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CHAPTER I 

INTRODUCTION 

Antral follicular growth in farms animals such as cattle, goats, sheep, horses, and 

buffaloes occurs in a cyclic pattern called follicular waves. For monovular species, cattle 

have become a good model in studying follicular dynamics. The 2 to 3 follicular waves 

occur on day 2 and 11, or 2, 9, and 16 of the estrous cycle, respectively, following an 

increase in serum FSH levels. Usually, the last follicular wave generates the ovulatory 

follicle unless the dominant follicle of earlier waves is induced to ovulate by PGF2a 

(Fortune et al., 2001 ). It is however, the first follicular wave that is popularly used in 

most studies because it is unaffected by any previous wave making key events such as 

follicle emergence, selection, and dominance predictable. 

Follicle wave emergence is the first day when 4 mm antral follicles are detectable 

via ultrasonography (Evans, 2003). Studies utilizing the first follicular wave (Mihm et 

al., 1997; 2000; Austin et al., 2001) showed that FSH concentrations peak to about 30-40 

ng/mL, coincident with ovulation on day l of the estrous cycle (Ireland and Roche, 

2000). This rise in FSH stimulates about 24 follicles to emerge and grow beyond 3 mm 

in diameter. About 29% of these follicles (7 out of24) grow 2: 6 mm and enter the 

selection phase by day 3 of the estrous cycle, while the rest grow to a maximum diameter 

of 4 to 5 mm (Ginther et al., 1996). 



The reduction in the number of follicles growing in the cohort marks the 

beginning of the selection phase by day 3 of the estrous cycle. The size of the future 

dominant follicle may not necessarily be greater than its competitors at this point, but 

diameter deviation becomes obvious by day 4.8 post-estrus (or 2.8 days after follicle 

wave emergence). In Holstein heifers, diameter deviation, as detected by ultrasound, 

occurs when the largest follicle has an average diameter of 8.2 mm (Ginther et al., 2003), 

and is approximately 1.5 mm larger than the next largest follicle. Diameter deviation 

indicates the end of the selection phase, and onset of dominance. Coincident with the 

dominant follicle's enlargement is its greater estrogenic capacity than the other large 

follicles. Intrafo1licular estradiol from the largest follicle may therefore drive FSH 

concentrations to its basal level of about 12 to 19 ng/mL (Miron et al., 1997; 2000). At 

low circulating FSH, the dominant follicle continues to grow reaching the preovulatory 

size of 15 mm (Ireland and Roche, 2000; Mihm et al., 2000; Evans, 2003), while the 

large subordinate follicles stagnate at 8 mm. Tenure of dominance lasts until day 8 to 1 O 

of the estrous cycle, and the dominant fo1lic]e becomes estrogen inactive after day 10. 

By then, another significant 2-fold increase in FSH (Ireland and Roche, 2000) will 

initiate the next follicular wave. Regression of the dominant follicle to 4-5 mm diameter, 

or until it is undetectable may extend to the next follicular wave (Ireland and Roche, 

2000). 

Although follicle size is a good morphological basis of dominance via ultrasound, 

there are intrafollicular factors that are responsible for the differential responsiveness of 

follicles to the same gonadotropin environment. Intrafollicular factors such as ovarian 

steroids ( estrogen, progesterone, androstenedione ), and more importantly, insulin-like 
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growth factor (IGF)-1 and its associated IGF binding proteins (IGFBP). Differences in 

levels of intrafollicular factors of the dominant and subordinate follicles may serve as 

important biochemical markers of follicle growth. 

IGF-1 is known to stimulate granulosa cell proliferation and synergize with FSH 

to enhance its steroidogenic capabilities, such as FSH-induced estrogen production 

(Spicer and Echtemkamp, 1995; Fortune et al., 2001). Estrogenic dominant as compared 

with estrogen-inactive subordinate follicles may have the same total IGF-1 concentrations 

(Stewart et al., 1996) but reduced low molecular weight IGFBP-2, -4, and -5. Thus, the 

IGFBP are primarily involved in the regulation of IGF-I bioavailability within the 

follicle. Indeed, recent studies verify that first wave dominant follicles also have 4 to 8 

ng/mL of increased "free" or bioavailable IGF-1 (Beg et al, 2001; 2002; Rivera and 

Fortune, 2003a). 

Changes in the concentrations of low molecular weight IGFBP in bovine 

preovulatory follicles may be regulated by: gene expression in ovarian tissues, proteases 

such as the pregnancy-associated plasma protein-A (PAPP-A), or a combination of both 

factors. To date, there are no studies linking the gene expression of the IGFBP and 

PAPP-A in granulosa cells with the follicular fluid contents of dominant (preovulatory) 

and the largest subordinate follicle in cattle during luteal regression. Therefore, the 

objectives of this study were 

1) to evaluate if gene expression levels of IGFBP-2,-3,-4, and -5, and 

PAPP-A differ between the dominant and largest subordinate follicle 

during luteal regression (24 or 48 h post PGF-2a injection) prior to 

ovulation, and 
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2) to determine if these changes in gene expression are associated with 

changes in follicular fluid concentrations of total and free IGF-I, ovarian 

steroids (estradiol, progesterone, and androstenedione) or IGFBP 

protein levels 

I 
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CHAPTER II 

REVIEW OF RELATED LITERATURE 

Insulin-like Growth Factor-I (IGF-I) 

Insulin-like growth factor (IGF)-I and -II are growth promoting hormones with 

structural homology with insulin (Rajaram et al., 1997). Both IGFs perform their 

mitogenic and steoroidogenic functions by binding to IGF type I receptor. The IGF type 

I receptor preferentially binds IGF-I, but IGF-II also cross-reacts to a much lesser degree 

(Sara and Hall, 1990). IGF type II receptor on the other hand, is structurally unrelated to 

the IGF-1 receptors, and has very high affinity for IGF-II only. Because of IGF type II 

receptor's high specificity for IGF-II, it is thought to regulate the level of extracellular 

IGF-11 via degradation (Firth and Baxter, 2002). IGF type II receptor's role in mediating 

IGF action is less well defined (Baxter, 2000). In humans, levels of IGF-II but not IGF-I 

are associated with several variables of follicle development (Yoshimura, 2003). 

Compared to IGF-1, IGF-11 is the major peptide in the human ovary abundantly expressed 

in granulosa cells (Giudice, 1995). Most of the published literature, however, in 

domestic animals evaluates the role ofIGF-I rather than IGF-II. 

Sources of IGF-I in the follicular fluid. Insulin-like growth factor (IGF)-I is 

ubiquitous, acting as an endocrine, paracrine or autocrine hormone. The ovary is 

considered as one of the top IGF-1 producing organs aside from the liver and the uterus 
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(Yoshimura, 2003). Majority of the IGF-1 found in systemic circulation is in a 150-kDa 

complex; bound to a growth hormone-sensitive transport protein known as the insulin­

like growth factor binding protein (IGFBP)-3 (Yoshimura, 2003). It was reported that 

although IGFBP-3 was identified in the follicular fluid, it was not found in follicular cells 

(granulosa and theca cell homogenates from medium and small follicles) of beef cattle, 

and thus may have been sequestered from the blood (Echternkamp et al., 1994). The 

same 150-kDa complex found in serum was also characterized in ovine follicular fluid 

(Hodgkinson et al., 1989). However, the degree of seric IGF-I diffusion in the follicular 

fluid may be influenced by the capillary vasculature surrounding the theca intema or 

follicular wall of different follicle types. Recent studies showed that an estrogenic 

preovulatory dominant follicle had richer dilated capillaries and increased blood flow as 

compared to subordinate or atretic bovine follicles (Acosta et al., 2003; Jiang et al., 

2003). Regardless of the amount ofIGF-1 diffusion, follicular cells are capable oflocal 

IGF-1 production and secretion. IGF-1 transcripts are found in granulosa cells of rats, 

pigs, cattle (reviewed in Spicer and Echternkamp, 1995), and sheep (Leewenberg et al., 

1995). Human theca cells were also seen to express IGF-1 transcripts (reviewed in Spicer 

and Echternkamp, 1995). While it was reported that there were little or no detectable 

IGF-I mRNA expression in bovine granulosa cells and theca extema of healthy antral 

follicles using in situ hybrdization (Armstrong et al., 2000), IGF-1 mRNA was detected in 

pools of granulosa and theca cells using northern blotting (Spicer and Echtemkamp, 

1995). Differences in results may be due to techniques used. More recently, it has been 

reported that in contrast to what has been found in humans, bovine granulosa cells 

produce greater amounts ofIGF-1 than bovine theca cells and this granulosa cell IGF-1 
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production is regulated by insulin, FSH and LH in vitro, whereas theca cell IGF-I 

production is not hormonally responsive (Spicer et al., 2002). 

In cattle (Spicer and Echtemkamp, 1995) and sheep (Monget et al., 1992), IGF-I 

in the sernm is greater than those found in the follicular fluid. In sheep, it was reported 

that a positive relationship exists between the two IGF-I sources (Monget et al., 1992). 

Pigs and cattle treated with somatotropin (reviewed in Spicer and Echternkamp, 1995; 

Mazerbourg, et al., 1995) had increased IGF-1 levels in the serum and follicular fluid. In 

vitro, somatotropin increased levels of IGF-I protein and mRNA in porcine granulosa 

cells two-fold (Hsu et al., 1987; Samaras et al., 1996) but had no effect on IGF-I 

production by bovine granulosa cells (Spicer et al., 2002). This implies that both 

systemic and intrafollicular IGF-I sources are influenced directly or indirectly by 

somatotropin, and which source is paramount may be species dependent. 

In summary, total IGF-I found in the follicular fluid may be due to diffusion of 

the 150-kDa complexes from the blood and ( or) local biosynthesis from follicular cells. 

However, specific contributions of both sources to the overall IGF-1 pool in the follicular 

fluid remain to be elucidated. 

Forms of IGF-1: Total vs Free. Concentration of total IGF-1 in the follicular 

fluid is about 100 ng/mL in bovine (Spicer et al., 2002), and 244 ng/mL in large normal 

ovine follicles (Monget et al., 1992). IGF-I concentration was found to be greater in 

follicular fluid of estrogen active (>50 ng/mL estradiol and estrogen:progesterone ratio of 

> 1) follicles with an average diameter of 13.5 mm, than estrogen inactive follicles with 

an average diameter of 11.9 mm in beef cows (Echtemkamp et al., 1994). In another 
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study (Stewart et al., 1996) during the first follicular wave of dairy cows, the dominant 

foI1icle's total IGF-I concentration did not differ from those of the large (2:: 6 mm) and 

small ( <6 mm) subordinate follicles. Total IGF-1 concentration was positively correlated 

with diameter in mares (Bridges et al., 2002) and increases with follicle size in sheep 

(Spicer et al., 1995) and cattle (reviewed in Spicer and Echtemkamp, 1995). It is 

however the bioavailable IGF-1, i.e. the ''free" or unbound form of IGF-I, that is 

dramatically different between the dominant follicle and its associated subordinate 

follicles (Mazerbourg et al., 2003), and is therefore considered to be a more useful 

biochemical marker of dominance than the total IGF-I concentrations in the follicular 

fluid. 

In humans, the concentration of free IGF-I found in the serum is about 1.3 ng/mL 

(Stoving et. al., 1999) and 14 ng/mL in the follicular fluid of the future dominant follicle 

(Fl) in Holstein heifers (Ginther et al., 2003). Seemingly, there is a biphasic increase in 

free IGF-I concentrations during selection or by the beginning of diameter deviation, 

such that it peaks when the Fl reaches 7.6 mm, decreases at 7.8 mm, but starts to increase 

at 8.2 mm, and peaks again at 8.4 mm (Ginther et al., 2003). Free IGF-1 concentrations 

were significantly (6 to 8 ng/mL) greater between the Fl and its associated F2 (future 

largest subordinate follicle) when the Fl was 7.6 mm, 8.2 mm and 8.4 mm (Ginther et al., 

2003). Estradiol simultaneously increases with free IGF-1 in the future dominant 

follicle during selection. Similarly, Rivera and Fortune (2003a) reported that 

concentrations of free IGF-1 was 1 to 6 ng/mL higher in the Fl compared to F2 during 

and after time of follicle deviation when the Fl was 8 and 9 mm, respectively. Also, 

free IGF-I during follicle selection was positively correlated with IGFBP-4 and -5 
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proteolytic activity (Rivera and Fortune, 2003a). Free IGF-1 in F2 continuously 

decreased up to 1 ng/mL, as Fl of Holstein heifers grew from 7 .5 to 10.5 mm (Beg et al., 

200 l ). To date, there are no reports quantifying free IGF-I in follicular fluid of dominant 

preovulatory follicles in cattle. 

ln summary, there are no significant differences in total IGF-I concentrations 

between the dominant (estrogenic) and subordinate follicles, but free IGF-1 

concentrations are seen to be significantly increased in future dominant follicles. Thus, 

making free IGF-I concentration a more useful biochemical marker in follicle selection 

and dominance than total IGF-1 concentration. 

