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CHAPTER I 

INTRODUCTION 

OVERVIEW OF PROJECT 

 
Interest of Study.  The study of estrogen receptors (ER)α and ERβ are of principal 

interest in relation to the critical role of the estrogen signaling system in the physiology 

of the reproductive organs, the cardiovascular, skeletal and central nervous systems, and 

in carcinogenesis.  Estrogen receptor α and ERβ are structurally distinct, and phenotypic 

distribution and mouse ER gene knockout (KO) models demonstrate that the two subsets 

are differentially expressed in tissues.  The two receptors also influence function of each 

other due to the ability of ERα and ERβ to heterodimerize.  There is a need to better 

determine the involvement of each receptor in eliciting downstream gene expression in 

tissues where the receptors function autonomously and, especially, where both are 

present.  

 

Model.  Due to structural and functional differences and the complexity of ER biology, 

our interest lies in discovering unique independent gene expression profiles in the 

presence of ERα or ERβ.  Therefore, it becomes important to be able to establish a model 

to study the two ER isoforms independent of each other.  Research has yielded model cell 

lines that ectopically express the ER isoforms individually, in an undifferentiated rat 

 2



embryonic fibroblast cell line: Rat1 + ERα (Kaneko et al. 1993) and Rat1 + ERβ (Cheng 

& Malayer 1999).  Estrogen receptors expressed in this model function in a 

physiologically relevant manner as evaluated in a chloramphenicol acetyltransferase 

reporter (CAT) assay and observed through their ability to up-regulate progesterone 

receptor (PR) gene expression following 17β-estradiol (E2) treatment. 

 

Hypothesis.  These observations and the body of literature available on ER biology led us 

to make a two part hypothesis.  The first part was that independent ERα and ERβ are able 

to impart unique downstream gene expression profiles within the same cell type.  We 

further hypothesized that ligand and time of exposure could result in unique responses by 

target genes within any profiles identified. 

 

Experimental design.  Using an ER in vitro cell model, a treatment scheme involving E2 

treatment for 24h was used to identify unique gene expression profiles.  Later Ki 

dependent single dose treatments of diethylstilbestrol (DES), 4-hydroxytamoxifen 

(OHT), raloxifene-HCl (RAL), or genistein (GEN) over a time-course were devised.  

Treatment was followed by extraction of total RNA.  To evaluate roles of ER, cDNA 

were generated from Rat1+ERα, Rat1+ERβ and parental Rat1 cells following treatment 

with a single dose of E2 [1nM] or an ethanol vehicle for 24 hours and subjected to 

suppression subtractive hybridization (SSH), followed by differential screening using dot 

blot hybridization.  Genes pro – alpha – 2(I) collagen, procollagen C – proteinase 

enhancer protein, cathepsin L, and receptor for activated protein kinase C isolated 

through SSH, in addition to previously studied PR, were identified for real-time 
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quantitative polymerase chain reaction (RT-qPCR) analysis of profile changes in the 

presence of different ligands over time.  

 

Results.  Following SSH, in the presence of cellular ERα, gene products were identified 

that represent classic transcriptional responses to E2, including markers for cell 

proliferation.  In the presence of ERβ an alternate transcription profile was observed that 

included up-regulation of pro-alpha-2(I) collagen.  These data support a model in which 

ERα and ERβ regulate unique subsets of downstream genes within a given cell type.  

When various ligands were applied to the in vitro cell culture over different time points, 

RT-qPCR indicated that gene expression profiles were affected in a differential manner 

which depended on an interaction between ER isotypes, ligand, and time.  These results 

further expand our foundational understanding of the biological activity of ERs in the 

regulation of cell function. 

 

Other work.  Previously we have been unable to generate functional RT-qPCR primer 

probe sets that were sensitive enough to differentiate between ER isotypes in bovine 

samples. The bERβ cDNA was cloned and sequenced by Rosenfeld et al. (1999).  

However, due to a lack of comprehensive cDNA sequence for bovine ERα (bERα) at the 

commencement of this project, it became necessary to attempt 5′ rapid elongation of 

cDNA ends (RACE) to identify unique portions of bERα that could be utilized to develop 

probes sensitive enough to differentiate between ERα and ERβ.  Endometrial samples 

were collected from non-bred Holstein cows at a local abattoir, and tissue homogenized 

for single step RNA extraction.  The Invitrogen GeneRacer® protocol was then employed 
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to generate upstream cDNA from the previously identified ligand binding domain.  

Polymerase chain reaction products were then single pass sequenced using the CEQ 8000 

(Beckman-Coulter, Fullerton CA) to verify product, cloned into the PCR4 vector 

(Invitrogen, Carlsbad CA), and re-sequenced.  Two additional fragments of the bERα 

cDNA were obtained through this manner.  From this sequence, it should be possible in 

the future to generate sensitive molecular tools for bERα from new sequence data 

obtained from bovine endometrial tissue. 
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CHAPTER II  

LITERATURE REVIEW 

Estrogen receptors  

 

INTRODUCTION  

 
Estrogen receptors are ligand-inducible transcription factors that bind a wide range of 

natural and environmental estrogenic compounds and through transcriptional modulation 

play a role in numerous physiological systems.  Estrogen and its effects on tissue have 

long been examined, with the steroid first being isolated in the 1930’s, and a receptor 

protein being discussed as early as 1962 (Jensen 1962).  Toft and Gorski (1966) isolated 

and began characterizing a receptor protein for estrogen from the rat uterus in 1966 and 

through 1994 only one receptor protein had been identified.  The cDNA sequence for 

human ER was first published in 1986 (Greene et al. 1986; Green et al. 1986), and for the 

rat ER in 1987 (Koike et al. 1987).  In 1995 a second estrogen receptor, ERβ, was 

identified and cloned from rat prostate (Kuiper et al. 1996) and since that time ERβ has 

been characterized in the mouse (Tremblay et al. 1997; Pettersson et al. 1997), human 

(Mosselman et al. 1996), bovine (Rosenfeld et al. 1999), and numerous other species.   
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Estrogen receptors are type I members of the steroid receptor family and the nuclear 

receptor superfamily, which preferentially bind the active form of the steroid hormone 

estrogen, 17β-estradiol (Tsai & O'Malley 1994).  Following binding of the cognate 

ligand, ER within the nucleus undergo phosphorylation (Arnold et al. 1997; Rogatsky et 

al. 1999), dimerization (Fawell et al. 1990) and commonly bind to DNA at specific 

palindromic cis-acting sites termed estrogen response elements (ERE) (Hall et al. 2002; 

Schultz et al. 2002).  Through these interactions, in conjunction with differential receptor 

type and ligand affinity, ERs are able to affect differential transcriptional pathways that 

are the impetus for undertaking this research. 

 

TRANSCRIPTIONAL REGULATION AND THE NUCLEAR RECEPTOR SUPERFAMILY 

 
Transcriptional regulation.  Cellular transcription factors regulate the efficient and proper 

transcription of mRNA.  Transcription factors recognize and bind to DNA at specific cis-

acting regulatory elements called hormone response elements or HREs. Complexes of 

general transcription factors, co-regulators, RNA polymerases and other mediators 

control the patterns of gene expression that ultimately manifests a physiological 

phenotype.  These protein complexes work in tandem at the promoter regions of target 

genes with the end result of stabilizing or destabilizing the basal transcription machinery 

(Hager et al. 1998), which results in preinitiation complex recruitment of the RNA 

polymerase II (RNAPII) enzyme (Smith 1998; Roeder 1996).  Thus, transcription is 

controlled by the interactions of general and site-specific transcription factors (Hartzog 

2003).  
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Prior to activation transcription factors are often in a sequestered and complexed state 

with the 90 kd heat shock protein (HSP90) and other inhibitory proteins (Pratt & Toft 

1997).  As part of this sequestering, a template-activating factor (TAF-Iβ) is proposed to 

bind to the unbound receptor, maintain basal transcription rates through decreasing 

acetylation, masking the DNA-binding region of the ER, and provide a graded estrogen 

response after binding (Loven et al. 2003).  Furthermore, acetylation acts as a regulatory 

mechanism for signaling through coordinated interactions with histone acetyltransferase 

that destabilize the inhibitory complex to allow binding to the promoter region of genes 

(Fu et al. 2004).  Histones are DNA-binding proteins that form nucleosomes, which in 

turn make up chromatin.  Histone acetylation leads then to a more open conformation for 

binding of the transcriptional machinery, resulting in increased rates of transcription. 

 

The initiation point for transcription is the catalytic action of RNAPII that recognizes 

minimal DNA elements at the promoter region, the most common being the TATA box 

(Roeder, 1996).  However, RNAPII lacks the ability to physically bind to the promoter on 

its own, and instead relies on general or basal (i.e. TFIIA, B, D, E, F, H), upstream, and 

inducible (i.e. nuclear receptors) transcriptional factors to create an initiation complex. 

These in turn regulate mRNA generation from the DNA template, and eventually result in 

protein expression (Voet & Voet 1995).  Each of these classes of factors plays specific 

roles in creating the proper environment, including bending and conformational changes 

in the target DNA, for either activation or repression of gene expression that is dependent 

on other regulatory proteins present.  For example, TFIIH has been shown to specifically 
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interact in nuclear transcription (Reese 2003) and to be recruited to ER target promoters 

(Wu et al. 2001).  The transcriptional complexes formed at the promoter to support 

RNAPII function are not simply restricted to recruitment, and interaction with other 

proteins creates the proper environment for correct transcriptional regulation. 

 

The nuclear receptors.  The nuclear receptor superfamily is the largest family of 

transcription factors, and plays a pivotal role in the endocrine system by binding hormone 

ligands such as estrogen (E2), progesterone (P4), androgens, and glucocorticoids, as well 

as thyroid hormone, vitamin D, and retinoic acid.  Nuclear receptors are commonly 

divided into three classes; type I, type II, and orphan receptors.  Type I and II are 

classically ligand-inducible and undergo conformational changes upon binding their 

cognate ligand.  Further conformational changes occur following interaction with a 

number of co-regulators resulting in transcriptional regulation.  The regulatory ligands of 

orphan receptors have yet to be identified (Tsai & O'Malley 1994; Glass 1994), however, 

it is hypothesized that the orphan receptors may be an evolutionary ancestor of the type I 

and II nuclear receptors (Bertrand et al. 2004).  

 

The type I subclass is comprised of the classical steroid hormone receptors for estrogen 

(ER), progesterone (PR), androgens (AR) and glucocorticoids (GR), while type II 

encompasses the thyroid hormone, vitamin D, and retinoic acids receptors.  Type I and 

type II nuclear receptors further interact to form homodimers or heterodimers, 

respectively.  During protein-DNA interactions unique estrogen response elements (ERE) 

are the classic cis-acting DNA targets of ER homo/heterodimers.  Orphan receptors have 
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the ability to bind as monomers (Tsai & O'Malley 1994).  Studies involving GR, which 

may be representative for the entire family, suggest that this interaction is not a static one, 

and instead involves the receptor complex rapidly moving on and off of these regulatory 

elements (Nagaich et al. 2004).  There is also evidence for a C-terminal extension beyond 

the second zinc-finger of the two zinc finger motif within the structural DNA-binding 

domain of the NR, which acts distinctly in type I steroid receptors to increase DNA-

binding affinity through recruitment of high mobility co-regulators (Melvin et al. 2002).  

 

The understanding of nuclear receptor effects on gene expression patterns are of interest 

from several perspectives, as their role in endocrinology is diverse.  Nuclear estrogen 

receptors mediate most of the actions of estrogenic compounds, resulting in 

transcriptional activation and repression, control of cell cycle progression, and integration 

of intracellular signaling pathways (Moggs & Orphanides 2001).  This is accomplished 

through a cascade of complex interactions of repression and recruitment with a number of 

proteins, transcriptional regulators, and ligands that are not yet fully understood, but 

which are the basis for ongoing research.  

 

LIGAND INDUCIBILITY OF ESTROGEN RECEPTORS  

 
Natural physiological ligands.  The estrogen signaling system plays a role in the 

physiology of the reproductive organs, as well as the cardiovascular, skeletal and central 

nervous systems, and in carcinogenesis.  Estrogens are a group of C18 sterol compounds 

derived from cholesterol.  Although ER preferentially bind the active metabolite E2, there 
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are numerous other physiological estrogens that are recognized by the ligand binding 

domain, such as estrone, 17α-estradiol, and estriol (Kuiper et al. 1997).  In addition to 

these physiological estrogens, ER also has the ability to bind to a number of synthetic 

estrogens such as diethylstilbestrol (DES) and selective estrogen receptor modulators 

(SERMs) as well as environmental estrogenic-like compounds such as those found in 

fungi, plants, and by-products of industrial processing such as moxesterol.  

 

Synthetic and environmental ligands.  The study of ERα and ERβ and their ligand 

specificities are of particular interest in regards to the selective activation of tissue-

specific responses within the context of hormone replacement therapy (HRT) and 

treatment of disease (Pike et al. 1999; Sun et al. 2003).  In the interest of capitalizing on 

this selective activation, pharmaceutical SERMs (such as tamoxifen and raloxifene) have 

been designed to make the most of the transcriptional activation differences when binding 

ERs (McDonnell 1999).  Additionally, pharmacological means can be employed to 

elucidate specific receptor function when both isoforms are present.  One such example 

of the versatility of synthetic compounds in expanding our understanding of ER function 

is the use of highly selective synthetic agonists for ERα that have linked the reliance of 

uterotrophic effects and bone protection to the induction of ERα over ERβ (Harris et al. 

2002).  This highlights how specific types of compounds can be used to complement our 

understanding of ER with physiological roles described through other models, such as 

knockout animal models. 
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Ligands designed to selectively activate only ERα or ERβ have been used to demonstrate 

differential effects of the two receptor subtypes (Harris et al. 2002; Waters et al. 2001), 

and have contributed significantly to understanding estrogen signaling.  Limitations of 

these methodologies include the degree of selectivity by the ligand for one receptor over 

the other.  Of significance to the present study, ERα and ERβ can respond to the same 

ligand with opposite effects on transcription (Paech et al. 1997).  One such compound 

which elicits these kind of responses is the active metabolite of tamoxifen, 4-

hydroxytamoxifen (OHT), a type I antiestrogen which inhibits cell growth in breast 

cancer, but promotes carcinogenic cell growth in uterine endometrium (Kedar et al. 

1994).  Furthermore, tamoxifen resistance that can arise in breast cancer treatment has 

been linked to levels of ERβ gene expression.  However, whether those levels are 

increased (Speirs et al. 1999) or decreased (Murphy et al. 2002) is a point of contention, 

with the latter group reporting increased ERβ in tamoxifen sensitive cells.   

 

This is important due to the ability for OHT to recruit regulatory elements in a manner 

different from the natural ligand E2 (Fleming et al. 2004), and OHT to, following ER 

binding, as been demonstrated to disassociate from the ER/ERE site thereby leading to 

the weak transcriptional activation (Klinge et al. 1998).The ability of estrogens and 

antiestrogens to differentially alter ER function by such means has been linked back to 

possible allosteric interactions of the different functional domains of the ER protein (Tate 

et al. 1984).  Understanding the different induction pathways that occur due to 

differential ligand selectivity will help us to explain the phenotypes observed as the 

endpoint of hormone action. 
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The SERM raloxifene (RAL), a benzothiophene, is also an antiestrogen yet it does not 

elicit the same of undesired endometrial proliferative effects as observed with OHT 

treatment and has been shown to have some positive skeletal effects (Turner et al. 1994; 

Black et al. 1994).  Functional differences in cellular responses to raloxifene arise in part 

due to its ability to sterically restrict, due to its piperidine, the helical structure which 

comprises the ligand binding domain of the ER, namely helix 12 (H12). Within the 

binding cavity this is then recognized as an antagonistic position (Brzozowski et al. 

1997).  The difference between the activation of ERα and ERβ at an activator protein-1 

(AP-1) recognition site within the target DNA is one explanation for these transcriptional 

regulatory differences (Paech et al. 1997).  On a global level, microarray analysis has 

demonstrated that the two SERMs, OHT and RAL, have the ability to regulate different 

sets of genes within U2OS (human osteosarcoma) cell lines (Tee et al. 2004).  The 

differential ability of SERMs to regulate gene expression is the drive behind research to 

discover not only the transcriptional pathways at the heart of SERM function, but also 

developing the next generation of therapeutic SERMs. 

 

The selectivity of ligands by ERα and ERβ however is not limited to SERMs.  Synthetic 

ligands such as non-steroidal based diethylstilbestrol (DES), and phytoestrogens such as 

the soy isoflavone genistein (GEN) have been shown to bind with varying affinities to the 

two receptors (Kuiper et al. 1997).  Diethylstilbestrol was first developed in the 1940’s 

and used through the 1970’s in pregnant women for the prevention of miscarriage. 

However, reproductive abnormalities and increased risk of vaginal cancer in offspring 

caused its use as a therapeutic in humans to be terminated (Herbst et al. 1971; Newbold 
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2004).  Due to the high binding affinity of DES for ER the development of therapeutic 

compounds based upon DES with different side chains is still of keen interest (Walter et 

al. 2004).  There is an almost 2 fold difference between ERα and ERβ for affinity for 

DES (Kuiper et al. 1997) and this is of interest considering the physiological effects of 

the compound.  Due to these properties DES may be used to elucidate certain aspects of 

ER function.  Studies involving ER action in transgenic mice that act as indicators due to 

the inclusion of β-galactosidase genes that are expressed following ER activation have 

allowed for the further clarification of ER activity within tissue populations (Nagel et al. 

2001).  Work by Nagel (2001) with this animal model divided DES functional action into 

5 tissue specific groups; 1) strongly induced (pituitary, uterus, and kidney), 2) moderate 

induction with high basal ER activity (hypothalamus liver, and adrenal gland), 3) 

moderate induction with low basal ER activity (thyroid, adipose, mammary and muscle), 

4) significant basal ER activity not enhanced by DES (heart, thymus, intestine), and 5) no 

activity (spleen and lung).  Classification of DES activity through this type of work has a 

two-fold usefulness, the first being a better understanding ER activity as a whole.  

Second, this is important in regards to development of new estrogenic compounds.   

 

Phytoestrogens, such as GEN, are plant-derived estrogens found in dietary sources such 

as soybeans. They have been shown to have a weak affinity for ER, but an approximately 

7-fold higher affinity for ERβ over ERα (Kuiper et al. 1997).  The effects of plant-

derived estrogens are not yet fully understood in terms of ER activation, but have long 

been a significant dietary source of estrogenic compounds in other cultures.  These 

dietary proteins have been linked to decreases in breast cancer risks in premenopausal 
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women (Lee et al. 1991).  A 3-year-study of non-human primates suggests that 

isoflavones such as GEN do not contribute to the negative proliferative effects on the 

myometrium or mammary tissue seen in other HRT and in high doses may result in a 

profile often linked with reduced breast cancer risks (Wood et al. 2004).  Other recent 

studies have shown that GEN may be linked to increases in PR expression (Hughes et al. 

2004), however the implications of this finding in regards to health management are not 

yet fully understood.  Genistein has also been shown to have inhibitory effect on pro-

collagen type COL1A2 synthesis in rat hepatic stellate cells (Kang et al. 2001), but the 

relation to ER in this system has not been explored.  

 

 

ESTROGEN RECEPTOR DISTRIBUTION AND STRUCTURE 

 
Estrogen receptor distribution.  Variations exist in the tissue distribution of ERα and 

ERβ.  The two receptors appear to be coexpressed at similar levels in the testis, 

epididymis, bone, and adrenal gland (Couse & Korach 1999).  Estrogen receptor α 

expression predominates in the proliferative cells of the mammary, pituitary, thyroid, 

uterus, theca cells of the ovary, skeletal muscle and the smooth muscle of the coronary 

arteries.  The ERβ isoform is predominant in the prostate (Kuiper et al. 1996), granulosa 

cells of the ovary, lung, bladder, brain and hypothalamus (Kuiper et al. 1997).  In tissues 

where both receptors are present it has been shown that the receptors may form either 

homodimers or heterodimers that will interact with the ERE (Pettersson et al. 1997; 

Cowley et al. 1997; Pace et al. 1997).  Estrogen receptor β has been observed to function 
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as a partial antagonist to ERα activity in the human in part because of the ability to form 

heterodimers (Hall & McDonnell 1999).   

 

In conjunction with these tissue distribution studies, it has been shown that the levels of 

ERα and ERβ are not equivalent and this inequity allows ERβ to have a regulatory effect 

on ERα by restricting the DNA-binding domain (Hall & McDonnell 1999).  Furthermore, 

the distribution and relative ratio of ERα and ERβ to one another may play a role in 

differing cancer scenarios, such as switching from ERβ dominance to ERα dominance in 

ovarian cancer (Pujol et al. 1998).  There is also an overall ERα/ERβ ratio decrease in 

post-menopausal endometrium due to ERβ expression decreasing with age, or an overall 

decrease in ERα as seen in some to adenocarcinomas (Jazaeri et al. 2001).   

 

Organization of ERα and ERβ transcriptional domains.  Estrogen receptor α and ERβ 

transcriptional activity is organized into 5 domains that show varying homology between 

the receptor types; a transcriptional regulation domain at the amino terminal end termed 

A/B, a DNA-binding domain (DBD) termed C, a hinge domain termed D, a ligand-

binding domain (LBD) termed E, and a carboxyl terminal (F) that, depending on receptor, 

type plays a role in hormone-binding discrimination (Figure 1).  While there is great 

similarity in their DNA- and ligand- binding domains, the two ER forms do exhibit 

significant structural differences. This is especially true in the NH2-terminal A/B domain 

and the COOH-terminal F domain, and these characteristics account for some portion of 

differences seen in ligand affinity (Kuiper et al. 1996; Kuiper et al. 1997). 
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Within the A/B region is an activation function 1 (AF-1) domain which is located near 

the amino terminus (Lees et al. 1989).  In this region, ERα is significantly longer than 

ERβ (Kuiper et al. 1996).  Phosphorylation events in this region play an important part in 

transcriptional efficiency and ligand activation.  There are conserved phosphorylation 

sites between ERα and β (Kuiper et al. 1996).  In ERα, phosphorylation of serine167 aids 

in the AF-1 transcriptional activity in the presence of ligand through a Ser/Thr protein 

kinase reaction (Joel et al. 1998).  Phosphorylation of Ser106 and Ser124 through the 

mitogen activated protein kinase (MAPK) pathway is the mechanism responsible for the 

recruitment of the regulatory protein SRC-1 to AF-1 in the ERβ subtype that can occur in 

a ligand-independent manner (Tremblay et al. 1999).   

 

Studies with two-hybrid assays, mutations, and pull-down assays have shown direct 

binding of co-regulator proteins, such as p300 to AF-1 potentiate the synergism with AF-

2 located in the LBD.  This can occur in a ligand-inducible manner with no regard for ER 

isotype (Kobayashi et al. 2000), and is required for efficient transcriptional activity.  In 

addition to synergistic cooperation between AF-1 and AF-2, physical bridges can be 

formed between the two by co-regulators and general transcription factors, such as the 

previously discussed TFIIH (Wu et al. 2001).  It is also in this A/B domain, specifically 

the AF-1 region, that ligand-independent constitutive transactivation (Lees et al. 1989) is 

thought to be controlled.   Another critical structural component within the ERα amino 

terminus is an α-helix core that is involved in the recruitment of co-activator proteins 
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(Metivier et al. 2001).  Together these individual features create the first component of 

the machinery that is integral to transcriptional efficacy.  

 

Several features of the DNA-binding region are responsible for contributing to 

differences in transcriptional regulation.  The C domain or DBD is highly conserved 

(95%) between the two receptors and is in fact highly conserved within the entire steroid 

receptor family.  This domain is composed of a two zinc-finger motif, where the first zinc 

finger has been identified by Green et al. (1986) to be the DNA discriminatory region, 

with the entire stretch having a vital role in dimerization and ERE recognition (Nilsson et 

al. 2001).  The creation of this ER-ERE complex through binding of the DBD then 

induces structural changes not only in the target, but also to the full-length receptor 

through translated allosteric changes (Wood et al. 2001).  The D domain lies between the 

C and E and is commonly referred to as the hinge domain.  It functions primarily in 

conformational control of DBD and LBD interactions, as well as recognition of the co-

regulators nuclear receptor co-repressor (NCor) and silencing mediator for retinoid and 

thyroid hormone receptor (SMRT) involved with repression (Ratajczak 2001).  The D 

domain also contains motifs that, along with the C domain, are necessary for non-ERE 

promoter interactions (Teyssier et al. 2001). 

 

The LBD is also known as the E domain and contains the activation function 2 (AF-2) 

region that is activated upon binding of ligand (Lees et al. 1989).  In the ligand free 

receptor the conformational state of this domain is responsible for keeping the C domain 

from binding the ERE (Beekman et al. 1993).  The structural change imparted is 
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proposed as the mechanism required for disassociation of HSPs and regulatory molecules 

such as TAF-Iβ which normally help to keep the receptors in a quiescent state (Loven et 

al. 2003), as well as unmasking elements necessary for dimerization, C domain 

interactions, and co-regulatory protein interactions (Beekman et al. 1993). 

 

Ligands create differences in gene expression and transcriptional efficiency through the 

physical binding of ligand within the ER binding pocket and displacement of helical 

elements, especially H12 (Nichols et al. 1998).  Work by Zajchowski et al. (1997) 

supports this model, showing that E2 and OHT have distinctive structural requirements in 

regards to conformational changes affected in the ER protein.  Molecular mechanisms of 

ER action involves promoters other than that used for direct DNA-binding to ERE 

(Zajchowski et al. 1997) determined by conformational variations.  In this same manner 

ligand character can also affect the rate of dimer dissociation in the ER-ligand complex in 

a manner independent of binding affinity or dissociation kinetics (Tamrazi et al. 2002).  

Phosphorylation within the LBD helps lead to aforementioned conformational 

interactions required for ligand dependent transcriptional activity (Smith 1998). 

 

The structure of the LBD is further organized into helices 3, 4, 5, and 12 where helix 12 

functions as a lid over the ligand binding pocket (Brzozowski et al. 1997).  In part, ligand 

selectivity depends upon the size of the ligand molecule.  Hydrophobic interactions will 

also affect the positioning of H12 (Nichols et al. 1998).  A difference in ERα and ERβ 

exists in this ligand binding pocket with ERβ having a smaller binding cavity than ERα 

(Nilsson et al. 2001).  The F domain at the C- terminus is not conserved between the two 
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receptors, and is thought to play a role in discrimination of antagonist and agonist 

(Nichols et al. 1998).  The F domain is not present in all members of the steroid receptor 

family, however, as in the N- terminus ERβ is significantly shorter than ERα and is 

thought that cell specific responses are regulated by this region (Kuiper et al. 1996).  It 

has also been shown that this F domain is necessary for interactions with other DNA 

binding proteins, including Sp1and may be involved in some co-regulatory interactions 

(Kim et al. 2003). 

 

 

ESTROGEN RECEPTOR TRANSCRIPTIONAL REGULATION 

 
Phosphorylation events at the estrogen receptor.  Proper and efficient transcriptional 

regulation requires specific protein complex formation at the promoter of the target gene.  

A primary step occurs once ER binds a ligand.  Following binding rapid phosphorylation 

occurs in the 5’ terminus which affects the subsequent binding to ERE at the DBD and 

transcriptional efficacy (Denton et al. 1992).  Phosphorylation is observed predominately 

at serines 104, 106 , 118 of the ER in the A/B amino terminus (Le Goff et al. 1994), and 

complete ligand-induced transcriptional activation is facilitated by the cooperative 

phosphorylation of these sites.   

 

Within the LBD, tyrosine537 acts as a basal phosphorylation site that is ligand dependent, 

and phosphorylation at tyr537 may be a requisite for ERE binding (Arnold et al. 1995).  

Phosphorylation is required for the recruitment of co-activators proteins, and when 
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phosphorylated helps lead to conformational interactions with the C domain required for 

transcriptional activation (Smith 1998).  It has been suggested that mutation at this tyr537, 

as well as at try443, may have a role in hormone independent tumor progression.  

However, studies have shown that these types of mutations are anti-estrogen responsive, 

and do not lead to hormone resistance (Tremblay et al. 1998).   

In some instances the capability exists for ligand independent activation (Power et al. 

1991; Bunone et al. 1996).  Cross-talk pathways with growth factors, can signal a 

cascade of events that  allow for the phosphorylation of serine118 through MAPK 

activation (Kato et al. 1995).  One important cross-talk pathway has been demonstrated 

between epidermal growth factor (EGF)activation of the MAPK pathway, which can 

function in an ER-like manner in regards to phosphorylation of ER (Ignar-Trowbridge et 

al. 1992).  It is unclear why this mechanism has evolved, but the result is that ER activity 

can be modulated when hormone concentrations are low.  This requires the integration of 

multiple signaling pathways which appears to be critical. 

 

Dimerization of ER.  The type I subgroup of the nuclear receptor superfamily, such as 

androgen receptors and glucocorticoid receptors, typically form homodimers (Tsai & 

O'Malley 1994).  Dimerization of the various NRs have been shown to be necessary for 

DNA binding and transcriptional activation (Glass 1994; Pettersson et al. 1997).  

Estrogen receptor α homodimers have been shown to be a necessary part of 

transcriptional regulation in the estrogen signaling pathway (Fawell et al. 1990). 

However, with the discovery of ERβ several studies have demonstrated that in addition to 

homodimers, ERs can form functional heterodimers.   
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Heterodimers of ERα/ERβ have been shown to form in the mouse (Pettersson et al. 1997) 

and human (Cowley et al. 1997; Pace et al. 1997).  The formation of heterodimers has 

been shown to occur in part through interactions within the zinc-finger region of the DBD 

and within the LBD (Fawell et al. 1990; Glass 1994), and the dimer interface between 

ERα and ERβ appears to be distinct (Cowley et al. 1997).  These observations have led to 

the idea that, in-part, reproductive abnormalities in ERKO mice may be linked to the loss 

of the cooperative formation of ERα/ERβ heterodimers (Pace et al. 1997).  Due to this 

added complexity, it therefore becomes intriguing to be able to examine the two receptors 

independently of each other when examining expression profiles.  In addition, the ERα/ 

ERβ heterodimer may have yet another role apart from the α/ α homodimer or β/ β 

homodimer in transcription. 

 

Estrogen receptor target sites.  Following ligand-binding, phosphorylation of the ER at 

the 5’-terminus region and dimerization, the DNA-binding region interacts with cis-

acting DNA regulatory elements, EREs, in target DNA. Estrogen response elements are 

inverted palindromes where one ER monomer binds to each half-site (Tsai & O'Malley 

1994).  Estrogen response element recognition has been found to be primarily dependent 

on the AF-2 region of LBD domain (Saville et al. 2000).  The ERE interaction is also 

affected by the receptor conformation assumed upon ligand (Krieg et al. 2004).  

However, ERs also have the ability to bind in a non-classical manner through protein 

complexes that do not require the presence of the ERE in the promoter region (Kim et al. 

2003). 
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Involvement of the ER in indirect binding or non-ERE interactions.  There are target 

genes where hormone regulation appears to rely on indirect binding of the receptor to 

promoter elements.  These “non-classical” pathways occur because ERs also have the 

ability to bind in a protein-protein manner at AP-1 enhancer sites under the mediation of 

c-fos and c-jun transcription factors (Umayahara et al. 1994; Malayer et al. 1999), as well 

as through Sp1 protein and  ERE half sites through the interaction of ER with GC-rich 

Sp1 sites (Porter et al. 1997).  These protein-protein interactions are evident in the 

regulation of insulin-like growth factor (IGF-1), which lacks a traditional ERE site, but is 

sensitive to estrogen activity through post-translational modification through the AP-1 

motif (Umayahara et al. 1994).   

 

Even though these interactions with AP-1 rely on c-fos/c-jun regulation, it is important to 

note that the Jun protein physically binds to AP-1 DNA elements at this interface (Webb 

et al. 1995; Teyssier et al. 2001) which serves as another level of transcriptional control.  

Work by Webb et al. (1995) demonstrated that the AP-1 interaction with ER had varying 

sensitivity to activation by either E2 or the antiestrogen OHT in a cell specific manner 

and that the OHT activation in uterine cell lines may be linked to the amino terminus of 

the ER. In addition, this work also suggested another pathway for OHT regulation at the 

AP-1 site that does not require direct ER binding to Jun, but instead activates a cascade 

that increases c-jun and c-jun/c-fos binding to the AP-1 site and this causes 

transcriptional alterations (Webb et al. 1995).  Later work by Teyssier et al. (2001) 

further demonstrated direct Jun interaction with ER in pulldown assays and suggested 
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that in ovarian derived cell lines this interaction occurred as a result of elements in the C 

and D domains of the receptors.  It is also of interest that the c-fos gene in this AP-1 

complex is induced through a Sp1 site in the promoter and appears to be regulated by 

estrogen (Duan et al. 1998).  The full implication of this level of control is not fully 

understood.  Further complexity is added to the ER signaling pathway by the discovery 

that at AP-1 sites the two ER isotypes have opposing transcriptional effects (Paech et al. 

1997). 

 

Estrogen receptor and Sp1 interactions are further specific to the subtype of ER as well as 

the ligand used and the cell type (Saville et al. 2000).  Studies involving the ERα 

promoter region have shown that transcription of the ERα gene relies heavily on 

interaction with the Sp1 factors (deGraffenried et al. 2002).  Unlike the well recognized 

binding of ER at EREs, which are AF2 dependent, the Sp1 protein interaction with ERα, 

but not ERβ, appears to mediated by the AF-1 region of the A/B domain (Saville et al. 

2000).  The binding of Sp1 elements then occurs in conjunction with several of the 

structural domains including the C-terminus region, H12 of the ligand-binding domain as 

well as the F domain (Kim et al. 2003).  A role for ERα/Sp1 interaction has been 

characterized for cad gene expression in MCF-7 cells which is a factor in cell 

proliferation (Khan et al. 2003).  The mediation of PR gene expression following ligand 

activation of ERα is mediated through Sp1 binding and stabilization of Sp1-DNA 

interaction within the PR gene promoters (Schultz et al. 2003).  The presence of an ERE 

half-site within the PR gene and the formation of DNA-bound Sp1 are thought to be the 

hormone activated pathway through ER, whereas Sp1 alone is thought to play a role in 
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endogenous, basal levels of PR expression observed in the absence of E2 (Petz et al. 

2004).  

 

Estrogen receptor interactions with co-activators and co-repressors.  Following ER 

binding at the promoter, the receptor protein is next involved in the recruitment of co-

regulator proteins and other protein-protein interactions, resulting ultimately in 

modification of the rate of transcription from the target promoter (Hall et al. 2002; Xu et 

al. 1999; McKenna et al. 1999).  The activator function 2 (AF-2) region of the LBD is 

one area that is critical to co-regulator interactions (Torchia et al. 1998; An et al. 1999), 

and is discussed in detail within the next section.  One of the first steroid hormone related 

co-regulators was characterized and sequenced by Oñate et al. in 1995 via a yeast two-

hybrid system and designated Steroid Receptor Coactivator-1 (SCR-1).  This co-activator 

isolation was achieved through studies of interactions within portions of the hinge and 

LBD domains of hPR with cDNA from the SRC-1 protein and was shown to be a ligand-

dependent event (Onate et al. 1995).   

 

A number of co-regulators have been identified that interact at various sites within the 

DBD, hinge, and LBD regions of the ER protein (Figure 2) to either activate or repress 

the transcriptional machinery, often in a receptor and ligand dependent manner (Torchia 

et al. 1998; An et al. 2001; Ratajczak 2001).  Co-activators are able to recognize and 

interact with the receptor through the NR box motif on the co-activators which have the 

capacity to be recruited by either ERα or β in a selective manner ligand (Bramlett et al. 

2001).  It has been demonstrated that some co-activators have the ability to bind ER 
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either a ligand-dependent or ligand-independent manner (Bramlett et al. 2001; Ozers et 

al. 2005).  Like ERα and ERβ, co-regulators show tissue-specificity, and this is thought 

to account for the ability of selective agents to increase SRC-1 and SRC-3 in an ERα/AF-

1 dependent manner leading to increased long-term stability (Lonard et al. 2004).  

Equally important in transcriptional activation is receptor and co-regulator turnover via 

proteosomes as shown through studies with SRC-1 and SRC-3 (Lonard et al. 2004). 

 

Co-repressor proteins, which are of particular interest due to their role in regulation of 

ER/ERE complexes by SERMs (Fleming et al. 2004), include the NCoR and the SMRT 

proteins, which have been shown to interact with the unbound receptor to control 

transcriptional repression (Xu et al. 1999).  The recruitment of these co-repressors by the 

receptor has been shown to be dependent on various ligand-affinity interactions, and 

occurs in a dose dependent manner (Ozers et al. 2005).  For example, at the same 

promoter receptor bound OHT recruits the co-repressor SMRT, while receptor bound E2 

recruits the co-activator SRC-1 to the ER/ERE complex (Fleming et al. 2004). 

 

Co-activator protein recruitment demonstrates tissue-specific localization, and is reliant 

on ligand selective activation.  Tissue-specificity of the co-regulator protein population 

allows for specific ligands to recruit unique complexes to the promoter (Moras & 

Gronemeyer 1998), resulting in distinctive physiological responses.  Additionally, 

SERMS can elevate steady state levels of co-regulators which inhibit ER turnover, 

(Lonard et al. 2004).  Receptor bound GEN has also been shown to result in a distinct 
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transcriptional activation through selective recruitment of co-regulators to ERβ (An et al. 

2001). 

The SRC-1 knockouts where created to help to evaluate the interactions of the co-

regulation machinery (Xu et al. 1998).  Initial studies involving the disruption of this 

protein highlight the highly cooperative nature of the co-regulatory system and SRC 

family members, as null mutants had no observable changes in phenotype and showed 

only a decrease in efficiency of proliferation and differentiation in the mammary gland in 

response to E2 and P4 (Xu et al. 1998).  Later studies involving this model have included 

OVX to compensate for the effects of E2 resistance, and these studies have further shown 

the differential interaction of ERα and ERβ with SRC-1 to occur in a compartmentalized 

manner within specific tissues, such as bone (Mödder et al. 2004). 

 

The known structural differences in ERs suggest unique independent downstream gene 

function.  The amino and carboxyl terminal domains of the ERα protein are significantly 

longer than those of ERβ (Kuiper et al. 1996; Tremblay et al. 1997).  These domains 

interact with the various co-regulator proteins crucial for transcriptional activation by the 

receptor to elicit cell specific responses (Tremblay et al. 1997).  Furthermore, differences 

in amino acid composition and conformational differences within the binding pocket 

exist between ERα and ERβ (McDonnell 1999; Katzenellenbogen et al. 2001)and these 

likely account for differential recruitment and interactions with co-regulatory proteins 

which manifests as differences in affinity for various ligands.  It is these differences that 

are at the heart of the action of SERMs. 
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ROLE OF ESTROGEN RECEPTOR IN HEALTH AND HEALTH MAINTENANCE 

 
Estrogen receptors and reproductive physiology.  Estrogen and ER are most commonly 

thought of in association with the female reproductive tract, however they are also found 

localized in the male reproductive tract, most notably ERβ in the prostate gland (Kuiper 

et al. 1996).  Estrogen is necessary in spermatogenesis, affecting both quantity and 

quality of sperm (Eddy et al. 1996). Estrogen receptor α has been found to be located 

differentially with the male reproductive tract primarily in the Leydig cells, while ERβ is 

found within the Sertoli cells (Pelletier et al. 2000).   

