
AN UNCHANGED SHADOW-BASED

SECRET SHARING SCHEl'v1E

By

NUR HADISUKMANA

Sarjana Fisika

University of Indonesia

Jakarta, Indonesia

1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December 1995

OKLAHOMA STATE UNIVERSITY

AN UNCHANGED SHADOW-BASED

SECRET SHARING SCHEME

Thesis Approved:

Thesis Adviser

II

•

PREFACE

The purpose of this study was to propose a different construction for a secret

sharing scheme that maintains recycleable pieces of information, which are called shadows,

about a secret information item. In this study, the properties of the existing established

secret sharing schemes were analyzed and a solution for the common weakness found in

these schemes was proposed. A network program was also designed and implemented as

an example of the proposed scheme.

The constructions that have been introduced to improve the secret sharing scheme's

performance generally suffer from the common weakness of incurring the overhead of

regenerating and redistributing different shadows when a new secret key (information) is

created. The proposed scheme developed in this study was intended to resolve the above

mentioned weakness by preserving the original shadows, such that they could be used

repeatedly indep,endently of the creation of the secret key (information). This feature was

caHed shadow recycJeability. The proposed scheme constructed a certain polynomial for

determining the secret, Vex) = a1 x + a2 x! + ... + a.- xf
, where x refers to a shadow and x,

x2
, ... , xr are computed using modulo a prime number m. Besides having the shadow

recydeability property, the proposed scheme was also intended to serve as a general access

structure secret sharing scheme by dividing m into several pieces of information 1ms, and

by distributing them, together with the coefficients of Vex), to participants, who are

1Il

grouped into two unique subsets VI and V2 such that only the qualified subsets of the

participats can rev,ea~ the prime number m and reconstruct the polynomial Y(x). The

proposed scheme was imp~emented in a network program called Secret Conference, which

allows a certain number of users to converse secretly.

The proposed scheme, however, has a restriction. The size of the first unique subset

UI is limited to two members. The restriction exists becaus,e of the method used to

distribute the coefficients ofY(x). This method requires (as done on the prime number m)

that on~y the qualified subsets of the participants can reconstruct the polynomial Vex). If

the size of VI is increased to be three or more, the distribution of the coefficients of Y(x)

(using the method described in this report) will result in a condition where there is at least

one unqualified subset of the participants that can reconstruct the polynomial Y(x). This

situation makes the unqualified subset (in guessing the secret key K) focus only on finding

the correct value of one type <of information left unknown: the prime number m, although

guessing the correct value of m is difficult.

IV

ACKNOWLEGMENTS

All praises be to God.

I would like to express my sincere appreciation and thanks to my major adviser Dr.

Mansur H. Samadzadeh for his invaluable and consistent support and guidance from the

early stages of this work. My sincere thanks are also due to Drs. Blayne E. Mayfield and

Huizhu Lu for providing their precious time as my graduate commitee members.

I would like to thank the Goverment of Indonesia for providing funds, through the

Agency for the Assessment and Application of Technology, for my graduate studies. I

would also like to express my thanks to the National Atomic Energy Agency of Indonesia

for granting me the permission to pursue higher education.

Finally, I express my sincere thanks to my family, my wife Rina Dwi Septika and

my daughter Khadijah, for their love, support, encouragement, and patience during my

graduate studies. Special thanks go to my parents-in-law for their support and

encouragement at times of difficulty.

v

Chapter

TABLE OF CONTENTS

Page

I. INTR,ODUCTION... 1

II. LITERATURE REVIEW 3

2.1 Linear Algebra 3
2.2 Secret Sharing Scheme 6

2.2.1 Blakley's Threshold Scheme 6
2.2.2 ShanUr's Threshold Scheme 7
2.2.3 General Access Structure Secret Sharing Scheme.................. 10

2.3 Drawback of Secret Sharing Scheme 11

III. PROPOSED SCHEME 12

3.1 Construction of the Proposed Scheme 12
3.2 Phases of the Proposed Scheme 15

3.2.1 Creation Phase 15
3.2.2 Distribution Phase... 16
3.2.3 Recovery Phase... 29

3.3 Practical Example.. 31

IV. ANALYSIS AND COrvtPARlSONWITH SHAMlR'S SCHEME 37

4.1 Analysis ofthe Proposed Scheme 37
4.1 .1 Security... 37
4.1.2 Recycleability.. 39

4.2 Comparison with Shamir's Scheme 39

V. SECRET CONFERENCE: AN IMPLEMENTATION OF THE
PROPOSED SCHEME IN A NETWORK PROGRAM 42

5.1 Program Description 42
5.2 Program Design........ . . 44

5.2.1 Network Protocol 44
5.2.2 Program Structure... 45

V1

Chapter Page

5.3 Running Secret Conference ,........................... 48
5.4 Analysis.. 50

VI. SUM:MARY AND FUTURE WORK 51

6.1 Summary....................... 51
6.2 Future Work , ,........................ 54

REFERENCES. 56

APPENDICES... 58

APPENDIX A - GLOSSARY AND TRADEMARK INFORMATION......... 59

APPENDIX B - USER GUIDE FOR SECRET CONFERENCE.................. 62

APPENDIX C - PROGRAM LISTING.. 71

vu

Figure

LIST OF FIGURES

Page

1. Blakley's (2,3) threshold scheme model.......................... 7

2. Socket system calls for a client-server model using
the connection-oriented protocol.................. 45

3. Secret Conference initial screen when the client program is invoked................... 66

4. Server's message when another client is active........ 67

5. A message displayed when all clients are active 68

6. Conference request issued by a client... 69

7. A successful reply to a conference request................................ 70

Vll:l

LIST OF TABLES

Table Page

I. An example for the distribution of the coefficients ofY(x) for members of
the unique subset.. 24

II. An example for the distribution of the last three coefficients ofY(x) for
members of the second unique subset U2 .. 25

III. An example for the distribution of the [rrst six coefficients ofY(x) for
members of thesecond unique subset U2 satisfying
the second condition... 27

IV. An example for the distribution ofthe first six coefficients ofY(x) for
members of thesecond unique subset U2 satisfying
the third condition 28

V. Distribution of the coefficients ofY(x) for all participants
ofthe example....... 34

IX

CHAPTER J

INTRODUCTION

Since being independetly introduced by Blakley [Blakley79] and Shamir [Shamir79]

about 15 years ago, the secret sharing scheme, originafly called a threshold scheme, has

been implemented by many researchers. The basic idea of the scheme is to maintain a piece

of secret information by dividing it into several parts, called shadows, and distributmg the

shadows to a set of n participants in such a way that a certain subset of the participants can

recover the secret information by pooling the shadows they have [Simmons92]. The

collection of subsets of the participants that can recover the secret information is called an

access structure [Jackson94]. If tlile access structure contains all subsets whose size is at

least t, then the scheme is called a (t,n) threshold scheme [Jackson94] [Stinson93].

A number of (t,n) threshold schemes have been developed implementing the notion

that, by pooling any t or more shadows, the secret information itself can be revealed, while

gaining t - 1 or fewer shadows will not be able to recover it [Simmons89]. Other

researchers have developed a genera! access structure for secret sharing schemes. The idea

ofgeneral access structure is to limit the subsets of the participants in recovering the secret

information such that only certain specified subsets of the participants can recover it, while

the unsp,ecified subsets cannot [Blundo93]. These schemes, however, have a weakness that

whenever the secret information is revealed, aU of its shadows become worthless [Harn93].

As a consequence, new shadows should be created and distributed if a new piece of secret

information is generated.

1

2

The main objective of this thesis was to introduce a different approach (scheme)

that can resolve the above-mentioned drawback by preserving all of the shadows already

given to the participants, so that new shadows need not be distributed to the participants

each time a new secret information is created. The proposed scheme is also designed to

support the general access structure secret sharing scheme.

The rest of this thesis is organized as follows. Chapter IJ provides a review on

literature related to the proposed scheme. Chapter III discusses the work of the proposed

scheme. Chapter IV gives an analysis of the proposed scheme and its comparison with

Shamir's scheme. An implementation of the proposed scheme in a network program, which

is called Secret Conference, is discussed in Chapter V. Finally, Chapter VI outlines the

summary and future work of the proposed scheme.

CHAPTER n

LITERATURE REVIEW

2.1 Linear Algebra

This section gives a brief review of the some concepts from linear algebra. Such

concepts are used in obtaining the coefficient values of a polynomial Vex), which is

described in Section 3.1. An equation in n variables XI, X2, ... , Xn, is said to be a linear

equation if all of its variables appear in their first power forms [AntonS1].

(2. I)

To obtain the values of the n variables, there should be n linear equations. The set of n

linear equations is called a system of n linear equations or a linear system [Anton81].

all Xl + al2 X2 + .. , + all} Xn = bl

a21 XI + a22 X2 + ... + a2n Xn = b2

(2.2)

Such a linear system can be expressed as a matrix equation

aln XI

(2.3)

anI ann Xo

3

bn

4

or [A] [X] = [B].

If the values of the elements of matrices [A] and [B] are known, the values of

matrix [X] can be determined.

[A] [X]

[Ar l [A] [X]

[E] [X]

[X]

[B]

[Ar l [B]

[Ar I [B]

[Ar l [B]

(2.4)

where [I] is identity matrix and [Arl is the inverse ofmatrix [A].

There are two melthods for obtaining the inverse matrix [Ar l
. The flrst method

determines the inverse matrix [Ar l based on the following equation.

[Ar
l

= XAI Adj(A) (2.5)

where IAI is the determinant of matrix [A] and Adj(A) is the adjoint matrix of [A]

[Hershey86].

The second method obtains the inverse matrix [AT I using a sequence of row

operations on matrix [A] which changes [A] into [I] and changes [I] into [Ar' in a

rectangular matrix [e] [Hershey86] [Anton81].

[e] = [A II] (2.6)

To find the inverse matrix [Ar l
, a sequence of row operations can be performed as

follows. Suppose that there is an integer i, where i is initialized to 1.

1. Determine the value of element Cu. If Cjj = 0, exchange row i with another row whose
value in its ith column is not zero.

2. Divide all elements in row i by the value of Cii .

5

3. Multiply an elements in row i by the negative of Cji and add the resulting values to the
corresponding elements in row j so that the value of Cji will be zero. Repeat these
operations until all elements in column i are zero except for Cii.

4. Repeat aU steps, starting from Step 1, for i = 2, 3, ... , n.

Suppose, as a simple example, that the entries of matrix [A] are as given below.

[AJ ~[~ ~]

To find the inverse matrix of [A] using the above algorithm, matrix [C] is constructed.

[
2 4 1 0]

[C] = 3 70 1

The sequence of row operations for the matrix [C] is as follows (assuming that initially i is

1).

• In Step 1, since C jj = Cll = 2 (C ll :j:. 0), proceed to Step 2.

• In Step 2, aU entries in row i = Ware divided by C;j = C ll = 2. The result is shown below.

[
1 21- 0]

[C] = 3 7 ~ 1

• After applying the operations described in Step 3, where j = 2 and Cji = C21 = 3, the

result is as follows.

[
1 2 1- 0l

[C] = 0 1~t 1J

• After repeating all steps starting from Step 1 for i = 2, where j = 1, Cji = C12 = 2, the final

result is shown below.

[C] ~ [~
o 1..

2

1-d.
2

6

where the second part of matrix [C] is the inverse matrix of [A].

Compared to the first method, the second one is simpler and easier to implement,

particularly when the size of the matrix is large (i.e., 10 or more). Therefore, the second

method is used for matrix operations performed in the proposed scheme.

2.2 Secret Sharing Scheme

Secret sharing scheme is a method to gIve a set of n participants pIeces of

information, called shadows, of a shared secret key K in such a way that t out of the n

participants, t s n, can recover K by pooling the shadows that they have [Simmons92].

This scheme is also called a (t,n) threshold scheme. The first (t,n) threshold scheme was

introduced in 1979 by ShanUr [Shamir79] and Blakley [BJakley79].

2.2.1 Blakley's Threshold Scheme

Blakley used a pmject~ve geometric model for his scheme. Simmons gave a simple

and clear example illustrating Blakley's (2,3) threshold scheme (Simmons92]. In the

example, a secret key K is viewed as a point p located in three dimesional space, p =

(xp'YP,Zp). Shadows of K, which are given to a set of 3 participants, are shadows of p on

YZ, XZ, and XY planes, say, Pl = (O,yp,Zp), P2 = (xp,O,zp), and P3 = (xP'YI',O), respectively.

Since pi, i = 1, 2, or 3, is a projection point ofp, a vertical line Ii can be drawn from Pi so

that the line goes through p. Two of the three participants can determine p by combining

their lines since the intersection point of the combined lines is p, as shown in Figure 1.

Blakley's construction of the scheme is actually not in a Euclidean space EO but in a

finite projective space PG(v,p), where v indicates the dimension of the projective space and

7

z

x

Y h
LEGEND: PI, pz, P3

11, h, h
points on the 3 planes
lines paranel to the axes

Figure 1. Blakley's (2,3) threshold scheme model
(Source: [Simmons92])

p is a prime number. The shadows can thus be viewed as a projection of the secret key

(information) from a point in one plane onto another plane. This construction will result in

v arbitrarily chosen hyperplanes.

2.2.2 Shamir's Threshold Scheme

Shamir, on the other hand, introduced his (t,n) threshold scheme based on

polynomial interpolation [Shamir79]. The scheme chooses a polynomial Vex) of degree t -

1 over a fmite field GF(p), where t is the smatlest number of participants that can recover

the secret key K, and p is a prime number. It also selects a secret key K and assigns it as

the first coefficient ofY(x).

Vex) = (~ + a1 x + ... + at.1 Xl-I) mod p (2.7)

where ao = K, p is a prime number larger than K, and the coefficients aI, az, ... , and at-l are

arbitrarily chosen. K is divided into Kl, K2, ... , Kn by evaluating Vex) at n distinct values of

8

XI, X2, ... , and Xn , where n is the total number of participants.

Ki = Y(Xi) for i = 1, 2, ..., n

In Shamir's scheme, a shadow is defined as a pair of values (Xi, K j). Since the total

number of participants in the scheme is n, n shadows should be created. Each shadow,

together with the prime number p, is given to every participant.

By pooling t out of n shadows, (Xl, K 1), (X2, K2), ... , (xt, K t), Vex) can be

reconstructed using the Lagrange interpolation equation [Denning82].

VeX) = (±Ki III (x - Xj)/ .) mod p
!(XI- xJ)

i=l j=l.j"'i

(2.8)

where (Xi, Ki) is one of the t shadows, Xj is x value of the other t-l shadows, and Xj ;t; Xi'

Consequently, K can be recovered by evaluating YeO) since YeO) = ao = K.

Example:

Suppose that there is an integer value K that is kept secret. K is shared among 5

participants in such a way that 3 out of the 5 participants can recover K by gathering the

shadows of K that they have. The five shadows are determined by using Shamir's (t,n)

threshold scheme (Source: [Denning82, p. 181]).

Let t = 3, n = 5, P = 23 and K = ao = 21. We choose at random al

11, so that

VeX) = (21 + 5 x + II x2
) mod 23

If x = 1, 2, ..." and 5 are chosen, the shadows will be.

K1 = YO) = (21 + 5 + II) mod 23 = 14
K2 = Y(2) = (21 + 10+ 44) mod23 6
K3 = Y(3) = (21 + 15 + 99) mod 23 20
~ = Y(4) = (21 +20+ 176) mod 23 = 10

5 and a2 =

9

Ks = Y(5) = (21 + 25 + 275) mod 23 = 22

We can reconstruct Y(x) bychooswng 3 out ofthe 5 shadows, say Kl, K2, and K4 .

Y(x) = [14* (x-2)(x-4) +6* (x-l)(x-4) +10* (x-l)(x-2)] mod 23
(1-2)(1-4) (2-1)(2-4) (4-1)(4-2)

= [14 * Inv (3,23) * (x2
- 6 x + 8) + 6 * Inv (-2,23) * (x2

- 5x + 4) + 10 *
Inv (6,23) * (x2

- 3 x + 2)] mod 23
= [14 * 8 * (x2

- 6 x + 8) + 6 * 11 * (x2
- 5 x + 4) + 10 * 4 * (x2

- 3 x + 2)]
mod 23

= [20 * (x2
- 6 x + 8) + 20 * (x2

- 5 x + 4) + 17 * (x2
- 3 x + 2)] mod 23

= [57 x2
- 271 x + 274] mod 23

= 11 x2 + 5 x + 21
YeO) = ao = K = 21

Note: lnv (a,b) is an extended Euclid's algorithm to compute the inverses of a modulo b.

The extended algortihm is shown below [Source: Denning82, p. 44]

Algorithm Inv (a,n)

begin {Return x such that ax mod n = I}
go:= n; gl := a;
Uo:= 1; Vo:= 0;
Ul := 0; VI:= 1;
i := 1;
while gi ::t:. 0 do {gi = Uj n + Vi a}

begin
y := gi·l div gi;

gi+l := gi.l - Y * gi;

Ui+1 := Ui·l - Y * Ui;

Vi+l := Viol - y * Vi;

:= i + 1;
end;
x := Vi-I;

if x > 0 then inv := x else inv := x + n;
end

It should be noted that although Blakley and Shamir used different constructions, their

schemes give similar properties [Simmons92] as listed below.

1. tout ofn shadows will suffice to recover the secret key (information) K.

10

2. t - 1 or fewer shadows can never reveal K~ therefore, although up to t - 1 of the

participants are unavailable, the secret key K still can be recovered.

2.2.3 General Acoess Structure Secret Sharing Scheme

Since Blakley and Shamir proposed their schemes, a number of researchers have

given more attention to the secret sharing scheme. They have developed the scheme in the

fonn of a general access structure. A general access structure secret sharing scheme is

defined as a way to divide and distribute the secret key K to a set of n participants such

that only the qualified subsets of the participants can recover K, while those who are

unqualified cannot recover it [Blund093]. The collection of the qualified subsets is called

an access structure, denote by r [Jackson94]. If the access structure contains aU subsets

whose size is at least t, then the scheme is called a (t,n) threshold scheme [Jackson94]

[Stinson93]. It is dear therefore that a general access structure secret sharing scheme

(general access structure scheme for short) is a generalization of the (t,n) threshold

schemes.

A general access structure scheme is said to be perfect if the following properties

are satisfied [Blund093] [Stinson93].

1. If a qualified subset of the participants gather their shadows, they can recover the
secret key (information) K.

2. If an unqualified subset of the participants gather their shadows, they obtain no
information about K.

A general access structure scheme is monotone if there is a subset D of the

participants that is a superset of a qualified subset B of the participants, then D is also a

qualified subset that can reoover K [Stinson93], which can be expressed by an equation

below.

if B E rand B ~ D ~ P, then D E r (2.9)

11

where P is a set of all participants and r is an access structure or the set of qualified

subsets, In a general access structure scheme, there is a special and trusted participant,

called dealer, who is responsible for recreating the secret key [Stinson93].

2.3 Drawback of Secret Sharing Scheme

Secret sharing scheme is useful in information security [Simmons92], in multi-user

network cryptography system [Jackson94], in opening vault-lock or safety deposit box, or

even any controlled action tllat requires the presence of several persons in order to initiate

the action [Blund093].

The scheme, however, has a drawback. Once the secret key K is recovered, all

shadows of K, including those which do not involve in the recovery process, become

useless [Harn93]. Consequently, whenever a new secret key K' is created, all participants

should be given the corresponding shadows. To resolve the drawback, this thesis proposes

a new approach in secret sharing scheme by maintaining the original shadows that have

already been given to all the participants, such that the shadows can still be used to reveal

the new secret key K'. This characteristic is called recycleable shadows. Another

characteristic of the proposed scheme is that it supports a general access structure.

The next two chapters discuss the proposed scheme's work and other issues related

to it. Chapter III discusses the construction and the work ofthe proposed scheme including

the assumptions on which the proposed scheme is based. Chapter IV discusses an analysis

of the proposed scheme and its comparison with Shamir's scheme.

CHAPTER III

PROPOSED SCHEME

This chapter discusses various aspects of the proposed scheme. First, it discusses

the construction of the propos,ed scheme. Second, it describes the operation of the

proposed scheme, which can be divided into three phases, i.e., creation, distribution, and

recovery. Third, it giv,es a practical example implementing the proposed scheme.

3.1 Construction of the Proposed Scheme

The proposed scheme is designed using a polynomial Y(x) ofdegree r,

Y(x) = al x + a2 Xz + .. , + a,. xr (3.1)

where r = (lUll + I) * IU21, and UI and Uz are unique subsets described below. This

polynomial is us,ed as a template to determine the coefficient values a}, a2, ... , ar of the

polynomial in the creation phase, and to obtain the secret key (information) in the recovery

phase, as described in Section 3.2. The value r = (IUd + 1) * IUzl is chosen in order to

minimize the size of the information distributed to the participants and to guarantee that

every participant, in receiving the distributed information, misses at least two coefficients

of Vex), so that the difficulty in guessing the secret key (based on each participant's

information) is increased.

12

13

The proposed scheme 1S constructed based on the foHowing assumptions and

notations.

1. Let K denote the secret key (information) to be shared, S a set of shadows of K, m a
prime number (m is used instead of p, which is a prime number, to differentiate this
notation from the one used in Blakley's and Shamir's schemes), 1m a piece of

information relating to m, and C a set of some of the coefficients of a certain
polynomial Vex). The idea behind breaking minto 1ms and that of dividing all

coefficients of Vex) into Cs, is to protect m and Vex) such that only members of the
qualified subsets of the participants can reveal m and reconstruct Vex). Vex) and mare
needed to derive the secret key K.

