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CHAPTER 1 

INTRODUCTION 

The analog to digital converter (A/DC) and digital to analog converter (D/ AC) are 

two essential components connecting the real world and the digital domains. Due to the 

high successful rate of digital circuit implementations and the fabrication process 

advancement of integrated circuit (IC) focusing only on digital circuits, many analog 

circuits (e.g. filters) are now replaced by their digital equivalents. As a result, the 

locations of the converters are shifted very close to the input/output of the systems, i.e. 

antennas, speakers and sensory devices. The concept of this approach is to 1) digitize the 

signal as early as possible; 2) retain the signal in digital domain as long as possible, due 

to the superiority of the noise immunity of the digital circuits. Potentially more 

significant is their superior availability to design automation. 

Resolution and power dissipation are two important issues involved in A/DC 

designs. Due to the small and weak amplitude of the sensor output, the converters with 

high resolution are required to precisely interpret the information. However, poor 

component matching and reduced power supply levels of the advanced process 

technologies hinder many high precision A/DC implementations, and further reveal the 

design challenges. Although many error correction techniques have been developed to 



implement precision Nyquist rate ADCs, it is still very difficult to achieve more than 12-

bit of accuracy. On the contrary, oversampled ~-I: NDCs are well suited for 

implementation in VLSI technology due to their efficient means of exchanging speed for 

resolution and their high tolerance to component mismatches and circuit non-idealities. 

Power dissipation is the second issue of an NDC design. As a result of low power 

CMOS many sensory or telecommunication devices are portable and battery powered. 

The improvement of the long-life battery is slow, and as a result converters with low 

power design are necessary to extend the life of the battery. Processes and system 

architectures are critical for power efficient product design. Today's advanced thin-film 

SOS/SOI CMOS VLSI processes with lower parasitic capacitance, smaller feature size, 

and insulated substrate have encouraged such converter designs and related circuits to be 

fabricated on one chip to lower power dissipation. 

In today's standard digital CMOS process, low power and high resolution ~-I: 

NDCs have gained a unique role in cost effective mixed mode IC application. 

However, process power supply down scale and the high demand for lower power 

consumption still pose the great challenges regarding ~-I: NDCs research. 

1.1 Objective 
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The objective of this project is to build high resolution and low power A/DCs. 

The selected delta-sigma architecture consists of the modulator or AFE and the 

decimation filter or DBE. The decimation filter does not improve the resolution but 

degrade it if not carefully designed. Therefore, the project requirements listed below are 

specified for the modulators addressed in this thesis. 

• 18-bit lKsps@ lmW 

• 16-bit 2Ksps @ 0.5m Wand 1 OKsps @ 2m W 

The decimation filter in this dissertation is designed for 64/32 times decimation, 

which is to accommodate the above modulators designed using the oversampling scheme 

and to interpolate the resolution of the coarse modulator output. 

1.2 Organization 

Chapter 1 introduces the background and the purpose for this study. 

Chapter 2 reviews the analog to digital conversion processes and available low 

power L1-Z: A/DC architectures. 
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Chapter 3 discusses the modulator in detail and its implementation. The low 

power design strategy, system stability, resolution improvement, and circuit consideration 

are included. 

Chapter 4 reviews the decimation processes and available architectures of 

decimation filters. Two-path decimation filter is introduced. 

Chapter 5 discusses the low power strategies of the decimation filter and the filter 

implementation. The constructions of the two-path filter and the data multiplexer are 

included. 

Chapter 6 introduces basic A/DC characterization and sampling methods to 

improve the results of Fast Fourier Transform (FFT). 

Chapter 7 summarizes the results of this study, conclusions, and proposes some 

improvements. 

4 



CHAPTER2 

DELTA-SIGMA MODULATOR OVERVIEW 

Analog to digital conversion is the process by which analog values are mapped to 

their digital counterparts. From the viewpoint of digital algorithms, the number of bit of 

the processor limits the precision. From the viewpoint of the circuit implementation 

without CPU or DSP, the technology of the chip fabrication and circuit architecture are 

the limitations. The improvement of the fabrication process is beyond the scopes of 

circuit designers. However, understanding the technology is the key to the designer's 

ability to overcome the imperfection of the. fabrication by creating better architectures 

and techniques. The oversampling technique, for example, is taking advantage of the 

process technology that advances (increasing fr) solely for the digital circuits. 

2.1 Types of AJDCs 

Based on the sampling frequency, A/DCs can be categorized to two groups: 

Nyquist and oversampling. There is no specific guideline to use the certain type of A/DC, 

and it is the designer's advantage making the selection. In general, for applications with 

low resolution and wide input bandwidth, the Nyquist A/DC is a good candidate. For the 
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requirement of high resolution and low bandwidth, oversampled A/DCs have advantages. 

Both types of A/DCs have the same conversion errors (or no,ises) that designers strive to 

eliminate. In the following sections, three commonly used A/DCs (Nyquist, 

oversampling, and delta-sigma) will be introduced along with their techniques to improve 

the accuracy; 

2.1.1 Nyquist A/DC 

Figure 2.1 shows the general form of an A/DC. The sampled input value, x(kT), is 

rounded to the nearest level during the quantization. Since it is not the exact conversion, 

the quantized output can be described as 

y(kT) = x(kT) + e(kT) (2.1) 

x(n) _ 
Sampling 

X(kT) _ 
Quantization 

y(kT) Digital y(n) -
encoding 

i 
e(kT) 

Figure 2.1 Block diagram of a general A/DC. 

The quantization noise, e(kT), is dependent on the amplitude ofx(kT) and is in the 

interval between -11/2 and -11/2 . Note that the quantization step size [1] is defined as 
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(2.2) 

The noise power (variance) [1-2] can be found as 

2 2 1 t/2 2 /i2 
er = E[ e ] = - e de = -

Ii t,./ 2 12 
(2.3) 

where E denotes statistical expectation. Since the n01se power spectrum is spread 

uniformly over the frequency range, the level of the noise power spectral density of a 

Nyquist A/DC can be expressed as 

/i2 1 
N (!)---

Nyquist - 12 fn 
(2.4) 

Assuming that the input signal is a sinusoidal wave and its maximum peak value without 

clipping is IN,-,(J)1=(2sin~")°' the signal power, Psignal, is equal to 

The noise power of a Nyquist A/DC is 

/i2 
p --

noise - 12 

7 
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(2.6) 



and the maximum SNR can be written as 

S'7'T'R 101 P.ignal 101 (/l228 /8) l J (3 2B) IV, Nyquist= og-- = og 2; = 0 og -2 = 6.02B + 1.76 (2.7) 
P,,oise /J. 12 2 

This states that the resolution of the Nyquist A/DC solely depends on the quantity of the 

quantizer. An additional bit of quantizer increases the resolution by 6dB. 

The resolution of the Nyquist A/DC is directly proportional to the number of 

comparators in the quantizer, and matching between any of two is critical. Current 

technology of MOS comparators without auto-zeroing permits a minimum comparison of 

roughly IOmV due to the comparator's inherent offset voltage [2]. Thus, the 

implementation beyond·lO- to 12-bit of resolution is quite difficult without using special 

calibration techniques, like laser trimming and auto calibration etc. Note that the purpose 

of presenting the Nyquist A/DC is to describe the quantization error and serve as 

reference for the ensuing discussions. 

2.1.2 Oversampling A/DC 

An increase in the sampling frequency can improve the resolution over the 

Nyquist A/DC. Equation 2.4 shows that the noise power spectral density is the function 

of the sampling frequency (fs = OSR*fn), Thus, the oversampled A/DC's noise power 

spectral density and noise power can be written as 
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/12 1 1 
N Oversampling (f) = 12-J, QSR 

11 

p -- --112 
( 1 ) 

noise - 12 QSR 

(2.8) 

(2.9) 

Assuming the same input as Equation 2.5, the SNR of the oversampling A/DC can be 

written as 

S 01 ~ignal l ( 112 22
B /8 J 

'NRaversampling = 1 og-- = 10 og 2/ • 
P,10ise 11 12 OSR (2.10) 

= lOlog(OSR) + 6.02B + 1.76 

Equation 2.10 states that resolution is a function of the sampling frequency and the 

doubling the OSR increases the SNR by 3dB or quadrupling the OSR provides an 

additional bit of resolution. 

2.1.3 /1-}: A/DCs 

The resolution of the oversampling A/DC can be improved significantly by 

applying the noise shaping techniques (delta-sigma). The principle of the technique is to 

delay ( or low pass) the signal and high pass the noise. The noise power density and noise 

power [3-4] are expressed as 

9 



(2.11) 

( 
Lf j( 7r20 J( 1 )zo+i 

P,,aise = 12) 20 + 1 OSR (2.12) 

and the SNR of the ~-LA/DC is written as follows 

SNR =10log(IC20+l)OSR20+1228 ) 
I\-~ 2 Jr20 (2.13) 

= (200 + lO)logOSR + 10log(20 + 1) + 6.02B + 1.76-9.940 

The attraction of the ~-LA/DC is that the modulator order has a dramatic effect in 

improving resolution. The resolution is increased approximately 1.5-bit/octave for the 1st 

order system, 2.5-bit/octave for the 211d order, 3.5-bit/octave for the 3rd order, etc. 

A qualitative view of three A/DC quantization noise powers is shown in Figure 

2.2. The figure demonstrates that the in-band noise power of a noise shaping A/DC is 

much lower than the other techniques. For the out-of-band noise power, the attenuation is 

done by post digital decimation filter. Therefore, ~-L A/DCs are very suitable for 

applications that require high resolution. 
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Nyquist A/DC 

Noise-shaping A/DC 

Oversampling A/DC 

Frequency (Hz) 

Figure 2.2 Noise spectrum comparsion of A/DCs 

2.2 Architectures of 8-L A/DCs 

The 8-L A/DC shows a decisive advantage in the improvement of the resolution. 

For the applications requiring high resolution, the 8-L A/DC is the first selection. Over 

the years, the concept of delta-sigma has been developed and implemented in various 

forms in order to achieve higher resolution. Recently due to the great demands in the 

telecommunication area, mature 8-L architectures are being modified to minimize power 

dissipation. The two types of architectures most frequently demonstrated in recent 

publications for low power and high resolution: single loop and multi-stage noise shaping 

(MASH). In the following sections, both architectures will be introduced and reviewed. 

Architectural considerations with regard to power dissipation will be discussed in the last 

section. 
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2.2.1 Single loop modulator 

This is the most basic architecture of the d-L modulator. All other modulators are 

the derivatives with minor alterations. The advantage of this modulator is that it is always 

stable if the order is less than three [5]. Furthermore, the system is less sensitive to the 

component imperfection, such as mismatch of the capacitors of the integrators. Figure 2.3 

shows the example of the 2nd order system. 

+~­

LG 
Figure 2.3 The 2nd order single loop modulator. 

e[n] 

y[n] 

The meaning of the delta-sigma is embedded inside the architecture; accumulate (sigma) 

the differences ( delta) between input and output signals. Theoretically, the output is equal 

to the input in the long run. In reality, perfect conversion is still the goal of the ongoing 

research. The transfer function of the modulator is 

Y(z) = X(z)z-1 +E(z)(l-z-1)2 (2.14) 

From the equation, the output of the modulator is the combination of the delay input 

signal and high passed quantization noise. An increase in the order of the modulator 
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affects the slope of the high pass filter. As the order increases, the slope steepens and the 

noise floor of the pass-band lowers for the system with optimal pole-zero placement. 

Not just increasing the sampling frequency and modulator order, but increasing 

the number of bits of the quantizer can reduce the quantization step size resulting in SNR 

improvement. From Equation 2.13, the resolution improvement is directly proportional to 

the number of bits of the quantizer. However, the drawbacks of this approach are the 

requirement of the multi-bit DIAC that is non-linear by nature, and the limited number of 

quantization bits, which has the same limitation as the classical Nyquist NDC. 

The linearity of the modulator is dominated by the linearity of the DI AC, since the 

latter is in the feedback path. Non-linearity in the multi-bit DIAC will cause harmonic 

distortion and base-band noise increase due to intermodulation of high frequency noise 

[4]. Dynamic element matching (DEM) techniques can reduce the DIAC noise [6]. A 

DEM DI AC consists of an array of coarse DI ACs (DI AC cell) and the output is the sum 

of DI AC cells in random. This technique reduces the noise power of the DI AC by 

assuming that element matching error is a random, noise-like structure. By reducing the 

correlation among successive samples of DI AC noise, harmonic distortion is reduced. 

The implementation of an 8-bit DI AC with this technique has demonstrated the ability to 

achieve 90dB of SFDR or greater [6]. 
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One paper (VCO-DS-ADC) [7] has developed the alternative approach of 

replacing the quantizer with the combination of a voltage control oscillator (VCO) and a 

counter, and a 1-bit feedback DIAC. Figure 2.4 redraws the diagram of the paper. 

Analog 

Integrator 
vco Counter 

I 
I _____ Quantizer _I 

Figure 2.4 Block diagram ofVCO-DS-ADC. 

y[n] 

The VCO senses the voltage variation of the integrator output, converts to relative phase 

variation, and adjusts the frequency of the oscillator accordingly. With this approach, the 

number of the quantization bit is not limited by the component matching but the 

resolution and linearity of the VCO, which can be improved by better architecture and 

process advancement. Moreover, the 1-bit DI AC architecture ensures no DI AC non-

linearity, and the details of this benefit will be discussed in Chapter 3. 

Increasing the number of bits of the quantizer to reduce power dissipation is 

becoming a trend to lower the power dissipation. In the next section, the similar multi-bit 

quantizer approach to reduce the power dissipation will be demonstrated again in the 

example from references. 
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2.2.2 MASH modulator 

The concept of this approach is to build a higher order modulator using the lower 

order~-~ modulators as building blocks in cascade. Theoretically, the overall system is 

stable since the lower order modulators are stable [3]. Moreover, cascading more stages 

can improve the performance. However, at some point the improvement is limited by the 

uncanceled noise from the 1st stage. Beyond this point, no gain in performance will be 

realized by adding more stages. 

An example of the 2nd order modulator obtained by cascading two first order 

modulators is shown in Figure 2.5. Note that the 1st stage quantization error e1[n] is 

treated as the input signal of the second modulator. The final digital output y[ n] is the 

difference of the first stage's delayed output y1[n] and second stage's differentiated 

output y2[n]. The output equation is written as 

(2.15) 

where 

(2.15a) 

(2.15b) 
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substituting (2.15a) and (2.15b) into (2.15) and rearranging the equation give 

(2.16) 

The quantization error is shaped by the 2nd order high pass filter and the signal is delayed, 

which has the same performance as the 2nd order single loop architecture except an 

additional delay (Equation 2.14). 

e1[n] 

x[n] y[n] 

~--------< + ---

Figure 2.5 The 2nd order MASH modulator. 

The advantage of using the cascade architecture is shown in Reference [8-9]. For 

the modulator operated at a typical OSR, the quantization noise spectral density is a 

smooth continuous function of frequency and is independent of the input signal level. 

From Equation 2.16, increasing the order of each stage can further reduce the noise. 
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However, in order to cancel the quantization noise of the first loop completely, the gain 

of the znd loop must be equal to the gain of the 1st loop. Due to the potential capacitor 

mismatch resulting in the gain error, the implementation of the stage with higher order is 

limited. 

To illustrate the severity of the mismatch, the integrator gain of the 1st stage is 

assumed to be cS and the integrator gain of the znd stage remains one. Equation 2.15a is 

rewritten as 

Y.() X() 8,z-1 £() (l-z-1) 
1 z = z 1+(8-l)z-1 + 1 z 1+(8-l)z-1 (2.17) 

and the final output is 

Y(z)=X(z) §.z-2 -E (z)(l-z-1)+(8-2)(1-z-1)z-1 
1+(8-l)z-1 2 1+(8-l)z-1 

-[E (z)-E (z)] (8 -1)(1- z-1 )z-2 
1 2 1+(8-l)z-1 

(2.18) 

The equation shows that gain mismatch results in not just the transfer function for signal 

and noise terms changed but also the additional noise term added. 

