
A SOFTWARE DESIGN FOR THE PROGRAMMING

LAJ.'JGUAGE PLANS

By

CAROL ANNE SAMUEL
/_;

Bachelor of Arts

University of Rochester

Rochester, New York

1967

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1982

A SOFTWARE DESIGN FOR THE PROGRAMMING

LANGUAGE PLANS

Thesis Approved:

Dean of Graduate College

ii

1131373 I

PREFACE

This thesis serves two purposes. The first is to

provide an explanation of the system design of an

implementation of the Programming Language for Allocation

and Network Scheduling (PLANS). The second is to document

the extension of the language to support character string

variables and operations. It is assumed that the reader has

some knowledge of the PLANS language and will refer to the

User's Guide for an explanation of the allowable statement

forms [6].

The software referenced is written in FORTRAN 77. This

set of programs is in the possession of Dr. James R. Van

Doren, Computing and Information Sciences Department,

Oklahoma State University.

I would like to thank Dr. Donald D. Fisher and Dr.

George E.

help and

Hedrick for serving on my committee and for their

guidance throughout my graduate study. Special

thanks are due Dr. Fisher who provided the encouragement I

needed to get me going again.

I am particularly grateful to Dr. James R. Van Doren,

my major adviser, who was always available to patiently

answer my innumerable questions. He provided me with a

framework in which I was encouraged to think, to discuss and

to learn but in which frustrations were kept to a minimum.

iii

I wish to thank my entire family for their many

sacrifices but particularly my husband, Mark, who never

faltered in his encouragement and confidence in my

abilities.

iv

Chapter

I.

II.

I I I.

IV.

TABLE OF CONTENTS

INTRODUCTION.

Overview
History.

THE TRANSLATOR.

Introduction
File, Storage and Data Structures

The Library File
The Reserved LabeljValue File
Binary Search Trees
Dynamic Storage Allocation
The Constant Tables
The Procedure/Block Table
Local Symbol Tables
The Reserved Label/Value Table
The Parsing Tables ..
The Pseudo-Code Table
The Translator Storage Block
The Run File ...

Subsystem Organization
Overview ..
Main Control ...
Parsing/Code Generation
Error Handling

THE INTERPRETER

Introduction
Run-Time Storage Organization

Pseudo-Machine Storage Space .
The Pseudo-Machine Space Control

Block
The Operation Code Control Table
The Run-Time Stack

Subsystem Organization
Overview
The Fetch/Execute Cycle

THE CHARACTER STRING EXTENSION

Introduction

V

Page

1

2
3

5

5
9
9
9

10
11
12
13
14
16
17
18
19
20
23
23
24
25
"7 ,t..

29

29
30
30

35
36
37
40
40
4:1

43

4:3

Chapter

V.

Existing Character String Features
Changes Affecting the User

Explicit Data Types
String Functions ..
Error Handling ...

Translator Changes
Explicit Data Types
Lexical Analyzer Changes
New Operation Codes
Parser Changes .

Interpreter Changes .
String Handling
New Instructions

CONCLUSIONS

Implementation Completion
Possible Further Enhancements

A SELECTED BIBLIOGRAPHY

APPENDIX A - INDEX TO THE TRANSLATOR SUBSYSTEM

APPENDIX B - TRANSLATOR COMMON BLOCKS

APPENDIX C - TRANSLATOR PARSER/CODE GENERATOR ROUTINE

Page

44
45
45
46
47
47
47
48
48
50
51
51
53

55

55
57

59

61

69

WITH GRAMMAR RULES INCLUDED 72

APPENDIX D - TRANSLATOR SOURCE ROUTINES 78

APPENDIX E - CHANGES TO THE TRANSLATOR AS A RESULT OF
THE CHARACTER STRING EXTENSION 100

APPENDIX F - INDEX TO THE INTERPRETER SUBSYSTEM 105

APPENDIX G - INTERPRETER COMMON BLOCKS 110

APPENDIX H - INTERPRETER SOURCE ROUTINES 113

APPENDIX I - PSEUDO-MACHINE INSTRUCTION SET 132

APPENDIX J - INTERPRETER PDL'S FOR THE CHARACTER
STRING EXTENSION 151

vi

LIST OF FIGURES

Figure

1. The Three Translator Modes

2. A PLANS Tree

3. The Translator Storage Block

4. The Run File

5. Run-Time Storage Organization

6. Pseudo-Machine Storage

7. PLANS Tree Node Representation

8. PDL for Fetch/Execute Control Loop

9. A Sample of Valid PLANS Statements

10. New Grammar Rules

vii

Page

6

8

20

21

29

31

31

42

46

50

CHAPTER I

INTRODUCTION

The Programming Language for Allocation and Network

Scheduling {PLANS) is a high level language which supports

dynamic manipulation of tree data structures. It was

originally defined in 1973-74 as a suitable language to

support heuristic scheduling algorithms [6].

The prototype version, which functioned in a PL/I

environment, was intended primarily to illustrate the

language design feasibility. The design of the system

reported in this thesis was heavily influenced by several

other objectives. Portability was an important concern and

FORTRAN 77 was chosen because of its general availability.

There was also a critical need for efficient space usage and

fast execution relative to previous implementations of the

language.

Originally,

processing and

implement this.

the language was intended for batch

the present

However, the.

software was designed to

data structure manipulation

functions in PLANS are sufficiently rich that its extension

to support interactive data structure manipulation is

considered desirable. Character string variables and

conventional string operations were not included in the

1

2

original design and are needed to accomplish the extension.

The implementation of the PLANS system referenced in

this thesis is under continuing development on the IBM

370/168 computer at the Oklahoma State University Computing

Center. It is written in FORTRAN 77 and includes a

translator and an interpreter. ,A library of PLANS

subroutines (PLUSLIB) relevant for scheduling applications

is also available.

Overview

The major objectives of this thesis are to provide an

explanation of the system design of an implementation of the

PLANS language and to define and document the extension of

the language to support character string variables and

operations. The software consists of a translator and an

interpreter which are described in Chapters II and III

respectively. The character string extension is explained

in Chapter IV. Chapter V serves as a summary chapter.

Chapter II describes the translator as it was defined

prior to extending it. Its primary function is to accept

PLANS programs as input and translate them into pseudo-code

for a hypothetical "PLANS machine". The techniques used for

lexical analysis, parsing, code generation and error

handling are described along with the tables and files

generated in the process and their respective storage

methods. The result of successful translation is a run file

which contains the pseudo-code generated, along with tables

3

and other critical information required by the interpreter.

Chapter III descibes the interpreter which accepts the

run file produced by the translator and uses the pseudo-code

therein to execute a PLANS program. The techniques used for

fetching,

described

decoding and executing the pseudo-code are

along with the supporting file and data

structures.

Chapter IV discusses the character string extension in

terms of how it affects the user, the translator and the

interpreter. A complete explanation of the PLANS statements

added is presented, along with a detailed discussion of the

modifications and additions required.

Chapter V relates the author's experience in managing

the modifications mentioned. (The software development

environment clearly has a significant impact on one's

productivity for a large and complex software project.)

Also some possibly desirable language enhancements are

presented.

History

In 1973, the NASA Lyndon B. Johnson Space Center

contracted the Martin Marietta Corporation, Denver Division

(Contract NAS 9-13616)

achieve a single goal:

to design a high level language to

to allow
constantly
allocation
designs to
functional

the designer of experimental or
changing scheduling and resource

a'lgori thms to translate his algorithm
working code directly from their basic
descriptions, without intermediate

detailed program design steps, without highly
specialized programming expertise, and at a
minimum span time and manpower costs [6, p. 1.1].

4

The result was the Programming Language for Allocation and

Network Scheduling (PLANS) which incorporated dynamic

manipulation of tree data structures at execution time

allowing easy, direct expression of the kinds of functions

frequently found in scheduling and resource allocation

programs. The prototype software implementation of PLANS

functioned in a PL/I environment.

It is important to note that PLANS is a data structure

manipulation language. For this reason, its applicability

transcends its original functional design goal.

The major portion of the present version of the PLANS

software was designed and implemented by the author's

adviser, Dr. James R. Van Doren while employed by Science

Applications, Inc. (Englewood, Colorado) during a leave of

absence from Oklahoma State University. It was installed on

a PRIME minicomputer and a UNIVAC 1110 system under his

direction. The funding for this was again provided by the

NASA Lyndon B. Johnson Space Center. This version applied

the experience and lessons learned from the PL/I based

prototype to substantially reduce execution storage

requirements and improve the execution speed of PLANS tree

manipulation operations.

CHAPTER II

THE TRANSLATOR

Introduction

This chapter is divided into two main sections. The

first describes the structure and purpose of the tables and

files generated by the translator and the second describes

the subsystem organization.

The principal purpose of the translator is to generate

a file containing pseudo-code, tables and other necessary

information for an idealized hypothetical "PLANS machine".

This file is called the "run file" and represents the

interface between the translator and the interpreter [7].

Secondary purposes are to create a reserved label/value file

and an indexed library file. Special translator options are

specified for the creation of the latter. Figure 1 depicts

the input and output associated with each of these modes.

It is essential to minimize space usage because of the

possibility of large tree structures. Since these trees

often contain a significant degree of redundancy in their

labels and values, global tables for numeric and string

constants are used so that only one copy, rather than

multiple copies, of a constant need exist. In particular,

due to the dynamic nature of PLANS trees, a reserved

5

I

I Reserved I
I Label/Value I
I File I

I

V

User
Program

. I
I

V V V

Translator

V

Library
File

I Run File Listings
I

User Library
Program File

V V

User Mode

Library
Routines

I
I
V

Translator Translator

V V V

Reserved I

V

I Label/Value I Listings Library Listings
I File I File

Reserved Label/Value Library File
File Create Mode Create Mode

Figure 1. The Three Translator Modes

6

7

label/value global table is incorporated. (The reader

should reference Figure 2 for an example of the redundancy

in PLANS trees and the PLANS User's Guide for the use of

strings for tree labels and values [6].) Its use is

critical at interpretation time to avoid redundant copying

of character strings if at all possible.

As a consequence of the use of global tables, no

linkage editor exists. Rather than machine code, very

compact pseudo-code designed specifically to support PLANS

language features is generated. The translator was designed

to be efficient since it is necessary to re-translate all

modules, including relevant library routines, each time.

Only one pass is made over the source code and the parser is

"hard coded" to minimize translation time.