2. Let P be a set of n trusted participants, P = {Pl, P2, ... , Pn}. The participants in Pare
classified into two groups, where the size of one group is smaller than that of the other.
The proposed scheme sets P into two groups (VI and U2) to implement the idea
introduced by Simmons [Simmons92] that one member of one group UI can take an
action on behalf of one or two members of the other group U2. The proposed scheme
defines such a capability as the weight of the members of U1 over the members of U2,

and denotes it as W

3. Let L1 be a special and trusted participant called a dealer, where L1 ~ P (see Subsection
2.2.3). In the proposed scheme, the dealer L1 does several things. First, it selects K, S,
and m as described in Item 1 above. Second, it breaks m into pieces of information
called ImS' Jm is expressed in the following form.

1m = (x,Z(x» (3.2)

where x is an arbitrary integer value and Z(x) is a random polynomial whose first
coefficient equals the prime number m. Third, it sets a polynomial Vex) (Equation
(3.1» such that Vex) always gives the same value as K each time Vex) is evaluated for
the values of S. Finally, it distributes the specified information (i.e., some values of S,
Ims, and the coefficients ofY(x) grouped into Cs) to P through a secure channel, such

that only the qualified subsets of P can recover K using the distributed information.

4. Let r be a monotone access structure consisting of all qualified subsets of P that can
recover K (see Subsection 2 2.3 for the definition). Two of the subsets are unique
subsets UI and V2. The two subsets are the two groups mentioned in Item 2 above. A
unique subset is defined as a subset whose members are not the members of the other
unique subset, UI n U2 = 12'. For 'nstance, consider an access structure r of 5
participants A, B, C, D, and E containing the following subsets.

r = {{A,B },{C,D,E}'{A,C,D}'{A,D,E},{B,C,E}}

14

Here, {A,B} and (C,D,E} are the unique subsets U1 and U2 since {A,B} n {C,D,E} =

0, while others are non-unique subsets since their members are members of unique
subsets VI and V2. The smallest size in r is assumed to be t, t = IUII and t ~ 2, and
the size of the biggest subset in r is assumed to be n - t, n - t = IU21and IU21 > IUd,
where n is the total number ofparticipants in P.

5. Since VI and U2 are the smallest and the largest subsets in r and the members of the
non-unique subsets are from VI and U2, the sizes of the non-unique subsets span the
range from lUll to IU21.

(3.3)

where lUll = t, IV21= n - t, n is the total number of participants (n = IPI), a is any non
unique subset, and lal is the size of a. To simplify the case of setting the non-unique
subsets whose sizes satisfy Equation (3.3), the proposed scheme assumes that the two
following conditions hold.

A. If (I Uti - 1) * W + 1.$ IU21, where W is the weight of the members of VI over the
members of U2, then at most (lUll - 1) members of a non-unique subset are from
VI. Otherwise, only one member of the non-unique subset is from UI .

B. The size of a non-unique subset should also satisfy the following Equation.

(3.4)

where ex is a non-unique subset, i is number of members of a that are from VI, W is
the weight of the members of VI over the members of U2, and lal is the size of a..

The proposed scheme, which implements the notions described in Items (1) to (5)

above, is applicable in the real world. Suppose that there is a group of 6 authorized persons

in a company. Two of them are vice presidents and the rest are managers. Hierarchically, a

vice president is different from a manager. Therefore, the six persons are grouped into two

levels, vice presidents and managers. They have different capabilities and authorities in

initiating a specified controlled action. For instance, to recover a secret combination for

opening a locked vault, requires the presence of several persons. This action can be carried

out by the two vice presidents, by the four managers or by several persons who are from

15

both levels, under the condition that a person from the first level (the vice president level)

is capable of taking the act on behalf of one or two persons from the second level (the

manager level). If one of the two vice presidents can a.ct on behalf of one person from the

managers level, the size of the non-unique subsets is 5. And if one of the two vice

presidents can act on behalfof two persons from the managers level, then the minimum size

of the non-unique subsets is 4 and the maximum is 5.

3.2 Phases of the Proposed Scheme

The proposed scheme's work can be divided into three phases: the creation phase,

the distribution phase, and the recovery phase. The first two phases are performed in the

dealer's site, while the last phase is applied in the participants' site.

3.2.1 Creation Phase

In this phase, the dealer provides all of the information required by subsets of P in r

to recover K (carried out in the recovery phase). The required information consists of the

coefficient values ofY(x) shown in Equation (3.1), shadows ofK in S, n of which are given

to P (n = IFD, and the prime number m, which is divided into 1ms (see Section 3.1 for

definitions). Therefore, the dealer first chooses a secret K and a set of r distinct integer

values for S that are used as shadows ofK, S = { sJ' S2' ... , sr}' where r = (IUd + 1) *

IU21. The dealer also selects a prime number m and a polynomial Vex) of degree r, as

described in Equation (3. t). The coefficients of Vex} should be unique so that Vex} will

give the same value as K, when it is evaluated for the values of S.

16

ad(s])modm] + a2[(s~)modm] + ... + ar[(s~)modm]= K

ai:[(S) mod m] + a2[(S;) mod m] + '" + ar[(s~)modm]= K

(3.5)

ad(s,)modm] + 32[(s;)modm] + ... + a.-[(s~)modm]= K

The above equations can be expressed in matrix form.

[S] [A] = [K] (3.6)

where [S] = the r x r shadow matrix, [A] = [ai, a2, ... , a.-]T, and [K] = [K, K, .",Kt Matrix

[A] can be determined by first finding the inverse matrix of [S], [SrI, using the second

method described in Section 2.1.

[Sri [S] fA]

[I] [A]

[Sri [K]

[Sri [K] (3.7)

[A] [Sri [K]

Having obtained values for the elements of matrix [A], the dealer can then obtain the

coefficient values ofY(x), since the elements of [A] are indeed the coefficient ofY(x), i.e.,

ai, a2, ..., ar· These coefficients are not just useful for deriving K but they also give the

description of Y(x).

The dealer now has all of the information required by r to recover K, and therefore

the creation phase is completed.

3.2.2 Distribution Phase

Since all the information needed to recover K i.s available, the dealer can basically

distribute the items to the members of P. However, in order to enforce the notion (as

mentioned in Item (1) in Section 3.1) that m can only be revealed if members of the

qualified subsets of P (in f) pool their knowledge of m, the prime number m that was used

17

in deriving K should be partitioned into pieces of information called 1ms using Equation

(3.2). These lms are then distributed to the members of P.

In partitioning minto lms, the dealer considers two things. First, since 1m is

obtained using Equation (3.2) and the qualified subsets consist of the two unique subsets

U, and U2 and the non-unique subsets, the dealer must determine the number of Z(x)

polynomials that are used for creating lms. Second, the dealer must also determine how

many units of 1m should be given to each member of P. These two things should be taken

care of such that the notion stated above is satisfied. It should be noted that unless stated

explicitly otherwise, the words 'units of 1m' used here and later means units of distinct

values of 1m.

Since the largest subset in r (recall the notation in Section 3.1) is U2 and the sizes

of the non-unique subsets satisfy Equations (3.3) and (3.4), the size of U2, IU21 = n - t, is

the upper bound for the qualified subsets in r. Hence, the dealer sets a polynomial Z(x)

whose degree is IU21 - 1 = n - t - I.

Z(x) n-t-I= Zo + ZI X + ... + Zo-l-l X (3.8)

where Zo equals the prime number m (zo = m) and the other ZiS are arbitrary integer values.

This polynomial is used by the dealer to divide m into ImS, and by the unique subset U2and

the non-unique subsets to reveal m later in the recovery phase. Equation (3.8) implicitly

indicates that the number of units 1m, needed to reaveal m using the equation, must be at

least the same as the total number of coefficients of the equation (as stated by Shamir

[Shamir79]). Since the number of coefficients of Equation (3.8) is the same as the size of

18

U2, the dealer then sets one unit of 1m for each member of U2• Equation (3.8) above always

appears in partitioning minto lms as described below.

For every member of UI , whether or not the dealer sets another polynomiJal Z(x)

and how many units of 1m should be given, depends upon the weight W of members of UI

over members of U2 . Based on the relationship among the sizes of UI and U2, and the

weight W, there are three cases that can occur in partitioning minto Ims. It should be noted

that in partitioning minto Ims (discussed below) the proposed scheme implements

Shamir's model [Sharnir79] (described in Subsection 2.2.2) with a slight modification on

the way to reveal the prime number m as described later in the recovery phase (Subsection

3.2.3).

Case I: If the total weight of all members of UI is less than the number of members of rh,

I Uti * w < IU21 (the notation is described in Section 3.1), then the dealer will

set two random polynomials that are used for partitioning minto lms. The degrees

of these polynomials are lUll - 1 = t - 1 and IU21 - 1 = n - t - 1, where lUll = t and

IU21= n - t, as stated in Item (4) in Section 3.1.

(3.9)

Z () + n-t-I £: U d th b (3 10)2 X, = Co + Cl X + ... Cn-t-I X , lor 2 an 0 er su sets .

where bo = Co = m, and the other bis and CiS are arbitrary interger values. The

two polynomials above and the other Z(x) polynomials used in the next two cases

are similar to the polynomial that was used in Shamir's Scheme to produce

shadows of a secret key K as described in Subsection 2.2.2. Equation (3.9) is set

for the unique subset UI , while Equation (3. 10) is set for the unique subset U2 and

19

the non-unique subsets in r whose members are from V] and V2 . The reason why

the dealer sets two Z(x) po~ynomials is to satisfy the notion stated at the beginning

of this section (the distribution phase). If the dealer sets only one Z(x) polynomial

shown exther in Equation (3.9) or (3.10), then the result will violate the stated

notion. Suppose that the dealer sets only one Z(x) polynomial shown in Equation

(3.10), then there must be at least IU21 = (n - t) units of 1m in order to reveal the

prime number m. With this requirement, the unique subset U\ will never reveal the

prime number m because the maximum number of units of 1m that can be

possessed by UI is (lUll * W) which is less than the size of V2, lV21= n - 1. This

means that one subset (i.e., VI) in r cannot reveal m, and this contradicts with the

definition of r (recall the definition in Item (4) in Section 3.1 and in Subsection

2.2.3). Suppose that, on the other hand, the dealer sets only one Z(x} polynomial

shown in Equation (3.9), then the minimum number of units of 1m needed for

revealing m is t , which is the size of V\. With this requirement, some subsets of

U2 whose sizes are greater than or equal to t and which are not in r can reveal m.

Again this condition contradicts with the definition of r. Therefore, the dealer sets

two polynomials shown in Equations (3.9) and (3,10). Since 1m is a piece of

information relating to m and has the same function as a shadow used in Shamir's

Scheme, and 1m is also used by the members of P to reveal m, the dealer can then

set ImS for the members of P using the following equations,

w

«Xi,ZI(Xi»;L (Xk,Z2(Xk»), i E V\
Ie=!

(3.11)

20

(3.12)

where W is the weight of the members of U1 over the members of V2 (see Section

3.1 for the definition), Xi and Xk are arbitrary integer values assigned to each

member i of VI, Xj is an arbitrary integer value assigned to each member j of V2,

and (X,Zl(X» and (X,Z2(X» are units of 1m that are used for revealing m in the

recovery phase. Equation (3.11) indicates that the first term, (Xj,Zl(Xi», is used

only by the members of VI to reveal m using Equation (3.9) later in the recovery

phase, and the second term is used by members of U1, together with members of

V2, acting as members of the non-unique subsets to reveal m using Equation

(3.10). Equation (3.12) is used by both members of V2 and members of U2,

together with members of VI, acting as members of the non-unique subsets, to

reveal m using Equation (3.1 O).

Case II: If the total weight of all members of UI is greater than or equal to the number of

members of V2, 1Ud * W ~ IU21 and the total weight of aU members less one of

VI is less than the number of members of U2, (IV11 - 1) * W < IU21, then the dealer

will set a random polynomial of degree IU21 - 1 = n - t - 1 used for dividing m,

where IU21 = n - 1.

Z3(X) = do + d] x + ... + do-f-] ~.f-\ for U1 and U2 (3.13)

where do = m, and the other diS are arbitrary integer values. Since the degree of

the polynomial is n - t -1,. then at least lU21 = n - t units of 1m are needed to reveal

m. In this case, all of the qualified subsets in r can satisfy this requirement. For

U2 , the requirement is automatically satis.fied because the poJynomial is set based

21

on the size of U2 . Since the non-unique subsets satisfy Equation (3.4), aU of the

subsets have at least (n - t) units of 1m so that they can reveal m using Equation

(3.13). For UI, since the total weight of VI is greater than or equal to (n - t)

(meaning that it have at least (n - t) units of 1m), it can also reveal m. The dealer

also sets 1ms for the members of P using the following equations,

1mi
w

I: (Xk,Z3(Xk»,
k=1

(3.14)

(3.15)

where W is the weight of the members of VI over the members of V2 (see Section

3.1 for the definition), Xk is arbitrary integer value given to each member i of VI,

Xj is an arbitrary integer value given to each member j of U2, and (X,Z3(X))

represents one unit of 1m used for revealing m in the recovery phase.

Case III : If the total weight of aU members less one of VI is greater than or equal to the

number of members of V2, (I Uti - 1) * W ~. IU21, then the dealer will set two

random polynomials of degrees IUd - 1 = t - 1 and IU2 1 - 1 = n - t - 1, where lUll

= t and IUzl = n - t. The dealer uses these polynomials for dividing m.

+ Ct.1 xt
-
I
, for VI (3.16)

Zs(x) = fo + f1 X + + fn-t-l Xn-t-I, for Vz and other subsets (3.1 7)

where eO = fO = m, and the other eiS and fi.s are arbitrary integer values. The

reason why the dealer sets two Z(x) is the same as in Case I, i.e., to keep the

notion stated at the beginning of this section (Subsection 3.2.2) satisfied. If the

dealer sets one Z(x) polynomial shown in Equation (3.16), then some subsets of

22

U2 that are not in r, and whose sizes are greater than or equal to t, can reveal m.

This situation violates the notion mentioned above. The same argument also

applies if the dealer sets one Z(x) polynomial shown in Equation (3.17). In this

case, some subsets of U1 that are not in r, and whose units of 1m are greater than

or equal to (n - t), can reveal m. This situation also violates the notion mentioned

above. The dealer then sets ImS for the members of P using the equations,

w
1: Imi = «Xi,Z4(Xi»;L (Xk,Z5(Xk»)), i E U1

k=l

(3.18)

(3.19)

where Wis the weight of the members of U1 over the members of U2 (see Section

3.1 for the defInition), Xj and Xk are arbitrary integer values given to every

member i of U1, Xj is an arbitrary integer value given to every member j of U2, and

(X,Z4(X» and (x,Zs(x» are units of 1m that are used for revealing m in the

recovery phase. The difference between the second term of Equation (3.] 1) and

the second term of Equation (3.18) is that in Equation (3.11) the values of Xk are

different among members of U1, while in Equation (3.18) the values OfXk are the

same for members of U j • This should be done to avoid the situation where some

subsets of U1 that are not in r can reveal m (as mentioned above when discussing

the reason why the dealer sets two Z(x) polynomials). By setting the same 1m for

each member of U1, some subsets of U1 can never reveal m using Equation

(3.17).

23

As mentioned at the beginning of Section 3.1, there is a certain polynomial Y(x) as

shown in Equation (3. 1), that ~s used by the dealer and certain subsets of members of P in

r called the qualified subsets. In the dealer site, Vex) is used to obtain the unique

coefficients of Vex) as described in the creation phase (Subsection 3.2.1), while for the

qualified subsets, Vex) is used to determine the secret key K by evaluating Vex) at one

value of the set S of shadows (see Subsection 3.2.1) as shown in Equation (3.5). Therefore,

the coefficients ofY(x) should be distributed to the members of P. In order to increase the

difficulty for each member of P in guessing the secret key K, besides partitioning minto

1ms as discussed earlier, the proposed scheme requires that the dealer distribute the

coefficients of Vex) to members of P such that each member of P will miss at least two

coefficients ofY(x). Furthermore, the proposed scheme also requires, as done on the prime

number m, that only the qualified subsets in r can reconstruct the polynomial Vex).

The set P consists of two unique subsets UI and U2, and the degree of Vex) is r =

(IUd + 1) * IU21. This means that there are r coefficients ofY(x) (see Equation 3.1) and,

thus by considering all other relating assumptions and notations discussed in Items (4) and

(5) in Section 3.1, the dealer distributes the coefficients of Vex) to the members of P

according to the following basic steps.

1. For members of UI :

• The first q coefficients of Vex), where q is an integer variable and q = (r - IU21) =

(l UII * IU21), should be given to the members of UI in such a way that for those

coefficients, every member of UI can only have (I UII - 1) * IU21 items. The dealer

distributes the coefficients so that for the ilb member of UI the dealer skips the jib

24

~U21 = (n-t) items and gives the remaining items. For example, for the first member

of VI the dealer omits the first IU21 = (n-t) items and gives the remaining items to

the first member, and for the second member of VI the dealer omits the second IV21

= (n-t) items and gives the remaining items to the second member. The reason for

doing this is to guarantee that the requirement is satisfied (the requirement that

each member of VI misses at least two coefficients as mentioned above). Based on

the assumption stated in Item (4) in Section 3.1, the minimum size of V2 is 3.

Therefore each member of VI will miss at least three coefficients of Y(x) and this

condition satisfies the above requirement.

• The last IU21(i.e., (r - q) = IU21) coefficients of Vex) are given to all UI members.

Since the distribution of the [lfst q coefficients of Vex) for each member of VI has

satisfied the requirement, the last IV21 coefficients of Vex) can be given to all

members or VI.

The following example is given in order to have a better idea about the distribution of

the coefficients of Vex) to members of VI satisfying the requirement. Suppose, for

above rules, the coefficients of Vex) can be distributed to the members of VI as

depicted in Table 1.

TABLE L AN EXAMPLE FOR 11-ffi DISTRIBUTION OF THE COFFFICIENTS

OF Vex) FOR MEMBERS OF 'mE FffiST UNlQUE SUBSET VI

participant al a2 a3 'l4 a5 <i1j a7 as a9
PI X X X Y Y Y y Y Y

P2 Y Y Y X II X X Y Y Y
(Legend: X = not given and Y = given)

25

2. For members of U2 :

• The last IU21 coefficients of Y(x} are distributed such that each member of U2 can

only have one of the coefficients. Applying this rule to the unique subset U2, whose

minimum size is 3, will give a result that satisfies the requirement. Besides that, this

rule also gives a condition where the last IU21 coefficients of Vex) can only be

revealed if aU of the members of U2 pool their coefficients. For the example given

above, the distribution of the last IU2 1 coefficients ofY(x) is depicted in Table n.

TABLE n. AN EXAMPLE FOR 1HE DIS1RlBUTION OF THE LAST

TI!REE COEFFICIENTS OF Vex) FOR MEMBERS OF THE

SECOND UNIQUES SUBSET U2

participant a7 ag a9
P3 y X X
P4 X Y X
Ps X X y

• The first q coefficients ofY(x), where q = (r -IU21) = (lUll * IU21), are distributed as

follows. Since the first q coefficients of Vex) have been distributed to the members

of UI (applying the rule discussed in Item 1 above), the dealer should distribute this

first q coefficients of Vex) to members of U2 such that when one or more members

of UL ask some members from U2 to pool their coefficients of Vex), they can

reconstruct the polynomial. In other words, the dealer should distribute this first q

·coefficients of Vex) to members of U2 such that all of the non-unique subsets in r

can reconstruct the polynomial. The easiest way to do it is for the dealer to

distribute all the coefficients to all members of U2. In order to further implement the

26

requirement, the following can be done. The good is to make it difficult for each

member of P to guess the secret key K based on hislher own information by giving

as few coefficients ofY(x) as possible to each. member of P. We need to make sure

not to harm the capability of the qualified subsets on r to reconstruct the

polynomial Vex). Thus the dealer distributes the first q coefficients of Vex) to

members of U2 by considering the number of members in the non-unique subsets

that are from U2. To simplify the issue, the dealer limits the case into three

conditions as follows.

• If ((I Uti - 1) * W + 1) C: IU21 (in the event that Case I or Case II of partitioning

minto lms occurs) OR if W + 1 C: IU21 (in the event that Case ill of partitioning

minto lms occurs), then aU of the first q coefficients are di.stributed to each

member of U2 . This condition indicates that the number of members in the non

unique subs,ets that are from U2 is only one. Therefore, in order for the non

unique subsets to be able to reconstruct the polynomial Vex), the dealer

distributes all of the first q coefficients to each member of U2 .

• Else if (CIUd - 1) * W + 2) C: IU21 (in the event that Case I or Case II of

partitioning minto Ims occurs) OR if W + 2 c: IU21(in the event that Case III of

partitioning minto lms occurs), then the first q coefficients are distributed such

that two members of U2 can obtain all of the coefficients. This condition

indicates that the number of members in the non-unique subsets that are from

U2 is two. Therefore, in order for the non-unique subsets to be able to

reconstruct the polynomial, the dealer distributes the first q coefficients such

27

that two members ot U2 can obtain all of the coefficients. The way to distribute

the first q coefficients is that for each IU21 coefficients, the dealer omits one

coefficient and gives the other (I U21-1) coefficients to each member of U2. The

coefficients to be skipped among the members of U2 are different from one to

another. For the example given in Item 1 (p. 24) above, a distribution is

depicted in Table m.

TABLE III. AN EXAMPLE FOR TIIE DISTRIBUTION OF THE FIRST SIX

COEFFICIENTS OF Vex) FOR MEMBERS OF TIlE SECOND

UNlQUE SUBSET U2 SATISFYIN'G TI-IE SECOND CONDITION

participant al a2 a3 '14 as <i6

P3 Y Y X X Y Y
P4 y X Y Y X Y
Ps X y Y Y Y X

• Else (when the number of members in the non-unique subsets who are from U2

is three or more) the dealer distributes the first q coefficients of Vex) such that

the three or more members of U2 can obtain all of the coefficients. Such a

distribution needs additional work because without it, two members of U2 can

also obtain the coefficients. Before discussing the additional work, let p denote

the number of members in the non-unique subsets that are from U2 (p ~ 3). The

additional work (as done on dividing the prime number minto lms discussed

before) is to partition some of the coefficients of Vex) into pieces of information

<Ps using a polynomial 6(x), which is similar to the Z(x) polynomial used to

partition minto lms. The coefficients to be partitioned are those that members

28

of U1 do not have. Since p members of U2 are able to obtain the first q

coefficients, which include the coefficients to be partitioned, the degree of

polynomial Sex) used to partition the coefficients is p - 1.

