
A SURVEY AND A DETAILED CASE STUDY USING OMG IDL:

THE ROLE OF IDL IN COMPONENT COMPOSITION

BY

EMRAN AL-SHAHROURI

Bachelor of Science

Mu'tah University

Al-Karak - Jordan

1993

Submitted to Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December 2003

A SURVEY AND A DEIAILED CASE STUDY USING OMG IDL:

THE ROLE OF rDL IN COMPONENT COMPOSITION

BY

EMRAN AL-SHAHROURI

Bachelor ofScience

Mu I tah University

Al-Karak - Jordan

1993

Suhmitted to Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfiJIment of

the requirements for
the Degree 0 f

MASTER OF SCIENCE
December 2003

A SURVEY AND A DETAILED CASE STUDY USING OMG IDL:

THE ROLE OF IDL IN COMPONENT COMPOSITION

Thesis Approved:

11

A SURVEY AND A DETAILED CASE STITDY USING OMG IDL:

THE ROLE OF IDL IN COMPONENT COMPOSITION

Thesis Approved:

II

PREFACE

The dream of building large software systems out of well-defined independent

components is gradually coming true. Modem software systems are rarely developed

entirely from scratch; rather they are constructed using tested and reliable pieces called

components.

Component Based Software Development (CBSD) still faces some major

obstacles. One of these problems is composing the different components that make up a

system. Interface Definition Language (lDL) plays a vital role in composing components.

IDL is used to describe the contracts (interfaces) between the components of a system.

Object Management Group (OMG) is a leader in defining standards for software

components. One of the IDL standards is OMG IDL. This thesis reports a study of OMG

IDL and the role it plays in component composition. One case study (a library system)

was investigated using OMG IDL.

The case study is introduced infonnally, then it is analyzed and designed as a

component-based system, subsequently an OMG IDL is presented for the case study. The

functional and extra functional properties of the system are then discussed. The following

lessons and conclusions were learned from the case study. OMG IDL was originally

designed to specify the functionality of the components of a system, but its function has

been extended to compose the components together as well. Using the OMA standard

111

PREFACE

The dream of building large software systems out of well-defined independent

components is gradually coming true. Modern software systems are rarely developed

entirely from scratch; rather they are constructed using tested and reliable pieces called

components.

Component Based Software Development (CBSD) still faces some major

obstacles. One of these problems is composing the different components that make up a

system. Interface Definition Language (lDL) plays a vital role in composing components.

IDL is used to describe the contracts (interfaces) between the components of a system.

Object Management Group (OMG) is a leader in defining standards for software

components. One of the IDL standards is OMG IDL. This thesis reports a study of OMG

IDL and the role it plays in component composition. One case study (a library system)

was investigated using OMG IDL.

The case study is introduced informally, then it is analyzed and designed as a

component-based system, subsequently an OMG lDL is presented for the case study. The

functional and extra functional properties of the system are then discussed. The folIowing

lessons and conclusions were learned from the case study. OMG IDL was originally

designed to specify the functionality of the components of a system, but its function has

been extended to compose the components together as well. Using the OMA standard

III

servIces, CORBAservices helps control the extra-functional properties. The software

designer should be knowledgeable about the standard components and services in the

component model in order to use them when they are needed and not write them again. In

the library system case study, it was not necessary to develop new Naming and Trading

services, Transaction services, or Security services, and the OMA standard services were

used instead. A good design is essential for a component system to succeed. It is hard to

cover all parts of OMG IDL in one case study. Also, there is lack of standardized

components in the general library system domain.

IV

--'

1..

servIces, CORBAservices helps control the extra-functional properties. The software

designer should be knowledgeable about the standard components and services in the

component model in order to use them when they are needed and not write them again. In

the library system case study, it was not necessary to develop new Naming and Trading

services, Transaction servlces, or Security services, and the OMA standard services were

used instead. A good design is essential for a component system to succeed. It is hard to

cover all parts of OMG lDL in one case study. Also, there is lack of standardized

components in the generaa library system domain.

IV

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. I would like to extend my sincere appreciation to my thesis advisor,

Dr. Mansur H. Samadzadeh, for assisting me with his guidance, wisdom, encouragement,

and patience throughout my graduate studies at Oklahoma State University. My special

gratitude is also extended to Dr. George E. Hedrick and Dr. Blayne E. Mayfield for their

valuable help and participation while serving as members of my graduate committee.

My appreciation goes to the soul of my late father who was my inspiration to

fulfill my dreams. Especial admiration goes to my mother for her great love and support.

My thanks also extend to my brothers and sisters for their encouragement and trust. J

would like to extend my special gratitude to my fiance, Noor, whose patient love has

enabled me to complete this thesis.

I am also obliged to my friends for their support and encouragement.

v

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. I would like to extend my sincere appreciation to my thesis advisor,

Dr. Mansur H. Samadzadeh, for assisting me with his guidance, wisdom, encouragement,

and patience throughout my graduate studies at Oklahoma State University. My special

gratitude is also extended to Dr. George E. Hedrick and Dr. Blayne E. Mayfield for their

valuable help and participation while serving as members of my graduate committee.

My appreciation goes to the soul of my late father who was my inspiration to

fulfill my dreams. Especial admiration goes to my mother fOT her great love and support.

My thanks also extend to my brothers and sisters for their encouragement and trust. J

would like to extend my special gratitude to my fiance, Noar, whose patient love has

enabled me to complete this thesis.

I am also obliged to my friends for their support and encouragement.

v

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. COMPONENT-BASED SOFTWARE DEVELOPMENT (CBSD) 4

2.1 Software Components 4
2.2 Problems with CBSD 6
2.3 The CBSD Process 7
2.4 Designing Component-Based Systems 9
2.5 Component Composition 10
2.6 Component Interfaces II

III. POPULAR MIDDLEWARE COMPONENT TECHNOLOGIES 12

3.1 Common Object Request Broker Architecture (CORBA) 12
3.2 Component Object Model (COM) and Distributed COM (DCOM) 16
3.3 Sun Microsystems JavaBeans and Enterprise JavaBeans 17

IV. OBJECT MANAGEMENT GROUP (OMG)
INTERFACE DEFINITION LANGUAGE (IDL) 19

V. OBJECT MANAGEMENT ARCHITECTURE (OMA) 23

VI. "LIBRARY SYSTEM" CASE STUDy 26

6.1 Informal Description of the "Library System" 26
6.2 Component-Based Specification of the "Library System" 27

6.2.1 CatalogService Component 36
6.2.2 LibraryAccessService Component.. 42
6.2.3 LibraryStation Component. 46

6.3 "Library System" in OMG IDL 48

VII. DISCUSSION 53

7.1 Functional Properties 53

VI

Chapter

TABLE OF CONTENTS

Page

r. INTRODUCTION 1

II. COMPONENT-BASED SOFTWARE DEVELOPMENT (CBSD) 4

2.1 Software Components " " .. 4
2.2 Problems with CBSD 6
2.3 The CBSD Process 7
2.4 Designing Component-Based Systems " "." 9
2.5 Component Composition " 10
2.6 Component [nterfaces " " " " " II

III. POPULAR MIDDLEWARE COMPONENT TECHNOLOGIES " " 12

3.1 Common Object Request Broker Architecture (CORBA) " 12
3.2 Component Object Model (COM) and Distributed COM (DCOM) " " 16
3.3 Sun Microsystems JavaBeans and Enterprise JavaBeans"" ".. " "" " 17

IV. OBJECT MANAGEMENT GROUP (OMG)
INTERFACE DEFINITION LANGUAGE (lDL) "." .. ""." " "" ".. " 19

V. OBJECT MANAGEMENT ARCHITECTURE (OMA)"""" .. " .. "" .. "."" .. ".""" .. " 23

VI. "LIBRARY SYSTEM" CASE STUDy." .. " " " ".. " ".. 26

6.1 Infonnal Description of the "Library System" " " .. " " 26
6.2 Component-Based Specification o[the "Library System" """ 27

6.2.1 CatalogService Component _ _ 36
6.2.2 LibraryAccessService Component.. 42
6.2.3 LibraryStalion Component 46

6.3 "Library System" in OMG IDL 48

VII. DISCUSSION _ 53

7.1 Functional Properties _ _ 53

VI

-

lL

Chapter Page

7.2 Extra-Functional Properties 56

VIII. SUMMARY AND FUTURE WORK 58

REFERENCES 60

APPENDICES 62

APPENDIX A: GLOSSARy 63

VlI

Figure

LIST OF FIGURES

Page

J. Component interfaces 5

2. An opportunistic reuse process 8

3. Development with reuse 8

4. Elements of a component-based development approach 9

5. Interoperabilily uses ORB-ta-ORB communication 13

6. Request passing in CORBA 15

7. Object Management Architecture 24

8. Book and Copy class diagram " 29

9. Library User class hierarchy diagram , " JO

10. Library Catalog class , _.. , 10

1]. Objects relationships and constrains " "" " " "" " " " 32

12. Ordinary Borrower use-case diagram 33

] 3. Staff User use-case diagram 34

14. Library system components and deployment diagram ." .. """" " " " 35

VIII

CHAPTER I

INTRODUCTION

Software development is a time consummg and expcnSlve process. A major

concern for researchers and software engineering specialists is how to minimize the time

and cost needed to develop reliable software systems. One of the effective ways to reach

this goal is through software reuse, and one of the preferred practices for software reuse

is Component-Based Software Development (CBSD). CBSD emerged in the late 1990s

[Ivers et al. 02] but still lots of work needs to be done such as predicting component and

system properties.

