A SURVEY AND A DETAILED CASE STUDY USING OMG IDL.:

THE ROLE OF IDL IN COMPONENT COMPOSITION

BY
EMRAN AL-SHAHROURI
Bachelor of Science
Mu’tah University
Al-Karak - Jordan

1993

Submutted to Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE

December 2003

A SURVEY AND A DETAILED CASE STUDY USING OMG IDL:

THE ROLE OF IDL IN COMPONENT COMPOSITION

Thesis Approved:

Mo H Sewedzadef

Thesis Ad¥isor

A?ZM

DearMof the Graduate College

PREFACE

The dream of building large software systems out of well-defined independent
components is gradually coming true. Modem software systems are rarely developed
entirely from scratch; rather they are constructed using tested and reliable pieces called
components.

Component Based Software Development (CBSD) still faces some major
obstacles. One of these problems is composing the different components that make up a
system. Interface Definition Language (IDL) plays a vital role in composing components.
IDL is used to describe the contracts (interfaces) between the components of a system.
Object Management Group (OMG) 1s a leader in defining standards for software
components. One of the IDL standards is OMG IDL. This thesis reports a study of OMG
IDL and the role it plays in component composition. One case study (a library system)
was investigated using OMG IDL.

The case study is introduced informally, then it i1s analyzed and designed as a
component-based system, subsequently an OMG IDL is presented for the case study. The
functional and extra functional properties of the system are then discussed. The following
lessons and conclusions were learned from the case study. OMG IDL was originally
designed to specify the functionality of the components of a system, but its function has

been extended to compose the components together as well. Using the OMA standard

m

services, CORBAservices helps control the extra-functional properties. The software
designer should be knowledgeable about the standard components and services in the
component model in order to use them when they are needed and not write them again. In
the library system case study, it was not necessary to develop new Naming and Trading
services, Transaction services, or Secunty services, and the OMA standard services were
used instead. A good design 1s essential for a component system to succeed. It is hard to
cover all parts of OMG IDL in one case study. Also, there is lack of standardized

components in the general library system domain.

v

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to
complete this thesis. I would like to extend my sincere appreciation to my thesis advisor,
Dr. Mansur H. Samadzadeh, for assisting me with his gmdance, wisdont, encouragement,
and patience throughout my graduate studies at Oklahoma State University. My special
gratitude 1s also extended to Dr. George E. Hedrick and Dr. Blayne E. Mayfield for their
valuable help and participation while serving as members of my graduate committee.

My appreciation goes to the soul of my late father who was my inspiration to
fulfill my dreams. Especial admiration goes to my mother for her great love and support.
My thanks also extend to my brothers and sisters for their encouragement and trust. f
would like to extend my special gratitude to my fiancé, Noor, whose patient love has
enabled me to complete this thesis.

I am also obliged to my friends for their support and encouragement.

TABLE OF CONTENTS

Chapter Page
L. INTRODUCGTION oot et ettt et e e e e |
[I. COMPONENT-BASED SOFTWARE DEVELOPMENT (CBSD).....cccoorvivieivienn 4
2.1 Software COMPONENTSoiiii it ettt e 4
2.2 Problems with CBSD ..o e 6
2.3 The CBSD ProCEeSS....coe ittt ettt sttt e e e 7
2.4 Designing Component-Based Systems ..o 9
2.5 Component COMPOSIIONvcviiii ittt e s e a et e e es e et e v e, 10
2.6 Component INtEITACESovereeiriie ittt e v st st 1]
[II. POPULAR MIDDLEWARE COMPONENT TECHNOLOGIES. ... 12
3.1 Common Object Request Broker Architecture (CORBA).......c...cooricirverinnes 12
3.2 Component Object Model (COM) and Distributed COM (DCOM) 16
3.3 Sun Microsystems JavaBeans and Enterprise JavaBeans............................ 17

{V. OBJECT MANAGEMENT GROUP (OMG)

INTERFACE DEFINITION LANGUAGE (IDL) ..o 19

V. OBJECT MANAGEMENT ARCHITECTURE (OMA)......ccooiicieiis e, 23
VI. “LIBRARY SYSTEM” CASE STUDY ..ot e 26
6.1 Informal Description of the “Library System”cccoviiiieciniir e 26

6.2 Component-Based Specification of the “Library System”ccccoocviriveriinnnn. 27

6.2.]1 CatalogService COMPOMENEcoooieiiiiiiiinie s eeis e 30

6.2.2 LibraryAccessService COMPONENt...........ccoioieeiraoriniriivinviieieains 42

6.2.3 LibraryStation ComponenLt.........c.c.oocuviiiiiciiiceiiee i 46

6.3 “Library System™ in OMG IDL ... e 48

VIL DISCUSSION Lo ettt ettt e e 53
7.1 Functional Properties ..ot 53

vi

Chapter Page

7.2 Extra-Functional PrOPErTEsc.vvviiie oot sieee e e 56
VIII. SUMMARY AND FUTURE WORK ...t 58
REFERENCES ..ottt e st s e e e 60
APPENDICES ... e PSRNV USRNSSR 62
APPENDIX A: GLOSSARY ..ot 63

Vil

LIST OF FIGURES

Figure Page

], COMPONENE IMLETEACESoiieii ettt ettt et e e e e enee e 5
2. AN OPPOTTUNISEIC TEUSE PIOTESS c..veveuiiieiareittieeti et iea et e tatte e et e et e nasee ettt e e nibesenes 8
3. Development With TEUSEcco oo et e e e 8
4. Elements of a component-based development approach ..., 9
5. Interoperability uses ORB-to-ORB communication...........cccoooocioniiin 13
6. Request passing in CORBA ... 15
7. Object Management ATChITECIUTEot s 24
8. Book and Copy class dlagraml....cc.oooiireiiee et et er e e 29
9. Library User class hierarchy diagramc..coooiiiiiiiiii e e 30
10. Labrary Catalog Classooo.oeiiii i ene e r e e et 30
11. Objects relationships and CONSITAIMSc...oovieriiiiieni e NSRRI 32
12. Ordinary Bormower use-case GiaIamo s 33
13. Staff User use-Case dIagram........cooci i itie it et 34
14. Library system components and deployment diagram ..., 35

vill

CHAPTERI

INTRODUCTION

Software development 1s a time consuming and expensive process. A major
concern for researchers and software engineering specialists is how to minimize the time
and cost needed to develop reljable software systems. One of the effective ways to reach
this goal is through software reuse, and one of the preferred practices for sofiware reuse
1s Component-Based Software Development (CBSD). CBSD emerged in the late 1990s
[Ivers et al, 02] but sti]l lots of work needs to be done such as predicting component and
system properties.

The idea of reusing sofiware began gaining widespread acceptance since the
inception of object-oriented programming and software libraries. Instead of spending
ttme and effort doing the same thing repeatedly, and building software systems from
scratch, one can reuse the software already made, and develop software systems from
components as the menu functioning process is done in other enginecring disciplines.

The components that make up a system could reside on the same computer or be
distributed over a network. Such components need to communicate with each other and
with the environment 1in which they are deployed. These communications arc typically

done through components interfaces. Component interfaces work as contracts among the

different components in the composed system. There 1s a special type of language used to
describe these software contracts (interfaces). These languages are called Interface
Definition Languages (IDL).

Middleware is software that manages the communication and data exchange
among the different components in component-based systems [Sommerville 01]. The
most widely used component middleware technology is CORBA (Common Object
Request Broker Architecture) that is a product of OMG (Object Management Group).
CORBA 3 refers to the CORBA Component Model that includes a suite of ten
specifications [OMG 02], one of these ten specifications 1s the OMG IDL.

The purpose of this research was to investigate the important role that IDL plays
i composing the different components of a component-based system. A case study (a
library system) was studied using the OMG IDL. The library system was specified and
analyzed as a component-based system, and the different components of the system were
identified. OMG IDL routines were wrtten for the different interfaces of the components.
Subsequently, the properties of the system were analyzed based on the types of properties
of component systems: functional properties and extra-functional properties. Extra-
functional properties include performance, secunty, latency, and accuracy. These
properties are usually referred to as quality properties or quality of service properties
when they are attached to service [Bachmann et al. 00].

The organization of this thesis is as follows. Chapter Il provides an overview of
Component Based Software Development (CBSD) including software components,
problems with CBSD, the CBSD process, designing Component-Based systems,

component composition, and component interfaces. Chapter III introduces some of the

popular middleware component technologies. Chapter IV provides a general introduction
to the Object Management Group {OMG) Interface Definition Language (IDL). Chapter
V presents the Object Management Architecture. Chapter VI provides the informal
specifications, the object oriented analysis and design, and the component-based
specification for the case study “library system”, then the case study is captured in OMG
IDL. Chapter VII gives a discussion of the functional and extra-functional properties of

the “library system*. Finally, Chapter VIII discusses the summary and future work.

CHAPTER 1]

COMPONENT-BASED SOFTWARE DEVELOPMENT (CBSD)

The sections in this chapter present an overview of the main issues of
Component-Based Software Development (CBSD): software components, discussing
some problems with CBSD, introducing the CBSD process, designing component-based

systerns, component composition, and component interfaces.