IGF-1 functions. In vivo (e.g., knock-out mice) and in vitro (e.g., cell cultures) 

experiments were used to determine the significant intraovarian role of IGF-1. In pigs, 

rats, and cattle, IGF-I is known to stimulate granulosa cell proliferation or mitogenesis 

and enhance FSH-induced steroidogenesis (Spicer and Echternkamp, 1995). Female 

IGF-1 knock-out mice were infertile, with follicles arrested at the preantral to early antral 

stage, and had no sign of mature graafian follicles, similar to what have been observed in 

female FSH knock-out mice (Zhou et al., 1997). Granulosa cell IGF-1 gene expression 

in FSH knock-out mice ovaries was observed to be similar to those of the wild type mice 

(Zhou et al., 1997). These results imply that IGF-I expression is indispensable both for 

proliferation of granulosa cell and stimulation of FSH action. FSH is important for 

follicle development but is not considered as a major regulator of ovarian IGF-I 

expression. Reduced proliferation and impaired FSH responsiveness of the follicle 

observed from IGF-1 knock-out mice were attributed to the lack of FSH receptor 
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expression (Kadakia et al., 2001 ). IGF-1 potentiates FSH action by the upregulation of 

FSH receptor expression, and in tum creates a positive feedback loop, such that increased 

FSH concentrations augment IGF-1 action by increasing IGF-1 receptor expression (Zhou 

et al., 1997; Mazerbourg et al., 2003; Yoshimura, 2003). 

Cell culture experiments of ovine granulosa cells showed that IGF-1 stimulates 

proliferation in small (1-2 mm) follicles and steroidogenesis in large (5-8 mm) 

preovulatory follicles (Monniaux et al., 1994). Similar observations were seen in pigs, 

wherein IGF-1 stimulatory action on steroidogenesis oftheca and granulosa cells 

increased and its mitogenic action decreased as follicular development progressed 

(Kolodziejczyk et al., 2003). In cattle, FSH and LH enhanced the mitogenic or 

proliferative effect ofIGF-1 in granulosa cells from small (less than or equal to 5 mm) 

follicles, but not in large (less than 10 mm) follicles (Spicer and Echtemkamp, 1995). 

While an inverse relationship may seem to appear between proliferation and 

differentiation, Monniaux et al. (1994) proposed an "uncoupling" between the 

proliferation and differentiation. Ovine and bovine granulosa cells from small follicles 

treated with IGF-1 still had the capacity to secrete progesterone (Monniaux et al., 1994) 

and estradiol (Spicer et al., 1993), respectively, although at lower concentrations than 

granulosa cells from large follicles. Thus, differentiation by itself cannot explain the 

granulosa cell's loss of proliferative activity. 

IGF-1 also regulates theca cell proliferation. IGF-1 knock-out mice's ovaries had 

immature theca cell development, suggesting IGF-I's paracrine role in proliferation 

(Zhou et al., 1997). Porcine theca cell culture showed that IGF-1 stimulated theca cell 

proliferation in all stages of follicular development, such as those from small, medium 
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and large follicles (Kolodziejczyk et al., 2003). In bovine theca cell culture, treatment of 

IGF-I (30 and 100 ng/mL) alone increased theca cell numbers (Stewart et al., 1995). 

Differentiated follicular cells acquire the capability to produce steroids. IGF-I is 

known to enhance gonadotropin-induced granulosa and theca cell steroidogenesis partly 

via enhancing steroidogenic enzymes involved in the synthesis of progesterone, 

androstenedione and estradiol (Stewart et al., 1995; deMoura et al., 1997). 

Steroidogenesis starts with de novo cholesterol synthesis and ( or) cholesterol uptake, and 

ends with important steroid products (i.e., progesterone, androstenedione, and /or 

estradiol) that serve as markers of the physiological status of the follicle. IGF-1 and II 

have been shown to stimulate de novo cholesterol synthesis in porcine (Veldhuis et al., 

1 984) and bovine (Spicer et al., 1996) granulosa and theca cells, as well as stimulate 

granulosa cell uptake and metabolism of cholesterol (Veldhuis et al., 1984). Inside the 

cell, cholesterol must be translocated from the outer to the inner mitochondrial membrane 

by a steroid-regulatory protein named, steroidogenic acute regulatory protein (StaR). 

Cholesterol is then converted to pregnenolone by an enzyme, cytochrome P450 

cholesterol side-chain cleavage (P450scc). Pregnenolone is converted to progesterone 

via the enzyme, 3~-hydoxysteroid dehydrogenase (3~-HSD), or converted to 17a.-

hydroxypregnenolone by the enzyme cytochrome P450 17cx.-hydroxylase (P45017-0H ). 

LH binding to its receptor on theca cells stimulates enzyme cytochrome P450 c11,20-lyase 

(P450c 1 7) to convert the precursor, 17cx.-hydroxyprogesterone to androstenedione. In 

bovine, rat, pig and human theca cells, IGF-1(10 to 100 ng/mL) acts synergistically with 

LH to increase progesterone and androstenedione production (Spicer and Echternkamp, 

1995; Stewart et al., 1995; Yoshimura, 2003). Increases in androstenedione production 
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are partly due to the stimulation of LH receptors by IGF-1, as seen by increased in LH 

receptor mRNA expression in theca cells (Magoffin and Weitsman, 1994) and specific 

binding of 1251 labeled hCG (Stewart et al., 1995). P450cl 7 is only expressed in theca 

cells~ so progesterone produced by granulosa cells are not metabolized further, and are 

only secreted. Theca cells convert androstenedione to testosterone with the enzyme 1713-

hydroxysteroid dehydrogenase (17P-HSD), and both androgens are secreted and absorbed 

by adjacent granulosa cells. In the granulosa cells, androstenedione is preferentially 

metabolized into estrone by enzyme cytochrome P450 aromatase (P450arom), and then 

estrone is metabolized further into estadiol by 17P-HSD. mRNA for FSH receptor and 

P450arom were shown to be localized exclusively to granulosa cells, while mRNA for 

P450c 17 and StaR are localized within theca cells (Bao and Garverick, 1998). 

Eventually, the granulosa cells of the dominant follicle develop LH receptors during the 

time of selection (Stewart et al., 1996), allowing the cells to synthesize estradiol in 

response to LH as well as FSH (Fortune et al., 2001). 

While StAR mRNA was expressed in bovine theca cells and perhaps luteinized 

granulosa cells (Bao et al., 1998), it was seen to be upregulated in porcine granulosa 

follicles treated with IGF-I and FSH. Basal granulosa cell expression of StAR mRNA 

and protein from small to medium sized porcine follicles was stimulated by IGF-1 {l 00 

ng/mL) plus FSH (I 00 ng/mL) 26-fo)d and 56- fold, respective1y, compared to untreated 

controls (Balasubramanian et al., 1997). In human granulosa-lutein cells, IGF-1 

increased StAR mRNA and protein 3- and 4- to 5-fold, respectively (Devoto et al., 1999). 

IGF-1 synergized with FSH to enhance progesterone biosynthesis of rat granulosa cells by 

stimulating a 2.6 and 1 .8-fold increase in P450scc and 3P-HSD enzymes, respectively 

12 



( deMoura et al., 1997). In theca interstial cells of rats (stimulated to differentiate in 

vitro), IGF-1 (50 ng/mL) alone, or in the presence of LH, stimulated a dose-related three­

fold increase in P450ssc over unstimulated theca cells (Magoffin and Weitsman, 1993a). 

Also in the theca interstial cells of rats, IGF-1 alone (0.1 to 100 ng/mL) did not stimulate 

P450cl 7 mRNA, but in the presence ofLH (100 ng/mL), stimulated a maximum 3-fold 

increase (Magoffin and Weitsman, 1993b). In bovine granulosa cells from 2 to 5 mm 

estrogenic follicles, reduction in IGF-1 and insulin concentrations caused a decrease in 

P450arom mRNA levels (Silva and Price, 2002). Also, estradiol and P450arom mRNA 

levels were highly correlated (Silva and Price, 2002). At I 00 ng/mL, IGF-1 alone 

increased estradiol production by 2-fold in granulosa cells of small and large follicles, 

while in the presence of FSH (30 ng/mL), IGF-1 increased estradiol production by 17-fold 

in small follicles and 13-fold in large follicles (Spicer et al., 2002); in the presence of 

FSH the EDso of IGF-I averaged 5 and 6 ng/mL in small and large follicle granulosa 

cells, respectively. This showed that at nadir FSH concentrations in vivo, the low doses 

of free IGF-1 detected in dominant follicles (i.e., 4 to 8 ng/mL) would likely stimulate 

aromatase activity (Spicer et al., 2002). 

In summary, the intraovarian role ofIGF-I includes stimulation of follicular cell 

proliferation and steroidogenesis (e.g., progesterone, androstenedione, and estrogen 

biosynthesis ). 

Role of insulin-like growth factor binding proteins (IGFBPs) in follicle dominance 

Both IGF-I and II are bound in plasma and other biological fluids by a family of 

proteins known as insulin-like growth factor binding proteins (IGFBPs) that regulate the 
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availability of IGFs to their target cell (Yoshimura, 2003). IGFBPs are cysteine-rich 

proteins that are relatively conserved among species and have the unique ability to bind 

to IGFs with high affinity (Hwa et al., 1999). To date, there are about seven IGFBPs 

reported (Kostecka and Blahovec, 2002), three of which (IGFBP-2,-4, and -5) have been 

implicated in the regulation of ovarian IGF-I availability (Firth and Baxter, 2002) and are 

therefore, considered important players in follicular development and atresia. Compared 

to the lGF type I receptor, IGFBPs have 10- to 100-fold higher affinity for IGFs (Baxter, 

2000). Between IGF-I and IGF-II, most of the low molecular weight IGFBPs are more 

attracted to the former, decreasing IGF-II's potency in activating the IGF type I receptor, 

as seen in pigs (Grimes and Hammond, 1992). In ovine follicles, IGF-II levels are 

significantly higher in small than large follicles (Spicer et al., 1995), while the IGF-

1: lGF-II ratio increased during follicle growth (Monget et al., 1993). This could be due to 

again, the strong affinity ofIGF-II for ovine follicular fluid IGFBPs (Monget et al., 

1993). 

These IGFBPs have conserved amino and carboxyl terminal domains, and varying 

middle domains. Among IGFBP species, homology in the carboxy and amino terminal 

domains are 58% and 35%, respectively (Hwa et al., 1999). Digested fragments 

generating C terminal domain or N-terminal domain alone, weakly interact with IGFs 

(Hwa et al., 1999). Mutagenesis of the conserved regions of both the amino and carboxy 

disrupts lGF binding, implying a pocket-like structure of the IGFBP enclosing the IGF 

(Firth and Baxter, 2002). Posttranslational modifications such as glycosylation and 

phosphorylation occur in the middle domain. Some IGFBP-3, -4 and -5 isoforms are 

glycosylated. Glycosylation may not affect IGF binding, but may be important in the 
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IGFBP's resistance to proteolysis (Hwa et al., 1999; Zhou et al., 2003). Unlike the 

carboxyl and amino terminal domains, the middle domain is susceptible to proteolytic 

attack of endoproteases (Baxter, 2000). Further studies should be conducted however, to 

detennine the physiological significance oflGFBP glycosylation in ovarian 

folliculogenesis. Table I refers to the distinct characteristics of some IGFBPs (such as 

molecular weight, IGF affinity and posttranslational modifications). 

Table 1. Characteristics of some insulin-like growth factor binding proteins* 

IGFBP Molecular weight, kDa IGF affinity Posttranslational modification 
species 

IGFBP-2 32-34 II>I 

IGFBP-3 43,40 I=II gl ycosy lated 

IGFBP-4 29 I=II glycosylated 
24 non-glycosylated 

IGFBP-5 29 II>I glycosylated 

*Information compiled from Kostecka and Blahovec, 1999; Baxter, 2000; and Spicer and 
Echtemkamp, 1995 

IGFBPs act as carrier proteins that prolong IGF's half-life. IGF-I in ternary (e.g., 

IGF-1 - IGFBP-3 - Acid labile) and binary (e.g., IGF-I - IGFBP-2) complexes have half­

lives of 12 to 16 h and 30 min respectively, whereas, a free IGF-1 has a half-life of 10 min 

(Kostecka and Blahovec, 1999). Also, IGFBPs regulate IGF-I bioavailability since IGF 

type I receptor approaches saturation at 5 nM or lower (Baxter, 2000). As long as the 

IGFs are bound to the IGFBP, it cannot attach to the IGF type I receptor to perform its 

mitogenic and steroidogenic effects. Thus, while IGF-I is bound to any IGFBP, its half-
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life is prolonged but at the same time, its bioactivity inhibited. However, IGF effects can 

be potentiated (Kostecka and Blahovec, 1999; Baxter, 2000) if the IGFBP is 

phosphorylated (as in the case ofIGFBP-1), bound to the extra cellular matrix (as in the 

case of IGFBP-5), proteolyzed (as in the case ofIGFBP-4 and -5) or expressed 

differentially (as in the case of gene expression of low molecular weight IGFBPs in 

follicular cells). 

In summary, there is a balancing act between the IGFBP and IGFs, such that IGF 

bioavailability can be regulated by IGFBP, and IGFBP can also be regulated via 

proteolysis (or other posttranslational modifications), and gene expression. This 

balancing act may result to either follicular growth or atresia. 

Localization and gene expression of IGFBPs in the ovary. IGFBP-2,-4, and -5 

messenger ribonucleic acid (mRNA) were reported to be expressed in follicular cells of 

several species. In ovine, as confirmed in human, pig and rat, ovarian transcripts of 

IGFBP-2,-4, and -5 were 1.5-1.8 kb, 2.5-3 kb, and 6 kb, respectively (Besnard et al., 

1996a). Expression of IGFBP-2 mRNA was greater in granulosa than theca cells as 

reported in pigs (Liu et al., 2000), sheep (Besnard et al., 1996a), and cattle (Armstrong et 

al., 1998; Yuan et al., 1998; Roberts and Echtemkamp, 2003). In rats and mice, IGFBP-

2 mRNA levels were restricted to the theca-interstial and granulosa cells, respectively 

(Nakatani et al., 1991; Wandji et al., 1998). 

