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ABSTRACT 
 

The present study has addressed some fundamental issues involved in the heat and 

mass transfer enhancement by electric field.  To examine the heat transfer enhancement 

by the electric field, forced convection in a horizontal channel has been first numerically 

modeled using two-way coupling between the electric field and the fluid field.  Heat 

transfer enhancement in the presence of electric field has been evaluated by employing 

both one-way and two-way coupling models.  Numerical solutions have been obtained 

for a wide range of governing parameters (V0 = 10.0, 12.5, 15.0 and 17.5 kV as well as ui 

= 0.0759 to 1.2144 m/s).  Since the difference in the results obtained by these two 

approaches is insignificant, it is concluded that the assumption of one-way coupling is 

valid.  Then, the heat transfer enhancement by electric field is examined for natural 

convection in an enclosure with the effects of Joule heating.  Numerical solutions have 

been obtained for three electrode locations and a wide range of governing parameters (Ra 

= 104, 105, and 106, and V0 = 12, 15, and 18 kV).  The results obtained show that the 

effects of Joule heating are negligible when the Rayleigh number is large (Ra ≥ 105).  For 

a small Rayleigh number (Ra = 104), the effects of Joule heating are significant. 

To study the mass transfer enhancement by the electric field, experiments have 

been conducted and the effects of corona wind (V0 = 14 - 20 kV), corona polarities 

(positive and negative), and cross-flow (ui = 2.2 m/s) on the evaporation rate of water 

have been carefully examined.  Correlations have been proposed for the water 

evaporation rate under the application of electric field for both positive and negative 

corona polarities.  Then, numerical models are developed for the electric, flow, and 
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concentration fields. Numerical results have been compared with the experiment results 

and the agreement between them is found to be satisfactory. 
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CHAPTER ONE  

INTRODUCTION AND LITERATURE REVIEW 

1.1  Introduction 

Heat and mass transfer between a surface and its ambient air can be significantly 

enhanced through the application of a high electric field.  When a high voltage is applied 

to a fine wire or a sharp needle, air in its vicinity is ionized and the ions are drawn toward 

the electrically grounded plates (Figure 1.1).  During the migration to the plate electrodes, 

the ions transfer their momentum to neutral molecules by collision.  A bulk flow of 

ionized air molecules is thus created, and is called corona wind, or secondary flow.  The 

corona wind disturbs the boundary layer on the grounded surface and thus enhances heat 

and mass transfer between the grounded surface and its ambient air.  This technique is 

called electrohydrodynamically enhanced (or EHD-enhanced) heat and mass transfer [1]. 

The advantages of heat and mass transfer enhancement by electric field are  

1. The implementation is simple by using only a small transformer and electrodes 

(needles, wires or mesh). 

2. Heat and mass transfer coefficients can be rapidly controlled by adjusting the 

electric field strength. 

3. This technique can be applied to special environments, like zero-gravity. 

4. CFC alternatives, oils, and liquids with relatively small electrical conductivity, as 

well as gases are all acceptable working fluids at the present level of EHD 

technology. 

5. The electric power consumption is usually negligible in many applications [1]. 
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Figure 1.1  Mechanism of EHD-enhanced heat and mass transfer 

 

EHD technique can be applied to various heat and mass transfer processes, such 

as convection, boiling, condensation, and evaporation [1].  The complication of EHD-

enhanced heat and mass transfer is due to the interactions among the electric, flow, 

temperature, and concentration fields.  Also, different EHD phenomena are involved with 

different substances.  Therefore, the EHD-enhancement phenomenon is system-specific.  

The enhancement of heat and mass transfer using electric field has long been 

demonstrated by experiments.  Due to the complexity of the problem, numerical solutions 

are often difficult to obtain.  This chapter presents a literature review on EHD-enhanced 
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heat transfer in natural and forced convection, as well as EHD-enhanced mass transfer in 

drying. 

1.2  EHD-enhanced Heat Transfer  

1.2.1  EHD-enhanced Natural Convection  

EHD-enhanced natural convection has been investigated by Lykoudis and Yu as 

early as 1962 [2].  In their experiment, the natural convection between a horizontally 

heated wire and a coaxial cooled cylinder under a non-uniform radial electric field was 

examined.  They reported that the enhancement of convection was due to the additional 

recirculation produced by the electric force.  Similar to the work by Lykoudis and Yu [2], 

Marco and Velkoff [3] used flat plates instead of coaxial cylinder.  It was found that the 

corona wind led to the increase of approximately five times the pure natural convection in 

the experiments.  The photographs demonstrated that the enhancement was due to the 

disruption of the thermal boundary layer.  Later, Franke [4] investigated the effect of 

vortices induced by corona discharge on natural convection from a vertical plate.  His 

results showed that heat transfer rate was doubled with the presence of an electric field.  

Yabe et al. [5] developed a model to analyze experimentally and theoretically on 

the effect of corona wind.  In their experiment, a fine wire was used as an anode and a 

plate was used as a cathode in a two-dimensional enclosure filled with nitrogen.  Yabe et 

al. [5]  found that positive ions predominated in the whole space, except in an extremely 

narrow region close to the wire.  A theoretical analysis was performed based on the 

model that positive ions produced by ionization near the wire electrode moved toward the 

plate.  The electric potential distribution in the space was calculated numerically.  It was 
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shown that the corona wind was caused by the Coulomb force exerted on ions, and 

collisions of ions and neutral molecules of gas.

Franke and Hutson [6] investigated the effects of corona wind on natural 

convection inside a vertical hollow cylinder.  By calculating the heat input required to 

maintain the inner surface of the cylinder at a constant temperature, the heat transfer rate 

was found to be nearly doubled along the inner surface due to the effect of the corona 

wind.  

Recently, some numerical solutions of EHD-enhanced natural convection have 

been reported.  Liu and Lai [7] performed numerical simulations to study the effects of 

wire location on the EHD-enhanced natural convection in an enclosure.  It was found that 

the enhancement in heat transfer was possible due to the oscillation of the flow field.  

When the wire was located at the lower part of the enclosure, the effect of EHD-enhanced 

heat transfer was more significant than those of other wire locations.  The maximum 

EHD-enhanced heat transfer rate was four times higher than those without the electric 

field.  Following Liu and Lai’s work [7], Tan and Lai [8] considered a two-dimensional 

cavity with an aspect ratio of 5 and applied positive corona discharge from an electrode 

wire charged from a high voltage supply in several locations.  The enclosure was 

differentially heated from the vertical walls. It was observed that at low Rayleigh 

numbers, the flow and temperature fields were basically oscillatory in nature.  When the 

Rayleigh number was sufficiently increased, a steady state might be reached. Heat 

transfer enhancement was found to increase with the applied voltage, but decrease with 

the Rayleigh number.  Similar to Tan and Lai’s work [8], Ngo and Lai [9] presented some 

numerical results for the effects of electric field on natural convection in an enclosure 
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filled with air and heated from below.  The geometry considered was a two-dimensional 

rectangular cavity with an aspect ratio of one fifth.  Ngo and Lai [9] also found that the 

flow and temperature fields might become steady, periodic, or non-periodic depending on 

the applied voltage and Rayleigh number.  Because of the EHD-induced oscillatory 

flows, heat transfer was enhanced and was most significant at small Rayleigh numbers. 

1.2.2  EHD-enhanced Forced Convection  

Yamamoto and Velkoff [10] experimentally and numerically studied the 

secondary flow interaction in an electrostatic precipitator.  A two-dimensional, laminar 

flow model was used.  In the experiment, a Schlieren system and mist-injected smoke 

was used to visualize the interaction of the secondary flows.  In the numerical study, the 

electric field distribution and space charge density were determined by using the 

Maxwell’s equation, Possion’s equation, and the current continuity equation.  Then the 

flow field was determined by solving the Navier-Stokes equations in term of vorticity and 

stream function.  The numerical results were found to be consistent with the experiment 

results.  

Tada et al. [11] conducted experiments in a channel with airflow in which equally 

spaced positive wire electrodes were placed in parallel to the primary flow.  Tada et al. 

[11] found that heat transfer augmentation resulting from the combined flow was 

achieved, especially in the laminar flow range.  Also, a theoretical analysis was 

performed on electric, flow, and temperature fields, taking into account the interactions 

among them. 

Kulkarni and Lai [12] studied laminar mixed convection in a vertical channel.  

The electrical field was generated by positive corona discharge from a wire electrode.  
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The parameters considered in their study were the Reynolds numbers (Re = 600, 1200, 

and 1800) and Grashof numbers (Gr = 10 , 10 , and 10 ).  Their results showed that heat 

transfer improved for Grashof number up to 10 for aiding flows.  For opposing flows, 

heat transfer was increased in all cases of Reynolds and Grashof numbers.  The flow and 

temperature fields was oscillatory for low Reynolds numbers (Re = 600 and 1200) and 

tended to stabilize when the Reynolds or Grashof numbers were increased. 

4 5 6

5 

Mathew and Lai [13] presented a numerical study of EHD-enhanced forced 

convection using two electrodes in a horizontal channel.  Various electric potentials and 

Reynolds numbers were considered in their study.  For a given electric field, flow and 

temperature fields were oscillatory at small Reynolds numbers and tended to stabilize 

when the Reynolds number was increased.  Heat transfer was increased as much as 375% 

when compared with the cases without electric field due to the existence of oscillatory 

secondary flows. 

Owsenek and Seyed-Yagoobi [14] conducted an experiment by suspending 

multiple fine wire electrodes in the open air above a grounded and heated horizontal 

surface.  An infrared camera was used to obtain a complete and accurate distribution of 

local heat transfer coefficient on the impingement surface.  Also, a numerical code was 

developed and verified by comparison with the experimental data. 

1.3  EHD-enhanced Mass Transfer 

EHD-enhanced mass transfer offers a wide range of applications to food-

processing, textile, biomedical and mining sectors of the industry.  Extensive 

experimental results on EHD-enhanced drying have been published.  Kulacki and 

Daubenmier [15] studied the effect of corona wind on drying cookie dough.  Their results 
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showed that when an electric field was applied, the baking time was 20% less than those 

without eclectic field.  Kirschvink-Kobayashi and Kirschvink [16] conducted an 

experimental study using various materials.  Their results showed a reduction in drying 

time from 20% to 50% for drying filter paper, wool, and chopped onions with the 

application of electric field.  It was found that the corona wind produced by the electric 

field disturbed the boundary layer and increased the rate of water evaporation.  

Similarly, Chen and Barthakur [17] conducted an experiment to study the 

dehydration of a potato slab with the presence of electric field.  Compared with the 

convectional air-drying, the drying rate was increased 2.2 to 3.0 times when the potato 

slab was subjected to fluxes of 3.02 × 1012 positive ions/cm2-s alone or in combination 

with 7.31 × 1012 negative ions/cm2-s.  It was concluded that the enhancement in drying 

was caused by the ion-drag force.  Hashinaga et al. [18] studied EHD-enhanced drying 

technique experimentally using apple slices.  It was found that the sharper needle was 

more efficient than the blunter copper electrode and the multiple point-to-plate 

electrodes. Also, using AC voltage was more effective in enhancing the drying rate. 

Carlon and Latham [19] performed experiments to measure the drying rate of discs 

of paper towel moistened by water as a function of the strength of the electric field in 

which they were placed.  The results showed that for a certain strength of electric field, 

the rate of mass loss (dm/dt) remained constant until the substrate started to become dry.  

Also, mass loss (dm/dt) varied monotonically with the strength of electric field.   

Banarjee and Law [20] developed a laboratory system for experimentally 

characterizing electro-osmotic dewatering of two biomass materials at both constant 

voltage and constant current.  The experimental results revealed that the dominant 
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mechanism of water removal in the experiments was via electroosmosis.  In the constant-

voltage mode, the flow rate of liquid water out of the bed linearly increased with the 

applied voltage.  In the constant-current model, the electrical energy consumed was a 

quadratic function of time.  

Sadek et al. [21] examined the heat and mass transfer coefficients in a forced 

convection system.  A saturated sponge was placed on a flat plate and an air stream 

flowed tangentially.  An array of wire electrodes was set on a certain distance above the 

flat surface to produce a corona wind impinging on the flat plate.  The results showed that 

the drying rate of wet materials was governed by simultaneous heat and mass transfer in 

the hot gas passed through.  Also, the electrohydrodynamic augmentation of heat and 

mass transfer rates with small-diameter or sharp electrodes was due to ion-drag forces, 

and was correlated under forced convection by means of the ratio of ion-drag and 

momentum forces.  

Wolny [22] and Wolny and Kaniuk [23] experimentally investigated the process of 

evaporation from flat and cylindrical surfaces into an air stream flowing tangentially to 

them.  The results confirmed that an electric field could significantly intensify heat and 

mass transfer in the evaporation and drying processes,  up to eight times higher heat and 

mass transfer coefficients were observed with the presence of the electric field than those 

without.  An increase in the gas flow velocity was observed over the liquid surface 

diminished the effect of electric field.  Also, an increase in the gas temperature intensified 

gas ionization; and, augmented the transport processes significantly. 

Barthakur and Arnold [24] used a point-to-plate electrode system to study the 

enhancement in the evaporation rates of water.  It was observed that the turbulence 
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produced in the water by the electric wind caused the observed enhancement without any 

primary heat involvement.  Also, the mass transfer coefficient for positive corona was 

higher because of its lower mobility than its negative counterpart if everything else 

remained the same. 

EHD-enhanced drying has been experimentally evaluated by Lai and Lai [25] using 

a wire electrode to dry glass beads saturated with water.  Their experiments were 

conducted for a wide range of operating voltage, electrode spacing and different size of 

sample materials.  The results showed that the drying rate depended on the strength of the 

electric field and the velocity of the cross-flow.  The enhancement of drying rate 

increased linearly with the applied voltage with the absence of cross-flow, but the electric 

field became insignificant on the drying enhancement when the cross-flow velocity was 

increased.  With the same experiment setup, Lai and Wong [26] studied the EHD-

enhanced drying using a needle.  They also concluded that the drying rate depended on 

the strength of the electric field and the velocity of the cross-flow.  In addition, they 

realized that positive corona discharge generally performed better than negative corona 

discharge, and wire electrode performed better than needle electrode at a lower applied 

voltage. 

1.4  Objective of Present Study 

Due to the complicated interactions among the electric, flow, and temperature 

fields, previous studies on heat transfer enhancement by electric field were mostly 

accomplished by experiments.  Numerical solutions are only usually possible with some 

simplification of these complicated interactions.  Two of the most common assumptions 

made are the one-way coupling between the electric and flow fields and the neglect of the 
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Joule heating caused by the electric field.  Under the one-way coupling assumption (i.e., 

the ions travel at a much faster velocity than the ambient air), electric field can have 

influences on the flow field, but not vice versa.  The second assumption is commonly 

used to simplify the energy equation.  Although these assumptions may seem reasonable 

(and deemed necessary in some cases), they have never been verified.  

Similarly, experiments on EHD-enhanced mass transfer have been conducted by 

drying various materials (for example, cookie dough [15], chopped onion [16], filter 

paper [16], wool [16], potato slab [17], apple slice [18], paper towel [19], and biomass 

materials [20]), very few numerical studies have been reported.  Since the drying process 

takes place between gas/vapor and liquid phases, an interface exits.  As such, in 

numerical studies, one needs to deal with the interface problem when solving for both 

electric and flow fields.  The two-phase interface problems have been studied by several 

investigators [27-29], but their numerical solutions are based on an unjustified 

assumption that both space charge and surface charge are negligible.  This assumption 

leads to a simple Laplacian equation for the electric field.  

2V 0∇ = .                                                                                                                                  (1.1) 

In boiling, one substance occurs in two phase, such as  water in vapor and liquid phase.  

The value of the specific dielectric constant is approximately 1 for gases and vapors and 

in the range of 5 to 10 for most dielectric liquids [27].  For the drying mentioned above 

[15-20], the substances are air in gas and water in liquid and vapor.  In this case, the 

space charge cannot be neglected and the electric field is governed by two equations [1]. 

2 cV ρ
∇ = −

ε
,                                                                                                                   (1.2) 
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2
c

c (b ) b 0.ρ
∇ρ ⋅ + + =

ε
E u                                                                                                        (1.3) 

At the interface, the surface charge also exists, which makes the problem more 

complicated.  Particularly, the ratio of specific dielectric constant between water and air 

(at room temperature) (εw/ εa) is 80.1; the ratio of ion mobility between air and water (ba/ 

bw) is about 1000 [1, 30], which makes the numerical simulation of the interface even 

more difficult.

Based on the above analysis, the objectives of the present study can be 

summarized below: 

1. Verify the one-way coupling assumption by a comparison of the results 

obtained from both one-way and two-way coupling models as applied to 

the problem of EHD-enhanced forced convection in a horizontal channel.  

2. Verify the effects of Joule heating by investigating the heat transfer 

enhancement due to the Joule heating from a wire electrode located at the 

mid-plane of an enclosure, which is subjected to differentially heated 

vertical walls. 

3. Experimentally and numerically study the EHD-enhanced water 

evaporation in a horizontal channel, with or without cross-flow. 
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CHAPTER TWO 

EHD-ENHANCED HEAT TRANSFER 

This chapter presents the numerical studies on the EHD-enhanced heat transfer.  

First, EHD-enhanced forced convection in a two-dimensional channel with electric field 

produced by a wire suspended in the air is studied to verify the one-way coupling 

assumption.  Then, the EHD-enhanced natural convection in an enclosure is studied to 

evaluate the effect of Joule heating on the heat transfer enhancement using electric field. 

2.1  Electric Field 

2.1.1  Governing Equations 

The electric field involved in the present study is governed by Maxwell equation, 

current continuity equation, and Ohm’s law with the following assumptions [1]. 

1. Only positive corona discharge is considered since it provides a stable electric 

field. 

2. The mobility of air is considered constant. 

3. The specific dielectric constant is unity, so the permittivity of air equals the 

permittivity of vacuum. 

4. The magnetic field due to the corona discharge is negligible. 

Maxwell equation 

c.∇ ⋅ = ρD                                                                                                                      (2.1) 

Current continuity equation 

d 0.
dt
ρ

+ ∇ ⋅ =J                                                                                                               (2.2) 
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The time-dependent term in equation (2.2) reduces to zero when a steady DC power 

source is applied.  

Ohm’s law 

cJ b= ρ + ρE c .u                                                                                                                (2.3) 

where u is the free-stream velocity, which provides the coupling between the flow field 

and electric field. 

From the definitions of the electric flux and electric potential  

- V.= ε = ∇D E, E                                                                                                              (2.4) 

equation (2.1) can be rewritten as 

2 cV ρ
∇ = −

ε
.                                                                                                                              (2.5) 

Combining equations (2.3) and (2.5), equation (2.2) can be reformulated to give 

( )
2
c

c b b ρ
∇ρ ⋅ + + =

ε
E u 0.                                                                                                  (2.6) 

So the governing equations for the electric field are equations (2.5) and (2.6). 

2.1.2  Numerical Formulation of Electric Field  

In Cartesian coordinates, equations (2.5) and (2.6) become  

2 2
c

2 2
V V ,

x y
ρ∂ ∂

+ = −
ε∂ ∂

                                                                                                                 (2.7) 

( ) ( )
2

c c c
x yb bE u bE v 0.

x y
ρ ∂ρ ∂ρ

+ + + +
ε ∂ ∂

=                                                                         (2.8) 

A uniform mesh is used to discretize the governing equations.  The computational 

domain is first divided into a two-dimensional grid system (Figure 2.1).  Then the 
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governing equations are integrated over a control volume to get the finite difference form 

of governing equations.  The finite difference form of equation (2.7) is given by 

( ) ( )

( )( )

y,n y,n2 2x,e x,e
c

2 2
y,s x,w y,s x,w

P W N P P SE P
n s e w

E P P W N P P S

c
e w n s

V V( )dxdy dxdy,
x y

V V V V V VV V y y x x
x x x x y y y y

x x y y .

ρ∂ ∂
+ = −

ε∂ ∂

⎛ ⎞ ⎛ ⎞− − −−
− − + −⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠

ρ
= − − −

ε

∫ ∫ ∫ ∫

−                              (2.9) 

 

 

 

 

x 

y Δx

Δy
P E W 

N 

S 

n 

e w 

s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1  The control volume of nodal P in a two-dimensional computational domain 
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For a uniform grid, Δ=Δ=Δ yx , equation (2.9) can be simplified to give 

( ) 2c
P E W N S

1V V V V V
4

.ρ
= + + + + Δ

ε
                                                                              (2.10) 

The finite difference form of equation (2.8) is given by 

( ) ( )

( )( )( ) ( )( )( )

y,n y,n y,n2x,e x,e x,e
c c c

x y
y,s x,w y,s x,w y,s x,w

2
c

ce cw x n s cn cs y e w

b dxdy bE u dxdy bE v dxdy 0,
x y

b x y bE u y y bE v x x 0.