 

The major site of E2 biosynthesis in females arises from the granulosa cell layer of the 

developing ovarian follicle (Hillier et al. 1981).  Therefore, many animal models 

classically rely on ovariectomy (OVX) when it is desired to examine changes following 

treatment with E2 or estrogenic-like compounds.  Another site commonly associated with 

hormone precursor production is the adrenal gland that also serves as a regulator of the 

endocrine system through the secretion of steroid precursors (Weiss et al. 2004b).   

 

The mammalian female reproductive system is comprised of two ovaries, two oviducts 

and a uterus that is either 1) duplex with two separate and independent tubes opening into 

two cervical canals joined at the cervix end, 2) bicornuate with two tubes joined at a 

common cervical canal, or 3) simplex with a single corpus and cervical canal (Mossmann 

1987).  Estrous or menstrual cycles, depending on species, are tightly controlled by 

hormonal fluctuations.  Estrogen plays a major role in regulating these cycles by causing 
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endometrial proliferation in the uterus.  This is orchestrated through levels and effects of 

follicle stimulating hormone (FSH), luteinizing hormone (LH), and progesterone (P4) in 

ovulation that ultimately leads to either atresia or maintenance of the corpus luteum (CL) 

(Hillier et al. 1980; Hillier et al. 1981; Lessey et al. 1988; Snijders et al. 1992).  The two 

main female reproductive organs associated with E2 and ER function are the uterus and 

ovary, and a great deal of literature is devoted to this interplay. 

 

The uterus is histologically divided into four layers; 1) the endometrium which is 

composed of luminal and glandular epithelium, and stroma, 2) the muscular myometrium, 

3) the stratum vasculare, and 4) the perimetrium.  The endometrium is of keen 

importance for implantation of the embryo, as well as the secretion of histotroph through 

the glandular surface secretions that are necessary for maintenance of pregnancy, and is 

proliferative in response to hormone action through ERα (Gray et al. 2001).  The ovary 

consists of the total oocyte complement of a female, and thus is the major contributor of 

her reproductive potential.  This follicle environment consists of two major cell types, the 

granulosa that surround and directly nurture the developing gamete, and theca cells that 

provide the necessary signaling for proper granulosa activation.  The ERβ subtype is 

found preferentially in the granulosa cells with ERα localized to the theca cells (Byers et 

al. 1997; Rosenfeld et al. 1999).  Hormonal signals from the pituitary gland in the form 

of gonadotropins signal gamete maturation (Hillier et al. 1980) and CL development.  

The CL then controls secretion of either P4 under the correct conditions to maintain 

pregnancy or PGF2α to regress the CL to prepare the uterus for the next ovulation 

(Ganong 1991). 
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Estrogen receptors are localized in distinct patterns within the internal genitalia, which 

change during the maturation of the reproductive tract that occurs from the fetal stage 

until death.  Estrogen receptors α and β play a role in the signaling pathway for estrogen 

to act in a proliferative manner upon the endometrium of the uterus (Bigsby 2002).  In 

numerous studies the two ER have been shown to have distinct localization in the adult 

uterus and ovaries, such as those that have shown that ERα is preferentially expressed in 

the uterus (Kuiper et al. 1997; Shughrue et al. 1998). However, as with E2 and P4 

signaling pathways, the expressions pattern within the ovine (Ing & Tornesi 1997) and rat 

(Wang et al. 1999) uterus is complex and highly compartmentalized.  In the rat uterus, 

ERα is the predominant receptor gene in the glandular and luminal epithelium of the 

uterus (Wang et al. 1999), while ERα mRNA in the ovine uterus is up-regulated in all 

cell types except the luminal epithelium and myometrium following E2 treatment (Ing & 

Tornesi 1997).  The human and nonhuman primate endometrial vascular endothelium 

preferentially express ERβ.  Since E2 and P4 are vital in the angiogenesis that occurs 

during the estrous or menstrual cycle it is hypothesized that the human endometrial 

vasculature may be partially regulated by ERβ (Critchley et al. 2001). Furthermore, even 

though ERα is the dominant receptor type, as previously mentioned, the ability to form 

heterodimers with available ERβ suggests that this receptor type may still play a vital role 

in the signaling pathways. 

 

Ing and Tornesi, 1997 have provided evidence for a strong localized time-dependent 

expression of ER and PR within the uterus.  This study demonstrated that even in steroid-

deprived animals the receptor architecture remains intact to respond to a new influx of 
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hormones (Ing & Tornesi 1997), which is important when considering the physiological 

relevance of the existing pathways for E2 signaling even in ER naïve cell line models.  

However, the reproductive system is affected by other systems, namely the 

hypothalamic-pituitary axis, as well as feedback loops by hormones from the 

reproductive system. 

 

Estrogen and estrogen receptors in the neuroendocrine system.  As mentioned previously, 

ERs are not solely “reproductive tissue” oriented, and also can play a number of roles in 

other physiological systems.  The neuroendocrine system is another system that has 

systemic effects.  The hypothalamus is classically seen as the boundary between the 

central nervous and endocrine systems (Couse & Korach 1999).  As these systems age 

through a lifetime the related changes are of interest from a health perspective,  and it has 

been shown that ERα levels increase, while ERβ decreases in an E2 independent manner 

in the hypothalamus (Chakraborty et al. 2003).  The implications of this finding have yet 

to be well described.  Furthermore, maturation affects other regions of the 

neuroendocrine system, such as in rhesus monkeys, where it has been shown that ER is 

present in the adult adrenal gland, but is very low in the fetal organ (Hirst et al. 1992).  It 

is observation such as these that further highlight the importance of temporal affects on 

the ER signaling pathway. 

 

It is also through the neuroendocrine system that E2 can stimulate the secretion of critical 

hormones for reproductive maintenance such as FSH, LH, gonadotropin hormone (GH), 

and prolactin from the pituitary gland (Nilsson & Gustafsson 2000).  The hypothalamus-
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pituitary axis is considered to be one part of the trigger to menopause in the human 

(Weiss et al. 2004b).  Work with pituitary adenomas has linked ERα and β to distinct 

patterns within tumors arising from specialized cells types, such as ERα in prolactinomas 

(lactotropes) and gonadotrope tumors and ERβ in a majority of GH expressing tumors 

(Shupnik et al. 1998).  Within the endocrine system differential ER isotype expression in 

both normal and abnormal tissues help to further understand how differential receptor 

profiles lead to variations in ER biology and signaling pathways. 

 

ER in bone morphology. One high profile role of ER is in the physiology of bone through 

E2 effects on bone resorption.  The process of bone resorption is necessary for proper 

homeostasis and serves as a major pathway to the reservoir of minerals stored in bone 

that are needed by the body. This is especially noted in health maintenance and 

osteoporosis, as it is the loss of ovarian and pituitary hormone which is suggested to lead 

to the inverse relationship of increased bone resorption and decreased levels of new bone 

formation as a result of the respective system degradations (Yeh et al. 1997).   

 

Bone density is mediated by the synergistic relationship between the breakdown and 

resorption of bone matrix by osteoclast cells, and the formation of new bone matrix by 

osteoblast cells (Riggs 2000).  To understand the implication of this it is important to 

look at the roles that E2 plays in bone morphogenesis. Estrogen is able to regulate the 

activity of osteoclast cells, which are responsible for bone degradation through the 

binding of ERα and subsequent down regulation of integrins and c-jun/c-fos (Saintier D 

et al. 2004).  In conjunction, normal bone physiology relies on the E2 down-regulation of 
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proinflammatory cytokines, which typically increase bone resorption.  Estrogens also 

have a role in up-regulating inhibitors of resorption such as TGF-β, thereby effecting 

small, yet cumulative changes in the microenvironment of the bone (Riggs 2000).  In 

light of these regulatory roles it is easy to see how the loss of E2 would result in drastic 

changes in the normal balance of bone maintenance. 

 

ER in the inflammatory response.  Inflammation plays a role in immediate immune 

responses to injury, as well as in reproductive tissue as it relates to menstruation, estrus, 

or embryo implantation.  There are well recognized roles for inflammation as it relates to 

health maintenance and dysfunction such as that seen in arthritis, cytokine impact on 

bone homeostasis and maintenance of the cardiovascular system.  Steroid hormones, 

including estrogens have been shown to participate in these processes.  

 

Estrogens and ER play a role in regulating cytokines involved in inflammation such as 

the interleukins 1 and 6 (IL) as well as tumor necrosis factor α (TNF-α), which in turn 

have roles in multiple physiological systems.  Estrogen has a regulatory role in T-cell 

TNF-α secretion, B-cell population dynamics, as well as nitric oxide (NO) and cytokine 

inducible NO synthase (iNOS) levels (Pfeilschifter et al. 2002).  Likewise, declines in E2 

levels lead ultimately to increases in release of free-radicals suggesting an antioxidant 

role for the ER system (Gurdol et al. 1997).  The full implications for ER action through 

this system have yet to be realized.  However, underlying interactions are of interest 

when considering the observation that inflammatory breast cancers show significantly 

decreased levels of ER (Van den Eynden et al. 2004).  There is also a correlation between 
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increased ERβ over ERα immunoreactivity in the synovial fluid of individuals with 

rheumatoid arthritis which may play a role in the pathogenesis of this disease (Ishizuka et 

al. 2004).  Together this demonstrates a role for ER in the inflammatory response that 

functions in health and disease. 

 

Health and SERMS.  In humans, the sudden decline of ovarian function and loss of LH 

during menopause serves as the classic trigger that accounts for the reduction in 

circulating E2, and the resulting complications such as loss of reproductive function, hot 

flashes, bone density loss, and vaginal dryness (Cheung et al. 2004).  There is also 

evidence that a loss of estrogen sensitivity in the hypothalamic-pituitary axis is involved 

in observable menopausal symptoms (Weiss et al. 2004).  The exact trigger for human 

menopause, whether the loss of ovarian function or desensitization of the hypothalamic-

pituitary axis, is not clear and may be a consequence of the decline of both systems (Wise 

et al. 1996). 

 

The effects of aging and steroid hormone levels are not limited to females, as both male 

and female segments of the population suffer the effects of osteoporosis ,which is in part 

linked to E2 levels (Wise et al. 1996).  However, while men produce intragonadal E2 in 

the cells of the testis it does not account for significant circulating amounts.  Males rely 

on the metabolism of testosterone (Simpson et al. 1999), thus the dramatic and relatively 

sudden effects of estrogen loss in women is not observed in males.  In additional to 

gonadal sources, non-gonadal sources in humans include the adrenal glands which supply 

the precursor dehydroepiandrosterone (Labrie et al. 1997), and tissues such as adipose 
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(Pedersen et al. 1996), brain and muscle where the conversion of precursors to E2 appears 

to be site restricted (Simpson & Davis 2001; Labrie et al. 1997). These additional sites, 

which allow for localized E2 production from available C19 precursors, may play 

significant roles as sources of E2 in older individuals (Simpson et al. 1999).  This in turn 

may affect those within the population which suffer from increased risk for certain 

cancers, such as the link between breast cancer and obesity (Huang et al. 1997). 

 

Exogenous use of hormones in HRT is of interest in relieving not only the 

aforementioned uncomfortable symptoms that occur as a result of menopause, but also 

the detrimental effects in regards to bone density loss.  However, the introduction of 

some hormone combinations that are used in HRT result in an unacceptable increased 

risk for certain cancers and cardiac dysfunction, which do not balance the positive bone 

effects.  This was most notably seen in 2002, when the Women’s Health Initiative ended 

a clinical trial involving the use of a combination of estrogen and progestin in women 

with a uterus, due to increased risk of breast cancer and to a lesser extent coronary artery 

disease (Writing group for the WHI Investigators 2002).  However, clinical trials 

involving estrogen alone in women with a hysterectomy have been allowed to continue 

(Writing group for the WHI Investigators 2002).  Understandably, an increased 

knowledge of the chief receptor type targeted by these treatments and their downstream 

effects is desired so that this data may lead to better health maintenance and therapeutics.   

 

 35



 

MODEL SYSTEMS FOR ESTROGEN RECEPTOR FUNCTION 

 
Knockout models.  Several complementary approaches have been used to verify and 

characterize physiological and genetic differences between the ER subtypes.  The concept 

of functional knockouts is bolstered by the presence of natural knockouts found within 

the environment, such an ERα deficient male in humans (Smith et al. 1994).  Engineered 

knockouts are created by targeting portions of genes, causing the receptor gene to become 

disrupted.  The disrupted gene constructs are then cultured into embryonic stem cells, and 

added to blastocysts.  Heterozygous offspring are then inbred to create ER null 

homozygotes, which are then studied for differences in phenotype (Couse & Korach 

1999).  These models have served as a cornerstone for understanding the physiological 

effects of ER in relation to phenotypic disparity.  Phenotypic variation between mouse 

knockout models for ERα (Lubahn et al. 1993; Das et al. 1997) and ERβ (Krege et al. 

1998) suggest that, in addition to differences in tissue distribution, the receptors exert 

different effects in the same tissue.  These models have provided valuable insights into 

the differential roles of the estrogen receptors, as well as insight into cross-talk 

mechanisms such as the ablation of cross-talk between the membrane bound EGF and 

nuclear ER in the uterus of ERKO mice (Curtis et al. 1996).   

 

The most notable phenotype of ERα knockouts (ERKO) is that both female (Lubahn et 

al. 1993) and male (Eddy et al. 1996) mice  exhibit infertility.  The ERβ knockout 

(bERKO) females exhibit only subfertility (Krege et al. 1998), highlighting the dominant 

nature of ERα.  However, ERβ roles in the uterus have still been shown to be 
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developmentally important as bERKO mice have regulatory roles of ERα in the neonate 

(Weihua et al. 2000).  Estrogen receptor α KO females display hypoplasia of the uterus 

and abnormal sexual behavior even following E2 stimulation (Lubahn et al. 1993).  The 

cause of female infertility stems mainly from the inability to ovulate, as seen by the 

dramatic differences in ovarian structure in ERKO versus wild-type (WT).  Male 

infertility stems from disruption of the seminiferous tubules and a resulting decrease in 

the quantity and quality of sperm cells (Eddy et al. 1996). 

 

In the ERKO mouse, the ovarian structure at postnatal day 10 is similar between ERKO 

and WT, but deteriorates by postnatal day20 to where an absence of corpora lutea, and a 

phenotype of hemorrhagic and cystic follicles is observed (Schomberg et al. 1999).  This, 

in part, demonstrates the importance of temporal effects when considering physiological 

ER activation.  In the male, the Sertoli cells are a main source of E2 and also express ER.  

In ERKO males disruption of this process results in the lack of ability to successfully 

complete spermatogenesis (Couse & Korach 1999).  In compound ER knockouts 

(ERαβKO) created by Dupont et al. (2000) ER null post-pubescent females displayed 

Sertoli cell-like structures within their ovaries.  This has advanced ideas involving the 

nature of ER in female gonad developmental and differentiation, as well as suggesting the 

importance of time period when examining physiological effects. 

 

Knockout models demonstrate the cooperative nature of ERα and ERβ, as well as the 

dose dependence of treatment, on the effects of the individual receptors.  One example of 

this is the diversity in phenotypes with respect to of bone homeostasis seen between 
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females and males of the ERKO, βERKO, and double knockout αβERKO phenotypes. 

Defects in the skeletal system (although not overt) are seen in both female and male 

ERKO and βERKO models.  The main effects tend to result from a decreased bone 

thickness and density in both sexes, while females show no effects in longitudinal bone 

and males demonstrate evidence of ER isoform compensatory effects (Sims et al. 2002).  

However, there is evidence that in males ERα is responsible for maintenance and cortical 

growth, and ERβ does not play a role in remodeling, while females require both receptors 

for remodeling but ERβ is ligand dependent (Sims et al. 2002).  It is suggested that ERβ 

may mediate the negative regulatory effects of estrogenic compounds on bone (Couse & 

Korach 1999).  This underscores the complexity of endocrine biology on multiple 

physiological systems and how ERα and ERβ may act differentially.  

 

It is difficult, however, with knockout models to separate developmental effects from 

functional effects in adult tissue.  There is evidence from ER knockouts that estrogenic 

compounds can retain effectiveness in uterine stimulation through non-nuclear ER 

pathways, splice-variants, or other receptor protein interactions (Das et al. 1997).  In 

single ER knockouts compensation for each subtype is unavoidable. There also may be 

functional redundancy in the remaining members of the steroid receptor family (Dupont 

et al. 2000) and there may be effects of prenatal gene imprinting (Couse & Korach 1999).  

For these reasons other types of models are important in evaluating independent ERα and 

ERβ function as well as their interactions. 
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Cell line models.  Cell line models provide valuable insight into the functional signaling 

pathways and gene expression profiles that may not be as easy to elucidate from 

knockout animal models.  Numerous cell lines have been generated that give information 

on varying aspects of ER function, but for the purposes of this review the scope will be 

limited to a select few.  In addition to breast tissue and breast cancer derived cell lines, 

osteoblast, pituitary, and embryonic fibroblast cell lines have been described for use in 

understanding the ER signaling pathway.  The use of these models in understanding cell 

specific mechanisms are a valuable tools (Zhang et al. 2002), however it must also be 

kept in mind that they are a tool and a single cell line can not in and of itself imitate an 

intact tissue system.  

 

In regard to ER function, one of the most widely used cell lines has been the metastatic 

breast cancer derived MCF-7 cell line (Soule et al. 1973) that expresses ERα 

preferentially and is growth inhibited by antiestrogens (Muller et al. 1998).  The MCF-7 

cells have been the classical cell culture model used to describe steroid function, 

including ER-PR interactions (Horwitz et al. 1975; Horwitz & McGuire 1978).  Stable 

expression of the α and β receptors in a naïve cell line, such as fetal osteoblasts (Rickard 

et al. 2002; Harris et al. 1995; Monroe et al. 2003), has resulted in the demonstration of 

responses specific to ERα and ERβ mediated signaling.  This osteoblast based cell 

culture model allows for characterization of the roles of the two receptors independent of 

one another in the presence of the same natural ligands, with a specific emphasis on how 

cellular signaling may function in context to bone morphology.   
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Work by Waters, et al. (2001) used human osteoblast cell lines (hFOB/ERα or ERβ) to 

demonstrate that ligand (E2 or OHT) and ER isoforms affect responses of the cells in 

regards to cytokine expression in a “stage of differentiation” dependent manner. These 

researchers conclude that ER in this system may be modulated by co-regulators, cell 

matrix interactions, or cross-talk pathways along with other factors (Waters et al. 2001).  

However, it also highly likely that transcriptional regulation is dependent on the 

relationships between these interactions.  This was more clearly seen in later studies by 

the same group which showed that ERα/ERβ co-expression decreased transcriptional 

response compared to the independent receptors, and that SRC family over expression 

favors one ER isotype over the other dependent on the SRC member present (Monroe et 

al. 2003).  

 

Our lab has examined gene expression specifically regulated by either ERα or ERβ in an 

in vitro cell culture model based upon engineered rat embryonic fibroblast cell lines 

(Freeman et al. 1970; Kaneko et al. 1993; Cheng & Malayer 1999), although there are 

limitations with this approach as well.  This cell line does not naturally express ER 

(Freeman et al. 1970), and permit the examination of changes in gene expression upon 

the retroviral addition of either ERα (Kaneko et al. 1993) or ERβ (Cheng & Malayer 

1999) within the given cellular architecture.  Ligand dependent activation of ER has been 

shown through estrogen responsiveness studies using chloramphenicol acetyltransferase 

(CAT) reporter assay (Kaneko et al. 1993; Cheng & Malayer 1999; Hurst et al. 2004), 

and the use of RT-PCR to determine the presence of PR (Kaneko et al. 1993; Cheng & 

Malayer 1999), a known downstream gene regulated by ER.  
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Due to the highly complex nature of estrogen signaling pathways, there is a need to 

determine with greater clarity the involvement of each independent receptor isotype in 

eliciting downstream gene expression both in tissues where the receptors function 

autonomously, and especially where both are present. Numerous methods, from 

knockouts to cell lines, have been used to study steroid hormones, their receptors and 

their roles in physiology.  Due to the complexity of the steroid receptor paradigm it will 

take the investigation of multiple data sets to come to a more complete understanding of 

ER function and interactions.  It is desired that this will ultimately lead to better 

understanding and management of the health and wellness issues with which we are 

currently faced.  For these reasons we have examined the nature of unique gene 

regulation by ERα and ERβ in an undifferentiated in vitro cell model system designed to 

isolate each receptor protein from the influence of the other.  
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Figure 1:  The nuclear receptor common domain structure. The estrogen receptor shares 
a common 5 domain structure with the NR family that displays specific serine and 
tyrosine phosphorylation sites, and interactions with co-regulatory proteins. Adapted 
from; Ratajczak, 2001 and Smith, 1998 
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CHAPTER III. 

Independent downstream gene expression profiles in the 
presence of estrogen receptor alpha or beta 

 

ABSTRACT  

The two known forms of estrogen receptor (ER), α and β, exhibit differences in structure, 

affinity for certain ligands, and tissue distribution, suggesting differential roles.  It is of 

interest from several perspectives to determine whether the two receptors elicit similar or 

differing responses within the same cell type in the presence of the same ligand.  To 

evaluate roles of ER we have examined responses to estrogen in a rat embryonic 

fibroblast cell line model, normally naive to ER, engineered to stably express ERα or 

ERβ.  Rat1+ERα, Rat1+ERβ, and precursor Rat1 cell lines were treated with estradiol-

17β (E2; [1 nM]) or an ethanol vehicle for 24 hours.  Total RNA was extracted, and 

cDNA generated and subjected to suppression subtractive hybridization (SSH), followed 

by differential screening using dot blot hybridization.  In the presence of ERα products 

were identified that represent classic responses to E2, including markers for cell 

proliferation.  In the presence of ERβ an alternate transcription profile was observed, 

including up-regulation of pro-alpha-2(I) collagen.  These data support a model in which 

ERα and ERβ regulate unique subsets of downstream genes within a given cell type. 
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INTRODUCTION  

The estrogen signaling system plays a critical role in the physiology of the reproductive 

organs, as well as the cardiovascular, skeletal and central nervous systems, and in 

carcinogenesis.  Estrogen receptors (ER) are members of the steroid receptor family and 

function as ligand-inducible transcription factors.  Upon binding of the ligand, ER within 

the nucleus undergo phosphorylation (1, 2), dimerization (3), and binding to DNA at 

specific cis-acting sites termed estrogen response elements (ERE) (4, 5).  The receptor 

protein is next involved in the recruitment of co-regulator proteins and other protein-

protein interactions, resulting ultimately in modification of the rate of transcription from 

the target promoter (4, 6, 7).  In some instances the capability exists for ligand 

independent activation through phosphorylation pathways (8,9), including MAP-kinases 

(10).  Nuclear estrogen receptors mediate most of the actions of estrogens resulting in 

transcriptional activation and repression, control of cell cycle progression, and integration 

of intracellular signaling pathways (11). 

 

Toft and Gorski (12) first isolated and began characterizing a receptor protein for 

estrogen in 1966 and through 1994 only one receptor isoform had been identified.  In 

1995 the second estrogen receptor, ERβ, was identified from rat prostate (13) and since 

that time ERβ has been characterized in the mouse (14), human (15), and numerous other 

species.  Variations exist in the tissue distribution of ERα and ERβ, though they appear 

to have similar gene expression levels in the testis, epididymis, bone, and adrenal gland 

(16).  ERα predominates in the proliferative cells of the mammary, pituitary and thyroid 

glands, as well as in uterus, skeletal muscle and the smooth muscle of the coronary 
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arteries, while ERβ is predominant in the prostate (13), granulosa cells of the ovary, and 

the lung, bladder, brain and hypothalamus (17).  In tissues where both receptors are 

present it has been shown that the receptors may form either homodimers or heterodimers 

(18-20). 

 

While there is great similarity in their DNA- and ligand- binding domains, the two ER 

forms exhibit significant structural differences, especially in the NH2-terminal A/B 

domain and the COOH-terminal F domain, and there is some variation in affinity for 

certain ligands (13,17), suggesting differential physiological roles.  Several 

complementary approaches have been used to verify and characterize these differences.  

Phenotypic variation between mouse knockout models for ERα (21, 22) and ERβ (23) 

suggest that, in addition to differences in tissue distribution, the receptors exert different 

effects in the same tissue.  These models have provided valuable insights into the 

differential roles of the estrogen receptors.  It is difficult, however, with knockout models 

to separate developmental effects from functional effects in adult tissue.  Ligands 

designed to activate only ERα or ERβ have been used to show differential effects of the 

two receptors (24, 25), and contributed significantly to understanding estrogen signaling, 

although limitations include the degree of selectivity by the ligand for one receptor over 

the other.  Stable expression of the receptors in a naïve cell line, such as fetal osteoblasts 

(26-28), in culture has resulted in the demonstration of responses specific to ERα and 

ERβ mediated signaling.  This approach allows for characterization of the roles of the 

two receptors independent of one another in the presence of the same natural ligands.  

Although there are limitations with this approach as well, we have similarly examined 
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gene expression specifically regulated by ERα or ERβ in a set of engineered rat 

embryonic fibroblast cell lines (29-31).  Utilizing the technique of suppression 

subtractive hybridization (SSH) we have attempted to identify examples of unique 

downstream genes autonomously activated by each receptor within the same cell type in 

response to the same ligand. 

 

MATERIALS AND METHODS  

CELL CULTURE AND REPORTER ASSAY 

Cell Culture.  Rat1 fibroblast cell lines (29) stably expressing either a mutant human 

HEG0 ERα (Rat1+ERα) (30) or rat ERβ (Rat1+ERβ) (31), were used as a model system 

for examining unique subsets of downstream genes regulated by each receptor type.  

Cells were grown in sterile filtered (0.22 µM), phenol red – free Dulbecco’s Modified 

Eagle Medium (DMEM; Gibco-BRL, Grand Island NY), with NaHCO3 (3.7 g/L).  The 

cells were supplemented with bovine insulin (0.6 µg/ml) in HEPES (25 µM) (Sigma, St. 

Louis MO), 1X antibiotic – antimycotic (Sigma, St. Louis MO), and 10% charcoal – 

stripped/ dextran treated fetal bovine serum (CSFBS; Hyclone, Logan UT).  Cells were 

maintained in approximately 0.133 ml/cm2 medium at 37˚C with a humidified 

atmosphere of 5% CO2 gas and 95% air, and media was replaced every 48 hours.  

Additionally, Rat1+ERα cells were supplemented with Hygromyocin B (100 µg/ml) in 

PBS (Gibco-BRL, Grand Island NY) beginning 24 h after plating (30).  Rat1+ERβ cells 

were supplemented with Geneticin (50 µg/ml) (Gibco-BRL, Grand Island NY) (31). 
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CAT Reporter Assay.  A chloramphenicol acetyltransferase (CAT) reporter assay was 

used to verify a functional response to E2 by ER in each cell line and to verify that the 

precursor Rat1 cell line lacked ER expression and response to E2.  Cells were plated at 

400,000 cells per well in a 6 well cluster (35 mm diameter) tissue culture plate (Costar, 

Cambridge MA), and transfected in triplicate with pERE15 (32) construct to determine 

E2 responsiveness as described by Cheng and Malayer, 1999 (31).  After a 24-hour 

recovery period in DMEM, transfected cells were treated with either E2 [1nM] (98% 17-β 

estradiol; Sigma, St. Louis MO), or an equal volume of ethanol vehicle for 24 hours.  

Protein lysates were prepared and incubated with [3H]chloramphenicol and n-butyryl-

coenzymeA.  Following extraction acetylated [3H]chloramphenicol levels in the organic 

phase were measured via scintillation spectroscopy (31). 

 

Treatments and RNA Extraction.  Cells were grown in 225 cm2 cell culture flasks 

(Corning, Corning NY) to 80% confluency and then treated with a single dose of E2 [1 

nM].  After 24 hours cells were washed 3 times in PBS and total RNA extracted as 

described by Chomczynski and Sacchi (33). 

 

DETECTION OF UNIQUE GENE EXPRESSION 

Suppression Subtractive Hybridization (SSH).  RNA was subjected to SSH (34) modified 

to a kit available from BD Biosciences (BD Biosciences Clontech, Palo Alto CA).  Total 

RNA (3-5 µg) extracted from cell culture, was used to generate cDNA from Rat1+ERα, 

Rat1+ERβ, and precursor Rat1.  The cDNA was cut with RsaI (BD Biosciences 

Clontech, Palo Alto CA), and 2 different adaptors (34) were ligated onto individual 
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aliquots of the tester population.  Hybridizations were carried out as described by Mohan 

et al. (35) with modifications.  The first hybridization was carried out on the tester with 

either Adaptor 1 or 2R, and these were heat denatured and hybridized in the presence of 

excess denatured driver.  A second hybridization was then performed where the two 

tester populations were combined in the presence of fresh denatured driver.  Due to the 

presence of the adaptors only those genes unique to the tester population were enriched 

and amplified in the PCR reaction (35).  PCR products from SSH were then compared 

against unsubtracted products.  To further enrich the products a secondary PCR was 

performed using nested primers to the adaptors. 

 

ANALYSIS OF UNIQUE GENE EXPRESSION 

Cloning and Differential Analysis - Qualitative.  Secondary PCR products were cloned 

into a pCRII Topo T/A vector (Invitrogen, Carlsbad, CA), and resulting colonies 

screened by differential analysis using DIG- labeled probes (Roche Molecular 

Biochemicals, Indianapolis IN) to verify subtractions.  Due to the large number of inserts 

being transfected into the Topo vector, an extended incubation (1 hr) was used.  

Following chemical transfection, colonies were grown on selective agar plates at 37˚ C 

overnight.  Colonies from the Rat1+ERβ tester population (96 clones) and from the 

Rat1+ERα tester population (120 clones) were then picked and grown in Terrific Broth 

(Fisher Biotech, Fair Lawn NJ) supplemented with carbanocillin (100 µg/ml; ICN, Costa 

Mesa, CA) in 96 well culture plates (Promega, Madison WI).  DNA purification was 

carried out using Promega SV96 DNA purification system, and plasmid DNAs were 

spotted onto a series of 8.5 X 12 cm positively charged nylon membranes (Roche 
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Molecular Biochemicals, Indianapolis IN) using a BioDot apparatus (BioRad, Hercules, 

CA).  Purified DNA was chemically denatured using denaturing solution [0.5 M NaOH, 

1.5M NaCl] for 5 - 10 min in a 96 well plate and equally distributed to the BioDot 

apparatus followed by gentle vacuum for 1 min.  Neutralization solution [0.7M Tris-HCl 

pH8.0, 1.5M NaCl] was then added to wells for 5 – 10 min.  Membranes were rinsed in 

2XSSC for 1 – 2 min, UV cross-linked, and stored at 4ºC. 

 

Probes were prepared from the secondary PCR products generated by SSH.  These were 

digested with RsaI (Gibco-BRL, Grand Island NY) to remove adaptors, which cause 

background during hybridization.  Excess inactivated enzyme, buffer, and adaptors were 

removed using Qiagen PCR purification columns (Qiagen, Valencia, CA).  After 

denaturation (95˚C, 7 min) to generate ssDNA, SSH secondary PCR products [1 µg] were 

added to a pre-mixed DIG-HIGH Prime® containing; random primers, nucleotides, 

Klenow enzyme, buffers and the DIG-dUTP (Roche Molecular Biochemicals, 

Indianapolis IN), and incubated for 20 h at 37˚C.  The reaction was stopped by heating to 

65˚C for 10 min, and the labeled products were stored at -20˚C.  Labeling efficiency was 

performed according to the manufactures instructions and compared to standard labeled 

product (Roche Molecular Biochemicals, Indianapolis IN) based on chemiluminescence 

(CSPD) detection.  Labeled PCR probes were used at a concentration of 25 ng/ml in DIG 

EasyHyb hybridization solution (Roche Molecular Biochemicals, Indianapolis IN). 

 

Membranes were pre-hybridized in DIG Easy-Hyb solution for 15 min (42˚C; 10 ml/100 

cm2 membrane) and probed in DIG EasyHyb solution with 25 ng/ml probe overnight 

(42˚C; 3.5 ml/100cm2).  Membranes were then washed as described by the manufacturer 
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to remove excess probe.  Bound probe was detected using an anti-DIG conjugate for 30 

min (75 mU/ml in 40 ml) at room temperature under constant agitation.  Detection by 

CSPD was carried out via enzyme immunoassay (Roche Molecular Biochemicals, 

Indianapolis IN).  Spots were qualitatively analyzed for signal intensity after exposure to 

Kodak X-OMAT LS 8 X 10 X-ray film (Kodak, Rochester NY).  Comparison of 

subtracted and unsubtracted probes was conducted using criteria detailed in the Clontech 

Differential Screening manual (BD Biosciences Clontech, Palo Alto CA).  Primary 

candidates for sequencing (Figure 2C; denoted +,+,-,-) hybridized to both subtracted and 

unsubtracted tester probes.  Low abundance (Figure 2C; denoted +, -,-,-) products which 

hybridized only to subtracted tester probes were also sequenced.  Colonies that were 

positive to the subtracted probe for the tester and driver and had 5-fold intensity in the 

tester were also picked and sequenced (Figure2C; denoted +>5, +, +, -).  Colonies 

positive in the unsubtracted driver were sequenced (Figure 2C; denoted +, +, -, +).  

Though present in the driver population the products were in such low abundance as to 

not be detected through SSH, and therefore the differences between populations are still 

significant.  Colonies positive on all four membranes were not considered. 

 

Automated Sequencing.  Once differential analysis of the subtracted products was 

verified, automated sequencing was carried out by the OSU Recombinant DNA/ Protein 

Resource Facility, and results analyzed using MacVector 7.0 in conjunction with NCBI 

Basic Local Alignment Search Tool (36) to identify homologous sequences in the 

GenBank database. 
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Real time PCR- Quantitative.  Taqman® primers and probes were generated using Primer 

Express® software (PE Applied Biosystems, Foster City CA) to gene targets of interest 

defined by SSH, qualitative analysis, and sequence information.  Quantitative PCR was 

then carried as described by Hettinger et al. (37) with modifications (38-40).  ABI primer 

probe sets were generated from sequences deduced from SSH products.  Probes 

contained a 3’ fluorescent TAMRA quencher dye, and a 5’ FAM reporter dye.  

Expression was examined for four individual targets in triplicate using total RNA (10 ng) 

from each of the treatment schemes for the cell lines (Rat1+ERα, Rat1+ERβ, Rat1 treated 

with E2 or vehicle) by means of primer [300 nM] and probe [200 nM] sets shown in 

Table 1.  Each population of total RNA (50 pg) was normalized in duplicate using 18S 

ribosomal RNA (Ribosomal RNA control kit, PE Biosystems) at a [200 nM] primer [100 

nM] probe concentration, and the efficiency was checked via a standard curve of serial 

dilutions of Rat1+ERα E2 treated.  For individual targets 10 pg, 100 pg, 1 ng, 10 ng, 100 

ng was used.  For 18S ribosomal RNA 500 pg, 50 pg, 10 pg, 5 pg, and 1 pg was used.  

Real-time PCR was carried out in the ABI PRISM 7700 (PE Applied Biosystems, Foster 

City CA) under the following thermal cycler conditions; 48˚C for 30 min and 95˚C for 10 

min, followed by 40 cycles of 95˚C for 15 sec and 60˚C for 1 min, in a 25 µL reaction.  

Analysis and fold differences were determined using the comparative CT method as 

described in the ABI technical bulletin #2 for the ABI PRISM 7700 (38-40), where the 

Rat1 vehicle treated cell line was used as a calibrator. 

 

Standard Reverse Transcription (RT) - PCR – Semi-quantitative.  Reverse transcription 

followed by PCR was carried out for additional putative gene products identified through 
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SSH and differential screening, to further check for the presence of false positives in our 

data set.  Annexin 1 (935 bp) identified in the Rat1 + ERα tester population, and Nuclear 

factor I/B (963 bp) identified in the Rat1+ERβ tester population were selected, and 

primers generated via MacVector® software (Table 2).  Primers were synthesized by 

Integrated DNA Technologies (IDT: Coralville, Iowa), and G3PDH (500 bp) was run 

simultaneously as a PCR loading control.  Conditions were carried out as described in 

Table 2. 

 

Statistical Analysis.  Results for CAT assay were analyzed with the Statistical Analysis 

System (SAS; Package 8.0) by constructing a 3 cell type by 2 treatment factorial Analysis 

of Variance (ANOVA) table and using least square differences in PROC-GLM to 

determine significant differences.  Statistical comparison of RT-qPCR values with means 

+ S.D. were reported where n = 3 and results were tested using least square differences, 

reported as PROC-MIXED in a 3 cell type by 2 treatment factorial ANOVA table 

constructed using the SAS. 

 

RESULTS  

VERIFICATION OF E2 STIMULATION 

Similar to previously reported results, chloramphenicol acetyltransferase reporter assay 

confirmed an increase of pERE15 reporter gene activity in the presence of estradiol-17β 

(E2) [1 nM] after 24 hours in cell lines expressing ERα and ERβ (31) (Figure 1).  In the 

presence of ERα or ERβ, there was a significant increase in chloramphenicol 
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acetyltransferase activity (P<0.01), as determined by the amount of acetylated [3H] 

chloramphenicol present following E2 treatment, compared to either ethanol vehicle 

treatment or the parental cell line which does not express ERα or ERβ.  There was no 

significant difference in chloramphenicol acetyltransferase activity between Rat1+ERα 

and Rat1+ERβ cells following E2 treatment.  This is in accordance with previously 

published data showing a 10X higher Kd of the HEG0 mutant (41) present in the 

Rat1+ERα cell line.  

 

SUPPRESSION SUBTRACTIVE HYBRIDIZATION   

Profiles of unique gene products were evaluated through comparisons of subtracted SSH 

products to unsubtracted controls (34).  Four experiments were carried out, each 

consisting of a forward and reverse reaction: 1) comparison of Rat1+ERα and Rat1+ERβ 

following E2 stimulation; 2) comparison of Rat1+ERα and Rat1+ERβ following vehicle 

treatment; 3) comparison of Rat1+ERα and Rat1 following E2 stimulation; and 4) 

comparison of Rat1+ ERβ and Rat1 following E2 stimulation.  G3PDH (500 bp) 

efficiency controls were carried out to confirm that there was a decrease in levels of 

G3PDH in subtracted products.  This was demonstrated by an increase in number of PCR 

cycles required to amplify G3PDH in comparison to the unsubtracted control.  