The idea of reusing software began gaming widespread acceptance since the

inception of object-oriented programming and software libraries. Instead of spending

time and effort doing the same thing repeatedly, and building software systems from

scratch, one can reuse the software already made, and develop software systems from

components as the menu functioning process is done in other engineering disciplines.

The components that make up a system could reside on the same cumputer or be

distributed over a network. Such components need to communicate with each other and

with the environment in which they are deployed. These communications arc typically

done through components interfaces. Component interfaces work as contracts among the

1

different components in the composed system. There is a special type of language used to

describe these software contracts (interfaces). These languages are called Interface

Definition Languages (IDL).

Middleware is software that manages the communication and data exchange

among the different components in component-based systems [Sommerville 01]. The

most widely used component middleware technology is COREA (Common Object

Request Broker Architecture) that is a product of OMG (Object Management Group).

CORBA 3 refers to the CORBA Component Model that includes a suite of ten

specifications [OMG 02], one of these ten specifications is the OMG IOL.

The purpose of this research was to investigate the important role that lOL plays

in composing the different components of a component-based system. A case study (a

library system) was studied using the OMG IDL. The library system was specified and

analyzed as a component-based system, and the different components of the system were

identified. OMG rDL routines were written for the different interfaces of the components.

Subsequently, the properties of the system were analyzed based on the types of properties

of component systems: functional properties and extra-functional properties. Extra

functional properties include performance, security, latency, and accuracy_ These

properties are usually referred to as quality properties or quality of service properties

when they are attached to service [Bachmann et al. aO].

The organization of this thesis is as follows. Chapter II provides an overview of

Component Based Software Development (CBSD) including software components,

problems with CBSD, the CBSD process, designing Component-Based systems,

component composition, and component interfaces. Chapter HI introduces some of the

2

popular midd~eware component technologies. Chapter IV provides a genera] introduction

to the Object Management Group (OMG) Interface Definition Language (JDL). Chapter

V presents the Object Management Architecture. Chapter VI provides the informal

specifications, the object oriented analysis and design, and the component-based

specification for the case study "hbrary system", then the case study is captured in OMG

IDL. Chapter VII gives a discussion of the functional and extra-functional properties of

the "'library system". Finally, Chapter VIII discusses the summary and future work.

3

CHAPTER II

COMPONENT-BASED SOFTWARE DEVELOPMENT (CBSD)

The sections m this chapter present an overvIew of the maIO Issues of

Component-Based Software Developmenl (CBSD): software components. discussing

some problems with CBSD, introducing the CBSD process, designing component-based

systems, component composition, and component interfaces.

2.t Software Components

Components are the core of CBSD and thus we need a clear definition fOf them in

order to understand the fundamentals of CBSD. In the absence or universal standards and

guidelines in this area, there is no definition for the tcnn "component" on which everyone

agrees. Basically, a component has the following main features: I) a software component

is an independent and replaceable entity of a system that perfonns a clearly defined

function, 2) a software component plays a role in a well-defined architecture, 3) a

software component interacts and communicates with the other component through its

interface and it also provides services through its well-defined interface [Cai et al. 00]

[Clements et al. 99].

According to Alan Brown, one of the co-authors of the book COllstructing

4

Superior Software [Clements et al. 99J. "a component is a software package which otTers

services through interfaces". UML 1.0 and 1. t define a component as: "a reusable part

that provides the physical packaging of model elements" [Clements et al. 99]. Microsoft

Component Object Model (COM) defines a component as "a piece of compiled software

which is offering a service" [Cmkovic and Larsson 02]. Another definilion for a software

component is given below.

A software component is a unit of composItIon with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition
by a third party [Cmkovic and Larsson 02].

A component is defined by its interfaces. In general, components have two

different and related interfaces: 1) interfaces provided. which are the services <l

component provides, and 2) interfaces required, which are the services that have to be

available from the system in order to use the component [Sommerville 0 t] (see Figure I).

Requires interface Component Provides interface

Figure I. Component interfaces [Sommerville aI]

One of the great features of a component is the separation of its interfaces from ils

implementation [Cmkovic and Larsson 02]. A component can also be conccplualized as

5

an encapsulated implementation of functionality that can be used by 8 third party, and

that complies with a component model [Bachmann et al. 00].

Components vary in size from a component that perfonns a simple mathematical

function to a component that is an entire application by itself. The latter level of

component reuse (e.g., MS Excel as a component) is called commercial off the shelf

(COTS) component reuse [Sommerville 01].

Component-based software development (CBSD) or, as some people like to call

it, component-based software engineering (CBSE) is closely related to the development

of distributed systems, which consist of components that are distributed among

computers on a network.

2.2 Problems with CBSD

Component-based software development (CBSD) suffers from some problems

and extra costs, which are basically associated with software reuse in general. These costs

and problems are [Crnkovic and Larsson 02] [Sommerville 01]: high maintenance cost,

lack of supporting development tools, frequent updating of the component library. and

the effort involved in finding the right components and adopting them.

Another problem with CBSE is the issue of component trust, which is referred to

as the "not-invented-here" syndrome. Developers usually find it hard to trust other

developers' work especially from outside their organization. This becomes more

pronounced when it comes to COTS products. Mitterrneir suggested some techniques to

improve software comprehension [Mittermeir et al. 01] in order to help trust components

especially obtained from outside an organization.

6

Component composition IS another major problem in CBSE. Predicting the

overall system properties is one (lfthe important research trends in CBSE [CmkOVtC et al.

02]. When a system is composed from different components, these components

sometimes act in an unexpected way because of the environment and the errect of the

other components in the system (see Section 2.5). This can only be discovered at the time

of composing the system [Moreno et al. 02].

2.3 The CBSD Process

The traditional practice of software engineering process does not give software

developers the full advantage of component-based software development (CBSD). In

order to gain the benefit of CBSD, software developers should think differently in the

way they design and construct software systems [Clements et a1. 99]. Developers should

shift their goaJ from developing an individual application to developing well-defined

reusable software components that can be used to build families of applicalion. Some of

the main issues that a typical CBSD process should address are [Clements ct al. 99]:

defining acceptable sizes for software components, describing the dependencies among

the components in a system, documenting a component and making it handy for others to

use, and examining the impact of CBSD on testing, maintaining, and evaluating

component-based systems. CBSD should focus on interfaces and interface-based design,

and it should support selection, evaluation, and assembly of components to create new

appl iealions.

Sommerville presented two different approaches for component-based

development [Sommerville 0 I]. The first approach consists of four steps (Figure 2), it

7

starts with designing the system architecture, then it is time to specify the components in

the system, next comes the search for components that comply with the specifications and

the design, and [he last step is incorporating the discovered components. This approach

may indeed lead to a good level of component reuse, but at the same time it contrasts

with other engineering disciplines where component reusability drives the development

and menu functioning process. TypicaUy, engineers first search for the necessary

components and then they design the system based on these components. In the second

approach (Figure 3), the specifications get modified according [0 the available

components.

Design system Specify Search for Incorporate

architecture f-+ components f--+ reusable t--- discovered
components components

Figure 2. An opportunistic reuse process [Sommerville 011

""\

Outline Search for Modify requirements
system reusable according to discovered

requirements components components

I
,

Architectural Search for Design system t\

design reusable using reusable
components components

' .. ~

Figure 3. Development with reuse [Sommerville 01)

8

2.4 Designing Component-Based Systems

As stated earlier (see Section 2.3), the development of component-based systems

should focus on interfaces and interface-based design. As a result, we need tools to

support this kind of development. Some advances in tools and modeling techniques have

taken place in recent years. Some of these advances are mere standardization on a

common notation for behavior-based design systems and the emergence of component

design targeting this notation.

One of the popular tools used to model software systems is the unified modeling

language (UML) [Clements et al. 99] [Kurchten 98] [Siegel 00]. UML is another product

of OMG. It provides a notation for capturing many features and issues of components and

component-based systems. But stit! UML cannot address all of the different aspects of

component and component-based systems. Kruchten [Kruchten 98] proposed a number of

techniques to represent component-based systems in UML.

Business Need

,-11"./"/<'< IJiI "I
J\~lh·"IJ' -~

1::r;<"II<: _ ..~
('lIlll/ hJJ lt'Jlh

Business Solution

(/lITell1

S\'lh:m< &
J'r/l,11('(><

I. " "llig
Sol'H·ar,·
Art"!IIJl!(."1 UJ't'

Wl"!iJlI Jl1J
l.,·clll ·
\', "t'IH'

Figure 4. Elements of a component-based development approach [Clements et aJ. 99]

9

Alan Brown from Sterling Software presented three basic steps for component~

based systems modeling [Clements et aL 99]: understanding the context, defining the

architecture, and provisioning the solution (Figure 4). These steps may occur in any

order.

2.5 Component Composition

In CBSD, the tenn composition is used instead of integration to refer to how a

system is assembled [Bachmann et a1. 00]. Different blocks (components) are composed

to form a component assembly or a system. A number of components may be composed

to generate larger components. Components have different levels of communication

[Bachmann et al. 00). These levels are: component-to-component, component-to

framework, and framework-to-framework. A framework manages the different resources

shared by components and provides basic mechanisms that facilitate interaction among

components [Bachmann et al. 00).

In the traditional software development, component integration and composition

is a critical phase of the process. Free composition of reused components can reduce the

development cost and time, but at the same time it has a number of potential risks and it

may incur a high price later on. Individual components occasionally do not act the same

when they are composed. Certain properties of individual components may not hold for

the assembly. Individual components sometimes make some assumptions about other

components, these assumptions may not hold when they arc integrated with onc another.

