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ABSTRACT

The use o f physical and hydraulic containment systems for the isolation of 

contaminated ground water and aquifer materials associated with hazardous waste sites 

has increased during the last decade. The existing methodologies for monitoring and 

evaluating leakage from hazardous waste containment systems rely primarily on limited 

hydraulic head data. The number o f hydraulic head monitoring points available at most 

sites employing physical containment systems may be insufficient to identify significant 

leakage from the systems. A general approach for evaluating the performance of 

containment systems, based on relative spatial and temporal hydraulic head distributions 

is used to introduce two methodologies for estimating the minimum number of 

monitoring points necessary to identify the hydraulic signature o f leakage from a 

containment system. The first method is a probabilistic approach, based on the principles 

o f geometric probability. Three-dimensional ground-water flow modeling results are 

used to illustrate the utility o f the method. Leakage from a vertical barrier containment 

system is simulated using a variety o f hydrogeologic conditions ranging from 

homogeneous to heterogeneous and isotropic to anisotropic. The second method utilizes 

informational entropy to quantify the spatial variability of hydraulic signatures associated 

with containment system leakage in the presence of background noise and trend surfaces.
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CHAPTER 1

DISSERTATION OVERVIEW

1.1 INTRODUCTION

Physical containment systems are being used as components of ground-water 

remedies at a growing number o f hazardous waste sites. Their primary purpose is to prevent 

or reduce the impact o f  contaminant sources on ground-water, thereby reducing the risks to 

human health and the environment from exposure to hazardous compounds. Unfortunately, 

all containment systems leak to some extent. Advective leakage may occur over, under or 

through a barrier. Contaminated ground water may also leak through the underlying strata 

into which the vertical barrier is supposedly keyed. Diffusion may serve as another 

mechanism for the release of contaminants into the environment. This dissertation focuses 

primarily on identifying leakage through discrete zones o f  high hydraulic conductivity 

(windows), in otherwise low hydraulic conductivity vertical barriers. The range of leakage 

rates varies from negligible to significant. The severity o f a leak with respect to potential 

impacts on human health and the environment is dependent not only on the rate of leakage, 

but also on the concentration o f contaminants being introduced into the environment.



There are currently no uniform methods to reliably measure and document the 

hydrologie performance o f existing and proposed hazardous waste containment systems. The 

overall integrity o f a containment system can be evaluated based on estimating the rate of 

leakage using well hydrographs from inside and outside the system and appropriate 

assumptions (e.g., dimensions o f the containment system and average porosity, etc.). If the 

observed leakage rate greatly exceeds the predicted leakage rate based on design criteria, it 

may be desirable to further evaluate potential avenues o f leakage. This dissertation presents 

several methods for evaluating containment system leakage using existing or proposed 

monitoring systems by 1 ) identifying whether the systems are functioning as designed with 

respect to leakage rates, 2) determining the probability o f detecting the hydraulic signature 

of a leak from a containment system, given specified constraints, and 3) discriminating 

hydraulic signatures o f leaks from different background noises using informational entropy.

1.2 DISSERTATION ORGANIZATION

This dissertation discusses research results o f into methods for evaluating the leakage 

from subsurface vertical barrier containment systems is discussed in this dissertation. Three 

of the chapters are a series of papers that have either been published or will be submitted for 

publication. The format follows the requirements of the journals to which the papers are 

submitted. However, the headings, subheadings, tables and figures have been numbered to 

be congruous with the context of the dissertation.



Chapter 2 presents an introduction to the potential problems related to evaluating the 

performance o f hazardous waste containment systems. The chapter presents a general 

method for determining if  a containment system is leaking, and if so, whether the leakage 

exceeds the rate deemed permissible under the constraints of the design criteria.

Chapter 3 presents the results o f a three-dimensional ground-water flow model o f a 

leaking subsurface vertical barrier and discusses a method for identifying the hydraulic 

signature associated with the simulated leakage. The methodology is used to determine the 

minimum number o f monitoring points necessary to identify the hydraulic mound created 

under different hydrogeologic conditions ranging from homogeneous to heterogeneous, and 

isotropic to anisotropic settings, given specific constraints. The methodology is a variant of 

an approach used to determine the number o f sampling points required to locate a localized 

area of high contaminant concentrations or hot spot.

Chapter 4 focuses on the application of entropy or information content to quantify 

the spatial variability o f model-predicted hydraulic head distributions (as described in 

Chapter 3). A methodology is presented that allows estimation o f the number of monitoring 

or sampling points necessary to discriminate the hydraulic signatures of different magnitudes 

o f leakage from a containment system from those o f random noise and trend surfaces. 

Chapter 5 summarizes the significant findings o f the research and presents recommendations 

for additional research. Chapter 6 is a bibliography o f all citations in this dissertation.



The research presented in this dissertation provides two independent methods for 

evaluating the adequacy o f existing and proposed monitoring strategies for identifying 

discrete leakage from hazardous waste containment systems. The overall objective of this 

research is to advance the fundamental and applied understanding of the detection of leakage 

from subsurface vertical barrier containment systems using relatively low cost hydraulic head 

data. The concepts presented may also be applicable to a better understanding of the 

hydraulic signature associated with interaquifer leakage via improperly abandoned wells.

As of December 2, 1998 Chapter 2 has been published as:

Ross, R.R. and M.S. Beljin (1998). "Evaluation o f Containment Systems Using Hydraulic 

Head Data". J. Envir. Engin.. 124(6):575-578.

Chapters 3 and 4 have been submitted to the Journal o f Environmental Geoloev and the 

Journal of Mathematical Geoloev. respectively, for review and consideration.



CHAPTER 2

EVALUATION OF CONTAINMENT SYSTEMS 

USING HYDRAULIC HEAD DATA

2.1 ABSTRACT

Subsurface vertical barriers have been used as components o f containment systems 

to prevent or reduce the impact o f contaminant sources on ground-water resources. A better 

understanding of the hydraulic head distribution associated with vertical barriers can enhance 

the ability o f existing performance monitoring systems to detect breaches in physical 

containment systems and may aid in the design of new performance monitoring systems. 

Given the current regulatory interest in containment systems as either supplemental or stand

alone remedial alternatives, and the lack o f adequate performance monitoring strategies at 

most existing hazardous waste sites utilizing vertical barrier technologies, there is an 

immediate need for general guidelines for determining whether a containment system is 

functioning as intended. This chapter describes an approach for evaluating the performance 

of containment systems, based on relative spatial and temporal hydraulic head distributions.



2.2 INTRODUCTION

Subsurface vertical barriers have been used to control ground-water seepage in the 

construction industry for many years. More recently, such barriers have been incorporated 

as components of containment systems to prevent or reduce the impact of contaminant 

sources on ground-water resources. Canter and Knox ( 1986) classify containment systems 

as active (e.g.. ground-water extraction to control hydraulic gradient) or passive (e.g.. 

physical barriers only). Frequently, containment systems employ a combination of active 

and passive components, depending on the remedial objectives and complexity of the 

hydrogeologic setting. Such systems commonly incorporate low permeability vertical 

barriers (walls) keyed into an underlying low permeability aquitard (floor), a low 

permeability cover (cap) to prevent the infiltration of precipitation, extraction wells, and a 

monitoring network.

Soil-bentonite slurry trench cutoff walls (slurry walls) are the most common types 

o f vertical barriers used at hazardous waste sites (Rumer and Ryan, eds., 1995). Potential 

failure mechanisms of vertical barriers can be classified as design errors, construction 

defects, and post-construction property changes. Proper design will reduce the potential for 

errors associated with wall configuration (e.g., depth and thickness), materials 

incompatibility and other factors leading to system failure (Evans, 1991). Construction 

defects generally form high hydraulic conductivity "windows" in a low hydraulic



conductivity slurry wall. These windows may result from several mechanisms including 

(U.S.EPA. 1987):

• Emplacement of improperly mixed backfill materials
• Sloughing/spalling of in situ soils from sides of trench; and
• Failure to excavate all in situ material when keying a wall to the underlying low

permeability unit.

Post-construction property changes may result from wet-dry cycles due to water table 

fluctuations, freeze-thaw degradation or chemical incompatibility between the slurry wall 

components and NAPLs (Evans. 1991).

2.3 PERFORMANCE EVALUATION OF SUBSURFACE BARRIERS

Recently, much attention has been focused on the use of containment technologies 

as supplemental and stand-alone remedial options for hazardous waste sites by the industrial 

and regulatory communities (Rumer and Ryan. eds.. 1995). The U.S. EPA recently 

sponsored a project to evaluate the adequacy of performance monitoring systems associated 

with selected hazardous waste sites (Mills, 1996).

The performance of hazardous waste containment systems has generally been 

evaluated on the basis of construction specifications. Specifically, most systems are required 

to maintain hydraulic conductivity of a vertical barrier below a specified value, typically less 

than 1 X 10'^ cm/s. During construction, the use o f appropriate field quality assurance (QA) 

and quality control (QC) testing is essential to ensure that the design performance



specifications are satisfied. Despite rigorous field QA/QC procedures, the unintentional 

formation of preferential pathways within a vertical barrier is still possible. Consequently, 

the regulatory community identified the need to develop procedures to verify post

construction performance and identify unsatisfactory zones in containment systems (U.S. 

EPA. 1987). Whereas the success o f a construction dewatering vertical barrier system may 

be judged by the ability o f the barrier to limit ground-water leakage to quantities that can 

reasonably be extracted, there are no uniform methods to reliably measure and document the 

hydrologie performance o f existing and proposed hazardous waste containment systems 

(Grube, 1992).

2.4 METHODOLOGY

To determine whether a containment system is protective o f human health and the 

environment, leakage from the system into the environment must be evaluated. Several 

geophysical techniques have been identified as potentially applicable for the indirect 

detection of defects associated with vertical barriers. These techniques include ground 

penetrating radar, electrical resistivity and continuous-wave microwave technologies. 

Ground penetrating radar is capable of providing continuous spatial measurements of the 

elevation of the water table in granular soils (Shih and others, 1986). This may allow the 

identification of abrupt changes in the water table surface which may be indicative o f gross 

failures of a vertical barrier. Electrical resistivity and continuous-wave microwave 

technologies may be used to identify similar water table anomalies (Koemer and Lord.

8



1985). Unfortunately, the resolution necessary to identify small scale, yet potentially 

significant breaches in a containment system may be beyond the ability o f much of the 

instrumentation currently available. Additionally, the high costs of data acquisition and 

difficulties associated with data interpretation are among some o f the problems which plague 

many o f the high-tech geophysical techniques.

Hydrogeological techniques may be used to determine whether leakage is occurring, 

and if so, estimate the rate o f loss from the system (Day, 1995). If it is determined that a 

significant volume o f ground water is exiting the system, the location and magnitude of the 

leak(s) must be established to ascertain whether major repair efforts are necessary to 

maintain a protective remedy. The hydraulic signature associated with a containment system 

leak is dependent on the magnitude o f the difference in hydraulic head across the barrier 

wall, the areal extent of the leakage, and the hydraulic conductivities o f the vertical barrier, 

window and surrounding aquifer materials (Bodocsi and others, 1990). Although spatial 

variations in water levels have been used to identify gross construction defects in ground

water containment systems, no specific protocols/methodologies have been developed to 

evaluate whether or not ground-water containment systems are operating as designed.

The water level elevation within a containment system may be higher, lower, or 

approximately equal to that in the adjacent aquifer. By analyzing the relationship of the 

hydraulic head distribution inside and outside the containment system (Fig. 2.1 a and 2.1b),



H„ < < H,
_ ContQinrnent System

T
! Aquifer A 

^

Aquifer B

a.

C ap
V

> H„ > H, 
Confolnment Systemf

GL

Aquifer A

Aquifer B

b.

= Hydraulic Head Inside Containment System 
Hq, = Hydraulic Head Outside Containment System 
Hg = Hydraulic Head in Underlying Aquifer B 

= Leakage Into Containment System 
= Leakage Out of Containment System 

Qg = Leakage Ttirough Aqultard

Fig. 2.1 Hydraulic heads associated with a containment system.
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it is possible to assess whether or not the system is operating as designed and which potential 

transport mechanisms are most significant and require further evaluation.

Under ideal conditions, the hydraulic head will be lower inside a containment system 

relative to that outside the system, within the same and underlying aquifers (Fig. 2. la). This 

will ensure that any advective transport through the vertical barrier is inward, rather than 

outward into the environment. Under such conditions, diffusion may be the dominant 

transport mechanism of dissolved contaminants from the system (Mott and Weber, 1991). 

Relatively small differences in hydraulic heads, inside and outside a containment system 

indicate the lack of significant active hydraulic forces for advective transport of 

contaminants. However, due to the concentration gradient across the barrier, diffusive flux 

from the system is still possible. Containment systems characterized by higher hydraulic 

heads inside the confines o f a vertical barrier system are susceptible to diffiasive and 

advective losses (Fig. 2.1b).