ρ ∂ρ ∂ρ
+ + + +

ε ∂ ∂

ρ
Δ Δ + ρ − ρ + − + ρ − ρ + − =

ε

∫ ∫ ∫ ∫ ∫ ∫ =

                           

                                                                                                                                                  (2.11) 

In solving equation (2.11), a backward difference scheme is employed for 

numerical stability, and this can be summarized in four forms [31]. 

x y(1) bE u 0 and bE v 0+ ≥ + ≥   

Equation (2.11) is reformulated to give 

( )( ) ( )( )
2

c
cP cW x cP cS yb bE u bE v 0,ρ

Δ + ρ − ρ + + ρ − ρ + =
ε

  

which can be rearranged to give 

( ) ( ) ( ) ( )2
cP x y cP x cW y cS

b bE u bE v bE u bE v 0Δ ⎡ ⎤ ⎡ρ + + + + ρ + − + ρ − + ρ =⎣ ⎦ ⎣ε
.⎤

⎦     (2.12a) 

x y(2) bE u 0 and bE v 0+ ≤ + ≥  

Equation (2.11) is reformulated to give 

( )( ) ( )( )
2

c
cE cP x cP cS yb bE u bE v 0,ρ

Δ + ρ − ρ + + ρ − ρ + =
ε

 

which can be rearranged to give 

( ) ( ) ( ) ( )2
cP x y cP x cE y cS

b bE u bE v bE u bE v 0Δ ⎡ ⎤ ⎡ρ + − + + + ρ + + ρ − + ρ =⎣ ⎦ ⎣ε
.⎤

⎦      (2.12b) 
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x y(3) bE u 0 and bE v 0+ ≤ + ≤  

Equation (2.11) is reformulated to give 

( )( ) ( )( )
2

c
cE cP x cN cP yb bE u bE v 0,ρ

Δ + ρ − ρ + + ρ − ρ + =
ε

 

which can be rearranged to give 

( ) ( ) ( ) ( )2
cP x y cP x cE y cN

b bE u bE v bE u bE v 0Δ ⎡ ⎤ ⎡ρ + − + − + ρ + + ρ + + ρ =⎣ ⎦ ⎣ε
.⎤

⎦     (2.12c) 

x y(4) bE u 0 and bE v 0+ ≥ + ≤  

Equation (2.11) is reformulated to give 

( )( ) ( )( )
2

c
cP cW x cN cP yb bE u bE v 0,ρ

Δ + ρ − ρ + + ρ − ρ + =
ε

 

which can be rearranged to give 

( ) ( ) ( ) ( )2
cP x y cP x cW y cN

b bE u bE v bE u bE v 0Δ ⎡ ⎤ ⎡ρ + + − + ρ + − + ρ + + ρ =⎣ ⎦ ⎣ε
.⎤

⎦    (2.12d) 

Equation (2.12) has the form 

  2
cP cPa( ) b( ) c 0.ρ + ρ + =

To solve for charge density (ρcP), we use the formula of 
2

cP
b b 4ac

2a
− ± −

ρ = . 

For one-way coupling, which implies that u = 0 and v = 0 in equation (2.12), the 

present algorithm used to calculate the electric field is reduced to that proposed by 

Yamamoto and Velkoff [10].  In one-way coupling approach, the electric field can be 

determined independently of the flow field following the steps outlined below. 

1. The potential distribution is first estimated by solving equation (2.10) with the 

absence of the charge density. 
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2. After the potential distribution is known, the charge density can be determined 

by solving equation (2.12) with an initial guess of the charge density at the 

wire. 

3. With the charge density given, the potential distribution can be recalculated 

using equation (2.10). 

4. With the newly available potentials, the charge density can be updated by 

solving equation (2.12) again. 

5. The process is repeated until both potential and charge density converge.  

When converged, the current on the grounded surface is calculated using 

                                                                                     (2.13) L
c y P0I bE L= ρ∫ dx.

6. If this value agrees well with the experimental data ( exp 4I I
10

I
−−

≤ ), then 

the electric field is determined.  Otherwise, a new charge density at the wire is 

assumed and the process is repeated from step two. 

In two-way coupling approach, the electric field has to be determined 

simultaneously with the flow field.  At each time step, the electric field is first calculated, 

followed by the flow field.  After the flow field is determined, the electric field is 

recalculated using the most recently available velocity data.  In each time step, the 

electric field is determined using the same procedures as one-way coupling approach.  

2.2  EHD-enhanced Forced Convection Employing Two-way Coupling  

In this study, two-way coupling is considered in EHD-enhanced forced 

convection.  The system considered is shown in Figure 2.2.  Because of the symmetry, 

only half of the channel was used as the computational domain.  A finite difference 
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method based on the control volume approach was used to solve the governing equations 

subject to the boundary conditions imposed.  A uniform grid (225×33) has been shown to 

produce satisfactory results [35].  In addition, a time step of 5×10-4 has been shown to be 

adequate for the present calculations [35].  

To obtain the electric field numerically, the current density on the grounded plate 

first needs to be determined experimentally.  Since this channel has the same 

configuration as the one that Yamamoto and Velkoff [10] used in their experiment, their 

experimental current data (shown in Table 2.1) were used in the present numerical study. 

The corresponding boundary conditions for the electric potential field are 

0x L / 2, y 0, V V= = = .

=

                                                                                                 (2.14a) 

y H, V 0.=                                                                                            (2.14b) 

Vy 0, 0.
y

∂
=

∂
=                                                                                           (2.14c) 

Vx 0, 0.
x

∂
=

∂
=                                                                                           (2.14d) 

Vx L, 0
x

∂
=

∂
.=                                                                                          (2.14e) 

 

Table 2.1  Current at the grounded plates [10] 
 

Voltage 
(kV) 

Current measured at the grounded plates 
(A) 

10.0 3.4e-5 
12.5 8.8e-5 
15.0 16.0e-5 
17.5 2.48e-4 
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Figure 2.2  A two-dimensional channel with constant wall temperature and one electrode 
wire located at the center (L = 21 cm, H = 3 cm) 

 

2.2.1  Governing Equations for Fluid and Temperature Fields 

The governing equations for the unsteady flow and temperature fields with 

constant properties are continuity equation, momentum equations in x and y direction, 

and the energy equation. 

Tw

Tw

wire

plate 

Ti, ui

L 

2Hx

y

u v 0,
x y

∂ ∂
+ =

∂ ∂
                                                                                                 (2.15) 

2 2
c

x2 2
u u u 1 p u uu v E
t x y x x y

⎛ ⎞ ρ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + ν + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ρ ∂ ρ∂ ∂⎝ ⎠

,                                                        (2.16) 

2 2
c

y2 2
v v v 1 p v vu v E
t x y y x y

⎛ ⎞ ρ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + ν + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ρ ∂ ρ∂ ∂⎝ ⎠

,                                                         (2.17) 

2 2

2 2
T T T T Tu v
t x y x y

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = α +⎜⎜∂ ∂ ∂ ∂ ∂⎝ ⎠

.⎟⎟                                                                                   (2.18) 

The last term in the momentum equations, equations.(2.16) and (2.17), represents the 

electric body force, which provides the coupling from the electric field to the flow field.  

The effects of Joule heating are assumed negligible in this heat transfer application. 
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The governing equations can be non-dimensionalized by introducing the 

following dimensionless variables. 

w i

i w

c
c

i i i 0

c0 0 i
e

T T u tx yX , Y , , , Pr ,
H H T T H
u v H VU , V , , V ,
u u u V

V u Hu , U , V , Re
Y X

c0
,

.

− ν
= = θ = τ = =

− α

ρω
= = Ω = = ρ =

ρ

ρ ∂Ψ ∂Ψ
= = = −

ρ ∂ ∂
=

ν

    (2.19) 

In the model of two-way coupling, the charge density at the wire (ρc0) changes in 

each time step, so the electric characteristic velocity ue is no longer a constant.  

Therefore, the inlet velocity ui is used as the reference velocity.  This is different from the 

previous studies based on the one-way coupling.  The dimensionless governing equations 

in terms of stream function and vorticity are given by 

Vorticity Equation  

2 2

2 2 ,
X Y

∂ Ψ ∂ Ψ
+ = −

∂ ∂
Ω                                                                                                        (2.20) 

Vorticity Transport Equation 

22 2
e c c

2 2 2
i

u1 V ,
Y X X Y Re Y X X YX Y u

⎛ ⎞ ⎛ ⎞∂ρ ∂ρ∂Ω ∂Ψ ∂Ω ∂Ψ ∂Ω ∂ Ω ∂ Ω ∂ ∂
+ − = + + −⎜ ⎟ ⎜⎜ ⎟∂τ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ⎝ ⎠⎝ ⎠

V
⎟                       (2.21)  

Energy Equation 

2 2

2 2
1 .

Y X X Y Pr Re X Y

⎛ ⎞∂θ ∂Ψ ∂θ ∂Ψ ∂θ ∂ θ ∂ θ
+ − = +⎜⎜∂τ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎟⎟

=

                                                             (2.22) 

The corresponding boundary conditions for the flow and temperature fields are 

X 0, 0, Y, 1.= Ω= Ψ= θ                                                                         (2.23) 
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LX , 0, 0,
H X X X

∂Ω ∂Ψ ∂θ
= = =

∂ ∂ ∂
0.=                                                                (2.24) 

Y 0, 0, 0, 0
Y

.∂θ
= Ω = Ψ = =

∂
                                                               (2.25) 

2

2Y 1, , 1, 0.
Y

∂ Ψ
= Ω = − Ψ = θ =

∂
                                                           (2.26) 

Numerical results reported by Kulkarni and Lai [12] have shown that the outflow 

condition, equation (2.24), is appropriate for the determination of the flow and 

temperature fields. 

2.2.2  Numerical Formulation of Flow and Temperature Fields 

A finite difference method [31] is employed to solve these governing equations of 

the flow and temperature fields.  Similar to the electric field, a uniform mesh is used to 

discretize the governing equations, and the finite difference equations are obtained by 

integrating the governing equations over a control volume (Figure 2.1).  The diffusion 

terms in the vorticity equation can be discretized in the following manner. 

2 2X,e Y,n Y,n X,e

2 2
e w n sX,w Y,s Y,s X,w

dXdY dY dX.
X X Y YX Y

⎛ ⎞ ⎛ ⎞ ⎛∂ Ψ ∂ Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ
+ = − + −⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ∂ ∂ ∂ ∂∂ ∂ ⎝ ⎠ ⎝⎝ ⎠

∫ ∫ ∫ ∫
⎞
⎟
⎠

       (2.27) 

Applying the central difference approximation to the above equation gives 

( ) ( )

( ) ( )

Y,n
P WE P

n s n s
E P P We wY,s

X,e
N P P S

e w e w
N P P Sn sX,w

dY Y Y Y Y ,
X X X X X X

dX X X X X ,
Y Y Y Y Y Y

⎛ ⎞ Ψ − ΨΨ − Ψ∂Ψ ∂Ψ
− = − − −⎜ ⎟

∂ ∂ − −⎝ ⎠

⎛ ⎞ Ψ − Ψ Ψ − Ψ∂Ψ ∂Ψ
− = − − −⎜ ⎟

∂ ∂ − −⎝ ⎠

∫

∫

                      (2.28) 

2 2X,e Y,n

2 2
X,w Y,s

E E W W N N S S E W N S P

dXdY
X Y

(B B B B ) (B B B B ) ,

⎛ ⎞∂ Ψ ∂ Ψ
+⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

= Ψ + Ψ + Ψ + Ψ − + + + Ψ

∫ ∫                  (2.29) 

where 
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n s n s
E W

E P P W

e w e w
N S

N P P S

Y Y Y YB , B
X X X X
X X X XB , B
Y Y Y Y

− −
= = −

− −

− −
= =

− −

,

.

.

                                                                          (2.30) 

For uniform grid (ΔX = ΔY = Δ), 

E W N SB B B B 1= = = =                                                                                                      (2.31) 

In the same manner, the diffusion terms in the vorticity transport and energy equations 

are discretized into the following forms. 

( )
2 2X,e Y,n

E W N S P2 2
X,w Y,s

1 1dXdY 4 ,
Re ReX Y

⎛ ⎞∂ Ω ∂ Ω
+ = Ω + Ω + Ω + Ω −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ Ω                         (2.32) 

( )
2 2X,e Y,n

E W N S P2 2
X,w Y,s

1 1dXdY 4 .
Pr Re Pr ReX Y

⎛ ⎞∂ θ ∂ θ
+ = θ + θ + θ + θ −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ θ                      (2.33) 

The convective terms in the vorticity transport equation are integrated over the 

control volume to obtain the following discretized form. 

X,e Y,n

X,w Y,s
Y,n X,e

e w n s
e w n sY,s X,w

E W N S P E E W W N N S S

dXdY
Y X X Y

dY dX,
Y Y X X

(A A A A ) (A A A A ),

∂Ψ ∂Ω ∂Ψ ∂Ω⎛ ⎞−⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞ ⎛∂Ψ ∂Ψ ∂Ψ ∂Ψ
= Ω − Ω + Ω − Ω⎜ ⎟ ⎜

∂ ∂ ∂ ∂⎝ ⎠ ⎝
= + + + Ω − Ω + Ω + Ω + Ω

∫ ∫

∫ ∫
⎞
⎟
⎠

                (2.34) 

where 

( )

( )

( )

( )

E SE S NE N SE S NE N

W NW N SW S NW N SW S

N NE E NW W NE E NW W

S SW W SE E SW W SE E

1A ,
8
1A ,
8
1A ,
8
1A .
8

⎡ ⎤= ψ + Ψ − Ψ − Ψ + ψ + Ψ − Ψ − Ψ⎣ ⎦

⎡ ⎤= ψ + Ψ − Ψ − Ψ + ψ + Ψ − Ψ − Ψ⎣ ⎦

⎡ ⎤= ψ + Ψ − Ψ − Ψ + ψ + Ψ − Ψ − Ψ⎣ ⎦

⎡ ⎤= ψ + Ψ − Ψ − Ψ + ψ + Ψ − Ψ − Ψ⎣ ⎦

                             (2.35) 
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In the same manner, the convective terms in the energy equation are discretized into the 

following form. 

X,e Y,n

X,w Y,s
Y,n X,e

e w n s
e w n sY,s X,w

E W N S P E E W W N N S S

dXdY
Y X X Y

dY dX,
Y Y X X

(A A A A ) (A A A A ),

∂Ψ ∂θ ∂Ψ ∂θ⎛ ⎞−⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞ ⎛∂Ψ ∂Ψ ∂Ψ ∂Ψ
= θ − θ + θ − θ⎜ ⎟ ⎜

∂ ∂ ∂ ∂⎝ ⎠ ⎝
= + + + θ − θ + θ + θ + θ

∫ ∫

∫ ∫
⎞
⎟
⎠

                         (2.36) 

where AE, AW, AN, and AS are given in equation (2.35).  The electric body force term in 

the vorticity transport equation (2.21) is integrated to obtain the following discretized 

form. 

( )( ) ( )( )

2 Y,n X,e
e c c
2

Y,s X,wi
2
e e w n sc, c, c, c,2 n s e w
i

c, c, c, c,P W N P P SE P
2
e
2
i c, c,c, c,N P P S P WE P

u V V dXdY
Y X X Yu

u [ V V V V ],
u

V VV V
2 2 2 2u

u V V V V
2 2 2 2

⎛ ⎞∂ρ ∂ρ∂ ∂
−⎜ ⎟

∂ ∂ ∂ ∂⎝ ⎠

= − ρ − ρ − − ρ − ρ

⎡ ⎛ ⎞ρ − ρ ρ − ρ⎛ ⎞−−⎢ ⎜ ⎟− −⎜ ⎟⎜ ⎟⎢⎝ ⎠⎝ ⎠⎢=
⎢ ⎛ ⎞ρ − ρρ − ρ⎛ ⎞− −⎢ ⎜ ⎟− −⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎝ ⎠⎣

∫ ∫

,

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

                     (2.37) 

The time-derivative terms in the vorticity transport and energy equations are 

discretized into the following form by forward difference approximation. 

t 1 tX,e Y,n
2P P

X,w Y,s
t 1 tX,e Y,n

2P P

X,w Y,s

dXdY ,
Y

dXdY .
Y

+

+

Ω − Ω∂Ω⎛ ⎞ = Δ⎜ ⎟∂ Δτ⎝ ⎠

θ − θ∂θ⎛ ⎞ = Δ⎜ ⎟∂ Δτ⎝ ⎠

∫ ∫

∫ ∫

                                                                                  (2.38) 
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Finally, the vorticity, vorticity transport and energy equations at a new time step 

(t+1) can be evaluated numerically after substituting all the discretized terms at the 

previous time step (t).  They are summarized below. 

Vorticity Equation 

t 1 t t t t t 2
P E W N S P

1 .
4

+ ⎡Ψ = Ψ + Ψ + Ψ + Ψ + Ω Δ⎣
⎤
⎦                                                                      (2.39) 

Vorticity Transport Equation 

t t
i P

EHD i E,W,N,St 1 t
P P 2

t t
i P i i

i E,W,N,S i E,W,N,S

1 4
RE

,

A A Electric body force term

=+

= =

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞
⎪ ⎪⎢ ⎥⎜ ⎟Ω − Ω⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠Δτ ⎪ ⎝ ⎠⎣ ⎦Ω = Ω + ⎨ ⎬

Δ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪
− Ω − Ω +⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

∑

∑ ∑

⎪  

c, c, c, c,P W N P P SE P

c, c,c, c,N P P S P WE P

V VV VElectric body force term
2 2 2 2

V V V V .
2 2 2 2

⎛ ⎞ρ − ρ ρ − ρ⎛ ⎞−− ⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞ρ − ρρ − ρ⎛ ⎞− − ⎜ ⎟− − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

  (2.40) 

Energy Equation 

t t
i P

i E,W,N,St 1 t
P P 2

t t
i P i i

i E,W,N,S i E,W,N,S

1 T 4T
Pr Re

T T

A T A T

=+

= =

.

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞
⎪ ⎪⎢ ⎥⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠Δτ ⎪ ⎝ ⎠⎣= + ⎪⎦
⎨ ⎬

Δ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪
− −⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜⎢ ⎥⎟⎪ ⎪⎝ ⎠ ⎝⎣ ⎦⎩ ⎭

∑

∑ ∑
⎠

                                        (2.41) 

2.2.3  The Wood’s Algorithm 

The vorticity of the wall can be calculated using Wood’s algorithm as following. 

Evaluate the stream function at the node just next to the wall (Ψw+1) in terms of the stream 

function at the wall (Ψw) using Taylor series expansion, which yields 
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( )

( ) ( )

W 1 W w 1 w
W

2 32 3
w 1 w w 1 w2 3

W W

Y Y
Y

1 1Y Y Y Y
2 3Y Y

+ +

+ +

∂Ψ⎛ ⎞Ψ = Ψ + −⎜ ⎟∂⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ Ψ ∂ Ψ
+ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

…+

                         (2.42) 

Since 

2 3
w2 3

W wW W

0, , and ,
Y YY Y

⎛ ⎞ ⎛ ⎞∂Ψ ∂ Ψ ∂ Ψ ∂Ω⎛ ⎞ = = −Ω = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ∂ ∂⎝ ⎠ ⎝ ⎠
 

the vorticity at the wall can be determined from the previous equation (2.42) by 

( )w 1 w
W 2

3 1 .
2

+
w 1+

Ψ − Ψ
Ω = − − Ω

Δ
                                                                                     (2.43) 

2.2.4  Evaluation of Heat Transfer Results 

To evaluate the heat transfer results, the local Nusselt number at the wall is 

calculated by [32, 33] 

h
x

hDNu .
k

=  

Since ( )w m
y H

TQ Ah T T kA
y =

∂
= − = −

∂
,  

One obtains h
x

w m y H

D TNu .
T T y =

⎛ ⎞∂
= − ⎜ ⎟− ∂⎝ ⎠

                                                                 (2.44)  

In the dimensionless form, this yields 

i wh
X

w m Y 1

T TDNu .
L T T Y =

− ∂θ⎛ ⎞= ⎜ ⎟− ∂⎝ ⎠
                                                                                       (2.45) 

Here Tm is the mean bulk temperature.  The temperature difference (Tw -Tm ) was obtained 

using the Logarithmic Mean Temperature Difference (LMTD) [32].  
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The average Nusselt number can then be obtained from the local Nusselt number 

by  

A
x0

1Nu Nu dx.
A

= ∫                                                                                                        (2.46)  

For periodic flows, the time-averaged Nusselt number is determined by averaging 

the Nusselt number over a period of oscillation and is given by 

p

p

1Nu Nu d ,τ+τ
τ=

τ ∫ τ                                                                                                               (2.47) 

where τP is the period of oscillation, and Nu is determined from equation (2.46) at each 

time step.  

For non-periodic flows, the average Nusselt number is determined by averaging 

the Nusselt number over a long period of time after the initial transient settles. 

1

1

1Nu Nu d .τ+τ
τ=

τ ∫ τ

h

                                                         (2.48) 

2.2.5  Code Validation 

To validate the code, it has been tested against the heat transfer by forced 

convection in a horizontal channel without electric field.  The channel considered is 21cm 

long and 6 cm high.  From literature [34], the thermal and hydrodynamic entrance lengths 

can be evaluated using the following correlations. 

The thermal entrance length 

tL 0.0797D Pe.=                                                                                                                  (2.49) 

The hydrodynamic entrance length  

h h
0.315L D 0.011Re .

