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A bstract

A N  OPTIM ALLY WELL LOCALIZED M ULTI-CHANNEL  

PARALLEL PE R FE C T R EC O N STR U C TIO N  FILTER B A N K

Peter C. Tay, Ph.D.
The University of Oklahoma, 2003

Supervisor: Joseph P. Havlicek

This dissertation defines a measure of uncertainty for finite length discrete-time 

signals. Using this uncertainty measure, a relationship analogous to the well 

known continuous-time Heisenberg-Weyl inequality is developed. This uncer

tainty measure is applied to quantify the joint discrete time-discrete frequency 

localization of finite impulse response filters, which are used in a quadrature 

mirror filter bank (QMF). A formulation of a biorthogonal QMF where the low 

pass analysis filter minimizes the newly defined measure of uncertainty is pre

sented. The search algorithm used in the design of the length-A linear phase 

low pass analysis FIR filter is given for A  =  6  and 8 . In each case, the other 

three filters, which constitute a perfect reconstruction QMF, are determined 

by adapting a method due to Vetterli and Le Gall. From a set of well know 

QMFs comprised of length six filters, L-channel perfect reconstruction paral

lel filter banks (PRPFB) are constructed. The Noble identities are used to 

show that the T-channel PRPFB is equivalent to a L — 1  level discrete wavelet

xiii



filter bank. Several five-channel PRPFBs are implemented. A separable imple

mentation of a five-channel, one-dimensional filter bank produces twenty-five 

channel, two-dimensional filter bank. Each non-low pass, two-dimensional fil

ter is decomposed in a novel, nonseparable way to obtain equivalent channel 

filters that possess orientation selectivity. This results in a forty-one channel, 

two-dimensional, orientation selective, PRPFB.

Joint uncertainty for the overall A-channel, one-dimensional, parallel 

filter bank is quantified by a metric which is a weighted sum of the time and 

frequency localizations of the individual filters. Evidence is presented to show 

that a filter bank possessing a lower joint filter bank uncertainty with respect to 

this metric results in a computed multicomponent AM-FM image model that 

yields lower reconstruction errors. This strongly supports the theory that there 

is a direct relationship between joint uncertainty as quantified by the measures 

developed and the degree of local smoothness or “local coherency” that may be 

expected in the filter bank channel responses. Thus, as demonstrated by the 

examples, these new measures may be used to construct new filter banks that 

offer excellent localization properties on par with those of Gabor filter banks.
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C hapter 1 

Introduction

1.1 Overview

The principle of indeterminancy, first formulated by Heisenberg in 1927, was 

an idea that is manifested in the physical world of quantum mechanics. At the 

time of its conception, it was believed that future quantum events could be 

determined exactly, if the present position and momentum of an electron and 

all the forces acting on it could be determined exactly. Heisenberg never refuted 

this concept. His principle of indeterminancy maintains that the conditional is 

not possible. This notion of uncertainty had implication not just in the scientific 

society, but also in religion, economics, etc. Heisenberg justified uncertainty 

not with a mathematical proof nor with empirical evidence but rather with a 

hypothetical experiment. It has been seventy-six year since Heisenberg’s first 

publication on uncertainty and this notion has yet to be disproved. On the 

contrary, the principle of uncertainty has been supported by empirical evidence 

and rigorous modern experimentation.

Gabor’s application to communication signals is one such example that 

gives support to Heisenberg’s uncertainty principle. Gabor with the aid of wave 

mechanics and the Schwarz inequality showed that a finite energy, continuous 

signal can not be arbitrarily and simultaneously localized in both the continuous



time and continuous frequency domains. In addition, Gabor showed that a 

family of modulated and translated Gaussian functions uniquely attained the 

minimun area in the time-frequency plane. This gave rise to the notion of the 

smallest unit or quanta of information possessed by a signal.

In our modern digital world, the signal, which are of most concern, are 

finite and discrete signals. We rely on sampling theories to connect us to the 

continuous and analog world. It does not seem unreasonable that truncating 

and sampling a translated and modulated Gaussian function will lead to min

imum finite discrete time and finite discrete frequency localization. Not only 

does this idea seem reasonable, but it is practiced unquestionably by many 

researchers.

It is not my intention to refute the work of any research prior to this dis

sertation. Rather, this dissertation brings mathematical formalism to quantify 

and conceptualize uncertainty, he., localization for a finite discrete signal. This 

formalism is done in a manner which is consistent with the classical, intuitive, 

meaningful interpretation of Heisenberg and Gabor. In addition, some of the 

ideas of modern uncertainty principles are incorporated to define a uncertainty 

measure for filter banks. This filter bank uncertainty measure is shown to fur

ther the science of computer vision in the form of enhancing the AM-FM image 

modulation model.

1 .2  O r ig in a l C o n tr ib u t io n s

The original contributions to digital signal and image processing presented in 

this dissertation are unprecedented. Over the past twenty years, there have 

been numerous formulation of time and frequency localization used in vari



ous joint uncertainty measures. These various measures have some unappeal

ing qualities like not based on probability distribution, not directly related to 

Fourier transform in particular the DFT,  not translation invariant, not modu

lation invariant, etc. For the first time ever, these problems are solved in the 

work presented in this dissertation.

I have developed a novel discrete-discrete uncertainty measure that is in 

direct analogy to the Heisenberg-Weyl uncertainty principle. This measure ad

mits an inituitively satisfying interpertation in terms of energy variances. This 

new measure is invariant under modulations and translations. In addition, 

a meaningful extension of this notion of uncertainty is used to quantify un

certainty for a L-channel perfect reconstruction parallel filter bank (PRPFB). 

The separable implementation of these L-channel PRPFBs are made orienta

tion selective. The work in this dissertation produces a design for well-localized 

orientation selective filter banks that result in computed AM-FM models with 

small reconstruction errors. In general, better joint localization with respect 

to the new filter bank uncertainty measure ’directly relates to a lower AM-FM 

reconstruction error.

1.3 N otation and Nomenclature

N, Z, R, and C refers, respectively, to the set of natural numbers, the set of 

integers, the set of real numbers, and the set of complex numbers.

The imaginary unit is denoted j  =

Let z = a + jh  Then the complex conjugate of z is z* =  a — jb. It is easy 

to verify that V 0  G R, and {zi -I-Z2 }* =  zl + z^.



For z E C, the modulus is \z\ — \/a^ +  6 .̂

Sequences are represented in several ways. The notation f{n)  is used to 

denote an infinite length sequence, while /  [n] denotes a finite length sequence. 

I use f to mean a finite length sequence and will also refer to finite length 

sequences in vector notation according to f  =  [/ [0] /  [1] /  [2 ] • • • /  [Â  — 1]]^.

The £||^_^j-norm of f is denoted

' N - l  ^ I

\n]i l / N  II =  \
L n= 0

For /  (n) and g (n), linear convolution is defined by
00

/  W  * p (7l) =  ^  /  (() p (M -  () .
l=—oo

Mathematical relations are denoted by the symbol For example, the nota

tion a ~ 6  indicates that a relation exists between a and b.

• A relation ~  is reflexive if and only if for all x  in the set on which

the relation is defined.

• A relation ~  is symmetric if and only if xr-^y implies y ^ x  for all x, y in 

the set on which the relation is defined.

• A relation ~  is transitive if and only if and y ^ z  imply x<^z for all

x,y,  z in the set on which the relation is defined.

• A relation ~  is an equivalence relation if and only if it is reflexive, sym

metric, and transitive.

• I will use the notation [f] to denote an equivalence class for the sequence 

f. I.e.,  [f] =  (g  I g -  f}.



For a G Z, the modular notation is (a)^ =  a mod N.

The continuous Fourier transform (CFT)  of /  (t) is defined as

/ OO 

-OO

where lu is the radian frequency variable. The inverse continuous Fourier trans

form {ICFT)  is defined as

1 r°°

The discrete time Fourier transform (DTFT)  of an infinite sequence /  (n) is 

defined as
00

F{ei“) =  ( M )
n = —OO

where uj G [— 7 r , 7 r ) .  The inverse discrete time Fourier transform {IDTFT)  is 

defined as

=  (1 .2 )

The discrete Fourier transform (DFT)  of a finite sequence of length-fV is defined

as
N - l

2tt
r  |fc| =  ^  /  [»] (1.3)

n=0

where 0 <  A; < iV — 1. The inverse discrete Fourier transform (IDFT)  is defined

as

=  (1-4)
fc=0

where 0 < n < Æ — 1. The z-transform of sequence f{n)  is defined as

00

F(z)  =  Y ,  (l.S)



where z G C. For f[n] a sequence of finite length N,  the z-transform of f[n] 

will be defined as in equation (1.5) where

_  /  /W  for M =  0 , 1 , 2 , . . . , W -  1  . .
^  ' ( 0  otherwise.  ̂ '

The autocorrelation of a sequence /(n )  at lag f E Z is defined as

OO

^/(o  =  (1-7)
n = —OO

For a finite-length sequence, unless otherwise specified, the autocorrelation will 

be understood to be computed using inhnite-length sequences obtained by zero 

padding as indicated in (1 .6 ).

Additional notations are defined as needed throughout this dissertation. 

Definitions of some terms already defined may be repeated for the sake of clarity 

and emphasis.



C hapter 2 

Background

2.1 Historical Background

The original formulation of the principle of indeterminancy is credited to 

Werner Heisenberg (1901-1976) and Hermann Weyl (1885-1955). Along with 

Erwin Schrodinger (1887-1961, Nobel Prize-Physics: 1933), Albert Einstein 

(1879-1955, Nobel Prize-Physics: 1921) \  and Niels Bohr  ̂ (1885-1962, No

bel Prize-Physics: 1922), Heisenberg is considered to be one of the fathers 

of modern quantum mechanics. As one biographer has observed “one of the 

most important developments in quantum theory was Heisenberg’s uncertainty 

principle...” [1]. Heisenberg’s uncertainty princple {a.k.a. the principle of in

determinacy) states that the arbitrarily precise, simultaneous measurement of 

canonically conjugate variables, such as the position (p) and the momentum 

(g), or the energy (E) and time (f), of a particle, are excluded in principle. 

Instead, reciprocal relationships exist between the indeterminacies in the mea

surements of position (Ap) and momentum (Ag), or energy (AE)  and time

^Schrodinger and Einstein held a theory and model of quantum mechanics tha t rivaled 
Bohr and Heisenberg’s model. The rival theories were later shown to be equivalent.

^Bohr was Heisenberg’s dissertation advisor.



(At).  These can be represented by Heisenberg’s famous uncertainty relation

ApAq  % h,

A E A t  % h,

where h is Planck’s constant [2]. An English translation of Heisenberg’s original 

1927 paper is published in [3]. Heisenberg was awarded the Nobel Prize in 

Physics in 1932 for his formulation of the principle of indeterminacy.

Credit for this uncertainty relation may also be bestowed to Hermann 

Weyl. Weyl, in Gruppenthoerie and Quantenmechanik [4], formulated Heisen

berg’s uncertainty relation, as the more familiar inequality

ApAg > (2 .1 )

The original publication of Gruppenthoerie and Quantenmechanik was in 1931, 

while the English translation [4] appeared in 1950.

Denes Gabor^ (1900-1979) formulated the Heisenberg and Weyl’s uncer

tainty principle (HWUP) in the familiar modern form applicable to finite en

ergy continuous signals. Along with his work in communication theory, Gabor 

is best known for developing the theory of holography, while trying to improve 

the resolution of the electron microscope. In 1971, Gabor was awarded the 

Nobel Prize in Physics for this pioneering work.

In 1946, Gabor realized an example of HWUP in the following: let

h : K  Î- C be a continuous function with lim hit) = 0. Then

A ,A , > i .  (2 .2 )

^Commonly known as Dennis Gabor.



In Gabor’s formulation, the pulse width is defined as

2
“n i M o p *  '

where
. - O O

The band width Ay is defined as

2  /_”  ( /  -  f T m f W d f
' " f Z m f W d f  '

where
-  j-” / |g ( /)P < y  

\ n ( f m  ■

This uncertainty relation (2.2) quantifies the fact that continuous time and 

continuous frequency localization cannot be arbitrarily small simultaneously.

With the aid of the Schwarz inequality, Gabor proved in [5] that the 

only functions which achieve equality in (2 .2 ) are

where a,to, fo,(p G R and where j  is the imaginary unit. These functions are 

referred to as the Gabor elementary functions or simply as the Gabor functions.

Since Gabor functions are optimally localized in both continuous time 

and continuous frequency, they are used in numerous signal and image pro

cessing applications which rely on well localized conjoint time-frequency anal

ysis [6 ]. Their popularity extends even into the finitely supported discrete do

main, where Gaussian shaped finite impulse response (FIR) filters are created 

by sampling continuous Gabor functions, or by various forms of approximation 

of the continuous Gabor functions.
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The current state of digital signal and image processing implementations 

require filters where only finite computations are allowed. In effect, this requires 

filters to be finite and discrete. This would include finite impulse response (FIR) 

and infinite impulse response (HR) filters, but exclude filters with infinite non

zero terms. Since Gabor functions are Gaussian functions shifted in time and 

frequency, their supports are infinite in both time and frequency. Greating 

filters by sampling a Gaussian functions leads to truncations to finite length 

filters which may result in the loss of the “ideal” joint localization. In addition, 

since these sampled and truncated Gaussian filters lack orthogonality, perfect 

reconstruction of these filters is problematic.

2.2 AM -FM  Image Models

Gabor’s formulation of HWUP defined the notion of a “quantum” of infor

mation. The conjoint time-frequency domain for one dimensional continuous 

signals is essentially quantized, so that no signal or filter can occupy less than a 

certain minimal area. This minimal area reflects the inherent trade-off between 

time resolution and frequency resolution. Gabor showed that his functions yield 

the best trade-off in terms of achieving the minimal area, and that they are 

unique in this respect. If we consider that each member of a family of translated 

and modulated functions carries one quantum of information, then the infor

mation bearing capacity of the family is maximized when the family members 

are Gabor functions, since this choice minimizes the area in the time-frequency 

plane that is occupied by each member.

A continuous time signal can be expressed as a linear combination of Ga

bor elementary functions. The coefficients in this linear combination, which are
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called the Gabor Transform, are computed as inner products between the sig

nal and a biorthogonal family of auxiliary functions. Compared to the Fourier 

transform, the Gabor transform is better able to represent temporally or spa

tially local signal features. This is a direct consequence of to the fact that the 

Gabor functions are optimally and uniquely well localized in the time-frequency 

plane. The Fourier transform tends to spread localized time features through

out the frequency spectrum. Local transforms such as the Gabor transform 

tend to reduce transform domain correlations between signal features that are 

time localized. Thus, local transforms are inherently better for performing 

time-frequency analysis to determine a signal’s local features.

To model a simple cell in the visual cortex, Daugman generalized the 

Gabor elementary functions to the two-dimensional case [7]. In addition, he 

showed that the two-dimensional version of HWUP is uniquely minimized by 

two-dimensional Gabor functions. Daugman’s two-dimensional Gabor func

tions can be expressed as

(2 .6)
2'ïïap

where {xq, yo) is the spatial centroid of the filter impulse response, (-0 0 , 0o) is the 

filter center frequency, and a and (3 are the standard deviations along the x-axis 

and y-axis, resp [7]. This formulation popularized the use of two-dimensional 

Gabor functions in image processing techniques where time-frequency analysis 

is required. One notable example is AM-FM image modeling developed by 

Havlicek, Bovik, and others. [6,8-10].

In this dissertation I restrict my attention to the AM-FM image model 

using the directional 2-D Hilbert transform. To establish a complete back
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ground of the work present in this dissertation, a description of AM-FM image 

models using Gabor analysis is given. A more concise and detailed description 

is given in [8,9]. For an n-dimensional complex-valued image s : R" — > C, the 

K-component AM-FM model of the image is given by

g (x) =  ^  Si (x) ^ U i  (x) , (2.7)

. The

i=l i=l

where x  =  [xi X2  . . .  XnY' E R", Oj : R" —  ̂ [0, oo) and (pi : 

functions Oi (x) and Vipi (x) are called the amplitude and frequency modula

tions of s (x). The frequency modulation of component S{(x) is defined as

d
V Y?i(x) — (2 .8)

For agreement with the model (2.7), a real-valued image t : R" — > R is 

extended to a complex image s(x) by adding an imaginary part according to

s (x) =  t (x) +  j n  [t (x )j, (2.9)

where H [t (x)] is the directional multi-dimensional Hilbert transform [11].

If the component Sj(x) =  at(x)e-'^W in (2.7) could somehow be iso

lated from the other components, then it could be demodulated using the al

gorithm [6 , 8 - 1 0 ]

'V si(x)'
V(/Pi(x) Re

_J%(x)
(2 .10) 

(2 . 11)

which is exact at all points where Sj(x) A 0. The individual components are 

not generally available however. Thus, signal processing, often in the form of 

linear multi-band filtering, must be applied to isolate the components from one 

another.
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The approach devised by Havlicek and Bovik was to apply a linear multi

band filter bank for isolating components and then to modify (2 .1 0 ) and (2 .1 1 ) 

to estimate the component modulating functions directly from the filter bank 

channel responses. Let g : R" — > C and G{Q,) be the impulse response and 

frequency response of one of the filter bank channels. Suppose that, in a neigh

borhood about a particular point x  € M”, the channel response is dominated 

by component Si{x) in (2.7), so that

y(x) =  s{x) » j(x ) S3 Sj(x) » j(x ) (2 .12)

in the neighborhood. Provided that the modulating functions of 5j(x) are 

sufficiently smooth in a certain sense [9], the right hand side of (2.12) may be 

approximated using the quasi-eigenfunction approximation (QEA)

^(x) =  8i(x)G[Vy)i(x)] % 8^(x) * ^(x) % 2/(x)' (2.13)

Applying the frequency demodulation algorithm (2.10) directly to the channel 

response y{x),  the QEA gives

Re V&/(x) ~  Re 

=  Re

V ^ (x )

Vgj(x)G[Vy?t(x)] 
_ jSi(x)G[Vy)^(x)]

(2.14)

(2.15)

Re Vgj(x)
J5i(x)

(2.16)

Since (2.16) is identical to the right-hand side of (2.10), this motivates the so 

called “filtered EM” algorithm

V%/(x)'
J2/(x)

(2.17)
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A similar QEA application validates the filtered AM algorithm [9]

G((x) = 2/(x)
G[Vy,(x)]

(̂]c)
G[V%(x)]
t/(x)G[Vy)i(x)]

(2.18)

(2.19)

(2 .20) 

(2 .21)

Thus, given an appropriately constructed filter bank, (2.17) and (2.18) may 

be applied to estimate the individual component modulating functions in (2.7) 

directly from the filter bank channel responses. QEA’s were also used to develop 

equivalent discrete demodulation algorithms in [9].

The filters G(ri) should be well localized in frequency so that they have 

the power to resolve multiple signal components from one another, but also 

well spatially localized to capture local nonstationary features of the signal 

structure. To balance these conflicting requirements and also to minimize 

QEA approximation errors, which are bounded by Sobolev norms of the com

ponent modulating functions, Havlicek and Bovik employed discretized Ga

bor filters [9]. For a Gabor filter bank constructed of channel filters 

they extracted estimates of the dominant AM and EM functions at each point 

X £ R" from the filter bank channel that maximized the selection criterion 

(x ) =  — ^ T w T v iï-  These dominant modulations have been used to solve a 

variety of classical computer vision problems. They also computed general AM- 

FM image representations {a^(x), V^<(x)}^_^  ̂ from which they obtained 

approximate image reconstructions.

Though the bank of discretized and truncated Gabor filters provided 

excellent joint localization properties and thereby minimize errors in the QEA,
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the fact that it did not provide perfect reconstruction leads to the approximate 

equalities in (2.12) and (2.13). Thus precludes the possibility of an invertible 

AM-FM transformation. What is needed to complete this important work is a 

filter bank design offering both excellent joint time-frequency localization and 

perfect reconstruction.

2.3 Wavelets

The multi-resolution image analysis and synthesis method described by Mallat 

in [12] requires a quadrature mirror filter bank (QMF). There are a myriad 

of ways to create QMFs. A few are given in [13-19]. Since wavelets are well 

suited for this application, they are often chosen to construct QMFs. The 

use of wavelets to construct filter banks is well documented [12,20-23]. This 

dissertation will not focus on formulating the relevance of wavelets and multi

resolution analysis. I refer the reader to [22] as an excellent reference in this 

area. Rather, this dissertation applies the work already well developed in this 

area as a guiding framework for the design of filters to be used in a QMF.

To create a binary-tree quadrature mirror FIR filter bank, the low pass 

analysis, low pass synthesis, high pass analysis, and high pass synthesis filters 

must be specified. Let fa, fg, ga, and gg be the finite-length real-valued low pass 

analysis, finite-length real-valued low pass synthesis, finite-length real-valued 

high pass analysis, and finite-length real-valued high pass synthesis filters, resp. 

For a sequence x (n) let

. / \ ( x(n)  * fa (n) if n  is even
0  i t n i s o d d
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and

Define

. y . ( x (n)  * Ça (n) if n is even
0 if » is odd.

Æf (M) =

and

x { n )  =  X i { n )  +  X h { n ) .