2.1 Software Components

Components are the core of CBSD and thus we nced a clear definition foy them in
order to understand the fundamentals of CBSD. In the absence of universal standards and
guidelines in this area, there 1s no definstion for the term “component™ on which everyone
agrees. Basically, a component has the following main features: 1) a software component
is an jndependent and replaceable entity of a system that performs a clearly defined
function, 2) a software component plays a role in a well-defined architecture, 3) a
software component interacts and communicates with the other component through jts
interface and it also provides services through its well-defined interface [Cai et al. 00]
[Clements et al. 99].

According to Alan Brown, one of the co-authors of the book Constructing

Superior Software [Clements et al. 99], “‘a component is a software package which offers
services through interfaces”. UML 1.0 and 1.1 define a component as: “a reusable part
that provides the physical packaging of model elements” [Clements et al. 99]. Microsoft
Component Object Model (COM) defines a component as “a piece of compiled software
which is offering a service™ [Cmkovic and Larsson 02). Another definition for a software
component Is given below.

A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A software

component can be deployed independently and is subject to composition

by a third party [Cmkovic and Larsson 02].

A component is defined by its interfaces. In general, components have two
different and related interfaces: 1) interfaces provided, which are the services a

component provides, and 2) interfaces required, which are the services that have to be

available from the system in order to use the component [Sommerville 01] (see Figure 1).

Requires interface Component [Provides interface

Figure 1. Component interfaces [Sommerville Ot]

One of the great (eatures of a component js the separation of its interfaces from its

implementation [Cmkovic and Larsson 02]. A component can also be conceptualized as

an encapsulated implementauon of functionality that can be used by a third party, and
that complies with a component mode!l [Bachmann et al. 00].

Components vary in size from a component that performs a simple mathematical
function to a component that is an entire application by itself. The latter level of
component reuse (e.g., MS Excel as a component) is called commercial off the shelf
(COTS) component reuse [Sommerville 01).

Component-based software development (CBSD) or, as some people like Lo call
it, component-based software engineenng (CBSE) s closely related to the development
of distnbuted systems, which consist of components that are distributed among

computers on a network.

2.2 Problems with CBSD

Component-based software development (CBSD) suffers from some problems
and extra costs, which are basically associated with software reuse in general. These costs
and problems are [Cmkovic and Larsson 02] [Sommerville 01]: high maintenance cost,
lack of supporting development tools, frequent updating of the component library, and
the effort involved in finding the right components and adopting them.

Another problem with CBSE is the issue of component trust, which is referred to
as the “not-invented-here” syndrome. Developers usually find it hard to trust other
developers’ work especially from outside their organization. This becomes more
pronounced when 1t comes to COTS products. Mittermeir suggested some techniques to
tmprove software comprehension [Mittermeir et al. 01] in order to help trust components

especially obtained from outside an organization.

Component composition is another major problem in CBSE. Predicting the
overall system properties is one of the important research trends in CBSE [Cmkovic et al.
02]. When a system is composed from different components, these components
sometimes act n an unexpected way because of the environment and the effect of the
other components in the system (see Section 2.5). This can only be discovered at the time

of composing the system [Moreno et al. 02].

2.3 The CBSD Process

The traditional practice of sofiware engineenng process does not give software
developers the full advantage of component-based software development (CBSD). In
order to gawn the benefit of CBSD, software developers should think differently in the
way they design and construct sofiware systems [Clements et al. 99]. Developers should
shift their goal from developing an individual application to developing well-defined
rcusable software components that can be used to build families of application. Some of
the main issucs that a typical CBSD process should address arc [Clements et al. 99]:
defining acceptable sizes for software components, describing the dependencies among
the components in a system, documenting a component and making it handy f{or others to
use, and examining the impact of CBSD on testing, maintaining, and evaluating
component-based systems. CBSD should focus on interfaces and interface-based design,
and it should support selection, evaluation, and assembly of components 1o create new
applications.

Sommerville presented two different approaches for componeunt-based

development [Sommervitle 01]. The first approach consists of four steps (Figure 2), it

starts with designing the system architecture, then it is lime to specify the components in
the system, next comes the search for components that comply with the specifications and
the design, and the last step is incorporating the discovered components. This approach
may indeed lead to a good level of component reuse, but at the same time it contrasts
with other engineering disciplines where component reusability drives the development
and menu functioning process. Typically, engineers first search for the necessary
components and then they design the system based on these components. In the second

approach (Figure 3), the specifications get modified according to the available

components.
Design system Specify Search for Incorporate [§
architecture components reusable discovered
components componerts i

Figure 2. An opportunistic reuse process [Sommerville 01

Outline Search for Modify requirements
system reusable according to discovered
requirements components components
= . FRURBS,,
Architectural Search for Design system
design reusable using reusable

components components

Figure 3. Development with reuse [Sommerville 01)

2.4 Designing Component-Based Systems

As stated earlier (see Section 2.3), the development of component-based systems
should focus on interfaces and interface-based design. As a result, we need tools to
support this kind of development. Some advances in tools and modeling techniques have
taken place in recent years. Some of these advances are mere standardization on a
common notation for behavior-based design systems and the emergence of component
design targeting this notation.

One of the popular tools used to model software systems is the umified modeling
language (UML) [Clements et al. 99] [Kurchten 98] [Siegel 00]. UML is another product
of OMG. It provides a notation for capturing many features and issues of components and
component-based systerns. But still UML cannot address all of the different aspects of
component and component-based systemns. Kruchten [Kruchten 98] proposed a number of
techniques to represent component-based systems in UML.

Business Nced

i |

Derniciann Undemand Cwnrent
Anoswledge J Nestems &
Prucifeex
» P A .
Are Lt i al) eﬁne the Lxisting:
Patteris = : Softscore
- Amh!tectur S, Archhiectinre
Fieting Wripped
Legacy

Cumponiesin
\' et

Bustness Solution

Figure 4. Elements of a component-based development approach [Clements et al. 99]

Alan Brown from Sterling Software presented three basic steps for component-
based systems modeling [Clements et al. 99]: understanding the context, defining the
architecture, and provisioning the solution (Figure 4). These steps may occur in any

order.

2.5 Component Cornposition

In CBSD, the term composition is used instead of integration to refer to how a
systemn 1s assembled [Baclunann et al. 00]. Different blocks (components) are composed
to form a component assembly or a system. A number of components may be composed
to generate larger components. Components have different levels of communication
[Bachmann et al. 00]. These levels are: component-to-component, component-to-
framework, and framework-to-framework. A framework manages the different resources
shared by corponents and provides basic mechanisms that facilitate interaction among
components {Bachmann et al. 00).

In the traditional sofiware development, component integration and composition
is a critical phase of the process. Frce composition of reused components can reduce the
development cost and time, but at the same time it has a number of potential nisks and 1t
may incur a high price later on. Individual components occasionally do not act the same
when they are composed. Certain properties of individual components may not hold for
the assembly. I[ndividual components sometimes make some assumptions about other
components, these assumptions may not hold when they are integrated with one another.

This can cause a phenomenon that is called architectural mismatch [Dong 02). In other

10

words, the actual bebavior of component assemblies is only discovered afler their
integration [Moreno et al. 02]. Some research has been done on predicting the system
properties or the component assembly properties based on the properties of the
constituent companents [Cmkovic et al. 02], but still there are no clear results in this area

of research.

2.6 Component Interfaces

Software systems that have problems and bugs may result in big losses in money,
effort, and even in human lives [Dong 02]. In CBSD, interface specification has a critical
role in constructing software systems based on the building blocks (components). As
stated by Dong {Dong 02]:

Imprecise, ambiguous, and incomplete specification of components may

lead to wrong choices, and therefore mismatches in the compositions.

These mismatches may require high cost and expert skills to find and

correct, thus compromise the benefits of component-based sofiware

development.
So designing the interfaces of the components should be precise, clear, unambiguous, and
complete.

Component interfaces govern the way a component communicates with the
outside world. These interfaces represent the boundaries between components. These
boundaries could be thread boundaries, process boundaries, programming language

boundanies, or machine boundanes [Gudgin 01]. Component interfaces are the way we

integrate components into groups called assemblies [Bachmann et al. 00].

n

CHAPTER III

POPULAR MIDDLEWARE COMPONENT TECHNOLOGIES

Components of a system may be implemented in different languages, these
components may be distributed over a network, and they may run on different platforms
[Sommerville 01]. Also, the components need to communicate and coordinate through
the component mfrastructure (sometimes called a component model (Cai et al. 00]).
Component infrastructure acts as the “pluming” or “middleware” that allows different
components to commumicate with each other [Car et al. 00]. There are some
standardization efforts done on these component middleware infrastructures like OMG
CORBA, Microsoft’s COM and DCOM, and Sun’s JavaBeans and Entcrprise JavaBeans
[Cai et al. 00]. In each one of these component infrastructure implementations, there is a
vision of how to build an enterprise-scale component-based application supported by a

set of tools and standards [Clements et al. 99].

