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ABSTRACT

In this study the problem of instability of a parallel 
flow with thermal convection as a primary mechanism in the 
formation of organized cloud patterns is considered, viscous 
and Coriolis effects are included. The basic flow is taken to 
be antisymmetric and to possess curvature. This antisymmetric 
profile is chosen to correspond to a baroclinie Ekman profile 
and the shear in the basic flow decreases with height. The 
characteristics of the developed unstable modes are determined 
in terms of the properties of the basic state and the wave 
numbers of the superimposed three-dimensional perturbations.
The hydrodynamic boundary conditions correspond to that of a 
free upper surface with a rigid lower boundary. The thermal 
boundary conditions are constant temperature and constant heat- 
flux at both boundaries. Linearized Boussinesq equations are 
used, and a finite-difference technique is employed to obtain 
solutions. The Coriolis influence on the developed modes is 
found to have a slightly destabilizing nature for small wave­
lengths. At moderate and low shears the structures of the 
modes show a super-position of transverse-like and longitudinal­
like modes. The modes travel with a speed greater than that 
of the basic flow averaged over the entire depth; they appear
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to be a combination of stationary and low speed transitive 
type perturbations similar to those found in investigations 
of Couette flow. The preferred wavelength at high shears is 
of the order of 5-6 km. The influence of shear is found to 
be stabilizing irrespective of the nature of its distribution 
in the convective layer. The constant heat flux hypothesis 
may not be very suitable in atmospheric investigations with a 
zonal flow; its effect on the modes is stabilizing in nature.
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A STUDY OF THERMAL INSTABILITY IN AN ATMOSPHERE 
WITH ZONAL FLOW AND ROTATION

CHAPTER I

OUTLINE OF THE PRESENT STUDY AND OBJECTIVES

This study is concerned with the formation of organized 
convection in the planetary boundary layer (PEL) when a mean 
flow is present. This type of convection is important since 
the heat and momentum transfer through the atmospheric bound­
ary layer can be strongly influenced by it. It is known that 
circulations may develop in stratified fluids because of buoy­
ancy forces that arise through heating of the lower layers or 
cooling of upper layers- Under certain conditions the convec­
tion is organized into distinct cellular patterns known as 
Benard cells. Jefferys (1928) has suggested that the effect 
of a shearing current is to arrange these cells, which occur 
in initially motionless liquids, in bands oriented in the 
direction of the shear. In the atmosphere cellular clouds as 
well as cloud bands are observed; the cloud bands usually 
occur in flows with strong shear. Generally they are capped 
by an inversion layer. The resemblamce between observed cloud



patterns and patterns produced in laboratory experiments, 
particularly in the presence of turbulence, has been ques­
tioned by Batchelor (1954). However, investigations show that 
linear wind shear and/or gradient of shear favor convective 
streating. Thus, it is clear that the growth and mainten­
ance of these organized patterns depends mainly on the basic 
flow, i.e., upon energy exchanges with the basic flow.
Hence, it is necessary to specify a basic flow having later­
al or vertical variations, since an invariant basic current 
cannot interact or exchange energy with imposed perturba­
tions.

The PEL can be considered to be approximately the 
lower 1-2 tan of the atmosphere. In the free atmosphere 
above, the basic flow is controlled by the pressure-gradient 
and Coriolis forces. Hence mamy of the developments in the 
free atmosphere can be studied by considering only the above 
two forces coupled with the vertical and/or the lateral 
variations of the basic flow- However, in the PEL created 
by the earth's surface, viscous effects are not negligible. 
They are dominant in the surface layer (dOOm) ; in the 
Ekman layer, which covers the rest of the PEL, the flow is 
controlled by pressure, Coriolis, amd viscous forces.

Thus, it is clear that in a study of the formation of 
organized convection in the PEL, viscous effects are to be 
considered in addition to a varying basic flow. Since orga­
nized cloud patterns generally appear when thermal strati-



fieation is unstable, it is necessary to specify the temper­
ature distribution at the outset. Realistic rolls are found 
to arise because of inviscid instability associated with the 
point of inflexion in the lateral component of the Ekman 
flow. However, for simplicity we consider the basic flow in 
the PEL to be vertical variant in the x-z plane. Boundary 
layer flows can be defined as flows which monotonieally in­
crease or decrease through the boundary layer. These can be 
approximated by plane parallel flow for the purpose of in­
stability studies (Rosenhead, 1963, Chapter 9). Thus, as a 
first approximation we choose the basic flow to be a plane 
parallel flow. This effectively restricts the PEL to a layer 
of constant height.

The neglect of the meridional flow in the basic state 
may appear to be too stringent a condition. However, the 
inclusion of v in the basic state will only alter the shear 
direction. Riehl's (1965) observations indicate that, "The 
direction of the cloud streets usually lies along the direc­
tion of the shear of the wind." Eased on this, some in­
vestigations have included v in the basic equations. This 
study is not concerned with the orientation of cloud bands 
with respect to the basic flow. The inclusion of v in the 
basic state can be done in this study by utilizing a poly­
nomial approximation for v similar to that adopted for the 
zonal component of the Ekman profile. However, the useful­
ness of such a study may be highly restrictive since elegemt



studies using the full Ekman profile exist in the literature. 
We are guided by a summary of the conclusions reached by 
Kuettener (1971); "convective cloud bands in the earth's 
atmosphere tend to form in strong flows heated from below 
with curved velocity profile of rather uniform direction."
That is, the shear direction can be uniform. Thus, a study 
with plane parallel flow in the basic state is appropriate.

AS this study is confined to parallel basic state flows 
only, i.e., only flow along the x-axis, the principal con­
trolling factors in our study are shear and/or shear gradient, 
buoyancy, and viscosity. Thus, the instabilities that can 
arise in the present study are (1) thermal instability due to 
gravitational forces, (2) shear and/or shear gradient insta­
bilities, amd (3) the instability of parallel flows in which 
viscosity plays a role. These roughly correspond to the 
physically possible instabilities in the PEL. The Coriolis 
force, in general, is a stabilizing influence and its effect 
is to elongate the cells in the direction of rotation (Chan- 
drasekar, 1953). We have included the Coriolis force even 
though the effect may be quite small-

The instabilities may be controlled by any one of the 
mechanisms mentioned above, individually, or by a combina­
tion or interaction under suitable circumstances. Such 
possibilities are commonly known and have been given atten­
tion in the field of meteorology, e.g., baroclinic-barotropic



combined shear. By such interaction the existing instabili­
ties either may be modified or suppressed or an entirely new 
type of instability may arise. The interaction between the 
thermal mode of instability and the viscous instability which 
appears in high shear flows has been studied in the case of 
unstably stratified plane Poiseuille flow (Gage and Reid,
1968).

Basic flows possessing constant shear have been studied 
by Kuo (1963), Deardorff (1965), Gallagher and Mercer (1965), 
Asai (1964, 1970a), and Lipps (1971). Kuttener (1959) argued 
that Couette flows are unrealistic representations of flows 
in the atmosphere; he attributed the formation of cloud 
bands to curved velocity profiles with uniform wind direc­
tion. Basic flows with curvature (shear gradient) have been 
studied by Gage and Reid (1968), Asai (1970b), and Kuttener 
(1971). The above investigations have shown that variable 
shear flows, variable or constant, exert an inhibiting influ­
ence on thermal instability. However, the above investi­
gations were either too complex or solutions were obtained 
that may not apply to the real atmospheric convection pro­
cess, such as motionless atmosphere, etc. A simple inves­
tigation which takes into account both the variations of the 
shear and the shear gradient in the convective layer has 
not been attempted. By including the Coriolis force, the 
momentum, energy and vorticity equations are coupled and this



facilitates the inclusion of shear and shear gradient simul­
taneously into the system of equations solved. This investi­
gation adopts this approach.

In this study the basic state velocity profile is 
taken to be a cubic polynomial, approximated from a baro­
clinie Ekman profile. No unique mathematical formulation 
has been derived to describe the wind flow in an unstable 
baroclinie boundary-layer, due to the difficulty of defining 
the boundary layer thickness. An assumption of an infinitely 
deep boundary layer would be physically unrealistic; hence, 
in this study the boundary-layer thickness is taken to be a 
constant defined by the height of the inversion layer which 
caps off the organized convection. In the deduced basic 
flow profile the essential features are retained; namely, 
the shear decreases with height, having its maximum at the 
ground as observed in the atmosphere. Moreover, the vorti­
city gradient is a function of height and is negative 
throughout the convective layer. Thus, the profile differs 
from those considered in previous investigations and appears 
to be in better agreement with observations. Fig. 1 shows 
the velocity profile (a) in the PEL which is taken to be 
1 km in depth in this investigation. Barotropic (b), baro­
clinie (c) Ekman profiles together with a profile of constant 
shear flow (d) are also shown in Fig. 1 for comparison. The 
insert diagram shows an observed profile in the atmosphere 
associated with a cloud street formation (Kuttener, 1971).



The vorticity profile is given in Fig. 2. It is clear from 
the figures that the cubical profile is in better agreement 
with observations than a simple Couette flow. Hence, study 
of the stability of organized convection with the deduced 
profile and with realistic boundary conditions as defined 
later, is considered appropriate.

The initial potential temperature distribution is speci­
fied by T = T^ - A Z, where T^ is the potential temperature 
at z = 0, the rigid lower boundary- The lapse rate. A, is 
assumed to be constant and numerical values are chosen such 
that the system is in a gravitationally unstable configuration.

It is known from observations that the cloud bands 
occur primarily over land areas in contrast to cellular 
patterns which are observed mostly over oceans. The reason 
for such preferential formation, apart from increased fric­
tional effects due to the nature of the surface topography, 
seems to be connected with heat-transfer properties of 
bounding surfaces. Hence, attention to heat transfer at 
the bounding surfaces (known as thermal boundary conditions) 
is called for, since through these surfaces heat exchange 
takes place to and from the convective layer. Sparrow 
et al, (1964), have shown that the effect of constant 
transport of heat energy (constant heat flux) through the 
boundaries is to allow convection to occur at weaker gravi­
tational instability. However, that study is restricted 
to initially motionless liquids. The controlling influence



of constant heat flux boundary conditions on the growth of 
perturbations in a flowing medium has not been explored.

Thus, the objectives of this investigation are, (1) to 
study the stability of thermal modes under the combined in­
fluence of shear/shear gradient and viscosity with rotation,
(2) to determine the influence of constant heat flux boun­
dary conditions on the stability of the organized convection, 
and (3) to study the possible interactions between the vari­
ous mechanisms involved.

The present study, which uses the same mathematical 
formulation as Asai (1970), differs from his investigations 
in the sense that the zonal current has a decreasing vertical 
shear with height; also, a different set of thermal, hydro- 
dynamic boundary conditions are specified. Even though the 
scale of circulations considered is very small, Coriolis 
effects are included so as to facilitate the introduction 
of shear directly into the system of relevant equations 
given in Chapter III. Particular attention is given to the 
stability of modes with constant heat flux boundary conditions. 
The hydrodynamic boundary conditions are taken to satisfy 
no slip at the lower boundary with a free surface at the 
top. As mentioned earlier, with these specifications, we 
can expect qualitative smd quantitative changes in the 
stability characteristics of the modes allowed by the 
system. The nature of these unstable modes can be ascer­
tained by studying the structure of the perturbation



variables in a vertical plane (x-z plane) parallel to the 
basic flow.

In this linear study the perturbation technique is 
used to linearize the governing equations and, assuming the 
perturbations are periodic in the zonal and meridional direc­
tions, the problem is reduced to an eigenvalue problem. 
Solutions are obtained by the finite difference method.

In this chapter, an outline of this study, with the 
objectives, is given. A resume of the different assumptions 
cind simplifications made in this study is given in Chapter II. 
The description of the physical model, the formulation of 
the zonal profile, and the hydrodynamic and the thermal 
boundary conditions are given in Chapter III, Sections 3.1, 
3.2 and 3.3, respectively. Section 3.4 is devoted to the 
mathematical formulation of the model. The designation of 
the experimental parameters and a discussion of the validity 
of the assumptions adopted in this study is given in Chapter
IV. In Chapter V a recapitulation of the physics of this 
model is given. In the remaining subsections the results 
are discussed. The summary and conclusions reached in this 
study are given in Chapter VI.



CHAPTER II 

LIMITATIONS OF THE STUDY

In this study the circumstances under which orgemized 
convection occurs in the PBL are examined in terms of the 
stability properties of the flow in the region. Suitable 
approximations eind assumptions are made to keep the study 
simple and more manageable; however, essential features are 
retained. At appropriate places, particularly in the dis­
cussion of the choice of parameters, the significance of the 
assumptions is given. They are summarized here for conve­
nience.
1. The thickness or depth of the PBL is specified a priori
and is controlled by the height of the inversion layer which 
caps off convection. Variations in the height of the con­
vective layer, due to uniform subsidence or lifting of the 
inversion base, are neglected.
2. The present model incorporates no effects of diabatic
heating (e.g., release of latent heat) which might obscure 
the interpretation of the results.
3. When a mean wind is present there will be some turbu­
lence before the onset of convection. The atmospheric
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boundary layer contains various kinds of eddies and in gen­
eral simultaneously exhibits both turbulent and laminar 
characteristics in varying degrees (Sutton, 1953). New 
perturbations are created by various thermal processes and 
the effect of the earth's topography. Their effect on 
thermal convection may be represented by replacing the 
molecular values by eddy viscosity values in the governing 
equations. Thus eddy values of the coefficient of viscosity 
and thermal conductivity are used.
4. Variations of eddy coefficients with respect to space 
and time are neglected. Thus, finer distinctions charac­
terizing the nature of open or closed cells are neglected.
5. The earth's topography has been neglected for simpli­
city, since terrain features may introduce horizontal tem­
perature gradients. Thus, in this study we are concerned 
only with thermal convection arising from unstable strati­
fication over a larger uniform surface without specific 
horizontal anomalies.
6. Although unstable lapse rates occur diurnally these 
are transient in the sense that they are not maintained 
lapse rates and once convection has occurred the instability 
is removed. This instability is more of the Rayleigh-Taylor 
type, resulting in a field of plumes rather than the Rayleigh- 
Bemard type treated here (Krishnamurti, 1973) . Hence, 
variation in lapse rate or variation in surface temperature 
due to diurnal heating has been neglected in this study.
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7. Lateral variations of the basic current (^) areoy
neglected. This may not lead to a serious error as baro- 
tropic instabilities are mainly confined to very large wave­
lengths. In the Ekman layer the lateral variations are 
represented by the y-component of the flow. In this study 
we are confining ourselves to parallel flows with vertical 
variations only.
8. The perturbations remain infinitesmal throughout the 
study and interact only with the basic flow; thus non-linear 
effects are neglected. Because of mathematical simplifica­
tions due to linearization, the critical conditions of 
instability for small disturbances are readily obtained.
The validity of the process of linearization for hydrodynamic 
stability studies has been well established (Lin, 1955).
9. Variations of density except when coupled with gravity 
are neglected. By the Boussinesq approximation compressible 
waves such as sound waves, which are of no meteorological 
significance, are filtered out.
10. Since no analytical techniques are available a numeri­
cal approach has been undertaken to obtain solutions, with 
the disadvantage that they may not be unique. In fact, 
many solutions can be obtained by a simple choice of the 
controlling parameters.

The above simplifications might appear excessive. 
However, in constructing a simple model we are left with the 
choice of judicious selection of crucial parameters. For
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instance, an incompressible model can give realistic results 
in the study of many atmospheric phenomena even though the 
atmosphere is not incompressible.



CHAPTER III

PHYSICAL DESCRIPTION OF THE MODEL 
AND THE MATHEMATICAL FORMULATION

3.1. Physical Description 
The configuration of the system is shown in Fig. 3.

As is customary in the study of convection, it is assumed 
that the convective layer is bounded by two horizontal, flat 
surfaces separated by a distance H. The lower plate is 
assumed to be rigid and is taken to represent the earth's 
surface. The upper surface is chosen to coincide with the 
base of an inversion layer. Since variations with respect 
to height due to uniform subsidence or lifting have been 
neglected the inversion alyer can be considered to be sta­
tionary with respect to the convective layer below.

In the basic state the fluid in the convective layer 
is assumed to move with a velocity u along the x-direction; 
i.e., Û = u(z); V = 0; w = 0. Thus, in the basic state only 
vertical variations are considered. Such a time independent 
steady current always can be obtained from observations when 
the data are averaged over a suitable period of time. By 
neglecting all variations in the meridional (y) direction

14
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we essentially consider a unidirectional flow in the basic 
state. The reason for this has already been discussed in 
Chapter I.