This can cause a phenomenon that is called architectural mismatch [Dong 02). In other

10

words, the actual behavior of component assemblies is only discovered after their

integration [Moreno et al. 02]. Some research has been done on predicting the system

properties or the component assembly properties based on the properties of the

constituent components [Cmkovic et al. 02], but still there arc no clear results in this area

of research.

2.6 Component Interfaces

Software systems that have problems and bugs may result in big losses in money,

effort, and even in human hves [Dong 02]. In CBSO, interface specification has a criticaJ

role in constructing software systems based on the building blocks (components). As

stated by Dong (Dong 02]:

Imprecise, ambiguous, and incomplete specification of components may
lead to wrong choices, and therefore mismatches in the compositions.
These mismatches may require high cost and expert skills to find and
correct, thus compromise the benefits of component-based sofiware
development.

So deslgning the interfaces of the components should be precise, clear, unambiguous, and

complete.

Component interfaces govern the way a component communicates With the

outside world. These interfaces represent the boundaries between components. These

boundaries could be thread boundaries, process boundaries, programming language

boundaries, or machine boundaries [Gudgin 01]. Component inlerfaces are the way we

integrate components into groups called assemblies [Bachmann et al. 00].

11

CHAPTER III

POPULAR MIDDLEWARE COMPONENT TECHNOLOGIES

Components of a system may be implemented in different languages, these

components may be distributed over a neh'v"ork, and they may run on different platfonns

[Sommerville 01 J. Also, the components need to communicate and coordinate through

the component infrastructure (sometimes called a component model (Cai et al. 00]).

Component infrastructure acts as the "pluming" or "middleware" that allows different

components (0 corrununicate with each other [Cai et al. 00]. There are some

standardization efforts done on these component middleware infrastructures like OMG

CORBA, Microsoft's COM and DCOM, and Sun's JavaBcans and Enterprise JavaBeans

[Cai et al. 00]. In each one of these component infrastructure implementations, there is a

vision of how to build an enterprise-scale component-based application supported by a

set of tools and standards [Clements et aJ. 99].

J.I Common Object Request Broker Architecture (CORBA)

This is an open standard for component interoperability [Cai et al. 00). This

standard is defined by the Object Management Group (OMG), which is made up of over

800 companies [Clements e1 al. 99) [Siegel 00] to promote object-oriented software

12

development. The role of this group is to provide standardization for object-oriented

development but not to provide a specific implementation, and it is available free of

charge. OMG does not just define standards for CORBA, it also defines other standards

like UML and OMG IDL (Sommerville 0 I]. OMG is attempting to achieve consensus on

an appropriate component-based model for building component-based distributed

applications [Clements et al. 99].

OMG defined its vision of component-based systems in its Object Management

Architecture (OMA) model (see Chapter V). CORBA has three major features [Clements

et al. 99]: I) Interface Definition Language (IDL) that describes how business

functionality is packaged to be accessed from external interfaces, 2) CORBA component

model that describes how components make requests for other components' services, and

3) the Internet InterOperability Protocol (JIOP) that allows the different CORBA

implementations to communicate and interoperate. Figure 5 shows how this

communication happens.

Client Object Client Object

5t~b S~ el Stub S} el

HOP
Protocol

ORBI ORB2

Stub: client side part of the compiled IDL file
Skel (Skeleton): object side part of the compiled IDL file
ORB: Object Request Broker

Figure 5. Interoperability uses ORB-to-ORB communication [OMG 02]

13

Figure 5 is a simplification of what actually transpires In tenns of

communications among the components. The stub and skeleton act as proxies for the

client and object implementations, respectively. The client passes its IDL-based

invocation containing an object reference (each object has a unique object reference) to

its local Object Request Broker (ORB). If the object reference is to a local object

implementation, the ORB routes it to its target object implementation. If not, the ORB

will route it to a remote ORB, through the nap protocol that all ORBs implement [Siegel

00], and then the invocation will be routed to a remote object implementation.

The communication and interaction among components in CORBA are done

through middleware called the Object Request Brokers (ORB). Using the ORB, a client

may invoke the methods of other objects, and the location of these objects will be

transparent to the client. The client does not need to know where the objects are located,

in what languages they were developed, or under what platfonns they are running [Cai et

al. 00].

A set of standardized capabilities has been defined In the CORBA servIces

standards. The following services are most often found in the currently available

implementations [Clements et a!. 99] [Sommerville 0I]: 1) life cycle services that are

responsible for creating and terminating component instances. 2) naming services that

allow different components to identi fy and find the di fferent services over lhe network or

on the same computer, and they also allow the components to know different information

about the other components and the services that the other components may have, 3)

security services that provide a secure private connection between a client and the

provider of services. 4) transaction services that give the user control to start and

J4

-

complete distributed transactions between components, and in addition they facilitate a

rollback mechanism in case of failure, and 5) notification services that let the objects

notify other objects of the occurrence of some events. Figure 6 shows a request passing

ITom a client to an object implementation in the CORBA model.

Client Object
Implem ntation

ID if-, II L
Stl b Ske eton

Request I
Object Request Broker (ORB)

Figure 6. A request passing in CORBA [OMG 02]

There are a number of implementations for the CORBA standards, from different

venders, on different platforms for distributed systems running across heterogeneous

platforms. This indicates that implementing a component-based application using the

OMG standard is feasible and practical. There are a number of successful examples of

component-based applications using the OMG approach in different application domains

such as banking, retail, and telecommunications [Clements et a1. 99]. According to Cai

[Cai et al. 00] "CORBA is widely used in object-oriented distributed systems".

There are different versions of the OMG CORBA model [OMG 02]: CORBA 2

and CORBA 3. CORBA 2 is sometimes referred to as the CORBA intcroperability and

the lIOP protocol, and CORBA 3 is sometimes referred to as the CORBA Component

Model.

15

3.2 Component Object Model (COM) and DislTibuted COM (DCOM)

Microsoft introduced the Component Object Model (COM) technology in 1993 as

a general architecture for component software. It is language independent and based on

Windows and Windows NT platforms. COM defines how components communicate with

their clients. The main purpose of COM was to enable the sharing of functionality among

different desktop applications. After Microsoft realized the advantages of the generic

approach [Clements et a1. 99) for the desktop applications, it made an extension of COM

called Distributed COM (DCOM), which is a protocol that allows components to

communicate over a network directly in a reliable, secure, and efficient manner [Cai et al.

00].

There are three major features in DCOM (Clements et al. 99): 1) the MlDL

(Microsoft Interlace Definition Language) that describes how the functionality of a

component can be accessed externally through its interface, 2) the COM model describes

how components can communicate and request services from one another, and 3) the

DCOM addition to COM adds support for locating different components across a

network and makes the process location transparent to the other components.

Microsoft provides other component infrastructure services through two other

products. These two products are: Microsoft Transaction Service (MTS) and Microsoft.

Message Queue (MSMQ) [Clements et al. 99]. The main disadvantage of the

COMIDCOM component infrastructure is that it is platform dependent and works only

with Microsoft platfonns.

16

3.3 Sun Microsystems JavaBeans and Enterprise lavaBeans

In the last few years, Java has gained rapid acceptance and has been adopted as a

language for developing client-side applications for the Web. Java is in an advanced

position to be the backbone for the development of component-based distributed systems.

According to Brown [Clements et aJ. 99], this is a result ofa number of features that Java

has as a programming language. These fealures are: I) Java was originally designed to

build network-based applications and it contains support for distributed multi-threaded

applications, 2) Java's runtime environment permits modifying a Java application while it

is running, 3) memory management simplification in Java has made Java easier to utilize

for component-based applications, and 4) Java includes constmcts that support the key

principles of component-based soflware engineering such as separating implementations

from specifications.

There are two different products that Java provides as infrastructures for

component-based development [Cai et al. 00): the client-side component development,

which is JavaBeans, and the server-side component development, which is the Enterprise

JavaBeans.

Enterprise JavaBeans provides a definition for the minimum set of services that

must be on any server to comply with the specifications of developing enterprise~scale

distributed applications. These services are: process and thread disratching and

scheduling, resource management, naming and directory services, network transport

services, and transaction management services.

JavaBeans supports applications in a multi-platfonn environment with reusable

client-side and server-side components [Cai et al. AD). lavaBeans and Enterprise

17

-

JavaBeans are platform independent but they are language dependent.

18

CHAPTER IV

OBJECT MANAGEMENT GROUP (OMG) INTERFACE DEFfNITION

LANGUAGE (IDL)

Interface Definition Languages such as OMG rDL and COM IDL describe

interface abstractions that control the dependencies that exist among different parts of a

program or a system [Bachmann et a1. 00]. An IDL definition of an interface fonns a

contract among a client, an object, and the runtime component model [Gudgin 01 l-

An interface definition written in OMG IDL is programming language

independent, but it maps to popular programming languages through the OMG standards

(these languages are C, C++, Java, Cobol, Smalltalk, Ada, Lisp, Python, and [DLscript)

[OMG 02].

For an IDL to work well for a distributed system, it needs to specify the operation

that is going to take place as well as the input and the output parameters with their

respective types, and it should also have an error handling mechanism. The OMG lDL

has all these three requirements [Siegel 96]. What IDL really does is that it constitutes a

contract with the clients of the components. These clients use the same interfaces (to call,

build, and dispatch the invocations of the different methods) that the implementations use

(to receive and to respond).