3.1 Common Object Request Broker Architecture (CORBA)
This is an open standard for component interoperability [Cai et al. 00]. This
standard is defined by the Object Management Group (OMG), which is made up of over

800 companies [Clements et al. 99) [Siege) 00] to promote object-onented software

development. The role of this group is to provide standardization for object-oriented
development but not to provide a specific implementation, and it is available free of
charge. OMG does not just define standards for CORBA, it also defines other standards
Jike UML and OMG IDL {Sommerville 01]. OMG is attempting to achieve consensus on
an appropriate component-based model for building component-based distributed
applications [Clements et al. 99].

OMG defined its vision of component-based systems in its Object Management
Architecture (OMA) model (see Chapter V). CORBA has three major features [Clements
et al. 99]: 1) Interface Definition Language (IDL) that describes how business
functionality is packaged to be accessed from external interfaces, 2) CORBA component
model that describes how components make requests for other components’ services, and
3} the Internet InterOperability Protocol (IIOP) that allows the different CORBA
implementations to communicate and interoperate. Figure 5 shows how this

communication happens.

‘ Client \ Object Client Object
A l \ \

Stphb SHel Stub SkKel

I1OP

Protocol
ORB!1 ORRB?2

Stub: client side part of the compiled IDL file
Skel (Skeleton): object side part of the compiled IDL file
ORB: Object Request Broker

Figure 5. Interoperability uses ORB-to-ORB communication [OMG 02]

Figure 5 is a simplification of what actually transpires in terms of
communications among the components. The stub and skeleton act as proxies for the
client and object implementations, respectively. The client passes its IDL-based
invocation containing an object reference (each object has a unique object reference) to
its local Object Request Broker (ORB). If the object reference is to a local object
implementation, the ORB routes it to its target object implementation. If not, the ORB
will route 1t to a remote ORB, through the IIOP protocol that all ORBs implement [Siegel
00], and then the invocation will be routed to a remote object implementation.

The communication and interaction among components in CORBA are done
through middleware called the Object Request Brokers (ORB). Using the ORB, a client
may invoke the methods of other objects, and the location of these objects will be
transparent to the client. The client does not need to know where the objects are located,
in what languages they were developed, or under what platforms they are running {Car et
al. 00].

A set of standardized capabilities has been defined in the CORBA services
standards. The following services are most often found in the currently available
implementations [Clements et al. 99] {Sommerville 01]: 1) life cycle services that are
responsible for creating and terminating component instances, 2) naming services that
allow different components to 1dentify and find the different services over the network or
on the same computer, and they also allow the components to know different information
about the other components and the services that the other components may have, 3)
security services that provide a secure private connection between a chent and the

provider of services, 4) transaction services that give the user control to start and

14

complete distributed transactions between components, and in addition they facilitate a
rollback mechanism in case of failure, and 5) notification services that let the objects
notify other objects of the occurrence of some events. Figure 6 shows a request passing

from a client to an object implementation in the CORBA model.

Client Object
‘ Implcm}ntation
ID‘[} 0L
Styb Skeleton
Request =

Object Request Broker (ORB)

Figure 6. A request passing in CORBA [OMG 02]

There are a number of implementations for the CORBA standards, from different
venders, on different platforms for distributed systems running across heterogeneous
platforms. This indicates that implementing a component-based application using the
OMG standard is feasible and practical. There are a number of successful examples of
component-based applications using the OMG approach in different application domains
such as banking, retail, and telecommunications [Clements et al. 99]. According to Cai
[Cai et al. 00] “CORBA is widely used in object-oriented distributed systems”.

There are different versions of the OMG CORBA model [OMG 02]: CORBA 2
and CORBA 3. CORBA 2 is sometimes referred to as the CORBA interoperability and
the IIOP protocol, and CORBA 3 is sometimes referred to as the CORBA Component

Model.

15

3.2 Component Object Model (COM) and Distributed COM (DCOM)

Microsoft introduced the Component Object Model (COM) technology in 1993 as
a general architecture for component software. It 1s Janguage independent and based on
Windows and Windows NT platforms. COM defines how components communicate with
their clients. The main purpose of COM was to enable the sharing of functionality among
different desktop applications. After Microsoft realized the advantages of the generic
approach [Clements et al. 99] for the desktop applications, it made an extension of COM
called Distnibuted COM (DCOM), which is a protocol that allows components to
communicate over a network directly in a reliable, secure, and efficient manner [Cai et al.
00].

There are three major features in DCOM {[Clements et al. 99): 1) the MIDL
(Microsoft Interface Definition Language) that describes how the functionality of a
component can be accessed externally through uts interface, 2) the COM modcl describes
how components can communicate and request services from one another, and 3) the
DCOM addition to COM adds support for locating different components across a
network and makes the process location transparent to the other components.

Microsoft provides other component infrastructurc services through two other
products. These two products are: Microsoft Transaction Service (MTS) and Microsoft
Message Queue (MSMQ) [Clements et al. 99]. The main disadvantage of the
COM/DCOM component infrastructure is that jt 1s platform dependent and works only

with Microsoft platforms.

16

3.3 Sun Microsystems JavaBeans and Enterprise JavaBeans

In the last few years, Java has gained rapid acceptance and has been adopted as a
language for developing client-side applications for the Web. Java is in an advanced
position to be the backbone for the development of component-based distributed systems.
According to Brown [Clements et al. 99], this is a result of a number of features that Java
has as a programming language. These features are: 1) Java was originally designed to
build network-based applications and it contains support for distributed multi-threaded
applications, 2) Java’s runtime environment permits modifying a Java application while it
ts running, 3) memory management simplification in Java has made Java easier to utilize
for component-based applications, and 4) Java includes constructs that support the key
principles of component-based soflware engineering such as separating implementations
from specifications.

There are two different products that Java provides as infrastructures for
component-based development [Cai et al. 00]: the chient-side component development,
which is JavaBeans, and the server-side component development, which is the Enterprise
JavaBeans.

Enterprise JavaBeans provides a definition for the minimum set of services that
must be on any server to comply with the specifications of developing enterprise-scale
distributed applications. These services are: process and thread dispatching and
scheduling, resource management, naming and directory services, network transport
services, and transaction management Services.

JavaBeans supports applications in a multi-platform environment with reusable

client-side and server-side components [Cai et al. 00]. JavaBeans and Enterprise

17

JavaBeans are platform independent but they are language dependent.

18

CHAPTER 1V

OBJECT MANAGEMENT GROUP (OMG) INTERFACE DEFINITION

LANGUAGE (IDL)

Interface Definition Languages such as OMG JDL and COM IDL describe
interface abstractions that control the dependencies that exist among different parts of a
program or a system {Bachmann et al. 00]. An IDL definition of an interface forms a
contract among a client, an object, and the runtime component model [Gudgin 01].

An interface definition wrntten in OMG IDL 1is programming Jlanguage
independent, but tt maps to popular programming languages through the OMG standards
(these languages are C, C++, Java, Cobol, Smalltalk, Ada, Lisp, Python, and IDLscript)
[OMG 02].

For an IDL to work well for a distributed system, it needs to specify the operation
that is going to take place as well as the input and the output parameters with their
respective types, and it should also have an error handling mechanism. The OMG IDL
has all these three requirements [Siegel 96]. What IDL really does 1s that it constitutes a
contract with the clients of the components. These clients use the same interfaces (to call,
build, and dispatch the invocations of the different methods) that the implementations use

(1o recetve and to respond).

19

The OMG CORBA architecture separates the interfaces definitions from the
interface implementations. The interface (the contract) is written using the OMG IDL and
the implementation (the fulfillment) is wntten using a programming language like C++,
C, or Smalltalk. An interface represents a promise to a client, but at the same time it
represents an obligation for the object that supports and implements that interface {Siegel
96} (see Figure | on page 5).

OMG CORBA also enforces object encapsulation, the object of a component can
only be accessed through its announced IDL interfaces [Siegel 96]. The IDL compiler
maps an IDL script to the desired programming Janguage. Every ORB comes with at least
one IDL compiler. When an IDL script runs through the OMG IDL compiler, first the
IDL compiler checks for errors. 1f the IDL script is error free, then the IDL compiler
produces at Jeast two files, one for the client stub and the other for the object skeleton
(OMG 02]. The chient and object implementations are isolated by at least three different
components: an IDL stub on the client side, a related IDL skeleton on the object
implementation side, and one or more ORBs [Stegel 96] (see Figure 5 on page 13 and
Figure 6 on page 15).

It has been reported that interface defimitions written in OMG IDL are generally
simple, easy to understand, and easy to construct [OMG 02]. OMG IDL has the
appearance of ANSI C++ in many ways [Siegel 96]. An OMG IDL script example is

given below.

