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CHAPTER |

INTRODUCTION

While microprocessors are generally designed to handle any type of campurta

software, increasingly complex algorithms and workloads can strain the gpcces

limited resources, requiring a significant amount of time to complete thdatadns. To

compensate, co-processors are designed to offload these demanding congpaiteati

perform them with specialized hardware. Floating point co-processorhditetel 8087

[1], secure socket layer accelerators like IBM’s PCI Cryptograpbezkrator [2], and

physics accelerators like the Ageia PhysX P1 physics processal examples of

specialized hardware designed to offload the increasing burden of demanding @grkloa
The most notable example of the co-processor found in most consumer computers

is the dedicated graphics processor which excels in handing massivelgl peostl like

3D rendering. The combination of multi-threaded programming and the massive

computational power of modern graphics processors can allow programs with high

computational requirements to finish in less time. This is especially advansaige

real-time video applications that repeat those computations not only for ey 6f

the video, but also many times within the same frame. While processing on justithe m

processor is too slow to meet the real-time requirements of the application, ri@ving



slowest and easiest to parallelize code to the graphics processor canhequoedssing

time to a more acceptable length.

1.1 Motivation
With the high data requirements for modern video transmission, users with limited
bandwidth would not be able to receive the data stream fast enough to play the video in
real-time. The alternative is to reduce the video quality drasticatgduce the data rate,
often resulting in unacceptable video quality. One alternative the authoraatburr
exploring is to animate a 3D model of the object in the video, a human head in particular,
to recreate the video sequence. The only data required to recreate theoansradiv
the model changes to match the source images captured by the camera. Thté &pproa
especially advantageous for video conferencing applications with eithexdimi
bandwidth or multiple simultaneous connections.

However, the process of fitting the model to an image uses analysis-by-g/nthes
a computationally intensive process. One type of deformation changes thesnfack!’
and the resulting rendered image is compared against the source imeg€ thesvisual
accuracy has improved. Previous incarnations of this process would require several
seconds to encode one frame of the video sequence. This is simply too long for real-time
encoding and transmission. By moving problematic code to the graphics processor, it i
possible to get a significant speedup to the encoding process and achieve theegdal of

time encoding.



1.2 GPU application interfaces.

There are two well-documented and well adopted methods of performing computations
on a modern graphics processor. Both of these are advantageous to this prejéct sinc
already incorporates an application interface in the form of a 3D rende?ingnd each

can easily operate with the output of the 3D renderer.

1. Graphics Shaders. Previously fixed stages of the 3D rendering pipeline have
become programmable, allowing programmers to write their own code te creat
new visual effects. The pixel shader in particular is useful for computations
because any program attached to it will run against all the pixels on the final
image. When the output image is set to the dimension of the output data, each
program executed by the pixel shader calculates the final value for orenelgm
the output matrix

2. CUDA. nVidia’s Compute Unified Device Architecture allows programmers t
write their own code that will run natively on their graphics cards that support
their unified shader architecture. CUDA programs are written in a C style
language, compiled using nVidia's own compiler, and then linked into a standard
C or C++ program. Unlike the graphic shaders, the programmer can specify the
number of threads to allocate to a kernel. CUDA also includes optimized versions

of basic math functions for their hardware.

1.3 Contributions
This thesis provides contributions to the field of computer architecture and computer

science by exploring the benefits and pitfalls of rewriting a kernel of fmwdexecution



on a highly parallel coprocessor. For the field of computer architecture, this pape
examines the hardware utilization of each approach. This includes the ejficfenc
resource utilization and how the data bottleneck moves with each implementation of the
encoder. These finding will help computer architects to design more efficient
architectures that utilize large amounts of data and to design morergfbiases for
transferring data between processors. This will also help graphic carddaveake
more efficient decisions with data handling.

For the field of computer science, this thesis explores the costs and benefits of
utilizing graphics processors to improve the performance of time-constrainedmsogr
By showing how a code segment behaves in each implementation, computestscienti

can evaluate how their code will behave with each implementation.

1.4 Thesis Outline
The rest of the thesis is laid out as follows. Chapter 2 will discuss previous wrk wit
regard to utilizing both graphic shaders as well as native code generatiorpfucgra
cards. This chapter will also cover a brief history of the development of gsaganats
and model based video representation.

Chapter 3 will discuss the full implementation of the model based video encoder
as well as modifications to the base program to utilize the two methods of exeoadeng
on a graphics card. This chapter will also provide a description of the methods used

within each implementation to perform each part of the calculations.



Chapter 4 will cover the testing methodology used to analyze each
implementation. This will include the hardware used, program configuration, and data
gathering methods along with justification for the choices made in thisrsect

Chapter 5 will present the data collected from the experiments and provide
analysis of the results. Analysis will include a look at the results from eac
implementation including a comparison between each method.

Chapter 6 will discuss the conclusions and future work for the GPU based code as

well as the model based video encoder.



CHAPTER Il

REVIEW OF LITERATURE

This chapter covers background information about graphics processor arahidectur

efforts to utilize them for high performance computing.

2.1 Model Based Video Representation

Unlike traditional video representations, model based video representationaeereat
video sequence by separately regenerating the video's content using modelgpeTdiis t
video compression was explored by Eisert et. al. [3] as an alternative to insage ba
compression found in traditional video compression. The video encoder analyzes the
input video and calculates specific scene parameters that will animasarteersdels in
the decoder to recreate each of the input frames. This method is more space and
bandwidth efficient than traditional video encoding for simple subjects likex¢pieads
due to the much smaller amount of data required to recreate the video.

The encoder guesses the scene parameters using analysis-byisyretresating
the head in 3D using a 3D model of a human head and the person’s face. The same 3D
model used to recreate the person in the video is also used within the encoder to compare
against the camera’s reference image. Following the process in Eifjutee encoder

changes one aspect of the head, renders the changed head, and compares the rendered
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Figure 2.1 — Model Based Video Encoding Block Diagm

image to a frame from the camera’s image of the person. If the changs timakeodel
appear more like the reference image, the encoder will continue until thaé feettahes
the reference. The process continues until all the features match theaeferage for
that frame and the feature modifications, called facial animation paraete sent to

the receiving end. The next frame of the video is brought in and the process repeats.

