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PREFACE 

This investigation will be based on the assumption that 

the duration of an activity can be controlled by the modifi­

cation of resources allocated to that activity. This 

assumption, although widely accepted as valid~ is rarely in­

corporated in an activity network model. The primary objec­

tive of this dissertation will be to present an activity 

network model based on the assumption of the controllability 

of activity duration and to show that an optimum allocation 

procedure can be derived. This proposed model will also 

differ from the more conventional model in the interpreta­

tion of the concept of resources. In the proposed model 9 

the resources·· are considered as a flow instead of a cost 

or in uni ts of. dollars per unit of time rather than in q.cil­

lars themselve.s. 

Interest in this area developed in the Spring of 1964 

when the writer was studying a course in system theory at 

Oklahoma State University taught by Dr. Richard Cummins. 

During the discussion of electrical components and networks 

the amazing similarity between these activities and activity 

networks revealed itself. This led to the adaption of the 

principles of system theory to optimize a project described 

by an activity network •. It is a pleasure to acknowledge 
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indebtedness to Dro Richard Cummins who provided the basis 

for this development" 

Thanks are also due to Professors Wilson Jo Bentley~ 

Wolter Jo Fabrycky, Robert Ao Hultquist~ Paul Ao McColltuni 

and Paul E, Torgersen .for their guidance of my doctoral 

program ru1d this investigation" Professors Bentley 9 

Fabrycky ~ a.."'ld Torgersen also deserve special acknowledge­

ment on a personal basiso Without the help and encourage­

ment given by them from ti .. me·=to=ti.m.e 9 the completion of a 

four year program of graduate studies would have been impos­
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CHAPTER I 

INTRODUCTION 

Two major restrictions confront the decision-maker when 

a large project is tovbe planned. First, a certain sequence 

must be maintained between the activities comprising the 

project. Second, the total amount of resources available 

for the execution of the project are limited. Several 

models exist that may be used to represent the required 

sequence of activities, but the question of allocating lim­

ited resources is rarely treated. The solution proposed in 

this dissertation is based on the assumption that the dura­

tion of an activity can be controlled by the amount of re­

sources allocated. An activity network model is presented 

that can be used to find the optimum allocation of resources 

for the project. 

Present Project Planning Models 

The analysis of a project as an activity network is of 

comparatively recent origin. An early application of major 

importance was made by Malcolm, Rosebom, Clark, and Fazzar 

(1) in 1958 in connection with the Polaris program. The 

method was called Program Evaluation and Review Technique or 
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PERT. Another technique known as the Critical Path Method, 

or CPM, was introduced by Kelley and Walker (2) in 1959. 

Although other similar methods have been developed, PERT and 

CPM are the most commonly used in activity network analysis. 

The acceptance of these network analysis techniques 

has been widespread in project management. Three main rea­

sons may be given for the rapid adoption of PERT and CPM. 

First, the concepts are simple to understand and apply. 

Second, they provide a convenient means for enforcing objec­

tivity in planning which might otherwise be left to intui­

tion or tradition. Finally, the techniques reduce the 

complexity of the planning problem by considering the over­

all project in terms of its component activities. 

Both PERT and CPM are concerned only with the sequencing 

of activities. The problem of limited resources has not 

been made a part of these models. The aspect of limited re­

sources has been approached in an indirect way by an algo­

rithm known as PERT-COST. This algorithm minimizes the cost 

of the project by considering the effect of expediting cer­

tain activities at the expense of slowing progress on others. 

The cost problem was also solved by the use of Linear Pro­

gramming by Charnes and Cooper (3). 

The problem of resource allocation in direct form was 

considered by Weist (4). Kelley (5) conside.red the same 

problem as Weist, but used an empirical approach. In each 

case, the requirements for resources for the project are not 
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assumed to be fixed. A comprehensive summary of the 

available network planning methods may be found in Muth and 

Thompson (6) and Moder and Phillips (7). There are no ex­

isting methods for controlling the duration of a project by. 

varying the allocation of resources to the activities. 

Description of PERT - CPM Models 

Both PERT and CPM are very similar in their logical 

format. All projects are characterized as sets of activi­

ties required to complete the project. Activities are char­

acterized by sets of terminal events designated 'start' and 

'end'. The physical nature of the project constrains the 

execution of these activities to some specified order. This 

specified order gives rise to a large number of precedence 

and succession relationships between the events and the ac­

tivities. The principal relationships are: 

(1) The 'start' event of an activity precedes the 

'end' event for the same activity by a time 

duration called 'the activity time'. 

(2) The 'start' event of an activity succeeds all 

'end' events for all activities preceding it. 

(3) The event 'project start' precedes all activ­

ities and events in the project. 

(4) The event 'project end' succeeds all activities 

and events in the project. 

The relationships described above can be expressed 

graphically in the form of a network. The nodes of the 
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network represent events, and the arcs represent activities. 

The direction of time flow is shown on each arc from the 

'start' towards the 'end'. Thus, all arrows point away from 

the event 'project start' and towards the event 'project 

end'o Each event on this network is labeled by a non­

negative integer. It is usually more convenient to have 

i < j, whenever event i precedes event j directly or indi­

rectly. However, this i~ not mathematically necessary. An 

activity that has its 'start' labeled i and its 'end' labeled 

j is represented by the double subscript (i,j). 

Associated with each activity is an estimate of the ex­

pected time required for its completion. This is repre-

sented by the lengths of the arcs in the network. The basic 

difference in CPM and PERT occurs from the different methods 

of arriving at the time estimate. In CPM only one time 

estimate is made, and this value, Y .. , is treated as an lJ 
algebraic variable. In PERT, three time estimates are made: 

(1) The probable earliest completion time, ao 

(2) Probable longest time for completion, b. 

(3) The most probable time for completion, m. 

In this case Y .. is defined as a random variable with a Beta lJ 
distribution and with range from a to band modem. The ex-

pected value of this distribution is used as the length of 

the corresponding arc. 

Similarly, there are two chronological times TE(i) and 

TL(i) associated with each event or node of the graph: 

(1) TE(i) = the earliest possible time of the 



occurrence of event, i, for a given 

project start, TE(o)• 

(2) TL(i) = the latest possible time of occurrence 

of event, i, which would not be in-

compatible with a given project end, 

5 

From the network relationships between events and activities, 

it is possible to develop the following recursive relation­

ships for computing TE(i) and TL(i)" 

TE(o) i = 0 

TE(i) = 

max(TE(k) + Yki) 
for all (k ,i) e:P 

and 

TL(s) i = s 

TL(i) = 

min(TL(k) - Yik) for all (i ,k) e:P. 

From these equations, it is possible to compute the follow­

ing information about each activity (i,j) included in the 

project P: 

(1) Earliest starting time, TE(i)• 

( 2) Latest starting time, TLC j) - Yij • 

.(3) Earliest completion time, TE(i) + Yij. 

(4) Latest completion time, TL(j)" 

( 5) Maximum available time, TL( j) - TE( i). 

(6) Slack, TL(j)-TE(i)-Yij" 
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The above information becomes the basic foundation on 

which management decisions about a particular activity are 

based. Slack represents the amount of latitude available to 

the decision-maker in the scheduling of that activity. If 

the slack is zero, the activity is critical because these­

quencing decision is no longer controlled by the decision­

maker. In CPM it can be shown that there is always a 

connected chain of critical activities from project start 

to project end (8). This is called the critical path. In 

PERT networks, there is no single critical path, but each 

activity has a certain probability of being critical. The 

activities which may become critical with a high probabil­

ity are considered more critical than those having a smaller 

probability of becoming critical. 

The Question of Limited Resources 

In the- basic CPM and PERT models, emphasis is given to 

the sequence of activities and the expected times of the 

occurrence of events. A major aspect of the decision envi­

ronment, the limited availability of resources, is usually 

not made an explicit part of the model except in a few minor 

ways. However, this does not imply that a successful appli­

cation of these techniques is possible without the consid­

eration of the limited availability of resources. This 

consideration has to be implicitly accounted for during im­

plementation. The two most common ways of achieving this 

are: 



(1) Assign some kind of priority ranking to the 

activities, such as criticality. 

(2) Assign a schedule under the assumption of 

unlimited resource availability and follow 

the schedule whenever the resources are 

available, and introduce delays otherwise. 

The explicit introduction of the aspect of limited re­

sources in an activity network model is beset with many 

problems. A few of these are: 

(1) Lack of explicit criteria for the evaluation 

of effectiveness. 

(2) Varying policies of resource management in 

different organizations. 

(3) Lack of sufficient knowledge of the exact 

relationship between resource allocation and 

the completion time for an activity. 

(4) The non-homogeneous and discrete nature of 

most input resources. 

(5) Possible interaction between the sequence of 

activities and their resource requirements. 

In view of the above problems, the formulation of a 

mathematical model is conceptually difficult, and, at best, 

complex. However, certain assumptions must be made if for­

mulation is to be attempted. The model developed in this 

dissertation is based on the following assumptions: 

(1) Elapsed time between the start and the end of 

a project is the measure of effectiveness. 
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(2) Optimum effectiveness is achieved by mini-

mizing elapsed time. 

(3) Resources are considered to be continuously 

di visible, homogeneous, and interchangeable. 

(4) A relationship between resource allocation 

and activity time exists. 

(5) Possible interactions between activities 

are disregarded. 