If x{n) = x{n + D) for some D E Z, then the QMF comprised of fg, fg, ga, gs is 

an perfect reconstruction filter bank. Both orthogonal and biorthogonal perfect 

reconstruction QMFs can be formulated.

2.3.1 Orthogonal Case

The following definitions and properties are stated in a manner relevant to their

use in this dissertation. They do not only adhere to FIR filters, but can be

adapted to include infinite length filters.

Definition 1. A quadrature mirror filter bank is orthogonal if fa, fg, g a ,  and 

g s  are all of equal length N  and if

fa  N  =  f s [N  - l - n ] ,  (2.22)

9a [n] =  Pa -  I -  n ] , (2.23)

and the following conditions hold:
N - l

^ A ( W / J W  +  2Z) =  Ci< (̂(), (2.24)
m =0
N - l

^ P o W p Z ( ^  +  2Z) =  C2(5(Z), (2.25)
m =0
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N - l

+  =  0, (2.26)
m = 0
N - l

+  =  0, (2.27)
m = 0
N - l

^ A ( M /r ( ) 7 ^  +  20 =  C3(5(Z), (2.28)
m =0
N - l

^ ^ . ( W p J ( ^  +  2f) =  C46((), (2.29)
m=0

for some constants Ci, cg, Cg, C4 , where /a(m), fs{m), ga{m), and S's(m) are 

/a M l /s M i g'aMi and gs[m] extended infinitely by zeros resp. as defined by 

equation (1.6). The squence 5 (I) is the Kronecker delta function for I G Z.

The following properties of orthogonal QMF’s are presented for the sake 

of referencing later in this dissertation. The proofs are omitted since they are 

well known and have been published elsewhere by others.

Property 1. The jv_i]-norm of all four filters are equal;

| | f a | |  =  | | f s | |  =  I l S a l l  =  I I S s l l -

Property 2. Let = D TFT{fa{n)] . Then it has been proved by

Vetterli and Herley in [22] and others that equation (2.24) in definition 1 implies

|F.(e^'^)|M |Fa(e''("^+''))|" =  2,

where uj — 27t0. I refrain from stating this implication as an equivalence, since 

the converse statement does not guarantee that faip) is finite length.

(e:'^ ) I ̂ + 1 Fa (e  ̂ ) I ̂  =  2 does not necessarily imply th a t /a  (n) = I DT FT {Fa{F'^)}
is finite length.
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Property 3. Provided the jv_i]-norm of fa[n] is unity, The sum of the low 

pass analysis filter coefficients is equal to ^/2:

N - l

^  fa [n] =  V2.
n = 0

P ro p e rty  4. The sum of the high pass analysis filter coefficients is equal to 

zero:
N - l

9a N  =  0.
n= 0

Property 5. The high pass analysis filter is obtained by multiplying each 

element of the low pass analysis filter by (—1)":

9a M  =  (—1)” f a [ N  — I  — n ] .

Property 6. The length N  must be even.®

Property 7. It follows directly from properties 2 and 3 that

=  0,

where (n)} .

Prom equations (2.22) and (2.23) of definition 1 and property 5, speci

fication of just one of the low pass analysis, high pass analysis, low pass syn

thesis, or high pass synthesis filters is sufficient to completely determine the 

construction of a orthogonal FIR wavelet QMF.

®see [22], pp. 2212
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2.3.2 Biorthogonal Case

For a FIR wavelet based filter bank, if the filter bank is to be capable of perfect 

reconstruction and linear phase, orthogonality is not possible except in the Haar 

case. Linear phase is sometimes preferred because the filters can be cascaded 

in pyramidal filter structures without using phase compensation [20].

Definition 2. A filter /  (n) with D T F T { f ( n ) }  =  F[e^^) has (generalized) 

linear phase if 3 a, b 6 R such that V w E [—tt, tt) F{F'^) — |F  {e^^) or

F{e^^) =  sgn {F(e-^‘̂ )} |F  (e-̂ )̂ where ^ (w) = au + b, up to additions

and subtractions of integer multiples of 2yr.

To develop real FIR filters whose lengths are greater than two, achieve 

an perfect reconstruction QMF, and have linear phase, an orthogonal con

struction is not possible. If perfect reconstruction, linear phase, and length 

longer than two are all required, it is necessary to construct the QMF in terms 

of biorthogonal wavelets. A concise and thorough account of biorthogonal 

wavelets can be found in [24]. The following definition and properties have 

been reformulated without proof to amplify their practical relevance to the 

research presented in this dissertation.

Definition 3. Let Ni,  A  ̂ be the lengths of fa, fg, resp.. A quadrature mirror 

filter bank is biorthogonal if

9a W — Cl (—1)" fs [Â2 — 1 — M], (2.30)

9 s [n] =  C2 (-1)" fa [ N i - l - n ] ,  (2.31)

for some constants ci and Cg and the following conditions are met:
N i - l

^ A ()7 i) /J (m  +  2Z) =  C3<̂ ((), (2.32)
m = 0



20

AT2 —1
+  =  C46(Z), (2.33)

m =0

for some constants Cg, C4 , where gaim) and gsim) are ga[m] and gs[m] resp. 

infinitely extended by zeros as defined in equation (1.6).

It is easily deduced from definition 3 that, to construct a biorthogonal 

QMF, only filters fa and fg need to be specified. In [22], Vetterli has classi

fied all biorthogonal linear phase perfect reconstruction FIR QMF’s into three 

categories:

1. Both fa and ga are symmetric and the lengths Ni  and N 2 are odd. These 

lengths differ by an odd multiple of two.

2. Either fa is symmetric and ga is antisymmetric or ga is symmetric and 

fa is antisymmetric. The lengths Ni  and N 2 are even and equal or differ 

by an even multiple of two.

3. One filter’s length is odd while the other’s is even. Both filters have zeros 

on the unit circle, and neither can be antisymmetric.

In addition to the length considerations, the following properties hold: 

Property 8. Analogous to property 2,

FL(e '̂"')TT(e '̂'") +  =  2,

where P(eJ'^) =  D T F T { f  (n)} .

Property 9. The low pass analysis and low pass synthesis filters have a zero 

at -1:

p,(e;^) =  0 =



21

where =  D T F T { / W ) .

Property 10. The sum of the low pass analysis filter and the sum of the low 

pass synthesis filter are each equal to \/2:

N \  — 1 N 2 — 1

f a  M  =  ^ 2  f ^  ~
n=0 n=0

Note as well that when f a[n]  is scaled to attain unit ^^Q_^^_ ĵ-norm, then prop

erty 10 may not hold. Regardless, either condition results in the same number 

of free parameters in determining /„[«]. Restriction to both conditions allows 

one fewer free parameter compared to an adherence to one.

Property 11. The sum of the high pass analysis filter and the sum of the high 

pass synthesis filter are each equal to zero:

JV2 - I  A T i - l

^  [M] =  0 =  ^  p,
n = 0  n= 0

n  .

2.4 T im e-Bandwidth Measures

In this section I describe several measures that have been proposed for quanti

fying infinitely and finitely supported sequences.

2.4.1 U ncertainty for Infinite D iscrete Tim e Sequences

This section considers methods that quantify band width for a discrete signal 

on a continuous frequency domain. Measures for the infinite time support, 

continuous frequency cases are presented first in this section 2.4.1. Various 

currently used methods to quantify finite discrete time width and finite discrete 

band width will be presented in section 2.4.2. The first three measures of
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uncertainty can be found in [25]. These measures are relevant to the design of 

the window to be used in spectral estimation of a signal. Most windows are 

designed so their values in the time domain are nonnegative or so the negative 

values are much smaller in absolute value than positive values. Window designs 

usually center their peak at the origin in both the time and frequency domains. 

Let

d. — [d(̂ —M  +  1) d(—M  +  2 ) , . . . ,  d(0), . . . ,  d(^M — 2) d(^M — 1)]

be some window such that d(0) > \d{k)\ for 0 < \k\ < M  — 1. Define the 

equivalent time width as

c

The equivalent band width is defined as

AT, =  -  . (2.34)

^  D (w) duj
'  " b (o )"  '

where D{uj) =  D T F T {d(n}}. Since

M-l
D(0) =  5 3  d{k)

and

we have that

- M + l

d{0) — —  D{io)duj,

=  1. (2.36)

Equation (2.36) gives us the relation This relation shows that W  — >

oo as j3e — >■ 0. Thus, the choice of window should be based at least in part on 

a tradeoff between spectral resolution and temporal variance [25].
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The results in equation (2.36) can be generalized to any discrete time 

sequence. Let x{n) be a discrete time sequence, either real- or complex-valued, 

and let X{e^^) =  D T F T{x{n)} ,  where u  G [—7r,7r]. Let no be such that 

\x{rio)\ > \x{n)\ Vn G Z. Let ujq G [—7r,7r] be defined such that \X{e^'^°)\ > 

\X{e^‘̂ )\ Vcv G [—7r,7r]. The time width is defined as

Âîg =  (2.37)
F  (no) I

while the frequency band width is defined as

Since x{n) and X{e^‘̂ ) are a Fourier transform pair, the following relations 

hold:
0 0  OO

\X{e^'^°)\ =  I ^  x(n)e'^‘̂ °” | < ^  |a:(n)|,

k(no)|
:

-7T

This gives us the product of the time width and band width of any discrete 

sequence as

> 1. (2.39)

Equation (2.39) shows that a sequence cannot simultaneously be arbitrarily 

narrow in both the time and frequency domains. Stoica and Moses in [25] state 

that the inequality does not imply that a signal that is wide in one domain 

will be narrow in the other domain. It is possible that widening in one domain 

leads to widening in the other domain.

Since we are restricting our attention to unit f^-norm sequences, Parse- 

val’s formula establishes that

= 1.
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We can consider \x{n)\‘̂ to be a probability density function on Z characterizing 

the distribution of signal energy in time and to be a probability

density function on { — t t ,  tt] characterizing the distribution of signal energy in 

frequency. The mean and the variance of these two probability functions are 

given as
OO

(2.40)
n = — 0 0  

o o

^  (2.41)
n = — 0 0

1 r
(27t) 7-7T

and

=  7 V V  / '  \ X ( e n \ '  dw. (2.43)1̂ 2tt) J —TT

In this way we can define a and p to be the time duration and the band width, 

resp. For p = Q and u — Q, the product of the time duration and band width is

(TP > (2.44)

If we let X{e^^) — \X(e^‘̂ ) \ then we obtain the bound

ap > +  4y2, (2.45)

where 7 =  ^  wip'(w) \X{e^‘̂ ) f  du). The bound in (2.45) is tighter than the 

one given in (2.44). Note that measures similar to (2.41) and (2.43) were given 

by Ishii and Purukawa in [26] and will be discussed later in this section.

Milos Doroslovacki in [27] defines a measure of uncertainty based on 

the second moment in time and the second moment in frequency. His measure 

applies only to discrete time signals that have finite energy. Without loss of
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generality, I will describe his measure for unity f^-norm discrete time signals. 

This is simply defining the energy of the signal to be one. Doroslovacki’s 

measure pertains to how localized the signal is about a point (T, 0.) in the 

time-frequency plane. He defines the second moment in time of a discrete 

sequence x{n) to be

n——o

1 r

/  (n) -b e:/"/ (n -  1)

cos (^) du).

(2.46)

(2.47)

The second moment in frequency is defined as

1

-  Y 1  | / ( 4  1)1^-
n= —oo

His Heisenberg-type uncertainty relation is

(2.48)

(2.49)

(2.50)

When f{n)  is equal to the Kronecker delta function and T  is zero, then equa

tion (2.50) achieves equality. Equality is also achieved in equation (2.50) when

, c  W  r ( K  +  i)
/(") I 2ifj 1 r ( f +  i - „ ) r ( f +  i + n) r (2.51)

where C € C, E(-) is the gamma function, and K  >

In [26], Ishii and Purukawa defined a measure of uncertainty on discrete 

infinite sequences and their DTFTs. These sequences are assumed to be sam

ples from a bandlimited continuous signal. The discrete function is denoted as
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/  (n) =  /  (nT). Let T =  ^ for some a  G M such that F{Çl), the continuous

time Fourier transform of the continuous-time (unsampled) signal is zero for 

|Q| > a. They defined the pulse width® about an arbitrary point no G M as

OO

n = — 0 0

They defined the band width, which they called (spectral) “duration” by

^ 2 =  /  (w -W o)"|F(e^")|^dw  (2.53)
J ~7T

for some arbitrary rco G R.

T h eo rem  1. For a unit ^g-norm sequence /(n ) , if F  is real and no =  

Wo = 0, then DnD^ >

Proof: see [26].

In [28], Galvez and Vilbe generalized Ishii and Furukawa’s results to 

encompass sequences /(n )  for which F{e^‘̂ ) might also be complex. I state this 

generalization in the following theorem.

T h eo rem  2. Let f{t)  be a continuous-time signal bandlimited to some a  G R, 

so that the CFT F{n)  =  0 V |f2| >  cr. Let /(n )  be a sequence obtained by 

sampling f{t)  and normalizing such that /(n )  has unit f 2 -norm. Let F  (e-̂ )̂ 

be the D T F T  of /(n ) . Then, V no, wo G R, DnD^j >

Proof: see [28j.

Note that the inequalities given in Theorem 1 and Theorem 2 are strict. 

They do not provide tight lower bounds on the joint uncertainty. This is in

^Specifically, they referred to this quantity as the “time duration.”
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contrast to the continuous case treated by Gabor: the inequality appearing 

in the HWUP is not strict and therefore provides a tight, realizable lower 

bound. Gabor showed that his elementary functions were the only functions 

that could attain equality on the tight bound imposed by HWUP. Note that 

the Dirac delta S{t) is specifically excluded from consideration as a minimizer 

of the HWUP because it is not continuous. Likewise, the constant function is 

excluded because it fails to satisfy the requirement lim h{t) =  0. If either of
i—>±oo

these cases where admissible in the Heisenberg/Weyl/Gabor theory, they would 

result in indeterminate joint uncertainty that would jeopardize the inequality 

in the HWUP. This problem is exacerbated when one attempts to formulate 

analogues to the HWUP that can be applied to discrete sequences. Whereas 

the Dirac delta admits formal interpretation only as a distribution and not 

as a function. Therefore cannot be considered in quantities such as the pulse 

width (2.3) and band width (2.4). The Kronecker delta S{n) is well defined as 

a function.

The constant sequence is specifically excluded from consideration in 

Theorem 1 and Theorem 2 since its fg-norm diverges. Moreover, one must 

assume that the Kronecker delta is also inadmissible, since it would lead to the 

condition =  0 under appropriate choice of no in (2.52). This implies that 

the Kronecker delta cannot be obtained by sampling a bandlimited signal.^

^Verification of the implication is outside the scope of this dissertation. Informally, the 
argument may be stated as follows. Only bandlimited signals may be considered, since an 
infinite sampling fequency would be required otherwise. Thus, the spectrum of any admissible 
signal must admit zeros in [—7 r ,  t t ]  on a set of nontrivial Lebesgue measure. However, no 
signal can admit finite support in both domains. Therefore, all signals under consideration 
in the Ishii and Purukawa framework must be infinitely supported in time. Therefore, it is 
impossible to obtain a Kronecker delta from sampling them.
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2.4.2 U n ce rta in ty  for F in ite  D iscre te  T im e Sequences

Thus far I have only described measures which concern discrete-time signais

defined on Z and their DTFT^s. I now present measures applicable to a finite

length sequence and its DFT. I will refer to such measures as discrete-discrete 

measures since the sequence domain and its Fourier transform domain are both 

discrete. For the remainder of this section, let x[n] be a sequence of length 

N  defined for n G [0, #  — 1] and let X[k] be its length-jV DFT  defined for 

& E [0, N  — 1]. A novel measure of uncertainty is presented by Donoho and 

Stark in [29]. I state their claim in the following theorem.

T heorem  3. Let Nt be the cardinal number of the set {x[n\ \ x[n] ^  0} and 

A[̂  be the cardinal number of the set {X[A;] | X[k] ^  0}. Then

> AT (2.54)

and

At +  AL >  2 / Â .  (2.55)

Proof: see [29]

It is not surprising that the Kronecker delta function attains equality in equa

tion (2.54). It is worth noting that, if N  can be factored as a product of 

two natural numbers p and q, then the picket fence sequence attains equality 

in (2.54), where the picket fence sequence is defined by

This sequence has p nonzero samples, all equal to one and spaced q samples 

apart.
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Monro, Bassil, and Dickson in [30] computed time dispersion, At,  and 

bandwidth, Aw, of an FIR filter directly from its coefficients. Their measure 

of band width of a length-A FIR filter is

2 N - 2  N - l  _ - , m - n

Aw" =  y + 4 ] ^  I Z  ^  _  (2.57)
n=0  m = n + l  ^

where
N - l

They defined the time dispersion as

N - l

n=0

where

They were interested in creating a quadrature mirror filter bank using wavelets. 

Their proposed measure of uncertainty relates to the QMF filter bank. This 

measure is defined for the orthogonal filter bank according to

M(A) =  Aw^ +  A ^ A f, (2.59)

where k specifies the relative importance of time verses frequency resolution. In 

the biorthogonal case as reported in [31] by Monro and Sherlock, the measure 

of uncertainty of the QMF filter bank is defined as

M(ki,  k2, k^) =  Aw^ +  At^ T k^Aui^ +  k^At^, (2.60)

where the subscripts a and s signify analysis filter and synthesis filter, resp.

DeBrunner, Qzaydm, and Przebinda in [32] define the spread in time 

and frequency of a finite length discrete sequence in terms of the entropy of
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the sequence in time and the entropy of its DFT. To define their measure of 

uncertainty, let x[n] be a length N  sequence whose Æ j\r_^]-norm is one and let 

X[k] = DFT{x[n]}.  Their measure of concentration of x[n] in the time domain 

is defined as
N - l

i/(x )  — -  ^  |a:[n]|^ln (|a:[n]|^) . (2.61)
n=0

Their measure of concentration of x[n] in the DFT  domain is defined as

It is worth noting that the entropy of a sequence is unaffected by arbitrary 

permutations of the sequence values. So shifting or rotating the sequence does 

not change the entropy. A joint measure of uncertainty associated with (2.61) 

and (2.62) may be defined as the weighted sum of the entropy of x[n] and the 

entropy of its DFT  according to

Hp(x) =  p jf  (x) +  (1 -  p) (X), (2.63)

where 0 < p < 1. In the case p =  (2.63) is known as Hirschmann uncertainty,

and one obtains the inequality

ffi(x ) =  if f { x )  +  t g ( X )  >  tlii(.V). (2.64)

A sequence which attains equality in (2.64) is given by

x[n] = (2.65)

where III§[n]  was defined in (2.56) and N  =  K'^. The relation (2.64) is also 

minimized by the Kronecker delta and the constant sequence as well as se

quences obtained by applying modulations to these two. It should be noted
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that the minimizers of the Hirschmann uncertainty in equation (2.64) are also 

minimizers of Donoho's measure in equation (2.54).



C hapter 3 

Problem  S tatem ent

Computation of the multi-dimensional multi-component AM-FM image 

model (2.7) by application of the demodulation algorithms (2.17) and (2.18) 

requires a filter bank where each channel is localized in the joint multi

dimensional time-frequency space. This localization is vital in the estima

tion of the instantaneous amplitude and frequency of individual AM-FM im

age components. Gabor’s HWUP in one dimension is widely regarded as the 

best characterization of joint uncertainty for continuous one-dimensional sig

nals. It has been shown that Gabor’s elementary functions uniquely opti

mize the one-dimensional continuous HWUP. Daugman extended the HWUP 

to the continuous two-dimensional domain [7]. He showed that, as in the 

one-dimensional case, the two-dimensional continuous Gabor elementary func

tions uniquely achieve optimal conjoint localization with respect to the two- 

dimensional HWUP defined on the four dimensional time-frequency hyper- 

plane.^ This finding is harmonious with the fact that the receptive field profiles 

of certain simple cells in mammalian visual cortex have been shown to be well 

described by two-dimensional Gabor functions [7,33-36].

^This hyperplane spans two spatial dimensions and two spectral dimensions

32
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In view of the fact that continuous domain Gabor functions have 

been shown to possess optimal joint localization in both the one- and two- 

dimensional cases, it is tempting to assume that sampled Gabor filters are also 

optimal in the discrete domain. Such an assumption would seem to be vali

dated by the idea that the discrete case should converge to the continuous case 

in the limit as the sampling interval becomes vanishingly small. However, when 

considering functions such as Gabor functions that are not bandlimited, there 

is no clear notion of what it means to “sample fast enough” to achieve practical 

agreement between the discrete and continuous optimization problems. More

over, the meaning of optimal localization is clearly dependent on the particular 

definition of uncertainty that one employs.

DeBrunner, Ozaydm, and Przebinda showed that sampled Gabor func

tions are not optimal when the measure of uncertainty is defined in terms of 

temporal and spectral entropy as in equation (2.64) [32]. In view of the difficul

ties inherent in formulating discrete uncertainty relations similar to the HWUP, 

this casts a shadow of doubt on the idea that sampled Gabor functions are in

deed optimal. The formulation of relevant discrete uncertainty measures and 

the design of discrete filters possessing optimal joint localization is critically 

important in view of the fact that many if not most modern signal and im

age processing applications are concerned with discrete rather than continuous 

signals.