Empirical Deduction of the Velocity Profile 
Now we discuss an empirical deduction of the basic 

state velocity profile assumed for this study. The mechainism 
of maintenance of such a profile in the atmosphere is not 
given. Two possibilities are available to choose the basic 
state profile; (a) use observed data, or (b) guess a 
profile that is close to the observations. The use of the 
observed profiles may not be suitable in idealized studies 
because in the atmosphere the precise nature of the con­
trolling variables is not known. Moreover, the use of such 
profiles may mar the whole study or may create some irre­
solvable difficulties in the interpretation of the results. 
Hence, we choose the second alternative. Such use of guess 
profiles are common in stability studies. For example, ob­
servations indicate that cloud bands appear with curved 
velocity profiles. Hence, jet-shaped, parabolic profiles 
have been chosen for the basic state in previous investi­
gations. As already mentioned, the growth of these dis­
turbances is primarily controlled by the basic flow in the 
PEL. Hence, we choose the Ekmain profile since this profile 
previously has been found to yield realistic results. It 
is necessary to note that, in the Ekman layer, the shear is
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concentrated mainly in the lower portions of the layer amd 
decreases with height- The Ekman profile is strictly valid 
only above the surface layer; i.e., at heights greater than 
50 m. However, the error involved, in considering the 
phenomena we are interested in, is probably not significant.

Since in this study the lateral variation of the basic 
current has been neglected for simplicity, the relevant 
component is the x-component of the Ekman profile. For a 
baroclinie geostrophic wind this is given by u = u^(l-e 
cos az) + B^z, where a and are constants ; a depends on
latitude. Expanding e and cos az, noting that these are 
bounded functions, and neglecting terms of higher order than 
the third power, we obtain

Ü = Ug(az - -) + B^z .

Then our guess corresponding to this is a cubical expression 
for Ü; thus Ü = u*(Ax^ + Bx + C) where A, B, and C are con­
stants, X = ^, and u* is a characteristic velocity defined 
in Fig. 3. We take the bottom of the inversion layer to 
correspond to the top of the boundary layer; since the 
presence of a stable layer is not essential in this study 
we consider the developments in the convective layer itself. 
To determine A, B, and C we apply the boundary conditions 
u = 0 a t z = 0 o r x = 0  (rigid boundary); this yields C = 0. 
Also, the condition u = u * a t z = H o r x = l ,  gives

A + B = 1 . (1)
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We now apply the condition = O a t z = H o r x = l .  This 
condition represents continuity of the tangent at the boun­
dary, so as to have no viscous stresses at the boundary.
This is essentially the dynamic boundary condition. Applying 
this condition we obtain

3A + B = 0 . (2)

From (1) and (2) we get A = - -j, B = . Thus our profile
reduces to

Û = û (|- X - Y x^) . (3)

Neglecting the cubical term, we arrive at the profile for 
Couette flow. This profile satisfies all the required con­
ditions and may be considered as a slight generalization of 
Couette flow. It is necessary to note that we have used a 
baroclinie Ekman profile for our guess. However, we do not 
propose any mechanism for the maintenance of the basic pro­
file in the atmosphere. With this cubical profile to re­
present the basic state we investigate the problem.

The initial thermal stratification already has been 
specified as T = T^ - AZ. In the basic state, the pressure 
gradient which balances the gravitational force may be 
written as

If = - g PQ[1 - a(T - T^)]

where is the density of the medium at z, a is the co­
efficient of thermal expansion, and P is the pressure in the
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basic state. The hydrodynamic and thermal boundary conditions 
are given in Sections 3.2 and 3.3. The relevant mathematical 
formulation appears in Section 3.4.

3.2. Hydrodynamic Boundary Conditions
Studies of this type differ in the nature of bounding 

surfaces, e.g., smooth, rigid, etc. Jeffreys (1928) has 
shown that critical values for the onset of stationary con­
vection are a function of the boundary conditions. Further­
more, he has recommended that at least one of the boundaries 
should be free and the other rigid, to be more realistic in 
atmospheric studies. In this study the lower boundary is 
taken to be rigid and coincides with the earth’s surface.
By this specification no slip occurs, and all the velocity 
components, including perturbation quantities, vanish.

The base of the inversion layer which forms the upper 
boundary in this investigation is taken to be that of a 
■free' surface ; i.e., tangential viscous stresses vanish.
However, this specification is not unique. It has been 
considered to act as a rigid lid to permit the build up of 
convective activity in most studies. The inversion layer 
either does not permit the development or acts as a damper 
until it is penetrated and 'explosive' development takes 
place (Dirks, 1969). The base of the inversion layer has 
been treated as an open boundary in some studies (Barnes,
1967). In recent studies (Krishnamurti, 1973) it has been 
treated as a ’porous' boundary and 'free' boundary conditions
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have been used. The assumption of symmetrical (free or rigid) 
hydrodynamical boundary conditions at both surfaces does not 
appear to correspond to any realistic physical situation in 
the atmosphere. Thus, the dynamical boundary conditions 
chosen for this study are:

1. rigid lower boundary (no slip),
2. free upper boundary (slip occurs).

3.3. Thermal Boundary Conditions 
These depend on whether or not the boundaries are con­

ducting, insulated, or allow constant heat-flux. The 
assumption of insulating surfaces on either one of the 
boundaries is not realistic since the inversion layer gets 
destabilized in the course of time, and the earth's surface 
is neither a good conductor nor a perfect insulator. Fur­
thermore this assumption would alter the temperature of the 
insulated surface drastically. As in free convection, the 
temperature and velocity distributions are interdependent; 
a change in surface temperature would alter the existing 
lapse rate and modify the velocity distribution in the con­
vective layer. Since such alterations are not desirable in 
this study the assumption of insulated surfaces need not be 
considered.

Perfectly conducting surfaces maintained at constant 
temperatures have been considered in previous studies. With 
these boundary conditions temperature perturbations vanish 
at both surfaces. Thus, the assumption of fixed surface
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temperature would mean they are in contact or they have 
infinite thermal conductivity and heat capacity. As the 
inversion base (upper boundary) is not insulated, there 
will be heat exchange on either side of the boundary. Be­
cause the heat-transfer coefficients are finite, the boundary 
temperature will not remain constant during the convection 
process. In fact, inversion base warming by radiation is 
known to occur and is an indicator of the existing lapse 
rate (Haltiner and Martin, 1957, p. 129). Since the earth's 
surface also is not a perfect conductor and the lapse rate 
is assumed to be a constant, the assumption of a fixed sur­
face temperature is not realistic.

Because of the reasons stated above the assumption of 
constant heat-flux on both surfaces would be closer to 
physical reality. Thus, the thermal boundary condition may 
be stated as ; constant heat-flux at both boundaries, irre­
spective of the convective perturbation temperature.
Sparrow et (1954) have shown that the system is
rendered more gravitationally unstable with this condition. 
The relevant equations together with a summary of the 
application of the boundary conditions are given in the 
next section.

3.4. Mathematical Formulation
The vector equation of motion, the mass continuity 

equation and the heat-conduction equation pertinent to the
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problem at hand can be written as:

p | ^ = - v p - g p i c  + Kjjp(v-t)V-p (20 X V) ,

^  = - p V - V ,

Where ^  + V*V aind V is the three-dimensional velocity
vector. Also, in the above equations p denotes the density, 
p the pressure, Q the temperature, and and are 
the coefficients of eddy viscosity cind eddy conductivity, re­
spectively. The molecular coefficients of viscosity and 
conductivity are neglected in comparison with their eddy 
counterparts which are also considered isotropic constants. 
The remaining symbols carry their usual meeining emd the 
nomenclature of the various symbols is given at the begin­
ning. The Coriolis term is included and the horizontal

2accelerations arising from the centrifugal force (n R terms) 
cure combined with the gravitational acceleration.

The vector equation of motion is general enough to 
permit all kinds of motions from very short acoustic waves 
to planetary scale Rossby waves. Thus, it is necessary to 
simplify the above equations relevant to the phenomena con­
sidered. In this investigation, very short acoustic waves 
and other three-dimensional compressible waves are of no 
direct concern and may be considered as noise. We eliminate
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these waves by applying the Boussinesq approximation. Thus,
considering the variations of density due to thermal expan­
sion only insofar as they affect buoyant.forces, we can re­
place p which occurs with g in the above equations by;

P = P q d  - a A T) , (5)

where a is the coefficient of thermal expansion, p is the den­
sity corresponding to a mean potential temperature T and AT is 
the deviation of potential temperature from T^, i.e., AT=T-T^ 
Treating p elsewhere in the equations as a constant equal 
to p ̂  , we can rewrite the vector equation of motion as :

= — ——  V p - g ( 1 - a A T) k + K^(v»9)V — (2C x V) (6)

and the mass continuity equation reduces to:

v V  = 0 - (7)

With the tangent plane approximation the equations of motion
in cartesian coordinates can be written as:

(8b)

a? = - - 9(1 - aAT) + (80

The continuity and energy equation in cartesian coordinates 
can be written as:
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#  + I# + %  = 0 ' (8d)

II = Kjj . (8e)

where ^  ^  ^

and u, V, and w are the velocities in the x, y, and z direc­
tions, respectively. The above nonlinear system of equations 
apply to the basic state and the perturbations.

The basic state variables for the PBL (z < 1 km) can be 
written as

u = U*{|- § - Y (0 < z < H)
v = 0
w = 0
T = T^ - A z ( 0 < z < H )
P = P (x,y,z)
P = Pq (2) (1 - a(T - T^))

T* = AH
where the symbols are defined in the summary of the nomencla­
ture utilized. The symbol T represents potential temperature 
and A is the environmental lapse rate of potential temperature. 
If A were zero the boundary layer would be in am adiabatic 
state corresponding to an isothermal state in liquids.

From the above definitions we obtain , I—  (u,v,w,T) = 0oy ox
«  2-  -  2 -

^  / 0, ^ / 0, -|̂  = - A» and ^ = 0. The processes which
az^ ôz^

establish a uniform heating of the lower surface so as to
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eliminate horizontal inhomogenities in potential temperature 
and maintain a linear temperature profile in the convective 
layer (PBL) are not modelled here.

The relation between absolute temperature Q and potential 
temperature T can be written as

^ ^ 1̂000^
where % = R/C^ = 0.286, R is the gas constant for dry air, and 
Cp is the specific heat at constant pressure. By differentia­
ting the above relation we obtain

The difference between T and Q is very small at least up to 
1 km in the atmosphere, the region of interest in this study. 
Thus, for practical purposes T = Q. Without any great loss
in accuracy we obtain A = (y ~ , where y is the environ­
mental lapse rate of absolute temperature and is the dry

ÔT ÔTadiabatic lapse rate. Similarly, since —  = —  = 0 becauseox oy
of uniform heating of the surface we can write without any
great loss in accuracy ^  = o. That is Q = Q(z) only.dx ôy _
The density variations along the x and y directions 
can be calculated using P = p RQ and the equations of motion 
for the basic state which specifies the variations of P along 
the three space directions. The equations of motion cam be 
written as
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pQ (9b)

If = - g Pq CI - a(T - Tq )) . (9c)

Using appropriate values for the constants

cmVsec, u* = 10^ cm/sec, H = 10^ cm

^ = 3 X 10”^^ cm ^ sec~^, p = 10  ̂ gm/cm^ 
dẑ  °
Q = 300°K, R = 2.86 X 10^ erg gm"^ °K~^) , 

we can obtain from the above equations

^  <*» 10~^^ gm cm”^, and ~ 10 gm cm ^ . ox 6y

These are negligible compared with the absolute variation
of density along the vertical which is of the order of 10
However, the relative variation (relative to an isothermal
state) is of the order of 10 A rigorous calculation
taking into account the variation of ^  ^  will yield iden-oy
tical results. By the Boussinesq approximation we neglect 
the variations of density along the horizontal directions.
In common with many other investigations we shall consider 
the average density along the vertical in the isothermal 
state and treat it as a constant. In cellular convection 
problems the relative variation of density is considered.
Thus, p = p^(l - a(T - T^)).

Considering the second equation of motion it might appear 
that geostrophic balance is achieved in the PBL. However, the 
y-component of the velocity vector is zero and is not geostrophic.
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All dependent variables are written as follows: 
u = u + u ' ,  V = V ', w = w ' ,  p = p + p ' /  and T = T + T' 

where the primed quantities are assumed to be small in compari­
son with the mean state variables. By substitution of the 
expanded terms into the system of equations (8) and neglecting 
terms involving products of perturbation quantities one can 
obtain the linearized equations for the total motion, i.e., 
basic flow plus perturbations. The perturbation equations 
can be obtained from these equations by subtracting the basic 
state equations defined by (9). In the following equations 
basic flow variables are denoted with a bar {-) and the per­
turbation qucintities are expressed by the same symbols but 
without a bar. We obtain the following equations for the 
perturbations :

+ (IOC)

#  + +  = 0 '  ("O'")

Eliminating u, v, and p from Eq. 10a, b, c, and making use of 
Eq. (lOd) and remembering ü = ü(z), we obtain:
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, .2 .2
where v

^ ôx^ ôy^

The energy equation may be written as;

(#t + : h  - '^1 T + w ^  = o . (12)

The vorticity equation derived from (10a) and (10b) may be 
written as:

where C =

is the vertical component of relative vorticity. Since we 
can write:

" - - #  - A ?

K  - 1&

the horizontal components of motion also can be obtained.
With the Coriolis force taken into account, the set (11),
(12), and (13) are coupled and form three simultaneous equa­
tions in w, T and Thus, to obtain the desired solutions 
these equations must be solved simultaneously. Eqs. (11) — (16) 
are still dimensional. As is customary in boundary layer 
flows, the above equations are nondimensionalized choosing 
the depth of the boundary layer (H) as the characteristic 
length {L}, the free stream velocity as the characteristic
velocity, the imposed temperature difference T* as the charac­
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teristic temperature {T] and the characteristic time ft} de­
fined as the ratio of characteristic length to characteristic 
velocity. In mathematical symbols they are defined as :

{L} = H ,
{T} = T*,
{t} = H/U* .

We arrive at the following dimensionless equations in place 
of (11) - (16).

- M l

(#t + " L  - - '
(17)

(|^ + Û - Pr”  ̂Re'l v̂ ) T + w II = 0 , (18)

where
P r . ^ .

Re =
H U*

Ri = 3-a_p L
u*

and Ra = 9 g T*
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(14), (15), cind (16) remain identical to their dimensional 
counterparts. It is necessary to note that a relationship,
Ra = Pr Re Ri, exists among the four dimensionless parameters. 
Since we cure concerned here with unstable stratification, 
the temperature at the lower boundary is higher than the upper 
boundary and Ri as defined here has a sign opposite from the 
conventional one. Perturbations are assumed to be of the form

U(z)u
I
I V

1

J w = ( W(z)
I {i (k^ X + k^ y) + a t}

I ' \ I 
1 c i I :
i t ; \ e(z) , (20)

where k^, k^ are the wave numbers in the x and y directions, 
respectively, U(z), V(z), W(z), Z(z), and G(z) are the ampli­
tude factors dependent on height and o is the complex wave
frequency (o = + i a^). A discussion on these factors is
given in Chapter 4.

Inserting Eq. (20) into (17), (18), and (19) we obtain:

{a + Û i k^ - Re"l (D^ - k^) } (d  ̂- k^) - ^  i k^ w
dz^ *

+ F ^  + Ri k^ 0 = 0 , (21)

[o + i k^ Ü - Pr'l Re"^ (D̂  - k^) } 8 - W = Q , (22)

{o + i Ü - Re'^ (D^ - k^)} Z - i ky W II - F H  = 0 , (23)
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U = i ky Z + i DW , (24)

k^ V = - i k^ Z + i ky DW , (25)

where D = ̂  = - -r , and k^ = k ^  + k  ̂ . Since a con-
dz^ ^ ^ àTstant lapse rate of temperature is assumed, - is taken to

be unity in Eq. (22). Eqs. (21) - (25) are used to determine
the stability characteristics of the flow.