Contrary to IGFBP-2 mRNA, IGFBP-4 mRNA levels were greater in theca than 

granulosa cells of pigs (Liu et al., 2000) and cattle (Armstrong et al., 1998; Schams et al., 

2002). lGFBP-4 mRNA levels were restricted to granulosa cells of atretic follicles in 
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rats (Nakatani et al., 1991 ), and to theca cells of healthy antral (small, medium and large) 

follicles of cattle (Annstrong et al., 1998) and granulosa cells from large healthy follicles 

of cattle (Roberts and Echtemkamp, 2003) in cattle. No difference in IGFBP-4 mRNA 

expression were seen between theca cells oflarge and small healthy follicles in ewes 

(Besnard et al., 1996a) or between theca and granulosa cells of large follicles in cows 

(Roberts and Echtemkamp, 2003). 

Levels of IGFBP-5 mRNA on the other hand, was detected in theca cells of 

healthy follicles in ewes (Besnard et al., 1996a). In mice, IGFBP-5 mRNA was detected 

only in granulosa cells of primary and secondary follicles and marginally expressed in 

antral follicles (Wandji et al., 1998). 

IGFBP-3 mRNA was detected in granulosa and theca cells of all growing follicles 

in pigs (Wandji et al., 2000). In cattle using in situ hybridization, IGFBP-3 mRNA was 

not detected in one study (Yuan et al., 1998) but widely detected in theca of most follicles 

in another study (Canty et al., 2002; 2003). The presence ofIGFBP-3 mRNA in small 

and large granulosa and theca cells was detected using real time RT-PCR, a very 

sensitive technique (Voge et al., 2004). IGFBP-3 mRNA was also detected in theca cells 

of large atretic follicle and vascular endothelial cells in cattle using northern blotting 

(Roberts and Echternkamp, 2003). In rats, IGFBP-3 mRNA was localized in the corpus 

luteum but not granulosa or theca cells (Nakatani et al., 1991), and in human follicles, it 

was lowly detectable in fresh ovarian tissues (i.e., granulosa, theca, and stromal samples; 

Voutilainen et al., 1996). 

Collectively, IGFBP mRNA is expressed in follicular cells, and the prominence of 

which in a given cell type would depend on the species involved. This implies that local 
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production and secretion of IGFBP proteins in the follicular fluid is possible and species 

specific. Changes in mRNA expression in either compartment (such as granulosa or 

theca cell) or due to size or physiological state (atretic or estrogenic) of the follicle likely 

affect the amount of IGFBP proteins found in the follicular fluid. 

During follicle growth, levels of different IGFBP mRNA expression change 

dramatically. IGFBP-2 mRNA levels were less in granulosa cells of dominant follicles 

as compared to its subordinate follicles (Yuan et al., 1998). IGFBP-2 mRNA was also 

easily detected in granulosa cells of small healthy follicles as compared to large healthy 

follicles in cattle (Armstrong et al., 1998) and sheep (Besnard et al., 1996a). No change 

in IGFBP-4 mRNA localized in the theca cells of healthy follicles was observed in cattle 

(Armstrong et al., 1998) and sheep (Besnard et al., 1996a). In pigs, granulosa and theca 

ce1ls from large fol1icles had more IGFBP-2 and -4 mRNA levels detected than in small 

follicles (Liu et a1., 2000). IGFBP-5 mRNA in healthy ovine theca cells slightly 

decreases during follicular growth (Besnard et al., 1996a). IGFBP-5 mRNA was greatly 

expressed in granulosa cells of small follicles as compared to large follicles in cows 

(Roberts and Echtemkamp, 2003). In rats, mRNA for IGFBP-2,-3,-4 and -5 were not 

detected in dominant follicles (Erickson et al., 1992). 

In tenns of physiological state, atretic follicles have greater IGFBP mRNA levels 

as compared to healthy follicles. IGFBP-2 mRNA levels were greater in granulosa and 

theca ceI1s of large atretic antral versus large healthy follicles in ewes (Besnard et al., 

1996a) and cows (Roberts and Echtemkamp, 2003). IGFBP-5 mRNA levels were most 

abundant in granulosa cells of small and large atretic follicles in cows (Roberts and 

Echtemkamp, 2003) and rats (Erickson et al., 1992; Wandji et al., 1998) and started to 
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increase from early to late atresia in ewes (Besnard et al., 1996a). In estrogenic follicles, 

IGFBP-2 and -5 mRNA were weakly detected in granulosa cells in cows (Schams et al., 

2002). IGFBP-4 mRNA was localized in granulosa cells of atretic follicles in rats 

(Erickson et al., 1992) and levels in theca cells increased during late atresia in sheep 

(Besnard et al., 1996a). IGFBP-3 mRNA was the same between the granulosa cells of 

healthy and atretic follicles in pigs (Wandji et al., 2000), and was suggested not to be 

associated with growth or atresia since generally, its mRNA expression was low and ( or) 

poorly detected (Mazerbourg et al., 2003). 

In summary, follicular growth is associated with a decrease in IGFBP-2 and -5 

mRNA levels, while increase in IGFBP-2,-4, and -5 mRNA levels is more linked with 

follicular atresia. Changes in mRNA levels oflow molecular weight IGFBPs, if 

correlated with IGFBP protein levels, can explain differences in the amount of "free" 

IGF-1 between follicle types (such as dominant and subordinate follicles). However, 

careful interpretation of the literature is needed, for follicles are classified broadly and 

differently between species. There are no studies yet identifying relative gene 

expression of these IGFBPs specifically between the dominant and its largest subordinate 

follicle. 

Changes in IGFBP protein levels in the follicular fluid. Binding activity or 

levels of IGFBP in the follicular fluid varies between follicle size (small, medium or 

large follicles) or physiological status (healthy and estrogen active versus atretic and 

estrogen inactive follicles). In the bovine, as early as day 3 of the estrous cycle, where 

no growth deviation has happened yet, IGFBP-2,-3, and -5 were similar among large 
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follicles, while IGFBP-4 was lowest in the future dominant follicle (Mihm et al., 2000). 

At the time of follicle selection, the dominant follicle contains the highest estradiol 

concentration and lowest amount ofIGFBPs (particularly IGFBP-4 and-5) among the 

large follicles (Austin et al., 2001; Rhodes et al., 2001). During dominance, IGFBP-2,-4, 

and -5 were higher in large and small subordinate follicles compared to the dominant 

follicle (Stewart et al., 1995; de la Sota et al., 1996). 

Follicle diameter was inversely related to IGFBP-2,-4, and -5 in cows (Austin et 

al., 2001) and sheep (Monget et al., 1993; Besnard et al., 1996a). Similarly in pigs, 

small follicles ( 4 mm) contain greatest IGFBP-2 binding activity, but as follicles 

progressed into 6 mm, IGFBP-2 decreases (Liu et al., 2000). Total binding activity 

(summation of binding activities of all IGFBPs) was least in the dominant than the large 

and small subordinate follicles in bovine (Stewart et al., 1995; de la Sota et al., 1996; 

Spicer et al., 2001). 

Follicular atresia was associated with increased follicular fluid activity of IGFBP-

2,-4, -5 (Kojima et al., 2003) and -3 (Manikkam et al., 1997) in bovine follicles. Large 

bovine estrogen active follicles had undetectable IGFBP-2, -4, and -5 as compared to 

large estrogen inactive or atretic follicles (Echtemkamp et al., 1994; de la Sota et al., 

1996). This is also true in ovine follicles, where, IGFBP-2, -4,-5 increased during early 

and late atresia (Besnard et al., 1996a). In mares, concentrations of IGFBP-5 were 

greater in large nonvoulatory and small atretic follicles (Bridges et al., 2002). In pigs, 

IGFBP-2 and -4 increase during atresia, while IGFBP-5 and -3 vary slightly (Besnard et 

al., 1997). 
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On the other hand, IGFBP-3 levels were unchanged between the dominant and 

subordinate follicles in cattle (Echtemkamp et al., 1994; de la Sota et al., 1996; Funston 

et al., 1996; Stewart et al., 1996; Spicer et al., 2001) and small to large follicles (from the 

follicular phase) in horses (Bridges et al., 2002), but tend to increase in sheep (Monget et 

al., I 993) and pigs (Liu et al., 2000) during follicular growth. 

Recently, Roberts and Echtemkamp (2003) reported differences in binding 

activities of the different IGFBPs in granulosa and theca cell homogenates, which 

accounted for IGFBPs present in bovine follicular fluid. Follicular growth and increased 

estradiol concentrations were associated with decreased IGFBP-2 mRNA, and thus was 

reflected by less IGFBP.-2 binding activity detected in granulosa and theca cells of large 

healthy follicles. While IGFBP-4 mRNA was increased in granulosa cells of large 

healthy follicles as compared to small and large atretic follicles, IGFBP-4 protein was not 

detected in the follicular fluid. IGFBP-5 mRNA was greatest in granulosa cells from 

small and large atretic follicles but was undetectable in other follicle types, and thus may 

be the reason why binding activity in the follicular fluid was less for large healthy 

follicles. IGFBP-3 was detected in theca and granulosa cells, but the total amount of 

IGFBPs accounted for by IGFBP-3 was more in the follicular fluid as what could have 

been produced by these follicular cells; and thus, again, pointing to the fact that IGFBP-3 

may have transudated into the follicle from serum as previously suggested (Echtemkamp 

et al., 1994). In pigs, a strong correlation between plasma an'd follicular fluid IGFBP-3 

gives credence to a peripheral source ofIGFBP-3 found in the follicular fluid (Howard 

and Ford, 1992). 
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In summary, low molecular weight IGFBP levels are generally low in large or 

dominant follicles as compared to its subordinate follicles, while IGFBP-3 remain 

unchanged in some species. Moreover, atretic follicles contain the greatest amount of 

these IGFBPs as compared to healthy follicles. 

Relationship of hormones with ovarian IGFBP. Gonadotropic hormones such 

as follicle stimulating hormone (FSH) and luteinizing hormone (LH) play important roles 

not only by directly stimulating steroidogenesis, but perhaps indirectly by regulating 

intraovarian IGFBP production and (or) degradation. FSH was reported to increase 

IGFBP-4 mRNA expression in cultured granulosa cells of hypophysectomized rats 

treated with diethylstilbesterol (Putowski et al., 1995), while FSH reduced IGFBP-2 

mRNA in bovine granulosa cells (Annstrong et al., 1998). Another study showed that 

FSH had no influence on IGFBP-4 and -5 mRNAs of moderately differentiated porcine 

follicles (Grimes et al., 1994). In bovine granulosa cells from small and large follicles, 

using real-time RT PCR, FSH had no effect on IGFBP-2, -4 and -5 mRNA (Voge et al., 

2004 ). FSH decreased amount ofIGFBP-4 (Piferrer et al., 1997) and -5 (Fielder et al., 

1993) proteins in cultured rat granulosa cell. FSH had no effect on bovine 

(Chamberlain and Spicer, 2001) and ovine (Armstrong et al., 1996) granulosa cell 

production of IGFBP-5. Also, no changes in IGFBP-3 levels were seen coincident with 

changes in serum FSH in cattle (Austin et al., 2001). FSH treatment of human (Iwashita 

et al., 1998) and rat (Fielder et al., 1993) granulosa cells stimulated proteolytic activity 

degrading IGFBP-4 and -5, respectively. In cattle, FSH treatment stimulated follicular 

development in cows (Echtemkamp et al., 1994) and resulted in the formation of co-
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dominant follicles (Rivera and Fortune, 2001) having an IGFBP-4 proteolytic activity 

similar to a single dominant follicle, implying that FSH may have enhanced proteolytic 

activity in another large follicle causing co-dominance. Thus, as the dominant follicle 

grows, FSH may be involved in regulating IGFBP-4 and -5 mRNA expression 

(depending on the species), and (or) inducing FSH-dependent protease(s) for IGFBP 

degradation. It is likely that while IGFBP mRNA levels remain unchanged, and IGFBP 

protein levels decrease, hormonally induced protease activity may be increasing. 

PMSG-primed rats had 3.5-fold more IGFBP-4 mRNA 24 h after hCG 

administration (vs Oh; Putowski et al., 1997). Four-day treatment of LH also stimulated 

IGFBP-4 mRNA in bovine theca cells (Armstrong et al., 1998). One-day treatment of 

LH inhibited IGFBP-2/-5 and -4 production by granulosa cells from large bovine 

follicles but had no effect on theca cell production of IGFBP-4 protein (Spicer and 

Chamberlain, 2002) or its mRNA (Voge et al., 2004). In ovine granulosa cells, LH 

increased IGFBP-4 protein production (Armstrong et al., 1996). One-day treatment of 

LH had no effect on IGFBP-3 production or mRNA levels in bovine granulosa cells 

(Spicer and Chamberlain, 2002; Voge et al., 2004) and human theca cells (Voutilainen et 

al., 1996). In vivo, IGFBP-3 levels remained constant among follicles before and after 

the ovulatory surge of LH in cattle (Funston et al., 1996). Therefore, the effect of LH on 

production of a specific ovarian IGFBP may depend on duration of treatment, species and 

( or) cell type. 