Project Control Through Resource Allocation 

The effectiveness function for a decision situation is 

presented by Churchman, Ackoff, and Arnoff (9) as 

E = f(x. ~y.). 
l J 
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Two classes of variables are involved. Those directly under 

control of the decision-maker are designated xi and those 

not directly under his control are designated yj. Barnard 

(10) defines all factors upon which the outcome depends as 

limiting factors. Those limiting factors which can be sue-

cessfully altered to modify effectiveness are called strate­

gic factors. Thus, both the xi variables and the yj 

variables are limiting factors. Only the xi variables are 

strategic factors. 

In an activity network model, the sequence relations 

and resource limitations are factors over which the decision-

maker has no control. These are the states of nature, y j • 

On the other hand, the individual resource allocations to 
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the activities are directly under management control. These 

are the strategic factors, xi. In the present models for 

activity network planning only the environmental factors yj 

are considered. The decision-maker has no positive control 

over the duration of the activities comprising the project. 

In this dissertation, both types of variables are in­

corporated in the model. This allows the decision-maker to 

control the activities in the project in order to optimize 

effectiveness rather than merely following a schedule deter­

mined by the environmental factors. This new approach is 

the major contribution of this investigation. Although the 

mathematical model presented is restricted by its assump­

tions, the insight it provides should be of value in project 

management. 



CHAPTER II 

FUNDAMENTAL PREREQUISITES 

When the effectiveness measure is the elapsed time be­

tween the event 'project start' and 'project end', intuitive 

considerations indicate that optimal resource allocation 

would be that allocation which forces simultaneous comple­

tion of,all activities preceding an event. This chapter will 

justify this intuitive reasoning. In addition, the concept 

of slack and critical path defined for the basic CPM model 

will be shown to hold for the resource allocation model un­

der development. Finally, the nature of the resource 

allocation-activity duration concept will be explored with 

the objective of establishing certain criteria for optimal 

resource allocation. 

The Basic.Resource-Time Function 

In the planning of a project, it is generally accepted 

that there is an inverse relationship between the amount of 

resources allocated to an activity and the time needed for 

its completion. This means that an activity could be ex­

pedited by allocating additional resources. Conversely, the 

completion of an activity could be delayed by curtailing the 

resources allocated. For example, if the resource is labor, 

10 
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the activity can be expedited by hiring additional labor or 

delayed by laying off part of the labor force. 

Control of the activity completion time through the 

modification of allocated resources has certain limitations. 

For example, if laying-off of labor leaves too few workers, 

it might not be possible to complete the job at all regard­

less of the time duration involved. At the other extreme, 

if too many workmen are employed, the activity may not be 

expedited beyond a certain limit. The additional workmen 

may only be in each others way and not contribute much to 

the completion of the activity. Thus, there would be a lim­

iting restriction on the useful resource allocation at the 

extremes. Thus, there may be a range of resource allocation 

between the feasible minimum and a feasible maximum within 

which control would be effected. The resource-time relation­

ship together with its limitations is the basis of the re­

source allocation model. Assumptions regarding this 

relationship are given in the paragraphs which follow. 

Assumption 1. For every activity Ak included in the 

project P, there exists a smallest possible resource alloca­

tion Rk(min) such that for any resource allocation~ less 

than Rk(min), it is physically impossible to complete the 

activity. The time necessary for the completion of Ak with 

the minimum resource allocation Rk(min) is designated 

tk(max). Thus, tk(max) is the latest completion time for Ak 

and it would not be possible to prolong the activity any 

further through the adjustment of resource allocation. 
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Assumption 2. For every activity Ak included in the 

project P, there exists a shortest possible time tk(min) 

such that for any time tk less than tk(min), it would not be 

possible to complete the activity. The resource allocation 

necessary for the completion of Akin the shortest time 

tk(min) is designated Rk(max). Any allocation~ greater 

than ~(max) would not expedite the completion of Ak further 

than tk(min). The extra resource allocation Rk - Rk(max) 

would be idle, and only Rk(max) would be utilized in the 

completion of the activity Ak. 

Assumption 2• The region of feasibility is defined as 

the region within the limits 

and 

Within this region of feasibility, there exists a unique 

relation between the r~source allocation Rk and the time 

required for the completion of the activity tk; This rela­

tion is a continuous monotonically decreasing function. 

Thus, if Rk decreases tk increases, and if Rk increases tk 

decreases. The comparison of two alternative resource 

allocations ~.land Rk. 2 for the same activity Ak under 

Assumption 3 indicates that 

< > 
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and 

< > 

The function described by Assumptions 1, 2, and 3 is illus­

trated in Figure 2.1. The relationship assumed between the 

resource allocation and the completion time can be used to 

establish certain rules for optimum resource allocation when 

the total resource availability in a time period immediately 

preceding a terminal event is limited. Optimum effective­

ness in this case would be the earliest chronological occur-

rence of the particular terminal event. 

Resource 

R(max) 

I 
I 
I 
I 

R(min.) I _ _ T _ _ ____ _ 

I 
I 
I 
t(min) t(min) 

'--~~ ......... ~~~~~~~~~-----~-..-.Time 

Figure 2.1. Resource-Time Function 
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Case 1 - Two Activities Starting at the Same Time 

Let P = {A1 ,A2} be a project consisting of two activi­

ties, A1 and Ai , having the events E1 and E2 as its project 

start and project end, respectively. This situation is 

illustrated in Figure 2.2. 

Also, let 

TE1 = 

TE2 = 

t1 = 

t2 = 

R1 = 

~ = 

R = 

Figure 2.2. Two Activities Starting 
at the Same Time 

time of event E1 

time of event Ei 
duration of activity A1 

duration of activity A2 

resource allocation for A1 

resource allocation for A2 

aggregate resource availability . 

From the precedence-succession relationship, it can be 



seen that TE2 = TE1 + max(t1 ,t2 ). And, the aggregate re-

source limitations can be expressed as R1 + ~ ~ R. Optimum 

effectiveness would be the least time execution of the 

15 

project, subject to this aggregate resource restriction, or 

the minimum possible elapsed time TE2 - TE1 • The problem can 

now be restated as 

Minimize 

Subject to 

Theorem 1: For two activities starting and ending at the 

same time,the resource allocation will be optimum when the 

corresponding t 1 and t 2 are equal, provided the allocations 

R1 and~ are within the limits of feasibility for the re­

spective activities. 

Proof: Let R1 and~ be allocations for which the corre­

sponding activity times t 1 and t 2 are equal. Let there be 

another allocation, (R1* and ~*) and let the corresponding 

activity times be ( t 1* and t 2~~) a Also, let R1* > R1 • Then, 

since R1 + ~ = R1* + ~*, R1* > R1 implies ~* < ~ • Corre­

spondingly, from the monotonically decreasing resource-time 

relationship, these two inequalities imply that t 1* < t 1 and 

t 2* > t 2 or t 1* = t 1 + o 1 and t 2* = t 2 - 52 , where t\ and 52 are 

positive. Therefore, max{ t 1*, t 2*} = max{ t 1 + 61 , t 2 - 02 }. 

But since t 1 = t 2 , max{ t 1* , t/} = max{ t 1 + 01 , t 2 - 62 } = t1 + 61. 

But max{ ti , t 2 } = max{ t 1 , t 1 } = t 1 or in.ax{ t 1*, t 2*} > m':'x{ t1,t2 }. 

A similar result may be obtained by letting ~* > ~ • 
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Therefore, no other allocation (Ri*,Ri*) could result in a 

shorter completion time for the two-activity project, P, and 

the theorem is proved. In this optimum allocation, there is 

no slack time. 

Theorem 2: If t 1 (max) is less than t 2 (max), and if t 2 

corresponding to an allocation Ri = R - R1 (min) is greater 

than t 1 (max) but smaller ~han t 2 (max), { R1 (min) , R - R1 (min)} 

represents an optimum allocation. 

Proof: Since t 2 < t 2 (max), the optimum solution is feasible. 

Let there be any other allocation R1* and Ri*, and let the 

corresponding activity times be t 1* and t 2* o If R1* < R1(min), 

the activity A1 can never be completed and, consequently, 

the allocation is not feasible. If R1* > R1 (min), then Ri* = 

R - R1* < R - R1 (min) or Ri* < Ri • Also, R1* > R1 (min) implies 

that t 1* < t 1(max), and Ri* < Ri implies that t 2* > t 2 • Since 

t 2 > t 1 (max) it fallows that t 2* > t 2 > ti (max) > t 1*. The ref ore, 

max{ t 2*, ti*} = t 2*, max{ t 2 ~ t 1 (max)} = t 2 , and max{ t 2*, ti*} > 

max{ t 2 , t 1 (max)}. Thus, no other allocation (R1*, Ri*) could 

result in a shorter completion time for the two activity 

project, P, and the theorem is proved. In this optimum 

allocation, there exists a slack in the activity A1 • 

If the parameters of the activities and the resource 

restriction do not satisfy the conditions for either Theorem 

1 or Theorem 2, there is no feasible optimum allocation set 

{R1 ,Ri}· This is due to one of the following reasons 

(1) The aggregate resource availability is too 



small to enable a simultaneous execution of 

the two activities. This happens when R < 

R1 (min) + ~ (min) • 

(2) The aggregate resource availability is too 

large, and there are no optimum allocations 

that can utilize all the available resources. 

In this case, the optimum allocation set in­

cludes some idle resources in addition to 

max:imum allocations for the activities. How-

ever, in this second case, there does exist 

an optimum allocation at a lower level of ag­

gregate resource restriction. The proof of 

these statements follows the same pattern of 

that for Theorem 1 and Theorem 2. 