19

The OMG CORRA architecture separates the interfaces definitions from the

interface implementations. The interface (the contract) is written using the OMG IDL and

the implementation (the fulfillment) is written using a programming language like C++,

C. or Smalltalk. An interface represents a promise to a client, but at the same time it

represents an obl\gation for the object that supports and implements that interface [Siegel

96] (see Figure I on page 5).

OMG COREA also enforces object encapsulation, the object of a component can

only be accessed through its announced rDL interfaces [Siegel 96]. The IDL compiler

maps an IDL script to the desired programming language. Every ORB comes with at least

one IDL compiler. When an IDL script runs through the OMG IDL compiler. first the

IDL compiler checks for errors. If the rDL script is error free, then the IDL compiler

produces at least two files, one for the client stub and the other for the object skeleton

[OMG 02). The client and object implementations are isolated by at least three different

components: an IDL stub on the client side, a related IDL skeleton on the object

implementation side, and one or more ORBs [Siegel 96] (see Figure 5 on page 13 and

Figure 6 on page 15).

It has been reported that interface definitions written in OMG IDL are generally

simple, easy to understand, and easy to construct [OMG 02J. OMG IDL has the

appearance of ANSI C++ in many ways [Siegel 96]. An OMG IDL script example is

given below.

20

-

II defining the interface for the object Copy

interface Copy{

boolean CheckOut (in string BorrowerName, in
CopyNumberType CopyNumber) raises
(NotValidCopyNumber, UserNotround)

boolean Return(in CopyNumberType CopyNumber)
raises (NotValidCopyNumber)

This is the interface to a Copy object that checks out and returns a copy of a book in a

library system. The object's type is Copy and it can perfonn two operations: Chec kOu t

and Return. The CheckOut Operation takes two input parameters. The first

parameter, BorrowerName, is a string and the second parameter, CopyNumber, is

of type CopyNumberType, which is a user-defined type. The return value, which does

not need a name, is a boolean. The CheckOut Operation raises two exceptions:

NotVa 1 idCopyNumber and UserNot Found. The second operation, R turn, takes

one input parameter, CopyNumber, which is of type CopyNumberType. The return

value is a Boolean, and it raises one exception: NotValidCopyNumber.

One of the motivations for developing CORBA and IDL is getting all computers

in an enterprise to work together regardless of what hardware or software or platform

these computers are consist of (Siegel 00], ironically, Interface Definition Languages

(lDLs) in general give only a weak guarantee [Borgida and Devanbu 99] [Dong 02] that a

software service will work in a particular context as expected. Borgida [Borgida and

Devanbu 99] proposed an approach based on description logics to describe component

interfaces. Interface Definition Languages (lDLs) describe only the syntax of the

component interfaces but not the semantics [Dong 02], the lack of information may cause

21

-

serious problems when it composed with others. Another problem with IDLs is that IDLs

only describe the services offered by an object but not the services required [Dong 02].

22

CHAPTER V

OBJECT MANAGEMENT ARCHITECTURE (OMA)

Object management architecture (OMA) is OMG's vision for the component

model. OMG breaks up the component architecture into four different types (categories)

of components [OMG 03]. These four categories are CORBAservices, CORBAfacilites

(Horizontal CORBAfacilities), CORBAdomain (Vertical CORBAfacilities), and

application objects (see Figure 7). In Figure 7 each service is composed of a number of

CaRRA objects, each service is accessed by a standard IDL interface, and clients access

all services through the Object Request Broker (ORB) [Siegel 00].

IOL (see Chapter IV for more detail) serves as an alphabet [Siegel DOl that

different applications could use to create their own interfaces for particular functions. But

these applications, even though they use the same alphabet (lDL), may not be able to

interoperate because they need a common interface for particular functions in order 10

interoperate with each other. If the IDL was the common alphabet, OMA is the common

language [Siegel 00] among the different application components. OMA is a foundation

for the standard services that every component might need for low level of system

communication (CORBAservices) such as Naming and Trader services, Transaction

services, Security services, and other basic services. OMA is also a foundation for the

23

-

common functions that different applications from different domains use

(CORBAfacilities) such as printing servIces, or for the common functions that

applications from the same domain use (CORBAdomain). Examples of such domains are:

bealthcare, telecommunications, transportation, electronic commerce, and utilities.

Applicatjon CORBAfacilities
Objects Vertical CORBAfacilities

IManufacturingll Telecommunications II ~~~:~~~ II Transportation~
I ~!

Business I IHealthcarel I Finance/ I I Life.1 I Utilities IObjects Insurance SCIence

BI I
Horizontal CORBAfacilities.~ " •
IInternationalization I I Time I IAgent Facilityl tor~J

I--

Object Request Brokers

I
Naming, I I Events, I ITransactionsl I Security

ITrader Notification

Persistent I Property I EJState

CORBAservices

Figure 7. Object Management Architecture [Siegel 00]

24

\r
t

l
t
N

f
~

t

Application Objects that constitute the higher part of the hierarchy do not need La

be standardized. They are customized for the application according to the application's

specification and needs. In another word. these objects are the objects that arc not

affected by OMG standardization [OMG 02].

The power of CORBA is with the standardized common services and functions

[Siegel 00]. The component interfaces of the OMA standardized components and services

are written in IDL As mentioned earlier (Section 3.1), OMG just issues specifications

without implementation, so one might find more than one implementation for a certain

standardized. service or function (component) from different venders. And sometimes the

implementation may have extended functionality compared to the speci fication issued

from OMG. But, on the other hand. some services might not have any implementations in

spite the fact that an implementation for that standardized service would help the

software architects. designers, and developers significantly.

Since the common services and functions in OMA categories (CORBAservices.

CORBAfacilitics, and CORBAdomain) have a standardized interface written in a

common alphabet (i.e. the fDL) one docs not have to buy these services and ORBs from

the same vender. As Slated earlier (Section 3.1), all ORBs implement the common

protocol nop and all the standardized services use the same interface. As a result. one

can replace these conunon services with others from another vender. One can even

change the ORB itself. IDL and interface standardization generally affords great

flexihility.

25

CHAPTER VI

"LIBRARY SYSTEM" CASE STUDY

Library System is a common problem that has been used frequently in the

software engineering research efforts as an illustrative example. It has been used because

of its clarity, familiarity, and ease of understanding.

In this chapter an informal specification for the library problem is introduced

(Section 6. l). The specification of the system is given in Section 6.2 as a component-

based system. An IDL was written for the interfaces of different components of the

system (Section 6.3). A discussion oftbe functional and non-functional prosperi ties of the

system is given in Chapter 7.

6.1 Informal Description of the "Library System"

What follows is a description of the library problem as it was informally

described by Wing [Wing 88].

Consider a small library database with the following transactions:
I. Check out a copy of a book. Return a copy of the book,
2. Add a copy of a book to the library. Remove a copy of a book from the

library.
3. Get the list of books by a particular author or in a particular subject

area.
4. Determine the list of books currently checked out by a particular

borrower.

26

5. Find out what borrower last checked out a particular copy of a book.
There are two types of users: staff users and ordinary borrowers.
Transactions I, 2, 4, and 5 are restricted to stalT users. except lhat ordinary
borrowers can also perfonn transaction 4 to detcnnine the list of books
currently borrowed by themselves. The database must also satisfy the
following constraints:

• All copies in the library must be available for check-out or be checked
out.

• No copy of a book may be both available and checked out at the same
time.

• A borrower may not have more than a predefined number of books
checked out at one time.

6.2 Component-Based Specification of the "Library System"

The early systems were generally developed in an ad hoc software development

approach (Yourdon and Argi la 96]: every system was lIni que, developers did not take the

reuse concepts into considerations. no formal methods were used, and these systems were

difficult to maintain and evolve. As the time went and developers became more

concerned about developing maintainable and scalable systems, there was a need for a

standardized process as well as methods and techniques to develop software systems. A

large number of tools and methods have been developed for this purpose. Object Oriented

Analysis (OOA) is one of these methods.

aOA has a number of supporting tools to model and represent the real world

object of a system and the relationships and the roles that the objects play in a system

(Brown 02]. aOA is mainly a design approach that can be performed using different

supporting tools and programming languages. Usually, the object oriented analysis model

serves two purposes [¥ourdon and Argila 96]. Firsl, it serves the fonnalization of the

view of the real world in which the system will be built. Secondly, the object oriented

analysis model establishes how the different objects of the systems work together to

27

perform the tasks of the system being modeled. The main advantage of using OOA is to

take advantage of the object oriented way of thinking that makes systems generally easy

to maintain and debug by using a clearly defined structure. The object oriented way of

thinking is claimed to be a natural way of thinking of systems as objects with attributes

and methods representing real world objects [Yourdon and Argila 96].

The first step of object oriented analysis is specifying the different objects of the

system. These objects represent the basic building blocks of the system. This step is

fundamental because all of the other steps are built on this step. The basic objects of our

case study (library system) are library catalog, book, copy, author, ust:r, borrower, and

staff user.

Figure 8 shows the class diagrams [or the book and copy classes, the copy class is

part of the book class. Figure 9 shows the class hierarchy diagram for the Library User

class; Staff user and Borrower both inherit The Library User class. Figure 10 shows the

Library Catalog class.

Figure 11 shows the relationships between objects in the library system and it also

shows some constrains. The library system has one library catalog, one or mort: staff

users, and one or more borrowers. The library catalog class has one or more books, and

each book has one or more copies. Each book has one or mOTC authors. Every borrower

cannot have more than a predefined number of books checked out at the sam~ time.