 

QUALITATIVE ANALYSIS OF DIFFERENTIAL SCREENING FOLLOWING SSH 

A total of 814 SSH products were screened in 4 forward and reverse experiments outlined 

above, and of these 208 were identified as differentially expressed through dot-blot 
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hybridization assays using digoxigenin (DIG)-labeled probes (Figure 2).  These 

candidates were subjected to single-pass sequencing and BLAST analysis was performed 

(33).  When clones from the four experiments were examined, 150/208 returned quality 

sequence data and 107/150 showed identity to known sequences with a 44% rate of 

redundancy, while 43/150 had no significant match to any known sequence with a 30% 

rate of redundancy (Tables 3,4,5). In the presence of E2, Rat1+ERα appeared more robust 

in terms of gene activation and approximately 26 unique products exhibited identity to 

known genes (Table 3), while 6 showed no homology to GenBank sequences.  Within the 

homologous putative genes, classic E2 responsive gene products involved in cell growth, 

transcriptional activity and signal transduction were found.  When Rat1+ERβ with E2 

stimulation was utilized as tester, 4 unique gene homologs were identified (Table 4), and 

1 showed no homology.  In vehicle treated experiments most results aligned with 

ribosomal RNA or mitochondrion products (Table 3 and 4).  However, within the 

Rat1+ERα vehicle treated tester population a match occurred to procollagen C – 

proteinase enhancer protein (PCOLE) (Table 3).  When the parental cell line was used as 

the tester the majority of products showed no homology to known sequences, or aligned 

to ribosomal or mitochondrion products (Table 5).  These data support the concept that, 

in addition to differences in tissue distribution, ERα and ERβ regulate both overlapping 

and unique subsets of downstream genes in the same genetic background. 

 

QUANTITATIVE RT-PCR ANALYSIS OF TARGET GENES OF INTEREST IDENTIFIED THROUGH SSH  

Targets of particular interest, especially genes considered to be involved in inflammatory 

responses or MAP-kinase related pathways were selected for real-time quantitative RT-
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PCR (RT-qPCR) (38-40) and normalized to 18S rRNA expression.  Pro-alpha-2(I) 

collagen (COL1A2), procollagen C- proteinase enhancer protein (PCOLE), cathepsin L 

(CtsL), and receptor for activated protein kinase C (RACK1) were selected for RT-qPCR 

and analyzed using the comparative cycle threshold (CT) method (Table 6).  Validation of 

RT-qPCR efficiency was determined by the evaluation of the R2-value of the standard 

curve for 18S ribosomal RNA which was 0.9818, with the R2-values of the individual 

targets varying by less than + 0.01 from this value.  Efficiency of the PCR was further 

measured by the equation ((101/-s)-1) and found to be >90% (40). 

 

Pro-alpha-2(I) collagen was identified from the Rat1+ERβ E2 tester/ Rat1+ERα E2 driver 

comparison and increased 4-fold in the Rat1+ERβ cell line versus the Rat1+ERα 

following E2 treatment (p<0.05).  An increase in COL1A2 of 14-fold was observed in the 

Rat1 + ERβ E2 treated cell line over the predetermined calibrator Rat1 vehicle treated 

cells (Figure 3A). 

 

Cathepsin L and RACK1 were identified from Rat1 + ERα E2 tester/ Rat1+ERβ E2 driver 

comparisons.  The RACK1 target had a 2-fold increase in Rat1+ERα E2 stimulated cells 

compared to Rat1 + ERβ E2 cells (p<0.05) (Figure 3B), and CtsL increased 2-fold in 

Rat1+ERα cells when compared to Rat1 + ERβ E2 cells (p<0.05) (Figure 3C). 

 

Procollagen C – proteinase enhancer protein was identified in the Rat1+ERα vehicle 

treated tester subtracted from Rat1+ERβ vehicle treated driver comparison.  However, 
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PCOLCE turned out to be a false positive in the population it was identified in as 

Rat1+ERα vehicle treated showed significantly lower expression levels than Rat1+ERβ 

vehicle treated (p<0.05).  Interestingly RT-qPCR detected a 3-fold increase in Rat1+ERα 

E2 versus Rat1+ERβ E2 (p<0.05) (Figure 3D). 

 

SEMI-QUANTITATIVE ANALYSIS OF ADDITIONAL GENES OF INTEREST USING RT-PCR 

Semi-quantitative reverse transcription-PCR analysis of gene targets was also used to 

confirm the validity of targets detected through SSH.  A 935 bp product for annexin 1 

was detected in Rat1+ERα E2 stimulated cDNA as expected (Figure 4A).  A 963 bp 

product for nuclear factor I/B was detected in Rat1+ERβ E2 stimulated, as well as in 

Rat1+ERα vehicle treated cells (Figure 4B).  These data are congruent with the profiles 

predicted through SSH and differential screening. 

 

DISCUSSION  

The study of ERα and ERβ are of principal interest in relation to the critical role of the 

estrogen signaling system in the physiology of the reproductive organs, the 

cardiovascular, skeletal and central nervous systems, and in carcinogenesis.  There is 

particular interest in the selective activation of tissue-specific responses within the 

context of hormone replacement therapy and treatment of disease (42, 43).  There exists a 

need to better determine the involvement of each receptor in eliciting downstream gene 

expression both in tissues where the receptors function autonomously, and especially 

where both are present. For these reasons we have examined the nature of unique gene 
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regulation by ERα and ERβ in this undifferentiated model system designed to isolate each 

receptor protein from the influence of the other.  

 

The known structural differences in ERs suggest unique independent downstream gene 

function.  The amino and carboxyl terminal domains of the ERα protein are significantly 

longer than those of ERβ (13,14).  These domains interact with the various co-regulator 

proteins crucial for transcriptional activation by the receptor to elicit cell specific 

responses (14).  Furthermore, differences in amino acid composition and conformational 

differences within the binding pocket exist between ERα and ERβ (44, 45) and these 

likely account for differences in affinity for various ligands.  It is these differences that 

are at the heart of such pharmaceuticals as selective estrogen response modulators 

(SERMs). 

 

Using SSH, we have identified a profile of products differentially regulated by ERα and 

ERβ in response to exposure to a single dose of E2 for 24 hours.  This represents a small 

subset of potential target genes, as any response that would have occurred prior to 24 h, 

or at an alternative dose level, would not be recognized.  Further, the experimental 

protocol has limited the number of products identified by limiting the number of colonies 

examined to 814 overall.  Following sequencing of the cDNAs in the experimental set 

involving Rat1+ERβ tester population, only 5 gene products were found, and among 

these, redundancy was as high as 47% for human gastric associated differentially 

expressed protein. Conversely when Rat1+ERα was the tester population, there was low 

redundancy in the population of sequenced cDNA clones, no greater than 14% 
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redundancy for one unidentified product.  Therefore it is expected that cloning and 

sequencing of more Rat1+ERα colonies would result in identification of an increased 

number of target gene products, including other known targets for E2 modulation such as 

the progesterone receptor. 

 

Among downstream genes identified in the present study, several were of particular 

interest due to potential involvement in processes associated with reproduction, diseases 

of aging, and carcinogenesis.  Their quantitative expression following treatment was 

characterized to verify responses seen in the SSH analysis.  In relation to bone and 

cartilage remodeling, type 1 collagen accounts for the majority of total collagens and is 

most abundant in bone (46).  Additionally, COL1A2 is one of two alpha chains that 

comprise one-third of the type I collagen heterotrimer (47).  PCOLCE is a glycoprotein 

enhancer element that binds the C-terminus of the type I procollagen propeptide and as 

such enhances the enzymatic ability of procollagen C-proteinase (48).  It is present in 

high levels in the uterus (49), and plays a role in intracellular collagen formation and 

extracellular cell differentiation and proliferation, as well as possible stabilization of 

COL1A2 mRNA (50). 

 

RACK1 binds the isozyme protein kinase C (PKC) and acts to stabilize the active 

conformation of PKC, which is necessary for subcellular translocation (51).  RACK 1 is a 

homologue of guanine nucleotide-binding protein (G-protein) β subunit (51) and ERα 

studies have noted a relationship between E2 and G - protein coupled receptors to affect 

PKC (52).  Cathepsin L is a lysosomal cysteine protease implicated in human trophoblast 
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invasiveness (53), bone resorption (54), and degradation of extracellular matrix (55) to a 

name few cellular functions that tie into reproduction, inflammatory responses, and bone 

remodeling.  It also has implications in oncogenesis and tumor invasiveness.  

 

Additionally, to further verify our SSH profiles, annexin 1 and nuclear factor I/B (NFI-B) 

were selected for RT-PCR due to their role in the anti-inflammatory response and 

transcriptional regulation, respectively.  Annexin 1 interacts with glucocorticoids to act in 

suppressing inflammation (56), which is an important component of implantation. 

Additionally, annexin 1 plays a role in cell growth and regulation (56), as well as DNA 

unwinding (57).  Nuclear factor I/B is a member of the nuclear factor family and has a 

role in regulation of gene transcription through promoter interactions (58). 

 

Due to the structural similarities in the ligand binding domains of ERα and ERβ, and the 

ability to form heterodimers in vivo, it becomes important to definitively separate the two 

ERs.  An engineered cell line that truly expresses only one subtype offers numerous 

avenues for examining independent ER function.  As an undifferentiated fibroblast cell 

line this model offers insight into the function of these ER in naïve developing systems as 

well as in a more global expression profile due to decreased complexity in comparison to 

highly differentiated cell lines.  Previous studies have verified that the basic architecture 

is still present for the engineered cells to function in a physiologically relevant manner, 

such as the ability to activate progesterone receptor which is silent in the parental Rat1 

cells (30-31).  While not an alternative to in vivo studies, the Rat1, Rat1+ERα, and 
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Rat1+ERβ cell lines can indicate initial areas of interest at the gene level, which can in 

turn lead to directed, in-depth, focused physiological studies. 

 

While there is overlap in the downstream targets for genomic effects in response to E2, it 

is evident that ERα and ERβ are responsible for regulation of expression of unique 

subsets of downstream genes in response to the same ligand in the same cell type.  This is 

in agreement with recent microarray studies at similar time-points that have examined the 

differing global profiles of ERα or ERβ in differentiated cell types (59).  However, the 

genes identified by Monroe, et al. 2003 do not overlap with those profiles found in the 

present study.  This is most likely due to the nature of the different levels of 

differentiation and complexity between models used, as well as the unique properties of 

SSH. In this study, ERα appeared to be responsible for regulating a larger number of 

products, of which a majority was involved in general cell house keeping and 

proliferation.  ERβ activation resulted in fewer detectable products in comparison to ERα 

and most of these had specific cellular functions, although some general regulatory 

products were also detected.  Differential activity of these two receptors in response to 

the same ligand has important implications for understanding cell regulatory functions 

and inflammatory responses, which are integral to reproductive processes, as well as 

oncogenesis, bone remodeling, and aging. 

 

 

 

 

 76



 

REFERENCE LIST: 

 

1. Arnold SF, Melamed M, Vorojeikina DP, Notides AC, Sasson S.  Estradiol-

binding mechanism and binding capacity of the human estrogen receptor is 

regulated by tyrosine phosphorylation. Mol Endocrinol 1997; 11: 48-53 

2. Rogatsky I, Trowbridge JM, Garabedian MJ. Potentiation of human estrogen 

receptor α transcriptional activation through phosphorylation of serines 104 and 

106 by the cyclin A- CDK2 complex complex. J Biological Chemistry 1999; 274: 

22296-22302 

3. Fawell SE, Lees JA, White R, Parker MG. Characterization and colocalization of 

steroid binding and dimerization activities in the mouse estrogen receptor. Cell 

1990;  60: 953-62 

4. Hall JM, McDonnell DP, Korach KS. Allosteric regulation of estrogen receptor 

structure, function, and coactivator recruitment by different estrogen response 

elements. Molecular Endocrinology 2002; 16: 469-486  

5. Schultz JR, Loven MA, Melvin VMS, Edwards DP, Nardulli AM. Differential 

modulation of DNA conformation by estrogen receptors α and β. J Biol Chem 

2002; 277: 8702-8707 

6. Xu L, Glass CK, Rosenfeld MG. Coactivator and compressor complexes in 

nuclear receptor function. Current Opinion in Genetics and Development1999; 9: 

140-147 

7. McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular 

and molecular biology. Endocrine Reviews 1999; 20: 321-344 

 77



 

8. Power RF, Mani SK, Codina J, Conneely OM, O'Malley BW. Dopaminergic and 

ligand-independent activation of steroid hormone receptors. Science 1991; 254: 

1636-1639 

9. Bunone G, Briand PA, Miksicek RJ, Picard D. Activation of the unliganded 

estrogen receptor by EGF involves the MAP kinase pathway and direct 

phosphorylation. EMBO J  1996; 15: 2174-2183 

10. Kato S, Endoch H, Masuhiro Y, Kitamoto T, Uchiyama S, Haruna S, Masushige 

S, Gotch Y, Nishida E, Kawashima H, Metzger D, Chambon P. Activation of the 

estrogen receptor through phosphrylation by mitogen – activated protein kinase. 

Science 1995; 270: 1491 – 1494 

11. Moggs JG, Orphanides G. Estrogen receptors: orchestrators of pleiotropic cellular 

responses. EMBO Reports 2001; 2: 775-781 

12. Toft D, Gorski J. A receptor molecule for estrogens: isolation from the rat uterus 

and preliminary characterization. Proc Natl Acad Sci 1966; 55: 1574 – 1581 

13. Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-A. Cloning 

of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Natl Acad 

Sci USA 1996; 93: 5925-5930 

14. Tremblay GB, Tremlay A, Copeland NG, Gilbert DJ, Jenkins NA, Labrie F, 

Giguere V. Cloning, chromosomal localization, and functional analysis of the 

murine estrogen receptor β. Mol Endocrinol 1997; 11: 353-365 

15. Mosselman S, Polman J, Dijkema R. ERβ: identification and characterization of a 

novel human estrogen receptor. FEBS Letters 1996; 392: 49-53 

 78



 

16. Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and 

where will they lead us? Endocrine Reviews 1999; 20: 358-417 

17. Kuiper GGJM, Carlsson B, Grandien KAJ, Enmark E, Haggblad J, Nilsson S, 

Gustafsson J-A.  Comparison of the ligand binding specificity and transcript 

tissue distribution of estrogen receptors α and β. Endocrinology 1997; 138: 863-

870 

18. Pettersson K, Grandien K, Kuiper GGJM, Gustafsson J-A. Mouse estrogen 

receptor β forms estrogen response element-binding heterodimers with estrogen 

receptor α. Mol Endocrinol 1997; 11: 1486-1496 

19. Cowley SM, Hoare S, Mosselman S, Parker MG. Estrogen receptors α and β form 

heterodimers on DNA. J Biol Chem 1997; 272:19858-19862 

20. Pace P, Taylor J, Suntharalingam S, Coombes RC, Ali S. Human estrogen 

receptor β binds DNA in a manner similar to and dimerizes with estrogen receptor 

α. J Biol Chem 1997; 41: 25832-25838 

21. Lubahn DB, Moyer JS, Golding, TS, Couse JF, Korach KS, Smithies O. 

Alteration of reproductive function but not prenatal sexual development after 

insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad. Sci 

USA 1993; 90: 11162-11166 

22. Das SK, Taylor JA, Korach KS, Paria BC, Dey SK, Lubahn DB. Estrogenic 

responses in estrogen receptor-α deficient mice reveal a distinct estrogen sigaling 

pathway. Proc Natl Acad Sci USA 1997; 94: 12786-12791 

 79



 

23. Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, Sar M, Korach 

KS. Gustafsson J-A, Smithies O. Generation and reproductive phenotypes of mice 

lacking estrogen receptor β. Proc Natl Acad Sci USA 1998; 95: 15677-15682 

24. Harris HA, Katzenellenbogen JA Katzenellenbogen BS. Characterization of the 

biological roles of the estrogen receptors, ERalpha and ERbeta, in estrogen target 

tissues in vivo through the use of an ERalpha-selective ligand. Endocrinol 2002; 

143:4172-7. 

25. Waters KM, Rickard DJ, Riggs BL, Khosla S, Katzenellenbogen JA, 

Katzenellenbogen BS, Moore J, Spelsberg TC. Estrogen regulation of human 

osteoblast function is determined by the stage of differentiation and the estrogen 

receptor isoform. J Cell Biochem 2001; 83:448-62. 

26. Rickard DJ, Waters KM, Ruesink TJ, Khosla S, Katzenellenbogen JA, 

Katzenellenbogen BS, Riggs BL, Spelsberg TC. Estrogen receptor isoform-

specific induction of progesterone receptors in human osteoblasts. J Bone Miner 

Res 2002; 17:580-92. 

27. Harris SA, Tau KR, Enger RJ, Toft DO, Riggs BL, Spelsberg TC. Estrogen 

response in the hFOB 1.19 human fetal osteoblastic cell line stably transfected 

with the human estrogen receptor gene. J Cell Biochem 1995; 59:193-201. 

28.  Monroe DG, Johnsen SA, Subramaniam M, Getz BJ, Khosla S, Riggs BL, 

Spelsberg TC. Mutual antagonism of estrogen receptors alpha and beta and their 

preferred interactions with steroid receptor coactivators in human osteoblastic cell 

lines. J Endocrinol 2003; 176: 349-57. 

 80



 

29. Freeman A, Price P, Igel H, Young J, Maryak J, Huebner R. Morphological 

transformation of rat embryo cells induced by diethylnitrosamine and murine 

leukemia viruses. J Natl Caner Inst 1970; 44: 64-78 

30. Kaneko KJ, Gelinas C, Gorski J. Activation of the silent progesterone receptor 

gene by ectopic expression of estrogen receptors in a rat fibroblast cell line. 

Biochem 1993; 32: 8348-8359 

31. Cheng J, Malayer JR. Responses to stable ectopic estrogen receptor-beta 

expression in a rat fibroblast cell line. Mol Cell Endocrinol 1999; 156: 95-105 

32. Luckow B, Schutz G. CAT constructions with multiple unique restriction sites for 

the functional analysis of eukaryotic promoters and regulatory elements. Nucleic 

Acids Res 1987; 15: 5490 

33. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid 

guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 

156-159 

34. Diatchenko L, Lau Y-F, Campbell AP, Chenchik A, Maqadam F, Huang B, 

Lukyanov S, Lukyanov K, Gurckaya N, Sverdlov ED, Siebert PD. Suppression 

subtractive hybridization: a method for generating differentially regulated or 

tissue-specific cDNA probes for libraries. Proc Natl Acad Sci USA 1996; 93: 

6025-6030 

35. Mohan M, Ryder S, Claypool PL, Geisert RD, Malayer JR. Analysis of gene 

expression in the bovine blastocyst produced in vitro using suppression-

subtractive hybridization. Biol Reproduciton 2002; 67: 447-453 

 81



 

36. Altchul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search 

tool. J Mol Biol 1990; 215: 403-410 

37. Hettinger AM, Allen MR, Zhang BR, Goad DW, Malayer JR, Geisert RD. 

Presence of the acute phase protein, bikunin, in the endometrium of gilts during 

estrous cycle and early pregnancy. Biol Reproduction 2001; 65: 507-513 

38. Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative 

RT-PCR. Genome Res 1996; 6: 995-1001 

39. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR 

(RT-PCR): trends and problems. J Mol Endcrinol 2002; 29: 23-39 

40. Ginzinger DG. Gene quantification using real-time quantitative PCR: an emerging 

technology hits the mainstream. Experimental Hematology 2002; 30: 503-512 

41. Tora L, Mullick A, Metzger D, Ponglikitmongkol M, Park I, Chmbon P. The 

cloned human oestrogen receptor contains a mutation which alters its hormone 

binding properties. EMBO J 1989b; 8: 1981-1986 

42. Pike ACW, Brzozowski AM, Hubbard RE, Engström O, Ljunggren J, Gustafsson 

JÅ, Carlquist M. Structure of the ligand binding domain of oestrogen receptor 

beta in the presence of a partial agonist and a full agonist. The EMBO J 1999; 18: 

4608-4618 

43. Sun J, Baudry J, Katzenellenbogen JA, Katzenellenbogen BS. Molecular basis for 

the subtype discrimination of estrogen receptor-β-selective ligand, 

diarylpropionitrile. Mol Endocrinol 2003; 17: 247-258 

44. McDonnell DP. The molecular pharmacology of SERMs. TEM 1999; 10: 301-

310 

 82



 

45. Katzenellenbogen BS, Sun J, Harrington WR, Kraichely DM, Ganessunker D, 

Katzenellenbogen JA. Structure-function relationships in estrogen receptors and 

the characterization of novel selective estrogen receptor modulators with unique 

pharmacological profiles. Ann NY Acad Sci 2001; 946: 6-15 

46. Nimni ME. Collagen: structure, function, and metabolism in normal and fibrotic 

tissues. Semin Arthritis Rheum 1983; 13: 1-86 

47. Smith BD, Niles R. Characterization of collagen synthesized by normal and 

chemically transformed rat liver epithelial cell lines. Biochemistry 1980; 19: 

1820-1825 

48. Takahara K, Kessler E, Biniaminov L, Brusel M, Eddy RL, Jani-Sait S, Shows 

TB, Greenspan DS. Type I procollagen COOH-terminal proteinase enhancer 

protein identification, primary structure, and chromosomal localization of the 

cognate human gene (PCOLCE). J Biol Chem 1994; 269: 26280-26285 

49. Scott IC, Clark TG, Takahara K, Hoffman GG, Greenspan DS. Structural 

organization and expression patterns of the human and mouse genes for the type I 

procollagen COOH-terminal proteinase enhancer protein. Genomics 1999; 55: 

229-234 

50. Matsui A, Yanase M, Tomiya T, Ikeda H, Fujiwara K, Ogata I. Stabilization of 

RNA strands in protein synthesis by type I procollagen C-proteinase enhancer 

protein, a potential RNA-binding protein, in hepatic stellate cells. Biochem and 

Biophys Res and Communication 2002; 290: 898-902 

 83



 

51. Ron D, Chen C-H, Caldwell J, Jamieson L, Orr E, Mochley-Rosen D. Cloning of 

an intracellular receptor for protein kinase C: a homolog of the β subunit of G 

proteins. Proc Natl Acad Sci USA 1994; 91: 839-843 

52. Kelly MJ, Lagrange AH, Wagner EJ, Rønnekleiv OK. Rapid effects of estrogen to 

modulate G protein-coupled receptors via activation of protein kinase A and 

protein kinase C pathways. Steroids 1999; 64: 64 – 75 

53. Divya , Chhikara P, Mahajan VS, Datta Gupta S, Chauhan SS. Differential 

activity of cathepsin L in human placenta at two different stages of gestation. 

Placenta 2002; 23: 59-64 

54. Kakegawa H, Nikawa T, Tagami K, Kamioka H, Sumitani K, kawata T, Drobnič-

Kosorok M, Lenarcic B, Turk V, Katunuma N. Participation of cathepsin L on 

bone resorption. FEBS 1993; 321: 247-250 

55. Mason RW, Johnson DA, Barrett AJ, Chapman HA. Elastinolytic activity of 

human cathepsin L. Biochem J 1986; 233: 925-927 

56. Roviezzo F, Getting SJ, Paul-Clark J, Ona S, Gavins FNE, Perretti M, Hannon R, 

Croxtall JD, Buckingham JC, Flower RJ. The annexin-1 knockout mouse: what it 

tells us about inflammatory responses. J Physiol Pharmacol 2002; 53: 541-553 

57. Hirata A, Hirata F. DNA chain unwinding and annealing reactions of lipocortin 

(annexin) I heterotetramer: regulation by Ca(2+) and Mg(2+). Biochem Biophys 

Res Commun 2002; 291: 205-209 

58. Gronostajski RM. Roles of the NFI/CTF gene family in transcription and 

development. Gene 2000; 249: 31-45 

 84



 

59. Monroe DG, Getz BJ, Johnsen SA, Riggs BL, Khosla S, Spelsbery TC. Estrogen 

receptor isoform-specific regulation of endogenous genes expression in human 

osteoblastic cell lines expressing either ERalpha or ERbeta. J Cell Biochem. 

2003; 90: 315-326 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 85



 

 

 

 

 

 

 

Table 1 – Primers and probe sequences for Taqman® real-time quantitative PCR.   

Target Primers [ 300 nM] Probes [ 200 nM] 

Pro – alpha – 2(I) 
collagen (COL1A2) 

Forward (398 – 415) 5’ GGA CTT ATC 
TGG ATC ATA TTG CAC ACT 3’             
Reverse (475 – 451) 5’ CCG TCT TTT 
CTA TGC ACC TAC ATC T 3’   

(418 – 445) 5’ 6FAMTCT GAC CAA 
TCC TTC TCT TTT GCC CAC – 
TAMRA 3’ 

Procollagen C – 
proteinase enhancer 
protein ( PCOLE) 

Forward (86 – 101) 5’ CTG GCC TGA 
GTC GGA TTA CC 3’                   
Reverse ( 152 – 133) 5’ CTG GTT TGA 
GGG TGC AAT GA 3’  

( 107 – 129) 5’ 6FAMCCC AGG CT 
CAG CTG TTC CTG GC – TAMRA 3’  

Cathepsin L  Forward ( 174 – 197) 5’ TCC ATC AAT 
TCA CGA TAG CAT AGC 3’         
Reverse ( 241 – 222) 5’ CCA AAG ACC 
GGA ACA CC AC 3’  

( 199– 218) 5’ 6FAMGGA CTT GCC 
ACC GCA GGC GA – TAMRA 3’  

Receptor for activated 
protein kinase C  

Forward (179 – 196) 5’ CTG CGG ATG 
GGA CAA GCT 3’                        
Reverse (249 – 230) 5’ GGC CAA TGT 
GGT TGG TCT TT 3’   

(199-227) 5’ 6FAMCTT GCA GTT AGC 
CAG ATT CCA CAC CTT GA – TAMRA 
3’ 
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Table 2 – Primers for standard RT – PCR and conditions. 

Target Product 
size 

Primers Conditions 

Annexin I 935 bp Forward 5’ AGC CCC TAC CCT 
TCC TTC AAT C 3’                         
Reverse 5’ GTT TAG TTT CCT CCA 
CAC AGA GCC 3’ 

50 pmol primers, 2.0 uM MgCl2+,  
38 cycles of : 94° C 10 sec., 56° C 1 
min., 72° C 1 min. 

Nuclear Factor I/B 963 bp Forward 5’ GAC TGG GTT TGT 
TGT GAA ATT GC 3’                     
Reverse 5’ TGC TTG GTG GAG 
AAG ACA GAG ACC 3’  

50 pmol primers, 2.0 uM MgCl2+,  
40 cycles of: 94° C 10 sec., 60° C 1 
min., 72° C 1 min. 
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Table 3 – GenBank dbEST submissions for putative cDNA clones identified through 
SSH with Rat1+ERα cell lines as tester.  
 

Identity Clone number 
Accession 
Number 

Base Pair 
Sequenced Homology 

Aldolase A  OKST ERA†  -002 BQ703384 300 Rat 100% (251/251)            
Mouse 97% (239/246) 

Annexin I  OKST ERA† -121 BQ703385 456 Rat 99% (444/445) 
Bcl-2 related protein (Mcl-1) OKST ERA† -067 BQ703386 254 Rat 94% (131/138) 
c-HA-ras proto-oncogene-
mechanism 

OKST ERA† -044 BQ703387 578 Rat 96% (269/278) 

Capping protein alpha 2  OKST ERA† -063 BQ703388 645 Mouse 98% (292/297) 
Carboxypeptidase E OKST ERA† -086 BQ703389 556 Rat 99% (552/556) 
Cathepsin B OKST ERA v Rat1‡ 

-005  
CF269911 129 Rat 100% (129/129) 

Mouse 94% (115/122) 
Cathepsin L  OKST ERA† -074 BQ703390 516 Rat 98% (509/516) 
Cell division cycle 42 
homolog mRNA (Cdc42) 

OKST ERA† -094 BQ703391 639 Mouse 98% (627/639) 

Cyclin G1 OKST ERA v Rat1‡ 
-012  

CF269912 304 Rat 93% (285/304)   
Mouse 82% (186/226) 

Chaperonin subunit 4 (delta) OKST ERA† -079 BQ703392 474 Mouse 95% (449/470) 
Dihydropyrimidinase-like 3 OKST ERA†-022 BQ703393 158 Human 93% (55/59) 
DOC-2 p82 isoform (Dab2) OKST ERA† -047 BQ703394 354 Rat 100% (164/164) 
Elongation factor SIII p15 
subunit (Tcbe1) 

OKST ERA† -004 BQ703395 411 Rat 100% (390/390) 

Epithelial membrane protein 1 OKST ERA† -014 BQ703406 490 Mouse 90% (311/342) 

Heat shock protein, 70 kDa 4 OKST ERA v Rat1‡ 
-033  

CF269914 366 Rat 99% (305/305) 

Heat shock protein, 86 kDa 1 OKST ERA† -005   
(2 clones) 

BQ703396 537 Rat 99% (427/428)   
Mouse 96% (510/536) 

Hypothetical protein, MGC: 
7868 

OKST ERA† -117 BQ703397 393 Mouse 89% (348/389) 

Leucyl-specific 
aminopeptidase PILS 

OKST ERA† -036 BQ703398 270 Rat 99% (267/269) 

Nuclear autoantigen mRNA OKST ERA† -097 BQ703399 527 Human 95% (209/220) 
Nuclear phosphoprotein 
similar to PWP1 

OKST ERA† -060 BQ703400 551 Human 90% (309/343) 

Neural precursor cell  OKST ERA v Rat1‡ 
-013 

CF269913 110 Rat 100% (90/90) 

Procollagen C-proteinase 
enhancer protein 

OKST ERAV§ -35 BQ783366 493 Rat 99% (447/448)   
Mouse 95% (419/440) 

Proteasome z subunit mRNA   OKST ERA† -001 BQ703401 197 Rat 97% (338/354)            
Mouse 92% (315/339)          
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mRNA for receptor for 
activated C kinase  

OKST ERA† -078 BQ703402 400 Bovine 100% (400/400)      
Mouse 99% (399/400) 

Soc-2 homolog mRNA OKST ERA† -120 BQ703403 351 Human 89% (257/286) 
Suppressor of mif two 3 
homolog 2 (SMT3) 

OKST ERA† -018 BU551411  Rat 99% (418/421)   
Mouse 97% (410/422) 

T – complex 1  OKST ERA† -103 BQ703404 507 Rat 100% (507/507)  
Thioredoxin domain 
containing 5 

OKST ERAV§ -001  CF269894 606 Mouse 85% (419/492 

Similar to TAR DNA binding 
protein  

OKST ERA† -064 BQ703405 459 Mouse 98% (446/453)        
Human 94% (433/457) 

Unknown mRNA sequence OKST ERA† -080 BQ703407 510 Rat 99% (509/510) 
Vacuolar protein sorting 35 OKST ERA† -075 BQ703408 639 Mouse 97% (623/639) 
Unknowns  OKST ERA† -006, 

025, 054, 069, 082, 
098 

BU551405-10 

  
 OKST ERA v Rat1‡ 

-034, 062, 090  
CF269915-19 

  
 OKST ERAV§ -072    CF269895   
Mitochondrion Genome and 
Products 

OKST ERA v Rat1‡ 
-001 (14 clones)    

 OKST ERAV§ -049     
Ribosomal  OKST ERAV§ -002 

(17 clones)       
† Putative products identified through Rat1+ERα E2 stimulated tester and Rat1+ERβ E2 

stimulated driver SSH. 

‡ Putative products identified through Rat1+ERα E2 stimulated tester and Rat1 E2 

stimulated driver SSH 

§ Putative products identified through Rat1+ERα vehicle stimulated tester and Rat1+ERβ 

vehicle stimulated driver SSH 
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Table 4 – GenBank dbEST submissions for putative cDNA clones identified through 
SSH with Rat1+ERβ cell lines as tester. 
 

Identity Clone Number 
Accession 
Number 

Base Pair 
Sequenced Homology 

Elongation factor 1-alpha 1 OKST ERBV§      
-037  CF269899 

288 Human 99% (286/287) 

Gastric associated 
differentially expressed 
protein 

OKST ERB† -002    
(14 clones) 

BQ703710 490 Human 98% (442/490) 

N-myc downstream regulated 
1 mRNA  

OKST ERB† -19  BQ703711 370 Mouse 90% (201/222)      
88% (106/120) 

Nuclear factor I/ B OKST ERB† -043    
(2 clones) 

BQ703712 497 Human 96% (171/177)      

Similar to splicing factor 3B, 
subunit 2 

OKST ERB v Rat‡ 
-035 

CF269888 265 Rat 100% (245/245) 
Mouse 89% (212/236) 

Pro – alpha – 2(I) collagen OKST ERB† -067    
(2 clones) 

BQ703713 478 Rat  99% (202/203)        
100% (19/19) 

Unknown  OKST ERB† -032    
(2 clones) 

BQ783364 
        

 OKST ERB v Rat‡ 
-012, 025, 101, 
114 (4 clones), 

120 

CF269886-87 
CF269891-93 

  
 OKST ERBV§      

-011, 020,  033, 
060, 082, 085,  

CF269896-98 
CF269900-02 

  
Mitochondion genome  OKST ERB v Rat‡ 

-023    
 OKST ERBV§      

-001 (3 clones)      
Ribosomal  OKST ERBV§      

-006 (5 clones)        
† Putative products identified through Rat1+ERβ E2 tester and Rat1+ERα E2 driver SSH.

‡ Putative products identified through Rat1+ERβ E2 stimulated tester and Rat1 E2 

stimulated driver SSH 

§ Putative products identified through Rat1+ERβ vehicle stimulated tester and Rat1+ERβ 

vehicle stimulated driver SSH 
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Table 5 – GenBank dbEST submissions for putative cDNA clones identified through 
SSH with Rat1 parental cell line as tester. 
 

Identity Clone Number 
Accession 
Number 

Base Pair 
Sequenced Homology 

Cathepsin L  OKST Rat vs ERB‡    
-023 (2 clones) 

CF269873 256 Rat 98% (253/256)   
Mouse 93% (240/256) 

Cleavage and polyadenylation 
specific factor 2 (Cpsf2) 

OKST Rat vs ERB‡    
-055  

CF269881 414 Mouse 94% ( 373/394) 
Bovine 87% (343/394) 
Human 86% (342/394) 

Epithelial membrane protein 1 OKST Rat vs ERB‡       

-033 (2 clones) 
CF269876 438 Mouse 90% (311/342) 

Methylthioadenosine 
phosphorylase 

OKST Rat vs ERB‡       

-088  
CF269885 351 Mouse 94% (332/352) 

Plastin 3 (T-isoform) OKST Rat vs ERA†      

-116 
CF269910 346 Mouse 93% (305/327) 

Hamster 86% (264/305) 
Similar to BCS1-like OKST Rat vs ERA†      

-112 
CF269909 537 Rat 99% (442/444)   

Mouse 94% (345/367) 
Unknowns OKST Rat vs ERA†    

-009, 044, 085, 087, 
096, 099  

CF269903-08   

 OKST Rat vs ERB‡    
-030, 032, 044, 046, 
047, 050, 063, 081,  

086,  

CF269874-75, 
CF269877-80, 
CF269882-84 

  

Mitochondrial genome and 
products 

OKST Rat vs ERB‡    
-018 (2 clones) 

   

Ribosomal  OKST Rat vs ERA†      

-010 (3 clones) 
   

  OKST Rat vs ERB‡      

-022 (4 clones) 
  

  
  

† Putative products identified through Rat1 E2 stimulated tester and Rat1+ERα E2 

stimulated driver SSH. 

‡ Putative products identified through Rat1 E2 stimulated tester and Rat1+ERβ E2 

stimulated driver SSH. 
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Table 6 – Quantitative analysis of real-time PCR to targets of interest. 

Transcript 
Cell line  and 

Treatment Mean CT
† 

18s rRNA 
Mean CT

† ∆CT
‡* ∆∆CT

§ 2-∆∆CT¥ 

Rat1 + ERα E2 [1nM] 21.70 +  0.02 20.14 +  0.04 1.56 + 0.02 a -1.58 2.99
Rat1 + ERα V  23.90 +  0.09 20.34 +  0.31 3.56 + 0.16 b 0.42 0.75
Rat1 + ERβ E2 [1nM] 21.10 +  0.10 21.51 +  0.07 -0.41 + 0.02 c -3.55 11.71
Rat1 + ERβ V 21.07 +  0.07 20.74 +  0.13 0.34 + 0.04 d -2.80 6.96
Rat1 E2 [1nM] 24.24 +  0.10 21.20 +  0.21 3.30 + 0.03e -0.11 1.08

Pro – alpha – 2(I)     
collagen 
(COL1A2) 

Rat1 V 24.41 +  0.09 21.26 +  0.01 3.14 + 0.06e 0.00 1.00
Rat1 + ERα E2 [1nM] 20.93 +  0.07 20.73 +  0.63 0.21 + 0.39 a -1.71 3.27
Rat1 + ERα V 23.81 +  0.06 20.14 +  0.01 3.68 + 0.04 b 1.76 0.30
Rat1 + ERβ E2 [1nM] 22.28 +  0.03 20.42 +  0.74 1.86 + 0.50 c -0.06 1.04
Rat1 + ERβ V 22.25 +  0.08 20.21 +  0.13 2.04 + 0.04 c 0.12 0.92
Rat1 E2 [1nM] 22.22 +  0.13 20.14 +  0.06 2.08 + 0.05 c 0.16 0.90

Procollagen C – 
proteinase 
enhancer protein 
(PCOLE) 

Rat1 V 22.11 +  0.51 20.19 +  0.05 1.92 + 0.32 c 0.00 1.00
Rat1 + ERα E2 [1nM] 21.97 +  0.09 21.46 +  0.13 0.50 + 0.03 a -4.99 31.78
Rat1 + ERα V 24.14 +  0.03 20.44 +  0.13 3.71 + 0.07 b -1.78 3.43
Rat1 + ERβ E2 [1nM] 22.09 +  0.09 20.81 +  0.37 1.28 + 0.19 c -4.21 18.51
Rat1 + ERβ V 21.83 +  0.09 20.57 +  0.01 1.26 + 0.05 c -4.23 18.77
Rat1 E2 [1nM] 25.38 +  0.10 20.53 +  0.31 4.85 + 0.15 d -0.65 1.57

Cathepsin L 

Rat1 V 25.47 +  0.10 19.98 +  0.13 5.49 + 0.02 e 0.00 1.00
Rat1 + ERα E2 [1nM] 21.66+ 0.16 21.46 + 0.13 0.19 + 0.02 a -3.93 15.24
Rat1 + ERα V 23.20 + 0.04 20.44 + 0.13 2.76 + 0.06b -1.35 2.55
Rat1 + ERβ E2 [1nM] 22.09 + 0.07 20.81 + 0.37 1.28 + 0.21 c -2.84 7.16
Rat1 + ERβ V 22.03 + 0.10 20.57 + 0.01 1.46 + 0.06 c -2.66 6.32
Rat1 E2 [1nM] 23.48 + 0.03 20.53 + 0.31 2.95 + 0.20b -1.16 2.23

Receptor for 
Activated C 
Kinase (RACK1) 

Rat1 V 24.09 + 0.16 19.98 + 0.13 4.12 + 0.02 d 0.00 1.00
 

† Cycle threshold (CT):  The mean cycle number (target genes n=3, 18S rRNA n=2) at 

which the threshold crossed the geometric portion of the logarithmic amplification curve. 

‡ Normalized CT values (∆CT):  Mean CT values for target genes were subtracted from the 

mean 18S rRNA gene CT values to derive values for normalized expression. 

§ Calibrated value (∆∆CT):  Rat 1 V treated cells were set as a calibrator.  Normalized CT 

values were then subtracted from this value to derive the calibrated value used to 

determine fold differences (2 –∆∆CT). 
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¥  Fold differences (2 –∆∆CT):  Target gene normalized to endogenous 18S reference, and 

relative to Rat1 parental cell line calibrator. 

* Subscript number with different letters denote a significant difference (P<0.05) between 

samples, while subscript letters that are the same denote no significant difference.  