2.2 GPU Architecture

To render a 3D scene and capture the resulting scene on a two dimensionaédasteri
image that is displayed on a monitor, a series of calculations on a larget chegadst®
finish in a reasonable amount of time [4]. First, scene parameters likeacanseion
and perspective are combined into a series of transformational matrices. nTdteses,
when multiplied with a vector containing the location of a vertex, will change the

vertex’s location based on the camera position. This process is repeated fomeetexy



used in a scene in the vertex engine of the graphics card. Vectors are theechlcul
from connecting vertices, creating the 3D mesh of the object. This informatianded
to the render output processors which calculate the points on the mesh that will be
captured by each pixel in the output image.

Once points are chosen, the color of the surfaces affecting a pixel is emlanlat
the fragment engine by sampling the color of that surface. Most timeppthtds
located in between sets of vertices, requiring interpolation of the cortecfram either
the specific color given to the vertices or from an image chosen to texatiienbge.
Other simple post processing alterations like lighting and transparencyabésbaipha
blending, change the final color of that pixel. Once every pixel color is caduthe
image is sent to the screen. With modern video games displaying hundreds of thousands
of vertices and generating 2 megapixel images at 60 frames per second, treeafolum
computations required would not be possible on general purpose processors. Graphics
processors, then, are designed as accelerators for the heavy computdteiriHea8D

rendering pipeline, which is illustrated in Figure 2.2.
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Figure 2.2 -3D Rendering Pipeline. Vertex information and projectiomatrices are given to the vert
shader to draw polygons in 3D space. The rastgubprocessor captures the base color of theg
from the polygons. The pixel/fragment shader pemfomodifications to the pixel color and the blen
combines all ofhe pixels that occupy the same location on thén2aye based on-depth and alpha
value.

2.3 Programmable Rendering Engin
Originally, these processors were fixed in theirdiions, particularly with the handlir
of vertex data and final pixel colcalculation. Over time, more user programmab
was added, eventually leading to the ability toedep assembly programs for the ver
and pixel shader engines. Shaders are desigreegttmite using a single instructic
multiple data (SIMD) approa to parallelize execution among the multiple ALLU
These processors also contain vector pipelinesgrtbdr parallelize data execution
allowing a single ALU to process tltiple sets of data at once [5].

In the 3D rendering pipeline, pixel shaders (ogin@nt shader allow for post-
processing after the 3D model is captured on arizdsional plane and underg¢

rasterisation to create the individual pixels. dPshaders are programs that are exec



in parallel for every pixel generated to change the final value based orfecty #ie
programmer wants. These programs can then use their location on the render surface a
well as the color and texture information to determine the final pixel's coleel Pi

shaders are often used to determine the final color value of an object by nopthfyi

base color with the lighting and material information of the object.

Pixel shaders have been used to accelerate image processing. Puléé et al
utilized pixel shaders to aid the processing of electronic speckle patteferoreetry.
Utilizing an ATI 9700 AIW Pro, they were able to speed up their calculations to enough
to process 11 frames per second. ATI has also released papers [7-8] detailtoguse
DirectX 9 shaders for a range of simple and advanced image processingueshrill
of these papers do note that shader programs are limited in terms of their size and
complexity, requiring several programs to perform more complex calmogaike

Fourier transforms.

2.4 CUDA

Because graphic shaders required learning to program in a new API, gigtics
manufactures set out to create a more direct interface to run programs gnaibieics
processors. nVidia's solution was CUDA which utilizes the C/C++ programming
language and their own compiler to create subprograms, called kernétgifor t

hardware. Standard CPU based programs invoke the CUDA kernels with two mandatory
parameters: the number of threads that will be executed in inside each thr&adridoc

the number of blocks inside a grid of blocks. These two numbers determine the total

number of threads that will be executed for that kernel. Threads scheduled within each

10



block will execute in parallel while blocks are scheduled based on the available
processing units on the card. This two tier hierarchy gives each thread albnique
which allows each thread to address the specific data it is supposed to work on [9].

nVidia’s unified shader architecture present in their graphics cards from the
GeForce 8 series on as well as their supercomputing based Telsa line ofganiize
their processors into groups called streaming multiprocessors, or SMs. Thermim
SMs can vary, determining the tier of the card, but each SM has 8 scalar procgssors
SPs, giving the total number of processors advertized on the card. Within each SM,
groups of up to 32 threads are executed simultaneously in a grouping called a warp.
Warps are scheduled as SPs become available and execute in a singt@mstruc
multiple threaded manner. While the entire warp is fed by a single instruttie
threads within the warp are free to follow their own path of execution based on their
branching conditions. Threads that do not follow a branched path are disabled till the
paths reconverge [10].

There are many papers that discuss how utilizing CUDA decreased cooputati
time. Zhiyi et al. [11] looked at improving image processing performance G&ImA
and saw improvements ranging from 8x up to 200x depending on the processing
technique. Wei-Nien and Hsueh-Ming [12] improved the efficiency of the motion
estimation step of H.264/AVC encoding up to 12x using CUDA. Changxin et. al [13]
implemented an MD5-RC4 encryption algorithm in CUDA and saw a 3x-5x
improvement in performance compared to a CPU based implementation. Most of these
papers only focus on the workload being implemented in CUDA, while the rest also

touch on optimizing their code for CUDA's architecture.

11



Finally, Amorim et. al. [14] performed an analysis of utilizing both OpenGL
shaders and CUDA to accelerate the calculation of a weighted Jacobianntefdtey
found that utilizing CUDA produced the greatest increase in speed, but they also
investigated how changes in programming style and graphic memory intgrédigoted
the performance of their program. Unlike the research in this paper, theirigatated

in system memory and OpenGL was only used to handle their computations.

12



CHAPTER IlI

IMPLEMENTAION

This chapter will discuss each of the implementations of the MBVR encoder and the

expected benefits of each implementation.

3.1 Initial MBVR implementation

The model based video encoder is an analysis-by-synthesis encoder thainiaésht a

3D model of a person’s head to an input image from a video camera. The encoder uses a
set of facial animation parameters (FAP) that control specific patie dace and how

each part deforms. The encoder changes one FAP, renders the changed head, and
calculates the PSNR of the resulting guessed rendering. If the charigeerr to the
reference image, the program continues changing the model till the rendagedsitops
improving its guess. If the first direction of search proves fruitless, tltmlenmoves

the FAP in the opposite direction and continues if the encoder sees improvements. The
encoder continues with the rest of the FAPs once each one settles on its besDuakie

all the FAPs have been optimized, the encoder looks at the total improvemente If ther
was a significant improvement, the encoder loops through all the FAPs again to look for
further improvements. Once improvement in the PSNR falls below a certain threshol

the resulting FAP values are saved for that frame. The next frame oflfteisiloaded

13



as the new reference image and the best guess from the previous fragdeas e

starting point for the new optimization.