Sex) = go + g) x +... + gp-I xp-t, for U2 (3.20)

where go = the coefficient to be partitioned, and the other giS are arbitrary

integer values. The dealer distributes the pieces of infonnation, <l>s, to members

of U2 using the fonowing equation.

= (x.. S(x··»IJ, IJ, (3.21)

where Xij is an arbitrary integer value, i is the index of the coefficients to be

partitioned, j is a member of U2, and q = r - IU21 = (lUll * IU21). The dealer also

distributes the remaining coefficients of the first q coefficients of Vex) to

members of U2 . In the example given in Item 1 above, a distribution of the

coefficients is depicted in Table IV.

TABLE IV. AN EXAMPLE FOR TIlE DISTRIDUTION OF 1HE FIRST

SIX COEFFICIENTS OF Vex) FOR MEMBERS OF THE

SECOND UNIQUE SUBSET U2 SATISFYING THE

THIRD CONDITION.

participant at a2 a3 3.4 a5 ~

P3 y Y <1>33 <I>43 Y Y

P4 Y X <1>34 <1>44 X Y

Ps X y <I>35 $45 y X

(Legend: <t>;j = a piece of information about aj given to member j of U2)

Using the basic steps above, the dealer gives each member Pi of P a set C of some

coefficients ofY(x), such that the qualified subsets in r can obtain all coefficients ofY(x),

which is in turn can be used to reconstruct the polynomial Vex). Moreover, C, which is

29

distributed to each member Pi of P, is set so that each member Pi wilt miss at least two

coefficients of Vex). This is done in order to increase the difficulty for each member Pi to

guess the secret key K based on his/her own information.

The dealer should also give n out of r shadows in S to members of P because they

will be used to determine the secret key K as described below in the recovery phase. In the

dealer site, these n (n = IFI) shadows must be maintained since they will be used for

obtaining the new coefficients of Vex), whenever a new secret key K' is created.

The dealer groups all the infonnation given to each member Pi of P as an

information triplet, T; = <Sj, C, Imi >, where Sj is a shadow ofK owned by Pi, C; is a set

of some of the coefficients ofY(x) given to Pi, and Imi is Ns piece ofinfonnation about m.

Finally, the dealer sends Jis to P through a secure channel and the dealer completes its

work.

The process starting from the creation phase (Subsection 3.2.1) will cycle again

each time a new secret K' needs to be generated. All parameters except the n original

shadows must be recreated.

3.2.3 Recovery Phase

This phase begins whenever a subset in r, say D, wants to use K. In order to

recover K, D should pool aU its members' T;s (i.e., the shadow Si, a set Ci of some

coefficients ofY(x), and a piece of information Imi about the prime number m) except the

shadows. The proposed scheme requires that D, and any subset in r, perform two actions

as follows.

30

a. D must find the prime number m by first pooling its members' ImS to obtain all of the

coefficients of an appropriate polynomial Z(x) created by the dealer, as shown by one

ofthe Equations (3.9), (3.10), (3.13), (3.16), or (3.17) (see Subsection 3.2.2). Then the

first coefficient of the polynomial is taken since this coefficient equals m. The way to

obtain all of the coefficients of the polynomial is described below. Suppose that the

approriate polynomial is shown by Equation (3.13).

Z3(X) = do + d, x + ... + dn-t- I xn
-
t
-
I

form the following equations.

do +

do +

d n-t-I+ n-t-I XI

+ d n-t-I
n-t-I x 2

(3.22)

The above equations can be expressed in the matrix form as

[X][d] = [Z] (3.23)

where [X] is the (n-t) by (n-t) integer values matrix, [d] = [do d] ... dn_t]T, and [Z] =

Z3(X), can be obtained ifthe inverse of matrix [X], [XT', is known.

[XT' [X] [d] = [Xr l [Z]

[I] [d] = [Xr' [Z]

[d] = tXT' [Z]

(3.24)

31

where [I] is the identity matrix and [Xr1 is detennined using the second method of

finding an inverse matrix described in Section 2.1. By taking the first element of [d], do,

the prime number m can thus be revealed since this element equals m.

b. Next, D must obtain all coefficients of Vex), as shown in Equation (3.1) (see Section

3.1), by pooling all its members' C,s and then using these coefficients, together with

each individual member's shadow, to evaluate Vex) at the member's shadow Sj .

Y(sj)=al[(si)modm]+a2[(s~)modm]+ ... +a.[(s~)modm]= K,iED (3.25)

where m is the prime number and r = (lUll + 1) * IU21·

It should be noted that the evaluation ofY(x) at x = Sj must be done individually by

D's members since Sj S are kept secret by the members. After evaluating Vex), each member

ofD must show its result to mutually check the correct answer.

The secret K itself can be used as a key for a cryptographic system such as the key

for DES, Vigenere, or Beaufort system [Simmons92] [Seberry89], or as a secret vault-lock

combination [Blund093].

After K has been used, all information used to recover K must be discarded, and the

dealer should CTeate a new secret K' and other information (i.e., Cs and lms), and distribute

these pieces of information to members of P.

3.3 Practical Example

This subsection discusses an example, which might occur in the real world, to

illustrate the implementation of the proposed scheme.

32

Suppose there is a company with two managers A and B, and three senior staff
members, C, D and E. The company has a locked vault X that can only be
opened using a secret combination K. It is desired that K can be recovered and
hence X can be opened, if the managers gather their knowledge about K or if
one manager gathers his/her knowledge with the other two senior staff
members' knowledge, or if the three senior staff members gather all their
knowledge. The problem is how to construct a secret sharing scheme that
satisfies the above requirement.

The set of participants in this example is P = {A,B,C,D,E} and the set of qualified

subsets of P, called aocess structure r, that can recover K is as given below.

r = {{A,B},{C,D,E},{A,C,D},{A,C,E},{A,D,E},{B,C,D},{B,C,E}, {B,D,E}}

Based on the (t,n) threshold scheme's definition (see Chapter I and Section 2.2.3), it is

clear that Shamir's scheme cannot be implemented for this example because r doest not

contain all subsets whose sizes are t or more (t ~ n). The proposed scheme, on the other

hand, can be used to solve the problem.

Based on the proposed scheme, the unique subsets UI and U2 are (A,B) and (C,D,E),

since UI (\ U2 = 0 and lUll < IU21. In the above example, one member of UI is capable of

taking an action on behalf of one member of U2, which means that the weight W of the

members of UI over the members of U2 is 1, W = 1 (see Section 3.1 for definitions). Since

the size of the smallest subset in r is 2, t = IUII = 2, and that of the largest subset in r is

3, IU21 = 3, so the value ofr can be computed by using the following equation.

= (2 + 1) * 3 = 9

To solve the problem, the proposed scheme works as follows. Firstly, the proposed

scheme, the dealer in this case, selects K as the secret combination, and chooses a set S of

9 (since r = 9) distinct integer values used as shadows ofK, 5 of which are given to P, S =

33

{ 8A' ... , Sf:' 8), ... , S4}' The dealer also chooses a prime number m and sets a polynomial

whose degree is r = 9.

(3.26)

The coefficients of Vex) are unique such that Vex) always gives the same result when it is

evaluated at the values of S = {SA' ... , SE' SI' ... , S4}'

ad(sA)modm] + a2[(s~)modm] + + a9[(s~)modm] = K

aJ[(sB)modm] + a2[(s~)modm] + ... + a9[(s~)modm] = K

where m is a prime number and K is the secret key. Using the second method of finding an

inverse matrix, as described in Section 2.1, and then applying the matrix operation shown

in Equation (3.7), all of the coefficients of Vex) can be determined.

Secondly, after obtaining the coefficients of Vex), the dealer divides the prime

number m into pieces of information Ims. Since IVd * w= 2 * 1 = 2 < IU21= 3, the

dealer sets two random polynomials whose degrees are IV11-l = 2-1 and IU21-1 = 3-1. (see

Case I in Subsection 3.1.2).

(3.27)

(3.28)

where bo = Co = m, and the other bis and CiS are arbitrary integer values. For each

member in VI and V2, the dealer gives Ims using the following equations.

Imi
w

«Xi,Zl(Xi)~L (Xk,Z2(Xk»),
)<;1

i E V.

34

so that

The dealer also distributes the coefficients of Vex) to the members of P. Since Case I

in dividing m occurs and «(IUd - 1) * W + 2) ~ IU2/ (see Section 3.2.2), then the dealer

distributes the coefficients such that two members of U2 can obtain the first r - IU21

coefficients ofY(x). Such a distribution is shown in Table V below.

TABLE V. DISTRIBUTION OF TI-IECOEFFICIENTS OF Vex) FOR ALL

PARTICIPANTS OF TIffi EXAMPLE

participant aJ a2 a3 a4 a5 <l{) a7 as a9
A X X X Y Y Y y Y Y
B Y Y Y X X X Y Y y

C Y I Y X y y X y X X
D X Y Y X Y Y X Y X
E Y X Y ,Y X Y X X Y

The dealer gives each member Pi of P a set C of some coefficients of Vex).

35

The dealer groups all of these pieces of information (I' e C d I) I'nto an. ., Si, . i, an mi

information triplet ~.

The dealer then sends these Tis to the members of P and the dealer's work is comp}eted.

Thirdly, if a subset of Pin r, say a = {A,C,D}, wants to open the locked vault X, it

must get the secret combination K first. To have K, members of a must do two things.

a. First, the members must pool their 1ms to reconstruct the polynomial Z(x), in this case

Z2(X), and then find the prime number m.

(3.29)

Using matrix operations described in Equations (3.22), (3.23), and (3.24), the

coefficients of Z2(X) (i.e., co, Ct, and C2) can be determined, and thus the prime number

m can be obtained since Co = m.

b. Second, the members must pool their Cs to be able to get all of the coefficients ofY(x).

In this case CA, Cc, and CD should be pooled so that the coefficients ofY(x) (i.e., aI, a2,

36

... , and a9) can be obtained, and Y(x) is evaluated at each individual member's shadow

Si to recover K.

Y(Si) = al[(s;)mod m]+ a2[(s~)modm]+ ... + a9[(s~)mod m] = K

where m is the prime number and i = A, C, or D.

Having the secret combination K, a. can then open the locked vault X. After K has

been used, aU information utilized to recover K, except the shadows owned by the

members of P, must be discarded. The dealer then starts working again by selecting a new

secret K', processing it and sending new triplets TiS to the members of P. The difference

between the new triplets and the old ones is that the new triplets are sent without the

shadows (SiS), since the shadows have been sent to members of P by the dealer before.

Ii = <C, Imi>, i E P

The next chapter discusses two issues relating to the proposed scheme. First, it

discusses the analysis of the proposed scheme, which is divided into two aspects: security

and recyc1eability. Second, it gives a comparison between the proposed scheme and

Shamir's scheme.

-

CHAPTER IV

ANALYSIS AND COMPARISON WITH SHAM!R'S SCHEME

4.1 Ana)ysis ofthe Proposed Scheme

This section discusses two important aspects of the proposed scheme, which was

described in Chapter In. There aspects are security and recycleability. The security aspect

concerns the protection of the secret key K against the unqualified subsets of participants

that may try to reveal it. Recydeability means that the n original shadows that have been

given to the n participants can be used again to recover a new secret key K'.

4.1.1 Security

A secret sharing scheme is said to be a secure scheme if it guarantees that any

collaboration of unqualified participants cannot determine the secret key (information)

[Simmons92]. The proposed scheme described in Chapter ill has indeed such a property.

The distribution of the required information (for obtaining the secret key K) in the

proposed scheme is performed in such a way that any unqualified subset of the participants

that neither is in r nor is a superset of the qualified subset in r can determine the secret

key K. The proposed scheme satisfies the property by partitioning the prime number m

(used both by the dealer to determine the coefficients of Vex) as shown in Equations (3.1)

and (3.5), and by a participant to derive the secret key K as shown in Equation (3.25) in

37

38

the last chapter) into pieces of information 1m• and by distributing these 1mS to participants

such that only the qualified subsets of participants in r can reveal m by pooling their 1m3.

The way to partition the prime number minto 1ms was discussed in Subsection 3.2.2 of the

Chapter III. In addition to partitioning minto 1ms, the proposed scheme also distributes a

set C of some coefficients of the polynomial Vex), used as a template to determine the

secret key K, to each participant such that only the qualified subsets in r can reconstruct

the polynomial Vex) by pooling the Cs they have. Furthermore, in receiving C, each

participant will miss at least two coefficients of Y{x). This is done in order to increase the

difficulty for each participant that tries to guess the secret key K based on each

participant's own information.

By applying the requirement that only the qualified subsets in r can reveal m and

reconstruct the polynomial Vex), it will be difficult for any unqualified subset of

participants to determine the secret key K because the two types of information needed for

obtaining K are unknown (i.e., the prime number m and one or more coeffic'ents ofY(x».

To have a better understanding of how the proposed scheme satisfies the property,

recall the practical example given in Section 3.3 of the previous chapter. In that example, a

collaboration among the members of an unqualified subset of the participants, say 8 =

{A,D}, whose members are from the unique subsets Ul and U2, will not determine the

secret key K because of the following three reasons.

1. Not all of the coefficients of Vex) shown in Equation (3.26) (see Section 3.3) can be
obtained if the members o~ 8 pool their CiS. In this case, the coefficient a3 of the
equation is missing if A and D gather their CA and CD as shown in Table V in Section
3.3.

39

2. A and D cannot reveal the prime number m by pooling their lms since they have only

two out of the three I mS' These three items should be possessed by the members of 8, in

order to obtain m as shown in Equations (3.28) and (3.29).

3. Since m and one coefficient of Vex) shown in Equation (3.26), aJ, cannot be reveal,ed,
the merI;lbers of 8 cannot determine K. Guessing K is very difficult because they should
first guess the values of the two unknown information: m and a3.

4.1.2 Recyc1eability

,
The proposed scheme has the recycleability property in the sense that the n original

shadows, which have been distribut,ed to the n participants for the first time, can be used

many times independently of the creation of the secret key (information). This feature win

ease the dealer's work since generating and distributing new shadows, when a new secret

key K' is created, is time consuming.

Recycleability is one of the two important characteristics of the proposed scheme

that differentiate it from a (t,n) threshold scheme, since a (t,n) threshold scheme does not

have this property. The other characteristic is that the proposed scheme supports a general

access structure secret sharing scheme.

4.2 Comparison with Shamir's Scheme

Compared to Shamir's scheme, the proposed scheme has a number of advantages as

listed below.

1. The proposed scheme is designed for general access structure. The example given in

Section 3.3 indicates that the proposed scheme can be used to solve a general access

structure secret sharing problem, while Shamir's scheme cannot be implemented for the

40

problem because, in fact, the (t,n) threshold scheme is only a special case of the genera]

access structure secret sharing scheme as also stated in [Blundo93].

2. In Shamir's scheme, the value of the secret key K must be less than the value of the

prime number p (see Subsection 2.2.2), while in the proposed scheme, the value ofK is

independent of that of the prmme number m.·This will increas the difficulty in guessing K

because K can be greater than, less than, or even equal to the prime number m.

3. Preserving the shadows used for recovering K is another advantage since they can be

used many times independently of the creation of the secret K .

The proposed scheme, however, has two disadvantages. First, the amount of

information to be sent to participants is greater than the amount of information needed to

be sent to participants in Shamir's scheme. This condition may cause a problem in keeping

the information (i.e. Ti = < Si' C, Jmi » secret since it will be very difficult (or even

impossible) for each participant to memorize the information. One possible solution that

can be used to prevent the information from being stolen or changed is to put the

information mnto a card, and to give each participant such a card.

The second disadvantage of the proposed scheme is that the size of the first unique

subset is limited only to two members. This limitation exists because of the nature of the

distribution of the coefficients of Vex), which requires (as done on the prime number m)

that only the qualified subsets in r can reconstruct the polynomial Vex). Ifthe size of UJ is

increased to be three or more, the distribution of Cs using the steps described in

Subsection 3.2.2 will result in a condition where there is one or more unqualified subsets of

participants that can reconstruct the polynomial Vex). This will make the unqualified

41

subsets (in guessing the secret key K) concentrate only on, althought it is still difficult to do

that, finding the correct value of the prime number m, which is left unknown.

The next chapter describes an example of the implementation of the proposed

scheme on a network program. The program is caned Secret Conference. Secret

Conference is one form of a conference program, which allows multiple users to converse

secretly by encrypting and decrypting the data to be communicated. The data is encrypted

and decrypted using a secret communication key that is produced by applying the proposed

scheme.

CHAPTER V

SECRET CONFERENCE: AN IMPLEMENTATION OF THE

PROPOSED SCHEME IN A NETWORK PROGRAM

5.1 Program Description

This chapter discusses a network program that is used as an example of the

implementation of the proposed scheme described in Chapter III. The program, caUed

Secret Conference, was created by the author as a form of Conference Calling, which was

one of the several projects of the Computer Networking course (COMSC 4283) offered in

Fan 1994 at the Computer Science Department of Oklahoma State University. Conference

Calling is a network program that aHows multiple users to communicate with each other by

setting a conference. Conference Calling uses a client-server model where the server is

responsible for directing communication flows among clients who join the conference.

Secret Confer,ence modifies the conference so that it runs secretly by encrypting and

decrypting the data to be communicated among the clients. The encryption and decryption

are carried out using a secret key K created by the proposed scheme. In Secret Conference,

the server acts as the dealer whereas each client functions as a participant as described in

Chapter III. In addition, Secret Conference requir,es that:

A. the conference be set only by qualified subsets of participants as described in the distri-

42

43

bution phase in Chapter III.

B. the qualified subsets of participants who set or join a conference determine the secret
key K using the steps described in the recovery phase in Chapter ill before the
conference takes place (Secret Conference, on the client's part, is designed to
determine the secret key automatically).

c. the qualified subsets of participants who set or join a conference encrypt the data to be
sent or decrypt the incoming data using the secret key K in order to achieve a
secure and secret conference.

Secret Conference uses other cryptographic systems: Vigenere, Beaufort, and

Variant Beaufort [Seberry89], in conjunction with the proposed scheme, for encrypting and

decrypting the communicated data using the secret key K generated by the proposed

scheme.

As the dealer, the server is responsible for providing all the information needed by

participants (or clients for short). The server is also responsible for:

• setting, together with the corresponding client, a secret key upon receIvmg a

connection request made by a client. This secret key is used for secret communication

between the server and the client. Every cHent possesses a different secret key.

• distributing the required information to all clients if either all connections to all clients

are set or a conference is ended.

• serving a request invoked by a client.

• determining aU of the qualified subsets of clients (in f) that are eligible for establishing

a conference.

• granting or rejecting, based on information in r, a conference request sent by a client.

• directing communication flows among the clients.

44

A client does several things. First, it makes a connection request to the server. If

the request fails, the client is given two options. Either it can send the same request to the

server again until the request is successful, or it can decide to quit. Second, if the

connection request succeeds, the client can do the fonowing.

•

•

The client may invoke any available request for obtaining the corresponding service
provided by the server.

By following the requirements (A) tp (C) above, the client may send at conference
request and start comunicating with other clients who have joined the conference.

5.2 Program Design

This section discusses several issues in designing Secret Conference. First, it gives a

brief information about network connections used in Secret Conference for communication

between a the server and a client as well as among clients. Second, it discusses the program

structure of Secret Conference.

5.2.1 Network Protocol

Secret Conference uses a connection-oriented network protocol,. provided by Ber-

keley Sockets, for communication either between the server and a client or among clients

through the server. Figure 2 describes a typical scenario of the protocol for a client-server

model.

The connection-oriented protocol requires that the server and the client establish a

logical connection with each other before communication begins, and the server should run

first before executing the client(s) [Stevens90].

45

Server

blocks until connection from client

connection establisbment

data (request)

data (reply)

Client

writeO

readO :

Figure 2. Socket system calls for a client-server model using the
connection-oriented protocol (Source: [Stevens90D

5.2.2 Program Structure

The Secret Conference program is divided into three parts: define.h, Server.c,

and Client.c. The define.h module is a header file for Secret Conference program, whi.le

Server.c and Client.c simulate a server (the dealer) and a client (participant), respectively.

These three modules are described below.

The define.h module consists of aU items that are shared by Server.c and Client.c.

These items are classified into three types.

• All C library header files including network header files and math header files.

• All symbolic constants. These constants are used by Server.c and Client.c

• Procedures used by both Server.c and Client.c.

*

*

*

46

remainder procedure: This procedure is used for obtaining the final result of
~odular computation of the shadows of the secret key as shown in Equation (3.5)
m Chapter Ill.

encrypt procedure: This procedure is used for encrypting the data to be sent.

decrypt procedure: This procedure is used for decrypting the incoming data.

The Server.c module is designed to simulate a server (or the dealer in the proposed

scheme). The function of Server.c has been discussed in Section 5.1 of this chapter.

Server.c consists of 12 procedures, including the main procedure, which are described

below.

1. generator procedure: This procedure functions as a random number generator.

2. matrix operation procedure: This procedure is used for determining the inverse matrix
of the shadow matrix shown in Equation (3.7) in Chapter In.

3. create-lJrime procedure: This procedure creates all prime numbers, including m.

4. power_degree procedure: This procedure obtains the degree value of Y(x) shown in
Equation (3.1) in Chapter m.

5. creation-lJhase procedure: This procedure selects and processes all items needed by
clients. This procedure is called if either all clients have established their connections to
the server or a conference has ended.

6. create_Z-'polynorniaJ procedure: This procedure creates one or two Z(x) polynomials.

7. divide_PRIME procedure: This procedure divides a prime number minto 1ms using the

Z(x) polynomial(s) created by create_Zyolynornial procedure.