Reference [10] shows the improvement by placing interstage gains. Figure 2.6 is 

the duplicate from the paper. The 4-bit quantizers used at the 1st and 2nd stage do not 

directly reduce theoretical quantization noise (TQN) due to the noise cancellation [10]. 
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However, the smaller quantization error extracted from the preceding stage allows 

insertion of an interstage gain to utilize the full dynamic range of the next stage. The 

quantization noise is reduced as 

N TQN (z) = E3 (1- Z-I )4 /(Gi1111Gi1112) (2.19) 

Noise cancellation logic 

Y1 

Y, I 

Ya I 

Figure 2.6 The 2-1-1, 4-bit cascaded multi-bit delta-sigma modulator. 

The reduction of quantization noise leakage (QNL) that results from the gain and pole 

errors of the integrators due to finite gains of the OT As, is the other benefit to the use of 

4-bit quantizers in the first two stages. In addition, optimizing the interstage gains and the 

use of high gain OT As can reduce the QNL further and shown as; 
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(2.20) 

where AoL is the open loop gain of the OTA. Equation 2.20 suggests that Gintl should be 

as small as possible while Equation 2.19 suggests that Gint2 should be as large as possible 

without overloading the final stage. 

The advantage of the MASH A/DCs is that no stability issues exist as a result of 

the higher order architecture as long as the stages in cascade are all stable. The drawback 

is the requirement of the precise matching in order to eliminate the QNL of the 1st stage, 

which is still the challenge in the fabrication process. As a result, the MASH architecture 

is still less attractive when compared to the single loop with potentially higher successful 

rate in fabrication, even though the stability issue exists in the high order (beyond 3rd) 

single loop architecture. 

2.3 Power dissipation consideration 

The growing trend in reducing the power dissipation is to increase the number of 

quantization bits. Both examples of single loop and MASH architectures show the same 

approach. An increase in the number of quantization bits allows the modulator to reduce 

the oversampling rate or order. In addition, power dissipation is reduced since the 

comparators of the quantizer are essentially all digital circuits and offer less complexity, 

consuming less power relative to integrators. 

19 



In Chapter 3, the modulator order, the oversampling ratio, and the number of bits 

of the quantizer of the modulator will be explored to achieve improved resolution and 

power dissipation. The number of bits of the modulator will play an important role in the 

reduction of power dissipation. 
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CHAPTER3 

MODULATOR DESIGN AND IMPLEMENTATION 

This chapter describes the design concepts and circuit implementations of low 

power ~-L Modulators. Since the design objective of this project is to minimize the 

power consumption, the design flow and strategies will focus on the four most significant 

aspects of a design: process, architectures, circuits, and devices. Their effects on the 

power dissipation are itemized as the order increases. In addition, reducing the power 

supply voltage decreases the power consumption but deteriorates the potential system's 

dynamic range. Various techniques will be deployed to maintain the SNR while 

minimizing power dissipation. Moreover, layout techniques are briefly described with 

regard to overcoming some process variations. 

3 .1 Low power processes, Bulk or SOI? 

The process selection is the first step toward the successful low power circuit 

designs. Large device leakage current and coupling capacitance, or costly process 

features, such as GaAs, are not suitable for this project. In this case, there are only two 

choices: Bulk or SOI. 
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Both processes virtually share the same process procedures (Figure 3.1) except 

that an additional oxidation process, at beginning, to the wafer results in the formation of 

insulation layer in SOI processes. This exception is the major advantage and 

improvement of SOI over Bulk. Figure 3. la shows no parasitic capacitances between 

drain/source and substrates. Since Cdb is a major contribution of the transistor's output 

capacitance, its reduction will significantly reduce digital circuit power dissipation, based 

on the Equation 3.1. Lowering digital power provides more design freedom to the analog 

circuit designer under a power budget constraint. In addition, the reduction of Cdb and Csb 

reduces the transistor leakage. 

Bulk CMOS: SO!CMOS: 
~--""'$01 r- ~,-0~ 

CMOS process 

Figure 3.1 Processes of Bulk and SOI. (Courtesy of IBM Corp.) 

Impurities 
' · 

Silic;on Silic;on 

A lol of capacllarx:e here (I.e .. . slow) No capacitarioo he,·e (I.e .• fast) 

Figure 3 .1 a Drain/source to substrate capacitance (Cdb/Csb) of Bulk (left) and SOI (right). 

(Courtesy of IBM Corp.) 

pdigita/ = CV 2 f (3.1) 
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Figure 3.2 shows the comparison of digital power dissipation of Bulk and SOL At the 

same operating frequencies, power consumption of SOI is 2-3 times lower than of Bulk. 

Based on the information above, SOI technology is considered the best candidate 

for the low power digital circuit implementation. In this dissertation, the designed circuits 

are all fabricated on the Peregrine SOS process to minimize the power consumption. Note 

that the only significant difference between SOI and SOS is their substrates: SiOi/Silicon 

for SOI and Sapphire for SOS. 

1 OS......-....--.---.-.....-....---.-........ -..--.....--.---.--. 
. 2.5~ 

\ SO! 

.: 
' 

3 4 5 6 7 8 9 
Access Time ( oS ) 

Figure 3.2 Comparison of Bulk and SOI power dissipation. 

(Courtesy of IBM Corp.) 

Analog power dissipation is governed by 

P,,na log = JV (3.2) 
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The constant currents, which are used to bias the transistors in saturation (active) region, 

are the primary source of the power dissipation. A wide-band OT A, for example, requires 

large currents since its bandwidth is proportional to the bias current. High mobility and 

thick gate oxide processes can help to reduce the power. However, the trend of CMOS 

technology is to scale down the gate oxide along with other parameters, which makes the 

low power analog circuit design more challengeable than ever. 

3.2 Architectural configuration and power estimation of a Ll-I: modulator 

In Chapter 2, the single loop Ll-I: modulator has been demonstrated with its 

benefits and high successful rate in fabrication. In this section, a low power configuration 

of the modulator will be developed from the architecture shown in Figure 3.3. 

v/n) 
+ Integrator 1 G-> Integrator 2 ___ ,.Q~ B-b!t y-~ Quantizer 

- ' 

0 0 0 

"*---+----------j 

Figure 3.3 A general form of a single loop~-~ modulator. 

The modulator includes 4 major components: clock driver, integrator, quantizer, and 

D/AC. A clock driver as shown in Figure 3.4 is the cascade of the inverters. The purpose 

of this formation is to isolate the large load from the driving signal so the signal quality 

will not degrade as the load increase. The number of the stage depends on the ratio of the 
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load and input capacitance and the scaling factor. The factor, e = 2.7183, is an optimal 

number [11] but here it is rounded to 3 for simplicity. 

Figure 3.4 A clock buffer driver for analog switches. 

The power dissipation of the clock driver is considered as digital power and 

governed by Equation 3 .1. It is small compared to the power of the integrator or 

quantizer. For example, both the clock driver and integrator are running at lOOKHz. Note 

that the power supply is assumed unity to simplify the calculation. The power dissipation 

of the clock driver is 

P. . = CV 2f :::::. 100 -10-15 • (1)2 • 105 oc 10-s digital - (3.3) 

where 100*10-15 is the total capacitance of the clock driver equivalent to the unit inverter 

which is in the range ofjF. For the OTA, the supply current is approximately lOuA and 7 

to 8 of such currents are required. 

P,,nalog =JV= (7 - 8) · 10-5 • (1) OC 10-4 (3.4) 
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The ratio of analog to digital power is 104 and therefore, the power of the clock driver can 

be ignored. 

A serial D/ AC ( details discussed later) is used in this project and consists of only 

three transistors. Compared to the rest of loop components, its power dissipation is so low 

as to be excluded in this discussion. Note that the power of the parallel-to-serial shift 

register used in conjunction with the serial D/ AC, will be summed together with the · 

quantizer's power. 

After excluding the power of clock driver and D/ AC, the total power dissipation 

of the modulator becomes only the summation of the integrator and quantizer. In the 

following discussion, the modulator order, OSR, and quantization bit will be explored 

based on the assumption above. 

Oversampling is the first technique deployed to increase the SNR in the A/DC 

design. Without additional circuits, simply increase the sampling frequency boosts the 

. 
resolution of the A/DC as shown the Equation 3.5 

SNRoversampling = 10 log( OSR) + 6. 02B + 1. 7 6 (3.5) 

For a 1-bit quantizer system to increase 1-bit ofresolution, the OSR must be quadrupled. 

As a result, the power dissipation increases 4 times as well (Equation 3.1). The SNR/bit 

in Equation 3.6 can be used as a rough gauge for the power dissipation (proportional). 
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The more precise estimation will be developed later. Note that this practice is power 

inefficient if the target pass-band is wide. Moreover, no fabricated circuit operates 

beyond fmax, which is the upper limit of the process. 

SNRoversampling I bit = 10 log( OSR) I 6 ~ 1.6 log( OSR) 

The second technique is noise shaping. Equation 3.7 shows the SNR of a 

modulator loop based on the OSR modulator order, and a B-bit quantizer. 

(3.6) 

SNRt.-'E. = (200 + 10) logOSR + 10log(20 + 1) + 6.02B + 1.76-9.940 (3.7) 

For the modulator architecture with a 1-bit quantizer, the SNR increases 1.5-bit for every 

doubling the frequency; 2.5-bit for the 2nd order and 3.5-bit for the 3rd order etc. The 

SNR/bit of the modulator is 

SNRt.-'E. I bit~ (3.30 + 1.6) logOSR + l.6log(20 + 1)-1.60 (3.8) 

Note that as the order increases, not just the SNR and power dissipation increase but the 

degree of difficulty in maintaining loop stability [3]. 

Increasing the quantization bits is the most power efficient technique to boost the 

SNR since its power dissipation is governed by (3 .1) and small. The capacitors used in 

the comparators are equivalent to 10 of unit inverter. As a result the power ratio of the 
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integrator to comparator is, therefore, oc 103. For every quantization bit increase, the 

resolution increases one bit, and its SNR/bit is 

SNRquantizer / bit ~ 2 B - l (3.9) 

However, a multi-bit quantizer system requires a multi-bit D/ AC to convert the digital 

output back to the analog signal to form the feedback loop. The drawback of multi-bit 

D/ACs is their inherent non-linearity. Additional techniques and circuits are required to 

linearize the conversion process [11]. More importantly, the noise (or error) generated 

from the D/ A process reduces the SNR and as such, requires additional attention to the 

design. 

The summarized proportional power dissipation using the three methods to 

increase the SNR is listed in Table 3.1. 

SNR/bit 
Oversampling frequency l.6log(OSR) 

Loop order (3.30 + l.6)log0SR + l.6log(20 + 1)-1.60 
Quantization bit 28 -1 

Table 3 .1 Power dissipation cost of improving resolution. 

The most appealing technique to increase the SNR is to boost the order of the loop, but 

the power dissipation increase may be the largest. In the modulator design, the order is 

equal to the number of integrators and the core of an integrator is an OT A. The power 
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consumption of an OTA is dictated by its gain and bandwidth requirement and can be 

written as 

(3.10) 

where m = 7 - 8 for a fully differential OT A. Thus, operating the OT A at high frequency 

is not the best selection to boost the SNR if there are alternative digital circuits that can 

lower operating frequency of the analog circuits and achieve the same goal. The multi-bit 

quantizer and D/AC approach is such a circuit and its bottleneck (D/AC non-linearity) 

can be solved through the use of an innovated serial D/ AC, which will be explained in 

detail in Section 3.3.4. 

To further illustrate this low power design concept, the example of 18-bit 

resolution is set for various modulator approaches. Note that the modulators beyond 4th 

order are not included due to the circuit complexity and stability issues. Figure 3.5 shows 

that the 1st order system requires very high oversampling ratio; approximately 32 and 64 

times higher than the 2nd and 3rd order systems, respectively. Since the power is 

proportional to the operating frequency, the 1st order system is not a good candidate for 

high resolution requirement design. 
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Oversampling ratio in various loop configurations 
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Figure 3.5 Oversampling ratio in various loop configurations. 

An increasing the number of the quantization bits is more power efficient than an 

increasing the order. However, the number of required comparators for the quantizer 

grows exponentially, which means there is a minimum where the modulator order and the 

number of quantization bit are in balance. To a 1st order system, power dissipation is the 

summation of an integrator and quantizer powers. Note that the DI AC is a digital serial 

shift register dominated by digital power and as a result is insignificant. For better 

representation and understanding integrator power, Equation 3.2 is rewritten as 

f..V 
~ntegrator =IV= GBP· CL 2V (3.11) 

where CL is the effective load of the integrator and Vis power supply voltage. Using 

integrator settling of 5 time constants (t8=5-c), Equation 3.11 is rearranged as follows 
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(3.lla) 

Including both digital power of the quantizer and analog power of the integrator, the total 

power of the modulator is 

0 

pmodulator = ~ntegrator _1 + Kint I ~ntegrator _i + ~uantizer 
i=2 

0 

= IOefsCL~vv + KintIIOefsCL~vv + KCQV 2 /2 8 

i=2 

(3.12) 

where Kint is the power weighting factor for the 2nd through nth integrators and K is a 

function of the flash comparator architecture. Normalizing the power of the 1st integrator 

to 1, rearranging the equation, and dividing by the number of bits ofresolution give 

where O = 2,3, ... ,n (3.13) 

where KQ is the power weighting factor of comparators. The 1st integrator must be large 

enough to maintain the thermal noise floor. The 211d and the subsequent integrators were 

selected at Yi of the power dissipation of the 1st integrator (Kint= 0.5) since the 1st 

integrator dominates the noise floor and requires more power as a result of the capacitors 

requirement to suppress the thermal noise. As the SNR increases Kint can be reduced 

further. KQ is defined as 
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Kg = K( Cg J( V ) ~ 0.02 
CL 10.n-LlV 

(3.14) 

where CQ is the value of quantizer capacitor that will be discussed later. Equation 3 .13 is 

plotted in Figure 3.6 and 3.7 below demonstrates that an optimal power/bit architecture 

exists. 

Power dissipation in various loop configurations 
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Figure 3.6 Power dissipation in various loop configurations. 
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Figure 3.7 Combination plot of Figure 3.5 and 3.6. 

Assuming an 18-bit objective, Figure 3.7 reveals that 2nd order systems are the 

most power efficient until quantizer bit is increased beyond 4. At witch points, the 3rd 

order systems are a better candidate. In conclusion, the 2nd order~-~ modulator with a 4~ 

bit quantizer, running at 64 times of OSR was chosen to achieve 18-bit ofresolution 

(Equation 3.15). 

SNRti-r. = (200 + lO)logOSR + 10log(20 + 1) + 6.02B + 1.76-9.940 = 118.3dB (3.15) 

3.3 Modulator stability 

As described in the previous section, the 2nd order system is a very stable 

modulator but not in all condition. The loop can be guaranteed stable if the loop 
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coefficients are chosen correctly. In addition, coefficient setups must compensate for 

disturbances generated from process variation. Analysis of the modulator loop is 

performed in the Z-domain using Figure 3.8. From the transfer function of the modulator, 

the loop coefficients can be determined. 

vJn) 
1 

l-z-1 

e(n) 

Figure 3.8 Z-domain of the znd order~-~ modulator. 

In the analysis, a stable modulator for the desired base-band SNR is the primary 

consideration used to set the coefficients for the overall system design. To understand the 

system behavior, a linear approximation model of the modulator is shown in Figure 3.9. 

e(n) 

h(n) .---+ ,__-vo(n) 

Figure 3.9 Block diagram of a~-~ loop. 

The output of the linear system, v0 (n), can be described as a combined responses of both 

input vi(n) and quantization noise e(n). 
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J{(z) 1 
V0 (z) = V;(z) + E(z) 

1 + J{(z) 1 + l{(z) 
(3.16) 

where the first term on the right side of the Equation 3 .16 is the STF and the second term 

is the NTF. By solving the loop equations of Figure 3.8, simlar expression can be found 

with detail paramerters (Equation 3 .17). 

(3.17) 

(3.18) 

Equation 3 .17 shows that the STF is simply a low pass function and NTF is a high pass 

function. Note that both transfer functions share the same poles (same denominator) and 

only one of them can dominate. Since the STF is simply a delay of signals, the design 

will focus on the NTF. The noise shaping of the modulator is determined by the NTF 

order, placement of the poles, and distributed zeros in the signal pass-band. With the 

correct approach, the quantization noise can be minimized dramatically. 