Every copy of a book can only be checked out by one borrower at a time.

28

Book
Title
ISBN
Subject
Author
Edition
Publication Date
Copies

Add Copy 0
Remove Copy ()

•
Copy

Copy ID
Current Borrower
Last Borrower
Available

Check out 0
Return ()
Get Last Borrower 0
Is Available 0

.: UML notation represents composition relationship

Figure 8. Book and Copy class diagram

29

Library User
Name
Address
Phone
10 #
Password

Log In ()
Log Out 0
Cbange Password 0

1
I I

Staff Borrower
Department Max allowed

Copies Current Borrowed

Can Borrow More 0
Check Out Copy 0
Return Copy 0
List Checked Out Copies 0

Figure 9. Library User class hierarchy diagram

Library Catalog

Books

Add Book 0
Remove Book 0
Query by Author 0
Query by Subject 0
Query by Certain Borrower ()

Figure 10. Library Catalog class

30

..,

L

A use-case diagram is a UML diagram used to "document what functions the

system should offer to the users" [Brown 02]. Use-case diagrams show how different

actors can use the system (according to the specifications). They show what the system

does but not how, i.e., they show the black-box behavior of the system rather than its

mechanisms. There are two actors in the library system: ordinary borrower and staff user.

The first actor, i.e., the ordinary borrower, can ask the system to perform three di ITerent

tasks according to the specifications (see Figure 12). These tasks are: show the list of

books by a particular author, show the list of books in a particular subject area, and get

the list of the currently borrowed books by that borrower.

The second use-case diagram (see Figure 13) is for the staff user. who can use the

system in eight different cases. Two of the use-cases are performed on behal f of the

borrower. They are: checking out a copy of a book and returning a copy of a book.

Another three are analogous to the borrower usc-cases. They are: show a list of books by

a particular author, show a list of books in a particular subject area, and get a list of the

currently borrowed books by a particular borrower (any borrower). Another task is to get

what borrower last checked out a particular copy of a book. The remaining tasks are

related to keeping the library catalog updated by adding copies to thc library and

removing copies from the library. We might also add some actors or some usc-cases that

are n01 in the problem specifications, for example there should be an administrator for the

system that adds new staff users, Also. staff users should be able to do more tasks like

adding and deleting borrowers. However, in the rest of this chapter the original

specifications [Wing 88] will be adhered 10 closely.

31

:~.

1.... ,--------,
Staff User

Author

0..*
L '" ,--------,

r---------l

1..*
Copy

Can check out
Can be checked out

• : UML notation represents composition relationship

N: Max number of books can be checked out at the same time by a particular borrower
1..*: means can have one or more objects
0.. 1: means can have zero or one object but not more than one
0..*: means can have zero or more objects
O.. N: means can have zero to N objects

Figure 11, Object relationships and constrains

32

Get list of checked out
books

Get list of books in a
particular subject area

Ordinary Borrower

Figure 12. Ordinary Borrower use-case diagram

Now we will group the similar services and objects into components. In this case

study, the services were grouped into three components: catalog hased services, library

access services, and library station services. Of course, this is in addition to the

standardized OMA components that the system will use. Figure 14 shows the library

system components with their interfaces and suggested deployment for these

components.

In the following paragraphs, the different components will be introduced along

with their jnterfaces and some implementation details.

33

,...

--

What borrower last checked
out a particular copy of a book

Figure 13. Staff User use-case diagram

34

Library Database Server

«DataBase»
LlbraryDB

AI

Cal;). log services

lBook ICopy ICatalog

«DataBase»
UsersDB

I'.

Transacl10n
Services

Naming and
Irade-I..Scrv IC es

Security Services

II0P

,
I

I.
: IlOP
I.,
I,

LibraryAccessServices

,
Library SecuritY Server,,,,

,,,

,,,,,, ,
I. ~ _ .J

,,,

,,,,,,

L ibr3rvStat ion

ISessioo

Library Station PC

lUser [Borrower IStaffUser

IIOP: the [ntemet Interoperability protocol.
The"I" at the beginning 0 fan identi fier stands for Interface; for exampIe, IUser

stands for User Interface.
dependency
connection

Figure 14. Library system components and deployment diagram

35

-

A point about notation is in order at this point. In the rest of this section and the

next section, the OMG's style guide for identifier fonnation (how to make up variable

names) [Siegel 00] was used. Interfaces, datatypes, and exceptions start with capital

letters, and if they consist of more than one word, the first letter of each word is

capitalized with no spaces between words. Names of operations, parameters, and

structure elements will be all lower case letters with underscores to separate the words.

Constants and enumeration values will be all capital letters with underscores to separate

the words.

The system has one global user-defined data type (U se rID) and consists of

three application components. The system will get the benefit of the following OMA

services: Naming and Trader services, Security services, and Transaction services (see

Figure 14).

6.2.1 CatalogServices Component.

• Description: This component deals with the services concerning the library catalog,

book, and copy objects. The operations are: adding and removing books and copies of

books, checking out copies of books, and querying the library catalog database.

• User-Defined Types and Stnlctures: BookTitle, BookISBN, BookSubject,

BookAuthor, BookPublicationDate, CopyID, BookCopies, Books.

• [nterfaces:

•• Catalog interface

••• Glossary: This interface is for adding and removlOg books from the library catalog.

36

••• Stale Variables: None.

••• Operations:

add book

Descriplion: adding a book to the library. This operation is called when adding the first

copy of a book.

Parameters: input details of type BookDetails; no return.

Implementation: first check if the book is in the database or not; if it is not in the

database, add the book to the catalog and use the input parameter details for the new

book's detai Is.

Exceptions: raises one exception BookAl ready InCa t a log if a book witb the same

ISBN number already exists in the library catalog database.

remove book

Description: removing a book from the library catalog, A book is removed from the

library catalog after its last copy has been removed.

Parameters: input book isbn of type BookISI:3N; no return.

Implementation: find the book in the library database and then remove it. make sure that

the Bool< doesn't have any copies attached to it.

Exceptions: raises one exception Boo kN 0 tIn Ca tal og when trying to remove a book

that is not in the library catalog.

get copy ref
- -

Description: get a reference to a Copy object in the library catalog.

Parameters: copy id of the CopyId; return a reference to a Copy object.

37

Implementation: find the Copy object with the copy id j and if it was not active,

activate it.

Exceptions: raises CopyIsNotFound if the copy_id IS not found In the library

catalog database.

query_by_allthor

Description: find the list of books written by a certain author.

Parameters: input author name of type Author; output resul t books of type

Books; no return.

Implementation: find the list of books one of whose authors matche5 the first input

parameter author. return the list of books in the output parameter res u 1 t _ bo 0 k s.

Exceptions: none.

Query_by_subject

Description: find the list of books on a certain subject.

Parameters: input book subj ct of type BookSllbject; output resul t books

of type Books; no return.

Implementation: find the list of books in the subject area passed in the first input

parameter boo k_ sub j e ct. return the list 0 f books in the output parameter

result books.

Exceptions: none.

Query_by_certain_borrower

Description: find the list of books borrowed by a certain borrower.

Parameters: input bo~rower of type UserID; output resulL books of type

Books; no return.

38

Implementation: find the list of book currently borrowed by lhe borrower with the

Use rId passed as the first input parameter, return the list of books in the output

parameter result_books.

Exceptions: none.

•• Boo k interface

••• Glossary: This interface represents the object Book in the library catalog with the

operations concerning the Boo k object.

••• State Variables: details of type BookOetails, copies of type

BookCopies, and copies count of type short .

••• Operations

add copy

Description: add a copy of a book to the library catalog.

Parameters: output number of_copies of type sfl.ort; return of type CopyId.

Implementation: assign a Copy I ct, add one copy to the book, add the copy to lhe

attribute copies, add the copy to the database, add one to the copies _ count, update

the number_of_copies with copie_count (we can benefit from Transaction

services, which is pan of OMA, since this operation contains more than one step, and in

case of failure of any kind, we can call rollback or submit changes).

Exceptions: nonc.

remove copy

Description: remove a copy of a book from the library catalog.

Parameters: input id of type Copyld; output number_of copies of type . art;

no return.

39

Implementation: search the copies related to lhe object, remove it, then remove the

copy from the database, subtract one from the copies _coun t, update

number_of_copies with copies count (we should benefit from the OMA

Transaction services here also).

Exceptions: raises Copy I dNot round if there is no match in the list of cop i e 5 related

to the current object.

•• Copy interface

••• Glossary: This interface represents the Copy object. Each copy is connected to a

book and has a unique Copyld. Copy represents the physical object copy. while Book

has no physical existence in the library system.

••• State Variables: copy id of the type Copyld, available of the type boolean,

last borrower of the type Userld, and current borrower of the type

Userld .

••• Operations

check out

Description: check out a copy by a certain borrower. This operation is not called directly,

it is called from the Borrower object operation chec k out copy because every- -

borrower can borrow up to a certain pre-defined number of books at the same time; so,

before calling this operation, the system should make sure that the borrower does not

exceed that number.

Paramelers: input borrower of the type User[d; no return.

40

Implementation: first check to see if the book is available to be checked out; if true,set

the available attribute to false and then set the cur r en t _bo r rower to the input

parameter borrowe r (we should benefit from the OMA Transaction services here a.lso).

Exceptions: raise CopyChe c kOut if the copy was checked out by another borrower (by

checking the attribute available we can find out if the copy has been checked out aT

not).

return

Description: return a copy of a book to the library after having borrowed it for some time.