8. distributionyhase procedure: This procedure distributes all information created by
creatioD-.J)hase procedure to all clients. This procedure is called once aU clients have
established their connections to the server or a conference has ended.

9. info_exchange procedure: This procedure pertorms two important functions. First, it
allows the server, upon receiving a connection request made by a client, to set, together
with the corresponding client, a unique secret key used for secure communication.
Second, it allows the server and the client to exchange their information using the
secret key.

47

10. confirm procedure: This procedure allows the server to grant or reject a conference
request sent by a client.

11. serveJequest procedure: This procedure serves any request invoked by a client or
directs communication flows among the clients who join a conference.

12. main procedure: This procedure performs two functions. First, it initializes all variables
used by other procedures and for communicating with clients. Second, it applies aU
Socket system calls depicted in Figure 2 except the writeO system call, since it is used
in serve_request procedure.

The Client. c module consists of seven procedures, including main procedure, which

are described below.

1. obtain_value procedure: This procedure obtains certain values, such as the pnme
number m and the cofficients of Y(x) to be partitioned, using matrix operations

2. distribute procedure: This proc,edure processes and saves aU of the important
information sent by the server such as the shadows, some coefficients of Y(x), and the
[ms.

3. info_display procedure: This procedure displays information about the client on stdout
(screen).

4. processJeply procedure: This procedure performs two important functions. First, it
processes any reply or the secret conference data sent by the server. Second, it receives
other information about the coefficients of Y(x) and lms sent by the other client(s)

through the server and processes the information such that the secret key used for the
secret conference is determined.

5. info_exchange procedure: This procedure is the same as info_exchange procedure in
Server.c.

6. help procedure: This procedure displays information about Secret Conference on
stdout (screen).

7. main procedure: This procedure performs three fuctions. First, it initializes all variables
used by other procedures or used for communicating with the server. Second, it sends a
connection request to the server. Third, it processes incoming data either from stdin
(keyboard) or from the server; if it is from the server, it calIs the processJeply
procedure.

The complete program is given in PROGRAM LISTING (APPENDIX C).

48

5.3 Running Secret Conference

Secret Conference consists of two programs: Server and Client. It is required that

Server be executed before Client by issuing the foHowing command.

Server n t w &

where n, t, and ware integer values, n is the total number of Clients (participants) who

made connections to Server, t is the size of the first unique subset VI, w is the weight of

the members of VI over the members of U2 (see Section 3.1 for definitions), and &

indicates that the server is executed siIently (in the background).

To run the Client, the following command should be issued.

Client Name Level

where Name is the client's name and Level is an integer value (1 or 2) referring to the

index of the unique subset to which the client belongs. Client Nur 1, for instance, means

that the client's name is Nur and the client is a member of the first unique subset VI. Since

the server part of Secret Conference is made to work passively (mearung that it produces

no important message or prompts), the expected performance of Secret Conference is due

to the output of the client pa.rt, which can be briefly described below.

1. When the client part is invoked, say Client Nur 1 as described above for instance, one

of two things can happen.

a) First, it may give a message indicating that a connection request to the server

fails. In this case, it dispalys two options: quit or try again until the request

succeeds and proceeds to (b).

49

b) Second, it may display about one page worth of information about Secret

Conference. It describes two types of commands: the request commands and the

conference command.

2. It gives a message indicating that another client has made a connection to the server.

3. If all clients have made connections to the server, it displays a message that the server

has sent all the information needed to determine the secret key K (required for

establishing a conference and for communications among the clients who join the

conference). At this stage, the dient Nur, as well as any other client, can send a

conference request to the server.

4. If the client Nur, or another client, sends a conference request satisfying the

requirements (A) to (C) as stated in Section 5.1, and the server grants the request, then

a message indicating that the conference may begin is displayed. After receiving such a

reply from the server, the client Nur can communicate to other clients who have either

participated in setting the conference or joined the conference later.

To achieve a secure and secret conference, a dient should give an encryption type

(Vigenere, Beaufort, or Variant Beaufort) each tame it sends data to the other clients. The

encryption and decryption are carried out using the secret key K. The commands used in

the program (Secret Conference) are given in the User Guide for Secret Conference

(APPENDIX B).

50

5.4 Analysis

Secret Conference was run under the DYNIXlptx operating system on a Sequent

S/81. It was initially tested for running three clients that were divided into two unique

subsets. The tirst unique subset consisted of one client whose weight is one over the

members of the second unique subset. In this case, since there are three clients that should

be run, at least four processes must be created to accommodate the clients and the server

by using either the X Window System or the screen application [Weigert91]. Running

Secret Conference for three clients gives the expected output as described in Section 5.3.

Secret Conference was also tested for more than three clients. It was tested for

running five clients (two clients belonging to the first unique subset and the weight of one)

and, it was tested for running seven clients (three of which belonging to the first unique

subset and the weight being one). Both tests produced the correct output as expected.

CHAPTER VI

SUM.MARY AND FUTURE WORK

6.1 Summary

The idea of dividing a secret information into several pieces, called shadows, in

such a way that a specified number of shadows must be combined to determine the secret

information was proposed independently by Blakley and Shamir [Blakley79] [Shamir79]. If

there are n shadows that are g1ven to n participants and at least t (t :0;; n) of them are

required in order to obtain the secret information, then the scheme is called a (t,n)

threshold or secret sharing scheme.

A number of secret sharing schemes have been developed implementing the notion

that pooling t or more shadows can make the secret information determinable, while

gaining t - 1 or fewer shadows leaves the secret information unknown (in the sense that all

of its possible values are equally likely). Other researchers have developed the scheme

using a general access structure. A general access structure is defined as a way to divide

the secret information among a set of n participants such that only qualified subsets of the

participants can recover the secret information, while those that are unqualified cannot

recover it.

Secret sharing scheme IS useful In information security, In multi-user network

51

)

52

cryptographic systems, in opening a vault lock or a safety deposit box, or even in any

controlled action which requires the presence of several persons in order to initiate an

action.

Secret sharing scheme, however, has a drawback. Once the secret information is

determined, all of the shadows, including those that are not involved in the recovery

process, become useless. Consequently, when a new secret information is created, all

participants should be given the corresponding shadows.

The purpose of this thesis was to introduce a new and different approach (scheme)

that can remedy the drawback by maintaining all of the original shadows that have been

distributed to the participants so that these shadows can still be used many times

independently of the creation of the secret information. This feature is called recycleability

of the shadows. Another feature of the proposed scheme is that it can be used as a general

access structure.

In the proposed scheme, a set P of n participants is grouped into two uruque

subsets Ul and U2, where UI (\ U2 = 0 and lUll + IU21 = n. To determine the secret key K,

the proposed scheme creates a certain polynomial Vex) whose degree r is (lUll + 1) * IU21·

Vex) = al x + a2 x2 + ... + a,. x'

The proposed scheme also selects a prime number m and r integer values, which function

as the shadows of the secret key K. Of the r shadows, n are given to the participants. The n

shadows are used by the participants to obtain K by evaluating the polynomial Vex) at the

values of the n shadows.

al [(s) mod m] + a2 [(S2) mod m] + ... + ar[(S) mod m] = K where s is a shadow

53

The n shadows are maintained so that they can be used repeatedly when a new secret key

K' is created. This is how the propos,ed scheme maintains the recydeability property. To

support the general access structure r, the proposed scheme performs two functions.

1. It divides/partitions the prime number m into pieces of information, ImS, relating to m

and distributes the ImS to the participants.

2. It distributes a set Ci of some coefficients of Vex) to each participant Pi of P. The
reason for distributing C; to each member Pi is to guarantee that each member Pi misses
at least two coefficients of Vex) so that it increases the difficulty in guessing the secret
key K based on each member's information.

The partitioning and distribution of Ims and C; .is carried out such that only the qualified

subsets of participants in r can reveal the prime number m and reconstruct the polynomial

Vex).

The work of the proposed scheme is divided into three phases: creation, distribtion,

and recovery. The first two phases are carried out in the dealer, a special and trusted

participant. The dealer is responsible for:

1. creating the polynomial Vex), the prime number m, the secret key K, and the set of
integer values used as shadows ofK.

2. partitioning minto Ims.

3. distributing n shadows., the ImS, and the Cs to the members of P.

The recovery phase begins when a subset of participants wants to recover the secret key K

using all of the information distributed by the dealer.

The proposed scheme can be applied in the real world. One such applications was

implemented in a network program called Secret Conference. Secret Conference is a

network communication program that allows multiple users to converse secretly by

encrypting and decrypting the data to be communicated. The data is encrypted and

54

decrypted using a secret communication key K generated by the proposed scheme and

other cryptographic systems (i.e., Vigenere, Beaufort, or Variant Beaufort [Seberry89]).

Secret Conference uses the client-server model. The server, who acts as the dealer, is

responsible for providing all of the infonnation (which includes all of the information

needed for obtaining the secret key K) required by the clients to establish a conference. In

Secret Conference, a subset of the clients, which is a qualified subset on r, may start

making a conference if it can obtain the secret comunication key K created by the server.

The subset can subsequently use K for encrypting and decrypting the data communicated

among the members of the subset

6.2 Future Work

The proposed scheme developed in this thesis has a limitation. The size of the first

unique subset VI is limited only to two members. This limitation emerged because of the

method used to distribute the coefficients of Y(x). This method requires (as done on the

prime number m) that only the qualified subsets in r can reconstruct the polynomial Y(x).

If the size of VI is increased to be three or more, the distribution sets C;s of some

coefficients of Y(x) (using the steps described in Subsection 3.2.2) could lead to a

condition where there is one or more unqualified subsets of participants that can

reconstruct the polynomial Y(x). This makes the unqualified subsets (in guessing the secret

key K) focus on obtaining the correct value of omy one type of information that is left

unknown: the prime number m, even though finding the true value of m is still difficult.

5S

This restriction opens up several! avenues for further work. These include removing

the restriction such that the proposed scheme can be used for any size of the first unique

subset, or finding other schemes that preserve the recycleable shadow feature and support a

general access structure.

REFERENCES

[Anton81] H. Anton, Elementary Linear Algebra, John Wiley & Sons, New York, NY,
1981.

[Blakley79] G.R. Blakley, "Safeguarding Cryptographic Keys", Proc. ofAFIPS National
Computer Conference, vot. 48, New York, NY, pp. 313-317,]979.

[Blundo93] C. Blundo, A. De Santis, L. Gargano, and U. Vaccaro, 'tOn the Information
of Secret Sharing Scheme", Advances in Cryptology - Crypto'92, Springer-Verlag,
Berlin, pp. 148-167,]993.

[Bricke1l90] E.F. Bri.ckell and D.R. Stinson, liThe Detection of Cheaters in Threshold
Scheme", Advances in Crytology - Crypto'88, Springer-Verlag, Berlin, pp.]48
167, 1990.

[Denning82] D.E. Denning, Cryptography and Data Security, Addison-Wesley, Reading,
MA,1982.

[Harn93] Lein Ham and Hung-Yung Lin, "An I-Span Generalized Secret Sharing
Scheme", Advances in Cryptology - Crypto'92, Springer-Verlag, Berlin, pp. 558
565,1993.

[Hershey86] John E. Hershey and R.K. Rao Yarlagadda, Data Transportation and
Protection, Plenum Press, New York, NY,]986

[Jackson94] Wein-Ail Jackson, K. Martin, and C.M. O'Keefe, "Multisecret Threshold
Scheme", Advances in Cryptology - Crypto'93, Springer-Vedag, Berlin, pp. 126
135, 1994.

[Rompe190] J. Rompel, "One-Way Functions Are Necessary and Sufficient for Secure
Signatures", Proc. ofthe 22nd ACM Symp. on Theory ofComputing, Baltimore,
MD, pp. 387-394,]990.

[Seberry89] Jennifer Seberry and JosefPieprzyk, Cryptography: An Introduction to
Computer Security, Prentice-Hall, Sidney, 1989.

[Sharnir79] A. Shamir, "How to Share a Secret", Comm. ofthe ACM, vol. 22, pp. 612
613, 1979.

56

57

[Shannon49] c.E. Shannon, IICommunlcation Theory of Secrecy System", Bell Syst. Tech.
Journal, voL 26, pp. 656-715, 1949.

[Simmons89] GJ. Simmons, IIRobust Shared Secret Scheme", Congresslls Numerantium,
vol. 68, pp. 215-248,1989.

[Simmons92] G.J. Simmons, An Introduction to Shared Secret and/or Shared Control
Schemes and Their Application, Cont,emporary Cryptology, The Science of
Information Integrity, IEEE Press, New York, NY, pp. 441-497, 1992.

[Stevens90] W. Richard Stevens, UNI.JtlP Network Programming, Prentice-Hall,
Englewood Clillffs, NJ, 1990.

[Stinson93] n.R. Stinson, "New General Lower Bounds on the Information Rate of
Secret Sharing Scheme", Advances in Cryptology - Crypto'92, Springer-Verlag,
Berlin, pp. 168-182, 1993.

[Weigert91] Juergen Weigert and Michael Schroeder, Screen, Free Software Foundation,
Inc., Cambridge, MA, Copyright(c) 1991.

APPENDICES

58

APPENDIX A

GLOSSARY AND TRADEMARK INFORMATION

GLOSSARY

Access Structure: A collection of all subsets of participants that can recover the secret
information.

Client-Server model: A model where one process is responsible for providing some
facilities to the other processes. The former process is known as a server process
and the latter are called client processes.

Connection-Oriented Network Protocol: A network protocol that requires two processes
or applications establish a (logical) connection with each other before data can be
sent back and forward.

Cypher Data: The scrambled data obtained from plain data.

Dealer: A special and trusted participant that selects the secret information and gives the
other participants aU the information that is needed to derive the secret.

Decryption: A method to determine plain data from cypher data.

Encryption: A method to scramble plain data such that one cannot obtain any information
from the scrambled data.

Euclidean Space (En): A geometric model on which the pOSItIon of an object can be
determined; e.g., the position of an object can be expressed in three-dimensional
geometric model (X, Y, and Z axes) called E3

.

General Access Structure: Access structure realizing the notion that only qualified subsets
of parti.cip,ants can recover a secret.

Hyperpfane: A p,lane obtained as a result of projection of an obj.ect on projective space.

59

60

Identity Matrix: A matrix that has Is in its diagonal entries and Os in all other entries.

Linear System or System ofLinear Equations: A set of n linear equations.

Monotone: An access structure characteristic where, if there is a subset A of the
participants that is a superset of a qualified subset B in the access structure, then A
can also reveal the secret.

Network Protocol: A set of (computer) network rules and conventions used for
communication among participants

Participants: A set P of people or processes that have the right to recover the shared secret
information.

Plain Data: Meaningful information to be sent back and forward among participants.

Projective Space (PG): A geometric model to locate an object based on the projections of
the object.

Secret Sharing Scheme: A method to protect a shared secret information among a set of
participants such that certain subsets ofthe participants can derive the secret.

Shadow: A piece of information relating to the secret information to be shared.

Socket: A port address used as a channel for communication between two processes.

Threshold Scheme: A secret sharing scheme that contains all subsets of participants of size
at least t.

Unique Subset: A subset of P whose members are from same level, which is different from
the level of the rest of the participants in P, whose members are not the members of
the unique subset.

Weight: The capability ofone member in a unique subset to take an action on behalf of one
or two ofthe other participants.

TRADEMARK. INFORMATION

Berkeley Sockets is a registered trademark ofthe University of California at Berkeley.

Sequent S/81 is a registered trademark of the Sequent Computer System, Inc.

61

X Window System is a registered trademark of the Massachussetts Institute of Technology
(MIT).

Screen Application is a registered trademark of the Free Software Foundation, Inc.

APPENDIXB

USER GUIDE FOR SECRET CONFERENCE

Secret Conference is a network program that allows multiple users to hold a

conference secretly by implementing the proposed scheme described in Chapter Ill. In

order to achieve a secure and secret conference, the Secret Conference program uses other

cryptographic systems called Vigenere, Beaufort, and Beaufort Variant. The cryptographic

systems use the secret key K generated by the proposed scheme for encrypting and

decrypting the data to be communicated. Secret Conference consists of two programs:

Server and Client. Server runs silently and should be run before Client is executed. The

command for running Server is Server n t w &, where n is the total number of clients that

are divided into two groups, t is the size of the first group, w is the weight of the first

group's members over the second group's members, and & indicates that the server runs in

the background. Since the total number ofclients is n, Client should be executed n times in

n different processes. The command used for running Client is Client Name Level, where

Name is the client's name and Level is an integer value (I or 2) indicating the group to

which the client belongs.

Suppose that Secret Conference is used for running five users, namely Nur, Ina,

Dija, Abdu, and Alice. These users are divided into two groups. The first group has two

members who are Nur and Ina. Server is invoked by typing: Server 5 2 J &. Client is

62

63

invoked three times: Client Nur 1, Client Ina 1, Client Dija 2, Client Abdu 2, and Client

Alice 2, in five different processes. Several issues can be pointed out when Secret

Conference runs these five clients.

a) When the Client Nur 1 command 1S issued and the client successfully makes a

connection to Server, a number of messages are displayed on stdout (i.e., the screen) as

depicted in Figure 3. The same thing also happens to other clients if they are created as

additions to the client Nur and other clients who have made connections to Server. In

such a case, the Server sends a message indicating that another client is active, as

shown in Figure 4.

b) If all clients have made connections to the Server, the Server then sends a message to

them notifying them that the Server has distributed all information required for

establishing a secret and secure conference. Figure 5 shows the message.

In Secret Conference, commands issued by the clients are divided into two types:

request commands and a command used in the conference. To differentiate the first type of

commands from the second type, every request comand should begin with '.'. There are

seven request commands used in Secret Conference as shown in Figure 3.

1) .conference x C/ C2 •.. ex./. This command is used when a client wants to set a

conference. x is an integer value referring to the number of clients, including the client

sending this request wanting to establish a conference, and C/ C2 •.. ex./ are the names

of the other (x-I) clients. In the above example, client Nur may issue a conference

request by invoking a command: .conference 2 Ina; if the Server grants the request, the

Server then s,ends a message to all cbents informing them that a conference may begin.

Figures 6 and 7 show the request and the successful message.

64

2) .cypher on/off. This command is used for displaying cypher data. Ifthe argument on is

applied, then cypher data wiU be displayed.

3) .help. This command is used for displaying the help menu in the event a client wants to

see aU ofthe commands.

4) join. This command is used for joining a conference that is established by other clients.

5) .leave. This command is used when a client decides to leave a conference he/she has

joined.

6) .list. This command is used for listing aU client's information.

7) .quit. This command is used if a client wants to exit from Secret Conference. In the

event that a client has quit, the Server requires another client (process) be created as a

substitute of the client who has quit. This should be done because the total number of

clients and the composition of the members of the unique subsets should be kept

unchanged. Otherwise, the Server will not send aU of the information needed to derive

the secret communication K

The second type of command used in Secret Conference is a communication

command. This command is used by clients who join a conference to communicate with

each other secretly. Secret Conference provides three types of encryption and decryption

as described at the beginning of this appendix. Each of the clients should determine the

type of encryption and decryption to be used by putting a character 'v' for Vigenere, 'b'

for Beaufort, or 'i' for Beaufort Variant, before typing the data to be sent. Suppose, for

instance, that client Nur wants to communicate with Ina who has joined a conference. Then

Nur may use the Vigenere encryption scheme for encrypting the data to be sent. The

format of the interaction could be "v heHo Dija how are you?". Client Ina, in responding

65

to the message, may use the Beaufort Variant encryption scheme, then the format could be

"i hey Nur, I am fine thanks". LV' and T in these formats indicate the type of encryption

and decryption used for communication between Nur and Ina.

Communication Commands:

* To communicate with others who join a conference~ data should be encr~pted

* To encr~pt the data~ encr~ption t~pe must be selected b~ pressing
characater 'v'~ 'b'. or '1' before t~ping the data~

e.g.: 'b Hello ina~ how are ~ou?'

as follows:

.conference x C1 ... C(x-i) --> Set a conference with other (x-i) clients

.cypher on/off --> Displa~ on/off the encrypted data

.help --> Displa~ list of all commands

.join --> Join a conference if any

.leave --> Leave a conference

.list --> List all clients that are active

.quit --> Exit from the Client Program

Request Commands:
* Every command should begin with

Figure 3. Secret Conference initial screen when the client program is invoked

0\
0\

is now active

Communication Commands:

* To communicate with others who join a conference. data should be encrypted

as follows:
, ,

* To encrypt the data~ encryption type must be selected by pressing
characater 'v'. 'b'. or 'i' before typing the data,
e.g.: 'b Hello ina, how are you?'

.conference x C1 ••. C(x-i) --) Set a conference with other (x-1) clients

.cypher on/off --) Display on/off the encrypted data

.help --) Display list of all commands

.join --) Join a conference if any

.leave --) Leave a conference

.list --) List all clients that are active

.quit -~) Exit from the Client Program

Request Commands:
* Every command should begin with

Figure 4. Server's message when another client is active
0\
.....:J

Communication Commands:

* To communicate with others who join a conference~ data should be encrypted

* To encrypt the data~ encryption type must be selected by pressing
characater 'v'~ 'b'~ or 'i' before typing the data~

e.g.: 'b Hello ina~ how are you?'

xterm
Display list of all commands
Join a conference if any
Leave a conference
List all clients that are active
Exit from the Client Program

.help

.join

.leave

.list

.quit

(Ina.i) is now active
(Dija,2) is now active
(Abdu,2) is now active
(Alice,2) is now active
Client receives information from Server •..

Figure 5. A message displayed when all clients are active
0'1
00

Communication Commands:

* To communicate with others who join a conference~ data should be encrypted

* To encrypt the data~ encryption type must be selected by pressing
characater 'v'. 'b'~ or '1' before typing the data.
e.g.: 'b Hello ina~ how are you?'

xternn
Display list of all commands
Join a conference if any
Leave a conference
List all clients that are active
Exit from the Client Program

.help

.join

.leave

.list

.quit

(Ina,!) is now active
(Oija,2) is now active
(Abdu,2) is now active
(Alice,2) is now active
Client receives information from Server ...