In seeking solutions of these equations we apply the
boundary conditions explained in the previous section. As
the convective layer is bounded between the fixed surfaces
(the inversion base and the earth's surface), there can be
no motion normal to them. The boundary conditions are applied
at z = 0 and 1 as the equations were nondimensionalized with
respect to H.
Thus, W = 0 at z = 0 and z = 1. (26)
At the rigid boundary no slip occurs; the components of 
velocity, u and v, at right angles to the vertical, vanish 
identically on this surface. From the equation of con­
tinuity we arrive at;

= 0 ;  A = 0 at z = 0 (rigid boundary). (27)o z
At the free surface tangential viscous stresses vanish; 
hence, o

= 0 ; = 0 at z = 1 (free surface) . (28)
ôz'̂

The thermal boundary condition for constant heat flux becomes:
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D 0 = 0 (D = at z = 0 and z = 1 . (29)

For perfectly conducting (constant temperature) boundaries:

9 = 0 at z = 0 and z = 1 . (30)

Numerical Procedure 
Eqs. (21), (22), and (23) are now ordinary differential equa­

tions with variable coefficients. These may be transformed 
into a set of algebraic equations by using finite differences. 
Dividing the convective layer into n strips of equal thick­
ness, the vertical derivative of W, for example, at the 
level can be approximated by centered differences (centered 
differences are adopted to reduce the truncation error):

(dz)^ ^ 2 (^k+1 " ^k-l) '

( A )  = (̂ k-Hl + ^k-1 - 2 \ )  ■

k

The formulation with finite differences is quite straight 
forward and hence it is not given in detail.

Eqs. (21), (22), and (23) can be written using centered 
differencing as shown below:

Re n \+l "̂k ^k “ ^k ^k-1 " ^k-2

- F T ̂ +1 + F § ̂ -1 - Ri 9k
- a {n^ - (2n^ + k^) + n^ = 0 (21a)
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+ Pr-^ Re-1 6^+1 " ^k-l " “k = °
(22a)

F 1  ̂ Tc+l + 1 ^y (3#) \  - I" f  ̂ k-1 + =k+l - \  ^

+ Re"l n^ Z^_^ - o Z^ = 0 (23a)

where

= Re'l (4n'̂  + 2k^ n^) + ü i k^ n^

= Re"l (6n^ + 4k^ n^ + k^) + Ü i k^ (2n^ + k^) + i k ^ ( ^ )  ,

= (2n^ + k^) Pr'l Re  ̂+ ü i k^ .

X^ = (2n^ + 3ĉ ) Re“l + û i k^ ,
and

2 2 2 k^ = k^ + ky (Horizontal wave number) .

Boundary conditions are similarly transformed into finite- 
difference form.

Vertical Velocity
W = w = 0 ,  W = 0 a t z  = 0 cuid z = 1,o n 2

W . + W . = 0 , ^ -If = 0 at z = 1,n+1 n-1 dz^

- W_^ = 0 , = 0 at z = 0 -
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Vorticity
Z = 0  at z = 0 »o

^n+1 - =n-l = ° ^

Temperature 
Constant Heat Flux:

8  ̂- 8_2 = 0 at z = 0, ^  = 0 at z = 0,

W  - V l  = 0 at z = 1. = 0 at z = 1.

Constant Temp;
0 = 6 = 0  at z = 0 and z = 1 .o n

In the above formulation the lower boundary is located 
at k = 0 and the upper boundary at k = n. (-1)^^, (n+1)
strips are located at a distance of (1/n) from the bottom 
and top boundaries, respectively.

With constant temperature boundary conditions (21a), 
(22a), and (23a) yield 3n-2 linear equations in 3n-2 unknown 
variables of W, 8 and Z. With constant heat flux boundary 
conditions we obtain 3n linear equations in 3n unknown 
variables of W, a and Z . The additional two equations arise 
as 9 does not vanish at the boundaries, i.e., only the deri­
vative vcinishes. The above linear equations can be cast in 
matrix form as (A - a B) X = 0 where x is an eigenvector con­
taining variables W, 0 and Z. The complex matrix [a] is of
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the order (3n-2 x 3n-2) or (3n x 3n) depending upon the 
thermal boundary conditions imposed. The matrix elements 
in [A] are arranged corresponding to the arrsuigement of per­
turbation variables in the vector X. The arrangement of 
matrix elements in [B] is similar to that of [A]. The 
arrangement in X is done as below:
Constamt temperature boundaries: Constant heat flux boundaries :
X (1, .... n-1) —  W X (1, .... n-1) —  W
X (n, ....  2n-2) —  e X (n...... 2n) —  G
X (2n—1, ..... 3n—2) —— Z X (2n+l, ..... 3n) — • Z

where the arguments (1,  n-1) etc., specify the sequen­
tial arrangement of the perturbation variables in the vector 
X.

The necessary and sufficient condition that the system of 
Eqs. (21a), (22a), and (23a) possess a nonzero solution for the 
perturbations variables ; i.e., nonzero vector X is that the
matrix (A - a B ) be singular. If [B] is non singular we can 
rewrite the above condition as

]B~^ A - a I I = 0

where [I] is the unit matrix cind [B~^] is the inverse of '"B]. 
From the above equation it is clear that the o's are the eigen­
values of the matrix [B ^A]. The values of a which permit the 
above condition to be fulfilled are, of course, dependent upon 
the nature of the matrix [B~^A] which in turn depends upon the 
nature of the problem such as the prescribed static stability.
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shear, wavelength of the imposed perturbations, etc. These 
eigenvalues which may be complex, i.e., o = + i a
determine the stability characteristics of the flow.

If Oj. > 0 the amplitude of the perturbations will in­
crease exponentially with time and the current is said to be 
unstable. If < 0 the amplitude will decrease with time 
and the current is said to stable. If = 0 the basic flow 
does not interact with the imposed perturbation and is said 
to be neutral. The determine the phase speeds of the
modes and they are used in conjunction with to determine 
the nature of the modes.

The eigenvalues may then be used to obtain the eigenvec­
tor X which provides the amplitude of the perturbations. The 
horizontal component of the velocity, U and V, are obtained 
from the amplitude of the vorticity using Eqs. (24) and (25). 
The amplitudes and phase angles of the perturbations are 
used to determine their structures.

In this study the stability characteristics, as in­
dicated by the eigenvalues, are of primary interest. The 
structures are obtained for chosen eigenvalues to ascertain 
the nature of the perturbations. A series of computations 
was made for a number of different wavelengths of the imposed 
perturbations with prescribed shear in the basic current.
The results are discussed in Chapter V. The relevant para­
meters chosen for this study with their physical signifi­
cance are discussed in Chapter IV.



CHAPTER IV

DESICaîATION OF THE EXPERIMENTAL PARAMETERS

In this chapter we discuss the physical significance 
and the range of values of the various parameters involved 
in this investigation. The validity of the assumptions 
which were summarized in Chapter II are discussed in detail.

In the previous chapter, we reduced the linearized 
partial differential equations to ordinary differential 
equations by assuming that solutions exist, for the imposed 
perturbations, in separable functions of x, y, z and t, such

fi(k^ X + k y) + a t } 
as w = W(z)  ̂ . A special case can be
obtained by imposing the condition that the perturbations
remain neutral {â  = 0) throughout the period of study. The
solutions obtained in this special case, known as mariginal
state solutions, separates the stable from unstable states.
It is not the objective of this investigation to seek
solutions which determine the criteria for the onset of
convection. In this study the imposed perturbations are
allowed to grow or decay exchanging energy only with the
basic flow of the convective layer. Therefore, we do not
equate to zero. The stability characteristics of the

36
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flow are determined from the magnitudes of the real and 
imaginary parts of a. These are the eigensolutions of the 
problem.

The functional form of W(z) varies according to the 
nature of the bounding surfaces. The imposed hydrodynamic 
and thermal boundary conditions essentially specify the 
nature of bounding surfaces. These boundary conditions are 
determined by the nature of the physical problem to be 
solved. If the bounding surfaces are free, W(z) can be 
readily expressed in a closed analytical form (Rayleigh case). 
However, increasing difficulties are encountered when one 
attempts to obtain analytical solutions for W(z) when a 
different set of hydrodynamic and/or thermal boundary con­
ditions (symmetrical or asymmetrical) are specified or when 
additional forces are considered. Additional complexities 
arise if we allow the imposed perturbations to grow or decay 
while exchanging energy with the basic flow. The present 
investigation contains all the above mentioned problems 
and normal modes are not easily determined analytically 
under these conditions- In the absence of an analytical 
solution, it has become an accepted practice to obtain nu­
merical solutions. The present study is one of that kind 
and the obtained results form a solution valid in the range 
of parameters specified. A clear understanding of the gov­
erning parameters involved is necessary for a judicious 
choice of a value or values for those parameters as the results
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are dependent upon these specifications. Thus, a discussion 
of the parameters is in order before the results are pre­
sented.

The nature of the bounding surfaces, hydrodynamic and 
thermal boundary conditions, which control the amplification 
of the perturbations has already been discussed.

At first it is necessary to indicate the layer for which 
the parameters are specified, i.e., the convective layer or 
the stable layer formed above the convective layer. Organized 
convection such as cellular cloud formations or horizontal 
roll vortices (bands) are observed to form beneath an in­
version layer of height 1-2 km. However, the presence of a 
stable layer is not a necessary condition for the development 
of perturbations. Both hollow and solid type of cells occur 
in the absence of a stable layer (Mitchell, 1967). The for­
mation of clouds serves only as an indicator of the developed 
disturbcinces and appear if enough moisture is present for 
condensation. Thermoconvective eddies arrainged in regular 
patterns occur, even in clear air (Konrad, 1968) .
Thus, the above two conditions (namely, the presence of a 
stable layer and the formation of visible clouds) are suffi­
cient but not necessary conditions. The stable layer above 
the convective layer may cause secondary effects such as 
increasing the width of the cells but it does not supply 
energy for the development of the pattern itself. It is 
not the intent of this paper to find the proper width to
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height ratio of the developed patterns as observed in the atmos­
phere. It is a desired objective of this paper to find the 
preferential scale of the most unstable wavelength of the im­
posed perturbations, under the condition of vertical shear in 
the basic current. The stable layer can modify this wavelength

through non-isotropic diffusion and by subsidence, etc.
Since the stable layer affects the developing perturbations 
very little it is superfluous in this study. The perturba­
tions are imposed on the basic current of the convective 
layer. The equations given in the previous chapter apply 
to the convective layer. Thus, the region of interest in 
this study is the convective layer itself and the parameters 
are specified for this layer. The convective layer is 
assumed to correspond to the PBL and has a fixed depth.
The flow in the PBL is assumed to be parallel flow.

It may be appropriate at this juncture to point out 
the differences between 'cells’ and 'bands' or 'strips' 
as these terms are often used in this paper. In hydro- 
dynamic stability studies the organized convection 'bands' 
or 'cells' are recognized as the ultimate products of the 
imposed perturbations. Thus, the identification and speci­
fication of these disturbances is done in terms of wavelength 
or wave numbers of imposed perturbations and not by any 
physical dimensions. The geometry of the modes (square, etc.) 
is specified in advance through the wave numbers selected 
for the X- and y-directions. If the imposed perturbations.
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such as those specified in this investigation, are three-dimen­
sional the resulting disturbances are referred to as 'cells'. 
Thus, cells are three dimensional and are specified by wave­
lengths in two perpendicular directions. In particular, if 
equal wavelengths are specified in the x- and y-directions 
the resulting mode is a 'square' cell. The height of the 
cell is equal to the depth of the convective layer. Hence, 
a governing parameter in this study is the height of the 
convective layer itself.

In a motionless or steady-current atmosphere, cells can 
appear in regular polygonal patterns. However, in a varying 
current such as prescribed in this investigation, distorted 
polygons would result. Such distorted patterns often occur 
in the atmosphere and are frequently observed by meteoro­
logical satellites. In this study, we limit ourselves to 
simple geometric forms such as 'square' or 'rectamgular' 
cells.

In a shearing current the cloud elements often align 
themselves in rows with clear spaces between them. These 
cloud bands form in two-dimensional cells. The spacing 
between the cloud streets or rows is the roll horizontal 
wavelength. Cloud rows formed with their axes parallel to 
the mean wind are called longitudinal bands. These have 
infinite wavelength in the direction of the mean wind.
On the other hand, transverse bands have infinite wavelength 
across the mean wind. In calculations, either of these two
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dimensional strips are obtained by specifying an infinite 
wavelength in the appropriate direction.

The basic state velocity specifies the shear in the 
system. Thus, the critical parameters in this investigation 
are the depth of the convective layer (H), the basic state 
velocity (Ü), and the wave numbers of the perturbations in 
the X- and y-directions (k̂ , k^). The transport of heat and 
momentum is specified by eddy coefficients (K^, K^) while the 
Coriolis parameter (f) specifies the magnitude of the earth's 
vorticity- All of the above parameters have dimensions.

In the previous chapter the governing equations were 
rendered dimensionless using the free stream velocity (U*), 
the depth of the convective layer (H), and the imposed tem­
perature difference between the bounding surfaces of the 
convective layer (T*). Thus, we obtain four dimensionless 
parameters; these are the Rayleigh number (Ra), the Reynolds 
number (Re), the Richardson number (Ri), and the Prandtl 
number (Pr). The dimensionless wave numbers are denoted by 
the same symbols as utilized for the dimensional wave numbers.

Specification of Parameteric Values
—4 -1The Coriolis parameter f is specified as 10 sec , 

which corresponds to mid-latitudes. The Prandtl number (Pr) 
in the case of atmospheric convection is the ratio of the 
eddy, rather than molecular, coefficients of viscosity and 
conductivity. Thus, we define Pr as the ratio of to K^.
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Even though the values of eddy coefficients of viscosity and 
conductivity both vary with the scale of the circulations 
involved, i.e., with the depth of the convective layer, 
their ratio is generally considered to be near unity. Thus, 
a value of unity for the Prandtl nuinber can be considered 
as an appropriate choice even though it may be strictly valid 
only in neutral conditions. Observational values differ 
considerably from unity especially under unstable conditions. 
A couple of tests have been made with Pr = 0.53; these will 
be discussed in the next section. The depth of the convec­
tive layer (H) is assumed to be 1 km in agreement with 
observations. If the remaining parameters (Ra, Ri and Re) 
are specified properly the relevauit equations can be solved 
to find the growth rate of the imposed perturbations for the 
specified wave numbers.

The principal parameters of the problem are the Rey­
nold's number (Re) associated with the basic flow and the 
Rayleigh number (Ra) associated with the me sin temperature 
gradient. When Re = 0, i.e., no zonal flow, we know that 
instability sets in with respect to arbitrary three dimen­
sional disturbances at a critical Rayleigh number of 1108, 
in the absence of rotation under the assumed boundary con­
ditions. When Ra = 0, instability can arise as a result 
of viscosity acting as destabilizing factor.

In this investigation the imposed temperature differ­
ence between the top and bottom boundaries of the convective
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layer is specified by the Rayleigh number. Since an unstable 
stratification is specified the temperature of the lower 
boundary is higher than that at the free surface upper 
boundary. Since we are not interested in determining the 
critical Rayleigh number (i.e., the Rayleigh number which 
when exceeded only ceui give rise to unstable modes) the 
Rayleigh number is specified for each calculation.

The imposed temperature difference T* can be written 
as (y - where y is the environmental lapse rate and

is the dry adiabatic lapse rate. The quantity g = Y - 
is a small amount which must be added to the dry adiabatic 
before convection can begin. A static atmospheric layer 
with a lapse rate equal to the dry adiabatic is analogous 
to the isothermal liquid layer assumed in theoretical studies. 

Some difficulty is encountered in selecting a proper 
value for the Rayleigh number. The difficulty arises mainly 
due to two factors; (1) selecting proper values for the 
eddy coefficients and (2) specifying suitable lapse rate. 
These are discussed below.

Eddy Coefficients 
A considerable amount of literature exists which deals 

with the specification of eddy values eind their variations 
with height for different stability conditions in the atmos­
phere. Many semi-empirical formulae are derived but the 
applicability of these formulae is not universal. Observa-



44

tional studies have not yielded any conclusive results on 
the variation of eddy values. However, as expected by 
intuition, the eddy values for conduction in unstable situa­
tions are considerably larger than in neutral and stable condi­
tions. Numerical values may vary as much as three orders of mag­
nitude. Based on Cedar Hill data, Wong and Brundidge (1966) 
have deduced negative values for eddy conduction coeffici­
ents. However, we shall assume in this study that both eddy 
coefficients remain positive.

There is no general agreement on the spatial variations 
of these coefficients either. Many investigations, assuming 
anisotropy of eddy diffusion coefficients, have been under­
taken to explain the height to width ratio of cellular cloud 
patterns observed in the atmosphere, Ray (1965) has shown, 
irrespective of hydrodynamic boundary conditions, "In general 
a horizontal transfer coefficient of ciny kind that is large 
compared with vertical coefficients will flatten the cells".
In other words, the desired cell width to height ratio can 
be obtained by a suitable combination of spatial change of 
the eddy coefficients. Since the determination of cell 
height to width ratio in the marginal state is not our main 
concern in this study, further attention will not be given to 
investigations carried out for this purpose. The above in­
vestigations show the elusive nature of eddies and the 
considerable ambiguity that can arise in the choice of a 
value for these coefficients.
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Thus, in choosing eddy coefficients of diffusion Kg or 
Kg we must be guided more by intuition rather than by a 
knowledge of the fundamental physics of the process. In this 
investigation the eddy diffusion coefficients are assumed to 
be isotropic consteints because of a lack of any proper esti­
mate. Moreover, we are not attempting to determine the sense 
of circulation of the cells. Thus, variation of diffusion 
coefficients with height are not considered. Simple scale 
considerations may yield better estimates of the values of 
these exchange coefficients.