0.0175Re 1
⎛= +⎜ +⎝ ⎠

⎞
⎟                                                                                   (2.50) 
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where  Dh = 4A/P = 12 cm is the hydraulic diameter of the channel.  For different inlet 

velocities, the corresponding thermal and hydrodynamic entrance lengths are listed in 

Table 2.2.  Since the channel is only 21 cm long, the flow is simultaneously developing. 

Nusselt number for the laminar simultaneously developing flows is given by the 

following empirical correlation [34]. 

* 1.14
0 * 0.64 0.17

*

h

0.024 (x )Nu 7.55 ,
1 0.0358(x ) Pr

xx .
D RePr

−

−= +
+

=

                                                                          (2.51) 

The results from both numerical simulation (Nu) and equation (2.51) (Nu0) are 

listed in Table 2.3 for comparison.  Depending on the Reynolds number, the 

discrepancies between these two results vary from one to eight percent, which is 

acceptable in the consideration of the uncertainty involved in the correlation itself.  

 
Table 2.2  The thermal and hydrodynamic entrance lengths for various inlet velocities 

 
Inlet Velocity 

 (m/s) 
ReDh Lt  

(m) 
Lh  
(m) 

0.0759 600 4.19 0.80 
0.1518 1200 8.38 1.59 
0.2277 1800 12.6 2.38 
0.3036 2400 16.8 3.17 
0.3795 3000 20.9 3.96 
0.4554 3600 25.1 4.75 
0.5313 4200 29.3 5.54 
0.6072 4800 33.5 6.34 
0.9108 7200 50.3 9.50 
1.2144 9600 67.0 12.7 
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Table 2.3  Comparison of Nusselt numbers obtained from empirical correlation [34] and 
present study  

 
Inlet Velocity ui 

(m/s) 
Re = Dh ui/ν Nu0 Nu 

%100
Nu

NuNu 0 ×
−

 

0.0759 600 13.45 14.60 7.9 
0.1518 1200 17.57 18.32 4.1 
0.2277 1800 20.93 21.07 0.7 
0.3036 2400 23.83 23.40 1.8 
0.3795 3000 26.42 25.48 3.7 
0.4554 3600 28.78 27.10 6.3 

 
 

Table 2.4  Comparison of Nusselt numbers obtained from both one-way and two-way 
coupling models (V0 = 15.0 kV) 

 
Nusselt Number 

One-way Coupling Two-way Coupling 
Inlet 

Velocity 
(m/s) 

iu HRe =
ν

 Min. Average Max. Min. Average Max. 
Forced 

Convection 

0.0759 150 38.65 45.79 53.01 38.12 45.77 53.60 14.60 
0.1518 300 45.18 53.50 63.31 43.99 53.97 65.68 18.32 
0.2277 450 41.86 46.31 51.09 42.51 47.26 52.45 21.07 
0.3036 600  37.02   36.89  23.40 
0.3795 750  36.74   36.71  25.48 
0.4554 900  37.08   37.07  27.10 
0.5315 1050  37.41   37.40  28.65 
0.6072 1200  37.70   37.69  30.06 
0.9108 1800  38.72   38.73  34.80 
1.2144 2400  40.73   40.71  38.50 

 
 
2.2.6  Results and Discussion 

Numerical simulations were preformed using a Pentium 4 personal computer.  For 

one-way coupling model, it took 2.1 hours for calculations to advance 100 dimensionless 

time, but 6.75 hours were needed for two-way coupling model to proceed the same 

amount of calculations.  For the iteration of stream function, relative convergence 

criterion was used.  If ( ) 4
new old new/ 10−ψ −ψ ψ ≤ , then it was assumed that stream 

functions were converged.  
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Table 2.4 summarizes the heat transfer results obtained from both one-way and 

two-way coupling models at an applied voltage of 15.0 kV and the Reynolds number 

varying from 150 to 2400.  For steady periodic flows, the minimum, maximum and 

average Nusselt numbers in an oscillating period are given.  The Nusselt number at the 

same Reynolds number without electric field is also listed in the table for comparison. 

One can observe from the table when the flow and temperature fields are steady 

(for example, V0 = 15 kV, and Re = 600 to 2400), the Nusselt numbers obtained both 

from one-way and two-way coupling are almost the same.  Also, the contours of the flow 

and temperature fields (in terms of streamlines and isotherms, respectively) are exactly 

the same (Figures 2.3 – 2.6).  Both show that a secondary flow (i.e., recirculating cell) 

appears directly above the wire (the circle in the center of the lower boundary) as the 

result of the interaction between the corona wind and the primary flow.  The 

impingement of the corona wind on the wall perturbs the thermal boundary layer.  It 

increases the local heat flux at the region directly above the wire.  As the Reynolds 

number increases, the strength of the recirculating cell decreases and the perturbation of 

thermal boundary layer by the corona wind is suppressed.  
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(a)

(b)

(c)

(d)

(e)

(f)

(g)
 

Flow 

 
Figure 2.3  Flow fields predicted by one-way coupling model for V0 = 15 kV 

(a) Re = 600,   Ψmax = 1.3, Ψmin = 0.5, ΔΨ = 0.05 
(b) Re = 750,   Ψmax = 1.2, Ψmin = 0.5, ΔΨ = 0.05 
(c) Re = 900,   Ψmax = 1.1, Ψmin = 0.5, ΔΨ = 0.05 
(d) Re = 1050, Ψmax = 1.1, Ψmin = 0.5, ΔΨ = 0.05 
(e) Re= 1200, Ψmax = 1.0, Ψmin = 0.5, ΔΨ = 0.05 
(f) Re = 1800, Ψmax = 1.0, Ψmin = 0.5, ΔΨ = 0.05 
(g) Re = 2400, Ψmax = 1.0, Ψmin = 0.5, ΔΨ = 0.05 

 
 
 

 

 

 

 

 

 

 30 
 
 

 



 

 

 

 

Flow 
(a)
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Figure 2.4  Flow fields predicted by two-way coupling model for V0 = 15 kV 

(a) Re = 600,   Ψmax = 1.3, Ψmin = 0.5, ΔΨ = 0.05 
(b) Re = 750,   Ψmax = 1.2, Ψmin = 0.5, ΔΨ = 0.05 
(c) Re = 900,   Ψmax = 1.1, Ψmin = 0.5, ΔΨ = 0.05 
(d) Re = 1050, Ψmax = 1.1, Ψmin = 0.5, ΔΨ = 0.05 
(e) Re = 1200, Ψmax = 1.0, Ψmin = 0.5, ΔΨ = 0.05 
(f) Re = 1800, Ψmax = 1.0, Ψmin = 0.5, ΔΨ = 0.05 
(g) Re = 2400, Ψmax = 1.0, Ψmin = 0.5, ΔΨ = 0.05 
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(a)

(b)

(c)

(d)

(e)

(f)

(g)
 

Flow 

Figure 2.5  Temperature fields predicted by one-way coupling model for V0 = 15 kV  
(a) Re = 600,   θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(b) Re = 750,   θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(c) Re = 900,   θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(d) Re = 1050, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(e) Re = 1200, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(f) Re = 1800, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(g) Re = 2400, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
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Figure 2.6  Temperature fields predicted by two-way coupling model for V0 = 15 kV 

(a) Re = 600,   θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(b) Re = 750,   θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(c) Re = 900,   θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(d) Re = 1050, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(e) Re = 1200, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(f) Re = 1800, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(h) Re = 2400 θmax = 1.0, θmin = 0.0, Δθ = 0.05 
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When the flow and temperature fields become oscillatory, which usually occurs at 

a low Reynolds number and a high applied voltage (for example, V0 = 15.0 kV, and Re = 

150 to 450), the results obtained from one-way and two-way coupling are still quite 

similar, but there exist some slight differences between them.  Figures 2.7 – 2.10 show 

the variation of flow and temperature fields through a complete cycle of oscillation.  For 

this particular case, V0 = 15 kV and Re = 450 (ui = 0.2277 m/s), one notices that there is a 

small difference in the oscillating period despite the similarity in the flow and 

temperature profiles (Table 2.5).  Nevertheless, both results have captured the nature of 

the flow oscillation.  When no flow is introduced to the channel, the flow field is induced 

by the electric field alone and remains stable.  Four recirculating cells produced by the 

corona wind locate symmetrically about the center of the channel.  When an external 

flow is introduced to the channel, the symmetry of corona-induced flow is destroyed.  As 

a result, one can clearly observe the regeneration and destruction of the secondary cells in 

the flow field, which in turn produces a wave-like isotherm pattern in the temperature 

field.  The periods of oscillation as predicted by one-way and two-way coupling are 

mostly the same (Table 2.5).  For the cases in which they are different, the difference is 

usually small (less than 0.1 dimensionless time).  

The reason why the prediction of flow and temperature fields using one-way and 

two-way coupling agrees so well is attributed to the small change of the electric field by 

the bulk airflow.  For the range of inlet velocities considered in the present study, it is 

found that the modification of electric field by airflow is quite negligible.  To produce a 

noticeable change in the electric field by convective air, one needs to increase the inlet 

velocity substantially (for example, ui = 5 m/s, which is about four times the maximum 
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velocity considered in the present study).  From Figure 2.11, it is clear that most changes 

in the electric potential and charge density take place at a location far away from the 

wire.  Also, the magnitude of these changes is observed to be proportional to the distance 

from the wire.  The charge density at the wire is found to be 9.62 ×10-4 C/m3 when one-

way coupling approach is used while it is 9.71×10-4 C/m3 when two-way coupling 

approach is applied.  The ion velocity is found to vary from –160 to 160 m/s, which is 

more than 30 times faster than the inlet air velocity.  As a result, the modification of the 

electric field by convective air is minimal.  However, it is interesting to observe that the 

electric field also becomes oscillatory when the flow and temperature fields are 

oscillatory, which cannot be revealed using the one-way approach. 

The relative magnitude of flow inertia and electric body force can be quantified 

by the EHD number, which is defined below. 

EHD 2
i

HIN .
b u A

=
ρ

                                                             (2.52) 

Table 2.5  Period of the oscillatory flow in EHD-enhanced forced convection 
 

Dimensionless Period Re Applied Voltage
(kV) One-way Coupling  Two-way Coupling 

150 10 2.0 2.0 
300 12.5 2.2 2.2 
150 15 2.0 2.0 
300 15 3.4 3.4 
450 15 2.4 2.3 
150 17.5 1.7 1.6 
300 17.5 3.0 2.9 
450 17.5 2.0 1.9 
600 17.5 2.3 2.4 
750 17.5 3.0 3.0 
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(a)
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(c)

(d)

(e)
 

Flow 

Figure 2.7  Flow fields at V0 = 15 kV and Re = 450 (one-way coupling model) 
(a) τ = 55.8, Ψmax = 1.4, Ψmin = 0.0, ΔΨ = 0.2 
(b) τ = 56.4, Ψmax = 1.8, Ψmin = 0.0, ΔΨ = 0.2 
(c) τ = 57.0, Ψmax = 2.2, Ψmin = 0.0, ΔΨ = 0.2 
(d) τ = 57.6, Ψmax = 2.0, Ψmin = 0.0, ΔΨ = 0.2 
(e) τ = 58.2, Ψmax = 1.4, Ψmin = 0.0, ΔΨ = 0.2 

 
 
 

(a)
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(d)

(e)
 

Flow 

Figure 2.8  Flow fields at V0 = 15 kV and Re = 450 (two-way coupling model)  
(a) τ = 57.9, Ψmax = 1.4, Ψmin = 0.0, ΔΨ = 0.2 
(b) τ = 58.5, Ψmax = 1.9, Ψmin = 0.0, ΔΨ = 0.2 
(c) τ = 59.1, Ψmax = 2.3, Ψmin = 0.0, ΔΨ = 0.2 
(d) τ = 59.7, Ψmax = 2.0, Ψmin = 0.0, ΔΨ = 0.2 
(e) τ = 60.2, Ψmax = 1.4, Ψmin = 0.0, ΔΨ = 0.2 
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Flow 

Figure 2.9  Temperature fields at V0 = 15 kV and Re = 450 (one-way coupling model) 
(a) τ = 55.8, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(b) τ = 56.4, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(c) τ = 57.0, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(d) τ = 57.6, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(e) τ = 58.2, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
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(c)
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(e)
 

Flow 

Figure 2.10  Temperature fields at V0 = 15 kV and Re = 450 (two-way coupling model)  
(a) τ = 57.9, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(b) τ = 58.5, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(c) τ = 59.1, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(d) τ = 59.7, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(e) τ = 60.2, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
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(a) 

(b) 

Figure 2.11  Modification of the electric field by air flow, V0 = 15 kV and ui = 5 m/s 
(a) charge density,  (b) electric potential. (one-way – solid line, two-way – dashed line) 

 

It is the ratio of the electric body force to inertial force and is expressed in terms of the 

measurable quantities [35].  When its value is zero, it represents pure forced convection.  

When its value approaches infinity, it becomes the corona wind dominated flow.   

For the present study, the heat transfer enhancement is defined as the ratio of the 

Nusselt number resulting from the electric field to that without the electric field.  The 

heat transfer enhancement is shown in Figure 2.12 as a function of the EHD number.  For 

oscillatory flows, the time-averaged Nusselt numbers along with its maximum and 

minimum values are presented.  As observed, oscillatory flows usually occur at a large 

EHD number (i.e., a low Reynolds number at a given electric field) and normally lead to 

a higher heat transfer enhancement.  For oscillatory flows, the average Nusselt numbers 

predicted by both approaches are nearly the same.  But, there are some slight differences 

in the maximum and minimum values.  From the figure, one also observes that heat 

transfer enhancement increases with the applied voltage and is negligible when the EHD 

Number is less than 0.1.  The maximum heat transfer enhancement can be as high as 3.5 

times of that with out electric field. 
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Figure 2.12  Heat transfer enhancement as a function of EHD number 

(a) V0 = 10.0 kV, (b) V0 = 12.5 kV, (c) V0 = 15.0 kV, (d) V0 = 17.5 kV.

(a) (b) 

NEHD NEHD

(c) (d) 

NEHD NEHD

 39 
 
 

 



2.3  EHD-enhanced Natural Convection with Joule Heating 
 

The objective of this study is to evaluate the effect of Joule heating on the heat 

transfer enhancement in natural convection with the presence of electric field.  For the 

present study, the electric field is established by charging a high, positive voltage to a 

wire electrode located at the mid-plane of the enclosure.  The geometry considered is a 

two-dimensional cavity filled with air and with an aspect ratio of 5 (Figure 2.13).  The 

two vertical walls are maintained at uniform temperatures, T  and T  (T  > T ), 

respectively.  The top and bottom walls are electrically and thermally insulated.  A wire 

electrode charged with a DC high voltage is placed in the enclosure at three different 

locations (1, 2, and 3 in Figure 2.13).  Three voltages (12, 15, and 18 kV) are applied to 

the wire to create the electric

h c h c

 field.  A uniform grid (501×101) has been shown to 

produce satisfactory results [8].  A time step of 5×10-4 was shown to be adequate and was 

used in the present calculations [8].  

The electric field is governed by equations (2.5) and (2.6).  Their finite difference 

forms are given by equations (2.10) and (2.12).  The results presented in the last section 

have verified that flow field has little effect on the electric field.  That is, the assumption 

of one-way coupling is valid for most numerical analyses.  Therefore, for the present 

study, only the influence of the electric field on the flow field is considered and not vice 

versa.  That is, the velocity term in equations (2.6) and (2.12) is not considered.  The 

corresponding boundary conditions for the electric field are 

0V V=  .

.

          at the wire                                                                                           (2.53a) 

V 0=    along the grounded walls                                                                    (2.53b) 
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Figure 2.13  Wire positions in the two-dimensional enclosure (L =  4 inches) 
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V 0.
x

∂
=

∂
           along the insulated walls                                                                    (2.53c) 

The corona currents used in this numerical study are measured in experiments 

reported by Tan and Lai [8], which are shown in Table 2.6.  

2.3.1  Heat Generation for a Wire-plate System 

The schematic diagram for a wire-plate system is shown as Figure 2.14.  Heat 

generated by the electric field in this system includes Ohm heating and Joule heating. 

 Ohm heating is due to the current flowing in the wire.  It can be determined by 

2
Ohm p wireQ RI / L A=                                                                                                          (2.54) 

where I is the current passing through the wire, Lp is the length of the wire, Awire is the 

cross-sectional area of the wire, and R is the electrical resistance of the wire.  In 

experiments reported by Tan and Lai [8], the copper wire has a diameter of 0.5 mm and a 

length of 10 inches.  The electrical resistance can be determined as 

p
e 7 2wire

L 1 (10)(0.0254)R 0.022
A 5.85(10) (0.0005)

4

= ρ = = Ω
π

                                                     (2.55) 

where ρe is the electrical resistivity of copper, ρe = 1/(5.85(107)) Ω.m. 

Table 2.6  Corona currents produced by various wire locations in the enclosure studied 
[8]  

 
Wire Position Voltage  

(kV) 
Current  

(A) 
12 1.40 ×10–6

15 2.74 ×10–5
 
2 

18 7.96 ×10–5

12 1.45 ×10–5

15 2.85 ×10–5
 

1, 3 
18 8.19 ×10–5
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Figure 2.14  Electric diagram for a wire-plate system 

 
Ohm heating is very small due to the small current and electrical resistance.  For 

example, when V0 = 15 kV, the current measured in the experiment [8] is I = 2.74e-5 A, 

and the heat generation by the ohm heating from the wire is given by 

5 2
4

Ohm 2

0.022(2.74 10 )Q 3
(10)(0.0254) (0.0005)

4

−
−×

= = ×
π

3.33 10 J / m .                                                   (2.56) 

The existence of space charges in the electric field contributes the Joule heating.  

Due to the distribution of electric potential, Joule heating is produced very close to the 

wire.  Joule heating is given as 2
cb Eρ [36].  It needs to be considered when high current 

densities are present.  For example, when V0 = 15 kV, the heat generation by Joule 

heating in the electric field is calculated to be 

2
c 3

Joule
p

b E
Q 1157.5 J / m .

c
ρ

= ∑ =
ρ

                                                                                   (2.57) 
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Clearly, Ohm heating can be neglected in this study because it is very small as compared 

with the Joule heating. 

2.3.2  Governing Equations for Flow and Temperature Fields 

The governing equations for the flow and temperature fields for the problem 

considered are the continuity equation, the Navier-Stokes equations in x and y directions, 

and the energy equation. 

u v 0,
x y

∂ ∂
+ =

∂ ∂
                                    (2.58) 

2 2
c

2 2
u u u 1 p u u Vu v
t x y x xx y

⎛ ⎞ ρ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + ν + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ρ ∂ ρ ∂∂ ∂⎝ ⎠

,                   (2.59) 

2 2
c

c2 2
v v v 1 p v v Vu v g (T T )
t x y y yx y

⎛ ⎞ ρ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + ν + + β − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ρ ∂ ρ ∂∂ ∂⎝ ⎠

,                  (2.60) 

222 2
c

2 2 p

bT T T T T V Vu v
t x y c x yx y

⎛ ⎞⎛ ⎞ ⎛ ⎞ρ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎜+ + = α + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ρ ⎜ ∂ ∂⎝ ⎠∂ ∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠
.⎟

⎟
     (2.61) 

The last term in the momentum equations (2.59) and (2.60) represents the electric body 

force while the third term on the right hand side of equation (2.60) is the thermal 

buoyancy.  The existence of space charges in the fluid contributes the Joule heating, 

which is the last term in the energy equation (2.61).  The governing equations can be non-

dimensionalized by introducing the following dimensionless variables. 

c e

h c

c
c

e e e 0 c0

c0 0 e
e E

T T u tx yX , Y , , , Pr ,
L L T T L
u v L VU , V , , V , ,
u u u V

V uu , U , V , Re
Y X HD

L .

− ν
= = θ = τ = =

− α

ρω
= = Ω = = ρ =

ρ

ρ ∂Ψ ∂Ψ
= = = −

ρ ∂ ∂
=

ν

                 (2.62) 
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 The above governing equations can be expressed in the dimensionless form in 

terms of the stream function and vorticity, and they are given by 

2 2

2 2 ,
X Y

∂ ψ ∂ ψ
+ = −

∂ ∂
Ω                        (2.63) 

2 2
c c

2 2 2EHD EHD

1 Ra Pr V ,
Y X X Y Re X Y X X YX Y Pe

⎛ ⎞ ⎛ ⎞∂ρ ∂ρ∂Ω ∂ψ ∂Ω ∂ψ ∂Ω ∂ Ω ∂ Ω ∂θ ∂ ∂
+ − = + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂τ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ⎝ ⎠⎝ ⎠

V  

                                                                                                                                                  (2.64) 

2 222 2
c 0

2 2EHD p e h c

b V1 V( )
Y X X Y Pe c u L(T T ) X YX Y

⎛ ⎞⎛ ⎞ ⎛ ⎞ρ∂θ ∂ψ ∂θ ∂ψ ∂θ ∂ θ ∂ θ ∂ ∂⎜ ⎟+ − = + + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂τ ∂ ∂ ∂ ∂ ρ − ∂ ∂∂ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠

V .  

                                                                                                                                                  (2.65) 

The finite difference form of these governing equations can be obtained using the same 

approach outlined in the previous section, and the numerical procedures are also the 

same. 