3.2 Graphic Shaders in Direct3D

Unfortunately, the first incarnation of the MBVR encoder required several seconds t
converge on a best guess for a single frame. An initial investigatioaleduwhat the

peak signal-to-noise (PSNR) error calculation was the bottleneck forparice. Since

one of the inputs for the error calculation was originating on the graphicsaodrdince
modern graphics card support simple programs, is made sense to move the slowest part
the encoding process to the graphics card to reduce the encoding time. There are two
main advantages to this strategy.

1. Moving data between system memory and graphics memory is slow. The
baseline encoder requires the entire rendered image to be copied to system
memory for each error calculation.

2. The PSNR calculation is based on the mean square error (MSE) of the reference
image and the current guess. The bulk of the calculations are done between
individual pixels in each image. These independent calculations are being
serialized on the CPU and can be executed in parallel, which the graphics card
supports well.

By moving the calculation to the graphics card, both of these bottlenecks can be

mitigated and only a single value needs to be copied back to system memory. To
calculate the error for each guess using the main microprocessor, thed3b tesalered

to an off-screen buffer called the back buffer. The image is then readhiobuffer to

14



an array of sub-pixel values in the system memory. The MSE calculatioretattesub-
pixel value from the reference image and from the rendered image and uses tinem i

MSE equation

N
1
MSE = Nzl(xi - xl-)z
i=

where N represents the number of pixg]s,epresents the reference image element, and

x; represents the trial image element. The MSE value is then fed into the PSNBrequati

MSE

MAX?
PSNR =10 x 10g10

where MAX is the maximum value for each color component. Since the program is
working with unsigned character values, this value is 255. The GPU implementdktion wi

move a subset of the MSE calculation into GPU compatible code:

N
MSE' = Z(fl - xi)z
i=1

The rest of the MSE calculation will be merged with the PSNR equation to give

N X MAX?
PSNR =10 x IOglo W

which will still be calculated on the CPU. The C++ code used to calculate theedodif
MSE is located in Appendix A.

The rendered image using the guessed parameters needs to be stored a&s a textur
for a second rendering pass, which will perform the MSE calculation. Thisilg ea
facilitated by copying the contents of the back buffer, only this time the destitatget
is a texture stored in the video card's memory. Another method of accomplishisg this i

to render the 3D head to an off-screen rendering surface. An off-screenngrsdeface

15



acts like the back buffer as the render targetjtnan automaticall'store its data int
other usable objects. One of the objects thatntuse as a storage object is a texture
rendering to an ofscreen rendering surface with a texture attachstbte the colo
information, that texture is automatically gened from the results of the first renderi
pass.

The second rendering pass creates a long sequesgeaves equal in number
the pixel count of the two images. These squaré<wontain the mean square error
one pixel in the image. These squeare arranged one behind another as seen in F
3.1. Each square is colored with one pixel's ctistam both the reference image and
synthesized images, which are both mapped as &stareach square. Once
rendering process gets to the pishaders, the shader program takes the
information from the two textures and performs shbtraction and squaring part of 1
MSE calculation. The resulting value is storedhe ted channel, thus becoming the 1
color for that squareThe shadeprogram is located in Appendix A.

Once all the shader programs have finished in¢lersd rendering pass, t
rendering process uses alpha blending to perfoensdimmation step and generate a 1

value. Alpha blending is normally used for rendgranransparent object by calculati

Y
, I
Camera ce e
X

Quads containing one
pixel color per quad

Figure 3.1 -Shader Method Scene Sett. The first quadrilateral fills the camera viewingamwhile all
the other quads are placed directly behind thé fidé orthogonaprojectionis used to prevent the furthe
guads from shrinking due to perspective.
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the final pixel value on the screen as a combination of the color of the surfact tlese
camera and the color of every surface behind it [15]. Normally the amount of color used
from each polygon is determined by the front polygon's alpha value. However, it is
possible to tell the alpha blender to ignore the alpha value and simply add each value
without the alpha weighting. The entire rendering pass is done on a one pixel squared
off-screen rendering surface that stores its color information as a 3@abitfihe pixel’s
value, which is now the MSE, is read from this buffer and used for the remainder of the

PSNR calculation.

3.3 OpenGL port
In the interest of comparing how different 3D rendering APIs handle data, andéecaus
CUDA cannot access pixel information in Direct3D, the base code was ported to
OpenGL. OpenGL offers the benefit of running on multiple operating systems wherea
Direct3D requires Microsoft Windows. In addition, OpenGL natively supports cgpyin
pixel information to a buffer in system memory via DMA [16]. Direct3D required a
explicit memcpy statement from a memory mapped address on the graphicsagrg t
the data from graphics memory to system memory. Utilizing DMA allows tiaecday
to without requiring the CPU to perform the copy and should provide a large speed
improvement if the data is accessible when it is needed.

In order to keep the data files used between every implementation consistent,
custom routines were written to read the Direct3D based file containing threeSBfor
the head. Methods for reading in other required files were copied from thé&3Direc

code. To enable compilation on any operating system without modification, only cross

17



platform libraries like the standard C++ libraries, the OpenGL UtildaglKit (GLUT)
[17], and the OpenGL Extension Wrangler (GLEW) [18] were utilized. The error

calculations are still executed on the CPU for comparison’s sake.

3.4 CUDA

CUDA offers the most flexible interface to create code that runs on nVidap$igs
cards. nVidia’s libraries provide familiar memory allocation and copyingwamas to
create and initialize variables inside CUDA. In addition, CUDA offers ratemn with
OpenGL to create or modify data in OpenGL buffer objects, allowing CUDA to perfor
more complex computations than OpenGL’s own vertex or fragment shaders without
requiring the main program to handle the data transfer. This is especialhyaaba@us

for the encoder since the majority of the data movement occurs between OpehtBe a
processor performing the MSE calculation. If the interoperability can thevéata from
OpenGL to CUDA while staying on the graphics card, the encoder can benefthfom
reduction of the large data copy over the slow CPU-GPU link and the encoder can use
CUDA to calculate the MSE much quicker.