In  th is  d isse rta tio n  th e  progression to  a  fin ite  d iscre te  tim e /sp a c e  and  

finite discrete frequency domain is made. The characterization and concep

tualization of uncertainty is vital for time-frequency analysis. A goal of this 

dissertation is to define a new measure of uncertainty which is analogous to
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the one used in HWUP but also is applicable in finite discrete time and finite 

discrete frequency. The new measure is analogous to HWUP in the sense that 

it offers inituitively pleasing variance interpertation and is invariant to trans

lations and modulations. Admissibility condition similar to HWUP must be 

defined to exclude the constant sequence, the Kronecker delta, the alternating 

sequence, etc. The development of the new uncertainty measure is to be used 

to design filters, which exhibits optimal conjoint localization.

The main concerns of this dissertation are with decomposing an image 

and faithfully reconstructing the image based on this analysis. This type of 

analysis and synthesis is relevant in many image processing applications, in

cluding Havlicek’s AM-FM modeling [9], compression, image segmentation [6], 

computer vision, etc. It will be necessary to extend the notions of localization 

to multi-channel filter banks. The new filter bank uncertainty measure will be 

used as a design criteria for a perfect reconstruction parallel filter bank.

As prescribed by the Mallat algorithm, the one-dimensional perfect re

construction QMF can be cascaded in a pyramid structure to form a multi

channel, one-dimensional, perfect reconstruction filter bank. This cascaded 

perfect reconstruction filter bank can be implemented using its equivalent par

allel structure filter bank. This optimal L-channel perfect reconstruction par

allel filter bank (PRPFB) will be determined from a set of well know QMFs 

and will minimizes the new filter bank uncertainty. A two-dimensional filter 

bank  is c rea ted  by ex tend ing  th e  one d im ension  parallel filter bank to the two- 

dimensional case in a separable manner. These separable channels are then 

decomposed in a novel way to obtain a complete set of nonseparable, orien

tation selective channels that provide excellent conjoint resolution while still
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preserving the perfect reconstruction property.

The AM-FM image demodulation algorithm will produces errors in the 

image reconstruction. The optimally well localized, multi-channel, orientation 

selective filter bank results in the best reconstruction based on a quantitative 

measure.



C hapter 4 

N ovel M easure o f U ncerta in ty

One highly desirable feature of the HWUP is that the pulse width (2.3), band 

width (2.4), and uncertainty measure (2.2) admit intuitively appealing inter

pretations in terms of the statistical variance of signal energy in time and in 

frequency. Thus, derivation of the uncertainty measure proposed in this section 

is motivated by statistical considerations and a desire to develop a discrete un

certainty measure that admits interpretation in terms of temporal and spectral 

variances. Moreover, this dissertation creates a filter for which the uncertainty 

based on probability distributions in discrete time and discrete frequency is 

minimized.

4.1 Quantifying Uncertainty and Localization

For the remainder of this chapter, consideration is restricted to finite length 

discrete sequences with unit ^_^j-norm. This restriction is not limiting since 

any finite length discrete non-zero sequence which is not unit ^_j^j-norm 

can be made into a unit Æ jy_j^^-norm sequence by a simple scaling. So if a 

finite length non-zero sequence is not unit ^_^]-norm, then the uncertainty 

of that sequence is taken to be the uncertainty of the normalized sequence. Let

36
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h : [0, N  — 1] — > C be a finite length sequence such that

N - l   ̂ N - l

(4 1)

where

N
n=0 k=0

N - l

M ^  M 0 < A; < AT -  1, (4.2)
n=0

is the 77-point DFT  of h[n]. We can consider \h[n] to be a probability density 

function in discrete time and [A;] to be a probability density function in 

discrete frequency. These densities describe, respectively, how the energy of 

the signal is distributed in time and in frequency. Consider n to be a random

variable in [0, 77—1] and /c to be a random variable in [0, AC — 1] [37]. The

spread or variance of h in time is defined by the second central moment

AT-l
W 1̂  (4.3)

n=0

where p, is the expected value of n, also known as the mean or first moment, 

defined by

N - l

/i =  ^ n | A [ n ]  1̂ . (4.4)
n —O

The band width of h [n] will be computed from H[k] according to

^  M 1̂ , (4.5)
fe=0

w here th e  m ean  in  d iscre te  frequency is

N - l

^ N
k = 0
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The quantities cr̂  jj and cr̂  ^ are referred to as the variance in time and the vari

ance in frequency, resp. It is tempting to simply use the product of these vari

ances as an uncertainty measure to quantify the joint localization of a length-A'’ 

sequence in discrete time and discrete frequency, i.e.,

7v,h =  (4-7)

Unfortunately, the quantity in equation (4.7) is neither translation nor modu

lation invariant.

4.2 Equivalence Classes of Sequences

Uncertainty measures such as <7  ̂jj and cr̂  quantify the concentration, local

ization, or spread of a signal in time and in frequency. Time or frequency 

shift invariance are clearly desirable property for any such uncertainty mea

sure to possess: intuitively, shifting a signal in time should not have an effect 

on how concentrated or localized the signal is in time. Likewise, shifting the 

spectrum should not have an effect on how concentrated or localized the signal 

is in frequency. It is worth noting that the HWUP pulse width (2.3), band 

width (2.4), and uncertainty (2.2) are affected by neither shifts in time nor 

shifts in frequency.

However, the uncertainty measure 7 ^ ^  defined in (4.7) is not shift in

variant. In precise terms, this means that the statement f[n] = g[(n — mt)i\/] 

for some m* e Z does not necessarily imply that 7 ^  =  7 ^ , .  Likewise, the

statement F[k] = G[{k — m/)iv] for some m / G Z also does not necessarily 

imply that 7 ^  g =  7 ^^. Here, it is understood that shifting for a finite length 

sequence is defined to be circular shifting (also known as rotation): the values
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to be shifted in are taken from the periodic extension of the signal.

and m =  —1. Then g =1 1E xam ple 1. Let #  =  4, f  =
T

=  /[(n  +  l)iv]- We have that 7 |_f =  |  and 7 |_g =  | .  This is

distasteful, since g is obtained by rotating f left by one sample or equivalently 

by rotating f right by {m)^ = 3 samples: g[n] = f[{n — 3)iv]. Thus, it is 

desirable for an uncertainty measure to assign the same uncertainty to both f 

and g.

To make the uncertainty measure (4.7) invariant under translations 

and modulations, the uncertainty measure of a sequence is defined by con

sidering the sequence as an element of an equivalence classes. Let S =  

{h I h is a length N  sequence}.

Definition 4. Let f , g € §. Define a relation between these two sequences as 

f  ~  g if 3 p, g, r  € Z such that

g[n] =  -  p)^]. (4.8)

Theorem  4. The relation ~  in Definition 4 is an equivalence relation on S.

Proof; Let f  € S. Since f[n] =  — 0)iv], we have that f  ~  f,

which establishes that ~  is reflexive.

If f  ~  g, then, by definition, g[n] = e“-̂ w(P”'+'')/[(n — g)^] for some 

p,q,r  e  Z. It follows immediately that f[n] — g[{m + q)n], where

—p, (—pg — r), —g e Z. This establishes that g ~  f and that the relation ~  is 

therefore symmetric.
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To show transitivity, let f ~  g and g ~  h, where g[n] =  —

g)iv] and h[n] = — t)^] for some p, q, I, r , s , t  E Z. We have that

=

Since r + p, s — pt + l , t  + q E Z, it follows that f  ~  h and the relation ~  

is transitive. Since it is reflexive, symmetric, and transitive, the relation ~  is 

therefore an equivalence relation on S. Q.E.D.

Definition 5. For a sequence f  G §, the equivalence class [f] is defined by

[f] =  {g G § I g ~  f}. (4.9)

Theorem  5. Let f and g be two length N  sequences. Then f  g if and only 

if F  ~  G.

Proof: (= > )

Let f ~  g. Then 3 p, ç, r  G Z such that g[n] — e^w(P"+'')/[(n — q)N]- The DFT  

of g[n] is given by
N - l

GM =  ' ^ g [ n ]e
n = 0  
N - l

n= 0

Let m = {n — q)N. The DFT G[k] may then be expressed as
N - l

m—0

iV-1

m = 0
N - l

=  QJ^i-Qk+qp+r)
m = 0
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Since —q,qp + r,p e  Z, this establishes that F ~  G. A symmetric argument 

shows (< = ). Q.E.D.

Theorem 5 establishes that, as an operator, the DFT  respects equiva

lence classes under the equivalence relation given in definition 4: every member 

of [f] has a DFT  that is a member of [F] and every member of [F] has an IDFT  

that is a member of [f].

For a given f £ §, intuition suggests that the spread or variance in time 

f should not be affected by shifts in time, e.g., that should be the same 

V g  G [f]. Note that this intuitive notion is consistent with the fact that the 

pulse width (2.3) is invariant to time shifts. Therefore, I quantify the time 

localization of f  by the minimum time variance achieved by any g  G [f].

Likewise, I quantify the frequency localization of F by the minimum 

frequency variance achieved by any H G  [F]. According to Theorem 5, this 

is precisely equivalent to quantifying the frequency localization of f  by the 

minimum frequency variance achieved by any h G [f]. Therefore, the joint 

localization of f  in time and frequency will be quantified by the measure 7 ^^ 

defined on [f] according to

T n , {  = r̂a,[f]̂ w,[f] (4-10)

where

and

< [f] =  (4.12)
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Theorem  6. Let f  G §. Let g G [f] be such that g[n] = f[{n — p)tv] for some 

p G Z. Then

a) \F[k]\ -  \G [ k ] \ y k e

b) lirwil = l|GWI|Vfceio,jv-i].

Comment: Part (a) of the theorem follows immediately from the “time shift 

property” of the DFT, which is commonly available in digital signal processing 

(DSP) textbooks. I provide the proof below only so as to avoid any confusion 

that might arise from my definition of equivalence classes of sequences.

Proof: Parts (b) and (c) follow immediately from the definition of the jv-i]‘

norm in Section 1.3, the definition of in (4.5), and part (a).

Part (a): By hypothesis, 3 m G Z such that f[n] = g[{n — m)^]- Define 

/ p W  =  / [ ( »  — p ) n ] -  Then there is a p G [0, — 1] such that g[n] =  fp[n].

Thus, it is sufficient to show that \F[k] \ = |Tp[A:]| y  0 < p ,k  < N  — 1.

Consider the case p — 1 first. We have that

N - l

|F(A)| =
n ~ 0
iV-i

n=0
N - l

/i[iV -  1] +  ^  f i[n - l ] e   ̂N
n = l

(4.13)

where the last line is obtained by pulling the n — O term out of the sum; 

modular arithmetic is then no longer required in the indices of the remaining
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terms of the sum. We now multiply the term /i[A^ — 1] in (4.13) by unity to 

obtain
N - l

\F{k)\ = f l{N -  ^ -j^nk
n = l

Making the change of variable q = n — 1, we have that

N - 2

e jw -  +
g=0 

N - 2

9=0

/i[7V -  ^
9=0

N - l

9=0
(4.14)

Since (4.14) is precisely the definition of |Fi[/c]|, this establishes that |F(A:)| =  

|Fi[/c]| V fc e  [0, — 1]. The result (a) is obtained by realizing that analogous

arguments may be used to show that \Fp_i[k]\ =  |Tp[A:]| V p € [1, N  — 1],

0 k N  — 1. Q.E.D.

T h eo rem  7. Let F  G S. Let G G [F] be such that G[k] =  F[{k — m)^] for

some m G Z. Then

a) l /WI =  I^NI V n G [0, A^-  1].

b )  I l / N l l  =  | | c / [ n ] | |  V  n  G [0 ,  # -  1] .

C)

Proof: The proof is symmetric to the proof of Theorem (6). Q.E.D.
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Theorem  8. Let f £ §. Then 3 a single member y G [f] that simultaneously 

minimizes (4.3) and (4.5) over [f]. In other words, =  min{a^^}

Proof: Let g G [f] be such that a^y =  min{(j^ ĵ }. By Theorem 5, we have 

that G G [F]. Then either -  minfa^^h} or  ̂ 7  ̂ m inja^h}. If (r .̂g =
h€[rj

minjcj^ h}) then y  =  g and the proof is complete.

Otherwise, we have that aj, „ 7  ̂minier, ,̂ 1,} and there is another element
he[f] ’

X e [F] such that =  min{(T^ ^}- Since X  G [F] and G G [F], we have that 

X  ~  G. Then 3 p, g, r  G Z such that

X[A]

Let Y[k] =  G[{k — p)n]- Then Y  ~  G, so Y  G [F] and we have by 

Theorem 5 that y G [f]. Moreover, |Y[A:]| =  |X[A;]| V /c G [0, Y  — 1], so cr^y = 

=  mm{o-2_h}. But, by Theorem 7 we have that a^ y =  cr̂  g =  minla^ h}
n6[tj n€[ij

and the theorem is proved. Q.E.D.

In view of Theorem 8 , (4.10) can be simplified to

(4.15)

For any f G S, the measure in (4.10) or equivalently in (4.15) is used to 

quantify the joint localization of all sequences g G [f].



C hapter 5 

A pplication  to  Scaling Functions

In the wavelet literature, the low pass analysis filter denoted fa [n ]  in section 2.3 

is often referred to as the scaling function, while the high pass analysis filter 

ga[n]  is called the wavelet. In Chapter 3, 1 stated that a major goal of this 

dissertation is to construct finite length sequences that have optimal joint un

certainty and are also admissible as wavelet scaling functions so that they can 

be used to construct a perfect reconstruction quadrature mirror filter banks 

(QMFs). The restriction to wavelet scaling functions is not unlike HWUP’s 

restriction to continuous functions. It is well known that wavelet scaling func

tions correspond to continuous functions for which the set of all dialations and 

shifts constitutes a basis for L^(R) [21]. The association is that the terms of 

wavelet scaling functions are the coefficients of the dialation equation. In ad

dition, infinite convolution of a “regular’' scaling function with itself converges 

to a continuous funtion f{t)  in which the set of all dialations and integer shifts 

of f{t)  constitute a basis for L^(M) [16]. The other HWUP restriction that 

the function approaches zero at negative and positive infinity, is satisfied by 

compactly supported functions. Thus the two HWUP restrictions are emulated 

in the discrete domain by applying the uncertainty measure defined in equa

tion (4.10) or equivalently in equation (4.15) to the set of FIR filters, which

45
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are admissible as a low pass analysis filter for a wavelet filter bank.

Orthogonal and biorthogonal wavelet filter banks are perfect construc

tion QMFs, perfect reconstruction QMF’s are not necessarily orthogonal nor 

biorthogonal wavelet filter banks [16]. Since necessary conditions for the two 

channel orthogonal and biorthogonal wavelet filter banks are readily available in 

the current literature [13,16,20-22,24,38], the new uncertainty measure 

defined in (4.15) will be restricted to orthogonal and even length biorthogonal 

wavelet scaling functions.

Let A n  =  {/[n] | f[n] is a real-valued, length N  where N  is even, 

and admissible orthogonal QMF FIR low pass analysis filter with unit 

norm}. Formulating tight bounds and optimizing the joint uncertainty over 

the set A n  is challenging. In this section, the uncertainties of some well known 

real-valued scaling functions used in orthogonal QMFs are presented. The 

scaling functions I present are various length zero padded Haar function, the 

least asymmetric wavelet scaling functions known as the symlet, and the well 

known Daubechies’ wavelet scaling functions. The zero padded Haar function, 

the symlet, and the Daubechies scaling function possess linear phase, nearly 

linear phase, and non-linear phase resp. These three cases show that linear 

phase tends to produces the best conjoint localization.

The length two Haar filter is defined as haarg =  

ing theorem shows that haar2 is the only element of M2 .

j  L
\/2 \/2 . The follow-

Theorem  9, For N  = 2, the only unit jy_]^j-norm length-two sequences
1

satisfying the conditions ^ h [ n ]  =  i/[0] =  V2  is the Haar filter.
n = 0
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Proof: For N  = 2, let h[0] = a and h[l] = h. Since the ^-norm is one, this 

means +  6̂  =  1. Since |i7[0]| — \/2, thus a +  6 =  \/2. It follows that

a = y / 2 - b ,

2 - b f  + b̂  = 1,

2 -  2 V 2 6  +  26  ̂ -  1,

-  — V2b + b̂  = 0.

Applying the quadratic formula to the above, yields

\ Z 2 ± Y 2 - 4 ( 4 )  y g  ^

2

a + ^  = V2,

1
d   ^  .

\/2

So for 77 =  2 the only element of A 2 is the Haar filter. Q.E.D.

The notation haar at will be used to denote the haar filter zero padded 

to length-A'. The time variance of the zero padded Haar filter is cr ĵhaarN] ~  T

Theorem  10. The zero padded haar filter haarjv attains the minimum time 

variance over elements in An ,  he.

q ~  ^n,[haariv] — n̂,[{]

for all f[n] e  A n -

Proof: The proof is by induction on N.  From theorem 9 for A  =  2, since 

haar2 is the only element in A 2 ,

*̂ n,[haar2] — ^n,[f]
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for f[n] Ç: Â 2 - To proceed with the induction, let

2 ^  2
*^n,[haarjv] — n,[î]

for all f[n] E  An-  Choose g[n] G [h] so that h[n] G A n ^ 2  and the following 

equality holds

n̂,[h] ^n,g
N + l

Y ^ { n  -  gf \g[n]f
n=0
N - l

> (5.1)
n=0

The inequality in equation (5.1) attains equality only in the following cases:

1. — g[N +  1] =  0,  ̂ or

2. 5 f[Â ] =  0 and N  + 1 = /u, or

3. N  = fj, and g[N +  1] =  0.

Consider case 2,

^  = N  + 1 = ' ^n \ g[ n] \ ‘̂
n=0

=  ( N +  l ) \g[N+1]\^+ '^n\g[n]\'^

N + l

'qypq'^
n=0

N - l
|2

n=0

N - l

( N  +  1)(1 -  |g[fV +  1]|2) =  ^ n | y [ n ] p  

(Â  + 1) J ] ]  |y[n]p =  ^
n=0 n=0

T t could happen th a t g was chosen so tha t g[0] =  g[l] =  0. If so then a simple circular 
rotation yields this case.
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Prom the last equation, g[n] = 0 for all n G [0, and +  1] =  1. Since 

g[n] G [h], hence h[n] ^  A n + 2  which is a contradiction.

In case 3,

N + l

[nip^ =  -  ^ n \ g [ r
n~Q

N - l

=  N\9[N]\'^ + Y l ^ \ 9 [ n ] f
n=0

N - l

AT(1 -  |^[iV]|2) =  Y^n\g[n](^
n —O

n —O n=0

Prom the last equation, again g[n] = 0 for aii n G [0, N  — 1] and g[Â ] =  1. 

Since g[n] G [h], thus h[n] 0  A n + 2  which is a contradiction. Thus equality is 

attain in equation (5.1) if and only if case 1 is satisfied. If case 1 is satisfied, 

then from the induction hypothesis

N - l  ^

•^njh] “  ^  ~  /^) — ^n,[haar;v] “  ^n,[haar;v+2] “  q'
n=Q

Therefore the zeros padded Haar scaling function minimizes the time variance 

for aii elements in A n +2 - Q.E.D.

Let HAARjv denote the DFT  of haarjv- HAARjv is easily computed

as
v - i

H A A R n  A;- 0 , 1 , . . . ,  A - 1
n = 0

1 1 ^

VICO: (  A ]  c T *
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with spectral magnitude

M I =  \/2cos ^ . (5.2)

The phase response of haarjv is

The frequency variance, cr̂  [haarw] be computed as

N

<[haarx] =  ^  Z
k=Q

and is given in second left most column of Table 5.1. Therefore, the uncertainty 

of the zero padded Haar filter is given by

K

TN.haarN =  ]ÿ Z  '
fc=0  ̂ ''

(5.5)

The uncertainties 7^_haar;v for #  =  2 , 4 , . . . ,  20 are listed in Table 5.3.

The length-iV zero padded Haar filter is the only orthogonal symmetric 

linear phase scaling function. The symlet scaling functions of I. Daubechies are 

chararacterized as the least assymmetric orthogonal nearly linear phase filters. 

The uncertainties of the symlet scaling functions for lengths two through twenty 

are given in the second right most column of Table 5.3.

The symlet and Daubechies’ orthogonal scaling functions as described 

in [21] have nearly an ideal magnitude response. The length-IV Daubechies 

orthogonal scaling function  will be  d eno ted  as d b ^ .