 The corresponding boundary conditions for the flow and temperature fields are 

X = 0,   
2

2 ,
X

∂ ψ
Ω = −

∂
       ψ = 0,  θ = 1.                                     (2.66a) 

X = 1,   
2

2 ,
X

∂ ψ
Ω = −

∂
       ψ = 0,  θ = 0.               (2.66b) 

Y = 0,  
2

2 ,
Y

∂ ψ
Ω = −

∂
       ψ = 0,  0.

Y
∂θ

=
∂

              (2.66c) 

Y = 5,  
2

2 ,
Y

∂ ψ
Ω = −

∂
       ψ = 0,  0.

Y
∂θ

=
∂

              (2.66d) 
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2.3.3  Evaluation of Heat Transfer Results 

 To evaluate the heat transfer rate, the local heat transfer coefficient is expressed in 

terms of the local Nusselt number (Nux). 

X
X 0,1

Nu .
X =

∂θ⎛ ⎞= −⎜ ⎟∂⎝ ⎠
                                 (2.67) 

The average Nusselt number can then be determined from the local heat transfer 

coefficient by 

5
X0

1Nu Nu dY.
5

= ∫                        (2.68) 

For periodic flows, the time-averaged Nusselt number is calculated by averaging the 

Nusselt number over a period of oscillation using equation (2.47).  For non-periodic 

flows, the time-averaged Nusselt number is calculated by averaging the Nusselt number 

over a time span τ1 using equation (2.48). 

2.3.4  Code Validation  

 The numerical solutions begin with the calculation of the electric field.  Then, the 

flow and temperature fields are solved simultaneously.  The numerical code for the 

solutions of flow and temperature fields without electric field was validated against the 

correlation proposed by Berkovsky and Polevikov [37] for natural convection in a 

rectangular enclosure.  The correlation proposed by them is given by 

0.25 0.28

0
5L PrNu 0.22 Ra .
L 0.2 Pr

−⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
                                                                         (2.69) 

The Nusselt number obtained from the present study (Nu) and those from the above 

equation (Nu0) for various Rayleigh number is listed in Table 2.7.  The agreement 

between the results obtained from the correlation and those of present study is fairly good 
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Table 2.7  Comparison of Nusselt numbers obtained from correlation [37] and present 
study 

 
Ra Nu0 Nu 

%100
Nu

NuNu 0 ×
−

 

104 1.809 2.023 10.57 
105 3.447 3.760 8.32 
106 6.569 6.681 1.68 

 

in consideration of the uncertainty involved in the correlation itself. 

2.3.5  Results and Discussion 

Numerical solutions have been obtained for three wire positions (1, 2, and 3) and 

three applied voltages at the wire (12, 15, and 18 kV).  Also, the Rayleigh number is 

varied from 104, 105 to 106, for which the corresponding temperature differences between 

the two walls are in the order of 0.1, 1, and 10 °C, respectively. A Pentium 4 personal 

computer was used to perform this numerical simulation.  It took 10.1 hours for 

calculations to advance 100 dimensionless time,.  The same relative convergence 

criterion (as that in the previous study) was used in this simulation. 

 In general, the results obtained with the effects of Joule heating show the same 

trend as those without.  That is, the heat transfer enhancement by electric field increases 

with the applied voltage, but decreases with the Rayleigh number.  However, the two 

results differ quite significantly in their values, particularly at low Rayleigh numbers.   

 The present study shows that in many cases the flow and temperature fields 

become non-periodically oscillatory when Joule heating is included.  For some cases, the 

flow and temperature fields may remain in the periodically oscillatory mode, but their 

profiles are very different from those without Joule heating.  For example, this can be 

observed from the temperature fields shown in Figures 2.15 and 2.16 where the 
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temperature fields is going through one complete cycle (period) of oscillation.  When 

Joule heating is neglected (Figure 2.16), the temperature field is only perturbed by the 

electric field near the wire location.  The development of the thermal boundary layer is 

disrupted by the corona wind issued from the wire.  When Joule heating is included 

(Figure 2.15), the temperature field is not only affected by the corona wind, but also by 

the thermal buoyancy produced from Joule heating.  Although the added thermal energy 

from Joule heating is normally small, it is relatively large in comparison to the heat 

transferred between the walls when the Rayleigh number is small.  As such, it produces 

additional thermal buoyancy from the wire.  Since the distribution of space charge 

density is most concentrated near the wire, the effect of Joule heating is also most 

prominent at the wire (Figure 2.15).  The combined effect of corona wind and added 

thermal buoyancy from Joule heating produces a very large temperature gradient at the 

cold wall directly opposite to the wire.  From the observation above, one is certain that 

Joule heating can easily destabilize the flow and temperature fields at low Rayleigh 

numbers and leads to non-periodic oscillation.  In contrast, the stability of flow and 

temperature fields is not affected by Joule heating when the Rayleigh number is large.  

This is evident from the periodic flows in which the period of oscillation is only modified 

slightly when Joule heating is included at a large Rayleigh number. 

 The differences in the flow and temperature fields obtained from these two 

approaches (with and without Joule heating) diminish when the Rayleigh number 

increases.  These can be observed from Figures 2.17 and 2.18 when both flow and 

temperature fields become steady.  The streamline contours show that the flow fields 

obtained from these two approaches are almost identical (Figure 2.17).  For temperature 
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fields, the major difference appears only near the wire at Ra = 105 (Figure 2.18).  This 

indicates that the thermal buoyancy produced by Joule heating becomes negligible when 

the Rayleigh number increases.  The added thermal energy from Joule heating becomes 

only a small fraction of the energy transferred between the differentially heated walls 

when the Rayleigh number is greater than 105, which corresponds to an equivalent 

temperature difference on the order of unity for the present study (i.e., ΔT = O(1)).  

 To evaluate the heat transfer enhancement by electric field, the Nusselt numbers 

obtained are compared with those of pure natural convection and they are shown in 

Figures 2.19 and 2.20, respectively with and without Joule heating.  Although both 

results show the same general trend that they increase with the applied voltage and 

decrease with the Rayleigh number, there is a large discrepancy in their values, 

particularly at a small Rayleigh number (Ra = 104).  As discussed earlier, this is mainly 

due to the additional energy provided by the electric field through Joule heating.  At this 

condition, the heat transfer enhancement cannot be totally credited to corona wind.  The 

additional thermal buoyancy produced by Joule heating is mainly responsible for this 

dramatic increase in the heat transfer enhancement.   
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(a) (b) (c) (d) (e)
 

 
Figure 2.15  Temperature fields at the wire position 2  

(V0 = 12 kV, Ra = 104, with Joule heating) 
 (a) τ = 656.1, θmax = 1.0, θmin = 0.0, Δθ = 0.2 
 (b) τ = 668.6, θmax = 1.0, θmin = 0.0, Δθ = 0.2 
(c) τ = 681.1, θmax = 1.0, θmin = 0.0, Δθ = 0.2 
(d) τ = 693.6, θmax = 1.0, θmin = 0.0, Δθ = 0.2 
(e) τ = 705.8, θmax = 1.0, θmin = 0.0, Δθ = 0.2 

 

(a) (b) (c) (d) (e)
 

 
Figure 2.16  Temperature fields at the wire position 2  

(V0 = 12 kV, Ra = 104, without Joule heating) 
(a) τ = 611.9, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(b) τ = 623.9, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(c) τ = 635.9, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(d) τ = 647.9, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(e) τ = 660.9, θmax = 1.0, θmin = 0.0, Δθ = 0.1 
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(a) (b) (c) (d)
 

Figure 2.17  Flow fields at the wire position 2 (V0 = 12 kV) 
(a) Ra = 105, with Joule heating,      Ψmax = 0.0, Ψmin = -0.050, ΔΨ = 0.005 
(b) Ra = 105, without Joule heating, Ψmax = 0.0, Ψmin = -0.050, ΔΨ = 0.005 
(c) Ra = 106, with Joule heating,       Ψmax = 0.0, Ψmin = -0.070, ΔΨ = 0.005 
(d) Ra = 106, without Joule heating,  Ψmax = 0.0, Ψmin = -0.070, ΔΨ = 0.005 

 
 

(a) (b) (c) (d)
 

 
Figure 2.18  Temperature fields at the wire position 2 (V0 = 12 kV) 
(a) Ra = 105, with Joule heating,       θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(b) Ra = 105, without Joule heating,  θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(c) Ra = 106, with Joule heating,       θmax = 1.0, θmin = 0.0, Δθ = 0.1 
(d) Ra = 106, without Joule heating,  θmax = 1.0, θmin = 0.0, Δθ = 0.1 
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(a) (b) (c)

Figure 2.19  Heat transfer enhancement with the effect of Joule heating 
(a) position 1,  (b) position 2,  (c) position 3. 
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(c)

 
(a) (b)

Figure 2.20  Heat transfer enhancement without the effect of Joule heating 
(a) position 1,  (b) position 2,  (c) position 3. 
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CHAPTER THREE  

EHD-ENHANCED MASS TRANSFER 

In this chapter, the study of EHD-enhanced water evaporation is presented.  

Experiments were first conducted to obtain a correlation between the evaporation rate and 

the electric conditions, then numerical simulation was followed and the results obtained 

from both approaches were compared. 

3.1  Experiment Study 
 

All experiments reported in this study were conducted in the Heat Transfer 

Laboratory at the University of Oklahoma.  

3.1.1  Experiment Setup 

A schematic diagram of the experimental setup is shown in Figure 3.1.  A 

rectangular horizontal channel constructed using a half-inch-thick Plexiglas is used as the 

test section.  It is seventy-two inches in length, five inches in height, and nine inches in 

width.  A square opening with a width of six and half inches is located on the bottom wall 

of the test section, and it is fifty five inches away from the inlet of the channel, where a 

blower is attached to a converging nozzle to supply cross-flow in the test section.  A 

stack of straws is placed in the inlet of the channel to help creating a uniform airflow in 

the test section.  A copper wire with a diameter of 0.5 mm, suspended one inch above the 

channel bottom wall, is used as an emitting electrode to create the electric field in the 

channel.  A high DC voltage is applied to the wire from a high voltage power supply.  

Two containers, each with the dimensions of six inches in length, six inches in 

width and one and half inches in height, are used to hold water.  The sidewalls of the 
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container are made of Plexiglas while the bottom wall is made of copper plate.  These 

containers are placed separately on top of two digital balances.  One of the containers 

with a digital balance is placed underneath the wire in the test section.  A digital 

multimeter is used to measure the corona current on the bottom plate of this container.  

Another container with a digital balance is exposed to ambient air.  Both digital balances 

are connected to a personal computer and the drying rate in terms of the weight loss of 

water with time is monitored.  Also, the ambient temperature and humidity in the 

laboratory are also monitored throughout the experiment by a temperature/humidity data 

logger. 

3.1.2  Experimental Apparatus 

The instruments and equipment used in the experiments include a blower, a high-

voltage power supply, two digital balances, a temperature/humidity data logger, a van 

velocimeter, and a digital multimeter.  Their functions and capabilities are described 

below. 

Blower 

A blower of type C, manufactured by Fasco, is used to supply airflow through the 

test channel.  It is operated by electricity at 60 Hz and 0.6 Amp.  The operating voltage is 

between 208 V and 230 V.  This blower can deliver an air stream with a maximum 

velocity of 2.2 m/s. 
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Figure 3.1  Experiment setup 
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Figure 3.2  Blower 
 

High-Voltage Power Supply 

The voltage applied to the wire electrode is provided by a high-voltage power 

supply manufactured by Bertan Associates, Inc. (Series 205B-30R).  This power supply 

can provide voltage up to 30 kV and can operate on both polarities.  The resolution of the 

power supply is 0.2% of maximum.  The accuracy of the front panel meter is ± 0.1% of 

reading + 0.1% of maximum for voltage, and ± 0.25% of reading + 0.25% of maximum 

for current. 

 

Figure 3.3  High-voltage power supply 
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Figure 3.4  Digital balance 
 

Digital Balance 

Two digital balances manufactured by Ohauz (Voyager, V1RW60) have been 

used in the experiments to measure the weight loss of water from both containers.  The 

capacity of these digital balances ranges from 1000 grams to 4100 grams and the 

readability in these ranges is 0.01 g and 0.1 g, respectively.  The operating temperature is 

10 °C to 50 °C.  The balances are set up to communicate with a personal computer 

through HyperTerminal.  HyperTerminal is used to collect and store the data recorded by 

the digital balances during the experiments. 

Temperature/Humidity Data Logger 

The temperature/humidity data logger manufactured by Dickson (D200) is a 

completely self-contained unit. It can measure both temperature and humidity with its 

internal sensors.  The ranges of temperature and humidity measurement are - 40 °C – 80 

°C, and 10% RH – 95% RH.  The ambient operating temperature is - 40 °C – 80 °C, and 

the ambient operating humidity is 0 RH – 95% RH.  The accuracy of the temperature 
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measurement is 0.15 °C at 25 °C, and 0.25 °C over the range of - 40 °C – 70 °C.  The 

accuracy of the humidity measurement is ± 2% over the range of 10% RH – 95% RH at 

25 °C and is ± 4% over the range of 10% RH – 95% RH at the temperature range of - 40 

°C – 80 °C. The data recorded by the logger is transferred to a personal computer using 

the software Dickson Wave provided by the manufacturer.  Dickson Ware provides the 

distribution curves of temperature and humidity (Figure 3.6) as well as the statistical data 

such as average, maximum and minimum of the temperature and humidity over the 

measurement time period (Figure 3.7).  

 

 

 

Figure 3.5  Temperature/Humidity data logger 
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Figure 3.6  Variation of ambient temperature and humidity recorded by the data logger 
 

 
 

Figure 3.7  Statistical data recorded by the data logger 
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Figure 3.8  Van velocimeter 
 

Van Velocimeter 

A van velocimeter is used to measure the airflow velocity at the outlet of the test 

section.  This velocimeter has four measuring scales: mile per hour, meter per second, 

feet per minute, and knots.  The range of measurement for each scale is 0 – 99.9 MPH, 0 

– 44.8 m/s, 0 – 8790 FPM, and 0 – 97.9 knot, respectively.  The accuracy of the 

measurement for each scale is ± 1 MPH, ± 1 m/s, ± FPM and ± 1 knot, respectively.  

3.1.3  Experiment Procedure 

The experiments have been conducted using both positive and negative corona 

discharge.  Various voltages (14 kV – 20 kV) have been applied in each polarity.  The 

wire is held one inch above the water surface.  The experiment procedure is listed below. 

1. Digital balances are carefully calibrated to ensure their accuracy.  One container 

is placed under the opening of the test section, on top of a digital balance but 
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underneath the electrode.  Another container is placed in the ambient and on top 

of another digital balance.   

2. Set the distance between the wire and the surface of the container to one inch. 

3. Set the high-voltage power supply to positive polarity. 

4. Leave the blower off.  

5. Record the weight of the two containers used in the experiment. 

6. Water is slowly added to these two containers.  The amount of water added and 

the total weight of the container are recorded. 

7. Charge the electrode.  The applied voltage is initially set to 14 kV. 

8. The bottom plate of the container underneath the wire is grounded. 

9. The weights of the two containers with water are recorded with a sampling rate of 

ten seconds through a personal computer. 

10. The temperature and humility of the ambient air are measured every ten seconds. 

The variation of temperature and humidity as a function of time is monitored 

using the Dickson Ware software through a personal computer. 

11. Each set of experiment is continued for at least 5 hours.  The voltage is increased 

to 20 kV with an increment of 1 kV.  For each voltage, repeat step four to step 

ten. 

12. Turn the blower on to provide an additional airflow through the channel.  Repeat 

step five to step eleven. 

13. Set the high-voltage power supply to negative polarity.  Repeat step four to 

twelve.  
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The voltage for corona onset and spark over has been determined before the 

experiments.  Initially, when the applied voltage is lower than 14 kV, the multimeter can 

measure no current.  Only when the applied voltage is 14 kV and above, a hissing sound 

appears and some current can be detected in the grounded plate by the multimeter, which 

marks the onset of corona discharge.  When the applied voltage is higher than 21 kV, 

there is a cracking sound originating from the wire due to spark over.  When the voltage 

is over 23 kV, the spark over can be visually observed in the dark room.  Therefore, in 

each series of experiments, the range of applied voltage is selected from 14 to 20 kV with 

1 kV increments. 

3.1.4  Data Analysis 

Water Evaporation Data Analysis 

The experimental data collected by the computer are used to plot the evaporation 

curves.  These data points usually can be best fitted with a linear curve and the slope of 

the curve is determined.  Figure 3.9 shows a typical evaporation curve resulting from 

applying a positive voltage of 16 kV without cross-flow.  The lower curve and data points 

represent the results obtained in the test section and the upper curve and points represent 

the results obtained in ambient.  The slope of the curve is defined as the evaporation rate 

of the experiment, and the evaporation enhancement is defined as the ratio of the 

evaporation rate of the test section to that of the ambient air.  For this particular case, the 

water evaporation rate with electric field is –0.0177 g/s and that from the ambient is -

0.006 g/s.  They are negative since the total weight of water decrease over time.  With the 

above definition, the evaporation enhancement is calculated to be 2.95, which means that 

the evaporation rate increases 295% with the application of electric field.    
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Figure 3.9  Typical experimental results with an applied voltage of 16 kV without cross-

flow 
 

Ambient Conditions 

The ambient temperature and humidity have been recorded by the 

temperature/humidity data logger.  The average temperature and humidity is then 

calculated and used in the analysis  of experiment results (Figure 3.7).  

3.1.5  Calculation of Sherwood Number  

The Sherwood number, which is a dimensionless mass transfer coefficient, can be 

defined based on the diameter of the wire as [33] 

DdSh .
D

α
=                                                                                                                                 (3.1) 

Since the mass transfer rate at the water surface is given by 
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(D c wm A c c∞= α − ) ,

)

                                                                                                            (3.2) 

then the mass transfer coefficient αD can be written as 

(D
c w

m .A c c∞
α = −                                                                                                             (3.3) 

The Sherwood number thus becomes 

( )
D

c w

d mdSh .
D DA c c∞

α
= =

−
                                                                                                (3.4) 

To calculate the Sherwood number, the mass transfer rate can be measured directly from 

the experiment.  However, diffusion coefficient (D), water vapor concentration at the 

water surface (cw), and that at the ambient air (c∞) need to be determined before the 

calculation of Sherwood number. 

Diffusion Coefficient (D)  

The diffusion coefficient (D) can be found from literature [38, 39] for some 

specific temperatures and pressures (T0 and P0).  A semi-empirical correlation has 

developed to predict the diffusion coefficient at any given temperature T and pressure P.  

For binary mixtures, the correlation is given by 

1.75
0

0
0

P TD D
P T

⎛ ⎞
≅ ⎜ ⎟

⎝ ⎠
.                                                                                                       (3.5) 

For water vapor diffusing to dry air, the reference values are 

P0 = 101325 Pa, T0 = 298 K, and D0 = 2.6e-5 m2/s. 

Water Vapor Concentration in the Ambient Air (c∞) 

The ambient temperature (T∞) and relative humidity ( φ ) were measured using the 

temperature/humidity data logger in the experiments.  The specific humidity (ω∞) can be 

obtained from [40] 
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g

g

0.622 P
,

P P∞
φ

ω =
− φ

     [g water/kg air]                                                                                    (3.6) 

 
where Pg  is  the saturated vapor pressure at temperature T∞.

The specific humidity (ω ∞) can be converted to water vapor concentration (c∞) using the 

following equation. 

airc
1 1000

∞
∞

∞

ω ρ
=

ω⎛ ⎞+⎜ ⎟
⎝ ⎠

.      [g/m3]                                                                                       (3.7) 

 
Water Vapor Concentration at the Sample Surface (cw) 

At the water surface, the relative humidity equals 100% ( ).  Assuming the 

temperature and pressure at the water surface are the same as the ambient air, the 

concentration of water vapor at the water surface can be determined using the same 

approach outlined earlier for the ambient air. 

1φ =

g
w

g

0.622P
,

P P
ω =

−
     [g water/kg air]                                                                                      (3.8)  

w air
w

w
c

1 1000

ω ρ
=

ω⎛ ⎞+⎜ ⎟
⎝ ⎠

.      [g/m3]                                                                                               (3.9) 

3.1.5  Results and Discussion  

In both polarities (positive and negative), two series of experiments have been 

conducted, one is without cross-flow, and another one is with cross-flow.  Which means 

that there are four series of experiments that have been conducted.  

• Series one:   Positive corona discharge, without cross-flow 

• Series two:   Positive corona discharge, with cross-flow (ui = 2.2 m/s) 

• Series three: Negative corona discharge, without cross-flow 
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• Series four:   Negative corona discharge, with cross-flow (ui = 2.2 m/s) 

For all the experiments conducted, the wire is being held at one inch above the 

water surface.  The weight loss of water, ambient temperature and humidity were 

measured at a ten-second interval.  In addition, the corona current has been recorded, 

which is used in the numerical simulation in the next section.  It should be noted that the 

variation of ambient temperature during the experiment was generally small as the lab 

was under well temperature control. However, it was noticed that the variation of 

humidity in some cases was significant, which might have contributed to the scattering of 

data reported in the results. 