Figure 6. Conference request issued by a client
0\
\0

Communication Commands:

Conference .ay begin •••

* To communicate with others who join a conference~ data should be encrypted

Join a conference if
Leave a conference
List all clients that are active
Exit from the Client Program

* To encrypt the data~ encryption type must be selected by pressing
characater 'v'~ 'b'~ or 'i' before typing the data~

e.g.: 'b Hello ina~ how are you?'

.join

.leave

.list

.quit

(Ina.i) is now active
(Dija.2) is now active
(Abdu,2) is now active
(Alice.2) is now active
Client receives information from Server ...

Figure 7. A successful reply to a conference request
'I
o

APPENDIX C

PROGRAM LISTING

The Secret Conference program discussed in Chapter V consists of three files:
define.h, Server.c, and Client.c; define.h contains all the header files, constant declarations,
and three procedures that are shared by Server.c and Client.c. The Secret Conference
program is written in the following order:

define.h:
remaider procedure.
encrypt procedure.
decrypt procedure.

Server.c:
generator procedure.
matrix operation procedure ..
create prime procedure.
power degre,e procedure.
creatIon phase procedure.
create Z-polynornial procedure.
divide-PRIME procedure.
distribution-phase procedure.
confirm procedure.
serve request procedure.
main procedure.

Client. c:
obtain value procedure.
distribute procedure.
info display procedure.
process reply procedure.
info exchange procedure.
help-procedure.
main procedure.

for matrix operation *1
in matrix and modular operations *1
by Server.c for its definition *1
in network communication *1

1* used
1* used
1* used
1* used

1* == *1
/* define. h contains all information and procedures that are sha.red by

Server.c and Client.c. *1
1* == *1
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <float.h>
#include <math.h>
#include <curses.h>
#include <sys/select.h>

71

72

#include <sys/socket.h>
#include <sys/types.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>

/* used in network communication */
/* used in network communication */
/* used in network communication */
/* used in network communication */
/* used in network communication */
/* used in network communication */

#define UNUSED
#define SERV HOST ADDR
#define DEFAULT PORT
#define MAXSTRING
#define BLOCKLENGTH

#define ALPHABET

-1
"139.78.113.1"
66667
256
5

94

/* Server runs on Sequent S/B1 */
/* Port number used by Server */
/* Maximum bytes of data communicated*/
/* Maximum characters per block

encryption/decryption */
/* Range of Characters used in

encryption/decryption */

/* -- */
/* Procedure to obtain the result in modular operation (basePOWor mod prime). */
/* --- */
remainder(int base,int power,int prime)
(
int result = 1;

while(power != 0) {

while ((power % 2)
power /= 2;
base *= base;
base %= prime;

O){ /* while the value of power is even */

/* makes the value of base squared */
/* get the remainder value of base */

}
if(result < 0) result *= -1;
return result;

power
result
result

1;
*= base;
%= prime;

/* the value of power is odd */

/* get the remainder value of result */

/* temporary buffer */

/* used for obtaining the lengths of
the secret key and the plain data */

int a,c;
char temp[MAXSTRING};

/* -- */
/* Procedure to encrypt data to be sent; char. option used for

determining encrypti on type: v for Vigenere t b for Beaufort, and i for
Beaufort Variant; char. *key used as the secret key; char. *plain used
for plain text; char. *cypher as cypher text; and into for confr.
indicates encryption used for conference or not. */

/* -- */
encrypt(char option, char *key,char *plain,char *cypher,int for_confrl
{
int i,j;
int 3tring_length,key_length;

a
option
key length
string length
i = j ~ 0;

I.,
toupper(option);
strlen(key) ;
strlen(plain);

/* get the type of encryption */
/* length of the secret key K */
/* length of data to be enctypted */

/* Encrypt the data according to type of encryption chosen */
while(i < string length) {

if ((char) option == 'V') /* if encryption chosen is Vigenere */
c = ({int)plain[iJ + (intlkey[i%key_length] - (2 * a)~ % ALPHABE:;

else if«char)option == 'B') /* Beaufort encrypt10n scheme /
c = «(int)key[i%key_lengthJ - (int)plain[i]) % ALPHABET;

else c = (int) plain[i] - (int) key[i%key_lengthJl % ALPHABET;
if(c <= 0) c += ALPHABET;

temp [j] = (char) (c + a);
j += 1; i += 1;
if ((i % BLOCKLENGTH) == 0 l {

temp {j] = • ';
j += 1;

73

/* group the encrypted data per block */

/* used for obtaining the length of the secret */
/* temporary buffer */

temp[j] = '\n';
temp[j+1} = '\0';
/* determine whether the data is request command or communication command */
if(for_confr == TRUE) sprintf(cypher,"%c %s",option,temp);
else strcpy(cypher,temp);

/* -- */
/* Procedure to decrypt data to be sent; char. option used for

determining encryption type: v for Vigenere, b for Beaufort, and I for
Beaufort Variant; char. *key used as the secret key; char. *plain used
for plain text; char. *cypher as cypher text; and into for confr.
indicates decryption used for conference or not. * / -

/* -- */
decrypt(char option,char *keY,char *plain,char *cypher,int for confr)
(-
int i,j,k;
int a,Ci
int key length;
char temp [6] ;

a ' ;
option toupper(option);
key length strlen(key);
j - 0;
if(for confr == TRUE) {

strtok(cypher," ");
strcpy(cypher,strtok('\O',"\n"));

/* get the encryption type */

while (sscanf(cypher, "%s",terop) != EOF && strcmp(temp,NULL) !=O) (
i 0;
k = strlen(temp);

/* decrypt the data according to the type of encryption chosen */
while (i < k) {

if ((char) option == 'V') /* if encryption chosen is Vigenere * /
c = {(int)temp[i] - (int)key[j%key_length]) % ALPHABET;

else if ({char)option == 'B') /* encryption chosen is Beaufort */
c = (int)key[j%key length} - (int)temp[i]) % ALPHABET;

else c = «(intltemp[i] + (int)key[j%key_length} - (2 * all % ALPHABET;
if(c < 0) c += ALPHABET;
plain[j] = (char) (c + al;
j += 1; i += 1;

)
strtok(cypher," ");
strcpy{cypher,strtok('\O',"\n"));

)
plain[j]
plain [j+l]

'\n' ;
'\0' ;

*/
*/

/* == */
/* Server.c contains elevent procedures used for simulating a server in

Secret Conference.
/* ==
#include "define.h"

#define YES
#define LIMIT1

10
10000 /* used for generating coeffs' values

74

#define LIMITZ
#define LIMIT3

1000
50

of polynomials */
/* used for creating shadows, prime, etc. */
/* used for x part's value of polynomials */

int
int

int
int
int

*shadow;
*Prime;

*zl x;
*zZ-x;
*t_x;

/* Shadows of The secret key */
/* used for obtaining a communication key used

Server & a client */
/* used for x parts of Zl polynomial */
/* used for x parts of Zz polynomial */
/* used for x parts of other polynomial */

int
int
int

int

int

PRIME;
degree;
conference;

Start;

Client;

/* used for obtaining the coefficients of Y(x) */
/* degree of Y(x) */
/* used for determining whether a conference

exists or not */
/* used for indicating whether distributionyhase

works or not */
/* used for obtaining the active active number */

double **S;
double **Inv;
double *C;
double *zl coef;
double *z2 coef;
double *t coef;
double *zI;
double *ZZ;
double *T;

/* Shadow Matrix */
/* Inverse Matrix of Shadow Matrix */
/* Matrix of cofficients of Y(x) */
/* coefficients of Zl polynomial */
/* coefficients of Zz polynomial */
/* coefficients of other polynomial */
/* values of Zl polynomial */
/* values of Z2 polynomial */
/* values of other polynomial */

struct client!
int sockfd;

char
char
int
int
int
int
int

id[lO) ;
key[lZ];
shadow;
level;
index;
joint;
given;

/* socket description used as a port for communication
with a client */

/* client's name */
/* communication key used by Server & a client */
/* shadow */
/* group to which a client belongs */
/* index for obtaining shadow */
/* indicating a client join a conference or not */
/* indicating a client is given the

distributed information or not */
struct client *next;

} ;

struct client *root;

/* Procedure to generate a random value; into prime indicates that the
random value generated is prime or not. */

/* -- */
generator(int prime)
{
int i = 1;
int value, temp = 0;

/* -- */

/* get some random value */
/* if the value intended to be prime */

/* get the square root of the value */

/* the value generated is not prime */

while(value = rand() 0);
if(prime == TRUE}!

dol
if(i <= temp) value = rand();

temp = ceil(sqrt(value});
forti = 2;i <= temp;i++)

if«value % i) == 0) break;
lwhile(i <= temp);

I
return value;

75

shown in
indicates
n is the

not */
/* row & column variables */
/* identify the result good or
/* temporary data */
/* temporary data */
/* temporary matrices */

i,j,k,l,error;
row, col;
result,
data;
datal,data2;
*templ,*temp2,

/* -- */
/* Procedure to find the inverse matrix of shadow matrix
Equation (3.5); into dim is the degree of Y(x);int.first time
whether the procedure is called for the first time or not;int.
total client number. */

/* -- */
matrix operation(int dim,int first_time,int n)
(-
int
int
int
double
double
double

/* Create temporary buffer as temporary matrices */
templ = calloc(dim,sizeof(double»),
temp2 = calloc(dim,sizeof(double),
if(templ == NULL I I temp2 == NULL) (

printf("Fatal Error in calloc temp\n"),
exit(l);

)
/* If the procedure is called for the first time */
if(first time == TRUE) (

/* Create all matrices needed for obtaining the inverse matrix * /
shadow = calloc (n, sizeof (int») ,
c calloc(dim,sizeof(double).;
5 calloc(dim,sizeof(double *»;
Inv calloc(dim,sizeof(long double *)),
if (shadow == NULL I I C == NULL I I S == NULL I I Inv NULL) (

printf("Fatal Error in calloc shadow etc.\n"),
exit (1) ,

)
forti = O;i < dim;i++) (

5[i] = calloc(dim,sizeof(double);
Inv[i) = calloc(dim,sizeof(long double).,
i£(5[i] == NULL I I Inv[i] == NULL) (

printf("Fatal Error in calloc 5[i] or Inv[i]\n"),
exit(l),

}
forti = O,i < dim;i++) Inv[i] [i] = 1; /* Initialize inverse matrix as I */

)else{ /* The procedure is called for the second time or more */
/* Initialize matrices used for the operations */

forti = O;i < dim,i++l {
for(j = O;j < dim,j++) {

5 [i] [j] = Inv[i] [j] 0;
if(i == j) Inv[i] [j] = I,

i = 0;

/* Put the values [(s)mod m], ... , [(s[)mod m] into matrix 5 */

while (i < dim) (
if(first time == FAL5E && i < n) k = shadow[i]; /* get a shadow from 5 */
else k =-(generator(FALSE) % LIMIT2), /* create a new shadow */

1 = 0;
while(l < i && k != 0) if (S[l++] [0] == k) break;
if(l == i && k != 0) (. '

for{j = l;j <= dim,j++) S[i][j-l] = rema1nde.r(k,],PRIME) ,
if (first_time == TRUE && i < n) shadow[il = 5[1++] [0],

76

is zero *1
step of the method wI
1* If the entries (i,i)

+ 1;

1* Start finding the inverse matrix using the second method of finding an
inverse matrix described in Section 2:.1 *1

error = FALSE;
forti = O;i < dim;i++) (

1* Applying the first
if (S [i) [i] == 0) (

col = i; row = i

while(row < dim) if(S[row++) [col] != 0) break;
if(row < dim) (Iw Swap all the entries wI

memcpy(templ,S[row],dim);
merocpy(temp2,lnv[row],dim);
memcpy(S[row],S[i],dim);
memcpy(Inv[rowl,lnv[i),dim);
memcpy (S [i 1, tempI, dim);
memcpy(Inv[i],temp2,dim);

)else{
error = TRUE;
printfl"in error\n");

if{error == FALSE) (
row = col = i;

S [row] [k] I data;
Inv[row] [k] I data;

+= 1;

1* Applying the second step of the method *1
while(row < dim) (
if (S [row] [col] != 1) (

data = S[row] [col]; k = 0;
while (k < dim) (

S [row] [k]
Inv[row] [k]
k

row += 1;

1* Applying the thirs step of the method *1
j = 0; row = col = I;

while (j < dim) (
if(j != row && S[j] [col] != 0) (

dat a = S [j] [co1]; k = 0;

1* Subtract all
in row j *1

while (k < dim) {
datal
data2
S[j][k]
Inv[j 1 [k]
S lj 1 [k]
k +=

entries in row i from the corresponding entries

(data * S [row] [k]) ;
(data * Inv[row] [k]);
(fmod (datal, PRIME)) ;
(fmod(data2,PRIME);
(fmod (S [j] [k] , PRIME») ;
1 ;

}
j += 1;

)
1* Repeat all steps starting from step 1 *1
}
free(templ); free(temp2);
return error;

/* -------------------------
/*. Procedure ~o crea~e pr:~~-~~;;;--i~;~-~-:~-~~~-~~~~~-~~i~~~-~~~~~

~nt all ~nd~cates If all primes should be created. */
/* ---
void create-primes{int n,int all)
{

int i, j; /* Tempora.ry va.riables * /

if (all == TRUE) (/ * If all prime s needed to be created * 1
.1* cr~ate buffer for storing the first n primes *1
~f «Pr~me = calloc (n, sizeof (int) » == NULL) (

printfC"Fatal Error in calloc Prime\n");
exit(l);

/* Create the first n primes */
i = 0;

77

*/

*/

while(i < n) (
Prime[i] = generator(TRUE);
for(j = i-l;j >= O;j--) if(Prime[i}
if(j < 0) i += 1;

Prime [j)) break;

/* Temporary variables */
/* Indicates an error occured */
/* Used for storing the secret key K */
/* Temporary variables */

/* Next, create the prime used for modular computation */
dol

PRIME = generator(TRUE);
for(i = O;i < n;i++) if(PRIME Prime[i] II PRIME < LIMIT2~ break;

}while (i < n);

/* -- */
/*Procedure to obtain the degree of polynomial Y(x); into n is the total

client number; into ul is the size of the first unique subset. */
/* -- */
power_degree (int n,int ul)
{

return (u1 + l)*(n - ul);

/* -- */
/* Procedure to create all information needed by clients to obtain the

secret key K used for conference; int. ul is the size of the first
unique subset; int. first time indicates if the procedure is called
for the first time. */ -

/* -- */
creation-phase(int u1,int n,int first_time)
{
int i,j;
int error;
int secret key;
double data,temp;

if (first_time == TRUE) (/* If the procedure is called for the first time */
create-primes(n,TRUE); 1* Create all needed primes */
degree power degree(n,ul); /* Obtain the degree of Y(x) */
error = matrix operation(degree,TRUE,n); /* Get the inverse matrix */

}else { - /* It is called for the second time or more * /
create-primes{n,FALSE);
error rnatrix_operation(degree,FALSE,n);

while(error == TRUE) error = matrix_operation(degree,FALSE,n);

while«secret_key (generator(FALSB)*10l») == 0); /* Create the secret K */

78

1* Obtain the coefficients of Y(x) as shown in Equation (3.7) *1
forti = D;i < degree;i++) {

j = 0; data = 0;

while(j < degree) data += Inv[i] [j++];
data *= secret_key; CEil = data;

}

return secret_key;

1* --- *1
/* Procedure to create polynomials

for u2 indicates whether or not
unique subset; doubl,e *coef is
polynomial; int *x is used for the

power;
total_x;
i, j;
value;

/* Indicates
/* Indicates
/* Temporary
/* Indicates

the degree of Z(x) polynomial */
the number of x parts of Z(x) */
variables */
a random value */

power = coef[O];
total x = xED];
for(i-= l;i <= power;i++) (

/* Get a random value from random generator *1
while«value = «generator(FALSE) % LIMITl) / 100» D);
/* Put the value as a coefficient of Z(x) */
coef[i] = pow(-I, (generator(FALSE} % 2» * value;

}

1* Put x parts of the polynomial as negative values *1
if(for u2 == UNUSED) forti = O;i < total_x;i++) xli] = (-1) * (i + 1);
else(-

forti = O;i < total_x;i++) (

while «value = generator (FALSE) % LIMIT3) 0) ;
j = 0;

/* If some values of x genereated by the generator are same */
while(j < i) if(x[j++] == value) break;
if (j < i) i 1;

else xli] value;

1* Temporary variables *1
/* Temporary values of Z (x) s for UI and Uz */

/* -- */
1* Procedure to divide PRIME (m) into Ims; int equation indicates which
case occurs; int. create indicates whether or not Z(x) and other
polynomials should be created; into ul is the size of the first uniqur
subset; int. u2 is that of the second one; int. w is the weight of the
first unique subset's members over the second's. *1

1* -- */
void divide_PRIME(int equation,int create,int ul,int u2,int w)
(
int i,);
double valuel,value2;

if (create == TRUE) { 1* If Z(x) should be created */
z2_coef[0} = u2 - 1; /* The degree of Z(x) for UZ "I
z2 xeD] = w " u1 + u2; /* Number of x's values should be created */
create Z-901ynomial(TRUE,z2_coef,z2_x);
if(equ;tion != 2){ /* If case I or III of dividing m occurs */

zl_coef[O] = u1 - 1; 1* The degree of Z(x) for ~ */

79

zl_x[O) = ul; /* Number of x's values should be created *1
create_Zyolynomial (FAL,SE, zl_coef, zl_x);

/* Set same I m of Z2(X) for U1 *1

/* If Case III of dividing m occurs */

* pow(zl_x[i],jl;
)
Z2[i] = valuel;
if(equation != 2 && i < ul) Zl[iJ = value2;

)

if (equation == 3) {
forti = O;i < w;i++j (

for(j = l;j < ul;j++) (
z2 x[i+j*w] zZ xli];
zzTi+j *w] = ZZ[iJ;

1* Divide/Partition minto Ims */
for(i = O;i < w * ul + uZ;i++) {

valuel = PRIME;
if (equat.ion != 2 && i < ul} valueZ = PRIME;
for(j = l;j < u2;j++) {

valuel += zZ_coef[j] * pow(z2 x[i],j);
if(equation ,= 2 && j < ul) value2 += zl_coeflj]

II

/* Temporary variables *1
/* Used as index of x's values and of Z(x)'s

values */
/* Used to indicate wh~ch case occurs (Case [,

or III) (see Section 3.2.Z) *1
1* Indicates sizes of subsets U1 and U2 *1
/* Indicates type of condition of distributing

the coeffs. of Y(x) for U2 */

u2,u3;
choice;

equation;

i, j , k;
index;

int

int
int

/* -- */
/* Procedure to distribute all the required information needed by client

to obtain the secret used for secret conference;int. first time
indicates whether the procedure is called for the first time; -int.
create coef indicates whether Z (x) s and other polynomials should be
created; int.n is the total clients; int ul is the size of the first
unique subset; into w is the weight.*/

/* -- */
distributionyhase(int first_time,int create_coef,int n,int ul,int w)
(
int
int

double value; /* Temporary values for elx) */

char
char

char

char

temp[20];
templ[MAXSTRINGJ;

temp2[MAXSTRING];

buffer[MAXSTRING);

/* Temporary buffer */
/* Temporary buffer for sending/receiving

data to be communicated */
/* Temporary buffer for sending/receiving

data to be communicated */
/* Temporary buffer for sending/receiving

data to be communicated */

struct client *cur;

u2 = n - ul; / * Size of U2 */
if (first time == TRUE) (/* If the procedure is called the first time" /

/* Create buffer for all information related to Z(x) */
z2 coef calloc(U2,sizeof(doUble));
z2 x calloc(ul * w + uZ,sizeof(int»);
Z2- calloc(ul * w + u2,sizeof(double));
if(z2 coef == NULL II zZ x == NULL I I Z2 == NULL) (

printf ("Fatal Error in -Z2 family\n");
exit(l);

80

if(ul * w < u2 11 (ul -1) * w >= u2){
1* Create another Z(x) if Case I or III of partitioning m occurs *1
zl_coef calloc(ul,sizeof(double}};
zl_x calloc(ul,sizeof(int»);
ZI calloc(ul,sizeof(double)};
if(zl coef == NULL I I zl x == NULL I I Zl NULL) (

printf("Fatal Error in-Z1 farnily\n");
exit(I};

I
1* Determine which Case of partitioning m occurs *1
if(ul * w < u2) equation = 1; 1* Ca.se I occurs *1
else if(ul * w >= u2 && (u1 - I) * w < u2} equation 2;1* Case II occurs *1
else equation = 3; 1* Case III occurs */

divide_PRIME (equation,create_coef,ul,u2,w);

One member of U2 in the non
unique subsets */
Two members of ~ in the
non-unique subsets *1

1* Three members or more of ~

in the non-unique subsets *1

2; /*

1; II.choice

·else if((ul - 1) * w + 2 >= u2) choice

else choice 3;

}else{
if(w + 1 >= u2) choice 1;
else if(w + 2 >= u2} choice 2;
else choice = 3;

/* Determine which condition of distr. the coeffs. of Y(x} for ~ occurs *1
if(equation != 3) (

if«u1 -1) * w + 1 >= u2)

)

II. Create buffer for storing all info. related to e(x)
if choice = 3 occurs *1

if(choice == 3 && first time == TRUE) (
if(equation != 3) t_coef = calloc(u2 - (ul - 1) * w,sizeof(doublel};
else t coef= calloc(u2 - 1,sizeof(double));
t x calloc(u2,sizeoflint));
T = calloc(u2, sizeof (double) };

cur = root;

1* Start distributing all needed info. to clients *1
while(cur != NULL) (

if(cur->sockfd != UNUSED && cur->given == FALSE) (
1* If the client is a member of Ul */
if (cur->level == 1) (