To make clear the comparison of the frequency variances of the symlet 

and with frequency variance of the ideal half-band filter, a brief description 

of the magnitude response of the ideal half-band filter is given.
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The magnitude response for a ideal half-band filter with length-N not 

divisible by 4 is

\/2 for & = 0,1

\DN[N-k] \  forfc =  f +  l , f +  2 . . . , A ^ - 1
l-Div [fc] I =   ̂ 0 for fc =  , Y (5.6)

For a half-band ideal filter with length-N that is divisible by 4, the 

magnitude response is

\/2  for fc =  0 , — 1)

Êf 2 •
IDpf[ — k]\ for k — y T 1 , y ”̂ ^> ' ’ '>-^ — 1- 

Let d v N  be the real-valued length-A" impulse response of a half-band ideal 

filter with D F T  DN[k]. Since dvM  G M, |T)v[^]| is real and even symmetric 

in the sense that |L>jv[fc]| — \ Dn [N  — A:]| V A: G [0, A' — 1]. Thus, could

alternatively be defined in terms of the discrete Fourier series {DFS) F>N[k], 

which is the periodic extension of Disr[k], according to

k=-f+l

N
2

=  V  I t  (5.8)

where

^ = — ^  /c|Div[A;]p. (5.9)
f e = - f + i

It follows from the fact that |Tlv[y]| =  0 and properties 7 and 9 in Section 2.3 

that the first moment of discrete frequency Ç in (5.9) is equal to zero and that

K

W 1̂-
fc=0
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Filter
Length

N

haar AT
Frequency
Variance

Symlet and dbAr 
Frequency 
Variance

Ideal
Frequency
Variance

2 0.0000 0.0000 0.0000
4 0.5000 0.5000 0.5000
6 1.6667 0.8737 0.6667
8 2.0858 1.5444 1.5000
10 3.2639 2.3327 2.0000
12 4.7026 3.3042 3.1667
14 6.4022 4.4371 4.0000
16 8.3629 5.7382 5.5000
18 10.5849 7.2055 6.6667
20 13.0683 8.8395 8.5000

Table 5.1: Frequency variance of haarjv, symlet and dbjv, and the ideal mag
nitude response for lengths 2 -  20.

Therefore,
K
2

^2,[dr,] -
fe=0

We get the band width as

cr,
LÏJ

k=l

for N  not divisible by 4 and

(5.10)

(5.11)

(5.12)

for N  divisible by 4. The frequency variances of the ideal magnitude response 

for lengths two to twenty are given in the right most column of Table 5.1.

The length-iV symlet and db^i differ in the fact that the phase response 

of the symlet is nearly linear while the dbyy phase response is far from linear. 

The near linear phase response of the symlet accounts for the better symme

try in the impulse response when compared with dbjv. Since the magnitude
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Filter
Length

N

Linear Phase 
Time 

Variance

Symlet
Time

Variance

dbjv
Time

Variance
2 0.2500 0.2500 0.2500
4 0.2500 0.3036 0.3036
6 0.3458 0.4412 0.4412
8 0.4154 0.4427 0.5930

10 0.4560 0.5596 0.7664
12 0.5026 0.5314 0.9565
14 0.5409 0.6570 1.1583
16 0.5780 0.6318 1.3800
18 0.6126 0.7195 1.6177
20 0.6453 0.7250 1.8708

Table 5.2: Time variance of a symmetric filter with phase given in equa
tion (5.3), symlet, and db^r for lengths 2 -  20. All three types of filters have 
the same magnitude |F[A:]|.

Filter
Length

N

haariv
Uncertainty

Symlet
Uncertainty

dbiv
Uncertainty

2 0.0000 0.0000 0.0000
4 0.1250 0.1518 0.1518
6 0.2917 0.3958 0.3958
8 0.5214 0.6529 0.9117
10 0.8160 1.3053 1.7877
12 1.1756 1.7559 3.1606
14 1.6005 2.9152 5.1395
16 2.0907 3.6252 7.9187
18 2.6462 5.1842 11.6561
20 3.2671 6.4086 16.5378

Table 5.3: Uncertainty measure of h a a rat, symlet, and dbjv for lengths 2 -  20.
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response of both the symlet and dbjv are equal and close to the magnitude 

response of the ideal half-band filter, the frequency variances of db^v and the 

symlet filters are less that the frequency variances of haar^y for N  > 4. The 

frequency variances of haarjv and db^r are shown in the middle two columns 

of Table 5.1. Table 5.2 shows the time variance of a symmetric filter attained 

by taking the inverse discrete Fourier transform of F[k] =  where

k — 0,1 ,2 , . . . ,  N  — 1 and (p[k] is given in Equation (5.3). The time variance of 

the length-N symlet, and db^r are also given in Table 5.2 for comparison. It is 

shown in Table 5.2 that the nearly linear phase N  > 6 length symlet exhibits 

better time localization than db^r Since the length-A/’ symlet and db^r share 

the same frequency variance, the uncertainty of the least asymmetric symlet is 

less than or equal to the uncertainty of the Daubechies non-linear phase filter. 

Table 5.3 shows the uncertainty of haarAr, symlet, and db^r. The linear phase 

filter haarjv is shown to exhibit poor frequency localization and the best time 

localization yielding the minimum uncertainty of the three different types of 

filters. This comparison strongly supports that symmetric, i.e. linear phase, 

yield better conjoint discrete time-discrete frequency localization.



C hapter 6 

O ptim al Scaling Function

6.1 A B est In Time and B est In Frequency Lower Bound

A nonattainable lower bound for for all f[n] € A n can be given as

'~fN,ï — , [haar jv ]
N - 2

1

>
for N  not divisible by 4

N  k̂=l
N

1__ 4_ j r̂
— — for N  divisible by 4
N  ^  32k=l

-  4)
192

+ 8)

for N  not divisible by 4

for N  divisible by 4.

(6 .1)

192

The lower bound in equation (6.1) is unattainable for >  6 since it is the 

product of the minimum time variance given by haarjv and the minimum 

frequency variance given by djy The bounds given in equation (6.1) for filters 

length two through twenty are computed in the second leftmost column of 

Table 6.1.

To attain a tighter lower bound, better conjoint localized scaling func

tion than haarjv and still maintain perfect reconstruction, it is necessary to 

relax the orthogonal condition to favor linear phase and seek a biorthogonal

55
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solution. Further insight into the nature and behavior of joint uncertainty on 

A n  can be made by considering, for N  even, the larger set Bn = {f[n\ \ f[n] 

is a real-valued length-# sequence with unit ^2 -norm such that F[0] = \[2 

and 1F[/]P +  \F[^  — /]p =  2 for i e  [0, y]}. Justifications for the conditions 

F[0] =  a/2 and |F[Z]/ + |F [y  -  =  2 for Z E [0, y] of Bn  are given. These

conditions of Bn  are derived from necessary conditions of a length-# orthogo

nal scaling function, hence A n  C  B n - It is noted that the conditions of the set 

Bn  are not sufficient for membership to be in A n , hence in general B n  /  A n - 

The set Bn  also contains some elements f[n] that are admissible biorthogonal 

QMF FIR low pass analysis filters and some f[n] that are not admissible as 

FIR low pass analysis filters for any QMF. To find a good lower bound for the 

uncertainty for all f  G A n , it is my stragedy to implement a search for 

such that T^fopt < for some G B n  and for all g  e  B n - Since 

A n  is contained in B n , ôpt would provide a lower bound for the uncertainty 

of elements in A n - In the this chapter, some results on optimizing the joint 

uncertainty obtained for the set Bn  are presented.

It is well understood that the magnitude and phase terms are not 

independent of each other in order to achieve certain properties. For ex

ample, the Paley-Wiener condition for causality [39] claims that given a 

magnitude response |F(w)| there is a phase response 0(w) so that f{t)  =  

I C F T  {|F(w)|e-)®(^)} G is causal if and only if

lu(|F(w)|)|/: -du < oo.1+0^2

The interdependence between the magnitude and phase terms that minimizes 

time localization is not known. I do not claim any condition like the existence of
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a certain phase sequence yielding better time localization for a given magnitude 

sequence. Rather, a strong justification for using a generalized linear phase in 

all cases is made.

6 .2  M agnitude of an Orthogonal Scaling Function

The conditions F[0] =  and |F[Z]|^ +  |F  [y  — /] |̂  =  2 of are based on 

necessary conditions for a real-valued length-fV orthogonal scaling functions, 

where N  is even with unit jv_q-riorm, i.e., necessary conditions for an el

ement of These conditions immediately follow from the definition and 

properties found in Section 2.3.
N - l

Prom property 3 of Section 2.3 it is easy to deduce F[0] =  — \/2.
n=0

If the condition |F[/]p + \F [~ — l] = 2 of Bn  can be verified as a necessary 

condition of an orthogonal scaling function, then F  [y] =  0 and [y  ~  ^] | =

y 2 - | F M | 2 < \ / 2 .

For /[n] G Bn  a real-valued length-77 filter, where N  is even, the DFT  

F  [fc] must be conjugate symmetric and the following must hold;

F
' N  / 1
--—  k =  F —- -t- A:

_ 2 _ 2
(6 .2)

for all G [0, y  — 1]. Thus the magnitude terms of f[n] satisfy:

N
- k F

N
+ k (6.3)

for all k e  [0, y  — 1]. Restricting to filters whose €^Q^_^]-norm is one, the 

following condition is satisfied:
N
2

2 +  2 j^ |F |* : ] p  =  ]V. (6.4)
k = l
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It would seem that there are y —2 independent terms of the magnitude sequence 

of f[n] to be determined. The condition |F[/] |̂  +  |F  [y  — /] |̂  =  2 reduces the 

number of independent terms to — 1. This condition is justified by the 

following application of equation (2.24) of definition 1 in Section 2.3.

To show that the condition |F[/]|^ +  |-^ [t  ~  T “  2 is a necessary

condition of orthogonal length-# scaling functions, it is necessary to interpet

the magnitude \F[k] \ via the autocorrelation of f[n] infinitely extended by zeros.

To do this let f[n] be any complex-valued finite length sequence of length-#

and extend f[n] infinitely by zeros to get

forn  =  0 , l , 2 , . . . , # - l ,  . .
^  [ 0  otherwise.

The autocorrelation of f{n)  is defined as
00

^  (6.6)
n = — 0 0

min{7V-l—/,iV—1}

/ N r h + ^ ] -  (6.7)
n=max{0,—Z}

The limits of the summation in equation (6.7) is expressed in such a way that if 

max {0, —/} =  0, then min { #  — 1 — / , #  — 1} =  # —1 —/ and if max {0, —/} — 

—I, then min { #  — 1 — /, #  — 1} =  #  — 1. For |/| > # ,  the autocorrelation of 

f{n)  at lag I is zero, i.e. rf{l) — 0. Regardless of the lag I the autocorrelation 

of f{n)  is computed as
N - l

^/(O =  ^ / ( M ) r ( T ^ + o
n = 0
N - l

=  ^ f [ n ] f { n  + l) (6.8)
n=0

A very nice property of the autocorrelation of /(n )  is given in the following 

theorem.
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Theorem  11. The autocorrelation of f{n)  is conjugate symmetric, i.e. rf{l) —

The proof of Theorem 11 is well know and not included.

Before proceeding to the justification of the last condition of Bn , I will 

state and prove a theorem that will be used in the justification.

Theorem  12. Let g{n) e  C be any discrete sequence. If g{n) = g*(—n) for all 

n G [—M  +  1, M — 1] where M  G N \  {0}, then

M - i  r M - i  'j

g { n ) e ~ ^ ^ ^ ' ^  =  2 R e < Y ^  g { n ) e ~ ^ ^ ^ ' ^  i  (6.9)
n = —M + 1 V 71=1 )n̂ O

for some A: G Z.

Proof:

M - l  - 1  M - 1

g{n)e~^^^^ = Y  +  Y
n= —M+i n = —M + 1 n = l

n^O

M - l  M - l

=  Y ^  g{—n)e^^^^ +  Y ^  g{n)e~^^'^'^
n = l  n = l

We have g*{n) = {g*{—n)}* — g{—n).

M - l  M - l  M - l

n= —M-j- 1  n = l  n = ln̂ O
{ M - l  'I * M - l

Y ^  I _|_ Y 2  g { n ) e ~ ^ ^ ' ^ ^

n = l  J n = l

2Ee j  ̂  j  . Q.E.D.
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We have f[n] E C a length N  sequence. To define a length N  sequence from 

rf{l) e  C let

(6.10)2ry(—/) for I — 1,2 ,3 , . . . ,  — 1

and denote the W point D F T  of tpll] as for k Ç. [0, N  — 1].

T heorem  13. For every length-iV sequence f[n] e  C, =  |T[A;]p

where F[k] is the D F T  of f[n] and \F[k]\^ = F[k]F*[k].

Proof:
rN-i

I 1=0
N ~ l

-• 2?r 7

=  Re |'0[O] +  ^

The autocorrelation at lag / =  0 is a real number, i.e. 'ip[0] G R.

fN- l
Re  =  V̂ [0] -f i?e ^ j e  N

1 = 1

{ N - l

2 E ’■ /(-')
/=1

{ N ~ l

1 = 1

Since rf{l) = for I G [—fV+l, N —1], by Theorem 12 we get the following.

N - l

Re{T[fc]} =  r/[0 ]+  ^  r / ( - / )
L ~ ~ N + 1

( #
N + l

=  ^  T f { - l ) e ~ ^ ^ ’̂ ^
;=—TV̂-l 

iV+l oo

=  ^  ^  /(n ) /* (n  -
/=—Â +1 n ~ —oo
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Af+l N - 1

-  Y 1
l = —N + l  n = 0  

N - 1  N + 1

= Z - f W  E
n = 0  l = —N + l

Let m = n — I = >  I = n — m  and the last equation becomes
N —l n —N + l

{»[&]} -  f*{m)e~^^
n = 0  m = n + N —l

N - 1  n + N - 1

/[n]e“'̂ bv̂ ”' ^ 2  f*[m)e^^
n = 0  m = n —N + l

k m

Since for every n e  [0, fV — 1], we have [0, fV — 1] C [n — N  + l , n  + N  — 1],

f{m)  =  0 for m € Z \  [0, — 1],

{ N - 1  'j r N - 1

n = 0  J l ,m = 0

=  |F[/c]p. Q.E.D.

For every f[n] G A n , since f[n] has unit its autocorre

lation at lag zero must be one, i.e. r/(0) =  1. In addition equation (2.24) 

of Definition 1 in Section 2.3 requires the autocorrelation to be zero for every 

even nonzero lags. For every f[n] G A n , equation (6.10) becomes

r 1 for / =  0
i j [ l ] = l o  f o r / =  2 , 4 ,6 , . . . ,  2 (6.11)

2rf{—l) for / =  1 ,3 ,5 , . . . ,  Â  — 1

T heorem  14. If f[n] G A n , then | f  -|- |F  [y  — A:] |̂  =  2 for A: G [O, y ] . 

P roof: For f[n] G A n  and from Theorem 13, we get

|FM |" =  Fe {#[&]}
' N - 1

(=0
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' N - 1

I l==l

fN - 2

'0[2îîï +  1]

N - 2  N - 2
2 2

^ -  _Æ(2m+l)fc
m=l 771=1
N -2 

2
• 27T f

= 1 +  i?e < i)[2m +
m=l

N -2
2

1 +  y^'?/^[2m +  1] cos I ^  (2m +  1)/c ) (6.12)
m=l '

771=1
N -2

2

=  1 + Re < y y  V'pm +  1]^  ̂  ̂  ̂ i7r(2m+l)gj^(2m+l)fc
771=1

N -2
2 /  2yj- \

=  1 — y y  'ip[2m + 1] cos f —  (2m +  1) fc j .
777=1  ̂ ^

(6.13)

Summing equations (6.12) and (6.13), we get |F[A;]|^+ \ F[ j  — k]\'  ̂ =  2. Q.E.D.

From Theorem 14, the condition |T[A;]|^ +  |-^ [ t  “  ^ ] f  — 2 for k G 

[O, y] is a necessary condition for any filter to be a unit £^^_;^]-norm orthog

onal scaling function. To determine an element /[n] G 5at, it is only necessary

to specify |T[/c]| for k G [l, [y  — l]] ,  since |T  [y  — A;] | =  \ /2  — |T[A:]P for 

k G [ l ,  y ].

6.3 A Linear Phase Response

To specify a particular f[n] G Bn,  it is sufficient to specify the DFT F[k]. To 

specify T[A:], it is sufficient to specify the phase sequence (p[k] and magnitude
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sequence \F[k]\ such that F[k] =  \F[k]\e^‘̂ '̂̂  ̂ iov k =  1,2, . . . , y  — 1. The 

finite time sequence is then the I  D F T  of F[k]. Before I proceed to describe 

the method used for determining the terms of the magnitude sequence, viz., 

|F  [0] I, |F  [1] I,. . . ,  |F  [Â  — 1] I, it is necessary to formulate the finite.discrete 

phase sequence.

Tables 5.1 and 5.3 strongly suggests that symmetry, i.e., linear phase, 

decreases the uncertainty measure 7 ^. In particular the length-Af symlet and 

dbyv have identical magnitude response, tljus their frequency variances are 

equal. The length-# symlet has a phase sequence that is nearly linear. The 

symlet time sequence exhibits better symmetry than the time sequence of dbjv 

for #  > 6  and the symlet yields a smaller uncertainty measure. Though haar^r 

has poor frequency localization, it is shown in Table 5.3 to have smaller uncer

tainty measure than the symlet or dbjv for N  > 2. It is my argument that this 

is because the linear phase of HAARjv results in a smaller time uncertainty 

for haarjv. It is desirable in many signal and image processing algorithm for 

the phase sequence to be linear (in the generalized sense). Except for the Haar 

case, linear phase and orthogonality are not compatible for N  even and N  > 2. 

For the purpose of minimizing the uncertainty measure 7 ^ , linear phase is 

preferred over orthogonality.

Definition 2 in Section 2.3 describes linear phase response as follows: 

F{eD)  =  |F (e # )  or F (e # )  — sgn \F where, up to

additions and subtractions of integer multiples of 27t, (ca) =  aui b for some 

a, 6 G R. Since F[k], the DFT  of f[n], is a uniform sampling of F{e^‘̂ ) — 

DTFT{f[n]},  and since F(e^‘̂ ) is 27t periodic, F[A:] is related to F{e^‘̂ ) simply
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as

for A; e  [0, Af — 1], Up to additions and subtractions of integer multiples of 

27t, the discrete phase sequence attained from sampling a linear phase response 

DT FT  is

^  +  P +  Q  -  ^sgn  , (6.14)

where A E R, p E Z, and A; E [0, #  — 1]. Since the measure of uncertainty 

defined in (4.15) is determined over the equivalence class of all integer shifts in 

time and frequency, we may assume without loss of generality that 0 < A < 1 

in (6.14).

Note that the term p in (6.14) has no effect whatsoever on the joint un

certainty; I have therefore assumed p =  0 for the remainder of this dissertation. 

If we assume further that the phase ip[k] takes the special form

then the discrete phase sequence given in equation (6.14) coincides with the 

phase sequence  ̂ of the Haar scaling function when A =  | ,  Except in the Haar 

case, the phase sequence in equation (6.15) will not lead to a scaling function 

of an orthogonal QMF.

T h eo rem  15. Let N  be even and let /[n] be a real-valued length-Æ sequence 

with DFT  F[A;] =  |F[A:]|e' ‘̂̂ [̂ l, where <p[k] is given by (6.15) with A — 4. Then

^Up to a time shift.
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there exists a real-valued g G [f] such that g[n] =  g[N ~  I — n] for n =  

0 , 1 , 2 , . . . ,  —  1 .

Proof: Since A =   ̂ we have that

-, T AT-1

I k=0
(6.16)

In the second summation of (6.16), let / =  A: — so that / =  1, 2 , . . . ,  ^  1.

We then have 

1
N
2

/M  =  I E  I f  M l'
k—0

f -1

+ E
1=1

F N J  § {N- y  -() pj w ( f  +0"

k=0
N 
2

=̂1

{̂EifWM*"""'’‘’+EI k=0 1=1k=0

f

F

F

J  ;v ( T “0

( y -/+2n/) jTrn

k=0

f -1

E
1=1

F
N

(6.17)

2

fc=0

^   ̂ ^  |P  [k]

e-?' ̂  ( T+ 1 ^ ) 0
- - 1

+ E
1=1

F
N
~2
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-2VV)t
k = 0

+ E
1=1

F
N

- l

^ ( - 2 A T + 2 n - l - l + l ) f c

fc=0

- - 1
' N  ;F —  —  1
2+ E

/=1

Ij  ̂ |e'#(-2(^-"+i)+i)''

r  TV r  1 1

^^^{y ~^F'^{^-î +' )̂+̂ )1) çjTrn

N

f

fc=0
^-1

F
f -

1
N

+  E -
1—1

iV
| F  [A:] |e “ -?'^(2(iv-n+i)-i)fc

fe=0

- - 1

+ E
Z=1

f
f - '

A Z
fc=0

1 f
N
2

+ E F
1=1

-1

N
- l

^ E “ ” +  E
1=1

F
N

(2(AT-n+l)-l) /c

k ~ 0
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1= 1

F -J^(Ÿ+(2(^-"+i)-i)0e-;^(^-"+i) X6.18)

(6.19)

The last equality (6.19) is gotten by noticing that (6.18) is equivalent to (6.17), 

where the argument is W +  1 — u instead of n. Since f[n] is real-valued, (6.19)

becomes f[n] =  f [{N  H- 1 — u)v]- Computing the first y  terms of f[n] yields:

/[O] =  / [ ( # - H _ 0 ) ; v ]  =  /[I]
/[I] =  /[(77-t-1 -  l)v] =  /[O]
/ [2]  =  / [ f V - b l - 2 ]  =  / [ A T - 1 ]

/[3] =  /[iV +  1 - 3 ]  =  / [ i V - 2 ]

/  [ f ]  =  /  [ ^  +  1 -  f ] =  /  [ f  +  l]  •
A desired symmetric sequence g[n] such that g[n] = g[N — l — n] V n G [0,77—1] 

can now be obtained by applying either of two circular shifts to /[nj. The 

first shift is given by g[n] =  f[{n — y  4- 1 ) n ],  while the second is given by 

g[n] = f  [(1 + n)j^]. To see that g[n] is symmetric in the first case, let g[n] —

/[ (^  — w T l)wj- Then

g[N -  1 -  n] =  /  

=  /  

-  /  

=  /

N  — 1 — n
N

+ 1
NJ

Af-bl -

N
n — —

N
N
~2

-  1

+  n

N.