Analysis was carried out using least square differences from a PROC-MIXED analysis 

in a 3 by 2 treatment factorial ANOVA arrangement analyzed by the Statistical 

Analysis System (SAS).  
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Figure 1. Chloramphenicol acetyltransferase reporter assay was carried out to test 

responsiveness of estrogen receptor to E2 using a pERE15 construct.  Responsiveness was 

determined by levels of acetylated [3H]chloramphenicol levels in the organic phase 

determined by scintillation spectrometry.  For CAT assay analysis of variance was 

carried out using PROC-GLM least square difference in SAS.  E2 treatment resulted in 

elevated reporter gene expression in ERα- and ERβ-expressing cell lines (p <0.05) 

compared to vehicle control treatments, and E2 or vehicle treatment of the parental Rat-1 

cell line.  There was no difference between ERα- and ERβ-expressing cell lines treated 

with E2. 
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Figure 2. Qualitative differential analysis of dot blot membranes probed using DIG – 

labeled probes: A) Differentially screened nylon membranes spotted with purified 

plasmid DNAs (96 of 120 shown) from subtracted population when Rat1+ERα E2 was 

the tester and Rat1+ERβ E2 was the driver.  Membranes were probed with: 1.  Tester 

subtracted from driver (forward subtracted); 2.  Tester unsubtracted with both adaptors 

present but no driver present; 3.  Rat1+ERβ E2 as tester and Rat1+ERα E2 as driver 

(reverse subtracted); 4.  Reverse unsubtracted (absence of Rat1+ ERα E2 driver added 

and both adaptors present). DIG labeled probes (25 ng/ mL) hybridized (42°C overnight), 

detected through CSPD, and exposed to X-OMAT blue film for approximately 30 

seconds. B) Differentially screened nylon membranes spotted with purified plasmid 

DNAs (96) resulting from subtracted Rat1+ERβ E2 tester with Rat1+ERα E2 driver.  

Membranes were probed with: 1. Rat1+ERβ E2 tester subtracted from Rat1+ERα E2 

driver (forward subtraction); 2.  Rat1+ERβ E2 unsubtracted (absence of ERα E2 driver 

and both adaptors present); 3. Rat1+ERα E2 tester subtracted from Rat1+ERβ E2 driver 

(reverse subtracted); 4.  Rat1+ERα E2 unsubtracted (absence of Rat1+ ERβ E2 driver 

added and both adaptors present). C) Definition of parameters considered for differential 

screening and sequencing of colonies. 
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Figure 3. Fold differences in target gene expression were determined by the comparative 

CT method.  The difference between the CT values of the target genes and the 18s rRNA 

(∆CT) were calibrated to an index value by subtracting all individual ∆CT’s from that of 

the Rat1 cell line receiving vehicle treatment to derive the ∆∆CT.  Fold differences were 

then calculated by the equation 2-∆∆CT.  Statistical analysis for fold differences are those 

determined for the ∆∆CT using SAS PROC – MIXED.  Fold differences shown for: A)  

COL1A2 detected in the Rat1+ERβ stimulated tester/ Rat1+ERα stimulated driver 

experiment; B)  RACK1; and C)  CtsL, both detected in Rat1+ERα stimulated tester/ 

Rat1+ERβ stimulated driver; and D)  PCOLCE detected in the Rat1+ERα vehicle tester/ 

Rat1+ERβ vehicle driver SSH. 
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Figure 4. Amplification of target genes Annexin 1 and Nuclear Factor I/B identified 

through SSH:  Gel electrophoresis in 2% agarose followed by ethidium bromide (5µg/ 

µL) staining was used to detect putative gene products identified through SSH.  A) 

Annexin 1 (935 bp) and B) Nuclear Factor I/B (963 bp) amplification within the cell lines 

at 24 h E2 [1nM] was analyzed beside G3PDH (500 bp) positive controls, and bands 

extracted and sequenced to verify gene identification.  
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CHAPTER IV 

Effect of ligand and exposure time on progesterone receptor  
gene expression in the presence of estrogen receptor  

alpha or beta 
 

ABSTRACT  

 
The estrogen signaling system plays a role in multiple physiological responses. The two 

known forms of estrogen receptor (ERα and β) exhibit differential affinity for estrogenic 

ligands in relation to structure and distribution.  Estrogen receptors and progesterone 

receptor (PR) have a well recognized interaction with one another in the rat uterine 

model, in which ER activation results in increased expression of PR and progestins 

conversely down-regulate ER expression.  We have measured PR up-regulation in 

response to estrogenic ligands in a rat embryonic fibroblast cell line model naive to ER, 

but engineered to stably express ERα or ERβ.  Rat1+ERα, Rat1+ERβ, and precursor Rat1 

lines were treated with estradiol-17β (E2), diethylstilbestrol (DES), 4-hydroxytamoxifen 

(OHT), genistein (GEN), raloxifene-HCl (RAL), or vehicle for 6, 9, 12, 18, 24 hours.  

Total RNA was extracted and subjected to DNAse treatment followed by quantitative real 

time PCR (RT-qPCR).  Results were analyzed using the comparative CT method and 

statistics carried out via a 3X5X5 factorial in a completely randomized design.  Our data 

have demonstrated a statistically significant interaction of ligand, time, and ER isotype on 

PR expression.  Specific examples include up-regulation of PR following E2 

administration in the ERα expressing cells at 9h.  Alternatively in Rat1+ERβ cells GEN 
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was able to induce PR expression at 12h.  These data support a model in which ERα and 

ERβ elicit unique downstream effects on target gene expression which are dependent on 

ligand and exposure time.   

 

INTRODUCTION 

 
Estrogens and estrogen receptors (ER) play pivotal roles in physiological systems, which 

vary with tissue and cell type.  Members of the nuclear receptor (NR) superfamily, 

including ER, encompass an essential role in the endocrine system by binding hormone 

ligands such as estrogen, progestins, androgens, and glucocorticoids as well as thyroid 

hormone, vitamin D, and retinoic acids.  In this role, the receptors act as ligand-inducible 

transcription factors.  As a group, the NRs share a common structural organization of 5 

domains responsible for DNA binding, ligand binding, and transcriptional regulation.  

Proper transcriptional activation relies on the cooperative effects of other protein-protein 

interactions, formation of dimers by the ER proteins (Fawell et al. 1990) acetylation and 

phosphorylation (Arnold et al. 1997; Rogatsky et al. 1999; Fu et al. 2004).  Estrogen 

receptors can bind directly to estrogen response elements (ERE), or indirectly to AP-1 

and Sp1 DNA binding sites through protein complexes (Tsai & O'Malley 1994; 

Umayahara et al. 1994; Porter et al. 1997). 

 

The hypothesis of a receptor protein for estrogen was suggested as early as 1962 (Jensen 

1962), followed by isolation of the receptor protein the rat uterus in 1966 (Toft & Gorski 

1966).  In 1995 a second estrogen receptor, ERβ, was identified from the rat prostate 
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gland (Kuiper et al. 1996), and the original ER was subsequently designated ERα.  The 

two receptor isotypes exhibit both overlapping and divergent relationships in regards to 

tissue localization and ligand preferences (Kuiper et al. 1997).  The distribution and 

ligand binding of ER ultimately leads to variations in gene expression by interactions at 

differing promoter sites (Saville et al. 2000; Webb et al. 1995; Paech et al. 1997), and co-

regulatory protein recruitment (Hall et al. 2002; Xu et al. 1999; McKenna et al. 1999).   

   

Estrogen receptors preferentially bind the active form of the steroid hormone estrogen, 

17β-estradiol (E2), and a range of physiological and environmental estrogenic like 

compounds (Pike et al. 1999; Sun et al. 2003).  Selective estrogen receptor modulators 

(SERMs) such as tamoxifen (OHT) and raloxifene (RAL), have been designed to make 

use of differential transcriptional activation related to the two ER isotypes (McDonnell 

1999).  Synthetic ligands such as non-steroidal diethylstilbestrol (DES), and 

phytoestrogens such as the soy isoflavone genistein (GEN) have also been shown to bind 

with varying affinities to the two ER (Kuiper et al. 1997).  Differences in gene expression 

and transcriptional efficiency stimulated by the various ER specific ligands occur through 

numerous pathway interactions, including steric interactions with the binding pocket 

(Nichols et al. 1998).  There also exists an ability to recruit and regulate co-regulator 

proteins (Moras & Gronemeyer 1998; Lonard et al. 2004), effects on the dimerization 

reaction (Tamrazi et al. 2002) and effects on promoter binding (Klinge et al. 1998).  

These interfaces become of keen interest when considering the interplay of these effects 

on how the two receptors regulate specific gene expression profiles.  
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Progesterone receptor (PR) has a well recognized interaction with ER.  Up-regulation of 

PR is induced following ER binding of a ligand. In the rat uterus this is followed by a 

negative feedback loop which acts to decrease ER levels (Horwitz & McGuire 1978).  

The up-regulation by estrogen stimulated ER is controlled through stimulation of PR 

mRNA and protein synthesis, even at basal levels, and estrogenic like compounds have 

been shown to function in a similar manner upon an interaction between ER and PR 

(Leavitt et al. 1977).  Therefore, PR expression is often an indicator of ER 

responsiveness.  To evaluate interplay between ER on downstream PR expression we 

have examined downstream effects to independent doses of different ligands in a rat 

embryonic fibroblast cell line model, normally naive to ER, engineered to stably express 

ERα or ERβ.  Additionally, we have looked at these changes over a time period of 6, 9, 

12, 18, 24 hours (h) in order to gain further insight into PR gene expression changes 

affected by ERα and ERβ. 

 

 

MATERIALS AND METHODS 

 

CHEMICALS 

All estrogenic compounds used for treatment purposes were purchased through Sigma, 

St. Louis MO.  Diethylstilbestrol, E2, OHT, and GEN were reconstituted in 100% 

ethanol, while RAL was reconstituted in DMSO (Figure 1).  
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CELL CULTURE AND LIGAND TREATMENT 

 
Cell culture. Cells were maintained as previously described by Hurst et al. 2004.  Rat1 

fibroblast cell lines (Freeman et al. 1970) stably expressing either a mutant human HEG0 

ERα (Rat1+ERα) (Kaneko et al. 1993)or rat ERβ (Rat1+ERβ) (Cheng & Malayer 1999), 

were used as a model system for examining downstream PR expression regulated by each 

receptor type under differing ligand treatments.  Cells were grown in sterile filtered (0.22 

µM), phenol red – free Dulbecco’s Modified Eagle Medium without glutamine, sodium 

pyruvate, or sodium bicarbonate (DMEM; Fisher, Plano TX), supplemented with 

NaHCO3 (3.7 g/L) and 5mg/mL L-glutamine (Sigma, St. Louis MO).  The cells were 

further supplemented with bovine insulin (0.6 µg/ml) in HEPES (25 µM) (Sigma, St. 

Louis MO), 1X antibiotic – antimycotic (Sigma, St. Louis MO), and 10% charcoal – 

stripped/ dextran treated fetal bovine serum (CSFBS; Hyclone, Logan UT).  Cells were 

maintained at 37˚C with a humidified atmosphere of 5% CO2 gas and 95% air, and media 

replaced every 48 hours.  Additionally, Rat1+ERα cells were given the supplemental 

selective antibiotic Hygromyocin B (100 µg/ml) in PBS (Invitrogen, Carlsbad CA) 

beginning 24 h after plating (Kaneko et al. 1993).  Rat1+ERβ cells were supplemented 

with Geneticin (50 µg/ml) in the same manner (Gibco, Grand Island NY) (Cheng & 

Malayer 1999). 

 

Ligand treatment and RNA extraction. Cells were allowed to grow in triplicate subsets to 

80% confluency in 75 cm2 culture flasks and treated, in the absence of supplemental 

selective antibodies, with a single dose of E2 [1nM] as previously described (Hurst et al. 

2004) for 6, 9, 12, 18, 24 h.  The mutant human HEG0 ERα used in the Rat1+ERα has a 
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10 fold higher Kd than native ER (Tora et al. 1989).  Cells were therefore treated with a 

dose determined by established  Ki values for hERα and rERβ (Kuiper et al. 1997), with a 

10X amount of the published Ki used for ERα expressing cells.  A single dose of DES 

(+ERα [0.4nM], +ERβ [0.05nM]), OHT (+ERα [1nM], +ERβ [0.04nM]), RAL (+ERα 

[1nM], +ERβ [0.4nM]), or GEN (+ERα [20nM], +ERβ [0.3nM) was applied for the 

stated time periods.  An ethanol vehicle (VEtOH) was used for E2, DES, OHT and GEN, 

and a DMSO vehicle (VDMSO) was used for RAL. For each vehicle treatment a volume 

equal to the highest ligand treatment was added to the cultures.  

 

After the appropriate exposure time of 6, 9, 12, 18, 24 h had passed, the cells were 

washed 3X with 1X PBS (Gibco, Grand Island NY) and total RNA extracted in 

guanidinium thiocyanate (Promega, Madison WI) under the single step isolation protocol 

described by Chomczynski and Sacchi (Chomczynski & Sacchi 1987).  Following 

extraction of RNA, samples were treated with RQ1 RNAse-free DNAse (Promega, 

Madison WI) at a concentration of 1U/10µl for 30 min at 37°C.  This was followed by 

Phenol:Chloroform:Isoamyl alcohol (P:C:I) purification and ethanol precipitation.  

Amounts of RNA were determined by spectrophotometry. 

 

QUANTITATIVE ANALYSIS OF GENE EXPRESSION 

 
Real time-quantitative PCR.  Taqman® primers and probe for PR were generated using 

Primer Express® software (PE Applied Biosystems, Foster City CA).  Quantitative PCR 

was then carried and analyzed with modifications (Gibson et al. 1996; Bustin 2002; 
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Ginzinger 2002).  The 5′ nuclease activity assay scheme was incorporated using probes 

that contained a 3′ fluorescent TAMRA quencher dye, a 5′ FAM reporter dye, and was 

carried out using the one-step RT-qPCR chemistry (Eurogentec North America Inc, San 

Diego, CA).  Expression was examined for PR target using total RNA (10 ng) by means 

of primer [300 nM] and probe [200 nM] sets, with samples loaded in duplicate on each 

plate.  Each population of total RNA (50 pg) was normalized in duplicate using 18S 

ribosomal RNA (Eurogentec North America Inc, San Diego, CA) at a [200 nM] primer 

and [100 nM] probe concentration.  Efficiency was checked via a standard curve of serial 

dilutions of Rat1+ERα E2 treated samples.  For target PR a dilution series of 500, 100, 

50, 10, and 5ng was used.  For 18S ribosomal RNA a series of 5, 1, 0.5, 0.1, and 0.05 ng 

dilutions were used.   

 

Real-time quantitative PCR was carried out in the ABI PRISM 7700 (PE Applied 

Biosystems, Foster City CA) under the following thermal cycler conditions; 48˚C for 30 

min and 95˚C for 10 min, followed by 40 cycles of 95˚C for 15 sec and 60˚C for 1 min, in 

a 25 µL reaction with a 28 sec exposure time.  Analysis and fold differences were 

determined using the comparative CT method as described in the ABI technical bulletin 

#2 for the ABI PRISM 7700 (Gibson et al. 1996; Bustin 2002; Ginzinger 2002), where 

the Rat1 vehicle treated cell line was always used as the calibrator. 

Statistical Analysis.  Statistical comparison of RT-qPCR ∆CT values, with means + S.D., 

were reported where n=3 for cell cultures and n=2 for loading replication in the 5′ 

nuclease activity assay reaction.  Results were tested using a 3X5X5 factorial ANOVA 

table generated through PROC-MIXED utilizing a complete randomized design 
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constructed using the Statistical Analysis System (Table 2) and p-values analyzed 

through least square differences. For cell line by compound by time comparisons degrees 

of freedom were equal to 150. Comparisons across these three factors were made in 

relation to the vehicle treatment for each experiment and statistical difference determined 

at p<0.05. 

 

 

RESULTS 

 
PR EXPRESSION IN THE PRESENCE OF E2   

Previous studies from our lab demonstrated that PR expression could be detected by 

standard RT-PCR methods at 9 h post E2 treatment while using 1ug of RNA template in 

Rat1+ERα and Rat1+ERβ cells (Cheng & Malayer 1999).  In unpublished results we 

observed that this was highly time dependent as PR could not be detected at 6 h in either 

cell line and only Rat1+ERα at 12, 18, and 24 h, under the same conditions, although it 

was still detectable in Rat1+ERβ at the 9 h time point, albeit faintly and at a level similar 

to Rat1+ERα vehicle treated PR expression.   

 

A statistically significant interaction was observed in a cell line by ligand by time manner 

(p<0.0001) in regards to target PR expression.  Real-time quantitative PCR analysis of 

PR expression displayed an expression profile of induction following E2 exposure in ERα 

expressing cells that varied over different time points (Figure 2a).  A 90-fold increase of 

PR was seen in Rat1+ERα cells following treatment with E2 for 9 h (p<0.0001) (Table 4; 
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Figure2a).  There was no significant induction at 6 h (Table 3), while expression 

remained elevated in the ERα expression from 15 to 28-fold over the 12-24 h time period 

(Tables 4&5; Figure 2a).   

 

Progesterone receptor gene expression following E2 exposure was not detectable in 

Rat1+ERβ at any time point at the 10 ng amount of template (Figure 2a).  Target PR 

expression was detected at 12 h in the vehicle treated ERβ cells (p<0.0001). This effect 

was observed in all ERβ vehicle treated samples at 12 h.   

 

PR EXPRESSION IN THE PRESENCE OF SYNTHETIC DES 

 
In ERα cells, treatment with DES for 24 h resulted in up-regulation (p<0.0001) of PR in a 

manner similar to E2 treatment at the same time period in ERα (p=0.1720), with a 15-fold 

increase over Rat1 V (Table 6; Figure 2b).  This increase was significantly less than that 

seen at 9 h E2 with ERα, but did not differ from E2 with ERα at 12 and 18h.  There were 

no significant inductions of PR with DES at earlier time points.  However, this led to a 

significant time by compound effect between 12-18 h DES and E2 treatment.  

   

Estrogen receptor β expressing cells showed no induction at 24 h and showed significant 

difference from vehicle at 9 (p<0.0005)  and 12 h (p<0.0191) (Tables 3&4).  The 12 h 

reduction from vehicle is significantly different from regulation events seen across 

treatments in ERβ at the same time.  Likewise, while Rat1+ERβ is able to slightly 

activate PR expression at 18 h, but not in a statistically significant manner from its 
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vehicle (p<0.4188) (Figure 5b).  As with the other observations, there is a trend toward 

increased PR in the Rat1+ERβ vehicle at 12 h (Table 4; Figure 2b). 

 

PR EXPRESSION FOLLOWING TREATMENT WITH THE SERMS OHT AND RAL  

 
4-Hydroxytamoxifen is a partial selective antagonist, and as anticipated did not exhibit 

the ability to induce PR expression in ERα expressing cells with a significant reduction 

from vehicle treatment at 9 (p<0.0001) and 12 h (p<0.0316; Table 3 & 4).  Raloxifene-

HCL was able to weakly stimulate PR in ERα expressing cell lines at 9 h, but at a level 

similar to endogenous Rat1+ERα (Table 3; Figure 3b), which suggests that the effect may 

not be related to RAL.   

 

Induction of PR at 12 h was observed in ERβ expressing cells, however this 34-fold was 

not at a level of significance over the vehicle treated cells (p<0.4639).  This highlighted 

an interesting observation that Rat1+ERβ also exhibits a profile for PR expression at 12 h 

that is not associated with cognate ligand activity.  At 12 h post treatment OHT was also 

able to stimulate PR expression in naïve cells as well (p<0.001) (Figure 3a).  Overall 

there was no statistically significant induction of PR expression following RAL (Figure 

3b); although the same trend toward increased expression at 12 h is observed.  

 

PR EXPRESSION AFTER GEN TREATMENT  
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The phytoestrogen GEN, which has been shown to have a more favorable binding affinity 

for ERβ than ERα, was able to induce a significant 24-fold increase (Table 5; Figure 4) in 

PR expression in Rat1+ERβ cells at 12 h (p<0.0001).  Conversely, GEN was unable to 

regulate PR expression in the ERα expressing cells at any time point, but similar to OHT 

was able to stimulate PR expression in the parental line at the 12 h time point (p<0.0004; 

Figure 4) and showed the same trend for increased ERβ vehicle treated expression.  

 

 

DISCUSSION 

 
This study has demonstrated that there are isotype by ligand by time dependent effects on 

regulation of PR gene expression by estrogen and estrogenic-like compounds (Figure 5a 

& 5b).  To examine these interactions several decisions were made regarding 

experimental design.  The PR protein has two functionally different subtypes, A and B, 

which are encoded by a single PR gene at two distinct translational start sites (Graham & 

Clarke 1997).  In the interest of this study primer and probe sets were generated to the PR 

gene, instead of a particular subtype.  Future studies elucidating promoter context in 

regard to PR activation would be of great interest with regards to the observation seen 

here.  There was also a desire to normalize the ligand treatment so that affects seen were 

due to activation and not to higher dosage effects.  Therefore, cells were treated with 

concentrations based on binding affinities observed for hERα and rERβ as reported by 

Kuiper et al. (1997), as these are the same species receptors used in our model.  

Concentrations were calibrated to take into account the 10X higher Kd value reported for 
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the HEG0 hERα mutant used in the Rat1+ERα cell lines (Tora et al. 1989; Kaneko et al. 

1993). 

 

One of the primary characteristics of the ER/PR relationship is the activation of PR in the 

rat uterus following binding of E2 to ER (Clarke & Sutherland 1990), and therefore PR is 

often used as an indicator of ER function.  Of importance when considering our results is 

research that has shown that in ERβ knock-out models induction of PR in the uterus 

appears to be an ERα mediated event, while repression of PR is ERβ mediated (Weihua 

et al. 2000).  This falls into line with our observation of a strong induction of PR by ERα 

at 9 h, and makes it not wholly unexpected that ERβ does not have significant PR 

induction in response to E2 within this data set, and actually has lower PR expression than 

vehicle at 9 and 12 h.   

 

It is interesting that treatment with DES is able to have a delayed effect upon ERα 

expressing cells that is similar to E2 at 24 h.  The possible implications for DES ligand 

specificity in regards to early and late response of PR expression are intriguing.  Future 

investigation into differential cellular pathway regulation involved with this observation 

could be valuable to understanding developmental phenotypes observed with DES 

exposure.  It is also of interest that GEN is able to affect PR up-regulation in ERβ 

expressing cells, and this observation is corroborated by a recent study demonstrating that 

GEN may be linked to an increase in PR expression (Hughes et al. 2004).  This fits with 

data that ERβ has a higher affinity for GEN, and that GEN is able to exert responses 

different than those seen by other ligands.  
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There are several examples of observed effects between ER and PR that have served as 

impetus for exploring how gene expression profiles change over time in the presence of 

different ligands.  One such observation suggests a time sensitive component, with 

significant suppression of ERα by 12 h and ER levels returning to normal from 12-48 h 

(Okulicz 1989).  Of interest in relation to ERα and ERβ variations and temporal 

differences, previous studies at delayed time-points of 24 and 48 h post E2 treatment have 

shown no PR expression in ERβ expressing human osteoblast cell lines (Rickard et al. 

2002).  However, in Rat1+ERβ cell lines PR expression is reported as early as 9 h 

following E2 treatment (Cheng & Malayer 1999).  In our data set PR expression is not 

detected at 9 h with 10 ng of template total RNA.  Previous standard PCR methods 

utilized 2 µg of template total RNA, and this may explain the ability to detect very low 

levels of PR in the ERβ expressing cells at 9 h.  However, in human breast cancer cell 

lines it has been demonstrated that while may PR regulate both ERα and ERβ the 

relationship with ERβ is inversely associated with PR status (Dotzlaw et al. 1999).   

 

Complexity of the PR interaction with ER following ligand binding is affected by the 

various protein complexes DNA binding can occur through, other than direct action of 

ER at EREs.  Mediation of PR through E2 activation of ERα has been shown to be 

mediated through Sp1 binding to recognition sites and stabilization of Sp1-DNA 

interaction within the PR gene (Schultz et al. 2003).  The presence of an ERE half-site 

within the PR gene and the DNA-bound Sp1 are thought to be the hormone regulatory 

switch for ER, whereas Sp1 alone is thought to play a role in non-hormone PR expression 
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(Petz et al. 2004).  Whereas the exact promoter context is not examined within the realm 

of this study, these influences help us to begin to understand some of the underlying 

mechanisms that may be involved in data reported here. 

 

Several lines of research have demonstrated the ability of ERβ to regulate transcriptional 

activity in a ligand-independent manner as well as in response to the partial antagonist 

OHT.  Work by Bramlett et al. (2001) has shown that ERβ has the capacity to exhibit 

significant ligand-independent binding to the SRC-1 NR box II peptide (Bramlett et al. 

2001).  In light of our results that ERβ expressing cells may have an ability to express PR 

at 12h with vehicle treatment it is tempting to speculate that cross-talk pathways and co-

activator binding may be significantly impacting this portion of the pathway in a 

temporal manner.  Since this is a time dependent profile it is likely that a component of 

the media is playing a role, and the most likely suspect is insulin since there are 

recognized insulin effects on PR expression (Katzenellenbogen & Norman 1990). 

Additionally, unpublished results by Jin Cheng in 1999 suggest that insulin in culture 

plays differential roles depending on ER isotype and responsiveness to ERE or AP-1 

promoter binding sites.  Therefore, we speculate that this effect is perhaps not related to 

an effect of the ethanol vehicle, but instead results from the influx of fresh media 

components that occurs with the concurrent feeding that occurs with treatment.  Taken 

together, the 12h profile suggests that DES and E2 may actually exerting a suppressive 

affect on PR through binding to ERβ which fits with research performed by Weihua et al. 

(2000). This opens up the possibility that this may be occurring through disruption of a 
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cross-talk pathway.  At the same time OHT treatment may be rescuing this interaction, 

while GEN appears to be exerting a true induction event of PR through ERβ.   

 

These data fit into a model in which ERα and ERβ play divergent roles in PR induction.  

Effects were highly dependent on time and ligand exposure.  Data of this nature raise an 

interesting question as to the role of differential promoter context, co-regulator 

recruitment, and cross-talk pathways that are specific to events involving independent 

ERα and ERβ regulation.  Examination of the promoters and co-regulatory molecules 

involved within these pathways could provide further information as to how the separate 

ERs are controlling transcription of PR, and this may lend insight into other gene 

expression interactions.     
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Table 1: Progesterone receptor primer/ probe set for 5′ nuclease activity RT-qPCR  
 
Target Primers [ 300 nM] Probes [ 200 nM] 

Pr
og

es
te

ro
ne

 
Re

ce
pt

or
 g

en
e 

(P
R
) 

Forward (141-163)                         
5’ TGTAGTCTCGCCAATACCGATCT 3’  
Reverse (190-207)                          
5’ CTCCTGAGCCTGGCAGGA 3’   

(165-188) 5’ 6FAM/ 
CCTGGACCGGCTGCTCTTCTCTCG– 
TAMRA 3’ 
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Table 2. ANOVA table for PR gene expression 

 
 

 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 
 CLINE                       2     40.5764436     20.2882218     13.84   <.0001 
 COMP                        4     59.6817004     14.9204251     10.18   <.0001 
 CLINE*COMP                  8    186.0106142     23.2513268     15.86   <.0001 
 TIME                        4     43.7926160     10.9481540      7.47   <.0001 
 CLINE*TIME                  8     63.6060853      7.9507607      5.42   <.0001 
 COMP*TIME                  16    181.1586462     11.3224154      7.72   <.0001 
 CLINE*COMP*TIME            32    145.2243458      4.5382608      3.10   <.0001 
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Table 3. Progesterone receptor expression at 6 h exposure to selected ligands 

 

Cell line -  6 h 
Average CT

† 

Target 
Average CT

† 
18S  ∆CT

‡ ∆∆CT
§ 2-∆∆CT¥ 

Rat1 + ERα DES[0.4nM] 39.78 + 0.35 18.60 + 1.43 21.18 + 0.76a 0.06 0.96 

Rat1 + ERα VEtOH  40.00 + 0.00 19.33 + 0.34 20.67 + 0.24a -0.44 1.36 

Rat1 + ERβ DES [0.05nM] 40.00 + 0.00 18.62 + 1.22 21.38 + 0.86a 0.26 0.83 

Rat1 + ERβ VEtOH 40.00 + 0.00 19.21 + 0.34 20.79 + 0.24a -0.33 1.26 

Rat1 DES[0.4nM] 40.00 + 0.00 17.36 + 0.38 22.64 + 0.27a 1.52 0.34 

Rat1 VEtOH 40.00 + 0.00 18.88 + 0.24 21.12 + 0.17a 0.00 1.00 

Rat1 + ERα OHT [1nM] 39.40 + 1.11 18.18 + 0.33 21.21 + 0.55a -0.66 1.58 

Rat1 + ERα VEtOH  38.54 + 1.24 18.32 + 0.44 20.22 + 0.56a -1.65 3.15 

Rat1 + ERβ OHT [0.04nM] 39.86 + 0.34 18.01 + 0.25 21.85 + 0.07a -0.28 1.02 

Rat1 + ERβ VEtOH 39.34 + 1.04 18.13 + 0.68 21.21 + 0.25a -0.66 1.58 

Rat1 OHT [1nM] 40.00 + 0.00 18.06 + 0.34 21.94 + 0.24a 0.07 0.95 

Rat1 VEtOH 40.00 + 0.00 18.12 + 0.64 21.87 + 0.45a 0.00 1.00 

Rat1 + ERα Gen [20nM] 39.44 + 0.90 18.10 + 0.98 20.71 + 0.05a 2.16 0.22 

Rat1 + ERα VEtOH  39.45 + 0.78 20.18 + 0.50 19.32 + 0.19b 0.77 0.59 

Rat1 + ERβ Gen [0.3nM] 39.17 + 1.03 18.20 + 0.56 20.97 + 0.33a 2.42 0.18 

Rat1 + ERβ VEtOH 39.05 + 1.50 19.91 + 0.70 19.14 + 0.57b 0.59 0.66 

Rat1 Gen [20nM] 39.00 + 0.85 17.60 + 0.55 21.40 + 0.21a 2.85 0.14 

Rat1 VEtOH 38.39 + 1.07 19.84 + 0.97 18.55 + 0.07b 0.00 1.00 

Rat1 + ERα E2 [1nM] 39.94 + 0.10 19.88 + 0.42 20.05 + 0.22a -0.66 1.58 

Rat1 + ERα VEtOH  40.00 + 0.00 19.71 + 0.39 20.29 + 0.27a -0.42 1.34 

Rat1 + ERβ E2 [1nM] 40.00 + 0.00 19.47 + 0.13 20.53 + 0.09a -0.19 1.14 

Rat1 + ERβ VEtOH 40.00 + 0.00 19.74 + 0.49 20.25 + 0.35a -0.46 1.38 

Rat1 E2 [1nM] 40.00 + 0.00 19.35 + 0.10 20.65 + 0.07a -0.06 1.05 

Rat1 VEtOH 40.00 + 0.00 19.28 + 0.27 20.72 + 0.19a 0.00 1.00 

Rat1 + ERα RAL [1nM] 39.26 + 1.48 19.32 + 0.62 19.93 + 0.60a -1.12 2.18 

Rat1 + ERα VDMSO 38.09 + 1.04 18.82 + 0.27 19.27 + 0.55a -1.79 3.46 

Rat1 + ERβ RAL [0.04nM] 29.27 + 0.88 19.44 + 0.45 19.83 + 0.31a -1.23 2.36 

Rat1 + ERβ VDMSO 39.69 + 0.75 19.36 + 0.26 20.34 + 0.34a -0.72 1.65 

Rat1 RAL [1nM] 39.75 + 0.59 19.06 + 0.33 20.70 + 0.19a -0.36 1.28 

Rat1 VDMSO 40.00 + 0.00 18.93 + 0.26 21.06 + 0.18a 0.00 1.00 
 
† Cycle threshold (CT):  The mean cycle number (target genes n=3, 18S rRNA n=2) at 

which the threshold crossed the geometric portion of the logarithmic amplification curve. 
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‡ Normalized CT values (∆CT):  Mean CT values for target genes were subtracted from the 

mean 18S rRNA gene CT values to derive values for normalized expression. 

§ Calibrated value (∆∆CT):  Rat 1 V treated cells were set as a calibrator.  Normalized CT 

values were then subtracted from this value to derive the calibrated value used to 

determine fold differences (2 –∆∆CT). 

¥ Fold differences (2 –∆∆CT):  Target gene normalized to endogenous 18S reference, and 

relative to Rat1 parental cell line calibrator. 

n Subscript number with different letters denote a significant difference (P<0.05) in cell 

line interaction, while subscript letters that are the same denote no significant 

difference.  Analysis was carried out using least square differences from a PROC-

MIXED analysis in a 3X5X5 treatment factorial ANOVA arrangement analyzed by the 

Statistical Analysis System (SAS) and showing a significant cell line X ligand X time 

(P<0.0001) effect.   
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Table 4. Progesterone receptor expression at 9 h exposure to selected ligands  

 

Cell line -  9 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 38.50 + 1.91 19.48 + 1.98 19.02 + 0.05a -1.18 2.27 

Rat1 + ERα VEtOH  40.00 + 0.00 19.88 + 0.79 20.12 + 0.56a -0.08 1.05 

Rat1 + ERβ DES [0.05nM] 40.00 + 0.00 16.87 + 0.82 23.13 + 0.58b 2.93 0.13 

Rat1 + ERβ VEtOH 39.81 + 0.46 19.17 + 0.52 20.64 + 0.04a 0.44 0.84 

Rat1 DES[0.4nM] 40.00 + 0.00 17.44 + 0.76 22.56 + 0.54b 2.36 0.19 
Rat1 VEtOH 40.00 + 0.00 19.80 + 0.71 20.20 + 0.50a 0.00 1.00 

Rat1 + ERα OHT [1nM] 38.61 + 1.15 18.41 + 0.29 20.19 + 0.62a 2.82 0.14 
Rat1 + ERα VEtOH  37.90 + 2.24 22.47 + 0.78 15.42 + 1.03b -1.95 3.56 

Rat1 + ERβ OHT [0.04nM] 39.35 + 1.08 18.31 + 0.33 21.03 + 0.53a 3.65 0.07 
Rat1 + ERβ VEtOH 39.33 + 0.98 21.77 + 0.66 17.55 + 0.22c 0.18 0.88 

Rat1 OHT [1nM] 39.75 + 0.41 18.16 + 0.08 21.59 + 0.23a 4.21 0.05 

Rat1 VEtOH 39.39 + 0.74 22.02 + 1.04 17.37 + 0.21c 0.00 1.00 

Rat1 + ERα Gen [20nM] 39.85 + 0.37 19.41 + 0.37 20.44 + 0.01a 1.93 0.26 

Rat1 + ERα VEtOH  40.00 + 0.00 19.44 + 1.09 20.55 + 0.77a 2.05 0.24 

Rat1 + ERβ Gen [0.3nM] 40.00 + 0.00 19.02 + 0.31 20.97 + 0.22a 2.48 0.17 
Rat1 + ERβ VEtOH 40.00 + 0.00 20.67 + 0.83 19.33 + 0.59b 0.83 0.56 

Rat1 Gen [20nM] 40.00 + 0.00 19.22 + 0.51 20.77 + 0.36a 2.27 0.20 
Rat1 VEtOH 40.00 + 0.00 21.49 + 1.03 21.49 + 0.72b 0.00 1.00 

Rat1 + ERα E2 [1nM] 34.40 + 0.61 18.29 + 0.92 16.12 + 0.22a -6.50 90.72 

Rat1 + ERα VEtOH  39.21 + 1.52 17.93 + 0.62 21.28 + 0.64b -1.34 2.53 
Rat1 + ERβ E2 [1nM] 40.00 + 0.00 18.19 + 0.46 21.81 + 0.33b -0.81 1.76 

Rat1 + ERβ VEtOH 39.75 + 0.60 17.78 + 0.89 21.97 + 0.20b -0.65 1.57 
Rat1 E2 [1nM] 39.69 + 0.74 16.83 + 0.56 22.86 + 0.13b 0.24 0.84 
Rat1 VEtOH 40.00 + 0.00 17.38 + 0.73 22.62 + 0.52b 0.00 1.00 

Rat1 + ERα RAL [1nM] 39.03 + 1.08 18.66 + 0.63 20.37 + 0.31a -1.74 3.34 
Rat1 + ERα VDMSO 28.30 + 0.90 18.61 + 1.27 19.69 + 0.27a -2.43 5.37 

Rat1 + ERβ RAL [0.04nM] 40.00 + 0.00 18.98 + 1.53 21.02 + 1.08a -1.09 2.14 
Rat1 + ERβ VDMSO 40.00 + 0.00 18.54 + 1.24 21.45 + 0.88a -0.65 1.58 

Rat1 RAL [1nM] 40.00 + 0.00 17.88 + 0.24 22.12 + 0.17b 0.01 0.99 

Rat1 VDMSO 40.00 + 0.00 17.88 + 0.18 22.11 + 0.13b 0.00 1.00 
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Table 5. Progesterone receptor expression at 12 h exposure to selected ligands 

 

Cell line -  12 h 
Average CT 

Target 
Average CT 

18S  2-∆∆CT ∆CT ∆∆CT

23.35 + 0.13a Rat1 + ERα DES[0.4nM] 40.00 + 0.00 16.65 + 0.19 0.55 0.68 

40.00 + 0.00 17.18 + 0.19 22.82 + 0.14a Rat1 + ERα VEtOH  0.01 0.99 

40.00 + 0.00 16.87 + 0.40 23.13 + 0.29a 0.32 Rat1 + ERβ DES [0.05nM] 0.80 

Rat1 + ERβ VEtOH 38.68 + 2.07 17.20 + 0.18 21.47 + 1.34b -1.33 2.51 

Rat1 DES[0.4nM] 40.00 + 0.00 17.47 + 0.99 22.53 + 0.70a -0.27 1.21 
Rat1 VEtOH 40.00 + 0.00 17.19 + 0.24 22.81 + 0.17a 0.00 1.00 

Rat1 + ERα OHT [1nM] 39.45 + 0.88 19.87 + 0.99 19.58 + 0.08a 1.17 0.44 
Rat1 + ERα VEtOH  39.69 + 0.53 21.62 + 0.25 18.06 + 0.20a -0.34 1.27 

Rat1 + ERβ OHT [0.04nM] 33.25 + 0.47 19.93 + 0.07 13.32 + 0.28b -5.09 33.98 
Rat1 + ERβ VEtOH 35.56 + 1.97 21.73 + 0.16 13.83 + 1.28b -4.57 23.81 

Rat1 OHT [1nM] 35.46 + 0.61 20.16 + 0.22 15.29 + 0.28c -3.11 8.64 

Rat1 VEtOH 40.00 + 0.00 21.59 + 0.27 18.41 + 0.19a 0.00 1.00 

Rat1 + ERα Gen [20nM] 40.00 + 0.00 23.97 + 0.21 16.03 + 0.15a 1.33 0.39 

*Rat1 + ERα VEtOH  40.00 + 0.00 25.44 + 1.10 14.56 + 0.78b -0.13 1.09 

Rat1 + ERβ Gen [0.3nM] 35.06 + 2.17 24.97 + 1.13 10.09 + 0.73c -4.60 24.28 
*Rat1 + ERβ VEtOH 37.90 + 1.69 24.88 + 0.31 13.01 + 0.98d -1.68 3.20 