It is now possible to compute the slack in activities 
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A1 and Ai comprising a two activity project under the condi­

tions of optimum allocation. The slack of A1 = TE2 - TE1 - t 1 , 

and the slack of Ai = TE.? - TE1 - t 2 • Substituting the value 

max{ ti , t 2 } for T~ - TE1 the slack of Ai = max{ ti , t 2 } - ti and 

the slack of A2 = max{ t 1 , t 2 } - t 2 • 

If the optimization of the project were under the con­

ditions of Theorem 1, t 1 = t 2 and both slacks are zero. If 

optimization were under the conditions of Theorem 2, then 

t 2 > ti (max) and ti = ti (max) and, hence, the slack of ~ is 

zero and the slack of Ai is t 2 - t 1 (max). The slack 'of A1 = 

t 2 - t 1 (max) = max{ t 2 , t 1 (max)} - t 1 (max) = TE2 - TE1 - t 1(max). 

These slack computations under the conditions of Theorem 1 



and Theorem 2 can be summarized in the following important 

theorem. 
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Theore!!!....2: Slack exists following an activity Akin a proj­

ect with an optimum resource allocation~ only if TEj -TEi 

excedes tk(max). 

Case 2 - Two Activities Having Different Starting Times 

Let P = {A1 ~A2 } be a project consisting of two activi­

ties, A1 and A2 , and having the event E, as its 'project 

end 1 • Let E1 and E2 be the starting events of activities A1 

and~, respectively. This situation is illustrated in 

Figure 2.3. 

Also, let 

Figure 2.3. Two Activities Starting 
at Different Times 

TE1 = time of event E1 
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TE2 = time of event E2 

TE3 = time of event E3 

t1 = duration of activity A1 

t2 = duration of activity~ 

R1 = resource allocation for A1 

~ = resource allocation for ~. 
From the precedence-succession relationship, it can be seen 

that TE3 = max(TE1 + t 1 , TE2 + t 2 ) • And, the aggregate re­

source limitation can be expressed as R1 + ~ ~ R. Optimum 

effectiveness would be the least time execution of the proj­

ect, or the earliest cronological event E3 for a given set 

of starting events E1 and E2 • 

Theorem 4: For two activities starting at different times, 

the resource allocation would be optimum when TE1 + t 1 = TE2 + 

t 2 provided the corre~ponding resource allocations R1 and 

~ are within the limits of feasibility for the respective 

activities. 

Proof: Let R1 and .~ be the allocations for which TE1 + t 1 = 

TE2 + t 2 • Let there be any other allocation R1 and ~ , and 

let the corresponding activity times be t 1* and t 2*. Also, 

let R1* be greater than R1 • Then, since R1 + ~ = R = R1* + ~* 
and R1* > R1 implies ~* < ~ • Correspondingly, from the 

monotonically decreasing resource-time relationship these 

two inequalities imply that t 1* < t1 and t 2* > t 2 or t 1* = t1 + E>1 



20 

and t 2* = t 2 - 62 • Where 61 and 62 are positive. The ref ore, 

max{ TE1 + t 1~~, TE2 + t 2*} = max{ TE1 + t 1 + 01 ~ TE2 + t 2 - 62 }. But, 

TE1 + t 1 = TE2 + t 2 • Hence , max{ TE1 + t 1 + t\ ? T~ + t 2 - 62 = 

TE1 + t 1 + 6 1 • This amount is greater than TE1 + t 1 since 6 1 

is positive or, max{ TE1 + t 1*., TE2 + t 2*} > {TE1 + t 1 ., TE2 + t 2 }. 

A similar result would be obtained by letting ~~~ be greater 

than ~ . The ref ore, no other allocation (R1~~, ~-i~) could re-

sult in an earlier occurrence of event E3 , and the theorem 

is proved. In this optimum allocation., there is no slack 

time. 

Theorem 5: If TE1 + t 1 (max) is less than TE2 + t 2 (max) , and 

if TE3 corresponding to an allocation ~ = R - R1 (min) is 

greater than TE1 + t 1 (max), but smaller than TE2 + t 2 (max) 9 

{ R1 (min), R - R1 (min)} represents an optimum allocation. 

Proof~ Let there be another allocation R1* and R2* ~ and let 

the corresponding activity times be t 1~~and t 2*. If R1*< 

R1 (min)., the activity A1 can never be completed 9 and 9 conse­

quently, the allocation is not feasible. If R1~} > R1 (min) 9 

this implies that ~* is less than R - R1 (min) 9 or ~* < R2 • 

Also, R1* > R1 (min) implies that t 1* < t 1 (max)., and ~* < R2 

implies that t 2* > t 2 • Since~ TE2 + t 2 > TE1 + t 1 (max)., TE2 + 

t 2* > TE2 + t 2 > TE1 + t 1 (max) > TE1 + t 1*. The ref ore, 

max{ TE2 + t 2* 9 TE1 + t 1*} = TE2 + t 2*9 max{ TE2 + t 2 , TE1 + t 1 (max)} = 

TE2 + t 2 , and TE,* > TE3 • Thus 9 no other allocation R1*, R2 * 
could result in an earlier occurrence of event E3 and the 
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' 
theorem is prov~d. In this optimum allocation, there exists 

a slack in the activity A1 • Under all other conditions of 

the parameters of the activities and resource restrictions, 

there is no optimum allocation set {R1 ,Rz} as explained 

before. 

The Critical Path With Optimum Allocation 

The conclusions in the previous section, although 

derived for restricted cases, can easily be extended. In 

cases where there are multiple (more than two) activities 

preincident at an event, Theorems. 1, 2, 4, and 5 can be 

repeatedly applied for pairwise optimization of the resource 

allocation. The conditions. for the existence of slack 

(Theorems 2 and 5) and of no slack (Theorems 1 and 4) rem~in 

· invariant through these repeated applications. 

By successive application of these principles to all 

events included in a project, starting with the event 

'project end' and proceeding backwards, excluding the event 

'project start', the allocation of resources to all activi­

ties in the project can be optimized. An algorithm for ac= 

complishing this based on the principles of network analysis 

of system theory is described in subse_quent chapters. This 

extension of optimization principles to the entire activity 

network, when viewed in light of Theorem 3, leads to the 

following important corrolar:j.es. re.garding an optimum f easi-
. . . ·'. . 

ble resource allocation: 



(1) Among all activities preincident at an event 

Ej, the activity for which the q1,1anti ty TEi + 

tk is a maximum (Ei and Ej being the terminal 

events of activity Ak) does not have a slack. 

(2) For each event, other than 'project start', 

there exists at least one preincident activi-

ty which does not have a slack. All such 

activities can be called "critical." 

(3) There exists at least one critical path in an 

activity network under the conditions of opti-

mum resource allocation, if a critical path is 

defined as an unbroken sequence of critical 

activities from 'project start' to 'project 

end'. 
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At this point, a remarkable similarity is noticed in 

the above corrolaries and the corresponding conclusions ob­

tained by Kelley (2) and Levy, Thompson, and Weist (8) for 

the basic critical path method (CPM) model. It can be said 

that these are invariants in the optimization of the resource 

allocation. 



CHAPTER III 

AN ANALOGY FROM SYSTEM THEORY 

Many important innovations in management science result 

from the discovery of analogies. This search enables exist­

ing solution methods from other fields having similar or 

analogous characteristics to be utilized without unnecessary 

duplication of research effort. An analogy from system 

theory is disucssed in this chapter. The first section will 

describe the similarity between the electromechanical systems 

and the activity systems, the second will describe the na-

ture of an activity as a two-terminal system component, and 

the third will describe a necessary modification required 

for the use of system theory. 

Similarity Between Electromechanical 

and Activity Systems 

The composite system of an activity network together 

with its relationships and resource allocations is quite 

complex. In recent years, system theory has been well de­

veloped for the analysis of complex systems. To quote 

Koenig and Blackwell (11): 

If the systems to be analyzed were composed of only 
two-terminal components, with mathematical 
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counterparts in electrical circuit theory, there 
would be no real need to search for a more general 
analysis procedure. 
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Because of the generality of the procedure, its adaption to 

the _ system of activities and resource allocations is promis­

ing. However, a critical analysis of the mathematical char­

acteristics of the system components is necessary before any 

such adaption can be attempted. 

Koenig and Blackwell (11) state the following necessary 

prerequisites for the analysis of a physical system: 

(1) A mathematical description of each component. 

(2) A mathematical description of how the compo-
nents are combined to form a system. 

The components of the activity-resource allocation sys­

tems are the individual activities as well as the slacks at 

the terminations of the activities. The fundamental charac­

teristics of these components that need analysis are the re­

source allocation and the time duration. In the case of 

individual activities, the mathematical relationship between 

these two is uniquely defined. 

In the case of slacks, the resource allocation is de­

termined by the preincident activity and time duration by 

the two events, the end of the preincident activity, and the 

start of the postincident activity. Thus, the mathematical 

description for both types of components is complete, and 

the first prerequisite is satisfied. 

A complete description of how the components, activi­

ties, and slacks are combined to form the system is inherent 

in the formulation of the activity network. Thus, the sec­

ond prerequisite is also satisfied. 

Besides these prerequisites, the variables of the 
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analysis, the resource allocation and the time duration, are 

analogous to the variables in the analysis of an electrical 

circuit, the current and the e .m.f. The resource allocation 

is actually a flow of resources and would be very similar 

mathemati~ally to the electric current which is a flow of 

electrons . The time duration of an activity is a measure­

ment taken only with respect to the two-terminal events of 

the activity and would be similar in characteristic to the 

electrical e.m.f. which is also measured in the same fash­

ion. Thus, the analogy between the electromechanical system 

and the activity-resource allocation system is complete. 