For the NTF design, all zeros of the function are placed at Z = 1, (i.e. DC) so that 

the converter can be used for various OSR [ 4]. In other words, the final design will not be 

restricted to a particular sampling frequency. In order to simplify the design and increase 

the successful rate, a Butterworth high pass filter with maximum flatness of pass- and 
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stop-band was chosen to place the system poles in achieving the A/DC specifications 

while maintaining the stability of the modulator loop. Moreover, the poles of the 

Butterworth filter are relatively low Q, and thus, the filter alignment tends to be less 

susceptible to oscillations caused by input signals that are at the same frequency as the 

poles [12]. 

There is an inverse relationship between the gain of the NTF and the loop 

stability; the higher the NTF gain, the more unstable the loop is. However, the gain of the 

NTF is proportional to the loop's SNR; the higher the gain, the better the loop's SNR. 

Reference [13] discusses these relationships in detail. For a 1-bit quantizer system, a peak 

frequency response gain ofless than 2 for the NTF is necessary to ensure stability, (i.e. 

INTF(ej01T)I < 2 ). In practice, INTF(ej01T)I :S; 1.5 is usually set to provide a 
max max 

reasonable input range (about 80% of the range of the quantizer). Simulation [13] shows 

that the NTF gain is proportional to the number of bits in the quantizer. For a system with 

a 4-bit quantizer, INTF( e101T )I :S; 5 can be set. 
max 

The technique used in [ 13] to increase the NTF gain and boost the SNR is to push 

the comer frequency away from the base-band, fc >> fo. The noise in the base-band 

falls well within 12dB/octave slope of a 211 d order filter transfer function. Taking into 

account both the increased gain and comer frequency ofNTF implies that quantization 

noise in the base-band is suppressed by an additional 24dB for a converter with a 4-bit 

quantizer compared to a single bit quantizer. Therefore, the total reduction of the 

quantization noise in the base-band (from 1- to 4-bit) is approximately 
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( 4- l)bit * 6dB I bit+ 25dB = 43dB (3.19) 

After matching the NTF to the proper filter architecture and the numerical values 

of both NTF(z) and H(z) functions found, the coefficients can be solved. In practice, 

dynamic scaling of the coefficients dominates the techniques discussed previously. The 

scaling ensures that the power levels of all nodes are equal; no large noise gains from 

nodes with small signal levels results in unstable operation. Dynamic scaling is achieved 

by proportional scaling the loop coefficients ( or gains of each integrator) to avoid signal 

clipping, as well as power optimization by simulating the system [ 4]. Coefficients are 

determined by simulation and through iterative runs for different coefficients. The final 

coefficients are selected as 

and (3.20) 

By using the MatLab ® toolbox developed by Richard Schreier of Analog Device Inc. 

[14], the znd order Ll-L modulator with a 4-bit quantizer is simulated at OSR = 64. Figure 

3 .10 shows both poles are inside the unit circle and proven stable. In Figure 3 .11, 

coefficients are varied within 20% to prove the system's tolerance to the process 

variation. The NTF magnitude, jNTF(ejmT)j ~ 0.57, fortifies the loop stability (Figure 
max 

3.12). Figure 3.13a shows that the results show no sign of instability within the variation. 

However, the noise floor rises(~ 2dB) when a 2 or ~1 is reduced by 20% (Figure 3.13b). 

On the STF side, Figure 3.14 shows that either a 1 increase or decrease will attenuate the 
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signal about 2dB, and a 2 can be used to adjust the width of the base-band; BW increases 

as a2 increase. For P variation (Figure 3.15), only P1 decrease will boost the signal about 

2dB. P1 and P2 increase and P2 decrease will attenuate the signal by l.8dB. The FFT 

output reconfirms the design through time domain simulation (Figure 3.16 and 3.16a). 

Root Locus 

Figure 3 .10 Root locus of the modulator NTF. 
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Figure 3 .11 Root locus of the modulator NTF at various conditions. 
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Figure 3 .13 Frequency responses of the modulator NTF at various parameter variations. 
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Figure 3.13a A section zoom-in of the Figure 3.13. 
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Figure 3.13b A section zoom-in of the Figure 3.13. 
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Figure 3 .15 Frequency responses of the modulator STF at multiple 13 parameter variations. 
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Figure 3.16 Output spectrum of the modulator. 
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Figure 3.16a A section zoom-in of the Figure 3.16. 

Table 3.2 shows the summary of the effects. Note that 'X' means unchanged. 

a1 P1 a2 P2 
Increase Signal -2dB -l.8dB Base-band widen -l.8dB 

Noise X -1.8dB -l.8dB X 
Decrease Signal -2dB 2dB Base-band shrink -l.8dB 

Noise X 2dB 2dB X 

Table 3 .2 The effects of the loop coefficients. 

3.4 Crucial building blocks of a~-~ modulator 

The integrator, quantizer, and D/AC are the three crucial building blocks of the 

modulator. The sophistication level of these block designs dominates the success of the 

modulator. As a result, all the design techniques and considerations of these circuits are 
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described in detail in this section. Figure 3 .17 shows the switched-capacitor 

implementation of the 2nd order single loop L\-L modulator. 

4-Bit Dout 

Quantizer 

Seria!D/AC 

Irefl 

-V 

Figure 3.17 Switched-capacitor implementation of a 211d order ~-I: modulator. 

This modulator feeds a 4-bit quantizer output back to the inputs of the two integrators 

through an innovated serial DI AC. The same OTA is used for both integrators except the 

first OTA's size is twice of the second one since the second stage does not have the same 

stringent requirement on noise, slew rate, and high gain requirement as the first stage. 

The fully digital control, serial feedback DI AC is a novel addition to the L\-L 

modulator. Moreover, the serial DI AC inherits no non-linearity issue since it is a 1-bit 

DI AC. The shift register output is converted to a serial word used as the control signal to 

steer the reference currents back to both integrators in order to achieve negative feedback. 

The benefit for this approach is that the OSR of the modulator can be reduced compared 

to that of a 1-bit quantizer approach with the same SNR. Therefore, the power dissipation 

is lower. In addition, this robust serial DIAC approach is taking the advantage of under 
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utilized digital BW, which exists between the integrator (fanalog) and the digital circuit 

(fdigitaJ). A very important observation is that the fs is limited by fanalog and the ratio of 

[digital over fanalog is related by their overdrive voltages (Vov-o/Vov-A) and the square of 

their channel lengths (LA/L0 ). For example, if the channel length ratio of analog over 

digital is 4 to 6 [4] as in the Peregrine SOS process, the existence of at least 16X more 

digital BW than analog BW is guaranteed. It is this resource that is exploited to operate 

the serial D/ AC running at 28 *f5 • 

For better understanding of the concept, Equation 3.22 and 3.23 shows the 

approximation of analog and digital operating frequencies using overdrive voltage, 

channel length, and loading capacitance. 

(3.21) 

gm Vav-A 
fana log = 2;r(; ~ 2;r(; L2 

LA LA A 

(3.22) 

f' 1 Vav-D 
j digital = 2.2RCLD ~ 2 2C L2 ' LD D 

(3.23) 

fdigital = ( CLA )(LA )2 (2.2)(Vov-D) 
!analog Cw LD 2n Vov-A 

(3.24) 
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Equation 3 .24 demonstrates that the ration of the operating frequencies is proportional to 

the overdrive voltage and inverse proportional to the square of channel length. Assuming 

the worst case loading of 5 for analog and 6 for digital, LA= 2um and Lo = 0.5um, and 

V ov-A = 0.3 V and Vov-o = 3.6 V. The result of Equation 3.24a shows that digital circuits 

can operate 56 times faster than analog counterparts. The excessive BW allows the 

modulator designed with a quantizer less than 6-bit (Equation 3.25). 

!digital = (~)(I)2
(2.2)(~) ~ 56 

fana log 6 · 5 2tr .3 
(3.24a) 

B = log2[ /digital J = 5.8 ~ 5 
fana1og 

(3.25) 

Since the power of this D/ AC is digital in origin, the added power cost is minimal. By 

increasing the number of quantization bits, the modulator can be operated at a lower 

frequency. In another word, the number of quantization bits for a given process can be 

extended by exploiting this unused digital BW. Thus, implementing a serial D/AC to a 

multi-bit modulator is an excellent choice for improving the SNR of the NDC with low 

power budget. 

3.4.1 Integrator and OTA 
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Shown in Figure 3 .18, the modulator is implemented by using two types of 

-] 

integrators: Forward and backward Euler. The first integrator (~)is a backward 
1-z 

Euler and it over estimates the function. The second integrator ( ~) is a forward 
1-z 

Euler and it under estimates the function. By combining both integrations, the output of 

the second integrator should be virtually the same as the Trapezoid ( 1 + z :: ) ( area under 
1-z 

the dash line in Figure 3.18). 

f(nT) Backward Euler 

t nT 

nT-1 

--
____ \ ____ _ 

Trapezoid 

Forward Euler 

0 0 0 

nT 

Figure 3.18 Forward and backward Euler and Trapezoid integrations. 

The core of the integrator is an OT A. Thus, both of them are discussed 

concurrently in this section. Figure 3 .19 shows a generic fully differential switched-

capacitor integrator. The benefits of the circuit are high PSRR, reduced clock feedthrough 

and switch charge injection errors, improved linearity, and increased dynamic range [15]. 
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Note that the clock signals outside the parentheses are for non-inverting integrators and 

inside are for inverting version (delay-free). 

Cp 

·II ~, 4Cs la(2a) 
__ 1~2a(la) 

V 

-1 I b~oa) 
Vo 1 

2~ ~la(2a) 
•I I• 

Cp 

Figure 3 .19 Switched-capacitor implementation of a fully differential integrator. 

Non-fully differential version of integrator is shown in Figure 3.20. It is a half of the fully 

differential version and easier for circuit analysis . 

• - - - - --- - - - - - - - - ---- ---- - -- - - - - - - - - -1 

' ' : CF : 
' ' 
' 

' : C c-----------, :----------
1 : s: 2a(la): : 

V;~-H~ : : 

2~ l .... i r la(2ajt''_ 

~ -===-

Figure 3.20 Switched-capacitor implementation of an integrator. 

The major functions of the integrator are to integrate (sum) charges and to 

maintain the noise level. The operation of the former is simple and described in 

Reference [3] and the latter requires special attention. In Figure 3.20, the dominant noise 

sources are the thermal noise generated from the MOS switching resistance. Capacitors 
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do not generate any noise but accumulate noise generated by other noise sources [ 4]. 

Thus, Cs must be designed sufficiently large to set the noise 9dB lower than the 

modulator noise floor [15]. Equation 3.26 shows the integrator RMS noise voltage. Note 

that 8 switches (P and NMOS in parallel represent one switch in Figure 3.20) involve in 

the sample-and-hold processes and with the NMOS assumed to be the dominant noise 

sources. Finally, their resistor values can be ignored in the noise calculation [ 4] 

vn(rms)-integrator = ~ 41;;' (3.26) 

Since the oversampling technique is used in the modulator design, the sampling capacitor 

can be scaled down and Equation 3.27 is modified as follows 

V - )4kT 
n(rms)-integrator - ~ ~ (3.27) 

The SNR of the integrator is 

SNRNF = lOlog[ VFs/2./i 
vn ( rms )-integrator 

J = 10 log( Vis . OSR . CJ ~ SNRA 1: - 9dB (3 .28) 
32kT -

The first integrator dominates the overall system noise floor and any noise injected at the 

1st integrator will be seen as signal for the following stages. In such a case, the first 
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sampling capacitor must be designed large enough to minimize the noise level (Equation 

3.29). 

1 OSNRNF I 10 • 3 2kT 
C >-----

s - V2 -OSR 
FS 

(3.29) 

The feedback capacitors accumulate the noises from 2 sets of switches and OT A. The 

OTA noise (Equation 3.30) is assumed to be small and can be ignored since the gm of the 

OTA is large. In addition, 1/fnoise can be reduced by increasing the channel area. 

V :::: 4kr(3-)-1-+ _K __ 
n(rms)-OTA - 3 WLC f 

gm ox 

(3.30) 

where K is the constant and depends on device characteristics and can vary widely for 

different devices in the same process [ 4]. 

Since the first loop coefficient fulfilled by Cr being two times larger than Cs 

(CF = 2C s) and Cr accumulates less noise than Cs. As a result, the integrator noise floor 

is dominated by the size of its sampling capacitor (Cs). 

After the sampling and feedback capacitor are sized to the desired values, sizing 

the sampling switches and designing the OT As are the next tasks. The sampling switches 

are sized according to the settling time and resolution. Sampling frequency dictates the 

former and the latter depends on the SNR of the modulator. In this project, the switches 
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are sized to meet the requirement of 18-bit resolution, settling in one-half the sampling 

clock period. In practice, the resolution was set to 19-bit for one bit additional of safety 

margin. Note that sampling switches consist of PMOS and NMOS in parallel in order to 

reach both power rails, and 2 sets of these switches involve in the sampling process. The 

constraint of the switch on resistance is 

Vo= VFS ~l-e-(ts/2)/r 

V VFs/ 
i 1ze11+1) 

(3.31) 

Ron ::; 1 
4nC\fs(n + l)ln2 

(3.3 la) 

where n is the number of bits ofresolution. When the sampling process begins, the 

sampling switches operate from off region to either linear or saturation, depending on the 

initial Vos and its relationship with Vos ( Vns 2:: Vas - ~h ). For this project, the switches 

are assumed to be at their highest resistance ( Vns = ± Vnn ), where the increasing NMOS 

resistance becomes larger than the decreasing PMOS. The channel resistance of a 

transistor is approximately equal to Equation 3.32. Combining the Equation 3.3 la and 

3.32, the transistor's geometries can be solved from Equation 3.32a. 

2 R :::----
channel - C 1f__ V 

µ ox L av 
(3.32) 
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W 2 
->------
L - µCoxRchannelVOV 

(3.32a) 

Except the common mode feedback circuit described in the next section, detail 

transistor level design and noise analysis of a fully differential folded cascode OTA are 

completely covered in Reference [15-16]. Here, the discussion involves the relationship 

between settling time, bandwidth, slew rate, and gain. Figure 3 .21 shows the OT A 

without the CMFB circuit. Note that the circuit on the left side of axis of symmetry is 

identical to the one on the right side. 

·---Axis of symmetry 

Voo 

M4p ~f- Vs2 

f-Vi+ LV0-

I-Vs3 

----Axis of symmetry 

Figure 3.21 A fully differential folded cascode OTA without the CMFB circuit. 

In order to simplify the equations the following OTA parameters, gain, BW, and GBP are 

calculated for the single sided output. Except GBP, these parameters are readily 
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converted for the fully differential OTA by simply doubling their values, assuming that 

no external component connection crosses the axis. 

(3.33) 

(3.34) 

The load capacitance is the prerequisite for starting the analysis. For the closed 

loop, which sampling and feedback capacitors forms feedback network around the OT A, 

the closed loop GBP is calculated as 

{J)CL = /3 . GBP (3.35) 

From Figure 3.20, the feedback network and the load of the OTA are 

1 

s(C8 + Cg.) CF /3 = ------= ----'-----
~-1 __ + _1_ C8 +Cgs +CF 

(3.36) 

s(C8 + Cg,) sCF 

C = C + _c_F_( C_s_+_c~gs_) 
L-OTA L C C C F+ s+ gs 

(3.37) 
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where CL here is the sum of Cab-p and Cab-n in parallel and the capacitance of the next 

stage that the OTA must drive. Note that the former are very small and thus, can be 

ignored. Substituting Equation 3.35 with 3.36 and 3.37 and rearranging terms give 

Equation 3.39 shows the effective load capacitance. Substituting r = 21r/ into 
/ lilcL 

Equation 3.31, and rearranging the equation give 

t 21r 27[(; 
i;?: -(n + 1) ln2 = Leff (n + 1) ln2 
2 liJCL gm 

(3.38) 

(3.39) 

(3.40) 

In order to fulfill the bandwidth requirement (settling Y2 of the sampling period), OTA 

transconductance must follow Equation 3.41. 

(3.41) 

In reference [17], simulation shows that an integrator with lower bandwidth than 

the sampling rate and correspondingly inaccurate settling will not impair the ~-r 
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modulator performance, provided that the settling process is linear. The assumption of the 

previous statement is that the OTA is not slew rate limited. Slew rate limiting of the 

integrator, in any case, is non-linear behavior and must be avoided. With use of a multi-

bit quantizer, slew rate limiting is of little concern as will be demonstrated later. Equation 

3 .42 shows SR is the ratio of an OTA' s differential pair tail current and its effective 

capacitor load and is also related to the full power bandwidth. 