1* Put Imi into buffer * I
if (equation == 1 1I equation == 3)

sprintf (tempI, n: (%d, %f) ", zl_x [cur->index] , Zl [cur->index)) ;
forti = O;i < w;i++) (

sprintf(temp,tI(%d,%f) ",z2_x[cur->index*w+i),Z2[cur->index*w+i);
strcat(temp1,temp);

}
/* Append some coeffs .. of Y (xl to the buffer *1
strcat(ternp1,tI ; tI);
forti = O;i < degree;i++) {

if(i == (cur->index * u2) && u1 > 1) (
i += u2 -1;
if (choice == 3) {

sprintf (temp, n (%d, %d, %f) .. , -1, i+1, 0);
strcat(templ,temp);

)
}else{

sprintf(temp,"(%d,%f) ",i+l,C[i));
strcat(templ,temp);

81

)

/* The client is a member of of Uz */
}else{

/* Put Inri into buffer */
sprintf (tempI," (%d, %f)", z2_x [(w-I) *uI+cur->index],

Z2[(w-1)*u1+cur->index});
strcat (tempI, Of; "} ;
/* Append some coeffs. of Y(x) to the buffer

according to the value of choice */
forti = O;i < degree;i++J {

i£(i < degree - u2){ /* For the first IUtI*IUzl coeffs. of Y(x) */
if(choice == 1) (/* Give all of the coeffs. to the member */

sprintf(temp,"(%d,lf) ",i+l,C[i]);
strcat(templ,temp);

)else if(choice == 2) (/* See Section 3.2.2 condition 2 */
if((i % u2) != (cur->index - ul» (

sprintf(temp,"(%d,if) ",i+l,C[i]);
strcat (tempI, temp) ;

)
}else{ /* See Section 3.2.2 condition 3 */
if ((i % u2) ! = (u2 - I») (

if((u2 - 1) == 3){
if((i % u2) != (cur->index - u1) && cur->index != u2 - 1) (

sprintf(temp,"(id,if) ",i+1,C[i]);
strcat(temp1,temp);

}
}else(

j = i % u2; u3 = u2 - 1; index = cur->index;
if(j!=index % u3 && j != (index + 1) % u3 && index != u3) (

sprintf(temp,"(%d,%f) ",i+1,C[i]);
strcat(templ,temp);

}
)else{

if(cur == root) (
if (equation == 3) t coef[O] = u2 - 1;
else t coef[O] = uZ-- (u1 - 1) * w - 1;
t x[OJ-= u2;
create_Zyolynomial (UNUSED, t_coef, t_x) ;
for(j = O;j < u2;j++) {

value = C[i];
for(k = I;k < t coef[O);k++)

value += t coef[k] * pow(t_x[jJ,k);
T [j) = value;

}
sprintf(temp,"(%d,id,%f) ",t x[cur->index-u1],i+1,

T[cur->index - u1]);
strcat(templ,temp);

}
)else{ /* For the last IU21 coeffs. of Y(x) */

if(((i % u2) != (cur->index - ul») { /* Give one coeff. for
each member of Uz */

sprintf (temp," (id, If) ", i+1, C[i]);
strcat(temp1,temp)i

}
/* Send the information to the clients */
dol

sprintf(buffer,".distribute %d %s",shadow[cur->index],ternpl);
encrypt('v',cur->key,buffer,temp2,FALSE)i
writen(cur->sockfd,temp2,strlen(temp2»;
readline(cur->sockfd,buffer,MAXSTRING)i
decrypt('v',cur->key,temp2,buffer,FALSE)i

82

)while (strncmp (temp2, "OK",2) != 0);
cur->given = TRUE;

cur = cur->next;
)
return FALSE;

a client; int.
into n is the
subset; into w

exchange information between Server and
client's socket used for communication;
into ul is the size of the first unique
*1

1* -- *1
1* Procedure to

sockfd is the
total cl ients;
is the weight.

*1
key between Server

communication *1
communication *1
communication *1

aPcivate mod prime * 1
in aPcivote mod prime *1
in aPdvote mod prime * I

1* Used as base in
1* Used as a power
1* Used as a prime

1* Temporary buffer for client ID
1* Used as a private secret comm.

and a client *1
1* T'emporary buffer
1* Temporary buffer
1* Temporary buffer

buffer[MAXSTRING];
buf [MAXSTRING] ;
buff [MAXSTRING] ;
i, j, k;
a;
private;
prime;

char
char
char
int
int
int
int

1* -- *1
info exchange (int sockfd,int n,int ul,int w)
(-
char data(20];
char key[lS];

struct client *prev,*cur,*temp;

while«a = (generator(FALSE)%LIMIT3) 0);1* Get some value used as base *1

prime = Prime[rand()%n];
while«private = generator(TRUE» > (LIMIT2/10»);

while «j = remainder (a, private, prime)) == 0);
1* Put a, prime, and j = apuvatemod prime into buffer & send them to client ,. I
sprint£(buffer,"%d %d %d\n\O",a,prime,j);
writen(sockfd,buffer,strlen(buffer»;

1* Wait for response from the client & get the private key *1
readline(sockfd,buffer,MAXSTRING) ;
i = remainder (atoi (buffer) , private, prime) ;
sprintf(key,"%d",i);

1* Wait response from the client for checking the private key *1
readline(sockfd,buffer,MAXSTRING);
mernset(buff, '\O',strlen(buff));
decrypt ('v' , key, buff, buffer, FALSE) ;

1* If the data sent by the client is true, info. exchange begins *1
if«i = atoi(buff) == j)!

1* Send the confirmation to the client *1
sprintf(buff,"OK: send in the data in B");
encrypt('v',key,buff,buffer,FALSE) ;
writen(sockfd,buffer,strlen(buffer);

1* Wait for response from the client to get all info. about the client *1
readline(sockfd,buffer,strlen(buffer);
decrypt('b',key,buff,buffer,FALSE);
sscanf(buff,"%s %d",data,&j);
sprintf(buffer,"%d %d:",degree,w);

1* Send the info. of the other clients who have established connections to
this new client *1

cur = root;
while(cur != NULL) (

if(cur->sockfd != UNUSED)!
if (strcmp (cur->id,data) != 0) (

/* Put the other clients' info. into buffer */
sprintf(buf," (%s,%d) ",cur->id,cur->level);
strcat(buffer,bUf);

cur = cur->next;
)

strcpy(buf,buffer);

dol

/* Encrypt the info. using Vigenere scheme & send it to the client */
encrypt('v',key,buf,buffer,FALSE);
writen(sockfd,buffer,strlen(buffer»;

/* Wait for response from the client */
readline(sockfd,buffer,MAXSTRING);
decrypt('v',key,buff,buffer,FALSE);

)while(strncmp(buff,"OK",2) != 0);

prev = NULL; cur = root; i = UNUSED;
k = 0;

/* Allocate free structure for storing the new client's info. */
while(cur != NULL) {

k += 1;
if(cur->sockfd == UNUSED && cur->level]i) (

i = cur->index;
break;

)
if(cur->level == j) i = cur->index + 1;
prev = cur; cur = cur->next;

)

if(cur == NULL)temp = (struct client *) malloc(sizeof(struct client»;
else if(cur != NULL) temp = cur;
else if (k > n) I

printf("ERROR IN info_exchange (i.e. # of struct clients> %d\n",n);
exit(l);

/* Put the new client's info. into the free structure */
temp->sockfd = sockfd;
temp->level j;
strcpy(temp->id,data);
strcpy(temp->key,key);
temp->joint = temp->given FALSE;
if (i == UNUSED) (

if(j == 1) temp->index = 0;
else temp->index = u1;

)else temp->index = i;
temp->shadow = shadow[temp->index];
if(cur == NULL) ternp->next NULL;
else temp->next = cur->next;
if(prev == NULL) root = temp;
else prev->next = temp;

/* Send the other client who have established the connections that the new
client is active */

cur = root;
sprintf(buffer,".participate %s %d",temp->id,temp->level);
sprintf(buf,"(%s,%d) is now active",temp->id,temp->level);
while(cur != NULL) {

if(cur->sockfd != UNUSED && cur != temp) {
encrypt('v',cur->key,buffer,bUff,FALSE);
writen(cur->sockfd,buff,strlen(buff»;
encrypt ('v' , cur->key, buf, buff, FALSE);
writen(cur->sockfd,buff,strlen(buff»;

}
cur = cur->next;

83

84

}

/* The response from about the private key is not valid */
}else{

/* Server send negative response to the client */
sprintf(buff,"Server receives invalid data !!!"l;
encrypt('v',keY,buff,buffer,FALSE) ;
writen(sockfd,buffer,strlen(buffer});
close(sockfd};
j = FALSE;

}
return j;

or 2) * /

/* Temporary variable */
/* Size of U2 */
/* Used for granting or rejecting the request */
/* Indicates levels of the clients (i.e. level 1
/* Indicates Case of partitioning minto Ims */

u2;
decision;
levell,level2;
equation;

/* -- */
/* Procedure to check whether or not the subset of clients who want to
make a conference is a qualified subset; if it is, the request is
processe.d by server_request procedure; if it is not, the request is
rejected; into number is the total clients in the subset; char. **id
contains the name of the clients; into n is the total clients;int ul is
the size of the first unique subset; into w is the weight. */

/* -- */
confirm(int number, char **id,int n,int ul,int w)
{
int i;
int
int
int
int

struct client *cur;

u2 = n - ul; /* Get size of Uz * /

1* Determine which Case of partitioning m occurs */
if(ul * w < u2} equation = 1;
else if(ul * w >= u2 && (ul - I) * w < u2} equation 2;
else equation = 3;

/* Count member's level of clients who issue a conference request */
levell = level2 = 0;
cur = root;
while(cur != NULL) (

if(cur->sockfd != UNUSED) (
forti = O;i < nurnber;i++) (

if(strcmp(id[i],cur->id) == 0) (
if(cur->level == 1) levell += 1;
else level2 += 1;
break;

J
cur

}
cur->next;

/* The clients are from ~ */
TRUE; /* All of the clients are from U1 * /

/* The clients are only a subset of ~ */
/* The clients are from U2 */

TRUE; /* All of the clients are from U2 * /
/* The clients are only a subset of ~ */
/* Case III of dividing m occurs */

TRUE;

/* Case I or II occurs */
level2 >= u2) decision = TRUE;
FALSE;

if(leve12 == 0) (
if(levell == ul) decision
else decision = FALSE;

}else if(levell == Ol{
if(level2 == u2) decision
else decision = FALSE;

}else if(equation == 3) (
if(w + level2 >= u2) decision
else decision FALSE;

)else(
if(levell * w +
else decision

85

return decision;

1* *1
II< Procedure to serve a request sent by a client; there are several
services provided, five of which are the ones discussed in Appendix
Bistruct client *t is the information structure of a client who sent the
request; into secret is the secret used for e.stablishing a conference;
into n is the total clients; into ul is the size of the frist unique
subseti into w is the weight. *1

1* -- *1
serve request(struct cli,ent *t,int secret,int n,int u1,int w}
(-
char c; 1* Used to indicate type of encryption *1
char buffer[MAXSTRING]i 1* Used as buffer for communication *1
char temp[MAXSTRING]; /* Used as buffer for communication */
char templ(MAXSTRING]; 1* Used as buffer for communication */
char temp2 (MAXSTRING] ; 1* Used as buffe.r for communication */
char **datai 1* Used as buffer for client's names who want

to set a conference */

struct client *cur,*blocki

int
int

int

i;
number;

conference_held;

/* Indicates the number of clients who want to
s·et a conference * 1

/* Checks if the request for asking a service
or communicating with clients */

1* Read the request sent by a client *1
readline(t->sockfd,buffer,MAXSTRING);

if(((c = toupper(buffer[O]») == 'V'llc == 'B'llc == 'I') && buffer[l] ==' ')
conference held = TRUEi 1* The request is corom. command *1

else conference_held = FALSE; 1* Otherwise, the request asks a service *1

/* THE REQUEST IS ASKING A SERVICE FROM SERVER *1
if (conference held == FALSE.) {

decrypt ('v' ;-t->key, temp, buffer, FALSE) ;
cur = root;

1* IF THE REQUEST IS LIST ALL OF ACTIVE CLIENTS *1
if (strncmp(temp, ".list",S) == 0) (

while(cur != NULL) (
if(cur->sockfd != UNUSED) (

if(cur->joint == FALSE)
sprintf(temp,"Client: %10s, Level: %d, Join Conference: %s",

cur->id,cur->level,"No");
else

sprintf(temp,"Client: %105, Level: %d, Join Conference: %5",
cur->id, cur->level,"Yes");

encrypt (' v' , t->key, temp, buffer, FALSE) ;
writen(t->sockfd,buffer,strlen(buffer));

}
cur = cur->next;

1* IF THE REQUEST IS JOIN A CONFERENCE*I
}else if (strncmp(temp, ".join",5} == O} {

/* Conference has not established yet *1
if(conference == FALSE) {

sprintf(temp,"Conference has not been established yet");
encrypt ('v', t->key, temp, buffer, FALSE);
writen(t->sockfd,buffer,strlen(buffer»)i

1* otherwise *1
Jelse(.

/* Send the needed information to the cll.ent *1
sprintf(temp,".get %d %d",PRIME,secret);
encrypt ('v", t->key, temp, buffer, FALSE);

writen(t->sockfd,buffer,strlen(buffer)};

/* Wait the client's response for confirmation */
r,eadline (t->sockfd, buffer, MAXSTRING) ;
decrypt('v',t->key,temp,buffer,FALSE);
i = atoi(temp);
/* If the confirmation is valid */
if(i == secret) (

t->joint = TRUE;

/* Notify other clients who have joined a conference that the client
joins the conference */

cur = root;
sprintf(templ," (%s,%d) joins the conference",t->id,t->level);
while(cur != NULL) (

if(cur->sockfd != UNUSED&& cur->joint == TRUE && cur != t) (
encrypt ('v' ,cur->key, tempI, buffer, FALSE) ;
writen(cur->sockfd,buffer,strlen(buffer»);

l
cur = cur->next;

/* Send the client a positive response */
sprintf(temp,"You can join the conference");
encrypt ('v', t->key, temp, buffer, FALSE);
writen(t->sockfd,buffer,strlen(buffer);

/* Otherwise, the confirmation is not valid */
}else{

sprintf(ternp,"sorry the secret is invalid ... ");
encrypt. ('v" , t->key, temp, buffer, FALSE) ;
writen(t->sockfd,bu£fer,strlen(buffer»;

/* IF THE REQUEST IS LEAVE FROM A CONFERENCE */
)else if(strncmp(temp,".leave",6} == 0) (

/* The client has not joined any conference yet */
if(t->joint == FALSE) {

sprintf(temp,"You are not joining any conference"};
,encrypt ('v', t->key, temp, buffer, FALSE);
writen(t->sockfd,buffer,strlen(buffer);

/* Otherwise */
)else{

/* Notify other clients who have joined a conference that the client
leave the conference */

i = 1;
sprintf(temp, "(%s,%d) leaves the conference",t->id,t->level);
while(cur != NULL) (

if (cur->sockfd != UNUSED && cur->joint == TRUE && cU.r != t) (
i += 1;
encrypt ('v' , cur->key, temp, buffer, FALSE) ;
writen(cur->sockfd,buffer,strlen(buffer»;

}
cur = cur->next;

/* Send the client a positive response */
sprintf(temp,"OK");
encrypt('v',t->key,temp,buffer,FALSE);
writen(t->sockfd,buffer,strlen(buffer»;
t->joint = FALSE;

/* Check number of clients who leave the conference */

i -= 1;

86

87

/* If all of the clients leave the conference, conference is closed */
if(i == 0 && Client == n){

cur = root;

/* Set all clients that they should receive a new info. about K */
while(cur != NULL} {

if(cur->sockfd != UNUSED} cur->given = FALSE;
cur = cur->next;

)
conference = FALSE;
return YES;

1* IF THE REQUEST IS QUIT FROM SECRET CONFERENCE *1
)else if (strncmp {temp, ".quit",S) == 0) {

1* Notify all other clients that a client has quit *1
sprintf (temp, ". qui t %s %d", t->id, t->level) ;
sprintf(temp2,"(%s,%d) quit from program",t->id,t->level);
while(cur != NULL) (

if{cur->sockfd 1= UNUSED && cur != t) {
encrypt (' v' , cur->key, temp, buffer, FALSE) ;
writen(cur->sockfd,buffer,strlen(bufferl);
encrypt ('v', cur->key, temp2,buffer, FALSE);
writen(cur->sockfd,buffer,strlen(buffer»;

)
cur = cur->next;

1* Send the client a positive response & close the connection */
sprintf(buffer,"OK");
encrypt (I v' , t->key , buffer, temp, FALSE) ;
writen(t->sockfd,ternp,strlen(temp»;
close(t->sockfd);

/* If all clients have quit, create a new K & other info. *1
if({Client -= 1) == OJ (

conference FALSE;
Start = TRUE;

l
1* Assign the client's structure as free structure *1
t->sockfd = UNUSED;
return t->level;

1* IF THE REQUEST IS SET A CONFERENCE *1
)else if (strncmp (temp, ".conference", 11) 0) {

/* If # of clients made connections < n or conference does not exist *1
if (Client < n I I conference == TRUE) {

if(Client < n)
sprintf(temp,"# of Clients now are less than the total client(%d)",n);

else sprintf(temp,"conference has already exist");
1* Send the client a negative response */
encrypt('v',t->key,temp,buffer,FALSE);
writen(t->sockfd,buffer,strlen(buffer»);
return FALSE;

1* Otherwise */
}else{

/* Get the # of clients who want to set a conference & their names */
strtok(temp," ");
strcpy(temp,strtok('\O',"\n "»);
sscanf(temp,"%d",&number);

1* Allocate buffer for storing the clients' names *1
if({data = calloc(number,sizeof(char *)}) == NULL) {

printf("Fatal Error in cailoc data\n");
exit(l) ;

)
strcpy(temp,strtok('\O' ,"\n "»;
if (strcmp (temp, NULL) ! = 0) sscanf (temp, "%5", data [i)) ;

88

for(i = O;i < number - 1 && stremp(temp,NUL.L) != O;i++) (
if (data.[i) = calloe (20, sizeof (char) » == NULL) {

printf("Fatal Error in calloc data{i)\n");
exit(l);

)
if«(data(i] = calloc(20,sizeof(char») == NULL) {

printf("Fatal Error in cailoc data[number~\n");

exit(l);
}

/* Include the name of the client who send the request */
strcpy(data[i],t->id);

/* Check the subset of the clients who want to set a confer. */
i = confirm(number,data,n,ul,w);

/* If the subset is valid */
if (i == TRUE) {

sprintf(temp,".conference request:");
forti = O;i < number;i++) {

strcat(temp,data[i])i
strcat(temp," ")i
cur = root;

/* Notify the corresponding clients that a client want them to set a
conferece */

while(cur != NULL) {
if(cur->sockfd != UNUSED U, strcmp(cur->id,data[i}) == 0 &&

cur != t) (
sprintf(temp2,"(%s,%d) asks you ",t->id,t->level);
if{number >= 3) strcat(temp2," & others to join conference");
else strcat{temp2,"to join conference");
encrypt (I v' , cur->key, temp2, buffer, FALSE) ;
writen(cur->soekfd,buffer,strlen(buffer»);
cur->joint = TRUE;
break;

}
cur = cur->next;

/* Send the notify and wait for their response */
cur = root;

while(cur != NULL) {
if(cur->sockfd != UNUSED && cur->joint == TRUE) {

dol
encrypt('v',cur->key,temp,buffer,FALSE);
writen(cur->sockfd,buffer,strlen(buffer»;
readline(cur->sockfd,buffer,MAXSTRING)i
decrypt('v',cur->key,templ,buffer,FALSE);

)while(strncmp(templ, "OK", 2) != 0);
}
cur = cur->next;

/* Server helps the subset to exchange their info. for obtaining the
secret key K */

cur = rooti

while(cur != NULL) {
/* Notify the subset of clients to exchange their info. */
if(cur->sockfd != UNUSED && cur->joint == TRUE) {

sprintf(temp,".send need");
encrypt ('v' ,cur->key, temp, buffer, FALSE) ;
/* Send to each client of the subset */

writen(cur->sockfd,buffer,strlen(buffer);
/* Wait for a response */
readline(cur->sockfd,buffer,MAXSTRING);
decrypt ('v', cur->key, temp, bUffer, FALSE);
temp[strlen(temp)-l} = '\0';
memset(templ, '\O',strlen(ternpl»;
strcpy(templ,temp);

/* Help each client to exchange their information about K */
block = root;

while(block != NULL) {
if(block->sockfd != UNUSED && block!= cur &&

block->joint == TRUE) {
encrypt('v',block->key,templ,buffer,FALSE);
/* Send to each client of the subset */
writen(block->sockfd,buffer,strlen(buffer});
1* Wait for a response */
readline(block->sockfd,buffer,MAXSTRING);
decrypt('v',block->key,temp,buffer,FALSE);
temp[strlen(temp)-l} = '\0';
memset (temp2,' \0'. strlen (te.mp2»;
strcpy(temp2,temp);
dol

encrypt('v',cur->key,temp2,buffer,FALSEli
/* Send to each client of the subset */
writen(cur->sockfd,buffer,strlen(buffer»;
/* Wait for a response */
readline(cur->sockfd,buffer,MAXSTRING);
decrypt('v',cur->key,temp,buffer,FALSE);

)while(strncmp(temp,"OK",2) != 0);
)

block = block->next;
)

cur cur->next;

/* Ask each client to send the value of K he/she obtained *1
cur = root;
sprintf(templ,".send secret");

89

while(cur != NULL) (
if(cur->sockfd!= UNUSED && cur->joint == TRUE) (

encrypt ('v', cur->key, templ,buffer, FALSE);
1* Send the request */
writen(cur->sockfd,buffer,strlen(buffer»);
/* Wait for a response from the corresponding client *1
readline(cur->sockfd,buffer,MAXSTRING);
decrypt l'v', cur->key, temp, buffer, FALSE);
/* If K sent by the client is not valid */
if(i = atoi(temp» != secret) {