In a simple dimensional approach the exchange coeffi­
cients are usually equated to the product of a characteristic 
length and a characteristic velocity. For example, K^ may be 
written in our model as K^ = U* H , where U* is the character­
istic velocity and H is the characteristic length. This

c 2 — 1yields a value of 10 cm sec" for Kg, assuming U* is equal 
to 1 cm sec Since we have assumed that the eddy coeffi­
cients are equal and isotropic we arrive at an estimate for 
Kg and Kg equal to 10^ cm^ sec~^. Although these are proba­
bly conservative estimates they are in agreement with 
Kuttener's (1971) values.

Specification of Lapse Rate 
The temperature gradient necessary to produce these 

organized patterns is very small. The assumption of a fixed 
lapse rate in the convective layer is only an idealization.
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particularly in the presence of various other nonlinear 
processes such as entrainment, etc. Since atmospheric con­
vection is modelled here it is appropriate to consider 
deviations from the dry adiabat lapse rate; g denotes the 
deviation from the dry adiabatic value.

Jeffreys (1928) has obtained a critical Rayleigh number
-11 -10 (1000) and a critical temperature gradient 0(10 deg cm ) 

using eddy coefficients equal to 10^ cm^ sec Sasaki (1970) 
stated, "The Rayleigh number of the convective layer may be 
in the range of 10  ̂to 10  ̂ if g is about 10 ^ deg m  ̂and 
X and V (eddy coefficients) are 10^ to 10^ sec Since
the convective layer is fully turbulent and the stratifica­
tion is nearly neutral, the above estimates are realistic".
In other words, the eddy coefficients should be of the order of 
10^ cm^ sec  ̂- 10^ cm^ sec ^ and g =10  ̂deg cm However, 
this estimate is not unique. Kuttener (1971) has pointed out, 
"We are therefore justified to assume that the vertical poten­
tial temperature gradient e'(g in our notation) is smaller 
than 0.5 deg km” .̂ Keeping in mind that this should be an 
average value throughout the convective layer, including 
areas of ascending and descending motion, 6' is probably
quite small." In other words, p should be less than 

-5 -10.5 X 10 deg cm . Kuttener has used eddy coefficient
values equal to 10  ̂cm^ sec  ̂and has obtained a critical 
Rayleigh number of 10^.
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With the same boundary conditions as utilized in this 
investigation Agee and Chen (1973) have obtained a critical 
Rayleigh number of 500 for a 1 km deep convective layer; a 
simple calculation yields g = 10 ^ deg cm ^. This specifies 
the minimum lapse rate required for the start of convection. 
From the above results, it is clear that the range of g 
differs considerably with the suggested values for the eddy 
coefficients. This is not surprising due to the elusive 
nature of eddies. The eddies may change in shape and vary 
in size and they are not a property of the atmosphere itself, 
unlike molecular coefficients whose values are known and 
whose variation with temperature can be explicitly calculated. 
In this investigation g is assumed to have the value 
m. lo”  ̂de g cm~^ which is probably closer to the values 
used by Agee and Chen. This choice for B is mainly due to 
coincidence of the boundary conditions with their investi-

qgation. Since the Rayleigh number is proportional to —  
many values of K^, K^, and g will yield the same ratio.
A value for g close to zero is considered appropriate, since 
super adiabatic temperature gradients would be difficult to 
maintain in the atmosphere in the presence of eddy motions. 
Moreover, in the second part of this investigation, we will 
assume that there is a constant flow of heat energy through
both boundaries. This assumption is most appropriate if g

-7 -1 4is small. Thus, a value for p - 10 deg cm and Ra = 10
with eddy coefficients 10^ cm^ sec"^ is considered a good
choice.
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The other two parameters that remain to be specified 
are the Richardson number and the Reynolds number. Since 
Ra and Pr are already specified these parameters are not 
independent. They are related by the relationship 
Ra = Pr Ri Re . The Richardson number is the ratio of static 
stability to vertical wind shear aind by definition it is 
independent of both viscosity and thermal conductivity. Since 
the proper values for eddy coefficients are not known with 
any certainty, we choose Ri as an independent parameter in 
our model. Thus, in this investigation the Richardson number 
serves as a measure of the baroclinity of the flow since the 
static stability is already specified by the Rayleigh number. 
Tabulated results are given in terms of Ri as was done by 
Asai (1970a) in his Couette flow investigation.

If the maximum velocity at the top of the convective 
layer U* is calculated, with values of Ri that are used in 
this investigation, U* may appear to be too small. This is 
due to the choice of Rayleigh number which in turn depends 
upon the lapse rate and the eddy coefficients. If bigger 
Rayleigh numbers, corresponding to larger lapse rates or 
smaller eddy coefficients, are chosen with the same Richard­
son number, U* will increase. For example, if Ri is equal
to 1, U* has values 100 and 316 cm sec~^ for Ra equal to 
4 510 and 10 , respectively. Thus, U* increases or decreases 

depending upon the specification of the Rayleigh number. This 
does not affect the results since only nondimensionalized
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equations with nondimensionalized parameters are used in this 
investigation. Thus, neither the preferred scale (wavelength) 
of convection or the preferred mode of convection will change. 
However, a specification of larger Ra will yield instabilities 
of higher modes which are of no significance in this linear 
study. Moreover, the range of wavelengths of unstable modes 
will extend on either side of the mode of primary interest. 
However, we determine the preferred scale at which the insta­
bility is greatest; thus, it is of no consequence. As dis-

4cussed before the reason for choosing a value of 10 for the 
Rayleigh number is that, in this study unstable modes with 
wavelengths less than cumulus scale (~ 1 km) are of no signifi­
cance. We are interested in mesoscale cellular convection. It 
should be noted that each cell consists of numerous cloud ele­
ments and does not consist of a single cumulus cloud.

The only parameters which are varied during the investi­
gation are the wave numbers of imposed perturbations (k and k )X y
and the vertical shear (Ri) of the basic flow. The variation 
of k^ or ky or both specifies the geometry of the cells and 
the wavelength of the imposed perturbations. As a result of 
varying Ri, we vary the vertical shear or baroclinity of the 
basic flow. The remaining parameters, Ra vhich specifies 
the static stability of the layer, H the depth of the con­
vective layer, f, Pr and the coefficients of eddy diffusion 
are kept constant throughout the calculations unless other­
wise specified. The preferred wavelength is determined from
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the eigensolutions.
In this investigation the horizontal wavelength of the 

imposed perturbations (k = Vk^^ + k^^)is varied from 1 to 30 km. 
For the range of Ri (2 to 0.2) considered, longer wavelengths 
are stable. The vertical resolution of the grid used in the 
calculations is about 80 m. Further details are given in the 
discussion of the results in the next chapter.

In the first part of the investigation both bounding 
surfaces are kept at constant temperature and in the second 
part of the investigation constauit heat flux boundary condi­
tions are assumed. Thus, the influence of thermal boundary 
conditions on the growth of normal modes are determined. The 
parameters used in the second part of this investigation are 
identical to those used in the first part.



CHAPTER V

RESULTS AND DISCUSSION

Before viewing the results, let us elaborate on the 
physical picture described by this convective model. In 
general, cloud patterns in the form of strips or cells with 
mesoscale wavelengths (10-100 km) form over land and/or 
oceanic areas; the shorter waves form over land areas where 
the ground temperature is warmer than the air temperature . 
The apparent similarity between convective patterns obtained 
in laboratory fluids heated from below and this observation 
suggests that a sufficient condition for the appearance of 
the patterns in the atmosphere is surface heating and gravi- 
tationally unstable configuration. Thus, these patterns are 
identified as a part of the convection process in the atmos­
phere. Convection is one of the most complicated processes 
particularly over land areas. In the atmosphere convection 
manifests through a variety of physical phenomena such as 
thermals,rising plumes, etc. The rising buoyant thermals 
and plumes sometimes penetrate the low-level inversion layer 
and reach up to the level of the tropopause. These cases 
are of no direct concern to our study although they are an

51
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important class of convection processes termed as 'penetrative 
convection'. The organized patterns of interest in this study, 
are identified with 'cellular or stationary convection'. This 
denotes a slow motion in which the entire fluid in the convec­
tive layer circulates, corresponding to a slow overturning of 
liquid under a low rate of heat supply. Considering the size 
of the medium these patterns are recognized as localized 
effects, even though the physical dimensions may he of the 
order of 50-100 km. The net effect of convection in the 
atmosphere is to neutralize the heat imbalance created by 
surface heating and to attain a gravitationally stable configu­
ration. In the real atmosphere many other factors such as 
cold and warm air advection in the convection region, radia­
tion, and topography can influence this kind of motion. For 
simplicity, these factors are neglected in this study. In 
the laboratory the transport of heat and momentum, necessary 
for steady convection, is governed by molecular vicosity and 
conductivity. In the atmosphere eddies transport heat and 
momentum. In this study, the dissipative effects of eddies 
are represented through the Prandtl nunOaer.

The proper identification of the exact support mechan­
isms for the occurrence of these patterns in the atmosphere 
is quite complex. In this study, buoyancy is assumed to be 
the principal support mechanism. The processes which esta­
blish the necessary constant lapse rate throughout the 
convective layer are not modelled. Supposedly, there is a
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uniform heating of the earth's surface which maintains the 
necessary temperature gradient. In this investigation, we 
specify the Rayleigh number a priori; the lapse rate neces­
sary for the onset of convection is kept constant throughout 
the period of investigation. Thus, the unstable modes are 
necessarily buoyancy supported even though their growth rate 
can be modified by viscosity, shear and/or shear gradient 
and rotation.

In the present formulation we concentrate on the effect 
of vertical shear on the formation of * square' modes and 
bands (treinsverse and longitudinal) under different thermal 
boundary conditions aind we determine the preferred scale of 
unstable modes. Thus, the crucial parameters in this study 
are vertical shear and buoyancy. The vertical shear is 
specified by the Richardson number.

To accomplish the stated goal a simple velocity profile 
is deduced as an approximation to the zonal component of the 
Ekman profile and this is taken to represent the zonal flow 
in the convective layer. Customary to these type of inves­
tigations the mechanism for the maintenance of the basic 
state profile is not specified. The region of interest in 
this study is the convective layer itself and not the stable 
layer formed above.

Since dimensionless equations eire used in this investi­
gation the tabulated results are expressed in terms of dimen­
sionless parameters such as the Rayleigh number, Richardson
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nuinber, Prandtl nuinber, and wave numbers of the imposed 
perturbations. The magnitude and the range of these para­
meters has already been discussed in the previous chapter.
The characteristic values are presented in terms of the 
dimensionless complex frequency a. The real part of the 
frequency a^ denotes the amplification rate while the imagi­
nary part denotes the frequency of the normal modes. 
Positive values of denotes amplification. The wave speeds 
of the developed modes are given by the c = -r—  . Computa-

X
tions with stable roots are denoted by bars in the tabulated 
results. Weak stable modes are included in the tabulated 
results for proper interpretation. The parameters used in 
the calculations are given in Table 1. The nomenclature of 
the variables that appear in the governing equations and 
results are given at the beginning.

5.1. Convergence 
In order to obtain satisfactory numerical solutions 

it is necessary to divide the convective layer into n layers 
such that convergence is attained; i.e., am increase in the 
number of intervals does not significantly alter the final 
results. We now discuss the basis for choosing a suitable 
number of intervals n to solve the present problem. Table 2

4shows the variation of amplification rate with n for Ra = 10 
and Ri = 1.0 under different thermal boundary conditions. 
These results show convergence at n = 12 at both wavelengths
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tested- A further increase in the nuinber of intervals pro­
duces no significant change in the results. Thus, we have 
selected n = 12 in this study. In this investigation this 
requires a matrix size (B  ̂A , complex) of (34 X 34) or 
(36 X 36), depending upon the thermal boundary conditions, 
which gives 34 or 36 eigenvalues.

In Table 2 is shown the single unstable wave which 
appears both for short and long wavelengths, irrespective of 
thermal boundary conditions. It is also clear that the 
amplification rate with constant heat flux boundaries is 
considerably less than that determined with conducting 
boundaries. As the results shown in Table 2 do not agree 
with results obtained by previous investigators, it is 
necessary to check whether this is caused by rotation or by 
shear or by computational errors.

Table 1. The following constant values are used in the cal­
culations for the specified parameters unless, otherwise 
stated explicitly in the subsequent tables.

f = 10 ^ sec ^ Pr = 1.0
H = 1 km Ra = 10^

= 10^ cm^ sec ̂  Ri = 1.0
Kjj = 10^ cm^ sec ̂  T^ = 300°A

Table 3 shows the critical Rayleigh numbers obtained 
with and without rotation in the absence of shear in the basic 
state. It is of interest to inquire how the results shown in
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Table 2. Convergence test for complex eigenvalues (o)
4for Ri = 1.0, Ra = 10 , with rotation as a function of the 

nuinber of intervals (n) and horizontal wave number (k) with 
different thermal boundary conditions specified for the 
bounding surfaces, (a) conducting (constaint temperature) 
boundaries, (b) constant heat flux boundaries. The number 
of intervals (n) for all calculations presented from Table 3 
onwards is for n = 12. In this as well as in subsequent 
tables the results are expressed in dimensionless quantities 
and ky = k^ (square mode) is specified unless otherwise 
indicated.

(a) (b)k n *r (=r ^r Cr
1.414 6 0.180 0.668 0.166 0.695

11 0.174 0.677 0.162 0.710
12 0.174 0.678 0.162 0.711
13 0.174 0.678 0.162 0.711

3.5 6 0.147 0.741 0.094 0.765
11 0.158 0.734 0.081 0.76
12 0.158 0.734 0.081 0.76
13 0.158 0.734 0.081 0.76

4.24 12 0.092 0.773 0.032 0.80913 0.092 0.773 0.031 0.810
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Table 3 compare with the previous investigations. The result, 
obtained without rotation, agrees well with Southwell's (1940) 
values. However, with rotation the critical Rayleigh number 
increases to 1180, i.e., by about 8%. The increase in critical 
Rayleigh number with rotation is expected as appreciable changes 
(~ 10%) in the critical Rayleigh number can be caused by the 
rotational influences of the order of those found in the atmos­
phere. Frenzen and Nagakawa (1955) have obtained, with free
surface boundary conditions, a 10% increase in the critical

—4 -1Rayleigh number with an absolute vorticity of 10 sec in
a 1 km deep convective layer. In the present investigation

-4 -1the absolute vorticity of the flow is 10 sec since we have
-4 -1assumed a Coriolis parameter of magnitude 10 sec . Thus, 

our results show a correct magnitude of increase in accordance 
with Frenzen's (1955) calculations with conducting boundaries. 
With no slip-constant heat flux boundaries Sasaki (1970) has 
obtained a critical Rayleigh number of about 800 which corres­
ponds to a horizontal wave number of 2.5. In this study the 
results show a critical Rayleigh number of about 650 with 
the same thermal boundary conditions. This discrepancy is 
due to our asymmetric boundary conditions. With rotation 
the critical Rayleigh number increases to 740. This increase 
is in accordance with Frezen's (1955) calculations. Thus, 
the results presented in Table 3 provide an excellent base 
for checking the programming and suggest that the differences 
are real. In the range of wavelengths considered (< 5 km) the
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Table 3. Determination of critical Rayleigh number 
with no shear in the basic current with and without rotation 
for the specified wave number under different thermal boun­
dary conditions, (a) conducting boundaries (b) constant heat 
flux boundaries. Note that the critical Rayleigh number (Ra) 
for the case with the rotation is higher than that obtained 
with no rotation case irrespective of thermal boundary con­
ditions.