Since the reserved label/value and library files must

be created

mode (see

followed

prior to being input to the translator

Figure 1), they are described first.

by a description of the tables used

in user

This is

in the

translator and the support structures necessary to implement

them [2 , 5 , 12] . There are six classes of tables consisting

of the constant tables, the procedure/block table, local

symbol tables (identifiers local to a procedure or begin

block), the reserved label/value table, parsing tables and

the pseudo-code table [8]. The first three and sixth are

constructed as parsing proceeds. The fourth one (optional)

is constructed from a reserved label/value file at

translator initialization time. The fifth class of tables

I
I

I
I

I
I

I
r-,

$PAYLOAD

r-,

I I
L..J

/I\
/ I \

/ I \
I I \

/ I \
I I \

/ I \
I I \

/ I \
/ I \

/ I \
/ I \

I I \
/ I \

/ I \
/ I \

r-, r-, r-,

8

I ILIFESCIENCE I !TELESCOPE I !MANUFACTURING
L..J L.J L.J

/I I
/I I

I I I
I I
I I
I I
I I
I I
I I
I I

r-, r-, r-,
I !WEIGHT I !WINDOW I !WINDOW I !WINDOW
L.J

I
9000

L.J

I\
I \

I \
I \

r-, r-,
I ISTARTI IEND
L.J

I
10

L.J

I
143

L.J

I\
I \

I \
I \

r-, r-,
I ISTARTI IEND
L.J

I
40

L..J

I
216

L.J

I\
·/ \
I \

I \
r-, r-,
I ISTARTI IEND
L.J

I
8

L.J

I
840

Source: PLANS User's Guide [6, p. 2.5]

Figure 2. A PLANS Tree

9

is a static set

lexical analysis.

discussed followed

of tables associated with parsing and

The organization of the tables is then

by a description of the generated run

file. For a detailed description of the translator

subsystems, including the common blocks, the grammar rules

and the individual subroutines see Appendices B, C and D,

respectively. (Appendix A serves as an index, in collating

sequence order, into these three appendices.)

File, Storage and Data Structures

The Library File

The library file contains a number of .PLANS routines

which can be called from a user's PLANS program. If an

addition, change or deletion of a library file routine is

required, the entire file must be reprocessed using the

library creation mode of the translator (*CREATELIB control

record). An indexed direct access file is created by

subsystem LIB (library) so that later access to it may be

effected by procedure name. No code is generated since the

library routines are kept in source form but syntax checking

is done on the files during creation. (Object files are

never created for reasons mentioned above.)

The Reserved Label/Value File

The purpose of the reserved label/value file is to save

both time and space, particularly with respect to PLANS tree

label and string values. In effect the creation and use of

10

reserved labels and values amounts to a two pass use of the

translator. If the reserved label/value feature is not

used, an enormous amount of dynamic storage may be required

at run time with accompanying execution speed penalties.

If a user's program is being translated for execution,

the rese.rved label/value file, if it exists, is entered into

the reserved label/value table in the translator storage

block (see below). Both the file and table are static at

this time. Any strings not found in this table are entered

in the global string constant table instead.

If the translator is in reserved label/value file

create mode (*CREATELBVL control record), then all tree

label and value strings in the user program detected by the

translator are entered in the global string constant table.

At the end of the run, that table is traversed in collating

sequence order and the string constants are

reserved label/value file for later

translation.

Binary Search Trees

written to the

use in actual

The subsystem SRCH (search) contains all the

subroutines associated with binary tree management used for

the constant and local symbol tables. The common block

TABLE contains the binary tree node structure. The trees

created and maintained are of the unconstrained variety.

(Balancing techniques are not used.)

Each node is of the form

11

I LLEFT I LRIGHT I LNAME I LVALUE I

where LLEFT is the left link and LRIGHT is the right link.

LNAME and LVALUE are dependent upon the type of token that

the node represents.

A common pool of nodes is maintained for all the tables

which are in binary tree form. The available list is

maintained by using the node in position one as a dummy

node. Its left link is used as a root node pointer and its

right link is used as a list header for available nodes.

Right links of available nodes are used to linearly link

this list while the remaining node fields are set to null.

Dynamic Storage Allocation

The subsystem DYNAM (dynamic storage) contains all the

subroutines associated with dynamic storage management. In

the translator, dynamic storage is used for all strings not

in the reserved label/value table. When an exit from

translating a PLANS procedure occurs, all the space in

dynamic storage used by the strings associated with its

local symbol table is released for reuse.

Dynamic storage management is based on the generalized

Fibonacci sequence based buddy system [1,3]. Storage is

allocated in block sizes according to a specified

generalized Fibonacci sequence of the form

SIZE(n) = SIZE(n-1) + SIZE(n-k)

12

where the entire set of block sizes are determined by

picking k and the first k values of SIZE. Allocation of a

block of storage is consistent with the request size. Only

sizes in the specified sequence are actually allocated and a

large block may be split to satisfy the request. Upon

deallocation, the block is merged with its buddy if it is

free. This merging continues as far as possible, within the

buddy system.

The named common block DSTORP (dynamic storage pool)

contains the dynamic storage space in the array ISBLK.

The Constant Tables

The three types of constant tables are the string

constant, the integer constant and the floating point

constant tables. They are constructed as binary search

trees with the lexical analyzer (subsystem LEX) having the

responsibility for building them. All of these tables are

global to the entire program being translated (including

library modules). Thus, if the integer constant 3 occurs in

eight external procedures, there will be only one copy of

it. None of the three tables is ever cleared or has any

entries deleted.

Subsystem LEX (lexical analysis) converts numeric

constants to internal form with the LNAME node field used to

hold this internal representation. The LVALUE node field is

used to represent the integer or floating point address

space location.

13

For string constants, the LNAME node field contains a

pointer to the ISBLK dynamic storage block where such a

constant is actually stored and the LVALUE field contains a

string constant address space location. Subsystem DYNAM

(dynamic storage) is used to allocate space from the dynamic

storage pool. String constants arise,from delimited strings

or tree label qualifiers that are not in the reserved

label/value table.

The Procedure/Block Table

The procedure/block table contains one entry for each

procedure or BEGIN block processed (or procedure CALLed but

not translated yet) with the following fields:

BNAME

BTYPE
BLEVEL
BPARNT
BPCNT

BBTSPT

BADDRS

BUNDRF

BASTOR

pointer to procedure name in dynamic storage
(null for begin block)
block type code
block level
index of parent block entry
parameter count
(Valid only for procedure blocks)
block binary tree symbol table pointer
(root node of binary tree)
pseudo-code address of the first word of
generated code for the block
(relative line number for library modules
during library creation)
number of undefined program labels in the
block
display storage requirement

The table serves several other purposes as well. It

contains procedure control information placed in the run

file and used by the interpreter at run time. It contains

unresolved procedure name information for consulting a

supplied PLANS library. If in library create mode, it

14

contains index information to be placed in the library file

as a result of the library creation run.

In addition, there is a "root" block table whose

position

ultimate

is always one. The root block entry is the

ancestor of all other entries and the direct

ancestor of external procedures. Its BBTSPT field

identifies a symbol table whose only correct entries are

file names. In effect, these names are external symbols.

If a severe block nesting level error occurs, other symbols

may get entered, but code generation and run file building

are suspended.

The procedure/block table is essentially a tree

structured table in which the tree structure corresponds to

the procedure/block nesting structure of a PLANS program.

The common block TABLE contains the components of the

table and the subsystems BLKTB (block table) and LEX

(lexical analysis} contain the routines which access and/or

modify it.

Local Symbol Tables

There is a local symbol table for a procedure block or

BEGIN block identified by the corresponding procedure/block

table entry and each such table is maintained in the form of

a binary search tree.

The three general classes of symbols which may be

placed in a local symbol table are tree name, program label

(statement label) and array or variable name. For each type

15

of entry, the binary tree node field LNAME contains a

pointer to the character string for the symbol in dynamic

storage. (DSALC is used to allocate space for such a name.)

The field LVALUE contains a pointer to a two word dynamic

storage block which is used as follows:

Word 1 - pseudo-machine display storage address

Word 2 - (4 bytes from left to right)

Byte 1 - major type code
T - tree name
L - program label
I - integer variable
F - floating point variable
S - string variable (character string

extension)

Byte 2 - subtype code
Tree names

N - not referenced but declared
R - standard tree name reference
D - defined reference (DEFINE statement

or USING pointer clause reference)
P - procedure formal parameter

Program labels
U - referenced but undef~ned
D - defined

Variable names
N - normal local reference
P - formal procedure parameter

Byte 3 - level code
Tree name or variable name

Block level
Program label (statement label)

Do group nesting level

Byte 4 - number of dimensions (valid only
for declared variable array names)

For tree names and variable names, scope considerations

apply. If a locally used name is not declared local or is

not in the formal parameter list, its table entry defaults

to the outer most block in which a local or parameter

16

declaration occurs. If no such explicit declaration exists,

it defaults to the containing external procedure's local

symbol table. Program labels are local only. A direct jump

out of a BEGIN block or internal procedure is strictly

prohibited. Such an attempt will result in an undefined

program label error in the block in,which such a jump (GO

TO) is attempted.

When translation of.a program block is complete, and no

request for a symbol table listing option has been made, the

local symbol table is cleared. (If a request for the

listing option is made, the table is retained until the

containing external procedure has been translated.) Dynamic

storage blocks for symbols and values are released and

binary tree nodes are made available for additional use.

The Reserved Label/Value Table

The use of this table is the most critical

consideration in the generation of efficient PLANS pseudo

code in terms of both time and storage. It is loaded at

translator initialization time from a reserved label/value

file if it was created during a previous run in which the

reserved label/value processing option was selected.

A pointer vector initialized in ISBLK (see

common block and LBVLP vector equivalence with

DSTORP

ISBLK)

supports

strings.

binary

The

searching on variable length character

labels/values

character strings representing the reserved

are loaded just beyond the pointer vector.

17

Actual dynamic storage initialization cannot take place

until this table is loaded. (The DSTART variable in DSTORP

controls the starting point.)

Each delimited character string or the label qualifier

in processed PLANS statements is checked against this table.

If it is not present, then and only then will the string be

entered in the string constant table.

All pseudo-code references to

delimited strings which are in

table are by relative order in

tree label qualifiers or

the reserved label/value

the table. This table

becomes part of the generated

of such

run file and eliminates

redundant storage

interpretation

manipulated. In

time when

addition,

trees

the

character strings

are constructed

collating sequence

at

and

order

facilitates simple integer address tests in lieu of

character string comparisons.

The subsystem LABVAL (label/value) contains the

management routines for this table.

The Parsing Tables

The parsing tables consist of the key symbol and the

key word tables. The subsystem LEX (lexical analysis) is

used to detect these tokens with a binary search from

subsystem SRCH (search) used to traverse the key word table.

The strings which make up the key (reserved) words are

initialized in collating sequence order

statements in TRINI (translator initialization).

using DATA

This list

18

is accessed via a table of pointers, KWP, which contains the

addresses of the reserved word strings. (Actually this list

is stored in the same array used for dynamic storage (ISBLK}

in order to facilitate uniform addressing of strings.)

A major type, NEWSTT, and a subtype, NEWTOK, are set in

the subsystem LEX (lexical analysis) to classify the tokens

extracted. The address values of KWP are equivalenced in

the common block TOKDAT (token data) to symbolic constants

which represent the key words. Symbolic constants are set

up in TRINI to represent the major type classifications and

the key symbols. If a key word match is found, NEWSTT is

set to the symbolic constant KWORD and NEWTOK is set to the

value of the pointer (address) in KWP where the match was

found.

KSYM and

symbol.