In order to get the pixel data into an object that CUDA can use, there are two
options available to programmers. The first requires the main program to regeaxkethe
information back normally and use cudaMemcpy to copy the data back to CUDA
controlled memory on the GPU. The other is to use CUDA’s OpenGL interoperétility
access OpenGL buffer objects by mapping the buffers onto its own address spge¢. T
the pixel data into a pixel buffer object, the buffer is first bound into the OpenGL

workspace, setting itself as the copy target. Then the back buffer's pixid ke

18



using the OpenGL glReadPixels function and copied into the pixel buffer. The pixel data
is now accessible to CUDA to map the data into CUDA controlled memory. Both
methods were implemented to analyze the difference in the data handling and their
effects on performance.

The CUDA program is comprised of three separate kernels of code that
procedurally process the MSE. The first kernel reads the reference amesszed
images as full integer arrays comprising of 3 bytes of actual pixa| Hétyte per color
channel, and 1 byte of superfluous data. The superfluous data is comprised of the alpha
channel, which is manually added to the reference frame since bitmap images do not
store this information. This additional padding data is used to align memory reads from
global memory along consecutive four byte aligned addresses. By gltheimemory
reads with the thread index, the memory controller on the graphics card wilco#ie
memory reads from the consecutively indexed threads into a single largeywead
[19]. If global memory accesses do not follow this pattern, all the datavestrieom a
single coalesced read would be split into individual reads. Because thdeggs
latency penalty to access the global memory in CUDA, coalescing meeanty is
essential to maximizing performance.

After the data is read in, each thread performs the subtraction and mulbplicati
of the three subpixel values for one pixel. The resulting values are added together and
stored into high speed, low latency shared memory. Shared memory is a smghl on-chi
memory that is accessible to every thread within a thread block to fachicatast
sharing of data between threads. To sum all the individual mean squared erhors, eac

thread must add their result to a single location. It is not possible to have each thread
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attempt to add their value to a single memory location simultaneously. Sincéreach t
will read the current value from memory at the same time, each threadlavitsaralue

to the current value instead of each thread adding to the result of the previous thread
additions, resulting in a write after write hazard.

To accomplish this summation efficiently, half of the threads in a thread block
will add the value the other half of the threads to their own. From there, the thoeads fr
the first subgroup continue to split into subgroups and sum the values till all the values
are accumulated with the first thread result. The first thread then vingteslue back to
global memory where the next set of CUDA kernels performs the same reductien on t
intermediate results. The final kernel combines the last of the intermediaés into a
single value that is copied back to the main program and used to finish the PSNR

calculation. The entire CUDA kernel is located in Appendix A.

3.5 Computation Time

To compare the raw computation times, the error calculation was isolateditied into
separate programs. The calculation was split to the two major computationightliye
parallel subtraction and squaring and the highly serial cumulative summatibnofEac
these parts and the whole MSE calculation were timed to compare the computan ti

without the data transfer and other parts of the program.
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Due to the lack of simulation software that can simulate modern graphics hardivar
tests were run on a physical machine. The test consisted of executing tlaengrogr

described in Chapter 3 and analyzing the resource usage on the machine.

4.1 Testing Environment

All tests took place on a Nehalem-based Intel Core i7 920 processor running @ 2.66
GHz. The rest of the system specifications can be found in Table 1. The graphics card
used in the experiments is the nVidia GeForce 9800 GTX+. This card features 128

stream processors running at 1.836 GHz and 512 MB of GDDR3 memory operating at

1.1 GHz.

All the programs were tested on Windows XP with service pack 3 using nVidia’s
closed source driver version 196.21. All of the OpenGL programs were tested using

Ubuntu Linux 9.04 using nVidia's closed source driver version 190.42. The Windows

CHAPTER IV

METHODOLOGY

Table 4.1 — System Specifications.

L1 Instruction Cache| 32 KB per core, 4-way asso@ab4 B lines
L1 Data Cache 32 KB per core, 8-way associativeB tides
L2 Cache 256 KB per core, 8-way associative, Gih&s
L3 Cache 8 MB shared, 8-way associative, 64 B lines
System Memory 3 GB DDR3 @ 1066 MHz

Chipset Intel X58
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version of the programs were compiled using Visual Studio 2005 using the August 2008
version of the DirectX SDK and the OpenGL Utility Toolkit version 3.7.6. The CUDA
implementations also utilized version 1.5.1 of the OpenGL Extension Wrangler to
provide access to advanced OpenGL structures and functions. The CUDA
implementation was compiled using version 2.3 of the CUDA toolkit.

For the model based video encoder, the encoder first played back a prerecorded
set of facial animations calledow, a commonly used set in MPEG-4 facial animation
research [20-22], and saved the first 300 generated images as 352x288 Clibmnesolut
bitmap files. These images acted as the source video sequence that the efi¢codey w
match the same 3D scene. These images were stored and accessed from a RAM disk t
simulate access from a video device and remove the performance penalty driver
access. Since the accuracy of the encoding process is not the subject of thigatiores
the FAPs generated from the encoding process were not stored aftertedich se

optimizations.

4.2 Functional Timers

Utilizing the high precision timer in the operating system, functionalrimere added

to the applications testing the execution time of different implementatiadhe MSE

code. The time taken to execute each function was accumulated for the entire run to eve
out the microsecond resolution of the timer functions across the entire encoding.proces
In addition, the Linux application time and the Windows XP applicdtroaittimed the

execution of each application.
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4.3 Performance Counters

To analyze how the system is being utilized, Intel VTune and OProfile tsallec
system data from CPU performance counters built into the processor. Thesescanente
monitored in the background while a target application or environment is running and
monitor specific events chosen by the user. Events can include execution timee, cac
accesses and misses, pipeline stalls, memory accesses, instructiomeagpesde and
off-chip bus accesses. The number of counters on a Core i7 processor is limited to 4, so
multiple runs are necessary to collect every type of data available.

VTune [23] monitored execution time of each the Windows programs to monitor
where the most time is spent within the program. Since the video encoder is memory
intensive, VTune also monitored cache access and hit rates and pipelineseathf
section. VTune configuration for each session is provided in Table 2 with group numbers

denoting the events that were run together.