Steroids are good biochemical markers of healthy and atretic follicles. Follicular 

fluid progesterone is the precursor future steroid synthesis (such as androstendione, 

cortisol, etc.). Both theca and granulosa cells produce large amounts of progesterone 
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and this increase near the time of ovulation is a result of preovulatory granulosa cell 

luteinization or inhibition of aromatization (Spicer and Echtemkamp, 1985). Increased 

progesterone was considered to be associated with follicular atresia (Manikkam et al., 

1997; Kojima et al., 2003;). Androstenedione on the other hand, serve as a precursor to 

estradiol production, and increases just before and during the LH surge. Decrease in 

androstenedione leve)s was coincident with decreased estradiol concentrations and 

increased progesterone concentrations in large follicles (Spicer and Echtemkamp, 1985). 

Impaired conversion of androstenedione to estradiol accompanied by progesterone 

accumulation in the follicular fluid, causes atresia. Estrogen: progesterone ratio (EPR) 

was correlated with morphological atresia. EPR of greater than 1 characterizes a 

histologically healthy and estrogenic follicle, while an EPR less than 1 means the follicle 

is atretic or estrogen-inactive ( de la Sota et al., 1996; Manikkam et al., 1997; Mihm et al., 

2000). Estradiol and EPR were greater in the future dominant follicle as compared to the 

future largest or second largest subordinate follicle during day 3 of the estrous cycle, 

while progesterone and IGFBP-2,-3, and -5 protein levels remain similar (Mihm et al., 

2000). In vitro, estradiol inhibited IGFBP-4 and -2/-5 production by granulosa cells of 

bovine large follicles (Spicer and Chamberlain, 2002), and increased IGFBP-2 production 

by equine small follicle granulosa cells (Bridges et al., 2002). Estradiol also decreased 

IGFBP-5 mRNA levels in large granulosa cells, and IGFBP-2, -3, and --4 mRNA in theca 

cells of bovine follicles (Voge et al., 2004). This is also in agreement with Schams et al. 

(2002) where IGFBP-2 mRNA in bovine theca cells were seen to decrease as estradiol 

concentrations increase in follicular fluid. Estradiol had no effect on IGFBP-3 protein 

levels in granulosa cells of pigs (Mondschein et al., 1990) and both granulosa and theca 
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cells of cattle (Spicer and Chamberlain, 2002). Overall, the inhibitory effect of estradiol 

to low molecular weight IGFBPs and perhaps, stimulatory effect to protease activity, may 

result in increased bioavailable IGF allowing the dominant follicle's continued 

development and growth. 

In summary, follicular fluid contents (such as steroid hormones) of dominant and 

subordinate follicles differ, together with gonadotropic hormones, can direct the fate of 

the follicle (to grow or become atretic) by regulating IGFBP. 

Role of pregnancy-associated plasma protein-A in follicle dominance 

Proteolyzed IGFBP fragments have 50- to 100-fold decreased affinity to IGF-1 

(Kostecka and B lahovec, 2002). Ligand blotting technique can be used to determine the 

amount of intact IGFBPs but not proteolyzed IGFBP fragments binding IGFs with low 

affinity (Hwa et al., 1999). Proteolysis of some, but not all, IGFBPs occur during 

follicular growth. Follicular fluid of preovulatory follicles failed to degrade IGFBP-2 to 

a significant extent as seen in cows and heifers (Spicer et. al, 2001; Rivera and 

Fortune,2003b ), mares (Bridges et al., 2002), ewes (Mazerbourg et al., 1999), but not in 

sows (Besnard et al., 1997). Proteolysis ofIGFBP-2 in preovulatory follicles in pigs was 

estimated at about 80% (Besnard et al., 1997). This would imply that low levels of 

IGFBP-2 protein in the follicular fluid may not be due to its proteolysis in most but not 

all species. However, preovulatory follicles of ewes (Mazerbourg et al., 1999), sows 

(Besnard et al., 1997), heifers (Rivera and Fortune, 2003 a and b) and cows (Spicer et al., 

2001) had strong proteolytic activity for IGFBP-4. IGFBP-5 proteolysis was detected in 

sows (Besnard et al., 1997), mares (Bridges et al., 2002), ewes (Besnard et al., 1996b ), 

25 



and cattle (Spicer et al., 2001; Rivera and Fortune, 2003a and b). As compared to IGFBP-

2, marked proteolysis of IGFBP-4 and -5 was observed, and this may account for the 

undetectable levels of IGFBP-4 and -5 in the follicular fluid in dominant follicles. 

IGFBP-3 proteolytic activity on the other hand decreases during follicular growth in ewes 

(Besnard et al., 1996b) but had no significant change in preovulatory follicles of mares 

(Bridges et al., 2002), sows (Besnard et al., 1997) and cows (Spicer et al., 2001). This 

suggests that any free IGF-1 the ovary utilizes comes mainly from the regulation of low 

molecular weight IGFBPs. 

IGFBP proteolytic activity detected in follicular fluid may be due not only to one 

but perhaps by the combined efforts of many proteases. IGFBP proteases were 

characterized using chemicals ( such as EDT A, 1, 10 phenantroline, 

phenylmethanesulfonyl or PMSF, etc) that act as specific protease inhibitors. EDTA (a 

metalloprotease inhibitor) and 1,10 phenanthroline (a specific chelator of zinc) blocked 

IGFBP-4 and -5 proteolytic degradation in pigs (Besnard et al., 1997), sheep (Besnard et 

al., 1996b), cattle (Spicer et al., 2001) and horses (Bridges et al., 2002). PMSF (inhibitor 

for serine protease) blocked IGFBP-3 and -5 proteolytic activity in small ovine atretic 

fo1licles, but had little effect on IGFBP-4 and -5 in preovulatory follicles (Besnard et al., 

1996b ). It also inhibited IGFBP-5 degradation in mares (Bridges et al., 2002) and 

IGFBP-2 and -4 in sows (Besnard et al., 1997). Seemingly, protease or proteases 

involved in IGFBP-4 and -5 bovine and equine follicular fluid proteolysis have 

characteristics of a serine metalloprotease (Spicer, 2004). Metalloproteases or 

meta11oendopeptidases are mostly zinc-dependent enzymes, which can degrade inner 

peptide bonds (Gomis-Ruth, 2003) such as IGFBP's central domain. Proteases can also 
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be classified based on specific inhibitor sensitivities and be termed as serine-, cysteine-, 

aspartic-, or metallo protease (Fowlkes and Winkler, 2002). 

Pregnancy-associated plasma protein-A (PAPP-A) is most likely the major serine 

protease found in follicular fluid, but others such as human kallikrein-3 and -2 (Rehault 

et al., 2001; Geisert et al., 2001), matrix metalloproteases (MMP-2 and-9) observed to 

have the capability to degrade IGFBPs (Besnard et al., 1996b), and still, others that 

remain to be discovered, should also not be excluded. It is also possible that PAPP-A 

might be physically associated with an unidentified proteinase, which becomes 

responsible for IGFBP cleavage, or PAPP-A might function to activate an unknown 

proteinase by binding to it (Boldt et al., 2001). PAPP-A was shown to interact with 

serine proteinases, such as human plasmin and bovine trypsin, by having a 

conformational change causing their entrapment (Zorin, et al., 1995). It was shown that 

the proteinase bound to p APP-A was protected from inhibition by large substrate 

inhibitors such as cx.1-proteinase inhibitor and soybean trypsin inhibitor, but was still 

accessible to inactivation by aprotinin and PMSF (Zorin et al., 1995). Thus, even though 

it traps proteinases, it does not necessarily block the proteinase's active site. 

Alternatively, endogenous inhibitors for PAPP-A, although not yet identified, may be 

regulating PAPP-A proteolytic activity, as does tissue inhibitor of metalloprotease-1 

(TIMP) for MMPs (Riley et al., 2001; Fowlkes and Winkler, 2002). 

PAPP-A is a large glycoprotein (i.e., 200 kDa) that contains an elongated zinc­

binding motif and a conserved methionine 1,4 B-tum, that are known to be conserved 

within the metzincin super family of zinc peptidases (Giudice, 2001; Fowlkes and 

Winkler, 2002; Gomis-Ruth, 2003). PAPP-A was first purified from pregnancy sera 
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(Lawrence et al., 1999). In pregnancy serum, it is bound to eosinophil major basic 

protein (pro-MBP), and had no instance of degrading IGFBP-4 (Soe et al., 2002). While 

this is the case, PAPP-A in other systems remains to be an active homodimer capable of 

proteolytic activities (Gomis-Ruth, 2003). Its main site of synthesis during pregnancy is 

the placenta~ but it is present and secreted in several reproductive and nonreproductive 

tissues like the ovary, endometrium, seminal fluid, fallopian-tube mucosa, cervical 

mucosa, testis, breasts, kidneys, colon, marrow stromal cells, osteoblasts, fibroblasts, and 

vascular smooth musc]e cells (Fiavola et al., 2002; Soe et al., 2002; Gomis-Ruth, 2003). 

It is a serine protease like plasmin and kallikrein (Spicer, 2004). PAPP-A was first 

identified as the IGFBP-4 protease in human fibroblasts and osteoblast cells (Lawrence et 

al., 1999). PAPP-A was later identified as the IGFBP-4 protease in human (Giudice, 

2001 ), equine, bovine, and porcine follicular fluid (Mazerbourg et al., 2001 ). In cattle, 

using immunoprecipitation of follicular fluid from preovulatory follicles with anti-PAPP­

A antibodies abrogated both IGFBP-4 and IGFBP-5 proteolysis (Rivera and Fortune, 

2003b ), also suggesting that PAPP-A may be involved in IGFBP-5 degradation. Also, 

recently, PAPP-A was hypothesized to degrade IGFBP-2 at a much slower rate as 

compared to IGFBP-4 and -5 degradation (Monget et al., 2003). 

It is also possible that changes in IGFBP levels regulate each other's proteo]ysis. 

In ovine follicles, addition of IGFBP-3 and -5 led to the inhibition of IGFBP-4 

proteolytic degradation (Mazerbourg et al., 1999). The heparin-binding domain in the C­

terminal region of IGFBP-3 and -5 inhibits IGFBP-4 proteolysis by directly interacting 

with its proteases (Mazerbourg et al., 1999). Follicular fluid IGFBP-2 in heifers, sows, 

and mares, inhibits IGFBP-4 degradation by sequestering IGF-1; while, follicular fluid 

28 



IGFBP-5 in heifers and ewes inhibits IGFBP-4 degradation by the direct interaction of its 

heparin-binding domain with the protease (Mazerbourg et al., 2000). 

In summary, low amounts ofIGFBP present in the follicular fluid oflarge 

preovulatory follicles may be due to low levels of mRNA levels (as in the case of IGFBP-

2 protein) or proteolysis (as in the case ofIGFBP-4 and -5). IGFBP-4 and -5 

protease(s) have serine metalloprotease characteristics, and the foremost protease may be 

PAPP-A. The less efficient IGFBP-2 degradation by PAPP-A may not be the major 

cause of low follicular fluid IGFBP-2 protein levels. Because levels of IGFBP-3 remain 

unchanged in bovine and equine follicular fluid, IGFBP-3 proteolysis does not play a 

major role in the release ofIGF-1. 

Localization and expression of PAPP-A in follicular cells. PAPP-A mRNA is 

detectable in granulosa cells from cattle and pigs (Mazerbourg et al., 2001), humans 

(Hourvitz et al., 2000), and rats (Hourvitz et al., 2002). PAPP-A mRNA expression was 

highest in granulosa cells from fully differentiated large follicles in cattle and pigs 

(Mazerbourg et al., 2001). Intense in situ hybridization signal of PAPP-A mRNA was 

seen in dominant estrogenic preovulatory follicles, also in granulosa-luteal cells, in 

humans (Hourvitz et al., 2000; Giudice, 2001 ). It is also considered as marker of 

follicle selection, because selected follicles with a diameter of 9 mm in humans express 

PAPP-A mRNA (Conover et al., 2001). In contrary, PAPP-A mRNA was lowly 

detected in small healthy and atretic antral follicles (regardless of size) in humans 

(Hourvitz et al., 2000). Even though PAPP-A mRNA was expressed in healthy antral 

follicles, there was no protein staining detected in human antral follicles, only in 
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granulosa and theca cells of primordial (intermediate and mature follicles) and small and 

large luteal cells (Vlasak et al., 2003). Seemingly, PAPP-A mRNA expression and 

protein secretion of granulosa cells may not always occur at parallel times or more 

sensitive techniques (i.e., real-time PCR) are needed to detect changes in PAPP-A mRNA 

in antral follicles. 

In summary, PAPP-A mRNA is localized in granulosa cells of estrogenic 

dominant preovulatory follicles, and luteal cells, implying that PAPP-A mRNA is a 

marker of follicle selection and lutenization. However, PAPP-A mRNA levels in 

dominant and subordinate follicles have not been compared. 

Hormonal regulation of PAPP-A mRNA. As previously cited, IGFBP-4 

proteolysis commence as early as follicle selection, where FSH are at nadir 

concentrations, implying that the future dominant follicle acquires an FSH-inducible 

IGFBP-4 and -5 protease in bovine (Rivera and Fortune, 2003a). In rat granulosa cells, 

FSH induced the production of an IGFBP-5 protease (Fielder et al., 1993; Resnick et al., 

1998). Thus, transcription of PAPP-A may change during the preovulatory, ovulatory 

and postovulatory phases of the ovarian cycle (Hourvitz et al., 2002). In immature rats, 

PMSG treatment increased whole ovarian PAPP-A mRNA at 24 h and 36 h after 

treatment, but levels fell to non-detectable levels in dominant preovulatory follicles 48 h 

after treatment (Hourvitz et al., 2002). However, whole ovarian PAPP-A mRNA 

expression increased again after hCG treatment and was sustained at high levels 

throughout ovulation and luteinization (Hourvitz et al., 2002). This may imply that 

PAPP-A mRNA is not continually expressed in granulosa cells and therefore acutely 
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regulated {Spicer, 2004). Whether the recently identified IGFBP-5 specific papalysin, 

PAPP-A2 {Overgaard et al., 2001) is regulated concomitantly with PAPP-A remains to be 

determined. 