NJ

= g[n]-

To see that g[n] is also symmetric in the second case, let g[n] = f  [(1 -4- n)jy]. 

We have then that

g [ N - l - n ]  =  / [ ( l - p  77 -  1 -  n)jv] 

=  / [ ( 7 7 - n ) i v ]
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— f [{N  +  1 — +  ti)n ]

=  / [ ( w  +  l ) i v ]  =  p W -

Therefore, both shifts construct a g e  [f] that has the desired symmetry 

property. Q.E.D.

Let F[k] =  |F[fc]| e-̂ T[fc] yg the D F T  of a real-value sequence. f[n] for 

n =  0 , 1 , . . . ,  A/' — 1 and F : — > R where F V’p ] , . . . ,  V' [^  — l] ) =

a^ f. Clearly F is continuous. It is well known from [40] that the global max

imum / minimum of F is a local maximum/minimum, thus must be a critical 

point.

D efin ition  6. A point G is a local minimum of F, if

r  ^V’o[l], '0o[2j, • • •, V^o[y -  1]^ < r  ^ [ l ] ,  '0[2],. . . ,  'tp[— -  1]^ (6.20)

for all V’ such that \ (b'oM — 'ipmŸ < e for some real number e > 0.
fc=i

The definition for local maximum is analogous to definition 6 except the 

inequality in equation (6.20) is reversed.

D efin ition  7. A point E R % Ms a critical point of F, if

dV
=  0 (6.21)

V>[fc]=i/'0 [k]
a(^[A])

for all A: =  1, 2 , . . . ,  y  — 1.

T h eo rem  16. Let A =  | ,  so that
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For fixed magnitude terms |F[A;]| such that F[0] =  \/2, -F [y] =  0, and
N - 1

fc=0
OiTT

iplk] — if[k\ +  — A: (6.23)

and

are critical points for F (V̂ [l], ■0[2],. . . ,  ■0 [y  -  l]) =   ̂ where
N - l

/ w  =  — ^  |FM ] and /[n] € R.

P roof: Before proceeding to the proof, it is worthwhile to make a few notes.

1. Since |/[n]p  =  f[n]f*[n],

I /Ml" =  ^  I Y ,  i F M I e - X ' ^ W + W l .  (6.25)
[ k = Q  J I fc=0 J

2. The partial derivative of |/[n]p  with respect to is

3. The partial derivative of f[n] with respect to ip[k] is

a(V;M)

=  - ^ | F M |  sin ( îplk] +  ^ n k ^  ■ (6.27)

4. When ip[k] =  ip[k] +  ^ k ,  we get

'ip[k] +  =  — k (2n T  1). (6.28)
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5. When 'il;[k] =  (p[k] -  ^  (y  -  l) we get

(6.29)

To show that the phase terms in equation (6.23) and (6.24) are critical 

points of r ,  it is necessary to show that

dV

and

d{^[k])

dr

=  0
i l i [k]=( f [k]+^k

=  0 .

(6.30)

(6.31)
ip[k]=ip[k]-^(^-l)k

Taking the first derivative of F with respect to tp[k], we get

V - l  ^  N - 1or
a ( ^  M)

= " ^ 2 { n -  ^f)
g ( ^  M)n = 0  L J/ n = 0

The first summation of equation (6.32) is zero, thus

N - 1  I  ̂ r i |2

(6.32)

a r i / w r
n = 0

N - 1

y i t  -  /Xf J ( /[ /q

n=0

n = 0

a  (^  M)
N - 1

N ^ ( M  -  fi{fg[n] sin ( ij;[k] +  — nk  ) . (6.33)
27T

The last two equalities are obtained from equations (6.26) and (6.27). When 

equation (6.33) is evaluated at iplk] =  (p[k] +  ^ k  and using equation (6.28), we 

get

v - ia r

il;lk]=ip[k]+^k
— sin ( —  (2n +  1) fcV (6.34)

n —O '  /
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(6.35)

thus

It is easily shown that

IV -  1
(6.36)

( n  -  iJ,ff ^  {N - 1 - n -  / i f ) ' (6.37)

To show that equation (6.30) holds for F[k] ^  0 it is enougth to show that

7T
(2n + l ) k ^  = -  sin (2 (iV -  1 -  n) +  1) A: ) . 

Starting with the right hand side of equation (6.38), we get

(6.38)

. (  7T
S in (2 (77 — 1 — n) +  1) A:) =  — sin (21V — 2n — 1) A;

7T
=  — sin ( 27tA; — — (2n +  1) A

=  — smin ( 2 7 r f c )  cos {2n + 1) k

(+  cos (2 7 tA ) sin y— (2n +  1) A

• (2n +  1) Â  .

Thus equation (6.30) holds and -0[A] =  y  [A] +  ^A  is a critical point for P.

If il)[k] is defined as in equation (6.24), then the first partial derivative 

of F with respect to •0[A] evaluated at /A[A] =  ip[k] — ^  (y  — l) A is

dV
■n

7V-1

^ sin (2n -  +  1) A ) (6.39)N
n = 0
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and equations (6.35) and (6.36) follow from Theorem 15. Since

. /  27Tsm I —  (2n — N  + l ) k =  — sin (N - 2 n -  1)

=  -  sin (2N -  AT -  2n -  2 +  1)

=  -  sin {2{N -  1 -  n) -  N  + 1) ,

equation (6.39) is equal to zero. Thus equation (6.31) holds and 'ip[k] — ip[k] — 

^  (y  — l) A; is also a critical point of P. Q.E.D.

To determine if the critical points in equations (6.23) and (6.24) are 

local minimums, it is necessary to determine whether the second order partial 

derivatives of F are continuous and the Hessian matrix of F evaluated at these 

points are positive definite. For continuous second partial derivatives of F, the 

critical points are local maximums if the Hessian matrix of F evaluated at these 

points are negative definite. If the Hessian of F evaluated at a critical point is 

neither positive definite nor negative definite, then it is indeterminate whether 

F is a local minimum or local maximum at this point [40] and can be considered 

a saddle point on a hypersurface.

D efin ition  8. Let Hr

Then

/

denote the Hessian matrix of F evaluated at ip.

a^r

HriP^] =

aT \
a(v>[f-i])a(^[i])

(6.40)

It is obvious that Hr  is symmetric, i. e. a=r
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D efin ition  9. For all x 6  ̂ \  jo  j  the Hessian matrix of F evaluated at •0

is positive definite if

/ \  T - l f - l  ^2p 

The Hessian matrix of F evaluated at 0  is negative definite, if

o2p

(0 ̂  = E E âWl)âWF])̂ ‘̂‘ < “■
The use of the Hessian matrix to show whether the phase terms defined 

in equations (6.23) and (6.24) are local minimums or local maximums results in 

an indeterminate conclusion. In other words, the Hessian matrix of F evaluated 

at equations (6.23) and (6.24) are neither positive definite nor negative definite. 

Since the admissibility condition cannot be fully accounted for in this analysis, 

it cannot be determined if F at these critical points are local minimums, local 

maximums, or points of inflection.

To determine whether the phase terms in equation (6.23) produces a 

local minimum, a local maximum, or a point of inflection, define a function 

Tmax(A) : [0,1] — > R as

hmax(A) — m ax{a„ g} , (6.43)

where D[k] is the ideal magnitude sequence specified in equations (5.6) 

and (5.7). The sequence /[n] is defined as

N - 1

/ w  =  ^  (6.44)

where (p[k] is defined in equation (6.15). Fig. 6.1 is a plot of Fmax(A) verses A

for the length four filters defined in equation (6.44). Fig. 6.1 clearly shows that
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Figure 6.1: Plot of Pmax(A) of the length four filter f  defined in equation (6.44) for 0 < 
A <  1.

the maximum of F m a x  is achieved at A =  | .  In addition, if g  G [ f ]  such that 

Tmax (I) =  ĉ n.g) phase terms of g  corresponds to the function described 

in equation (6.23). To illustrate this point, in the length four case, we have

Tmax (I) =  2.25, f * 0 0 ; ^, and g

The plots of Fmax(A) of the filters defined in equation (6.44) for 0 < A < 

1 and length N  = 6 , 8 , 10,12,14,16,18, 20 can be found in the Appendix A. In 

all cases investigated Fniax(A) achieved a maximum at A =  | .  The element g  G 

[ f ]  that achieves this maximum has a phase which correspond to the function 

in equation (6.23). This suggests that the critical point of F in equation (6.23) 

is a local maximum and possibly a global maximum of F^ax-

In the case when the phase terms are defined as in equation (6.24), a
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Figure 6.2: Plot of Pmin(A) of the length four filter f defined in equation (6.44) for 0 < 
A < 1.

function Fmin : [0,1] is defined as

FmmW = (6.45)

where D[k] is the ideal magnitude sequence, /[n]] is defined in equation (6.44), 

and (p[k\ defined in equation (6.15). Fig. 6.2 is a plot of Fmm(A) verses A for 

the length four filters defined in equation (6.44). Fig. 6.2 clearly shows that 

the minimum of F^in is achieved at A =  In addition, if g 6 [f] such that 

Fmin (^) =  the phase terms of g corresponds to the function described 

in equation (6.24). To illustrate this point, in the length four case, we have 

Fmin (I) = 0.25, f = , and g =

The plots of Fmin (A) of the filters defined in equation (6.44) for 0 <  A < 1 

and for N  = 6 , 8 ,10,12,14,16,18, 20 can be found in Appendix A. In all cases
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investigated a minimum is achieved at A =  The element g G [f] that achieves 

this minimum has a phase which corresponds to the function in equation (6.24). 

This suggests that the critical point of F in equation (6.24) is a local minimum 

and possibly a global minimum of Fmin-

If F[k] = |F[Â:]| where ip[k] is defined in equation (6.22) and 

G[k] =  |T[A:]| where -tplk] is defined as in equations (6.23) or (6.24), then 

g G [f] where g and f  are the I D F T  of G and F, resp. For f[n] that are 

admissible as a FIR scaling function for a biorthogonal QMF, the results of 

this subsection provide strong evidence that the phase given in equation (6.22)

minimizes

6.4 A Search Algorithm to Determ ine the Lower Bound
6.4.1 Orthogonal Case

Let = { f  e Bn \ F[k] has phase p[k] given by (6.22)}. It is evident that 

haarjv E B'j .̂ The following conjecture asserts that there is an G B'̂  ̂ that 

minimizes the joint uncertainty over Bn -

Conjecture 1. There exists an G Bjy such that q^ fopt =  mm

Although this conjecture has not been proven, the evidences described in the 

previous section strongly suggests that it holds. The lower bound for B, which 

will provide a lower bound for A-, as the evidence suggest will come from an 

element in B'. To attain a lower bound for q^ , for all f[n]  G A n , I will describe 

a numerical search algorithm used to find an optimal low pass analysis filter 

that minimize q ^ j  over for a variety of even N.  The algorithm

decreases the frequency variance and in effect increases the time variance
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cr ĵfj in order to minimize the uncertainty

To be concise in defining the search algorithm used for finding /°p* [n], I 

will list the constraints used for the search space. It should be noted that these 

constraints do not necessarily lead to filters which will constitute an orthogonal 

QMF. The search space consists of all f[n] satisfying the following:

1. The filter f[n] is real valued.

• This condition implies F[k] = F*[N ~ 1 — k] where k e  [0, fV — 1] 

and F[k] = DFT{f[n]}.

2. The length N  is even.

3. The filter f[n] has unity fg-norm.

4. F[0] -  V2.

5. |F  [ f  -  A:] I =  ^ 2 - \ F [ k ] \ ^  for k E [O, f  ].

6. |F M | <

7. The phase response of f[n] is given in equation (6.22).

The only real-valued scaling functions which meet all the restrictions for 

N  = 2 and 4 are the Haar filters. The Haar filter zero padded to length six gives 

a starting point to find a length six filter with optimal conjoint localization. To 

find an optimal length six real-valued scaling function, I have only to specify the 

terms of the magnitude response \F[1] | and |F  [2] |. To fulfill the requirement 

of equation (6.4) and derive a unit ^  {[0,N — 1]) norm filter, I let |F  [2] | =  

y/2 — |F  [1] |2. Let \HAARe[k]\ and \DBQ[k]\ be the magnitude response of the
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Haar filter zero padded to length six and Daubechies length six scaling function. 

The search varies the \ F[1]  \ term in such a way that

\ H A A R , [ 1 ] \  <  \ H A A R e [ l ] \  +  m  =  |F[1]| <  \ D B e [ l ] \ ,

where i  indexes the iteration and is a fixed incremental change. The in

crementation stops at |i7i?6[l]|, since it is known that the Daubechies have 

maximally flat passband for orthogonal scaling functions. At each iteration, 

using the phase response defined in equation (6.15), the impulse response is 

determined and the joint uncertainty is calculated. The iteration repeats until 

|F[1]| > \DB6[1]\. The filter that produces the minimum uncertainty is saved.

To find the optimal length eight filter, only the term of the

magnitude response needs to be determined, since |T[0]| =  y/2, |F[2]| =  1, 

|F [3]| =  , and |F[4]| =  0. The search algorithm begins at

\ H A A R s [ l ] \  and increments |T[1]| by D until |T[1]| > This incremen

tation decreases the frequency variance jf] while increasing the time variance 

The filter which minimizes the uncertainty yf f is saved. Precisely, the 

search varies |F[1]| such that

\ H A A R s [ l ] \  <  |F6,8[1]| +  Oi =  |F[1]| <  \ D B s [ l ] \ .  (6.46)

and where is the D F T  of the optimal length six filter zero padded to

length eight and is a fixed increment. At each iteration, using the phase 

response given in equation (6.15), the inverse D F T  of T[A;] yields the impulse 

response and the joint uncertainty can be calculated. The iterations continue 

until equations (6.46) is no longer satisfied. The length eight filter which min

imizes the uncertainty is saved.
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For #  =  10 there are two terms |-F[1]| and |f[2]| to be determined, since 

|F10]| =  V2, |F[3]| =  ^ 2 - \ F [ 2 \ \ \  |f [4 || =  V 2 - j f [ l ] P ,  and |F[5]| =  0. The 

search consist of two nested “for” loops in which

\HAARio[i]\ < \HAARio[l]\ + m  = |F[1]| < \DBw[l]\ (6.47)

and

\F[1]\ > |F[1]| - n k  =  |f[2]| > \HAAR,o[2]\ (6.48)

where is the increment and the search is indexed by {i, k). Again the search 

moves toward |D5io[A:]| for A; =  1, 2, since this decreases the frequency variance 

at the expense of increasing the time variance. The search determines the best 

trade off.

The search algorithm for A  =  12 is very similiar to the previous search 

for N  =  10 except |F[3]| =  1, |F[4]| =  ^ 2 - \ F [ 2 ] \ \  |F[5]| =  y / 2 - \ F [ l ] \ \  

and |F[6]| =  0. There are still two nested “for” loops that are implemented as 

described in equation (6.47) and (6.48).

In general, for N  not divisible by four there are [ nested “for” loops

so that

\ H A A R m [1]\ < \HAARN[l]\ + nii = \F[l]\ < |% [ 1 ] |
|F[1]| > \ F[ l ] \ - ü i 2  = \F[2]\ > \ H A A R n {2]\

\F[2]\ > |F [2 ]|-O i3  =  |F[3]| >  \ H A A R n [3]\

F [ l f J - i ] |  >  F [ L f J - i ] | - s ^ n f j  =  F [ l f J ] i  >  \h a a r „ [ [ !

where the iterations of the search are indexed by (%i,%2 ,^3 , - - - ^^6 Q

is some small incremental amount. The other terms necessarily follow, i.e., 

|F[0]| =  y/2, 1-̂  [f- -  I =  y^2 -  |T[A;]|  ̂ for k e  [l, |_%J], and |F  [~] | =  0.
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The magnitude terms of the optimal length-Æ filter zero padded to 

length N  + 2 denoted |Fjv,Ar+2 [^]| for k 6 [1, [^J] give the search algorithm a 

starting point. If N  is not divisible by four, then -|- 2 is divisible by four. 

The search for the length -f 2 filter G implements [ nested

“for” loops as just described. The following terms must necessarily follow:

i m i  =  \/2, | f  [ 4 ^ - 4 1  =  ^ 2 - \ F [ k ] f  io i k Ê [ 1 , ^ ] ,  | f  [ ^ ] |  =  1,

and | F [ ^ ] |  = 0 .

The results of this search produce a symmetric filter different from 

HAARjv, thus for A  > 4 these filters are not orthogonal. They exhibit better 

conjoint localization than the zero padded Haar filter. Their uncertainty pro

vides a good lower bound for j for all f[n] G An-  Since the lower bounds 

are produced by symmetric filters different from the zero padded Haar filter, 

these lower bounds are not attainable by any elements in A n - Table 6.1 list the 

uncertainty measures found by this search algorithm for N  =  6, 8 ,10, . . . ,  20 

and using an incremental amount 0  =  0.001 for N  = 6 , 8 , 10,12,14,16 and 

n  = 0.01 for N  = 18, 20.

The best localized filter G 5g is

/opi[0] =  -0.03085567563131 =  /°?’*[5]
=  0.03226648753395 =  (6.49)

/opt [2] =  0.70569596928391 =  /'^*[3].

The time variance for this filter is

(7̂  [fopt] =  0.2656

and the frequency variance is

= 1.0391.
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Filter
Length

Equation 6.1 
Lower Bound

f  6
Uncertainty

haar AT
Uncertainty

2 0.0000 0.0000 0.0000
4 0.1250 0.1250 0.1250
6 0.1667 0.2760 0.2917
8 0.3750 0.4937 0.5214
10 0.5000 0.7717 0.8160
12 0.7917 1.1116 1.1756
14 1.0000 1.5178 1.6005
16 1.3750 1.9857 2.0907
18 1.6667 2.5041 2.6462
20 2.1250 3.0915 3.2671

Table 6.1: Lower bounds for uncertainty measure for filter lengths 2 - 2 0  given 
by Cn_[haaryy]^2,[dN] the second leftmost column and as determined by the 
search algorith in subsection 6.4.1 in the second rightmost column.

The joint uncertainty is
2

7e fopt 0.2760.

The best localized filter G Bg is

fopt[0] = 0.00119212710431 =  f°P̂ [7]
fopt[l] = -0.02900930872082 =  ^ 6 ]
fopt[2] = 0.02900930872082 =
/°pi[3] =  0.70591465408224 =  /°P*[4].

The time variance for this filter is

The joint uncertainty is

and the frequency variance is

(r2,[fopt] =  1.8735.

7s fopt =  0.4937.
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The scaling function f°P̂ [n] for N  =  10,12,14,16,18,20 are given in 

Appendix B.

6.4.2 B io rthogonal Case

A better conjointly localized scaling function can be attain by reducing the 

conditions of Bn - Define this larger set as Cjv =  { f 1 f  is an even length-N 

real-value sequence, F[0] =  \/2, and F  [y] =  0}. The set relations are as 

follow

*Ajv G Bn  Ç  Cn -

Let C'ĵ  — { f  e  Cn \ F[k] has phase ip[k] given by equation (6.22)}. 

The evidence of Section 6.3 suggests that there exists a f°^^[n] G Cjy such that 

7̂ _fopt < 'JN,f k r  all f[n] G Cn - To be concise in defining the search algorithm 

used for finding / “ ‘̂'[n] G Cjy, I will list the constraints used for the search 

space. It should be noted that these constraints do not necessarily lead to 

filters which will constitute an biorthogonal QMF. The search space consists 

of all f[n] satisfying the following;

1. The filter f[n] is real valued.

2. The length N  is even.

3. The filter f[n] has unity fg-norm.

4. F[0] = ^/2 where F[k] =  DFT{f[n]}.

5. F [ f ]  =  0.
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6. |F M | < V2.

7. The phase terms of f[n] are given in equation (6.22).

It was noted in Section 2.3.2 that items three and four do not both 

need to be met to constitute a low pass scaling function for a biorthogonal 

QMF. Both constraints are adopted in this section to reduce the number of 

free parameters and keep the search algorithm from becoming too cumber

some. Indeed, better conjointly localized biorthogonal scaling functions can be 

realized by requiring to either item three or item four but not both at the cost 

of increasing the search space. Even accepting both constraints, there are more 

free parameters in the biorthogonal case than in the orthogonal case. Thus, the 

biorthogonal search is expected to yield smaller lower bounds on the uncertainty 

measure verses the more restrictive orthogonal case. The search will produce 

filters that constitute a perfect reconstruction biorthogonal QMF. Therefore I 

consider the uncertainty measures produced by this search as a upper bound 

on the lower bound for even length biorthogonal scaling functions.

The only real-valued scaling functions which meets all the restrictions 

for #  =  2 and 4 are the Haar filters. The search for the length six f°^*[n] E Cjy 

is the same as in the previous Section 6.4.1.