Table 4.2 — Performance Counter Events

Group | Event Name Events per count
1 CPU _CLK_UNHALTED.P_THREAD 10000000
1 RAT_STALLS.ANY 10000000
2 MEM_LOAD_ RETIRED.LLC UNSHARED_HIT 100000
2 MEM_LOAD_RETIRED.OTHER_CORE_L2 HIT HITM| 100000
2 MEM_LOAD_RETIRED.LLC_MISS 100000
3 L2 RQSTS.LD_HIT 1000000
3 L2 _RQSTS.LOADS 1000000
3 MEM_LOAD RETIRED.L1HIT 10000000
3 L1D CACHE_LD.ANY 10000000
4 RESOURCE_STALLS.ANY 1000000
4 RESOURCE_STALLS.RS 1000000
4 RESOURCE_STALLS.ROB 1000000
4 RESOURCE_STALLS.STORE 1000000
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OProfile [24] collected system data for the Linux applications. OPrisfé@
open-source system profiler for Linux that monitors the performance counteisdenmm

Intel and AMD processors.

4.4 Instruction Type Profiling

For additional analysis of the difference between programs, the Pin instrtiorenta
program [25] provided a breakdown of instruction types, memory transactions, and bytes
of memory transferred in each program. Pin dynamically inserts C/Gletigside

running programs to gather statistics about the target program whilernapregecutes.

One of the sample instrumentations, insmix, provided counts each type of instruction,
memory accesses by data size, atomic memory accesses, and stesdsabreughout

the entire program and by function. Pin’s analysis of the program execw#sonsed to

compare the characteristics of the programs and their memory acttegsspa
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CHAPTER V

FINDINGS

This chapter will discuss the data found through the experiments outlined in treuprevi
chapter. The chapter is divided into four sections. The first three sectibdseouss

the system performance of the encoder in three different environments. The fourt
section will analyze the raw computational performance of each processar emdr

calculation.

5.1 Direct3D in Windows

Starting with the Direct3D implementations of the original code, thereawlaastic
reduction in the total execution time, which is shown in Table 5.1. The CPU version of
the code required Direct3D to copy the rendered image to system memoryrsaithat
program could calculate the mean square error between the reference image and the
rendered image. The Direct3D version of the program showed a large decrtbase i
total execution time, showing that the GPU based error calculation anditicioa of

the amount of data transferred back to system memory. While the reduction is time i

Table 5.1 - Total Execution Time (Windows OpenGL)

CPU Direct3D
Total Time (seconds)| 463.687 83.562
Frames per second 0.647 3.59
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Figure 5.1 — Windows Direct3D Time by Libraries. While the Direct3D code increased slightly from
the additional code required to perform the eraedcwation, the number of cycles used in main paiogr
and other support libraries reduced considerably.

substantial, it still did not come close to the desired real time performaricef §6a
frames per second.

Since the speedup was not sufficient, an investigation into the new bottleneck was
needed. Looking into where the most time was consumed, based on the unhalted cycle
count during the execution, Figure 5.1 shows a clear reduction in the number of cycles
within the main program. The only increase in the execution time in any Ilvrdryhe
GPU version is the Direct3D library, which is expected since additional duncaills
were required to perform the calculation on the GPU. However, 83.6% of the time is
spent inside the display driver, which remained relatively unchanged.

Moving on to the cache statistics, the drop in the execution time reduced the
number of accesses to the cache, as expected. The normalized number of eashe acc
can be found in Figure 5.2. The number of accesses in the main program dropped,

signifying that the error calculation was memory intensive and that the movefribat
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Figure 5.2 - Windows Direct3D Cache StatisticsThe bars on the left correspond to the total remaltb access for
each level of the cache. The bars on the righespond to the hit rate. With the reduction inttital execution time,
the number of L1 and L2 cache data access redwoeddingly. The L3 cache remained relatively tams,
suggesting that the error computation did not extes L3 cache.

code reduced the burden of the main processor. However, the number of L3 cache access
remained relatively the same. It turns out that the display drivers aretlagaulprit
with the majority of the L3 cache accesses. In fact, the display drozatfe activity
remains roughly the same between the two versions of the code.

Finally, focusing on the location of the stalls in the CPU pipeline should illustrate
what types of operations were slowing the overall execution. In Figurth6.8vo
major sources of stalls were caused from a filled reservation station onezilaivia
store unit. Given the highly parallel nature of the MSE code, the reservation daton s
were likely caused by the out-of-order execution engine’s attempt to paeatted code
within its own superscalar architecture. The reduction of these stalls letits f
evidence to correlation of reservation stalls to the degree of paraitelipdthe code.
The dramatic reduction in the store stalls gives correlation to the amounaof dat

transferred between the main processor and the graphics processor. Sincesfs®iproc
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Figure 5.3 - Windows Direct3D Normalized Stalls.Moving the error calculation into Direct3D dramatig reduced
the number of processor stalls, especially withttveelargest sources of stalls.

was only transferring the 4 byte result from the error calculation thstiehe 304

kilobytes in the synthesized image to perform the calculation on the main CPU.

5.2 OpenGL in Windows
Swapping out Direct3D for OpenGL and the shader computations for CUDA, there is a
startling reduction in the total runtime for the CPU version of the code. Motlengtés
the increase in total runtime for CUDA, regardless of how data is moved from OpenGL
to CUDA.

Focusing on where the time is spent inside the program, Figure 5.4 breaks down
the execution time in each of the major libraries. As expected, the main program’s

execution time reduced when the error calculation moved from the CPU to CUDA.

Table 5.2 - Total Execution Time (Windows OpenGL)
CPU CUDA | CUDA w/ PBO

Total Time (seconds)| 54.312 74.140 98.359
Frames per Second 5.52 4.05 3.05
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Figure 5.4 — Windows OpenGL Time by Libraries. Even though the CUDA versions were supposed to
reduce the total number of cycles, the overheadilifing CUDA moved execution time from the main
program to the Windows kernel and support libraries

However, the amount of time spent in the Windows kernel increased when CUDA is
introduced to the program. In addition, number of cycles in the graphics driver and
OpenGL library increased dramatically depending on which library is moving the
synthesized image from OpenGL to CUDA. Based on these results, the process of
moving the calculation to the GPU increases the amount of work required of the main
processor.

Looking at the cache statistics, some interesting patterns appeagure 5.5,
the total number of cache accesses stays approximately the same wittDiAe CU
implementation that did not utilize a PBO to move the image data. However, mioee of t
cache hits moved from the L1 and L2 caches to the L3 cache. The movement of cache
access is much more apparent in the second CUDA version. In addition to the lower L1
and L2 hit rates and the higher L3 cache hit rate, the total number of accessvelsisl|

much higher. Employing a PBO to utilize CUDA’s OpenGL interoperabiitg anethod

29



350%

300%

250%

200%

150% mCPU

100% - m CUDA
0% n T T T -—\

Figure 5.5 — Windows OpenGL Cache StatisticsWhile the total number of access between the CRU an
CUDA without PBO remained the same, both CUDA arsisaw lower hit rates. In addition, the CUDA
version with a PBO saw substantially more cachesges.

of moving the pixel data from OpenGL to CUDA appears to be a more ineffici¢ghddne
of moving data.