With Rotation Without Rotation
k Ra a C a Cr r r r

Conducting boundaries:
2.68 1108 -0.061 0.66 0.003 0.635

1158 -0.015 0.66
1180 0.001 0.66
1208 0.03 0.66

Constant heat flux boundaries :
2.68 660 — — 0.001 0.687

700 -0.039 0.677 0.024 0.687
740 0.002 0.677
770 0.032 0.677
840 0.101 0.677
1100 0.350 0.677
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Coriolis force cannot be a major stabilizing influence on the 
developing modes. Hence, we conclude that the difference in 
results is caused by the shear. This is in accordance with 
the results of previous investigations that show that the 
shear has a stabilizing influence on convective modes. A 
closer inspection of the results in Table 3 shows that in 
the absence of a basic current (no shear), convection occurs 
at weaker gravitational stability with constant heat flux 
boundaries. This is shown in the results by am increase in 
the amplification rate for the same Rayleigh number. Thus, 
the results shown in Table 2 do not contradict the results 
of the previous investigations but supplement them with 
shear cases.

As we have mentioned earlier only a single unstable 
wave is found under the assumed boundary conditions. It is 
necessary to find out whether this is caused by the distri­
bution of shear in the basic flow or by the imposed boundary 
conditions. In the case of Couette flow with symmetrical 
boundaries (both free or rigid) it has been found that two 
unstable waves traveling with equal speed in opposite direc­
tions relative to the mean velocity of the flow appear at 
short wavelengths. Table 4 summarizes the results obtained 
with Couette flow and the cubical profile at three different 
wavelengths. To eliminate the possibility of stabilization 
of any weak waves by the rotation the results are obtained 
without rotation. From the results it is clear that the
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Table 4. Comparison of growth characteristics of the 
unstable mode with conducting boundaries and no rotation, for 
different specifications of basic state profile as a function
of wave number and vertical shear.

Couette Cubical
Ri k a C o Cr r r r

1.0 2.83 .213 .559 .228 .697
4.24 -.018 .634 .085 .772
1.414 .156 .556 .170 .675
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distribution of shear is not the cause of the appearance of a 
single unstable wave since a similar result is obtained with 
the constant shear profile. By this we conclude that the 
hydrodynamic boundary conditions play a significant part in 
the stability of the flow. Comparing the results we find that 
the unstable mode which developed with constant shear distri­
bution in the convective layer travels with a velocity close 
to the velocity found midway between the two boundaries, 
while the phase speed of the unstable mode obtained with the 
cubical profile appears to move with a velocity greater than 
the velocity averaged over the entire layer. The amplifica­
tion rate is slightly larger than that obtained with a 
Couette flow. The above results confirm that the cubical 
profile can produce significantly different results than 
those obtained in the other investigations under the assumed 
boundary conditions. From Table 5 onwards the results shown 
are with the cubical polynomial profile, unless specifically 
stated otherwise.

As we have obtained two sets of results with different 
thermal boundary conditions it is convenient to discuss them 
separately. First, we shall discuss the results obtained 
with conducting boundaries. In the second part the results 
with constant heat-flux boundary conditions are discussed. 
Comparison of the two sets of results are given at the end.

Since three dimensional cells as well as two dimensional 
bands appear frequently in the PBL the discussion is first
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centered on square modes. This also enables us to compare 
our results with the results of previous investigations- 
It might have been noticed that we obtained a convergence 
criterion only for square modes. Without any great loss of 
accuracy we can use this criterion for all cases discussed 
in this paper irrespective of the geometry of the cell.

5.2. Without Rotation 
This is the simplest possible case with zonal flow.

Table 5 gives the unstable modes without rotation as a 
function of wave number and shear- Since our interest is 
with rotation, computations were done only for two shear 
cases. In both the shear cases (Ri =1.0 and Ri = 2.0) we 
found only a single unstable mode in the considered range of 
wavelengths of imposed perturbations. The flow is stable 
outside this range. Since this is a parallel flow, viscous 
unstable waves can arise. However, with the prescribed 
shears no such unstable mode was found. This is also con­
firmed by a variation of the stratification parameter, Ra. The 
growth rate of the unstable mode varies significantly, thereby 
proving they are of thermal origin. The effect of shear is 
to stabilize the modes as the shear increases. Increased 
shear in the basic flow also increases the phase speed of the 
modes. These are pictorially presented in Fig- 4 and 4a, 
respectively. Fig. 4 shows the variation of with hori­
zontal wave number for two different values of Ri. It is
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Table 5. Stability characteristics of the unstable 
mode without rotation as a function of wave number (k) and 
Ri with conducting boundaries. In this and in subsequent 
tables computations which yield stable roots are denoted by 
bars (-) and blanks denote no computations were performed 
in that rauige. Weak stable modes are denoted with a minus 
sign. The cubical polynomial profile is specified for the 
basic state unless otherwise stated.

k
Ri

°r
= 2.0

Cr
Ri = 1.0

°r Cr
0.5 -.005 0.675
1.0 .163 0.675 0.100 0.675
1.414 0.170 0.675
1.5 .302 0.675 0.183 0.675
2.0 .402 0.675 0.230 0.68
2.5 .460 0.677 0.243 0.685
2.83 .474 0.683 0.228 0.697
4.0 .376 0.71
4.24 0.085 0.772
5.0 .200 0.75 0.016 0.800
5.5 -0.036 0.820
6.0 .035 0.795 - -

6.25 -.010 0.801 - -
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clear that in the range of shears considered the maximum 
unstable mode appears in the large cumulus wavelength (~ 2 km). 
With a decrease of shear the preferred mode shifts towards 
lower wavelengths; for a very low shear the most unstable 
mode probably appears only in the small cumulus range (~ 100 m) 
However, with an increase of the baroclinieity of the flow 
the preferred mode can occur at increased wavelengths. Thus, 
it is evident that the vertical shear in the basic current 
can play a crucial role in the development of the organized 
pattern. For small shears only disturbainces in the range of 
cumulus scale are excited. These results will be compared 
with rotation cases later in this chapter.

5.2.1. Constant Heat Flux Boundaries 
Results are obtained for two shear cases as was done 

for the tests with conducting boundaries. Sasaki (1970) has 
shown that, without rotation, the wavelength most amplified 
is a function of the heat-flux through the boundaries; also, 
usually mesoscale wavelengths are amplified with constant 
heat flux boundaries. With free surface boundary conditions 
and with reasonable values of those parameters associated 
with cellular patterns the wavelength most amplified was 
found to be of the order of 10 km. However, with rigid 
boundaries only 6-km waves were found to be most amplified 
because of the reduction of the apparent depth in the case 
of non slip condition. It must be remembered that Sasaki’s 
results are for a motionless basic state.
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The results obtained with shear in the basic flow are 
given in Table 6 and Fig. 5 for Ri = 2.0 and Ri = 1.8. It is 
clear from Fig. 5 that with shear in the basic current the 
preferred mode of perturbation lies at the cumulus scale 
(~ 2.5 km). Fig. 5 and 5a show similar characteristics to 
those obtained in the conducting boundary cases. Hence, the 
discussion is not repeated here. Some discrepancy is expect­
ed due to the different hydrodynamic boundary conditions.
From the trend shown by the growth rate at low shears the 
preferred wavelength would still only be at the large cumulus 
scale. However, as the shear is increased the preferred 
wavelength would also be larger. For example, for Ri = 2.0 
the preferred wavelength is approximately 2.4 km and for 
Ri = 1.8 the preferred wavelength increases slightly to about 
2.5 km. Since we have chosen a lapse rate quite close to 
the dry adiabatic value, the estimates with zonal current 
seems to be realistic but low compared to Sasaki's estimates.

It is of interest to compare our results with different 
thermal boundary conditions and determine if this condition 
has any effect on the preferred wavelength of the thermal 
mode.

5.2.2. Comparison of Growth Rates Under 
Different Thermal Boundary Conditions

Fig. 6 shows a comparison of results obtained under 
different thermal boundary conditions for Ri = 2.0. The 
relevant data are taken from Tables 5 and 6. It is clear
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Table 6. The variation of growth characteristics of 
the unstable mode with constant heat flux boundaries and no 
rotation (f = 0) as a function of Ri and k.

Ri = 2,0 Ri = 1.8
“r “r

0.25 .009 0.65 0.006 0.65
0.5 .050 0.704 0.044 0.71
1.0 .183 0.707 0.168 0.71
1.41 .287 0.707
2.0 .396 0.706 0.364 0.707
3.0 .449 0.707 0.404 0.71
4.0 .325 0.735 0.268 0.74
5.0 .153 0.77 0.118 0.775
5.5 .084 0.81 0.055 0.82
6.0 .009 0.825
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from the figure that constcuit heat flux boundaries shift the 
preferred (most unstable) perturbation to higher wavelengths 
with a slightly decreased growth rate. Moreover, with con­
stant heat-flux boundaries perturbations with longer wave­
length become more unstable as is shown by the increased 
growth rate in Fig. 6 at low wave numbers. Thus, it is clear, 
at least under the conditions assumed in this study, that 
shear is the principal controlling factor as compared to the 
thermal boundary conditions. A comparison of phase speeds 
shows the waves move with higher speeds than in the case of 
perfectly conducting boundaries; this may be seen in Table 6. 
Since the growth rate can be taken as an indicator of the 
intensity of the convection, with constant heat flux bound­
aries, longer wavelength modes appear to be more intensified. 
The onset of convection appears to be in mesoscale wavelengths
in both cases irrespective of shear. However, the most ampli­
fied wave only is of the order of 2 - 3 km. The reduction 
in growth rate may be due to larger frictional loss of heat 
due to the increased phase speed of the perturbations, 
particularly at low wave numbers. However, it appears that 
the additional buoyant energy is utilized in increasing the 
kinetic energy of the perturbations. Such transformations
are feasible only with a zonal flow.

5.3. With Rotation 
In this section we begin a discussion of the stability 

characteristics of perturbations superimposed on flow including
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rotation with conducting boundaries. The structure of the 
obtained modes are described. A comparison is made with the 
results obtained for the non-rotating cases. The same 
sequence is repeated with constant flux boundary conditions. 
In the final part stability characteristics under different 
thermal boundary conditions are discussed. All discussion is 
for square cells.

Table 7 gives the growth rate of the unstable modes as 
a function of the baroclinicity of the flow at different wave 
numbers. Since only square cells are considered, the first 
column of the table refers to the horizontal wave number 
which is 1.414 times the wave number in either the x- or y-

/ 2 2direction (k = + k^ ) . The remaining columns refer to
the results with a prescribed baroclinie shear which is 
expressed in terms of Richardson number. Large values of 
Ri correspond to lower baroclinicity and vice versa.

With the assumed boundary conditions we can expect 
inertial modes arising out of the destabilizing influence 
of viscosity at high shears. A search was made at very low 
Richardson numbers ; i.e., very large shears with an increas­
ed number of intervals (n = 25). However, no unstable modes 
were detected. The flow seems to attain stability similar 
to that of Couette flow beyond a certain shear. However, a 
few stable modes with very low phase speed (~ .004) appear.
A further investigation has shown these modes are not an 
inertial type originated by viscous forces. We shall dispose



Table 7. Stability characteristics of unstable modes with rotation as a func­
tion of Ri and k for conducting boundaries. Note that the mode stabilizes with 
increase in vertical shear (decrease in Ri) for the same wave number.

Ri = 2.0 Ri = 1.8 Ri = 1.5 Ri = 1.0 Ri = .8 Ri = . 5 Ri = .25
k ^r Cr ^r ^r '̂r ^r "r °r ^r °r ^r "̂ r
. 25 -.034 .717
. 5 -.003 .644 -.002 .652 -.007 .689

1.0 .159 .667 .149 .669 .134 .670 .103 .674 .087 .676 .056 . 68 .014 .693
1.41 .174 .678 .088 . 686
1.5 .3 .673 .26 .673 .186 .678 . 150 .68 .002 .706
2.0 .402 .676 .374 .677 .328 .678 .235 .683 . 188 .684 .092 .697 - -
2.83 . 232 .7
3.0 .475 .687 .434 .689 .364 .693 .144 .719 .027 .752
4.0 .378 .711 .328 .717 . 247 .729 .061 .776 -.019 .806
4.24 .092 .773
5.0 .203 .758 .168 .763 .115 .778 .023 .803
5.5 .122 .774 .049 .796
5.66 -.048 .822
6.0 .039 .795 -.002 .802
6.5 -.053 .808

<£>
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of them since they are inconsequential to this study. Pro­
bably, these waves only can be detected with a different 
numerical scheme or by recasting the basic equations in 
appropriate fashion.

Thus, the reported unstable modes are necessarily of 
thermal origin modified by shear, rotation and viscosity.
The influence of rotation can be expected to be very small.
No attempt is made in this study to determine the influence 
of eddy viscosity alone on the unstable modes. It is not 
suitable in this investigation as we use eddy coefficients 
which we have assumed to be constant and isotropic. The 
nature of the eddy coefficients has been discussed in 
Chapter 6. One can get as many equally valid solutions as 
there are definitions for eddy coefficients. However, it is 
clear that the viscous influence exists in these normal modes 
as is shown by the dependency of wave speed of the unstable 
modes on wavelength (Table 7). Fig. 7 is a pictorial pre­
sentation of the results shown in Table 7. Another repre­
sentation of the stability characteristics is given in 
Pig. 8. The variation of amplification rate with horizontal 
wave number k for different values of Ri is shown.

Figs. 7 and 8 look very similar to those for Couette 
flow obtained by Asai (1970a). This is to be expected since the 
profile of the zonal flow assumed in this study clearly lies 
between a Couette or constant shear profile and a variable 
shear profile. Neglect of the cubical term in the profile
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used in this investigation iinmediately gives a Couette profile. 
It is also necessary to note that this profile lies just on 
the border line between profiles with no point of inflexion 
which are stable according to the frictionless theory and 
profiles with a point of inflexion which are unstable. The 
point of inflexion of the cubical profile is at the lower 
boundary. The discussion of the nature of the profile and 
of selected boundary conditions is given in Chapter 3.

By the special nature of this profile, we can expect 
results which have both the properties of a Couette profile 
and of a variable shear profile. Hence, in the discussion 
of the results, a comparison with the results obtained with 
Couette flow and with variable shear flow is considered 
appropriate. However, a direct one-to-one correspondence 
between the published results and the results obtained in 
this study is not feasible. This is due to the different 
boundary conditions applied in this study as well as to the 
nature of the zonal profile. For instance, we have seen that 
with asymmetrical hydrodynamic boundary conditions a single 
unstable mode appears both in short and in long wavelengths.
On the other hand, with rigid or free boundary conditions 
and a constant shear profile with same stratification para­
meter (Ra) two unstable modes appear in the short wavelength 
range. Thus, the published results serve only as a guide in 
this study. Since the results in this study resemble those 
obtained with a constant shear profile (Couette flow) the
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same terminology, following Kuo (1963) , will be used to 
denote short wavelength disturbances as transitive and long 
wavelength disturbances as stationary, even though such 
nomenclature may not be strictly valid here. From Figs. 7 
and 8, it is clear that there is a preferred wavelength of 
the perturbations at which there is maximum instability, as 
is shown by the maximum growth rate. The wavelength of 
maximum instability decreases as the Richardson number in­
creases; the maximum unstable wavelength decreases from 6 km 
to 2 km. It is worthy to note that with the increase of the 
vertical shear of the flow the wave most amplified is closer 
to a mesoscale wavelength but at low shears the maximum un­
stable mode corresponds to a cumulus scale wavelength. More­
over, the range of unstable wavelengths decreases with 
increase in shear of the basic current. It is clear that 
there is a threshold limit for the onset of instability, 
below which the whole current becomes stable. In this inves­
tigation this limit is quite close to Ri = 0.2. In other 
words, the wave number of maximum instability does not 
decrease without limit as the shear is increased. Consider­
ing the many simplifications that are made in this study, it 
is certain that mesoscale wave length disturbances can arise 
in the atmosphere by the action of vertical shear alone. 
However, the growth rates are quite small. Since realistic 
boundary conditions along with a shear profile closely 
resembling that found in the atmosphere, have been utilized
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the interpretations given here may be correct. It is evident 
from Fig. 8 that vertical shear of the basic flow exerts an 
inhibiting influence on the growth of disturbances for all 
wavelengths. It is also interesting to note that, the long­
est unstable wavelength (12 km) remains practically the same 
irrespective of the shear in the basic flow. Thus, it appears, 
at least under the conditions assumed in this study, in the 
atmosphere the maximum wavelength at which gravitational 
convection can occur is at mesoscale range (~ 10 km). Many 
other factors such as subsidence, etc., may increase this 
limit. Considering Pig. 7, one can see from the neutral 
curve that there are two cut-off values for instability; 
one is at a small wave number and the other is at a large 
wave number. The shortest wavelength, below which the cur­
rent becomes stable, corresponds to cumulus wavelengths. The 
values obtained appear to be quite reasonable.