 Figure 3.10 shows the results of water evaporation without cross-flow for both 

positive and negative corona discharge.  It can be observed that the corona wind enhances 

the evaporation process since the enhancement is increased linearly with the applied 

voltage.  The evaporation rate was enhanced from 179% to 406% when the applied 

voltage increased from 14 kV to 20 kV for positive corona discharge and from 156% to 

352% for negative corona discharge over the same range in applied voltage.  The 

evaporation enhancement with the cross-flow (2.2 m/s) (Figure 3.11) remained almost the 

same throughout the entire range of applied voltage.  This is because the cross-flow 

dominated the flow field and the secondary flow induced by the corona wind was 

suppressed.  Therefore, the corona wind produced insignificant effect on the 

enhancement of water evaporation.  For this case, the average evaporation enhancement 

is 353% for positive corona discharge and 278% for negative corona discharge.  

 The above analysis did not consider the effect of ambient conditions.  It should be 

noticed that the ambient conditions for each experiment were different.  To generalize the 
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results obtained, the experimental data are expressed in terms of dimensionless governing 

parameters.  Sherwood number based on the diameter of the wire has been defined in 

equation (3.1), which has a maximum uncertainty of 8%.  Another two dimensionless 

parameters are the EHD Reynolds number (ReEHD) and the EHD number (NEHD), which 

are defined separately below [35]. 

e
EHD

p

u d Is dRe ,
bA

⎡ ⎤
⎢ ⎥= =

ν ρ⎢ ⎥⎣ ⎦ ν
                                                                                             (3.10) 

e
EHD

i

uN
u

= .                                                                                                                           (3.11) 

where ue is the characteristic corona wind velocity.  Since ue is difficult to measure 

directly and accurately without a special instrument [41], its representative value is 

calculated based on the measured corona current (I). The maximum uncertainties for the 

EHD Reynolds and EHD numbers were calculated to be 17%.  The high uncertainty is 

mainly due to the measurements of corona current, particularly at voltages close to the 

threshold voltage. 

For experiments conducted in the absence of cross-flow, the evaporation 

enhancement by electric field can be expressed in terms of the Sherwood number as a 

function of the EHD Reynolds number.  Since the corona current increases with the 

applied voltage, it is clear that the EHD Reynolds number also increases with the applied 

voltage.  The results are presented in Figure 3.12 for experiments conducted in the 

absence of cross-flow for both positive and negative corona discharges.  It can be 

observed  from  this figure that  Sherwood  number  increases  linearly  with  the  applied  
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Figure 3.10  Water evaporation enhancement without cross-flow for both positive and 
negative corona discharge 
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Figure 3.11  Water evaporation enhancement with cross-flow for both positive and 
negative corona discharge (ui = 2.2 m/s) 
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voltage.  The Sherwood number increases from 0.099 to 0.168 for positive corona 

discharge and from 0.057 to 0.172 for negative corona discharge when applied voltage is 

increased from 14 kV to 20 kV.  This linear relationship is similar to the evaporation 

enhancement shown in Figure 3.10.  Also, from the figure, it shows that the Sherwood 

number is greater with the negative corona discharge than that of positive corona.  This 

may first seem to be in contradiction to the earlier observation from Figure 3.10. 

However, for the same applied voltage, a higher EHD Reynolds number is obtained for 

positive corona discharge than that for negative discharge.  One can see from the 

definition of the EHD Reynolds number (equation 3.10) that it is influenced by the 

ambient condition since the corona current, the air density, and the viscosity of air all 

change with the ambient conditions.  Therefore, EHD Reynolds number is more 

appropriate than the voltage alone to represent the electric field for experiments 

conducted in varying ambient conditions. 

 To further eliminate the influence caused by the variation of ambient conditions, 

the Sherwood numbers presented above are compared with those obtained from 

experiments conducted under the open air with the same ambient conditions but without 

the electric field (Figure 3.13).  One can observe from Figure 3.13 that the enhancement 

in the evaporation rate increases linearly with the EHD Reynolds number.  The results 

can be best correlated using the following functional form. 

EHD
0

Sh 1 a Re ,
Sh

= +                        (3.12) 

where a is a constant.  In this form, the enhancement in water evaporation reduces to 

unity  when  the  electrical  field is  not present  (i.e., ReEHD = 0).   A  larger  value  of  the  
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Figure 3.12  Variation of Sherwood number with EHD Reynolds number in the absence 

of cross-flow 
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Figure 3.13  Water evaporation enhancement in the absence of cross-flow 
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coefficient a implies that the enhancement in water evaporation is greater.  The 

correlations for positive and negative corona discharges are given separately below. 

Positive Corona Discharge: EHD
0

Sh 1 0.0826 Re ,
Sh

= +                                                         (3.13) 

Negative Corona Discharge: EHD
0

Sh 1 0.0841Re .
Sh

= +                                                       (3.14) 

With the simultaneous presence of electric field and cross-flow, the results are 

presented as a function of the Sherwood number and EHD number (Figure 3.14).  The 

EHD number has a value of zero when there is no electric field applied and infinity when 

there is no cross-flow of air over the water surface.  A large EHD number implies that the 

electric body force is dominant over the flow inertia and on the other hand, a small EHD 

number indicates that the flow inertial force is dominant over the electric body force.  

From Figure 3.14 one can observe that the evaporation rates in terms of the Sherwood 

number have an average value that is nearly independent of the EHD number.  The 

reason why the evaporation rate becomes independent of the EHD number is because the 

effect of corona wind is largely suppressed by the high air velocity (ui = 2.2 m/s).   

 To evaluate the enhancement in the evaporation rate due to both electric field and 

cross-flow, the results are again compared with those obtained from the companion 

experiments.  The results are presented in Figure 3.15.  As observed, there is no 

significant variation in the enhancement of water evaporation for the range of the EHD 

number considered.  The average enhancement in water evaporation using a wire 

electrode with positive corona is 353% while that of negative corona is only 278%.  As 

explained earlier, the evaporation rate in this range of the EHD number is mainly 

controlled by the inertial force (i.e., the bulk airflow).  The effect of corona wind 
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becomes insignificant and therefore the results are independent of the EHD number.  To 

support the above statement, a separate experiment was carried out with the airflow 

alone.  The average enhancement in water evaporation by airflow alone was found to be 

263%, which supports the earlier observation that the secondary flow induced by corona 

wind is suppressed and confined to a smaller region near the wall when the velocity of 

cross-flow increases. 
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Figure 3.14  Variation of Sherwood number with the EHD number in the presence of 
cross-flow  
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Figure 3.15  Water evaporation enhancement in the presence of cross-flow  

3.2  Numerical Simulation 

This section presents the numerical verification of the experimental study 

discussed in the previous section.  The configuration of the actual experimental setup is 

simplified to a two-dimensional channel as shown in Figure 3.16.  A wire is suspended 

one inch above the sample container, which is filled with water and is placed underneath 

the bottom wall of the channel.  A blower delivers air through the channel to provide a 

uniform cross-flow.  

3.2.1  Electric Field 

The study presented in the previous section has verified that cross-flow has 

negligible effect on the electric field, and Joule heating is not a main source of heat for 

most applications.  Therefore, in this numerical study, the electric field is assumed one-

way coupled to the flow field and the effect of Joule heating is negligible.  For one-way 
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coupling, the algorithm used to calculate the electric field is the same as that outlined in 

Chapter two.  Recall that the governing equations are given by 

2 cV ρ
∇ = −

ε
,                                                                                                                           (3.15) 

2
c

c ( ρ
∇ρ ⋅ + =

ε
E) 0.

,

,

                                                                                                            (3.16) 

Previous researches [7-9, 12-13] have shown that corona wind is only 

concentrated around the electrode.  To save the computational time and effort, a 

symmetric channel shown in Figure 3.17 is used for the simulation of the electric field.  

The left half of the channel (shaded area) is used as the computational domain.  Since 

evaporation takes place between the air in the channel and the water in the container, an 

interface is involved in the computation of electric field. 

Boundary and Interface Conditions  

For experiments conducted in section 3.1, the wire was suspended one inch above 

the water surface.  One end of the wire was connected to the high-voltage power supply.  

The channel walls were electrically insulated.  The container walls were also insulated 

except for the bottom wall, which was grounded. Thus, the boundary conditions for the 

electric field are 

0V V=     at wire                                                                                                       (3.17a) 

V 0=       along the bottom wall of the container                                                      (3.17b) 

V 0,
y

∂
=

∂
   along the channel walls                                                                              (3.17c) 

V 0,
x

∂
=

∂
   along the side walls of the water container                                                (3.17d) 
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Figure 3.16  A two-dimensional channel with a pool of water in the bottom wall 
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Figure 3.17  The symmetric geometric channel for electric field numerical simulation 

V 0,
x

∂
=

∂
   at the inlet and exit of the channel                                                             (3.17e) 

V 0.
x

∂
=

∂
   along the symmetric line                                                                            (3.17f) 

When more than one dielectric material is involved in the calculation of the 

electric field, for example, air and water in this study, one must know the interface 

conditions across the material discontinuities.  This means that electric field and charge 

density must satisfy certain conditions at the interface [42-44].  First consider the normal 

components of E and D at the interface using the incremental volume represented by the 

cylinder shown in Figure 3.18.  Let the height of the cylinder approaches zero so that no 

flux leaves the cylinder through the peripheral surface.  If subscript n denotes the normal 

component of the flux density and the positive direction is pointed from water region to 

air region, then one has 

 77 
 
 

 



• The flux leaving the top surface = Dna S 

• The flux leaving the bottom surface = -Dnw S 

• Charge density in the cylinder = ρsS 

where S is the area of the top or bottom surface, ρs is the surface charge density (C/m2), 

which will be determined later.  From Gauss’s law, the total flux leaving the volume 

through the top and bottom surface on the cylinder is equal to the charges enclosed in the 

cylinder.  Therefore, the relation between the flux and the charge density is given by    

n,a n,w sD D− = ρ .

.

                                                                                                        (3.18) 

Substitute the relation between D and E (equation (2.4)) to equation (3.18), one yields 

a n,a w n,w sE Eε − ε = ρ                                                                                                  (3.19) 

Equation (3.19) is the first interface condition between two dissimilar dielectrics.  
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Figure 3.18  The surface and contour used to determine the boundary conditions at the 
interface between two dissimilar dielectrics 
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The second interface condition comes from the behavior of the tangential 

components of E and D at the interface using the rectangular path “abcd” in Figure 3.18.   

When the height of the rectangular path goes to zero, the contributions from the left and 

right branches of the path become negligible.  If subscript t denotes the tangential 

component of the electric field, the conservative property of E around the closed path 

“abcda” gives 

w t,wa b : E dl E l→ ⋅ = ab,  

b c : 0,→  

a t,ac d : E dl E l→ ⋅ = − cd ,

,

 

d a : 0→  

t,w t,aE dl 0 E E .⋅ = → =∫                                                                                                    (3.20) 
 
This condition shows the tangential components of E are always continuous across a 

dielectric interface.  Since V= −∇E , the tangential component of the electric field is 

continuous also.  That is 

P,a P,w PV V V= = .        at the interface                                                                        (3.21) 

This is the second interface condition between two dissimilar dielectrics.  The first and 

second interface conditions together can determine the electric potential distribution at 

the interface. 

At the interface between two media that have nonzero conductivities, the law of 

current continuity places one more constraint on the fields, which is the third interface 

condition.  For the steady state case, the integral form of the continuity equation becomes 

ds 0.⋅ =∫ J                                                                                                                    (3.22) 
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Evaluating this integral around the cylinder shown in Figure 3.18 yields the following 

relationship between the normal components of J on each side of the interface. 

n,a n,wJ J= .                                                                                                                             (3.23) 

Since n n cP
VJ E ,
n

∂
= σ = −σ σ = ρ

∂
b,                                                                          (3.24) 

equation (3.24) becomes 

cP,a a a cP,w w w
V Vb b
y y

∂ ∂
ρ = ρ

∂
.

∂
                                                                                       (3.25) 

The subscript “a” represents air and “w” represents water.  The above equation gives the 

relation between the charge densities at the two sides of the interface, which is the third 

interface condition.  

After introducing the third interface condition, the surface charge density in 

equation (3.19) can be determined by substituting equation (3.24) into equation (3.19). 

a n,a w n,w s
a w a w

s n nn a w cP,a a cP,w wn n,a n,w n

E E
J JJ b bE , J J J

ε − ε = ρ ⎫ ⎛ ⎞⎛ ⎞ε ε ε ε⎪ → ρ = − = −⎜ ⎟⎬ ⎜ ⎟ ⎜ ⎟σ σ ρ ρ= = = ⎝ ⎠⎪ ⎝ ⎠σ ⎭

.       (3.26)  

To implement the interface conditions in numerical simulation, a method 

involving the use of imaginary nodal points is used. 

 Imaginary Nodal Points 

The first two interface conditions introduced above (equation (3.19) and (3.21)) 

are implemented through the use of imaginary nodal points [44], shown in Figure 3.19, to 

determine the electric potential distribution at the interface in the computational domain.  

The solid circles refer to the actual nodal points whereas the hollow circles represent the 

imaginary nodal points.  Because of the difference in the permittivity and ion mobility in 
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air and water, the electric potential at the interface can no longer be expressed directly 

using the formulations derived in the previous section.  The electric potential at the 

interface can be represented by two distinct expressions depending on which region is 

involved.  When applying the relation between E and V to equation (3.19), one yields 

a w
a w

dV dV .
dy dy

−ε + ε = ρs                                                                                                    (3.27) 

With the central difference approximation, the above equation can be rewritten as 

Na S N Sa
w a

V V V V .
2 2

− −
ε − ε

Δ Δ s= ρ                                                                                       (3.28) 

Two charge densities are involved at the interface nodes.  While one is assumed 

the entire domain is filled with air (ρcP,a), the other is assumed the entire domain is filled 

with water (ρcP,w).  First, assume the entire domain is filled with air, with the first 

interface condition, VSa can be determined as follows. 

cP,a

cP,a

2

P,a E W N Sa
a

2

Sa Pa E W N
a

1V V V V V
4

V 4V V V V .

⎛ ⎞ρ Δ
⎜ ⎟= + + + +
⎜ ⎟ε
⎝

⎛ ⎞ρ Δ
⎜ ⎟= − + + +
⎜ ⎟ε
⎝ ⎠

,
⎠                                                               (3.29) 

Next, assume the entire domain is filled with water, VNa can be determined in a similar 

manner. 

cP,w

cP,w

2

P,w E W Na S
w

2

Na Pw E W S
w

1V V V V V
4

V 4V V V V .

⎛ ⎞ρ Δ
⎜ ⎟= + + + +
⎜ ⎟ε
⎝

⎛ ⎞ρ Δ
⎜ ⎟= − + + +
⎜ ⎟ε
⎝ ⎠

,
⎠                                                                  (3.30) 

The second interface condition dictates that VP,a = VP,w = VP.  Therefore  
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cP,a

cP,w

2

Sa P E W N
a

2

Na P E W S
w

V 4V V V V

V 4V V V V

⎛ ⎞ρ Δ
⎜ ⎟= − + + +
⎜ ⎟ε⎜ ⎟
⎝
⎛ ⎞ρ Δ
⎜ ⎟= − + + +
⎜ ⎟ε⎜ ⎟
⎝ ⎠

,

.

⎠                                                                        (3.31) 

Substituting VNa and VSa to equation (3.28) gives, 

( ) (

2
P cP,a cP,w s

w a

w E W S a E W N

1V [( ) 2
4 4

V V 2V V V 2V ]

= ρ + ρ ⋅ Δ + ρ ⋅ Δ
ε + ε

+ ε + + + ε + + ) .
                                (3.32) 

The dielectric properties, like specific permittivity and ion mobility for air and 

water, can be found from handbooks [36, 45-46].  The specific permittivity of air is 1 and 

that of water is 80.1 at 293.2 K.  The ion mobility in air at 0 °C and 760 Torr is 1.36x10-4

 

Figure 3.19  Imaginary nodal points 
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m2/V-s.  The ion mobility in water can be estimated from the following equation [1]. 

12
7 2

w
80.1(8.854 10 )b 8.421 10 m / V s.

1000

−
−ε ×

= = = × ⋅
ρ

 

Numerical Procedure 

Since the charge density at the interface is not continuous, two sets of charge 

density at the interface are defined.  The numerical procedures to determine the electric 

potential (V) and charge density (ρcP) are listed below. 

1. Assume that no charge density exists in the entire domain and the surface charge 

density at the interface equals to zero. 

2. Solve the governing equation (3.15) for electric potential in the air region. 

3. Solve the interface electric potential from equation (3.32). 

4. Solve the governing equation (3.15) for electric potential in the water region. 

5. Assume that the interface properties equals to the properties of air, solve the 

charge density in the air region by governing equation (3.16).  The charge density 

at the interface node (ρcP,a) is thus determined. 

6. Determine ρcP,w using equation (3.25) and ρcP,a obtained above. 

N P P S
cP,a a cP,w w

N P a
cP,w cP,a

P S w

V V V Vb b ,

V V b .
V V b

− −
ρ = ρ

Δ Δ
−

ρ = ρ
−

                                                          (3.33) 

7. Assume that the charge density at the interface equals to ρcP,w, solve the charge 

density at the water region by equation (3.16). 

8. Determine the surface charge density (ρs) using equation (3.26). 

9. Assume that the charge density at the interface equals to ρcP,a, go back to step two. 
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10. Repeat step two to step nine till solutions converged. 

A typical electric potential and charge density distribution obtained from the 

present numerical simulation is shown in Figure 3.20. 

3.2.2  Flow and Concentration Fields 

To simplify the numerical calculations, some assumptions have been made. 

1. The water surface is assumed to maintain the same height as the bottom 

surface of the channel.  In this case, the water container is implemented as 

a boundary condition in the simulation of flow and concentration fields, 

and the computational domain only consist a channel filled with air and 

has a water boundary at the bottom (Figure 3.21). 

2. The water vapor concentrations in the water surface and ambient air are 

assumed to maintain constant during the entire drying process. 

3. Energy equation is not involved in this study.  

4. All properties are assumed constant, and they are evaluated at the average 

ambient temperature. 

(b)

(a)

 

Figure 3.20  Electric field in a two-dimensional channel with a pool of water in the 
bottom wall (V0 = 18 kV), (a) electric potential (b) charge density 
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Figure 3.21  Computational domain for the simulation of flow and concentration fields 

Based on the above assumptions, the governing equations for the flow and 

concentration fields are the continuity equation, the Navier-Stokes equations in x and y 

directions, and the concentration equation. 

u v 0,
x y

∂ ∂
+ =

∂ ∂
                                                                                                                         (3.34)

2 2u u u 1 p u u cu v Ex2 2t x y x x y

⎛ ⎞ ρ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟+ + = − + ν + +
⎜ ⎟∂ ∂ ∂ ρ ∂ ρ∂ ∂⎝ ⎠

,                                                      (3.35) 

2 2
c

y2 2
v v v 1 p v vu v E
t x y y x y

⎛ ⎞ ρ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + ν + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ρ ∂ ρ∂ ∂⎝ ⎠

,                                                       (3.36) 

2 2

2 2
c c c c cu v D
t x y x y

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = +⎜⎜∂ ∂ ∂ ∂ ∂⎝ ⎠

.⎟⎟                                                                                     (3.37)  

The last term in the momentum equations, equations (3.35) and (3.36) represents 

the electric body force, which provides the coupling from the electric field to the flow 

field.  The governing equations can be non-dimensionalized by introducing the following 

dimensionless variables. 
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e

w

c
c

e e e 0 c0

c0 0 e
e E

x y c c u tX , Y , C , , Pr , Le
H H c c H
u v H VU , V , , V , ,
u u u V

V uu , U , V , Re .
Y X

∞

∞

HD

,
D

H

− ν α
= = = τ = =

− α

ω ρ
= = Ω = = ρ =

ρ

ρ ∂Ψ ∂Ψ
= = = − =

ρ ∂ ∂

=

ν

   (3.38) 

The dimensionless governing equations in terms of the stream function and vorticity are 

given by 

2 2

2 2 ,
X Y

∂ Ψ ∂ Ψ
+ = −

∂ ∂
Ω                                                                                                        (3.39) 

2 2
c c

2 2EHD

1 V ,
Y X X Y Re Y X X YX Y

⎛ ⎞ ⎛ ⎞∂ρ ∂ρ∂Ω ∂Ψ ∂Ω ∂Ψ ∂Ω ∂ Ω ∂ Ω ∂ ∂
+ − = + + −⎜ ⎟ ⎜⎜ ⎟∂τ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ⎝ ⎠⎝ ⎠

V
⎟                    (3.40)  

2 2

2 2EHD

C C C 1 C C .
Y X X Y Pr Re Le X Y

⎛ ⎞∂ ∂Ψ ∂ ∂Ψ ∂ ∂ ∂
+ − = +⎜⎜∂τ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎟⎟                                                    (3.41) 

The corresponding boundary conditions for the flow and concentration fields with cross-

flow are 

i

e

uX 0, 0, Y, C 0.
u

= Ω = Ψ = =                                                       (3.42a) 

LX , 0, 0,
H X X X

∂Ω ∂Ψ ∂
= = =

∂ ∂ ∂
C 0.=                                                     (3.42b) 

2
i e2

CY 1, , u / u , 0.
YY

∂ Ψ ∂
= Ω = − Ψ =

∂∂
=                                                     (3.42c) 

2

2
CY 0, , 0, 0, channel wall
YY

C 1, water surface

∂ Ψ ∂
= Ω = − Ψ = =

∂∂
=

                         (3.42d)  

The numerical procedures are similar to those for the EHD-enhanced heat transfer 

introduced in Chapter two. 