Finally, the pipeline stalls shed some additional light on the slowdowns. As seen
in Figure 5.6, the number of store unit stalls increased dramatically when @&dbA
utilized. However, the total number of stalls was lower with the CUDA prognatrdid
not use a PBO than the CPU version. With the exception of the store stalls, this version of
the encoder appears to be more efficient with the processor. The CUDA versidmewith t
PBO, however, showed over twice as many stalls as either of the othempsogn
addition, there were more reorder buffer stalls than the total number of statlem e
program. While the OpenGL interoperability offers an easier means for prograrto
move data between OpenGL and CUDA, the overhead of utilizing a PBO and the

interoperability APIs adds to existing overhead of moving the data.
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Figure 5.6 — Windows OpenGL Normalized Stalls.Implementing CUDA increased the number of stom¢ stalls,
but utilizing the OpenGL interoperability built mCUDA more than doubled the total number of stalls

Based on the all this data, the OpenGL interoperability in CUDA adds substantia
overhead to the data copy between the two application interfaces. Compared with the
CUDA version without using a PBO, the only difference in the implementation is the
method of the data copy. However, the requirement to copy the data from graphics
memory to system memory and back to use CUDA negates one of the primary reasons
for using CUDA in the first place: reduce the amount of data copied betweemsyst

memory and graphics memory.

5.3 OpenGL in Linux
Switching to the Linux versions of the OpenGL code, there is a similar ingretxal

runtime, shown in Table 5.3, between the CPU and CUDA versions of the code that was

Table 5.3 — Total Execution Time (Ubuntu OpenGL)
CPU CUDA | CUDA w/ PBO

Total Time (seconds)| 56.36f 71.929 81.787
Frames per second 5.32 4.17 3.67
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seen in the Windows versions of the same programs. In addition, the CUDA version that
utilized the OpenGL interoperability was about 10 seconds slower than the version tha
explicitly forced the pixel data to detour through system memory before jumpihdgda

the graphics card for CUDA.

The number of cycles from the main program drop drastically and the OpenGL
and CUDA libraries use more cycles in both of the CUDA programs, as seemia Fig
5.7. This is similar to the results from the Windows version of these programs.
However, the total number of unhalted cycles stays fairly consistent betaaenfehe
programs. If every version of the encoder uses about the same number of logdes, t
has to be a significant number of stalls to account for the additional amount of @xecuti
time.

Looking at the cache statics shown in Figure 5.8, every cache level saera low
hit rate, especially L1 data cache. As a result, cache accesses arg tadkie slower,

lower levels of the cache. Moreover, the additional number of accesses to the highe

60
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£ H OpenGL
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20 - M Kernel
B Main program
10 - prog
O .
CPU CUDA CUDA w/ PBO

Figure 5.7 — Ubuntu OpenGL Time by Libraries. While every version of the code displayed
approximately the same number of unhalted cycléamge portion of the cycles moved from the main
program to the OpenGL and CUDA libraries.
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Figure 5.8 — Ubuntu OpenGL Cache StatisticsCache access numbers are normalized to the nurhber o
accesses in the CPU version. With the lower nurabaccesses and hits in the lower level caches,
accesses in the CUDA versions are moving to thiedmitevel caches. This move in the location of the
memory reads could account for some of the losbpmance.

level caches, especially the level 3 cache, suggests that the backend Eeaceshing
the large amount of data (352x288 pixels at 4 bytes per pixel to allow memesgacc
coalescing in CUDA) as it moves from the system memory to the graphimemnelf
the programs are caching the images in the process of copying them, the rest of the
program data is probably getting clobbered as well in the lower level cachdsngein
the lower hit rates in all the caches. Since the entire image is copiesidmsyemory
before moving to CUDA, marking the data as uncacheable would only add to the latency
since the image would have to come from main memory instead of the cache when then
program copies the data to CUDA.

Focusing on the processor stalls shown in Figure 5.9, the main source of stalls in
the CPU version of the program come from a full reservation station during the error
calculation. This mirrors the results seen in the two Windows programs as thesproces

is probably trying to parallelize the error calculation. Looking at the CUDsiwes, the
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Figure 5.9 - Ubuntu OpenGL Normalized Stalls.Moving the error calculation increased the number o
processor stalls significantly. While there wedeitional stalls at the reservation station, thenhar of
stalls due the store unit increased by an orderafnitude.

number of stalls increase 2x-4x over the CPU version with additional sialiag from
the kernel, OpenGL, and CUDA libraries. While the CUDA version without the PBO
only saw a slight increase in reservation station stalls, the store Ulisitrateeased 22x,
signifying that CUDA'’s data copying is causing the additional execuimne. The
CUDA version with PBO saw a 3x increase in reservation station stalls and a 40x
increase in store unit stalls. The apparent inefficiency with data handhirexphain

why the OpenGL interoperability built into CUDA is slower.

When the CUDA programs were tested with different image sizes, the number of
store unit stalls increased with the new number of pixels. As seen in Figure 5.10, both
CUDA programs saw a proportional increase in the store unit stalls withctlease in
the amount of data required to encode the 300 frames. Based on the relationship of the
increases, the CudaMemcpy functions are using the CPU to move the data to the graphic
card. In addition, the code utilized the asynchronous variant of the function,

CudaMemcpyAsync, to reduce the overhead of the copy. Looking at the libraries used i
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Figure 5.10 — Additional Store Stalls vs. Resolutim All the numbers are normalized to the smallest
resolution. While the number of stalls in eitheogram did not scale at the same rate as the datatise
scaling still follows the linear trend with the datize

the program, the multithreading library pthreads was used, despite the fact that the
program never explicitly included or invoked that library. Based on these obseryations
CUDA is probably creating additional threads in the background to service the
asynchronous memory copy.