SR = /tail = 2 ,rr(' VFS = ,rr(' V C 1 '1 M 2 ''1 M FS 
Leff 

(3.42) 

fM = V0vGBP = 4V0v28 fs 

1rVFS VFS 
(3.43) 

The full power bandwidth is linear and proportional to the tail current; increasing the tail 

current improves the bandwidth. The drawback is that increasing tail current increases the 

bias current and result in overall power consumption increase. 

The last parameter is the gain of an OT A. An ideal integrator has the transfer 

function as 

1 
H(z)=­

z-1 
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Finite DC gain of the OTA will transform the Equation 3.44 into 3.45 and results in leaky 

integrator. The NTF zeros move away from the unit circuit and toward Z = 0, which 

reduces the amount of attenuation of the quantization error in the base-band and thus 

deteriorates the SNR [ 17]. 

1 
H(z)=----

z-(l-~J (3.45) 

In reference [17], the gain of an OTA can be as low as OSR. The SNR of the OTA with 

low gain shows only ldB worse than the one with infinite DC gain. The simulation 

results and Equation 3.30, however, demonstrate the noise of the OTA can be minimized 

by large gm, which infer large gain is beneficial. 

3 .4.2 Dynamic common mode feedback 

The requirement for a common mode feedback circuit is the main drawback of a 

fully differential OT A. A carelessly designed CMFB circuit will increase noise and 

power dissipation, and reduces the bandwidth and output swing of the OT A. The function 

of this circuit is to set and control the output common mode voltage at some desired 

levels, i.e., V,ef = (VDD - Vss) / 2. Typically, the CMFB is used to control the current 

sources in the output stage to establish the common mode output level of the OT A. In the 

consideration of larger output signal swing, a switched-capacitor CMFB is realized 
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instead of a continuous time approach. In Figure 3 .22, the design initially proposed by 