20

// defining the interface for the object Copy
interface Copy({

boolean CheckOut (in string BorrowerName, in
CopyNumberType CopyNumber) raises
(NotValidCopyNumber, UserNotFound)

boolean Return (in CopyNumberType CopyNumber)
raises (NotValidCopyNumber)

This 1s the interface to a Copy object that checks out and returns a copy of a book in a
library system. The object's type is Copy and it can perform two operations: CheckOut
and Return. The CheckOut Operation takes two input parameters. The first
parameter, BorrowerName, i1s a st ring and the second parameter, CopyNumber, is
of type CopyNumberType, which is a user-defined type. The return value, which does
not need a name, is a boolean. The CheckOut Operation raises two exceptions:
NotValidCopyNumber and UserNotFound. The second operation, Return, takes
one input parameter, CopyNumber, which is of typc CopyNumberType. The return
value is a Boolean, and it raises one exception: NotValidCopyNumber.

One of the motivations for developing CORBA and IDL is getting all computers
In an enterprise to work together regardless of what hardware or software or platform
these computers are consist of [Siegel 00}, ironically, Interface Definition Languages
(IDLs) in general give only a weak guarantee [Borgida and Devanbu 99] [Dong 02] that a
software service will work in a particular context as expected. Borgida [Borgida and
Devanbu 99] proposed an approach based on description logics to describe component
interfaces. Interface Defmition Languages (IDLs) describe only the syntax of the

component interfaces but not the semantics [Dong 02], the lack of information may cause

21

serious problems when it composed with others. Another problem with IDLs is that IDLs

only descnbe the services offered by an object but not the services required [Dong 02].

22

e SRR L R o]

CHAPTER V

OBJECT MANAGEMENT ARCHITECTURE (OMA)

Object management architecture (OMA) is OMG's vision for the component
mode). OMG breaks up the component architecture into four different types (categories)
of components [OMG 03]. These four categories are CORBAservices, CORBA facilites
(Honzontal CORBAfacilities), CORBAdomain (Verticat CORBAfacilities), and
application objects (see Figure 7). In Figure 7 each service is composed of a number of
CORBA objects, each service is accessed by a standard IDL interface, and clients access
all services through the Object Request Broker (ORB) [Siegel 00).

IDL (see Chapter IV for more detail) serves as an alphabet [Siegel 00] that
different applications could use to create their own interfaces for particular functions. But
these applications, even though they use the same alphabet (IDL), may not be able to
interoperate because they need a common interface for particutar functions in order to
jnteroperate with each other. If the IDL was the common alphabet, OMA is the common
language [Sicgel 00] among the different application components. OMA is a foundatjon
for the standard services that every component might need for low level of system
communication (CORBAservices) such as Naming and Trader services, Transaction

services, Secunty services, and other basic services. OMA 1s also a foundation for the

23

common functions that different applications from different domains use
(CORBAfacilities) such as printing services, or for the common functions that
applications from the same domain use (CORBAdomain). Examples of such domains are:

healthcare, telecommunications, transportation, electronic commerce, and utilities.

Application CORBAfacilities
Objects Vertical CORBAfacilities
- Manufacturing| | Telecommunications Electronic | | Transportation
Commerce
T .
. i .] Y,
Busmess Healthcare Finance/ Life Utilities E
Objects Insurance Science }
d K| ' i . !
Horizontal CORBAfacilities ;
. Intemationalization Time Agent Facility More.... ;
E W '
e e |
'
|] i i l *
: B
Object Request Brokers
.
i
Naming, Events, Transactions Security
Trader Notification
Persistent Property | More. ..
State
CORBAservices

Figure 7. Object Management Architecture [Siegel 00]

Application Objects that constitute the higher part of the hierarchy do not need to
be standardized. They are customized for the application according to the application’s
specification and needs. In another word, these objects are the objects that are not
affected by OMG standardization [OMG 02].

The power of CORBA is with the standardized common services and functions
[Siegel 00]. The component interfaces of the OMA standardized components and services
are written in IDL. As mentioned earlier (Section 3.1), OMG just issues specifications
without implementation, so one might find more than one implementation for a certain
standardized service or function (component) from different venders. And sometimes the
implementation may have extended functionality compared to the specification issued
from OMG. But, on the other hand, some services might not have any implementations in
spite the fact that an implementation for that standardized service would help the
software architects, designers, and developers sigrificantly.

Since the common services and functions in OMA categories (CORBAservices,
CORBA facilities, and CORBAdomain) have a standardized interface written in a
common alphabet (i.e. the IDL) one docs not have to buy these services and ORBs from
the same vender. As stated earlier (Section 3.1), all ORBs implcment the common
protocol IIOP and all the standardized services use the same interface. As a result, one
can rteplace these common services with others from another vender. One can even
change the ORB itself. IDL and interface standardization generally affords grcat

flexability.

25

CHAPTER VI

“LIBRARY SYSTEM” CASE STUDY

Library System 1s a common problem that has been used frequently in the
software engineering research efforts as an illustrative example. It has been used because
of its clanty, familiarity, and ease of understanding.

In this chapter an informal specification for the library problem is introduced
(Section 6.1). The specification of the system is given in Section 6.2 as a component-
based system. An IDL was wntten for the interfaces of different components of the
system (Section 6.3). A discussion of the functional and non-functional prosperities of the

system is given in Chapter 7.

6.1 Informal Description of the “Library System”

What follows 1s a description of the library problem as it was informally
described by Wing [Wing 88].

Consider a small library database with the following transactions:

1. Check out a copy of a book. Retumn a copy of the book.
2. Add a copy of a book to the library. Remove a copy of a book from the

library.

3. Get the list of books by a particular author or in a particular subject
area.

4. Determine the list of books currently checked out by a particular
borrower.

26

5. Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff users and ordinary borrowers,
Transactions 1, 2, 4, and § are restricted to staff users. excepl that ordinary
borrowers can also perform transaction 4 to determine the list of books

currently borrowed by themselves. The database must also satisfy the
following constraints:

» All copies in the library must be available for check-out or be checked
out.

e No copy of a book may be both available and checked out ai the same
time.

e A borrower may not have more than a predefined number of books
checked out at one time.
6.2 Component-Based Specification of the “Library System”

The early systems were generally developed in an ad hoc sofiware development
approach (Yourdon and Argila 96]: every system was unique, developers did not take the
reuse concepts (uto considerations, no formal methods were used, and these systems were
difficult to maintain and evolve. As the time went and developers became more
concerned about developing matntainable and scalable systems, there was a need for a
standardized process as well as methods and technigues to develop software systems. A
large number of tools and methods have been developed for this purpose. Object Oriented
Analysis (OOA) is one of these methods.

OOA has a number of supporting tools to model and represent the real world
object of a system and the relationships and the roles that the objects play in a system
{Brown 02]. OOA 1s mainly a design approach that can be performed using different
supporting tools and programming languages. Usually, the object oriented analysis model
serves two purposes [Yourdon and Argila 96]. First, it serves the formalization of the
view of the real world in which the system will be built. Secondly, the object onented

analysis model establishes how the different objects of the systems work together to

r:-

perform the tasks of the system being modeled. The main advantage of using OOA 1s to
take advantage of the object oriented way of thinking that makes systems generally easy
to maintain and debug by using a clearly defined structure. The object oriented way of
thinking is claimed to be a natural way of thinking of systems as objects with attributes
and methods representing real world objects [Yourdon and Argila 96].

The first step of object oriented analysis is specifying the different objects of the
system. These objects represent the basic building blocks of the sysiem. This step is
fundamental because all of the other steps are built on this step. The basic objects of our
case study (library system) are library catalog, book, copy, author, user, borrower, and
staff user.

Figure 8 shows the class diagrams for the book and copy classes, the copy class is
part of the book class. Figure 9 shows the class hierarchy diagram for the Library User
class; Staft user and Borrower both inherit The Library User class. Figure 10 shows the
Library Catalog class.

Figure 11 shows the relationships between objects in the library system and it also
shows some constrains. The library system has onc library catalog, one or more staff
users, and one or more borrowers. The library catalog class has onc or more books, and
each book has one or more copies. Each book has one or more authors. Every borrower
cannot have more than a predefined number of books checked out at the same time.

Every copy of a boak can only be checked out by one borrower at a ime.

28

Book

Title

ISBN

Subject

Author

Edition
Publication Date
Copies

Add Copy ()
Remove Copy ()

Copy

Copy ID

Current Bormrower
Last Borrower
Available

Check out ()

Return ()

Get Last Borrower ()
[s Available ()

‘ : UML notation represents composition relationship

Figure 8. Book and Copy class diagram

29

Library User
Name
Address
Phone
ID #
Password

Log In ()
Log Out ()
Change Password ()

i

Staff

Borrower

Department

Max allowed
f# Copies Current Borrowed

Can Borrow More ()
Check Out Copy ()

Return Copy ()

List Checked Out Copies ()

Figure 9. Library User class hierarchy diagram

(Library Catalog

Books

| Add Book ()
Remove Book ()
Query by Author ()
Query by Subject ()
Query by Certain Borrower ()

Figure 10. Library Catalog class

30

r)-

A use-case diagram is a UML diagram used to “document what functions the
system should offer to the users” [Brown 02]. Use-case diagrams show how dtfferent
actors can use the system (according to the specifications). They show what the system
does but not how, i.e., they show the black-box behavior of the system rather than its
mechanisras. There are two actors in the library system: ordinary borrower and staff user.
The first actor, 1.e., the ordinary borrower, can ask the system to perform three different
tasks according to the specifications (see Figure 12). These tasks are: show the list of
books by a particular author, show the list of books in a particular subject area, and get
the list of the currently borrowed books by that borrower.