To find the optimal length eight filter, only the |F[1]| and |T[2]| terms 

of the magnitude response need to be determined, since |T[0]| — -s/2, |T'[4]| =  0

and IF [3] I =  y^3 — |F  [1] ^ — |F  [2] | .̂ To specify a starting point for the search 

algorithm, define /e .sN  to be the filter obtained by zero padding the optimal 

length six filter /°F[n] to length N  = 8. Let b e the DFT  of /e.sN- The
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search varied \F[1] \ and |F[2]| such that

=  |F[1]| < V2 (6.50)

and

|F6,g[2]| > |F6,g[2]| +  =  |F[2]| > 0, (6.51)

where the iterations are now indexed by {i, k) and O is a fixed increment. At 

each iteration, using the phase response given in equation (6.15), the inverse 

DFT  of F[k] yields the impulse response and the joint uncertainty can be 

calculated. The iterations continue until equations (6.50) and (6.51) are no 

longer satisfied. The length eight filter which minimizes the uncertainty is 

saved.

For A' =  8, a search was implemented using a search increment of 

Q = 0.001. The following low pass filter was found:

/°pt[0] =  -0.01315882031237 =  / ° p*[7]
yoptgij _  -0.02843832297817 =  rP*[6]
/°Pt[2] =  0.04364111877368 =  /° p [̂5]
/opt [3] =  0.70506280570341 =  /° p*[4].

(6.52)

The time variance for this filter is

min =  0.27147875680532he[fopt]t ti.nJ

and the frequency variance is

nûn =  1.78386055920144.he[f=Pt] t

The joint uncertainty is

=  0.48428024692605.
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In both the N  = 6 and N  = 8 cases, a smoothing of the Haar filter 

increased the time variance but decreased the frequency variance. It is evident 

that sensibly increasing the time variance of the Haar filter to achieve improved 

frequency localization leads to minimizing the joint uncertainty measure. Since 

the filters found in the search algorithm are symmetric in time, they cannot be 

used in a orthogonal QMF. Yet construction of a biorthogonal QMF is possible. 

Given the low pass analysis filter, i.e., the scaling function, to determine a 

biorthogonal QMF it is necessary to specify the high pass analysis filter, i.e., 

the wavelet. To do this a technique by M. Vetterli and D. Le Gall as described 

in [16] is employed.

Let H q( z ) and Hi{z) be the z-transforms of the scaling function and 

wavelet resp. The synthesis low pass filter, Go{z), and synthesis high pass filter 

Gi{z), are ottained by Go(z) = sHi{—z) and Gi(z)  =  —sHo{—z), where s E R 

is a scaling factor. In [16], polynomials of the even and odd terms of the scaling 

function and the wavelets are expressed in the matrix form

H'(') " (  Z w  n Z tJ , )  («««)
where Hofi{z), Lfo,i(z), Hifi(z), Lfi,i(^) are the z-transforms of the even terms 

of the scaling function, the odd terms of the scaling function, the even terms of 

the wavelet, the odd terms of the wavelet, resp. A possible method to obtain 

an even length N  =  2K  linear phase perfect reconstruction QMF is to express 

the matrix Hp(z) as

1 1 \  1 0 W  1 ak

fc=i
-1K - l

where € R and the scaling factor is s =  (2  J J  (1
k=l
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For TV =  6  =  2 3, equation (6.54) becomes

-IT ( \ (  1 +  (cKl +   ̂ +  Ot2Z  ̂ «2  +  {cXl +  OqO^g) ^  ̂ +  Z  ̂ \
 ̂ y 1 +  (-0:1 +  0 :10:2) Ü 2  +  { a i  -  a i a 2 )  z ^ ^  -  z ^ ' ^  J

where s =  (2 (1  — a f ) ( l  — a;^))^^ The z-transforms of the scaling function can 

be derived as

Hq{z)  =  1 +  (I2 Z  ̂ +  (cTi +  (riCKg)^  ̂ +  {oil T  ciici2)z  ̂ +  CKgZ +  z  (6 .5 5 ) 

The z-transform of the high pass analysis wavelet is 

B'i(z)  =  1 +  o;2 Z~  ̂ +  ( - « 1  +  a i a 2 ) z~ ‘̂ +  ( « i  -  0 !ia!2 ) z " ^  -  « 2 2 ^^ -  z " ^ .  (6 .5 6 )

Since /°^*[0] ^  0 let /o[n] — where /°^*[n] is defined in equa

tion (6.49). The z-transform of /o[n] is

T q(^ )  =  1 + /o [ l ] ^  ̂ +  /o [2 ]z  ^ - |- /o [ 2 ] z   ̂ + /o [ l ] z  ^ -h  z  (6 .5 7 )

Set H q { z )  in equation (6 .5 5 ) equal to F o (z )  in equation (6 .5 7 ) , to get a solvable

linearly dependent set of two equations with two unknowns

/o [ l ]  =  « 2  (6 .6 8 )

/o[2] =  cti +  o;xQ:2 - (6 .5 9 )

Since /°^*[0] 7  ̂ — we get /o [ l ]  7  ̂ —1 and we can solve equation (6.59) 

for Q2 to get

AM
/o [1] +  1

The low pass analysis scaling function and the high pass analysis wavelet can be 

determined by equations (6.55) and (6.56), resp. Since cti =  499.3580330364305 

and « 2  =  —1.04576258295054, the low pass and high pass synthesis filters can
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n Ho[n] Hi[n] Go[n] G\[n]

0 1.0000000000000 0.0000010000000 0.0000214181474 -0.0000214181474
1 -1.045762582950 -0.0000010457625 0.0000223982972 -0.0000223982972
2 -22.851913408846 -0.0001021567979 -0.0218800936362 0.0004894456513
3 -22.851913408846 0.00010215679794 -0.0218800936362 -0.0004894456513
4 -1.045762582950 0.0000010457625 0.0000223982972 0.0000223982972
5 1.0000000000000 -0.0000010000000 0.0000214181474 0.0000214181474

Table 6.2: Length-six biorthogonal QMF

be determined by G q{z ) = s Hi{ - z )  and Gi{z) = - s H q{ - z ), resp. The terms 

of the length six biorthogonal QMF are given in Table 6.2.

To check that this is a perfect reconstruction QMF, it is only necessary 

to check that det {Hp{z)} =  cz"" for some n Ç Z  and c G M \  {0} [16]. The 

determinant of Hp{z) is computed as

det {Ep(z)} =  2 (^af -  a j a l  + — l) z~

=  —2 ( l  — al) ( l  — « 2 )  ̂ ^

. - 2

(6 .60)

Since a i 7  ̂ ± 1  and 7  ̂ ±1, the constant s  ̂ 7  ̂ 0  and the four filters in 

Table 6.2 constitute a perfect reconstruction QMF.

For #  =  8  =  2 - 4, let be defined in equation (6.52). Since

yopt[o] ^  define /o[n] =  The z-transform of /o[n] is

F q ( z ) — 1 -|- fo[l]z  ̂ -f fo[2]z  ̂+ fo[3i\z  ̂ + /o[3]z -t- /o[2]z ^

+  /o[l]^ ® -j- z (6.61)

The matrix Hp{z) defined in equation (6.53) becomes

 ̂ 1 T (CK2 CK3 4" Q;i<a2 T 0 ' i)z  ̂ -j- (0 :1 0 : 3  -t- 0 :1 0 :2 0 : 3  -|- 0 :2 ) 2 :  ̂ -F (x%z  ̂ \
0 :3  -(- ( 0 : 1 0 : 3  - j -  O 1 O 2 O 3  -F  0 2 ) 2 ^ ^  -F ( 0 2 O 3  -f- 0 1 O 2  +  0 1 ) 2 “ ^ -F z ~ ^

1 +  (02O3 -F 01O2 — O i)z "^  -F (01O3 — O1O2O3 — 02)2^^  — 0 3 2 “  ̂
y  03 -f- (—01O3 -F O1O2O3 -F 0:2)2  ̂ -F (—O2O3 — 01O2 +  0:1)2  ̂ — z  ̂ J
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The low pass analysis scaling function can be determined as

Hq{z)  =  1 +  +  (cKgCKs +  CKiOfg +  +  («10:3 +  aia2CK3 +

+  (oiiQ.  ̂ T  CK1CK2CK3 +  ^ +  (ofgCKg +  OfiCkg +  (Xi)z ^

+  CK3Z  ̂ z  . (6 .6 2 )

The high pass analysis wavelet is

H i{z )  =  1 +  a^z~^ +  (0 :20:3 +  O 1O2 -  O i) z " ^  -  (0 1 O3 -  0 1 O2 O3 -  0 2 )^ " ^

+  (O 1O 3 — O 1O 2O 3 — 0 2 )2 :   ̂ — (O 2O 3 +  O 1O 2 — Cx,i)z ^

— 0 3 Z  ̂ — z  (6 .6 3 )

Set equation (6 .6 1 )  equal to equation (6 .6 2 ) to get the following set of non- 

linearly dependent equations

/o [ l ]  =  (^3 (6 .6 4 )

/o[2] — 0 2 O3 T  O 1O2 +  Oil (6 .6 5 )

/o[3] =  O 1O3 +  O 1O2 O3 +  0 2 . (6 .6 6 )

Solving this system of non-linearly dependent equations for o% and 0 2  gives

/o [ l] /o [3 ]  -  /o[2]«1 = 

0 2  =

/ o [ l ]  +  / o [ l ] / o [ 2] -  / o [ 3] -  r
/o [2] — Oi

/o[l] + Oi

Since +  /o[l]/o[2] -  /o[3] -  1 =  50.08414794378206 f  0, we

get oi — —2.24583353786622. We can solve for 0 2 , since Oi ^

- /o [ l ]  -  -2.16116052222708, to get 0 2  =  12.64462103327462, and 0 3  =

2.16116052222708. The low pass analysis and the high pass analysis fil

ters can be determined by equations (6.62) and (6.63), resp., where s =
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n Ho[n] Hi[n] Go [n] Gi[n]

0 1.0000000000000 1.0000000000000 -0.0002120108533 0.0002120108533
1 2.1611605222270 2.1611605222270 0.0004581894865 -0.0004581894865
2 -3.3164917323676 1.1751753433648 -0.0002491499273 -0.0007031322423
3 -53.5810041452346 -43.8737905821746 -0.0093017197811 0.0113597544122
4 -53.5810041452346 43.8737905821746 -0.0093017197811 -0.0113597544122
5 -3.3164917323676 -1.1751753433648 -0.0002491499273 0.0007031322423
6 2.1611605222270 -2.1611605222270 0.0004581894865 0.0004581894865
7 1.0000000000000 -1.0000000000000 -0.0002120108533 -0.0002120108533

Table 6.3: Length-eight biorthogonal QMF

{2{1 — a l ) {1 — a 2 ){l — al))~^. The terms of all four filters of the length eigth 

biorthogonal QMF are given in Table 6.3. To check that the four filters in 

Table 6.3 constitute a perfect reconstruction QMF, the determinant of Hp{z) 

is computed as

det ^Hp(^z)y =  2 ^—1 — OfgCKg — ala^  4- al  — a f a l  -f ala^al  -|- a^ T ctg)

(6.67)

Since a\  ^  ± 1 , « 2  f  ±1, and « 3  ^  ± 1 , the constant s   ̂ 7  ̂ 0  in equation (6.67) 

and the four filters in Table 6.3 constitute a perfect reconstruction QMF.



C hapter 7 

M ulti-C hannel Parallel F ilter Bank  
R ealizations

7 .1  L — 1 L e v e l D is c r e te  W a v e le t  T ra n sfo rm

The rigors of signal and image processing generally require a multi-channel 

filter bank such as in Gabor analysis. A multi-channnel filter bank can easily 

be created using Mallat’s algorithm of [12]. Mallat’s analysis algorithm consists 

of successively cascading a perfect reconstruction QMF’s analysis filters to the 

output of the low pass analysis filter. A typical three level cascaded filter bank 

is shown in Fig. 7.1. This method is commonly referred to as the discrete

Figure 7.1: The three level discrete wavelet transform cascaded filter bank.

wavelet transform (DWT). The number of channels produced by the DWT is 

one more than the number of levels of decomposition, i.e., if the DWT consist 

of L — 1 levels then there are L channels in the filter bank. The original signal or

90
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image can be perfectly reconstructed by reversing the DWT with the synthesis 

filters of the QMF as shown in Fig. 7.2. This is generally known as the inverse

Figure 7.2: The three level inverse discrete wavelet transform cascaded filter 
bank.

discrete wavelet transform (IDWT).

The DWT and IDWT can be implemented as a parallel filter bank via 

the Noble Identities. The Noble Identities are shown pictorially in Fig. 7.3 and 

are stated as:

1. Down-sampling by M  then filtering by G{z) is equivalent to filtering by 

G( z^ )  then down-sampling by M.

2. Filtering by G{z) then up-sampling by M  is equivalent of up-sampling 

by M  then filtering by G(z^) .

G(z)

G(z)

Figure 7.3: The Noble identities.

To create an L-channel PRPFB as shown in Fig. 7.4 , L — 1 level DWT 

and IDWT perfect reconstruction filter banks are employed. The filter bank
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H, (z)

Figure 7.4: A L  channel parallel filter bank.

in Fig. 7.4 consists of L analysis filters, H q { z ) ,  Hi{z),  . . . ,  H l _ i { z )  and L 

synthesis filters, H q { z ) ,  Hi{z),  . . . ,  Hi_i{z).  The analysis filters in Fig. 7,4 are 

determined by applying the first Noble identity to the filters in the DWT. The 

synthesis filters are the results of applying the second Noble identity to the 

filters used in the IDWT.

For L = 2 the filter bank in Fig. 7.4 is simply the familiar QMF. The 

analysis filters are

Hi{z)  =  Ga{z).

The synthesis filters are

Ho{z)  =  Fs{z)  

# i(z )  =
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When L =  3 the analysis and synthesis filter banks in Fig. 7.4 are 

equivalent to a two-level DWT and a two-level IDWT filter banks, resp. The 

analysis filters are determined as

The synthesis filters are

H 2 {z) =  Gs{z).

A L =  4 channel analysis and synthesis parallel filter bank is equivalent 

to a three level DWT and IDWT filter bank as shown in Fig. 7.1 and Fig. 7.2, 

resp. The four analysis filters are determined as

Hsiz) = Ga{z).

The four synthesis filters of the PRPFB are

^o(z) =

#2(z) =
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For five-channel PRPFB, the five analysis filters are

^2(z) =  FL(z)F.(z")G.(z")

/fsW  =

7^4^  =  G.(z).

The five synthesis filters are

#i(z) = GXz»)F,(z")FXz")F,W

= GXz')FXz)

#4(z) =  G ,M .

It is possible to create PRPFBs with more than five channels in the 

preceeding manner. This chapter stops at five channels because a five channel 

filter bank implemented separably for image processing produces a twenty-five 

channel two dimensional filter bank. This quantity is adequate for the work 

presented in the next chapter.

7.2 Uncertainty of a M ulti-Channel Filter Bank

In this section, a novel uncertainty measure will be defined for multi-channel 

parallel filter banks described in Section 7.1. This measure will quantify the 

conjoint localization of an L-channel parallel filter bank as the weighted arith
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metic mean of the conjoint localizations in time/space and frequency of the 

analysis filters which comprise the filter bank.

The formulation of uncertainty in HWUP is the product of a signal’s 

time/space variance and frequency variance. This can be considered as an area 

of a tile defined on the time-frequency plane. In considering a quantification 

of uncertainty of a multi-channel filter bank, the geometric mean of the mod

ified uncertainty of each analysis filters can be considered as an area defined 

on a hyperplane. One could thus argue that this formulation is analogous with 

the quantification and conceptualization of uncertainty used in the HWUP 

extended to the time-frequency hyper plane. Then achieving small geometric 

mean would only require one of the filters in the bank to possess small lo

calization in the either time or the frequency domain. Therefore quantifying 

uncertainty as the geometric mean of the conjoint localization of each filter in 

the bank does not prove adequate time or frequency resolution for the purpose 

of the image analysis given in the next chapter.

The arithmetic mean of the time and frequency variances can be con

sidered as the length of the diagonal of a tile in the time-frequency plane. It 

is clear that the length of this diagonal attains a minimum when the sides are 

equal. The weighting of the time and frequency localization is based on the fre

quency domain partitioning of the filter bank construction given in Section 7.1 

and will be explained in greater detail later in this section.

Since the filters used in this dissertation are all real-valued, it is neces

sary to modify the frequency variances of the mid-frequency pass band analysis 

filters. Since this dissertation is concerned with directly extracting conjoint lo

cal features from a signal or image, only the analysis filters are considered. The
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synthesis filters are not considered to be directly related to the time-frequency 

localization, though this will be a topic for future work. Rationale for the 

modification is easily understood by considering the following theorem.

T heorem  17. The band pass filters Hi{z), H 2 {z), . . . ,  17^-2(-z) of an L channel 

parallel filter bank shown in Fig. 7.4 exhibit zeros at z = ±1.

P roof: The construction of Hi{z)  for f =  1 ,2 , . . . ,  L -  2 can be described as

k—1

Since Hi{z) is a FIR filter, there are no poles to consider that may cancel out a 

zero. Since Fa{z)  has a zero at z — —1, the filter Hi{z)  =  (z  +  l)p(z) for some 

polynomial p{z)  and z =  — 1 is a root of Hi{z) .  The filter Ga{z) has a zero at 

z =  1, thus Ga(z) =  (z — l)g(z) for some polynomial q{z). The band pass filter 

can be factored as Hi{z) = _  l)q(z) for some polynomial g(z). Thus

Hi{z) has a root at z =  1. Q.E.D.

Fig. 7.5 shows the magnitude terms of i?i(z) for a four channel parallel

fitler bank when a Daubechies length six orthogonal QMF is used. The length 

of the filter is thirty-six^. Since the filter is real-valued, a conjugate symmetry 

relationship exists between the D F T  terms Ffi[k] and i?i[35 — k], i.e., Hi[k] = 

— k], where k =  1,2, . . . ,16.  Thus the magnitude terms |i?i[A:]| and

|i7i[35 — fc]| for k = 1 ,2 , . . . ,  16 are equal. From Fig. 7.5, the term which

corresponds to z — 1 is 27i[0] and is equal to zero. The term that corresponds 

to z =  — 1 is i7i[16] and is also zero.

M he length of each filter in the filter bank will be discussed in the following section.
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/ i

10 20 25 30 35

Figure 7.5: The magnitude terms of Hi{z)  using a Daubechies length 6 QMF 
to implement a four-channel parallel filter bank.

In light of Theorem 17 and the fact that the filters will be restricted to be 

real-value, which will imply conjugate symmetry in the D F T  domain, it is only 

necessary to consider the D F T  on the discrete values 0, 1, . . . ,  y  where Hi{z) 

is a length-Æ sequence. To characterize conjoint localization of a L-channel 

filter bank, let {h) be the set of appropriately zeros padded analysis filters in 

an L-channel parallel filter bank and Fx, ((h)) be the weighted arithmetic mean 

of the modified uncertainty of each analysis filters, i.e.,

=  2 < (
1 1 1

- t - -h a (7.1)

where h[n] = -^^h[n], r - - ,  and r~i are defined in equation (4.11) and (4.12),
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a rri =  mm 
‘"’H ;e[o.f] k=0

H (7.2)

H\k] =  <! for fc =  0,1, • • •, f
 ̂  ̂ ^ 0  for A: =  f +  l , f +  2 , . . . , i V - l ,

N
2

/i;

(7.3)

(7.4)
k= 0

and H[k] is the D F T  of h[n].

The weighting of the frequency variance is induced by the partitioning 

of the frequency domain. For example, in the four-channel case, assuming that 

one-half period of the frequency domain is the unit interval [0 , 1 ], then, using 

real-valued filters, the three-level wavelet transform partitions the unit interval 

into [O, | ] ,  [ |,  |] ,  [ |,  I], and [ |,  l] that the pass band of ho, h i, hg, and ho 

resp., occupies. Thus the frequency variance of cr̂   ̂ and j-j-  ̂ are weighted 

by cr̂  j-g j is weighted by | ,  and I- Since reciprocal relations hold

between the time variance and frequency variance, the weightings for the time 

variances are the exact reverse of the frequency variance weights. Thus the 

time variances r-̂ -, and cr̂  are weighted by 5 , is weighted byn, hi

frequency variances r~ 1 and cr̂  r- i

by  ̂ '

,[fo] 
)£

are weighted by ^

and (T̂  p  I is weighted by | .  In general, for an T-channel parallel filter bank, the

cr̂  r~ 1 is weighted2̂ -1 )

w,[h3 ] weighted by

variances an,

, and p  j weighted by The time 

weighted by p̂  ̂ is weighted by p̂ ^

is weighted by | ,  . . . ,  and p^ 1 is weighted by
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7.3 Optimal M ulti-Channel Filter Bank

In this section optimal L-channel parallel filter banks for L =  2, 3,4, 5 will be 

determined. The objective function used to define optimal will be to minimize 

the filter bank uncertainty P( ( f i ) )  as defined in equation (7.1). These filter 

banks will be created from a perfect reconstruction QMF. Thus the L-channel 

parallel filter bank will possess the perfect reconstruction property. Though 

there are many QMF’s, this section will focus on five well known QMF’s. They 

are the length six orthogonal Daubechies QMF {DBq), the biorthogonal length 

three low pass analysis with a length five high pass analysis QMF (B03/5) by 

Daubechies^, the biorthogonal length six low pass analysis with a length two 

high pass analysis QMF (B06/2), the biorthogonal length four low pass analysis 

and length four high pass analysis (B04/4) QMF, and the length six coifiet 

QMF (Coif). If necessary, the filters which compose the QMF are zero padded 

to length six for the sake of fair comparison. The four filters that constitute 

D B q, B03/5, B06/2, B04/4, and the Coif QMF are listed in Appendix C.