PAPP-A protease activity on IGFBP-4 degradation is IGF dependent (Lawrence 

et al., 1999), while on IGFBP-5 is IGF independent (Laursen et al., 2001). IGF-I may 

cause conformation changes on IGFBP-4, making it more susceptible to proteolysis 

(Mazerbourg et al., 2001 ). However, in early and late atretic ovine follicles with reduced 

proteolytic activity, IGF-I did not enhance IGFBP-4 degradation (Mazerbourg et al., 

1999). In humans, PAPP-A activity is IGF-II dependent (Conover et al., 2001). Also, 

estradiol and androstenedione were positively correlated with IGFBP-4 and -5 

proteolytic activity, which may imply that these steroids may regulate these IGFBPs via 

induction of IGFBP protease (Spicer, 2004). Future research should focus on developing 

bovine (and other fann animal species) specific reagents in order to measure changes in 

PAPP-A and -A2 concentrations in follicular fluid. 

In summary, p APP-A mRNA may be acutely regulated by gonadotropins, while 

its protease activity is IGF dependent. Steroids such as estradiol and androstenedione 

may also play a part in IGFBP protease induction. 
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CHAPTER III 

RELATIONSHIPS AMONG GRANULOSA CELL INSULIN-LIKE GROWTH 

FACTOR BINDING PROTEINS AND PREGNANCY-ASSOCIATED PLASMA 

PROTEIN-A mRNA EXPRESSION AND FOLLICULAR FLUID 

CONTENTS IN DOMINANT AND LARGE SUBORDINATE 

FOLLICLES OFPREOVULATORY CATTLE 

ABSTRACT 

The objectives of this study were to evaluate if 1) expression levels for insulin­

like growth factor binding protein (IGFBP) and pregnancy-associated plasma protein-A 

mRNAs differ between the dominant and largest subordinate follicles during luteal 

regression, and 2) these differences are associated with differences in follicular fluid 

(FFL) concentrations of steroids ( estradiol, androstenedione, and progesterone), total and 

free lGF-1, or lGFBPs. To accomplish these goals, estrous cycles of non-lactating 

Holstein dairy cows (n = 15) were synchronized with two injections ofprostaglandin 

(PGF2a) 11 d apart. Follicular growth was monitored daily via transrectal 

ultrasonography five days prior to the second injection of PGF2cx. Granulosa cells and 

FFL were collected either 24 h or 48 h after the second injection of PGF2a from 

dominant and subordinate follicles. Diameter of the dominant follicles was greater 

(P<0.000 l) than that of the large subordinate follicles. FFL from dominant follicles had 
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lower concentrations of progesterone {P<0.08) and higher concentrations of estradiol 

{P< 0.05), androstenedione (P<0.0001), estradiol:progesterone ratio (P<0.0001), free 

IGF-1 {P<0.0001) and calculated percentage free IGF-I (P<0.01) than large subordinate 

follicles. Total IGF-1 was affected by follicle type by time. IGFBP-2,-4, and -5 levels in 

the FFL were greater (P<0.005) in subordinate than in dominant follicles. IGFBP-3,-4 

and PAPP-A mRNA expression did not differ (P>0.05) between dominant or subordinate 

follicles. IGFBP-2 mRNA levels of subordinate follicles was 4-fold greater than the 

dominant follicles (P<0.06). IGFBP-5 mRNA levels at 24 h and 48 h, were several fold 

greater (P<0.05) in subordinate than dominant follicles. Only IGFBP-2 and -5 mRNA 

levels were positively correlated with their respective proteins in the FFL. We conclude 

that decreased levels ofIGFBP-2 and -5 mRNA in granulosa cells may contribute to the 

decrease in FFL IGFBP-2 and -5 proteins of preovulatory dominant follicles, and that 

changes in granulosa cell IGFBP-3,-4, and PAPP-A mRNA levels do not occur during 

final preovulatory follicular development in cattle. 

INTRODUCTION 

Cattle have two to three follicular waves per estrous cycle. Each 7- to 10-day 

follicular wave brings about one dominant follicle that becomes larger than the rest of the 

cohort subordinate follicles. The dominant follic]es from the first and second wave ( of a 

three-wave cycle) are non-ovulatory, and become atretic, unless luteolysis is induced via 

treatment with PGF2a (Fortune et al., 2001). The first follicular wave is the most 

convenient to study for predicting and monitoring the process of follicle growth because 
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it is unaffected by any previous wave (Mihm et al., 2000; Fortune et al., 2001). Studies 

concerning follicle wave emergence to selection are conducted on days 1 to 3 (Mihm et 

aL. 2000; Austin et al., 200 I) and follicle dominance on days 4 to 10 of the estrous cycle 

(Stewart et al., 1996). 

As the follicular wave progresses, follicles respond differently to the decreasing 

FSH and increasing LH concentrations. During functional dominance, the dominant 

follicle continues to increase in size, as its cohort subordinates lag behind. Although 

increased diameter is a good visual characteristic to detennine the dominant follicle via 

ultrasonography,. it is more of a result rather than the cause of dominance, because 

intrafollicular factors are initiated even before significant difference in follicle diameter is 

detected (Mihm et al., 2000; Austin, 2001; Spicer, 2004). These factors include increased 

levels of estrogen, proteases, and free IGF-I as well as decreased levels of low molecular 

weight IGF binding proteins (IGFBP)-4 and -5. 

Many studies indicate that after follicular wave emergence, the largest follicle 

(which becomes the dominant follicle) secretes the most estradiol (Stewart et al., 1996; 

Mihm et al., 2000; Rivera and Fortune, 2003a). Recently, Ginther et al. (2003) reported 

that concentration of estradiol and free IGF-I simultaneously became greater in the 

follicular fluid of the largest follicle (Fl) as compared to the next largest associated 

follicle (F2) by the beginning of diameter deviation. This presumably increases 

circulating estradiol levels, which cause a negative feedback to FSH, hindering the 

growth of other follicles. However, levels of free IGF-I in bovine preovulatory dominant 

and subordinate follicles have not yet been reported. 
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The source of intrafollicular IGF-I is likely from systemic blood as well as from 

local production by ovarian granulosa, theca, and luteal cells, allowing for endocrine and 

intraovarian autocrine and paracrine action (Spicer and Echtemkamp, 1995). In most 

species studied, IGF-I stimulates both proliferation and differentiation of granulosa cells 

(Spicer an Echtemkamp, 1995; Mazerbourg et al., 2003), and has the potential to prevent 

ovarian follicular ceJJ apoptosis (Chun et al., 1994). Increased free IGF-I could either 

directly enhance estradiol production, indirectly enhance FSH-induced estrogen 

production and (or) indirectly enhance LR-induced androgen production by the theca 

cells (Stewart et al., 1995; Spicer et al., 2002). Presumably, continued IGF-I 

bioavailability is needed by the largest follicle during its development to dominance (Beg 

et al., 2002; Ginther et al., 2003), however, its use by the aforementioned ovarian cell 

types is affected by IGFBP (Spicer and Echtemkamp, 1995; Mihm et al., 2000; Austin et 

al., 2001 ). 

IGFBP activity in the follicular fluid of cows (Spicer and Echtemkamp, 1995) and 

mares (Bridges et al., 2002; Mazerbourg et al., 2003;) decreases as follicles develop and 

become estrogen active, but increases in atretic follicles. Low molecular weight binding 

proteins::::: 35 kDa, such as IGFBP-2,-4, and -5, regulate the availability of IGF-I to 

granulosa and theca cells (Spicer et al., 1997; Spicer and Chamberlain, 1999). 

Decreased amounts of IGFBP-4 and -5 in the follicular fluid of dominant as compared to 

subordinate follicles occurred before morphological selection, while decreased IGFBP-2 

occurred after deviation (Mihm et al., 2000; Rivera and Fortune, 2003a). This 

characteristic difference between follicle types (dominant and subordinates) is maintained 

until the growing or preovulatory dominant follicle ovulates or undergoes atresia. The 
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changes in concentrations of low molecular weight IGFBPs in bovine follicles may be 

regulated by its own gene expression localized in different ovarian tissues, post 

translational degradation by hormonally-induced proteases, or both (Spicer et al., 2001; 

Mihm et al., 2002; Monget et al., 2002). However, IGFBP gene expression in dominant 

and subordinate follicles has not been evaluated during luteal regression. During 

follicular growth, IGFBP-2 mRNA levels were less in granulosa cells of large follicles as 

compared with the smaller follicles in cattle (Yuan et al., 1998), and pigs (Liu et al., 

2000). IGFBP-4 mRNA increased in the theca intema oflarge (8 mm) follicles in pigs 

(Liu et al., 2000), while changes were not detected in theca cells of heifers (Armstrong et 

al., 1998). In rats, IGFBP-2,-3,-4 and -5 mRNA expressions were not detected in 

dominant follicles (Erickson et al., 1992). 

Pregnancy-associated plasma protein-A (PAPP-A), known best for its IGFBP-4 

protease activity, is found in porcine, bovine, ovine and equine follicular fluid 

(Mazerbourg et al., 2001; Hourvitz et al., 2002). PAPP-A mRNA expression was 

localized in granulosa cells of healthy follicles in humans (Conover et al., 2001; Hourvitz 

et al., 2000), rodents, and domestic animals (Mazerbourg et al., 2001 ). PAPP-A may 

also be a protease for IGFBP-5 (Rivera and Fortume, 2003a) and perhaps IGFBP-2 

(Monget et al., 2003). PAPP-A may be hormonally regulated since recently, Hourvitz et 

al. (2002) showed significant changes in PAPP-A mRNA levels in murine ovaries after 

PMSG and hCG treatment in vivo. However, changes in granulosa cell PAPP-A mRNA 

during preovulatory follicular development has not been evaluated in any species. 

The objectives of this study were to evaluate if amounts of IGFBP and PAPP-A 

mRNAs differ between the dominant and largest subordinate follicles during luteal 
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regression (different time points post PGF-2cx injection) prior to ovulation, and to 

detem1ine if these changes are associated with changes in follicular fluid concentrations 

of total and free IGF-I, steroids (estradiol, progesterone, and androstenedione) or 

IGFBPs. 

MATERIALS AND METHODS 

ANIMALS 

Estrous cycles of 15 non-lactating Holstein cows were synchronized with two 

injections of 25 mg IM PGF2cx (Lutalyse; Pharmacia and Upjohn, Kalamazoo, MI) 11 

days apart during two replicates (replicate 1, n=l O; replicate 2, n=5). Follicular growth 

was monitored daily via transrectal ultrasonography with an Aloka 500V ultrasound 

scanner attached to a 7.5 mHz probe five days before the second PGF2cx injection to 

identify the dominant follicle and subordinate follicles (Spicer et al., 2001 ). About 10 

mL of blood were collected via the tail vein and plasma were harvested for progesterone 

determinations. 

COLLECTION OF FOLLICULAR FLUID AND GRANULOSA CELLS 

Fo11icular fluid from dominant and large subordinate follicles was collected via 

transvaginal aspiration 24 (n= 8) or 48 (n=7) h after the second injection of PGF2a. 

Cows had epidural injection with 2% Lidocaine (5 mL; Butter Co., Columbus, OH), 

between coccygeal I (C 1) and 2 (C2) vertebra located by raising the tail in a Hpump 

handle" way. This anesthetic is used to prevent straining during collection. A 55 cm 17-

gauge aspiration needle was inserted through a steel needle guide attached to the 
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ultrasound probe and inserted in the vagina. The dominant and large subordinate follicles 

were identified and punctured, and the granulosa cell and follicular fluid mixture were 

aspirated with IO cc syringes and deposited into 1.5 mL sterile cryotubes. Granulosa 

cells were obtained by immediate centrifugation (200 x g for 5 min) of the follicular 

fluid, placed in 0.5 mL ofTRizol reagent (Life Technologies, Inc., Gaithersburg, MD), 

and frozen in liquid N2. Granulosa cell and follicular fluid samples were stored in the 

cryotubes at -80°C until RNA extraction and RIAs, respectively, were conducted. 

Times after PGF2a. injection were selected based on previous studies (Spicer et al., 2001) 

and because serum LH concentration increases during this time, prior to the anticipated 

LH surge (Spicer and Roche, 1981; Ireland and Roche, 1982). The dominant follicles 

were aspirated on average (± SE) on day 8 ± 2.9 post ovulation and had an average (±SE) 

growth rate of 1.1 +0.2 mm during the 5-day ultrasound period. 

RADIOIMMUNOASSAYS (RJAs) 

Progesterone (P4) concentrations in plasma were determined with a solid-phase 

RIA kit (Coat-a-Count, Diagnostic Products, Los Angeles, CA) as previously described 

(Stewart et al., 1996) to determine if cows were exhibiting normal luteal function; the 

intraassay CV was 10.9%, and the assay sensitivity, defined as 91 % of total binding was 

0.005 ng/mL. Follicular fluid concentrations of estradiol (E2) were determined by RIA 

(Spicer and Enright, 1991); the intraassay coefficient of variation was 8.7% and the assay 

sensitivity, defined as 95% of total binding, was 2.6 pg/mL. Follicular fluid 

concentrations of progesterone were determined by RIA (Spicer and Enright, 1991 ); the 

intrassay coefficient of variation was 14. 7% and assay sensitivity, defined as 90% of total 
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binding, was 8.0 ng/mL. Follicular fluid concentrations ofIGF-I were determined by 

RIA after acid-ethanol extraction (16 hat 4°C; Echtemkarnp et al., 1990); the intraassay 

coefficient of variation was 2.5%, and assay sensitivity, defined as 95% of total binding, 

was 4.5 ng/mL. Follicular fluid concentrations of androstenedione were determined 

using a solid-phase RIA kit (ICN Biomedicals, Costa Mesa, CA; Stewart et al., 1996); the 

intraassay coefficient of variation was 4.4%, and assay sensitivity, defined as 90% 

binding at 12 ng/mL. Follicular fluid concentrations of free IGF-I were determined using 

Active® Free IGF-1 immunoradiometric assay (IRMA; DSL-9400, DSL, Webster, TX). 