/* Send a negative response to each client in the subset */
sprintf(temp,"Error in obtaining the secret key by %s",cur->id);
block = root;

while(block != NULL) (
if(block->sockfd != UNUSED && block->joint == TRUE) {

encrypt('v',block->key,temp,buffer,FALSE);
writen(block->sockfd,buffer,strlen(buffer»;
block->joint = FALSE;

I
block = block->next;

break;

90

cur cur->next;

/* Free buffer used for storing the subset of clients */
forti = O;i <= nurober;i++) free(data[i]);
free(data);

if(i == FALSE I I cur != NULL) {
/* If the confirmation of the subset is not valid */
if (i == FALSE) {

/* Send a negative response */
sprintf(temp,"# of clients to set a conference < the # required");
encrypt ('v' ,t->keY,temp,buffer,FALSE);
writen(t->sockfd,buffer,strlen(buffer»;

/* Otherwise, K sent by a client in the subset is not valid */
)else(

/* Notify all clients that Server send a new secret key info. */
sprintf(temp,"Sending a new secret key);
cur = root;

while(cur != NULL) {
if(cur->sockfd != UNUSED) (

encrypt('v',cur->key,temp,buffer,FALSE) ;
writen(cur->sockfd,buffer,strlen(buffer»;
cur->given = cur->joint = FALSE;

)
cur = cur->next;

)
conference = FALSE;
return YES;

}
/* setting a conference is successful */
lelse{

/* Notify all clients that a conference is set */
sprintf(templ,"Conference may begin ... ");
cur = root;

while(cur != NULL) {
if(cur->sockfd != UNUSED) (

dol
encrypt('v',cur->key,templ,buffer,FALSE);
writen(cur->sockfd,buffer,strlen(buffer»;
readline(cur->sockfd,buffer,MAXSTRING);
dec.rypt ('v', cur->key, temp2, buffer, FALSE);

)while(strncmp(temp2,"OK",2) != 0);
)
cur = cur->next;

)
conference = TRUE;

)
/* THE REQUEST IS FOR COMMUNICATION COMMAND */
)else{

/* Direct the communication flow to all clients who joined a conference */
cur = root;
while(cur != NULL) {

if(cur->sockfd != UNUSED && cur->joint == TRUE && cur != t)
writen(cur->sockfd,buffer,strlen(buffer»;

cur = cur->next;

}
return FALSE;

91

/* -- */
/*MAIN PROCEDURE: procedure to run Server program.; int. argc is the
total arguments needed when Serve program is invoked; char **argv used
~s buffer for putting the arguments; an example of invoking the program
1S Server 5 2 1&. */

/* -- */
main(int argc, char **argv)
(

char buffer[MAXSTRING];

int i;
int n,w,ul;
int secret_key;

int indexl,index2;

int sockfd;

int newsockfd;

int m.ax descr;
int n found;
int cli len;
int mem=alloc;

struct client
struct sockaddr in
struct timeval
fd set

/* Used for the secret key for establishing a
conference * /

/* Used for counting number of clients in the first
& second unique subsets */

/* Used for providing a connection to a client when
the client asks a connection request *1

/* Assigns new socket for further communication
with a client who successfully made a connection
to Server */

/* Indicates max. of descriptor that are used */
/* Indicates a request from a client is found */
/* Used by network protocol *1
/* indicates if memory allocations are needed or not */

*cur;
cli_addr, serv addr;
wait time;
readset;

1* If the # of arguments issued < the required */
if(argc < 4) {

printf("USAGE: Server <total clients> <first level members> <weight>\n");
printf ("Example: Server 5 2 1 \n''') ;
exit{l} ;

1* Get info. about the total # of clients,
n = atoi(argv[l]); ul atoi(argv[2); w
srand(getpid()) ;
indexl = 0; index2 = ul;

size of UJ, and the weight */
= atoi(argv[3);

/* Create all info. about the secret key K and get K */
secret_key = creation-phase(ul,n,TRUE);

1* OPEN A TCP SOCKET (AN INTERNET STREAM SOCKET) *1
if((sockfd = socket (AF_INET, SOCK_STREAM, 0» < 0)

err_dumpl"server: can't open stream socket");

/* INITIALIZE ALL INFO. OF SERVER FOR BINDING SERVER TO LOCAL ADDRESS */
memset«char *) &servaddr, 0, sizeoflserv addr»;
serv addr. sin family - = AF IMET; -
serv-addr.sin-addr.s addr =-htonl(INADDR ANY);
if(argc == 5)-serv_addr.sinyort = htons(atoi(argv[l)));
else serv_addr .. sinyort = htons (DEFAULT_PORT);

/* BIND SERVER LOCAL ADDRESS SO THAT A CLIENT CAN SEND DATA TO IT *1
if(bindlsockfd,. {struct sockaddr *} &serv_addr, sizeoflserv_addr») < 0)

err_dump ("server: can't bind local address");

II< Initialize all info. used for connections & for setting a conference */
listen(sockfd, 5);
max descr sockfd;
root NULL;
wait time.tv sec 0;
wait=time.tv=usec 0;
Start TRUE;

conference
Client
mem alloe

FALSE;
0;
TRUE;

92

for (; ;) (
eli_len = sizeof(cli addr);
FD_ZERO(&readset);
FD_SET(sockfd,&readset);
eur = root;

/* Initialize readset */
/* Put sockfd into readset */

while(cur != NULL) (
if(cur->sockfd != UNUSED) FD_SET(cur->sockfd,&readset);
cur = cur->next;

}

/* WAITING FOR CONNECTION OR OTHER REQUEST FROM A CLIENT */
if ((n_found = select (max_descr + I, &readset, NULL, NULL, &wai t time» > 0 l (

/* A CONNECTION REQUEST SENT A CLIENT *1 -
if(FD ISSET(sockfd,&readset») {

/* THE CONNECTION FAILS */
if(newsockfd=accept(sockfd, (struct sockaddr *l&cli_addr,&cli len) < 0)

err dump("server:accept error");
/* THE CONNECTION SUCCEEDS */
else{

/* CONNECTION REQUEST EXCEEDS THE REQUIRED NUMBER (n) */
if(indexl == ul && index2 == n) (

sprintf(buffer,"server will not serve more than %d clients\n",n);
writen(newsockfd,buffer,strlen(buffer»;
close(newsockfd);

}
/* If info. exchanged between Server & a client is success */
if((i = info exchange(newsockfd,n,ul,w» != FALSE) (

Client += 1;
if(newsockfd > max descr) max descr = newsoekfd;
if(i == 1) indexi += 1;
else index2 += 1;
1* If the total # of clients is same as n, Server distr. all info. */
if(index1 == ul && index2 n){

if(Start == TRUE) { /* Indicates distr. is for 1st time */
if (mem alloc == TRUE) { /* Indicates memory alloc. is needed */

Start distribution_"phase (TRUE, TRUE, n, u1, w) ;
mem alloc FALSEi

}else- start distributionyhase (FALSE, TRUE, n, u1, w);
)else Start distributionyhase(FALSE,FALSE,n,u1,w);

)
/* OTHER REQUEST SENT BY A CLIENT WHO ESTABLISHED THE CONNECTION *1
cur = root;
while{cur != NULL) (

if(cur->sockfd != UNUSED) {
if(FD ISSET(cur->sockfd,&readset»I

if (n = serve request (cur, secret key, n, u1, w» == YES) I
secret key - creationyhase(uI~n,FALSE)i
Start distributionyhase(FALSE,TRUE,n,u1,w);
break:

}else if (i I) index1 1;
else if (i == 2) index2 1;

cur cur->next;

93

/* === */
/*~lient.c contains seven procedures used for simulating a client

1n Secret Conference. */
/* =================================0================================= */
#include <pwd.h> /* Header file for current working directory */
#include <netdb. h> /* Header file for host server * /
#include "define.h" /* Contains all other header files */

#define LIMIT 1000 /* Used for obtaining private communication key */

typedef struct other{/* Structure for saving other client's information */
char *name; /* Name of other client * /
unsigned level:2; /* Indicates the group(unique subset) to which the other

client belongs */
struct other *next;

laTHER;

OTHER *root;

char Name[lO];
char Secret[l2];
char key[12];

/* The client's name */
/* The secret corom. key in a conference */
/* Private corom. key used only by a client and Server */

int shadow;
int Level;

int Prime;
int Cypher;
int Conference;
int degree;
int weight;

int 1m;
int indexx;
int indexl;
int index2;
int mixed;

int size;

int subset;
int subset done;

/* The shadow for determining Secret from Y(x) */
/* Indicates to the group (unique subset) to which the

client belongs */
/* Prime number used for determining Secret from Y(x) */
/* Indicates cypher data is displayed on/off */
/* Indicates whether a conference exists or not */
/* Degree of Y(x) polynomial */
/* The weight of the members of the first group (unique

subset) over that of the second one */
/* Used for assigning index1 or index2 */
/* Index counter of other polynomial */
/* Index counter of Zl(X) polynomial */
/* Index counter of Z2(X) polynomial */
/* Indicates whether the clients who want to set a

conference are from both the first unique subset and
the second one or not */

/* Total Ims pooled by the clients who want toset a
conference */

/* Subset of clients who want to set a conference */
/* Indicates number of information still need to be

proccessed in obtaining Secret */

int **x;
int X[20];
int Xl[lO];
int X2[lO];

/* Used as x parts of other polynomial */
/* Used as coeff. indexes of Y(x) polynomial */
/* Used as x parts of Zt(x) polynomial */
/* Used as x parts of Z2(X) polynomial */

double
long double
double
double

**y;
Y[20];
Zl [10] ;
Z2[10];

/* Used for saving values of other polynomial */
/* Used to save values of coeffs. of Y(x) polynomial */
/* Used for saving values of Zl (x) polynomial */
/* Used for saving values of Zz (x) polynomial */

variables */
a row in matrix */
a column in matrix */
an error occurs */
variable */

/* Temporary
/* Indicates
/* Indicates
/* Indicates
/* Temporary

/* -- */
/* Procedure to obtain Prime and other using matrix operation discussed
in Section 2.1; into *A is used as x parts of a polynomial; double *B is
used as coeff. parts of the polynomial; into dim is dimension of matrix
used.*/

/* -- */
obtain value (int *A,double *B,int dim)
(-
int i,j,k;
int row;
int col;
int error;
double value;

double data;
double *templ;
double *temp2;
double m[7] [7];

long double inv[7] [7];

/* Temporary variable */
/* Temporary matrix */
/* Temporary matrix */
/* Used for constructing matrix of x parts of the

polynomial */
/* Used as inverse mat.rix of m * /

94

/* Put x's values of a polynomial into matrix m */
for(i = O;i < dim;i++l (

for(j = O;j < dim;j++) (
m[i] [j] = pow(A[i] ,j);
inv[i] [j} = 0;
if(j == i) inv[i] [jl = 1; /* Set inverse matrix as identity matrix */

/* Apply the second method of finding inv. matrix described in Section 2.1 */
error = FALSE;
forti = O;i < dim && error == FALSE;i++) {

/* Step 1 of the method */
if (m[i] [i] == 0) (

printf("rn Zero\n");
col i;
row = i + 1;

/* Find a row whose entry (i,i) is not zero */
while (row < dim) if (m[row++] [col] != 0) break;
/* If there is such a row */
if (row < dim) (

/* Swap all entries */
tempI = calloc(dim,sizeof(double»;
temp2 = calloc(dim,sizeof(double);
memcpy(templ,m[row] ,dim);
memcpy(temp2,inv[row],dim);
memcpy(m[row],m[i],dim);
memcpy(inv[row],inv[i] ,dim);
memcpy(m[i],templ,dim);
memcpy(inv[i],temp2,dim);
free(templ); free(temp2);

/* Otherwise */
)else(

error = TRUE;
printf("ERROR !! !\n");

/* Proceeds to step 2 of the method */
if(error == FALSE) (

row = col = i;

/* Divide all entries in row i by entry (i,i) */
while (row < dim) {
if (m[row] [col] != 1) (

data = m[row] [col];
for(j = O;j < dim;j++) (

m[row] [j] /= data;
inv[row] [j] /= data;

row += 1;

/* Proceeds to step 3 of the method */
row = col = i;
for(j = O;j < dim;j++){

if (j != row && rn[j] [col] != 0) {
data = m[j] [col];

95

/* Subtract all entries in row j from the corresponding entries in row
i */

for(k = O;k < dim;k++) {
m[j] [kl (data * m[row] [k]) ;
invtj 1 [k] -= (data * inv[row] [k]);

)
/* Repe.at all steps starting from step 1 until i dim * /
}
value = 0;
forti = O;i < dim;i++) value += (inv[O] Ii] * B[i]);
return (error == FALSE) ? value : FALSE,'

Server */
*/

/* Temporary variable */
/* Used for obtaining info. from
/* Buffer used for communication
/* Temporary variables */

c;
temp[20];
buffer [MAKSTRING] ;

i,j;

/* -- */
/* Procedure to extract all information sent by Server which is required
to determine Prime and Secret; char. *buf contains the required
information.*/

/* -- */
void distribute {char *buf)
(
char
char
char
int

/* Iniliaze x parts of Z(x)s and Z(x)s */
forli = O;i < 10;i++){

X1[i] X2[i] 0;
Zl[i] = Z2[i] = 0;

}
1* EXTRACT THE SHADOW & I m FROM THE PACKET SENT BY SERVER */
strcpy(buffer,buf);
strtok(buffer," ");
strcpy(buffer,strtok('\O',"\V"»;
sscanf(buffer,"%d %c",&shadow,&c); /* Get the shadow of K */
if(c == ':') (/* Discard delimiter */

strtok(buffer,":");
strcpy(buffer,strtok('\O',"\v"»);

}else{
strtok(buffer," ");
strcpy(buffer,strtok('\O',"\v"»;

/* If the client is in Ul or Uz * /
")) ;
/* Get x's value of I m = (x, Z (x» * /

)
if(c == ':' I I Level == 2) (

strcpy(temp,strtok(buffer," (,\n
X1[0] = atoi(temp);
strcpy (temp, strtok (. \0' , ")"));
Zl[O]atof(temp); /* Get Z(x)'s value of I m = (x,Z(x») */
if(c == ': ') strcpy(buffer,strtok('\O',"\v");

}else{ /* Client is in Ul & Case II of m occurs */
Xl[O] UNUSED;
Zl[O] UNUSED;

)
if(c == ':' II Level == 1) { /* If the client is in UI, get other Ims */

for(j = O;j < weight;j++1 {
strcpy (temp, strtok (buffer, " (, \n "));
X2[j] = atoi(temp); /* Get x's values of I m = (x,Z(x»
strcpy(temp,strtok('\O',")"»;
Z2[j] = atof(temp); /* Get Z(x)'s values of I m = (x,Z(x)) */

}
/* EXTRACT A SET Ci OF SOME COEFFICIENTS OF Y(X) FROM THE PACKET */
forti = O;i < degree;i++) Xli] = Y[i] = 0;
strcpy(buffer,strtok('\O',"\v"»;
strcpy(temp,strtok(buffer,"(,\n; ");

96

while (strcmp(temp,NULL) != 0) (
if«i = atoi{temp» < 0) (

strcpy(temp,strtok('\O',",")};
j = atoi(temp}-l;

)else j = i-I;
X[j] = I; 1* Get the indices of the coeffs. *1
strcpy(temp,strtok('\O',"}"»;
Y[j] = atof(temp}; 1* Get the values of the coeffs. *1
strcpy(temp,strtok('\O',"(,\n "»;

I
1m = UNUSED;

1* --- _
1* Procedure to display the client
template to display the information;
client. *1

information; WINDOW *win is used
char *s contains the name of the

*1

1* -- *1
void info_display(WINDOW *win,char *s)
{

int I; 1* Used to locate the info. *1

i = strlen(s);
1* Make the background of the info. black *1
wattron(win,A REVERSE);

1* Put the info. at the bottom part of the screen *1
mvwprintw(win,21,0,"Name: %s\t Level: %d\t ",Name,Level};
if (Cypher == TRUE)

mvwprintw(win,21,30+i,"Join Conference: %s\t Cypher: Yes\n",s);
else mvwprintw(win,21,30+i,"Join Conference: %s\t Cypher: No \n",5);
1* Make the background of other part back to normal *1
wattroff(win,A REVERSE);
wrefresh(win~;-

Indicates type of encryption scheme *1
Used for storing some information *1
Buffer for communication *1
Buffer for communication *1

c; 1*
temp[20]; 1*
bufferl[MAXSTRING];I*
buffer2[MAXSTRING]il*

1* -- *1
1* Procedure to process the Server reply; int. sockfd is a connection
port used for communication with the Server; WINDOW *win is used as a
template to display the needed information sent by the Server.*1

1* -- *1
void process_reply(int sockfd,WINDOW *win)
{
char
char
char
char

int i,j,k;
int divided_coefi

int level;
int for conferencei

1* Temporary variables *1
1* Check whether any coeff. of Y{x) is divided into

several pieces or not *1
1* Used for checking other client's level *1
1* Checks whether the reply is for a conference or

for any request sent before *1

double valuel,value2;

OTHER *prev,*cur;

1* OBTAIN THE REPLY *1
readline(sockfd,bufferl,MAXSTRING)i
if(cypher == TRUE) mvwprintw{win,20,O,"%s",bufferl)i
if{«c=toupper(bufferl[O])=='V' I Ic == '1'1 Ic == 'B'} && bufferl[l] ') {

decrypt (c, Secret, buffer2,bufferl, TRUE) i

for conference = TRUE;
I else{

decrypt ('v' , key, buffer2, bufferl, FALSE) ;
for conference = FALSE;

== 0) {
mixed = TRUE; /* It is from Ul & Uz ... /

/* Get the size */

97

/* THE REPLY IS AS A RESPONSE FROM SERVER */
if (for_conference == FALSE) /

/* THE REPLY IS INFORMATION DISTRIBUTION */
if (strncmp /buffer2," .distribute'· ,11) == 0) /

distribute(buffer2);
sprintf(buffer1,"OK");
encrypt (' v' , key, bufferl, buffer2, FALSE) ;
writen(sockfd,buffer2,strlen(buffer2»;
mvwprintw(win,20,O,"Client receives information from Server ... \n\n");

/* THE REPLY IS INFORMATION ABOUT ANOTHER CLIENT IS ACTIVE */
}else if(strncmp(buffer2,".participate",12) == 0) /

sscanf(buffer2,"%s %s %d",bufferl,temp,&level); /* Get the info. */
prev = NULL; cur = root;

/* Allocate free structure for storing the new client's info. */
while(cur != NULL) {

prev = cur; cur = cur->next;
}

cur = (OTHER *)malloc(sizeof(OTHER»;
if(cur == NULL) {

mvwprintw(win,20,O,"Fatal Error in malloc 1! !\n\n");
endwin (win) ;
exit/I);

}

/* Allocate buffer for storing the new client's name */
if «(cur->name = malloe ((strlen (temp) +1) *sizeof (char) » == NULL) /

mvwprintw(win,20,O,"Fatal Error in first malloc cur->naroe\n\n");
endwin (win) ;
exit(l);

}
/* Put the client's info. into the structure */
strcpy (cur->name, temp) ;
cur->level = level;
eur->next = NULL;
if(prev == NULL) root eur;
else prev->next = cur;

/* THE REPLY IS A RESPONSE FOR JOIN REQUEST */
lelse if (strncmp (buffer2, ".get"(4) == 0) (

sscanf(buffer2,"%s %d %s",bufferl,&Prime,Secret);
sprintf(bufferl,"%s",Secret);
encrypt('v',keY,bufferl,buffer2,FALSE);
writen(sockfd,buffer2,strlen(buffer2);

/* THE REPLY IS OTHER CLIENT'S REQUEST FOR SETTING A CONFERENCE */
)else if (strncmp(buffer2, ".conference request",19) == 0)'

/* Initialize some parameters */
mixed = FALSE;
subset = size = 0;
/* Get the subset of clients who want to set a conference */
strtok(buffer2,":");
strcpy(temp,strtok('\O',"\n "»;

/* Get each client's name of the subset */
while (strcmp(temp,NULL) != 0) (

if (strcmp(Name, temp) ,= 0) (/* If the name is not her/his-self name */
cur = root;

/* Check if the subset is from Ul & Uz; get the size of the subset * /
while(cur != NULL) {

if (strcmp(cur->name, temp)
if(cur->level != Level)
if (mixed == TRUE) (

if(cur->level == 1) size += weight;
else size += 1;

}else{ /* It is from Uj or Uz */
if(X1[0] == UNUSED) size += weight;
else size += 1;

)
subset += 1;
break;

cur = cur->next;

)
strcpy(temp,strtok('\O',"\n ");

/* Add the size of his/her-self to the other's */
if(mixed == TRUE) {

if(Level == 1) size += weight;
else size += 1;

}else{
if(X1[0] == UNUSED) size += weight;
else size += 1;

)
subset done = subset;
sprintf(bufferl,"OK");
encrypt (I v' , key, buffer1, buffe.rZ, FALSE) ;
writen(sockfd,buffer2,strlen(buffer2});

/* SERVER ASKS THE CLIENT TO OBTAIN INFORMATION OF Prime & Secret FROM
OTHER CLIENT */

)else if (strncmp(buffer2, ".send need", 10) == 0) {
/* Which Z (x) is used; 1m = 1 for Ul; otherwise for U2 & other subset */
if (mixed == TRUE I I (mixed == FALSE && X1[0] == UNUSED) 1m = 2;
else 1m = Level;
divided coef = 0;
sprintf(bufferl, "'. need %d:", 1m) i

/* Check if some coeffs. of Y(x) is in form of <1l (x,8(x) */
forti = O;i < degree;i++) {

if(X[i] <= O){
sprintf(temp,"%d ",i+l);
strcat(buffer1,temp};
if(X[i] < 0) divided coef += 1;