While the hydraulic heads inside and outside a containment system have been used 

to identify gross system failures (Day, 1995), little attention has been given to monitoring 

the changes in hydraulic heads with time. Temporal water level fluctuations should be 

evaluated in conjunction with spatial head variations to assess whether or not containment 

is effective. A general flow-chart for evaluating the effectiveness o f a vertical barrier 

containment system is offered by Fig. 2.2. Significant fluctuations of water levels within 

a fully encapsulating passive containment system indicate the failure o f one or more of its

11
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Fig. 2.2 Flow chart illustrating potential actions necessary to evaluate 
the performance o f a containment system, based on relative 
spatial and temporal hydraulic head relationships.
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components (e.g., cap, floor or walls). Under ideal conditions, the water level inside the 

system will be stable, whereas water levels outside the system may fluctuate significantly 

in response to hydraulic stresses such as precipitation events, surface water fluctuations and 

local ground-water extraction. A rise in water levels in response to precipitation events may 

indicate leakage through the cap, floor, or walls. Declining water levels in systems with 

hydraulic heads greater than or equal to exterior water levels may indicate leakage through 

the floor or walls, requiring an evaluation o f hydraulic head distributions o f an underlying 

water-bearing unit with respect to heads in the containment system, or evaluation o f the wall 

integrity. The volume and rate of leakage from such a system may be estimated with 

minimal monitoring data. However, determining the location of specific breaches may 

require significantly more information.

Analysis of sufficiently detailed piezometric head data may allow the identification 

o f subtle changes in the hydraulic head distribution, thereby indicating the general locations 

o f potential leaks in a vertical barrier. Until recently, such an undertaking would be 

prohibitively expensive due to the high cost of installing the large number o f monitoring 

wells necessary to adequately define the hydraulic head distribution around a barrier wall. 

However, with the development o f several relatively inexpensive small diameter piezometer 

installation technologies (e.g., Pro-Terra VibraDrill®, GeoProbe®,etc.) it may now be 

possible to install sufficient numbers of small diameter monitoring points to identify the 

hydraulic signatures associated with containment system leaks. Similarly, information

13



obtained from cone penetrometer surveys may be useful for identifying similar hydraulic 

signatures.

2.5 DISCUSSION AND CONCLUSIONS

Analysis o f  hydraulic head relationships between a containment system and adjacent 

and/or underlying aquifers can indicate whether or not the potential exists for advective 

losses of contaminants from the system. Figures. 2.1a and 2.1 b represent the most and least 

desirable end members, respectively, o f a continuum of possible relationships between the 

hydraulic head inside and outside a containment system. Ideally, the hydraulic gradient 

across system boundaries will be inward (Fig. 2.1a). However, regardless o f the hydraulic 

head relationships, as long as a concentration gradient exists across the slurry wall, it may 

still be possible for contaminants to exit the confines of the system by the process of 

diffusion.

Analysis o f  spatial and temporal hydraulic head fluctuations (Fig. 2.2) can indicate 

whether or not problems exist with integral components of a containment system. Rapid 

fluctuations which correlate positively with precipitation events may indicate failure of one 

or more components o f the system. Rising water levels inside a containment system with 

higher hydraulic heads relative to the adjacent or underlying aquifer, suggest failure o f the 

cap to prevent the infiltration of precipitation. Such a system may still discharge
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contaminated ground water to the environment if  the rate o f leakage out o f the system is less 

than the rate o f leakage into the system.

It may be possible to identify the general location o f suspected leaks indicated by 

spatial and temporal water level fluctuations using existing monitoring systems. However, 

the hydraulic signature associated with a containment system leak is a function of the 

hydraulic gradient across the barrier, the areal extent o f  the leak, and the hydraulic 

conductivities o f  the vertical barrier, window, and surrounding aquifer materials. Therefore, 

the identification o f specific leak locations and discharge rates may require an additional 

three-dimensional hydraulic characterization and the installation o f additional piezometer 

clusters.

Additional research will provide a better understanding o f the complex hydraulics 

associated with leaky containment systems. Such insight could be used to enhance existing 

performance monitoring systems and aid in the design of new monitoring systems, and allow 

estimation of monitoring point spacing requirements (vertically and horizontally) necessary 

to detect containment system breaches. Given the current interest in containment systems, 

as either supplemental or stand-alone remedial alternatives, and the lack of adequate 

performance monitoring strategies at most existing hazardous waste sites utilizing 

containment technologies, there is an immediate need for a general protocol to determine 

whether or not a containment system is operating as designed.
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CHAPTERS

ESTIMATION OF MONITORING POINT DENSITY 

FOR CONTAINMENT SYSTEM LEAK DETECTION

3.1 ABSTRACT

The use of physical and hydraulic containment systems for the isolation of 

contaminated ground water and aquifer materials associated with hazardous waste sites has 

increased during the last decade. The existing methodologies for monitoring and evaluating 

leakage from hazardous waste containment systems rely primarily on limited hydraulic head 

data. The number of hydraulic head monitoring points available at most sites employing 

physical containment systems may be insufficient to identify significant leakage from the 

systems. A general approach for evaluating the performance of containment systems, based 

on estimations of apparent leakage rates, is used to introduce a methodology for determining 

the minimum number o f monitoring points necessary to identify the hydraulic signature of 

leakage from a containment system. The probabilistic method is based on the principles of 

geometric probability. The method is demonstrated using three-dimensional ground-water 

flow modeling results o f leakage from a vertical barrier containment system under a variety 

o f hydrogeo logic conditions.
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3.2 INTRODUCTION

Recently, much attention has focused on the use of containment technologies as 

supplemental or stand-alone remedial alternatives for hazardous waste sites by the industrial 

and regulatory communities. Subsurface vertical barriers have been used to control groimd- 

water seepage in the construction industry for many years (D’Appolonia, 1980). More 

recently, such barriers have been employed as components o f hazardous waste containment 

systems to prevent or reduce the impact o f contaminants on ground-water resources (Rumer 

and Ryan, 1995). While subsurface vertical barriers appear to be useful for isolating long

term sources o f ground-water contamination at many sites, the potential exists for leakage 

o f contaminants through high hydraulic conductivity zones or windows. Such windows may 

form during construction or result from post-construction changes in barrier properties 

(Evans, 1991). Consequently, there is concern that the performance o f numerous hazardous 

waste containment systems has not been adequately evaluated or demonstrated.

This paper describes a general approach for evaluating the required number of 

monitoring points necessary to identify leakage through discrete zones o f high hydraulic 

conductivity within a subsurface vertical barrier. Hydraulic head distributions are generated 

by a numerical groimd-water flow model simulating leakage through a subsurface vertical 

barrier under a range o f conceptual conditions. The model data are used to illustrate the 

utility of the proposed method. The resulting techniques will be useful for evaluating 

existing containment systems by providing insight as to how many monitoring points are
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necessary to determine the approximate locations of discrete leaks, given specified 

confidence and constraints.

3.2.1 Subsurface Containment Systems

Depending on the remedial objectives and complexity of the hydrogeo logic setting, 

subsurface containment systems may be active (e.g., groimd-water extraction to manage 

hydraulic gradient), or passive (e.g., physical barriers) (Canter and Knox. 1986). Frequently, 

containment systems employ a combination o f active and passive components, which 

commonly incorporate low permeability vertical barriers (walls) keyed into underlying low 

permeability units. Many containment systems also include a low permeability cover to 

prevent or reduce the infiltration of precipitation, extraction and/or injection wells and/or 

trenches for ground-water management and a monitoring network.

Soil-bentonite slurry trench cutoff walls (slurry walls) are the most common type of 

subsurface vertical barriers used at hazardous waste sites and are generally installed 

circumferentially around the suspected source areas within a site (U.S. EPA, 1984). Slurry 

walls are typically constructed in a two-step process consisting of trench excavation and 

backfilling with appropriate materials. During excavation, a bentonite slurry is used to 

maintain trench stability and form a low permeability filter cake on the sides o f the 

excavation. The excavated materials are appropriately amended and replaced in the trench 

(D’Appolonia, 1980). Cement-bentonite slurry cutoff walls have been widely used in Europe
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and are gaining wider acceptance in the United States. Other types of vertical barriers 

include plastic cement cutoff walls, vibrating beam cutoff walls, deep soil mixing walls, 

composite cutoff walls, steel sheet pile walls and grout barriers (Rumer and Ryan, 1995).

Construction defects or post-construction property changes are potential failure 

mechanisms of subsurface vertical barriers (Evans. 1991). Construction defects may result 

in the formation of high hydraulic conductivity "windows" in a low hydraulic conductivity 

barrier. Some of the mechanisms responsible for the formation of such windows include 

emplacement o f improperly mixed backfill materials, sloughing or spalling of in situ soils 

from sides of trench, and failure to excavate all in situ material when keying wall to the 

underlying low permeability unit (U.S. EPA, 1987). Post-construction property changes may 

result from wet-dry cycles due to water table fluctuations, ffeeze-thaw degradation or 

chemical incompatibility between the slurry wall components and nonaqueous phase liquids 

(Evans, 1991).

3.2.2 Current Monitoring Practices

The performance o f hazardous waste containment systems has generally been 

evaluated based on construction specifications. Most subsurface vertical barriers are required 

to maintain a hydraulic conductivity of 1x10'  ̂ cm/s, or less. The use of appropriate 

construction quality assurance (CQA) and quality control (CQC) testing during installation 

is essential to ensure that the design performance specifications are achieved (U.S. EPA.
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1987). However, preferential pathways may develop in spite o f rigorous field CQA and 

CQC procedures.

The regulatory community recognized the need to develop procedures to verify post

construction performance and identify unsatisfactory zones in containment systems (U.S. 

EPA, 1987). While construction dewatering systems are deemed successful if the barriers 

limit ground-water leakage to reasonably extracted quantities, there are no uniform methods 

to reliably measure and document the hydrologie performance o f existing and proposed 

hazardous waste containment systems (Grube, 1992).

The minimum number of monitoring points necessary to determine whether a 

containment system is functioning as designed may be relatively small (Ross and Beljin. 

1998). For example, in some cases it may be possible to determine if leakage is occurring 

by analyzing the water level trends o f two monitoring wells - one located within the confines 

of the system and one located outside the system. It may also be possible to estimate the 

volume and rate o f leakage based on water level trend data. The approximate volume of 

leakage (V^) into or out o f a containment system may be estimated by

VL =  A h A „ S v  (1)
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where Ah is the average change in hydraulic head within the containment system determined 

from well hydrographs, is the total area o f the containment system and Sy is the specific 

yield o f the aquifer within the confines o f the system.

The average rate o f leakage (QL)from the system may be calculated by dividing the 

volume o f leakage (V^) by the amount o f time (t) over which the change in hydraulic head 

occurred, or

Ql = V^/t (2)

The average rate o f leakage from the containment system may be compared to the design 

leakage rate (Qdl). calculated by

Q dl =  K « A ^  i« + Kf A f i f  +  Qi (3)

where IĈ  and Kf are the assumed design hydraulic conductivity values for the vertical 

containment barrier and floor o f the system, respectively; A* and Af are the approximate 

surface areas o f the vertical barrier walls and floor, respectively; i^ and if are the hydraulic 

gradients across the vertical barrier and floor, respectively, and Qj is the infiltration rate 

through the cap.

Apparent leakage rates that are greater than design criteria (Ql» Q dl) indicate 

leakage from the containment system. Significant leakage from the containment system may 

require an assessment of the potential risks to human health and the environment posed by
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the leakage. While estimating the rates o f leakage from a system may be relatively 

straightforward, determining the locations o f specific leaks will require significantly more 

information.

The risks associated with leakage from a containment system must be evaluated with 

respect to human health and the environment. Inyang and Tumay ( 1995) relate the risks to 

human health from exposure to ground-water contaminants in terms of the probability of a 

toxic response (P(r)) o f an individual to a hazardous contaminant by

P{r)  = 1 - e x p (4)

where B is a constant, dependent on human physiology and contaminant toxicity, and C(t) 

is the individual contaminant exposure concentration as a function o f time.

The risk associated with leakage from a containment system may also be related to 

a hypotheses test in which the null hypothesis (H^) states that no detectable leakage is 

occurring from the containment system. Conversely, the alternate hypothesis (H,) states that 

the containment system has detectable leakage. There are two ways o f making an incorrect 

decision with respect to the stated hypotheses (Conover, 1980). First, if the null hypothesis 

is true (i.e., no detectable leakage) and is mistakenly rejected, a type 1 error occurs (Table
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3.1). The risks associated with such an error are minimal, since no discharge of 

contaminants to the environment occurs. However, if  the null hypothesis is false (e.g.. the 

system leaks) and is mistakenly accepted, a type II error occurs. The probability o f making 

a type II error is defined as p, and is referred to by Gilbert (1987) as the consumer's risk. A 

consumer's risk of P=0.1 indicates that there is 10 percent probability of not detecting a leak 

when one is present.

The potential health risks associated with a type II error will depend on the mass flux 

of contaminants out o f the system. Contaminant mass flux is a function of contaminant 

concentration and ground-water discharge rates from the system. A significant leak with a 

high discharge rate but low concentrations may pose a less significant health hazard than a 

small leak o f highly contaminated ground water.

Subtle variations in the hydraulic head distribution associated with leakage through 

a subsurface barrier may be identifiable if sufficient hydraulic head data are available for 

analysis. Such an undertaking would generally be considered prohibitively expensive due 

to the high cost of installing a piezometer network capable o f adequately defining the 

hydraulic head distribution. However, the recent development of relatively inexpensive 

installation techniques may make it feasible to install a sufficient number of small diameter 

piezometers to identify the hydraulic signatures associated with significant containment 

system leakage.
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Table 3.1. Potential hypothesis testing errors (After Conover. 1980).