Increasing volumes of pooled bovine follicular fluid (2 µL, 5µL, IO µL, 20 µL, 40 µL) in 

75 µL of PBS (0.25% BSA, pH 7.5) resulted in parallelism to the free IGF-I standard 

curve. Briefly, in this experiment, 10 µL of follicular fluid sample in 90 µL of PBS was 

deposited at the bottom of the coated tubes and incubated for 2 hat 4 °C. Tubes were 

washed twice with 2 mL deionized water, and incubated in a shaking platform ( 180 rpm) 

with 200 µL second 1125 antibody at 25°C for 2 h. Tubes were washed thrice with 3 mL 

of deionized water and Free IGF-1 was quantitated using a gamma counter. The 

intraassay coefficient of variation was 2.3%, and assay sensitivity, defined as 0.25% 

binding, was 0.5 ng/mL. Percentage of Free IGF-I was calculated as (free IGF-1 / total 

IGF-I) x 100. 

LIGAND BLOTTING 

Amounts ofIGFBP in follicular fluid were assessed by one-dimensional SDS-

p AGE as previously described (Stewart et al., 1996; Spicer et al., 2001 ). Briefly, 4 µL of 
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follicular fluid was mixed with 21 µL ofLaemmli sample buffer (Bio-Rad, Hercules, 

CA). Samples were then heat treated (3 min at 100°C) to denature the proteins and 

centrifuged at approximately 4600 x g for 3 min. Samples were then added to a 12% 

polyacrylamide gel and electrophoresed overnight at constant current (27 amperes) and 

varying voltage (overnight at 36 volts and the following morning at 82 volts). Following 

separation, gels were electrophoretically transferred to nitrocellulose paper (Midwest 

Scientific, St. Louis, MO) for 2.5 to 3.0 h, and ligand blotted overnight with 1251-IGF-I 

and 
125

I-IGF-II (I :I) on a rocking platfonn at 4°C. After washings and exposure to X-ray 

film for 48 h at -80°C, band intensity was densitometrically analyzed with Molecular 

Analyst (Bio-Rad). All values were expressed as arbitrary densitometric units (ADU/4 

µL). The inter-gel coefficient of variation, computed by taking the average and standard 

deviation of IGFBP-3 and -2 levels from pooled follicular fluid (run on each gel and 

serving as the control) was 27.7%. 

mRNA ANALYSES 

mRNA extraction. Total cellular RNA was isolated from aspirated granulosa 

cells by lysis in 0.50 mL TRizol reagent (Life Technologies, Inc., Gaithersurg, MD) in 

1.5 mL eppendorf tubes. Lysed cells were then incubated in TRizol for 5 min at 22 °C. 

Next, 0.10 mL of chlorofonn (Sigma Chemical Co., St. Louis, MO) was added and each 

sample vortexed for 15 sec. Following 3 min incubation at 22°C, samples were 

centrifuged (3500 x g for 30 min at 4°C). The upper aqueous phase containing the RNA 

was transferred to a new eppendorf tube and RNA was precipitated using 0.25 mL of 
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isopropyl alcohol (Pierce Chemical Co., Rockford, IL). Samples were gently mixed by 

hand, and then incubated at 22°C for 10 min, followed by centrifugation at 3500 x g for 

l O min at 4°C. The supernatant was then removed and the RNA pellet washed with 0.50 

mL of 75% ethanol and then centrifuged, as before, for 5 min. Ethanol supernatant was 

removed and RNA pellet allowed to dry for 4 min. The RNA was then dissolved in 0.03 

mL of TE buffer (10 mM Tris-Cl, 1 mM EDTA; pH 7.4). 

Ou anti fication of total RNA. Ribogreen ® RNA Quantitation Reagent and Kit 

(Molecular Probes, Eugene, OR) were used to quantify total RNA isolated from the 

granulosa cell samples following manufacturer's specifications with modifications. An 

aliquot of the isolated RNA from the samples was placed in 1 reaction of Tris-EDT A 

buffer ( 1 xTE) with a 1 sample:50 TE dilution. The Ribogreen RNA quantitation reagent 

was diluted 200-fold for the high range assay. The ribosomal RNA standard (100 

µg/mL) was diluted 50-fold in lxTE to make a 2 µg/mL working solution. This working 

solution was further diluted with appropriate amounts of lxTE for the standard curve 

with final RN A concentrations of 1000, 750, 500, 250, 100, 75, 25, 10, and Ong/ µL. 50 

µL of RNA sample and standard was pipetted into black 100 µL 96-well microplates 

(Proxip1ate™-96F, PIN 6006270, Packard Bioscience BV, Meridian, CT), followed by 50 

µL of the aqueous working solution of Ribogreen RNA quantitation reagent. After 5 min 

incubation at 25 °C, fluorescence was read using Wallac 1420 (Perkin Elmer, Boston, 

MA). The excitation maximum for Ribogreen reagent bound to RNA is 500 nm, while 

its emission maximum is 525 nm. The fluorescence value of the reagent blank (0 ng/mL 
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RNA) was subtracted from each of the standards' and samples' fluorescence to adjust for 

the background. Fluorescence of the standard RNA was plotted with its corresponding 

concentrations. Given the adjusted fluorescence value of the samples, RNA 

concentrations were determined. The intra-assay coefficient of variation was 17%. 

RT-PCR Primer and Probe Design. Primers and probes for quantitative RT-PCR 

were made using Primer Express software (Foster City, CA) with the following 

manufacturer's restrictions: The temperature melting (Tm) for primers is 50 °C to 60°C 

with the probe's Tm to be at least I0°C higher. The minimum GC base pair content for 

the primers and probes should be 20% to 80% avoiding runs of an identical nucleotide. 

The minimum and maximum length of the strands should be 9 and 40 nucleotides, 

respectively. 

The available bovine sequences for IGFBP-2,-3 ,-4,-5 and PAPP-A found in 

GENBANK were analyzed by the Primer Express program to determine optimum primer 

and probe locations. IGFBP-2 (954 bp, Accession AF074854) forward and reverse 

primers were constructed from bp 466 to 486 with a sequence of 

GACGGGAACGTGAACTTGATG and from bp 518 to 536 with a sequence of 

TCCTTCA TGCCGGACTTGA, respectively. The probe for IGFBP-2, 

AGGTGGAGGTGGTGCCGGTCG, was found to anneal from 489 to 509 of the IGFBP-

2 sequence. Forward and reverse primers for IGFBP-3 (1568 bp, Accession M76478) 

were designed from bp 1137 to 1163 with a sequence of 

AAAGAGATGTTTGAAATGCCTAGTTTT, and from bp 1200 to 1224 with a sequence 

of TCAAACTCGGTTTCACTGACTACTG for each. Its probe has a sequence of 
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TTCCACATGGTGAACCTGGCATCTTTC and anneals from 1165 to 1191 of the 

IGFBP-3 sequence. Forward and reverse primers for IGFBP-4 (2028 bp, Accession 

S52770) were GAGGAAAGAATGTATGTGCCTGATG and 

GACCACAAACGGAGGAGGAA, respectively. The forward primer anneals from 1733 

to 1757, while the reverse primer anneals from 1808 to1827 of the IGFBP-4 sequence. 

Taqman probe, CATGCTGGGAGGTGAGGGACTTATCTGG, anneals from 1772 to 

1799 of the IGFBP-4 sequence. Forward and reverse primers for IGFBP-5 (335 bp, 

Accession S52657), GTTTGCCTGAACGAAAAGAGCTA and 

CGAGTAGGTCTCCTCTGCCATCT, respectively, anneal from 193 to 215 and 275 to 

295 of the IGFBP-5 sequence. Taqman probe, 

AGCCAAGA TCGAAAGAGACTCCCGTGAG, anneals from 225 to 252 of the IGFBP-

5 sequence. For PAPP-A (851 bp, Accession AF421141), the forward and reverse 

primers used were CAGATGTTGAGCAGCCCTGTAA and 

GGGTTGACGGCTGAATTGG, respectively. The forward primer anneals from 557 to 

578 of the sequence while the probe, CCAGCGTCCGCACCTGGAGC, anneals from 

5 81 to 600 of the PAPP-A sequence. PCR products of IGFBP-2,-3,-4,-5, and PAPP-A 

were 70, 87, 94 and 63 base pairs, respectively. The specificity of the desired products 

was documented using high-resolution gel electrophoresis to verify that the transcripts 

were of the exact molecular size predicted and further confirmed by sequence analysis. 

Quantitative RT-PCR. Real-time quantitative RT-PCR was used to determine 

differences in mRNA expression levels for IGFBP-2, -3, -4, -5 and PAPP-A between 

dominant and subordinate follicles collected at either 24 or 48 h after second 
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administration of PGF2cx.. Expression levels were quantitated using TaqMan® One Step 

PCR Mastem1ix (PIN 4309169, Applied Biosystems, Foster City, CA). The probe 

anneals between the forward and reverse primer sites. The Taqman probes for each 

IGFBP contain a 5' reporter dye (TET) and 3' quencher dye (TAMRA). Taqman probe 

for PAPP-A contains the same quencher dye at the 3' end, but has FAM as its 5' reporter 

dye. The quencher dye suppresses the reporter's fluorescence until cleavage by the 

AmpliTaq Gold DNA polymerase. An increase on the reporter's fluorescence 

corresponds to an equal amount of PCR product. A total reaction volume of25 µL 

consisted of: 1 µL of 200 nM forward primer (IGFBP-2,-3,-4,-5, and PAPP-A), 1 µL of 

200 nM reverse primer (IGFBP -2, -3, -4, -5, and PAPP-A), 0.5 µL of 100 nM 

fluorescent probe for IGFBP-3 and -4 or 1 µL of 200 nM fluorescent probe for IGFBP-

2, -5, and PAPP-A, 12.5 µL of Taqman Master mix without uracil-N- glycosylase 

(UNG), 0.625 µL of Multiscribe and RNase inhibitor mix (PIN 4309169, Applied 

Biosystems, Foster City, CA), and 4 µL containing a total of 100 ng RNA, brought to 

volume with RNase free water. 

One step RT-PCR amplification was performed in the ABI PRISM® 7700 

Sequence Detection System (Applied Biosystems, Foster City, CA). Thermal cycling 

conditions were as follows: 30 min at 48°C for reverse transcription, 15 sec for 95°C for 

denaturing and I min at 60°C for annealing and extension. Denaturation, annealing and 

extension steps repeated for 40 cycles. Running time was approximately 2.5 h. 

Ribosomal 18S RNA control kit (PIN 4308329, PE Biosystems, Foster City, CA) was 

used as a housekeeping gene to normalize samples for any variation in RNA loading. A 
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total reaction volume of 25 µL consisted of: 0.25 µL of 1 OµM of forward primer, 0.25 µL 

of 1 OµM of reverse primer, 0.0625 µL of 40µM probe, 12.5 µL of Taqman Master mix 

without UNG, 0.625 µL ofMultiscribe and RNase inhibitor mix (PIN 4309169, Applied 

Biosystems, Foster City, CA), and 100 pg of sample RNA in 4 µL brought to volume 

with RNase free water. 

To verify the sensitivity of 18S rRNA housekeeping gene to detect fold changes, 

varying amounts of RNA were loaded in a parallel fashion with the target probe (IGFBP-

2,-3 ,-4, -5 or PAPP-A). Decreasing amounts of total RNA were analyzed for 18S rRNA 

(500, 100, 50, 1 O, 5 or l pg) or target mRNA (500, 100, 50, 10, 5 or 1 ng) with results for 

IGFBP-5 and PAPP-A illustrated in Fig. I. 

Quantification of gene expression was made by setting an arbitrary threshold on 

the TET or FAM curves in the geometric portion of the RT-PCR amplification plot. 

Relative quantification ofIGFBP-2,-3,-4, -5 and PAPP-A mRNA expression was done 

using the comparative threshold cycle (Ct) method (Technical Bulletin No. 15, PE 

Biosystems User Manual). The .!\Ct was determined by subtracting the I 8S Ct from the 

target unknown's Ct value (IGFBP-2,-3,-4,-5, or PAPP-A). For each IGFBP and PAPP­

A mRNA, the MCt was determined by subtracting the highest .1Ct from all other .1Ct 

values. Fold changes in mRNA expression of the target genes were calculated as 2·MCt 

(Livak and Schmittgen, 2001). Individual sample fold expression was then divided by 

the lowest treatment mean. Ct values amplifying 2 cycles before or after the no template 

control (NTC) were discarded. Outliers were detected and determined as described by 

Ott ( 1977). The intra-assay (within plate) coefficients of variation based on Ct values 
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There was significant (P<0.05) follicle type by time effect on estradiol 

concentration. Subordinate follicles are significantly different from each other (P<0.05). 