Reference [18] is particularly suited for low power applications. 

~~~~ 
jlC0 lCR CRl C0 1: Vern 
: : M1 M2 
' ' ' ' ' ' 
~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _1 

Vss 

Figure 3.22 Architecture of the switched-capacitor CMFB circuit. 

The circuits inside the dash box of Figure 3.22 are the SC circuits. They sample 

output and then average; ~1 for sample and ~2 for average. Transistor M1, M2, M3, and 

M4 form a CMFB OTA to amplify the voltage differences between Yem and Yref· The 

amplified output VcNTL controls adjust transistors, Min and M211 of OTA (Figure 3.21), so 

the output common mode voltage is adjusted to equal Yref· 

The required gain of the CMFB loop is designed high enough to correct the V cm, 

but not to destabilize the OTA [18]. Figure 3.22 shows the diagram of the CMFB loop 

that consists of half of the OTA and CMFB circuit and the CMFB OTA. 
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Figure 3.23 Circuit diagram of the CMFB loop. 

The CMFB loop gain is approximately equal to 

(3.46) 

where R11//Rp is the resistance looking into the output node V0 _ of the OTA. For 

simplicity, the ratio ( gm_z/ ) can be set to 2 so the whole loop gain is dominated by 
/gm-4 

the device gain of the OTA. Note that, the transistor sizes of the CMFB OTA are 

designed to be one half of those in the OT A. This size reduction will not degrade the 

GBP of the CMFB OT A since its capacitance load is small. As a result, the power 

dissipation is reduced. 
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The previous paragraph just explains the primary function of the CMFB circuits. 

The secondary function is that the SC circuits perform the low pass operation to the 

control voltage so it will not result in the high frequency injected noise interfering with 

the feedback loop during the sampling period. Figure 3.24 shows the equivalent circuit of 

the dash box section of Figure 3.22. 

Figure 3 .24 Equivalent circuit of the switched-capacitor section of the CMFB circuit. 

At DC and low frequency, the equivalent R network dominates the final Vern· As the 

frequency increase, the C0 branch takes over the effect. Both resistor and capacitor 

networks are working as voltage dividers: Co and Ccs ofM1 at high frequency (stop-

band) and two equivalent resistors at low frequency (pass-band). Equation 3.47 shows 

that that Co capacitance controls the high frequency attenuation since the Cos-Ml is fixed 

while designing the gain of the CMFB OT A. 

(3.47) 
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CR is then, sized for the desired bandwidth. Since both pole and zero are in close vicinity, 

simulation tools such as OrCAD® are required to confirm the bandwidth, which should 

be 2-3 times wider than sampling frequency. 

3.4.3 Quantizer 

The quantizer is designed using a regenerative circuit as comparator. The 

difference between the input signals and the reference voltages generated from the serial 

resistor network sets the initial condition for the regenerative process. Note that quantizer 

capacitors, C0, are used to sample the 2nd integrator output and hold the charges. Figure 

3.25 shows a single regenerative quantizer. 

vu~a 
C0l 

V 1a I 2a 
!-A._____, _ __./--i : 

VssA : 

;--- -----1a--R~-~~i-1 
'-- --------------- __ , 

2 1 
Vss 

Regenerative 
--- --- ------ ---- ---- ----· 

VssA 

0 
0 
0 

VssRE F 

Figure 3.25 Circuit diagram of the low power regenerative quantizer. 
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The number of quantizers depends on desired level of quantization and the available 

excess digital BW. Note that the number of quantizers need not be a power of two. 

Except for an extreme, the more quantizers that can fit into the wider digital BW, the 

better. For a B-bit quantizer, 28 quantizitation levels require 28 -1 regenerative circuits. 

The required resistors for the reference string are 28 . Note that the resistances on both end 

resistors are half of the others, which creates 0.5 LSB offset. This results in a mid-tread 

quantizer. 

The clock sequence is as follows. At phase 1 a, the quantizer capacitors sample 

both input and reference voltages. Concurrently, the reset switches are closed to 

rebalance the regenerative circuits. At phase 2a, both quantizer capacitors are connected 

to each side of the circuits; charging CGs of every inverters. Note that power supplies are 

off at this stage. After the circuits settle, the power is applied at phase 2 and the 

regenerative process begins. 

The latch time of the regenerative circuit can be found from Equation 3 .48 [ 4]. 

L
2 

( V J L
2 

t,a,ch ~ K - .-ln V Yi:FS = K-.-(B + 1) ln2 
µ Vov FS µ Vov 

28+1 

(3.48) • 

where K is the loading factor. The equation shows that the latch time depends only on the 

technology and not on design, assuming that the overdrive voltage is maximized and the 
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loading capacitor is minimized. Note that if the initial voltage is smaller than VF/zn+i , the 

latch time will be larger than t1atch, which results in metastability [4]. 

Since Equation 3 .48 reveals that the latch time cannot be improved by designs, 

the focus now shifts to the voltage droop between phase 2a and 2. Before further analysis, 

the assumption for this circuit to work is the symmetry; the circuit looking from input and 

reference sides should have the same load. Under this condition, the droop rates are equal 

on both sides. The circuit symmetry is achieved through careful layout techniques, i.e. 

common-centroid and interdigitate. More details will be discussed later. 

Immediately after the rise of phase 2a, the quantizer capacitors charge or 

discharge the gate capacitors on both sides of regenerative circuits. Based on the charge 

sharing and energy conservation theories, the final equilibrium voltage is equal to 

(3.49) 

where LCos-inverter is the sum of the gate capacitors of all inverters connecting to V 2• The 

worst-case scenarios are two initial conditions: V 1 is at full scale and V 2 is zero, and vise 

S. h . . . d 1 d . h f /1 LSB h versa. mce t e quantization error 1s mo e e m t e range o ± - or ± -- , t e 
2 2 

quantizer capacitors must be selected large enough so the final voltage will not drop or 

rise out of the ranges. 
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Rearranging Equation 3.49 solves the capacitance of the quantizer capacitor. 

(3.50) 

Replacing V1 = Vps and V2 = 0 in Equation 3.50 for one set of initial condition and 

setting the error of final equilibrium voltage within the half of the quantum 

( V1 = VFs - ;::1 ) gives 

(3.51) 

Replacing V1 = 0 and V2 = Vps and set V1 = ;::1 gives the same result as Equation 3.51. 

Scaling the resistors of reference network uses the same equation as scaling the 

sampling resistors. Since the error (bow effect [4]) in reference voltage will be greatest at 

the center and decreases as moving away from the center, optimizing the resistors should 

start from the center. The equivalent resistance can be found in Equation 3.52. 

(3.52) 

63 



where i is the reference point counting from top or bottom and satisfies the condition 

0 < i < 2B. The resistors should be chosen as large as possible (shorten the settiing time 

to 1/4~ 1/8 of the sampling period if necessary) so the power dissipation can be 

minimized. 

3.4.4 Serial D/AC 

The quantizer output is thermometer coded digital data. They then, distribute into 

two directions: feeding directly to the serial D/AC (Figure 3.26) and to the encoder that 

converts thermometer code to binary for the following decimation filters (Chapter 5). The 

DI AC consists of a parallel-to-serial shift register, combinational logic and three 

switches, and two reference currents. Note that the serial output is clocked out by the 

D/AC's clock ( (2s+i -2)fs) during on periods of phase 1 for 2nd integrator and 2 for 1st 

integrator. 

Quantizer 

15 

Parallel-to-Serial O r--+--1 
Shift Register Qb1------1----1. 

fo1Ac=(2s+1_2)*fs 

~l,2 

To Integrator 

V1+(V1J V1_(V1+) 

3-4x 9-16x j 
M2 

-V 

Figure 3.26 Circuit diagram of the parallel-to-serial current feedback D/AC. 

64 



The parallel-to-serial shift register (Figure 3.27) is a group ofD type flip-flops 

and data multiplexers. When the Sel signal is high, the data are loaded from the quantizer 

and stored into the registers. After the signal goes low, the data paths change from a 

parallel load to serial out register with the output of each DFF connecting to the input of 

the next one. The last stage outputs serve as the control signals to steer the current via the 

feedback switches. Note that the last stage output (Q only) is also fed back to the first 

stage input so the data are in circulation and used during both clock phases. 

Dmux ,- ----------, 
: Sel b : .--------. 

Do -j--+----/. : D Q 

DFF 0 0 0 
, Sel , 

i~ ____ ! 
'-----a-------' 

f Qb 
elk 

1st stage Dt<- ---

Dmux 
1- - - - -- - - - - - , 

j Se lb j .--------. 
, , D; Q 

DFF D/AC 

fclk 
Qb 

Dq o 
'----..,..-'-' ,.,. _____ _..,._ __ (2B+1_2)"f S 

......... " 

Quantizer Output 

Figure 3.27 Circuit diagram of the parallel-to-serial shift register. 

The feedback DI AC is just a group of current steering switches for the reference 

currents. While the output of the shift register (Q) is high, IFB is integrated into one of the 

feedback capacitors of the integrators. The on time reference current is proportional to the 

quantizer output serially processed by the shift register. The equivalent voltage output of 

DI AC can be expressed as follow 

(3.53) 
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where CNTQ is the total number of"ls" in the thermometer code of the quantizer and 

to1Ac is the on time of the DIAC clock. 

This DI AC is a 1-bit DI AC and inherently linear. It is charge-based and 

monotonic by design [2]. Its accuracy, however, is at the center of this DIAC design. 

From Equation 3.53, the DIAC is a function of the signal resolution including the rise and 

fall time and jitter, the matching of the capacitors, and the resolution of the reference 

currents. The total DIAC error can be modeled as Equation 3.54 [15]. 

(3.54) 

where ~IFB is the noise of the DIAC reference current and 

MD/AC Jo.7kTRn 
(Jitter = ( = A C::-
. DIAC vm, 

(3.55) 

where Rn is the equivalent noise resistance of the DIAC and A is the amplitude of the 

ideal sine wave used to generate the DI AC clock. 

Capacitor matching can be improved by common-centroid and interdigitated 

layout techniques, which will be described later. Equation 3.55 shows that maximizing 

the rise and fall time minimizes the clock jitter by sizing the output driver (transistor's 
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length) of the DI AC clock and the switches of the current steering. Moreover, the central 

limit theory is implemented for further reduction. The nature of thermometer code is that 

data are grouping together; the output of the shift register is a cluster of ones and 

followed by a period of all zero or vise versa. By gating the data with the DI AC clock, the 

output become a series of zeros and ones pulse trains. The jitter, thus, can be effectively 

reduced by 

t jitter-effective = 
n 

(3.56) 

where ~to/AC is the uncertainty of the clock signal and n is the number of pulses to 

achieve each feedback (28 - 1 is maximum or 28 -1 - 1 on average). Note that as the jitter 

noise is minimized to less than K'1;/c noise, the reference current noise dominates, which 

has the same constraint as the jitter noise in order to maintain the SNR of the modulator 

set by sampling capacitor (Equation 3.29). 

The DI AC error involves three practical issues to the modulators: the linear 

scaling error, leaky integration, and INL. The switched reference current scales the 

modulator feedback coefficients of the NTF zeros, and the shift in zero placement will 

cause degradation of noise shaping. Leaky integration resulting from leaky current 

steering transistors has the same impact as linear scaling error. In order to minimize INL, 

the DI AC error must be constrained within ± o/i to realize the accuracy of the modulator 
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[19]. Thus, fine calibration of the references and long channel length of the current 

steering transistors are required for the high resolution A/DC. Moreover, the fully 

differential architecture allows one reference current per feedback coefficient, which 

ensures excellent DI AC feedback accuracy and optimizes power dissipation. 

Although the DIAC clock frequency is designed at (28+1-2) times the 

oversampling frequency, the il}crease in digital power dissipation is minimal as the gate 

count and area of the shift register and circuits to drive the DI AC are quite small. 

3.4.5 Clocking sequence 

In order to maximize the modulator loop efficiency and the utility of the clock 

period, each component in the modulator is assigned to operate at specific phase. Thus, 

there is no excessive delay in the loop and the whole operation is a pipelined process. 

The assignment of clock phase starts from the integrators due to their needs of the 

whole clock on period to sample and settle the data. Since the second integrator 

(inverted) sampled and settled at the same period, it is the center of this scheduling. 

Integrator 2 can be assigned to either phase 1 or 2. Once decided, integrator 1 is assigned 

to the same phase and quantizer is assigned to the opposite phase to streamline the data 

flow. 
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The CMFB circuits are sampling and settling at opposite phases of the integrators 

due to the CMFB sampling capacitors connecting to the OTA output all the time as the 

load of the OTA. They sample the settled integrator output, process, and feed back to the 

adjust transistors at beginning of the next stage sampling phase. This adjustment time is 

designed as short as possible, which leaves the whole clock on period for the next stage 

to settle. Therefore, the CMFB OT As must have wider bandwidth than OT As for faster 

settling. 

The DI AC is assigned to feed the output back to OT As on the first half of clock 

on time. The other half is designed for OT As settling. During the feedback process, the 

OTA input voltages are the function of the DI AC feedback currents and the OT A cannot 

begin settling process before the feedback complete. As a result, the OT As must be 

designed to settle in 1/i of the sampling period. 

The above discussion is summarized in table 3.3. Note that mark 'X' indicates 

resetting sampling capacitors. 

Int 1 CMFB Int 2 CMFB Quantizer D/AC 
Int 1 Int 2 

Phase 1 Sample Settle Sample/Settle Sample Settle Int 2 
Phase 2 Settle Sample X Settle Sample Int 1 

Table 3 .3 Clock phase assignment of the modulator. 

3.5 Device 
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For low power circuit, the designs always start from architecture and move down 

to device level (top to bottom) when minimizing power consumption in the total system. 

In Section 3.1, the modulator implemented with a multi-bit quantizer approach has 

demonstrated a notably significant improvement in power efficiency. After the 

architecture is selected, circuit implementation can be commenced. For all modulators, 

the OTA of the 1st integrator dominates power dissipation due to its requirement to settle 

the sampling capacitors that dominate the noise floor. Balancing the drive capability and 

accuracy (bandwidth and gain) is the major challenge of this OTA design. For better 

reference, Equation 3.33, 3.34, and 3.42 have been rewritten in general to show designer 

controlled parameters. 

SR = 2Ibias GBP oc V;v 
L2 gm 

(3.57) 

(3.58) 

(3.59) 

The relationship of gain, GBP, and SR are closely related and they all depend on 

the design requirement. The following discussion focuses only on adjusting these 

parameters in general: bias current, transistor channel width and length, and overdrive 

voltage. The first parameter is the bias current ( or leg). It is proportional to SR and the 
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square of GBP but inverse to square root of the gain. Since the power dissipation is 

proportional to the bias current, the rule of thumb is not to over design the bandwidth. In 

general, 2-3 times wider BW than the requirement for low frequency applications and 

1-2 times wider for high frequency ones should compensate quite well to the process 

variation. 

Due to high gain requirement on most OTA designs, analog designs often scale 

transistor's channel width to obtain high transconductance or channel length for high 

output resistance. Widen the channel, in addition, reduces the effect of channel length 

modulation. The longer the channel is, the lesser the modulation affects the transistor 

performance. Practically, channel lengths of analog transistors must be scaled 4-5 times 

wider than the minimum in order to minimize the modulation and for better matching 

[20]. The drawback of this approach is the available bandwidth reduction approximately 

56-87 times (Equation 3.24) but gain is substantially increased. After channel length is 

selected, channel width is scaled for required bandwidth. 

Selecting overdrive voltage is a dilemma when designing OTAs. Table 3.4 shows 

that the voltage is involved in all three parameters. It appears increasing the voltage is a 

good selection for all except boosting gain. However, higher overdrive voltage results in 

narrower output swing of OT As and DR reduction. In general, the voltage is selected 

within the range of 200 to 350m V to maintain high gain. A more precise value can be 

extracted from the method described in the next section. In addition, as process 

technologies advance and device size shrinks the power supply is also scaled down. This 
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trend makes it very difficult for analog designers to obtain high SNR. Therefore, 

selecting an optimal overdrive voltage is essential. 

Gain (Ao) Gain bandwidth product (GBP) Slew rate (SR) 

1 
~/bias /bias 

~!bias 

2 Vav VJv --
JVov L2 L2 

Table 3.4 Design parameters vs. OTA parameters. 

An OTA is just a complex version of a single transistor from the amplification 

point of view. In order to increase the amplification with minimum resources, the single 

transistor must be bias at correct overdrive voltage. Figure 3.28 shows the simulation 

setup. 

M2 + 
V2~ V1 

Figure 3.28 Circuit schematics of testing a single transistor. 

After the drain current (I02) measured, the first derivative (Equation 3.60) is taken and 

plotted in the Figure 3 .29 
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BID - V av - gm av 
GS 

The transconductance shows improvement as the gate voltage increase. However, it 

shows no additional information but certify that gm is proportional to the overdrive 

(3.60) 

voltage. The second derivative (Equation 3.61) is then taken and plotted in Figure 3.30 

(3.61) 

In the figure, there is a maxima at the specific Vos (~ 0.96 V), which is the transition point 

between triode and saturation. Based on Equation 3.61, the only variable is the mobility 

(µ) of electrons (or holes). At this voltage, the effective mobility is at its highest. Further 

increasing the overdrive voltage increases the gm at the expense of decreasing the 

mobility. The transistors biased at this voltage yield the most gain with minimum power 

supplies. Note that throughout this dissertation, all transistors are designed operating at 

saturation region where they are biased at the voltage higher than that of the maxima in 

order to prevent the transistors from drifting out of the region during the operation and to 

compensate process variation. For the transistors biasing at the maxima or lower voltages 

for extreme low power design, details can be found in many references related to EKV 

modeling. 
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Figure 3 .29 The 1st derivative of the simulated ID (gm vs V 0v ). 
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Figure 3 .30 The 211d derivative of the simulated Io ([3 vs V ov ). 

3.6 Layout 

To the digital layout, area and timing constraints are the two major parameters 

pressuring the "digital designers" beyond circuit function. However, analog designers are 
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not so lucky. Beside those constraints, analog designers must be concerned with noise 

interference, and circuit matching for Vos, CMFB, CMRR, and PSRR. 

Circuit isolation is important to the analog circuit design. As more and more 

analog and digital circuits are fabricated on the same dies and digital circuits running at 

higher and higher operating frequency (generating more noise), the wider spacing 

between circuits are required. Although there is no substrate on SOS process to couple 

the noise, high frequency signals can still radiate into the air due to their wavelength 

comparable to interconnect length (as antenna) and induce electrical coupling known as 

crosstalk on neighboring wires due to mutual capacitance and inductance. Wider spacing, 

shorter line, narrower line width (higher line resistance), GND separation trace, and 

shielded multi-interconnection scheme [21] can mitigate this interference. 

The analog circuits are precision craftsmanship but wafer processes are not. This 

has been a problem since the first analog circuits were fabricated on silicon. Thus, beside 

the ingenious circuit designs employed analog designers require certain knowledge of the 

wafer processes and layout techniques. Since process is another specialty and requires a 

long period of time to discuss, readers can obtain such knowledge from reference [22]. 

The remaining of this section just describes the layout techniques briefly. 

Majority of the analog circuits involve symmetry (i.e. differential pair) or 

mirroring (i.e. current mirror). Matching of relative circuits or components, in this case, is 
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important. In order to compensate the process gradients, two special layout techniques are 

discussed: common-centroid and interdigitate. 

Figure 3 .31 shows the common-centroid layout. The gradient ( show in dash lines) 

is the same in any directions. This is the optimal layout for the matching. However, the 

component values, sometimes, are not dividable by 22\ where k = 1, 2, .... 

Figure 3 .31 Layout pattern of a common-centroid. 
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Figure 3.32 Layout pattern of an interdigitate. 

The alternative is to apply interdigitate (Figure 3.32 to the layout. Note that interdigitate 

technique can be used in any values that are divisible by 2. 

In both layouts, the components used the circuit are surrounded by elements 

referred to as dummies. They are made of the same elements as the main components but 

not used for the circuits. They have no electrical connections. Their purpose is to increase 

the matching. Without these dummies, the outer most structure will not have the same 

process gradient as the inner. Figure 3.31 shows that the dash lines can be extended to 

include the dummies. However, interdigitate layout cannot reach the same symmetry to 

its dummy elements. It demonstrates that the common-centroid method is a better circuit 

layout technique. 
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CHAPTER4 

DECIMATION FILTER OVERVIEW 

The output of the modulator r~presents the combination of the input signal with 

its out-of-band components and many other noise sources. These noise sources include 