If a key symbol match is found,

NEWNUM is set to the constant

NEWSTT is set to

representing that

The Pseudo-Code Table

The pseudo-code

constructed with the

table

help

(generated pseudo-code) is

of subsystem CGSUP (code

generation support) and the vector IFORM. The placement of

pseudo-instructions in a FORTRAN -,7ector represents a

compromise between storage space requirements and execution

(interpretation) time.

IFORM is used to determine the instruction format code

from the operation

pseudo-code table

code number. For debug

can be output using a

purposes, the

vector IMNEMO

19

containing four character symbolic operation codes.

can be found in common block GENCOD (generate code).

These

There are three different formats for instructions:

1. operation code with no address field

2. operation code with display register and offset
address (only for display storage)

3. operation code with address relative to the base
of specialized addressing areas (such as constant
space or pseudo-code space but not dynamic
storage)

Format 1 instructions are packed four to a word, if

possible. Format 2 and 3 instructions each occupy a full

word and are not allowed to cross a FORTRAN word boundary.

All addresses in the pseudo-code are intended to be

word addresses. Thus a no-op or null instruction code is

required as a filler (all zero bits) for words containing

less than four Format 1 instructions. Two examples

illustrate the conditions where fillers may be used:

1. the next instruction to be executed is a Format 2
or 3 instruction and the current instruction is a
Format 1 instruction at byte offset Oto 2 of the
word containing it

2. the next instruction is the target of a branch and
the current instruction is a Format 1 instruction
at byte offset Oto 2 of the word containing it.

The Translator Storage Block

The common block DSTORP contains the translator storage

block pictured in Figure 3. The lack of pointer variables

in FORTRAN forced the use of a single array with subscripts

20

as pointers in order to easily access any part of the block.

I
I
I

Dynamic
Storage

DSTART~->~~~~~~~~~~~~~~~~

I
I
I

Reserved
Label/Value

Table

Reserved Words

!Dynamic Storage List Headers I

Figure 3. The Translator Storage Block

The first part of the block contains the list headers

necessary for the Fibonacci sequence buddy system. The

second part is statically initialized with the reserved

words. The third part, containing the reserved label/value

table, is initialized at translation time. The remainder of

the block is available for dynamic storage with DSTART set

to point to its beginning. The size of dynamic storage is

dependent upon the size of the reserved label/value table.

The subsystem DYNAM (dynamic storage) is responsible

for all the dynamic storage management functions.

The Run File

The run file is created by the translator and is made

21

up of some number of fixed length direct access (by relative

number) records as depicted in Figure 4.

Control Record

Pseudo-Code

Integer Constants

Floating Point Constants

Reserved Label/Value Table

String Constants

Procedure/Block Table

Figure 4. The Run File

The first record in the file is a control record which

contains critical information about the remainder of the run

file and also certain switches and values which must be used

to initialize the interpreter. The remainder of the file

22

contains the pseudo-code generated, the procedure block

table and the constant tables (integer constants, floating

point constants, reserved label/value strings including the

ordered pointer list and string constants not in the

reserved label/value list).

The translator does not complete the control record

until the rest of the run file has been built. Initially,

the translator fills up this record with minus ones and does

not place valid information in this record unless

compilation completes properly. The existence of minus ones

in the control record marks the run file as not executable.

The detailed format of the control record, by word, is:

1

2

3

4

5

6

7

8

9

10

11

12

13

record length of run file records

number of binary tree nodes to reserve in
the pseudo-machine space

number of dynamic storage words to reserve
in the pseudo-machine space

trace switch

statistics switch

number of words of generated pseudo-code

starting record number for the pseudo-code
in the run file

number of words for constant tables

starting record number in the run file for
the constant tables

number of integer constants

number of floating point constants

number of string words

number of reserved label/value strings

14

15

16

17

18

19

20

21

The

number of reserved label/value string words

number of words in the procedure/block table

starting record number in the run file for
the procedure/block table

number of entries in the procedure/block
table

procedure/block table iBdex of the main
program

number of standard file units following
(presently 2)

FORTRAN unit number for SYSIN file

FORTRAN unit number for SYSPRINT file

23

routines handling the management functions

concerning the run file are contained in subsystem RUNFIL.

Subsystem Organization

Overview

Subsystem MNCTL (main control) contains the main

program. It handles initialization and wrapup functions,

passing control to subsystem PRSCG (parser/code generator)

when an external procedure is encountered. Subsystem PRSCG

controls the translation of the external procedure. Both

rely on the routines described above for table and file

management, and subsystems PAGE, ERROR and CHRST (character

string) to perform output page management, error handling

and character string manipulations, respectively. Subsystem

CHRST was necessary because FORTRAN does not adequately

support character string functions.

24

Main Control

Subsystem MNCTL (main control) handles initializations

of machine dependent parameters, error processing, the

binary tree list, dynamic storage and, if necessary, the run

file using subroutines in the appropriate subsystems.

There are four types of control records which may be

used to specify translator run options. They are

*CREATELIB
creates indexed library file for automatic use
for unresolved procedure references

*CREATELBVL
creates reserved label/value file from a PLANS
program for later use in a code generation run

*PROCESS(option list)
normal control record used immediately ahead of
every external procedure to be compiled

*FILES(file identifier - FORTRAN unit number
equivalence list)
specifies the FORTRAN unit numbers to be
associated with PLANS file names and used at
execution time

and each is processed in MNCTL (*PROCESS uses subsystem

OPTION to process the option list).

For each external procedure encountered, control is

passed to subsystem PRSCG (parser/code generator) until

translation of the procedure is completed. Upon completion,

error messages and source listings are output to the printer

and the run file is output to disk, if any are required.

The next *PROCESS record and external procedure is processed

until no more remain.

Wrapup consists of outputting the library file if the

*CREATELIB record is present or the reserved label/value

25

file from the global string constant file if the *CREATELBVL

record is present. Otherwise, the library is processed for

unresolved external references and the run file is completed

if translation was successful.

Parsing/Code Generation

The main parsing routines form the driver for the

translator.

The grammar is type LL(l).

deterministic. (Iteration is

The parse is top-down and

used in lieu of left

recursion.) Only one token look ahead is used with no back

tracking. It is "hard coded" with pseudo-code (see Chapter

III and Appendix I) and some error recovery directly

associated with the appropriate parsing routine. The

primary reason for this is efficiency and speed. (The

reader should keep in mind that library routines, if used,

are always retranslated. No object modules are ever

created.)

All parsing rules requiring recursion are set up in

subsystem I:RSCG (parser/code generator). Those which do not

are called from PRSCG, when needed. They consist of

routines in subsystem PRSSP (parser support) which parse the

declaration statements and the formal parameter list.

Because of the lack of recursion in FORTRAN, it is

simulated in PRSCG using push down stacks GSTACK (general

stack) for parameter passing and ASTACK (address stack) to

handle the proper return address. Symbolic labels, which

26

represent the left hand side of each rule, have been set up

with a branch to the label serving as the invocation of that

rule.

GSTACK also serves several other functions. The

grammar does not reflect the data type requirements for

expressions, so operands are placed on GSTACK for type

checking at the appropriate time. If the data type is not

what is required, a conversion instruction is generated, if

possible, otherwise, a severe error is generated. GSTACK is

also used to save control information from a DO statement

until its corresponding END is found where the appropriate

instructions are generated.

Since PLANS is a one pass compiler,

deal with forward references.

it is necessary to

Procedure calls are handled through a transfer vector

(BADDRS) in the procedure/block table. If a call is parsed,

and no entry for that procedure exists in the table, one is

created. A linked list is formed with BADDRS pointing to

the pseudo-code instruction generated for the call. If more

calls are encountered before the reference can be resolved,

they are joined to the linked list through their pseudo-code

instruction. When the procedure name is reached, the list

is traversed to resolve all the references.

An explicit forward reference (a GO TO for example) is

handled in a similar manner except that its list pointer

contains a temporary negative address of the pseudo-code

instruction through the symbol table.

27

Structured entities which are nested in nature and

cannot cross one another's boundaries (such as DO groups,

IF-THEN-ELSE statements, DO FOR ALL SUBNODES) make use of a

stack (PSASP(2,*)) and subsystem CGSUP (code generation

support). At least two entries are needed. The first

contains the value of the program counter when the entity is

first encountered and the second is a forward reference

pointer which is initialized to null. If multiple transfers

to the same reference point are required

10 WHILE J = K;), a linked list is

(as in DO I= 1 TO

formed. When the

transfer point is reached, all its references are resolved

by traversing the list and the entries are popped from the

stack. For RETURN statements, a different stack is used

(PSASP(l,*)) since they can cross boundaries with the other

types of implicit transfers. When their references are

resolved at the end of the containing procedure, their

transfer point is to pseudo-code which prunes all local

trees.

Error Handling

The four categories of errors generated are note,

warning, severe error and fatal error. The first two

categories do not affect whether interpretation will take

place but rather serve to inform the user that some remedial

action has occurred. A severe error indicates that

interpretation is no longer possible but an attempt is made

to recover and continue compilation. A fatal error

28

immediately terminates compilation with

interpretation.

no attempt at

Where possible, an effort is made to handle an error

where it occurs and in the least disruptive manner. In the

case of a missing key symbol or key noise word, a note or

warning is issued when the parser discovers it missing. The

grammar does not reflect data type requirements but rather

the parser handles the checking and generates a severe error

only if conversion is not possible. It is sometimes

necessary to recover by scanning until the next DO, BEGIN,

PROC, END or EOF (end of file).

when an unexpected token appears.

This is usually the case

To continue processing,

TFFLG is set to FALSE to return to the appropriate grammar

rule. If table capacity is exceeded or if stack overflow or

underflow occur fatal errors ensue.

CHAPTER III

THE INTERPRETER

Introduction

The purpose of the interpreter is to execute PLANS

programs (pseudo-code for an idealized "PLANS machine")

using the run file produced by the translator.

This chapter begins with a description of the data

structures pictured in Figure 5 and their support mechanisms

followed by a description of the subsystem organization.

I I Pseudo-Machine
I r>I Control
I I I I Block
I I <j

Pseudo-Machine I I I
Storage 1<->1 Interpreter I

Space I I 1<->I Operation Code
I I I I Control
I I I <1 I Table
! I
I I
I I
l L>j
I I Run-Time
I Files I Stack

Figure 5. Run-Time Storage Organization

29

30

An important aspect of the PLANS language is the

manipulation of trees at execution time. Since the tree

structures can be highly dynamic, a substantial number of

PLANS statements are devoted to accomplish tree functions

easily. They include tree naming, structure modification,

traversal, accessing, input and output statements. (For a

detailed description of all the individual instructions see

Appendix I [9, 13].) These functions require substantial

support routines and therefore most of the execution time is

spent in these routines rather than in instruction decoding.

The pseudo~code generated is very compact, with primitive

operations designed specifically to support PLANS source

language features. This greatly obviates the time

degradation normally associated with interpretive execution

and contributes to space conservation due to the compactness

of the specially designed pseudo-code.

Run-time Storage Organization

Pseudo-Machine Storage Space

Pseudo-machine space (in common block INGLOB),

initialized from the run file file, contains the pseudo-code

and data space. The organization is depicted in Figure 6.