Accept Ho Reject Ho

Hois
True

Correct Decision 
ProbabiIity=l-a

Type I Error
ProbabiIity=a 
(level of significance)

Hois
False

Type II Error
Probability=P

Correct Decision 
ProbabiIity=l-P
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3.23  Alternative Approach to Leakage Assessment

The process o f locating a leak in a hazardous waste containment system can be 

analogous to mineralogical prospecting where a compromise is sought between the cost of 

exploration and the thoroughness o f the search. For mineral exploration applications, the 

expected benefit o f a search is the sum of the value o f each target multiplied by the 

probability of finding it, assuming that the target exists in the search area (Singer, 1972). For 

containment system leak detection, the expected benefit o f a search is the potential reduction 

in risks to human health and the environment associated with the detection and abatement 

o f significant leaks. An increase in the number of monitoring points will result in increased 

costs, but may also result in the reduction in risks associated with potential hazardous waste 

discharge to the environment if leakage is occurring through a barrier.

Gilbert (1987) presents a methodology that can be used to (1) determine the grid 

spacing required to detect highly contaminated local areas or hot spots at a given level of 

confidence, or (2) estimate the probability o f finding a hot spot o f specified dimensions, 

given a specified grid spacing. The methodology is based on the work of Singer ( 1972), 

Singer and Wickman (1969) and Savinskii (1965), who developed statistical tables to 

calculate the probability o f success in locating circular and elliptical targets using grid 

configurations. The probability o f detecting a target using a specific grid spacing is 

determined by the method o f geometric probability, which is a function o f the ratio of the 

area of the target to the area o f one cell o f the grid.
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Gilbert’s (1987) method utilizes the following assumptions: (1) the highly 

contaminated areas are circular or elliptical in shape; (2) the boundaries o f the hot spot are 

clearly identifiable based on contamination levels; (3) hot spot orientation is random with 

respect to the sampling grid; and (4) the distance between grid points is much larger than the 

area sampled.

The methodology presented below is based on the work of Singer and Wickman 

( 1969) and Gilbert ( 1987). The assumptions have been modified to address variations in the 

distribution of hydraulic head, rather than contaminant concentrations. The assumptions and 

specific details relating to the applications o f the proposed method for hydraulic signature 

detection are discussed after the modeling section. The methodology section is followed by 

a discussion of the results of the application of the proposed method to the model data.

3.3 METHODOLOGY

A model may be defined as a simplified version of a real system that approximates 

the stimulus-response relationships o f that system. By definition, the use o f a model requires 

the application of simplifying assumptions to describe the pertinent features, conditions, and 

significant processes that control how the system reacts to stimuli. One of the primary 

objectives of the modeling portion o f this study is to predict the hydraulic head distribution 

associated with leakage through discrete portions o f a vertical barrier under different 

hydrogeo logic conditions.
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The hydraulic signature associated with leakage from a containment system is 

simulated for a variety o f hydrogeological settings. The modeling results provide the data 

on which the new method is demonstrated. The proposed method is evaluated under 

conditions ranging from relatively simple homogeneous, isotropic conditions to more 

complex heterogeneous, anisotropic conditions.

3.3.1 Conceptual Model

The first step in developing a model involves the formulation o f a conceptual model 

consisting of a set of assumptions that describes the characteristics and components of the 

system, and the relevant mechanisms and processes that affect the behavior of the system. 

These assumptions include the geometry, properties, and nature of the boundaries of the 

system. The next step is to express the conceptual model in the form o f a mathematical 

model. Once a mathematical model has been constructed, a method o f solution may be 

employed, using either analytical or numerical methods (Bear et al., 1992). The solution of 

the mathematical model yields a predicted response of the system to the stated stimuli. The 

method of solution used in this study is the numerical model.

The conceptual model presented in this paper is based on characteristics of several 

specific hazardous waste sites which incorporate physical containment as a major component 

of the selected remedy. The specific sites which influenced the development of the model 

used in this study include the Gilson Road Superfund site (Nashua, New Hampshire), the
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G.E. Superfimd site (Moreau, New York), and the Velsicoi/Michigan Chemical Company 

Superfund site (St. Louis, Michigan). The simulation results are used as input for the 

hydraulic signature assessment methodology. The conceptual model for the containment 

system consists of a soil-bentonite slurry wall fully penetrating an unconsolidated surficial 

aquifer, keyed in to an underlying, low permeability aquitard. The hypothetical aquifer is 

discretized into 25 one-meter thick layers. It is assumed that no recharge is added to the 

upper surface of the aquifer due to the presence o f a low permeability cap over the 

containment system.

Hydraulic head values are assumed to be higher in the interior of the containment 

system, simulating a " worst-case" scenario for potential contaminant losses from the system. 

The elevated water levels in the containment system are derived from deficiencies in the 

upgradient portion o f the system (i.e.. leakage under or through the upgradient wall) and 

water levels are assumed to be relatively stable over time. Ground-water flow is assumed 

to be horizontal, except in the immediate vicinity o f the vertical barrier. Given the long-term 

nature of most hazardous waste containment systems, the hydraulic heads are averaged over 

long time periods. Consequently, steady-state flow conditions are assumed for all 

simulations used in this study.

Three routes o f  containment system leakage have been reported, including flow 

through the vertical barrier (e.g., high hydraulic conductivity window), flow between the cap 

and wall, and flow tmder the wall. Flow through the barrier may occur via high hydraulic
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conductivity windows formed by the entrapment o f sloughed aquifer material from the trench 

walls. In many containment systems, the seal between the cap and barrier is constructed by 

overlaying the wall with a low permeability cap. Such designs are not intended to prevent 

the flow o f ground water and contaminants beyond the confines o f the containment system, 

but rather to divert surface runoff away from the containment system. Flow between the cap 

and vertical barrier is possible if the water level within the containment system rises above 

the interface between the cap and barrier. Flow between the barrier and tlie imderlying low 

permeability unit may result from incomplete removal o f higher hydraulic conductivity 

aquifer material during trench excavation, thereby failing to create an adequate key between 

the barrier wall and the underlying aquitard (Evans, 1991). For the purposes of this study, 

the primary focus is on leakage through high hydraulic conductivity windows within the 

wall.

Scenario variations evaluated through sensitivity analyses include the location, 

dimensions and hydraulic conductivity o f the window; the ratio o f the hydraulic conductivity 

o f the window and wall the ratio hydraulic conductivity of the aquifer and wall

(KaqiK^^ii); and the magnitude of the hydraulic gradient across the wall.

3.3.2 Mathematical Model

Mathematical models generally consist of a set(s) o f differential equations known to 

govern ground-water flow through porous media, and definitions of the initial and boundary
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conditions that describe the state o f a system and the interactions of the system with its 

surrounding environment (Bear et al., 1992). The equation governing ground-water flow 

through porous media under steady-state conditions results from a component by component 

substitution of Darcy’s law into the continuity equation, resulting in:

âx =  0 (5)

If the system in question is assumed to be homogeneous and isotropic, where K„=lx=K^. the 

equation may be rewritten as Laplace’s equation:

zfV,

ÛX cy âz~ (6)

The above equations, in combination with specified initial and boundary conditions, 

constitute a mathematical model for the flow of ground water through the porous media.

The boundary conditions assumed for the conceptual model include constant head 

boundaries for the upgradient and downgradient sides o f  the model and no-flow boundaries 

for the sides and bottom of the model oriented parallel to ground-water flow. The 

appropriate equations for constant head and no-flow boundaries, respectively, are:
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h =  h(x,y, z)

f = »

s = «

The hydraulic head distribution associated with a linear segment of a conceptual 

vertical barrier was simulated using Visual MODFLOW® (Guiger and Franz, 1995). a 

commercial version o f the three-dimensional, finite difference ground-water flow model 

MODFLOW. developed by the U.S. Geological Survey (McDonald and Harbuagh, 1988). 

MODFLOW is one of the most widely used ground-water flow models and has been 

extensively verified and validated.

The hydraulic head data generated by the numerical simulations are extracted, 

visualized, sampled, analyzed, and appropriately manipulated using several software 

packages. Hydraulic head data from a vertical cross-section parallel to and immediately 

down-gradient from the simulated vertical barrier (i.e., row 26) are used throughout this 

study. The data are extracted from MODFLOW output files and reformatted as image files 

for analysis using MODRISI (Ross and Beljin, 1995). The GIS software used in this study 

is IDRJSI, a raster GIS that provides numerous analytical capabilities that are directly 

applicable to this and other hydrogeologic studies (Eastman, 1995). The uniform grid 

spacing facilitates the transfer of data from one software package to another. The raster
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format allows importation and exportation o f uniform grid model data and also provides a 

robust platform for the analysis, visualization and data manipulation.

3.3.3 Model Setup

The model domain consists o f 51 rows, 51 coliunns, and 25 layers (Fig. 3.1) and is 

discretized into uniform 1 m  ̂ blocks ( a x ,  = Ay, = a z ^  = I m). This configuration is 

sufficiently large to reduce boundary effects and provides sufficient resolution to allow 

identification of subtle variations in hydraulic heads associated with leakage through a 

vertical barrier. The uniform grid size allows consistent precision over the entire model 

domain and simplifies data management and transfer between software packages.

The conceptual soil-bentonite slurry wall is simulated as a one meter thick barrier 

with uniform properties (K„^„ = I x 10'  ̂ cm/s), except for the window. The hydraulic 

conductivity values for the aquifer and window are scenario dependent. Leakage through 

the wall is simulated as a window with dimensions o f 2 x 3 nodes (6 m-), located in the 

approximate center o f the vertical barrier (row 25, columns 24-26. layers 12 and 13). The 

dimensions of the windows were selected to represent the suspected dimensions of confirmed 

leaks associated with subsurface containment systems.

Boundary conditions are depicted in Fig. 3.1. The upgradient and downgradient sides 

of the model are constant-head boundaries. The up and down gradient constant head
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Constant-Head Boundary 

Columns 0) = 51
No-Flow Boundary

Gfound-Worter Flow 
Direction

Vertical Barrier (row 25)
Rows (I) = 51

No-Flow Boundary

Ay = 1 m

Constant-Head Boundary

Fig. 3.1 Conceptual model domain and boundary conditions.
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boundary values are set at 24.99 m and 24.01 m, respectively, resulting in a horizontal 

hydraulic gradient across the model domain of 0.0196. This value falls within the range of 

hydraulic gradients commonly observed in the field. The sides and lower surface o f the 

model oriented parallel to ground-water flow are simulated as no-flow boundaries.

The primary objective o f model validation is defined as determining how well a 

model’s theoretical foundation and computer implementation describe actual system 

behavior in terms of the degree of correlation between calculated and independently observed 

cause-and-effect responses of the real-world ground-water system for which the model has 

been developed (van der Heijde, 1987). The applicability o f the numerical model for 

simulating the hydraulic head distribution associated with leakage from a containment 

system was demonstrated by comparing model results to data generated from a laboratory 

bench scale model o f a soil-bentonite cutoff wall (Ling, 1995). Simulation results agreed 

favorably with the physical model results, indicating that the approach described in this study 

is appropriate for simulating the hydraulic head distribution associated with leaking vertical 

barriers.

3.3.4 General Simulation Scenarios

Several hypothetical hydrogeologic conditions are evaluated in this study. Different 

scenarios are used to better understand the potential variability of the hydraulic signatures
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associated with different subsurface conditions and to account for potential uncertainties 

associated with predictive modeling (Bear et al., 1992). The general scenarios include:

1 ) uniform K, where = 1 (homogeneous and isotropic);

2) uniform K with variable K îK,, (homogeneous and anisotropic);

3) log normally distributed K, KhiK  ̂= 1 (heterogeneous and isotropic); and

4) lognormally distributed K with variable KhiKv (heterogeneous and 
anisotropic).

A range of homogeneous and isotropic conditions were simulated in an effort to 

provide a reference case for evaluating the effects o f varying average aquifer hydraulic 

conductivity values on the hydraulic signature of a simulated leak. The scenarios spanned 

a wide range of K values with respect to the aquifer material and zone of leakage. The 

hydraulic conductivity values for the aquifer (K^q) range from 1 x 10 - cm/s to I x 10'  ̂cm/s. 

These values fall within the range of medium sand to silty sand, respectively.

The hydraulic conductivity o f the vertical barrier (K,^,;) is maintained throughout the 

study at I x 10'  ̂cm/s. This corresponds to the design hydraulic conductivity of most soil- 

bentonite slurry walls (LaGrega and others, 1994). The hydraulic conductivity values for the 

window (Bv„n) ranged from 1x10 - cm/s to 1x10'^ cm/s. The hydraulic conductivity value 

for the window is assumed to be less than or equal to that of the adjacent aquifer materials.
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Several o f the homogeneous scenarios were modified to simulate anisotropic 

conditions, where the horizontal hydraulic conductivity (K J differs from the vertical 

hydraulic conductivity (IQ). The homogeneous and anisotropic scenarios simulate the 

general effects o f layering by varying the horizontal to vertical hydraulic conductivity ratios 

o f aquifer materials. Small-scale anisotropy has been attributed to the preferential orientation 

o f fine-grained materials, especially in sediments of fluvial or alluvial origin (Todd. 1980). 

The KhiKv ratios were increased by one and two orders o f magnitude (K^iK^ = 10 and 100) 

relative to the isotropic simulations (KhiBQ = 1 ). These values fall within the range of values 

reported in the literature (e.g.. Freeze and Cherry, 1979).

The horizontal hydraulic conductivity remained constant throughout the simulations 

(Kh = 10 - cm/s). The hydraulic conductivity of the window varied from 10 - cm/s to 10 - 

cm/s. The window configuration for the homogeneous anisotropic simulations was identical 

to those used in the homogeneous isotropic simulations .