The second use-case diagram (see Figure 13) 1s for the staff user, who can use the
system 1n eight different cases. Two of the use-cases are performed on behalf of the
borrower. They are: checking out a copy of a book and returning a copy of a book.
Another three are analogous to the borrower use-cases. They arc: show a list of books by
a particular author, show a list of books in a particular subject area, and get a list of the
currently borrowed books by a particular borrower (any borrower). Another task is to get
what borrower last checked out a particular copy of a book. The remaining tasks are
related to keeping the library catalog updated by adding copies to the library and
removing copies from the library. We might also add some actors or some use-cases that
are not in the problem specifications, for example there should be an administrator for the
system that adds new staff users, Also, staff users should be able to do more tasks like
adding and deleting borrowers. However, in the rest of this chapter the ornginal

spectfications [Wing 88] will be adhered to closely.

3]

,] | 1 1.
Library Catalog —‘ Library ‘— Staff User

o
%

1 1.%
Book Author
’ |
’ 1..*% 1.*
0N 1
Copy S Borrower
1

A
-I//\

Can check out
Can be checked out

: UML notation represents composition relationship

N: Max number of books can be checked out at the same time by a particular borrower
1..*: means can have one or more objects

0..1: means can have zero or one object but not more than one

0..*: means can have zero or more objects

0..N: means can have zero to N objects

Figure 11. Object relationships and constrains

32

Get list of checked out
books

\

Ordinary Borrower

Get list of books by a
particular author

Get list of books in a
particular subject area

Figure 12. Ordinary Borrower use-case diagram

Now we will group the similar services and objects into components. In this case
study, the services werc grouped into three components: catalog hased services, library
access services, and library station services. Of course, this is in addition to Lhe
standardized OMA components that the system will use. Figure 14 shows the library
system components with thewr interfaces and suggested deployment for these
components.

In the following paragraphs, the different components will be introduced along

with their interfaces and some implementation details.

33

Staff User

|

Check out a copy of a
book

Return a copy of a book

Add a copy of a book to
the library

Remove a copy of a book
from the library

Get a list of books by a
particular author

Get list of books in a

particular subject arca

Get list of books checked
out by a given borrower

What borrower last checked
out a particular copy of a book

Figure 13. Staff User use-case diagram

34

Library Database Server

DataB [| Catalog services
<<DataBase>> I:Tj
LibraryDB
1Book [Copy [Catalog
A A
: IIOP | !
Library Statjon PC : ' OMA Senvice server
:I I: (| Naming ang
(] LibraryStation ! ' [:'3 Trader Services
L op_ |
1 |
H I Security Services
ISession ‘ :
.\ ‘ 1 Transachion
E E :. Services
B ; ;
“\ Library Sccuritf,' Server :.
- I_I_l LibraryAccessServices
<<DataBase>> |
UsersDB .
A

R

IUser |Borrower 1StaffUser

[10OP: the [nternet Interoperability protocol.
The “I” at the beginning of an identifier stands for Interface; for example, IUser

stands for User Interface.

dependency
connection

Figure 14. Library system components and deployment diagram

35

A point about notation is in order at this point. In the rest of this section and the
next section, the OMG’s style guide for identifier formation (how to make up variable
names) [Siegel 00] was used. Interfaces, datatypes, and exceptions start with capital
letters, and if they consist of more than one word, the first letter of each word 1s
capitalized with no spaces between words. Names of operations, parameters, and
structure elements will be all lower case letters with underscores to separate the words.
Constants and enumeration values will be all capital letters with underscores to separate
the words.

The system has one global user-defined data type (UseriID) and consists of
three application components. The system will get the benefit of the following OMA
services: Naming and Trader services, Secunty services, and Transaction services (see

Figure 14).

6.2.1 CatalogServices Component.

e Description: This component deals with the services concerning the library catalog,
book, and copy objects. The operations are: adding and removing books and copies of
books, checking out copies of books, and querying the library catalog database.

e User-Defined Types and Structures: BookTitle, BookISBN, BookSubject,
BookAuthor, BookPublicationDate, CopyID, BookCopies, Books.

e [nterfaces:

es Catalog interface

see (Glossary: This interface is for adding and removing books from the library catalog.

36

ses State Variables: None.

ese Operations:

add_book

Description: adding a book to the library. This operation is called when adding the first
copy of a book.

Parameters: input details oftype BookDetails; no return.

Implementation: first check if the book is in the database or not; if it is not in the
database, add the book to the catalog and use the input parameter details for the new
book’s details.

Exceptions: raises one exception BookAlreadyInCatalog if a book with the same
[SBN number already exists in the Jibrary catalog database.

remove_book

Description: removing a book from the library catalog. A book is removed from the
library catalog afier its last copy has been removed.

Parameters: input book isbn of type BookISBN; no returm.

Implementation: find the book in the library database and then remove 1t, make sure that
the Book doesn’t have any copies attached to it.

Exceplions; raises one exception BookNot InCataloqg when trying to remove a book
that is not in the library catalog.

get copy ref

Description: get a reference to a Copy object in the [ibrary catalog.

Parameters: copy_id ofthe CopyId;retumn areferencetoa Copy object.

37

Implementation: find the Copy object with the copy _id; and if it was not active,
activate it.

Exceptions: raises CopyIsNotFound if the copy id is not found in the library
catalog database.

guery by author

Description: find the list of books written by a certain author.

Parameters: input author name of type Author; output result books of type
Books; no retum.

Implementation: find the list of books one of whose authors matches the first input
parameter author, return the list of books in the output parameter result books.
Exceptions: none.

Query by subject

Description: find the list of books on a certain subject.

Parameters: mput book subject of type BookSubject; output result books
of type Books; no return.

Implementation: find the list of books in the subject area passed in the first inpul
parameter book subject, return the list of books in the output parameter
result books.

Exceptions: none.

Query by certain_borrower

Description: find the list of books borrowed by a certain borrower.

Parameters: input borrower of type UserlD; output result books of type

Books; no return.

38

[mplementation: find the list of book currently borrowed by the borrower with the
UserId passed as the first input parameter, return the list of books in the output
parameter result books.

Exceptions: none.

e Book interface

ese Glossary: This interface represents the object Book in the library catalog with the
operations concerning the Book object.

eee State Variables: details of type BookDetails, copies of type
BookCopies, and copies count oftype short.

see Operations

add copy

Description: add a copy of a book to the library catalog.

Parameters: output number of coples oftype short; retum of type CopyId.
Implementation: assign a Copyld, add one copy to the book, add the copy to the
attribute copies, add the copy to the database, add one to the copies count, update
the number of copies with copie_count (we can benefit from Transaction
services, which is part of OMA, since this operation contains more than one step, and tn
case of failure of any kind, we can call rollback or submit changes).

Exceptions: none.

remove_copy

Description: remove a copy of a book from the library catalog.

Parameters: input id of type CopyId; output number of copies of type short;

no returm.

39

Implementation: search the copies related to the object, remove it, then remove the
copy from the database, subtract one from the copies count, update
number_of copies with copies count (we should benefit from the OMA
Transaction services here also).

Exceptions: raises Copy IdNot Found if there is no match in the list of copies related
to the current object.

ee Copy interface

ese Glossary: This interface represents the Copy object. Each copy is connected to a
book and has a unique CopyId. Copy represents the physical object copy, whtle Book
has no physical existence in the library system.

eee State Variables: copy id of the type CopyId, available of the type boolean,
last _borrower of the type UserId, and current borrower of the type
UserId.

sse Operations

check out

Description: check out a copy by a certain borrower. This operation s not called directly,
it is called from the Borrower object operation check out copy because every
borrower can borrow up to a certain pre-defined number of books at the same time; so,
before calling this operation, the system should make sure that the borrower does not
exceed that number.

Parameters: input borrower of the type Userld; no return.

40

Implementation: first check to see if the book is available to be checked out; if true,set
the available attribute to false and then set the current borrower to the input
parameter borrower (we should benefit from the OMA Transaction services here also).
Exceptions: raise CopyCheckOut if the copy was checked out by another borrower (by
checking the attnbute available we can find out if the copy has been checked out or
not).

return

Description: return a copy of a book to the library after having borrowed it for some time.
This operation is not called directly either. It is called from the borrower object to
adjust the number of books checked out by a borrower.

Parameters: none; no retum.

Implementation: first check to see if the copy was checked out or not; if it was checked

out, then the operation sets the available attnbute to true and updates the

last borrower with the current borrower (we should benefit from the OMA
Transaction services here also).

Exceptions: if the copy was not checked out (attribute available is true), then the
operalion raises CopyNotCheckedOurt.

get _last borrower

Description: return the last borrower of a copy of a book.

Parameters: output borrower of type UserId; no retum.

[mplementation: set the output parameter borrower with the last borrower

attribute.