 86 
 
 

 



3.2.3  The Sherwood Number 

Since the concentration equation is similar to the energy equation, some features 

of the concentration field can be examined from the temperature field by analogy.  

Similar to the analysis presented in Chapter two, one learns that the flow field is 

developing through the entire channel and the concentration boundary layer is still thin 

(less than the channel height) at the end of the channel.  Thus, the mass transfer rate (i.e., 

the evaporation rate) at the water surface can be calculated based on the difference in 

water vapor concentration between the water surface and ambient air. 

(D w
dcm D c c
dy ∞= − = α − ).                                                                                               (3.43) 

The mass transfer coefficient αD can then be determined as 

D
w

1 dD
c c dy∞

⎛ ⎞
α = −⎜− ⎝ ⎠

c .⎟                                                                                                       (3.44) 

The average mass transfer coefficient based on the length of the water surface Lw is given 

by 

w2

w1

x

D
w wx

1 D dc dx.
L c c dy∞

−
α =

−∫                                                                                              (3.45) 

In the dimensionless form, it is given by 

w2

w1

X

D
w X

1 dCD dX
L dY

α = −∫ .                                                                                                     (3.46) 

Substitute the average mass transfer coefficient to the definition of the average Sherwood 

number, it gives 

w2

w1

X
D w

X

L dCSh dX.
D dY

α
= = −∫                                                                                               (3.47) 
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3.2.4  Code Validation 

Due to the scarcity of numerical and analytic data for mass transfer, and the 

similarity of the governing equations between heat and mass transfer, forced convection 

heat transfer is chosen to validate the code.  By analogy, the physic model of heat transfer 

is shown in Figure 3.22. 

The thermal and hydrodynamic entrance lengths can be calculated using equations 

(2.49) and (2.50).  For this case, the hydrodynamic entrance length is calculated to be 

3.43 m and the thermal entrance length 17.64 m.  The total length of the channel is 72 

inches (1.83 m), which is smaller than both entrance lengths.  This means the flow is both 

thermally and hydrodynamically developing.  

Only laminar flow is considered.  To choose a proper empirical correlation for 

this model, the thickness of the hydrodynamic boundary layer at the end of the channel is 

calculated. 

6x 15.11 10 (72)(0.0254)4.64 4.64 0.0469 m
u 0.25

−

∞

ν ×
δ = = =                                       (3.48) 

The height of the channel is 4 inches (0.1016 m).  This means at the end of the 

channel, the hydrodynamic boundary layers developed from the top and bottom surfaces 

have not merged yet.  Thus, for analytic solutions, the channel can be simplified to a flat 

plate with unheated sections at both ends as shown in Figure 3.23.  The Reynolds number 

and the thickness of the thermal boundary layer at the end of the heat source are  

4 5
x 6

1/ 3 1/ 33/ 4 3/ 4
T

3 30

u x 0.25(60)(0.0254)Re 2.52 10 5 10 ,
15.11 10

0.976 x 0.976 1.5241 1 0.625 1.
x 1.3970.713Pr

∞
−

− −

= = = × < ×
ν ×

⎡ ⎤ ⎡ ⎤⎛ ⎞δ ⎛ ⎞⎢ ⎥= − = − =⎢ ⎥⎜ ⎟ ⎜ ⎟δ ⎢ ⎥ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
<

           (3.49) 
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Figure 3.22  The physic model of heat transfer by forced convection 

 

 
Figure 3.23  Heat transfer from a flat plate with unheated sections 

 
 

The local heat transfer coefficient along the heated section is given by [32] 

1/ 33/ 4
1/ 3 1/ 2

x
0

k xh 0.331 Pr Re 1 .
x x

−−⎡ ⎤⎛ ⎞⎢= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎥                                                                  (3.50) 

Then the average heat transfer coefficient can be determined as  
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w2

w1

1

0

1/ 33/ 4x
1/ 3 1/ 2

w 0x

1/ 33/ 4

1/ 2 x 01/ 3
1/ 2

w x

1 k xh 0.331 Pr Re 1 dx
L x x

x1
xk u0.331Pr dx

L x

−−

−−

∞

⎡ ⎤⎛ ⎞⎢ ⎥= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎛ ⎞ ⎣ ⎦= ⎜ ⎟ν⎝ ⎠

∫

∫

                                                 (3.51) 

Thus, the average Nusselt number based on the length of the heated section is given by 

1

0

1/ 33/ 4

1/ 2 x 01/ 3
analysis 1/ 2

x

x1
xhL uNu 0.331Pr dx.

k x

−−

∞

⎡ ⎤⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎛ ⎞ ⎣ ⎦= = ⎜ ⎟ν⎝ ⎠
∫                               (3.52) 

The Nusselt numbers for various cross-flow velocities (from 0.1 m/s to 0.25 m/s) are 

listed in Table 3.1.  Note that all the properties of air are evaluated at 20 °C. 

For numerical validation, the physical model is shown in Figure 3.22. The energy 

equation is given by 

2 2

2 2
T T T 1 T T ,

Y X X Y Pr Re X Y

⎛ ⎞∂ ∂Ψ ∂ ∂Ψ ∂ ∂ ∂
+ − = +⎜⎜∂τ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎟⎟                                                                 (3.53) 

which can be obtained by setting Le = 1 in the concentration equation (equation 3.41). 

The boundary conditions of the temperature field used in the numerical solution 

are  

X 0, 0.= θ =                                                                                                                  (3.54a) 

w1 w2 w1 w2

Y 0, Y 0,
0, 1.

X X and X X , X X X ,Y
= =⎫ ⎫∂θ

= θ =⎬< > ≤ ≤∂⎭ ⎭
⎬                              (3.54b) 

Y 1, 0.
Y

∂θ
=

∂
=                                                                                                      (3.54c)  
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Table 3.1  Comparison of Nusselt numbers for forced convection 
 

Inlet velocity 
(m/s) 

Nuanalytic Nunumerical numerical analytic

numerical

Nu Nu
Err

Nu
−

=

 
0.1 9.42 11.21 16% 
0.15 11.54 13.26 13% 
0.2 13.32 15.13 12% 
0.25 14.89 16.55 10% 

 
 

LX ,
H X

∂θ
=

∂
0.=                                                                                                              (3.54e)  

The governing equations and boundary conditions for the flow field is the same as  

equations (3.39), (3.40), and (3.42).  The numerical results for cross-flow velocity varied 

from 0.1 m/s to 0.25 m/s are listed in Table 3.1 for comparison.  The discrepancies found 

vary from 10 to 16 percent, depending on the Reynolds number, which are acceptable in 

the consideration of that the analytic result is derived from the integral solution for a flat 

plate and the numerical result is obtained from computer simulation of a two-dimensional 

channel.  

To verify that a two-dimensional model is adequate for the present numerical 

study, the present results are compared with those obtained by commercial CFD code 

Fluent for forced convection mass transfer.  For two-dimensional and three-dimensional 

models in Fluent, when the cross-flow velocity is fixed at 2.2 m/s, the Sherwood number 

is 51.21 and 47.48 respectively while the result from the present code is 49.90.  This 

shows that the present two-dimensional model is appropriate for the problem considered 

and it can be used to obtain further results for the study. 
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3.2.5 Results and Discussion 

Uniform grid of (1729 ×97) and a time step of 5x10-4 were used for this numerical 

simulation.  It had been tested that numerical results were independent of the grid size 

and time step.  The numerical results were obtained using Boomer Supercomputer in the 

University of Oklahoma.   It took 96 hours to complete the calculation for each case.   

Water evaporation under positive corona discharge with cross-flow (ui =1.0 and 

2.2 m/s) has been numerically studied.  First, the electric field is calculated; followed by 

the flow and concentration fields.  For the convenience to compare with the experimental 

results, the Sherwood numbers obtained from the previous experiments are re-calculated 

to base on the length of water surface as 

w
exp

Sh LSh .
d

=                                                                                                                      (3.55) 

Table 3.2 lists the Sherwood number obtained from this numerical simulation for 

cross-flow with a velocity of 2.2 m/s.  The experimental results are also listed in this table 

for comparison.  The discrepancies between these two results vary from one to eight 

percent.  Recall that the electric field calculation was based on the corona current 

measured in the experiments.  Also, the ambient conditions although were well controlled 

in the lab, there were still some variations.  For example, the temperature and humidity 

varied from 26.4 °C to 27.2 °C, and 27.4% to 37.8%, respectively during experiments. 

When considering all these factors, this discrepancy is acceptable.  Again, one observes 

that there is no significant variation in the enhancement of water evaporation for the 

range of the applied voltage considered.  This is because the cross-flow dominates the 

flow field.  

 92 
 
 

 



Figure 3.24 shows the variation of flow field with the applied voltage when the 

cross-flow velocity is fixed at 2.2 m/s.  To have a better observation of the change in the 

flow field due to electric field, the figures shown in Figure 3.24 is only centered on the 

region near the wire and water surface.  One can observe from the contour plots of stream 

function that the effect of electric body force is only confined to a small region between 

the wire and the water surface.  Also, there is no significant change in the flow field when 

the applied voltage increases.  This is because the cross-flow is dominant and the 

secondary flow induced by the corona wind is suppressed.  Even though, one can still 

observe the appearance of secondary flow directly between the water surface and wire.  

When the applied voltage is low, the recirculating cell driven by the secondary flow is 

small.  However, when the applied voltage increases, the recirculating cell grows slightly.   

That also can be confirmed from the variation of Sherwood number, which increases 

from 48.08 to 52.10 when the applied voltage increases from 14 kV to 20 kV.  The 

concentration fields exhibit the same trend (Figure 3.25).  Since the velocity of the cross-

flow is large, water vapor is confined to  a  relatively  narrow  region  between  the  water  

 

Table 3.2  Comparison of Sherwood numbers (positive discharge, ui = 2.2 m/s) 

Voltage (kV) Shnum Shexp −
= num exp

num

Sh Sh
Err 100%

Sh
 

14 48.08 45.90 4.53 
15 47.85 47.83 0.38 
16 48.46 46.15 4.76 
17 49.28 47.88 2.84 
18 50.01 46.32 7.56 
19 51.06 48.82 4.38 
20 52.10 48.26 7.37 
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surface and airflow above.  Also, water vapor is washed away by the cross-flow so 

quickly that it does not have the opportunity to diffuse to other parts of the channel.  

To further examine the effect of cross-flow on the EHD-enhanced water 

evaporation, numerical simulations and experiments are also performed for the cross-

flow with a velocity of 1.0 m/s, and the applied voltage ranging from 14 kV to 20 kV.  

For this case, both inertial force and electric body force have effects on the flow motion.  

The Sherwood numbers obtained are listed in Table 3.3.  The discrepancies between 

these two results vary from five to eleven percent.  When consider the uncertainty 

involved in the measurements of the corona current, cross-flow velocity, as well as the 

variation of ambient conditions in the experiments, and the numerical simulation errors, 

the discrepancies although slightly higher than the previous case, are still considered 

acceptable.  

 One can observe from Table 3.3 that the Sherwood number basically increases 

with the applied electric voltage.  To evaluate the evaporation enhancement by electric 

field, the Sherwood numbers obtained are also compared with that by forced convection 

alone, which has a Sherwood number of 31.23.  Clearly, the evaporation enhancement is 

significant when the applied voltage is high.  This is due to the impingement of corona 

wind on the water surface, which disturbs the concentration boundary layer.  Since both 

inertial force and electric body force act simultaneously, their contribution to the 

evaporation enhancement varies when the applied voltage increases from 14 kV to 20 kV, 

depending on which force is dominant.  When the applied voltage is low (< 16 kV), the 

electric body force is considerably weak, compared with the cross-flow inertial force.  

Thus, the evaporation enhancement is mainly contributed  by  the  flow  inertia.  As such,  
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Table 3.3  Comparison of Sherwood numbers (positive discharge, ui = 1.0 m/s) 
 

Voltage (kV) Shnum Shexp −
= num exp

num

Sh Sh
Err 100%

Sh
 

14 31.81 30.35 4.58 
15 34.72 31.38 9.61 
16 40.52 36.34 10.32 
17 42.29 38.54 8.86 
18 44.11 40.49 8.21 
19 47.34 43.53 8.04 
20 51.09 46.41 9.15 

 

the Sherwood numbers are close to that by the forced convection.  With an increase in the 

applied voltage (V0 ≥ 16 kV), the electric body force becomes stronger to overcome the 

dominance of the flow inertia, the evaporation enhancement starts to increase linearly 

with the applied voltage.  This trend is similar to that observed from the experimental 

study with the absence of cross-flow. 

The interaction between the corona wind and primary flow can also be observed 

from the flow fields (Figure 3.26).  When the applied voltage is low, the secondary flow 

is insignificant and the streamlines are nearly parallel.  When the applied voltage is 

increases, the secondary flow becomes stronger, and a recirculating cell appears between 

the wire and water surface.  When the applied voltage is increased further, the 

recirculating cell extends over the entire water surface and results in a large evaporation 

enhancement.  

The concentration fields (Figure 3.27) also show the growing effects of the 

secondary flow with an increase in the applied voltage.  When the electric body force is 

weak, the water vapor is confined to the boundary layer.  When a higher voltage is 

applied, the boundary layer is disturbed, which generate a large concentration gradient 
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between the water surface and the air above.  This leads to a large Sherwood number.  

Since the electric field strength is mostly centered at the wire, the cross-flow becomes 

dominant in the downstream region of the channel, and the water vapor is washed away 

before it has the opportunity to diffuse to air in the upper part of the channel.  
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Figure 3.24  Variation of flow fields with applied voltage (ui = 2.2 m/s) 

(a) V = 14 kV, Ψmax = 0.55, Ψmin = 0.0,   Δ Ψ = 0.0275  
(b) V = 15 kV, Ψmax = 0.20, Ψmin = 0.01, Δ Ψ = 0.0100   
(c) V = 16 kV, Ψmax = 0.16, Ψmin = 0.0,   Δ Ψ = 0.0100 
(d) V = 17 kV, Ψmax = 0.12, Ψmin = 0.01, Δ Ψ = 0.0100 
(e) V = 18 kV, Ψmax = 0.12, Ψmin = 0.0,   Δ Ψ = 0.0100 
(f) V = 19 kV, Ψmax = 0.11, Ψmin = 0.01, Δ Ψ = 0.0100 
(g) V = 20 kV, Ψmax = 0.10, Ψmin = 0.0,   Δ Ψ = 0.0100 
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Figure 3.25  Variation of concentration fields with applied voltage  

(ui = 2.2 m/s, Cmax = 1.0, Cmin = 0.0, Δ C = 0.05) 
                           (a) V0 = 14 kV, (b) V0 = 15 kV, (c) V0 = 16 kV, (d) V0 = 17 kV, 
                           (e) V0 = 18 kV, (f) V0 = 19 kV, (g) V0 = 20 kV 
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Flow 
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(e) 

(f) 

(g) 

Figure 3.26  Variation of flow fields with applied voltage (ui = 1.0 m/s) 
                              (a) V0 = 14 kV, Ψmax = 0.70,   Ψmin = 0.0,        Δ Ψ=0.05  
                              (b) V0 = 15 kV, Ψmax = 0.30,   Ψmin = -0.005,  Δ Ψ = 0.02   
                              (c) V0 = 16 kV, Ψmax = 0.10,   Ψ min =-0.005,   Δ Ψ = 0.005  
                              (d) V0 = 17 kV, Ψmax = 0.055, Ψmin= -0.005,    Δ Ψ = 0.0025 
                              (e) V0 = 18 kV, Ψmax = 0.055, Ψ min = -0.005,  Δ Ψ = 0.0025 
                              (f) V0 = 19 kV, Ψmax = 0.050,  Ψmin= -0.005,   Δ Ψ = 0.0025 
                              (g) V0 = 20 kV, Ψmax = 0.050,  Ψ min = -0.005, Δ Ψ =0.0025 
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Figure 3.27  Variation of concentration fields with applied voltage  

(ui = 1.0 m/s, Cmax = 1.0, Cmin = 0.0, ΔC = 0.05) 
                           (a) V0 = 14 kV, (b) V0 = 15 kV, (c) V0 = 16 kV, (d) V0 = 17 kV, 
                           (e) V0 = 18 kV, (f) V0 = 19 kV, (g) V0 = 20 kV 
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CHAPTER FOUR 

CONCLUSIONS 

 The present study has addressed some fundamental questions involved in the 

EHD-enhanced heat and mass transfer.  Particularly, the present results have once again 

confirmed that an electric field can significantly enhance heat and mass transfer.  The 

important conclusions from the present study are summarized in the following sections. 

4.1  EHD-enhanced Heat Transfer 

Corona discharge is found to be an effective method for heat transfer 

enhancement.  For forced convection, the enhancement increases with the applied voltage 

and can be as high as 350% from the present results.  Although two different approaches 

(one-way and two-way coupling) were used to determine the interactions between the 

electric and flow fields, their differences are usually negligible.  The results thus justify 

the use of one-way coupling in the earlier studies.  Further analysis shows that the ion 

drift velocity is typically two-orders of magnitude larger than the inlet air velocity, which 

also lends support to the formulation based on one-way coupling.  Most importantly, both 

numerical approaches predict the existence of oscillatory flows, which is the main 

mechanism for the high heat transfer enhancement. 

 For natural convection, the heat transfer enhancement is most notable at low 

Rayleigh numbers.  Although the heat transfer enhancement may be quite impressive at 

low Rayleigh numbers (Ra ≤ 105), one should be cautious that the added thermal energy 

from the electric field (i.e., Joule heating) may have contributes greatly to this heat 

transfer enhancement.  On the other hand, the effects of Joule heating are negligible when 

the Ralyleigh number is large (Ra > 105).  This is because the added electric energy is 
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small as compared with the thermal energy provided by the differentially heated walls.  

The present study has an important implication for the experimental study of EHD-

enhanced natural convection.  When evaluating the heat transfer enhancement at low 

Rayleigh numbers, it is important to distinguish the various components which contribute 

to the heat transfer enhancement.  Claims of unrealistic heat transfer enhancement may 

result if care is not taken. 

4.2  EHD-enhanced Mass Transfer 

 Both experimental and numerical studies have been conducted to verify the 

effectiveness of electric field in the enhancement of water evaporation.  The effects of 

corona wind, corona polarity, and cross-flow on the evaporation rate have been studied 

experimentally.  The water evaporation rate is shown to depend on the strength of the 

electric field and the velocity of the airflow.  In the absence of cross-flow, the 

enhancement in water evaporation rate increases linearly with the applied voltage.  When 

a large volume of cross-flow is introduced over the water surface, the electric field 

becomes insignificant on the water evaporation enhancement.  This is due to the 

suppression of the corona wind by the cross-flow.   

 A numerical study was conducted to investigate the water evaporation enhanced 

by electric field and cross-flow with positive discharge.  The results show that with a 

weak cross-flow, the water evaporation can be enhanced greatly compared with that in 

the absence of cross-flow.  If the velocity of the cross-flow is too high, it may diminish 

the effect of electric field.  Also, the results are compared with those of the experiments.  

In general, the agreement between these results is quite satisfactory. 
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4.3  Recommendations for Future Study 

 Although the present study has examined some fundamental issues involved in 

the EHD-enhanced heat and mass transfer, there are problems remained to be explored.  

For example, some studies can be extended directly from the present work to further 

improve our understanding of the EHD-enhanced heat and mass transfer.  These possible 

topics are discussed below.   

 1. Although both corona polarities (positive and negative) were employed in the 

present experimental study, only positive corona discharge was considered in the present 

numerical study.  One can extend the present study to include negative corona discharge 

in the future numerical work.  However, before taking on this problem, one needs to 

know the difference in the nature of corona discharge.  As it is well-known that positive 

corona discharge is more stable and uniformly distributed along the wire electrode.  As 

such, it can be adequately modeled as two-dimensional.  On the other hand, negative 

corona discharge usually less stable and it promotes turbulence.  Thus, a two-

dimensional, laminar flow model is not appropriate for negative corona discharge.  To 

catch all the essences of physics involved in negative corona discharge, one may have to 

employ three-dimensional turbulent flow model.   

 2. Although the present study has employed a fine wire as the electrode, other 

studies have used a needle as the electrode [26], which also proves to be an effective 

means.  When considering a needle electrode in numerical study, one needs to employ a 

three-dimensional model.  This is mainly due to the difference in the flow profile of 

corona wind.  For a wire electrode, it produces corona wind similar to a slot jet so that it 

can be adequately modeled as two-dimensional.  On the other hand, for a needle 
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electrode, it produces corona wind similar to a round jet, which is inherently three-

dimensional.  As such, an extension from the present study to include needle electrode 

will require a three-dimensional model. 