One of the primary limitations of using ground-water flow models as predictive tools 

results from the uncertainty associated with input parameters. This uncertainty is directly 

related to the spatial variability of hydrogeologic properties o f the porous medium (i.e.. 

aquifer material). To account for some o f the spatial variability and uncertainties associated 

with three-dimensional predictive flow modeling, several scenarios utilizing heterogeneous 

distributions o f hydraulic conductivity were assessed.
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A lognormal distribution o f the hydraulic conductivity o f aquifer materials has been 

reported in the literature (Freeze. 1975; Bakr, 1976). The assumption of lognormal 

distributed hydraulic conductivity is used for the heterogeneous isotropic and heterogeneous 

anisotropic simulations. Unique lognormal hydraulic conductivity distributions were 

generated for each o f the 25 layers. This approach resulted in the generation of 

approximately 63.000 unique K values within the model domain. The mean and standard 

deviation for the hydraulic conductivity for each layer is approximately 1.6 x 10'- cm/s and 

2 X 10‘- cm/s. respectively. The location of the vertical barrier and configuration of the 

window for the heterogeneous simulations is similar to that o f  the homogeneous simulations.

The heterogeneous and anisotropic simulations utilize the same lognormal hydraulic 

conductivity distribution used for the heterogeneous and isotropic simulations. However, 

the horizontal to vertical hydraulic conductivity ratios were changed from 1. to 10 and 100.

3.3.5 Hydraulic Signature Assessment Method

The methodology used to address the hydraulic head distribution associated with 

leakage from a containment system was developed based on the work of Singer and 

Wickman (1969) and Gilbert (1987). The proposed method is directly applicable to 

determining the grid spacing necessary to detect the hydraulic signature associated with a 

discrete leak in a subsurface vertical barrier. The methodology requires the following 

assumptions:
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• the hydraulic signature o f the leak is circular or elliptical;

• hydraulic head data are acquired on a square grid;

• the criteria delineating the hydraulic signature are defined;

• there are no measurement misclassification errors.

The model results indicate that the hydraulic signatures associated with the simulated 

leaks range in shape from approximately circular to elliptical when viewed in vertical cross- 

section. An increase in the anisotropy results in the elongation o f the leak signatures in the 

horizontal directions. Generally, the greater the ratio, the more elliptical the hydraulic 

signature o f the leak.

The criteria for delineating the hydraulic signature of a leak from background noise 

are based on the average hydraulic head value ( Xh) of the model cross-sectional surface. For 

this study, hydraulic head values o f x^+O.OS m and x^+0.1 m were identified as critical 

values (Cv). indicating the presence o f a hydraulic anomaly associated with containment 

system leakage. This follows the assumption that any backgroimd noise associated with the 

hydraulic head measurements is significantly less than 0.05 m. The dimensions of the 

hydraulic anomalies are determined using GIS software by image reclassification to delineate 

nodes exceeding the average hydraulic head by the specified critical values.

The dimensions of the hydraulic signatures delineated by the two values for C, are 

expressed as shape factors (S), defined as the ratio of the length short axis to the length of
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the long axis of the hydraulic signature. The shape factor for a circular feature is 1. An 

increase in KhiK  ̂results in the elongation of the feature and a decrease in S, where 0 < S < 

1 .

The probability tables o f Singer and Wickman (1969) were used to generate the 

nomographs relating the probability o f not detecting a leak when a leak is present (p) to the 

ratio o f the semi-major axis to grid size (L/G). The semi-major axis is defined as one-half 

the length of the long axis o f an elliptical feature. As indicated, different curves are used for 

hydraulic features characterized by different shape factors. The general procedure for 

determining monitoring point spacing necessary to detect a hydraulic anomaly o f given 

dimensions and specified confidence is outlined in Table 3.2, and in the following example.

In order to determine the minimum grid spacing necessary to identify a hydraulic 

feature of specified dimensions, an acceptable probability o f not detecting the feature must 

be established. For this example, a value o f p=0.1 is assumed for a leak signature with 

dimensions of 5 m by 4 m, as delineated by C„=0.1 in Fig. 3.2a. From Fig. 3.3, a value of 

approximately 0.8 is indicated for the ratio o f the length of the semi-major axis to grid size 

(L/G), given P=0.1 and S=0.8. Therefore, solving for G using L=2.5, it is determined that 

a minimum grid spacing of approximately 3.12 m is necessary to identify the specified 

feature with a 90% probability of success. The resulting grid spacing (G) may be used to 

determine the minimum number o f block-centered monitoring points required to detect the 

feature for a specified area by dividing the total area by the area o f one square grid (G^).
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Table 3.2. General steps for determining monitoring point grid spacing.

1. Specify the radius or one half the length o f the long semi-major axis 
(L) o f the hydraulic signature (mound) associated with the leak;

Assuming a circular hydraulic signature, let the shape factor (S) equal 
one; for elliptical features, S may be calculated using equation (9);

Specify the maximum acceptable probability (P) o f not detecting the 
hydraulic feature (P=0.1 );

4. Knowing L, S and assuming a value for p, determine L/G from Fig.
3.3. and solve for G (minimum grid spacing required to detect the 
hydraulic anomaly associated with the leak, given the specified 
constraints).
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Figure 3.2. Hydraulic signature variations due to changes in conceptual hydrogeologic setting, 
ranging from homogeneous and isotropic to heterogeneous and anisotropic conditions.
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The probability tables o f Singer and Wickman (1969) were also used to generate 

nomographs relating the probability o f not detecting a leak (P) o f specified dimensions (L). 

for different grid dimensions (G). Figure 3.4 illustrates this relationship for circular 

hydraulic signature (S=l .0). These nomographs may be used to estimate the dimensions of 

the smallest hydraulic signature capable of being identified by a monitoring network of 

known dimensions within an acceptable level o f confidence (p). For example, given a 

monitoring point spacing o f 20 m. what is the smallest circular hydraulic anomaly that can 

be detected with 80% probability of success (P=0.2)? From Fig. 3.4. it is noted that a 

circular feature with a radius o f approximately 10.1 m can be detected with the specified 

probability and grid spacing. The probability of not detecting the anomaly will increase as 

the radius of the hydraulic signature decreases.

3.4 RESULTS AND DISCUSSION

The dimensions o f the hydraulic signatures associated with leakage through a 

subsurface vertical barrier are a function of the hydrogeologic properties of the aquifer, 

vertical barrier and zone o f leakage. The evaluated parameters include variations in the 

hydraulic conductivity o f the window (K«,n), hydraulic conductivity distribution within the 

aquifer and the horizontal-to-vertical hydraulic conductivity ratio (K^iK^).

Assuming all other variables remain constant, the magnitude of the hydraulic 

signature diminishes significantly as the hydraulic conductivity o f the window decreases
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(Fig. 3.2). The hydraulic signature o f leakage through the 1 x 1 O'- cm/s hydraulic conductivity 

window (Fig. 3.2a) becomes less prominent as K^„ is reduced to IxlQ-^ cm/s (Fig. 3.2g). 

As K«,n is further reduced to 1*10"* cm/s, the hydraulic signature becomes discernable only 

immediately adjacent to the window (Fig. 3.2J). All head values for the simulations of 

ground-water flow through the 1*10'^ cm/s window are within a range of approximately 

0.002 m. The decrease in hydraulic signature corresponds to a decrease in flux through the 

window, as the window hydraulic conductivity is reduced (Table 3.3).

The effect of varying the horizontal-to-vertical hydraulic conductivity values is 

illustrated in Fig. 3.2. For example, the hydraulic signature from leakage through a window 

with a hydraulic conductivity o f 1 x 1 O' - cm/s under homogeneous and isotropic (Kh=K.v) 

conditions forms an approximately circular feature (Fig. 3.2a). However, as the horizontal- 

to-vertical hydraulic conductivity ratio increases one order of magnitude (Kh:K^=10), the 

hydraulic signature of the leak becomes elliptical (Fig. 3.2b). As the ratio increases to 

K|,:Kv=100, the hydraulic signature o f the leak becomes highly elongated (Fig. 3.2c). Similar 

trends are observed with respect to increasing the horizontal-to-vertical hydraulic 

conductivity ratio for the heterogeneous simulations (Fig. 3.2d, e and f) and other 

homogeneous simulations with smaller hydraulic conductivity values for the windows (Fig. 

3.2g-l).

The method described above was applied to different hydraulic signatures developed 

from three-dimensional ground-water flow simulations of leakage through a vertical barrier.
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Table 3.3. Simulated flux through windows of varying hydraulic conductivity.

Window
Hydraulic

Conductivity
(cm/s)

Minimum
Head

Value
(m)

Maximum
Head

Value
(m)

Range

(m)

Flux
Through
Window
(mVd)

1x10- 24.0293 24.2627 0.2334 1.31x10'

1x10-^ 24.0117 24.0826 0.0709 3.98x10°

IxlQ-» 24.0071 24.0165 0.0094 4.96x10'

1x10-5 24.0063 24.008 0.0017 5.09x10-
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Delineation o f the hydraulic signature of leakage through a window (K^,n = 1 x 10 * cm/s) is 

illustrated in Fig. 3.5a. This figure depicts the hydraulic head distribution associated with 

leakage through a window located in the approximate center o f a vertical barrier in a 

homogeneous, isotropic aquifer (Kaq=l x 1 O'- cm/s, Kh=Kv). The approximate dimensions o f 

the vertical hydraulic mound as defined by C^=x-t-0.05 and x+0.1 are 5 m by 4 m, and 7 m 

by 6 m, respectively.

An increase in the anisotropy of the simulated aquifer by one order of magnitude 

(Kh:K^= 10) produces a vertically compressed and horizontally elongated hydraulic signature 

(Fig. 3.5b). Similarly, increasing the anisotropy o f the simulated aquifer by two orders of 

magnitude (Kh:K^=100) results in even greater compression and elongation o f the hydraulic 

signature in the vertical and hoiizontal directions, respectively (Fig. 3.5c).

Hydraulic signatures for leakage through a window with a hydraulic conductivity 

value of 1x10'^ cm/s exhibits similar trends in response to increases in anisotropy (Fig. 3.6a, 

b and c). However, the overall hydraulic signature of the window is decreased significantly 

relative to that of the base case. This results in a lack of head values greater than the 

elevation threshold for C,=0.1 for the homogeneous isotropic simulations. The hydraulic 

head values associated with leakage through windows with hydraulic conductivities < 1 x 10'  ̂

cm/s were all less than Q=0.05 and, therefore, could not be evaluated as described above.
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The grid sizes necessary to identify the hydraulic features described above with a 

90% probability o f success (P=0.1) were obtained using the nomograph in Fig. 3.3. The 

number of sampling points (N,) necessary to identify the hydraulic features within the 

domain of the model cross-section is determined by dividing the cross-sectional area of the 

model (1275 m-) by the area o f one square grid spacing (G-). The results are listed in Table 

3.4.

The number o f monitoring points required to identify the hydraulic signatures of the 

simulated leaks using the prescribed constraints and confidence ranged from approximately 

40 to over 300 over a 1275 m’ area. The wide range of values is a function of the variability 

in the size and shape o f the hydraulic features. This variability results from the use of 

different critical values to define the hydraulic signatures of the leaks and the wide range of 

shape factors resulting from the three orders o f magnitude range o f  values used to 

simulate aquifer anisotropy.

3.5 CONCLUSIONS

Numerical modeling of ground-water flow through high hydraulic conductivity 

windows in subsurface vertical barriers was conducted to provide data sets for use with a 

probabilistic method for determining the grid spacing necessary to identify the hydraulic 

signature associated with the leaks. The proposed method represents a potential tool that 

may be used by the regulatory community and others to evaluate the adequacy of existing

52



Table 3.4 Parameters and Results Obtained from Hydraulic Assessment Method

Kwm (cm/s) Kh:Kv Cv S L L/G G Ns

1x10- I 0.1 0.8 2.5 0.64 3.91 84

1x10- 1 0.05 0.85 3.5 0.62 5.65 40

1x10-- 10 0.1 0.28 3.5 1.64 2.13 280

1x10-: 10 0.05 0.31 6.5 1.51 4.3 69

1x10-: 100 0.1 0.13 7.5 3.5 2.14 278

1x10-: 100 0.05 0.16 12.5 2.9 4.3 69

1x10-: 1 0.1 BCL BCL BCL BCL BCL

1x10-: 1 0.05 0.67 1.5 0.74 2.03 311

1x10-: 10 0.1 0.67 1.5 0.74 2.03 311

1x10-: 10 0.05 0.4 2.5 1.17 2.14 280

1x10-: 100 0.1 0.4 2.5 1.17 2.14 280

1x10-: 100 0.05 0.15 6.5 3.05 2.13 281

1x10-:* 1 0.1 0.8 2.5 0.64 3.91 84

1x10-:* 1 0.05 0.85 3.5 0.62 5.65 40

1x10-:* 10 0.1 0.28 3.5 1.64 2.13 280

1x10-:* 10 0.01 0.31 6.5 1.51 4.3 69

1x10-:* 100 0.1 0.13 7.5 3.5 2.14 278

1x10-:* 100 0.05 0.16 12.5 2.9 4.31 69
BCL = All head values below critical value threshold.
* Heterogeneous simulations; all other simulations homogeneous
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and proposed hazardous waste containment systems for identifying containment system 

leakage. The utility o f  the proposed method is demonstrated using simulated data. Based 

on the application of the method presented above using the simulation results, the following 

conclusions are made:

• The number o f points necessary to identify the hydraulic signature of a discrete leak 

within prescribed constraints is a function of the criteria used to delineate the feature;

• By using the nomographs described above, the probability o f failing to detect the 

hydraulic signature o f a leak can be estimated for a given monitoring well spacing 

and specified confidence;

• The dimensions o f the smallest hydraulic signature detectable with a given 

monitoring point spacing can be estimated, given the appropriate constraints and 

specified confidence;

• The monitoring point spacing used at many hazardous waste sites is likely inadequate 

to detect the hydraulic signatures of all but the largest leaks;

• The method for delineating the hydraulic signature o f a leak using the average 

hydraulic head plus specified values does not appear to be sensitive to the 

heterogeneity o f the aquifer. However, the method is sensitive to changes in 

anisotropy; and

• The method provides no means for assessing the increase in the number of sampling 

points necessary due to noise.
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CHAPTER 4

INFORMATIONAL ENTROPY AS A LEAK DETECTION INDEX 

IN THE PRESENCE OF NOISE AND TREND SURFACES

4.1 ABSTRACT

The use of physical and hydraulic containment systems for isolation o f contaminated 

ground water and aquifer materials associated with hazardous waste sites has increased 

during the last decade. Existing methodologies for monitoring and evaluating leakage from 

hazardous waste containment systems rely primarily on limited hydraulic head data. The 

number of hydraulic head monitoring points available at most sites using physical 

containment systems may be insufficient to identify significant leakage from the system. 