4]

Exceptions: if the copy has not been checked out before it raises the exception
CopyNotBorrowedBefore. We can find out whether or not the copy has been
checked out by checking the attributes last _borrower and current borrower,

if both are null, then the copy has not been checked out.

6.2.2 LibraryAccessServices Component

» Description: This component deals with the services conceming accessing the library
system through the User, Borrower, and Staf fUser objects operations.

» User-Defined Types and Structures: UserPassword, UserType,
UserAddress, UserDetails.

e Interfaces:

ee User interface

eee Glossary: This interface has common attributes and operations for the Borrower
and StaffUser interfaces. The Borrower and Staffliser interfaces inherit this
interface.

eee State Variables: details of type UserDetails, type of type UserType, and
current state of type boolean.

ses Operations

login

Description: login to the library system with a valid password.

Parameters: input pw of type UserPassword; output user type of type UserType;

no returmn.

42

Implementation: cross check the passed parameter pw with the user password in the
details attribute; if there is a matched, return and set the aftribute current _state
to true.

Exceptions: raises WrongPassword if the password that is passed does not match the

password inthe details attribute of that object.

logout

Descaption: log out of the library system.

Parameters: none; no retumn.

Implementation: set the current stateto false.

Exceptions: no exceptions.

change password

Description: change the user password.

Parameters: input old password of type UserPassword; input new password
of type UserPassword; relum toolean.

Implementation: first determine whether or not the new password is empty. {f not
empty, then cross check the old password with the password in the atiribute
details; if there is a match, set the password in the user_details attnbute to
the new_password.

Exceptions: raises OldPasswordDoesnotMatch if the old password does nol
match the password in the attribute struct details; and if the new password
parameter is an empty string, it raises NewPasswordEmpty.

ee Borrower interface

43

see Glossary: This interface deals with the operations that the borrower object can
perform.

see State Variables: max_books allowed of type short and
currently borrowed books oftype short.

eee Operations

check out copy

Description: check out a copy of a book by this borrower object from the library and
the service can be requested by a Staf fUser.

Parameters: input service requester of type UserId; input copy id of type
CopylId (which (s part of the CatalogServices component); no retum.
Implementation: make sure that the service requester (first input parameter) Is
authorized to request this service by verifying it to be of type StaffUser. Call the
can borrow more operation; if it retums true, add one to the attribute
num_currently borrowed books. Then, get a reference to the Copy object with
the copy id (second parameter) by calling get copy ref from thc Catalog
interface. Last, call operation check out from the Copy object with the User1d of
this object as a parameter, We should benefit from the OMA Transaction scrvices here
also.

Exceptions: when calling the can_borrow_more operation, if it retumns false, raise the
CanNotBorrowMore exception. If the service requester is not authorized to
perform the operation. 1t raises UnAuthorisedRequester. If the copy id isnotin
the system, it will raise the same exception that the Catalogq interface raises, i.c.,

CopyldNotFound.

44

return_ copy

Description: return a copy of a book, the service can be requested by a Staf fUser.
Parameters: input service requester of type UserId; inpul copy_id of type
CopyId (which is part of the CatalogServices component); no return.
Implementation: make sure that the sexrvice requester (first input parameter) is
authorized to request this service by verifying that it js of type to be StaffUser.
Subtract one from num currently borrowed books. Then, get a reference to the
Copy object with the copy id (second parameter) by calling get copy ref from
the Catalog interface. Last, call operation return from the Copy object. We should
benefit from the OMA Transaction services here as well.

Exceptions: if the return operation of the Copy interface raises the exception
CopyNotCheckedOut, then raise the same exception. [f the service requester
1s not authonzed to perform the operation, it raises UnAuthorisedRequester. If the
copy_1id is not in the system, it will raise the same exccption that the Catalog
interface raises, 1.¢., CopyIdNotFound.

borrowed books

Description: list the currenily borrowed books by this borrower.

Parameters: input service requester of lype Userld; output result books
of type Books; no retum.

Implementation: If service requester is not the same as the borrower, make sure
that the service requester (first input parameter) is authorized to request this
service by verifying that it is of type StaffUser. Then, call the

gquery by certain borrower operation from the Catalog interface with the

45

UserId of the current object as a parameter. Books, the second outpul parameter, will
hold the returned list of books.
Exceptions: if the service requester is not authonzed to perform the operation on

this object, it raises UnAuthorisedRequester.

can_borrow more

Description: check to see if this Bor rower object ¢can borrow more books.

Parameters: none; return boolean.

Implementation: check to see tf num_currently borrowed books fewer than the
max_books allowed, thenreturn true otherwise retum false.

Exceptions: none.

ee UserStaff interface

eee Glossary: This interface represents the staff user object

eee State Vanables: department of type string.

eee Operations: inherits the User object operations.

6.23 LibraryStation Component

o Description: This component deals with the services concerning the opening and
closing of a session with the library system from a library station.

¢ User-Defined Types and Structures: None.

e Interfaces:

ee Session interface

eee Glossary: The Session interface enables the library station 10 access the library

system.

46

ees State Variables: is open of type boclean; current user_type of type
UserType.

eee Operations

get user ref

Description: get a reference to the User object with the UserId.

Parameters: user id of type UserId; return areference to the User object.
Implementation: find the User with the user id, and if it was not active, activate it.
Exceptions: if the user id is not in the users database, raise UnknownUser.

open

Description: open a session with the library system from a library station.

Parameters: input user of type UserId; input password of type UserPasswrod;
output user type of type UserType; no return.

Implementation: call operation get _user ref with user id as a parameter. When
getting the reference for the User object, the object should call operation 1ogin of the
User object with password and user type as parameters. The login operation (1f
successful) will return the user type STAFF USER or BORROWER in the second
paramefer user type. Then the is open attnbute is changed to true and the
current user type attribute is set to the user type retumed from the login
operation.

Exceptions: if operation get user ref raised UnknownUser, this operation will
raise the same exception as well. Also, if the operation login of the User object raised

exception WrongPassword, this object will raise the same exception.

47

Close

Description: close the open Session.

Parameters: none; no return.

Implementation: changing the attribute is open to false and deleting the Session
object.

Exceptions: none.

6.3 “Library System” in OMG IDL
The following code is the OMG IDL for the library case study according to the

specifications given in Section 6.1:

typedef long Userld; // Global definition for UserlId type

// Catalog Services Module declarations
module CatalogServices
{
// user defined type declarations
typedef string BookTitle;
typedef string BookISBN;
typedef string BookSubject;
typedef string BookAuthor;
typedef long BookPublicationDate;
typedef long Copyld:;

// BookDetails structure holding the detailed
// information of Book
struct BookDetails
{
BookTitle title;
BookISBN isbn;
BookSubject subject;
sequence<BookAuthor> author;
short edition;
BookPublicationDate publication date;

}:

// Catalog Services exceptions declarations

48

exception CopyCheckedOut;
exception CopyNotCheckedOut;
exception BookNotInCatalog;
exception CopyIdNotFound;
exception CopyNotBorrowedBefore;
exception BookAlreadyInCatalog;

interface Copy; //forward reference

typedef sequence<Copy> BookCopies;
typedef sequence<BookDetails> Books;

// Catalog interface
interface Catalog
{
boolean add book(in BookDetails details)
raises (BookAlreadyInCatalog):

void remove book(in BookISBN book isbn)
raises (BookNotInCatalog):

Copy get copy ref(in CopyId copy_id)
raises (CopyIdNotFound);

void query by author(
in Author author name,
out Books result books);

void query by subject(
in BookSubject book subject,
out Books result books):

void query by certain borrower (
in UserId borrower,
out Books result books):

// Book interface definition
interface Book
{
attribute BookDetails details;
attribute BookCopies copies;
attribute short copies count
Copyld add copy(out short number of copies);

49

void remove_copy (
in Copyld id
out short number of copies)
raises CopyldNotFound;
}

// Copy interface definition

interface Copy

{
attribute Copyld copy id:
attribute boolean available;
attribute UserId last borrower;
attribute UserId current borrower;
void check out(in Userld borrower)

raises (CopyCheckedOut)

void return{)
raises (CopyNotCheckedQut);

void get last borrower (out Userld borrower)
raises {CopyNotBorrowedBefore);

I
// Library Rccess Services Module declarations
module LAServices
{
// user defined types and structures
typedef string UserPassword;
enum UserType {BORROWER, STAFEF USER];
struct UserAddress
{
string linel;
string line2;
String city;
string zip code;
String state;
} i

struct UserDetails

{
string name;
UserAddress address;
String phone;
UserId user 1id;
UserPassword password;

50

};

// Library Access Services exceptions declarations
exception UnAuthorizedRequester;

exception CanNotBorrowMore;

exception UnKnownUser;

exception WrongPassword;

exception OldPasswordDoesnotMatch;

exception NewPasswordEmpty;

// User interface declaration

interface User

{
attribute UserDetails details;
attribute UserType type;
attribute boolean current state;

void login(
in UserPassword pw;
out UserType user type)
raises WrongPassword;

void logout();

boolean change password/(
in UserPassword old password,
in UserPassword new password)
raises (0OldPasswordDoesnotMatch,
NewPasswordEmpty) ;