We now proceed to analyze the properties of the unstable 
modes. Since we obtain a single unstable mode in this study, 
this mode may be considered as the lowest eigenmode which is 
of significance in a linear study. Higher modes may appear 
with a larger lapse rate or higher Rayleigh number but these 
are of importance only when we consider the interaction be­
tween the perturbations themselves. Since this is a linear 
study, consideration need not be given to higher modes. In 
stability studies, such as this investigation, a considera­
tion of phase speed of the unstable modes may be fruitful in
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the identification of the origin of the waves; it also may 
give one an idea about the influence of other mechanisms pre­
sent in the system. Fig. 9 shows the phase speed variation 
of the unstable mode as a function of horizontal wave number 
and shear of the flow. The relevant data is taken from 
Table 7. At all wavelengths of disturbances the phase speed 
of the modes is greater than the velocity of the basic flow 
averaged over the entire depth of the boundary layer (~ 0.6). 
Table 4 shows a similar result for a Couette flow profile. 
Thus, it is clear that with asymmetric boundary conditions 
the unstable mode travels with a phase speed greater than 
the velocity of the basic flow averaged over the entire depth 
of the layer.

From Fig. 9 we see the maximum wave speed of the un­
stable mode is about 0.8 for Ri = 1.0 or Ri = 2.0 and about 
0.75 for Ri = 0.5 (all wave speeds are nondimensional). The 
dependency of the wave speed on the wave number of the per­
turbations arises as a result of dispersive action of eddies. 
A similar result is obtained with Couette flow with symmetri­
cal boundary conditions for transitive perturbations. Such 
perturbations probably exist in this study. This is inferred 
by the large wave speed attained by the unstable mode at high 
wave numbers. However, it is not evident from Fig. 9 since 
no distinct separation of longer stationary unstable pertur­
bations from the short transitive perturbations exists.
Figs. 7 and 8 also show a smooth transition similar to that
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which may be expected with a variable shear flow. Thus, it 
is not clear whether the perturbations are a single kind or 
are two distinct types as in the case of Couette flow. More­
over, it appears from Fig. 9 that the wave speed is a function 
of wave number in the entire range studied. This is clearly 
seen in the curve marked Ri = 0.5.

As rotation is a stabilizing influence it cannot change 
the wave speed by itself. Thus, we proceed to consider the 
growth rate of perturbations. Usually, transitive perturba­
tions are distinguished from stationary perturbations by the 
variation of their growth rate with wave number. The former 
has a slow growth rate almost independent of wave number 
while the growth rate of the latter varies considerably,
(Kuo, 1963; Asai, 1970a)- From an inspection of growth rates 
for Ri = 2.0 in Table 7 it is evident that at high wave 
numbers the variation is not less them 50% of that found for 
large wavelengths. For example, the growth rate change be­
tween k = 1.0 and k = 1.5 is about 0.141. A comparable growth 
rate is obtained between k = 5.0 and k = 5.5; i.e., .081 at
the same shear (see Table 7). Since at higher wavelengths 
there is variation of phase speed with wave number and at 
short wavelengths there is a comparable growth rate, it 
appears that we cainnot delimit the instability domain in two 
separate regions. Moreover, there appears to be a very 
smooth transition (Fig. 9) inferred by the absence of bend 
or kink in the plotted results. We may be correct to infer
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that the unstable mode is a combination of a convective 
disturbance and of a gravity-wave type disturbance. Thus, 
we can expect the structure of the mode at both wavelengths 
to be a combination of both.

Structure of Unstable Mode 
Figs. 10a, 10b, 11a and 11b show profiles of w and 6 

perturbations at two different wavelengths. The ordinate in 
the figures is the nondimensional height of the convective 
layer. From the figures it is clear that at both short and 
long wavelengths (k = 4.24 and 1.414) vertical velocity per­
turbations (w) attain two maxima in the convective layer.
The principal maximum of vertical velocity in the long wave­
length perturbations (k = 1.414) seem to be above the center 
of the convective layer. The principal maximum of the per­
turbations in short wavelength (k = 4.24) appears close to 
the rigid surface, i.e., below the center of the layer. A 
comparison of magnitudes reveals that short wavelength per­
turbations have a smaller vertical velocity than long wave­
length perturbations even though there is no noticable 
difference in the magnitude of the temperature perturbations. 
From the above figures it may be seen that the principal 
maxima of w and 9 for either wavelength do not coincide.
This appears more pronounced in short wavelength perturba­
tions (Figs. 11a and 11b). The vertical transport of hori­
zontal momentum and sensible heat flux is shown in Figs. 10c, 
lOd, 11c and lid, respectively. Figs. 10c and 11c show there 
is a net transport of negative momentum when averaged over
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the entire layer but the net transfer in the short wavelength 
perturbation is small. A similar conclusion about sensible 
heat may be drawn by comparing lOd and lid; the only dif­
ference is that the transport of heat is upward instead of 
downwards. Figs. 12a, 12b, 12c, 12d, 13a, 13b, 13c, and 13d 
refer to similar profiles with specification of a lower shear 
(Ri = 10.0) and a higher shear (Ri = 0.5) in the basic cur­
rent, respectively. Fig. 13d shows that the net transport 
of heat averaged over the entire layer seems to be small.
This is due to the presence of high shear (Ri = 0.5) in the 
basic current, which produces stability in the layer. For 
higher shears the buoyancy effects probably are negligible; 
mechanical effects predominate in this case. A typical 
structure of the unstable mode for a long wavelength pertur­
bation is shown in Fig. 14a and 14b on a moderate shear 
(Ri = 1.0) . In these figures the ordinate is the height of 
the convective layer and the abcissa is a full wavelength 
perturbation in the x-direction. The principal maximum of 
w and 6 are denoted in the figures. The considerable 
elongation is due to Coriolis force and the inclination is 
caused by the basic current whose flow is in the positive 
x-direction. In the lower half of the layer both w and 9 
perturbations are inclined opposite to the direction of the 
basic current. It is net clear whether this is due to a 
boundary effect or due to the special nature of the flow.
It appears to be the latter since boundary effects are



78

observed very close to the boundary only. The profiles of 
sensible heat-flux and momentum-flux are not of the same sign 
throughout the convective layer. This may be due to the 
asymmetrical boundary conditions.

Comparison With No Rotation 
The results with no rotation have been presented in a 

previous section. The results obtained with no rotation are 
listed with the rotation cases in Table 8 for two different 
shears Ri = 2.0 and Ri = 1.0, respectively. It is evident 
from Table 8, at Ri = 2.0, that waves longer than 5 ki'
(k = 1.5) are stabilized by the rotation. Slight destabili­
zation of waves below 2 km is noticed in this shear. How­
ever, in case of larger shear, Ri = 1.0, it can be seen that
waves below 6 km are destabilized. We have noticed the depen­
dency of wave speed on wavelength arises as a result of the
dispersive action of viscosity. It appears that the slight
destabilization may be connected with viscous influence. 
However, the order of magnitude is very small.

Till now, we have considered the results for square 
modes with conducting thermal boundary conditions. In the 
next section we discuss the results obtained with constant 
heat-flux thermal boundary conditions.

5.4. Constant Heat-Flux Boundary Conditions 
The results with constant heat-flux boundary conditions 

are given in Table 9. The first column refers to horizontal
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Table 8. Comparison of stability characteristics of 
unstable modes with conducting boundaries between rotation 
and no rotation (f = 0) cases for different values of Ri and 
k. Slight destabilization of the mode may be noticed with 
increase in wave number for the specified values of Ri.

Ri = 2.0 Ri = 1.0
Rotation No Rotation Rotation No Rotation

k °r Cr ^r ^r ^r ^r
. 5 -.003 .644 -.005 .6751.0 .159 .667 .163 .675 .103 .674 .100 .675

1.41 .174 .678 .170 .675
1.5 .3 .673 .302 .675 .186 .678 .183 .675
2.0 .402 .676 .402 .675 .235 .683 .230 .68
2.5 .46 .680 .460 .677 .243 .685
2-83 .232 .700 .228 .700
4.0 .378 .711 .376 .71
4.24 .092 .773 .085 .772
5.0 .203 .758 .200 .75 .023 .803 .016 .800
6.0 .039 .795 .035 .795



Table 9. Amplification rate and phase speed of unstable modes with rotation 
for different values of Ri and wave numbers (constant heat flux boundaries).

Ri = 2.0 Ri = 1.8 Ri = 1.5 Ri = 1.0 Ri = .8 Ri = .5 Ri = .25 
k 0, 0^ C_̂  0^ 0^ C_, 0_.

. 25 .005 .622 .003 .622 -.008 .644 -.012 .661 -.015 .705

.5 .042 .680 .037 .68 .029 .692 .014 .714 .009 .72 -.011 .748
1.0 . 177 .703 .163 .707 .142 . 71 .100 .718 .080 .721 .042 .725 -.008 .72
1.41 . 284 .701 . 162 .711 .064 .714
1.5 -.034 .71
2.0 .395 .7 .365 .702 .314 .703 .213 .708 .053 .716
2.83 . 189 .718
3.0 .451 .708 .406 .71 .331 .713 .069 .734 -.084 .797
4.0 .330 .73 .274 .74 . 184 .757
4. 24 .032 .809
5.0 . 159 .79 . 124 .8 .071 .812 -.023 .838
5.5 .089 .81 .060 .82 .015 .831

00O
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wave number while the remaining columns denote the results 
obtained with the prescribed shear in the basic current.

Fig- 15 is the graphical presentation of the results of 
Table 9. The variation of amplification rate with wave num­
ber at different Ri is shown in Fig. 16. These figures are 
similar to the conducting boundary results presented in 
Figs. 7 and 8.

As with conducting boundaries, from Fig. 15 it can be 
seen that the neutral curve shows two cut-off values of 
instability; one is at a small wave number and the other at 
a large wave number. From Fig. 16 we notice the wavelength 
of greatest instability increases as Ri decreases. In general, 
with the constant heat flux boundary condition the wavelength 
of greatest instability is slightly larger than that obtained 
with conducting boundaries (compare Figs. 8 and 16). The 
zonal current becomes stable at Ri = 0.2 5, which is a lower 
shear than with conducting boundaries. A single unstable 
mode, taken as the lowest eigenmode, appears in all shears.
The highest wavelength with constant flux boundaries that 
develops instability decreases as the shear increases in the 
basic current. This is in contrast with the result obtained 
with conducting boundaries. In Fig. 8 one can note that, 
irrespective of the shear in the basic current, the highest 
wavelength an unstable mode can attain is ~ 12 km. However, 
in Fig. 16 one cam see that this wavelength changes with 
shear (see L. H. S of the figure), thereby showing that the
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conducting boundary is more suitable for studying atmospheric 
motions than are constant heat flux boundaries. The slight 
increase in the growth rates obtained at large wavelengths 
is nullified by a decrease in wavelength as shear increases. 
The advantage gained in the increase of wavelength of the 
preferred perturbation is also nullified by the decrease in 
the growth rate. Thus, the constant heat flux hypothesis 
becomes of academic interest only, considering the zonal 
motion in the atmosphere. The characteristics of the unstable 
mode such as, wave speed, type, etc., remain the same ; this 
has already been discussed for the constant temperature 
boundaries.

The vertical profiles of w and S perturbations together 
with profiles of the vertical transport of horizontal momentum 
and heat flux are given in Figs. 17 and 18. Typical struc­
tures of w and 5 perturbations for a short wavelength 
(k = 4.24) are shown in Figs. 19 a and 19b. These may be 
contrasted with conducting boundary results as shown in 
Figs. 14a and 14b.

Comparison With No Rotation
A comparison of the results (rotation versus no rota­

tion) is given in Table 10 for two different shears (Ri = 2.0 
and Ri = 1.8).

It is clear, that with rotation very slight stabiliza­
tion is noticed at longer wavelengths (> 5 km). The slight
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Table 10- Comparison of stability characteristics 
of unstable modes with constant heat flux boundaries between 
rotation and no rotation (f = 0) cases as a function of Ri 
and k. Notice the trend of destabilization of the modes with 
increase in wave number for a specified value of Ri; this 
is similar to results obtained with conducting boundaries 
(Table 8) .

Ri = 2~0 Ri = 1.8
Rotation No Rotation Rotation No Rotation

k ^r ^r °r ^r "r ^r
.25 .005 .622 .009 .65 .003 .622 .006 .65
.5 .042 .680 .050 .704 .037 .68 .044 .71

1-0 .177 .703 .183 .707 .163 .707 .168 .71
1.41 .284 .701 .287 .7072.0 .395 .7 .396 .706 .365 .702 .364 .707
3.0 .451 .708 .449 .707 .406 .71 .404 .71
4.0 .330 .73 .325 .735 .274 .74 .268 .74
5.0 .159 .79 .153 .77 .124 .8 .118 .775
5.5 .089 .81 .084 .81 .060 .82 .055 .82
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destabilization occurs here also with Coriolis force but as 
with conducting boundaries the magnitude is negligible. Thus, 
it can be safely concluded that the rotation plays no signi­
ficant role in the stability of modes, irrespective of the 
thermal boundary condition. This result is expected, as the 
scale of circulation involved is very small. However, it is 
clear this small destabilization is connected to viscous 
forces only.

5.5. Comparison Between Two Thermal Boundary Conditions
Table 11 shows a comparison of growth rates and wave 

speeds of unstable modes with different thermal boundary con­
ditions at two different Ri. Irrespective of the shear 
present in the zonal flow it is seen from Table 11 that the 
amplification rate of the unstable modes is less than in the 
conducting boundary results.

While discussing convergence of the numerical solution 
we have shown that the results are of real nature but we have 
not explained how the amplification rate decreases when con­
stant flux boundary conditions are utilized. The results of 
previous investigators have shown that conducting boundaries 
provide a stronger constraint against perturbations of the 
temperature profile than does the condition on the tempera­
ture derivative at the surface. Thus, the constant flux 
hypothesis allows convection to occur at weaker gravitational 
instability. The above results apply to the motionless media.
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Table 11. Variation of stability characteristics 
of the unstable modes with rotation under different thermal 
boundary conditions, (a) constant temperature, (b) constant 
beat flux boundaries, for different values of Ri and k . It 
may be seen that the modes are more unstable with conducting 
boundaries than with constant heat flux boundaries, irre­
spective of the value of Ri and k.

Ri = 2.0 Ri = 1.0
(a) (b) (a) (b)

" “r =r "r "r
.5 -.003 .644 .042 .680

1.0 .159 .667 .177 .703 . 103 .674 .100 .718
1.41 . 174 .678 .162 .711
2.0 ,402 .676 .395 .7 .235 .683 .213 .708
2.83 . 232 .7 .189 .718
3.0 .475 .687 .451 .708
4.0 .378 .711 .330 .73
4.24 .092 .773 .032 .809
5.0 .203 .758 .159 .79 .023 .803 -.023 .838
5.5 .122 .774 .089 .81
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However, results of this study show that in the presence of 
an initial zonal flow the constant flux hypothesis stabilizes 
the thermal modes. The growth of the modes are strongly 
influenced by the shear in the basic flow. Keeping aside the 
influence of rotation which is very small in the range of 
wavelengths considered (Table 8) the main factors which can 
affect the growth rate are thermal boundary conditions and 
shear in the basic flow since the hydrodynamic boundary con­
ditions remain the same in the cases compared. By applying 
the constraint, = 0 at both boundaries, we are forcing theO Z

convective temperature perturbation to occur with maximum or 
minimum amplitude at both surfaces. Thus, we can expect the 
vertical profile of the temperature perturbations in the con­
vective layer, to be altered drastically by the constant flux 
hypothesis for the value of shear prescribed. A comparison 
of the vertical profile of temperature with a constant flux 
boundary and a conducting boundary are shown in Figs. 17b 
and 10b verifying the above statement.

It can be observed from Fig. 17b that nearly equal 
amplitude temperature perturbations are produced throughout 
the convective layer, except at the surfaces. Moreover, the 
amplitude of temperature perturbations are highly reduced 
compared with those obtained with conducting boundaries. It 
may be noted that the profiles are not normalized with respect 
to a particular level of the convective layer.