The methodology presented in this paper uses o f informational entropy as a discriminator 

index to identify the hydraulic signature associated with leakage from hazardous waste 

containment systems in the presence of background noise and trend surfaces, based on 

limited hvdraulic head data.
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4.2 INTRODUCTION

Remedial strategies for contaminated groimd water at hazardous waste sites have 

relied extensively on conventional groimd-water extraction and ex situ treatment (pump-and- 

treat) systems in an effort to meet stringent remedial objectives. Numerous reports have 

identified specific reasons why conventional pump-and-treat systems have failed to reach 

clean-up goals at many sites (American Petroleum Institute, 1993; U.S. EPA. 1994; National 

Research Council, 1994). These reasons include the heterogeneous nature of the subsurface, 

the presence of nonaqueous phase liquids (NAPLs), sorption of contaminants by aquifer 

materials and uncertainties associated with subsurface characterization.

Other demonstrated and developing remedial technologies (e.g., in situ 

bioremediation, steam-enhanced extraction, and in situ reactive barriers) are currently being 

applied and evaluated as alternatives to pump-and-treat remediation. Many of these 

technologies have been successfully used to remove contaminants from ground water. 

However, most of these suffer from the same limitations that impact pump-and-treat systems 

(Gilham and Burris, 1992).

Until recently, most ground-water remediation technologies have focused on 

restoration o f the dissolved contaminant plume(s), rather than removal of contaminant 

sources (e.g., residual and/or free product NAPL). This has resulted in the apparent failure 

to meet the remedial objectives at many sites. However, if  contaminant sources are isolated,
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such that minimal contaminant mass is dissolved into passing ground water, the potential for 

restoring dissolved plumes may be significantly increased. Physical containment using 

subsurface vertical barriers is a potential mechanism of contaminant source isolation. Much 

attention has focused on the use o f containment technologies as supplemental or stand-alone 

remedial alternatives for hazardous waste sites by the industrial and regulatory communities. 

Subsurface vertical barriers have been used to control ground-water seepage in the 

construction industry for many years. More recently, such barriers have been employed as 

components of containment systems to prevent or reduce the impact of contaminant sources 

on ground-water. While vertical barriers may be useful for isolating sources o f ground-water 

contamination, there is growing concern that containment system performance has not been 

adequately evaluated.

A recent study concluded that out of 130 sites investigated subsurface engineered 

barriers to isolate hazardous waste, only 36 had sufficient monitoring data to enable a 

detailed analysis of field performance (Tetra Tech, 1997). The study further concluded that 

only 27 o f the sites had monitoring systems capable o f providing sufficient data to evaluate 

the system with respect to established site-specific performance criteria.

Ross and Beljin (1998) discuss a method for evaluating the overall performance of 

subsurface vertical barrier containment systems using temporal and spatial variations o f 

hydraulic head data. They conclude that, while head data from existing wells can be used
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to assess leakage, the identification of specific leak locations will require the characterization 

of the three-dimensional hydraulic head distribution associated with the leakage.

This paper describes a new technique which utilizes the concept of informational 

entropy or information content to identify the minimum number o f monitoring points 

necessary to distinguish between different magnitudes o f containment system leakage in the 

presence of trend surfaces and background noise. The method uses informational entropy 

to quantify changes in the spatial variability o f the hydraulic signature of simulations o f 

leakage through a subsurface vertical barriers as the number o f  sampling points increases.

4.2.1 Informational Entropy

According to Papoulis (1984), the term entropy, as a thermodynamic concept, was 

introduced by Clausius ( 1850), and the probabilistic interpretation in the context of statistical 

mechanics was first described by Boltzmann (1877). Planck (1906) presented the explicit 

relationship between entropy and probability. Shannon (1948) described the concept of 

information content, a mathematical equivalent to thermodynamic entropy, to quantify the 

amount o f information contained in messages conveyed as binary codes with respect to 

digital signal processing. In commimication theory, entropy is a measure used to determine 

the channel bandwidth necessary for the transmission o f signals o f varying information 

content. Jaynes (1957) related the work o f Shannon (1948) to statistical mechanics and 

applied the maximum entropy method to problems involving the determination of unknown
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parameters from incomplete data. Johnson (1992) states that, according to Jaynes (1957). 

the information measure described by Shannon is true only for discrete probability 

distributions, but can be applied to discrete approximations to continuous frmctions. The 

hydraulic head distributions used in this study represent a discrete approximation to a 

continuous function, and should therefore be suitable for applications o f Shannon's entropy 

measure.

In hydrology. Leopold and Langbein (1962) were the first to use the concept of 

entropy to describe the degree o f order or disorder in a system in terms o f the probability or 

improbability o f the observed state with respect to the hydraulic geometry of river channels. 

They stated that the entropy of a fluvial system is a function o f the distribution or availability 

o f energy within the system, and not a function of the total energy of the system. In this 

sense, entropy is a measure o f the complexity of the drainage network. Amorocho and 

Espildora ( 1973) used entropy associated with streamflow and model predictions to evaluate 

model performance.

Barrtels. and others ( 1985) stated that a series of sample results may approximate the 

probability distribution function (PDF) of a variable (i.e., hydraulic head). If a sufficiently 

large number o f samples are obtained, the PDF will be approached. An approximate PDF 

may be compared with a reference distribution function that represents the total information 

obtainable from a system. If the distribution function of the samples approximates the 

reference PDF, the loss in information content is minimal. However, if all the sample values
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occupy one histogram interval, the loss in information content is maximal. Chapman ( 1986) 

extended the work o f Amorocho and Espildora (1973) by using proportional class intervals, 

rather than fixed intervals, in calculating entropy as a measure o f data uncertainty.

Chiu (1987) used entropy fimctions to estimate the parameters needed to model 

transport of sediments in open channels. Englehardt and Lund ( 1992) described the use of 

entropy in risk analysis to estimate conditional probability distributions where no data were 

available, but one or two statistics were known. Krstanovic and Singh (1992) developed an 

entropy-based approach for evaluating whether to keep or eliminate rain gauges depending 

entirely on reductions or gains in information content at specific rain gauges. Woodbury and 

Ulrych (1993) and Woodbury and others (1995) used the principle of minimum relative 

entropy to determine the prior probability distribution fimction of a set of model parameters 

based on limited information.

Vieux (1993) used entropy to evaluate information loss associated with the effects 

o f aggregating and smoothing on raster surfaces of digital elevation models and the resulting 

error associated with predicted surface runoff values. Information content was used to 

determine the largest grid size which captures the spatial variability o f infiltration parameters 

on a watershed scale by Vieux and Farajalla (1994) and Farajalla and Vieux (1995). They 

also described the spatial variability measiu^e (S VM) coefficient to normalize entropy values 

by the logarithm o f the number of cells. The use o f informational entropy as a measure of 

spatial variability permits quantification o f the number of grid cells (sampling points)
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necessary to capture the variability of a spatially distributed parameter. In this sense, entropy 

is a statistical measure that can be used to assess the grid cell resolution supported by the 

data for modeling distributed processes.

4.3. METHODOLOGY

The hydraulic head distribution, or hydraulic signature, associated with a linear 

segment of a conceptual leaking vertical barrier is simulated using a three dimensional, finite 

difference ground-water flow model. The hydraulic signatures o f the leaks are evaluated 

using informational entropy to measure the spatial variability of leaks o f different 

magnitudes. The effects of applying regional or local hydraulic gradients or trend surfaces 

and uncertainty in the form of different statistical distributions of noise to the model results 

are also investigated. The general steps used in the study are outlined in Table 4.1. and 

discussed in detail in the following sections.

4.3.1 Ground-Water Flow Modeling

Visual MODFLOW® (Guiger and Franz, 1995), a commercial version of the three 

dimensional, finite difference groimd-water flow model (MODFLOW) developed by the U.S. 

Geological Survey (McDonald and Harbuagh, 1988) was used to simulate the hydraulic head 

distribution associated discrete leakage through a vertical subsurface barrier. The ground

water flow domain consists of 51 rows, 51 columns and 25 layers discretized into uniform
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Table 4.1. General Outline o f Steps Used In Study.

1. Simulate leakage using three-dimensional ground-water flow model;

2. Extract hydraulic head data from model and save as vertical cross-section 
image file using MODRISI;

3. Randomly sample with replacement hydraulic head image file 80 times 
each, for n,=5, 10. 15, 20, 25, 30, 35,40, 45. 50, 60, 70, 80. 90, 100. 150. 
200, 300. 400, 500, 600, 700, 800, 900 and 1000 points using IDRISl;

4. Calculate Entropy for each realization (nr=2000);

5. Apply noise and trend surfaces overlays to model results using IDRISl;

6. Repeat steps 3 and 4;

7. Modify model parameters and repeat steps 1 -6
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1 blocks ( a x  =  A y  =  a z  = 1 m) (for additional details regarding the development of the 

conceptual model and application o f the numerical model, refer to Chapter 3) . This 

configuration is sufficiently large to reduce boundary or edge effects and provides sufficient 

resolution to allow identification o f subtle variations in hydraulic signature associated with 

leakage through a vertical barrier. The uniform grid size allows consistent precision over the 

entire model domain and simplifies data management and transfer between software 

packages. Leakage from the conceptual containment system occurs through a high hydraulic 

conductivity (K) zone or window with dimensions o f 2 % 3 nodes (6 m’), located 

approximately in the center o f the vertical barrier. The vertical barrier is simulated as a one 

meter thick wall with uniform properties, bounded on either side by a homogeneous and 

isotropic aquifer.

The hydraulic conductivity o f the conceptual aquifer (IC^) is 1x10'- cm/s. A 

horizontal hydraulic gradient o f approximately 0.02 is simulated by the up-gradient and 

down-gradient constant head boundaries. The hydraulic conductivity of the window (K,„n) 

is scenario dependant and varies from IxlO'- cm/s to l^IO'^ cm/s. The vertical barrier 

hydraulic conductivity isl% l 0*’ cm/s. The ratio o f the hydraulic conductivity o f the window 

relative to that of the vertical barrier may be expressed as K*. For example, the K* values 

for 1x10'- cm/s, 1 x I O'" cm/s, 1 x 10“* cm/s and 1x10'^ cm/s window are IxlOL Ixl0'*.lxl0". 

and 1x10% respectively.
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Hydraulic head data from a vertical cross-section parallel to. and immediately down- 

gradient from, the vertical barrier are extracted from MODFLOW output files using 

MODRISI and reformatted as image files for analysis and visualization. MODRISI is a 

collection of utility programs that allows the extraction, manipulation, and transfer of data 

files between MODFLOW and numerous software packages (Ross and Beljin. 1995). A 

module within MODRISI reads the data array for each layer from a MODFLOW hydraulic 

head output file and extracts the specific head values for each row immediately down 

gradient o f the vertical barrier. These values are then written as a vertical cross-sectional 

array and saved in the proper format for use with the geographical information system (GIS) 

software. The resulting hydraulic head image files provide the basic data for this study.

4.3.2 Spatial Analysis

The hydraulic head data extracted from the numerical simulations are visualized, 

sampled, analyzed and appropriately modified using GIS and other auxiliary software. The 

GIS software selected for this study is IDRISL a raster-based system with numerous 

analytical capabilities that are directly applicable to hydrogeologic studies (Eastman. 1993 

and 1995). The raster format allows the import and export of model data and provides a 

robust platform for data analysis, visualization, and modification. The GIS software was 

used to apply different "noise" overlays to vertical cross-sectional surfaces derived from the 

model results. After adding the noise overlays to model results, each surface was sampled 

and analyzed for information content.
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4.3.2.1 Random Noise and Trend Surfaces

Three image files with different statistical distributions of noise were applied to the 

model results. The noise overlays were used to incorporate uncertainties associated with 

hydraulic head measurements and to help determine whether a leak, in the presence of such 

noise, can be discerned using informational entropy. Two types of random noise overlays 

were generated including, uniform (rectilinear) and normal (Gaussian). The rectilinear 

random overlays have approximately uniform distributions and ranges o f  0 to 0.1 and 0 to 

0.05. The latter range was selected to represent uncertainty at levels that are one order of 

magnitude greater than the histogram bin widths used in this study. Similarly, the 0 to 0.1 

range of values represents twice the uncertainty and variability as the 0 to 0.05 range of 

values. A surface characterized by normally distributed random values with means of 

approximately 0.0 and standard deviation of 0.0136 is also applied as a noise overlay.