For a three channel PRPFB, the filters ho[n] and hi[n] are longer than 

fig [n]. In this case the length-A' used to determine localization for each filter 

is the length of ho[n], which is equal to the length of hi[n]. The filter fig[n] 

is zero padded to achieve the proper length. Since 1 am restricting to QMF’s 

which consist of length six filters, the value N  for a three channel filter bank is 

sixteen. In the four channel case the length of fio[n] and fii[n] is thirty-six. The

^This QMF is used in the JPEG  2000 compression standard and is commonly referred 
to as the biorthogonal 5/3. The analysis and synthesis filters of the biorthogonal 5/3 are 
respectively the synthesis and analysis filters of the biorthogonal 3/5. The uncertainty mea
sure of the latter is reported, since it yield, a larger weighted arithmetic mean in every case 
than the former.
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analysis filters h2 [n] and hs[n] are zero padded to length thirty-six. In the five 

channel case the length of ho[n] and hi[n] is seventy-six. The analysis filters 

h 2 [n], and h^[n] are zero padded to length seventy-six. The appropriately

zero padded filters are used to determine the filter bank uncertainty T2,(-) given 

in equation (7.1).

Table 7.1 lists the filter bank uncertainties for the two, three, four, and 

five channel cases. In all cases the Coifiet QMF exhibits the lowest filter bank 

uncertainty measure. The biorthogonal B04/4 yeilding the worst filter bank 

uncertainty.

The length six biorthogonal QMF found in Chapter 6 that minimized 

7 g f̂  does not minimize F^ ((/i)). Since I want to show that smaller filter bank 

weighted uncertainty measure leads to small cummulative reconstruction er

rors, 1 do not include the evaluation of the QMF’s given in Chapter 6 in this 

dissertation.

The reconstruction error evaluation in this dissertation is restricted to 

QMF’s composed of length six filters. It is published in [41] that all length six 

scaling functions of an orthogonal QMF can be defined by two variables, a  and 

(3 in the following way:

[(1 T cos a  4- sinQ:)(l — cos/3 — sin/3) T 2 cos a; sin/3]
/a[0] —

/a[l] ^

/a [2] =

/a  [3] =

V32
[(1 — cos CK -t- sin (u)(l 4- cos /3 — sin/3) -  2 cos a  sin /3] 

[1 4- cos (a  — /3) 4- sin ( a  — (3)]
71 ’

[1 4- cos (a  — /3) — sin {a — /3)]
7 8

/a[4] =  “  /a[0] -  /a[2],
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C oif DBe B 0 6 /2 B 0 3 /5 B 0 4 /4
Pgf) 1.2746 1.3148 1.327 1.3575 1.7666
P3() 5.9007 6.3985 6.5831 7.1363 10.8768
r4(-) 26.4128 28.6159 30.1205 33.6001 52.664
rs(-) 113.549 122.1118 130.2016 146.1098 230.0551

Table 7.1: Two, three, four, five channel filter bank uncertainties using the 
length 6 Coifiet (Coif), Daubechies length 6 (DBg), the biorthogonal 6/2 
(B06/2), the biorthogonal 3/5 (B03/5), and the biorthogonal 4/4 (B04/4), 
QMFs.

/a[5] =  ÿ g  -  /a[l] -  /a[3].

An exhaustive search, where a  and /? were allowed to vary from —tt to tt was 

performed with the objective to minimize F5 (-). The search determined an 

orthogonal QMF that was nearly exactly equal to the length six Coifiet. The 

filter bank uncertainty F 5 (-) differed by only one-tenth less than the uncertainty 

using the length six Coifiet QMF. Since the filter bank uncertainty of the QMF 

found in the search is nearly equal to the length six Coifiet QMF, I proclaim the 

Coifiet QMF the optimal five channel PRPFB from the set of the five QMFs 

in consideration.
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Im age A nalysis

The final goal of this dissertation is to recover a real value image from its 

amplitude and frequency modulations. To accomplish this, the real valued 

image I and the directional two dimensional Hilbert transform of the image H 

multiplied by the imaginary unit j  are summed to produce the analytic image

S. The analytic image S is defined as

S[n, m] =  I[n, m] +  jH[n,  m] (8.1)

where I[n,m] is the original image and H[n,m] is the directional two dimen

sional Hilbert transform of I[n, m\. This dissertation does not cover the details 

of the discrete version of the directional two dimensional Hilbert transform. 

The discrete theory of the directional two dimensional Hilbert transform is 

treated comprehensively in [11].

8.1 Analysis and Synthesis Algorithm

The analytic image S is passed through a multi-channel analysis filter bank to 

separate spectral components. The filter bank needs spectral localization to 

resdue components and needs spatial localization to capture local image fea

tures. In gist, the filter bank must be conjointly well-localized in the spatial

1 0 2
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and spectral domains to capture the local features inherent to the image. It 

is desirable to be able to recreate the original image from the outputs of the 

analysis filter bank so that no information is lost. The filter bank must provide 

an adequate number of subband channels to resolve the frequency contents of 

the image. These considerations justify the use of the L-channel filter banks 

constructed from the Coifiet QMF. Since in Section 7.3, the filter bank con

structed using the Coifiet QMF attained smaller filter bank uncertainty Fi(-). 

Eventhough the L-channel PRPFB were constructed to render perfect recon

struction, regardless of their uncertainty measure, it is expected and is shown 

that the filter bank constructed using the length six Coifiet QMF results in 

smaller reconstruction errors. In the evaluation used in this dissertation, the 

original image I is reproduced as the real part of the sum of the analytic sub

band images at the output of the synthesis filter bank,

J[n, m] =  Re
L-l
^  Si,k[n,m]
'■,k=0 
L -l
V  {Ii,k[n, m] +  jHi^k[n, m]) 
;,fc=o

—  ^2

Re
J , k —0

L -l 

l,k=0

where is the output image of channel C^k- Channel is defined to

be filtering the rows of the input image S by Hi{z), followed by filtering the 

columns of S by Hk{z). After the appropriate downsampling and upsampling, 

th e  colum ns are filtered by Hk{z) th e n  filtering  th e  rows by Hi{z) produces th e  

output

Though the real part of the sum of all the produces the the original 

real-valued image I, the down sampling and up sampling between the analysis
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filter bank and the synthesis filter bank are not shift invariant and dramatically 

changes the spectrum at the output of the analysis filter bank. The dramatic 

and unpredictable change to the spectrum occurs when down sampling. It 

is difficult, if not impossible, to determine the D F T  of the down sampled 

signal/image from the D F T  of the signal/image prior to down sampling. The 

D F T  of the upsampled signal/image is easily determined as multiple periods 

of the D F T  of the signal/image post down sampling and prior to up sampling. 

In turn, the frequency resolution at the output of the synthesis filter bank is 

inadequate for determining instantaneous amplitudes and frequencies.

Let be the output image of the analysis filter bank prior to down- 

sampling. If transient stages are ignored, this image is the same dimension 

as the original image. Since the goal is to describe an image in terms of 

its instantaneous amplitudes and frequencies, attaining a full resolution im

age is important. The five channel filter bank created by the Coifiet QMF as 

described in Chapter 7 provides the best trade off not only for the conjoint 

localization of each filter in the analysis filter bank but also inter-filter rela

tionships within the analysis filter bank are accounted for by Fl (-) given in 

equation (7.1). The images immediately at the output of the analysis filter 

bank prior to downsampling achieves the best time-frequency resolution. In 

addition, perfect reconstruction is still possible.

The implementation of the analysis filter bank is performed in the D F T  

domain. Precisely the impulse response of the separable analysis filter is zero 

padded to the dimensions of the original image. The filter is transformed into 

the D F T  domain. The D F T  of the non-low pass filters where I ^  0 and 

k ^  0 are split to provide orientation selectivity. This is required to separate
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image features which reside in the same subband but are perpendicular into 

different channels. This separation is necessary, otherwise, it would result in 

components with poor local coherency, causing large demodulation errors. The 

result of the split produces filters and ïli,k,b- The support of con

sists of quadrants I and III of the two dimensional D F T  domain. The support 

of 'iHî k,b is quadrants II and IV of the two dimensional D F T  domain. To il

lustrate, Fig. 8.1 shows the log magnitude spectrum  ̂ of the channel 

The spectrum has been shifted so that the origin is in the center of the image. 

Fig. 8.2 show the output of the using the lena image. It is quite notice-

Figure 8.1: Log magnitude spectrum of ^ 3  3 (2 ;).

^The log magnitude spectrum of channel H i j { z )  is defined as log(l 4- \Hk, i [n,m]
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Figure 8.2: Output of ff 3 ,3 (z) using the lena image.

able even to the untrained that the image consists of perpendicular edges and 

features, which results in poor local coherency and eventually large demodu

lation errors in the reconstruction. This problem is easily remedied, since the 

non-low pass channels, i.e., Hk,i{z) for A; ^  0  and / 7  ̂ 0 , is zero on the axis of 

the shifted spectrum. This is due to Theorem 17 and the separable construc

tion of the filter bank. The non-low pass channel can be split in two separate 

channels each with different orientation. This split is illustrated in Fig.s 8.3 

and 8.4 which shows the shifted log magnitude spectrum of channel ff 3 ,3 ,t(z) 

and ff3 ,3 ,b(z), resp. The channel ^ 3 3̂ (z) can be recreated by adding ^ 3 _3 _((z) 

with 7 f 3 ,3 ,b(z). It is evident from Fig.s 8.5 and 8 . 6  that splitting the channel 

into orientation selective channels separates perpendicular edges and features.
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Figure 8.3: Log magnitude spectrum of FT3 ,3 ,f(z).

For example, the top edge of lena's hat and the edge on the brim of her hat, 

which are perpendicular edges, are separated into different channels. Thus the 

non-low pass channels are made orientation selective in this manner. It should 

be pointed out that the orientation selective channels are no longer separable. 

Most importantly, the splitting did not effect the localization of the channel.

Splitting the non-low pass filters in this manner produces a filter bank of 

forty-one channels in which the non-low pass channels are non-separable. The 

complex output of the forty-one channel filter bank is determined by multiply

ing the two dimensional D F T  of the analytic image S with the two dimensional 

D F T  of filter where f, A; G [1,4], T G {t,b} or to the filter if either
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Figure 8.4: Log magnitude spectrum of

I or k is equal to zero. The complex images and 8;̂  ̂ are the outputs of 

the forty-one channel analysis filter bank.

The analysis filter bank complex output images and Si^k are used to 

determine the amplitude and frequency modulation components of the original 

image I. The method used to determine frequency component of each pixel 

from the frequency modulation component of Si^k,x and is given in [10]. 

Let Ai^k,x and Ai^k be the images after AM-FM demodulation. If Ai^k,x = ^i,k,x 

and Ai^k = ^i,k for all l ,k  = 0,1, 2,3,4 and x = t,h  then this algorithm 

produces a perfect reconstruction of the original image I. Generally this is not 

the case. Rather Ai^k,x ~  ^i,k,x and % S/,fc and the AM-FM demodulation
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Figure 8.5: Output of using lena image.

of Havlicek, Harding, and Bovik introduces errors in the reconstruction. To 

prevent large reconstruction errors, I allow Ai^k,x[4m,4n] — 4n] and

A;_fc[4m, 4n] =  4n]. This ensure that errors do not proprogate pass a

four by four grid.

The error compensation stage of this algorithm does not account for 

errors associated with the AM-FM demodulation. The error compensation 

stage is needed to correct errors associated with the implementation of the 

analysis and synthesis filter banks. The five channel parallel analysis filter bank 

is equivalent to cascading a QMF at four levels via the Noble identities. This 

equivalence holds for linear convolution. The implementation of the analysis
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Figure 8.6: Output of Hz^z,b{z) using lena image.

filter bank is via multiplication in the D F T  domain, which is dual operation 

of circular convolution in the time/space domain. Thus there are wrap around 

errors which need to be removed to preserve perfect reconstruction.

After the error compensation stage the images are appropriately upsam

pled. The real part of the sum of the outputs of the synthesis filters gives the 

reconstructed image J[n,m\. Fig. 8.7 show the image analysis and synthesis 

algorithm used.



I l l

14,1 M

riuh(%)

w

HwhW

A
M
F
M

D
E
M
0  
D
U
I,
A
T
1
O
N

16.16

1 A», r
I________i

E
R
R
O
R
C
0
M
P
F
N
S
A
T
1
O
N

16.16

16,16

6.16

* 16,16

A,_b)

*  2 ,

Figure 8.7: The image analysis algorithm.



112

8.2 Evaluation Using Some Well-Known QM F’s

Several well known QMFs, the length six orthogonal Coiflet (Coif), the length 

six Daubechies orthogonal {DBq), the biorthogonal length six lowpass analysis 

and length-two high pass analysis (B06/2), the biorthogonal length three low- 

pass analysis and length five high pass analysis (B03/5), and the length four 

biorthogonal (B04/4) QMFs were tested. The criteria to judge the perfor

mance of each filter bank is the reconstruction cumlative squared error (CSE) 

which is defined as
N ,M

^  (8 .2)
n ,m = 0

The test images used in this evaluation are the 256x256 lena, girl, gauss, 

burlap, mandril, mandril, clown, salesman, lady, baby, and BuildingOOlO im

ages. The pixel values of all the images are scaled to be zero mean and range 

from -1 to 1.

The original lena image is shown in Fig. 8.8. Table 8.1 shows the recon

struction CSE associated with each QMF. It is shown that using the Coiflet 

QMF produces the smallest CSE, followed by using the D B q QMF, followed by 

B06/2, followed by B 03/5, followed by B 04/4  which has the largest CSE of 

all the QMFs tested. Comparing the result of Table 8.1 with the results of Ta

ble 7.1, we see that the same relation hold for CSE and filter bank uncertainty

Tsr).

Fig. 8.9 shows the best reconstruction of lena produced using a Gabor 

filter bank. This image has extensively been post processed. The lena image in 

Fig. 8.10 shows the reconstructed image using the length six Coiflet QMF. This 

image has the smallest reconstruction CSE and no post processing was done



113

C oif DBe B 0 6 /2 B 0 3 /5 B 0 4 /4
216.76 237.94 36&29 370.6 11083

Table 8.1: Reconstruction CSE of /ena using the length six Coiflet (Coif) QMF, 
the Daubechies length 6 (DBq) QMF, the biorthogonal 3/5 QMF (B03/5), the 
biorthogonal 6/2 QMF (B06/2), the biorthogonal 4/4 QMF (B04/4).

C o if DBe B 0 6 /2  B 0 3 /5  B 0 4 /4
358.26 378.32 386.66 407.54 10393

Table 8.2: Reconstruction CSE of using the length six Coiflet (Coif) QMF, 
the Daubechies length 6 {DBq) QMF, the biorthogonal 3/5 QMF (B03/5), the 
biorthogonal 6/2 QMF (B06/2), the biorthogonal 4/4 QMF (B04/4).

on this image. This image looks somewhat washed out, but this is due to large 

errors on a few pixels effecting the dynamic range when the image is contrast 

stretched. Nonetheless, the overall image has the least CSE. Fig. 8.11 shows 

the lena image reconstructed using the length six Daubechies orthogonal QMF, 

D B q. The reconstruction error CSE is not much worse than the reconstruction 

error using the Coiflet. The image quality of the two are roughly the same.

Table 8.2 lists the reconstruction C S E  of the girl image shown in 

Fig. 8.12. This table shows the relationship of the reconstruction CSE’s is 

the same as the relationship of the filter bank uncertainties. The data in this 

table re-enforcing the notion that smaller filter bank uncertainty translates to 

smaller reconstruction errors.

Table 8.3 lists the C S E  of the gauss image shown in Fig. 8.13.

Again, the results of Table 8.3 shows that smaller filter bank uncertainty implies 

smaller reconstruction CSE.

Table 8.4 lists the reconstruction C S E  of the burlap image shown in
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Figure 8.8: The original lena image.

C o if DBe B 0 6 /2 B 0 3 /5  B 0 4 /4
C S E 14296 14463 15429 18867 87899

Table 8.3: Reconstruction CSE of gauss using the length six Coiflet (Coif) 
QMF, the Daubechies length 6 (DB^) QMF, the biorthogonal 3/5 QMF 
(B03/5), the biorthogonal 6/2 QMF (B06/2), the biorthogonal 4/4 QMF 
( B 0 4 / 4 ) .

C oif DBe B 0 6 /2  B 0 3 /5 B 0 4 /4
C S E 928.09 1117.7 1785.3 2516 82271

Table 8.4: Reconstruction CSE of burlap using the length six Coiflet (Coif) 
QMF, the Daubechies length 6 (DBq) QMF, the biorthogonal 3/5 QMF 
(B03/5), the biorthogonal 6/2 QMF (B06/2), the biorthogonal 4/4 QMF 
( B 0 4 / 4 ) .
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Figure 8.9: The best reconstructed lena image using Gabor filter bank.
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Figure 8.10: Reconstructed lena image using Coiflet QMF filter bank.
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Figure 8.11: Reconstructed lena image using D B q QMF filter bank.
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Figure 8.12: The original girl image.

Fig. 8.14. Once again, my theory is supported by the data of Table 8.4. In 

addition, I can give a subjective comparison with the reconstruction using a 

Gabor filter bank  ̂ Fig. 8.15 is the reconstructed burlap image when a Gabor 

filter bank was used to determine the AM-FM image modulations. This image 

has undergone extensive post processing to arrive at the reconstruction seen in 

Fig. 8.15. The image shown in Fig. 8.16 is the reconstructed burlap image using 

the orthogonal Goiflet QMF. Though this image may seem washed, i.e., poor 

contrast, the reconstruction CSE is still less than using the other filter banks, 

which are not as well-localized. Poor contrast is due to a few pixels exhibiting

^Comparison on some images are only available, if my committee chair, Professor Joe 
Havlicek, has not lost the image in a past hard disk failure.
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Figure 8.13: The original gauss image.

large errors that is not accounted for when contrasted stretched. Thus effecting 

the dynamic range of the reconstructed image. The image in Fig. 8.17 is the 

reconstructed burlap image using the orthogonal length-six QMF, D B q. The 

reconstruction error of this image is greater than the image in Fig. 8.16 which 

is consistent with the filter bank uncertainty of D B q being greater than the 

filter bank uncertainty of the Coiflet QMF.

Table 8.5 lists the reconstruction C SE s  of the mandril image shown in 

Fig. 8.18. Since the extensively post processed reconstructed mandril image 

using Gabor filter bank is available, a comparison is given. Fig. 8.19 is subjec

tively the best reconstructed mandril image when a Gabor filter bank was used 

in determining the AM-FM modulations. When comparing this image with the



120

p : = : :

aititrtaA

Figure 8.14: The original burlap image.

C oif DBe B 0 6 /2  B 0 3 /5 B 0 4 /4
351.31 339.44 568.48 576.46 11503

Table 8.5: Reconstruction CSE of mandril using the length six Coiflet 
(Coif) QMF, the Daubechies length 6 (DBq) QMF, the biorthogonal 3/5 QMF 
(B03/5), the biorthogonal 6/2 QMF (B06/2), the biorthogonal 4/4 QMF 
(B04/4).
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Figure 8.15: The best reconstructed burlap image using Gabor filter bank.
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Figure 8.16: Reconstructed burlap image using Coiflet QMF filter bank.
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Figure 8.17: Reconstructed burlap image using D B q QMF filter bank.
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C oif DBe B 0 6 /2  B 0 3 /5 B 0 4 /4
149.11 161.96 311.93 268.71 9949.3

Table 8.6: Reconstruction CSE of clown using the length six Coiflet (Coif) 
QMF, the Daubechies length 6 (DBe) QMF, the biorthogonal 3/5 QMF 
(B03/5), the biorthogonal 6/2 QMF (B06/2), the biorthogonal 4/4 QMF 
(B04/4).

original m andril  image, noticeable intercomponent interference can be detected 

on the cheeks just below the eyes. In addition, there is blurring of the uncor

related noise like texture of the hair. The contrasted stretched reconstructed 

mandril  image using the Coiflet QMF can be seen in Fig. 8.20. The contrast 

stretched reconstructed mandril  using the orthogonal DB^ QMF is shown in 

Fig. 8.21. The reconstruction CSE using the Coiflet QMF is slightly and un

characteristically larger than the reconstruction CSE using the D B q QMF. The 

subjective differences between the two images is impossible to detect.

Table 8.6 lists the reconstruction C S E  of the clown image shown in 

Fig. 8.22. In this example, the reconstruction CSE using the biorthogonal 

B 0 3 /5  QMF is less than the reconstruction CSE of biorthogonal BOQ/2 QMF. 