Rat1 Gen [20nM] 36.71 + 0.50 24.55 + 0.35 12.16 + 0.10d -2.53 5.77 
*Rat1 VEtOH 40.00 + 0.00 25.31 + 0.61 14.69 + 0.43b 0.00 1.00 

Rat1 + ERα E2 [1nM] 36.15 + 0.75 16.00 + 0.35 20.15 + 0.29a -3.95 15.44 

Rat1 + ERα VEtOH  40.00 + 0.00 16.01 + 0.10 23.99 + 0.07b -0.10 1.07 
Rat1 + ERβ E2 [1nM] 40.00 + 0.00 15.90 + 0.21 24.10 + 0.15b 0.00 1.00 

Rat1 + ERβ VEtOH 34.49 + 3.53 15.95 + 0.19 19.55 + 2.36a -4.55 23.40 
Rat1 E2 [1nM] 40.00 + 0.00 15.74 + 0.39 24.25 + 0.27b 0.16 0.89 
Rat1 VEtOH 40.00 + 0.00 15.90 + 0.21 24.10 + 0.15b 0.00 1.00 

Rat1 + ERα RAL [1nM] 39.32 + 0.95 18.57 + 1.06 20.76 + 0.07a -0.74 1.67 
Rat1 + ERα VDMSO 39.31 + 0.86 18.22 + 0.28 21.10 + 0.41a -0.40 1.32 

Rat1 + ERβ RAL [0.04nM] 39.41 + 1.08 18.67 + 0.56 20.74 + 0.37a -0.76 1.69 
Rat1 + ERβ VDMSO 38.37 + 1.92 18.80 + 0.78 19.56 + 0.81a -1.94 3.83 

Rat1 RAL [1nM] 39.92 + 0.21 17.98 + 0.30 21.93 + 0.07a 1.43 0.74 

Rat1 VDMSO 40.00 + 0.00 18.50 + 0.28 21.50 + 0.20a 0.00 1.00 
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Table 6. Progesterone receptor expression at 18 h exposure to selected ligands 

 

Cell line -  18 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 38.44 + 1.79 15.32 + 0.11 23.12 + 1.18a -1.43 2.70 

Rat1 + ERα VEtOH  39.47 + 0.85 15.39 + 0.33 24.08 + 0.37a -0.46 1.38 

Rat1 + ERβ DES [0.05nM] 37.80 + 1.03 15.54 + 0.15 22.25 + 0.62a -2.30 4.91 

Rat1 + ERβ VEtOH 38.22 + 1.03 15.40 + 0.46 22.82 + 0.49a -1.73 3.32 

Rat1 DES[0.4nM] 40.00 + 0.00 15.48 + 0.11 24.52 + 0.08a -0.03 1.02 
Rat1 VEtOH 40.00 + 0.00 15.45 + 0.35 24.55 + 0.25a 0.00 1.00 

Rat1 + ERα OHT [1nM] 40.00 + 0.00 18.24 + 0.66 21.76 + 0.46a 0.47 0.72 
Rat1 + ERα VEtOH  40.00 + 0.00 18.19 + 0.47 21.81 + 0.33a 0.52 0.69 

Rat1 + ERβ OHT [0.04nM] 40.00 + 0.00 18.56 + 0.76 21.44 + 0.53a 0.15 0.90 
Rat1 + ERβ VEtOH 40.00 + 0.00 18.40 + 0.39 21.60 + 0.28a 0.31 0.80 

Rat1 OHT [1nM] 40.00 + 0.00 18.08 + 0.40 21.92 + 0.28a 0.63 0.64 

Rat1 VEtOH 40.00 + 0.00 18.71 + 0.47 21.29 + 0.33a 0.00 1.00 

Rat1 + ERα Gen [20nM] 40.00 + 0.00 16.56 + 0.29 23.44 + 0.20a 1.11 0.46 

Rat1 + ERα VEtOH  40.00 + 0.00 16.94 + 0.38 23.06 + 0.27a 0.73 0.60 

Rat1 + ERβ Gen [0.3nM] 40.00 + 0.00 16.59 + 0.23 23.41 + 0.17a 1.09 0.47 
Rat1 + ERβ VEtOH 40.00 + 0.00 17.11 + 0.41 22.89 + 0.29a 0.57 0.67 

Rat1 Gen [20nM] 40.00 + 0.00 16.98 + 1.10 23.02 + 0.77a 0.69 0.62 
Rat1 VEtOH 40.00 + 0.00 17.67 + 0.49 22.33 + 0.35a 0.00 1.00 

Rat1 + ERα E2 [1nM] 33.93 + 1.71 16.48 + 0.46 17.44 + 0.89a -4.84 28.57 

Rat1 + ERα VEtOH  40.00 + 0.00 17.62 + 0.35 22.38 + 0.17b 0.10 0.93 
Rat1 + ERβ E2 [1nM] 40.00 + 0.00 15.95 + 0.28 24.05 + 0.20c 1.77 0.29 

Rat1 + ERβ VEtOH 40.00 + 0.00 17.50 + 0.24 22.50 + 0.17b 0.22 0.86 
Rat1 E2 [1nM] 40.00 + 0.00 15.97 + 0.14 24.03 + 0.10b 1.75 0.30 
Rat1 VEtOH 40.00 + 0.00 17.72 + 0.53 22.28 + 0.38b 0.00 1.00 

Rat1 + ERα RAL [1nM] 40.00 + 0.00 16.82 + 0.42 23.18 + 0.29a 0.11 0.92 
Rat1 + ERα VDMSO 40.00 + 0.00 16.79 + 0.26 23.21 + 0.19a 0.14 0.91 

Rat1 + ERβ RAL [0.04nM] 40.00 + 0.00 16.98 + 0.22 23.02 + 0.15a -0.05 1.03 
Rat1 + ERβ VDMSO 40.00 + 0.00 16.87 + 0.26 23.13 + 0.18a 0.06 0.96 

Rat1 RAL [1nM] 40.00 + 0.00 16.86 + 0.20 23.15 + 0.14a 0.07 0.95 

Rat1 VDMSO 40.00 + 0.00 16.93 + 0.12 23.07 + 0.08a 0.00 1.00 
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Table 7. Progesterone receptor expression at 24 h exposure to selected ligands 

 

Cell line -  24 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 34.95 + 1.86 16.48 + 0.33 18.47 + 1.08a -3.92 15.12 

Rat1 + ERα VEtOH  39.71 + 0.71 18.11 + 0.56 21.59 + 0.10b -0.79 1.73 

Rat1 + ERβ DES [0.05nM] 39.77 + 0.56 16.30 + 0.19 23.47 + 0.26b 1.07 0.47 

Rat1 + ERβ VEtOH 40.00 + 0.00 17.53 + 1.71 22.47 + 1.21b 0.08 0.94 

Rat1 DES[0.4nM] 40.00 + 0.00 16.33 + 0.43 23.67 + 0.30b 1.27 0.41 
Rat1 VEtOH 40.00 + 0.00 17.61 + 1.32 22.39 + 0.93b 0.00 1.00 

Rat1 + ERα OHT [1nM] 40.00 + 0.00 17.18 + 0.29 22.82 + 0.21a 2.37 0.19 
Rat1 + ERα VEtOH  40.00 + 0.00 18.96 + 0.46 21.03 + 0.33b 0.58 0.67 

Rat1 + ERβ OHT [0.04nM] 40.00 + 0.00 17.07 + 0.15 22.93 + 0.11a 2.47 0.18 
Rat1 + ERβ VEtOH 40.00 + 0.00 17.35 + 0.14 22.64 + 0.10a 2.19 0.22 

Rat1 OHT [1nM] 40.00 + 0.00 17.21 + 0.15 22.79 + 0.11a 2.33 0.20 

Rat1 VEtOH 40.00 + 0.00 19.54 + 0.08 20.46 + 0.06b 0.00 1.00 

Rat1 + ERα Gen [20nM] 38.57 + 2.22 17.52 + 0.70 0.05 21.05 + 1.07a 0.97 

Rat1 + ERα VEtOH  40.00 + 0.00 19.57 + 0.34 20.43 + 0.24a -0.57 1.48 

Rat1 + ERβ Gen [0.3nM] 40.00 + 0.00 18.05 + 0.22 21.95 + 0.15a 0.95 0.51 
Rat1 + ERβ VEtOH 40.00 + 0.00 17.35 + 1.09 22.65 + 0.77a 1.65 0.32 

Rat1 Gen [20nM] 40.00 + 0.00 17.59 + 0.35 1.41 22.41 + 0.25b 0.38 
Rat1 VEtOH 40.00 + 0.00 19.00 + 1.09 21.00 + 0.77a 0.00 1.00 

Rat1 + ERα E2 [1nM] 35.21 + 0.79 19.94 + 0.77 15.27 + 0.01a -4.31 19.90 

Rat1 + ERα VEtOH  39.84 + 0.38 22.81 + 0.87 17.03 + 0.34b -2.55 
Rat1 + ERβ E2 [1nM] 40.00 + 0.00 20.30 + 0.55 19.70 + 0.39c 0.11 

5.84 

0.92 

Rat1 + ERβ VEtOH 40.00 + 0.00 20.89 + 0.70 19.11 + 0.49c -0.48 1.39 
Rat1 E2 [1nM] 40.00 + 0.00 20.43 + 0.83 19.57 + 0.59c -0.02 1.01 
Rat1 VEtOH 40.00 + 0.00 20.42 + 1.96 19.58 + 1.39c 0.00 1.00 

Rat1 + ERα RAL [1nM] 39.71 + 0.71 14.09 + 0.60 25.63 + 0.46a 0.23 0.85 
Rat1 + ERα VDMSO 39.70 + 0.70 14.43 + 0.16 25.28 + 0.40a -0.11 1.09 

Rat1 + ERβ RAL [0.04nM] 40.00 + 0.00 14.27 + 0.11 25.73 + 0.08a 0.34 0.79 
Rat1 + ERβ VDMSO 40.00 + 0.00 14.35 + 0.31 25.65 + 0.22a 0.26 0.83 

Rat1 RAL [1nM] 40.00 + 0.00 14.32 + 0.15 25.68 + 0.11a 0.28 0.81 

Rat1 VDMSO 40.00 + 0.00 14.60 + 0.19 25.39 + 0.13a 0.00 1.00 
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Figure 1. Chemical structures of estrogenic compounds used in treatment 

schemes.  All chemicals were of pharmaceutical grade  
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Figure 2.  Estrogen and synthetic estrogen agonist DES effects on PR expression.  Time 

by cell effects for each ligand exposure were analyzed by ANOVA (P<0.0001) 

performed on the ∆CT values.  Letters denote significant interactions between time and 

isotype, with significance set at P<0.05.  a)  Progesterone receptor expression following 

E2 exposure over time.  Greatest expression occurred in the presence of ERα at 09h with 

an increase 90 fold over Rat1 V.  This 9 h induction is nearly 6-fold greater than that seen 

at 12 h, 3-fold than that at 18 h, and 4.5-fold over 24h.  This suggests a predominant role 

for E2 bound ERα in mediation of PR induction that is time sensitive.  An increase was 

also seen in the presence of ERβ following the control vehicle treatment, with of 23-fold 

increase that was similar to ERα E2 exposed cells at 12 and 24 h.  This may result from 

being fed with fresh media at the same time as vehicle treatment.  b) Progesterone 

receptor expression following DES exposure over time.  The only significant induction in 

expression of PR was seen in the presence of ERα at 24 h with an approximate 15-fold 

increase over Rat1 V.  This suggests that DES bound ERα may function in a manner 

divergent from E2 bound ERα in regards to PR mediation.  There was also a significant 

decrease in PR expression at 12 h in the ERβ treated, when compared with that which 

was observed with control treatment of vehicle. 
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Figure 3.  Evaluation of PR expression following exposure to the SERMs OHT and RAL 

in cells expressing either ERα or ERβ. Time by cell effects for each ligand exposure were 

analyzed by ANOVA (P<0.0001) with Least Square Difference analysis being performed 

on the ∆CT values.  Letters denote significant interactions between time and cell line 

isotype, with significance set at P<0.05.  a) 4-Hydroxytamoxifene had no induction effect 

on PR with independent ERα.  However, treatment did yield a significant increase in PR 

expression at 12 h in ERβ expressing cells following treatment that was statistically 

different across time, but did not differ from the control vehicle treated PR expression at 

12 h.  To an extent an increase was seen in the Rat1 treated cells.  b) Raloxifene had no 

significant effect on PR expression, but a trend toward increased expression at 12h in 

ERβ vehicle treated cells.  
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Figure 4.  Effects of phytoestrogen GEN treatment on PR expression over time.  A 

significant effect with a 24 fold increase of PR expression is seen at 12 h in the presence 

of GEN in the Rat1+ERβ cell line (P<0.0001).  Differences were also detected in the 

vehicle treated ERβ and Rat1 treated at the same time-point, though these were 

significantly less than the response observed following GEN treatment.  This is consistent 

with observed higher binding affinities for ERβ and suggests a unique activation pathway 

through GEN binding of ERβ.  
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Figure 5.  PR expression over time for all treatments observed in either ERα or ERβ 

expressing cell lines.  Cell line by compound by time effects were detected (P<0.0001) 

using an ANOVA generated in SAS.  Summary expression profiles of PR are separated 

based on the presence of ERα or ERβ within the cells.  a)  Rat1+ERα following E2 

treatment is the main regulator for PR expression with peak expression reached by 9 h.  It 

is also observed that DES exposure mirrors E2 exposure, but only following a 24 h period.  

b)  Rat1+ERβ cells were slightly, though not statistically affected by DES treatment at 18 

h, while the highest statistical induction of PR is seen by GEN at 12 h.  4-

Hydroxytamoxifen also shows a large regulation event at 12 h, however this effect is 

mirrored in the vehicle treated cells at this time. 
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CHAPTER V 

Ligand and time course effect on RACK1, COL1A2, PCOLCE, and CtsL 
gene expression in the presence of estrogen receptor alpha or beta 

 
 

ABSTRACT 

Estrogen receptors (ER) function in the endocrine system by binding estrogen and 

estrogenic like compounds, regulating transcription, and eliciting a myriad of 

physiological responses.  Two distinct ER isotypes, ERα and ERβ, display differential 

localization patterns and ligand binding affinities.  We have previously described unique 

gene expression profiles for the two ER subtypes, ERα and ERβ, in the context of the 

engineered Rat1 embryonic fibroblast cell lines Rat1+ERα and Rat1+ERβ following E2 

treatment and utilizing suppression subtractive hybridization.   In the current study, we 

have evaluated expression of four genes; receptor for activated protein kinase C 

(RACK1), pro-α-2(I)-collagen (COL1A2), procollagen C – proteinase enhancer protein 

(PCOLCE), and cathepsin L (CtsL), identified as differentially regulated in the presence 

of ERα or ERβ to examine the effects of ligand treatment and temporal effects at a single 

dose exposure.  The individual cell lines were treated for 6, 9, 12, 18, or 24 h with 

estradiol-17β (E2), diethylstilbestrol (DES), 4-hydroxytamoxifen (OHT), genistein 

(GEN), raloxifene-HCl (RAL), or vehicle.  Total RNA was extracted and subjected to 

DNAse treatment followed by quantitative PCR (RT-qPCR).  Results were analyzed 

using the comparative CT method and statistical analysis carried out using a 3X5X5 
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factorial in a completely randomized design.  All four genes demonstrated unique 

responses over time in response to the various ligands.  This data further describes a 

model in which ERα or ERβ are able to independently regulate transcription in a 

distinctive manner in regards to context of treatment. 

 

INTRODUCTION  

Estrogen receptors (ER) are ligand inducible transcription factors that can bind a wide 

range of natural and environmental estrogenic compounds and through transcriptional 

modulation play a role in multiple physiological systems.  There are two recognized 

isotypes, ERα (Toft & Gorski 1966) and ERβ (Kuiper et al. 1996) that exhibit divergent 

and overlapping structure, tissue localization, affinity to ligands, and transcriptional 

activation.  Since the relatively recent discovery of a second ER, there has been an 

impetus to understand the different levels of control that can be affected between receptor 

types.  The two ERs appear to be co-expressed at similar levels in the testis, epididymis, 

bone, and adrenal gland (Couse & Korach 1999) while ERα expression predominates in 

the proliferative cells of the mammary, pituitary and thyroid glands, as well as uterus, 

theca cells of the ovary, skeletal muscle and the smooth muscle of the coronary arteries, 

and ERβ is predominate in the prostate (Kuiper et al. 1996), granulosa cells of the ovary, 

and the lung, bladder, brain and hypothalamus (Kuiper et al. 1997).   

 

When both receptors are present they may form homo or heterodimers that will interact 

with the ERE (Pettersson et al. 1997; Cowley et al. 1997; Pace et al. 1997).  
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Alternatively, the ER dimers can bind at non-classical promoter sites through protein-

protein interactions of primarily two differing complexes; c-fos/c-jun at an AP-1 binding 

site and the Sp1 protein (Webb et al. 1995; Saville et al. 2000).  The ERβ has also been 

observed to antagonize ERα function through heterodimer formation (Hall & McDonnell 

1999).  For these reasons it is of interest to examine ERα and ERβ in an independent 

manner to determine differential patterns of gene regulation within a given cell type. 

 

In addition to physiological estrogens such as 17β-estradiol (E2),  ER also has the ability 

to bind to a number of synthetic estrogens such as diethylstilbestrol (DES), selective 

estrogen receptor modulators (SERMS) like 4-hydroxytamoxifen (OHT) and raloxifene 

(RAL),  as well as environmental estrogenic-like compounds such as those found in 

plants, for example the isoflavone genistein (GEN).  These compounds have been shown 

to exhibit distinct binding affinities for ERα and ERβ (Kuiper et al. 1997), in addition to 

being able to effect differential transcription control at the indirect promoter sites AP-1 

(Webb et al. 1995) and Sp1 (Saville et al. 2000).  Additionally, there is evidence that 

differing ligands exert changes in conformation of the ER protein which in turn lead to 

the recruitment of distinct co-regulators to the transcriptional site (Torchia et al. 1998; An 

et al. 2001; Ratajczak T 2001).  

 

The ERα and ERβ have distinct and differential transcriptional regulation.  We have 

previously described unique independent expression profiles for the two ER subtypes, 

ERα and ERβ, in the context of engineered Rat1 embryonic fibroblast cell lines 

Rat1+ERα and Rat1+ERβ following E2 treatment and utilizing suppression subtractive 
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hybridization (Hurst et al. 2004).  Here we examine four of these previously identified 

genes to determine effects of ligand and time of exposure; receptor for activated protein 

kinase C (RACK1), pro-α-2(I)-collagen (COL1A2), procollagen C – proteinase enhancer 

protein (PCOLCE), and cathepsin L (CtsL), to examine the effects of ligand and time 

exposure.   

 

MATERIALS AND METHODS 

CHEMICALS  

All chemicals were obtained through Sigma, St. Louis MO and were of pharmaceutical 

grade. The compounds E2, DES, OHT, and GEN were dissolved in 100% ethanol. 

Raloxifene-HCl was dissolved in DMSO. 

CULTURE CONDITIONS 

Rat1, Rat1+ERα, and Rat1+ERβ cell lines were maintained as previously described 

(Cheng & Malayer 1999; Hurst et al. 2004).  Cells were grown in sterile filtered (0.22 

µM), phenol red–free Dulbecco’s Modified Eagle Medium without glutamine, sodium 

pyruvate, or sodium bicarbonate (DMEM; Fisher, Plano TX), supplemented with 

NaHCO3 (3.7 g/L) and 5mg/mL L-glutamine (Sigma, St. Louis MO).  Further 

supplementation was provided with bovine insulin (0.6 µg/ml) in HEPES (25 µM) 

(Sigma, St. Louis MO), 1X antibiotic – antimycotic (Sigma, St. Louis MO), and 10% 

charcoal – stripped/ dextran treated fetal bovine serum (CSFBS; Hyclone, Logan UT).  

Cells were maintained at 37˚C in a humidified atmosphere of 5% CO2 gas, 95% air, and 
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media replaced every 48 hours.  Rat1+ERα cells were supplemented with the selective 

antibiotic Hygromyocin B (100 µg/ml) in PBS (Invitrogen, Carlsbad CA) beginning 24 h 

after plating (Kaneko et al. 1993).  Rat1+ERβ cells were supplemented with 50 µg/ml 

Geneticin (Gibco, Grand Island NY) in the same manner (Cheng & Malayer 1999). 

RNA EXTRACTION 

REAL-TIME QUANTITATIVE PCR 

Quantitative PCR was then carried and analyzed with modifications (Gibson et al. 1996; 

Bustin SA. 2002; Ginzinger 2002).  The 5′ nuclease activity assay scheme was 

incorporated using probes that contained a 3′ fluorescent TAMRA quencher dye, and a 5′ 

FAM reporter dye, and carried out using the one-step RT-qPCR chemistry (Eurogentec 

North America Inc, San Diego, CA).  Taqman® primers and probe for target genes were 

generated using Primer Express® software (PE Applied Biosystems, Foster City CA), as 

 

Following the appropriate time period of 6, 9, 12, 18, or 24 h, cells were washed 3 times 

with 1X PBS (Gibco, Grand Island NY) and lysed in guanidinium thiocyanate (Promega, 

Madison WI) per the total RNA extraction method described by Chomczynski and Sacchi 

(Chomczynski & Sacchi 1987).  Following extraction, DNA contamination was corrected 

for through treatment with RQ1 RNAse-free DNAse (Promega, Madison WI) at a 

concentration of 1U/10µl for 30 min at 37°C.  This was followed by 

phenol:chloroform:isoamyl alcohol (P:C:I) purification, ethanol precipitation, and 

concentrations were determined by spectrophotometry. 
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previously reported (Hurst et al, 2004).  Expression was examined using total RNA (10 

ng) by means of primer [300 nM] and probe [200 nM] sets, with a loading duplicate.  

Each population of total RNA (50 pg) was normalized in duplicate using 18S ribosomal 

RNA (Eurogentec North America Inc, San Diego, CA) at a [200 nM] primer [100 nM] 

probe concentration, and the efficiency was checked via a standard curve of serial 

dilutions of Rat1+ERα E2 treated samples.  For target, a dilution series of 10, 5, 1, 0.5, 

and 0.1 ng was used.  For 18S ribosomal RNA a series of 5, 1, 0.5, 0.1, and 0.05 ng 

dilutions were used.  Real-time PCR was carried out in the ABI PRISM 7700 (PE 

Applied Biosystems, Foster City CA) under the following thermal cycler conditions; 

48˚C for 30 min and 95˚C for 10 min, followed by 40 cycles of 95˚C for 15 sec and 60˚C 

for 1 min, in a 25 µL reaction with a 28 sec exposure time.  Analysis and fold differences 

were determined using the comparative CT method as described in the ABI technical 

bulletin #2 for the ABI PRISM 7700 (Gibson et al. 1996; Bustin SA. 2002; Ginzinger 

2002), where the Rat1 vehicle treated cell line was always used as the calibrator for 

determining the 2-∆∆CT fold difference values. 

STATISTICAL ANALYSIS 

Statistical comparison of RT-qPCR ∆CT values with means +

 

 S.D. and reported for n = 3 

for cell cultures and n=2 for loading replication in the 5′ nuclease assay reaction.  Results 

were tested using 3X5X5 factorial ANOVA tables generated through PROC-GLM 

utilizing a complete randomized design constructed using the Statistical Analysis System 

(Table 1), and p-values analyzed through least square differences. For cell line by 

compound by time comparisons degrees of freedom were equal to 150.  Comparisons 
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across these three factors were made in relation to the vehicle treatment for each 

experiment, and statistical difference determined at p<0.05. 

 

RESULTS

 

 

 
A significant cell by compound by time effect was seen for COL1A2 (p<0.0306).  In 

Rat1+ERα cells DES and E2 treatments resulted in significant decreases from vehicle 

expression at 6 h (Table 2a; Figure 1a & b).  Treatment with GEN resulted in decreased 

expression at 6 (p<0.0420) and 24 h (p<0.0001), and OHT treatment also resulted in a 

significant decrease at 24h (p<0.0176) (Figure 2a).  Cells exposed to E2 or DES for24 h 

had observed increases in expression to a level that was no longer significantly different 

from the vehicle treated parental cell line.  When this 24 h DES exposure was compared 

to treatments of OHT (p<0.0033), RAL (p<0.0393), or GEN (p<0.0001) the DES 

treatment was statistically higher. 

 

Significant induction over its own vehicle treatment occurred only in ERβ expressing 

cells with DES at 09h (p<0.0319), GEN at 18h (p<0.0001), and RAL at 06h (p<0.0084) 

(Figure 2b).  Treatment with OHT resulted in expression that was higher than that seen in 

Rat1, ERα expressing, or ERβ E2 or DES treated at the same 6 h time (Table 2a).  

Likewise, at 6 h ERβ expressing cells exposed to GEN differed from E2 or DES treated 

cells, as well as any ERα expressing cell treated at the same time-point.  Previous 

analysis of COL1A2 noted an increase in expression in ERβ expressing cells at 24h with 

PRO-Α-2(I)-COLLAGEN 
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a single dose of E2, and where an increase in the profile is observable it did not reach a 

level of significance (p<0.4737), which may be a result of  difference in analysis and 

replication.  However, ERβ E2 treated cells at 24h had significantly higher COL1A2 

compared to vehicle than the other four treatments at the same time-point and in the same 

cell type. 

CATHEPSIN L 

Cell by compound by time effects (p<0.0062) were observed for CtsL.  As previously 

reported, CtsL expression had a significant increase in ERα expressing cells (p<0.0080) 

at 24h following a single exposure to E2 with a 4-fold increase over ERβ (Table 3E).  

Additionally CtsL levels remained above vehicle at 18h with E2 (p<0.0079), but fell 

below Rat1 (p<0.0004).  Interestingly, at 6, 9, and 12 h a significant level of repression 

was observed for the same treatment parameters (Figure 3a).  Genistein, though a weak 

ERα agonist, was able to significantly increase CtsL expression at 9 h (p<0.0001) in the 

ERα expressing cells in a manner greater than that seen by ERβ at the same time 

(p<0.0058).   

 

 

Rat1+ERβ showed a pulse-like change in CtsL expression with up-regulation at 0 9 and 

18h in response to GEN exposure, however only 18 h reached a level of significance over 

its own vehicle (p<0.0001), even though this did not exceed expression seen in the Rat1 

ER naïve cells (Figure 4).  Neither of the SERMs, OHT or RAL, were able to effect 
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significant increases in levels of CtsL, and OHT actually was able to significantly 

decrease CtsL in the ERβ expressing cells at 24 h (p<0.0020). 

 

RECEPTOR FOR ACTIVATED PROTEIN KINASE C 

Cell by time (p<0.0034) and compound by time (p<0.0001) interactions were observed 

for RACK1.  Rat1+ERα had a significant regulation event occurring at 24h (p<0.007), 

which would appear to be in line with previous results with ERα expressing cells having 

a 5-fold higher expression of RACK1 than ERβ (Table 4E). Also at 24h DES treatment 

of ERα expressing cells resulted in a significant 6.5 fold increase over ERβ that was of a 

greater magnitude than that seen in response to E2.  Interestingly, OHT also was able to 

induce a significant increase in the amount of RACK1 at 06h following exposure in ERα 

expressing cells (p<0.0001; Table 4A).  An increase, though smaller was also seen in 

RAL treated ERα cells at this time. This up-regulation was lost by 09h, but at this time 

point GEN showed an up-regulation of RACK1 which was greater in ERα, but also 

observed in ERβ (Figure5).  Raloxifene also had an up-regulation affect on RACK1 at 

09h that was specific to ERα (Figure 5 and 6a).  Treatment with OHT resulted in an 

increase in RACK1 expression compared to control in ERβ at 06h (p<0.0137), however 

this was the only significant induction seen in the Rat1+ERβ cell line. 
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PROCOLLAGEN C – PROTEINASE ENHANCER PROTEIN  

A compound by time affect was detected for PCOLCE expression (p<0.0001).  Similar to 

results reported by Hurst et al. (2004) PCOLCE had a nearly 4-fold increase in ERα 

expressing cells over ERβ expressing cells at 24 h (Table 5E).  This was mirrored in the 

DES treated ERα cells, however this increase was less than the E2 effect (p<0.0163; 

Figure 7).  At 9 h following OHT exposure a non-cell specific significant increase in 

PCOLCE expression was observed in all three cell lines (p<0.0001) (Figure 7).  

Additionally, GEN treatment at 09h was able to induce an increase in ERα expressing 

cells compared to 06, 18 and 24h (Figure 8).  A trend towards increased PCOLCE was 

observed at 18 h in ERβ expressing cells following treatment when compared to controls, 

with RAL having the greatest effect (Figure 8).   

 

DISCUSSION

 

 

 
It has been shown that ERα and ERβ exhibit unique control over transcriptional gene 

expression profiles in response to a single ligand at a single time-point.  However, 

fixation on a single exposure narrows the breadth of the dynamics that may be involved 

in a ligand response.  Additionally, it is well accepted that regulation pathways are 

differentially affected in relation to varying ligands.  With these points in mind we have 

examined previously identified genes (Hurst et al. 2004) in response to different 

exposures of ligand over time to increase our understanding of the independent nature of 

gene regulation by ERα and ERβ.  Concentrations of applied ligands were normalized to 

reported binding affinities for hERα and rERβ (Kuiper et al. 1997), which are present in 
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our cell line, with regard for the 10X lower bind affinity of the HEG0 hERα mutant (Tora 

et al. 1989).  These data have demonstrated that ligand and time affect differential control 

upon these genes.  This is not unexpected as it is well recognized that gene expression 

occurs in early and delayed waves of response, but what is of interest is that alternate 

ligands  have the ability to alter the timing of the response depending on which receptor 

is present. 

 

Type 1 collagen accounts for the majority of total collagens and is most abundant in 

bone, and is involved in bone and cartilage remodeling (Nimni 1983).  These type I 

collagens are fibril-forming and are synthesized as larger precursors which are cleaved by 

proteinases to create the functional protein (Prockop 1995).  Pro-alpha-2(I) collagen is 

one of two alpha chains that comprise one-third of the type I collagen heterotrimer (Smith 

& Niles 1980). The COL1A2 polypeptide chains are commonly synthesized by 

fibroblasts, and osteoblasts, together with COL1A1 which then aggregate to form 

collagen (Verrecchia & Mauviel 2004). Transcription of COL1A2 requires complex and 

cooperative protein-protein interactions that are not yet fully understood.  Up-stream 

binding elements interact with proteins such as Sp1, AP-1 and cis-acting elements in a 

strongly tissue-specific manner (Tanaka et al. 2004).  

 

The cytokines TGF-β and TNF-α play a pivotal role in the transduction of collagens, with 

TGF-β requiring Smad3 and Smad4 transcription factors for COL1A2 transcription 

(Verrecchia & Mauviel 2004). This is relevant to ER due to cross-talk pathways in which 

ER inhibit TGF-β signaling through Smad3 association and repression (Matsuda et al. 
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2001). The TNF-α promoter is also strongly inhibited by ERβ and slightly so by ERα 

through repression of transcription via the AF-2 region of the LBD (An et al. 1999).  

With the shifts in profiles related to time seen with our results, it is possible that factors 

such as TGF-β and TNF-α may be interacting in a cascade of events that begins with the 

selective binding of ERs to ligand.  This would fit with the strong apparent inhibition by 

ERα at early time points, and suggest that due to levels returning close to baseline with a 

given compound in a temporal manner that repression events are ligand dependent. 

 

The cathepsin gene family is composed of lysosomal proteases that play multiple roles in 

cellular maintenance and remodeling events.  As such, they are often unregulated in 

cancers and therefore have major implications in oncogenesis and tumor invasiveness 

(Koblinski et al. 2000).  As a lysosomal cysteine protease, CtsL is implicated in human 

trophoblast invasiveness (Divya et al. 2002), bone resorption (Kakegawa et al. 1993), and 

degradation of extracellular matrix (Mason et al. 1986) are an example of cellular 

functions that tie into reproduction, inflammatory responses, and bone remodeling.  

Proteases such as CtsL also play important roles in male fertility and spermatozoa 

production in the testis (Peloille et al. 1997).  Estrogen receptors also have regulational 

control in the same tissues that are affected by cathepsins, and our results suggest that 

CtsL expression may be linked to ERα activation.  The ability of the different ligand 

treatments to result in increased expression in ERβ at 18 h mirrors only RAL exposure in 

ERα, suggesting that perhaps specific ligands can create a response that is apparently 

similar to an isotype switch.  It is also interesting that compounds like GEN (9 h) and 
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OHT (6 h) can function in the same manner in both ERα and ERβ, when other 

compounds fail to interact in a similar manner.   

 

Receptor for activated kinase C binds the isozyme protein kinase C (PKC) and acts to 

stabilize the active conformation of PKC, which is necessary for subcellular translocation 

(Ron et al. 1994).  The RACK 1 protein  is a homologue of guanine nucleotide-binding 

protein (G-protein) β subunit (Ron et al. 1994) and ERα studies have noted a relationship 

between E2 and G-protein coupled receptors to affect PKC (Kelly et al. 1999).  The 

ability of ER to interact with this gene in a time and compound manner have implications 

for basic transcriptional machinery function.  We have observed that ERα has the ability, 

in the presence of E2, to increase RACK1 at 24 h in a manner greater than ERβ, and that 

this is amplified in the presence of the synthetic estrogen DES.  Raloxifene and GEN at 

06h increase RACK1 in the presence of ERα in a manner greater than E2 treatment, while 

OHT with ERβ creates the only appreciable increase in RACK1 in that cell line.  This 

suggests a role for partial agonist/antagonist SERMs with ERβ, and further defines the 

preferential binding and transcriptional activation role of GEN in cells expressing ERβ.  

In conjunction with an apparent time component this observation suggests significant 

roles for exogenous estrogenic compounds to interact with the ERβ isotype in the context 

of the RACK1 gene.  

 

Procollagen C–proteinase enhancer protein is an elongated glycoprotein (Bernocco et al. 

2003) enhancer element that binds the C-terminus of the type I procollagen propeptide, 

and as such enhances the enzymatic ability of procollagen C-proteinase (Takahara et al. 
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1994).  Procollagen C-proteinases are involved with cleavage of the C-propeptide from 

the collagen precursor to create a mature collagen (Prockop 1995). Procollagen C – 

proteinase enhancer protein is present in high levels in bone, tendon (Shalitin et al. 2003), 

and the uterus (Scott et al. 1999), and plays a role in intracellular collagen formation and 

extracellular cell differentiation and proliferation, as well as possible stabilization of 

COL1A2 mRNA (Matsui et al. 2002). 

 

The induction of PCOLCE expression has already been shown to be linked with TGF-β 

expression in a fibrogenic cell line (Lee et al. 1997), and correlates with expression of 

type I collagens in the culture media of cardiac fibroblast cell lines (Shalitin et al. 2003).  

Again the regulation events here, like with COL1A2, would suggest that ER can affect 

target genes such as cytokines like TGF-β in a manner that is manifest in the expression 

of downstream gene products such as PCOLCE.  It is of interest that OHT at 9 h has an 

impact on ERα PCOLCE expression, and to a lesser extent ERβ and the naïve cell line, 

which suggests that ERα may only be serving to potentiate an otherwise non-receptor 

OHT mediated event in this target.  

 

Ligands create differences in gene expression and transcriptional efficacy through 

pathway interactions, one being the physical binding of ligand within the ER binding 

pocket and displacement of H12 (Nichols et al. 1998).  An example of this is the ability 

of raloxifene to sterically restrict H12 within the binding cavity in a recognized 

antagonistic position due to its piperidine ring (Brzozowski et al. 1997).  The ligands E2 

and OHT have been shown to have distinctive structural requirements and utilizing 
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distinguishable regulatory elements (Zajchowski et al. 1997). Additionally, co-regulators 

have been identified that interact at various sites within the ER protein to either activate 

of repress the transcriptional machinery, often in a receptor and ligand dependent manner 

(Torchia et al. 1998; An et al. 2001; Ratajczak 2001).  Using global techniques such as 

microarrays it has also been demonstrated that OHT and RAL have the ability to regulate 

different sets of genes within U2OS (human osteosarcoma) cell lines (Tee MK et al. 

2004).  These observations help to explain, in part, the divergent effects that compound 

exposure may impart upon the gene expression profiles examined here. 

 

Taken together these data suggest unique regulation for genes in the presence of ligands 

of varying binding affinities, which in turn has a temporal component which may be 

modified through ligand involvement with promoters and co-regulator recruitment.  