In addition to random noise, variations in head may result from hydraulic gradients, 

regionally or with depth, not related to containment system leakage. The key question is 

whether a leak detection measure is sufficiently robust to detect a leak in the presence of a 

trend surface. Two constant slope trend surfaces were applied to simulate vertical hydraulic 

gradients o f 5%10^ and -5 %10 .̂ These values fall within the range o f vertical hydraulic 

gradients which the authors have observed at hazardous waste sites. The descriptive statistics 

for the noise and trend surface overlays are listed in Table 4.2.
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Table 4.2. Statistics for Noise and Trend Surfaces

Uniform/
Rectilinear

Normal/
Gaussian

Constant
Slope

R3 R4 N2 C3

Mean 0.0488 0.0244 0.0 0.061

Standard Deviation 0.0284 0.0142 0.0136 0.036

Variance 0.0008 0.0002 0.00018 0.0013

Minimum 0.0001 0.0001 -0.0364 0.001

Maximum 0.0999 0.0499 0.0408 0.121

RMSE 0.0564 0.0282 0.0136 0.0709
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4.3.2.2 Quantification of Noise and Trend Data

In order to compare the relative strengths of the noise and trend data with the 

hydraulic signature o f containment system leaks, a root-mean-square (RMS) measure is used. 

The root-mean-square noise (RMSN) strength is used to quantify the variability of the noise 

and trend data. The RMSN is calculated as

N

RMSN = (£(«,)-/Nt)'= [1]
i=i

where n, is the noise or trend value applied to each block and N j is the total number o f blocks 

in the model cross-section. The RMSN for the noise and trend data are included in Table 

4.2.

The root mean square signal (RMSS) strength is used to quantify the spatial 

variability o f the model cross-section and surfaces generated by the addition of noise and 

trend data to model results. The RMSS value is calculated by

Nt
RMSS = (E[h,-(h^+nJ]:/NT)' - [2]

i=I
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where h^is the hydraulic head value for the i"' node for a non-leaking wall simulation (i.e.. 

no window present), ĥ , is the head value for the i* node obtained from each simulation and 

n̂  is the specified value for the noise and/or trend data applied to the i'*' node. The RMSS 

values quantify the variability of a surface (e.g., model results with or without the addition 

o f noise and trend data), relative to the head distribution associated with the vertical cross- 

section immediately down gradient o f  a simulated non-leaky vertical barrier. The magnitude 

o f the hydraulic signature of the model results, relative to the noise and/or trend data applied 

to the model, is measured by the signal (hydraulic signature) to noise ratio (SNR). The SNR 

is calculated by

SNR = RMSS/RMSN [3]

4.3.2.3 Sampling

The GIS software was used to randomly sample the hydraulic head data for each 

simulation. The random sampling scheme selects a specified number o f points randomly 

with replacement. If a particular node is sampled more than once, only the last value is 

retained for analysis. This results in an effective sample size that may be smaller than the 

originally prescribed sample size, yet may allow an unbiased estimate of the population mean 

(Thompson, 1992). The procedure for sampling head values from the model data involves 

the successive application of several GIS modules described in Table 4.3.
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Table 4.3. IDRISl Modules (Eastman, 1995).

SAMPLE Produces a vector file of point locations from the image files 
created by MODRISI.

INITIAL Creates an image file o f proper dimensions;

POINTRAS Converts point vector data obtained from SAMPLE module to 
raster representation.

EXTRACT Distills values from image file created by POINTRAS module.
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The cross-sectional surfaces derived from the model results and from the addition of 

noise and/or trend data to the model results were sampled by selecting the following number 

of points: 5.10, 15. 20, 25, 30, 35 ,40 ,45 , 50,60, 70, 80,90, 100, 150,200, 300,400. 500. 

600,700,800,900 and 1,000 points. The effective sample sizes were generally smaller than 

the specified number o f points, especially for the larger sample sizes. This results from the 

fact that only the last value is retained for points that are selected more than once.

Two factors relating to the uncertainty o f random sampling include the number of 

samples and the proximity o f the samples to the leak. The closer the samples are to the 

hydraulic signature produced by a leak, the less uncertainty, and hence, the more confidence 

one has in detecting the leak. Other factors o f importance include the spatial arrangement 

of the samples and the nature o f the leak. For example, if the samples are located in close 

proximity to one another, one has less confidence in detecting the leak than if the if the 

samples are evenly distributed about the leak (Isaaks and Srivastava, 1989).

Each sampling event may be considered a single realization o f the hydraulic head 

distribution. Because most random number generators are not truly random, and that 

different realizations can vary dramatically in terms of discrete probability distributions. 80 

realizations were obtained for each sampling event, resulting in a total o f 2,000 realizations 

for each surface. Multiple realizations are used to better define the boundaries o f the entropy 

envelope, as discussed below. The use o f fewer than 80 realizations per sampling event does 

not adequately define the entropy envelopes, and more than 80 realizations presented

75



significant file management problems, while not significantly improving the entropy 

quantification.

4.3.3 Information Content and Entropy

Each realization of the hydraulic head distribution is analyzed for information content 

using a variation of a method presented by Farajalla and Vieux (1995), who assessed the 

largest grid size necessary to capture the spatial variability o f distributed hydrological 

modeling parameters. However, in the current work the number o f sampling points is varied 

while maintaining a constant, uniform grid. This technique can determine the number of 

points necessary to quantify spatial variability of a surface without losing significant 

information content, while also developing a leak detection statistic.

The entropy or information content o f a continuous function with the state variable 

X is generally expressed as (Chiu, 1987)

1(X) = -/ P(X) log P(X) dX [4]

where P(X) is the probability density function. In such cases. P(X)dX is the probability of 

the state variable being between X and X + dX. However, for a discrete approximation of 

a continuous function (i.e., hydraulic head distribution generated by a three-dimensional
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ground-water flow model), calculating information content requires the development o f a 

histogram of the number o f occurrences (n j o f sampled hydraulic head values within discrete 

intervals (i). The width o f the histogram intervals (bin width) is specified as 0.005 m. This 

is consistent with the precision of most water level measuring devices. Additional discussion 

regarding selection of appropriate bin widths are included in section 4.3.3.1. From the 

histogram data, information content or entropy is calculated by;

B

I = -L P .Io g (P i )  [5]
1-1

where B is the number o f discrete intervals o f the variate (hydraulic head) and P, is the 

probability o f occurrence of the variate within the discrete interval, calculated by:

P, = "i/Ns [6]

where N, is the number o f points sampled. By convention, a negative sign multiplies the 

summation in Equation [3], such that 1 is positive and increasing information content results 

in increasing entropy. The total entropy (l^)of a surface is calculated using all nodal values 

(N, = Nt=1275).

A maximum value for entropy (1^) occurs when all values o f the variate are equally 

probable and each histogram bin is occupied by a single variate value, where:
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P,=  l/N, [7]

The theoretical maximum entropy for a surface is calculated by:

lM=iog(NJ [8]

A maximum entropy surface may be characterized by a uniformly sloping surface with a 

nodal width o f one, or by a surface with highly variable elevations (Vieux, 1993). As

specified. 1^ requires that the data be distributed such that each histogram interval may

contain only one value. For a uniformly sloping surface, characterized by a constant slope 

(e.g., vertical hydraulic gradient), each bin will be occupied by the same number o f points. 

Consequently, the maximum entropy value calculated for such a surface will be less than 1m- 

The relative maximum entropy (Irm) o f a uniformly sloping surface is calculated by:

Irm =  lo g (N a) [9]

where Ng is the number o f uniformly filled histogram intervals. For this study, the relative 

maximum entropy value for the trend surface corresponds to the number o f layers o f the 

model (Nb=25), each layer characterized by a unique value, and is equal to log (25) = 1.398. 

Similarly, for a continuous random variable, a uniform probability distribution over the 

limits of X will result in maximum entropy (Chiu, 1987). A minimum entropy surface is
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characterized by low spatial variability. Relatively flat surfaces with all values occupying 

one histogram bin have entropy values o f zero, and consequently, zero information content.

The spatial variability of a surface may be quantified by calculating the spatial 

variability measure (SVM). The SVM is determined by normalizing the entropy o f the 

surface by the logarithm o f the number o f points sampled (N J and subtracting from unity 

[log(NJ/log(NJ], as:

__I___

SVM = 1 - log(NJ [10]

The SVM represents the departure from a maximum entropy surface or equal probability 

plane (Farajalla and Vieux, 1994).

4.3.3.1 Selection of Bin Width

Selecting the appropriate bin width is important for studies involving the 

determination of information content. The effect o f varying the bin width on information 

content values was evaluated by calculating the entropy for a data set using bin widths 

ranging from 0.0001 m to 0.5 m. For consistency purposes, the minimum and maximum 

head values are used for the lower and upper histogram bin boundaries, respectively. The 

number and distribution o f empty histogram bins does not affect entropy values. The 

sensitivity of entropy calculations (Eq. 4) to changes in bin width is clearly illustrated in Fig.

79



4.1. which indicates a semi-log relationship between the bin width and entropy for most of 

the range of values. Information content decreases linearly as the log o f the bin width 

increases over a wide range o f values. However, as the bin widths increase to greater than 

approximately 0.025. the entropy approaches zero.

These results indicate that as the size of the bin width approaches the magnitude of 

the range of values for the surface, the information content decreases until all o f the values 

fall within one histogram interval, resulting in zero information content. Consequently, If the 

specified bin width is too large (i.e., greater than the range of head values), the calculated 

entropy will not adequately capture the variability of the hydraulic head values of the 

surfaces. The bin width selected for this study (0.005 m) approximately corresponds with 

the advertised precision o f many commercially available water-level measuring devices. 

Selection of a bin width significantly greater than 0.005 m would have resulted in the failure 

to adequately capture the information content o f the hydraulic signatures.

4.4 RESULTS AND DISCUSSION

A graph of the number of points sampled versus entropy is characterized by a wide 

range of entropy values corresponding to small sample sizes. As the number of sampling 

points increases, the range o f entropy values becomes progressively smaller, resulting in less 

uncertainty in the estimation of informational entropy. The range o f entropy values for a 

given sample size approximately defines the upper and lower boundaries o f the entropy
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envelope. The theoretical upper boundary for the entropy envelope corresponds to the 

maximum entropy value, 1^. For any N„ if all occupied bins have one value, n̂ , the entropy 

is maximum. This unlikely case forms a straight line equal to log(N,) (Fig. 4.2a).

Figure 4.2i illustrates the general differences in the distribution of sampling points 

with respect to the upper and lower boundaries o f the entropy envelope for leakage through 

a 1X10'- cm/s window. Inspection of the histogram in Fig. 4.2h indicates that all 5 sampling 

points fall within one histogram bin, resulting in zero information content. Conversely, all 

five occupied bins of the histogram in Fig. 4.2b contain 1 sampling point, resulting in 

maximum information content, as previously defined. Histograms representing other points 

along the entropy envelope (Fig. 4.2c-h) illustrate that sets o f sampling points associated 

with the upper boundary occupy more bins than sample sets with similar numbers of points 

associated with the lower entropy envelope boundary. This appears to be related to better 

geographic coverage associated with sampling points contained in data sets located near the 

upper boundary of the entropy envelope relative to the lower boundary data sets and the 

heteroscedasticity o f the surface.

The effect of increasing the number o f random sampling points to calculate the 

information content of vertical cross-sections o f groimd-water flow modeling results is 

dependant upon several factors, including the magnitude o f the hydraulic signature and the 

nature and magnitude of noise applied to the model results. The information content of a 

surface characterized by a relatively strong hydraulic signature generally increases as the
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number o f sampling points increases. This is related to the fact that more histogram bins 

become occupied over the range of data as the magnitude of the hydraulic signature 

increases. This tendency is also noted when trend and noise data are added to hydraulic head 

surfaces, regardless o f the magnitude of the hydraulic signature. However, the information 

content of relatively weak hydraulic signatures appear to decrease as the number o f sampling 

points increases.

A leak detection index should be sufficiently robust to identify a leak in the presence 

of noise and trends. This is obviously dependent on the strength of the leak relative to that 

of the noise and trend surface variations. The number of sampling points needed to 

discriminate different magnitudes of leakage from background noise will depend on the 

hydraulic signature (signal) to noise ratio. The following section describes the results of the 

ground-water flow modeling, spatial analysis, and entropy calculations.

4.4.1 Simulated Containment System Leakage

The hydraulic signature associated with leakage through a subsurface vertical barrier 

is a function of the hydrogeologic properties o f the aquifer, vertical barrier and zone of 

leakage. The dimensions o f the signature will also be dependant on the hydraulic gradient 

across the vertical barrier, the area o f leakage and other factors (Bodocsi and others, 1990). 

Assuming that all other variables remain constant, the magnitude of the hydraulic signature 

will diminish significantly as the hydraulic conductivity o f the window decreases, as
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illustrated in Figs. 4.3 b, c and d. As expected, the decrease in hydraulic signature 

corresponds to a decrease in the calculated flux through the window (Table 4.4).

The hydraulic signature created by the flow o f ground-water through the conductive 

(Kwin -  1^10'- cm/s) window is clearly visible in Fig. 4.3b. The signature becomes less 

prominent as the hydraulic conductivity o f the window decreases (K^„ = 1 x 10'̂  cm/s. Fig. 