Tree node space is determined either by default or by a

user set parameter in the *PROCESS record at translation

time. Available tree nodes are maintained as a linked list

with the trees themselves in binary tree form [4]. Tree

nodes are represented by two words as shown in Figure 7.

0

I
I
I

Pseudo-Code

BCODE~->..._~~~~~~~~~~~~~--'
I
I
I

Procedure Linkage Table

BPROC~->'--~~~~~~~~~~~~~__,

I
I
I

The Display

BLOCAL~->.__~~~~~~~~~~~~~~

I
I
I

Dynamic Storage

BDYNAM~->.__~~~~~~~~~~~~~~

I
I
I

String Constants

I
!Reserved Label/Value
I

I
Strings I

I
BLV~->'--~~~~~~~~~~~~~--'

I
I
I

Integer Constants

BINTEG--->.__~~~~~~~~~~~~~~

I
I Floating Point Constants
I

BFLOAT~->.__~~~~~~~~~~~~~~

I
I
I

Tree Node Space

BNODE~->.__~~~~~~~~~~~~~~

Figure 6. Pseudo-Machine Storage

word 1 word 2
31 0

!field llfield 2lfield 31 value/descendant

Figure 7. PLANS Tree Node Representation

31

31

32

Field 1 is two bits and contains the word 2 type code.

Field 2 is fifteen bits and contains a label pointer. Field

3 is fifteen bits and contains the sibling pointer, if a

sibling exists. Binary tree node manipulation is handled in

subsystem NODE.

Arithmetic constants (integer or floating,point), the

reserved label/value strings and the string constants come

from the run file output by the translator and entered in

pseudo-machine space at interpreter initialization time.

These spaces are never altered during interpretation.

Dynamic storage size is determined either by default or

by a user set parameter in the *PROCESS record at

translation time and is used for strings not already in

string constant or reserved label/value space. Subsystem

INDYNAM (interpreter dynamic storage) is responsible for

method used is the dynamic storage management.

generalized Fibonacci-based

Chapter II [l].

The

buddy system discussed in

When a tree is read in during execution, for each

string, a search is made first of the reserved label/value

table and then, if necessary, the string constant table

until a match is found. (Subsystem BINSR (binary search)

handles the search.) If no match is found, the string is

then entered in dynamic storage.

Constants in string constant or reserved label/value

space require only that their pointers be copied on

assignment. For strings in dynamic storage, however, a copy

33

of the string is made and the pointer to the new string is

used on assignment. This is necessary because on exit from

a procedure, all local trees and strings are pruned. Space

from all these pruned strings is released for reuse in the

process. Subsystem PREOR (preorder traversal) handles the

traversal of the tree for pruning, comparing, copying and

output.

Display size consists of the remaining unused space in

the run file [10]. Upon entry to a procedure or begin

block, the display is loaded with the following information:

Fixed Part:

1. the block table pointer

2. block level words for display entries

3. a pointer to the previously active display

4. a pointer to the display stack top upon entry

5. the return address (only for procedure
blocks)

6. parameter addresses (only for procedure
blocks)

7. local storage for scalar variables, array
descriptors and local tree root node pointers

Variable Part:

1. space for parameter values passed, if any

2. array space

The fixed part is determined at translation time and the

required size is entered in the procedure/block table then.

All tree and string addresses are zeroed out upon entry so

no accidental pruning will take place upon exit of a block.

34

The variable part is determined at run-time. Parameters are

passed by reference but in the case of expressions or

constants, the values are determined at procedure entry and

placed in the variable part of the display. (Note that

procedure names cannot be passed as parameters.) The

remainder of the display is available during interpretation

for temporary values and pointers.

description of displays refer to [2].)

(For a more detailed

Arrays are stored in the display using an array

descriptor in the fixed part for the block which consists of

WORD 1
WORD 2
WORD 3
WORD 4

virtual origin of the array
number of dimensions
first dimension bound
mapping multiplier for first dimension

last dimension bound
mapping multiplier for last dimension

Dynamic array allocation requires that the dimension bounds

and mapping multipliers be filled in on block entry. It is

then possible to set aside the required space for the entire

array in the variable part of the display with WORD 1 of the

array descriptor pointing to the first array element.

For integer and floating point variables, their values

are entered directly in the display upon assignment. For

string variables ~nd constants, the display entry contains a

pointer to the string in string constant space, reserved

label/value space or dynamic storage (see Chapter IV).

The procedure linkage table and the pseudo-code come

35

from the run file generated by the translator and are also

never altered during interpretation.

The Psuedo-Machine Space Control Block

The pseudo-machine space control block (in common block

BOUNDS) contains the following [8]:

1. absolute address of currently active display -
ACTIVE

2. instruction pointer (two values)
word IPWORD
byte - IPBYTE

3. reserved label/value and string constant base
address - BLV

4. floating point constant base address - BFLOAT

5. integer constant base address - BINTEG

6. tree node storage base address - BNODE

7.

8.

dynamic storage base address

display storage base address

BDYNAM

BLOCAL

9. procedure linkage and environmental control table
base address - PROC

10. pseudo-code base address - BCODE

11. null address - NULLAD

All but NULLAD in the pseudo-machine space control block are

initialized dynamically on the basis of control information

placed in the run file by the translator. The base

addresses BVL, BFLOAT, BINTEG, BCODE and BDYNAM correspond

with the base address values needed for the various Format 3

instructions described below. These are equivalenced in the

array BASE to easily access their values.

36

Due to the packing of Format 1 instructions, the

instruction pointer must consist of both a word pointer and

a byte offset. The valid values for the byte offset are 0

to 3 with the zero byte on the left and the third byte on

the right. Whenever a filler is encountered prior to the

end of a word (byte offset 3) it may be assumed that any

remaining bytes of the pseudo-instruction word represent

fillers as well.

The Oneration Code Control Table

The operation code control table (in common block

INCNTL) is referenced by using the integer value of the

operation code as a subscript to the table [8]. Each op

code in the table has two entries, one in the instruction

format array IFORM, and one in the execution address array

EXADDR. These arrays are statically initialized in the

block data subsystem INDAT (interpreter data). The IFORM

array is initialized with eight possible values which

prescribe operand address computation:

0 undefined (system error condition)

1 Format 1 instruction
no address computation

2 - Format 2 instruction
the value of the referenced display register in
the currently active display plus the base
address for display storage plus the offset
address from the instruction

3 - Format 3 instruction
the base address for reserved label/value strings
and string constant space plus the instruction
address field

4 - Format 3 instruction
the base address for floating point constants
plus the instruction address field

5 - Format 3 instruction
the base address for integer constants plus the
instruction address field

6 - Format 3 instruction
the base address for pseudo-code instructions
plus the instruction address field (for jump
instructions)

7 - Format 3 instruction

37

a dummy base address of zero plus the instruction
address field

(For an explanation of Format 1, 2 and 3 instructions see

the Chapter II.)

The Run-Time Stack

The run-time stack (STACK in common block INSTAC) is

used to hold integer or floating point values or addresses

(FORTRAN integers)

PLANS statement [11).

needed during the interpretation of a

It should be noted that one level of

indirection is always used in tree addressing (that is, the

address is always of the node which points to the node

desired). This is done to enable proper pointer

modification for insertions and deletions in a tree.

Each address has a corresponding entry in the vectors

TYPE and SUBTYP coded as follows:

TYPE
SUBTYP

1 - tree address
1 absolute pseudo-machine address of word

containing an address to a tree node
2 absolute address of tree node

3 $ELEMENT reference
4 $NULL reference
5 $COMBINATION reference
6 $PERMUTATION reference

2 - string address
1 reserved label/value string
2 string constant
3 dynamic storage string
4 temporary string

3 - numeric variable absolute address (display only)
1 integer variable
2 floating point variable
3 integer array descriptor
4 floating point array descriptor
5 string array descriptor

4 logical value (0 or 1)

5 numeric value
1 integer
2 - floating point

6 - keyword subscript operation (no value on STACK)
1 FIRST
2 LAST
3 NEXT

38

For tree addresses (TYPE 1), only subtypes 1 or 4 are

valid outside a qualification context. For subtype 1, the

right-most 15 bits only are extracted or replaced. Subtype

2 does not occur except as an intermediate value in hard or

soft qualification or as the result of a SNIP operation in

preparation for grafting or graft insertion. Types 3 and 4

may not occur in stack entries used for hard or soft

qualification.

The stack barrier stack (BSTAC) is used to facilitate

multiple level tree qualification, multiple subtree

treatment (ALL:) and array subscripting on multiple

dimensions. Entries in this stack point to STACK. This

39

scheme is required because of nested constructions such as

nested tree qualification due to indirect reference (#,

#LABEL) and/or arithmetic expressions for subscripts.

When a qualification instruction HQAL (hard

qualification) or SQAL (soft qualification) is interpreted

the top of BSTAC points to the place in STACK where level

qualification commences. Qualification continues to the top

of the stack. For example, a four level qualification

$A.TELESCOPE(FIRST)(2) will be preceeded by loading

1. address of $A pointer on the stack
2. address of TELESCOPE string on the stack
3. key word FIRST operation code
4. numeric value 2

The top of the barrier stack will point to the entry for 1.

Key word subscript operation codes (TYPE 6) are placed

on the stack because multiple level qualification operations

are done with one qualification instruction rather than one

for each level (see the above example). This is rather

important in terms of pseudo-code space requirements and

pseudo-code interpretation time.

Conditional qualification (ALL: and FIRST:) is effected

by first qualifying to the level at which the conditional is

to be applied and then applying the conditional using

$ELEMENT reference appropriately. ALL: and FIRST: do not

have delayed key word subscript operation codes.

operations do not need to be stacked.

These two

40

Subsystem Organization

Overview

The interpreter's main program is in subsystem INTCNTL

(interpreter control) which, like the translator's main

program, performs the initialization and wrapup functions,

passing control to subsystem INTFE (interpreter

fetch/execute) to drive the interpreter. Both rely on the

routines described above for data and storage structure

management and subsystems CHRST (character string), INERROR

(interpreter error), CONVRT (convert) and ENCODE to perform

character string manipulation, error handling and conversion

to the required data type.

used by the translator.)

(Only subsystem CHRST is also

Subsystem INTFE handles instruction fetching, decoding

and executing. The more detailed operation codes are

handled in separate subroutines called from INTFE. These

are found in subsystems ARRAY, CMBPRM (combination or

permutation), CVICVF (convert to integer or convert to

floating point), GETPUT, ORDER, READ, TREQUAL (hard or soft

qualification), TRESUP (tree support) and WRITE. They are

generally invoked directly and are organized by localized

call relationships. The subroutines in TRESUP, however, may

be called from other subroutines as well to support other

operations.

41

The Fetch/Execute Cycle

The logic for the control of the interpreter

fetch/execute cycle is heavily dependent o.n the information

described above for the operation code control table and

pseudo-machine space control table [8]. The run file must

be processed (11 loaded 11) before the fetch/execute control

loop is ever entered. The PDL found in Figure 8 describes

the logic for the control loop. SPACE refers to pseudo-code

space, OPCODE to the operation code and OPADDR to the

absolute operand address. ACTIVE, IPWORD, IPBYTE and BCODE

are contained in the pseudo-machine space control block

while IFORM, EXADDR, and BASE are contained in the operation

code control table and all are described in the two

corresponding sections above.

