of graphs described below, but typically 
there is great disparity between a(G) and /8(G) (see Figure 
6) .

Now we define a family of graphs which we will later show 
provide upper bounds for the /8— sequences. Let X5 = H,, 
X7 = K2, Xi = K2 + K2 , and for m > 3, X- is the iterated join
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G G
# AA

a (G) — (1,4 ,5,2) a (G) = (1,6,13,12,4)
|8(G) = (1,6,6) 2(G) = (1,4,2)

Figure 6 Comparison of a (G), /S (G), a (G), j8(G)

of m copies of K̂ . Note that %- has exactly m missing 
edges. Consider the complimentary graphs: Xq = Ki, Xj = K2 ,

= (3̂  + 3̂ ) = 3̂2 U ̂2 ŝ nd in general for m > 3, is the 
disjoint union of m copies of iCj. Then is a graph with 
m edges and no cycles, and by Theorem 3.4 we have 
a(Xs) = a(S„) .

Lemma 4.3. /3(X̂ ) = c(X-) for all m > 0.

Proof. By previous comments, it will suffice to show that 
0{X^) = a{S„) for all m > 0. We proceed by induction on m.

When m = 0 we have 18 (X5) = |8(Xi) = (1) = a(So) .
When m = 1 we have )8(X%) = jSCXj) = (1,1) = a(SJ .
Now assume m > 2 and let y be an edge missing from X-. Then 

+ y = ̂ 2 + and (X̂ j + y) /y = X, + Xĝ ^̂ . Applying the 
completion formula. Lemma 4.2, and induction we have
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j8(Xs) = + W
=  +■" 0 i x ^ )
= a (S * _ i)  f "  a (S „ _ i)  =  a ( S J .  ■

We will need two arithmetic properties of the X- graphs 
which are analogous to results for star graphs: for m > 1,
iS(X-) = a(S„) = a (S „ _ ,)  + - a (S „ _ ,)  = j g ( X ^ )  f "  /3 (X ^ )  , and if
m < n then i8(Xs) = a(5J < a(S„) = /3(X-).

Upper and lower bounds for the ^-sequences

The lower bounds for the ^-sequences are so easy to locate 
that it seems like cheating. For m > 0 define T- = 
Then Tq = Ki and T- = K„ U Ki when m > 1, so T- has m missing 
edges.

Proposition 4.4. If G is a graph with m missing edges then 
(3(T-) < /3(G) .

Proof. If m = 0 then G is a complete graph, so /8(G) = 1 and 
/8 (T$) = j3(Ki) = (1). Suppose m > 1. With m applications of 
the completion formula we arrive at /3(T-) = (l,m) . From the 
general properties of the /8-sequences we know that /8(G) has 
the form (l,m,...). Thus fi(T-) < /8(G). ■
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Mow we need to demonstrate one relationship involving 
lengths of sequences in order to facilitate the final 
theorem, which will establish the upper bounds for the jS- 
sequences.

Proposition 4.5. > £(j8(G/r)) for any edge x of G.

Proof. Suppose x = uv and assume the points of G/x have 
been labelled so that u E G/x has all the adjacencies of 
both u and v in G — Fix a coloring of G/x using the 
smallest possible number of colors. Transfer the coloring 
back to G by assigning v a new color not used in the 
coloring of G/x, hence providing a coloring of G from 
x(G/x) + 1 colors. Thus we know %(G) < x(G/x) + 1. Then 
f(P(G)) = p - X(G) > (P - 1) ~x(G/x) = l(^{G/x)), Where p 
is the number of points in G. ■

Theorem 4.6. If G has m missing edges then /3(G) < /3(%-) .

Proof. We proceed by induction on m. If m = 0 then both G 
and Xq are complete graphs; /8(G) = (1) = Now assume
m > 1 and let y be one of the edges missing from G. By the 
completion formula, /3(G) = j8(G + y) -f* 0{(G + yj/yj where 
G + y has m — 1 missing edges and (G + y) /y has m — j 
missing edges for some j > l. By induction we may assume
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i3(G + y) < /3(X̂ ) and jS((G+y)/y)  ̂jg(X̂ )  ̂ . Either
)3((G+y) /y) =iSfe) or |8((G+y)/y)) < jg(X^) .

First assume |8((G+y)/y) = j8 «

Then f(#((G + y)/y) ) = m — l. From Proposition 4.5 we have
f(|8(G + y)) > f(g((G + y)/y)) = m - l, and g(G+y) < 2(%%=,)
implies i(^{G + y) ) < m — 1. Then f(#(G + y) ) = m — 1 and
so #(G+y) = jg(x^) because j9(X̂jrr) has terminal value 1. Then 
|8(G) = jS(G + y) +-" P((G + y)/y) = |6(%^) -T jS(X^) = jg(%g).

Now suppose /3( (G + y) /y) < jS(X̂ ) . Then by Proposition 3.2(a) , 
/3(G) = /3(G + y) -r /3((G + y)/y) < /8(X̂ ) +-" ^(X^) = /3(X̂ ) .

By combining Proposition 4.4 and Theorem 4.6 we know that 
/3(T̂ ) < /3(G) < jS(X̂ ) if G is any graph with m missing edges. 
Since and X- are specified graphs with m missing edges, 
we know that we have found the best possible bounds. It is 
fortunate that the sequences /3(T̂ ) and /8(X̂ ) are so easily 
determined; /8(Tô) = (1) = /8(Xô) and when m > 1 then we have 
^(Ts) = (l,m) and /8(Xs) = ((%)'(?). ""(%)) -

It is important to note that a sequence can satisfy the 
bounding conditions and still not be chromatic; for
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example, (̂T̂ ) < (1,3,3) < jS(%3) but there is no graph with 
3 missing edges whose ^-sequence is (1,3,3). Thus the 
bounding conditions form a necessary, but not sufficient, 
condition for a sequence to be chromatic. Nevertheless, 
just as with the a-sequences, these bounding conditions 
with jS-sequences serve to greatly narrow the field of 
polynomials considered to be candidates for the chromatic 
polynomial of some graph.
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