 3. It has been proven that electric field in the form of corona wind can 

significantly enhance the drying rate of wet materials.  In general, all wetted materials 

can be considered as porous media fully or partially saturated with water.  Water inside a 

porous medium exists in two forms; free water and bound water [47].  Free water exists 

between the solid cells and can be released when freezing occurs.  Bound water is the 

water held within the solid cell wall and cannot be released if freezing occurs in the 

intercellular space.  The present study of EHD-enhanced water evaporation can be 

regarded as a special case of the EHD-enhanced drying as there is no solid constituent 

involved.  As such, the present study has only addressed the effectiveness of corona 

discharge on the removal of free water.  For a complete understanding of the mechanisms 

involved in the EHD-enhanced drying, the removal of bound water by corona discharge 

needs to be addressed.  While the experimental evaluation of the above problem may be 

straightforward, the numerical study will be rather challenging.  Due to the presence of 

solid constituent, not only the calculation of electric field will become more complicated, 

but also the calculation of the flow and concentration fields will be more involved.    
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Table A.1  Comparison of Nusselt numbers obtained from both one-way and two-way coupling models (V0 = 10.0 kV) 
 

V0 = 10.0 kV Iexp = 3.4e-5 A 
EHD-enhanced Forced Convection 

One-way Coupling Model Two-way Coupling Model 
Nu Number Nu Number 

Cross-flow 
Velocity 

m/s 

Re 
Number 

Forced 
Convection 

Nu 
Number Numin. Nuaverage Numax.

Stability Period Numin. Nuaverage Numax.
Stability Period 

0.0759 150 14.60 25.37 26.54 27.43 Periodic 2.0 24.89 26.78 28.00 Periodic 2.0 
0.1518 300 18.32  24.13  Steady   23.99  Steady  
0.2277 450 21.07  24.78  Steady   24.70  Steady  
0.3036 600 23.40  25.50  Steady   25.45  Steady  
0.3795 750 25.48  26.48  Steady   26.44  Steady  
0.4554 900 27.10  27.81  Steady   27.77  Steady  
0.5313 1050 28.65  29.22  Steady   29.18  Steady  
0.6072 1200 30.06  30.56  Steady   30.52  Steady  
0.9108 1800 34.80  35.08  Steady   35.05  Steady  
1.2144 2400 38.50  38.65  Steady   38.61  Steady  
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Table A.2  Comparison of Nusselt numbers obtained from both one-way and two-way coupling models (V0 = 12.5 kV) 
 

V0 = 12.5 kV Iexp = 8.8e-5 A 
EHD-enhanced Forced Convection 

One-way Coupling Model Two-way Coupling Model 
Nu Number Nu Number 

Cross-flow 
Velocity 

m/s 

Re 
Number 

Forced 
Convection 

Nu 
Number Numin. Nuaverage Numax.

Stability Period Numin. Nuaverage Numax.
Stability Period 

0.0759 150 14.60  37.50  Steady   37.43  Steady   
0.1518 300 18.32 33.19 37.82 41.51 Periodic 2.2 34.45 39.05 43.29 Periodic 2.2 
0.2277 450 21.07  31.04  Steady   30.92  Steady  
0.3036 600 23.40  31.51  Steady   31.43  Steady  
0.3795 750 25.48  31.94  Steady   31.89  Steady  
0.4554 900 27.10  32.33  Steady   32.29  Steady  
0.5313 1050 28.65  32.69  Steady   32.69  Steady  
0.6072 1200 30.06  33.12  Steady   33.11  Steady  
0.9108 1800 34.80  36.13  Steady   36.09  Steady  
1.2144 2400 38.50  39.46  Steady   39.42  Steady  
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Table A.3  Comparison of Nusselt numbers obtained from both one-way and two-way coupling models (V0 = 17.5 kV) 
 

Voltage = 17.5 kV Iexp = 2.48e-4 A 
EHD-enhanced Forced Convection 

One-way Coupling Model Two-way Coupling Model 
Nu Number Nu Number 

Cross-flow 
Velocity 

m/s 

Re 
Number 

Forced 
Convection 

Nu 
Number Numin. Nuaverage Numax.

Stability Period Numin. Nuaverage Numax.
Stability Period 

0.0759 150 14.60 43.09 50.87 58.62 Periodic 1.7 41.83 50.73 61.73 Periodic 1.6 
0.1518 300 18.32 40.44 46.46 54.28 Periodic 3.0 39.29 47.02 57.86 Periodic 2.9 
0.2277 450 21.07 52.14 58.58 64.98 Periodic 2.0 52.86 58.99 65.15 Periodic 1.9 
0.3036 600 23.40 47.84 52.31 57.50 Periodic 2.3 48.32 52.93 58.30 Periodic 2.4 
0.3795 750 25.48 41.99 42.95 44.18 Periodic 3.0 42.28 43.28 44.60 Periodic 3.0 
0.4554 900 27.10  40.98  Steady   41.07  Steady  
0.5313 1050 28.65  41.57  Steady   41.46  Steady  
0.6072 1200 30.06  41.68  Steady   41.72  Steady  
0.9108 1800 34.80  42.40  Steady   42.43  Steady  
1.2144 2400 38.50  43.18  Steady   43.20  Steady  
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Figure A.1  Flow fields predicted by one-way coupling model for V0 = 15 kV, Re = 150 
(a) τ = 55.1, Ψmax = 2.5, Ψmin = -5.5, ΔΨ = 0.5 
(b) τ = 55.6, Ψmax = 2.7, Ψmin = -4.7, ΔΨ = 0.5 
(c) τ = 56.1, Ψmax = 3.5, Ψmin = -5.5, ΔΨ = 0.5 
(d) τ = 56.6, Ψmax = 3.8, Ψmin = -5.8, ΔΨ = 0.5 
(e) τ = 57.1, Ψmax = 2.5, Ψmin = -5.5, ΔΨ = 0.5 
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Figure A.2  Flow fields predicted by two-way coupling model for V0 = 15 kV, Re = 150 

(a) τ = 56.6, Ψmax = 2.5, Ψmin = -5.5, ΔΨ = 0.5 
(b) τ = 57.1, Ψmax = 2.6, Ψmin = -4.6, ΔΨ = 0.5 
(c) τ = 57.6, Ψmax = 3.6, Ψmin = -5.6, ΔΨ = 0.5 
(d) τ = 58.1, Ψmax = 3.8, Ψmin = -5.8, ΔΨ = 0.5 
(e) τ = 58.6, Ψmax = 2.5, Ψmin = -5.5, ΔΨ = 0.5 
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Figure A.3  Temperature fields predicted by one-way coupling model for V0 = 15 kV,  

Re = 150 
(a) τ = 55.1, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(b) τ = 55.6, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(c) τ = 56.1, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(d) τ = 56.6, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(e) τ = 57.1, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
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Figure A.4  Temperature fields predicted by two-way coupling model for V0 = 15 kV,  

Re = 150 
(a) τ = 56.6, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(b) τ = 57.1, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(c) τ = 57.6, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(d) τ = 58.1, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(e) τ = 58.6, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
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Figure A.5  Flow fields predicted by one-way coupling model for V0 = 15 kV, Re = 300 

(a) τ = 102.9, Ψmax = 1.7, Ψmin = -4.3, ΔΨ = 0.2 
(b) τ = 103.7, Ψmax = 3.2, Ψmin = -6.2, ΔΨ = 0.2 
(c) τ = 104.5, Ψmax = 1.6, Ψmin = -4.0, ΔΨ = 0.2 
(d) τ = 105.3, Ψmax = 3.2, Ψmin = -6.0, ΔΨ = 0.2 
(e) τ = 106.3, Ψmax = 1.8, Ψmin = -4.4, ΔΨ = 0.2 
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Figure A.6  Flow fields predicted by two-way coupling model for V0 = 5 kV, Re = 300 

(a) τ = 101.1, Ψmax = 1.8, Ψmin = -4.8, ΔΨ = 0.2 
(b) τ = 101.9, Ψmax = 3.3, Ψmin = -6.5, ΔΨ = 0.2 
(c) τ = 102.7, Ψmax = 1.6, Ψmin = -4.4, ΔΨ = 0.2 
(d) τ = 103.5, Ψmax = 3.2, Ψmin = -7.2, ΔΨ = 0.2 
(e) τ = 104.5, Ψmax = 1.8, Ψmin = -5.0, ΔΨ = 0.2 
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Figure A.7  Temperature fields predicted by one-way coupling model for V0 = 15 kV, Re 

= 300 
(a) τ = 102.9, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(b) τ = 103.7, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(c) τ = 104.5, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(d) τ = 105.3, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(e) τ = 106.3, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
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Figure A.8  Temperature fields predicted by two-way coupling model for V0 = 15 kV, 

 Re = 300 
(a) τ = 101.1, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(b) τ = 101.9, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(c) τ = 102.7, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(d) τ = 103.5, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
(e) τ = 104.5, θmax = 1.0, θmin = 0.0, Δθ = 0.05 
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Figure A.9  Flow fields predicted by one-way coupling model for V0 = 17.5 kV, Re = 150 

(a) τ = 55.1, Ψmax = 3.0, Ψmin = -6.5, ΔΨ = 0.5 
(b) τ = 55.5, Ψmax = 3.5, Ψmin = -6.5, ΔΨ = 0.5 
(c) τ = 55.9, Ψmax = 4.5, Ψmin = -7.5, ΔΨ = 0.5 
(d) τ = 56.3, Ψmax = 4.5, Ψmin = -7.5, ΔΨ = 0.5 
(e) τ = 56.8, Ψmax = 3.0, Ψmin = -6.0, ΔΨ = 0.5 
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Figure A.10  Flow fields predicted by two-way coupling model for V0 = 17.5 kV,  

Re = 150 
(a) τ = 55.8, Ψmax = 2.9, Ψmin = -6.4, ΔΨ = 0.5 
(b) τ = 56.2, Ψmax = 3.5, Ψmin = -6.5, ΔΨ = 0.5 
(c) τ = 56.6, Ψmax = 4.6, Ψmin = -7.4, ΔΨ = 0.5 
(d) τ = 57.0, Ψmax = 4.6, Ψmin = -7.4, ΔΨ = 0.5 
(e) τ = 57.4, Ψmax = 4.2, Ψmin = -7.3, ΔΨ = 0.5 
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Figure A.11  Temperature fields predicted by one-way coupling model for V0 = 17.5 kV,  

Re = 150 
(a) τ = 55.1, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) τ = 55.5, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) τ = 55.9, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) τ = 56.3, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) τ = 56.8, θmax = 1.0, θmin = 0.0, Δ = 0.05 

 
 

(b)

(c)

(d)

(e)

(a)

 

(a) 

(b) 

(c) 

(d) 

(e) 

 
Figure A.12  Temperature fields predicted by two-way coupling model for V0 = 17.5 kV,  

Re = 150 
(a) τ = 55.8, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) τ = 56.2, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) τ = 56.6, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) τ = 57.0, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) τ = 57.4, θmax = 1.0, θmin = 0.0, Δ = 0.05 
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Figure A.13  Flow fields predicted by one-way coupling model for V0 = 17.5 kV,  

Re = 300 
(a) τ = 56.0, Ψmax = 2.0, Ψmin = -3.6, ΔΨ = 0.2 
(b) τ = 56.7, Ψmax = 1.5, Ψmin = -3.3, ΔΨ = 0.2 
(c) τ = 57.4, Ψmax = 1.8, Ψmin = -3.0, ΔΨ = 0.2 
(d) τ = 58.1, Ψmax = 2.3, Ψmin = -3.5, ΔΨ = 0.2 
(e) τ = 59.0, Ψmax = 2.0, Ψmin = -3.6, ΔΨ = 0.2 
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Figure A.14  Flow fields predicted by two-way coupling model for V0 = 17.5 kV,  

Re = 300 
(a) τ = 58.0, Ψmax = 2.0, Ψmin = -3.6, ΔΨ = 0.2 
(b) τ = 58.7, Ψmax = 1.5, Ψmin = -3.3, ΔΨ = 0.2 
(c) τ = 59.4, Ψmax = 1.8, Ψmin = -3.0, ΔΨ = 0.2 
(d) τ = 60.1, Ψmax = 2.3, Ψmin = -3.5, ΔΨ = 0.2 
(e) τ = 60.9, Ψmax = 2.0, Ψmin = -3.6, ΔΨ = 0.2 
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Figure A.15  Temperature fields predicted by one-way coupling model for V0 = 17.5 kV, 

 Re = 300 
(a) τ = 56.0, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) τ = 56.7, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) τ = 57.4, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) τ = 58.1, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) τ = 59.0, θmax = 1.0, θmin = 0.0, Δ = 0.05 
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Figure A.16  Temperature fields predicted by two-way coupling model for V0 = 17.5 kV,  

Re = 300 
(a) τ = 58.0, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) τ = 58.7, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) τ = 59.4, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) τ = 60.1, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) τ = 60.9, θmax = 1.0, θmin = 0.0, Δ = 0.05 
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Figure A.17  Flow fields predicted by one-way coupling model for V0 = 17.5 kV,  

Re = 450 
(a) τ = 58.6, Ψmax = 1.7, Ψmin = -0.3, ΔΨ = 0.1 
(b) τ = 59.1, Ψmax = 2.6, Ψmin = -0.2, ΔΨ = 0.1 
(c) τ = 59.6, Ψmax = 2.9, Ψmin = -0.4, ΔΨ = 0.1 
(d) τ = 60.1, Ψmax = 2.0, Ψmin = -0.4, ΔΨ = 0.1 
(e) τ = 60.6, Ψmax = 1.6, Ψmin = -0.3, ΔΨ = 0.1 
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Figure A.18  Flow fields predicted by two-way coupling model for V0 = 17.5 kV,  

Re = 450 
(a) τ = 56.7, Ψmax = 1.6, Ψmin = -0.3, ΔΨ = 0.1 
(b) τ = 57.2, Ψmax = 2.5, Ψmin = -0.2, ΔΨ = 0.1 
(c) τ = 57.7, Ψmax = 2.9, Ψmin = -0.5, ΔΨ = 0.1 
(d) τ = 58.2, Ψmax = 2.1, Ψmin = -0.4, ΔΨ = 0.1 
(e) τ = 58.6, Ψmax = 1.8, Ψmin = -0.3, ΔΨ = 0.1 
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Figure A.19  Temperature fields predicted by one-way coupling model for V0 = 17.5 kV,  

Re = 450 
(a) τ = 58.6, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) τ = 59.1, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) τ = 59.6, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) τ = 60.1, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) τ = 60.6, θmax = 1.0, θmin = 0.0, Δ = 0.05 
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Figure A.20  Temperature fields predicted by two-way coupling model for V0 = 17.5 kV,  

Re = 450 
(a) τ = 56.7, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) τ = 57.2, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) τ = 57.7, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) τ = 58.2, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) τ = 58.6, θmax = 1.0, θmin = 0.0, Δ = 0.05 
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Figure A.21  Flow fields predicted by one-way coupling model for V0 = 17.5 kV,  

Re = 600 
(a) τ = 57.6, Ψmax = 1.3, Ψmin = 0.0, ΔΨ = 0.1 
(b) τ = 58.2, Ψmax = 1.8, Ψmin = 0.0, ΔΨ = 0.1 
(c) τ = 58.8, Ψmax = 2.2, Ψmin = 0.0, ΔΨ = 0.1 
(d) τ = 59.4, Ψmax = 2.0, Ψmin = 0.0, ΔΨ = 0.1 
(e) τ = 59.9, Ψmax = 1.3, Ψmin = 0.0, ΔΨ = 0.1 

 
 

(a)

(b)

(c)

(d)

(e)
 

(a) 

(b) 

(c) 

(d) 

(e) 

 
Figure A.22  Flow fields predicted by two-way coupling model for V0 = 17.5 kV,  

Re = 600 
(a) τ = 57.7, Ψmax = 1.3, Ψmin = 0.0, ΔΨ = 0.1 
(b) τ = 58.3, Ψmax = 1.9, Ψmin = 0.0, ΔΨ = 0.1 
(c) τ = 58.9, Ψmax = 2.2, Ψmin = 0.0, ΔΨ = 0.1 
(d) τ = 59.5, Ψmax = 1.9, Ψmin = 0.0, ΔΨ = 0.1 
(e) τ = 60.1, Ψmax = 1.3, Ψmin = 0.0, ΔΨ = 0.1 
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Figure A.23  Temperature fields predicted by one-way coupling model for V0 = 17.5 kV,  

Re = 600 
(a) τ = 57.6, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) τ = 58.2, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) τ = 58.8, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) τ = 59.4, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) τ = 59.9, θmax = 1.0, θmin = 0.0, Δ = 0.05 
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Figure A.24  Temperature fields predicted by two-way coupling model for V0 = 17.5 kV,  

Re = 600 
(a) τ = 57.7, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) τ = 58.3, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) τ = 58.9, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) τ = 59.5, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) τ = 60.1, θmax = 1.0, θmin = 0.0, Δ = 0.05 
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Figure A.25  Flow fields predicted by one-way coupling model for V0 = 17.5 kV,  

Re = 750 
(a) τ = 58.4, Ψmax = 1.7, Ψmin = 0.0, ΔΨ = 0.1 
(b) τ = 59.2, Ψmax = 1.6, Ψmin = 0.0, ΔΨ = 0.1 
(c) τ = 60.0, Ψmax = 1.4, Ψmin = 0.0, ΔΨ = 0.1 
(d) τ = 60.8, Ψmax = 1.6, Ψmin = 0.0, ΔΨ = 0.1 
(e) τ = 61.4, Ψmax = 1.7, Ψmin = 0.0, ΔΨ = 0.1 
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Figure A.26  Flow fields predicted by two-way coupling model for V0 = 17.5 kV, 

 Re = 750 
(a) τ = 58.2, Ψmax = 1.7, Ψmin = 0.0, ΔΨ = 0.1 
(b) τ = 59.0, Ψmax = 1.9, Ψmin = 0.0, ΔΨ = 0.1 
(c) τ = 59.8, Ψmax = 2.3, Ψmin = 0.0, ΔΨ = 0.1 
(d) τ = 60.6, Ψmax = 2.0, Ψmin = 0.0, ΔΨ = 0.1 
(e) τ = 61.2, Ψmax = 1.7, Ψmin = 0.0, ΔΨ = 0.1 
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Figure A.27  Temperature fields predicted by one-way coupling model for V0 = 17.5 kV, 

 Re = 750 
(a) τ = 58.4, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) τ = 59.2, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) τ = 60.0, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) τ = 60.8, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) τ = 61.4, θmax = 1.0, θmin = 0.0, Δ = 0.05 
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Figure A.28  Temperature fields predicted by two-way coupling model for V0 = 17.5 kV,  

Re = 750 
(a) τ = 58.2, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) τ = 59.0, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) τ = 59.8, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) τ = 60.6, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) τ = 61.2, θmax = 1.0, θmin = 0.0, Δ = 0.05 
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Figure A.29  Flow fields predicted by one-way coupling model for V0 = 17.5 kV 

(a) Re = 900,   Ψmax = 1.2, Ψmin = 0.5, ΔΨ = 0.05 
(b) Re = 1050, Ψmax = 1.2, Ψmin = 0.5, ΔΨ = 0.05 
(c) Re =1200, Ψmax = 1.1, Ψmin = 0.5, ΔΨ = 0.05 
(d) Re = 1800, Ψmax = 1.0, Ψmin = 0.5, ΔΨ = 0.05 
(e) Re = 2400, Ψmax = 1.0, Ψmin = 0.5, ΔΨ = 0.05 
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Figure A.30  Flow fields predicted by two-way coupling model for V0 = 17.5 kV 

(a) Re = 900,   Ψmax = 1.2, Ψmin = 0.5, ΔΨ = 0.05 
(b) Re = 1050, Ψmax = 1.2, Ψmin = 0.5, ΔΨ = 0.05 
(c) Re = 1200, Ψmax = 1.1, Ψmin = 0.5, ΔΨ = 0.05 
(d) Re = 1800, Ψmax = 1.0, Ψmin = 0.5, ΔΨ = 0.05 
(e) Re = 2400, Ψmax = 1.0, Ψmin = 0.5, ΔΨ = 0.05 
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Figure A.31  Temperature fields predicted by one-way coupling model for V0 = 17.5 kV 

(a) Re = 900,   θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) Re = 1050, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) Re = 1200, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) Re = 1800, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) Re = 2400, θmax = 1.0, θmin = 0.0, Δ = 0.05 
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Figure A.32  Temperature fields predicted by two-way coupling model for V0 = 17.5 kV 

(a) Re = 900,   θmax = 1.0, θmin = 0.0, Δ = 0.05 
(b) Re = 1050, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(c) Re = 1200, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(d) Re =1800, θmax = 1.0, θmin = 0.0, Δ = 0.05 
(e) Re = 2400, θmax = 1.0, θmin = 0.0, Δ = 0.05 
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Figure B.1  Flow fields at the wire position 3 (V0 = 12.0 kV, Ra = 104, with Joule 
heating) 

(a) τ = 614.7,Ψmax = 0.030,  Ψmin = -0.030, ΔΨ = 0.005 
(b) τ = 630.2, Ψmax = 0.030, Ψmin = -0.035, ΔΨ = 0.005 
(c) τ = 645.7, Ψmax = 0.050, Ψmin = -0.020, ΔΨ = 0.005 
(d) τ = 661.2, Ψmax = 0.040, Ψmin = -0.020, ΔΨ = 0.005 
(e) τ = 676.7, Ψmax = 0.030, Ψmin = -0.030, ΔΨ = 0.005 