There could be two sources of the store unit stalls present in both CUDA
programs. The most likely source is the image data passing through the CPUrand mai
memory as it is copied from OpenGL managed memory to CUDA managed memory.
The other source of the stalls could be the CUDA kernels themselves, as these GPU
instructions must be copied to the graphics card from main memory. Since proeessing

larger image would require more instances of the kernel to execute, the addiboaal
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Table 5.4 — Store Unit Stalls in CUDA Programs (1000 runs)
Execute Kernel | Transfer & Execute Kernel

Store Unit Stalls 18,000,000 1,334,000,000

unit stalls could have originated from the transfer of the CUDA kernel. Tdigstwo

simple CUDA programs were written to test the effect of the data éramsfthe number

of store unit stalls. The first program only executed the kernel while the secgndmpr

copied the equivalent amount of data as one of the rendered images before executing the
kernel. After each procedure was completed 10,000 times, the store unit stalls wer
collected. The stalls are shown in Table 5.4. Clearly, the source of the majtinggef

stalls originates in the data transfer.

Finally, while no documentation could be found to confirm that normal use of
OpenGL’sglReadPixelsised DMA, reading the pixel information into a PBO is will use
DMA if it is available. [16] To confirm whether or not the CPU based OpenGL encode
is using DMA to transfer the image data back to the system memory, an additional
encoder was written that used a PBO, and subsequently DMA, to copy the data back to
system memory. When the PBO is mapped into addressable memory, it will behave like
the character array used in the original program, allowing the erratatada code to
remain unchanged. If the CPU program that does not use the PBO behaves samilarly t
the one that does, it will be assumed that the process of reading pixel data back using
glReadPixelsvill use DMA, regardless of the target.

Looking at the measurements taken fromtitme command, OProfile, and Pin in
Figure 5.11, there is less than 1 percent difference in every metricelnetinestwo CPU

based programs. In addition, the program that used a PBO consistently came out highe
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Figure 5.11 — Normalized Comparison of Program Chaacteristics. There is very little difference
between these two programs despite using diffenerans of transferring the pixel data to system nmgmo
Based on this, the program that used a PBO, arsbgubntly DMA transfers, and the program that did n
use a PBO behaved almost identically.

on almost every measurement, which either statistical noise or theasnmaiht of

additional code required to implement and use a PBO could account for. If the program
that did not use a PBO used the CPU to transfer the pixel data, there should have been
substantially more memory transactions within that program. Theref@a@ssumed

thatglReadPixelsises DMA to transfer the pixel data to system memory.

5.4 Computation Time

As expected, the highly parallel subtraction and squaring computation sawaidram
speedup. Since all the calculations are completely independent of each other, the code
parallelized well. Interestingly, there was only a 5% increase in ativeisum time.

The parallelized reduction sum algorithm used allowed the slower shadeoondhes

GPU to compete with the faster Core i7 processor. In the end, the CUDA veasion w

able to perform the MSE algorithm 70% faster.
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Table 5.5 — Time to Complete 100 Error Calculations

CPU (us)| CUDA (us)| Speedup
Subtract & Square 24529 1760 1290%
Cumulative Summation 11201 11777 -4.89%
Complete MSE 24641 14489 70.1%
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CHAPTER VI

CONCLUSION

This chapter provides some discussion on the finding from this thesis and provides future

means of implementing code on a graphics card.

6.1 Value of Coprocessors
This project has continuously focused on the second half of Amdahl’s law: optimize the
bottleneck. With the need for 3D rendering, an existing 3D rendering APl and anmoder
graphics card made sense. A software rendering engine would have been the bottlenec
of the encoder. With the original Windows program using Direct3D, the bottleneck was
the error calculation. Utilizing the computational power of the of the grapards the
encoder finished in under 1/5 of the original time. While the use of the graphics shaders
was not ideal, it did provide a means for performing the error calculation on a more
appropriate processor. In addition, the CUDA version of the algorithm could peherm
mean squared error computation faster than the CPU due to its highly pachtielize
If any part of a serialized code can be parallelized to any degree, totaltatimptime
can be reduced.

However, as long as the data transfer time consumes any time gainetdrom t
coprocessor’s computation, adding a coprocessor to a solution will not produce any

tangible benefits. Due the large data size and the simple calculationpjb did not
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see the 70% speedup of the error computation due to the time required to move the image

into CUDA’s memory space.

6.2 Discovery of Naive Data Handling within CUDA

The biggest surprise of this study was the OpenGL version and its use of a Digi&rtra
for the pixel data. Since both the Direct3D versions and the CUDA versions
implemented some form of a memcpy instruction in their code to copy date ¢onothie
graphics card, it would appear that utilizing the standard C memcpy commated ¢chea
large number of store stalls seen in the processor. This observation is suppdreed by t
fact that the number of store unit stalls scaled with the size of the imagecbpiad.

Based on these findings, it is extremely inefficient to tie up a singledttoezopy data
when DMA seems to provide a more efficient means of moving data. The fact that the
OpenGL version that computes the error on the CPU was the fastest version of the code
was astounding considering the speed of the comparably coded Direct3D version.

In addition, the lack of transparency with objects created in either OpenGL or
CUDA created an inefficient means of moving data between the two libraaitgtilize
graphics memory. Requiring the OpenGL image to detour through system memory when
it is copied to CUDA controlled memory is very inefficient when both the source and
destination points reside in memory on the graphics card. In addition, the OpenGL
interoperability functions in CUDA proved to be less efficient than exglibahdling
the data copy. nVidia needs to drastically improve this aspect of CUDA Yy of

graphics library interoperability to be viable.

40



6.3 Future Work
The data from the performance counters point to the 3D mesh alterations as the next
slowest function within the encoder. With the apparent parallelism in changing the
location of over 3000 individual vertices, this section would be the next target to move to
the GPU. Since CUDA supports the creation of OpenGL vertex information, CUDA
could provide an additional speedup to the encoding process if the problems discovered
earlier do not overshadow the potential improvements.