The analytical procedures of system theory can be con­

fidently applied to the activity-resource allocation system. 

However, one important difference in the two systems must be 

recognized although it does not present any mathematical 

difficulty in the application. This difference lies in the 

fact that the variables of the electrical system are time­

dependent, whereas time itself is a variable in the 

activity-resource allocation system. 

Activity as a Two-Terminal Component 

The representation of individual activities as system 

components takes the form of an oriented line segment. The 

two terminals of the line segment would be representative of 

the two events 'start' and 'end' for the activity as shown 

in Figure 3.1. The orientation of the line segment would be 

dictated by the direction of time flow. The measurement of 

the time duration of the activity could be achieved 
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hypothetically by placing a conceptual time-meter~ T, across 

the two terminal events in a manner similar to the connec-

tion of a voltmeter. The resource allocation could be meas-

ured by placing an imaginary resource-allocation-meter, R, 

immediately at the end of, and in series with, the oriented 

line se~~ent simil.ar to the connection of an ammeter. 

Figure 3.1 then represents the terminal graph of the activ-

ity as a two terminal component. 

Start End ~ ', / --~-

''----0-___ _.... ./ 
Figure 3.1. A Two-Terminal Component 

The terminal equations, which record the mathematical 

characteristics of the two-terminal component can then be 

stated as follows for real activities: 

T = T(max) if R ·= R(min) 

= T(min) if R ~ R(max) 

= cp (R) if R(min) ~ R < R(max). (3.1) 

And, for slack activities, 



In Equation (3.2), the subscript D indicates a driver, 

absorber, or any other specified function. In the case of 

slack activities 9 the resource allocation is uniquely de­

fined as being equal to the resource allocation of the pre­

incident activity. The nature of slack activities is that 

of an absorber~ or reverse driver component. It should be 

noted that the component terminal equations are usually non­

linear but uni-valued'and, consequently, have uniquely de­

fined inverses. This will be very helpful in the analytical 

solution of the system. 

The representation of activities individually is simply 

a collection of oriented line segments. However, a complete 

project or activity network is an integrated system. The 

entire system, including the precedence-succession relation­

ships between these activities must, therefore, be repre­

sented in the form of a linear graph. Hence, in the 

subsequent analysis of the system, heavy reliance must be 

placed on the definitions, theorems, and postulates of 

linear-graph theory. These are usually expounded in great 

detail in many leading books in the fields of system theory, 

operations research, and mathematics (11) 9 (12), (13), (14). 

A short summary of these is included in the Appendix for 

reference purposes. 
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Minimum Allocation Diagram 

The time required for the completion of an activity is 

dependent upon the resource allocation to that activity. If 

the activity is to be represented by a line~ and if the 

length of the line is to represent the magnitude of the time 

required 5 there would be many possible time representations 

of a single activity. Thus~ there could be infj_nitely many 

representations or diagrams for every activity network~ de­

pending upon the individual resource allocations. One such 

representation would be optimal with the elapsed time be­

tween the 'project start' and the 1 project end 1 being a 

minimum. 

Another such diagram would result if it were decided to 

allocate the minimum possible amount of resources to all 

activities. This would be called a minimum allocation dia­

gram. Such a minimum allocation diagram has some very 

useful properties and could be used as the effectiveness 

measure of the system. This would be a necessary complement 

to the analysis of the system with the help of system theory 

as the usual procedures of system theory do not entail an 

effectiveness function. These properties of the minimum 

allocation diagram can be described as follows~ 

(1) As the time duration for each activity is 

uniquely defined in a minimum allocation 

diagram 9 it can be concluded that there is 

at least one preincident activity at each 



event which does not have slack. Such a no­

slack activity could ag~in be called critical. 

As each event has at least one preincident 

critical activity, the following important 

conclusion can be drawn. In a minimum allo­

cation diagram, there exists a tree, all 

branches of which are critical. This would 

be called minimum-critical-tree. 

(2) All chords of the minimum critical tree com­

prise of preinciqent activities at various 

events. Consequently, all of them would have 

non-negative slack. The slack would be zero 

if there are more than one preincident criti­

cal activities for any event. Otherwise, the 

slack would be positive. 

(3) It can be noted that the events in a minimum 

allocation diagram are not necessarily bal­

anced for the flow of the resource allocation. 

This means that the sum total of the resource 

allocations of all the preincident activities 

does not necessarily equal the sum total for 

all the postincident activities, or in other 

words, the cutset equations are not satisfied. 

However, this does not constitute a major 

obstacle in the usefulness of the minimum allo­

cation diagram, because attention is centered 
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on the minimum critical tree only, and no ref­

erence is made to the cutset equations. 

Once a minimum critical tree is found from a minimum 
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allocation diagram, it forms the basis for the formulation 

of system equations. The choice of this particular tree is 

dependent on the fact that if an activity is critical in a 

minimum allocation diagram, it would also be critical in any 

optimum allocation diagram. This can be stated as the fol-

lowing theorem. 

Theorem 6; In an optimum allocation diagram, there can be 

no positive slack in any activity which was represented by a 

branch of a minimum critical tree. 

Proof: Let Figure 3.2 represent one of the fundamental cir­

cuits in the minimum allocation diagram. Activities A1 , Az, 
and A3 are the branches of the minimum-critical-tree and~ 

is one of the chords of the tree, with the slack in A4 being 

As. 

Figure 3.2. A Circuit in the Minimum 
Allocation Diagram 
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For any resource allocation set (R1 , R2 , R3 , ~' Rs), 

the following quantities would be constrained due to the 

position of this fundamental circuit in the total system 

graph, and the necessity of satisfying the cutset equations 

at each of the four events: 

(1) R1 + Rt. would be constrained by the incident 

resource allocations a~ E1 o 

(2) R4 = Rs. 

(3) ~ + R3 would be constrained by the incident 

resource allocations at Es. 

( 4) R.z - R1 would be constrained by the incident 

resource allocations at E2 • 

( 5) R3 - ~ would be constraine~ by the incident 

resource allocations at E3 o 

Now, let there be an optimum allocation set (R1*, ~* 9 R3*, R4i~) 

and let this set of resource allocations result in a slack 

in activity A3 • The fundamental circuit can now be repre­

sented as shown in Figure 3.3. The slack in activity A3 can 

be represented as a slack activity As. Since the slack is 

non-negative, TE4 - TE1 > TE5 - TE1 or t 4 > t 1 + t 2 + t 3 • Also, 

since the s~hedule is feasible~ t 4 < t 4 (max) and ~ > R., (min). 

Let there be another resource allocation set (R1* = 6, 

~*- 6, R,*- o, R4*+ 6) and let the corresponding activity 

times be t 1*, t 2* 9 t 3*, and t 4*, re spec ti vely. Then 

R1 * - 5 + R4* + 6 = R1* + R4~~ 

R4* + 5 + R:,* - 6 = ~* + R:,* 



~~" - o - R1* + o = ~* - R1* 
R3* - 6 - ~* + 5 = R,~" - ~*. 
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This implies that if constraints 1, 2, 3, 4, and 5 have been 

satisfied by the allocation set (R1*, ~*, R3*, R4~~), then they 

are also satisfied by (R1* - 5, ~* - o, R,* - 6, R4* + 6). 

Figure 3.3. Revised Circuit 

If 6 is a small positive quantity, the monotonically 

decreasing resource allocation-activity time relationship 

implies that t 4*< t 4 • Also, 6 can be chosen small enough so 

that the relationship t 4* > t 1* + t 2* + t 3* is not violated. 

Then, it can be concluded that t 4* < t 4 or max{ t 4* '· t 1* + t 2* + 

t,*} < max{ t 4 , t1 + t 2 + t 3 }. Also , TE4* - TE1~~ < TE4 - TE1 or 

(R1*, ~*, R,~", R4*) is not an optimum resource allocation set 

and the theorem is proved. 



CHAPTER IV 

FOR1'1ULATION OF THE SYSTEM MODEL 

The objective of this chapter is to set up a procedure 

for writing the entire set of system relationships algebra­

ically so that a solution may be effected. In so doing, the 

methods of system theory will be applied with the modifica-

. tions of Chapters II and III. The proc,edure will be de­

scribed step-by-step with the aid of a numerical example. 

The first section will describe the example problem under 

consideration, the second will present a proper solution 

tree, the third will give the system equations~ and the· 

fourth will present the mathematical programming format. A 

simplex solution for the example of this chapter is given in 

Chapter V ~ 

Description of the Problem 

Figure 4.1 is the network representation of a project 

made up of eight activities, A1 1 ~ , A-, , A4 , As ~ As , A7, and 

Aa. The resource allocation-activity time relationships of 

the individual activities are given in Table IV-I. In the 

region of feasibility between the extreme points of Table 

IV-I~ the resource allocation-activity time function is 
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assumed to be linear. This assumption would not normally be 

true but is used in this illustrative example. This will 

make the final mathematical programming format linear. Thus, 

solution by the simplex procedure will be possible. 

Figure 4.1. Network Diagram of a Project 

TABLE IV-I 

RESOURCE TIME FUNCTIONS FOR THE ACTIVITIES 

Activity T(max) T(min) R(min) R(max) 
-

A1 20 10 10 30 

~ 30 6 20 40 

A3 15 10 20 40 

A11, 20 10 15 40 

As 20 10 20 30 

Ae 30 20 10 40 

A7 40 20 20 30 

Aa 30 10 15 40 

-
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If ® is defined as the variable e = T - T(min) for each 

activity, the following relationships are evident for any 

activity 

e(min) = O 

®(max)= T(max) - T(min). 