The buoyamcy force g a T* is independent of the shear
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in the basic flow and remains the same in both cases as we do 
not alter the stratification parameter, Ra. In the absence 
of basic flow in the convective layer more buoyant energy is 
available since there is no decrease of the convective tem­
perature perturbations due to conduction and hence the modes 
are more unstable. However, if an initial flow is present 
the perturbations interact with the basic flow. Thus, it is 
clear that a decrease in the amplification rate only is con­
nected to the energy transfer mechanism. Comparing the phase 
speed of the unstable modes in Table 11 it is seen that the 
phase speeds increases when constant flux boundary condi­
tions are employed. irrespective of thermal boundary condi­
tions, the phase speed of unstable perturbations increase 
with increasing wave number within the range of velocity of 
the basic flow. Thus, it is clear that with the constant heat 
transfer boundary conditions, the excess buoyant energy mainly 
goes to increase the phase speed of perturbations rather than 
to increase the growth rate of perturbations. The question 
remains as to why the amplification rate drops off signifi­
cantly when constant flux boundaries are utilized. The answer 
to this question is found by comparing the vertical profiles 
of transport of horizontal momentum which are shown in Figs. 
10c and 17c. It is clear from the profiles that under con­
stant heat flux boundary conditions there is more upward 
transport of momentum against the mean gradient of the flow.
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Asai (1970) has shown such a transport increases the shear of 
the basic flow. Since the shear is a stabilizing influence 
the increase in shear stabilizes the flow much more than in 
the case of conducting boundaries. This is also revealed by 
the fact the flow, with constant heat-flux boundary condi­
tions, stabilizes at a lower shear (Ri = 0.25) than that of 
constant temperature boundary conditions which stabilizes 
below Ri - 0.25.

From Pigs. 17a and 10a or Figs. 18a and 11a the w pro­
files for both boundary conditions remains of the same order 
of magnitude. The profiles of sensible heat-flux given in 
Figs. 17d and lOd show there is less transport of heat in the 
convective layer under constant heat-transfer boundary con­
ditions. The smaller vertical heat-flux is responsible for 
the increase in wavelength of the preferred perturbation.
One may note that only with a very high shear (Ri = 0.25) 
does the wavelength of greatest instability come close to a 
mesoscale wavelength (5-6 km); but, for lower shears the 
wavelength of maximum instability corresponds to that of 
cumulus scale (~ 2 km). This result seems to contradict 
Sasaki's result (1970), who has shown that in motionless 
media, the 10-km wave has greatest amplification (lowest 
critical Rayleigh number) with free boundaries, and with 
rigid boundaries a 6-km wave has the maximum amplification. 
Our results point out that with no shear or very little shear 
the wavelength of maximum instability lies in the cumulus
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scale range, irrespective of the thermal boundary conditions. 
With high shear the longest unstable wavelength is about 5 km 
which is close to mesoscale, but the growth rate is very 
small. Constant heat-flux with a zonal flow reduces the 
allowed growth rate of the preferred perturbation; thus, 
the remarks made in the last section apply. Since in the 
atmosphere there is an ever present zonal flow and associated 
vertical shear it appears certain that mesoscale convection 
patterns attain maximum growth due to conditions other than 
constant heat-flux at the boundaries aind vertical shear. An 
increase in Rayleigh number or the degree of stratification 
alone may not be sufficient. Table 12, compares the results 
obtained with Ra = 10^ and Ra = 10^. Fig. 20 is a pictorial 
presentation of the above results. It is clear from Fig. 20 
that the range of instabilities shifts towards higher wave 
number and the maximum unstable wavelength still corresponds 
to about 3 km. Neglecting the amplification rate it can be 
seen that the maxima occur at the same wave number for both 
Ra = 10^ and Ra = 10^. This is for conducting boundaries.
A similar result is obtained with constant heat-flux bound­
aries as is shown in Table 13 and Fig. 20a. The secondary 
maximum which appears at a higher wave number in Fig. 20 
at Ra = 10^ is not of much significance in this study.

5.6. Changes With Geometry of Modes 
Now we turn our attention to the study of instability 

with different specification of wave numbers in the x- and
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Table 12. Effect of Rayleigh number on the stability 
of the modes as a function of wave number with conducting 
boundaries for Ri = 1.0. Notice the increase in the range 
of instability as well as the amplification rate (ĉ ) of the 
unstable mode as Ra increases.

Ra = 10^ Ra = lo"̂
k a C a Cr r r r
.25 .022 .65 -.034 . 717.5 .081 .677

1.0 .181 .665 .103 .674
1.41 .174 .678
1.5 .186 .678
2.0 .262

*.045
.675
.682

.235 .683
2.83 .232 . 7
3.0 .248 .773
4.0 .277 .84
4.24 .281 .834 .092 . 773
5.0 .285 .856 .023 .803
5.66 -.048 .822
6.25 .270 .885
7.0 . 250 .895
8.0 .212 .905
9.0 .165 .915
*Higher Mode
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Table 13. Results similar to those shown in Table 12
but with constant heat flux boundaries and Ri = 2.0.

Ra = 10^ 4Ra = 10
k a C a Cr r r r
.25 .042 .69 .005 .622
.5 .042 .680

1.0 .295 .67 .177 .703
1.41 .284 .701
2.0 .521 .669 .395 .7

*.083 .708
3.0 .543 .699 .451 .708

*.179 .669
4.0 .330 .73
5.0 .519 .829 .159 .79

*.069 .478
5.5 .089 .81
7.0 .470 .883
♦Higher Mode
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y-direction. Previous investigators have shown that a vari­
able shear flow and a constant shear flow stabilize the 
transverse mode in varying degrees. However, the above in­
vestigations have been conducted with symmetric hydrodynamic 
boundary conditions (both rigid or both free surface). Since 
our study differs in the specification of hydrodynamic bound­
ary conditions and in the specification of the zonal profile 
we can expect a slightly different result. However, the basic 
conclusion remains unchanged.

No special attention is needed to consider the rota­
tional influences since the stabilizing influence has been 
found to be negligible in the scale of circulation considered 
here. Thus, no special computations were performed to deter­
mine the influence of rotation alone on the transverse or longi­
tudinal bands. In determining the influence due to variable 
shear on the geometry of convective modes a horizontal wave 
number close to the maximum unstable wavelength for a parti­
cular shear has been chosen (Ri = 1.0). Here k has been 
chosen to have a value equal to 2.0 and Ri = 1.0. At this 
particular shear the maximum unstable wave number is 2.4.
The reason for this is two fold. First, for the preferred 
wavelength there is maximum heat and momentum transport. 
Secondly, the retarding influences of viscosity and other 
forces are a minimum.

We have seen, while discussing the phase speeds of 
unstable square modes, that the modes are of a mixed type;
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i.e., they are a combination of small scale gravity-type wave 
disturbances and long wave convective type disturbances, former 
of which are dependent upon vertical shear. It will be instruc­
tive to find out the effect on such mixed mode separately for 
longitudinal and transverse modes. Thus, in the ensuing dis­
cussion we will pay particular attention to the structure of 
unstable modes as well as to the profiles of vertical velocity 
and temperature. Since the change in the thermal boundary 
conditions has been found to have a stabilizing effect and 
there is a slight alteration of the phase speed of the un­
stable square modes, in the following discussion the results 
are presented according to the specification of the geometry 
of the modes (transverse or longitudinal). As mentioned 
earlier in Charper IV, the geometry of the modes can be 
defined by the specification of wave numbers in the x- and
y-directions. in the present discussion the wave number ratio

k k
of determines the type of mode. If »  1 it is longitu-

k
dinal and if «  1 it is a transverse mode. Theoretically,

^x
ky = 0 specifies a transverse mode eind k^ = 0 specifies a
longitudinal mode ; but for our purposes it is enough if the

Îjk.
k

ratio is small or large. Any further reduction in the
X

ratio by specifying a smaller k^ or k^ has no effect on the 
stability of the modes. Thus, strictly speaking, we are con­
sidering only 'rectangular' modes instead of a 'square' mode.
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5.6.1. Trauisverse Modes
Table 14 shows the results obtained with different

k
specifications of the ratio , all less than one, as a

X
function of Ri. in the same table, the results obtained
with constant heat flux boundary conditions are given for an
easy comparison. The fourth row in Table 14 represents a
square mode. A graphical presentation of the results in
Table 14 is given in Figs. 21 and 22. An inspection of
Table 14 shows that the growth rate and phase speed remain
almost the same for values below of the ratio less than 0.1, thus
justifying our assumption that in numerical calculations it
is sufficient to take a finite ratio for these wave numbers
instead of making them zero or infinite by the specification
of k or k to be zero. It is easily seen that the trans- X y
verse modes are more stable than the square modes; the 
stabilization arises due to influence of shear in the basic 
current.

A typical comparison with constant shear results shows 
as expected that the variable shear has less inhibiting in­
fluence on the development of modes, irrespective of the 
hydrodynamic and thermal boundary conditions. These results 
are shown separately in the Table 14 (last row) .

Comparison of results with constant heat flux boundary 
conditions (column 3 and 4 in Table 14) shows that at lower 
shears (Ri = 5.0) the growth rate of the modes is practically 
unchanged. However, with an increase of vertical shear the



95

Table 14. Stability characteristics of unstable trans­
verse modes with different thermal boundary conditions for 
different values of Ri and wave number ratio k^/k^. It may 
be noticed that with the increase of shear in the basic 
current, modes are more stable with constant heat-flux bound­
ary conditions than with conducting boundaries. Comparison 
with couette flow results for the same Ri and ratio k^/k^ 
shows the constant shear flow has a stronger suppressing 
influence on the growth of the thermal mode than does the 
cubical flow with curvature.

> (a) (b)
Ri 3 r C r C r

0.05 5.0 .649 .672 .648 .694
2.0 .324 .679 . 289 .704
1.0 .122 .691 .065 .70

0.1 5.0 .650 .674 .650 .695
2.0 .326 .68 .291 .705
1.0 .124 .691 .067 .70
0.5 -.07 .734

0. 5 5.0 .670 .714 .679 .734
2.0 .357 .719 .333 .745
1.0 .169 .73 .125 .748

1.0 5.0 .698 .673
2.0 .402 .676 .395 .7
1.0 .235 .684 .213 .709

►0.1 2.0 .317 .558 .269 .58
1.0 .104 .573

(a) - conducting boundaries
(b) - constant heat-flux boundaries 
* - Couette flow
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modes appear more stable in constant heat-flux boundary con­
ditions. The only stabilizing influence present in the 
system is the shear of this basic flow since we have seen 
already that the rotational influence is negligible. The 
viscous influence on these modes are not separately consider­
ed due to lack of proper estimation of the eddy coefficients. 
However, the viscous influence exists. From the above result 
it is clear that the additional buoyant energy available be­
cause of the constcint heat flux assumption goes mainly to 
increase the shear of the horizontal flow.

A consideration of vertical profiles of perturbations, 
momentum flux, and sensible heat-flux would be appropriate at 
this juncture. Such a consideration may point out the mech­
anism by which the modes are stabilized by a change in thermal 
boundary conditions. Through an inspection of the vertical 
profiles of w and 8 in Figs. 23a, 23b, 24a and 24b one can 
see that, with constant heat flux boundary conditions, the 
amplitude of the temperature perturbations is considerably 
decreased while the amplitude of the w perturbations remains 
almost the same as that for conducting boundaries. Thus, one 
can expect that the transport of heat from the bottom to the 
top of the convective layer with constant heat-flux bound­
aries to be less than that in this case of constant tempera­
ture boundaries. A comparison of the perturbation velocity 
components in the x- and y-directions as shown in Figs. 23c 
and 24c indicates that the perturbation kinetic energy is
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considerably enhanced with constaint heat flux boundary condi­
tions. This can also be seen from the increase in the hori­
zontal momentum transport. The decrease in amplitude of 6 
suggests that potential energy is a primary source for un­
stable perturbations; this is characteristic of thermal 
type perturbations. A comparison of sensible heat flux (w£) 
profiles shown in Figs. 23f and 24f shows that there is less 
heat transport with constant heat flux boundaries.

The profiles in Figs. 23e and 24e compare the transport 
of horizontal momentum. It is seen from the profiles that a 
greater amount of momentum is transported upwards (shown by 
the increase in amplitude in positive direction) against the 
gradient of the mean flow. As previously stated this has 
been shown by Asai (1970a) to be the mechanism which increases 
the shear of the horizontal flow.

A typical structure of transverse modes, for constant 
flux boundary conditions, is shown in Figs. 25a, 25b, 25c 
and 25d. It is clear from the structures that the horizon­
tal component of the perturbation velocity as well as w 
are inclined in the midlevels in the direction of the flow. 
This type of inclination always results in a transport of 
momentum upwards. However, the maximum temperature pertur­
bation occurs, not at the mid level of the convective layer, 
but closer to the free upper boundary. A similar structure 
(not shown) is obtained with conducting boundaries. From the 
structure it appears that this is connected with asymmetric
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hydrodynamic boundary conditions. The y-component of the 
perturbation velocity (v) appears without any distortion and the 
phase shifts appear to be very regular. Since a systematic 
study of the energy exchange with respect to each component 
of the flow has not been considered here it is not known whether 
this is of general nature.

5.6.2. Longitudinal Modes 
In this section we proceed to a consideration of longi­

tudinal modes or bands. As mentioned earlier the bands or 
rolls are oriented in the direction of the basic flow in 
contrast with transverse bands, which are located across the 
direction of flow. We have already seen that transverse bands 
are more stabilized under constant heat flux boundary condi­
tions by an increase in the shear of the flow or by transport 
of momentum against the gradient of the mean flow. As before 
we specify the geometry of the mode through the specification 
of the ratio of the wave number in the x- and y-directions.
If k > k longitudinal bands are specified; this limit is y X  ̂ k
practically attained if > 10.0. Table 15 summarizes the

X
results obtained for the various specifications of the ratio 
k

. The first row refers to square cells or modes whose
X
ratio is exactly equal to one. For the same ratios the 
results obtained by the change of thermal boundary conditions 
are given in the third major column. The first column refers 
to the specified ratio. The second column refers to the shear 
of the flow expressed in terms of the dimensionless Richardson
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Table 15. Variation of phase velocity (Cr) and ampli­
fication rate (ô ) of unstable longitudinal modes with dif­
ferent thermal boundary conditions as a function of Ri and 
wave number ratio k^/k^. It may be noticed that the modes 
are more unstable with constant heat flux boundaries than 
with constant temperature boundaries, irrespective of the 
value of Ri, in contrast with the results obtained for trans­
verse modes (Table 14).

V (a) (b)
^x Ri °r Cr °r Cr
1.0 5.0 .698 .673 .724 .69

2.0 .402 .676 .395 .70
5.0 5.0 .737 .683 -795 .693

2.0 .465 .683 .498 .693
1.0 .327 .684 .347 .695

10.0 5.0 .738 .689 .799 .694
2.0 .467 .689 .505 .7
1.0 .331 .689 .356 .7
0.5 .234 .689 .251 .7

20.0 2.0 .468 .71
10.0 2.0 .468 .523 .505 .544

1.0 .331 .527
(a) - conducting boundaries
(b) - constant heat flux boundaries 
* - Couette flow
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number. The conditions specified for the computations are
given at the end of the table. The results found in Table 15
are plotted in the same graph which shows the transverse band
results. A quick glance at the graphs (Figs. 21 and 22)
immediately reveals that the growth rates are generally higher
than those of the transverse bands for the same shear. Thus,
we may conclude the longitudinal mode is the preferred type
of convection under the conditions assumed in this study.
Since specified zonal flow contains variable shear the ampli-

k
fication rates are not equal at higher values of ^  , irre-

X
spective of the shear. In Table 15 the last row refers to
the results obtained for Couette flow. An inspection of the
results shown in Table 15 reveals that the longitudinal
modes are more stable with conducting boundaries than they
are with constant heat flux thermal boundary conditions.
Thus, it is clear that the system is more gravitationally
unstable under constant heat flux conditions since there
is no decrease of perturbation temperature by conduction.
It may be seen from Table 15 that the phase speed of
longitudinal modes is practically unaltered. An increase 

k
in the ratio of to more than 10.0 does not substantially

X
alter the results.

A comparison of results obtained under the same condi­
tions, with a Couette flow profile, shows that longitudinal 
modes are practically independent of the distribution
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of the shear in the basic current. From the results 
it is obvious that the energy transfer in longitudinal per­
turbations is substantially different from that of transverse 
perturbations. It will be instructive to consider the struc­
ture of longitudinal perturbations and compare that structure 
for two different boundary conditions.