At 24 h and 48 h, dominant follicles had greater estradiol levels than subordinate follicles 

(P<0.0001 ). Estradiol levels of dominant follicles collected at 24 and 48 h averaged 

518.5 ± 67.5 ng/mL and 459.0 ± 72.2 ng/mL, respectively, while estradiol concentrations 

in subordinate follicles collected at 24 and 48 h averaged 5.1 ± 84.3 ng/mL and 34.8 + 

73.9 ng/mL, respectively (Fig. 3). 

Follicular fluid progesterone concentrations tended to differ (P<0.08) between 

follicle types, but unaffected by time or its interaction. Progesterone concentrations of 

dominant and subordinate follicles averaged across time were 206.3 ± 62.1 and 413.0 ± 

75.0 ng/mL, respectively (Fig. 4). 

Follicular fluid androstenedione concentrations were significantly (P<0.0001) 

affected by follicle type but not time or follicle type by time interaction. 

Androstenedione concentrations of dominant follicles were 23-fold greater as compared 

to the subordinate follicles (P<0.0001). Androstenedione concentrations of dominant and 

subordinate follicles averaged across time were 393.9 ± 149.4 and 17.7±151.8 ng/mL, 

respectively (Fig. 4). 

Estrogen:progesterone ratio was significantly (P<0.0001) affected by follicle type 

but not by time or follicle type by time interaction. Estrogen:progesterone ratios 

averaged across time for dominant and subordinate follicles were 2. 7 ± 0.4 and 0.2 ± 0.4, 

respectively. 

Total IGF-I concentration was affected (P<0.05) by follicle type by time 

interaction. Total IGF-I concentrations decreased {P<0.05) between 24 h and 48 h in 
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and gene fold expression for the various target genes averaged 0.4 to 1.5% and 13 to 

31 %, respectively from sample duplicates on each plate. 

ST A TIS TICA L ANALYSES AND EXPERIMENTAL DESIGN 

Data were analyzed using the MIXED procedure of SAS (SAS Inst., Inc., Cary, 

NC). Data exhibiting heterogeneous variances (Follicular fluid E2, P4, A4, IGF-1, 

IGFBP and mRNA data) were analyzed after transformation to log (x+l). Least-square 

means± SE of the non-transformed data were reported. Fixed effects consist of time of 

collection (24 or 48 h) and follicle type (dominant or subordinate). The random effects 

were replicate (1 or 2) and cow nested in time, and their interactions were analyzed. If 

main effects were significant, differences in treatment means were evaluated using 

LSMEANS with the PDIFF option. Alternatively, LSMEANS with the SLICE option 

was used to determine differences in treatment means if any interaction was significant. 

Pearson correlation coefficients were also calculated to determine any significant 

relationships among the variables measured. 

RESULTS 

FOLLICLE DIAMETER, STEROIDS, AND IGF-1 

Follicle type but not time affected (P<0.0001) follicle diameter. Average 

diameters of dominant follicles collected at 24 and 48 h were greater (P<0.0001) than the 

average of the subordinates. Mean diameters of dominant and subordinate follicles 

across time were 18.3 ± 1.5 mm and 8.2 ± 1.5 mm, respectively (Fig. 2). 
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subordinate but not dominant follicles and were less in dominant than subordinate 

follicles at 24 h (P<0.05) but greater in dominant than subordinate follicles at 48 h 

(P<0.05). Total IGF-I in dominant follicles collected at 24 and 48 h were 76.2 + 29.3 and 

90.3 + 29.4 ng/mL, respectively, while IGF-I in subordinate follicles at 24 and 48 h were 

97. 7 ± 29.6 and 67.6 ± 29.8 ng/mL, respectively. 

Free IGF-1 concentrations were significantly (P<0.0001) different between follicle 

types. There was no significant time effect or follicle type by time interaction. 

Concentrations of free IGF-I in dominant follicles collected at 24 h or 48 h were greater 

(P<0.001) than the subordinates. Concentrations of free IGF-I in dominant and 

subordinate follicles averaged across time were 18.6 ± 2.2 and 2.3 ± 2. 7 ng/mL, 

respectively (Fig. 2). 

Calculated percentage free IGF-1 was significantly (P<0.001) different between 

follicle types but there was no significant time effect or follicle type by time interaction. 

Dominant follicles had higher calculated % free IGF-I than the large subordinate follicles 

at 24 h (P<0.05) and 48 h (P<0.01). Dominant and subordinate follicles had 22.2 ± 2.8% 

and 4.3 + 4.2% free IGF-I, respectively. 

IGFBP via LIGAND BLOTTING 

Concentrations of IGFBP-2 in follicular fluid were significantly (P<0.05) affected 

by follicle type, but not by time or follicle type by time interaction. Averaged across 

time, IGFBP-2 levels in dominant follicles were 3-fold lower than in subordinate follicles 

(Fig. 5). 
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Main effects of time and follicle type were not significant but there was 

significant (P<0.05) follicle type by time interaction effect on IGFBP-3. Levels of 

IGFBP-3 in follicular fluid increased (P<0.05) in dominant (but not subordinate) follicles 

between 24 h (46.8 ± 10.6) and 48 h (61.7 ± 11.3); IGFBP-3 in subordinate follicle 

averaged 68.8 + l 0.5 and 50.5 ± 11.4 at 24 hand 48 h, respectively. 

The N-glycosylated form ofIGFBP-4 was significantly (P<0.005) affected by 

follicle type, but not by time or its interaction with follicle type. Averaged across time, 

levels of N-glycosylated form ofIGFBP-4 in subordinate follicles were 3-fold greater as 

compared to the dominant follicles. At 24 h, IGFBP-4 levels in dominant and 

subordinate follicles differed significantly (P<0.05) and tended to differ (P=0.07) at 48 h. 

On the other hand, levels of N-nonglycosylated form of IGFBP-4 were not significantly 

affected by follicle type, time, or its interaction. Total IGFBP-4 (sum of glycosylated and 

non-glycosylated forms) was significantly affected (P<0.05) by follicle types but not by 

time or its interaction with follicle type (Fig. 5). 

Concentration of IGFBP-5 in follicular fluid was significantly affected (P<0.00 l) 

by follicle type, but not by time or its interaction with follicle type. IGFBP-5 levels in 

dominant and subordinate follicles differed at 24 h (P<0.01) and 48 h (P<0.05). 

Averaged across time, IGFBP-5 levels in subordinate follicles were 4-fold greater as 

compared to the dominant follicles (Fig. 5). 

Total IGFBP concentrations in follicular fluid as determined by the sum of the 

activity of all four IGFBP, were significantly (P<0.05) affected by follicle type by time 

interaction. Total IGFBP activity in dominant (67.0 ± 16.6 ADU /4 µL) and subordinate 

(62. 7 ± 16.8 ADU/ 4 µL) follicles did not differ (P>0.10) at 48 h. At 24 h, total IGFBP 
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activity differed (P<0.05) between dominant (57.7 ± 15.6 ADU I 4 µL) and subordinate 

(107.2 ± 15.5 ADU/ 4 µL) follicles. 

IGFBP and PAPP-A FOLD GENE EXPRESSION 

IGFBP-3, -4, and PAPP-A mRNA levels in granulosa cells were not significantly 

(P>0.50) affected by follicle type, time or its interaction. In contrast, IGFBP-2 mRNA 

levels tended to be affected (P<0.06) by fol1icle type by time interaction. At 24 h, the 

largest subordinate had 26-fold more IGFBP-2 mRNA levels compared to the dominant 

follicle. At 48 h, IGFBP-2 mRNA levels did not differ between dominant and 

subordinate follicles. IGFBP-2 mRNA between follicle types differ (P<0.06). There 

were 4-fold greater IGFBP-2 mRNA levels in the subordinate than in dominant follicle 

(Fig. 6). 

IGFBP-5 mRNA levels in granulosa ce11s were significantly affected by follicle 

type by time interaction (P<0.05). IGFBP-5 mRNA decreased {P<0.05) 11-fold between 

24 h and 48 h in subordinate follicles but did not significantly change between 24 h and 

48 h in dominant follicles. At both 24 h and 48 h, IGFBP-5 mRNA levels in granulosa 

cells of follicles were several fold greater {P<0.005) in subordinate than dominant 

fo11icles (Fig. 6). 

IGFBP-3 fold gene expression averaged across time was 4.7 ± 1.5 and 3.5 ± 1.5 

for the dominant and subordinate follicles, respectively. IGFBP-4 fold gene expression 

averaged across time was 2.8 ± 1.9 and 3.9 ± 1.9 for the dominant and subordinate 

follicles, respectively. PAPP-A mRNA fold gene expression averaged across time was 

62 



2.5 ± 0. 9 and 1.3 ± 0.9 for the dominant and subordinate follicles, respectively. Ct and 

6Ct values for IGFBP-2, -3, -4, -5 and PAPP-A analyses are presented on Table 2. 

PEARSON CORRELATION ANALYSIS 

Free IGF-I was positively correlated with estradiol (r=0.73, P<0.001), 

androstenedione (r=0.56, P<0.05), foilicle diameter (r=.67, P<0.05) and negatively 

correlated with IGFBP-2 (r=-0.53, P<0.05), -4 (r=-0.51, P<0.05), and -5 (r=-0.52, 

P<0.05) proteins, and IGFBP-5 mRNA levels (r=-0.67, P<0.05). Diameter was positively 

correlated with estradiol (r=0.75, P<0.001) and androstenedione (r=0.54, P<0.05). 

Estradiol was negatively correlated with progesterone (r =-0.53, P<0.05), IGFBP-2 

protein (r = -0.55, P<0.05), IGFBP-4 protein (r = -0.46, P<0.05), IGFBP-5 protein (r = 

-0.56, P<0.05), and IGFBP-5 mRNA (r =-0. 73, P<0.05), but positively correlated with 

androstenedione (r = 0. 75, P<0.001). Progesterone was positively correlated with 

IGFBP-5 mRNA (r = 0.50, P<0.05), IGFBP-2 mRNA (r=0.61, P<0.05) and with IGFBP-

4 protein (r = 0.57, P<0.05). Androstenedione was negatively correlated with IGFBP-5 

mRNA level (r =-.52, P<O.l) and positively correlated (r = 0.47, P<0.05) with total IGF-1. 

IGFBP-2 protein was positively correlated with IGFBP-4 (r = 0.57, P<0.001), -5 

(r =0.91, P<0.001), and the total IGFBPs (r=0.68, P<0.001) and IGFBP-5 mRNA levels 

(r = 0. 75, P<0.001 ). IGFBP-2 protein tended to positively correlate with its own mRNA 

fold expression (r =0.41, P<O. l 0). IGFBP-5 protein was positively correlated with its 

own mRNA fold expression (r= 0.81, P<0.001). IGFBP-3 protein was positively 

correlated with the total IGFBPs (r = 0.91, P<0.001). 
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IGFBP-2 mRNA levels were positively correlated IGFBP-5 mRNA levels (r = 

0.51, P<0.05). lGFBP-4 mRNA levels were also positively correlated with IGFBP-5 

mRNA levels (r=0.51, P<0.05; Table 3). 

DISCUSSION 

Overall, the present study showed that dominant preovulatory follicles had: 1) 

greater concentrations of free IGF-I, estradiol, and androstenedione than subordinate 

follicles; 2) less binding activities ofIGFBP-2, -4, and -5 than subordinate follicles; 3) 

less IGFBP-2 and -5 gene expression than in subordinate follicles, and 4) similar 

IGFBP-3,-4, and PAPP-A mRNA levels to those of subordinate follicles. 

The present study pioneered the quantification of free IGF-I in large subordinate 

and dominant preovulatory follicles in cattle. Others (Beg et al., 2001; Beg et al., 2002; 

Rivera and Fortune, 2003a; Ginther et al., 2003) have reported 4 to 8 ng/mL increase in 

free IGF-1 when bovine follicles reach 8 mm at the time of deviation. The present study 

showed 16 ng/mL difference in free IGF-I between preovulatory dominant and 

subordinate follicles and that free IGF-I was positively correlated with follicular fluid 

estradiol and androstenedione concentrations. Collectively, these results suggest a 

continuous increase in free IGF-I may occur during the dominant follicle's tenure, and 

thus elevated free IGF-1 may be a necessary intrafollicular event throughout follicular 

selection, dominance and preovulatory development. 

Concentrations of free IGF-1 was negatively correlated with amounts of low 

molecular weight IGFBP-2,-4, and -5 in the present study. Calculated difference of free 
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IGF-1 (AFree) tended to correlate (r=0.54, P>0.10) with calculated difference of total 

binding protein activity (ATBP) between dominant and the largest subordinate follicles. 

This positive correlation implies that in the dominant follicle, the lesser the binding 

proteins, the more bioavailable IGF-I are released to perfonn its functions. Because IGF-

1 is needed to activate IGFBP-4 dependent proteolytic activity of PAPP-A (Mazerbourg 

et a1., 2001; Lawrence et al., 1999), perhaps increased free IGF-I also enhances 

proteolysis of IGFBP-4. In support of this latter suggestion, IGFBP-4 protein but not its 

mRNA was correlated most significantly with free IGF-I levels. 

Calculated percentage free IGF-I in follicular fluid ofpreovulatory dominant 

fo11icles was 5.5-fold greater than in large subordinate follicles. The present study is the 

first to report the percentage free IGF-1 in dominant preovulatory and large subordinate 

follicles. Ca1culated percentage free IGF-I in the blood of humans is less than 1 % of the 

total IGF-I (Martin and Baxter, 1986). IGFBP increase the metabolic half-life of IGF-I 

and-II (Kostecka and Blahovec, 2002). Intrafollicular degradation of these IGFBPs likely 

amplifies the percentage of free IGF-I in follicular fluid to assure its biological effect on 

granulosa cells of the follicle. However, it is still not clear how much IGF-1 from the 

circulation contributes to the total IGF-I found in the follicle. 