(4.1) 

(4.2) 

The values of ®(max) for the eight activities in the project 

are given in Table IV-II. The problem consists of deter-

mining the optimum resource allocations to the individual 

activities that will result in the least time execution of 

the project if the maximum availability of resources is 80 

units. 

TABLE IV-II 

®(max) FOR THE ACTIVITIES 

Activity e(max) 

A1 10 

Ai 24 

A3 5 
A.., 10 

As 10 

As 10 
A., 20 

As 20 
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Selection of the Solution Tree 

etep .1o Draw the basic system in the form of a linear 

graph of the form illustrated in Figure 4.1 (page 34)0 If 

the project consists of Na activities,this linear graph will 

have Na edges. If these N activities describe N events, a v 

the graph would have Nv vertices. In the present example 9 

N is eight and N is five. This graph is called the basic a . v 

linear graph. 

Step 2. Draw the minimum allocation diagram as de-

scribed in Chapter III. If the basic linear graph has N a 

edges and Nv vertices~ the minimum allocation diagram would 

also have Na edges and Nv vertices. This diagram is shown 

in Figure 4.2 for the example under consideration. The time 

associated with each activity in this diagram is the maximum 

feasible time for that activity and is the time shown in 

column T(max) of Table IV-I (page 34). This time is shown 

in parenthesis on the line representing that in Figure 4.2. 

The dotted lines represent the slacks and the figures in 

circles adjacent to each vertex show the time of the occur-

rence of that event under the conditions of minimum resource 

allocation. (See Figure 4.2 on the following page.) 

Step 3. Determine the minimum critical tree as de­

scribed in Chapter III o This tree would have Nv - 1 branches 

and the chordset would consist of N - N + 1 edges. Inspec­a v 

tion of the minimum allocation diagram iri Figure 4.2 indi-

cates that the critical tree consists of activities A1 , A3 , 
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.......... 

(40) ........._-....... Q 
>-------------, ~ 

Figure 4.2. Minimum Allocation Diagram 

Figure 4.3. Minimum Critical Tree 
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A4, and A7. This is shown in Figure 4.3 (on the preceding 

page) by double lines. The chordset of this minimum criti-

cal tree consists of activities Az , A6 , As , and As. 

Step 4. Determine the critical path in the minimum 

allocation diagram. Designate the set of activities in­

cluded in this path as C. Under any optimal allocatio~, 

according to the properties of the minimum allocation dia­

gram described in Chapter III, the set C is sure to be one 

of the critical paths. Since the effectiveness of an allo­

cation can be measured by the total elapsed time between 

'project start' and 'project end', it can also be measured 

by the sum of the activity times along any critical path, 

expressed as the activities included in set C 

k k E = ~tij , t gC. 

Equation (4.3) defines the effectiveness function to be 

optimized by the final mathematical programming procedure. 

In Figure 4.3, the critical path consists of activities A1 , 

A..., and A7, hence, set C consists of these three activities. 

The effectiveness function in Equation (4.3) can now be 

written as 

(4.4) 

And, from the definition of e, it follows that 

E = @1 + T1 (min) + @4 + T4 (min) + @7 + T 7(min). 
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Since T1 (min), T4(min), and T 7 (min) are given constants in 

the optimization problem, E would be mathematically identi-
,, 

cal to optimizing another effectiveness function E1 ex-

pressed as 

E l ' ' = ®1 + @4 + ® 7 0 ( 4 . 6 ) 

Step 5. Draw the augmented linear graph. This graph 

would be obtained by augmenting the basic linear graph . 

through the introduction of dummy activities involving the 

following operations: 

(1) Introduce one slack activity between the 

termination of each activity in the chordset 

of the minimum critical tree and the sue-

ceeding evento Since the chordset consists 

of Na-Nv+l activities, this operation 

would introduce Na - Nv + 1 slack activities 

and an equal number of events. The augmented 

linear graph for the illustrative example i s 

shown in Figure 4.4. A9 , A10, A11 , and A12 

are the four slack activities introduced by 

this operation. 

(2) Introduce one additional activity from the 

event ' project end' to the event 'project 

start '. The orientation of this activity 

would be in a direction opposite to the 

direction of the orientation of all real 



activities. This operation introduces one 

dummy activity and no additional events to 

the basic linear graph. This dummy activ­

ity is activity A13 in the augmented linear 

graph of Figure 4.4. The resource alloca­

tion for this dummy activity would be the 

negative of the aggregate resource restric-

tion limit. The role of this activity would 

be similar to that of an external current 

generator (driver) connected across the two 

extreme terminals of an electric system. 

---!9 --......._ -

Figure 4.4. Augmented Linear Graph 
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The total number of activities in the augmented linear 

graph are then the sum of Na activities in the basic linear 
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graph, Na - Nv + 1 slack activities introduced in Operation 1 

and one dummy activity introduced in Operation 2, or 2N2 -

Nv + 2 in all. 1rhe total number of events in the augmented 

linear graph are the sum of Nv events in the basic linear 

graph and Na - Nv + 1 events introduced in Operation 1, or 

Na+ 1 in all. 

Step 6. Determine the solution tree. The solution 

tree chosen would be the minimum critical tree in Step 3 

augmented by real activity edges reacting from events .on the 

minimum-critical tree to the additional events introduced in 

Step 5, Operation 1. The properties of this solution tree 

can be summarized as follows: 

(1) This tree is complete~ in that it connects 

all events in the augmented linear graph. 

This follows from the fact that the minimum 

critical tree is complete for the basic 

linear graph. All additional events 

created in Step 5 9 Operation 1 are con­

nected in the formation of the solution 

tree. 

(2) The branch set of this solution tree is 

identical with the set of real activities 

comprising the project. 

(3) All activities for which the through 

variable, resource allocation is completely 

or partially specified, are included in the 



chordset. This set consists of the slack 

activities introduced in Step 5, Operation 1, 

for which the resource allocation is partial­

ly specified and the d1.immy activity intro­

duced in Step 5 9 Operation 2 for which the 

resource allocation is completely specified. 
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Since the augmented linear graph has 2Na -Nv + 2 activi­

ties (edges) and Na+ 1 events (nodes), it can be concluded 

(see Appendix) that the solution tree has Na branches 

(number of nodes Na+ 1 less 1) and Na - Nv + 2 chords (total 

edges 2Na -Nv+ 2 less Na branches). 

shown in Figure 4.5 by double lines. 

This solution tree is 

The branch set con-

sists of activities A1 , A.z, A3 , ~, As, As~ A7, and As. The 

chordset consists of activities Ae, A10 , A1 i, A12 and A13 • 

Figure 4.5. Solution Tree of the Augmented 
Linear Graph 
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The System Equations 

Step 7. Write the component terminal equations. The 

only variables in the present system that are completely or 

partially specified are the resource allocations, or through 

variables. Under these circumstances, it would be desirable 

to express the system equations in the form of cutset equa-

tions. This choice would necessitate that the component 

terminal equations be explicit in the through variables. An 

individual component terminal equation explicit in the 

through variable would take the form 

Rk = qi ( tk) if tk(min) ~ tk < tk(max) 

= Rk(max) if tk < tk(min) 

= Rk(min) if tk > tk(max). (4.7) 

There are terminal equations of the same identical form 

for all real activities comprising the project. All N of a 

these equations can be represented in matrix notation as 

R = W • T. 

In Equation (4.8), R is a (Na x 1) vector of resource alloca­

tions9 Tis a (Naxl) vector of activity timess and Wis a 

(Na x Na) diagonal matrix whose diagonal elements are the 

functional elements qi( ) in the individual component termi­

nal equations. Since the relation between activity times T 

and® is linear and one-to-one, the Equation (4.8) also can 
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be written in terms of 9 instead of T as 

R='W•e. (4.9) 

In the illustrative example, the assumption of linear­

ity leads to the following component terminal equation from 

Table IV-I and IV-II: 

R1 = 30 - 2®i O (4ol0) 

~ = 40 - ~ 6 

R:, = 40 - 40:, (4ol2) 

R4 = 40 2h 
- 2 

Rs = 30 - ®s 

Ra = 40 - 39e (4ol5) 

R7 ® 
= 30 - ~ 

Ra = 40 - 5®s 
4 • (4.17) 

The vector R in Equation (4.9) would be an 8 x 1 vector 9 and 

W an 8 x 8 diagonal matrix. It should be noted that ·the ele­

ments of Rand® are the same as the branch elements of the 

solution tree in the augmented linear grapho 

Step 8. Write the cutset equations for the augmented 

linear graph. Sinqe there are.Na branches to the solution 



tree, there would be Na cutset equations. These could be 

represented in matrix form as 
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y 
Cl = o. (4.18) 

In Equation (4.18), Yb is the vector of through variables 

for the branch elements of the solution tree. Hence, Yb is 

identical to the vector R in Equations (4.8) and (4.9). The 

vector of through variables, Y01 in the chord elements~ is 

not completely specified. This (Na - Nv + 1) x 1 vector is a 

vector of resources remaining idle during the Na - Nv + 1 

slack activities. The vector of through variables 9 Yc2 , in 

the chord elements is completely specified. The only ele-

ment for which the resource allocation is completely 

specified in the dummy activity introduced in Step 5 9 Opera­

tion 2. Hence, Y is a 1 x 1 vector. 
C2 

Since there are Na branch elements to the solution 

tree~ the matrix I in Equation (4.18) is a Na xNa identity 

matrix. As the N x (N - N + 1) matrix is multiplicative a a v 

with the (Na - Nv + 1) x 1 vector. Yc1 and ~ is a Na x 1 column 

vector multiplicative with the 1 x 1 vector, Y c2 • The cuts et 

equat,:ions also can be written in the expanded form 

(4.19) 



Since there are eight branches to the solution tree in the 

example, there would be eight cutset equations. These are 

shown in matrix form in Figure 4.6. 