42

Zero out IPBYTE.
Initialize IPWORD from MAIN program address field in

procedure table plus BCODE.
DO until exit from main program

FETCH:

END.

Extract OPCODE from address specified by
IPWORD and IPBYTE.

IF system trace is on THEN

ENDIF

Display current instruction word,
instruction address and symbolic
operation code.

Extract instruction form - FORM - from
I FORM (OPCODE) .

IF FORM is 1 THEN
Update instruction pointer to next

non-null operation code.
Transfer to EXECUTE INSTR.

ELSE IF FORM is 2 THEN
Assign 4-bit display register field from

current full word instruction to
DISREG.

Assign display offset field from current
full word instruction to OFFSET.

Assign OFFSET+ SPACE(ACTIVE + DISREG}
to OPADDR.

Update instruction pointer to next word.
Transfer to EXECUTE INSTR.

ELSE/* Format 3 instruction*/
Assign operand address field from

current full word instruction to
"address".

Assign "address"+ BASE(FORM) to OPADDR.
Update instruction pointer to next word.

ENDIF
EXECUTE INSTR:

Execute instruction interpretation code
specified by EXADDR(OPCODE}.

Invoke execution summary.

Figure 8. PDL for Fetch/Execute Control Loop

CHAPTER IV

THE CHARACTER STRING EXTENSION

Introduction

A major objective of this thesis is the extension of

the PLANS language to support conventional character string

manipulation. The motivation for this is the adaptation of

PLANS to an interactive data structure manipulation

environment.

In incorporating character string variables, two

considerations were of highest priority. One was to attempt

to fit variable length strings into the system as

consistently as possible with all presently allowable

variables using as much as possible the mechanisms already

set up. The other was to make relatively few structural and

logical changes to the existing translator. The

modifications required were made to the translator while the

interpreter changes have been designed but not implemented.

This chapter is divided into four main sections. The

first describes the existing character string features. The

second describes the changes affecting the user including a

discussion of the use of the new statement forms added and

the error handling resulting from improper construction.

The remaining sections describe the internal modifications.

43

44

The translator section covers explicit data

the new string operation codes generated,

necessary to the lexical analyzer and the

type handling,

the changes

grammar changes

and their effect on the parser. The final section covers

the interpreter changes. Several different approaches were

considered concerning the type of strings to add and where

to locate them during execution.

with the final decision and

These are discussed along

the modifications it

necessitated. This is followed by an explanation of the

instructions added.

Existing Character String Features

Prior to the changes outlined below, character string

usage was rather restricted. PLANS tree nodes may have

character string labels and character string values but the

notion of character string variables has not been present

and operations on character strings other than assignment to

tree nodes, input/output and comparisons, have not been

supported.

The representation of character strings has been in the

form of a variable number of four byte words, the first of

which contains the byte count for the string length.

Character strings may be . stored in any one of three

pseudo-machine storage areas: the reserved label/value

table, the string constant table or dynamic storage.

References to such strings are by pointer (FORTRAN

subscript). Character strings in the first two storage

45

areas are never copied or deleted. Assignment amounts to

copying a pointer. Character strings in dynamic storage are

copied on assignment and may be deleted by virtue of

"pruning'' a (sub)tree, replacing such a value in a tree node

or label or by leaving a procedure or begin block in which

case all local trees are deleted and any tree nodes and

dynamic storage units are reclaimed.

Changes Affecting the User

Explicit Data Tyoes

PLANS was originally defined to allow only standard

FORTRAN default to determine data type. Variable names

beginning with any letter from I to N inclusive were

automatically of integer type while names beginning with any

other letter defaulted to floating point. (This does not

apply to tree nodes as is explained in Chapter II.) The

declaration statement served only for arrays and tree names.

Explicit type declaration statements were added which

not only allow for string variables but also they serve to

override the standard default. They are of the form

'declare' ['integer' 'float' 'string']1

variable list ['local']1 '

Examples can be found in Figure 9. All rules true for the

original declaration statement apply for the new forms

except that tree names can appear in the original form only

since explicit type declarations do not apply.

DECLARE INTEGER X, Y, Z(lO) LOCAL;

DECLARE FLOAT I' J, K;

DECLARE STRING Sl, S2, S3, S (5);

Sl = S2 I I S3; /* concatenation

Sl = S2 (I2 : I3); /* substring

Il = LENGTH (S2) ; /* length

Il = INDEX(S2 S3); /* index I

Il = 'vERIFY(S2 I S3); /* verify

S(LENGTH(I)) = X I I S3(INDEX(S2 , S3) :
s (VERIFY (I A I ' y))) ;

Figure 9. A Sample of Valid PLANS Statements

String Functions

46

*/

*/

*/

*/

*/

Previously, string constants could only be assigned to

tree node labels or values so several string operations were

added. They consist of assignment to a string variable,

concatenation, substring, length, index and verify. An

example of

concatenation,

each can

index,

be found in Figure 9. The

length and verify functions are

patterned after the corresponding PL/I functions while

substring is patterned after the corresponding FORTRAN 77

function. A string variable is expected where Sl appears in

Figure 9, a string variable or constant where S2 and S3

47

appear, an integer variable where Il appears and an integer

variable or constant where I2 and I3 appear. If any are of

a different data type,

place.

automatic type conversion takes

The above functions can also be used within expressions

and have been set up using PL/I priority rules with

concatenation taking priority over the relational operators

and with the remaining four functions at the primary level

(see Appendix C). In part, this choice is based on the fact

that much of the syntax of PLANS is patterned after PL/I.

Error Handling

Severe error messages are generated if one of the new

keywords INTEGER, FLOAT or STRING is used as a variable (a

potential problem for existing PLANS programs) and if any

function form is structurally incorrect. If a tree name

appears in an explicit type declaration, it is ignored and a

warning is generated. Where applicable, if a comma, colon

or closing parenthesis is missing,

warning message is issued.

one is generated and a

Translator Changes

Explicit Data Types

The explicit data type addition required that two types

of changes be made. One was that DFTID (define tree or

identifier symbol) in subsystem BLKTB (block table) had to

be modified to enable it to properly parse the new types of

48

declaration statements. The other was that several symbol

table routines had to be modified in order to allow a

variable type of 'S' for string in the table. To accomplish

the latter, a parameter was added to DFTID because it enters

the type in the symbol table. If the call comes from RFTID

(reference to an identifier) or FPARM (formal parameter)

then the parameter contains a 'U' for undefined. If the

call comes from DCLST (declare statement) then the parameter

contains an 'I', 'F' or 'S' for a variable which appears in

an explicit type declaration, a 'T' for a tree declaration

or a 'U' to force DFTID to find the default.

Lexical Analyzer Changes

The colon previously was not treated as a single

character token but rather an identifier followed

immediately by a colon was considered a single label unit.

Since the colon was needed for the substring function, it

was changed to a single character token. To avoid

significant modification to existing logic, when a label

unit is found, if it is not a valid label context, only then

is it parsed as two separate units.

The or symbol ('I') was changed from a single character

token to one which could possibly be a double character

token as well (1 I I') for concatenation.

New Operation Codes

A number of new operation codes were needed for the

49

extension and their addition required changes not only in

the routines that generate them but also in the parameter

statements (FORTRAN 77), equivalence statements and data

statements which occur in GENCOD (generate code), TOKDAT

(token data)

respectively.

and TRINI

GENCOD was

(translator

modified to

initialization),

set the numerical

equivalents for the added operation codes, TOKDAT was

modified so that new key symbols and words could be referred

to by symbolic name instead of number and TRINl was modified

to add new key symbol and key word initializations to the

respective tables.

String constants and tree node values are stored in the

reserved label/value table, string constant table or dynamic

storage at interpretation time. The first byte contains the

string length which is followed by the characters which make

up the string. This easily extends to the storage of

variable length strings in dynamic storage with a pointer

or, in the case of an array, a set of pointers in the

display. New operation codes were added to load a string

array descriptor and string variable address both directly

and indirectly. These correspond with those for integer and

floating point variables except that there is no code to

load a string value directly since its value is never stored

in the display. They are generated in CRFID (compile a

reference to an identifier) and DCLST (declaration list).

To avoid altering the existing routines for relational

expressions which automatically convert strings to floating

50

point, separate operation codes were added which are used

only if both operands are of string type. These directly

correspond to the regular relational expressions.

The remaining set of operation codes were included to

handle the assignment to a string variable, concatenation,

index, length, substring and verify functions added.

Parser Changes

It was necessary to add several new grammar rules to

parse properly the functions added to subsystem PRSCG

(parser/code generator) but only one was altered (see Figure

10 and Appendix C).

New Rules:

string_expr := arith_expr [cat_op arith_expr]

primary:= string_function

string_function
expression
I 'length'
I ('index'
expression

Altered Rule:

:=expression'(' expression
') '
'(' expression 1)'

I 'verify') '(' expression
f) I

relational expr := string_expr [relational op
string_expr]l

Figure 10. New Grammar Rules

51

STEXPR (string expression) is invoked in REXPR

(relational expression) so that the concatenation operator

will have priority over the relational operators but not

over the arithmetic operators. STFN (string function) is

invoked in PRIMRY (primary token) if one of the key words

LENGTH, INDEX or VERIFY is encountered or if the context

suggests that the substring function is possible. (See

Chapter III for an explanation of invocation.) Two separate

sections of code were added to handle these new functions.

(See Appendix E for a detailed explanation of the changes

and the pseudo-code operations generated and Appendix J for

the PDL's describing the routines added for the grammar

rules "string_expr" and "string_function".)

Interpreter Changes

String Handling

Decisions had to be made concerning the type of

variable strings to use and where they were to be stored.

The two possible types considered were fixed length strings

(like PL/I) or variable length strings. Fixed length

strings could be stored in the display since their maximum

size was known. It would be necessary to have a two word

field containing the maximum and actual lengths. Storage

management would consist of automatical release on exit from

a block but there would be the distinct possibility of

wasted space. True variable length strings could solve the

problem of unusable space and a word for maximum length

52

would not be needed. But their storage in the display would

be complicated by the fact that their size would not be

known in advance.

string variables,

If maintained in dynamic storage, local

including arrays, would have to be

"pruned" upon exit from a block.

The true variable length string approach was chosen for

several reasons. It would be much less restrictive for the

user since the maximum size would not have to be known in

advance. It easily fit into the existing program structure.

There already was a dynamic storage management package which

could be used to allocate and free space. Also, it was more

consistent with the approach already taken in terms of space

conservation, string constants and tree node management.

String constants were already being kept in dynamic storage

and tree nodes required pruning upon exit from a block.

String variables will be set up in dynamic storage

using the first word for their length followed immediately

by the

display.