4.3c. and =1*10^ cm/s. Fig. 4.3d) resulting in a hydraulic signature that is discernable 

only immediately down gradient of the window. All hydraulic head values for the 

simulations with hydraulic conductivities <1*10^ cm/s are within a range o f0.002 m. which 

falls within one histogram bin interval and results in zero information content. Therefore, 

only the simulations of 21* 10^ cm/s are discussed in detail below.

4.4.2 Application of Noise and Trend Data To Simulation Results

The effects of applying noise to the hydraulic signature associated with ground-water 

flow through a relatively high hydraulic conductivity window (K,„n= 1 x l O'- cm/s) are clearly 

visible in Figs. 4.4a-4.4d. The hydraulic signature is most pronounced for leakage through 

the window in the absence of noise (Fig. 4.4a). When uniformly distributed random noise 

is applied to model results, a less obvious hydraulic signature is produced (Fig. 4.4b). The 

effects of applying a trend surface to model data are clearly visible in Fig. 4.4c. Locating the 

window in the center o f the vertical barrier resulted in a high degree of symmetry for the 

hydraulic signatures of leaks. Consequently, the application o f upward and downward trend 

surface data (i.e., vertical hydraulic gradient) to model data resulted in the production of
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Table 4.4. Simulated Flux Through High K Window.

Window 
K (cm/s)

Minimum 
Head Value 

(m)

Maximum 
Head Value 

(m)

Range
(m)

Flux
Through
Window
(m^/d)

lE-2 24.0293 24.2627 0.2334 1.31x10'

lE-3 24.0117 24.0826 0.0709 3.98x10"

lE-4 24.0071 24.0165 0.0094 4.96x10 '

lE-5 24.0063 24.008 0.0017 5.09x10-
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inverted and approximately mirror imaged data sets. The combined effects of uniformly 

distributed random noise and a trend surface produce an image that is more complex than the 

original model results, yet the hydraulic signature o f the leak is still visible.

An increase in the level o f uniform random noise applied to the model data results 

in a general degradation of the hydraulic signature (Figs. 4.5a - 4.5d). The addition of 

rectilinear random noise ranging from 0 to 0.1 m results in a slight decrease in the definition 

of the hydraulic signature (Fig. 4.5b). The signature o f the leak impacted by the noise and 

trend surface (Fig. 4.5d) is weak, yet discernable from the background noise. Similar trends 

are observed in Figs. 4.6a - 4.6d, with respect to the effects of normally distributed noise and 

a trend surface on model results. The signature of the model results (Fig. 4.6a) is partially 

masked by the Gaussian noise (Fig. 4.6b). The addition of a trend surface further reduces 

the prominence of the signature (Fig. 4.6d).

The addition of noise and trend data to hydraulic signatures o f leakage through 

windows with hydraulic conductivity values o f 1*10^ cm/s and 1 x 10"* cm/s are presented 

in Figs. 4.7.4.8 and 4.9. Generally, the reduction in hydraulic conductivity results in a lower 

flux of ground water through the window and a decrease in the magnitude of the hydraulic 

signature, as indicated by the decrease in the range of hydraulic head values in Table 4.4. 

Consequently, the hydraulic signatures of leakage through windows with <1x10'^ cm/s is 

almost indistinguishable from background noise (Figs. 4.7b, 4.8b and 4.9b).
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4.4 J  Effects of Noise and Trend Data on Entropy

The addition of random noise and trend data to the hydraulic signature of a leak 

results in an increase in total entopy (I?) o f  the surface, as indicated in Table 4.5. The change 

in entropy is a function of the nature and magnitude of noise applied to the model results. 

The addition o f uniformly distributed random noise (Fig. 4.4e) and normally distributed 

random noise (Fig. 4.6e) results in similar increases in information content. The largest 

increase in information content resulting from the addition of a single noise overlay was 

observed with the trend surface (Fig. 4.4e). Similar increases were observed with the 

application of uniformly distributed random noise to the model data.

As the magnitude of the hydraulic signature relative to the noise decreases, the 

information content of the surface decreases, and approaches that o f the noise. This effect 

is observed when the noise and trend surfaces are applied to the results o f  different modeling 

scenarios. The application o f trend data and uniform random noise to the hydraulic 

signatures of leakage through windows results in a decrease in the total information content 

o f the surfaces (Fig. 4.7d). Similar trends are observed when the applied uniform random 

noise is increased by a factor o f two, in conjimction with trend data (Fig. 4.8d), and with the 

application of Gaussian noise and trend data to model results (Fig. 4.9d). These results 

indicate that as the number of sampling points increases, the information content for a 

surface with a small hydraulic signature relative to the noise approaches the total information 

content o f the noise surface.
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Table 4.5. Total Entropy (I?) Values for Model Results

Kwin (cm/s) Total Entropy

1 X 10-: 0.923

1 X 10- 0.398

1 X 10-* 0.067

1 X 10-5 0.00
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4.4.4 Discrimination of Different Magnitudes of Leakage Without Noise

The dimensions and trends o f the entropy envelopes vary significantly, depending 

on the magnitude of leakage. The entropy envelope for leakage through a high hydraulic 

conductivity window generally has a wider range of values per number o f points sampled 

than those calculated for windows with lower hydraulic conductivity values (Fig. 4.3a). The 

total entropy values tend to increase as the hydraulic conductivity o f the windows increase 

(Fig. 4.3a and Table 4.5). This can be related to the spatial variability of the data sets. As 

the hydraulic conductivity of the windows increase, flux through the windows increase. This 

results in larger areas being impacted by the leakage.

The minimum number of sampling points needed to discriminate between leakage 

of different magnitudes may be determined from Fig. 4.3a. The discriminator (Nq) is based 

on the points o f convergence between the upper and lower boundaries o f adjacent entropy 

envelopes. Visual detection o f the hydraulic signature of the leak becomes more difficult as 

the signal to noise ratio decreases.

4.4.5 Discrimination of Model Results and Noise of Similar Magnitude

The number of points necessary to discriminate model results and normally 

distributed random noise with similar RMSN values were evaluated. Random Gaussian 

noise was generated with a mean of zero and a standard deviation equal to the RMSS o f the 

model results. This resulted in the generation of noise surfaces with RMSN values 

approximately equal to the RMSS of the model results.
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The number o f points necessary to differentiate the model results and noise o f similar 

magnitude is delineated by the point o f convergence o f adjacent entropy envelope 

boundaries. Approximately 20 random sampling points are necessary to differentiate 

normally distributed random noise from the hydraulic signature of leakage through a window 

with a hydraulic conductivity of 1 x IQ - cm/s (Fig. 4.10). Similarly, approximately 25 and 

70 points are required to differentiate entropy envelopes o f Gaussian noise and leakage 

through windows with hydraulic conductivity values o f  1*10'^ cm/s (Fig. 4.11) and 1x10^ 

cm/s (Fig. 4.12), respectively. These results suggest that more sampling points will be 

required to discriminate leakage from background noise o f similar RMSN, as the hydraulic 

signature o f a leak diminishes.

4.4.6 Discrimination of Hydraulic Signature with Varying Magnitudes of Noise

In order to better understand the relationship between entropy and noise, RMSS 

values were calculated for model results and surfaces derived from the addition of noise and 

trend data (T able 4.6). The number of points required to discriminate the hydraulic signature 

o f a leak from that of a leak impacted by noise was evaluated. The discriminator is based 

on the convergence o f adjacent entropy envelopes, as described above. Approximately 30 

sampling points are indicated to discriminate between the entropy envelopes for the model, 

and a model with uniformly distributed random noise (Fig. 4.4e). Similarly, approximately 

50 sampling points are required to discriminate between the entropy envelopes for the model 

with uniform noise and model with trend surface.
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Table 4.6. Total entropy (I?) and root mean square signalvalues for different simulations
with noise and trend surface added.

Kwin (cm/s)
1 X 10--

Kwin (cm/s) 
1 X 10-3

Kwin (cm/s)
1 X 10-*

Model and Specific 
Overlay

It RMSS It RMSS It RMSS

Model Results 
Only

0.923 0.0412 0.398 0.0091 0.067 0.0022

Model with Gaussian 
Noise (x = 0)

1.212 0.0431 1.079 0.0161 1.049 0.0138

Model with Uniform Noise 
(0-0.05)

1.224 0.0648 1.082 0.0344 1.014 0.0265

Model with Uniform Noise 
(0-0.1)

1.422 0.0911 1.336 0.0622 1.304 0.0547

Model with Trend 
Surface

1.463 0.1043 1.402 0.0763 1.398 0.0691

Model with Gausian Noise 
and Trend Surface

1.515 0.1051 1.476 0.0776 1.478 0.0705

Model with Uniform Noise 
(0-0.05) and Trend Surface

1.530 0.128 1.488 0.0997 1.485 0.0922

Model with Uniform Noise 
(0-0.1) and Trend Surface

1.609 0.1534 1.571 0.1252 1.569 0.1175
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Though not as well defined, approximately 400 sampling points are required to discriminate 

between the model with trend surface and model with noise and trend surface.

The procedure described above was repeated for simulation results o f flow through 

windows with 1^10'^ cm/s and 1*10^ cm/s with the same noise and trend data applied 

to the surface. Discriminator values were also selected for the model results with uniform 

noise (0-0.1) and trend data (Fig. 4.8e), as well as model results with Gaussian noise and 

trend data (Fig. 4.9e) using the procedure described above. The discriminator values for 

adjacent pairs of entropy envelopes for all data sets presented in Figs. 4.4e, 4.5e and 4.6e are 

plotted against the RMSS value for the upper most entropy envelope o f the pairs (Fig. 4.13). 

The general trend of the data indicates that the number of points necessary to differentiate 

entropy envelopes increases as the magnitude of noise increases.

4.4.7 Signal To Noise Ratio

The RMSS values for model results with noise and trend surfaces are plotted against 

the total entropy of each surface in Fig. 4.14. The RMSN values for the noise and trend 

surface combinations, and their respective total entropy values, are included in the figure. 

Inspection of Fig. 4.14 indicates a significant relationship between the signal and noise RMS 

values and entropy. An increase in the RMSS is indicative o f an increase in the deviation 

of a surface relative to a reference surface. This may result from an increase in the 

magnitude of leakage through the window, or the addition of noise or trend surfaces to the 

model data. The reference surface for this study is the hydraulic head distribution associated
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with a competent vertical barrier (i.e., no leak). As the variability o f the surface increases, 

as indicated by an increase in the RMS values, the total entropy o f the surface increases. 

This may result from the increased number o f bins occupied by the hydraulic signature or 

noise. The theoretical maximum entropy for the surface is denoted by the dotted line in Fig.

4.14.

The relative magnitude o f the RMSS of the hydraulic signature (signal) to the RMSN 

o f the noise and/or trend surfaces is measured by the signal to noise ratio (SNR). The SNR 

values for all surfaces used in this study are listed in Table 4.7 and plotted in Fig. 4.15. Two 

mechanisms may account for an increase in the SNR - the magnitude o f noise applied to a 

surface may be decreased, or the magnitude of the hydraulic signature may be increased. 

The former is best illustrated by data from the hydraulic signatures of leakage through the 

IX1 O'- cm/s hydraulic conductivity window. As the magnitude o f noise increases, the 

resulting SNR decreases and the total entropy of the surface increases. Decreasing the 

magnitude of noise applied to a surface is responsible for the decrease in entropy observed 

in data from the hydraulic signatures o f leakage through the windows with hydraulic 

conductivity values of 1x10'^ cm/s and 1*10^ cm/s (Fig. 4.15). The SNR asymptotically 

approaches the total entropy value for each surface as it increases to the point at which no 

noise is present (e.g.. infinite signal to noise ratio).
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Table 4.7. Signal to noise ratio for model and derived surfaces

Model and Specific 
Overlay

K.win
1 X 10-
(cm/s)

Kwin 
1 X 10-3 
(cm/s)

Kwin
1 X 10-»
(cm/s)

Model with Gaussian 
Noise (x = 0)

3.16 1.18 1.01

Model with Uniform Noise 
(0-0.05)

2.29 1.22 0.94

Model with Uniform Noise 
(0-0.1)

1.61 1.10 0.97

Model with Trend 
Surface

1.47 1.08 0.97

Model with Gausian Noise and Trend 
Surface

1.46 1.07 0.98

Model with Uniform Noise 
(0-0.05) and Trend Surface

1.36 1.06 0.98

Model with Uniform Noise 
(0-0.1) and Trend Surface

1.28 1.05 0.98
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Signal to Noise Ratio vs Total Entropy
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Fig. 4.15 Signal to noise ratio plotted against the total entropy ( I t)  of model results and 
surfaces derived from the application of noise to model results.
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4.4.8 Entropy Threshold Number

The minimum number o f  sampling points necessary to discriminate between the 

entropy envelopes o f different hydraulic signatures and noise has been discussed. Now, the 

maximum number o f sampling points necessary to characterize the information content of 

surfaces resulting from leakage is addressed. As noted previously, information content 

generally increases as the number o f sampling points increases. The rate o f increase in 

information content generally diminishes beyond an unspecified number o f sampling points. 

For example, as the number o f sampling points increases in Fig. 4.16 and 4.17, the entropy 

envelopes narrow and converge on the total entropy value.

As the number o f sampling points increases, so would costs associated with 

installation and monitoring. The cost-effectiveness o f acquiring additional data points must 

be evaluated against established critérium. For this study, the criteria for determining when 

sufficient data have been collected is based on information content. It is assumed that the 

information content gained by increasing the number o f data points beyond that which 

corresponds to the ninetieth percentile o f the total entropy is not necessary to adequately 

define a surface. Conversely, it is assumed that a loss o f 10% of the total information 

content o f a surface is acceptable.