R1 

l 0 0 0 0 0 0 0 0 1 l 1 ~ -1 :l 0 1 0 0 0 0 0 0 0 -1 0 0 R3 0 

0 0 1 0 0 0 0 0 0 0 -1 -1 R4 0 0 

0 0 0 1 0 0 0 0 1 1 1 l x Rs + l x R13 = 0 

0 0 0 0 1 0 0 0 0 0 -1 0 Rs 0 0 

0 0 0 0 0 1 0 0 -1 0 0 0 R7 0 0 

0 0 0 0 0 0 1 0 1 0 0 1 Ra -1 0 

0 0 0 0 0 0 0 1 0 0 0 -1 Rg 0 0 

I A1 R1 o 

R11 

R12 

Figure 4.6. Expanded Form of Equation (4.19) 

Step 9. The resource allocations in the individual 

slack activities are uniquely determined by the resource 

allocations ot the corresponding real activities preceding 
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them. This can be expressed in the form of a set of N ...:. N a v 

+l equations of the form 
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kE chordset and iE branchset. (4.20) 

Collectively~ these equations can be expressed in the matrix 

form 

R = Z • R. s (4.21) 

Here~ Rs is a (Na - Nv + 1) x 1 vector of idle resource alloca­

tions for the Na-Nv+l slack activities, Risa Nax 1 vec­

tor of resource allocations for the real activities (branch 

elements), and Z is a (Na - Nv + 1) x (Na) relationship matrix. 

The vector Rs is identical with vector Y01 in Equation 

(4.19). Hence, in the light of Equation (4.21)~ the vector 

[Yb Jin Equation (4.19) c~n be written in the following 
YC'l 

modified form: 

~:J = [:J [z~ J [:] • R. 
(4.22) 

The relations governing the resource allocations of the 

slack activities in the example are 

R12 = Re 

R9 (4.23) 

Collectively, these can be expressed in matrix form as 

/ 
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R1 

~ 

R9 0 0 0 0 0 1 0 0 R3 

R1 o 0 1 0 0 0 0 0 0 ~ 
= )( (4o24) 

R11 0 0 0 0 1 0 0 0 Rs 

R12 0 0 0 0: 0 0 0 1 Ra 

R7 

Rs 

Matri~ Zin Equa~ion (4o24) leads to the matrix[~] in Equa-

tion (4.22) as shown in Figure 4.7. 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 l 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

0 0 0 0 1 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 l 

•. :., j. ~ 
Figure 4.7 • The Matrix [~] 
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Step 10. Rewrite the cutset equations by substituting 

Equation (4 .• 22) into Equation (4.19) to obtain 

[I,A1 ] [::J + ~ • Yc2 

= [I,A1 ] • [!]·R+~ ·Yc2 = 0, (4.25) 

Equation (4.25) for the illustrative example is shown in 

Figure 4.8. 

Step 11,. At this stage, many of. the equations are re­

dundant. In fact, each element which is a chord in the min­

imum critical tree and is a branch in the solution tree 

gives rise to one redundant cutset equation. Each of these 

activities precedes one slack activity as shown in Figure 

4.9. The equation of the cutset shown by the dotted circle, 

which isolates node E2 from the rest of the linear graph, 

can be \ stated. as 
( 
>----,­

'.. ( 
~;, 

( __ 

'-

(4.26) 

But, R(u) is equal to R( 2 ,) by definition ( similar to 

Equation (4.20). Hence, the cutset Equation (4.26) reduces 

to R( 12)-R(12 ) = 0 or O = O, which is redundant. The mini­

mum critic al tree has N - N + 1 chords, all of which are a v 

branches in the solution tree. 

+ 1 redundant cutset equations. 

Hence ~ there would be N - N a v 
After deleting these re-

dundant equations, there are Nv - l non-redundant cutset 



1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

0 0 0 0 0 0 1 

0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 1 1 I IO 0 1 0 0 0 0 ol\Ril 
0 0 -1 0 0 0 0 0 1 0 0 0 0 ~I 

0 0 0 -1 -1 0 0 0 0 1 0 0 0 R3 I 

0 1 1 1 1 0 0 0 0 0 1 0 0 R4 
x 

0 0 0 -1 0 0 0 b 0 0 0 l 0 Re; 

0 -1 0 0 0 0 0 0 0 0 0 0 l Rs I 

0 1 ·o 0 1 0 0 0 0 0 1 0 0 R7 

1 0 0 0 -11 10 l 0 0 0 0 0 O I LRa 
0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 l .... 

Figure 408. Expanded Form of Equation (4.25) 
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equations. Thus~ the total number of equations less the re­

dundant equations equals a reduced set of non-redundant 

equations expressed as 

N - (N - N + 1) = N + 1. a a v v (4.27) 

This reduced set of equations can be expressed in matrix 

form as 

J • R + A.!* • y c2 = 0. (4.28) 

E ... 1 ____ R_e_a_l_A_c_t_i_v_i_t_y __ 0-__ Sla_ck ___ _!, 

Figure 4·. 9" Cut set for a Slack Activity 

In Equation (4. 27) J is a (Nv - 1) x Na matrix obtained 

by reducing the product matrix [ I ,A1 J • [~] and A.!* is a 

(Nv - 1) x 1 vector obtained by reducing the vector A.! • The 

product matrix [I,A1 ] ·[~]is exhibited in Figure 4.10. It 

can be noted that the elements in rows 2, 5, 6~ and 8 con­

sist entirely of zeros. These four rows give rise to four 

redundant equations. After deleting these, there are only 

four non-redundant cutset equations. This number is equal 

to 5(Nv) - 1 and satisfies Equation (4. 27). Figure 4. 10 



also exhibits ~*., the reduced form of ~ • 

1 1 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 

0 0 l 0 -1 0 0 -1 

0 1 0 1 1 1 0 1 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 1 

0 0 0 0 0 0 0 0 

Figure 4.10. Matrix Product [ I ,A1 ] . [~] 

The Mathematical Programming Format 

Step 12. Substituting the value of R from Equation 

(4.9) into the Equation (4.28), the reduced set of cutset 

equations becomes 

52 

(4.29) 

Equation (4.29) represents the first set of restrictions 

which must be satisfied by any feasible resource allocation 

set. There are Nv - 1 equations in this set. From Figure 

4.10, the reduced matrix J can be written as 
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l l 0 0 l 0 0 l 

0 0 l 0 -1 0 0 -1 

0 l 0 l l l 0 l 

0 0 0 0 0 l l l 

Hence, the set of equations J. R + ~* • YC2 = O becomes 

(a) R1 +~ + Rs + Re - R13 = 0 

(b) R3 - Rs - Ra = 0 

(c) ~ + R4 + Rs + Rs + Ra - R13 = 0 

(d) Rs + R7 + Ra - R13 = 0 0 (4.30) 

Substituting the component . . terminal Equations (4.10) through 

(4.17) in Equations (4.30) and putting R13 equal to 80 uni t·s 

gives 

(a) 
59 5® 

( 30 - 2e 1 ) + ( 40 - 6 2 ) + 30 - ® 5 ) + ( 40 - 4 8 ) 

- 80 = 0 

(b) 
50 

( 40 - 493 ) - ( 30 - ®s ) - ( 40 - -zr) = 0 

(c) 
5® 5~ . 5~ 

( 40 - ff' ) + ( 40 - 2) + ( 30 - ® 6 ) + ( 40 - 4 ) 

- 80 = 0 

(d) 
®7 5®a 

( 40 - 3®a ) + ( 30 - 2 ) + ( 40 - ~) - 80 = 0 • 

(4.31) 

Simplifying Equation (4.31), the first set of restrictions 

is · 
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(a) 60 - 2®1 - .2!z. _ ®5 
'6 . - z} = 0 

(b) -30 - 4®3 + ®s + 5@ts O -zr= 

(c) 110 .2®2 5®4 - ® 15 3®s 5®e 
= 0 - 6 - 2 - - -zr 

(d) 30 - 3®a. -
®7 5®a 

0 (4.32) 2 -4 = • 

Step 130 Each activity has a maximum as well as mini­

mum competion time. This means that there are Na inequali­

ties of the type 

(4.33) 

If the allocation of resources is optimum, then the branches 

of the minimum critical tree cannot have a positive slack 

and an activity_can have a slack only if the time between 

the start and the end of that activity exceeds t(max) for 

that activity. Thus, if the allocation is optimum, the In­

equalities (4.33) are always satisfied for the branches of 

of the minimum critic al tree.. Thus, these Nv - 1 inequalities 

present no restrictions on the optimizing process. The 

remainingNa-Nv+l Inequalities (4.33) constitute the second 

set of restrictions that must be s~tisfied by any feasible 

optimum resource allocation. 

Step 14. The sets of restrictions described in Step 12 

and Step 13, together with the effectiveness function of 

Equation (4.6), now constitute the complete statement of the 

problem. This can be summarized as 



Optimize E = El\: , k e; C 

Subject to the restrictions 

®k S ®k(max) for all ke; chordset of 

minimum critical treeo 
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This completes the formulation of the resource allocation 

problem in the generalized mathematical programming format. 

Since a minimum duration is sought for the project, the 

effectiveness function would be minimized. The first set 

consists of Nv - 1 restrictions and the second set consists 

of N - N + 1 restrictions. In all there are N - 1 + N - N a v v a v 

+ 1 or Na restrictions and Na variables of the type @ k o 

This insures that a solution always exists, although the 

actual solution may be difficult to find. 