... . s ._ring. Access will be through a pointer in the

Arrays will contain an array descriptor which

points to a set of pointers in the display. It is

anticipated that dynamic storage allocation will be handled

using subsystem DYNAM (dynamic storage). Temporary strings

will be deallocated when they are no longer needed in the

routines dealing with the instructions CVI

integer), CVF (convert to floating point),

concatenation), SSUB (string substring),

(convert to

SCAT (string

SLEN (string

length), SIND (string index) and SVER (string verify). The

53

local strings will be pruned by traversing the display upon

exit from a block. To include string variables, the run-

time stack will be expanded. A subtype of 4 will be added

to type 2 to denote a temporary string and a subtype of 5

will be added to type 3 to denote a string array descriptor.

(See Chapter III for an explanation of types and subtypes.)

New Instructions

All the new instructions added are Format 1

instructions except for the load instructions which are

Format 2. Format 1 instructions contain the operation code

with no address field while Format 2 instructions contain

the operation code with display register and address offset.

(See Chapter III for an explanation of Format types.)

The string relational operators pop the top two items

from the stack, replacing them with the Boolean result. AS

(assign string) pops the top two entries from the stack

assigning the pointer from the first entry to the display

address of the second entry, modifying the subtype if 4 for

temporary. CVS (convert to string), SCAT (string

concatenation) and SSUB (substring) each pop one, two or

three items from the stack, respectively, replacing them

with a pointer to dynamic storage where the temporary string

was created. SLEN (string length) pops one entry and SIND

(string index) and SVER (string verify) each pop two entries

from the stack. The integer result is then placed on the

stack. When a load operation code is encountered, no

54

entries are removed from the stack but each causes an

address entry to be added to the stack.

CHAPTER V

CONCLUSIONS

This study has dealt with a software system design for

the Programming Language for Allocation and Network

Scheduling (PLANS) and character string extensions to that

language. It described, in detail, the translator and

interpreter as originally defined, including their data,

file and storage structures and subsystem organization.

Major emphasis was placed on the data structures because of

their complexity and the the logical processing was heavily

dependent upon them. The modifications required for the

addition of character string variables and functions were

also described. Those changes were implemented for the

translator and designed for the interpreter.

Implementation Completion

Modifications to the interpreter were left incomplete

becaus.e of the productivity limitations of the development

environment available to the author. It is necessary to

complete these changes as outlined in Appendix J so that an

interactive environment can be implemented.

The PLANS system software is divided into three major

sets of modules. The COMMON module set contains all the

55

56

common blocks in more than 25 units. The PRSCG module set

contains the recursive parsing rule routines in more than 50

units. The SOURCE module set, which contains all the

remaining subsystems, contains over 35 subsystems which,

together, contain over 130 subroutines. An environment

which can assist, rather than hinder, the management of a

large number of subsystems, routines and common blocks in an

orderly fashion is invaluable in terms of productivity.

This ideally requires a multiple file structure in the form

of a tree which naturally follows the hierarchical nature of

not only the source code modules but also the object code

produced. The only effective multiple file structure

available was the partitioned file feature. The subroutines

belonging to a subsystem all reside in one file and

therefore it is necessary to re-compile all in the subsystem

if a change is made to one.

This problem is further complicated by the fact that

there is insufficient automatic space management within

partitioned files. A fixed size must be set up in advance

and freed space within the file is not reallocated. An

environment which supports automatic file space management

would free the development programmer from these tasks.

Furthermore, it was necessary to devise an independent

common block inclusion processor because the vendor supplied

inclusion processor for FORTRAN 77 functions incorrectly.

Operating systems which do support both multi-level

tree structured file management and sufficient automatic

57

file space management include VMS, UNIX, MULTICS and PRIMOS.

(The development work at Science Applications, Inc. directed

by the author's adviser was,

environment.)

in fact, performed in such an

Possible Further Enhancements

Several further enhancements to the language may be

advantageous.

Internally, PLANS trees use a one way linking mechanism

for connecting siblings. A search must be performed via a

linear linked list to locate the desired sibling for some

types of qualification (for example, LAST). It is possible

to limit the performance penalties which can accompany such

a search over a large number of siblings by careful use of

tree pointers but the programming required tends to be

rather obscure because of the indirection required. It

would be desirable to represent trees internally using a

double linking mechanism. This would involve modifying only

the interpreter since the interpreter is independent of the

translator in the sense of

representation.

the PLANS tree structure

One of the author's committee members, Dr. D. D.

Fisher, suggested an alternative for managing the release of

tree space and the dynamic storage associated with the tree

node labels and values. These trees could be maintained as

a binary tree of available nodes which could then be

traversed with dynamic storage space and tree nodes released

58

when either runs out of available space. Time would be

saved since it may not be necessary to reuse the space upon

block exit. No additional space would be used since both

are fixed at interpretation time.

In the context of data structure driven interactive

processes, it is highly desirable to have a notion of a

vector or array of pointers.

pointers only are implemented.

At present, scalar tree

There is an extensive variety of tree operations in the

PLANS language but the entire tree must reside in memory.

Only sequential input of trees is presently implemented. To

extend the PLANS language to allow for the manipulation of

large data bases in the form of PLANS trees, some form of

indexed input/output is necessary. It would be desirable to

have some indexing mechanism in which the index key

corresponds with tree qualification (for example, $T.R.E) to

get just a subtree into memory.

The PLANS language was not intended for extensive

numerical computation and so these capabilities are limited.

It might be desirable to provide an interfacing mechanism to

call FORTRAN subroutines in order to take advantage of the

computational capabilities which FORTRAN provides.

A SELECTED BIBLIOGRAPHY

(1) Dasananda, Surapol.
(Unpub. M.S.
1974).

11 Fibonacci-Based Buddy Systems. 11

Report, Oklahoma State University,

(2) Gries, David. Compiler Construction for Digital
Computers, John Wiley & Sons, Inc., New York, New
York, 1971.

(3) Hinds, James A. "An Algorithm for Location Adjacent
Storage Blocks in the Buddy System." Comm. Aero.,
18, 4 (April,1975), 221-222.

(4) Knuth, D. E. The Art of Computer Programming, Voll:
Fundamental Algorithms, Addison Wesley Publ. Co.,
Reading, Mass., 1973.

(5) Knuth, D. E. The Art of Computer Programming, _V_o_l 1:
Sorting and Searching, Addison Wesley Publ. Co.,
Reading, Mass., 1973.

(6) Ramsey, Rudy H., Willoughby, John K. and Kullas, Daniel
A. A User's Guide to the Programming Language
for Allocation and Network Scheduling (PLANS),
Technical Report SAI-77-068-DEN, Science
Applications, Inc., Englewood, Colorado, 1977.

(7) Van Doren, James R. "Format of the Runfile." (Unpub.

(8) Van

(9) Van

PLANS system design notes, Science Applications,
Inc., Englewood, Colorado, 1980-81).

Doren, James R.
(Unpub. PLANS
Applications,
1980-81).

Doren, James R.
Set." (Unpub.
Applications,
1980-81).

"Interpreter Design Information."
system design notes, Science
Inc., Englewood, Colorado,

"PLANS Pseudo Machine Instruction
PLANS system design notes, Science

Inc., Englewood, Colorado,

(10) Van Doren, James R. "Run Templates." (Unpub. PLP._1'JS
system design notes, Science Applications, Inc.,
Englewood, Colorado, 1980-81).

(11) Van Doren, James R. "PLANS Run-Time Stack." (Unpub.

59

PLANS system design notes, Science Applications,
Inc., Englewood, Colorado, 1980-81).

(12) Van Doren, James R. "Table Structures." (Unpub. PLANS
system design notes, Science Applications, Inc.,
Englewood, Colorado, 1980-81).

(13) Van Doren, James R. "Tree Addressing. 11 (Unpub. PLANS
system design notes, Science Applications, Inc.,
Englewood, Colorado, 1980-81).

60

APPENDIX A

INDEX TO THE TRANSLATOR SUBSYSTEM

61

62

NAME ACCESS MECHANISM APPENDIX

AASTMT PRSCG.FORT(*) C-74, E-101

ADDCH SOURCE.FORT(CHRST) D-85

ADVST PRSCG.FORT(*) C-74

AEXPR PRSCG.FORT(*) C-74

BGBLK PRSCG.FORT(*) C-74

BINSR SOURCE.FORT(SRCH) D-97

BLKBDY PRSCG.FORT(*) C-74

BLKEXT SOURCE.FORT(BLKTB) D-79

BLKTB SOURCE.FORT(*) D-79, E-102

BSTSR SOURCE.FORT(SRCH) D-97

BTERM PRSCG.FORT(*) C-74

BTINT SOURCE.FORT(SRCH) D-98

CALLST PRSCG.FORT{*) C-74

CGSUP SOURCE.FORT(*) D-82, E-103

CHKAC SOURCE.FORT(CGSUP) D-82

CHRST SOURCE.FORT(*) D-85

CLRTAB SOURCE.FORT(BLKTB) D-79

CMBPRM PRSCG.FORT(*) C-74

CODLST SOURCE.FORT(*) D-87

COMBCL PRSCG.FORT(*) C-74

COMMON *.FORT B-70, E-101

CPYST SOURCE,FORT(CHRST) D-85

CRFID SOURCE.FORT(CGSUP) D-83, E-103

CSTMNT PRSCG.FORT(*) C-74

DCLST SOURCE.FORT(PRSSP) D-93, E-104

DEFST PRSCG.FORT(*) C-74

63

NAME ACCESS MECHANISM APPENDIX

DFBGN SOURCE.FORT(BLKTB) D-79

DFLAB SOURCE.FORT(BLKTB) D-79

DFPRC SOURCE.FORT(BLKTB) D-80

DFPSAD SOURCE.FORT(CGSUP) D-83

DFTID SOURCE.FORT(BLKTB) D-80, E-102

DFTREE SOURCE.FORT(BLKTB) D-80

DOEDEN PRSCG.FORT(*) C-74

DOGRP PRSCG.FORT(*) C-74:

DSALC SOURCE.FORT(DYNAM) D-87

DSINFO COMMON.FORT(*) B-70

DSINT SOURCE.FORT(DYNAM) D-87

DSRLS SOURCE.FORT(DYNAM) D-88

DSTORP COMMON.FORT(*) B-70

DYNAM SOURCE.FORT(*) D-87

EDIT COMMON.FORT(*) B-70

EEXPR PRSCG.FORT(*) C-74:

ERINFO COM.MON. FORT (*) B-70

ERNUM SOURCE.FORT(ERROR) D-88

ERRCV SOURCE.FORT(PRSSP) D-94

ERRINT SOURCE.FORT(ERROR) D-89, E-103

ERROR SOURCE.FORT(*) D-88, E-103

ERRWRP SOURCE.FORT(ERROR) D-89, E-103

EXPR PRSCG.FORT(*) C-74

EXTPRC PRSCG.FORT(*) C-74

FILES COMMON.FORT(*) B-70

FILOPT PRSCG.FORT(*) C-74

64

NAME ACCESS MECHANISM APPENDIX

FILOPT SOURCE.FORT(OPTION) D-92

FINLIB SOURCE.FORT(LIB) D-91

FPARM SOURCE.FORT(PRSSP) D-94, E-104

FRDUMP SOURCE.FORT(CODLST) D-87

GENCOD COMMON.FORT(*) , B-70, E-101

GENPOP SOURCE.FORT(PRSSP) D-94

GENSTK SOURCE.FORT(PRSSP) D-94

GENSWP SOURCE.FORT(PRSSP) D-95

GETST PRSCG.FORT(*) C-74

GNPRUN SOURCE.FORT(BLKTB) D-81

GRFTST PRSCG.FORT(*) C-74

GSTACK COMMON.FORT(*) B-70

HARD PRSCG.FORT(*) C-75

HRDSUB PRSCG. FORT(*). C-75

IEQST SOURCE.FORT(CHRST) D-85

IEXCL SOURCE.FORT(CHRST) D-86

IEXCR SOURCE.FORT(CHRST) D-86

IGNORE SOURCE.FORT(PRSSP) D-95

INCDO PRSCG.FORT(*) C-75

INIT PRSCG.FORT(*) C-73, E-101

INSRT PRSCG.FORT(*) C-75

IODEVS COMMON.FORT(*) B-70

LABSTR PRSCG.FORT(*) C-75

LABVAL SOURCE.FORT(*) D-89

LASTMT PRSCG.FORT(*) C-75

LBINFO COMMON.FORT(*) B-70

65

NAME ACCESS MECHANISM APPENDIX

LBLQ PRSCG.FORT(*) C-75

LBVLI SOURCE.FORT(LABVAL) D-89

LEX SOURCE.FORT(*) D-90, E-103

LIB SOURCE.FORT(*) D-90

LIBINT SOURCE.FORT(LIB) D-91

LIBOUT SOURCE.FORT(LIB) D-91

LINCNT SOURCE.FORT(PAGE) D-93

LVOUT SOURCE.FORT(LABVAL) D-89
•

LXCAL SOURCE.FORT(LEX) D-90, E-103

MEXPR PRSCG.FORT(*) C-75

MNCTL SOURCE.FORT(*) D-92

NENDU PRSCG.FORT(*) C-75

NUPAG SOURCE.FORT(PAGE) D-93

OPTION SOURCE.FORT(*) D-92

OPTION SOURCE.FORT(OPTION) D-92

ORDRST PRSCG.FORT(*) C-75

OUTAB SOURCE.FORT(RUNFIL) D-96

OUTCOD SOURCE.FORT(RUNFIL) D-96

OUTIWA SOURCE.FORT(CGSUP) D-83

OUTOP SOURCE.FORT(CGSUP) D-84

OUTWRD SOURCE.FORT(CGSUP) D-84

PAGE SOURCE.FORT(*) D-93

PARSE COMMON.FORT(*) B-70

PGINFO COMMON.FORT(*) B-70

PRCLIB SOURCE.FORT(LIB) D-91

PRIMRY PRSCG.FORT(*) C-75, E-101

66

NAME ACCESS MECHANISM APPENDIX

PROCBL PRSCG.FORT(*) C-75

PROGU PRSCG.FORT(*) C-75

PRSCG *.FORT C-73, E-101

PRSCGF PRSCG.FORT(*) C-73

PRSSP SOURCE.FORT(*) D-93, E-104

PRUNST PRSCG.FORT(*) C-75

PSAPOP SOURCE.FORT{CGSUP) D-84

PSTLST SOURCE.FORT(CODLST) D-87

PUTST PRSCG.FORT(*) C-75

READST PRSCG.FORT(*) C-75

REXPR PRSCG.FORT{*) C-76, E-101

RFLAB SOURCE.FORT(BLKTB) D-81

RFPRC SOURCE.FORT(BLKTB) D-81

RFTID SOURCE.FORT(BLKTB) D-82, E-103

RFTREE SOURCE.FORT(BLKTB) D-82

RNINT SOURCE.FORT{RUNFIL) D-96

RPCHL SOURCE.FORT{CHRST) D-86

RPCHR SOURCE.FORT{CHRST) D-86

RPSADS SOURCE.FORT(CGSUP) D-85

RRETRN PRSCG.FORT{*) C-73

RUNBUF COMMON.FORT(*) B-70

RUNFIL SOURCE.FORT(*) D-95

SBLKT SOURCE.FORT(BLKTB) D-82

SBNODE PRSCG.FORT(*) C-76

SEMI SOURCE.FORT(PRSSP) D-95

SFTSUB PRSCG.FORT(*) C-76

67

NAME ACCESS MECHANISM APPENDIX

SOFT PRSCG.FORT(*) C-76

SOURCE * .FORT D-79, E-102

SRCH SOURCE.FORT(*) D-97

STCMP SOURCE.FORT(SRCH) D-98

STEXPR PRSCG.FORT(*) C-76, E-102

STFN PRSCG.FORT(*) C-76, E-102

STGTF SOURCE.FORT(SRCH) D-98

STGTN SOURCE.FORT(SRCH) D-98

STKUP SOURCE.FORT(PRSSP) D-95

STMNT PRSCG.FORT(*) C-76

SUBSCR PRSCG.FORT(*) C-76

SWITCH COMMON.FORT(*) B-71

SYSINT SOURCE.FORT(MNCTL) D-92

SYSTEM COMMON.FORT(*} B-71

TABLE COMMON.FORT(*) B-71

TADDCH SOURCE.FORT(LEX) D-90

TASTMT PRSCG.FORT(*) C-76

TOKDAT COMMON.FORT(*) B-71, E-101

TOKEN SOURCE.FORT(LEX) D-90, E-104

TOUT SOURCE.FORT(PRSSP) D-95

TRCTRL SOURCE.FORT(MNCTL) D-92

TRINI SOURCE.FORT(*) D-99, E-104

TRNSLT PRSCG.FORT(INIT) C-73

TRVNUM SOURCE.FORT(RUNFIL) D-96

USTMNT PRSCG.FORT(*) C-76

WHILE PRSCG.FORT(*) C-77

NAME

WRPUP

WRTST

ACCESS MECHANISM

SOURCE.FORT(RUNFIL)

PRSCG.FORT(*)

68

APPENDIX

D-96

C-77

APPENDIX B

TRANSLATOR COMMON BLOCKS

69

70

COMMON COMMON blocks

Purpose:

DSINFO

DSTORP

EDIT

ERINFO

FILES

This subsystem contains all the parameter and
common statements for the PLANS routines.

Dynamic Storage INFOrmation

Dynamic STORage Pool

EDIT switch

ERror INFOrmation

Purpose:

GENCOD

This common block contains system unit numbers and
names.

CENerate CODe

Purpose:

GSTACK

This unit contains parameter statements which set
the numeric equivalent for each valid operation
code and which set symbolic constants representing
maximum array size. It also contains common
statements for variables and arrays which support
code generation.

General STACK

Purpose:

IODEVS

This common block contains arrays for supporting
general stack needs for compilation.

Input/Output DEViceS

Purpose:

LBINFO

PARSE

This unit contains a parameter statement of
symbolic constants for file unit numbers.

LiBrary INFOrmation

Purpose:

PGINFO

RUNBUF

This common block contains the parse stack, flags,
switches and pointers.

PaGe printing INFOrmation

RUNfile input/output BUFfer

71

SWITCH

Purpose:
This common block contains user
(partially) option switches.

controlled

SYSTEM

TABLE

Purpose:
This common block contains
used to record system
characteristics.

Purpose:

variables which
dependent

are
word

This common block contains the components of the
procedure/block, constant and local symbol tables.

TOKDAT TOKen DATa

Purpose:
This unit contains common statements for the major
token types, new token and last token information,
source line information and subtype information.
It also contains key symbol and keyword
equivalence statements.

APPENDIX C

TRANSLATOR PARSER/CODE GENERATOR ROUTINE

WITH GRAMMAR RULES INCLUDED

72

PRSCG

INIT

73

PaRSer/Code Generator

Purpose:
This subsystem contains all the recursive parsing
rules which when joined together in PRSCGF form
the parsing subroutine TRNSLT. Each unit within
PRSCG contains a different parsing rule except for
the units explained on this page. Within each
parsing rule unit the labels are not in valid
FORTRAN form to make them easier to understand and
must be translated into acceptable form using
PRSCG.CLIST.

INITialize

Purpose:
This unit contains the beginning of the subroutine
TRNSLT and therefore must be the first contained
in PRSCGF. It contains all the INCLUDE statements
for the required common blocks, the statements
which assign meaningful names to the labels which
begin each rule and the initial rule call to begin
parsing.

PRSCGF PaRSer/Code Generator in valid FORTRAN

Purpose:

RRETRN

This unit contains the complete subroutine TRNSLT
in valid FORTRAN.

RETuRN from a Rule

Purpose:

TRNSLT

This unit contains the stack popping mechanism
which simulates the recursion necessary to perform
the parsing. It must be the final unit which
forms the subroutine TRNSLT.

TRaNSLaTe

Purpose:
This subroutine forms the driver
translation of PLANS statements.

routine

Common Blocks:
DSTORP
EDIT
FILES
GSTACK
PARSE
SWITCH
SYSTEM
TABLE
TOKDAT

dynamic storage pool
edit switch
system unit numbers & names
general stack
parsing stack, switches & counts
user controlled option switches
system dependent word characteristics
proc/block, constant & local symbol
token data

for

AASTMT

ADVST

AEXPR

BGBLK

BLKBDY

BTERM

CALLST

CMBPRM

COMBCL

CSTMNT

DEFST

DOEDEN

DOGRP

EEXPR

EXPR

EXTPRC

FILOPT

GETST

GRFTST

74

arith assign stmnt := .id [subscript]l - -
,_,

expression

advance stmnt := 'advance' tree_pointer

arith_expr := mult_expr [add_op mult_expr]

begin_block := 'begin' block_body

block body:= 1 ; 1 [declare_stmnt] [non_end_unit]
Tend'

declare stmnt := 'declare' ['string' I 'integer'
I Tfloat']1 var_list ['local']1 ';'

boolean term:= relational expr [and_op
reiational_expr] -

call stmnt := 'call' procedure_name [parm_list]l

comb or perm tree := ('$combination' I
-,$permutation') 1 (1 expression')'

combinatorial clause := ('combinations' I
'permutations') 'of' soft tree node 'taken'
expression 'at' 'a' 'timeT do_body_thru_end

conditional stmnt := expression 'then' statement
['elseT statement]l

define stmnt := 'define' tree name 'as' hard node

do body thru end:= non end unit
- [non_end_unit] 'end' -

do group := 'do' [while clause I subnodes clause
- I combinatorial clause I incremental=do]l

I do_body_thru_end

exponential_expr :=primary['**' expression]l

expression:= boolean_term [or_op boolean_term]

external_proc := .label procedure_block'

file_option := 'file' ' (' .id ')'

get stmnt := 'get' [file option]l 'edit' '('
- input_list I) 1 format

graft_stmnt := 'graft' expression 'at'
hard tree node
I 'graft' 'insert' expression 'before'
hard tree node

HARD

HRDSUB

INCDO

INSRT

LABSTR

LASTMT

LBLQ

MEXPR

NENDU

ORDRST

PRIMRY

PROCBL

PROGU

PRUNST

PUTST

READST

hard tree node tree_reference hard_subscript

hard subscript := 'first:' expression
-I 'next'