quantization noise, circuit noises from transistors and resistors, interference of wire 

coupling, and noise injection from the power supply. This modulator output is operating 

at an oversampling frequency and cannot be used by the following digital circuits without 

being downsampled to the Nyquist frequency and filtered. Without filtering, the aliasing 

(high frequency contents overlapping the low frequency ones) occurs and degrades the 

resolution of the NDC. Thus, the architecture of the~-~ NDC is always a modulator 

loop, followed by a decimation filter as shown in Figure 4.1. 

Low frequency Modulator High frequency, high resolution Decimation Low frequency 

analog input loop undecoded digital data filter decoded digital output 

Figure 4.1 Block diagram of a general ~-L A/DC. 

Figure 4.2 shows a classic frequency response of the NDC and the decimation 

filter output. An ideal decimation filter (in dash line) removes all the out-of-band noise, 

except the noise that resides inside the pass-band. In reality, such filter does not exist. 
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Filters will always have some slope in transition-band, droop in pass-band, and/or ripple 

(leakage) in pass- and stop-bands. However, such "brick-wall" like filter implementation 

requires large area due to its requirement of high filter order. The better approach is to 

use multiple filters in cascade, which has identical performance with less order. More 

details are described in Chapter 5. 

Ideal filter response 

---:---------
in 
"C --

' 

' ' ' 

Q) 
"C 
:::, High pass noise 
~ 
C: 
Cl 
a:! 
~ 

Frequency (Hz) 

Figure 4.2 Frequency responses of an A/DC output and a decimation filter. 

Based on the impulse response, digital filters can be categorized in two groups: 

finite impulse response (FIR) and infinite impulse response (IIR). The FIR filter inherits 

linear phase and is an all zero filter, which has no feedback term in the filter structure. 

The IIR filter, however, has both feed forward and backward terms, which result in non-

linear phase and potential instability. The IIR filter can achieve the same frequency 

response as the FIR filter does with smaller area, its stabilization and phase adjustment 

circuits can, sometimes, be overwhelming and possible require larger area than of the FIR 
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filter. As mentioned before, circuit simplification improves successful rate of the chip 

fabrication. Thus, IIR will be excluded from this project. 

The following sections discuss the three most popular decimation filter 

architectures: moving average, comb ( or Sine), and half-band filters. The innovated two­

path filter, which combines all three filter techniques, will be introduced at the end of this 

chapter and its detailed implementation presented in Chapter 5. 

4.1 Moving average filter 

The filter structure (Figure 4.3) is realized directly from the equation (Equation 

4.1 ), or called direct form I realization. Note that Equation 4.1 is the expression before 

the decimation process. The implementation is simple and without any sophisticated 

technique but it illustrates the filter can be implemented as simple as three components 

only: adder, register, and multiplier. 

(4.1) 

x(n) 

y(n) 

Figure 4.3 Block diagram of a general moving average filter. 
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Note that no multiplier is required if the filter coefficients are divisible by 2. By varying 

the coefficients, the filter performs different windowing function on the data. For 

coefficients as simple as the rectangular window where all the coefficients are equal to 

l!Cn-1, the filter sums all the data points and then divides the total by the number of 

points. The resolution of this approach is proportional to the number of points averaged. 

As a result, high accuracy results require a large number of register to store the data 

points and thus, the area of the filter and power consumption can grow rapidly. 

The adjustment of the coefficients to match more sophisticated window functions, 

such as Hanning and Kaiser, enhances the ability of the filter attenuation in transition­

and stop-band. As a result, the filter can be implemented in a smaller area with reduced 

power using such an approach. 

As mentioned before, the one stage decimation approach filter is not practical. 

The purpose of the illustration is to introduce the basic form of the FIR filter. Any filter, 

no matter its functions (low pass, high pass, or band pass), can be implemented in this 

form. The drawback of this approach is the size required for the implementation. Since 

the size of the circuit is proportional to the power dissipation for the constant operating 

frequency, the small area circuit consumes less power. The following filters are designed 

to use techniques to compact the circuit size and power dissipation. 

4.2 Comb (Sine) filter 
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Comb filter (Figure 4.4) operation is equivalent to a rectangular window FIR filter 

[23-24] and its transfer function is 

( 
M JO+l 1 1-z-

H z ---· ( ) - Mo+i 1-z-1 (4.2) 

Note that the order of the filter must be one order higher than that of the modulator in 

order to efficiently attenuate the rising quantization noise. This filter is the simplest but 

not very effective at removing the large quantity of the out-of-band quantization noise 

generated by the modulator and is seldom used in practice without additional digital 

filters. For many applications that cannot tolerate this distortion, the comb filter must be 

used in conjunction with one or more additional digital filter stages [12]. Since the filter 

is designed to obtain maximum attenuation only at the higher frequency components 

which will be aliased into base-band after decimation, the characteristic of the analog 

input signal is preserved while the out-of-band shaped noise of the modulator output has 

been attenuated. 

' 'Trooo~ 
~ ~ 

f8/M f8/M 

Figure 4.4 Block diagram of a general Sine filter. 

The advantages of the comb filter are: 
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1. No storage and multiplier are required for filter coefficients. 

2. Intermediate storage is reduced by integrating at the high sampling rate and 

differentiating at low sampling rate, compared to the equivalent implementation 

using cascaded uniform FIR filters. 

3. The structure of comb filters is very regular consisting of two basic building 

blocks (integrator and differentiator). 

4. Little external control or complicated local timing is required. 

5. The same filter design can easily be used for a wide range ofrate change factors, 

M, with the additional of a scaling circuit and minimal changes to the filter 

timing. 

Some problems encountered with comb filters include the following: 1) register 

widths can become large for large rate change factor; 2) the frequency response is fully 

determined by only two parameters (rate change factor and number of filter stage) 

resulting in a limited range of filter characteristics. 

4.3 Half-band filter 

A half-band filter is the special case of the FIR filter. The design concept is to 

construct a filter with its frequency response symmetrical around half of the sampling 

frequency. 
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(4.3) 

in terms of H(z) 

H(z)+H(-z)=l (4.4) 

Figure 4.5 shows overall criteria of a half-band filter. The frequency response of the 

optimal filter is symmetric around OJ = 1r I 2 and OJ P + OJs = 1r, where OJ P and ms denotes 

the pass-band and stop-band edges, respectively. Moreover, the pass-band and stop-band 

ripples are equal ( op = os = o). 

Q) 
"CJ 

~ 
0.. 

~ 

1 + op '77777777'77''777'.77777:I 

1 tn'77777';'7"7'7'7"'h'r.7"7?"rl 

1- op f-L.LL~~~"-"-'-"i 

0.5 ------------------- ----

os 
0 L-~~~~~_..;...,---'~4-w,444-~.;W,4-1-~---+-

' -os ---- ------------ --------, _ --_LL-<..,'--'-',.L,_,_,_,__,_,_,_,C<..<.L.= 

1t 

Figure 4.5 Design criteria of a half-band filter. 

0) 

A half-band filter gives the required filter response and is computationally much 

simpler than conventional FIR filters [25-26]. Equation 4.5 shows the linear phase FIR 
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filter transfer function with an odd number coefficient (N) and the filter has symmetric 

coefficient values. 

where M = (N - l){, and 

Cn=O ,where n=l,3,5 ... and n-:t:-M 

CM= 0.5 

The impulse response sequence has every odd number sample equal to zero for n odd 

( except the coefficient CM = 0.5). 

(4.5) 

(4.6) 

The tapped delay lines in the even and odd branches of Figure 4.6 are doubled 

back to exploit the symmetric impulse response of the linear phase filter and reduce the 

number of multiplications by a factor of two [25]. Since only half of the coefficients are 

required, the total number of multiplications for the half-band filter is 114 of that needed 

for arbitrary FIR filter designs. 
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Even 

y(n) 

Odd : ' 

¢--! ¢--! ¢--! 
' ' ' 
[ ___ ----g}-~- -- ----g}-~--- -----

Figure 4.6 Poly-phase implementation of a half-band filter. 

The advantage of the half-band filter is that its coefficients can be designed using 

a window method. As a result, the filter has higher attenuation at the stop-band than that 

of the comb filter. The minor drawback of this filter design is the requirement of the 

delay chain in odd data path. The provided long chain is used only one coefficient in the 

path, which is not very power efficient. 

4.4 Two-path filter 

Two-path filter is the filter created from the form of the moving average filter 

described in section 4.1 and the cosine window is used to create the coefficients. Instead 

of specific pass-, transition-, and stop-band as shown in most of classic filter frequency 

response, the two-pass filter specifies only pass- and out-of-band as the comb filter does. 

Therefore, the filter has maximum attenuation only to the higher frequency components 

that is aliased into base-band after decimation. In order to reduce power dissipation, the 
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architecture of the half-band filter is used as the blueprint of the multi-path structure. 

Figure 4.7 shows the general filter structure of the two-path filter. Note that the sum of 

the filter transfer functions, H0(z) and H1(z), is equal to a moving average FIR filter. 

Figure 4.7 Block diagram of a general two-path filter. 

The two-path filter has been demonstrated at least 50% more power efficient than 

those of Sine filters [ 41] due to fewer add operations and lower average operating 

frequency. Both Figure 4.8 and 4.9 are the duplicates from the paper and the latter shows 

the comparison of add operation. Note that the number of the operations used to gauge 

the power efficiency is the result from the domination of power dissipation of adders over 

DFFs. 

f----J>l~I Sincn,} 2 ~--------~ 

Case 1 (m stages) 

--...... ~I Sinc(2m) ~--------~ 

Case 2 (n stages) 

~----~~--~---~ 

Case 4 (single stage) 

Figure 4.8 Block diagrams of various Sine filters. 
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Shown in Figure 4.9, Case 4 has highest power dissipation due to its single stage 

approach. Case 2 uses the multistage approach with the decimation process at the last 

stage. The improvement is not significant enough compared to Case 1 with the 

decimation process embedded in each stage. This research of two-path decimation filter 

is to develop a low power filter that is lower than Case 1. The proven architecture with 

multistage and multi-path approaches has demonstrated the achievement of the power 

efficiency over the best case of Sine filter in the paper. The concept and implementation 

of this two-path filter will be described in detailed in Chapter 5. 

Comparsion of Decimation Filters 
104~~~~~~~~~~~~~~~~~ 

2 
m 

Figure 4.9 Comparison of filter power dissipations. 
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CHAPTERS 

TWO-PATH FILTER DESIGN AND IMPLEMENTATION 

The decimation filter is a data interpolation device. By averaging the coarse 

output data from the modulator, it interpolates between the coarse quantization levels. 

Therefore, it is a signal processing device and not a conditioning one, which means the 

resolution of the modulator output will not be improved after decimation process. In 

another words, the decimation filter can only degrade the signals if not carefully 

designed. 

As described in Chapter 3, integrators require most of the power budget in order 

to achieve the resolution, which leave little available for the filter. Aggressively 

minimizing the power dissipation, therefore, is the primary goal of the decimation filter 

design. Before further discussion, the equation of digital power dissipation is copied as 

follows; 

pdigital = CV 2 f 

From Equation 5 .1, the most efficient power reduction method is to lower the power 

supply voltage of the filter because the voltage is squared proportional to the power 
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(5.1) 



dissipation. The effective capacitance and the operating :frequency, however, are only 

proportional. As a result, the first rule of power reduction is to minimize the power 

supply. For the power reduction using the other two parameters, two low power filter 

design strategies, cascade and multi-path, are introduced. 

H1(z) 

~, H1(z) H H2(z) H H3(z) jE x(z) H2(z) 

H3(z) 

(a) (b) 

Figure 5.1 Block diagram of a filter in (a) cascade and (b) parallel. 

The priority to lower circuit power dissipation is listed from the most to the least: 

architecture, sub-circuit, and device. Figure 5.1 shows two possible filter approaches. The 

effect of the sub-filters in cascade is multiplication (H1(z)* H2(z)*H3(z)). On the other 

hand, the parallel formation has the effect of the summation only (H1(z)+ H2(z)+H3(z)). 

Therefore, from the architectural viewpoint, implementing a filter with smaller sub-filters 

in cascade improves the area efficiency, which in turn often consumes less power. 

Inside the sub-filters, the parallel architecture is implemented. To parallel the 

processes, additional circuits may be required to direct the data (i.e. data multiplexer). 

However, the overall power dissipation is decreased even with adding circuit powers. The 

important concept is that the operating :frequency is reduced proportional to the degree of 
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filter in parallel. Two-path filter, for example, has demonstrated 50% power efficiency in 

this research. 

With these two approaches, the filter power efficiency can be substantially 

improved. In the following sections, the concepts of these approaches will be described in 

detail, along with the circuit design and implementation. 

5.1 Filter in cascade 

Fixed sampling frequency filter design is fairly simple. However, the filter with 

variable sampling frequency poses greater challenges on the designer. Aliasing is the 

phenomena in the digital signal process that a signal is decimated without a filter to limit 

its bandwidth. After decimation, the spectrum beyond half of the Nyquist frequency folds 

back to the lower spectrum and degrades the base-band resolution if the fold back 

spectrum has a higher noise floor. Placing a low pass filter before decimation can correct 

the problem but increases power dissipation since it is clocked at a higher frequency. 

Moreover, for high order filters, the benefit of the steep transition-band is at the expense 

of power dissipation. The filter order is equal to the number ofDFF, and high order filter 

results in a large number of DFF. In terms of area, the filter is equivalent to a large 

capacitor and its power dissipation may not be suitable for this project. 
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Figure 5.2 shows the alternative solution. In order to obtain a steep transition-

band filter, one can gradually decimate the frequency with multiple low order filter stages 

(wide transition-band) in cascade. 

L\-I: OSR*fn 
loop 

Nth order 
two-path 

Nm order 
two-path 

0 0 0 
Nth order fn 

two-path 

Figure 5 .2 Block diagram of a general decimation filter. 

For example, a single stage filter with the order of 256 can be implemented as 4 stages in 

cascade and each stage order is equal to 4. As a result, the filter frequency response is 

equivalent to its single stage counterpart, but the overall filter order is reduced 

dramatically, which results in a direct reduction of the power dissipation. Assuming that 

the single stage filter consumes 256 units of power, the cascade filter power can be 

expressed as 

(5.2) 

and the power ratio of single stage filter to the cascade filter is 256/7.5 = 34, which 

means, for this particular filter configuration, the power efficiency of the cascade filter is 

approximately 34 times better. Adjusting the combination of the filter order in each block 

will yield different results but none of them consumes more power than a singe stage 

approach. 
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The power dissipation can be reduced further by implementing the filter block 

with a multi-path approach, which is discussed in detail in the later section. Therefore, 

the decimation filter design in this dissertation focuses on the multistage in cascade and 

multi-path approach. In addition, the filter is developed or designed to process different 

bandwidths and OSR oflow pass .1.-L modulators by simply adding and removing the 

stages. 

5 .2 Finite impulse response filter 

The design concept begins with the filter without decimation. The 1st order FIR 

filter is the basis of this whole decimation filter design (Figure 5.3). Note that the z·1 is a 

delay and its circuit implementation is a DFF. The filter architecture consists of a DFF, 

an adder, and two filter coefficients. Both coefficients (taps) are Yi (Equation 5.3) and the 

sum of all coefficients of a FIR filter should be equal to one (Equation 5.4). 

x[n] ,~
112

+ y(n] 

1~ 
Figure 5.3 Circuit diagram of the 1st order FIR. 

1 1 
y[n] = -x[n] +-x[n-l] 

2 2 
(5.3) 
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Y(z) = _!_ X(z) + _!_ X(z)z-1 

2 2 
(5.3a) 

(5.4) 

The specific coefficients are chosen for two reasons. First, the values that are divisible by 

two require no storage. Since division by two in digital logic is equal to data bus right 

shift once, hardwiring the bus line 1-bit offset to the right of the next input requires no 

additional power as a ROM version would to retrieve the data coefficients. Second, it is a 

cosine window filter and its bandwidth is Yz of the sampling frequency. 
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~ : : : : 

I I I I 
I I I I 
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-60 '-------'------'-----'-----~----' 
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I I I I 

' ' ' 
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Normalized Frequency (x11 rad/sample) 

Figure 5 .4 Frequency response of the 1st order FIR. 

In the time domain, the filter works as a rectangular window function by 

averaging two data points; sum of two data points and then divided by two. In the 
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frequency domain, it performs as a low pass filter attenuating the higher frequency 

components. Figure 5.4 shows the frequency response of the 1st order filter. The 

attenuation can be as great as -50dB and phase is linear within the frequency region. 

The 211d order filters can be implemented by cascading two 1st order filters (Figure 

5.5). Based on linear system theory, the overall system response is identical to that of a 

single filter since all the sub-filters are convolved. Note that time domain convolution is 

frequency domain multiplication. Equation 5.5 shows the result in frequency domain and 

5.5a is its time domain representation. 

Y(z)=X(z) (-+-z )(-+-z ) =-X(z)+-X(z)z +-X(z)z [ 1 1 -I 1 1 -I J 1 1 -I 1 -2 

22 22 4 2 4 
(5.5) 

1 1 1 
y[n] = -x[n] +-x[n-l]+-x[n -2] 

4 2 4 
(5.5a) 

x[n] ~ -~z-1 1/2 + y[n] 

1 ·~ [~_· ____ 11_12,2~ I 

Figure 5.5 Architecture of the 2"d order FIR. 

As the filter order increases, the shape of the window function changes from rectangular 

to triangular (Figure 5.6). This weighted average technique shows an improved result in 
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the frequency domain with higher attenuation within the transition and stop bands and 

less leakage in time domain. 

__fl_*__fl_=~ 
Figure 5.6 A triangular window as the result of convolution of two rectangular windows. 

Figure 5.7 shows that the phase of the filter remains linear within the whole frequency 

range. The high frequency attenuation is improved to -1 OOdB. 

For the higher order systems, the method of building znd order system can be 

duplicated by cascading multiple 1st order blocks. The phase of the filter will remain 

linear as discussed previously. Moreover, the filter attenuation will be greatly improved. 
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Figure 5.7 Frequency response of the 2°d order FIR. 
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5.3 Decimation filter 

Decimation is the process of resampling the data using lower frequencies. After 

the process, the numbers of data points to be removed depends on the ratio of the original 

and the resample frequencies or the OSR. Once the frequency is reduced, the aliasing 

might occur if the frequency contents of the signal exist in full range of the spectrum (0 

ton). Diagram (d) of Figure 5.8 shows the aliasing after the process. 

(a) Input signal 

0 0 0 

0 " 27' 411 

(b) Input signal before filtering 

(c) Input signal after filtering 

~-· 
0 " 27' 47t 

(d) Decimation WITHOUT filter 

0 0 0 

0 " 27' 47t 

(e) Decimation WITH filter 

Figure 5.8 Decimation processes with and without filtering. 
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The straightforward solution is to place a low pass filter before decimation. In general, to 

avoid aliasing in down sampling by a factor of M requires 

1l 
OJNM < tr or OJ < -

N M (5.6) 

where m N is the bandwidth of the signal. If the condition does not hold, aliasing occurs. 

The decimation processes with M = 2 are shown in diagram of Figure 5.8. 

The intuitive approach is filtering before decimating the data (Figure 5.9). This 

design is straight forward but with no consideration for power dissipation. The better 

approach is to apply the multi-path concept to the filter structure. Figure 5.9a shows the 

filter in two data path structure. As an example, if 

H(z) = 4+3z-1 +2z-2 +z-3 (5.7) 

then 

(5.8) 

The overall filter power dissipation remains the same since the decimation process is still 

after the filter structure. Reference [27] describes that the decimation process can be 

moved forward and placed before the filtering (Figure 5.9b). The frequencies in each path 
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now are Yi of the input frequency and the power dissipation, therefore, is Yi of the single 

path approach. 

Figure 5.9 Single path filter approach (data filtered BEFORE frequency decimation). 

I+ 2 I y(2~) 

H 1 (22) ,___~ 

Figure 5.9a Two-path filter approach (data filtered BEFORE frequency decimation). 

x(n) 

H1(z) 

Figure 5.9b Two-path filter approach (data filtered AFTER frequency decimation). 

The same design concept can be expanded to include 3, 4, 5, or more path filter designs. 