Protein profiles and microarray analysis to examine global changes over time would be of 

great interest, as would determining the promoter site interactions and co-regulator 

recruitment profiles that are occurring within these cell lines at the given treatment 

regimes described. 
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Table 1. ANOVA output for target genes 

 CLINE                       2     12.4380542      6.2190271      5.06   0.0075 

 CLINE*TIME                  8     19.9391147      2.4923893      2.03   0.0470 

 CLINE*COMP                  8      7.7070098      0.9633762      0.62   0.7569 

 

RACK1 

 CLINE*COMP                  8     15.6394240      1.9549280      1.75   0.0917 

Source                     DF      Type I SS    Mean Square   F Value   Pr > F 

 CLINE*TIME                  8     13.8971298      1.7371412      1.43   0.1866 

 CLINE*COMP*TIME            32     39.3918569      1.2309955      1.02   0.4528 

 

 
COL1A2 
 
Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 

 COMP                        4      5.9086996      1.4771749      1.20   0.3129 
 CLINE*COMP                  8     24.6335324      3.0791916      2.50   0.0140 
 TIME                        4     21.7113840      5.4278460      4.41   0.0021 

 COMP*TIME                  16    113.6800293      7.1050018      5.78   <.0001 
 CLINE*COMP*TIME            32     63.3974987      1.9811718      1.61   0.0306 
 
 
CtsL 
 
Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 
 CLINE                       2     17.6798969      8.8399484      5.72   0.0040 
 COMP                        4     49.9608116     12.4902029      8.09   <.0001 

 TIME                        4     67.6761404     16.9190351     10.95   <.0001 
 CLINE*TIME                  8     51.6693476      6.4586684      4.18   0.0002 
 COMP*TIME                  16    205.2562196     12.8285137      8.31   <.0001 
 CLINE*COMP*TIME            32     93.0768124      2.9086504      1.88   0.0062 

 

 
Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 
 CLINE                       2     10.2210560      5.1105280      4.57   0.0118 
 COMP                        4     18.9066373      4.7266593      4.23   0.0029 

 TIME                        4     35.5803262      8.8950816      7.96   <.0001 
 CLINE*TIME                  8     27.1468684      3.3933586      3.03   0.0034 
 COMP*TIME                  16    259.9020249     16.2438766     14.53   <.0001 
 CLINE*COMP*TIME            32     45.7664738      1.4302023      1.28   0.1651 
 
 
PCOLCE 
 

 
 CLINE                       2      5.2710080      2.6355040      2.18   0.1171 
 COMP                        4     37.6232596      9.4058149      7.77   <.0001 
 CLINE*COMP                  8      6.5552498      0.8194062      0.68   0.7116 
 TIME                        4     27.0912729      6.7728182      5.59   0.0003 

 COMP*TIME                  16    140.8954871      8.8059679      7.27   <.0001 
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Cell line -  6 h 
Average CT

† 
Target 

Average CT 
18S  ∆CT

‡
 ∆∆CT

§
 2-∆∆CT¥ 

Table 2A. Expression of COL1A2 at 6 h exposure to selective ligand 

Target 

Rat1 + ERα DES[0.4nM] 26.48 + 0.31 19.59 + 0.42 6.89 + 0.07a 0.09 3.47

Rat1 + ERα VEtOH  25.58 + 0.16 21.13 + 0.59 4.45 + 0.30b 1.03

Rat1 + ERβ DES [0.05nM] 24.46 + 0.51 19.76 + 0.32 4.70 + 0.14b 

0.49 

1.29 0.41 

Rat1 + ERβ VEtOH 23.91 + 0.42 21.02 + 0.13 2.89 + 0.20c -0.53 1.43 

Rat1 DES[0.4nM] 25.85 + 0.46 19.55 + 0.53 6.30 + 0.05a 2.89 0.13 

Rat1 VEtOH 24.22 + 0.59 20.80 + 0.17 3.41 + 0.30c 0.00 1.00 

Rat1 + ERα OHT [1nM] 27.39 + 0.29 21.53 + 0.72 5.85 + 0.30a 0.14 0.91 

Rat1 + ERα VEtOH  27.15 + 0.30 20.44 + 0.51 6.71 + 0.15a 
Rat1 + ERβ OHT 
[0.04nM] 25.04 + 0.96 20.45 + 0.33 4.59 + 0.45a 

1.00 0.50 

-1.13 2.18 

Rat1 + ERβ VEtOH 26.18 + 1.07 20.97 + 0.25 5.21 + 0.58a -0.50 1.42 

Rat1 OHT [1nM] 26.05 + 0.58 20.63 + 0.23 5.42 + 0.24a -0.29 1.22 

Rat1 VEtOH 26.43 + 0.50 20.73 + 0.48 5.71 + 0.02a 0.00 1.00 

Rat1 + ERα Gen [20nM] 27.38 + 0.76 19.15 + 0.61 8.22 + 0.11a 1.87 0.28 

Rat1 + ERα VEtOH  27.22 + 0.28 20.30 + 0.61 6.91 + 0.23b 

Rat1 + ERβ Gen [0.3nM] 24.82 + 0.37 19.48 + 1.88 5.34 + 1.07c 

0.56 0.68 

-1.02 2.02 

Rat1 + ERβ VEtOH

Rat1 Gen [20nM] 

26.35 + 0.82 20.54 + 0.34 5.80 + 0.34c 1.46 -0.55

26.43 + 0.60 18.84 + 0.47 7.59 + 0.09b 1.23 0.42 

Rat1 VEtOH 26.71 + 1.13 20.35 + 0.61 6.35 + 0.37b 0.00 1.00 

Rat1 + ERα E2 [1nM] 27.24 + 0.45 20.10 + 0.25 7.14 + 0.13a 2.80 0.14 

Rat1 + ERα VEtOH  25.28 + 0.12 20.04 + 0.68 5.24 + 0.40b 0.90

Rat1 + ERβ E2 [1nM] 25.46 + 0.57 19.86 + 0.49 5.60 + 0.05b 

0.53 

Rat1 + ERβ VEtOH 23.55 + 0.55 19.75 + 0.26 3.79 + 0.21c 

1.27 0.41 

-0.54 1.45 

Rat1 E2 [1nM] 24.41 + 0.29 19.54 + 0.09 4.86 + 0.14c 0.54 0.69 

Rat1 VEtOH 23.85 + 0.70 19.51 + 0.17 4.33 + 0.37c 0.00 1.00 

Rat1 + ERα RAL [1nM] 25.11 + 0.70 20.47 + 1.21 4.63 + 0.37a 0.51 0.70 

Rat1 + ERα VDMSO 25.05 + 0.48 19.97 + 0.34 5.08 + 0.09a 0.95

Rat1 + ERβ RAL [0.04nM] 23.99 + 0.50 20.29 + 0.73 3.73 + 0.16b 

0.52 

-0.39 1.31 

Rat1 + ERβ VDMSO 24.52 + 0.59 19.08 + 0.64 5.45 + 0.03a 1.32 0.40 

Rat1 RAL [1nM] 23.55 + 0.11 19.95 + 1.37 3.60 + 0.89b 0.52
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23.61 +

1.04 

 0.63 19.49 + 0.17 4.12 + 0.32b Rat1 VDMSO 0.00 1.00 
 

† Cycle threshold (CT):  The mean cycle number (target genes n=3, 18S rRNA n=2) at 

which the threshold crossed the geometric portion of the logarithmic amplification curve. 
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‡ Normalized CT values (∆CT):  Mean CT values for target genes were subtracted from the 

mean 18S rRNA gene CT values to derive values for normalized expression. 

§ Calibrated value (∆∆CT):  Rat 1 V treated cells were set as a calibrator.  Normalized CT 

values were then subtracted from this value to derive the calibrated value used to 

determine fold differences (2 –∆∆CT). 

¥ Fold differences (2 –∆∆CT):  Target gene normalized to endogenous 18S reference, and 

relative to Rat1 parental cell line calibrator. 

n Subscript number with different letters denote a significant difference (P<0.05) in cell 

line interaction, while subscript letters that are the same denote no significant difference.  

Analysis was carried out using least square differences from a PROC-MIXED analysis in 

a 3X5X5 treatment factorial ANOVA arrangement analyzed by the Statistical Analysis 

System (SAS) 
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Table 2B. Expression of COL1A2 at 9 h exposure to selective ligand 

Cell line -  9 h 
Average CT 

Target 
Average CT 

18S  ∆∆CTTarget ∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 27.51 + 0.89 21.00 + 1.15 6.51 + 0.18a 2.32 0.20 

Rat1 + ERα VEtOH  28.92 + 0.57 21.72 + 1.06 7.20 + 0.35a 3.01 0.12 

Rat1 + ERβ DES [0.05nM] 25.86 + 0.47 20.29 + 1.12 5.57 + 0.46b 1.38 0.38 

Rat1 + ERβ VEtOH 27.77 + 1.23 20.82 + 1.06 6.95 + 0.13a 2.76 0.15 

Rat1 DES[0.4nM] 26.45 + 0.79 21.26 + 1.71 5.19 + 0.65b 1.00 0.50 

Rat1 VEtOH 24.62 + 0.81 20.42 + 0.76 4.19 + 0.04b 0.00 1.00 

Rat1 + ERα OHT [1nM] 25.79 + 0.67 18.50 + 0.55 7.29 + 0.09a 3.03 0.12 

Rat1 + ERα VEtOH  29.38 + 0.62 22.31 + 0.82 7.06 + 0.17a 2.81 0.14 

Rat1 + ERβ OHT [0.04nM] 24.49 + 0.59 18.42 + 0.23 6.06 + 0.25a 1.80 0.29 

Rat1 + ERβ VEtOH 28.19 + 0.81 22.14 + 1.56 6.05 + 0.53a 1.79 0.29 

Rat1 OHT [1nM] 24.80 + 1.27 17.84 + 0.72 6.93 + 0.39a 2.70 0.15 

Rat1 VEtOH 25.28 + 0.75 21.02 + 0.91 4.26 + 0.11b 0.00 1.00 

Rat1 + ERα Gen [20nM] 26.56 + 0.79 21.27 + 0.58 5.29 + 0.14a 1.03 0.49 

Rat1 + ERα VEtOH  29.47 + 0.94 22.38 + 1.19 7.09 + 0.18b 2.83 0.14 

Rat1 + ERβ Gen [0.3nM] 26.05 + 0.20 21.19 + 0.55 4.85 + 0.25a 0.60 0.66 

Rat1 + ERβ VEtOH 27.87 + 1.09 21.85 + 1.16 6.03 + 0.05b 1.78 0.29 

Rat1 Gen [20nM] 25.79 + 0.51 20.95 + 0.90 4.84 + 0.27a 0.59 0.66 

Rat1 VEtOH 25.66 + 0.87 21.41 + 0.73 4.25 + 0.09a 0.00 1.00 

Rat1 + ERα E2 [1nM] 28.03 + 0.89 20.23 + 0.94 7.80 + 0.04a 3.16 0.11 

Rat1 + ERα VEtOH  27.80 + 0.49 20.33 + 0.89 7.47 + 0.28a 2.84 0.14 

Rat1 + ERβ E2 [1nM] 24.53 + 0.47 19.69 + 0.98 4.84 + 0.35b 0.21 0.87 

Rat1 + ERβ VEtOH 26.20 + 0.94 20.61 + 1.65 5.59 + 0.50b 0.95 0.52 

Rat1 E2 [1nM] 24.09 + 0.51 19.99 + 1.70 4.10 + 0.84b -0.53 1.44 

Rat1 VEtOH 23.67 + 0.70 19.04 + 1.10 4.64 + 0.28b 0.00 1.00 

Rat1 + ERα RAL [1nM] 26.89 + 0.55 20.14 + 0.39 6.75 + 0.11a 2.37 0.19 

Rat1 + ERα VDMSO 26.71 + 0.29 20.28 + 0.29 6.43 + 0.00a 2.05 0.24 

Rat1 + ERβ RAL [0.04nM] 25.51 + 0.26 20.19 + 0.20 5.33 + 0.04b 0.95 0.52 

Rat1 + ERβ VDMSO 25.58 + 0.43 20.45 + 0.13 5.13 + 0.21b 0.75 0.59 

Rat1 RAL [1nM] 25.44 + 0.48 20.20 + 0.52 5.24 + 0.03b 0.85 0.55 
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Rat1 VDMSO 24.31 + 0.33 19.93 + 0.25 4.39 + 0.06b 0.00 1.00 
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Table 2C. Expression of COL1A2 at 12 h exposure to selective ligand 

Target Cell line -  12 h 
Average CT 

Target 
Average CT 

18S  2-∆∆CT ∆CT ∆∆CT

Rat1 + ERα DES[0.4nM] 24.69 + 0.35 17.33 + 0.16 7.35 + 0.14a 1.62 0.32 

Rat1 + ERα VEtOH  25.09 + 0.76 17.81 + 0.20 7.28 + 0.39a 1.55 0.34 

Rat1 + ERβ DES [0.05nM] 23.86 + 0.71 17.43 + 0.26 6.43 + 0.32a 0.70 0.62 

Rat1 + ERβ VEtOH 24.66 + 0.74 17.89 + 0.19 6.77 + 0.38a 1.04 0.49 

Rat1 DES[0.4nM] 24.24 + 0.46 17.37 + 0.08 6.87 + 0.27a 1.14 0.45 

Rat1 VEtOH 23.62 + 0.80 17.89 + 0.16 5.73 + 0.45b 0.00 1.00 

Rat1 + ERα OHT [1nM] 25.83 + 0.53 17.06 + 0.30 8.77 + 0.17a 0.98 0.51 

Rat1 + ERα VEtOH  27.24 + 1.33 19.68 + 0.66 8.56 + 0.48a 0.77 0.59 

7.44 + 0.17a -0.35 Rat1 + ERβ OHT [0.04nM] 24.41 + 0.36 16.97 + 0.12 1.27 

Rat1 + ERβ VEtOH 25.31 + 0.60 17.33 + 0.37 7.98 + 0.16a 0.19 0.88 

Rat1 OHT [1nM] 24.93 + 0.50 17.06 + 0.08 7.86 + 0.30a 0.07 0.95 

Rat1 VEtOH 25.02 + 1.01 17.23 + 0.32 7.79 + 0.49a 0.00 1.00 

Rat1 + ERα Gen [20nM] 26.87 + 0.39 19.85 + 0.30 7.02 + 0.06a 3.00 0.12 

Rat1 + ERα VEtOH  28.13 + 1.50 22.43 + 2.32 5.69 + 0.59a 1.68 0.31 

Rat1 + ERβ Gen [0.3nM] 25.71 + 0.60 20.28 + 0.67 5.43 + 0.05a 1.41 0.38 

Rat1 + ERβ VEtOH 26.49 + 0.58 20.85 + 0.57 5.64 + 0.01a 1.62 0.32 

Rat1 Gen [20nM] 25.01 + 1.00 19.95 + 0.44 5.05 + 0.40a 1.04 0.49 

Rat1 VEtOH 25.01 + 1.12 20.99 + 0.67 4.01 + 0.33b 0.00 1.00 

Rat1 + ERα E2 [1nM] 24.99 + 1.17 17.37 + 0.37 7.62 + 0.57a 1.77 0.29 

Rat1 + ERα VEtOH  25.07 + 0.75 17.05 + 0.18 8.03 + 0.41a 2.17 0.22 

Rat1 + ERβ E2 [1nM] 24.75 + 0.91 17.23 + 0.16 7.52 + 0.53a 1.66 0.31 

Rat1 + ERβ VEtOH 24.56 + 0.46 17.14 + 0.13 7.42 + 0.23a 1.55 0.34 

Rat1 E2 [1nM] 23.96 + 1.25 17.18 + 0.25 6.77 + 0.70b 0.92 0.53 

Rat1 VEtOH 23.00 + 1.05 17.14 + 0.19 5.86 + 0.60b 0.00 1.00 

Rat1 + ERα RAL [1nM] 26.82 + 0.77 20.13 + 1.11 6.69 + 0.23a 1.89 0.27 

Rat1 + ERα VDMSO 26.25 + 0.44 20.57 + 1.78 5.67 + 0.95a 0.86 0.55 

Rat1 + ERβ RAL [0.04nM] 25.41 + 0.89 19.77 + 1.34 5.63 + 0.31a 0.83 0.56 

24.47 + 0.98 20.76 + 1.64 3.71 + 0.47b -1.09 Rat1 + ERβ VDMSO

Rat1 RAL [1nM] 24.03 + 0.62 20.25 + 1.87 3.77 + 0.88b -1.02 
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Rat1 VDMSO 23.65 + 0.56 18.85 + 0.53 4.80 + 0.01b 0.00 1.00 
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Table 2D. Expression of COL1A2 at 18 h exposure to selective ligand 

Target Cell line -  18 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 27.00 + 0.58 19.35 + 0.15 7.65 + 0.31a 2.44 0.18 

Rat1 + ERα VEtOH  27.15 + 0.43 19.22 + 0.21 7.94 + 0.16a 2.73 0.15 

Rat1 + ERβ DES [0.05nM] 24.91 + 0.58 19.44 + 0.14 5.47 + 0.31b 0.26 0.83 

Rat1 + ERβ VEtOH 25.03 + 0.57 19.35 + 0.27 5.68 + 0.21b 0.47 0.72 

Rat1 DES[0.4nM] 23.89 + 0.87 19.44 + 0.09 4.45 + 0.55b -0.76 1.69 

Rat1 VEtOH 24.57 + 1.49 19.36 + 0.44 5.21 + 0.74b 0.00 1.00 

Rat1 + ERα OHT [1nM] 28.55 + 1.00 19.81 + 0.59 8.74 + 0.30a 3.49 0.09 

Rat1 + ERα VEtOH  27.65 + 0.20 19.85 + 0.21 7.80 + 0.01a 2.55 0.17 

Rat1 + ERβ OHT [0.04nM] 25.81 + 0.60 19.52 + 0.14 6.29 + 0.33b 1.04 0.49 

Rat1 + ERβ VEtOH 25.41 + 0.59 19.43 + 0.27 5.98 + 0.22b 0.73 0.60 

Rat1 OHT [1nM] 24.28 + 0.82 19.48 + 0.31 4.81 + 0.36b -0.44 

Pr
o 

– 
al

ph
a 

– 
2(

I) 
co

lla
ge

n 
(C

O
L1

A
2)

 

1.35 

Rat1 VEtOH 24.90 + 1.97 19.65 + 0.43 5.25 + 1.09b 0.00 1.00 

Rat1 + ERα Gen [20nM] 25.44 + 1.36 19.69 + 0.91 5.75 + 0.32a 0.95 0.51 

Rat1 + ERα VEtOH  25.13 + 1.20 20.19 + 0.69 4.94 + 0.36a 0.15 0.90 

Rat1 + ERβ Gen [0.3nM] 24.14 + 1.69 19.67 + 0.73 4.47 + 0.67a -0.33 1.25 

Rat1 + ERβ VEtOH 27.86 + 0.19 20.73 + 0.73 7.13 + 0.68b 2.33 0.20 

Rat1 Gen [20nM] 24.97 + 0.68 20.55 + 0.67 4.41 + 0.01a -0.38 1.30 

Rat1 VEtOH 25.30 + 1.84 20.50 + 0.88 4.80 + 0.68a 0.00 1.00 

Rat1 + ERα E2 [1nM] 23.68 + 0.29 16.92 + 0.40 6.75 + 0.08a 1.81 0.28 

Rat1 + ERα VEtOH  26.67 + 0.34 18.77 + 0.39 7.89 + 0.03a 2.96 0.13 

Rat1 + ERβ E2 [1nM] 23.20 + 0.39 16.76 + 0.24 6.44 + 0.11a 1.50 0.35 

Rat1 + ERβ VEtOH 23.87 + 1.09 18.00 + 0.59 5.86 + 0.35a 0.93 0.53 

Rat1 E2 [1nM] 22.01 + 0.74 16.78 + 0.39 5.23 + 0.24b 0.30 0.81 

Rat1 VEtOH 23.59 + 1.69 18.66 + 0.56 4.93 + 0.79b 0.00 1.00 

Rat1 + ERα RAL [1nM] 25.15 + 0.29 17.31 + 0.51 7.83 + 0.16a 1.46 0.36 

Rat1 + ERα VDMSO 25.15 + 0.41 17.38 + 0.36 7.77 + 0.03a 1.40 0.38 

Rat1 + ERβ RAL [0.04nM] 23.65 + 1.29 17.56 + 0.17 6.09 + 0.80b -0.27 1.21 

23.73 + 0.59 17.43 + 0.20 6.30 + 0.28b -0.07 Rat1 + ERβ VDMSO 1.05 

Rat1 RAL [1nM] 24.15 + 0.34 17.57 + 0.09 6.58 + 0.17b 0.21 0.86 

Rat1 VDMSO 23.74 + 0.63 17.37 + 0.30 6.37 + 0.23b 0.00 1.00 
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Table 2E. Expression of COL1A2 at 24 h exposure to selective ligand 

Target Cell line -  24  h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 4.96 + 0.09a -0.24 23.44 + 0.09 18.49 + 0.23 1.17 

Rat1 + ERα VEtOH  24.84 + 0.43 18.71 + 0.67 6.13 + 0.16a 0.93 0.52 

Rat1 + ERβ DES [0.05nM] 25.20 + 0.62 18.11 + 0.29 7.09 + 0.23a 1.89 0.27 

Rat1 + ERβ VEtOH 24.86 + 0.53 18.80 + 0.21 6.07 + 0.22a 0.87 0.54 

Rat1 DES[0.4nM] 23.87 + .51 18.39 + 0.18 5.48 + 0.23a 0.28 0.82 

Rat1 VEtOH 23.58 + 0.93 18.39 + 0.22 5.20 + 0.50a 0.00 1.00 

Rat1 + ERα OHT [1nM] 26.29 + 1.22 17.24 + 0.13 9.05 + 0.77a 2.45 0.18 

Rat1 + ERα VEtOH  24.81 + 0.58 17.30 + 0.38 7.51 + 0.14b 0.91 0.53 

Rat1 + ERβ OHT [0.04nM] 25.54 + 0.65 17.36 + 0.14 8.19 + 0.36b 1.58 0.33 

Rat1 + ERβ VEtOH 24.75 + 0.61 17.24 + 0.13 7.51 + 0.34b 0.90 0.53 

Rat1 OHT [1nM] 23.30 + 0.93 16.83 + 0.65 6.47 + 0.20b -0.13 1.10 

Rat1 VEtOH 23.62 + 0.78 17.01 + 0.14 6.61 + 0.45b 0.00 1.00 

Rat1 + ERα Gen [20nM] 26.59 + 0.44 17.33 + 0.90 9.25 + 0.33a 3.85 0.07 

Rat1 + ERα VEtOH  25.75 + 0.55 19.63 + 0.64 6.12 + 0.07b 0.72 0.61 

Rat1 + ERβ Gen [0.3nM] 24.90 + 0.55 17.92 + 0.22 6.98 + 0.24b 1.58 0.33 

Rat1 + ERβ VEtOH 25.42 + 0.75 19.62 + 0.19 5.80 + 0.40b 0.40 0.76 

Rat1 Gen [20nM] 24.27 + 0.64 16.73 + 0.63 7.53 + 0.01a 2.13 0.23 

Rat1 VEtOH 24.16 + 0.94 18.76 + 0.13 5.40 + 0.57b 0.00 1.00 

Rat1 + ERα E2 [1nM] 23.49 + 0.51 20.98 + 0.40 2.52 + 0.08a -0.36 1.29 

Rat1 + ERα VEtOH  23.28 + 0.67 21.22 + 0.47 2.07 + 0.14a -0.81 

Rat1 + ERβ E2 [1nM] 23.08 + 0.74 21.09 + 0.34 1.98 + 0.28a -0.90 

1.76 

Rat1 + ERβ VEtOH 23.82 + 0.62 21.38 + 0.28 2.45 + 0.24a -0.43 

1.86 

Rat1 E2 [1nM] 23.37 + 0.34 20.76 + 0.31 2.61 + 0.03a -0.27 

1.35 

1.21 

Rat1 VEtOH 23.27 + 0.30 20.39 + 0.15 2.88 + 0.10a 0.00 1.00 

Rat1 + ERα RAL [1nM] 23.36 + 0.69 16.30 + 0.28 7.07 + 0.29a 2.99 0.13 

Rat1 + ERα VDMSO 23.37 + 0.73 17.01 + 0.28 6.35 + 0.32a 2.27 0.21 

Rat1 + ERβ RAL [0.04nM] 23.44 + 0.75 16.84 + 0.22 6.61 + 0.37a 2.53 0.17 

Rat1 + ERβ VDMSO 22.87 + 0.85 16.85 + 0.83 6.02 + 0.01a 1.94 0.26 

Rat1 RAL [1nM] 21.51 + 0.79 16.95 + 0.39 4.56 + 0.29a 0.48 0.71 
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Rat1 VDMSO 21.49 + 0.67 17.41 + 0.56 4.08 + 0.07a 0.00 1.00 
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Table 3A. Expression of CtsL at 6 h exposure to selective ligand 

Target Cell line – 6 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 25.75 + 0.23 19.31 + 0.56 6.43 + 0.24a 3.15 0.11 

Rat1 + ERα VEtOH  25.13 + 0.11 21.07 + 0.54 4.05 + 0.31b 0.77 0.59 

Rat1 + ERβ DES [0.05nM] 25.67 + 0.44 19.38 + 0.53 6.28 + 0.07a 3.00 0.12 

Rat1 + ERβ VEtOH 25.37 + 0.35 20.91 + 0.34 4.45 + 0.01b 1.17 0.44 

Rat1 DES[0.4nM] 25.36 + 0.62 19.47 + 0.34 5.89 + 0.20a 2.61 0.16 

Rat1 VEtOH 24.02 + 0.91 20.74 + 0.22 3.28 + 0.48b 0.00 1.00 

Rat1 + ERα OHT [1nM] 24.85 + 0.39 19.67 + 0.46 5.18 + 0.05a -0.69 1.61 

Rat1 + ERα VEtOH  25.54 + 0.14 19.28 + 0.33 6.26 + 0.14a 0.38 0.77 

Rat1 + ERβ OHT [0.04nM] 25.24 + 0.76 19.35 + 0.67 5.89 + 0.06a 0.02 0.99 

Rat1 + ERβ VEtOH 26.25 + 0.33 19.87 + 0.46 6.39 + 0.09a 0.51 0.70 

Rat1 OHT [1nM] 24.73 + 0.54 18.96 + 0.82 5.77 + 0.20a -0.10 1.07 

Rat1 VEtOH 24.53 + 0.94 18.66 + 0.42 5.87 + 0.37a 0.00 1.00 

Rat1 + ERα Gen [20nM] 26.88 + 1.32 19.43 + 0.89 7.45 + 0.31a 1.28 0.41 

Rat1 + ERα VEtOH  26.31 + 0.41 20.02 + 0.56 6.29 + 0.11a 0.12 0.92 

Rat1 + ERβ Gen [0.3nM] 26.19 + 0.32 17.95 + 0.94 8.24 + 0.44b 2.07 0.24 
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Rat1 + ERβ VEtOH 27.71 + 0.52 19.70 + 0.53 8.01 + 0.01b 1.84 0.28 

Rat1 Gen [20nM] 26.99 + 1.63 18.57 + 0.36 8.42 + 0.89b 2.25 0.21 

Rat1 VEtOH 26.12 + 0.36 19.95 + 0.55 6.17 + 0.13a 0.00 1.00 

Rat1 + ERα E2 [1nM] 26.45 + 0.74 18.09 + 0.23 8.35 + 0.36a 3.11 0.12 

Rat1 + ERα VEtOH  23.79 + 0.25 18.01 + 0.36 5.78 + 0.08b 0.54 0.69 

Rat1 + ERβ E2 [1nM] 25.79 + 0.79 17.61 + 0.09 8.17 + 0.49a 2.93 0.13 

Rat1 + ERβ VEtOH 23.89 + 0.38 17.60 + 0.22 6.29 + 0.11b 1.05 0.48 

Rat1 E2 [1nM] 24.92 + 0.43 17.36 + 0.17 7.57 + 0.19a 2.33 0.20 

Rat1 VEtOH 22.77 + 0.87 17.52 + 0.33 5.24 + 0.38b 0.00 1.00 

Rat1 + ERα RAL [1nM] 23.83 + 0.81 20.24 + 0.79 3.59 + 0.02a 0.41 0.75 

24.08 + 0.64 21.01 + 1.11 3.07 + 0.33a -0.11 Rat1 + ERα VDMSO 1.08 

Rat1 + ERβ RAL [0.04nM] 24.60 + 0.34 20.40 + 0.12 4.20 + 0.15b 1.02 0.49 

Rat1 + ERβ VDMSO 25.03 + 0.54 20.31 + 0.88 4.71 + 0.24b 1.53 0.35 

Rat1 RAL [1nM] 23.57 + 0.38 20.08 + 0.68 3.49 + 0.21a 0.32 0.81 

Rat1 VDMSO 23.36 + 0.57 20.18 + 0.36 3.18 + 0.14a 0.00 1.00 
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Table 3B. Expression of CtsL at 9 h exposure to selective ligand 

Cell line – 9 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT Target 

Rat1 + ERα DES[0.4nM] 25.69 + 0.78 18.60 + 0.85 7.09 + 0.05a 3.79 0.07 

Rat1 + ERα VEtOH  26.03 + 0.66 20.16 + 0.84 5.86 + 0.12a 2.57 0.17 

Rat1 + ERβ DES [0.05nM] 25.49 + 0.53 17.57 + 0.55 7.91 + 0.02a 4.62 0.04 

Rat1 + ERβ VEtOH 25.92 + 0.44 19.51 + 0.52 6.40 + 0.05b 3.10 0.12 

Rat1 DES[0.4nM] 25.58 + 0.48 18.46 + 0.75 7.12 + 0.19a 3.83 0.07 

Rat1 VEtOH 23.13 + 0.75 19.83 + 0.57 3.30 + 0.13c 0.00 1.00 

Rat1 + ERα OHT [1nM] 24.08 + 0.55 18.27 + 0.15 5.81 + 0.28a 4.02 0.06 

Rat1 + ERα VEtOH   26.55 + 0.40 21.23 + 0.74 5.31 + 0.24a 3.53 0.09 

Rat1 + ERβ OHT [0.04nM] 24.74 + 1.27 17.31 + 0.31 6.43 + 0.68a 4.64 0.04 

Rat1 + ERβ VEtOH 26.56 + 0.59 21.16 + 0.87 5.41 + 0.20a 3.62 0.08 

Rat1 OHT [1nM] 24.31 + 0.81 18.15 + 0.26 6.16 + 0.38a 4.37 0.05 

Rat1 VEtOH 23.50 + 0.78 21.72 + 0.31 1.78 + 0.32b 0.00 1.00 

Rat1 + ERα Gen [20nM] 24.35 + 0.65 18.89 + 0.40 5.46 + 0.18a -0.85 1.80 

Rat1 + ERα VEtOH  28.15 + 0.75 19.44 + 1.09 8.71 + 0.24b 2.40 0.19 

Rat1 + ERβ Gen [0.3nM] 25.24 + 0.30 19.67 + 1.32 5.57 + 0.72a -0.73 1.67 

Rat1 + ERβ VEtOH 27.80 + 0.72 20.22 + 1.52 7.58 + 0.57b 1.27 0.41 

Rat1 Gen [20nM] 25.04 + 1.15 18.34 + 1.15 6.70 + 0.01a 0.39 0.76 

Rat1 VEtOH 24.78 + 0.67 18.47 + 1.09 6.31 + 0.30a 0.00 1.00 

Rat1 + ERα E2 [1nM] 26.55 + 0.77 19.15 + 0.89 7.40 + 0.09a 3.76 0.07 

Rat1 + ERα VEtOH  24.30 + 0.20 19.39 + 0.81 4.92 + 0.43b 1.27 0.41 

Rat1 + ERβ E2 [1nM] 25.09 + 0.35 18.97 + 0.41 6.11 + 0.05a 2.47 0.18 

Rat1 + ERβ VEtOH 25.18 + 0.46 18.95 + 0.38 6.23 + 0.05a 2.59 0.17 

Rat1 E2 [1nM] 25.45 + 0.64 18.42 + 0.45 7.03 + 0.13a 3.38 0.09 

Rat1 VEtOH 22.77 + 0.63 19.13 + 0.39 3.64 + 0.17b 0.00 1.00 

Rat1 + ERα RAL [1nM] 25.86 + 0.49 19.33 + 0.24 6.54 + 0.17a 1.10 0.46 

Rat1 + ERα VDMSO 26.07 + 0.40 19.66 + 0.29 6.41 + 0.08a 0.97 0.51 

Rat1 + ERβ RAL [0.04nM] 25.96 + 0.49 19.50 + 0.17 6.46 + 0.22a 1.02 0.49 

Rat1 + ERβ VDMSO 26.08 + 0.42 19.57 + 0.18 6.51 + 0.17a 1.07 0.47 

Rat1 RAL [1nM] 24.94 + 0.18 19.37 + 0.18 5.57 + 0.01a 0.14 0.91 
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24.70 +Rat1 VDMSO  0.29 19.27 + 0.15 5.44 + 0.10a 0.00 1.00 
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Table 3C. Expression of CtsL at 12 h exposure to selective ligand 

Target Cell line -  12 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 21.85 + 0.51 15.60 + 0.22 6.25 + 0.20a -0.08 1.06 

Rat1 + ERα VEtOH  22.61 + 0.88 15.90 + 0.40 6.70 + 0.34a 0.37 0.77 

Rat1 + ERβ DES [0.05nM] 23.96 + 1.21 15.84 + 0.48 8.12 + 0.51b 1.79 0.29 

Rat1 + ERβ VEtOH 24.18 + 0.71 16.17 + 0.17 8.00 + 0.38b 1.68 0.31 

Rat1 DES[0.4nM] 22.40 + 0.60 15.34 + 0.60 7.05 + 0.01a 0.72 0.60 

Rat1 VEtOH 22.52 + 1.02 16.19 + 0.20 6.33 + 0.58a 0.00 1.00 

Rat1 + ERα OHT [1nM] 22.20 + 0.74 14.36 + 1.08 7.84 + 0.24a 0.71 0.61 

Rat1 + ERα VEtOH  22.92 + 0.90 15.32 + 0.17 7.60 + 0.52a 0.47 0.72 

Rat1 + ERβ OHT [0.04nM] 23.25 + 0.35 14.35 + 0.56 8.90 + 0.15a 1.78 0.29 

Rat1 + ERβ VEtOH 24.91 + 1.42 15.48 + 0.23 9.43 + 0.85a 2.31 0.20 

Rat1 OHT [1nM] 22.55 + 0.77 14.19 + 0.13 8.35 + 0.45a 1.23 0.43 

Rat1 VEtOH 22.54 + 1.28 15.41 + 0.16 7.13 + 0.80a 0.00 1.00 

Rat1 + ERα Gen [20nM] 23.68 + 0.49 17.62 + 0.29 6.06 + 0.14a 0.68 0.63 

Rat1 + ERα VEtOH  25.14 + 0.89 18.30 + 0.77 6.85 + 0.08a 1.47 0.36 

Rat1 + ERβ Gen [0.3nM] 25.10 + 0.68 18.33 + 0.49 6.77 + 0.14a 1.39 0.38 

Rat1 + ERβ VEtOH 26.27 + 0.83 18.21 + 0.65 8.06 + 0.13a 2.68 0.16 

Rat1 Gen [20nM] 23.66 + 1.07 17.97 + 0.55 5.69 + 0.37a 0.31 0.81 

Rat1 VEtOH 24.61 + 1.05 19.23 + 0.47 5.38 + 0.41a 0.00 1.00 

Rat1 + ERα E2 [1nM] 26.95 + 1.03 17.12 + 0.19 9.83 + 0.60a 1.57 0.33 

Rat1 + ERα VEtOH  24.17 + 0.86 16.90 + 0.19 7.27 + 0.47b -0.98 1.98 

Rat1 + ERβ E2 [1nM] 30.36 + 3.34 16.86 + 0.21 13.50 + 2.21c 5.24 0.03 

Rat1 + ERβ VEtOH 26.68 + 0.82 16.84 + 0.18 9.84 + 0.46a 1.59 0.33 

Rat1 E2 [1nM] 27.28 + 2.78 16.81 + 0.30 10.47 + 1.75a 2.21 0.22 

Rat1 VEtOH 24.93 + 1.29 16.68 + 0.10 8.25 + 0.84b 0.00 1.00 

Rat1 + ERα RAL [1nM] 25.27 + 0.15 18.52 + 0.33 6.75 + 0.12a 2.03 0.24 

Rat1 + ERα VDMSO 25.45 + 0.20 18.89 + 0.29 6.56 + 0.27a 1.84 0.28 

Rat1 + ERβ RAL [0.04nM] 24.59 + 0.20 18.89 + 0.51 5.69 + 0.22a 0.98 0.51 

Rat1 + ERβ VDMSO 24.58 + 0.66 19.09 + 0.42 5.48 + 0.17a 0.76 0.60 

Rat1 RAL [1nM] 23.44 + 0.49 18.59 + 0.37 4.85 + 0.08a 0.13 0.91 
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Rat1 VDMSO 23.47 + 0.62 18.74 + 0.81 4.72 + 0.14a 0.00 1.00 
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Table 3D. Expression of CtsL at 18 h exposure to selective ligand 

Target Cell line -  18 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 25.53 + 0.66 14.85 + 0.23 10.68 + 0.31a 1.68 0.31 

Rat1 + ERα VEtOH  25.64 + 0.25 14.88 + 0.59 10.77 + 0.24a 1.77 0.29 

Rat1 + ERβ DES [0.05nM] 23.81 + 0.76 14.81 + 0.39 9.00 + 0.26b -0.01 1.00 

Rat1 + ERβ VEtOH 24.04 + 0.98 14.93 + 0.61 9.10 + 0.26b 0.10 0.93 

Rat1 DES[0.4nM] 22.45 + 0.62 15.03 + 0.59 7.43 + 0.02b -1.57 2.97 

Rat1 VEtOH 23.53 + 0.86 14.53 + 0.67 9.00 + 0.35b 0.00 1.00 

Rat1 + ERα OHT [1nM] 27.19 + 1.04 16.07 + 0.37 11.12 + 0.47a 4.01 0.06 

Rat1 + ERα VEtOH  25.87 + 0.46 16.02 + 0.12 9.84 + 0.24a 2.74 0.15 

Rat1 + ERβ OHT [0.04nM] 23.18 + 0.61 16.03 + 0.17 7.16 + 0.32b 0.05 0.96 

Rat1 + ERβ VEtOH 24.25 + 1.25 15.97 + 0.30 8.27 + 0.68b 1.17 0.44 

Rat1 OHT [1nM] 22.82 + 1.17 16.00 + 0.29 6.81 + 0.62b -0.29 1.22 

Rat1 VEtOH 23.09 + 0.86 15.98 + 0.52 7.10 + 0.24b 0.00 1.00 

Rat1 + ERα Gen [20nM] 27.27 + 0.27 19.80 + 0.60 7.46 + 0.23a 2.88 0.13 

Rat1 + ERα VEtOH  28.35 + 0.45 20.60 + 0.55 7.75 + 0.07a 3.17 0.11 

Rat1 + ERβ Gen [0.3nM] 25.10 + 0.44 20.03 + 0.69 5.07 + 0.10b 0.49 0.71 

Rat1 + ERβ VEtOH 26.33 + 1.46 19.73 + 0.78 6.61 + 0.48a 2.03 0.25 

Rat1 Gen [20nM] 24.05 + 0.43 19.64 + 0.50 4.41 + 0.05b -0.17 1.13 

Rat1 VEtOH 25.41 + 1.37 20.82 + 0.33 4.58 + 0.73b 0.00 1.00 

Rat1 + ERα E2 [1nM] 23.86 + 0.33 16.32 + 1.79 7.53 + 1.03a 1.82 0.28 

Rat1 + ERα VEtOH  26.25 + 0.45 16.77 + 0.33 9.47 + 0.09b 3.76 0.07 

Rat1 + ERβ E2 [1nM] 23.43 + 0.51 15.24 + 0.17 8.19 + 0.25a 2.48 0.18 

Rat1 + ERβ VEtOH 23.81 + 1.61 16.88 + 0.27 6.94 + 0.94a 1.22 0.43 

Rat1 E2 [1nM] 22.69 + 0.75 15.22 + 0.27 7.48 + 0.34a 1.77 0.29 

Rat1 VEtOH 22.87 + 1.27 17.15 + 0.37 5.71 + 0.63c 0.00 1.00 

Rat1 + ERα RAL [1nM] 24.33 + 0.38 16.47 + 0.54 7.86 + 0.11a 0.16 0.90 

Rat1 + ERα VDMSO 24.36 + 0.53 16.44 + 0.33 7.92 + 0.14a 0.21 0.86 

Rat1 + ERβ RAL [0.04nM] 23.45 + 0.46 16.57 + 0.22 6.89 + 0.17a -0.82 1.76 

Rat1 + ERβ VDMSO 23.53 + 0.51 16.47 + 0.26 7.05 + 0.18a -0.65 1.57 

Rat1 RAL [1nM] 24.49 + 0.18 16.55 + 0.18 7.94 + 0.01a 0.24 0.84 
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Rat1 VDMSO 24.26 + 0.94 16.56 + 0.19 7.70 + 0.53a 0.00 1.00 
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Table 3E. Expression of CtsL at 24 h exposure to selective ligand 

Cell line -  24 h 
Average CT 

Target 
Average CT 

18S  Target ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 23.00 + 0.35 18.93 + 0.28 4.08 + 0.05a -1.00 2.00 