The objective function and the second set of restric­

tions are linear, but the first set of restrictions would be 

dependent upon the functional relationships between the 

activity times and the corresponding resource allocations. 

If these are assumed to be linear, a solution by the simplex 

method would be feasible. In most cases, the actual rela-

tionships would be non-linear and would render the entire 

problem non-linear. In that case, the solution would re­

quire a complex non-linear programming algorithm.. 



CHAPTER V 

SOLUTION BY THE SIMPLEX ALGORITHM 

In the present problem, the objective is the minimiza­

tion of the total elapsed time between the ·events 1 project 

start' and 'project end'o The variables of the system are 

the individual activity times and the corresponding resource 

allocations. As explicit or implied functional relation­

ships exist between all the variables, it is evident that a 

mathematical programming technique can be successfully ap­

plied in the optimization of the effectiveness function. In 

the case of linear programming problems, the most effective 

and general technique has been the simplex method. This 

chapter will use the simplex algorithm to obtain the optimum 

solution for the illustrative problem of Chapter IV. 

Problem Summary 

Numerically, the problem of Chapter IV can now be sum­

marized as requiring the minimization of 

E ~ = ·9i · + 96 + g., • (5.1) 

Subject to the restrictions 

( 1) 60 - 29i - fz -es - 5~a = o 

56 
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(2) - 30 - 4®3 + ®s + 5:a = O 

(3) & ~ . 2h 110 - 6 - 2 - ®s - 3®s - 4 = 0 

(4) 30 -- 3®e - !z.. -2.!e 
2 - 2 = 0 

(5) ®2 S 24 

(6) ®e; ~ 10 

(7) 9e ~ 10 

(8) 9e S 20. 

Out of the eight restrictions, number 1, 2, 3, and 4 

are equalities and 5, 6, 7, and 8 are inequalities. When­

ever any of the restrictions are in the form of equalities 9 

a choice between two alternatives is available. The equal­

ity may be modified into another equality by introducing one 

artificial and one slack variable, or the equality may be 

used to define one of the unknown variables and, thus, re-

duce both the number of restrictions and the number of vari­

ables by one each. Mathematically, the two alternatives are 

identical but ~he second is chosen with the belief that it 

will result in less computation. Thus, addition of restric-

tions 1 and 2 results in the following: 

60 - 29,. -~ - ®s m 5:a = o 

~ - 30 - 4®3 + 9s + 4 = 0 
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(5.3) 

Substitution of Equation (5.3) into restriction 5 yields 

(5.4) 

Equation (5.4) is the modified restriction 5. 

Similarly, the subtraction of restrict;i.on 4 from re-

striction 3 along with the substitution for~ from Equation 

(5.3) yields 

5. 4 .2!i. ~ or O - 2®1 + · @3 ~ 2 + 2 = ®s • (5.5) 

Substitution of Equation (5.5) into restriction 6 yields 

50 + 2®1 + 4®3 - 5~4 + ,- s. 10 
·- l 

(5.6) 

Equation (5.6) is the modified restriction 6. 

Substitution of the value of ®6 'from Equation (5.5) 

into 

.!zh• ~. 5®a - 30 = 4@, + 50 + 2®1 + 4®3 - 2 + 2 + 4 = 0 

(5.7) 
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Substitution of Equation (5.7) into restriction 8 modifies 

it to the form 

l .69i + 0 .497 .- 294, 2:. -,36. (5.8) 

Substitution of Equation (5 •. 8) into restricti.on 4 yields 

or 3®6 = 50 + 28i - 2.5e .... (5.9) 

Substitution of E<1uation (5.9) into restriction 7 modif'ies. 

it to the form 

2. 5® ... - 291 2:. 20 • (5.10) 

Hence, the problem in its reduced form can now be stated as 

minimize 

Subject to the restrictions 

. Si + 2~ 2:. 5. 

2. 59.., - 0 0 597 - 291 - 4®:, 2:. 40 

The non-negativity constraints usually implied in a . 

linear programming problem are not introduced here because 

of the nature of the resource-time function. A negative 

value for any variable e would not be invalid per se. A 
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negative 8 implies that an attempt is made to expedite the 

activity beyond t(min) through the allocation of resources 

over and above the maximum. In physical terms, this means 

that the activity is allocated maximum resources and the 

surplus resources remain idle for the duration of the activ­

ity. However, the non....:negativity constraints must be 

implied for the dummy variables introduced by the simplex 

procedure as these variables are not known to obey any func­

tion similar to the resource-time function that would vali­

date their negative values. 

Solution for the Optimal Program 

Solution for the optimum allocation program by the 

simplex method is exhibited in Figures 5.1, 5.2, 5.3., and 

5.4. The optimum program is 91 = 2.5, ®3 = 1.25, @4 = 10, 

and 87 = -50. The.negative value for @7 indicates that 

there is an idle resource allocation associated with activ­

ity A7 • The optimal program translated into the numerical 

values of resource allocations and activity duration is ex­

hibited in Figure 5.7 and the optimum allocation diagram is 

shown in Figure 5.8. From Figure 5.8 it is seen that the 

project would be executed in 52.5 units of time. This 

would be the shortest duration feasible under the resource 

availability specified. 
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Activity (B) Time Resource Allocation 

A,. 2.5 12.5 25 

~ 24 30 20 

A3 1.25 llo25 35 

A4, 10 20 15 

As 10 20 20 

As ' 10 30 10 

A7 -50 20 30 + 25 idle 

As 20 30 15 

Figure 5.7. Optimum Allocation Program 

8 
Figure 5.8. Optimhm Allocation Diagram 



CH.APTER VI 

SUJ:Vll"lARY AND CONCLUSIONS 

This concluding chapter will be composed of three 

sections. In the first section, the principal theme of this 

investigation will be summarized. The second section will 

consist of some observations and remarks regarding the pro­

posed resource allocation model as it compares with the 

present critical path method (CPM) model. In the final sec­

tion, some suggestions for future study are presented.· 

Summary 

This investigation was motivated by a striking resem­

blance between activity networks and electrical networks. 

In order that such a comparison be valid, it is necessary 

that the variaQles of analysis of the two systems be simi­

lar. In electrical networks, the through variable, current, 

and the across variable, e.m.f., for any component, are 

functionally related. This functional relationship can .be 

expr·essed symbolically as i = iR(v). In a similar manner, 

the through variable, resource allocation, and the across 

variable, time; for. any. activity in an activity network are 

functionally related. This functional relationship can be 
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expressed symbolically as R = ~(t). These similarities led 

to the assumption that an activity in an activity network 

behaves exactly like a two-terminal electrical component in 

an electrical network. Based on this assumption, it was 

found that the principles of system theory can be applied to 

the analysis of an activity network system. 

In Chapter I the problem of a.ctivi ty network analysis 

was described in historical and current contexts. Along 

with the historical background, a brief outline of one of 

the commonly accepted models was described. The concepts of 

slack and critical path developed in this model were later 

shown to remain unaltered under optimization of resource 

allocation. The two major limitations of this model which 

ini ti.ated the present investigation were also described. 

These limitations consisted of the following: 

(1) The restriction imposed by the limited 

availability of resources was not made 

an integral part of the model. 

(2) The concept of managerial control over 

the planning of activity networks was 

lacking. 

It was believed that both of these limitations could be 

overcome if it is assumed that the duration of an activity 

can be controlled by varying the resources allocated to that 

activity. This assumption provided the b,asis of the 

investigation. 

In Chapter II some intuitive principles of allocating 
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scarce resources between competing activities were analyzed. 

A symbolic statement of some simple networks indicated that 

these intuitive principles were applicable. It was also 

shown that the application of such principles does not alter 

the general format of the activity network model 9 including 

the slacks of activities and the critical path. 

In Chapter III the similarity between a two-terminal 

system component and activity in a project was critically 

examined. This examination proved that the description of 

an activity as a two-terminal component does satisfy all 

requisite conditions specified by system theory. T.he mini­

mum allocation diagram was also described in this chapter. 

The importance of this diagram lay in the fact that the 

critical tree in this diagram is the best choice for the 

solution tree in subsequent analysis. The critical path in 

this diagram was shown to remain critical under optimum 

allocation. This fact yielded the effectiveness function 

for the optimization procedure of Chapters IV and V. 

Chapter IV describes the adaption of linear graph 

theory for the formulation of an algorithm for the optimum 

allocation of scarce resources. This algorithm is described 

as a step-by-step procedure and lead to the conversion of a 

resource allocation problem into a mathematical programming 

problem. The programming problem was shown to be non-linear 

in general. However, it could be reduced to a linear prob­

lem by some simplifying assumption regarding the resource­

time function and by disregarding the non-negativity 
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constraints in the line~r programming techniques. 
. . 

A numerical, solution of a simplified linear progr~ing 

problem by the simplex procedure was given in Chapter V. 

This solution i!lustrated nwnerically the procedure. of opti­

mum. resource allocation for a small activity network. The 

development of this simple illustrative resource allocation 
. : :· -

problem into the mathematical programming problem was also 

. described step-by-step. 

Observations and Remarks 
f,.,, 

The model of an activity network presented in this dis­

sertation differs from the more commonly used models in two 

important. aspects. · First, in the proposed model, the re­

sources are considered as· a fl.ow instead of a cost, or in 

the uni ts o-f q:ollars per year rather than dollars. There 

is a growing recognition of the fa.ct that the total expend­

iture of resources is not nearly as critical as the rate of 

expenditure in project management. This is partly because 

the limitations of the resource availability are based on 

the availabilit~ within a specified time period. An example 
•,,',.. 

of a major project c.hanging o.ver .trom the concept of total 

resource expenditure to the rate of flow concept is the 

Appollo Manned Lunar Project of the National Aeronautics and 

Spac.e Administration (15). 