I

// Borrower interface declaration
interface Borrower:User
{
attribute short max book allowed;
attribute short num currently borrowed books;

boolean check out copy(
in Userld service requester,
in CatalogServices::CopyId copy id)
raises (CanNotBorrowMore,
UnAuthorisedRequester,
CatalogServices: :CopyIldNotFound) ;

boolean return copy(

in Userld service requester,
in CatalogServices::Copyld copy id)

51

raises (CatalogServices: :CopyNotCheckedOut,
UnAuthorisedRequester,
CatalogServices: :CopyldNotFound) ;

volid borrowed books (
in Userld service requester,
out CatalogServices::Books
result books)
raises (UnAuthorisedRequester);

boolean can_borrow more();
|

// Staff User interface declaration
interface StaffUser:user
{
attribute string department;
b
b

// Library Station Module declaration
module LibraryStation
{
//Session interface declaration
Interface Session
{
attribute boolean is open;
attribute LAServices::UserType current user type;

LAServices::User get_User ref (in Userld user_id)
raises (LAServices: :UnknowuUser);
void open/(
in UserId user id,
in LAServices::UserPassword password,
out LAServices::UserType user type)
raises (LAServices::UnknownUser,
LAServices: :WrongPassword);

void close();

52

CHAPTER VI

DISCUSSION

The two sections in this chapter discuss the different properties of the library
system case study that was described in detail in Chapter VI. The first section discusses
the functional properties of the library system and the second section discusses its extra-

functional properties.

7.1 Functional Properties

The goal of this section 1s to make sure that the component interface design
introduced for the hibrary system in Sections 6.2 and 6.3 meets the requirements that were
mentioned informally in Section 6.1. What follows describes how these specifications
were handled in the design of the component interfaces. For transaction number 1 in the
description (Section 6.1), ‘Check out a copy of a book. Return a copy of a book’, two
interfaces are responsible for performing this transaction. The first object is the
Borrower object with its methods check out copy and return copy. These
two operations, after ensuring that the call was initiated by an authorized user, call the
Copy object operations check_out and return, respectively.

For transaction 2 (add a copy of a book to the library and remove a copy of a book

53

from the library), two objects are responsible for performing this transaction: Catalog
and Book. If the copy was the first copy of a book to be added to the library, then the
add_book method of the Catalog object will be called first. Subsequently, the
add copy method of the Book object will be called. If the book is already m the library
and we just want to add another copy to the library, the add_copy method of the Book
object will be called directly. Correspondingly, when removing a copy of a book from the
library, after calling the Book object’s remove copy method, we check to see if it was
the last copy In order 10 remove the whole book from the library catalog database by
calling the remove book method of the Cat alog object.

Transactions 3 and 4 are basically queries on the library catalog database with
different critenia for each one. Database queries for books wrtten by a particular author
are handled by the Catalog interface through the query by author operation.
Database queries for books on a particular subject are handled by the Catalog interface
through the guery by subject operation. Querying the database for the list of
books checked out by a particular borrower involves the Catalog and Borrower
imtecfaces. After ensuning that the request was tnitiated by an authorized requestor (here
the authorized requestor could be the borrower hersclf/himself or any staff user) in the
borrowed books operation of the Borrower interface, the borrowed books
operation calls the query by certain borrower operation of the Catalog
interface.

Transaction 5 (find out what borrower last checked out a particular copy of a
book) is conducted by the interface Copy through the get last borrower

operation.

54

In order that the system impose the restriction of what kind of tasks a staff user or
a horrower can perform, the system should have a way to distinguish among the cuwrent
users, and there should be a logging system 1o control what kind of functions the current
users can perform on the different objects of the system. The User interface with its two
operations login and logout, and the Session interface with jts two operations
open and close control this by keeping track of the tvpe of the current user in the
atiribute current _user type of the Session interface. The User interface
components can use there operations to initiate the right tasks according to the user types.

The restrictions (all copies in the library must be available for check-out or be
checked out and no copy can be both avajlable and checked out at the same time) are
both imposed by the state attribute available (boolen) of the Copy interface. Since
available is of type boolean, its value can be either t rue or false (available or
checked out), and not both at the same time.

The last restriction (a borrower may not have more than a predefincd number of
books checked out at one time) is imposed through the two statc variables
max book allowed and num currently borrowed books of the
Borrower interface.

IDL was ornginally designed [Clements et al. 99] [Siegel 00] to describe the
functionality of black box components through their interfaces. Thus it is nol surprising
that by looking at and studying an IDL, one can tell what functionality the components
have, but one cannot tell how those functionalities are affected. This leaves a sofliware
developer with some flexibility 1n how to implement a specified component according to

the specification and the design documents.

55

7.2 Extra-Functional Properties

Extra-functional properties, or as they also called Quality of Services (QoS)
prosperities, cannot be predicted from the component properties or totally controlled by
the application components. As it was mentioned earlier (see Section 2.5) one cannot
predict the overall system properties from the components properties, because the over all
system properties do not just depend on the system components and also because of what
1s referred to the as architectural mismatch phenomenon. This phenomenon depends on
the component model used as well as the infrastructure and the surrounding computing
environment.

The quality of service properties may include performance, security, latency, and
accuracy. Most of these properties cannot be really tested unless the system is completely
developed and deployed in the targeted environment. What follows contains some of the
implementation details of the library systemn case study that help in controlling these
properties. it was mentioned 1n Section 6.2 that the system could benefit from using the
following OMA services: Naming and Trader services, Transaction services, and Security
services. All of these services interfaces were written using OMG IDL, and the only way
to access them 1s through their interfaces. Using these services help control the quality of
services properties. In this case study Transaction services were used when a new copy
was added to the library, when a copy was removed from the library, when a copy was
checked out from the library, and when a copy was retumed to the hbrary. Al) of the
previous operations consist of more than one step (operation) and some of them may

include accessing more than one database resource. These databases may exist on one

56

machine or on different machines across a network. One of these operations might fail,
we need a mechanism, in case on operation would fail, to roll back the other operation.
This is done using the Transaction service which helps in the reliability and accuracy
properties.

Installing and configuring the Security services of the OMA along with the
application components supplies the system with the security 1t needs to support its
operations. Security service prevents unauthorized access to the system components from
other components that might exist in the environment. The developers and users might
not be aware of all of the objects that they are interacting with. As Siegel stated [Siegel
00] “An OMA secunty architecture should allow for environments where mistrust
between objects s ubiquitous™.

Naming and Trader Service locates the systera components and helps the
components know about one another in runtime environment. This service will indeed
increase the reliability and performance of the overall system. In case a component is
moved from its place, one still can locate the new place of the component exactly. This is
analogous to address forwarding in real life through ORB and the Naming and Trader
service. Or, if there 15 a great demand on a certain component, one could have more than
one copy of that component running on different places, and the only way to make all of

this transparent is by the Naming and Trader service.

57

CHAPTER VIII

SUMMARY AND FUTURE WORK

We live In fast changing and growing world. Rehance on software systems i1s
increasing every day. As a result, developing reliable, easily maintained, scalable, and
efficient software systems in short time and with affordable cost is essential for this
modern life. CBSD (Component-Based Software Development) is one of the preferred
ways [Dong 02] [Cai et al. 00] to develop software systems that meet the above critena.
CBSD faces some problems [Cmkovic and Larsson 02} {Sommerville 01} such as: high
maintenance cost, lack of supporting development tools, the “not-invented-here”
syndrome, frequent updating of the components library, finding the rnight components and
adopting them, and component composition. Systen components are relatively easy to be
developed but hard to combine or compose together. In panicular, one should make sure
that components fit in a new environment when they are reused.

OMG IDL was onginally designed to specify the functionality of the components
of a system, but its function has been extended to compose the components together.
Using the OMA standacd services helps in controlling the extra-functional properties. A
software designer should have a good knowledge of the standard components and
services 1n the component model in order to use them when (s)he needs them rather than

writing them again. A good design is essential for a component system to succeed.

58

Software architecture js strongly related 1o study of component-based development. It is
hard to cover all parts of OMG IDL in one case study. Object Management Architecture
(OMA) and standardized components shorten the time and the cost required to develop
component-based systems [Cai et al. 00].

Chapter II introduced a general overview of the Component Based Soflware
Development. Chapter Il presented some of the popular middleware technologies
including CORBA, COM and DCOM, and JavaBeans and Enterprise JavaBeans. Chapter
[V discussed Object Management Group's Interface Defining Language. Chapter V
presented the Object Management Architecture (OMA), which is the Object Management
Group's view for a component technology. Chapter VI discussed a simple library system
as a case study. The library system was first presented informally, then a component-
based analysis and design of the Jibrary system was conducted, and finally an OMG IDL
for the library system components was written. Chapter VII discussed the functionat and
extra functional propecties of the library system.