 

(a) (b) (c) (d) (e)
 

 
Figure B.2  Flow fields at the wire position 3 (V0 = 12.0 kV, Ra = 104, without Joule 

heating) 
(a) τ = 615.8,Ψmax = 0.025,  Ψmin = -0.040, ΔΨ = 0.005 
(b) τ = 629.3, Ψmax = 0.050, Ψmin = -0.020, ΔΨ = 0.005 
(c) τ = 642.8, Ψmax = 0.050, Ψmin = -0.020, ΔΨ = 0.005 
(d) τ = 656.3, Ψmax = 0.035, Ψmin = -0.025, ΔΨ = 0.005 
(e) τ = 670.8, Ψmax = 0.025, Ψmin = -0.040, ΔΨ = 0.005 
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Figure B.3  Temperature fields at the wire position 3 (V0 = 12.0 kV, Ra = 104, with Joule 
heating) 

(a) τ = 614.7, θmax = 3.4, θmin = 0.0, Δθ = 0.2 
(b) τ = 630.2, θmax = 3.6, θmin = 0.0, Δθ = 0.2 
(c) τ = 645.7, θmax = 4.4, θmin = 0.0, Δθ = 0.2 
(d) τ = 661.2, θmax = 3.2, θmin = 0.0, Δθ = 0.2 
(e) τ = 676.7, θmax = 3.4, θmin = 0.0, Δθ = 0.2 

 

(a) (b) (c) (d) (e)
 

Figure B.4  Temperature fields at the wire position 3 (V0 = 12.0 kV, Ra = 104, without 
Joule heating) 

(a) τ = 615.8, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(b) τ = 629.3, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(c) τ = 642.8, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(d) τ = 656.3, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(e) τ = 670.8, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
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Figure B.5  Flow fields at the wire position 3 (V0 = 12.0 kV, ΔΨ = 0.005) 
(a) Ra = 105, with joule heating,      Ψmax = 0.02, Ψmin = -0.045 
(b) Ra = 105, without joule heating, Ψmax = 0.00, Ψmin = -0.050 
(c) Ra = 106, with joule heating,        Ψmax = 0.0, Ψmin = -0.070   
(d) Ra = 106, without joule heating,    Ψmax = 0.0, Ψmin = -0.070 
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Figure B.6  Temperature fields at the wire position 3 

(V0 = 12.0 kV, θmax = 1.0, θmin = 0.0, Δθ=0.1) 
(a) Ra = 105,      with Joule  heating 
(b) Ra = 105, without Joule heating 
(c) Ra = 106,    with  Joule  heating 
(d) Ra = 106, without Joule heating 
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Figure B.7  Flow fields at the wire position 2 (V0 = 12.0kV, Ra = 104, with Joule heating) 
(a) τ = 656.1, Ψmax = 0.040, Ψmin = -0.030, ΔΨ = 0.005 
(b) τ = 668.6, Ψmax = 0.020, Ψmin = -0.035, ΔΨ = 0.005 
(c) τ = 681.1, ,Ψmax = 0.035, Ψmin = -0.030, ΔΨ = 0.005 
(d) τ = 693.6, ,Ψmax = 0.045, Ψmin = -0.020, ΔΨ = 0.005 
(e) τ = 705.8, ,Ψmax = 0.040, Ψmin = -0.025, ΔΨ = 0.005 
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Figure B.8  Flow fields at the wire position 2 (V0 = 12.0 kV, Ra = 104, without Joule 
heating) 

(a) τ = 611.9, Ψmax = 0.040,  Ψmin= -0.025, ΔΨ = 0.005 
(b) τ = 623.9, Ψmax = 0.040, Ψmin= -0.020, ΔΨ = 0.005 
(c) τ = 635.9, Ψmax = 0.030, Ψmin= -0.030, ΔΨ = 0.005 
(d) τ = 647.9, Ψmax = 0.020, Ψmin= -0.035, ΔΨ = 0.005 
(e) τ = 660.9, Ψmax = 0.040, Ψmin= -0.025, ΔΨ = 0.005 
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Figure B.9  Flow fields at the wire position 2 (V0 = 15.0 kV, Ra = 106, with Joule 
heating) 

(a) τ = 629.0, Ψmax = 0.13, Ψmin = -0.05 , ΔΨ = 0.005 
(b) τ = 636.0, Ψmax = 0.13, Ψmin = -0.05 , ΔΨ = 0.005 
(c) τ = 643.0, Ψmax = 0.13, Ψmin = -0.05 , ΔΨ = 0.005 
(d) τ = 650.0, Ψmax = 0.13, Ψmin = -0.05 , ΔΨ = 0.005 
(e) τ = 659.0, Ψmax = 0.13, Ψmin = -0.05 , ΔΨ = 0.005 
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Figure B.10  Flow fields at the wire position 2 (V0 = 15.0 kV, Ra = 106, without Joule 
heating) 

(a) τ = 618.0, Ψmax = 0.13, Ψmin = -0.05, ΔΨ = 0.005 
(b) τ = 625.0, Ψmax = 0.13, Ψmin = -0.05, ΔΨ = 0.005 
(c) τ = 632.0, Ψmax = 0.13, Ψmin = -0.05, ΔΨ = 0.005 
(d) τ = 639.0, Ψmax = 0.13, Ψmin = -0.05, ΔΨ = 0.005 
(e) τ = 646.3, Ψmax = 0.13, Ψmin = -0.05, ΔΨ = 0.005 
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Figure B.11  Temperature fields at the wire position 2 (V0 = 15.0 kV, Ra = 106, with 
Joule heating)  

(a) τ = 629.0, θmax = 1.0, θmin = 0.0 , Δθ = 0.05 
(b) τ = 636.0, θmax = 1.0, θmin = 0.0 , Δθ = 0.05 
(c) τ = 643.0, θmax = 1.0, θmin = 0.0 , Δθ = 0.05 
(d) τ = 650.0, θmax = 1.0, θmin = 0.0 , Δθ = 0.05 
(e) τ = 659.0, θmax = 1.0, θmin = 0.0 , Δθ = 0.05 
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Figure B.12  Temperature fields at the wire position 2 

(V0 = 15.0 kV, Ra = 106, without Joule heating) 
(a) τ = 618.0, θmax = 1.0, θmin = 0.0 , Δθ = 0.05 
(b) τ = 625.0, θmax = 1.0, θmin = 0.0 , Δθ = 0.05 
(c) τ = 632.0, θmax = 1.0, θmin = 0.0 , Δθ = 0.05 
(d) τ = 639.0, θmax = 1.0, θmin = 0.0 , Δθ = 0.05 
(e) τ = 646.3, θmax = 1.0, θmin = 0.0 , Δθ = 0.05 
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(a) (b) (c) (d) (e)
 

Figure B.13  Flow fields at the wire position 1 (V0 = 12.0 kV, Ra = 104, with Joule 
heating) 

(a) τ = 697.5,  Ψmax = 0.050, Ψmin = -0.020, ΔΨ = 0.005 
(b) τ = 722.5,  Ψmax = 0.025, Ψmin = -0.035, ΔΨ = 0.005 
(c) τ = 747.5,  Ψmax = 0.050, Ψmin = -0.020, ΔΨ = 0.005 
(d) τ = 772.5,  Ψmax = 0.030, Ψmin = -0.030, ΔΨ = 0.005 
(e) τ = 798.9,  Ψmax = 0.050, Ψmin = -0.020, ΔΨ = 0.005 

 
 

(a) (b) (c) (d) (e)
 

Figure B.14  Flow fields at the wire position 1 (V0 = 12.0 kV, Ra = 104, without Joule 
heating) 

(a) τ = 768.3, Ψmax = 0.040, Ψmin = -0.025, ΔΨ = 0.005  
(b) τ = 781.9,  Ψmax = 0.025, Ψmin = -0.040, ΔΨ = 0.005  
(c) τ = 795.5,  Ψmax = 0.050, Ψmin = -0.020, ΔΨ = 0.005  
(d) τ = 809.1,  Ψmax = 0.050, Ψmin = -0.020, ΔΨ = 0.005  
(e) τ = 822.9,  Ψmax = 0.040, Ψmin = -0.025, ΔΨ = 0.005  
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(a) (b) (c) (d) (e)
 

Figure B.15  Temperature fields at the wire position 1 (V0 = 12.0 kV, Ra = 104, with 
Joule heating) 

(a) τ = 697.5,  θmax = 3.0, θmin = 0.0 , Δθ = 0.2 
(b) τ = 722.5,  θmax = 4.0, θmin = 0.0 , Δθ = 0.2 
(c) τ = 747.5,  θmax = 3.2, θmin = 0.0 , Δθ = 0.2 
(d) τ = 772.5,  θmax = 4.0, θmin = 0.0 , Δθ = 0.2 
(e) τ = 798.9,  θmax = 3.0, θmin = 0.0 , Δθ = 0.2 

 
 

(a) (b) (c) (d) (e)
 

Figure B.16  Temperature fields at the wire position 1 
(V0 = 12.0 kV, Ra = 104, without Joule heating) 

(a) τ = 768.3, θmax = 1.0, θmin = 0.0 , Δθ = 0.2 
(b) τ = 781.9, θmax = 1.0, θmin = 0.0 , Δθ = 0.2 
(c) τ = 795.5, θmax = 1.0, θmin = 0.0 , Δθ = 0.2 
(d) τ = 809.1, θmax = 1.0, θmin = 0.0 , Δθ = 0.2 
(e) τ = 822.9, θmax = 1.0, θmin = 0.0 , Δθ = 0.2 
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(a) (b) (c) (d)
 

Figure B.17  Flow fields at the wire position 1 (V0 = 12.0 kV) 
(a) Ra = 105 , with Joule heating,    Ψmax = 0.01, Ψmin = -0.050, ΔΨ = 0.005) 
(b) Ra = 105 , without Joule heating, Ψmax = 0.00, Ψmin = -0.050, ΔΨ = 0.005) 
(c) Ra = 106 , with Joule heating,      Ψmax = 0.00, Ψmin = -0.070, ΔΨ = 0.005) 
(d) Ra = 106 , without Joule heating,  Ψmax = 0.00, Ψmin = -0.070, ΔΨ = 0.005) 

 

(a) (b) (c) (d)
 

Figure B.18  Temperature at the wire position 1 
(V0 = 12.0 kV, θmax = 1.0, θmin = 0.0,Δθ = 0.1) 

(a) Ra = 105 ,       with Joule heating 
(b) Ra = 105 , without Joule heating 
(c) Ra = 106 ,       with Joule heating 
(d) Ra = 106 , without Joule heating 
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(a) (b) (c) (d) (e)
 

Figure B.19  Flow fields at the wire position 1 (V0 = 15.0 kV, Ra = 106, with Joule 
heating) 

(a) τ = 1017.2, Ψmax = 0.130, Ψmin = -0.03, ΔΨ = 0.01  
(b) τ = 1024.4, Ψmax = 0.120, Ψmin = -0.03, ΔΨ = 0.01  
(c) τ = 1031.6, Ψmax = 0.120, Ψmin = -0.03, ΔΨ = 0.01  
(d) τ = 1038.8, Ψmax = 0.130, Ψmin = -0.03 , ΔΨ = 0.01 
(e) τ = 1046.0, Ψmax = 0.130, Ψmin = -0.03, ΔΨ = 0.01  

 
 

(a) (b) (c) (d) (e)
 

Figure B.20  Flow fields at the wire position 1 (V0 = 15.0 kV, Ra = 106, without Joule 
heating) 

(a) τ = 1011.8, Ψmax = 0.130, Ψmin = -0.03 , ΔΨ = 0.01 
(b) τ = 1018.7, Ψmax = 0.120, Ψmin = -0.03 , ΔΨ = 0.01 
(c) τ = 1025.6, Ψmax = 0.130, Ψmin = -0.03 , ΔΨ = 0.01 
(d) τ = 1032.5, Ψmax = 0.130, Ψmin = -0.03 , ΔΨ = 0.01 
(e) τ = 1039.4, Ψmax = 0.130, Ψmin = -0.03 , ΔΨ = 0.01 
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(a) (b) (c) (d) (e)
 

Figure B.21  Temperature fields at wire the position 1 (V0 = 15.0 kV, Ra = 106, with 
Joule heating) 

(a) τ = 1017.2, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(b) τ = 1024.4, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(c) τ = 1031.6, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(d) τ = 1038.8, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(e) τ = 1046.0, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 

 

(a) (b) (c) (d) (e)
 

Figure B.22  Temperature fields at the wire position 1 
(V0 = 15.0 kV, Ra = 106, without Joule heating) 

(a) τ = 1011.8, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(b) τ = 1018.7, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(c) τ = 1025.6, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(d) τ = 1032.5, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
(e) τ = 1039.4, θmax = 1.0, θmin = 0.0 , Δθ = 0.1 
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Figure B.23  Variation of Nusselt number with time for V0 = 12.0 kV  

at the wire position 2 (with Joule heating, solid---cold wall, dashed--- hot wall) 
(a) Ra = 104, (b) Ra = 105, (c) Ra = 106
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Figure B.24  Variation of Nusselt number with time for V0 = 12.0 kV  

at the wire position 2 (without Joule heating, solid---cold wall, dashed--- hot wall) 
(a) Ra = 104, (b) Ra = 105, (c) Ra = 106
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Figure B.25  Variation of Nusselt number with time for V0 = 15.0 kV  

at the wire position 2 (with Joule heating, solid---cold wall, dashed--- hot wall) 
(a) Ra = 104, (b) Ra = 105, (c) Ra = 106
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Figure B.26  Variation of Nusselt number with time for V0 = 15.0 kV  

at the wire position 2 (without Joule heating, solid---cold wall, dashed--- hot wall) 
(a) Ra = 104, (b) Ra = 105, (c) Ra = 106
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Figure B.27  Variation of Nusselt number with time for V0 = 18.0 kV 

at the wire position 2 (with Joule heating, solid---cold wall, dashed--- hot wall) 
(a) Ra = 104, (b) Ra = 105, (c) Ra = 106
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Figure B.28  Variation of Nusselt number with time for V0 = 18.0 kV  

at the wire position 2 (without Joule heating, solid---cold wall, dashed--- hot wall) 
(a) Ra = 104, (b) Ra = 105, (c) Ra = 106
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Table C.1  Positive corona discharge without cross-flow 
 

Sherwood Number    Positive Discharge 
Without Cross-flow 

Net weight lost Average Ambient 

Voltage Current Electrode Ambient Temp. Humidity 
kV μA g/s (10-4) oC RH% 

ReEHD

Electrode
She

Ambient 
Sha

She/ Sha

14 12.6 8.56 4.71 23.4 51.9 14.633 0.0986 0.0543 1.7945 
15 19.5 14.84 5.85 25.5 30.4 18.039 0.1049 0.0413 2.5368 
16 29.4 17.89 6.25 25.4 28.9 22.159 0.1247 0.0436 2.8624 
17 40.2 20.17 6.28 26.0 29.1 25.846 0.1353 0.0421 3.2118 
18 47.9 21.29 6.20 25.5 30.7 28.273 0.1511 0.0440 3.4339 
19 63.9 21.29 5.80 26.2 35.5 32.558 0.1547 0.0422 3.6707 
20 78.9 21.95 5.41 26.1 38.2 36.195 0.1676 0.0413 4.0573 

 
 

Table C.2  Positive corona discharge with cross-flow (ui = 2.2 m/s) 
 

Sherwood Number    Positive Discharge 
With Cross-flow 

Net weight lost Average Ambient 

Voltage Current Electrode Ambient Temp. Humidity 
kV μA g/s (10-4) oC RH% 

NEHD

Electrode
She

Ambient 
Sha

She/ Sha

14 14.4 25.58 6.76 27.2 37.8 0.216 0.1807 0.0478 3.7840 
15 25.1 26.35 8.01 26.6 36.1 0.285 0.1883 0.0572 3.2896 
16 38.0 27.22 7.28 27 33.3 0.351 0.1817 0.0486 3.7390 
17 50.2 26.64 7.56 26.4 34.6 0.403 0.1885 0.0535 3.5238 
18 67.0 27.60 7.61 27 32.6 0.466 0.1823 0.0503 3.6268 
19 81.2 29.10 8.04 26.4 29.9 0.513 0.1922 0.0531 3.6194 
20 93.7 29.98 9.52 26.5 27.4 0.551 0.1900 0.0603 3.1492 
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Table C.3  Negative corona discharge without cross-flow 
 

Sherwood Number    Negative Discharge 
Without Cross-flow 

Net weight lost Average Ambient 

Voltage Current Electrode Ambient Temp. Humidity 
kV μA g/s (10-4) oC RH% 

ReEHD

Electrode
She

Ambient 
Sha

She/ Sha

14 4.3 8.88 5.70 26.0 26.0 6.978 0.0571 0.0366 1.5580 
15 13.5 11.79 5.74 24.0 43.5 12.471 0.1124 0.0643 2.0540 
16 30.4 17.22 6.29 25.9 31.2 18.561 0.1198 0.0438 2.7377 
17 38.3 18.10 7.04 25.5 33.5 20.870 0.1338 0.0595 2.5710 
18 56.0 20.77 6.22 26.0 31.7 25.182 0.1446 0.0433 3.3392 
19 74.0 23.53 6.98 25.7 28.8 28.983 0.1604 0.0476 3.3711 
20 85.8 23.19 6.58 25.8 35.1 31.196 0.1721 0.0503 3.5243 

 
 

Table C.4  Negative discharge with cross-flow (ui = 2.2 m/s) 
 

Sherwood Number   Negative Discharge 
With Cross-flow 

Net weight lost Average Ambient 

Voltage Current Electrode Ambient Temp. Humidity 
kV μA g/s (10-4) oC RH% 

NEHD

Electrode
She

Ambient 
Sha

She/ Sha

14 19.8 16.01 5.50 23.7 50.3 0.209 0.1765 0.0606 2.9109 
15 33.0 15.17 5.84 24.0 49.8 0.270 0.1627 0.0626 2.5976 
16 42.2 17.00 5.96 23.2 49.6 0.305 0.1905 0.0668 2.8523 
17 58.0 16.93 6.07 23.4 48.3 0.358 0.1828 0.0655 2.7891 
18 79.2 16.59 6.33 22.9 49.5 0.418 0.1890 0.0721 2.6209 
19 103.4 18.47 6.80 22.8 44.3 0.478 0.1921 0.0707 2.7162 
20 133.2 21.16 7.12 23.0 40.7 0.542 0.2043 0.0687 2.9719 

 

 152 
 
 

 


	GRADUATE COLLEGE 
	EHD-ENHANCED HEAT AND MASS TRANSFER 
	SUBMITTED TO THE GRADUATE FACULTY 
	DOCTOR OF PHILOSOPHY 
	 
	EHD-ENHANCED HEAT AND MASS TRANSFER 
	 ACKNOWLEDGMENTS 
	 ABSTRACT 
	 TABLE OF CONTENTS 
	LIST OF TABLES 
	NOMENCLATURE 
	CHAPTER ONE  
	INTRODUCTION AND LITERATURE REVIEW 
	1.2  EHD-enhanced Heat Transfer  
	1.2.1  EHD-enhanced Natural Convection  
	1.2.2  EHD-enhanced Forced Convection  

	1.3  EHD-enhanced Mass Transfer 
	1.4  Objective of Present Study 

	CHAPTER TWO 
	EHD-ENHANCED HEAT TRANSFER 
	2.1  Electric Field 
	2.1.1  Governing Equations 
	2.1.2  Numerical Formulation of Electric Field  

	2.2  EHD-enhanced Forced Convection Employing Two-way Coupling  
	2.2.1  Governing Equations for Fluid and Temperature Fields 
	2.2.2  Numerical Formulation of Flow and Temperature Fields 
	2.2.3  The Wood’s Algorithm 
	2.2.4  Evaluation of Heat Transfer Results 
	2.2.6  Results and Discussion 

	2.3  EHD-enhanced Natural Convection with Joule Heating 
	2.3.1  Heat Generation for a Wire-plate System 
	2.3.2  Governing Equations for Flow and Temperature Fields 
	2.3.3  Evaluation of Heat Transfer Results 
	2.3.4  Code Validation  
	2.3.5  Results and Discussion 

	3.1  Experiment Study 
	3.1.1  Experiment Setup 
	3.1.2  Experimental Apparatus 
	3.1.3  Experiment Procedure 
	3.1.4  Data Analysis 
	3.1.5  Calculation of Sherwood Number  
	3.1.5  Results and Discussion  

	3.2  Numerical Simulation 
	3.2.1  Electric Field 
	3.2.2  Flow and Concentration Fields 
	3.2.3  The Sherwood Number 
	3.2.4  Code Validation 
	3.2.5 Results and Discussion 


	 CHAPTER FOUR 
	CONCLUSIONS 
	4.1  EHD-enhanced Heat Transfer 
	4.2  EHD-enhanced Mass Transfer 
	4.3  Recommendations for Future Study 

	 REFERENCES 
	 APPENDIX A 
	FLOW AND TEMPERATURE FIELDS FOR ONE-WAY AND TWO-WAY COUPLING MODELS 
	 APPENDIX B 
	FLOW AND TEMPERATURE FIELDS OF JOULE HEATING 
	 APPENDIX C 
	EXPERIMENT RESULTS 