T~e second major di.version of the proposed model lies 
,·· . 

in the introduction of the concept of the control of network 

planning through the modification of the resource 
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allocations. Traditionally, activity network techniques 

have been review techniques for pre-established plans. It 

is proposed in this dissertation that the planning function 

itself can be made a part of the model through the resource 

allocation procedures. This in no way re.duces the useful­

ness of the model as a review technique after the planning 

phase. Th~s, the conceptual scope of the model is broadened 

to include the planning function without altering the basic 

format of the model. 

Areas for Further Study 

The algorithm presented in this dissertation is limited 

as to its immediate application in project management. This 

is because of two implicit assumptions: 

(1) The resource availability is uniform over 

the duration of the project. 

(2) The resource allocation- time duration 

function is completely known for each 

activity. 

The expanded model of an activity network as proposed 

is complete in its conceptual form. Considerable research 

and refinement will be necessary to make the concept useful 

in practice. Further study on the following areas would 

prove useful: 

(1) Investigation of the nature of the resource 

allocation activity time duration function 



and methods for estimating and approximating 

the same. 

(2) The functioning of the model under non-uniform 

availability of resources. 

(3) The application of Bayesian strategies for 

planning when the resource-time function is 

unknown. This area may prove to be most 

fruitful because it is unlikely that the 

resource-time function would ever be exactly 

known. 
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FOREWORD TO THE APPENDIX 

This Appendix describe£? the definitions, postulates., 

and theorems of the linear graph theory which have been 

referred to in this dissertation. The material presented 

was qompiled from class notes taken while attending a course 

in system, ,theory · taught by· Dr. Richard L. Cummins at Okla­

homa State University during the Spring of 1964. Additional 

principles. ,of linear graph theory_ may be found in references 

( 1 :t) , ( H2) , ( 13) , and ( 14) • 

Definition 1. 

Definition 2. 

Definition 3. 

Definition 4. 

Definition 5. 

Principles of Linear Graph Theory 

Oriented element. An oriented line seg­

ment together with.its distinct end 

points. 

Vertex. An end point of an element. 

Oriented linear graph. A collection of 

oriented elements no two of which have a 

point in common which is not a vertex. 

Subgraph. A subgraph S of a graph G is a 

subset of the elements of G. 

Complement of a subgraph. The complement 

of a subgraph S of a graph G is the 
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Definition 6. 

Definition 7. 

Definition 8. 

Definition 9. 

Theorem 1. 

subgraph remaining in G when the 

elements of Sare removed. 

Path. A path between two distinct 

vertices (called terminal vertices) 

is a subgraph such that its n ele­

ments can be sequentially labeled 

e1 , e2 , ••• , en with corresponding 
l l 2 2 

vertex labeling v1 - v2 , ••• , v1 - v2 , 

n n 
o •• ~ v1 - v2 where each of the non-

terminal verticles has exactly two 
k k+l . 

labels v2 and v1 , k = 1, 2, ••• 9 

n ~ 1. Each of the terminal vertices 

has exactly one label. 

Connected graph. A graph is con­

nected if and only if at least one 

path exists between every pair of 

distinct vertices of the graph. 

Circuit. A circuit C is a subgraph 

of a connected graph such that there 

are exactly two distinct paths be-

tween any two vertices of C. 

Tree. A tree T of a graph G is a 

connected subgraph which contains 

all the vertices of G and no circuits. 

If G is a connected graph and Tis a 

tree of G~ then there is exactly one 
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Theorem 2. 

Definition. 10. 

Theorem 3. 

Theorem 4" 

Theorem 5. 

Definition 11. 

Theorem 6. 

Definition 12. 

path in T between any two vertices of 

G. 

If a connected graph G contains Nb 

elements and Nv vertices, any tree 

T of G contains Nv - 1 branches. 

Chord Set. The complement of a tree 

Tis said to be the chord set of T. 

Each element of the chord set is 

called a chord of T. 

If G is a connected graph and Tis a 

tree of G, then each chord of T to­

gether with T defines a unique circuit. 

The number of chords in a connected 

graph G for any tree is Nb - Nv + 1. 

If G is a connected graph and Sis 

some subset of elements which contains 

no circuits, then Scan be made a part 

of a tree of G. 

Cut set. If the vertices of a graph G 

are segregated into two disjoint sets, 

81 and S2e , the set of elements inci­

dent to ohe vertex in 81 and one ver­

tex in 82 is designated a cut set. 

Each set of elements incident to one 

vertex is a cut set. 

Outset matrix, ~a· For each possible 

segregation of vertices of a connected 
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Definition 13. 

Theorem 7. 

Theorem 8. 

Theorem 9. 

graph into sets S1 and 82 , the typical 

entry of Sa is 

q. ' -· J.J 

+l if jth element is in ith 

cutset and oriented 81 .... 82 

-1 if the jth element is in ith 

cutset and oriented S2 .... 81 

O if jth element is not in ith 

cutset. 

Incidence (Node) Matrix. The matrix A -a 

of a connected graph is the matrix for 

which the typical entry is 

80 

+l if the jth element is incident 

to the ith node and oriented 

a .. ., = lJ 

away from it 

-1 if the jth element is incident 

to the ith node and oriented 

toward it 

O if the jth element is not in­

cident to the ith node for 

each node of the graph. 

The rows of !a are included in the rows 

of Sa if each vertex segregated set is 

always taken as a 81 set. 

The rows of Sa are linear combinations of 

the rows of A • -a 

The rank of A -a for a connected graph of 

Nv vertices is not greater than (Nv-1). 



Theorem 10. 

Definition 14. 

Theorem 11. 

Theorem 12. 

Theorem 13. 

Proof: The sum of all rows of A is a -a 
row of zeros, and elementary row opera-

tions cannot change rank. 

If Tis a tree of a connected graph G 

of Nv vertices; removal of one branch 

of T creates a graph of. two parts. 

Fundamental Outset. For a given tree T 

of a graph G, the cutset of G defined 

by a segregation of vertices by removal 

of a branch of Tis called a fundamen-

tal outset corresponding to T. S1 and 

82 are defined such that branch orien­

tation is from S1 to S2 • 

For a connected graph of Nv vertices, 

there are (Nv - 1) fundamental outsets 

corresponding to a given tree. 

For a connected graph of Nv vertices, 

the rank of 9.a is at least (Nv - 1). 

The rank of 9ia is exactly (Nv - 1) for 

a connected graph of Nv irertices •. 

~:£.Q..Qf: (a) Rank cannot be greater 

than (Nv - 1), since the rows are linear 

combinations of the rows of !a· (b) 

E.ank must be at least (Nv - 1), since a 

subset of the rows of ga has rank 

(NV - 1). 

81 



Definition 15. 

Definition 16. 

Theorem 14. 

Theorem 15. 

Circuit matrix. The circuit matrix 

~a for a connected graph is a matrix 

for which the typical entry is 

b .. = 
l.J 

+l if jth element is contained 

in the ith circuit and 

orientation is same as 

circuit sensing 

-1 if jth element is contained 

in the ith circuit and 

orientation is opposite to 

circuit sensing 

82 

O if jth element is not in the 

ith circuit for all circuits 

of the graph. 

Fundamental circuit. For some tree Teach 

circuit made up of one chord and its 

unique tree path is called a fundamental 

circuit corresponding to T. The circuit 

sensing agrees with the chord orientation. 

For a connected graph of Nb branches and 

Nv vertices there are (Nb - Nv + 1) funda­

mental circuits for any given tree. 

Proof: There is one fundamental circuit 

for each chord. 
T 

O B = 0 if na and B are the cutset and !Ila-a !Ii -a 

circuit matrices for the same connected 

graph G. 



Theorem 16. 

Throem 17. 

Proof: Consider the ith row of S and . a 
the j th row of B • Let g ~T = D for 

-a a a 
which the typical entry is 

n 
d. j = r; q. kb "k 

J. k=l J. J 

where col. order of Sa = n, qik and b jk 

may be O, lj or -1. 

Case 1. jth circuit does not include 

elements for ith cutset. Either qik 

or bjk= 0 for each k. 

Case 2. jth circuit includes elements 

from ith cutset. Elements from cutset 

must be included in circuit equation 

in pairs. If signs are same in cutset~ 

they are opposite in circuit equation, 

etc. 

If !. is order m x n and of rank n and ~: 

is order n x p and AB = 0 ~ then the maxi­

mum rank of B is (r - m). 

Proof: Let J21 AD2 be normal form of A 

-1 where D1 and 
l- 1 

UOBu_=B11= 
0 0 E1 0 

21 

D, -, exist (Jh AD, ) D, -13 = 
~'!. l 1 

O where J:lz _£! = B • Bu = 0 

and since premultiplying by D21 cannot 

change the rank of ~, the. rank is at 

most (n - m). 

For the rank of B, the fundamental 
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Theorem 18. 

circuit matrix for some tree is 

(Nb - Nv + 1) for a connected graph 

of Nb elements and Nv vertices. 

For a connected graph~, the rank of 

J2a is exactly Nb - (Nv - 1). 

Proof: (a) Rank of B must be at -a 

least (Nb = Nv + 1). (b) Since 

9ia~; = 0 cannot be greater than Nb = 

(Nv-1). 
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