}

1* If so, allocate buffer for (x,8(x» */
if(divided coef > O} (

x = call;c(divided coef,sizeof(int *));
y = calloc(divided-coef, sizeof (double *});
forti = O;i < divided coef;i++) (

x [i] calloc (subset, sizeof (int} } ;
y[i] = calloc(subset,sizeof(double)};

}
/* Put the coeffs. into the new buffer *1
k = 0;
forti = O;i < degree;i++) (

if(X[i] < 0) {
x[k] [0] = X[i];
y[k] [0] = Y[i];
k += 1;

)
indexx = 1;

I
encrypt('v' ,key,bufferl,buffer2,FALSE);
writen(sockfd,bufferZ,strlen(bufferZ);

1* THE CLIENT SENDS INFORMATION OF Prime & Secret TO OTHER CLIENT *1
)else if (strncmp(buffer2, ".need",5) == 0) {

sscanf(buffer2,"%s %d",buffer1,&i};

98

sprintf(bufferl , ".give ");

/* Give the appropriate I m to the client who need it */
if(i == 2 && Level == 1) (

for(j = O;j < weight;j++) {
sprint:f (temp," (%d, %f) ", X2 [j], Z2 [j]);
strcat(bufferl,templ;

)
Jelse{

sprintf (temp," (%d, %f) ",X1(OJ, ZI [OJ);
strcat(bufferl,temp);

/* Discard delimiter */
strcat (bufferl, " ; "') ;
strtok(buffer2 , ":");
strcpy(temp,strtok('\O',"\n "I);

/* Give the appropriate coeffs. of Y(x) to the client who need them */
while (strcmp (temp, NULL I != 0)(

j = atoi (temp) ;
if(X[j-l) > 0)1

sprintf(temp, ,. (%d, %f) ",X[j-l], Y[j-l]);
strcat(bufferl,temp);

)elsel
sprintf (temp, " (%d, %d, %f) ", X[j -1] , j , Y[j -1]) ;
strcat(bUfferl,temp);

I
strcpy(temp,strtok('\O',"\n "»);

I
encrypt('v',key,bufferl,buffer2,FALSE),
writen(sockfd,buffer2,strlen(buffer2»,

99

/* RESPONSE OF OTHER CLIENT IN GIVING INFORMATION OF Prime & Secret */
lelse if(strncmp(buffer2,".give",5) == 0) I

if(subset == subset done) { /* The client get this for the first time */
if(Im == 1 If (Im-== 2 && Level == 2)) indexl = 1;
else index2 = weight;

I
/* Discard delimiter */
strtok(buffer2," ");
strcpy (temp, strtok (' \0 I," (, \n "»;

/* Put I m into the approriate place * /
while (strcmp(ternp, ",") != 0) (

i = atoi(temp);
if(Im == 1 II (1m == 2 && Level == 2) I

for(j = O;j < indexl;j++) if(Xl[j] == i) break;
strcpy(temp,strtok('\O',")");
iflj == indexl)I 1* Put 1m into Xl & Zl(x) */

Xl [indexl] i;
ZI [indexl] atof (temp) ;
indexl += 1;

)else size 1;
)elsel

for(j = O;j < index2;j++) if(X2[j] == i) break;
strcpy (temp, strtok I' \O',") "»;
if(j == index2) { /* Put 1m into X2 & Z2(x) */

X2 [index2] i;
Z2[index2] atof(temp);
index2 + = 1;

)else size 1;
)
strcpyltemp, strtok(' \0' I" (, \n "»);

k = i = 0;
strcpy (temp, strtok(' \0'," (, \n "));

100

1* Put the coeffs. of Y(x) into the appropriate place *1
while (strcmp (temp, NULL) != 0)(

if«j = atoi(templ) < 0) (
strcpy (temp, strtok (" \0' , ", "l) j

X[atoi (temp) -1] -1;
x [k] [indexx] = j;

lelse X[j-l] = j;
strcpy(temp,strtok('\O',")"»;
if(j < 0)(

Ylk] [indexx] = atof(temp);
i = k; k += 1;

}else Y[j-l] = atof(temp);
strcpy(temp,strtok('\O',"(,\n "});

}
if(k > i)indexx += lj
subset done 1;

1* If all the needed info. has beed received *1
if(subset done == O} {

1* Obtain the value of Prime m *1
if (1m == 1 II (1m == 2 && Level == 2» Prime = obtain_value (Xl, Zl, size);
else Prime = obtain value(X2,Z2,size);
if(Prime != FALSE && (Prime % 2) == 0) Prime += 1;
k = 0;

1* Obtain the coeffs. of Y(x) that are in form <D = (x,8(x» *1
forti = O;i < degree;i++) (

if(X[i] < 0) (
Y[i) = obtain value(x[k],y[k] ,subset);
k += 1; -

)

1* Obtain the secret key K *1
value1 = OJ
for(j = O;j < degree;j++) {

value2 = remainder (shadow, j + I, Prime) ;
valuel+= Y[j] * value2;

I
sprintf{temp, "%f",valuelJ;
valuel = modf(valuel,&value2);
if (valuel >= .5) sprintf (Secret, "%d", atoi (temp) + 1);
else sprintf(Secret,"%d",atoi(temp»;

)
/* Notify the Server that the client has processed the info. *1
sprintf (bufferl, "OK" l ;
encrypt ('v I , key, bufferl, buffer2, FALSE) ;
writen(sockfd,buffer2,strlen(buffer2»;

1* AFTER OBTAINING Secret,THE CLIENT SENDS IT TO SERVER FOR CONFIRMATION */
I els'e if (strncmp (buffer2, ". send s,ecret", 12) == 0) {

sprintf(bufferl,ft%s",secret)j
encrypt ('v' , key, bufferl, buffer2, FALSE) ;
writen(sockfd,buffer2,strlen(buffer2»;

/* REPLY IS INFORMATION THAT OTHER CLIENT QUIT FROM Secret Conference */
)else if(strncmp(buffer2,".quit",S) == 0) (

/* Get the info. of a client who has quit */
sscanf(buffer2,"%s %s %d",bufferl,temp,&level);
prev = NULL; cur = root;

/* Search the corresponding structure of the client who quit */
while(cur r= NULL) (

if(strcmp(cur->narne,ternp) == OJ break;
prev= cur;
cur = cur->next;

I
/* Discard the structure */
if (cur != NULL) (

WI

if(prev == NULL) root = CUI->next;
else prev->next = cur->next;
free (cur) ;

/* SERVER SENDS INFORMATION THAT A CONFERENCE IS SET UP OR THE CLIENT IS
GRANTED TO JOIN A CONFERENCE */

}else{
/* This is a response to 'join request' */
if (strncmp(buffer2, "Conference may begin",20) == 0 && 1m >= l} II

strncmp(buffer2,"You can join the conference",27) == OJ{
Conference = TRUE;
info_display(win,"Yes");

}

/* This is a response to the successful conference request */
if (strncmp(buffer2, "Conference may begin", 20) == 0) {

sprintf (temp, "OK") ;
encrypt ('v', key, temp,bufferl, FALSE);
writen(sockfd,bufferl,strlen(bufferl»;

)
wattron(win,A BOLD);
mvwprintw(win~20,0,"%s",buffer2};
wattroff(win,A_BOLD) ;

/* THE REPLY IS FOR CONFERENCE */
)else{

wattron(win,A BOLD);
mvwprintw(win~20,0,"%s",buffer2);
wattroff(win,A_BOLD);

/* Temporary variable */
/* Used as a base in aprivate mod prime * /
/ '" Used as power in aprivate mod prime * /
/ * Used in aprivato mod prime */
/* Temporary variables */

i;
a;
private;
prime;
valuel,value2;

/* -- */
/*procedure to exchange information between the client and Server by
first setting a private comm. key used by both to exchange the
information; into sockfd is the client's connection port for
communication with Server.*/

/* -- */
info_exchange(int sockfd}
{
int
int
int
int
int

char data[20]; /* Used for storing info. */
char bufferl[MAXSTRING]; /* Used for communication */
char buffer2[MAXSTRING]; /* Used for communication */

OTHER *prev,*cur;

while ((private = rand (} % (LIMIT/lO)) 0); /* Get some value for power */

readline(sockfd,bufferl,MAXSTRINGI; /* Get the info. from Server */
sscanf(bufferl,"%d %d %d",&a,&prime,&valuel);

i = remainder(valuel,private,prime);
sprintf(key,"%d",i);

/* Get the private key */

while((value2 = remainder(a,private,prime») == 0);

/* Send the result back to the Server for confirmation */
sprintf(bufferl,"%d\n\O",value2);
writen(sockfd,bufferl,strlen(bufferl)};
sprintf{bufferl,"%d",valuel);
encrypt ('v' , key, buff,erl, buffer2, FALSE} ;

102

writen(sockfd,buffer2,strlen(buffer2»);
1* Get the corresponding response from :the Server *1
readline(sockfd,buffer2,MAXSTRING);
decrypt ('v', key,bufferl,buffer2, FALSE);

1* If the confirmation is valid, info. exchange begins *1
if (strncmp(bufferl, "OK: ",3) == O){

1* Send the client's info. to the Server *1
a = bufferl [st.rlen (bufferl) - 2];
sprintf(bufferl,"%s %d",Name,Level);
encrypt(a,key,bufferl,buffer2,FALSB);
writen(sockfd,buffer2,strlen(buffer2);

1* Obtain the response from the Server *1
readline(sockfd,buffer2,MAXSTRING);
decrypt('v',key,bufferl,buffer2,FALSE);
1* Get the degree of Y (x) & the weight of Ul over U2 *1
sscanf(bufferl,"'%d %d",°ree,&weight);

strtok (bufferl, ": fI) ; 1* Discard delimi.ter * I
strcpy(data,strtok('\O',"'(,\n "j);

1* Obtain the info. of other clients who have made connections to Server *1
while (strcmp {data, NULLj != 0) (

prev = NULL; cur = root;

1* Allocate a free structure for each of the clients *1
while(cur != NULL) (

prev cur;
cur = cur->next;

cur = (OTHER *) malloc(sizeof(OTHER»;
if (cur == NULL) (

printf("Fatal Error in malloc !! !\n");
exi t (1) ;

I
1* Allocate buffer for storing client's ID in each structure */
if«cur->name = malloc((strlen(data)+lj*sizeof(char)) == NULL) (

printf("Fatal Error in malloc cur->name\n");
exit(l);

1* Put the name & level of each corresponding client in the structure *1
strcpy(cur->name,data);
strcpy(data,strtok('\O',")");
cur->level = atoi{data);
cur->next = NULL;
if (prev == NULL) root = cur;
else prev->next = cur;
strcpy (data, strtok (' \0 I, " (, \n ..));

1* Notify the Server that all info. has been received *1
sprintf (bufferl, "OK") ;
encrypt ('v', key, bufferl,buffer2, FALSE);
writen(sockfd,buffer2,strlen(buffer2));
return TRUE;

1* The confirmation is not valid *1
lelse(

fputs(bufferl,stdout);
return FALSE;

103

/* -- */
/* Procedure to display help menu or Secret Confer·ence information;
WINDOW *w is used as a template to display the information.*/

/* -- */
void help (WINDOW *w)
(

wmove(w,20,0);
wrefresh (w) ;
mvwprintw (w, 20,0, "SECRET CONFERENCE: \n\n") ;
mvwprintw(w,20,2, IO Request Commands: \n");
mvwprintw(w,20,3,"* Every command should begin with '.' as follows:\n\n");
mvwprintw(w,20, 4, IO.conference xCI ... C(x-I) -->");
mvwprintw(w,20,38,"Set a conference with other (x-I) clients\n lO

);

mvwprintw(w,20,4,".cypher on/off --> Display on/off the encrypted data\n");
mvwprintw(w,20,4,".help --> Display list of all conunands\n");
mvwprintw(w,20,4,".join --> Join a conference if any\n");
mvwprintw(w,20,4,".leave --> Leave a conference\n lO

);

mvwprintw(w,20,4,".list --> List all clients that are active\n");
mvwprintw(w,20,4,".quit --> Exit from the Client Program\n\n");
mvwprintw(w, 20, 2, "Conununication Commands: \n\n");
mvwprintw(w,20,4,"* To communicate with others who join a conference, ");
mvwprintw(w,20,54,"data should be encrypted\n");
mvwprintw(w,20,4,"* To encrypt the data, encryption type must be selected");
rnvwprintw(w,20,6I,"by pressing\n");
mvwprintw{w,20,6,"characater 'v', 'b', or 'i ' before typing the data\n ");
mvwprintw (w, 20,6, "e. g.: 'b Hello ina, how are you?' \n\n") ;
wmove(w,22,OI;
wclrtoeol (w) ;
wrefresh (w) ;

/* Temporary variable */
/* Indicates the result of info. exchange */
/* Successful or fail connection to Server */
/* Communication port address */
/* Indicates a response (from Server/stdin) */

c;
connection;
sockfd;
nfound;

/* -- */
/*MAIN PROCEDURE: procedure to run Client program; an example of running
the program is Client Nur 1.*/

/* -- */
main(int argc,char **argv)
(
int i;
int
int
int
int

char Buf(MAXSTRING];
char buff(MAXSTRING);
char buffer(20];

/* Used for communication */
/* Used for communication */
/* Used for storing info. from Server */

struct sockaddr in
struct timeval
fd set
WINDOW

serv addr;
wait-time;
readset;
*win;

1* Used by network protocol */
1* Used by network protocol */
/* Used by network protocol */
/* Used for displaying messages */

if (argc < 3) (
printf("ERROR !! !\n");
printf("Command should be as follows\n");
printf("Client <name> <level>\n");
printf("Example: Client Nur l\n");
exit (1) ;

/* INITIALIZATION */
strcpy(Name,argv(I]) ;
Cypher FALSE;
Level atoi(argv[2]);
wait time.tv sec 0;
wait-time. tv-usee 0;
Conference - FALSE;
srand(getpid(»;

104

/* INITIALIZE SERVER STRUCTURE FOR MAKING A CONNECTION TO SERVER */
memset((char *} &serv addr,O,sizeof(serv addr});
serv_addr. sin family - AF INET;
serv_addr.sin=addr.s_addr inet addr(SERV HOST ADDR);
if(argc == 4) serv_addr.sin-port = htons(atoi{argVi3]»);
else serv_addr. sin_port = htons (DEFAULT_PORT) ;

dol
c = UNUSED;
/* OPEN A TCP SOCKET (AN INTERNET STREAM SOCKET) */
if ((sockfd = socket (AF INET, SOCK STREAM, OJ) < °J

printf ("Client can't -open stream socket\n");
else(

/* SENDS CONNECTION REQUEST TO SERVER */
if ((connection = connect (sockfd, (s truct sockaddr *) &serv addr,

sizeof(serv_addr})), < 0) printf("Client can't connect-to server\n");
else c = info_exchange(sockfd);

/* If connection (connection) fail or info. exchange (c) fail *1
if(c == FALSE I I sockfd < 0 I I connection < 0) I

printf("Try again? (yin): ");
gets (buffer) ;
c = toupper(buffer[O]);
close(sockfd);
if(c == 'N') exit(l);

)
)while(c == 'Y'};

1* WINDOW INITIALIZATION *1
win = initscr();
echo () ;
info display (win, "No") ;
wsetscrreg(win,0,20);
scrollok(win,TRUE);
idlok{win,TRUE);
help (win) ;
idlok(win,FALSE);
scrollok(win,FALSE);
wrefresh (win) ;

for I;;) (
FD ZERO(&readset);
FD-SET(O,&readset) ;
FD=SET(Sockfd,&readset);

/* Create a screen for input/output *1
1* Display the input response *1
/* Display the client's info. *1
/* Set area for output in the screen */
/* Enable scrolling *1

/* Display help in the output area */
1* Disable scrolling */

/* Initialize readset *1
1* Put stdin descr. in readset *1
1* Put sockfd in readset *1

1* WAITING FOR RESPONSE EITHER FROM SERVER OR FROM STDIN */
if((nfound = select (sockfd + l,&readset,NULL,NULL,&wait_time») > 0) {

1* RESPONSE FROM STDIN *1
if(FD ISSET(O,&readset)) I

mvwgetstr (win, 22,0, Buf) ;
wmove(win,20,O);
scrollok(win,TRUE);
idlok(win,TRUE);
wrefresh (win) ;

if(strcmp(Buf,"") == 0);

/* Put the response into buffer */

/* Enable scrolling *1

/* Do nothing *1

1* THE RESPONSE IS QUIT REQUEST */
else if(strncmp(Buf,".quit",5) == 0) {

encrypt ('v' , key, Buf, buff, FALSE) ;
writen(sockfd,buff,strlen(buff});
readline(sockfd,buff,MAXSTRING};
decrypt('v',key,Buf,buff,FALSE);
if (st.mcmp (Buf, "OK",2) == 0) {

close (sockfd) ;

105

endwin (win) ;
exi t (0) ;

/* THE RESPONSE IS COMMUNICATION DATA */
lelse if (Buf [0] != '.') (

/* CONFERENCE DOES NOT EXIST YET */
if (Conference == FALSE) (

mvwprintw(win,20, 0, "Every cormnand must be begun w/ '.'\n");
mvwprintw(win,20,O,"E.g.. list etc. or type '.help' for help\n\n");

/* CONFERENCE EXISTS */
lelse{

c = toupper(Buf[O]);

/* ENCRYPTION TYPE IS NOT DETERMINED */
if(Buf[l] != ' • && ! (c == 'V' II c == 'B' II c == 'I') (

mvwprintw(win,20,O,"Determine encryption type, i.e., v or i ");
mvwprintw(wiu,20,41,"or b, before cormnunicating w/ others\n");
mvwp.rintw(win,20,O,"E.g. 'b How is it goin' Alice?'\n\n");

/* ENCRYPTION TYPE IS DETERMINED*/
lelse{

strtok(Buf," If);
strcpy(buff,strtok('\O',"\v"»;
sprintf(Buf,"<%s,%d>: %s",Name,Level,buff);
encrypt(c,Secret,Buf,buff,TRUE);
writen(sockfd,buff,strlen(buff);

}

I

/* THE RESPONSE IS HELP COMMAND */
I else if (strncmp (Buf, ". help", 5) 0) help (win) ;

/* THE RESPONSE IS CYPHER COMMAND */
else if (strncmp (Buf, ".cypher",7) == 0) {

memset(buffer,NULL,20);
sscanf(Buf,"%s %s",buff,buffer);
/* If the argument is 'on' or 'off' */
if(buffer[O] != '\0') (

if (strcmp(buffer, "on'" == 0 I I strcmp(buffer,"On") == 0 I I
strcmp(buffer,"ON"l == 0) cypher = TRUE;

else if (strcmp(buffer, "off") == 0 II strcmp{buffer, "Off"} 0 II
strcmp(buffer,"OFF") == 0) Cypher = FALSE;

if (Conference == FALSE) info display (win, "No");
else info display(win,"Yes");

/* No argument, otherwise */
)else mvwprintw(win,20,O,".cypher [on/off]\n");

/* THE RESPONSE IS NOT ANY REQUEST COMMAND */
lelse if (strncmp (Buf, ".leave",6) != O&&.strncmp(Buf,".list",S)!= 0&&

strncmp(Buf, "~I .join" ,5) != O&&.strncmp(Buf," .conference",ll) != O}
mwprintw(win,20, 0, "Invalid Command; Type' .help' for help\n\n");

/* THE RESPONSE IS OTHER REQUEST COMMAND */
else{

i = UNUSED; memset(buff,NULL,strlen(buff»;
s.scanf(Buf,"%s %d %s",buffer,&i,buff);

/* THE RESPONSE IS CONFERENCE REQUEST BUT NOT VALID */
if (strncrnp(Buf, ",.conference", 11) == 0 && (i == UNUSED II

strcmp (buff, NULL) == O)}
mvwprintw(win,20, 0, "Invalid Command; Type' .help' for help\n\n");

/* OTHERWISE, SEND IT TO SERVER */
else(

encrypt('v',key,Buf,buff,FALSE);

106

writen(sockfd,buff,strlen(buff»);

/* WAITING FOR SERVER'S REPLY FOR LEAVE REQUEST */
if(strcmp(buffer,".leave") == 0 && Conference == TRUE) {

readline(sockfd,buff,MAXSTRING};
decrypt('v',keY,Buf,buff,FALSE);
if(strncmp(Buf,"OK",2) == 0) {

Conference = FALSE;
info_display (win, "No") ;

)
scrollok(win,FALSE);
wmove(win,22,O);
wrefresh (win) ;

/* Disable scrolling */
/* Locate cursor at the input area */
/* Refresh the screen */

/* Call proced. to process the reply */
/* Disable scrolling */

/* THE RESPONSE IS FROM SERVER */
}else if(FD ISSET(sockfd,&readset») (

scrollok(win,TRUE); /*
idlok(win,TRUE);
process reply(sockfd,win);
scrollok(win,FALSE);
echo (l ;

Enable scrolling */

)
wmove(win,22,O);
wclrtoeol (win) ;
wrefresh(win);

/* Locate cursor at the input area */
/* Clear the input line */

.•..)

VITA

Nur Hadisukmana

Candidate for the Degree of

Master of Science

Thesis: AN UNCHANGED SHADOW-BASED SECRET SHARING SCHEME

Major Field: Computer Science

Biographical:

Personal Data: Born in Jakarta, Indonesia, on July 23, 1963, son of Mr. D, Machdar
Noor and Mrs. Hamida.

Education: Graduated from XXVII Public High Schoo~ Jakarta, Indonesia, in May
1982; received Sarjana Fisika degree with a major in Physics from the
University of Indonesia, Jakarta, Indonesia in December 1988; completed the
requirements for the Master of Science degree in Computer Science at
Oklahoma State University, in December 1995,

Professional Experience: Systems Analyst and Programmer, Informatics Develop
ment Center, National Atomic Energy Agency, Jakarta, Indonesia, December
1988 to June 1990; Computer Networking Analyst, Informatics Development
Center, National Atomic Energy Agency, Jakarta, Indonesia, June 1990 to
June 1991.