The entropy threshold number (Net) is defined as the number o f random sampling 

points necessary to capture 90% of the total information content o f a surface, which
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surfaces derived from the application of noise to model results.

110



2  0.8
c

UJ

90%  It

♦  Kwln=1E-2 cm/s

1000 10000

Number of Points Sampled

Fig. 4.17 Determination of for model results (K ^ =  1x10- cm/s) with ambiguous 
entropy envelope boundaries.

I l l



corresponds to the intersection of a line delineated by and the upper boundary of the 

entropy envelope (Fig. 4.16). For data sets with less distinct entropy envelope boundaries 

(Fig. 4.17). the 0.9x[y line is extended to intersect the maximum entropy line, which 

corresponds to the upper entropy envelope boundary for relatively small sample sizes. The 

entropy threshold number for such cases can be calculated by raising the value (0.9^Ij) to 

the power o f 10. The Net values for the previously described data sets are presented in Table 

4.8.

The plot of N et versus the RMS for signal and noise strength (Fig. 4.18) reinforces 

the previous observation that the number o f points necessary to adequately sample the 

surface increases with magnitude of noise. A plot o f the entropy threshold number against 

the signal to noise ratio is presented in Fig. 4.19. This figure illustrates trends similar to Fig.

4.15. As the SNR increases the number o f random sampling points necessary to adequately 

define the surface decreases. Conversely, the SNR may decrease if the system noise 

increases or if the hydraulic signature o f the leak decreases. As the level o f noise increases 

the number o f points necessary to capture the 90% o f the total information content o f the 

surface increases. As the magnitude o f noise increases to the point where the hydraulic 

signature is completely masked by noise (e.g.. SNR= 1 ), an increase in the number o f points 

sampled will not result in any additional gain in information content, and the leak will be 

undetectible. regardless o f the number o f points sampled.
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Fig. 4.18 Signal and noise strength plotted against the entropy threshold numbers for 
simulation results and surfaces derived from the addition o f noise to model results.
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Net vs SNR for Model Results with Noise and Trend Data
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Fig. 4.19 Signal to noise ratio versus entropy threshold number for simulation results 
and surfaces derived from the application of noise to model results.
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Table 4.8. Entropy threshold Numbers

Model and Specific 
Overlay

Kwin
(cm/s)
1 X 10':

Kwin
(cm/s)
1 X 10-

Kwin
(cm/s)
1 X 10-»

Model Results 
Only

7 2.3 1.1

Model with Gaussian 
Noise (x = 0)

20 9.3 13

Model with Uniform Noise 
(0-0.05)

20 12 8

Model with Uniform Noise 
(0-0.1)

25 19 20

Model with Trend 
Surface

30 30 25

Model with Gausian Noise and 
Trend Surface

40 30 35

Model with Uniform Noise 
(0-0.05) and Trend Surface

39 34 30

Model with Uniform Noise 
(0-0.1) and Trend Surface

39 39 40
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The values for Nej may be related to a dimensionless box ratio (r) using a method 

presented by Barnsley, and others (1988), by

 ̂L ^m a x

D
1

[H]

where D is the fractal dimension (assumed to equal 2.0), is equal to the square root of 

N x. and Ltox is equal to the square root o f Net- By solving for r. the dimensionless box ratio 

may be obtained which, when multiplied by 100, yields the percentage o f area that must be 

sampled to capture the specified information content o f a surface. The results presented in 

Table 4.9 reinforce the observation that the number o f sampling points must increase as the 

level of noise increases in order to adequately describe a surface.

In Figs. 4.20, 4.21 and 4.22. the values for Net- SNR and Nq are listed below the 

appropriate hydraulic signatures. The disriminator numbers (Nq) represent the number of 

sampling points necessary to differentiate between surfaces o f increasing noise, derived from 

the same model results. Several general trends, consistent with previously stated 

observations, are visible in these figures. As the noise level increases for a specific model 

result, the SNR decreases and the Net increases. This trend is consistent for the three noise 

overlays evalutated in this study. As the leak becomes progressively weaker, an increased 

number o f points, N^, is necessary to discriminate between a leak and noise o f equal RMS 

strength.
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Table 4.9. Box ratio numbers (r) derived from N^t values.

Model and Specific 
Overlay

Kwin
(cm/s)
1 X 10-2

Kwin
(cm/s)
1 X 10-̂

Kwin
(cm/s)
1 X 10-*

Model Results 
Only

0.074 0.042 1.0291.1

Model with Gaussian 
Noise (x = 0)

0.125 0.085 0.101

Model with Uniform Noise 
(0-0.05)

0.125 0.097 0.079

Model with Uniform Noise 
(0-0.1)

0.14 0.122 0.125

Model with Trend 
Surface

0.153 0.153 0.14

Model with Gausian Noise and 
Trend Surface

0.177 0.153 0.166

Model with Uniform Noise 
(0-0.05) and Trend Surface

0.175 0.163 0.153

Model with Uniform Noise 
(0-0.1) and Trend Surface

0.175 0.175 0.177
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4.5 CONCLUSIONS

A new method is presented to discriminate between leakage from a containment 

system of different orders of magnitude and to discriminate leakage from noise and trend 

surfaces. The proposed method represents a potential tool for evaluating the adequacy of 

monitoring systems at existing and proposed hazardous waste containment systems. Based 

on the results presented above, the following conclusions are made:

• The effect o f increasing the number of random sampling points used to calculate 

information content is dependant on the magnitude o f the hydraulic signature and the 

nature and magnitude of noise applied to the model results;

• As the number of sampling points increases for a surface characterized by a small 

RMSS relative to the noise RMSN, the total information content approaches that of 

the noise.

• As the number of sampling points increases, the range of entropy values becomes 

progressively smaller, resulting in less uncertainty in the estimation o f informational 

entropy of a surface;

• The informational content o f a sample points will approximate the total entropy of 

the surface as the sample PDF approaches that o f the surface;

• As the magnitude of noise increases relative to the hydraulic signature, the entropy 

values increase. Conversely, as the magnitude of the noise decreases relative to that 

o f the hydraulic signature, information content decreases. This trend agrees
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favorably with the observations o f Shannon (1948) and Jaynes (1957). This is 

especially evident when comparing the total entropy (Ix)values o f the surfaces. 

Informational entropy can discriminate between hydraulic signatures and noise with 

similar RMS values.

Informational entropy can discriminate between hydraulic signature of leakage of 

different orders of magnitude.

Informational entropy can discriminate between hydraulic signature of leaks and 

leaks with differing magnitudes o f noise.

Entropy calculations are relatively sensitive to the selection o f histogram intervals 

and the location of the histogram origin (i.e.. minimum value). This is significant 

in that entropy values may vary, depending on what value used as the origin 

(minimum) for the histogram. This appears to be most significant for the sample sets 

in which the majority of values are distributed over a narrow range. In such cases, 

the entropy values may vary significantly as the origin o f the histogram is shifted. 

The histogram intervals used to calculate information content should be large enough 

to capture the spatial variability o f the surfaces in question. However, the bin widths 

should not be smaller than the precision o f the instruments used to acquire the data. 

As the magnitude of noise increases to the point where the hydraulic signature is 

completely masked (e.g., SNR<1), no additional information content is gained with 

an increase in the number of sampling points.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS FOR FURTHER RESEARCH

5.1 SUMMARY AND CONCLUSIONS

The determination as to whether a physical containment system is functioning as 

designed may be made using the concepts presented in Chapter 1. The rate of leakage 

from the system may be estimated using the equations in Chapter 2. The calculated 

leakage rates may be compared to that deemed acceptable based on design criteria, at 

which time stake holders must determine if the leakage is significant and poses a risk to 

human health and the environment. Detecting and locating discrete zones o f leakage 

from containment systems using hydraulic head data is problematic.

The hydraulic signature assessment method presented in Chapter 3 can estimate 

the grid spacing necessary to detect the hydraulic signatures o f leakage from containment 

systems, with a specified confidence and specific constraints (i.e., dimensions and shape 

of hydraulic feature). The method assumes that criteria have been established that 

positively identify the hydraulic anomalies associated with leakage. For this study,
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hydraulic head values o f 0.05 and 0.1 m greater than the average head o f the surface were 

identified as critical values indicating the presence of a leak. The hydraulic assessment 

method indicated that between 40 and approximately 300 monitoring points would be 

necessary to identify the hydraulic signature of leaks o f varying magnitude.

A new approach to applying informational entropy to hydraulic head distributions 

is presented in Chapter 4. The method uses informational entropy to determine the 

minimum number of points necessary to capture 90% o f the total information content of a 

hydraulic signature of a leak in the presence of different noise levels. The results indicate 

that the number o f points necessary to capture the bulk of the information content is 

dependant on the strength of the hydraulic signature, relative to that o f the noise. Very 

few samples are required to capture the spatial variability quiescent surfaces characterized 

by relatively small hydraulic signatures and no noise, while a significantly larger sample 

size will be required to capture the variability of relatively strong hydraulic signatures, 

especially in the presence of noise. If the SNR is less than 1, then no amount of sampling 

will detect the leak.

The proposed methods represent potential tools for evaluating the adequacy of 

existing and proposed hazardous waste containment systems in terms o f their potential 

for detecting leakage in the presence o f background noise. The major findings of this 

dissertation are as follows:
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The hydraulic signature associated with a minor leak in a vertical barrier may be 

difficult to detect;

By using the nomographs, the probability of failing to detect the hydraulic 

signature o f a leak can be estimated for a given monitoring well spacing and 

specified constraints;.

The dimensions o f the smallest hydraulic signature detectable with a given 

monitoring spacing can be estimated, given the appropriate constraints and 

specified confidence;

The monitoring point spacing used at many hazardous waste sites is likely 

inadequate to detect the hydraulic signatures of all but the largest leaks;

The effect o f increasing the number o f random sampling points to calculate the 

information content o f  vertical cross-sections of ground-water flow modeling 

results is dependant upon several factors, including the magnitude o f the hydraulic 

signature and the nature and magnitude of noise applied to the model results;

As the number of sampling points increases for a surface characterized by a 

relatively small RMSS for the hydraulic signature, relative to the noise RMSN. 

the total information content approaches that o f the noise.

As the number o f sampling points increases, the range o f entropy values becomes 

progressively smaller, resulting in less uncertainty in the estimation o f 

informational entropy o f a surface;

The informational content o f a sample points will approximate the total entropy of 

the surface as the sample PDF approaches that o f the surface;
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As the magnitude o f noise increases relative to the hydraulic signature, the 

entropy values increase. Conversely, as the magnitude o f the noise decreases 

relative to that o f  the hydraulic signature, information content decreases. This 

trend agrees favorably with the observations of Shannon ( 1948) and Jaynes 

(1957), that as the uncertainty increases (in the form of increasing noise), so does 

the entropy. This is especially evident when comparing the total entropy 

(Ij)values of the surfaces.

Informational entropy can discriminate between hydraulic signatures and noise 

with similar RMS values.

Informational entropy can discriminate between hydraulic signature o f leakage of 

different orders o f  magnitude.

Informational entropy can discriminate between hydraulic signature o f leaks and 

leaks with differing magnitudes of noise.

Entropy calculations are relatively sensitive to the selection o f histogram intervals 

and the location o f  the histogram origin (i.e., minimum value). The is significant 

in that entropy values may vary, depending on what value used as the origin 

(minimum) for the histogram. This appears to be most significant for the sample 

sets in which the majority o f values are distributed over a narrow range. In such 

cases the entropy values may vary significantly as the origin o f the histogram is 

shifted.

The histogram intervals used to calculate information content should be large 

enough to capture the spatial variability of the surfaces in question. However, the
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bin widths should not be smaller than the precision of the instruments used to 

acquire the data.

• As the magnitude of noise increases to the point where the hydraulic signature is 

completely masked by the noise (e.g., SNR<1), an increase in the number o f 

points sampled will not result in the gain of additional information content o f  the 

surface;

• The informational entropy approach is more robust in that it accounts for random 

noise;

e For a simulation where K*=l *10^ and no noise is present, Nej=7, which means

that only 7 sampling points are necessary to capture 90% of the total information 

content of the 1275 m* surface. Other surfaces would require sampling of 

approximately 7% of the surface area, or a box ratio o f r=0.074.

5.2 RECOMMENDATIONS FOR FURTHER RESEARCH

The work presented in this dissertation represents advancements in the 

identification of hydraulic signatures associated with leakage from hazardous waste 

containment systems. Based on these findings, it is recommended that additional 

research address the following.

• Field evaluation of the proposed methodologies;
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Development o f a computer code to allow the accurate calculation o f the grid 

spacing necessary to identify the hydraulic signature o f containment system 

leakage, given specific constraints. This should include the incorporation of basic 

ground-water flow equations to allow the estimation o f hydraulic signature 

dimensions using a range different hydrogeologic assumptions;

Modify the hydraulic signature assessment methodology for use with non

elliptical hydraulic signatures. For example, the hydraulic signature associated 

with leakage at the interface between the vertical barrier and cap will produce a 

asymmetrical hydraulic signature. Similar asymmetric hydraulic signatures are 

expected for leakage under a vertical barrier;

Extend the hydraulic signature assessment methodology to predict the necessary 

spacing o f monitoring wells for the detection o f tracers, based on the calculated 

dimensions o f the capture zone of each well;

Apply the hydraulic signature assessment methodology to model surfaces with 

different statistical distributions o f random noise;

Evaluate the possibility of applying hydraulic signature assessment method for 

identification o f improperly abandoned wells.
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