A future work in this area might be studying the OMA and suggesting new
services and components, such as standardized gencral library componenlts, in one of the
three different standardized categories which are CORBAservices, CORBAfacilites, and
CORBAdomain. An extension to the OMG IDL might be developed to give OMG IDL
more power 1n component composition. Other future work include developing CASE
tools to help in component assembly and visualization tools to show the existing

dependencies among the various components of a system.

59

REFERENCES

[Bachmann et a). 00] Flex Bachmann, Len Bass, Charles Buhman, Sniago Comella-
Dorda, Fred Long, John Robert, Robert Seacord, and Kurt Wallnau, “Volume II:
Technical Concepts of Component-Based Software Engineering”, Technical
Report CMUJ/SEI-2000-TR-008, Software Engineering Institute, Camegie
Mellon University, Pittsburgh, PA, May 2000.

(Borgida and Devanbu 99) Alex Borgida and Prem Devanbu, “Adding More “DL" to
“IDL”. Towards More Knowledgeable Component Inter-Operability”,
Proceedings of the 21st International Conference on Software Engineering, pp.
378-387, Los Angeles, Califomia, May 1999.

[Brown 02} David William Brown, An [ntroduction to Object-Oriented Analysis Ohbjects
and UML in Plain English, Second Edition, John Wiley & Sons, Inc., New York,
NY, 2002,

[Cai et al. 00] Xia Cai, Michael R. Lyu, Kam-Fai Wong, and Roy Ko, “Component-
Based Software Engineenng: Technologies, Development Frameworks, and
Quality Assurance Schemes”, Proceedings of the Seventh Asiu-Pacific Softwure
Engineering Conference (APSEC 2000), pp. 372-379, Singapore, December
2000.

[Clements et al. 99] Paul C. Clements, Len Bass, L. Belady, Alan Brown, Peter Freeman,
Scott Isensee, Rick Kazman, Herb Krasner, John Musa, Shari Lawrence Pfteeger,
Karel Vredenburg, and Tony Wasserman, Constructing Superior Software.
Macmillan Technical Publishing, Indianapolis, [N, 1999.

[Cmkovic and Larsson 02] Ivica Cmmkovic and Magnus Larsson, Building Reliable
Component-Based Software Systems, Artech House, Inc., Norwood, MA, 2002.

[Crnkovic et al. 02] Ivica Cmkovic, Heinz Schmtdt, Judith Stafford, and Kurt Wallnau,
“Anatomy of a Research Project in Predictable Assembly”, Fifth [CSF Workshop
on Component-Based Software Engineering white paper. URL:
http:/fwww.sei.cmu.edwpacc/CBSE5S/CBSES whitepaper.pdf, Orlando, Florida,
May 2002.

[Dong 02] Jing Dong, “Design Component Contracts: Modeling and Analysis of Pattern-
Based Composition”, Ph.D. Thesis, School of Computer Science, University of

60

Waterloo, Waterloo. Ontario, Canada, 2002.

[Gudgin 0)] Martin Gudgin, Essential IDL Interface Design for COM, Addison-Wesley,
Pearson Education, Upper Saddle River, NJ, 2001.

(Ivers et al. 02] James lvers, Nishant Sinha, and Kurt Wallnau, ‘A Basis for Composition
Language CL"”, Technical Note CMU/SEL-2002-TN-026, Software Engineening
Institute, Carnegie Mellon University, Pittsburgh, PA, September 2002.

[Kruchten 98] Philippe Kruchten, “Modeling Component Systems with the Unified
Modeling Language”, a position paper presented at The 1998 Internationul
Workshop on Component-Based Software Engineering, URL:
http:/fwww.sei.cmu.edw/chs/icse98/papers/pl.himl, Kyoto, Japan, April 1998.

[Mittermeir et al. 01] Roland T. Mittermeir, Andreas Bollin, Heinz Posewaumg, and
Dominik Rauner-Reithmayer, “Goal-Driven Combination of Sofware
Comprehension Approaches for Component Based Development”, Proceedings
of the ACM Symposium on Software Reusability (SSR’ 01), pp. 95-102, Toronto,
Canada, May 2001.

(Moreno et al. 02] Gabriel A. Moreno, Scott A. Hissam, and Kurt C. Wallpau,
“Statistical Models for Empirical Component Properties and Assembly-Level
Property Predictions: Toward Standard Labeling”, Online Proceedings of the fifth
International Conference on Software Engineering (ICSE), Workshop on
Component-Based Software Engineering, URL:
http:/fwww.sei.cimu.edu/pacc/CBSES/Moreno-cbse5-final. pdf, Orlando, Flonda,
May 2002.

(OMG 02) Object Management Group’s official Internet web site URL:
http://Awww.omg.com, Last Updated: May 21, 2002, Date Accessed: January-
March 2003.

[Siegel 00] Jon Siegel, CORBA 3 Fundamentels and Programming, Sccond Edition,
John Wiley & Sons, Inc., New York, NY, 2000.

[Siegel 96] Jon Siegel, CORBA Fundamentals and Programming, John Wiley & Sons,
Inc., New York, NY, 1996.

[Sommerville 01] lan Sommerville, Software Engineering, 6th Edition, Pcarson
Education Limited, Essex, England, 2001.

[Wing 88] Jeannette M. Wing, “A Study of 12 Specifications of the Library Problem”,
IEEE Software, Vol. 5, No. 4, pp. 66-76, July 1988.

[Yourdon and Argila 96] Edward Yourdon and Carl Argila, Case Studies in Object
Oriented Analysis & Design, Prentice-Hall, Inc., Upper Saddle River, NJ, 1996.

61

APPENDICES

62

Assembly

CASE

CBSD

CBSE

COM

Component

CORBA

COTS

DCOM

APPENDIX A

GLOSSARY

A set of components and their interconnections [Cmkovic et al. 02].

Computer Aided Software Engineering, programs used to support
software engineering process activities such as requirements
analysis, system modcling, and testing [Sommerville 01].

Component-Based Software Development, the process of
developing software systems from small pieces (black boxes),
called components, by composing them together to form the final
system.

Component-Based Software Engineering, the engineering discipline
that Is concerned with developing software systems from small
pieces (black boxes), called components, by composing them
together to form the final system.

Component Object Model, a middlewarc component technology (a
Microsoft product).

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by a third party [Cmkovic and Larsson 02].

Common Object Request Broker Architecture, a middleware
component technology (an OMG product).

Commercial Off The Shelf, ready-made software components that
are available in the component market place.

Distributed Component Object Model, the distributed version of

Microsoft COM that allows the different components of a system to
reside on different machines.

63

Framework

IDL

[10P

MIDL

MSMQ

MTS

OMA

OMG

O0A

ORB

A Component framework 15 a piece of software that manages
resources shard by a number of components, and provides the
underlying mechanisms that enables communication (interaction)
among components [Bachmann et al. 00].

Interface Definition Language, a definition language used to define
component interfaces in component-based system.

Internet Interoperability protocol, a communication protocol in
CORBA that allows the different components to communicate over
a network remotely.

Microsoft Interface Definition Language, a definition language
used to define component interfaces in the COM/DCOM
component model.

Microsoft Message Queue, a piece of software that provides
support for asynchronous communication between componenis via
a message queue [Clements et al. 99).

Microsoft Transaction Service, a Microsoft product that provides
security and transaction managerent services [Clements ct al. 99].

Object Management Architecture, a component-based architecture
standard that represents the OMG's vision for the component
software environment which categorizes objects into four
calegories: the CORBAservices, CORBA facilitcs, CORBAdomain
objects, and Application Objccts [Sicgel 00].

Object Management Group, an Intemational not-for-profit softwarc
consortium that sets standards in the area of distributed ohjcct
computing. OMG was founded in April 1989 by elcven companics
to create a component-based software market place, now it contains
more than 500 companies. Some of the standards the OMG has
developed include CORBA, UML, OMG IDL, and 1IOP [OMG
02].

Object Oriented Analysis, a design approach used to analyze
software systems as objects with attributes and methods.

Object Request Broker, communication software that allows the

different componenis to communicate with each other in CORBA,
and makes the location of the components transparent.

64

UML

Unified Modeling Language, a standard modeling language that is
mainly used for object-oriented modeling. UML is an OMG
standard [Sommerville O1].

65

VITA 7))
Emran Al-Shahroun
Candidate for the Degree of

Master of Science

Thesis: A SURVEY AND A DETAILED CASE STUDY USING OMG [IDL: THE
ROLE OF IDL IN COMPONENT COMPOSITION

Major Field: Computer Science
Biographical:

Personal Data: Bom in Amman, Jordan, On October 26, 1971, son of Khalil Al-
Shahrour and Asia Al-Shareef.

Education: Recetved the Bachelor of Science degree in Computer Science from
Mu’tah Untversity in June 1993; completed the requirements for the
degree of Master of Science in Computer Science at the Computer Science
Department at Oklahoma State University in December 2003.

Expenence: Working with the Jordan Armed Forces - Gencral Head Quarters as
a Computer Programmer and Software Analyst sincc 1993. Employed by
the Information Technology Division - Client Services in Oklahoma State
University as Lab Assistant from August 2002 to May 2003.

Professional Memberships: Jordan Computer Society.