As a result, their operating frequency can be decimated, respectively. This is similar to 

the parallelism. A circuit is more highly parallel, the lower frequency it needs to operate, 

which in theory reduces power. 
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Two-path decimation exploits the previous described concept; splitting the data 

stream into two paths and processing at Y2 of the input frequency. Since there is no data 

point removed, the decimation process is formed intrinsically. Unlike many 

implementations [3] performing the filter function before the decimation process, this 

filter decimates the frequency first (without losing any data) and then filters. For a digital 

circuit, the power is proportional to the operating frequency. The two-path decimation is 

operating Yi of the input frequency, which reduces the power dissipation by Y2. 

Since no multiplier is used in this filter implementation, the power dissipation of 

the filter is just a function of the number of adders and DFFs. Assuming that the function 

Ho and H1 are just a delay (or DFF) and the power supply is a constant, the power 

dissipation of the Figure 5.9 and 5.9b can be expressed as follows 

pjigure5.9 = PDFF + ~dder oc 2CDFF f + cadderf (5.9) 

(5.10) 

The experimental data shows that a DFF consumes 3-6 times less power than an adder. 

As a result, the adders dominate the power dissipation. From Equation 5.10, the two-path 

architecture provides an improvement in the power efficiency approaching 50%. The 

same derivation can be extended to multi-path architectures and shown as 
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(5.11) 

where n is the number of data paths in the filter architecture. 

Designing the two-path filter coefficients is simple. Since this filter has exact 

frequency response as FIR filters except Yi of the frequency range, designers can use the 

FIR filter design to obtain filter coefficients. Before transforming classic FIR filter to 

two-path, the crucial component, data multiplexer (Dmux) that distributes data into two 

streams is introduced to simplify the rest of discussion. 

5.3.1 Data multiplexer 

Data multiplexer is the circuit used to distribute the data into two streams so the 

process frequency is reduced by Yi and as a result, save power. During the process, no 

data specification or alignment is required. The circuit arbitrarily picks a data point as 

even or odd and the next one is automatically assigned to the opposite ( odd or even) and 

so on so forth. The convenience of this circuit is it doesn't require reset and initialization. 

The simplification directly benefits layout and circuit simplicity. Figure 5.10 shows the 

circuit diagram of the data multiplexer. 
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L1 D2 
x[n] x0 [n] 

Di Q Di Q 

Latch OFF 

C Qb C ~ 

D1 L2 D3 
x0 [n] 

Di Q Di Q Di Q 

OFF Latch OFF 

C Qb C Qb C Qb 

CLK/2 

Figure 5.10 Circuit diagram of the data multiplexer (Dmux). 

The circuit consists of three rising-edge DFFs, two positive-level sensitive latches and 

one inverter. Note that the data are transparent during the positive level clock period of 

the latch. Figure 5.11 shows the timing diagram of the data multiplexer. 

DFF D 1 is a clock divider. Its inverted output is fed back to its input so the output 

states are toggled at every clock signal's rising edge. The frequency of the output is 

exactly Y2 of its driving clock frequency plus delay. This delay is important to clock 

sequencing and will be described in detail later. 

Latch Ll is transformed to a negative-level sensitive latch due to its clock 

inversion at its input. This latch extends each data valid for another on clock period, 

which gives L2 and D2 sufficient latch time. Note that both DFFs and latches require 

adequate setup and hold time in order to make the data storing process successful. 
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x[n] 10 

CLK 

QL1 2 3 4 7 8 

001 2 5 

QL2 

Xe[n] 

x0[n] 

~ Data invalid 

Figure 5 .11 Timing diagram of the Dmux. 

Latch L2 is clocked at Y2 of the input clock. For example, immediately after the 

CLK #2 rise, the data is latched by L2 at falling edge of the half clock (Qm). After CLK 

#3 rise, both latch Ll and L2 have stored the valid data. After the half clock #2 rise, both 

data are stored into D2 and D3 accordingly and then, the process repeats. 

The delay between the input clock and half clock provides sufficient setup and 

hold time for the component L2, D2, and D3, which are required to avoid metastability. 

The critical path is when D3 is storing the data and L2 is turning transparent since both 

components are clocked by the half clock. The short-term improvement is to shorten the 

clock ofD3, which increases additional hold time. The long-term solution is to insert a 
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negative-level sensitive latch between L2 and D3 and clocked by the input clock (Figure 

5.12). As a result, no critical path exists in Dmux. 

L1 D2 
x[n] X8 [n 

D; Q D; Q i------

Latch DFF ~nc Qb C Qb 

D1 L2 L3 D3 
X0 [n 

- D; Q 1--------0 ---- D; Q D; Q D; Q ~ 

DFF Latch Latch DFF 

C Qbll ~c Qb ~ C Qb ,1----- C Qb 

CLK/2 
r 

Figure 5.12 Circuit diagram of the improved data multiplexer. 

5.3.2 Two-path filter 

A two-path filter is just a special case of multi-path filters; i.e. splitting the data 

stream into two. The technique simply applies the coefficients, derived from classic FIR 

filters, to the new two-path architecture. Instead of decimation after filtering, the high 

frequency data are divided into two streams ( even and odd) and then filtered. In such a 

case, the power dissipation can be reduced by 50%. 

Recognizing the even or odd data point is arbitrary and designers can choose 

based on their preferences. Once decided, the selected convention must be followed 

through out the complete filter design. Transforming from a classic FIR filter to a two-
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path filter is readily observable from its transfer function. Equation 5.12a is a duplication 

of Equation 5.3 for better reference. 

1 1 
y[k] = -xJk] +-xJk] 

2 · 2 

1 1 
y[ n] = - x[ n] + - x[ n - I] 

2 2 

(5.12) 

(5.12a) 
0 

This design selects the first input term for even data points followed by the odd data term. 

Note that there is no timing difference between two data points in Equation 5.12 since 

they are in parallel and achieved in the same time frame in the two-path structure. Figure 

5.13 shows the circuit implementation of the 1st order two-path filter. 

1/2 
x[n] 

Dmux +1---
y[n] 

1/2 

Figure 5 .13 Block diagram of the 1st order two-path filter. 

For the 2nd order system, the first two terms are selected as the 1st order system. 

The 3rd term is assigned to even data points. Since only two data points are allowed at the 

same time frame in the two-path structure, the 3rd term must be assigned to be one delay 

after the 1st and 2nd terms. Equation 5.13 shows the newly rearranged representation for 
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the znd order, two-path filter. After transformation, the circuit implementation is simply 

seeking the correct data path. 

1 1 1 
y[k] = -xe[k] +-xJk] +-xJk-1] 

4 2 4 
(5.13) 

1 1 1 
y[n] = 4x[n] +2x[n-1]+ 4x[n -2] (5.13a) 

x[n] 

Omux 
1/2 

X0 [n] z-1 >---____ 1_12_, 

Figure 5 .14 Block diagram of the 2"d order two-path filter. 

To verify the implementation of the znd order two-path filter, the equation is 

written by tracing the data paths and shown 

(5.14) 

The time domain expression is 

(5.14a) 
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The differences between Equation 5 .13 and 5 .14 are one more delay in the equation. This 

delay is necessary because the data must be stationary or stable before the last adder ( one 

before the output), especially to the even data path. Without a DFF placed ahead of the 

adders, the output data may not be valid since the effects of the even output of the Dmux 

changes will propagate all the way to the output of the filter, which violates the pipeline 

process. As a result, one more DFF is required in the even data path to isolate two adders 

in series. Moreover, since both data paths require equal timing in order to match the 
I 

original equation, an additional DFF is inserted in the odd data path. Note that such a 

DFF insertion in the data path does not invalidate the equation as long as the delays on 

both sides are equal. Adding more delay will not reduce the performance since the filter 

is working as a pipelined device and no interrupt will flush the complete filter except the 

power off. 

The 3rd order filter implementation consists of adding a 1st order filter in front of 

the 2nd order two-path filter as shown in Figure 5.15. The time domain equation is 

1 3 3 1 
y[k]=-x [k]+-xJk]+-xe[k-l]+-x0 [k-l] 

8 e 8 8 8 
(5.15) 

1 3 3 1 
y[n] = -x[n] +-x[n -1] +-x[n -2] +-x[n-3] 

8 8 8 8 
(5.15a) 
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The added filter at front has little effect on the power dissipation but the simplicity helps 

to expedite filter development. The same philosophy can apply to the 4th order design but 

a better or low power version is developed as an improved alternative. 

x[n] 

Dmux 

X.1"11~-·~-z--1 _1,_:n~+ ... z-1 

x0 [n] 

1n 

z-1 1-----1_n~ 

Figure 5 .15 Block diagram of the 3rd order two-path filter. 

Figure 5.16 shows the straightforward version of the 4th order two-path filter, which is 

adding one more 1st order filter in front of the 3rd order filter. The output can be expressed 

as 

1 1 3 1 1 
Y[k]=-x [k]+-x [k]+-x [k-1]+-x [k-1]+-xe[k-2] 

16 e 4 ° 8 e 4 ° 16 
(5.16) 

1 1 3 1 1 
y[n] = -x[n] +-x[n-1]+-x[n-2]+-x[n-3]+-x[n-4] 

16 4 8 4 16 
(5.16a) 

x[n] 

Dmux 

x 0 [n] 

Figure 5.16 Block diagram of the 4th order two-path filter. 
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x[n] 
Dmux 

1/4 

Figure 5.16a Low power version of the 4th order two-path filter. 

Figure 5. l 6a shows the low power version of the 4th order filter, which decimates the 

input frequency first. The low power version is developed to be implemented as the 1st 

stage of the decimation filter. From Figure 5.2, the 1st stage filter block is operated at the 

highest frequency of the complete filter since it receives the data directly from the 

modulator loop that is operated at OSR *fn, Therefore, the 1st stage filter block is the 

dominant term of the power dissipation. Applying the low power version at the 1st stage 

can dramatically improve the power efficiency of the decimation filter. 

In general, the two-path filter function can be written as 

(5.17) 

Higher order filter can be developed through the same procedures outlined above as long 

as they satisfy the Equation 5 .17. 
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5 .4 Overall filter response 

After a family of basic two-path filter blocks developed, the discussion progresses 

to the system level. System level design is not a trivial task and requires simulation tools 

for accurate design of the complete filter. 

In Chapter 3, the modulator was designed to oversample 64 times (OSR = 64). 

Therefore, the decimation filter must include 6 stages ( log2 OSR = 6 ) of two-path filters 

in order to decimate the frequency back to the Nyquist rate. Note also that the filter order 

of the 1st stage must be, at least, one order higher than that of the modulator to effectively 

attenuate the noise generated by the AFE loop. 

Figure 5.17 shows the overall filter structure. The filter order in each blocks is 

chosen based on their frequency responses; pass- and transition-band widths and 

attenuation. Figure 5 .18 shows each filter responses and the NTF of the modulator. 

1st order 

two-path 

Figure 5.17 Architecture of the 64 times decimation filter. 

1st order 
two-path 

Design must start from the first stage due to the aliasing after decimation. Since the 

sampling frequency at this stage is 64 times higher than the base-band, the wider 

spectrum allows higher order filters with higher attenuation to be built. Note that two-

path filters do not have specific stop-band frequencies as most filters do. The objective 
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here is to build the filter with no attenuation in the base-band and high attenuation at the 

rest of spectrum. 

Frequency responses of 6 stages decimation filter 
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Figure 5 .18 Frequency response of the filter and the NTF of the modulator. 

The technique herein uses the transition-band attenuation to suppress noise spectrum. 

After the first stage filter and before the decimation, the high frequency spectrum of the 

NTF is attenuated as shown in Figure 5.19. The attenuation beyond fs/2 must be designed 

high enough so the aliased spectrum does not overwhelm the original after decimation 

(see Figure 5.20). In another words, the noise level of the alias must be lower than that of 

the original. As a result, the noise level of the original spectrum dominates post 

decimation. 
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Figure 5 .19 Frequency response of the 1st stage filter output BEFORE decimation. 
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Figure 5 .20 Frequency response of the 1st stage filter output AFTER decimation. 

For the noise floor of the original spectrum to dominate, the alias noise floor must 

be greatly attenuated. Since high attenuation requires a filter with high order and the filter 
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order is proportional to the power dissipation, designing an optimal filter with lower 

power and sufficient attenuation is important. 

First is to model two spectra separated by fs/4 as two uncorrelated noise sources; 

one for original and the other for alias. After decimation the final noise level is [39] 

efinal = 
2 2 

e original + e alias (5.18) 

The final noise level cannot exceed -2% of the original noise spectrum so the noise level 

of the overall decimation rises less than ldB. Table 5.1 and Figure 5.21 shows that the 

final noise floor is set by the separation of the original and alias noise floors. As the 

separation widens, the effect of the alias noise floor to the original decreases. The l 5dB 

noise floor separation satisfies the requirement but 20dB separation is chosen for safe 

mar gm. 

eariginal - ealias ( dB) 0 5 10 15 20 25 30 
Noise floor change (dB) I dB 3.010 1.193 0.414 0.135 0.043 0.014 0.004 

I% 41.42 14.72 4.88 1.57 .5 .16 0.05 

Table 5.1 Aliasing effect to the noise floor. 

The alias noise floor, separated from the original beyond 20dB, shows little effect on the 

final noise floor. As a result, designing the filter to attenuate the alias noise floor more 

than 20dB is not power efficient. Note that the attenuation is proportional to the filter 
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order and the filter order is equal to the number ofDFF. In addition, each DFF is 

followed by an adder that is proportional to the power dissipation. 

Magnitude change after decimation 
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Figure 5.21 Aliasing effect to the noise floor. 
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Figure 5 .22 Frequency response of the 2nd stage filter output BEFORE decimation. 
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Output of the 2nd stage decimation filter 
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Figure 5 .23 Frequency response of the 2"d stage filter output. 
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Figure 5.24 Frequency response of the last stage filter output. 
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Figure 5.22 and 5.23 show the 2nd stage output spectrum. The 3rd, the 4th, and following 

stages are developed using the same approach. The final filter noise level is shown in 

Figure 5.24. 

The preservation of pass-band magnitude is as equally important as the noise floor 

attenuation. For simplicity, previous discussions were presented under the assumption of 

. little or no attenuation in pass-band, which is much too optimistic. As SNR is defined as 

the ratio of the signal and noise, this can be significant. If the filter design focuses only 

on the noise floor, the attenuation of the signal will degrade the final SNR. Therefore, 

filter design requires the balance of high stop-band attenuation and pass-band 

preservation, which requires numerous simulations. 

Figure 5.25 shows an expended view of the filter responses of each stage at pass­

band. Note that the last stage exerts the highest attenuation in the pass-band so the last 

stage cannot use a high order filter. However, the first few stages have little or no effect 

to the pass-band and as a result, the high order filters are recommended. Since the BW of 

the pass-band is narrow for large OSR, higher order filter will not degrade the pass-band 

signal; the wide BW makes attenuation per sampling frequency (roll-off) small even 

when the order is high. The final pass-band attenuation is calculated by simply summing 

each stage filter response of the pass-band. In Figure 5.26, the SNR of the DBE degrades 

at higher frequency due to the characteristic of the modulator NTF and the attenuation of 

the decimation filter. There are two solutions to increase the final SNR. First, design the 

modulator with lower noise floor (higher SNR) since the decimation filter cannot boost 
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the SNR. Second, increase the sampling frequency so the valid resolution expands 

beyond the required BW. 

Frequency responses of 6 stages decimation filter 
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Figure 5.25 Frequency response of each stage at pass-band. 
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Figure 5.26 Frequency response of signal vs noise floor. 
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CHAPTER6 

MEASUREMENT RESULTS 

The useful circuits require their implementation on silicon and confirming test 

results to prove the accuracy of the modeling and simulation. The inability of designed 

circuit to be confirmed by repeatable results is the same as no design. Therefore, both 

designed modulator and decimation filter were submitted for the fabrication on Peregrine 

0.5um SOS process. The following testing methods and results for both circuits are 

described separately. Moreover, both discussions include signal quality and power 

dissipation. Before testing, the required knowledge to produce quality Discrete Fourier 

Transform (DFT) results is reviewed. Reference [36][40] describes some good solutions. 

In this Chapter, the summarized versions of the relationship between the number of 

sampled points and cycles and the effect of applied window are discussed for accurate 

results. 

A specially designed probecard was also ordered and fabricated for this testing. 

The card is chosen to be a 4 metal layer epoxy PCB; two outer layers are for the 

separation of analog and digital signals and inner layers are for ground plans. The center 

layers channel the noise coupled from both sides of signals to the ground instead of each 

other. Decoupling capacitors are inserted between every V DD to ground ( or V ss) to 
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minimize the switching noise or simultaneous ground bounce [21]. In addition, the chip 

statistics along with screen capture and the wafer layouts are attached in Appendix A. 

6.1 Discrete Fourier Transform 

The theory and equation derivation will not be described in this section. Instead, 

the techniques to obtain the better DFT results are discussed. Unlike continuous time 

Fourier Transform, discrete time versions take an arbitrary portion of the sampled data. 

The best scenario is that this portion of data represents the whole and repeats indefinitely 

[37]. However, this might not be easy without a seasoned signal process engineer. In 

order to overcome this drawback, some techniques can be used to screen the preliminary 

results and obtain quite accurate information. 

The first technique is to capture the whole cycle of the signal. Figure 6.1 shows 

the captured data are in complete cycle; no leakage is near the signal in frequency 

response. In Figure 6.2, the same signal is shown but the cycle is incomplete. The 

additional data beyond the cycle is considered as leakage and shown as multiple spikes 

(skirt) near the signal spectrum in the frequency domain. To avoid such spectral leakage, 

a method of coherent sampling is recommended [29]. Coherent sampling requires that the 

input and clock frequency generators are phase locked, and the chosen input frequency is 

based on the following 
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hn = Ncycle 

fs N,ecord 

(6.1) 

where Ncycle is the number of cycles in the data window ( odd or prime numbers to make 

all samples unique), and Nrecord is the data record length. 
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Figure 6.1 Signal is captured in a complete cycle. 

The drawback of the 1st technique is when the multiple signals are involved, 

which results in the difficulty to distinguish the complete cycle. In such a case, the 

window function applied to the sampled data can improve the quality of the frequency 

response. The purpose of the windowing is to minimize the effect of the leakage, which 

in time domain, increase the weight of the center portion of the data and decrease the 

weight on both side. 
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Figure 6.2 Signal is captured in incomplete cycle. 
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As Figure 6.3 demonstrates, the leakage is minimized after the windowing and a Hanning 

window is less leaky than a Hamming window. Unfortunately, there are no definite rules 
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for the best window but just the rules of thumb. Table 6.1 summarizes the most useful 

windows. 

Window Characteristics Maximum Side-lobe 
side-lobe level roll-off rate 

Rectangular Good amplitude accuracy, narrow -13dB 20dB/decade 
(no window) main-lobe, slow roll-off rate, poor 

frequency resolution, more spectral 
leakage 

Hanning High maximum side-lobe level, good -32dB 60dB/decade 
frequency resolution, reduced leakage, 

faster roll-off rate 
Hamming Good spectral resolution, narrow -43dB 20dB/decade 

main-lobe 

Table 6.1 Window functions and characteristics. 

A window whose side-lobes have a high roll-off rate should be used if the signal 

contains strong interfering frequency components distant from the frequency of interest. 

Otherwise, a window with low maximum levels of side-lobe is more suitable. If the 

frequency band of interest contains two or more signals close to each other, a window 

with a narrow main-lobe is better. For a single frequency component in which the focus is 

on amplitude accuracy rather than its precise location in the frequency bin, a window 

with a broad main-lobe is recommended. An application consisting of only transient 

signals should have no spectral windows at all, because they tend to attenuate important 

information at the beginning of the sampling clock. The summarized window selection is 

in Table 6.2. 
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The Hanning window, which provides good frequency resolution and reduced 

spectral leakage, yields satisfactory results in most applications. In most testing, the 

output signal content is not known, in which case a good starting place is to use the 