Total IGF-I on the other hand, increased in preovulatory dominant and decreased 

in subordinate follicles, between 24 and 48 h. Previously, total IGF-I concentrations did 

not significantly change between day 5 and IO of the estrous cycle of the first follicular 

wave or differ between dominant and subordinate follicles in cattle (Stewart et al., 1996). 

In the present study, it may be possible that diffusion ofIGF-1 from the blood to the 

follicle varies between follicle types during preovulatory follicular development when 
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LH concentrations are increasing. The latter statement is supported by observations in 

cows where the highest blood flow velocity in preovulatory follicles occurs during 

increasing plasma LH concentrations, whereas, atretic follicles lack detectable blood flow 

(Acosta et al., 2003). In sheep (Brown and Driancourt, 1989) it was reported that 

reduced capillary blood flow rates occur as follicular atresia progresses. Also, in cows 

(Jiang et al., 2003) and pigs (Jiang et al., 2002), dramatic capillary growth occurs during 

preovulatory follicular growth. Vascular corrosion casts from bovine ovaries containing 

estrogenic and non-estrogenic follicles were observed using scanning electron 

microscopy (SEM), and results showed that dominant follicles had a rich outer layer of 

norn1al and dilated capillaries with different angionenic structures (budding, splitting, 

sprouting from former blood vessels), while atretic follicles (having low 

estrogen:progesterone ratios) were seen to have degenerative plexuses in the theca intema 

(Jiang et al., 2003). The increase and decrease of total IGF-1 concentrations in the 

dominant and subordinate follicles, respectively, with time follows the same pattern 

( although not significant) as that of IGFBP-3 levels in the study, further supporting the 

notion that the changes in IGFBP-3 and total IGF-I in follicular fluid are due to changes 

in blood flow and (or) follicle permeability to blood-born factors as previously suggested 

(Echternkamp et al., 1994). This latter statement is further supported by the fact that 

granulosa cell IGFBP-3 mRNA did not differ among follicle types and time, or correlate 

with its protein levels. 

As previously reported for cattle (de la Sota et al., 1996; Stewart et al., 1996; 

Mihm et al., 2000; Austin et al., 2001; Fortune et al., 2001; Spicer et al., 2001; Rivera 

and Fortune, 2003a), dominant follicles had lower binding activity ofIGFBP-2, -4, and -
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5 than in subordinate follicles. These changes in binding activity or levels of follicular 

fluid IG FBPs may be due to decreased mRNA levels, increased proteolytic activity, or 

both. The present study is the first to report, using quantitative real time RT-PCR, that 

IGFBP-2 mRNA levels in granulosa cells differ between dominant and subordinate 

follicles. A significant positive relationship tended to exist between IGFBP-2 protein and 

its mRNA. A previous study in cattle using in situ hybridization (Yuan et al., 1998) 

reported that in early (9 mm) and mid dominant (16 mm) follicles, granulosa cell IGFBP-

2 mRNA was nearly undetectable as compared to subordinate follicles (5.3-5.6 mm). 

Because IGFBP-2 proteolysis in preovulatory dominant follicles is significantly less than 

in subordinate follicles (Spicer et al., 2001) and proteolysis ofIGFBP-2 was much less 

sensitive than IGFBP-4 to PAPP-A (Monget et al., 2003), regulated changes in IGFBP-2 

mRNA expression may be the major cause of decreased IGFBP-2 protein levels in 

dominant follicles of cattle. 

In the present study, while follicular levels ofIGFBP-4 mRNA did not differ, 

IGFBP-4 protein were 3-fold less in preovulatory dominant than subordinate follicles. 

Less IGFBP-4 protein levels in dominant than subordinate follicles agrees with previous 

reports in cattle (Stewart et al., 1996; Mihm et al., 2000; Austin et al., 2001; Spicer et al., 

2001 ). IGFBP-4 mRNA was detected in bovine (Roberts and Echtemkamp, 2003) and 

ovine (Besnard, et al., 1996) granulosa cells of healthy follicles. No significant change in 

IGFBP-4 mRNA was seen in granulosa cells of follicles having 0.5 to >180 ng/mL 

estradiol (Schams et al., 2002). Proteolysis ofIGFBP-4 is more evident in the dominant 

(largest) rather than in subordinate follicles (Spicer et al., 2001; Rivera et al., 2001). 

Proteolysis of IGFBP-4 by follicular fluid has also been reported for pigs (Besnard et al., 
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1997), sheep (Besnard et al., 1996), and horses (Bridges et al., 2002). Because no 

significant correlation existed between the IGFBP-4 protein and its mRNA expression, 

and levels of IGFBP-4 mRNA did not differ follicle types, it is likely that decreased 

levels of IGFBP-4 protein in the follicular fluid may be attributed more to increased 

proteolysis rather than due to regulated IGFBP-4 mRNA expression in granulosa cells. 

Averaged across time, follicular fluid IGFBP-5 mRNA and protein levels in 

subordinate follicles were 13-fold and 4-fold greater, respectively, than in dominant 

follicles. Greater IGFBP-5 protein levels in subordinate than dominant follicles agrees 

with previous reports in cattle (Stewart et al., 1996; Rivera et al., 2001; Spicer et al., 

2001 ). The few studies conducted in other species indicate that IGFBP-5 mRNA is 

absent in dominant follicles in rats (Erickson et al., 1992) and is dramatically increased in 

granu losa cells of atretic follicles in sheep (Besnard et al., 1996). For the first time in 

cattle, IGFBP-5 protein was shown to be positively correlated with its mRNA fold 

expression, which supports the idea that increased levels ofIGFBP-5 in the follicular 

fluid of subordinate follicles is due to the upregulation of its mRNA. However, greater 

IGFBP-5 proteolytic activity exists in ovulatory and nonovulatory dominant as compared 

to subordinate follicles in cattle (Spicer et al., 2001; Rivera and Fortune, 2003b) and 

horses (Bridges et al., 2002). These latter observations indicate that the lower levels of 

IGFBP-5 in dominant follicles may be due to both increased proteolysis (Spicer et al., 

2001; Rivera and Fortune, 2003b) as well as decreased gene expression (present study). 

Levels of granulosa cell PAPP-A mRNA were not significantly different between 

dominant and subordinate follicles, a finding not previously reported in any species. In 

PMSG-induced immature mice (Hourvitz et al., 2002), a time-dependent 4.8-fold 
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increase in whole ovarian PAPP-A mRNA levels occurred between O and 24 h post 

PMSG injection; PAPP-A mRNA levels became undetectable by 48 h post PMSG. Thus, 

it is also possible that PAPP-A mRNA is acutely expressed, and therefore changes have 

occurred prior to sample collection in the present study. Alternatively, changes in 

PAPP-A activity (e.g., increased in IGFBP-4 protease) may occur without changes in 

PAPP-A mRNA levels. In support of the latter suggestion, Mazerbourg et al., (2001) 

showed that PAPP-A mRNA expression is detectable in granulosa cells of both healthy 

and atrctic follicles , although no proteolytic activity degrading IGFBP-4 was observed in 

the latter follicle type. The significant negative correlation between estradiol and IGFBP-

4 protein (but not mRNA), and positive correlation between progesterone and IGFBP-4 

protein (but not mRNA) suggest these steroids may regulate proteolytic activity of PAPP­

A . Alternatively, because PAPP-A mRNA fold expression also showed no correlation 

with the IGFBPs, steroids or 1GF-1 in the present study, suggests that PAPP-A may not 

be the only protease involved in IGFBP degradation. Future research will be required to 

determine if proteolytic activity of PAPP-A is under hormonal regulation, and to 

detcm1ine if proteases like kallikreins (Geisert et al., 2001), known to cleave IGFBP 

regulate ovarian IGFBP levels. 
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Table 2. Quantitative real-time PCR analysis of IGFBP-2,-3,-4, -5 and PAPP-A (PAP) 
mRNA expression in dominant and subordinate follicles collected at 24 or 48 h post 
PGF2cx. 

BP-2 185 BP3 18S BP4 18S BP5 18S PAP 18S 

Ct Ct 6.Ct Ct Ct ACt Ct Ct ACt Ct Ct 6Ct Ct Ct ACt 

Dom 27.7 18.8 8.'78 23.2 18.7 4.7 25.3 18.4 7.0 27.5 17.8 9.6a 22.5 18.0 4.5 

Sub 25.3 19.8 5.3b 23.1 18.9 4.2 25.7 19.0 6.9 23.9 18.3 5.5b 24.2 19.0 5.3 

24 26.7 19.1 7.4 22.0 18.6 3.8 24.6 18.6 6.1 24.1 17.8 6.2b 22.6 17.9 4.6 

48 26.2 19.5 6.6 24.3 19.1 5.1 26.4 18.8 7.7 27.2 18.3 9.0a 24 18.8 5.1 

D-24 28.8 18.4 10.58 21.8 18.5 3.5 24.5 18.5 6.1 26.7 17.8 8.8 22.1 18.0 4.2 
Q-48 26.3 19.2 7.0ab 24.8 19.0 5.9 26.0 18.2 8.0 28.2 17.8 10.3 22.7 18.0 4.7 
5-24 24.5 19.8 4.2b 22.3 18.7 4.1 24.6 18.6 6.2 21.5 17.8 3.6 23.1 18.0 5.0 
S-48 26.2 20.0 6.2ab 23.8 19.2 4.2 26.8 19.3 7.6 26.3 18.9 7.4 25.2 19.7 5.5 

b 5 within a column and horizontal grouping without a c . . 
a. mean ommon superscnpt differ 
(P<0.01) 
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Table 3. Pearson conelation coefficients among diameter, follicular fluid hormones and 
IGFBPs and mRNAs of IGFBPs and PAPP-A. 

Hormones 

Di . 75•• -.05 .25 .Br· 
E2 

P., 

IGF1 

IGFF 

A, 

BP2 

BP3 

BP4 T 

BPs 

BP T 

BP2m 

BP3m 

BP4m 

BPsm 

PAP 

*P<0.05 
**P<0.001 

-.42. .20 .73 .. 

-.26-.19 

.33 

Protein 

_54• -. 11 -.001 -.01 -.15 
.75 .. -.55· -.02 -.46 ' -.56. 

-.25 .27 .02 .57" .34 

.47* .19 .05 -.31 .05 

.56* -.53* -.21 -.51* -.52· 

-.14 .23 -.14 -.21 

.37* .57* .91·· 

.12 .28 

.71 .. 

-.07 - .29 

-.26 -.23 

.18 .61 • 

.02 .07 

-.36 -.35 

.12 -.19 

.68** .41 

.91** -.07 

.43* .66 

.63** .55* 

.23 

mRNA 

.08 

-.52 

.27 

-.04 

-.20 

-.41 

.31 

.23 

.06 

.19 

.30 

- .04 

-.03 -.36 -.15 

- .18 - .73** .19 

. 13 .so· -.19 

.10 .11 .10 

-.31 -.67* .22 

-.25 -.52* .15 

.23 .75** -.21 

-.13 -.02 .11 

.12 .54* -.07 

.29 .81** .26 

-.01 .30 .01 

.78 .64" -.31 

-.06 .17 - .02 

.51" - .09 

-.28 

Abbrev iations· 
D . . . ~ r1 l d·onc· TGFT TGF-I Total· 1

' Diameter; E2. estradiol· P progcs\er ne\ t\ ~~ a\\\\.ros enc 1 ' · ' 

IGF~,, IGF-I Free; BP4T; S~m
4
~fN-glycosylated and non g\ 1 ~\a\ed \GfBP-4 . 

BPT, Sum of all binding prote in activi ty; BP2
01

, BP2 mRNA ; B})3m,BP3 mRNA, 
BP4m. BP4 mRNA; BP5 111, BPS mRNA; PAP, PAPP-A mRNA. 
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CHAPTER IV 

SUMMARY AND CONCLUSION 

How the dominant preovulatory follicle manages to grow and differentiate while 

the rest of the cohort follicles regress and die can be attributed at least in part to 

differences in follicular fluid contents and (or) mRNA levels ofIGF binding proteins. 

Overall, the present study determined that dominant preovulatory follicles had 1) 

oreater concentrations of free IGF-I, estradiol, and androstenedione than in subordinate 
b 

follicles; 2) lower binding activities ofIGFBP-2, -4, and -5 than subordinate follicles; 3) 

less JGFBP-2 and -5 gene expression than in subordinate follicles , and 4) similar IGFBP­

-J,-4, and p APP-A mRNA levels to those of subordinate fo llicles. 

As more free JGF-1 becomes avai lable for growth and estradiol and 

androstenedione synthesis in the dominant follicles, low molecular weight IGF binding 

teins are reduced via proteolysis (as in the case of IGFBP-4) decreased mRNA 1 pro ' eve ls 

. ti e case of TGFBP-2), or both (as in the case of IGFBP-5). p APP-A ma b . 
(as 111 1 Y e Just 

f I n1
any JJroteases found in the foll icular fluid capable of IGFBP degrad t· one o t 1e a 10n, 

PAPP-A mRNA did not differ among fo llicle types, and was not correlated ·. 1 because Wll 1 

. fi 
11

. Jar nuid honnones. Further research should be conducted to determine p .b 
any o 1cu oss1 le 

. 
1 

f other proteases in the development of the dominant preovulatory c 11. 
involve m en ° 10 1cle, 

,ine if PAPP-A proteolytic activity is regulated by hom1ones. 
as well a s detern 
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