In addition, several other general purpose GPU based API have been introduced
to make GPU more accessible. During the testing process, nVidia released 8€b of
their CUDA toolbox [26], allowing CUDA to directly access objects creatiéaw
OpenGL and Direct3D. Many of these changes were mirrored from the Ki&ooop’s
Open Computing Language (OpenCL) [27] which allows programmers t@ cede
that will run on any supported processors, including CPUs and GPUs. nVidia has already
released drivers and libraries to allow OpenCL code to run on their CUDA enabled vide
cards. Microsoft also added the ability to execute arbitrary code insiderdDiteetX
11 framework, calling their API DirectCompute [28]. However, this framkwequires

Window 7 since DirectX 11 is only available for that version of Windows.
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APPENDIX A

MSE code — CPU based C++

for(int i = 0; i < NUM_SUBPI XELS; i ++)
{
temp = src_face[i] - dst_face[i];
MSE += tenp*tenp;
}

MSE code — Direct3D HLSL Pixel Shader

/1 Pixel shader input structure
struct PS_I NPUT

float4 Position : POSI TI ON;
float2 Texture . TEXCOORDO;

}s

/1 Pixel shader output structure
struct PS_QUTPUT

fl oat4 Col or ;. COLORO;

/1 dobal variables
sanpl er 2D TexO;
sanpl er 2D Tex1,;

/] Name: MSE Pi xel Shader
/1 Type: Pixel shader
/1 Desc: Calcul ates the nean square error between two pixel fromthe

/1 two texture sanplers and returns the error as the color for
/1 t hat pi xel .

/1 R = MSE result;

/1 G B = 0;

/1 Al pha = 1;

/1
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PS OQUTPUT ps_main( in PS_INPUT In )

{
PS_QUTPUT Cut;
Qut. Color = tex2D(Tex0, In.Texture);
Qut. Col or -= tex2D(Texl, In.Texture);
Qut. Col or *= Qut. Col or;
Qut.Color.a =1
Qut.Color.r = Qut.Color.r + Qut.Color.g + Qut.Color.b
Qut. Col or.gb = O;
return Qut;
}

MSE code - CUDA

/********************************************************************

*  NMSE. cu

*********************************************************************/

#defi ne BLOCK SI ZE 1 96
#defi ne BLOCK Sl ZE 2 48
#defi ne MAX_BLOCK SI ZE 512

uni on pi xel

{

unsi gned int iVal;
unsi gned char cVal [4];

b

__global __ static void ConputeMSELl(unsigned int* reference,
unsi gned int* guess,
unsi gned int num pixels,
unsigned int* result)
{
int tenp;
unsigned int x = _ mul 24(bl ockl dx. x, bl ockDi m x) + threadl dx. x;
unsi gned int resultSum = O;
pi xel ref _pixel, guess_pixel

__shared__ unsigned int sharedResul t[ MAX BLOCK SI ZE] ;

if (x < num pixels)

{

reference[ x];
guess[ x];

ref pixel.iVal
guess_pi xel . i Val

temp = ref _pixel.cVal[0] - guess_pixel.cVal[0]; // Blue
resultSum = _ nul 24(tenp, tenp);

tenp = ref _pixel.cVal[1l] - guess_pixel.cVal[1l]; // Geen
result Sum += _ nul 24(tenp, t enp);
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}

{

tenp = ref _pixel.cVal[2] - guess_pixel.cVal[2]; // Red
result Sum += _ nul 24(tenp, tenp);

}

shar edResul t [t hreadl dx. x] = resultSum
__syncthreads();
unsi gned int a = bl ockDi m x;

while (a & 0x00000001 == 0) // Wile even (divisible by 2)

{
a >>= 1;
if (threadldx.x < a) // Parallelized Sunmation
shar edResul t [t hreadl dx. x] += sharedResul t[threadl dx.x + a];
__syncthreads();
}
if (threadldx.x == 0) // Performserial sunmmtion for the rest
{

resultSum = 0;

for (unsigned int i =0; i < a; i++)
resul t Sum += sharedResul t[i];

resul t[ bl ockl dx.x] = resultSum

}

gl obal __ static void ConputeMSE2(unsigned int* result,
unsi gned int nunber Of shar edResul t s)

unsigned int x = _ mul 24(bl ockl dx. x, bl ockDi m x) + threadl dx. Xx;
__shared__ unsigned int sharedResul t[ MAX BLOCK S| ZE]

if (x < nunber Of sharedResul ts)
sharedResul t[t hreadl dx.x] = result[x];
el se
shar edResul t [t hreadl dx. x] = 0;
__syncthreads();

unsi gned int a = bl ockD m x;

while (a & 0x00000001 == 0) // Wiile even (divisible by 2)

{
a >>= 1;
if (threadldx.x < a) // Parallelized Sunmation
shar edResul t [t hr eadl dx. x] += sharedResul t[threadl dx.x + a];
__syncthreads();
}
if (threadldx.x == 0) // Performserial sunmation for the rest
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}

{

unsigned int resultSum= 0

for (unsigned int i =0; i < a; i++)
resul t Sum += sharedResul t[i];

resul t[ bl ockl dx.x] = resultSum

}

__global __ static void ConmputeMSE3(unsigned int* result,

{

}

unsigned int* fina

)

__shared__ unsigned int sharedResult[ MAX BLOCK Sl ZE] ;

sharedResul t[t hreadl dx. x] = result[threadl dx. x];
__syncthreads();

unsi gned int a = bl ockD m x;

while (a & 0x00000001 == 0) // Wile even (divisible by 2)

{
a >>= 1;
if (threadldx.x < a) // Parallelized Sunmation
shar edResul t [t hr eadl dx. x] += sharedResul t[threadl dx.x + a];
__syncthreads();
}
if (threadldx.x == 0) // Performserial sunmation for the rest
{

unsi gned int resultSum = O;

for (unsigned int i =0; i < a; i++)
resul t Sum += sharedResul t[i];

*final = resultSum

}

extern "C'" void launch_kernel (unsigned int* reference,

unsi gned int* guess,
unsi gned int num pixels,
unsigned int* result,
unsi gned int* final

int bl ockSi zel,

i nt bl ockSi ze2)

/1l execute the kerne

int threadsPerBl ock = bl ockSi zel

int blocksPerGrid = (num pixels + threadsPer Bl ock
t hr eadsPer Bl ock;

- 1)

Conput eMSEl<<< bl ocksPer Gri d, threadsPerBl ock >>>(reference,
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result);

whil e (bl ocksPerGrid > MAX BLOCK SI ZE)
{

unsi gned int nunber Of sharedResults = bl ocksPerGri d;

t hreadsPer Bl ock = bl ockSi ze2;

bl ocksPerGid = (bl ocksPerGid + threadsPerBl ock - 1) /

t hr eadsPer Bl ock
Conput eMSE2<<< bl ocksPer Gri d, threadsPerBl ock >>>(result,
nunber O shar edResul ts) ;

}

Conput eMSE3<<< 1, bl ocksPerGid >>>(result, final);
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