Rat1 + ERα VEtOH  24.90 + 0.55 19.53 + 0.39 5.37 + 0.12a 0.29 0.82 

Rat1 + ERβ DES [0.05nM] 25.29 + 0.69 18.02 + 0.20 7.27 + 0.35b 2.19 0.22 

Rat1 + ERβ VEtOH 26.15 + 1.24 19.09 + 2.19 7.05 + 0.6b7 1.97 0.25 

Rat1 DES[0.4nM] 22.60 + 0.57 18.71 + 0.45 3.90 + 0.08a -1.18 2.27 

Rat1 VEtOH 23.71 + 0.72 18.63 + 0.79 5.08 + 0.05a 0.00 1.00 

Rat1 + ERα OHT [1nM] 25.08 + 1.22 18.33 + 0.27 6.75 + 0.68a 2.40 0.19 

Rat1 + ERα VEtOH  25.05 + 0.49 19.75 + 0.83 5.29 + 0.24b 0.94 0.52 

Rat1 + ERβ OHT [0.04nM] 25.95 + 0.77 18.51 + 0.22 7.44 + 0.39a 3.09 0.12 

Rat1 + ERβ VEtOH 26.34 + 1.53 21.23 + 1.01 

Rat1 OHT [1nM] 21.83 + 0.78 18.10 + 0.69 

5.11 + 0.37b 0.76 0.59 

3.73 + 0.06c -0.62 1.53 

Rat1 VEtOH 23.92 + 0.54 19.57 + 1.16 

Rat1 + ERα Gen [20nM] 24.95 + 0.44 17.12 + 0.33 

4.34 + 0.44c 0.00 1.00 

7.83 + 0.08a 1.41 0.37 

Rat1 + ERα VEtOH  25.28 + 0.58 18.66 + 0.53 

Rat1 + ERβ Gen [0.3nM] 25.09 + 0.09 17.15 + 0.09 

6.62 + 0.03a 0.20 0.87 

7.94 + 0.01a 1.52 0.35 

Rat1 + ERβ VEtOH 7.87 + 0.21a 1.45 0.37 25.38 + 0.61 17.51 + 0.91 

Rat1 Gen [20nM] 22.32 + 0.56 17.25 + 0.35 5.07 + 0.15b -1.35 2.55 

Rat1 VEtOH 24.22 + 0.63 17.80 + 0.50 

Rat1 + ERα E2 [1nM] 22.89 + 0.86 19.65 + 0.41 

6.42 + 0.09b 0.00 1.00 

2.63 + 0.32a -1.01 2.02 

Rat1 + ERα VEtOH  24.72 + 0.48 20.49 + 0.27 4.22 + 0.15b 0.57 0.67 

Rat1 + ERβ E2 [1nM] 24.41 + 0.29 19.80 + 0.25 4.61 + 0.03b 0.96 0.51 

Rat1 + ERβ VEtOH 26.02 + 1.61 19.18 + 1.79 

Rat1 E2 [1nM] 21.73 + 0.66 19.71 + 0.38 

6.84 + 0.13c 3.19 0.11 

Rat1 VEtOH 23.53 + 0.64 19.88 + 0.85 

2.03 + 0.20a -1.62 3.07 

Rat1 + ERα RAL [1nM] 24.89 + 0.49 17.26 + 0.38 

3.64 + 0.15a 0.00 1.00 

7.63 + 0.07a 2.73 0.15 

Rat1 + ERα VDMSO 25.52 + 0.66 18.14 + 0.28 

Rat1 + ERβ RAL [0.04nM] 24.58 + 0.64 17.95 + 0.30 

7.38 + 0.26a 2.49 0.18 

6.63 + 0.23a 1.73 0.30 

Rat1 + ERβ VDMSO 24.51 + 0.19 18.16 + 1.06 6.35 + 0.61 1.45 0.37 

Rat1 RAL [1nM] 23.32 + 0.58 18.23 + 0.44 5.09 + 0.10b 0.20 0.87 
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Rat1 VDMSO 23.78 + 0.50 18.88 + 0.08 4.89 + 0.07b 0.00 1.00 
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Table 4A. Expression of RACK1 at 6 h exposure to selective ligand 

ine -  6 h 
Average CT 

Target 
Average CT 

18S  ∆∆CT 2-∆∆CT Target Cell l ∆CT

Rat1 + ERα DES[0.4nM] 23.34 + 0.17 19.21 + 0.37 4.12 + 0.13a 1.34 0.39 

Rat1 + ERα VEtOH  23.05 + 0.29 21.44 + 0.71 

Rat1 + ERβ DES [0.05nM] 24.19 + 0.35 19.62 + 0.75 

1.60 + 0.30c -1.17 2.24 

4.57 + 0.28a 1.79 0.29 

Rat1 + ERβ VEtOH 23.98 + 0.26 21.18 + 0.26 

Rat1 DES[0.4nM] 24.54 + 0.37 19.25 + 0.79 

2.80 + 0.01b 0.03 0.98 

5.30 + 0.30a 2.52 0.17 

Rat1 VEtOH 23.76 + 0.49 20.98 + 0.30 

Rat1 + ERα OHT [1nM] 23.22 + 0.44 19.75 + 0.75 

2.77 + 0.13b 0.00 1.00 

3.47 + 0.22a -2.66 6.32 

Rat1 + ERα VEtOH  23.63 + 0.15 18.28 + 0.32 5.35 + 0.11b -0.78 1.72 

Rat1 + ERβ OHT [0.04nM] 23.79 + 0.53 19.74 + 0.41 4.04 + 0.08c -2.09 4.24 

Rat1 + ERβ VEtOH 25.17 + 0.55 19.30 + 0.74 5.87 + 0.13b -0.26 1.20 

Rat1 OHT [1nM] 24.17 + 0.29 19.12 + 0.78 5.05 + 0.35b -1.08 2.11 

Rat1 VEtOH 24.84 + 0.41 18.70 + 0.46 6.13 + 0.04b 0.00 1.00 

Rat1 + ERα Gen [20nM] 24.56 + 1.49 18.31 + 0.50 6.25 + 0.70a 0.13 0.91 

Rat1 + ERα VEtOH  23.98 + 0.32 19.72 + 0.35 4.27 + 0.02b -1.85 3.60 

Rat1 + ERβ Gen [0.3nM] 24.37 + 0.39 18.06 + 0.50 

Rat1 + ERβ VEtOH 25.64 + 0.44 19.93 + 0.92 

6.30 + 0.07a 0.19 0.88 

Rat1 Gen [20nM] 25.44 + 1.15 17.67 + 0.53 

5.71 + 0.33c -0.41 1.32 

7.76 + 0.44a 1.65 0.32 

Rat1 VEtOH 25.45 + 0.36 19.34 + 0.78 6.11 + 0.30c 0.00 1.00 

Rat1 + ERα E2 [1nM] 25.62 + 0.54 18.93 + 0.17 6.70 + 0.26a 1.31 0.40 

Rat1 + ERα VEtOH  22.77 + 0.15 18.90 + 0.58 

Rat1 + ERβ E2 [1nM] 24.62 + 0.62 18.75 + 0.22 

3.87 + 0.30b -1.52 2.87 

5.87 + 0.28a 0.47 0.72 

Rat1 + ERβ VEtOH 23.83 + 0.34 18.74 + 0.14 5.09 + 0.14b 

Rat1 E2 [1nM] 24.61 + 0.50 18.61 + 0.21 

-0.29 1.23 

5.99 + 0.21a 0.60 0.66 

Rat1 VEtOH 23.76 + 0.49 18.37 + 0.21 5.39 + 0.19b 0.00 1.00 

Rat1 + ERα RAL [1nM] 22.79 + 0.67 20.15 + 0.90 2.64 + 0.16a -1.82 3.52 

Rat1 + ERα VDMSO 22.97 + 0.48 19.92 + 0.67 

Rat1 + ERβ RAL [0.04nM] 23.81 + 0.16 20.13 + 0.41 

3.04 + 0.13a -1.41 2.66 

3.68 + 0.18b -0.78 1.71 

Rat1 + ERβ VDMSO 25.30 + 1.65 19.75 + 0.46 5.54 + 0.84b 

Rat1 RAL [1nM] 23.69 + 0.17 19.60 + 0.82 
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23.73 +

1.09 0.47 

4.09 + 0.45b -0.37 1.29 

4.46 + 0.03b 0.00 Rat1 VDMSO  0.42 19.27 + 0.46 1.00 
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Table 4B. Expression of RACK1 at 9 h exposure to selective ligand 

Target Cell line -  9 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 26.24 + 0.30 21.52 + 1.31 0.29 4.72 + 0.71a 1.79 

Rat1 + ERα VEtOH  25.88 + 0.55 23.01 + 0.70 2.86 + 0.11b -0.06 1.04 

Rat1 + ERβ DES [0.05nM] 26.47 + 0.41 21.88 + 0.72 4.59 + 0.21a 1.67 0.31 

Rat1 + ERβ VEtOH 26.59 + 0.30 22.37 + 0.42 0.41 4.21 + 0.09a 1.29 

Rat1 DES[0.4nM] 26.75 + 0.40 21.13 + 0.54 5.62 + 0.10a 2.70 0.15 

Rat1 VEtOH 25.71 + 0.47 22.78 + 0.91 2.93 + 0.30b 0.00 1.00 

Rat1 + ERα OHT [1nM] 23.72 + 0.32 18.97 + 0.23 0.25 4.74 + 0.06a 1.96 

Rat1 + ERα VEtOH  26.16 + 0.63 22.06 + 0.75 0.40 4.10 + 0.09a 1.32 

Rat1 + ERβ OHT [0.04nM] 24.34 + 0.27 18.85 + 0.41 5.50 + 0.10a 2.72 0.15 

Rat1 + ERβ VEtOH 26.30 + 0.47 22.06 + 0.58 4.24 + 0.08a 1.46 0.37 

Rat1 OHT [1nM] 24.74 + 0.50 18.58 + 0.15 0.09 6.16 + 0.25b 3.38 

Rat1 VEtOH 24.93 + 0.67 22.15 + 1.06 2.78 + 0.27c 0.00 1.00 

Rat1 + ERα Gen [20nM] 24.28 + 0.47 20.27 + 0.17 4.57 4.01 + 0.21a -2.19 

Rat1 + ERα VEtOH  27.35 + 0.45 20.74 + 1.40 6.61 + 0.67b 0.40 0.76 

Rat1 + ERβ Gen [0.3nM] 25.08 + 0.44 19.97 + 0.71 5.10 + 0.19c -1.10 2.14 

Rat1 + ERβ VEtOH 27.53 + 0.55 20.67 + 0.83 6.86 + 0.20b 0.65 0.63 

Rat1 Gen [20nM] 25.21 + 0.70 19.89 + 0.83 -0.89 1.86 5.31 + 0.09c 

Rat1 VEtOH 26.47 + 0.24 20.27 + 1.43 6.21 + 0.84b 0.00 1.00 

Rat1 + ERα E2 [1nM] 19.10 + 0.65 25.29 + 0.69 6.19 + 0.03a 1.71 0.30 

Rat1 + ERα VEtOH  24.10 + 0.28 19.87 + 0.66 -0.25 1.19 4.23 + 0.27a 

Rat1 + ERβ E2 [1nM] 24.19 + 0.43 19.27 + 0.71 4.92 + 0.19a 0.44 0.74 

Rat1 + ERβ VEtOH 19.13 + 0.27 1.19 0.44 24.79 + 0.30 5.66 + 0.02a 

Rat1 E2 [1nM] 24.37 + 0.58 19.08 + 0.34 5.28 + 0.16a 0.80 0.57 

Rat1 VEtOH 23.98 + 0.40 19.50 + 0.48 1.00 4.47 + 0.06a 0.00 

Rat1 + ERα RAL [1nM] 23.82 + 0.37 21.38 + 1.39 2.44 + 0.72a -2.75 6.73 

Rat1 + ERα VDMSO 23.87 + 0.27 20.01 + 0.29 -1.32 2.51 3.87 + 0.29b 

Rat1 + ERβ RAL [0.04nM] 24.87 + 0.28 19.93 + 0.40 4.94 + 0.09b -0.26 1.19 

Rat1 + ERβ VDMSO 24.84 + 0.29 19.83 + 0.21 1.13 5.01 + 0.06b -0.18 

Rat1 RAL [1nM] 24.62 + 0.15 19.72 + 0.33 4.90 + 0.12b -0.29 1.22 
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24.38 + 0.27 19.19 + 0.27 Rat1 VDMSO 5.19 + 0.01b 0.00 1.00 
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ine -  12 h 
Average CT 

Target Average CT 18S ∆CT

Table 4C. Expression of RACK1 at 12 h exposure to selective ligand 

Target Cell l ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 22.79 + 0.23 16.36 + 0.19 6.43 + 0.03a -1.61 3.07 

Rat1 + ERα VEtOH  23.80 + 0.74 16.88 + 0.25 6.62 + 0.34a -1.43 2.69 

Rat1 + ERβ DES [0.05nM] 24.46 + 0.57 16.71 + 0.24 7.75 + 0.23a -0.30 

Rat1 + ERβ VEtOH 25.38 + 0.30 16.84 + 0.23 

1.23 

Rat1 DES[0.4nM] 25.54 + 0.50 16.56 + 0.41 

8.54 + 0.05a 0.50 0.71 

8.98 + 0.07a 0.94 0.52 

Rat1 VEtOH 24.79 + 1.61 16.74 + 0.18 8.05 + 1.01a 0.00 1.00 

Rat1 + ERα OHT [1nM] 24.42 + 0.44 16.77 + 0.25 7.65 + 0.13a -0.71 1.63 

Rat1 + ERα VEtOH  25.43 + 0.66 18.29 + 0.24 7.15 + 0.30a -1.21 2.32 

Rat1 + ERβ OHT [0.04nM] 26.51 + 0.36 16.99 + 0.12 9.53 + 0.17b 1.17 0.44 

Rat1 + ERβ VEtOH 26.76 + 0.45 18.37 + 0.11 8.39 + 0.24b 0.03 0.98 

Rat1 OHT [1nM] 26.82 + 0.40 17.13 + 0.31 9.68 + 0.07b 1.32 0.40 

Rat1 VEtOH 26.71 + 1.47 18.35 + 0.22 8.36 + 0.89b 0.00 

Rat1 + ERα Gen [20nM] 24.38 + 0.29 24.57 + 0.37 -0.19 + 0.01a -1.40 

1.00 

2.64 

*Rat1 + ERα VEtOH  26.09 + 1.01 26.46 + 1.08 -0.37 + 0.04a -1.58 2.98 

Rat1 + ERβ Gen [0.3nM] 26.16 + 0.80 25.87 + 1.17 0.29 + 0.26b -0.92 1.89 

*Rat1 + ERβ VEtOH 27.11 + 0.38 25.55 + 0.61 1.56 + 0.16b 0.35 0.78 

Rat1 Gen [20nM] 26.27 + 1.19 25.01 + 0.85 1.27 + 0.25b 0.05 0.96 

*Rat1 VEtOH 26.57 + 1.51 25.36 + 0.72 1.21 + 0.56b 0.00 1.00 

Rat1 + ERα E2 [1nM] 24.79 + 0.27 16.52 + 0.15 8.27 + 0.08a -0.27 1.20 

Rat1 + ERα VEtOH  23.25 + 0.29 16.45 + 0.14 6.81 + 0.10a -1.72 3.00 

Rat1 + ERβ E2 [1nM] 24.72 + 0.31 16.59 + 0.28 8.13 + 0.02a -0.40 1.32 

Rat1 + ERβ VEtOH 25.29 + 0.52 16.52 + 0.15 8.77 + 0.26a 0.24 0.84 

Rat1 E2 [1nM] 24.87 + 1.23 16.42 + 0.17 8.45 + 0.75a -0.07 1.05 

Rat1 VEtOH 24.92 + 1.54 16.39 + 0.18 8.53 + 0.96a 1.00 1.00 

Rat1 + ERα RAL [1nM] 24.67 + 0.17 19.39 + 0.64 4.98 + 0.33a -0.23 1.17 

Rat1 + ERα VDMSO 24.57 + 0.22 20.06 + 0.61 4.50 + 0.28a -0.71 1.63 

Rat1 + ERβ RAL [0.04nM] 24.93 + 0.20 19.45 + 0.83 5.47 + 0.45a 0.26 0.83 

Rat1 + ERβ VDMSO 25.22 + 0.65 19.94 + 1.31 5.28 + 0.47a 0.07 0.95 

Rat1 RAL [1nM] 24.86 + 0.31 19.57 + 0.42 5.29 + 0.07a 0.08 0.95 

R
ec

ep
to

r f
or

 A
ct

iv
at

ed
 C

 K
in

as
e 

(R
A

C
K

1)
 

Rat1 VDMSO 24.87 + 0.34 19.66 + 0.68 5.21 + 0.24a 0.00 1.00 
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Table 4D. Expression of RACK1 at 18 h exposure to selective ligand 

Target Cell line -  18 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 27.76 + 0.39 16.93 + 0.31 10.82 + 0.06a 0.73 0.60 

Rat1 + ERα VEtOH  27.72 + 0.30 16.89 + 0.66 10.83 + 0.26a 0.73 0.60 

Rat1 + ERβ DES [0.05nM] 26.90 + 0.24 17.01 + 0.70 9.90 + 0.33a -0.19 1.14 

Rat1 + ERβ VEtOH 27.39 + 0.82 16.70 + 0.33 10.69 + 0.35a 0.59 0.66 

Rat1 DES[0.4nM] 27.22 + 0.34 16.60 + 0.15 10.62 + 0.14a 0.53 0.70 

Rat1 VEtOH 27.61 + 0.83 17.51 + 1.50 

Rat1 + ERα OHT [1nM] 30.57 + 0.72 17.67 + 0.31 

10.09 + 0.47a 0.00 1.00 

12.90 + 0.29a 1.24 0.42 

Rat1 + ERα VEtOH  29.64 + 0.34 17.77 + 0.21 

Rat1 + ERβ OHT [0.04nM] 28.17 + 1.22 17.51 + 0.16 

11.86 + 0.09a 0.20 0.87 

10.67 + 0.75a -0.99 1.99 

Rat1 + ERβ VEtOH 29.05 + 0.90 17.77 + 0.22 

Rat1 OHT [1nM] 28.68 + 0.73 17.43 + 0.20 

11.29 + 0.48a -0.37 1.30 

11.25 + 0.37a -0.41 1.32 

Rat1 VEtOH 29.38 + 0.37 17.72 + 0.39 11.66 + 0.02a 0.00 1.00 

Rat1 + ERα Gen [20nM] 28.70 + 0.30 19.75 + 0.56 8.94 + 0.19a 0.68 0.62 

Rat1 + ERα VEtOH  29.26 + 0.23 19.94 + 0.45 9.32 + 0.15a 1.06 0.48 

Rat1 + ERβ Gen [0.3nM] 27.59 + 0.42 19.49 + 0.26 8.10 + 0.11a -0.16 1.12 

Rat1 + ERβ VEtOH 28.42 + 0.91 20.06 + 0.57 8.36 + 0.24a 0.10 

Rat1 Gen [20nM] 28.23 + 0.38 19.69 + 0.48 

0.93 

8.54 + 0.07a 0.29 0.82 

Rat1 VEtOH 29.17 + 1.04 20.91 + 0.52 

Rat1 + ERα E2 [1nM] 28.36 + 0.35 16.79 + 0.88 

8.26 + 0.37a 0.00 1.00 

11.57 + 0.37a -0.10 1.07 

Rat1 + ERα VEtOH  29.21 + 0.26 17.92 + 0.19 11.29 + 0.05a -0.38 1.30 

Rat1 + ERβ E2 [1nM] 28.03 + 0.38 16.87 + 1.25 11.16 + 0.62a -0.51 1.42 

Rat1 + ERβ VEtOH 28.81 + 1.09 17.69 + 0.27 11.11 + 0.58a -0.55 1.47 

Rat1 E2 [1nM] 27.87 + 0.81 16.76 + 1.17 11.10 + 0.25a -0.57 1.48 

Rat1 VEtOH 29.63 + 0.71 17.96 + 0.49 11.67 + 0.16a 0.00 1.00 

Rat1 + ERα RAL [1nM] 23.25 + 0.17 17.02 + 0.52 6.22 + 0.25a -0.97 1.96 

Rat1 + ERα VDMSO 23.54 + 0.45 17.08 + 0.39 

Rat1 + ERβ RAL [0.04nM] 23.35 + 0.16 17.23 + 0.17 

6.46 + 0.04a -0.73 1.66 

6.12 + 0.01a -1.07 2.10 

Rat1 + ERβ VDMSO 23.58 + 0.36 17.15 + 0.40 6.43 + 0.03a -0.76 1.69 

Rat1 RAL [1nM] 24.39 + 0.13 17.15 + 0.17 7.24 + 0.03a 0.05 0.96 
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Rat1 VDMSO 24.40 + 0.64 17.21 + 0.10 7.19 + 0.38a 0.00 1.00 
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Table 4E. Expression of RACK1 at 24 h exposure to selective ligand 

Target Cell line -  24 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 24.03 + 0.17 18.49 + 0.23 5.55 + 0.04a -2.60 6.06 

Rat1 + ERα VEtOH  24.93 + 0.30 17.81 + 0.18 

Rat1 + ERβ DES [0.05nM] 26.17 + 0.41 17.90 + 0.16 

7.13 + 0.08b -1.02 2.03 

8.27 + 0.17c 0.12 0.92 

Rat1 + ERβ VEtOH 8.17 + 0.11c 0.02 0.98 26.16 + 0.44 17.99 + 0.28 

Rat1 DES[0.4nM] 25.18 + 0.45 18.18 + 0.29 7.00 + 0.11b -1.14 2.21 

Rat1 VEtOH 25.81 + 0.38 17.66 + 0.18 8.15 + 0.14c 0.00 1.00 

Rat1 + ERα OHT [1nM] 23.69 + 0.81 17.63 + 0.33 6.07 + 0.34a 1.85 0.27 

Rat1 + ERα VEtOH  23.59 + 0.42 20.45 + 0.51 3.14 + 0.06b -1.07 2.11 

Rat1 + ERβ OHT [0.04nM] 25.33 + 0.65 17.75 + 0.25 7.59 + 0.28a 3.37 0.10 

Rat1 + ERβ VEtOH 24.92 + 0.41 20.25 + 0.12 

Rat1 OHT [1nM] 23.42 + 0.61 17.33 + 0.84 

4.68 + 0.20c 0.47 0.72 

6.09 + 0.16a 1.87 0.27 

Rat1 VEtOH 4.21 + 0.02c 0.00 1.00 24.47 + 0.38 20.25 + 0.41 

Rat1 + ERα Gen [20nM] 23.92 + 0.18 17.51 + 0.72 6.42 + 0.29a 2.36 0.19 

Rat1 + ERα VEtOH  23.70 + 0.42 20.57 + 0.63 

Rat1 + ERβ Gen [0.3nM] 25.13 + 0.31 18.14 + 0.20 

3.14 + 0.15b -0.92 1.89 

Rat1 + ERβ VEtOH 24.88 + 0.50 20.52 + 0.43 

6.99 + 0.08a 2.93 0.13 

Rat1 Gen [20nM] 23.92 + 0.47 17.33 + 0.90 

4.36 + 0.05b 0.31 0.81 

6.59 + 0.30a 2.17 0.17 

Rat1 VEtOH 24.39 + 0.39 20.33 + 0.31 

Rat1 + ERα E2 [1nM] 23.45 + 0.52 17.40 + 0.32 

4.06 + 0.05b 0.00 1.00 

6.06 + 0.14a -0.92 1.89 

Rat1 + ERα VEtOH  24.80 + 0.35 18.47 + 0.19 6.33 + 0.11a -0.65 

Rat1 + ERβ E2 [1nM] 25.82 + 0.32 17.37 + 0.20 

1.57 

8.45 + 0.08b 1.47 0.36 

Rat1 + ERβ VEtOH 25.98 + 0.42 18.91 + 0.37 

Rat1 E2 [1nM] 24.37 + 0.46 17.60 + 0.23 

7.07 + 0.04b 0.09 0.94 

6.77 + 0.16a -0.22 1.16 

Rat1 VEtOH 25.58 + 0.26 18.60 + 0.29 

Rat1 + ERα RAL [1nM] 28.01 + 0.29 16.00 + 0.16 

6.99 + 0.02a 0.00 1.00 

12.00 + 0.30a 1.47 0.36 

Rat1 + ERα VDMSO 11.45 + 0.31b 0.91 0.53 28.21 + 0.43 16.76 + 0.24 

Rat1 + ERβ RAL [0.04nM] 28.51 + 0.65 16.42 + 0.28 12.09 + 0.25a 1.55 0.34 

Rat1 + ERβ VDMSO 27.61 + 0.26 16.45 + 0.89 

Rat1 RAL [1nM] 28.25 + 0.51 16.63 + 0.39 

11.16 + 0.45b 0.62 0.65 

11.61 + 0.08a 1.08 0.47 
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10.53 + 0.06b 0.00 1.00 Rat1 VDMSO 27.91 + 0.63 17.37 + 0.55 
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Table 5A. Expression of PCOLCE at 6 h exposure to selective ligand 

Target Cell line -  6 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 23.88 + 0.35 21.61 + 0.39 2.27 + 0.02a 1.98 0.25 

Rat1 + ERα VEtOH  23.50 + 0.11 23.04 + 0.85 

Rat1 + ERβ DES [0.05nM] 23.39 + 0.43 21.85 + 1.00 

0.46 + 0.52b 0.17 0.89 

1.54 + 0.41a 1.25 0.42 

Rat1 + ERβ VEtOH 23.13 + 0.48 23.02 + 0.69 

Rat1 DES[0.4nM] 24.50 + 1.01 22.63 + 0.71 

0.11 + 0.15b -0.18 1.13 

1.87 + 0.21a 1.59 0.33 

Rat1 VEtOH 0.29 + 0.07b 0.00 23.09 + 0.54 22.81 + 0.45 1.00 

Rat1 + ERα OHT [1nM] 22.98 + 0.04 20.33 + 0.77 2.65 + 0.52a -1.39 2.62 

Rat1 + ERα VEtOH  23.24 + 0.21 19.73 + 0.59 

Rat1 + ERβ OHT [0.04nM] 22.29 + 0.71 19.61 + 0.27 

3.05 + 0.27a -0.54 1.45 

2.78 + 0.31a -1.27 2.40 

Rat1 + ERβ VEtOH 3.49 + 0.02a -0.55 1.47 23.70 + 0.33 20.21 + 0.37 

Rat1 OHT [1nM] 23.57 + 0.77 19.80 + 0.19 3.78 + 0.41a -0.27 1.20 

Rat1 VEtOH 23.32 + 0.43 19.28 + 0.58 

Rat1 + ERα Gen [20nM] 24.41 + 1.69 20.22 + 1.87 

4.04 + 0.10a 0.00 1.00 

4.18 + 0.13a 0.94 0.52 

Rat1 + ERα VEtOH  24.15 + 0.24 21.05 + 0.85 

Rat1 + ERβ Gen [0.3nM] 22.92 + 0.14 18.95 + 0.44 

3.10 + 0.42b -0.15 1.10 

3.95 + 0.21b 0.71 0.61 

Rat1 + ERβ VEtOH 3.79 + 0.72b 0.54 24.21 + 0.32 20.43 + 1.33 0.69 

Rat1 Gen [20nM] 24.10 + 1.02 19.32 + 1.33 4.77 + 0.21a 1.53 0.35 

Rat1 VEtOH 23.99 + 0.66 20.75 + 0.73 3.25 + 0.05b 

Rat1 + ERα E2 [1nM] 24.49 + 0.48 20.03 + 1.03 

0.00 1.00 

4.46 + 0.39a 1.55 0.34 

Rat1 + ERα VEtOH  23.01 + 0.05 19.64 + 0.20 

Rat1 + ERβ E2 [1nM] 23.42 + 0.42 19.61 + 0.48 

3.37 + 0.11b 0.47 0.72 

3.80 + 0.04a 0.90 0.53 

Rat1 + ERβ VEtOH 2.72 + 0.15b -0.18 1.13 22.32 + 0.25 19.59 + 0.45 

Rat1 E2 [1nM] 23.20 + 0.24 19.36 + 0.54 0.52 3.85 + 0.21a 0.94 

Rat1 VEtOH 22.43 + 0.58 19.52 + 0.24 0.00 2.90 + 0.24b 1.00 

Rat1 + ERα RAL [1nM] 23.29 + 0.48 21.31 + 0.30 1.99 + 0.13a 0.21 0.86 

Rat1 + ERα VDMSO 23.39 + 0.37 21.46 + 0.38 

Rat1 + ERβ RAL [0.04nM] 23.03 + 0.09 21.41 + 0.25 

1.83 + 0.01a 0.05 0.96 

Rat1 + ERβ VDMSO 23.70 + 0.85 21.26 + 0.38 

1.61 + 0.11a -0.16 1.11 

Rat1 RAL [1nM] 23.19 + 0.11 21.17 + 0.14 

2.44 + 0.33a 0.67 0.63 

2.03 + 0.01a 0.25 0.84 
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1.77 + 0.04a 0.00 Rat1 VDMSO 23.20 + 0.44 21.43 + 0.49 1.00 
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Table 5B. Expression of PCOLCE at 9 h exposure to selective ligand 

Target Cell line – 9 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 24.29 + 0.70 20.99 + 1.12 3.29 + 0.29a 1.99 0.25 

Rat1 + ERα VEtOH  24.53 + 0.92 22.29 + 0.94 

Rat1 + ERβ DES [0.05nM] 24.07 + 0.72 20.09 + 0.84 

2.23 + 0.01a 0.94 0.52 

3.98 + 0.09a 2.69 0.15 

3.54 + 0.17a 2.25 0.21 Rat1 + ERβ VEtOH 24.31 + 0.61 20.77 + 0.37 

Rat1 DES[0.4nM] 24.84 + 0.38 20.21 + 1.01 4.63 + 0.44a 3.34 0.10 

Rat1 VEtOH 22.89 + 0.50 21.60 + 0.63 

Rat1 + ERα OHT [1nM] 21.75 + 0.34 25.65 + 2.02 

1.29 + 0.09b 0.00 1.00 

-3.89 + 1.19a -5.01 32.30 

Rat1 + ERα VEtOH  24.75 + 0.87 24.97 + 2.79 
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Rat1 + ERβ OHT [0.04nM] 22.47 + 0.74 24.63 + 1.02 

-0.22 + 1.36b -1.34 2.52 

-2.16 + 0.20a -3.27 9.69 

Rat1 + ERβ VEtOH 1.15 + 1.22b 0.03 24.48 + 0.50 23.33 + 2.09 0.98 

Rat1 OHT [1nM] 23.04 + 0.58 26.04 + 3.00 -3.00 + 1.71a -4.11 17.32 

Rat1 VEtOH 22.96 + 0.61 21.86 + 2.16 

Rat1 + ERα Gen [20nM] 22.20 + 0.35 21.11 + 0.50 

1.11 + 1.09b 0.00 1.00 

1.09 + 0.11a -1.20 2.30 

Rat1 + ERα VEtOH  24.46 + 1.20 22.39 + 1.01 

Rat1 + ERβ Gen [0.3nM] 23.19 + 0.53 20.73 + 0.43 

2.07 + 0.13a -0.22 1.17 

2.47 + 0.07a 0.18 0.88 

Rat1 + ERβ VEtOH 24.60 + 0.60 21.65 + 0.72 

Rat1 Gen [20nM] 23.46 + 0.45 20.96 + 0.36 

2.95 + 0.08a 0.66 0.63 

2.50 + 0.07a 0.21 0.86 

Rat1 VEtOH 23.47 + 0.58 21.19 + 0.67 

Rat1 + ERα E2 [1nM] 23.89 + 0.77 19.76 + 0.49 

2.29 + 0.06a 0.00 1.00 

4.13 + 0.20a 1.29 0.40 

Rat1 + ERα VEtOH  22.37 + 0.26 19.93 + 0.72 

Rat1 + ERβ E2 [1nM] 22.47 + 0.64 19.41 + 0.39 

2.44 + 0.32a -0.40 1.32 

3.06 + 0.18a 0.22 0.95 

Rat1 + ERβ VEtOH 22.93 + 0.36 19.33 + 0.71 

Rat1 E2 [1nM] 22.86 + 0.62 19.22 + 0.24 

3.60 + 0.25a 0.77 0.58 

3.65 + 0.27a 0.81 0.57 

Rat1 VEtOH 21.72 + 0.31 18.88 + 0.37 

Rat1 + ERα RAL [1nM] 23.45 + 0.43 19.34 + 0.20 

2.84 + 0.04a 0.00 1.00 

4.11 + 0.16a 0.63 0.65 

Rat1 + ERα VDMSO 23.38 + 0.26 19.30 + 0.39 

Rat1 + ERβ RAL [0.04nM] 22.90 + 0.29 19.65 + 0.13 

4.08 + 0.09a 0.59 0.66 

3.26 + 0.11a -0.22 1.17 

Rat1 + ERβ VDMSO 22.84 + 0.48 19.47 + 0.27 

Rat1 RAL [1nM] 23.26 + 0.32 19.42 + 0.19 

3.38 + 0.15a -0.11 1.08 

3.84 + 0.09a 0.35 0.78 

3.48 + 0.06a 0.00 1.00 Rat1 VDMSO 22.76 + 0.39 19.27 + 0.30 
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Table 5C. Expression of PCOLCE at 12 h exposure to selective ligand 

Target Cell line -  12 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 20.87 + 0.37 16.35 + 0.23 4.51 + 0.10a -0.42 1.34 

Rat1 + ERα VEtOH  21.13 + 0.44 16.62 + 0.15 

Rat1 + ERβ DES [0.05nM] 21.88 + 0.69 16.51 + 0.36 

4.50 + 0.21a -0.43 1.35 

5.37 + 0.23a 0.44 0.74 

Rat1 + ERβ VEtOH 22.11 + 0.25 16.85 + 0.09 

Rat1 DES[0.4nM] 22.54 + 0.25 16.25 + 0.08 

5.27 + 0.11a 0.33 0.79 

6.29 + 0.12a 1.36 0.39 

Rat1 VEtOH 21.77 + 0.84 16.83 + 0.28 4.93 + 0.40a 1.00 

Rat1 + ERα OHT [1nM] 21.98 + 0.30 16.73 + 0.23 

1.00 

5.24 + 0.05a -0.37 1.29 

Rat1 + ERα VEtOH  23.54 + 1.12 18.38 + 1.33 

Rat1 + ERβ OHT [0.04nM] 22.87 + 0.35 16.90 + 0.19 

5.17 + 0.15a -0.45 1.36 

5.97 + 0.11a 0.36 0.78 

Rat1 + ERβ VEtOH 23.18 + 0.20 16.99 + 0.38 

Rat1 OHT [1nM] 23.28 + 0.23 16.91 + 0.24 

6.19 + 0.13a 0.57 0.67 

6.37 + 0.01a 0.75 0.59 

Rat1 VEtOH 22.85 + 1.06 17.24 + 0.41 5.61 + 0.46a 0.00 1.00 

Rat1 + ERα Gen [20nM] 22.06 + 0.51 21.12 + 0.57 0.93 + 0.04a -0.10 1.07 

Rat1 + ERα VEtOH  23.63 + 1.26 22.77 + 1.72 

Rat1 + ERβ Gen [0.3nM] 22.70 + 0.58 21.56 + 0.40 

0.86 + 0.32a -0.18 1.13 

1.15 + 0.12a 0.11 0.92 

Rat1 + ERβ VEtOH 23.92 + 0.67 21.95 + 0.48 

Rat1 Gen [20nM] 22.97 + 1.12 21.07 + 0.44 

1.97 + 0.13a 0.94 0.52 

1.90 + 0.48a 0.87 0.55 

Rat1 VEtOH 22.73 + 1.26 22.44 + 0.57 1.03 + 0.49 0.00 1.00 

Rat1 + ERα E2 [1nM] 21.95 + 0.32 16.42 + 0.40 5.54 + 0.06a 0.63 0.65 

Rat1 + ERα VEtOH  20.59 + 0.46 16.42 + 0.39 

Rat1 + ERβ E2 [1nM] 21.78 + 0.28 16.49 + 0.19 

4.17 + 0.05a -0.74 1.67 

5.30 + 0.07a 0.39 0.76 

Rat1 + ERβ VEtOH 21.69 + 0.22 16.50 + 0.58 

Rat1 E2 [1nM] 21.57 + 0.89 16.34 + 0.46 

5.19 + 0.25a 0.28 0.82 

5.23 + 0.30a 0.32 0.80 

Rat1 VEtOH 21.19 + 0.95 16.29 + 0.23 

Rat1 + ERα RAL [1nM] 23.52 + 0.25 20.21 + 0.90 

4.91 + 0.51a 0.00 1.00 

3.31 + 0.46a 0.62 0.65 

Rat1 + ERα VDMSO 23.48 + 0.16 19.93 + 0.53 

Rat1 + ERβ RAL [0.04nM] 22.49 + 0.21 19.61 + 0.64 

3.55 + 0.26a 0.87 0.55 

2.87 + 0.30a 0.19 0.88 

Rat1 + ERβ VDMSO 22.72 + 0.58 20.53 + 0.51 

Rat1 RAL [1nM] 22.75 + 0.38 19.94 + 0.44 
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22.54 +

2.19 + 0.05a -0.51 1.42 

2.81 + 0.05a 0.13 0.92 

2.69 + 0.07a 0.00 1.00 Rat1 VDMSO  0.41 19.85 + 0.51 
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Table 5D. Expression of PCOLCE at 18 h exposure to selective ligand 

Target Cell line -  18 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 22.54 + 0.23 16.99 + 0.15 5.55 + 0.06a 0.08 0.57 

Rat1 + ERα VEtOH  22.65 + 0.27 16.78 + 0.26 

Rat1 + ERβ DES [0.05nM] 20.97 + 0.33 17.01 + 0.15 

5.87 + 0.01a 1.14 0.45 

3.96 + 0.13a -0.77 1.70 

Rat1 + ERβ VEtOH 21.30 + 0.51 16.97 + 0.39 

Rat1 DES[0.4nM] 21.15 + 0.75 17.17 + 0.32 

4.33 + 0.09a -0.39 1.31 

3.97 + 0.30a -0.75 1.68 

Rat1 VEtOH 21.56 + 0.96 16.83 + 0.42 

Rat1 + ERα OHT [1nM] 24.55 + 0.60 18.75 + 0.88 

4.72 + 0.39a 0.00 1.00 

5.81 + 0.19a 1.39 0.38 

Rat1 + ERα VEtOH  23.77 + 0.21 18.68 + 0.21 5.09 + 0.01a 0.66 

Rat1 + ERβ OHT [0.04nM] 22.11 + 0.20 18.49 + 0.11 

0.63 

Rat1 + ERβ VEtOH 22.33 + 0.60 18.37 + 0.21 

3.63 + 0.06a -0.80 1.74 

3.97 + 0.28a -0.46 1.37 

Rat1 OHT [1nM] 22.43 + 0.61 18.41 + 0.25 4.01 + 0.25a -0.41 1.33 

Rat1 VEtOH 23.13 + 0.82 18.71 + 0.83 4.42 + 0.01a 0.00 1.00 

Rat1 + ERα Gen [20nM] 22.88 + 0.29 17.43 + 0.38 0.21 5.46 + 0.06a 0.86 

Rat1 + ERα VEtOH  24.0+ + 0.23 17.81 + 0.42 0.49 6.27 + 0.14a 1.03 

Rat1 + ERβ Gen [0.3nM] 21.73 + 0.42 17.38 + 0.18 4.35 + 0.17a -0.90 1.86 

Rat1 + ERβ VEtOH 22.43 + 0.61 17.78 + 0.38 -0.60 4.65 + 0.16a 1.51 

Rat1 Gen [20nM] 22.18 + 0.62 17.37 + 0.27 -0.43 4.81 + 0.25a 1.35 

Rat1 VEtOH 23.71 + 1.22 18.47 + 0.74 0.00 5.25 + 0.34a 1.00 

Rat1 + ERα E2 [1nM] 21.74 + 0.23 16.84 + 0.21 -0.61 4.90 + 0.01a 1.52 

Rat1 + ERα VEtOH  23.84 + 0.13 17.21 + 0.30 1.13 6.63 + 0.12b 0.46 

Rat1 + ERβ E2 [1nM] 21.38 + 0.21 16.85 + 0.14 -0.98 1.97 4.52 + 0.05a 

Rat1 + ERβ VEtOH 22.24 + 0.56 17.10 + 0.60 5.14 + 0.03a -0.36 

Rat1 E2 [1nM] 21.70 + 0.58 16.71 + 0.16 

1.29 

4.99 + 0.30a -0.51 1.43 

Rat1 VEtOH 5.50 + 0.52a 0.00 1.00 23.15 + 1.00 17.65 + 0.27 

Rat1 + ERα RAL [1nM] 21.25 + 0.10 16.73 + 0.50 4.51 + 0.28a -0.53 1.44 

Rat1 + ERα VDMSO 21.26 + 0.39 16.83 + 0.30 4.43 + 0.06a -0.61 1.53 

Rat1 + ERβ RAL [0.04nM] 20.72 + 0.30 17.07 + 0.23 3.65 + 0.04a -1.39 2.63 

Rat1 + ERβ VDMSO 20.81 + 0.36 17.00 + 0.15 

Rat1 RAL [1nM] 22.47 + 0.36 17.05 + 0.11 

3.81 + 0.14a -1.23 2.35 

5.42 + 0.01a 0.38 0.77 
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5.04 + 0.31a 0.00 1.00 Rat1 VDMSO 22.11 + 0.56 17.08 + 0.12 
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Table 5E. Expression of PCOLCE at 24 h exposure to selective ligand 