Structure of the Modes 
The profiles of the perturbation vertical velocity (w), 

temperature (0), horizontal transport of momentum (UW), and 
heat flux (0W) for conducting boundaries are shown in Figs. 25a, 
26b, 26c and 26d, respectively, for Ri = 1.0. For comparison, 
the corresponding profiles with constant flux boundaries are 
given in Figs. 27a, 27b, 27c aind 27d for the same shear. A 
noticeable difference observed in the w profiles with constant 
flux boundaries (Fig. 27a) is that the maximum amplitude is 
located in the upper half of the convective layer. An oppo­
site feature is noted with conducting boundaries (Fig. 26a).
Fig. 27b shows that the maximum amplitude of the temperature 
perturbations occurs at the surfaces (top and bottom) due to 
the imposed boundary conditions. In the convective layer 
itself the amplitudes are almost constant. The profiles of 
the perturbations are not normalized with respect to a 
particular level of the convective layer since asymmetric 
boundary conditions and an asymmetric wind profile is 
utilized. From Figs. 26c and 27c it is clear that the
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longitudinal mode transports large negative momentum to the 
rigid surface, compared to transverse modes. However, with 
conducting boundaries the transfer of momentum is mainly con­
fined to the lower half of the convective layer (Fig. 26c). 
The sensible heat flux, averaged over the entire layer, is 
upwards; with constant heat flux boundaries there is a 
tendency to transport more heat in the upper half of the con­
vective layer (Fig- 27d). This may have some significance 
in heat exchange between the PEL and the synoptic flow above 
the boundary layer. We find from Fig. 26d that with con­
ducting boundaries there is counter gradient heat transport 
at some levels; however, this is quite small. This may be 
due to the mechanical (shear) effect. This does not appear 
with constant flux boundaries since there is more buoyant 
energy available. The structure of the perturbations W, 9, 
and U for conducting boundaries is shown in Figs. 28a, 28b, 
and 28c. The ordinate is height of the convective layer and 
the abcissa is a full wavelength in the x-direction. A 
remarkable feature that is observed in the structure is the 
change in the orientation with respect to the mean flow in 
the middle of the layer. In the lower half of the layer 
both w and 9 perturbations in Figs. 28a and 28b are oriented 
against the direction of the mean wind; but in the upper 
half of the layer their orientation is the same as the trans­
verse mode, i.e., in the direction of the mean flow. The 
orientation of U-perturbations shown in Fig. 28c is exactly
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opposite to that of the W, 6 perturbations. In general the 
phase angle between the W and U perturbations is out of 
phase. However, W aind 0 perturbations are in phase with 
each other in the major portion of the convection layer.
These described features probably account for the oscilla­
tory nature in the vertical transport of heat and horizontal 
momentum shown in Figs. 25d and 26c, respectively.

From the structures shown in Fig. 28 it appears that 
the inertial influence is strong as it is with longitu­
dinal modes with the same shear. Similar structures are 
observed at a lower shear, but not at a higher shear, e.g., 
at Ri = 2.0 such structures are observed but not at Ri = 0.5 
(higher shear). This may be taken as indirect evidence, 
even though not proved by extensive examples, that transverse 
modes may appear along with longitudinal modes. Since the 
absolute vorticity of the current does not change sign in 
the convective layer there can be no inertial modes due to 
shear only. However, the destabilizing influence of viscous 
forces is present. In this study we have not found a viscous 
induced unstable wave. Since we have found that the modes 
are of thermal origin it appears that the transverse mode­
like inclinations are caused by thermal modes only.

5.7. Changes With Prandtl Number 
We have used constant isotropic eddy diffusion coeffi­

cients and in the absence of a proper estimate of these
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coefficients we have assumed their ratio equal to one, which 
is strictly valid only in neutral conditions. In the compu­
tations we specify the effects of transport of heat and 
momentum through the Prandtl number. Thus, the Prandtl 
number is an essential parameter in this investigation and 
choice of this parameter specifies different ratios of eddy 
coefficients and thus different values of heat and momentum 
transport. As noted earlier in the discussion of eddy co­
efficients, observational studies indicate that the coefficient 
of eddy conduction is considerably greater than the eddy 
momentum coefficient under unstable conditions. It is desir­
able to see the effect of such a larger heat conduction 
coefficient on the stability of the modes. Here we use the 
following observed values of the eddy coefficients as given
by Krishnamurti (1973)

5 2 5 2= 3.7 X 10 cm /sec ; = 7.0 x 10 cm /sec ;

these correspond to an eddy Prandtl number equal to 0.53.
A lower value of the Prandtl number specifies an increased 
heat transport. Thus, we can expect an increased growth 
rate for the unstable modes. Typical results with the change 
of Prandtl number are shown in Table 16. It is clear, irre­
spective of the nature of the modes (square, longitudinal or 
transverse) , that the growth rate of unstable modes increases

considerably with the specification of higher coefficients 
of conduction. Since extensive computations were not done a
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Table 16. Effect of decreasing Prandtl number on the 
stability of modes as a function of k, geometry of the modes, 
and thermal boundary conditions- In the calculations 
the longitudinal mode is specified by the wave number ratio 
ky/k^ = 1.0 and the transverse mode by k = 0.1.

(a) (b)
k Pr k Pr

1.41 0.53 0.282 .663 4.24 0.53 0.252 .974
1.00 0.174 .678 1.00 0.032 .809

2.0 0.53 0.466 .67 **2.0 0.53 0.276 .705
1.0 0.331 .69 1.0 0.068 .70

(a) - conducting boundaries
(b) - constant heat flux boundaries 
* - longitudinal mode

** - trams verse mode
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general conclusion on the nature of the modes and variation 
of the phase speeds with wave number of perturbations cainnot 
be given. However, it appears that the short wave distur- 
bcinces attain a phase speed equivalent to that of the free 
stream velocity. This computation also shows that the in­
crease in the value of eddy coefficients does not give rise
to new instabilities of unstable modes. This is to be ex­
pected since the zonal flow profile and the boundary condi­
tions have not been altered.



CHAPTER VI

SUMMARY AND CONCLUSIONS

The numerical model developed in this investigation has 
dealt with thermal convection associated with organized cloud 
patterns which occur below a stable layer in the atmosphere. 
Since the stable layer does not directly contribute energy 
for the development of the patterns it has been neglected.
In this investigation we have considered the influence of 
vertical shear on the development of the patterns and have 
determined the preferred scale of growth of these patterns.
The necessary shear is specified by assuming a zonal flow 
with a variable shear in the convective layer.

The formulation differs from other investigations in 
the assumed boundary conditions and in the specification of 
the zonal profile. The convective layer of fixed depth ex­
tends infinitely along the x- and y-directions. In the basic 
state variations in y-direction have been neglected. Thus, 
the basic flow was made unidirectional for simplicity. A 
flat bottom topography was assumed. The effect of the earth’s 
rotation was retained, thereby allowing the development of 
motion perpendicular to the x-z plane. Inclusion of the 
Coriolis force also allows us to include the shear and shear

107
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gradient of the flow directly in the relevant equation.
In the first part of the investigation conducting boun­

daries were assumed. In the second part of the investigation 
we assume constant heat flux on the boundaries. Thus, the 
influence of thermal boundary conditions on the convection is 
determined.

The shape of the cells was specified to be 'square' or 
'rectangular’. The problem is then studied by varying the 
shear in the flow for different specifications of the cell 
size.

Constant isotropic and equal eddy coefficients were used 
to represent dissipative effects in the convective layer. The 
basic state of the system is unstably stratified and is kept 
constant throughout the period of investigation. The wave­
length of the imposed perturbation ranges from 1-20 km. Cases 
with and without rotation were investigated for different 
shears in the basic flow. The structure of the unstable per­
turbations was analyzed to determine the nature of the de­
veloped modes.

The following significant results were obtained in this 
investigation:
1. Corresponding to each wavelength there is found to be a 
single unstable mode whose stability decreases as the vertical 
shear is increased. The appearance of a single mode has been 
traced to the asymmetrical boundary conditions.
2. The unstable mode has its maximum growth rate which
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corresponds to a single wavelength and this wavelength de­
creases with decrease of shear. The maocimum unstable wave­
length for large shear appears to be about 5 km vhile at 
lower shears this decreases to about 2 km.
3. With rotation the longer wavelength mode stabilizes; 
only a slight destabilization has been noticed in the lower 
wavelength range. The destabilization is traced to the 
influence of viscosity as no other destabilizing influence 
is present in the system. However, the quantitative influ­
ence of viscosity is not clear.
4. The phase speed of the unstable modes are slightly
higher than the average velocity of flow, averaged throughout 
the convective layer. Considering amplification rate and 
structure these are recognized as mixed modes, i.e., a 
combination of gravity-type disturbances and long wave con­
vective type modes. The structures also show a sharp turn
in the middle of the layer, i.e., inclination in the direc­
tion of the basic current with moderate shear.
5. The influence of variable shear on the stabilization
of the modes appears to be much less than that in constant 
shear flow. In other words, the cubical profile flow which 
has decreasing shear with height exerts a weaker influence 
on the stability of the modes than does Couette flow under 
the same conditions.
6. The influence of constant heat flux boundaries with
shear in the basic flow appears to be very small. Only a
slight increase in the wavelength of the most unstable mode
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is noticed for all shears. In the absence of zonal flow the 
maximum amplified wavelength corresponds to about 2 km. This 
is in contradiction with Sasaki's (1970) results.
7. The finite-difference scheme is not sensitive enough to 
detect the viscous unstable mode which can appear in this 
system with high shears.
8. The amplification rate of unstable modes increases if
smaller values of the Prandtl number are utilized. A larger 
Rayleigh's number, which in this investigation denotes a 
higher temperature difference between the boundaries does 
not alter the preferred scale of the perturbations. However, 
the range of the instability increases towards lower wave­
lengths .
9. Heat flux counter to the gradient of basic state 
temperature appeared in small portions of the convective 
layer, especially near the top. This appears to be due to 
the asymmetrical hydrodynamic boundary conditions utilized.

An appropriate extension of this study may be to in­
clude a nonlinear temperature distribution in the convective 
layer instead of the linear temperature distribution assumed 
here. This might simulate the real physical situation of 
ascending and descending currents observed in the atmosphere. 
Since in the atmosphere the cellular patterns appear in dis­
torted shapes solutions may be tried by specifying shape 
factors for the perturbations other than the simple 'square' 
cell specified here. Of course, generalization to consider 
nonlinear effects remains a possibility.
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u/u.

M

Fig. 1. Velocity profiles for (a) baroclinie Ekman flow, (b) baro- 
tropic Ekman Flow, (c) polynomial approximated flow, and (d) Couette 
flow. The ratio of the component to the geostrophic speed (Ug) is 
shown on the abscissa. In calculations for (a) and (b) K = SxlO^ cm^/sec, 
f = 10"4 sec"l and = 2.5 x 10”  ̂ sec"^. The inset diagram shows an 
observed velocity profile with organized convection (taken from Kuttener 
1971).



du/dz
Fig. 2. The vorticity pro­
files associated with the 
basic flow approximated 
by (a) cubical polynomial 
and (b) x-component of 
baroclinie Ekman flow.

1/1

Fig. 3. Equilibrium configuration of the physical model. The curve and the 
inclined straight lines schematically 
represent the basic flow and tempera­
ture distribution, respectively.
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K
Fig. 4. Amplification rate (Or) of unstable modes 
with different shears (Ri) in the basic current as 
a function of wave number (k) for the case with no 
rotation and conducting thermal boundary conditions. 
In this and in subsequent figures k% = v unless 
otherwise indicated.

•7-

K
Fig. 4a. Phase velocity (Ĉ ) of unstable modes 
corresponding to Fig- 4.
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•4-

•3-

.2

•f-

Fig. 5. Amplification rate of unstable perturba­
tion as a function of wave number for different 
values of Ri with no rotation and constant heat 
flux thermal boundary conditions.

•7-

Fig. 5a. Phase velocity of unstable modes 
corresponding to Fig. 5.



Fig*. 6. Comparison of growth rates of unstable 
perturbations with no rotation and different 
thermal boundary conditions as a function of 
k for Ri = 2.0, (a) conducting boundaries and
(b) constant heat flux boundaries.

4

•8

6

4

•2

00

Fig. 7. Stability diagram with con­
ducting boundaries and rotation as a 
function of Ri and k. The amplifica­
tion rate is marked on solid lines. 
The dashed line shows the preferred 
perturbation at different Ri.
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K
Fig. 8. Variation of amplification rate of 
perturbation as a function of k at different 
Ri. The perturbations with maximum growth 
rate are indicated by the dashed line.

-8 -

• 7-

•6-

Fig. 9. Phase velocity of unstable modes 
corresponding to Fig. 8 as a function of 
k and Ri.
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Fig. 10. Vertical profiles of the amplitudes of (a) vertical velocity (w), (b) temperature
(9), transport of,(c) horizontal momentum (uw) and (d) heat (0w) for Ri = 1.0, k = 1.414 
with rotation and conducting boundary conditions. in this and in subsequent vertical pro­
files the ordinate is the height of the convective layer while the magnitude is shown on 
the abscissa.
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Fig. 11. Same as Fig. 10 except k = 4.24 (short wavelength perturbation).
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Fig. 12. Game as Fig. 10 except Ri = 10.0 (lower shear).

0,".OeO ,Cy« 686,RI'0 5,K«k4l4
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Fig. 13. Same as Fig. 10 except Ri = 0.5 (high shear).
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X
Fig. 14a. Structure of vertical velocity (w) of unstable mode with 
rotation and conducting boundaries for Ri = 1.0, k = 1.414. In this 
and in subsequent structure diagrams the ordinate represents the 
dimensionless height of the convective layer while the abscissa 
represents one full wavelength of the perturbations. The velocities 
are scaled with respect to free stream velocity (U*) and tempera­
tures with respect to imposed temperature difference ( t * ) .

Fig. 14b. Structure for temperature perturbations for the same 
conditions as shown in Fig. 14a.



K>W

Fig. 16. Variation of amplification rate of 
unstable perturbations with k for different values of Ri; same as in Pig. 15.

Pig. 15. Stability diagram for the case 
with rotation and constant heat flux boun­
daries as a function of Ri and k. Solid 
lines denote the amplification rate of un­
stable perturbations; the dashed line shows 
the preferred perturbation at each Ri. The 
curve representing zero amplification rate 
separates the stable and unstable domains.
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Fig. 17. Vertical profiles of the amplitudes of (a) vertical velocity (w), (b) temper­
ature, and transport of, (c) horizontal momentum (Uw), and (d) heat flux (0w). This 
diagram is for Ri = 1.0, k = 1.414 with constant heat flux boundaries.
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Pig. 18. Same as Fig. 17, except k = 4.24.
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X —
Fig. 19a. Structure of vertical velocity (W) perturbations for 
k = 4.24 with Ri = 1,0 and constant heat flux boundaries.

C r'O  8 0 9 ,C 4 -O 0 i2

Fig. 19b. Same as Fig. 19a except this diagram is for temperature 
perturbations.
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Fig. 20- Variation of amplification 
rate with rotation and conducting 
boundaries as a function of wave 
number for different Ra.

Fig. 20a. Same as Fig. 20 except the 
thermal boundary conditions correspond 
to that of constaint heat flux.



127

•o•01 10y/K,
Fig. 21. Variation of growth rate of the unstable modes with 
rotation and constant temperature boundaries as a function of 
wave number ratio ky/k^ for different values of Ri. k y / k %  — 1 
specifies longitudinal, square, and transverse modes, 
respectively.

<8-

Rl r 2

•01

Fig. 22. Same as Fig. 21, except the constant heat flux boundary 
condition is specified.
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Fig. 23. Transverse mode - vertical profiles of (a) vertical 
velocity (w), (b) temperature (0), and (c) and (d) horizontal
velocity components (u) and (v). The vertical fluxes of hori­
zontal momentum (uw) and heat (0w) are given by diagrams (e) 
and (f), respectively. These profiles are with conducting 
boundaries for k = 2.0 and Ri = 1.0.
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Fig. 24. Same as Fig. 23, except with constant flux boundary 
conditions.
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Cr-OOST, C f : 0-70

gr

Fig. 25a. Typical structure of w-perturbâtions of transverse mode 
for Ri = 1.0, k = 2.0, with constant heat flux boundaries.

C7.0 -0 6 7 , C^.Q-70 Q IQ

2 a
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Fig. 25b. Same as above for temperature perturbations.
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Fig. 2 5c. Same as Fig. 25a for horizontal u-component of perturba­tions.

Fig. 25d. Same as above for v-component of perturbations.
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Fig. 26. Vertical profiles of amplitude of (a) vertical velocity (w), (b) temperature 
(0), (c) transport of horizontal momentum (uw), and (d) heat (0w) for longitudinal mode 
with conducting boundaries. wto

O} lO.356, Cr* 0*70 , Rl«l-0, Ky/K, • O

0 •2
b

-5

X I Od
Fig. 27. Same as Fig. 26 with constant heat flux boundaries,
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21r

Fig. 28a. Typical structure of vertical velocity (W) perturbations 
for longitudinal mode with Ri = 1.0, k = 2-0 and conducting boundar­ies.

O ?.0-331, C r*0 -6 8 9

Fig. 28b. Same as Fig. 28a for temperature perturbations.
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Fig. 28c. Seume as Fig. 28a for the horizontal component of 
velocity u.