This operation is not called directly either. It is called from the borrower object to

adjust the number a f books checked au I by a borrower.

Parameters: none; no return.

Implementation: flrst check to see if the copy was checked out or not; if it was checked

out, then Ihe operation sets the available attribute to true and updates the

last borrower with Ihe current borrower (we shaull! benefit from the OMA

Transaction services here also).

Exceptions: jf the copy was not checked out (attribute a v ail able is true), then the

operation raises CopyNotCheckedOuc.

geL last borrower

Description: return the last borrower of a copy of a book.

Parameters: output borrower of type Userld; no return.

Implementation: set the output parameter bo r rO'Ne r with the 1as t bo r rowe r

attribute.

41

Exceptions: if the copy has not been checked out before it raIses the exception

CopyNotBorrowedBefore. We can find out whether or not the copy has been

checked out by checking the attributes last_borrower and curr-ent_borrower,

ifboth are null, then the copy has not been checked out.

6.2.2 LibraryAccessServices Component

• Description: This component deats with the services concerning accessing the library

system through the User, Borrower, and StarfUser objects operations.

• User-Defined Types and Structures:

UserAddress, UserDet2ils.

• Interfaces:

•• User interface

User-Password. UserType,

••• Glossary: This interface has common attributes and operations for the Bor rowe r

and StaffUser interfaces. The Borr'ower and Sta f fUse r interfaces inherit this

interface.

... State Variables: details o[type UserDetails, type oflype UserType, and

current state of type boolean.

••• Operations

login

Description: login to the lihrary system with a valid password.

Parameters: input pw of type UserPassword; output user '=-ype of type UserType;

no return.

42

Implementation: cross check the passed parameter pw with Lhe user pa ssword in the

details attribute; if there is a matched, return and set the attribute current state

to true.

Exceptions: raises WrorJgPassword if the password that is passed does not match the

password in the details attribute eftha! object.

logout

Description: log out of the library system.

Parameters: none; no return.

Implementation: set the current state to false.

Exceptions: no exceptions.

change_password

Description: change the user password.

Parameters: input old_password of type UserPassword; input new_password

o[typc UserPassword; return boolean.

Implementation: first determine whether or not the new pa 5 swo rd is empty. If not

empty, then cross check the old_password with the password in the attrihute

detai 15; if there is a match, set the password in the user deta i 1s attribute to

the new pass·word.

Exceptions: raises OldPasswordDoesnotMatch if the old_password does nOl

match the password in the attribute struet deta i 1s; LInd if the new password

parameter is an empty string, it raises NewPasswordEmpt.y .

•• 80 t" rowe r interface

43

••• Glossary: This interface deals with the operations that the bo r rowe r object can

perfonn.

••• State Variables: max_books alloy-red of type short and

currently borrowed books of type short .

••• Operations

check out copy- -

Descri ption: check out a copy of a book by this bo r rower obj eet from the library and

the service can be requested by a StaffUser.

Parameters: input service requester of type UserId; input copy id of type

Copyld (which is part of the CatalogServices component); no return.

Implementation: make sure that the s e rv i ce r e que s t e r (first input parameter) is

authorized to request this service by verifying it to be of type Sta f fUse r. Call the

can_barrow_more operation; if it returns true, add one to the attribute

nUffi_currently_borrowed_books. Then, get a reference to the Copy object with

the copy_id (second parameter) by calling get_copy_ref from the Catalog

interface. Last, call operation chec k_ out from the Copy object with the Use r-ld of

this object as a parameter. We should benefit from the OMA Transaction services here

also.

Exceptions: when calling the can bor row mor e operation, if it returns false, raise the- -

CanNot Bor rowMore exception. If the se LV ice_ reque s t e r is not authorized to

perform the operation. it raises UnAuthorisedRequester. If the copy_id is not in

the system, it will raise Ihe same exceptIOn that the Cat a log interface raIses, I.e.,

CopyldNot Found.

44

return_copy

Description: return a copy of a book, the service can be requested by a S t a f [U s e r.

Parameters: input service_requesc.er of type Userld; input copy_id of type

Cop YI d (which is part of the Ca tal og Se rv ices component); no return.

Implementation: make sure that the se rv ice_ reques te r (first input parameter) is

authorized to request this service by verifying that it is of type to be S ta f fU se r.

Subtract one from num_currently borrowed books. Then, gel a reference to the

Copy object with the copy id (second parameter) by calling get copy re f from- - -

the Ca t. a 1 og interface. Last, call operation re turn from the Copy object. We should

benefit from the OMA Transaction services here as well.

Exceptions: if the ret urn operation of the Copy interface raises the exception

CopyNotCheckedOut, then raise the same exception. If the service_requester

is not authorized to perfonn the operation. it raises UnAut ho r i sedReque s te r. If the

copy id is not in the system, it will raise the same exception that the Ca tal og

interface raises, i.e., CopyldNot Found.

borrowed books

Description: list the currently borrowed books by this borrower.

Parameters: input service requester of type Userld; output resul t books

of type Books; no return.

Implementation: if service requester is not the same as the borrower, make sure

that the service requester (first input parameter) is authorized to request this

servIce by verifying that it IS of type StaftUser. Then, call the

query by certaln borrower operation from the Cat ,110g interface with the

45

Userld of the current object as a parameter. Books, the second output parameter, will

hold the returned list of books.

Exceptions: if the s e rv ice :r equest e r is not authorized to perfonn the operation on

this object, it raises UnAut hor isedReques t e r.

can borrow more

Description: check to see if this Borrower object can borrow more books.

Parameters: none; return boolean.

Implementation: check to see ifnum_currently_borrowed_books fewer than the

max_books allowed, then return true otherwise return false.

Exceptions: none.

•• UserS ta f f interface

••• Glossary: This interface represents the staff user object

••• State Variables: department of type string.

••• Operations: inherits the User object operations.

6.2.3 LibraryStation Component

• Description: This component deals with the serVIces concerning the opemng and

closing of a session with the library system from a library station.

• User-Defined Types and Structures: None.

• Interfaces:

•• Sess ion interface

••• Glossary: The Session interface enables the library station to access the library

system.

46

••• State Variables: lS open of type boolean; current user type of type

UserType .

••• Operations

get user_ref

Description: get a reference to the User object with the Userld.

Parameters: user_id of type Use rId; return a reference to the User object.

Implementation: find the User with the user id, and ifit was not active, activate it.

Exceptions: if the user_id is not in the users database, raise UnknownUser.

open

Description: open a session with the library system from a library station.

Parameters: input user of type Userld; input password of type UserPasswrod;

output user type of type UserType; no return.

Implementation: call operation get_user_ref with user~id as a parameter. When

getting the reference for the User object, the object should call operation log in of the

User object with password and user_type as parameters. The login operation (if

successful) will return the user type STAfF USER or BORROWER in the second

parameter user type. Then the is open attribute is changed to true and the

current user type attribute is set to the user type returned from the login

operation.

Exceptions: if operation get_user_ref raised UnknownUser, this operation will

raise the same exception as well. Also, if the operation login of the User object raised

exception WrongPassword, this object will raise the same exception.

47

Close

Description: close the open Session.

Parameters: none; no return.

Implementation: changing the attribute is open to false and deleting the Session

object.

Exceptions: none.

6.3 "Library System" in OMG IDL

The following code is the OMG IDL for the library case study according to the

specifications given in Section 6.1:

typedef long Userld; II Global definition for Userld type

II Catalog Services Module declarations
module CatalogServices
{

II user defined type declarations
typedef string BookTitle;
typedef string BookISBN;
typedef string BookSubject;
typedef string BookAuthor;
typedef long BookPublicationDate;
typedef long Copyld;

II BookDetails structure holding the detailed
1/ information of Book
struct BookDetails

BookTitle title;
BookISBN isbn;
BookSubject subject;
sequence<BookAuthor> author;
short edition;
BookPublicationDate publication date;

} ;

II Catalog Services exceptions declarations

48

exception CopyCheckedOut;
exception CopyNotCheckedOut;
exception BookNotlnCatalog;
exception CopyldNotFound;
exception CopyNotBorrowedBefore;
exception BookAlreadylnCatalog;

interface Copy; Ilforward reference

typedef sequence<Copy> BookCopies;
typedef sequence<BookDetails> Books;

II Catalog interface
interface Catalog
{

boolean add book(in BookDetails details)
raises (BookAlreadylnCatalog);

void remove book(in BookISBN book isbn)
raises (BookNotlnCatalog);

Copy get_copy_ref(in Copyld copy id)
raises (CopyldNotFound);

void query_by_author(
in Author author name,
out Books result books);

void query by subject(
in BookSubject book_subject,
out Books result books);

void query by certain_borrower (
in Userld borrower,
out Books result books);

} ;

II Book interface definition
interface Book

attribute BookDetails details;
attribute BookCopies copies;
attribute short copies_count
Copyld add copy(out short number of copies);

49

void remove copy(
in Copyld id
out short number_.of copies)

raises CopyldNotfound;
I i

II Copy interface definition
interface Copy
{

attribute Copyld copy_id;
attribute boolean available;
attribute Userld last borrower;
attribute Userld current borrower;
void check_out (in Userld borrower)

raises (CopyCheckedOut);

void return()
raises (CopyNotCheckedOut)j

void get_last_borrowertout Userld borrower)
raises (CopyNotBorrowedBefore);

I ;