This relationship is the reverse of their filter bank uncertainty, F5 (-). Never

theless the reconstruction CSEs using the Coiflet and DBq  QMF out performs 

the other three QMFs with the Coiflet reconstruction CSE being less than the 

DB q  reconstruction CSE.

Table 8.7 lists the reconstruction C S E  of the salesman  image shown 

in Fig. 8.23. Fig.s 8.24, 8.25, and 8.26 shows the reconstructed salesman  us

ing a Gabor filter bank, using the Coiflet QMF, and using DB q  QMF, resp. 

The reconstructed image using the Gabor filter bank has been extensively post
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Figure 8.18: The original mandril image.

C oif DBe B 0 6 /2  B 0 3 /5  B 0 4 /4
85.56 133.83 129.77 129.93 4246.8

Table 8.7: Reconstruction CSE of sa/esman using the length six Coiflet (Coif) 
QMF, the Daubechies length 6 {DBq) QMF, the biorthogonal 3/5 QMF 
(B03/5), the biorthogonal 6/2 QMF (B06/2), the biorthogonal 4/4 QMF 
(B04/4).
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Figure 8.19: The best reconstructed m andril image using Gabor filter bank.
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Figure 8.20: Reconstructed m andril image using Coiflet QMF filter bank.
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Figure 8.21: Reconstructed m andril image using D B e  QMF filter bank.
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Figure 8.22: The original clown image.
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C o if DBe B 0 6 /2 B 0 3 /5  B 0 4 /4
16.7 10.32 31.6 23.94 1477

Table 8.8; Reconstruction CSE of lady using the length six Coiflet (Coif) QMF, 
the Daubechies length 6 ( D B q) QMF, the biorthogonal 3/5 QMF (B03/5), the 
biorthogonal 6/2 QMF (B06/2), the biorthogonal 4/4 QMF (B04/4).

C oif DBe B 0 6 /2  B 0 3 /5  B 0 4 /4
cse 164.8 153.65 154.31 213.02 2392

Table 8.9: Reconstruction CSE of baby using the length six Coiflet (Coif) QMF, 
the Daubechies length 6 ( D B q) QMF, the biorthogonal 3/5 QMF (B03/5), the 
biorthogonal 6/2 QMF (B06/2), the biorthogonal 4/4 QMF (B04/4).

processed. Ringing effects are noticeable and intercomponent interference are 

detectable in the reconstructed image using a Gabor filter bank. The recon

struction CSE of the D B q is slightly larger than the CSE of BOQ/2 and B 03/5 .  

The reconstruction CSE of the optimally localized orthogonal Coiflet is dis

tinctly lower than the others.

Table 8.8 lists the reconstruction C S E  of the lady image shown in 

Fig. 8.27. The reconstruction CSE for the lady image using the any of the 

QMF except BOA/A is such a small quantity, I consider the reconstruction to 

be perfect in all four cases.

Table 8.9 lists the reconstruction C S E  of the baby image shown in 

Fig. 8.28. Though the reconstruction CSEs are unusually permuted, I do not 

consider the differences in the reconstruction error great enough to exclude this 

case as an example.
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Figure 8.23: The original salesman  image.
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Figure 8.24: The best reconstructed salesman  image using Gabor filter bank.
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Figure 8.25: Reconstructed salesman image using Coiflet QMF filter bank.
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Figure 8.26: Reconstructed salesman  image using DBq  QMF filter bank.
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Figure 8.27: The original lady image.
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Figure 8.28: The original baby image.



C hapter 9 

C onclusion and Future W ork

9.1 Conclusion

The principle of indeterminacy originally described by W. Heisenberg and 

agreed upon by H. Weyl has been influential in fields other than quantum 

mechanics. D. Gabor’s uncertainty relation of continuous finite energy signals 

is an example of this notion. Currently, many digital signal/image process

ing models discrete signals as a sampling of continuous signals and Gabor’s 

elementary functions are shown to minimize HWUP, finitely discrete sampled 

versions or approximations of Gabor functions are thought to be conjointly 

well-localized. Many applications in signal and image processing require fil

ters and/or filter banks, which are conjointly well-localize such as the AM-FM 

Image Model described in Chapter 2.2. Thus, quantification and conceptual

ization of uncertainty in the finite discrete time and finite discrete frequency 

domain is not only of great academic interest but practical in application.

Chapter 2.4 briefly describes the major current uncertainty principles 

used in signal/image processing. Some of these measures of uncertainty attempt 

to resemble the uncertainty measure used in HWUP, i.e. based on a probablity 

distribution, characterized as a product of second moments, translation and 

modulation invariant, etc. An original contribution of this dissertation is a

137
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novel measure of uncertainty applicable to finite length discrete sequences. This 

measure is taken directly from the context of discrete probability distributions 

and discrete random variables. It is analogous to HWUP in that it admits an 

attractive, intuitive interpretation as a product of variance in time and variance 

in frequency. The new uncertainty measure is made invariant to shifts in time 

and in frequency by defining it on equivalence classes of sequences. The fact 

that modulations and translations of finite sequence determine an equivalence 

class which is respected by the discrete Fourier transform has made time and 

frequency invariance possible for other uncertainty measures. The uncertainty 

measure proposed in this dissertation is classically defined as the minimum 

product of time variance and frequency variance taken from the class of all 

possible translations and modulations. Thus, the new measure is both shift 

invariant and modulation invariant.

When restricted to scaling function of a orthogonal or biorthogonal 

Q M F\ an unattainable non-zero^ lower bound for the uncertainty maybe for

mulated as the product of smallest time variance given by the Haar scaling 

function and the smallest fequency variance given the ideal finite discrete fil

ter. In both the orthogonal and biorthogonal case, a search algorithm was used 

to determine a conjointly well-localized scaling FIR function. Since the only 

linear phase orthogonal scaling function is given by the zero padded Haar func

tion, the search algorithm determined a non-orthogonal linear phase FIR filter. 

Though still not an attainable lower bound for orthogonal scaling functions, the 

uncertainty measure of these symmetric filters provided a better lower bound

^This restriction is made to emulate the restriction of Gabor’s HWUP only applies to 
continous functionsl.

^For lengths greater than two.
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than the product of the time variance of the Haar filter and the frequency 

variance of the ideal filter.

When the search was applied to symmetric scaling functions of biorthog

onal QMFs, better conjoint localization (compared to the orthogonal case) was 

possible. A conjointly, well localized biothogonal length six and eight scal

ing functions (as compared to the zero padded Haar scaling function,

Daubechies wavelets, and symlet wavelets), were constructed using the search 

algorithm in Section 6.4.2. In addition, these quantities were attainable by 

biorthogonal scaling functions. The other three filters of the length six and 

eight biorthogonal QMF were found using a technique develop by Vetterli and 

Le Gall described in Section 6.4.2. This rendered a perfect reconstruction QMF 

in which the low pass analysis filter is conjointly well-localized.

The principle of indeterminacy was extended to L-channel P R P F B , 

which correspond to an L — 1 level DWT. Since the filters in the L-channel 

P R P F B  exhibit strong interdependencies, it was necessary to define uncertainty 

of a filter bank with these dependencies in mind. Though it may be necessary 

for future work to include the localization of the synthesis filters in the fil

ter bank uncertainty, in this dissertation only the localization of the analysis 

filters are used. The weighted arithmetic mean of the time variances and fre

quency variances, in which the frequency variances of the band pass channels 

were modified, of the analysis filters were used to quantify the localization of 

th e  L -channel P R P F B . T h e  weighting function  was de te rm ined  by th e  m an n er 

in which the L — 1 level wavelet transform dyadically partitions the spectral 

domain.

From a set of well know QMFs the Coiflet QMF provided the best L-
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channel PRPFB localization for L =  2, 3, 4, and 5 as determined by smallest 

uncertainty P l(')- The five channel PRPFB was used to separate spectral com

ponents of an image. The two dimensional perfect reconstruction filter bank 

was constructed by implementing the one dimensional five channel PRPFB on 

the rows of the image then the filter bank was applied to the columns, i.e. 

separably. In the two dimensional band pass channels the spectrum of the 

corresponding analysis filter was decomposed to provide orientation selectiv

ity. This decomposition affected neither the localization nor the reconstruction 

ability of the filter bank. This construction provided a two dimensional filter 

bank in which optimal localization^, orientation selectivity, and perfect recon

struction are all attained.

Using lena, girl2, gauss, burlap, mandril, clown, salesman, lady, and 

baby as test images, it was shown that the CSE of the reconstructed image 

is lower when using a filter bank with smaller filter bank uncertainty measure 

F/,(-). This experiment supports our expectation: the multicomponent AM- 

FM image model found in [10] is better at representing the original image and 

lowering reconstruction errors when a conjointly well localized analysis filter 

bank is used.

9 .2  F u tu r e  W o rk

The science of digital signal processing is relatively new when compared to fields 

like mathematics and physics. It is neither amazing nor undesirable that ideas 

and concepts from mathematics and physics apply to signal processing. There

^Optimal localization is in the one dimensional case. Optimizing in multi- dimension will 
be left for future work.
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are tremendous advancements to be made in signal/ image/ video processing by 

rigorously applying the knowledge and practices of these fields. There are many 

questions which were raised during the course of this research. These questions 

will require extensive research and creativity to answer. Some of the questions 

were pursued in a literary search, which ended in a unsatisfactory result. Hence 

are included in this dissertation as a declaration for future work.

It is always a worthwhile pursuit to generalize one dimensional signal 

processing concepts to multi-dimensions. It is not so large a step to generalize 

the uncertainty measure in equation (4.15) to multi-dimensions. Rather, 

restricting the the multi-dimension uncertainty measure to finite discrete multi

dimensional signals which correspond to multi-dimensional continuous func

tions with compact support will be a work of great proportion. Mathemat

ically precise working defintions and properties in which to construct multi

dimensional QMF will be a monumental task. Completion of this task will 

allow the use of a two dimensional non-separable filter bank to be implemented 

in the image analysis technique described in Chapter 8.

It is not necessary to wander into higher dimension to find interest

ing research. QMFs are a specific class of filter banks commonly know as L- 

channel maximally decimated perfect reconstruction filter bank (MDPRFB). 

An I/-channel MDPRFB requires L analysis filters and L synthesis filters. In 

addition, the output of the analysis filter bank in each channel is down sampled 

by a factor of L  and subsequently up sampled by L prior to applying the syn

thesis filters. When L is equal to two, this filter bank is the well studied QMF. 

When L is equals two raised to some positive integer power, like four, eight, 

sixteen, etc., then a L-channel MDPRFB can be constructed simply by cas-
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cading the two channel QMF to the all the branches. This is generally known 

as a wavelet packet. When our attention turns to L’s, which are not two to 

some positive power, Some interesting questions arise. For example, does a 

six channel MDPRFB exist? If they do exist are they equivalent to a filter 

bank composed of cascading all the Pi channel MDPRFB where Pi is a prime 

factor of L? For example, given a six channel MDPRFB, is there a filter bank 

composed of cascading a QMF with a three channel MDPRFB or by cascading 

a three channel MDPRFB with a QMF which is equivalent to the given six 

channel MDPRFB? If odd channel MDPRFB’s are possble then the problems 

encountered using multi-sampling rates would be alleviated.

In the Chapter 8, a conventional DWT at four level was used to deter

mine AM-FM components of an image. The DWT at successive levels splits the 

low frequency channel. This is not necessary for perfect reconstruction. It is 

possible to devise a transform where the split into two channel does not always 

occur at the low frequency channel. It maybe more advantageous to construct 

a transform in which the filter bank resolves a band pass channel as opposed 

to the low pass channel. The channel to be resolved may be dependent on 

the frequency content of the signal or image. It maybe advantageous to devise 

the filter bank based on some image statistics. Which statistics and how they 

related to filter bank construction are of practical interest.

There are other interesting topics related to the work in this dissertation 

to  explore. T h e  few listed  in  th is  d ec la ra tio n  seem  th e  m ost p rom inen t in 

extending the research presented in this dissertation. The rigorous and concise 

study of the topics outline in this chapter will provide immediate and insightful 

contributions to the field of signal and image processing.
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Appendices



A p pend ix  A  

P lo ts  o f Functions P^ax and Pmin

The following figures in this appendix are plots of Tmax(A) and rmin(^) where 

0 < A < 1 for lengths TV =  6 , 8,10,12,14,16,18, 20. The functions FmaxCA) and 

rmin(A) are defined in chapter 6.3 equations (6.43) and (6.45), resp. Though 

these figures do not conclusively prove the claim that the phase terms of equa

tions (6.23) and (6.24) are a global maximum and a global minimum when the 

magnitude terms satisfy the conditions specified in chapters 6.4.1 and 6.4.2, 

these figures do support this claim. Thus the use of the function in equa

tion (6.22) as the phase term in the search algorithm of chapters 6.4.1 and 6.4.2 

is justified by this claim.
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05 080.2

Figure A.l: Plot of Fi^ax(A) of the length 6 filter f  defined in equation (6.44) 
for 0 <  A < 1.
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Figure A.2: Plot of rmin(A) of the length 6 filter f defined in equation (6.44)
for 0 < A < 1.
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0.90.3

Figure A.3: Plot of P m £ « ( A )  of the length 8 filter f  defined in equation (6.44) 
for 0 < A < 1.

0.1 0.3 0.6 0.7

Figure A.4: Plot of Fniin(A) of the length 8 filter f  defined in equation (6.44)
for 0 < A < 1.
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Figure A.5: Plot of Finax(A) of the length 10 filter f  defined in equation (6.44) 
for 0 < A < 1.

0.3

Figure A.6; Plot of Fmm(A) of the length 10 filter f defined in equation (6.44)
for 0 < A < 1.
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0,4 06

Figure A.7: Plot of Fmax(^) of the length 12 filter f  defined in equation (6.44) 
for 0 < A < 1.

Ü.6U 1

Figure A.8: Plot of Fmin(A) of the length 12 filter f  defined in equation (6.44)
for 0 < A < 1.
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4»

05

Figure A.9: Plot of Fmax(A) of the length 14 filter f defined in equation (6.44) 
for 0 < A < 1.

03 0.&

Figure A. 10: Plot of Fmin(-̂ ) of the length 14 filter f  defined in equation (6.44)
for 0 < A < 1.
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0,4

Figure A.11: Plot of Fmax(A) of the length 16 filter f  defined in equation (6.44) 
for 0 < A < 1.

1

Û.1 D.4 0.5

Figure A.12: Plot of Fmm(A) of the length 16 filter f defined in equation (6.44)
for 0 < A < 1.
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Figure A. 13: Plot of Fmax(A) of the length 18 filter f defined in equation (6.44) 
for 0 < A < 1.

Figure A.14: Plot of P m in (A ) of the length 18 filter f  defined in equation (6.44)
for 0 < A < 1.
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05 0,0 0.9

Figure A. 15: Plot of Finax(A) of the length 20 filter f  defined in equation (6.44) 
for 0 < A < 1.

1.43

Figure A. 16: Plot of P m in (A ) of the length 20 filter f  defined in equation (6.44)
for 0  <  A < 1.



A pp en d ix  B  

Search R esu lts o f Section  6.4.1

The best localized filter e  is

=  0.00097755285610 =  y^[9]
=  0.00020212581019 =  y«p([8]
=  -0.0292317911516 =  /=p([7]
=  0.02926361329492 -
=  0.70589528037703

The time variance for this filter is

cr̂ jfopt] =  0.2637

and the frequency variance is

The joint uncertainty is

— 2.9263.

7io,f°p‘ =  0.7717.
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The best localized filter G B '12 is

-0.00000289471504 =
0.00065979348988 =  f°p̂ [10]

= 0 .00059110696006 =  /°P'[9]
= -0.02971968049867 =

0.02972257521371 =  M [7]
= 0.70585588073661 =  /°P*[6].

The time variance for this filter is

[fopt] — 0 .2642

and the frequency variance is

cr .̂ffopt] — 4.2079.

The joint uncertainty is

7i2,fopt =  1.1116.
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The best localized filter E is

f°pt[0] = -0.00158529669169 =  /°^’*[13]
M [ l ]  =  0.00192275459981 =  /° p*[12]
fopt[2] =  -0.00141183651197 =  / “̂ ‘[ll]
f°pt[3] =  0.00263148266877 =  /°p‘[10]
fopt[4] =  -0.03111890876758 =  f°P*[9]

== 0.03093528385826 == jr%*[8]
/op* [6] =  0.70573330203094 =  f°P*[7].

The time variance for this filter is

and the frequency variance is

cr^ ĵfopt] =  5.7033.

The joint uncertainty is

7i4,fop‘ “  1.5178.
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The best localized filter G is

-0.00003487499231 =  j"P^15]
= 0.00058416625621 =  jr*^14]

M [2 ] = -0.00059007570920 = /°î’*[13]
r*[3] = 0.00042956131426 =  jT*112]

0.00022402630573 =
= -0.02089780602489

yop([6] ^ 0.02090371547788 =  /°pt[9]
yop([7] = 0.70648806855886 =

The time variance for this filter is

[fopt] — 0.2570

and the frequency variance is

— 7.7251.

The joint uncertainty is

7i6,fopt — 1.9857.
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The best localized filter G B[g is

fopt^  = 0.00061899820684 == jr*'[i7]
-0.00064969560982 =  J"P 1̂6]
-0.00026258320251 == jT*^15]

= 0.00017939412897 = r^*[14]
= 0.00226696548146 = r^*[13]
= -0.00113839278178 = /«P‘[12]

-0.02842125053982 = r^*[ii]
= 0.02856067064159 =  /°p*[io]

0.70595267486162 =

The time variance for this filter is

and the frequency variance is

The joint uncertainty is

7i8fopt =  2.5041.
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The best localized filter G B 2 Q is

n ]  = -0.00004324906913 == /°P'[19]
n l ]  = 0.00055735837877 == yopt[18]

= -0.00046835044924 == yopt[i7]

-0.00096769015396 ==
= 0.00106040023790  = M [15]

0.00006499402194  - yopt[14]
y°p*[6] = 0.00119337996413 = /°P*[13]

= -0.03084394524167 == M [12]
0.03079448422686 == /*P'[11]
0.70575939927094 == /%d[10]

The time variance for this filter is

and the frequency variance is

cr^_[fopf] =  11.6458.

The joint uncertainty is

720,f opt =  3.0915.



A p p end ix  C 

W ell K now n Q uadrature M irror F ilter Banks

This Appendix gives the filters which compose the QMF’s used in Chapters 7 

and 8.

n fa[n] ffa[n] fs[n]
0 0.03522629188210 -0.33267055295096 0.33267055295096 0.03522629188210
1 -0.08544127388224 0.80689150931334 0.80689150931334 0.08544127388224
2 -0.13501102001039 -0.45987750211933 0.45987750211933 -0.13501102001039
3 0.45987750211933 -0.13501102001039 -0.13501102001039 -0.45987750211933
4 0.80689150931334 0.08544127388224 -0.08544127388224 0.80689150931334
5 0.33267055295096 0.03522629188210 0.03522629188210 -0.33267055295096

Table C.l: The Daubechies length six (D-Bg) QMF.

n fa[n] fs[n] ffs[n]
0 0 0 0 0
1 0.35355339059327 0.17677669529664 -0.17677669529664 0.35355339059327
2 0.70710678118655 0.35355339059327 0.35355339059327 -0.70710678118655
3 0.35355339059327 -1.06066017177982 1.06066017177982 0.35355339059327
4 0 0.35355339059327 0.35355339059327 0
5 0 0.17677669529664 -0.17677669529664 0

Table C.2: The biorthogonal 3/5 (S 0 3 /5 ) QMF.
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n fa[n] 9a[n] fs[n] 9s[n]
0 -0.08838834764832 0 0 -0.08838834764832
1 0.08838834764832 0 0 -0.08838834764832
2 0.70710678118655 -0.70710678118655 0.70710678118655 0.70710678118655
3 0.70710678118655 0.70710678118655 0.70710678118655 -0.70710678118655
4 0.08838834764832 0 0 0.08838834764832
5 -0.08838834764832 G 0 0.08838834764832

Table C.3: The biorthogonal 6/2 (5 0 6 /2 ) QMF.

n fa[n] 9a[n] fs[n] 9s[n]
0 0 0 0 0
1 0.17677669529664 -0.35355339059327 -0.35355339059327 -0.17677669529664
2 0.53033008588991 -1.06066017177982 1.06066017177982 0.53033008588991
3 0.53033008588991 1.06066017177982 1.06066017177982 -0.53033008588991
4 0.17677669529664 0.35355339059327 -0.35355339059327 0.17677669529664
5 0 0 0 0

Table C.4: The biorthogonal 4/4 (5 0 4 /4 ) QMF.

n fa[n] 9a[n] fs[n] 9s[n]
0 -0.01565572813546 0.07273261951285 -0.07273261951285 -0.01565572813546
1 -0.07273261951285 0.33789766245781 0.33789766245781 0.07273261951285
2 0.38486484686420 -0.85257202021226 0.85257202021226 0.38486484686420
3 0.85257202021226 0.38486484686420 0.38486484686420 -0.85257202021226
4 0.33789766245781 0.07273261951285 -0.07273261951285 0.33789766245781
5 -0.07273261951285 -0.01565572813546 -0.01565572813546 0.07273261951285

Table C.5: The length six Coiflet (Coif)  QMF.