Target Cell line -  24 h 
Average CT 

Target 
Average CT 

18S  ∆CT ∆∆CT 2-∆∆CT 

Rat1 + ERα DES[0.4nM] 20.88 + 0.30 18.86 + 0.19 2.02 + 0.07a -1.10 2.15 

Rat1 + ERα VEtOH  22.51 + 0.41 19.28 + 0.43 

Rat1 + ERβ DES [0.05nM] 22.79 + 0.44 17.82 + 0.24 

3.24  + 0.01a 0.11 0.92 

4.97 + 0.14a 1.85 0.28 

Rat1 + ERβ VEtOH 23.39 + 0.54 19.45 + 0.42 

Rat1 DES[0.4nM] 21.58 + 0.51 18.68 + 0.34 

3.84 + 0.09a 0.72 0.61 

2.90 + 0.11a -0.22 1.16 

Rat1 VEtOH 22.06 + 0.52 18.94 + 0.23 

Rat1 + ERα OHT [1nM] 22.41 + 0.78 18.03 + 0.26 

3.12 + 0.21a 0.00 1.00 

4.38 + 0.37a 0.87 0.55 

Rat1 + ERα VEtOH  22.61 + 0.45 18.82 + 0.27 

Rat1 + ERβ OHT [0.04nM] 23.03 + 0.59 18.16 + 0.29 

3.80 + 0.13a 0.29 0.82 

4.87 + 0.20a 1.35 0.39 

Rat1 + ERβ VEtOH 23.37 + 0.63 19.17 + 0.69 

Rat1 OHT [1nM] 20.97 + 0.65 17.64 + 0.69 

4.19 + 0.04a 0.69 0.62 

3.33 + 0.03a -0.18 1.13 

Rat1 VEtOH 22.40 + 0.48 18.89 + 0.50 

Rat1 + ERα Gen [20nM] 22.29 + 0.24 17.83 + 0.83 

3.50 + 0.01a 0.00 1.00 

4.46 + 0.42a 1.18 0.44 

Rat1 + ERα VEtOH  22.64 + 0.40 19.42 + 0.29 

Rat1 + ERβ Gen [0.3nM] 22.54 + 0.19 18.50 + 0.22 

3.22 + 0.07a -0.07 1.05 

4.03 + 0.02a 0.75 0.59 

Rat1 + ERβ VEtOH 23.08 + 1.07 19.21 + 2.21 

Rat1 Gen [20nM] 21.35 + 0.42 19.62 + 0.77 

3.87 + 0.80a 0.59 0.67 

3.73 + 0.24a 0.45 0.73 

Rat1 VEtOH 22.67 + 0.51 19.39 + 0.30 

Rat1 + ERα E2 [1nM] 20.69 + 0.60 19.41 + 0.18 

3.29 + 0.15a 0.00 1.00 

1.28 + 0.30a -2.23 4.70 

Rat1 + ERα VEtOH  22.64 + 0.52 19.82 + 0.33 2.81 + 0.14b -0.70 1.63 

Rat1 + ERβ E2 [1nM] 22.57 + 0.16 19.32 + 0.22 3.25 + 0.04a -0.27 

Rat1 + ERβ VEtOH 23.02 + 1.16 19.22 + 2.16 3.81 + 0.71a 0.29 

1.21 

Rat1 E2 [1nM] 20.96 + 0.57 19.37 + 0.45 

0.82 

Rat1 VEtOH 22.22 + 0.52 18.70 + 1.25 

1.59 + 0.09a -1.93 3.81 

3.52 + 0.52b 0.00 1.00 

Rat1 + ERα RAL [1nM] 20.81 + 0.35 17.50 + 0.33 3.31 + 0.02a 1.40 0.38 

Rat1 + ERα VDMSO 21.11 + 0.57 18.16 + 0.30 2.95 + 0.19a 1.04 0.49 

Rat1 + ERβ RAL [0.04nM] 20.79 + 0.46 18.12 + 0.53 2.60 + 0.05a 0.69 0.62 

Rat1 + ERβ VDMSO 20.39 + 0.20 18.09 + 0.90 2.30 + 0.50a 0.38 0.77 

Rat1 RAL [1nM] 20.79 + 0.57 18.15 + 0.34 2.64 + 0.16a 0.72 0.61 
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Rat1 VDMSO 20.92 + 0.59 19.00 + 0.59 1.92 + 0.00a 0.00 1.00 
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Figure 1.  Fold changes in COL1A2 over time and ligand exposure were determined by 

the comparative CT method.  The difference between the CT values of the target genes and 

the 18s rRNA (∆CT) were calibrated to an index value by subtracting all individual ∆CT’s 

from Rat1 cell line ∆CT receiving vehicle treatment to derive the ∆∆CT.  Fold differences 

were then calculated by the equation 2-∆∆CT.  Statistical analysis for fold differences are 

those determined for the ∆CT through factorial ANOVA using SAS PROC-MIXED. A 

significant cell by compound by time effect was detected (p<0.0306).  Fold differences 

are shown for: a)  COL1A2 detected when treated with E2; b) COL1A2 detected when 

treated with DES; c) COL1A2 detected when treated with OHT; d)  COL1A2 detected 

when treated with RAL; e) COL1A2 detected when treated with GEN. 
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Figure 2. Independent expression trends of COL1A2 in either ERα or ERβ expressing 

cell culture lines over time.  a)  Rat1+ERα changes in profile for COL1A2 expression 

demonstrate that E2 or DES treatment at 24h is able to reach a level of expression at or 

above baseline expression seen in Rat1 cells.  These treatments result in levels of 

expression that are significantly higher than the COL1A2 detected with the other three 

treatments at 24 h and higher than expression seen following 9, 12, and 18 h of RAL, E2 

or DES treatment.  The SERMs OHT and RAL were also significantly higher than DES, 

E2 or GEN at 6 h.  b) Rat1+ERβ had increased expression of COL1A2 in OHT and RAL 

similar to that observed in ERα exposed cells at 6 h.  An increase observed following 6 h 

GEN treatment was significantly higher than E2 or DES treatments.  Though not different 

from its own vehicle, this effect did not appear to be as repressive as E2 and DES 

treatment at the time point.  Though not different from levels detected in ERα expressing 

cells at 24 h, E2 treatment did affect a trend toward increased expression that was 

significantly higher than all other treatments at this time.  These data suggest a trend 

toward possible gene repression in receptor expressing cells that OHT and RAL treatment 

may negate at 6 h in ERα and ERβ as well as following GEN treatment in ERβ.  A 

reversal of this trend is demonstrated following treatment at 24 h with E2 in both 

receptors and DES treatment in ERβ expressing cells. 
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Figure 3.  Fold changes in CtsL over time and ligand exposure were determined by the 

comparative CT method.  Statistical analysis determined a significant cell by compound 

by time interaction (p<0.0062).  Fold differences shown for: a)  CtsL detected when 

treated with E2;  b) CtsL detected when treated with DES;  c)  CtsL detected when treated 

with OHT;  d)  CtsL detected when treated with RAL;  e) CtsL detected when treated 

with GEN. 
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Figure 4.  Independent expression trends of CtsL in either ERα or ERβ expressing cell 

lines over time.  a)  Rat1+ERα changes in profile for CtsL expression show that treatment 

with either E2 or DES closely mirror each other following 24 h exposure, yet are 

significantly different from any other interaction at 18 and 12 h in the presence of ERα.. 

Expression of CtsL following 24 h exposure to either E2 or DES is also greater than 

expression detected in the ERβ expressing cells following the same treatment regime.  

These data suggest complementary roles for CtsL gene expression effects following 

treatment with E2 or DES following 24 h.  b)  Rat1+ERβ changes in profile for CtsL 

expression show a similar effect following a 9 h exposure to GEN in comparison to the 

ERα expressing cells (p<0.0001).  There is also a trend toward increased target 

expression with RAL exposure following 18 h, however, this induction is not significant 

over its own vehicle (p<0.1572).  This suggests that ERβ may have a minor role in up- 

regulation of CtsL at these observed time points, but treatment with compounds such as 

E2 or DES can create differing transcriptional scenarios between the two receptor 

isotypes. 
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Figure 5.  Fold changes in RACK1 over time and ligand exposure were determined by 

the comparative CT method.  Cell by time (p<0.0034) and compound by time (p<0.0001) 

interactions were statistically determined using a 3X5X5 factorial in the SAS package. 

Fold differences are shown for:  a)  RACK1 detected when treated with E2;  b)  RACK1 

detected when treated with DES;  c)  RACK1 detected when treated with OHT;  d)  

RACK1 detected when treated with RAL;  e)  RACK1 detected when treated with GEN. 
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Figure 6.  Independent expression trends of RACK1 in either ERα or ERβ expressing 

cell lines over time.  a)  The Rat1+ERα profile for RACK1 expression demonstrate that 

treatment with OHT for 6 h is similar to RAL treatment for 9 h, and that these SERMs 

may illicit an early RACK1 response in a manner similar to the later 24 h exposure to 

DES.  Treatment with either E2 or DES for a 24 h period is demonstrates an increase in 

RACK1 gene expression, however the presence of DES appears to have a more profound 

effect.  b)  In Rat1+ERβ an increase in the detectable expression of RACK1 following 6 

h with OHT was demonstrated that is similar to expression observed in the ERα 

expressing cells under the same conditions.  The detection of RACK1 expression 

following this early time-point is considerably decreased in the ERβ expressing cells 

suggesting unique ligand to ER isotype interactions. 
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Figure 7.  Fold changes in PCOLCE expression over time and ligand exposure were 

determined by the comparative CT method.  Compound by time effects (p<0.0001) were 

statistically determined for the interaction using a 3X5X5 factorial in the SAS package. 

Fold differences are shown for:  a)  PCOLCE detected when treated with E2;  b) 

PCOLCE detected when treated with DES;  c)  PCOLCE detected when treated with 

OHT;  d)  RACK1 detected when treated with RAL;  e) PCOLE detected when treated 

with GEN. 
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Figure 8.  Independent expression trends for PCOLCE in either ERα or ERβ expressing 

cell lines over time.  a)  Rat1+ERα changes in profile for PCOLCE expression show an 

increase following E2 treatment at 24 h.  Notably a large change in PCOLCE is observed 

at 9 h following treatment with the tissue selective partial agonist/antagonist OHT.  b)  

Little significant effects are seen in Rat1+ERβ for PCOLCE expression, except for a 

large increase at 9 h, which mirrors what is seen in Rat1+ERα under the same conditions.  

Slight, yet non-significant increases are seen following 18 h across all treatments. 
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CHAPTER VI 

Discussion and Conclusions 

SUMMARY 

We have examined the nature of gene regulation by ERα and ERβ within an 

undifferentiated model system designed to examine effects of each receptor protein 

isolated from the influence of the other.  These data have demonstrated that unique global 

gene expression patterns exist within cells of the same genetic background, and that these 

profiles are specific in response to ERα or ERβ activation for ligand and time.  

Suppression subtractive hybridization following a 24h exposure to E2 demonstrated that 

ERα and ERβ can result in differential gene expression.  The effects of the presence of 

specific ER isotypes as it relates to PR expression suggests that ERα in the presence of 

physiological E2 is a major factor in up-regulation, as well as suggesting possible non-

ligand associated interactions through ERβ.  The effects upon genes involved in 

extracellular matrix formation and general cell processes in the presence of independent 

ERα and ERβ helps to understand the breadth of effects that ligand and time can induce 

and supplies impetus for future work to further understand the complex pathway 

regulation that the ER biology paradigm represents.  
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PROGESTERONE RECEPTOR 

Progesterone plays a vital role in reproductive physiology, and PR function is intertwined 

with estrogen treatment and ER activation.  Therefore, the relationship of ER to PR is of 

extreme interest in regards to reproductive health as well as breast, endometrial and 

ovarian cancer prognostics.  The PR protein has two functionally different subtypes, A 

and B, which are encoded by a single PR gene at two distinct translational start sites 

(Graham & Clarke 1997).  Within the female reproductive tract it plays a major role in 

the endometrial and uterine stroma, where it is responsible for proliferation, 

differentiation, and maintenance (Clarke CL & Sutherland RL 1990; Li et al. 2004), and 

the mammary tissue where ER-PR pathways and interactions have a role in breast cancer 

(Horwitz & McGuire 1978; Dotzlaw et al. 1999).  

 

One of the primary characteristics of the ER/PR relationship is the activation of PR by 

ER and the negative feedback ability of PR to inhibit ER expression levels (Clarke & 

Sutherland 1990).  This relationship has been shown to be controlled through different 

mechanisms in different tissues.  This is exemplified through 17β-hydroxysteroid 

dehydrogenase, an enzyme in the metabolic pathway of steroids, performing a role in the 

PR down-regulation of ER in the anterior pituitary gland, but not the uterus (Fuentes et 

al. 1990), suggesting that the down regulation of ER in this region may be due to steroid 

availability more than mRNA and protein synthesis effects seen in the uterus.   

 

Other studies have demonstrated a temporal component of this interaction with a 

significant suppression of ERα by 12 h and ER levels returning to normal from 12-48 h 
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(Okulicz 1989).  Of interest in relation to ERα and ERβ variations and temporal 

differences, previous studies at delayed time-points of 24 and 48 h post E2 treatment have 

shown no PR expression in ERβ expressing human osteoblast cell lines (Rickard et al. 

2002).  In the Rat1+ERβ cell line, PR expression is reported as early as 9 h following E2 

treatment (Cheng & Malayer 1999).  In human breast cancer cell lines, PR regulates both 

ERα and ERβ; however, the relationship with ERβ is inversely associated with PR status 

(Dotzlaw et al. 1999).  These data fit into a model in which ERα and ERβ play pivotal, if 

not divergent, functions in PR induction, which is furthermore highly dependent on time 

and ligand exposure.  Our present model supports the role of ERα as the main regulator 

of PR, with ERβ possibly functioning as a repressor.  However, the ability of ERβ to up-

regulate PR in a non-estrogenic manner at 12 h, possibly as a response to insulin in the 

media that is refreshed upon feeding, also raises interesting questions as to the role of 

differential promoter context, co-regulator recruitment, and cross-talk pathways that are 

specific to events involving independent ERα and ERβ regulation.   

 

EXTRACELLULAR MATRIX AND CELL MAINTENANCE 

The COL1A2 polypeptide chains are commonly synthesized by fibroblasts and 

osteoblasts together with COL1A1, which then aggregate to form collagen (Verrecchia & 

Mauviel 2004). Transcription of COL1A2 requires complex and cooperative protein-

protein interactions that are not yet fully understood.  Up-stream binding elements 

interact with proteins such as Sp1, AP-1 and cis-acting elements in a strongly tissue-

specific manner (Tanaka et al. 2004).  This is exciting in the context of what we know 

about the ability of various ligands to function through Sp1 and AP-1 elements (Webb et 
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al. 1995; Saville et al. 2000), and the effects we see here, with significant induction 

events in ERβ 06h compared to vehicle following treatment with OHT, GEN, and RAL, 

even while ERα is exhibiting repressive effects with E2 and DES treatment at the same 

time-point.   

 

 

The cathepsin gene family is composed of lysosomal proteases that play multiple roles in 

cellular maintenance and remodeling events.  Cathepsin L has multiple roles in 

reproduction, inflammatory responses, and bone remodeling (Divya et al. 2002; 

Kakegawa et al. 1993; Mason et al. 1986).  Estrogen receptors also have regulational 

control in the same tissues that are affected by cathepsins, and our results suggest that 

CtsL expression may be linked to ERα activation.  A non-ligand differentiating response 

to treatments at ERβ at 18h mirrors RAL exposure in ERα in comparison to vehicle, and 

this suggests that perhaps specific ligands, like RAL, may be responsible for an effect 

that is similar to an isotype switch.   It is also interesting that compounds like GEN (09h) 

and OHT (06h) can behave the same in both ERα and ERβ, when other compounds fail to 

behave similarly. 

The RACK1 protein functions in subcellular translocation and protein kinase C (PKC) 

stabilization (Ron et al. 1994), and there is a known relationship for ERα with E2 in 

affecting PKC (Kelly et al. 1999).  This is in agreement with our observed ability of E2 to 

increase RACK1 gene expression at 24 h in a manner greater than ERβ.  It is therefore of 

interest, though not surprising, that DES treatment can stimulate induction at a greater 
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magnitude at the same time point.  What was not expected was the ability of RAL and 

GEN at 6 h to increase RACK1 in the presence of ERα in a manner greater than E2 

treatment, or that OHT with ERβ would create the only appreciable increase in RACK1 

in that cell line. 

 

 

The induction of PCOLCE, a protein involved in extracellular matrix formation, 

expression has already been shown to be linked with TGF-β expression in a fibrogenic 

cell line (Lee et al. 1997), and correlates with expression of type I collagens in the culture 

media of cardiac fibroblast cell lines (Shalitin et al. 2003).  Here, PCOLCE appears to be 

only slightly effected by ligand binding events upon ER, except at 9 h when OHT has an 

impact on ERα PCOLCE expression, ERβ and the naïve cell line.  This suggests that ERα 

may only be serving to potentiate an otherwise non-receptor OHT mediated event in this 

target.  

CONCLUSIONS 

Through the use of a physiological relevant embryonic fibroblast cell line we have shown 

that there are ERα and ERβ independent gene profiles that are further regulated by ligand 

and time of exposure.  The allosteric changes that are imposed upon the various domains 

of the ER upon ligand binding and promoter interactions, lead to conformational changes 

upon the target DNA that control efficient transcriptional events.  Within the context of 

these interactions multiple signaling events, including phosphorylation and cross-talk can 

offer additional levels of control.  
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Implications for cross-talk pathways through ERβ, possibly as it relates to insulin and 

insulin-like growth factor I induction of the AP-1 promoter interaction through the 

MAPK pathway, are hinted through ligand independent PR expression at 12h post 

treatment.  The complex changes induced over time in the presence of varying ligands on 

the four genes; COL1A2, CtsL, RACK1, and PCOLCE, highlights that what may be 

thought of as early and late gene responses have the ability to be shifted and changed in 

regards to ligand interaction over time, and this may in turn be related ligand affects on 

co-regulator recruitment and binding events at promoter regions.  Taken together this 

furthers our understanding of a dynamic and complex system that has implications in the 

health and health maintenance of not only humans, but multiple species.  The 

physiological system is in no way static, and strives constantly for a state of homeostasis 

which may be greatly affected by the steroid hormones to which we are exposed, not only 

through the environment but by our own response to a range of stimuli.  

 

The future directions that could be investigated as a direct extension of these data are 

numerous.  Determining if the protein profiles for the genes examined herein would be of 

paramount need, to verify if these gene expression profiles are indeed having direct 

effects on physiological end-points.  Protein identification can be approached from 

several directions, the main two being Edman degradation or mass spectrometry.  Protein 

microarrays utilizing antibodies are also becoming available which would allow for 

examination of differential protein profiles.  Another avenue of research that should be 

examined is the promoter context with which each target gene is associated with; ERE, 

AP-1 or Sp1.  The CAT assay could be employed utilizing plasmids that are specific to 
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the given binding sites, to determine levels of responsiveness to AP-1 and Sp1.  

However, DNA footprinting would be the main experiment that would need to be 

performed to determine the effects of treatment on ERα and ERβ promoter interactions 

that may go towards explaining data reported with this project.  In regards to PR, 

specifically, it should be interesting to determine which promoters, PRA or PRB, are 

being activated in the specific treatments examined within.   

 

The interactions of co-regulatory elements and other protein-protein interactions should 

be studied as well to help us to elucidate the pathways that various the treatments effect, 

and to determine how recruitment of accessory proteins affects these profiles.  

Coimmunoprecipitation studies could begin to provide insight into these interactions.  

Expanding on general gene expression profile differences in the presence of ERα or ERβ, 

it would be important to analyze the cell, time, and ligand treatments using rat 

microarrays as a platform.  Finally, expanding on previous work performed in our lab 

involving insulin effects on gene expression between the two receptors in the culture 

system may provide answers as to why an increase in PR expression was observed in the 

ERβ cells following treatment with vehicle at 12h.   

 

By better understanding the underlying differential control which is occurring at the 

transcriptional level in response to ER isotypes over time and in the presence of various 

ligands we can begin to be prepared for reactions that occur in a physiological relevant 

manner.  The inducible transcriptional activity of these two receptors in response to the 

same ligand, as well as the effects imparted by different ligands has important 
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implications for understanding cell regulatory functions and inflammatory responses, 

which are integral to reproduction, as well as oncogenesis, bone remodeling, and the 

aging process. 
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Appendix I 

Determination of portions of the cDNA sequence of the bovine estrogen 
receptor alpha from bovine endometrium using 5′ RACE 

 
Other work 

ABSTRACT  

Estrogen receptors (ER) are ligand-induced transcription factors that have numerous 

physiological roles.  Since the discovery of a second ER type (ERβ) much effort has been 

directed at characterization of the localization and actions of ERα and ERβ.  The ERs are 

organized into 5 functional domains which are highly conserved in the DNA- and ligand-

binding domains.  Estrogen receptors are least homologous in their A/B domain, with 

ERβ being significantly truncated in comparison to ERα.  In the study of bovine ER (bER) 

the cloning and sequencing of the 5’ region of bERα has proven difficult, limiting the 

ability to construct ER specific molecular tools.  We have applied 5’ GeneRacer® to total 

RNA extracted from bovine endometrium to isolate regions 5’ of the known hormone 

binding domain.  Thermoscript® RT and deazo-GTPs were used for synthesis of the first 

strand template, followed by GC-Melt® and a 2 polymerase PCR system for generating 

the amplified cDNA template.  The GeneRacer® PCR product was directly sequenced 

using the 5’GeneRacer® forward primer and a gene specific (GSP) reverse primer 

designed from the Bos taurus hormone-binding domain.  To date we have sequenced the 

hinge domain and a portion of the DNA binding domain.  There was a 96% homology to 

Ovis aries ERα, a 91% homology to Sus scrofa ERα and 88% homology to Homo sapiens 
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ERα.  The full length bERα cDNA sequence will enable us to develop probes and 

strategies to better differentiate between bER isotypes, assisting in future studies into ER 

expression, localization and roles in gene regulation. 

 

INTRODUCTION 

Estrogen receptors (ER) are members of the steroid receptor family and act as ligand-

inducible transcription factors.  From 1966, when Toft and Gorski (Toft & Gorski 1966) 

first isolated and began characterizing a protein receptor for estrogen, through 1994, only 

one receptor form was known.  In 1995 the second receptor type, ERβ, was identified 

from the prostate gland of the rat (Kuiper et al. 1996).  Subsequently, clones for human 

ER were first published in 1986 (Greene et al. 1986; Green et al. 1986), and for the rat 

ER in 1987 (Koike et al. 1987).  In 1995 a second estrogen receptor, ERβ, was identified 

and cloned from rat prostate (Kuiper et al. 1996) and since that time ERβ has been 

characterized in the mouse (Tremblay et al. 1997; Pettersson et al. 1997), human 

(Mosselman et al. 1996), bovine (Rosenfeld et al. 1999), and numerous other species.  

 

The ERα and ERβ proteins are organized into 5 domains that show varying homology 

between the receptor types, with the central DNA binding domain (or C domain) and 

ligand binding domain (E domain) being reasonably conserved (95% - 55% respectively) 

between the two receptors (Kuiper et al. 1996).  The amino terminal A/B domain is less 

conserved and in rat ERα (rERα) is significantly longer, by approximately 87 amino acid 

residues, than rERβ (Kuiper et al. 1996).  In comparison to rERα, the carboxyl terminal F 
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domain of rERβ is also shorter by 15 amino acid residues.  Interactions of the receptor 

with co-activator and co-repressor proteins occur across these A/B, E, and F domains and 

it is likely that receptor-specific responses in the context of different promoters and cell 

types occur as a result of these variable interactions (Kuiper et al. 1997).  We have 

previously generated probes for bERα based on the E domain.  The lack of specific 

sequence information about other, more variable regions of the bovine ER (bER) limits 

our ability to develop molecular probes capable of discriminating between mRNAs of the 

alpha and beta forms of the receptor when both are present. 

 

 

To date, the cloning and sequencing of the 5’ portion of the bERα cDNA has proven 

difficult.  Only recently has a nearly full-length cDNA encoding bERα been placed into 

the GenBank database (accession number: AY538775.1).  In addition, the first 39 bp of 

cDNA sequence immediately 3’ of the bERα promoter has been reported (accession 

number: AY332655.1).  Through the use of 5’ GeneRacer® (Invitrogen, Carlsbad CA) in 

conjunction with the GC-Melt® and Advantage 2® PCR system (BD Biosciences, Palo 

Alto CA) we have cloned and sequenced portions of the previously undefined 5’ region of 

bERα. 

 

MATERIALS AND METHODS 

RNA EXTRACTION 

Endometrium was collected from non-bred Holstein cows at a local abattoir, and 

transported in RNAlater®
 (Invitrogen, Carlsbad CA).  Samples were stored at 4°C until 
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RNA extraction.  Tissues (200 mg) were mechanically homogenized and total RNA 

extracted per the single-step Chomczynski and Sacchi method (Chomczynski & Sacchi 

1987).  Concentrations were determined by spectrophotometry and total RNA was stored 

at -80°C until GeneRacer® was performed. 

 

5′ RAPID ELONGATION OF CDNA ENDS 

An RNA oligo was ligated onto the 5′ region of decapped mRNA.  Reverse transcription 

was performed on 2 µg of template total RNA, with random hexamers, performed as 

described in the Invitrogen protocol, with modifications of using the thermal stable 

reverse transcriptase ThermalAce (Invitrogen, Carlsbad CA) at 60°C and dNTPs with 

deazo-GTPs.  GeneRacer PCR was then performed in the presence of GC-Melt® (BD 

Biosciences Clontech, Palo Alto CA) and DMSO (Sigma, St. Louis MO) under the 

conditions described in Table 1.   Products were resolved on 1.5% agarose gels and band 

extracted.  Bands were then purified through S.N.A.P. columns (Invitrogen, Carlsbad 

CA), PCR performed 4 times, and this was pooled and PCR purified (Quiagen, Valencia 

CA) for sequencing.  

Single pass sequencing using the CEQ 8000 and well-read dyes (Beckman-Coulter, 

Fullerton CA) was performed on PCR products (200 fmol) to confirm homology.  

Sequence was screened through the Basic Local Alignment Search Tool (Altschul et al. 

1990) in the NCBI database.  Confirmed fragments were cloned into the Topo PCR4 

 

SEQUENCING AND CLONING 
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vector (Invitrogen, Carlsbad CA) for preservation. These clones were then subjected to 

sequencing.  Gene specific primers (GSP) were then designed and used to perform primer 

walking in order to obtain additional sequence information in the bERα 5' region (Table 

1). 

 

RESULTS  

An approximately 900 bp band (Figure 1A) was obtained after the first round of 

GeneRacer® PCR with homologies of 96% to Ovis aries, 91% to Sus scrofa, and 88% to 

Homo sapiens.  This PCR product was then cloned and sequence verified.  A second 

primer was then designed from the 5′ region of this fragment and a second 493 bp band 

was obtained (Figure 1B), which showed similar homologies to those above.  Together 

these new sequences in conjunction with the previously known ligand binding domain 

have given us 1108 bp (Figure 2) which showed 95% homology to O. aries, 92% 

homology to S. scrofa, and 89% homology to H. sapiens.  

 

DISCUSSION 

Sequence information for cDNA of ERα has been reported in human (1986 (Greene et al. 

1986; Green et al. 1986), rat (1987 (Koike et al. 1987), as well as ovine and porcine.  

Following identification and cloning of ERβ in the rat (Kuiper et al. 1996), ERβ has also 

been cloned from the mouse (Tremblay et al. 1997; Pettersson et al. 1997), human 

(Mosselman et al. 1996), and bovine (Rosenfeld et al. 1999).  However, even with 

cloning of a bERβ in 1999, until recently full length bERα has been unavailable.  
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Recently full length clones have been generated and placed into the NCBI database 

(accession number: AY538775.1)), yet these do not have consensus 5′ sequence with 

available mRNA sequence available downstream of promoter data (accession number: 

AY332655.1).  Our data, in conjunction with the time taken for full-length sequence to be 

reported in a database, suggest that a molecular characteristic of bERα may create 

difficulties in the amplification process of this gene.  With the available sequence that we 

have created, with the newly available sequence, should provide data to create new 

molecular tools for detecting bERα.  This in turn may lead to new exploratory research 

into how this complex gene functions.  
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Table 1. Gene specific and GeneRacer® primers and PCR conditions 
 
  Primers Conditions 
GeneRacer® 5' 
Forward 

5’ CGACTGGAGCACGAGGACACTGA 3’              

Gene Specific 1 
Reverse 

5’ GCAGAGTCAGGCCTGCTTTGGCCATCA 3’     

Gene Specific 2 
Reverse 

5’ CCTCACTGAAAGGTGGTAGGGTCATACT 3’   

100 pmol primers, 1.25µl 
DMSO, 2.5 µl GC-Melt® 

35cycles; 95° 5min, 
58°C 1 min, 72° 1 min 
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Figure 1.  Electrophoresis analysis of PCR products following 5' RACE.  A) The 3' 

GSP1 primer was used with the 5' primer specific to the GeneRacer oligonucleotide at 

58°C annealing temperature, to amplify a 900 bp band. The band was PCR amplified, 

purified and sequenced. Once homology was verified the product was cloned into the 

PCR4® vector (Invitrogen), and the plasmid sequenced.  B)   A 3' GSP2 was generated 

from the newly identified sequence. Polymerase chain reaction was carried out with the 5' 

GeneRacer primer at 60°C annealing temperature. The 497 bp amplified product was 

extracted and subjected to PCR amplification and purification prior to sequencing.  The 

verified product was cloned and sequenced again. 
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Figure 2.  Alignment and proposed protein analysis. Base pair alignment of proposed 

sequence to AY538775.1, with the top line representing sequence obtained through the 

GeneRacer® protocol.  The two reverse GSP used to obtain sequence are in red font, with 

the proposed DBD and zinc finger region highlighted in blue and the proposed LBD 

highlighted in green. 
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1    aaggagactcgctactgtgcagggggcaangactaagcctcaggctaccaatacggaaga 60 
     |||||||||||||||||||||| | |||| ||||| |||||||||||||| |||||| |  
693  aaggagactcgctactgtgcagtgtgcaatgactatgcctcaggctaccattacgga-gt 751 
 
                                                                         
61   taggtcttgcgagggctgtaaggccttcctcaagagaagtatttcaaggacataaagact 120 
     | |||||||||||||||||||||||||| |||||||||||||| ||||||||||| |||| 
752  ttggtcttgcgagggctgtaaggccttcttcaagagaagtatt-caaggacataatgact 810 
 
                                                                         
121  tacaagagtccggccaccaaccagggtacgattgataaaaacaggaggaagaggctgtca 180 
      ||| | ||||||||||||||||| | |||||||||||||||||||||||||| |||||| 
811  -acatgtgtccggccaccaaccagtgcacgattgataaaaacaggaggaagag-ctgtca 868 
 
                                                                         
181  ggcctgccggctaagcaagtggctatggaagtgggcatgatgaaaggcggaatacggaaa 240 
     ||||||||||||| ||||||| ||||| |||||||||||||||||||||||||||||||| 
869  ggcctgccggctacgcaagtg-ctatg-aagtgggcatgatgaaaggcggaatacggaaa 926 
 
                                                                         
241  gaccgaagaggagggagaatgttgaaacacaagcgccagagagatgatggggagggcagg 300 
     |||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||| 
927  gaccgaagaggagggagaatgttgaagcacaagcgccagagagatgatggggagggcagg 986 
 
                                                                         
301  aacggaagcggggccctccggagacatgagagctgccaacctttggccaagccccattca 360 
     |||| |||||| ||||||||||||||||||||||||||||||||||||||||||||| || 
987  aacg-aagcggtgccctccggagacatgagagctgccaacctttggccaagccccat-ca 1044 
 
                                                                         
361  tgatttaaacacactaagaagaacagtccggtgttgtccctgacagctgaccagaatgat 420 
     ||||| |||||||||||||||||||| |||||||||||||||||||||||||||| |||| 
1045 tgatt-aaacacactaagaagaacagcccggtgttgtccctgacagctgaccaga-tgat 1102 

                                                                         

541  acacatgatcaactgggcaaagagggtgccaggatttgtggatctggccctccatgatca 600 

                                                                         

 
                                                                         
421  ctagtgccttgctggaggctgagccccccataattttattcttgagtatgaccctaccag 480 
     | |||||||||||||||||||||||||||||||| | ||||| ||||||||||||||||| 
1103 c-agtgccttgctggaggctgagccccccataatct-attct-gagtatgaccctaccag 1159 
 

481  acctttcagtgaggcttcaatgatgggcttgctgaccaaccttgcagacagggagctggt 540 
     |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
1160 acctttcagtgaggcttcaatgatgggcttgctgaccaaccttgcagacagggagctggt 1219 
 
                                                                         

     |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
1220 acacatgatcaactgggcaaagagggtgccaggatttgtggatctggccctccatgatca 1279 
 

601  agtccaccttttggaatgtgcctggctagagatcctcatgattggtcttgtctggcgctc 660 
     |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
1280 agtccaccttttggaatgtgcctggctagagatcctcatgattggtcttgtctggcgctc 1339 
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661  catggagcatccagggaagctcctatttgctcctaaccttctcctggacaggaaccaggg 720 
     |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
1340 catggagcatccagggaagctcctatttgctcctaaccttctcctggacaggaaccaggg 1399 
 
                                                                         
721  aaaatgtgtggaaggcatggtggagatctttgacatgttgctggctacttcgtctcggtt 780 
     |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
1400 aaaatgtgtggaaggcatggtggagatctttgacatgttgctggctacttcgtctcggtt 1459 
 
                                                                         
781  ccgtatgatgaatctccagggagaagagtttgtgtgcctcaaatccatcatcttgcttaa 840 
     |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
1460 ccgtatgatgaatctccagggagaagagtttgtgtgcctcaaatccatcatcttgcttaa 1519 
 
                                                                         
841  tttctggagtgtacacatttctgtccagcacttctgaggtcttctggaagagaaggacca 900 
      |||||||||||||||||||||||||||||| ||||||||| |||||||||||||||||| 
1520 -ttctggagtgtacacatttctgtccagcac-tctgaggtc-tctggaagagaaggacca 1576 
 

                                                                         

 
                                                                         

                                         

  
  Legend: 
 DNA Binding Domain 

 
 Reverse GSPs 

                                                                         
901  catccaccgcgtcctggacaagatcacagacaccttgatccatctgatggccaaagcagg 960 
     |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
1577 catccaccgcgtcctggacaagatcacagacaccttgatccatctgatggccaaagcagg 1636 
 

961  cctgactctgcagcagcagcaccggcgtctgggccaactcctcctcatcctctctcactt 1020 
     |||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||| 
1637 cctgactctgcagcagcagcaccggcgtctggcccaactcctcctcatcctctctcactt 1696 

1021 caggcacatgagcaacaaaggcatggagcatctatacagcatgaagtgcaagaacgtggt 1080 
     |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
1697 caggcacatgagcaacaaaggcatggagcatctatacagcatgaagtgcaagaacgtggt 1756 
 

1081 gcctctctatgacctgctgctggagatg 1108 
     ||||||||| |||||||||||||||||| 
1757 gcctctctacgacctgctgctggagatg 1784 
 
 

  
 Ligand Binding Domain 
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The study of estrogen receptors are of interest due to the critical role of the estrogen 
signaling system in the physiology of multiple tissue systems.  There are two distinct 
receptor types, ERα or ERβ.  Due to structural and functional differences, our interest lies 
in discovering unique independent gene expression profiles in the presence of ERα or 
ERβ.  We have examined gene regulation of the two ER isotypes within a rat embryonic 
fibroblast cell culture model designed to evaluate effects of each receptor protein isolated 
from the influence of the other; Rat1+ERα, Rat1+ERβ, and precursor Rat1. Using this in 
vitro cell model, a treatment scheme involving 17β-estradiol (E2) treatment for 24h was 
used to identify unique gene expression profiles.  This was later followed by single dose 
treatments of diethylstilbestrol, 4-hydroxytamoxifen, raloxifene-HCl, or genistein for 6, 
9, 12, 18, or 24 h.  Treatment was followed by extraction of total RNA.  To evaluate 
independent roles of ER, cDNA were generated from Rat1+ERα, Rat1+ERβ and parental 
Rat1 cells following treatment with a single dose of E2 or an ethanol vehicle for 24 hours 
and subjected to suppression subtractive hybridization (SSH).  The SSH technique 
demonstrated that ERα and ERβ can result in differential gene expression.  Genes pro–
alpha–2(I) collagen, procollagen C–proteinase enhancer protein, cathepsin L, and 
receptor for activated protein kinase C isolated through SSH, in addition to previously 
studied progesterone receptor (PR), were identified for real-time quantitative polymerase 
chain reaction analysis to determine profile changes in the presence of different ligands 
over time.  These data demonstrate that unique gene expression patterns exist within cells 
of the same genetic background, and that profile interactions are specific to ERα or ERβ 
expression.  The effects of ER isotypes as it relates to PR expression suggest that ERα in 
the presence of E2 has a major regulatory role, and that a possible cross-talk pathway 
exists through ERβ mediation.  The effects upon genes involved in extracellular matrix 
formation and general cell processes in the presence of ERα or ERβ aids in understanding 
treatment effects and supplies impetus to better elucidate the pathway regulation involved 
in ER biology.  
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