1 •
I I

II Library Access Services Module declarations
module LAServices
{

II user defined types and structures
typedef string UserPassword;
enum UserType (BORROWER, STAfF USER);
struct UserAddress

string linel;
string line2;
String city;
string zip_code;
String state;

} ;

struct UserDetails
{

string name;
UserAddress address;
String phone;
Userld user id;
userPassword password;

50

I ;

II Library Access Services exceptions declarations
exception UnAuthorizedRequester;
exception CanNotBorrowMore;
exception UnKnownUser;
exception Wrong Password;
exception OldPasswordDoesnotMatch;
exception NewPasswordEmpty;

II User interface declaration
interface User

attribute UserDetails details;
attribute UserType type;
attribute boolean current state;

void login(
in UserPassword pw;
out UserType user type)

raises WrongPassword;

void logout();

boolean change_password (
in UserPassword old_password,
in UserPassword new_password)

raises (OldPasswordDoesnotMatch,
NewPasswordEmpty);

I ;

II Borrower interface declaration
interface Borrower:User

attribute short max book allowed;
attribute short num currently_borrowed books;

boolean check_out_copy(
in Userld service requester,
in CatalogServices: :Copyld copy id)

raises (CanNotBorrowMore,
UnAuthorisedRequester,
CatalogServices::CopyldNotFound);

boolean return_copy (
in Userld service requester,
in CatalogServices: :Copyld copy id)

51

raises (CatalogServices::CopyNotCheckedOut,
UnAuthorisedRequester,
CatalogServices::CopyIdNotFound);

void borrowed books(
in OserId service requester,
out CatalogServices: :Books
result books)

raises (OnAuthorisedRequester);

boolean can borrow more();
} ;

II Staff User interface declaration
interface StaffUser:user
{

attribute string department;
} ;

} ;

II Library Station Module declaration
module LibraryStation
{

IISession interface declaration
Interface Session

attribute boolean is open;
attribute LAServices: :OserType current user type;

LAServices: :User get_User_ref (in Userld user id)
raises (LAServices: :UnknowlJOser);

void open(
in Userld user_id,
in LAServices: :UserPassword password,
out LAServices: :UserType user type)

raises (LAServices: :UnknownUser,
LAServices: :WrongPassword)i

void close();
} ;

} ;

52

CHAPTER VII

DISCUSSION

The MO sections in this chapter discuss the different properties of the library

system case study that was described in detail in Chapter VI. The first section discusses

the functional properties of the library system and the second section discusses its extra

functional properties.

7.1 Functional Properties

The goal of this section is to make sure that the component interface design

introduced for the library system in Sections 6.2 and 6.3 meets the requirements that were

mentioned informally in Section 6.1. What follows describes how these specifications

were handled in the design of the component interfaces. For transaction number] in the

description (Section 6.1), 'Check out a copy of a book. Return a copy of a book', MO

interfaces are responsible for performing this transaction. The first object is the

Borrower object with its methods check out copy and return 0PY. These

two operations, after ensuring that the call was initiated by an authorized user, call the

Copy object operations check_ ou t and ret urn I respectively.

For transaction 2 (add a copy of a book to the library and remove a copy of a book

53

from the library), two objects are responsible for performing this transaction: Ca t a log

and Book. If the copy was the first copy of a book to be added to the library. then the

a dd _boo k method of the Ca ta 1 og object will be called first. Subsequently, the

add_ cop y method of the Boo k object wi II be called. If the book is already in the library

and we just want to add another copy to the library, the add_copy method of the Boo k

object will be called directly. Correspondingly, when removing a copy of a book from the

library, after calling the Book object's remove_copy method, we check to see if it was

the last copy in order to remove the whole book from the library catalog database by

calling the remove book method of the Catalog object.

Transactions 3 and 4 are basically queries on the library catalog database with

different criteria for each one. Database queries for books written by a particular author

are handled by the Catalog interface through the query by author operation.

Database queries for books on a particular subject are handled by the Ca ta] og interface

through the query_by_subject operation. Querying the database for the list of

books checked out by a particular borrower involves the Ca t a log and 80 r rowe r

interfaces. After ensuring that the request was initiated by an authorized requestor (here

the authorized requestor could be the borrower herself/himself or any staff user) in the

bo r ro...... ed__boo ks operation of the Bo r rowe r interface, the bar rowed_boo k s

operation calls the query_by certain_borro....·er operation of the Catalog

interface.

Transaction 5 (find out what borrower last checked out a particular copy of a

book) is conducted by the interface Copy through the get_last borrower

operation.

54

/

In order that the system impose the restriction of what kind of tasks a staff user or

a borrower can perform, the system should have a way to distinguish among the ClUTen!

users, and there should be a logging system to control what h.ind of functions the current

users can perform on the different objects of the system. The User interface with its tWQ

operations login and logout, and the Session interface with its two operations

open and close control this by keeping track of the type of the current user in the

attribute current_user_type of the Session interface. The User interface

components can use there operations to initiate the right tasks according to the user types.

The restrictions (all copies in the library must be available for check-out or be

checked out and no copy can be both available and checked out at the same time) are

both imposed by the state attribute available (boolen) oflhe Copy interface. Since

available is of type boolean, its value can be either true or false (available or

checked out), and not both at the same time.

The last restriction (a borrower may not have more than a predefined number of

books checked out at one time) is imposed through the two state variables

max book allowed

Gor rowe r interface.

and num currently_borrowed books of the

IDL was originally designed [Clements ct aJ. 99) [Siegel 00] to describe the

functionality of black box components through their interfaces. Thus it is not surprising

that by looking at and studying an IDL, one can tell what functionality the components

have, but one cannot tell how those functionalities are affected. This leaves a sof\ware

developer with some flexibility in how to implement a specified component according to

the specification and the design documents.

S5

7.2 Extra-Functional Properties

Extra-functional properties, or as they also called Quality of Sen/ices (QoS)

prosperities, cannot be predicted from the component properties or totally controlled by

the application components. As it was mentioned earlier (see Section 2.5) one cannot

predict the overall system properties from the components properties, because the over all

system properties do not just depend on the system components and also because of what

is referred to [he as architectural mismatch phenomenon. This phenomenon depends on

the component model used as well as the infrastructure and the surrounding computing

envi rooment.

The quality of service properties may include performance, security, latency, and

accuracy. Most of these properties cannot be really tested unless the system is completely

developed and deployed in the targeted environment. What follows contains some of the

implementation details of the library system case study that help in controlling these

properties. It was mentioned in Section 6.2 that the system could benefit from using the

following OMA services: Naming and Trader services, Transaction services, and Security

services. All of these services interfaces were written using OMG TOL, and the only way

to access them is through their interfaces. Using these services help control the quality of

services properties. In this case study Transaction services were used when a new cory

was added to the library, when a copy was removed from the library, when a copy was

checked out from the library, and when a copy was returned to the library. All of the

previous operations consist of more than one step (operation) and some of them may

include accessing more than one database resource. These databases may exist on one

56

machine or on different machines across a network. One of these operations might fail.

we need a mechanism. in case on operation would fai 1, to roll back the other operation.

This is done using the Transaction service which helps in the reliability and accuracy

properties.

Installing and configuring the Security servIces of the OMA along with the

application components supplies the system with the s(;,-curity it needs to support its

operations. Security service prevents unauthorized access to the system components from

other components that might exist in the environment. The developers and users might

not be aware of all of the objects that they are interacting with. As Siegel stated [Siegel

00] ·'An OMA security architecture should allow for envi ronments where mistrust

between objects is ubiquitous".

Naming and Trader Service locates [he system components and helps the

components know about one another in runtime environment. This service will indeed

increase the reliability and perfonnance of the overall system. In case a component is

moved from its place, one still can locate the new place of the component exactly. This is

analogous to address forwarding in real life through ORB and the Naming and Trader

service. Or, if there is a great demand on a certain component, one could have more than

one copy of that component running on different places, and the only way to make all of

this transparent is by the Nammg and Trader service.

57

CHAPTER VIII

SUMMARY AND FUTURE WORK

We Jive in fast changing and growing world. Reliance on software systems is

increasing every day. As a result, developing reliable, easily maintained, scalable, and

efficient software systems in shon time and with affordable cost is essential for this

modem life. CBSD (Component-Based Software Development) is one of the preferred

ways [Dong 02] [Cai et al. OOJ to develop software systems that meet the above criteria.

CBSD faces some problems [Cmkovic and Larsson 02] [Sommerville 01} such as: high

maintenance cost, lack of supporting development tools, the "not-invente<.l-herc"

syndrome, frequent updating of the components library, finding the right components and

adopting them, and component composition. System components are relatively easy to he

developed but hard to combine or compose together. In particular, one should make sure

that components fit in a new environment when they arc reused.

OMG IDL was originally designed to specify the functionality of the components

of a system, but its function has been extended to compose the components together.

Using the OMA standard services helps in controlling the extra-functional properties. A

software designer should have a good knowledge of the standard components and

services in the component model in order to use them when (s)he needs them rather than

writing them again. A good design is essential for a component system to succeed.

58

Software architecrure is strongly related to study of component-based development. It is

hard to cover all parts of OMG IDL in one case study. Object Management Architecture

(OMA) and standardized components shorten the time and the cost required to develop

component-based systems [Cai et al. 00].