Hanning window. 

Window Sampled signal 
Rectangular 1. Separation of two tones with frequencies very close to each other, 
(no window) but with almost equal amplitudes 

2. Frequency response measurements (system analysis) 
3. Transitions duration is shorter than the length of window 
4. Broad-band random, closely spaced sin-wave signals 
5. Accurate single tone amplitude measurements 

Hanning 1. General purpose application 
2. Frequency response measurements ( system analysis) 
3. Transitions duration is longer than the length of window 
4. Narrow-band random signals, nature of content is unknown, sin-

wave or combination of sin-wave signals 
Hamming 5. Closely spaced sin-wave 

Table 6.2 General guideline to select applied windows. 

6.2 Modulator loop 

Signal to noise ratio, spurious free dynamic range, integral non-linearity, 

difforential non-linearity, and missing code are key parameters to characterize an A/DC 

before further quality testing. They can be roughly grouped in three separate tests: SNR 

and missing code, INL and DNL, and SFDR. In addition, power measurement is 

accompanied with these tests. 
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6.2.1 SNR and missing code 

First of all, high resolution input sources are required for all tests. The .1.-L NDC 

is a data conversion device, which maps analog values to their digital equivalents at best. 

It cannot condition the signals like a filter does. Thus, lower resolution input will result in 

low resolution output, which cannot accurately measure the true SNR of the modulator. 

For this project, the input source with 20-bit resolution is required. 

This current feedback modulator is not built readily use like most digital circuits. 

It requires precise adjustment on its quantizer reference voltage supplies and the two 

feedback current sources. The reference voltage adjustment is for maximum input 

without clipping. The current adjustment is not just for fulfilling feedback coefficient 

requirement but useful for compensating the process variation as well. 

The rough estimate of the reference voltage supplies can be calculated as 

(6.2) 

The 2 overdrive voltage decrements from two voltage supplies are required for N and 

PMOS cascode current mirror structures of fully differential OTAs'. They are not exact 

values since the overdrive voltages vary across the wafer. 
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To adjust the currents, the starting values can be calculated using Equation 3.48. 

The adjustment process is quite simple but requites a few iterations. The better solution is 

to program a DAQ® (Data Acquisition) board from Nation Instrument to capture the 

digital output, average the data, and automatically adjust the currents accordingly. Note 

that the outer loop dominates in determining the low frequency properties of the circuits, 

while the inner loop serves to stabilize the system, and it determines the high frequency 

properties [12]. Thus, the adjustment sequence is to start with the 1st feedback current for 

the approximate digital output and then, adjusts the 2nd current for improved settling. 

At first, the input voltage is set to zero ( or Yz of power supply) and the output 

digital codes verified. The output should be fluctuating within two codes, and their 

average value should equal to _!_ (VnDREF - VssREF) after a period of time. If not, adjust Irefl 
2 

first since it relates to the gain of the modulator, and then Iref2 to stabilize the fluctuation 

within the region of two codes. After this adjustment, only systematic offset voltage has 

been removed (Figure 6.4). 

The gain error is more difficult to adjust than the offset error since it involves two 

points, which require balance. Assuming that the offset error has been removed at this 

point and the line intersects the origin, the slope of the line is modulator gain. Two points 

are required to be balanced so that the positive input maps the same output codes as the 

negative input exclusive of the sign. 

125 



For the positive side, the input is set to Y2 of the VooREF, and the feedback currents 

adjusted. After that, set the input to Y2 of the VssREF for the negative side, and adjust 

accordingly. The process is repeated until both sides map equal but opposite in sign at the 

output. 

--,,. 
Gain error---

Figure 6.4 Gain and offset errors of an A/DC. 

After the adjustment, the SNR testing can commence. Using coherent sampling, a 

calculated sine wave is injected. The SNR and missing code are measured and plotted in 

Figure 6.5 and 6.6, respectively. 
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Sinusoid input (50Hz) sampled at 128KHz (OSR=64) 
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Figure 6.5 Frequency response of the AFE output. 

Sinusoid input (50Hz) sampled at 128KHz (OSR=64) 
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Figure 6.5a A section zoom-in of the Figure 6.5. 
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Output of the AFE 
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Figure 6.6 The AFE output in time domain. 

The preliminary test results show the SNR is 80dB with no missing codes. 

6.2.2 SFDR (Two-tone test) 

The definition of the SFDR is the power ratio of the signal to the third-order 

intermodulation products. Figure 6. 7 shows the simplified version of the test. The 

modulator is injected with two signals of equal amplitude: one at the pass-band and the 

other at stop-band. After decimation, the 3rd order intermodulation term ( 2m1 - OJ2 ) 

cannot be removed since it resides inside the pass-band. The maximum SFDR can be 

obtained by adjusting the input amplitude, but finding the maximum is not a trivial task. 

Figure 6.8 shows that it can be extrapolated using 2 or 3 different amplitude inputs and 

their corresponding 3rd order intermodulation amplitudes [4][30]. 
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Figure 6.7 Intermodulation of two signals. 
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Figure 6.8 Graphical interpolation of SFDR. 

6.2.3 INL and DNL 
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Very low frequency triangular wave sweep can reveal both non-linearities. The 

important consideration is that an integer number of cycles must be sampled or the data 

will be skewed. In addition, during the capture, the input must not drift in amplitude, 

frequency, or wave shape. The collected data is, then, plotted in histogram and the counts 

in each code are expected to be equal. Otherwise, non-linearities exist. 

The problem of this approach is the limited memory depth of the data capture 

device. The maximum capture depth of our existing test device only 64K states. 

Commercial devices can go as high as 4M in depth but this comes with a higher cost. The 

following example reveals the challenge of such testing. For an 18-bit A/DC, the total 

output states are 218. To capture a complete cycle of a triangular wave, the required 

memory depth is i19, or 512K. For a lHz signal, the required time to finish is 

219 /(60*60*24) = 6 days! However, with a commercial capture device with 4Mx32 in 

memory depth and a 1 OHz triangular waveform, 8 cycles can be captured in 5 days. Note 

that synchronization is required for the best use of the capture device to fill in the most 

data. 

6.3 Two-path decimation filter 

Frequency and impulse responses are two tests required for the decimation filter; 

the former is to verify the resolution and the latter is to verify amplitude attenuation. 

Since the SNR of the A/DC is determined by its modulator loop, this frequency response 
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test is to reassure that the filter does not degrade the SNR. Figure 6.9 shows that the SNR 

is maintained. Time domain plot of the DBE output data is shown in Figure 6.10. The 

zoomed in section is shown in Figure 6.10a. Careful software examination of this data 

strongly suggests the A/DC is monotonic. The data cannot be used for non-linearity 

analysis since the input is not triangular wave and its frequency is not low enough. 

Moreover, the memory depth of the capture device is not deep enough. 

The brute force method to test the amplitude attenuation is to inject one frequency 

at a time and measure the amplitude of the output. This takes a very long period of time if 

the bandwidth under test is wide or desired resolution is high. The better approach is to 

use impulse response testing. Note that the width of the impulse is inverse proportional to 

its bandwidth. If the width approaches zero, its bandwidth approach infinity. 

Sinusoid input (50Hz) sampled at 2KHz (DBE output) 
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Figure 6.9 Frequency response of the DBE output. 
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Output of the DBE 
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Figure 6.10 The DBE output in time domain. 
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Figure 6.1 Oa A section zoom-in of the Figure 6.10. 

The care must be taken in selecting the width of the applied pulse. A narrow pulse width 

( or its wide bandwidth) will saturate the filter due to the excessive bandwidth folded back 
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to the base-band after decimation. As a result, the frequency domain of the final output 

will be pulse only. Thus, the width of the pulse should be narrow enough for 

characterization but not too narrow to saturate the filter. Figure 6.11 shows the filter does 

not have attenuation until 150Hz. The filter attenuates the amplitude more than 6dB 

beyond 800Hz. 

Three strategies can be implemented to overcome the attenuation. The first is to 

increase the sampling frequency by 20% and use no additional circuits. The second 

approach is to design an equalizer after the filter to compensate the droop. The third 

solution is to place a half-band filter at the last stages [25]. The latter two solutions are 

not considered power inefficient since the operating frequency of the last filter stages is 

low and the power dissipation of the decimation filter is very small compared to that of 

the modulator. 

Impulse response of the decimation filter 
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Figure 6.11 Impulse response of the DBE. 
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6.4 Power dissipation measurement 

Table 6.3 shows the power dissipation of each component in the modulator. The 

power dissipation of the 1st integrator is 840u W, which is twice that of the integrator 2 by 

design. The power dissipation of a single comparator is 22.3uW. The power ratio of the 

comparator to the integrator is 0.027, which is very close to the model (KQ = 0.02). 

Figure 6.12 is the re-plot of Equation 3.13 with the new coefficient. 

Component Power dissipation 
Integrator l260uW 

4-bit Quantizer l38uW 
Shift register l95uW 

D/AC 6.6uW 

Table 6.3 Power dissipation of the components in AFE. 

Power dissipation in various loop configurations 
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Figure 6.12 Re-plot the power dissipation per bit of Figure 3.7 with Kq = 0.027. 
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The new figure shows the model is quite accurate except that a 3-bit quantizer, instead of 

4-bit, has a slight advantage in power dissipation. Clearly, it is more power efficient to 

increase the resolution by increasing the quantization bit until 4. After that, increasing 

order will have the advantage. 

Digital power is measured by applying the same input data with multiple clock 

frequencies with results plotted in Figure 6.13. The maximum operational frequency of 

the two-pass decimation filter is 23MHz, which is limited by the probecard. Based on the 

ring oscillator measurement, the projected limit of this filter is approximated at 200MHz. 

For the desired~-~ A/DC operating frequency at 128KHz and a power supply of 1.5 V, 

the standby power of the filter is l.SuW and with an operational power of l6.95uW. 

Power dissipabon vs. operating frequency (W7C89) 
10-1·~~~~......--~-~~~~~~......--~-~........., 

Probecard limit 

Projected limit 

10-5 L-~~~-'-'-'-~~~~,____~~~.L.LL-~~~"-'-'-'-' 

1~ 1~ 1~ 1~ 1~ 
Frequency (Hz) 

Figure 6.13 Power dissipation and projection of the DBE. 
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From the measurement results, the power dissipation model of the modulator has 

been verified. The relatively high accuracy of the model can be used to predict the power 

dissipation of future signal loop modulator designs before submissions. The robustness of 

this model is its quantizer not limited to the regenerative approach as in this work. The 

freedom to adopt different implementations increases the possibility of low power 

architectures. The resolution is the minor setback of this implementation, which is 

amendable in the future designs. The newly designed two-path decimation filter has 

achieved both resolution and low power objectives. As a result, the design can focus only 

to the modulator. In addition, the preliminary test results have demonstrated the low 

power properties still maintain within high frequency range. In which case, the filter can 

be applied for wide-band applications. 

136 



CHAPTER 7 

CONCLUSIONS 

The design methodology of the 2nd order fl-I: A/DC with a multi-bit quantizer has 

been demonstrated in achieving 18-bit resolution under the power budget of 1 mW. The 

strategies of reducing power dissipation and maintaining the resolution are the multi-bit 

quantizer approach of the modulator and the parallel process of the decimation filter. The 

innovation of the parallel-to-serial D/AC implantation, which takes the advantage of 

underutilized bandwidth between the analog and digital circuits, makes the multi-bit 

approach possible without the multi-bit D/AC non-linearity. The concept of decimating 

the frequency before filtering is possible by implementing the two-path decimation filter. 

The filter is designed to split the filter functions and data streams in two and process the 

data in parallel at one half of the input operating frequency. In addition, the cascade 

approach greatly reduces the filter order, which reduces power consumption even further. 

The A/DCs, including modulators and decimation filters, have been fabricated on 

Peregrine 0.5um SOS process and tested. The measured SNR of the modulator is 13.5-bit 

with power dissipation of 1.6mWat 128Ksps. For the filter measurement of the operating 

frequency at 128KHz and the power supply at 1.5 V, the standby power of the filter is 
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l .Su Wand 16.95u W during the operation. The filter shows no resolution degradation for 

the test frequencies up to the 23MHz, and the projected limit of200MHz suggests the 

possible application for wideband~-~ communication modulators. 

7 .1 Discussion 

The measured resolution that is 4.5-bit lower than the design goal (18-bit) is the 

only setback of this project. The architecture and functionality of the modulator are 

confirmed to be accurate since the shape of the transfer function in frequency domain is 

shown as expected and in time domain, the output waveform shows no missing code. As 

a result, there are two possible sources of errors: component or device degradation and 

noise injection from the outer sources, and they are listed as follow: 

• Leaky integrators and transmission gates 

• Noisy transistors 

• Noisy current feedback sources 

• Floating body of the transistors 

7 .1.1 Leaky integrator 
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As described in Chapter 3, low gain OTAs can result in integrator leakage. The 

locations of the NTF zeros, which are the locations of the integrator poles, shifted are the 

results of the leaky integrator. The shifting of the system zeros affects the designed NTF 

noise shaping ability and results in the noise level of the pass-band rises. Figure 7 .1 

shows the comparison of the simulated modulator with the OTA gains of 128 and 512. 

The OTA gain of 128 shows the noise level raises significantly and resembles the test 

result. Note that as the gain level drops, the noise floor goes down, which emphasizes the 

statement that the OT A requires high gain to prevent the leakage. 
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OJ 

Simulation of the NTF with various gains of OT As 

1 ·-- Av= 1281 
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-120~~~~~~~~~~~~~~-~··-~~~ 
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Frequency (Hz) 

Figure 7.1 Simulation of the NTF with the gains of OT As at 128 and 512. 

To verify the simulation results, the measurement of NMOS and PMOS cascades 

(Figure 7.2 and 7.3) are used to predict the available gain of the OTA. Based on the 

measured bias voltages of the OTA (the vertical lines), the OTA achieve gains higher 

than 500 (2um channel length), which suggests no gain problem. 
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Figure 7.2 Projected gain afthe OTA using the NMOS cascade measurement. 
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Figure 7.3 Projected gain afthe OTA using the PMOS cascade measurement. 

The prediction suggests that designed gain is adequate and the device failure is the 

possible source. Note that since this is the static test, some distinct phenomena of the 
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SOS process cannot be revealed without using elaborate testing schemes. For example, 

the kink effect reduces the gain of the OTA due to the increase of the output conductance 

with dependence on frequency and bias. This effects resulting from the floating body (i.e. 

sampling switches) will be discussed later. 

7 .1.2 Noisy transistors and current feedback sources 

Recent publications [31] suggests that the transistor noise level is 2-3 times higher 

than that of the theory. As a result, the designed sampling capacitors of the 1st integrator 

are not large enough to reduce the thermal-noise. The solution to this rising noise floor is 

to increase the capacitance of the capacitors so the kT/C noise remains 9dB below the 

modulator noise level. 

The feedback current of the 1st integrator has the same constraint as the input 

signal and is required to be minimized 9dB lower than the modulator noise level. Since 

any noise injected into the 1st integrator shows as a signal to the following stages, the 

noise must be reduced lower than kTIC noise so the latter dominate. The presently used 

external current mirror is still noisy even when battery powered (- -90dB or 15-bit). 

Therefore, future designs should include the current mirrors on chip to minimize such 

, problem. 
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7 .1.3 Floating body of the transistors 

The key benefit of the SOS process over bulk is the greatly reduced drain/source 

to body capacitors. The insulated substrate material provides good isolation between 

devices resulting in the elimination of the latch-up. However, it also introduces some new 

circuit behaviors that do not exist in the bulk process: kink effect, pass-gate leakage, and 

history dependence. All these are caused by the floating body, which are possibly the 

only drawback of the SOS process over the bulk. 

7 .1. 3 .1 kink effect and pass-gate leakage 

The kink effect is a phenomenon that the output conductance increases as impact 

ionization starts and V8 s becomes positive [32-35]. The increased conductance will 

reduce the gain of OTA, which is the product of transconductance and output resistance 

(gmRo). The pass-gate leakage [32-35] occurs when both drain and source are both high 

initially and the body is charged up all the way to V DD· The source is, then, pulled to low 

and the current can still flows from drain to source even though the gate is off. Note that 

the leakage is high on fully-depleted device since the bipolar gain of the device is high 

[32-35]. Figure 7.4 shows a significant amount ofleakage current exists in both P and N 

devices. The leakage of the NMOS is approximately double that of the PMOS. The low 

gain OTA and leaky transmission gates result in a shift of the modulator coefficients, 

which in tum introduces additional noise to the system. 
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Figure 7.4 Measured leakage current of low V th transistors. 

7.1.3.2 History dependence 

History dependence is the change in delay through a gate as a function of 

switching history [32-35]. Before further discussion, the circuit elements determining the 

V8 s are shown in Figure 7.5. The body voltage is determined by the p-n diode leakage 

and the impact ionization current (11) (Figure 7.5(a)) and capacitive coupling to the 

external nodes during the switching (Figure 7.5(b)). 
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Figure 7.5 Circuit elements determine body bias. 

During the high frequency switching, V ss is determined by its capacitive coupling to the 

gate, drain, and source voltages (V8 s_c)~ In steady state, Vss is determined by the diode 

leakage and impact ionization current (Vss_s). Note that the capacitive coupling voltage, 

V8 s_c, is superimposed on top of the steady state Vss, Vss_s. It is the variation of the 

steady state V8 s affecting the threshold voltage and the delay. For every switching event 

of a transistor, its body voltage is set by V ss_c. In between switching, body voltage is 

slowly converged to a value set by the drain, source, and gate voltages as well as leakage 

and impact ionization. If the switching interval is smaller than the period of convergence, 

the delay will vary. In another words, no switching event during the Vss convergence can 

eliminate the history dependence. This delay variation has greater impact on the switches 

of the integrators. The switching time uncertainty caused by the variation of the clock 

drivers varies the charge transfer time of the sampling capacitors, which results in the 

gain error. It has the same effect as the pass-gate leakage. 

7 .2 Suggestion 
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The solution to the body effect is to prevent the body from floating. A ready 

solution is to tie the body to a fix voltage point. For the transmission gate, a H-gate 

approach is used due to the nature of its undetermined drain and source nodes (the nodes 

are decided by their voltage potentials that vary constantly). The H-gate body is tied to 

the power supplies (Figure 7.6). For the rest of the circuits, body-tie-to-source (BTS) gate 

is available and its body is tied to the source node (Figure 7.7). Both implementations are 

available in the future Peregrine process. 

Figure 7.6 Two possible payouts of the H-gate. 

Figure 7. 7 Layout of the BTS gate. 
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CHIP STATISTICS AND LAYOUT AND DIE PHOTOGRAPHS 
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Chip statistics Transistor count Area (mmL.) 
Modulator 2,731 2.6 

Decimation filter 47,656 5.58 
Pad driver 16,272 2.64 

Table A. I Transistor count and sizes of the components. 

Figure A. I Screen capture of the chip layout. 
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Figure A.2 Die photograph of the 18-bit modulator (upper left). 

Figure A.3 Die photograph of the 16-bit modulator (upper right) . 
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Figure A.4 Die photograph of the decimation filter (lower left). 

Figure A.5 Die photograph of the pad driver (lower right). 
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