Chapter II introduced a general overvIew of the Component Based Sofiware

Development. Chapter 111 presented some of the popular middleware technologies

including CORBA, COM and DCOM, and JavaBeans and Enterprise JavaBeans. Chapter

[V discussed Object Management Group's Interface Defining Language. Chapter V

presented the Object Management Architecture COMA), which is the Object Management

Group's view for a component technology. Chapter VI discussed a simple library system

as a case study. The library system was first presented informally, then a component

based analysis and design of the library system was conducted, and finally an OMG IDL

for the library system components was written. Chapter VII discussed the functional and

exlra functional properties of the library system.

A future work in this area might be studying the OMA and suggesting new

services and components, such as standardized general library components, in one of the

three different standardized categories which are CORBAservices, CORBAfaciJites. and

CORBAdomain. An extension to the OMG IDL might be developed to give OMG IDL

more power in component composition. Other future work include developing CASE

tools to help in component assembly and visualization tools to show the existing

dependencies among the various components of a system.

59

REFERENCES

[Bachmarm et al. OOJ Flex Bachmann, Len Bass, Charles Buhman, Sniago Comella~

Dorda, Fred Long, John Robert, Robert Seacord, and Kurt Wallnau, "Volume II:
Technical Concepts of Component-Based Software Engineering", Technical
Report CMU/SEI-2000-TR-008. Software Eogineering Institute, Carnegie
Mellon University, Pittsburgh, PA, May 2000.

[Borgida and Devanbu 99] Alex Borgida and Prem Devanbu, "Adding More uDL" to
L<IDL": Towards More Knowledgeable Component Inler-Operability",
Proceedings of the 21st International Conference on Software Engineen'ng, pp.
378-387, Los Angeles, California, May 1999.

[Brown 02} David William Brown, An Introduction to Object-Oriented Analysis O!?jects
and UML in Plain English> Second Edition, John Wiley & Sons, Inc., New York.
NY,2002.

[Cal et al. 00] Xia Cai, Michael R. Lyu, Kam-Fai Wong, and Roy KO t "Component
Based Software Engineering: Technologies, Development Frameworks, and
Quality Assurance Schemes", Proceedings of the Seventh Asiu-Pacific Software
Ellgllleering Conference (APSEC 2000), pp. 372-379, Singapore. December
2000.

[Clements et al. 99] Paul C. Clements, Len Bass, L. Belady, Alan Brown, Peter Freeman,
Scott Isensee, Rick Kazman, Herb Krasner, John Musa, Shari Lawrence Pfleeger,
Karel Vredenburg, and Tony Wassennan, Constructing Superior Sof~'are.

Macmillan Technical Publishing, Indianapolis, IN, 1999.

[Cmkovic and Larsson 02] Ivica Cmkovic and Magnus Larsson, Building Reliable
Componellt-Based Software Systems, Artech House, Inc., Norwood, MA, 2002.

[Cmkovic et al. 02] lvica Cmkovic, Heinz Schmidt, Judith Stafford, and Kurt Wallnau,
"Anatomy of a Research Project in Predictable Assembly", Fifth ICSF, Workshop
on Component-Based Software Engineering wilite paper. URL:
htlp://Wl'yw.sei.cmu.edulpacclCBSE5/CBSE5_whitepaper.pdf Orlando, Florida,
May 2002.

[Dong 02] ling Dong, "Design Component Contracts: Modeling and Analysis of Pattem
Based Composition", Ph.D. Thesis, School of Computer Science, University of

60

Waterloo, Waterloo. Onlario, Canada, 2002.

[Gudgin 01] Martin Gudgin, EssentialIDL Interface Designfor COM, Addison-Wesley,
Pearson Education, Upper Saddle River, NJ, 2001.

[Ivers et a1. 02] James ivers, Nishant Sinha, and Kurt Wallnau, "A Basis for Composition
Language CL", Technical Note CMU/SEt-2002-TN-026, Software Engineering
Institute. Carnegie Mellon University, Pittsburgh, PA, September 2002.

[Kruchten 98] Philippe Kruchten, "Modeling Component Systems with the Unified
Modeling Language", a position paper presented at The 1998 International
Workshop on Component-Based Sofnvare Engineering, URL:
http://www.sei.cmu.edu/cbs/icse98/papers/pl.html. Kyoto, Japan, April 1998.

[Mittenneir et al. 01] Roland T. Mittenneir, Andreas BoHin, Heinz Posewaunig, and
Dominik Rauner-Reithmayer, "Goal-Driven Combination of Software
Comprehension Approaches for Component Based Development", Proceedings
of the ACM Symposium on Software Reusability (SSR' 01), PP. 95-102, Toronto,
Canada, May 2001.

(Moreno ec al. 02] Gabriel A. Moreno, Scott A. Hissam, and Kurt C. Wallnau l

"Statistical Models for Empirical Component Properties and Assembly-Level
Property Predictions: Toward Standard Labeling", Online Proceedings ofthefiflh
International Conference on Software Engzneering (leSE), Workshop OJ!

Component-Based Software Engineering, URL:
http://\A/WW. se i. emu. edu/pacciCBS£5/Moren o-cbse5-final.pdf Orlando, F1onda,
May 2002.

(OMG 02) Object Managemenl Group's ofticial Internet web site URL:
http://www.omg.com, Last Updated: May 21, 2002, Date Accessed: January
March 2003.

[Siegel 00] Jon Siegel, CORBA 3 Fundamenuds and Programming, Second Edition,
John Wiley & Sons, Inc., New York, NY, 2000.

[Siegel 96J Jon Siegel, COREA Fundamentals and Programming, John Wiley & Sons,
Inc., New York, NY. 1996.

[Sommerville 01] Ian Sommerville, Software EngineeriJlg, 6th Edition, Pearson
Education Limited, Essex, England, 2001.

[Wing 88] Jeannette M. Wing, "A Study of 12 Specifications of the Library Problem",
IEEE Software. Vol. 5, No.4, pp. 66-76, July 1988.

[Yourdon and Argila 96] Edward Yourdon and Carl Argila, Case StudIes ill Object
Oriented Analysis & Design, Prentice-Hall, Inc., Upper Saddle River, NJ, 1996.

61

APPENDICES

62

Assembly

CASE

CBSD

CSSE

COM

Component

CORBA

COTS

DCOM

APPENDIX A

GLOSSARY

A set of components and their interconnections [Cmkovic et al. 02).

Computer Aided Software Engineering, programs used to support
software engineering process activities such as requirements
analysis, system modeling, and testing [Somrnervi lie 01].

Component-Based Software Development, the process of
developing software systems from small pieces (black boxes),
called components, by composing them together to form the final
system.

Component-Based Software Engineering, the engineering discipline
that is concemed with developing software systems from small
pieces (black boxes), called components, by composing them
together to form the final system.

Component Object Model, .a middlewarc component technology (a
Microsoft product).

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by a third party [Cmkovic and Larsson 02).

Common Object Request Broker Architecture, a middleware
component technology (an OMG product).

Commercial Ofr The Shelf, ready-made software components that
are available in the component market place.

Distributed Component Object Model, the distributed version of
Microsoft COM that allows the different components of a system to
reside on di fferent machi nes.

63

Framework

rDL

flOP

MIDL

MSMQ

MTS

OMA

OMG

OOA

ORB

A Component framework is a piece of software that manages
resources shard by a number of components, and provides the
underlying mechanisms that enables communication (interaction)
among components [Bachmann et at. 00].

Interface Definition Language, a definition language used to define
component interfaces in component-based system.

Tnternet Intcropcrability protocol, a communication protocol in
CORBA that allows the different components to communicate over
a network remotely.

Microsoft Interface Definition Language, a definition language
used to define component interfaces in the COMIDCOM
component model.

Microsoft Message Queue, a piece of software that provides
support for asynchronous communication between components via
a message queue [Clements et at. 99].

Microsoft Transaction Service, a Microsoft product that provides
security and transaction management services {Clements ct at. 99].

Object Management Architecture, a component-based architecture
standard that represents the OMG's vision for the component
software environment which categorizes objects into four
categories: the CORBAservices, CORBAfacilitcs, CORBAdomain
objects, and Application Objects [Siegel OOJ.

Object Management Group, an international not-far-profit software
consortium that sets standards in the area of distributed ohjcct
computing. OMG was founded in April 1989 by eleven companies
to create a component-based software market place, now it contains
more than 500 companies. Some 0 f the standards the OMG has
developed include CORBA, UML, OMG IDL, and 1I0P [OMG
02].

Object Oriented Analysis, a design approach used to analyze
software systems as objects with attributes and methods.

Object Request Broker, communication software that allows the
diffcrent components to communicate with each other in CORBA,
and makes the location of the components transparent.

64

UML Unified Modeling Language, a standard modeling language that is
mainly used for object-oriented modeling. UML is an OMG
standard [Sommerville 01].

65

VITA

Emran AI-Shahrouri

Candidate for the Degree of

Master of Science

Thesis: A SURVEY AND A DETAILED CASE STUDY USING OMG IDL: THE
ROLE OF JDL IN COMPONENT COMPOSITION

Major Field: Computer Science

Biographical:

Personal Data: Born in Amman. Jordan, On October 26, 1971, son of Khalil AI
Shahrouri and Asia AI-Shareef.

Education: Received the Bachelor of Science degree in Computer Science from
Mu'tah University in June 1993; completed the requirements for the
degree of Master of Science in Computer Science at the Computer Science
Depanment at Oklahoma State University in December 2003.

Experience: Working with the Jordan Armed Forces - General Head Quarters as
a Computer Programmer and Software Analyst since 1993. Employed by
the Information Technology Division - Client Services in Oklahoma State
University as Lab Assistant from August 2002 to May 2003.

Professional Memberships: Jordan Computer Society.