I 'first'
I 'last'
I expression

75

incremental do := .id'-' expression 'to'
expression ['by' expression]l [while clause]l

insert stmnt := 'insert' expression 'before'
hard tree node

label_string := '(' soft_tree_node ')'

label assign stmnt := 'label' '(' hard tree node
T)' '='-expression

label_qual := .dot_string
I indirect_reference

mult expr := exponential expr [mult_op
-exponential_expr] -

non_end_unit := [program_unit]

order stmnt := 'order' soft tree node 'by'
Torder argument] - -

order argument := [,_,]1 ('$element' .id)
[label_qual '(' soft_subscript ')']

primary:= soft tree node
I [' - ' I '+' I T..., I I
I ['number' I 'label'
I string function
I • constant
I . id [subscript] 1
I '(' expression')'

'not'] 1 primary
]1 label string

procedure block:= 'procedure'
[' (,-formal parm list ')']1 ['options' ' ('
option_list-,)' JI ['recursive']1 ' '
block_body

program,unit := .label procedure block
T.label]l statement -

prune_stmnt := 'prune' soft_node_list

put stmnt := 'put' [file option]l 'edit' '('
- output_list 1)' format

read stmnt 'read' file option

REXPR

SBNODE

SFTSUB

read element list

relational expr := string_expr [relational op
string_expr]l

76

subnodes clause := 'subnodes' 'of' soft tree node
'using' tree_pointer

soft subscript := 'all:' expression
-I 'first:' expression

I 'first'
I 'last'
I expression

SOFT soft tree node .- tree reference [(.dot_string
soft_subscript)]

STEXPR

STFN

STMNT

SUBSCR

TASTMT

USTMNT

string_expr := arith_expr [cat_op arith_expr]

string_function := expression '('
expression ':' expression 1)'

I 'length' ' (' expression ') '
I 'index' ' (' expression ' , ' expression ') '
I 'verify' '(' expression',' expression')'

statement := 'if' conditional stmnt
I unconditional stmnt ';T

subscript:= '{' expression [',' expression] ')'

tree_assign_stmnt := hard_tree_node '=' expression

unconditional stmnt := tree assign stmnt
I arith assign stmnt - -
I begin=block -
I do_group
I advance_stmnt
I call stmnt
I define stmnt
I get_stmnt
I graft_stmnt
I insert stmnt
I label_assign_stmnt
I order stmnt

prune_stmnt
put_stmnt
read stmnt
write stmnt
'assert' expression
'go' 1 to' . label
'stop'
'return'
'trace' ('off' 'high' 'low')

WHILE

WRTST

while clause := 'while' '(' expression ')'

write_stmnt := 'write' [file option]l
write element list

77

APPENDIX D

TRANSLATOR SOURCE ROUTINES

78

79

SOURCE SOURCE statements

BLKTB

Purpose:
This subsystem contains
translator and interpreter
form.

BLocK TaBle subsystem

Purpose:

all the non-recursive
subsystems in source

The subroutines in this subsystem all deal with
the block table and symbol table searching,
referencing and, if necessary, inserting.

BLKEXT BLocK EXiT

Purpose:
This subroutine backs
table to the parent of

up a level in the
the current block.

block

Common Blocks:
PARSE
SWITCH
TABLE

parsing stack, switches & counts
user controlled option switches
proc/block, constant and local symbol

CLRTAB CLeaR TABle

Purpose:

DFBGN

DFLAB

This subroutine clears (and optionally lists) the
symbol table associated with the program block
identified by BLKPTR.

Common Blocks:
DSINFO
DSTORP
IODEVS
PGINFO
SWITCH
TABLE

dynamic storage control information
dynamic storage pool
input/output device unit numbers
page printing information
user controlled option switches
proc/block, constant & local symbol

DeFine BeGiN block

Purpose:
This subroutine puts a begin block entry in the
block table.

Common Blocks:
PARSE
TABLE

parsing stack, switches & counts
proc/block, constant and local symbol

DeFine LABel

Purpose:
This subroutine finds or enters the label string
pointed to by NMPTR in the symbol table associated

DFPRC

80

with the current program block. The resulting
location (binary tree node) is returned in PLOC.
This routine should only be called after a
potential label definition has been rejected as a
procedure name definition.

Parameters:
NMPTR
PLOC

Common Blocks:
DSTORP
GENCOD
PARSE
SWITCH
SYSTEM
TABLE

pointer to label string
pointer to label symbol table location

dynamic storage pool
opcode numbers & code genera~ion support
parsing stack, switches & counts
user controlled option switches
system dependent word chararacteristics
proc/block, constant and local symbol

DeFine PRoCedure name

Purpose:
This subroutine establishes
definition in the block table.

a procedure name

Parameters:
NMPTR

Common Blocks:
DSTORP
GENCOD
PARSE
SWITCH
TABLE

pointer to procedure name in dynamic
storage

dynamic storage pool
opcode numbers & code generation support
parsing stack, switches & counts
user controlled option switches
proc/block, constant and local symbol

DFTID DeFine Tree or IDentifier symbol

Purpose:
This subroutine
in the symbol
identified by
values for the

enters NEWTOK, the current symbol,
table associated with the block
BLKPTR. It establishes default

symbol as the NEWNUM subtype.
Parameters:

BLKPTR
DTYPE

pointer to current block in block table
identifier type

Common Blocks:

DFTREE

DSTORP
PARSE
TABLE
TOKDAT

dynamic storage pool
parsing stack, switches & counts
proc/block, constant and local symbol
token data

DeFine TREE

Purpose:
This subroutine defines a tree
indirect reference (SUBNODES
DEFINE statement) and checks
usage. NEWTOK (new token) is

name as a based or
USING clause or
for conflict in

assumed to contain

81

the relevant tree name.
Common Blocks:

DSTORP
TABLE
TOKDAT

dynamic storage pool
proc/block, constant and local symbol
token data

GNPRUN GeNerate PRUNe
Purpose:

RFLAB

This subroutine traverses the local symbol table
and generates tree address load and prune
instructions for the locally defined trees. This
subroutine applies only to locally defined trees,
not tree parameters, defined trees or unreferenced
trees.

Parameters:
BLKPTR

Common Blocks:
DSTORP
GENCOD
PARSE
SWITCH
TABLE

pointer to current block in table

dynamic storage pool
opcode numbers & code generation support
parsing stack, switches & counts
user controlled option switches
procjblock, constant and local syrnbol

ReFerence LABel
Purpose:

This subroutine establishes a reference pointer in
PLOC (binary tree node index) for the label string
identified by NMPTR. This routine should only be
called after a 'GO TO' and following recognition
of the

Parameters:
NMPTR
PLOC

identifier.

pointer to label string
reference pointer

Common Blocks:
DSTORP
GENCOD
PARSE
TABLE

dynamic storage pool
opcode numbers & code generation support
parsing stack, switches & counts
proc/block, constant and local symbol

RFPRC ReFerence to a PRoCedure

Purpose:
This subroutine finds the entry in the block table
for the referenced procedure. If none exists, it
creates one.

Parameters:
NMPTR

PLOC
Common Blocks:

DSTORP
TABLE

pointer to procedure name in dynamic
storage
table location upon completion

dynamic storage pool
proc/block, constant and local symbol

RfTID

82

Reference to Tree or IDentifier

Purpose:
This subroutine searches the program block symbol
tables within scope, in an 'inside out' fashion to
locate the referenced symbol. If it is not found
then it defines the symbol in the external block
in which it must be. It delivers the result, a
binary tree node pointer, as the NEWNUM subtype of
the current NEWTOK (new token) symbol.

Common Blocks:
DSTORP
PARSE
TABLE
TOKDAT

dynamic storage pool
parsing stack, switches & counts
procjblock, constant and local symbol
token data

RfTREE Reference TREE

Purpose:
This subroutine
establishes the
established.

references a tree name and
usage subtype if it is not already

Common Blocks:

SBLKT

CGSUP

DSTORP
GENCOD
TABLE
TOKDAT

dynamic storage pool
opcode numbers & code generation support
proc/block, constant and local symbol
token data

Search BLocK Table

Purpose:
This subroutine searches the block
name match starting at the index
putting the result in RESULT.

Parameters:

table for
SRCHST

a
and

NMPTR
SRCHST
RESULT

Pointer to current name being processed
starting index in block table

Common Blocks:
DSTORP
TABLE

pointer to current name in block table

dynamic storage pool
proc/block, constant and local symbol

Code Generation SUPport subsystem

Purpose:
This subsystem contains subroutines which deal
with pseudo-code generation.

CHKAC CHecK Arithmetic Conversion requirement

Purpose:
This subroutine generates a conversion of a string

CRFID

83

to floating point instruction.
Parameters:

OPR operand type
Common Blocks:

GENCOD opcode numbers & code generation support

Compile ReFerence to an IDentifier

Purpose:
This subroutine causes a PLANS pseudo-instruction
to be generated for an identifier reference. The
operation code generated is dependent upon whether
it has an array versus variable, a floating point
versus an integer variable, a direct versus an
indirect (formal parameter) reference or an
address versus a value reference. A secondary
purpose is to pass back the dimension count of the
identifier to the caller for use in conditibning
further the compilation of subscripts and
indexing. The identifier type is added to the
general stack.

Parameters:
TLOC
CVAL
DIMCNT

Common Blocks:
DSTORP
GENCOD
SWITCH
TABLE

pointer to identifier in symbol table
switch for address vs value reference
dimension count for an array identifier

dynamic storage pool
opcode numbers & code generation support
user controlled option switches
proc/block, constant and local symbol

DFPSAD DeFine PSeudo-code ADdress (on the stack)

Purpose:
This subroutine defines a pseudo-code address at
the current pseudo-code instruction counter and
resolves forward reference linking which may have
occurred.

Parameters:
NSTK
NADDR

which stack
address number in reservation list

Common Blocks:

OUTIWA

GENCOD
IODEVS
SWITCH
SYSTEM

opcode numbers & code generation support
input/output device unit numbers
user controlled option switches
system dependent word characteristics

OUTput Instruction Word with pseudo-code Address

Purpose:
This subroutine retrieves a pseudo-code address
from a pseudo-code address stack and catenates it
with an operation code to form a full word
instruction. Forward reference linking may occur.

OUTOP

Parameters:
OPCDE
NSTK
NADDR

Common Blocks:
GENCOD
SWITCH

84

operation code for instruction
which pseudo-code address stack
entry number in address stack list

opcode numbers & code generation support
user controlled option switches

OUTput OPeration code

Purpose:
This subroutine outputs the parameter, given in
right justified form, to the pseudo-code array.
If the operation code is not a format 1 code then
word boundary alignment is forced.

Parameters:
OPCODE operation code

Common Blocks:
GENCOD
IODEVS
SWITCH
SYSTEM

opcode numbers & code genera~ion support
input/output device unit numbers
user controlled option switches
system dependent word characteristics

OUTWRD OUTput a WoRD to the pseudo-code array

Purpose:
This subroutine constructs a full word pseudo
instruction (must not be format 1 instruction)
from the pieces passed as parameters. For
instructions with no display register and a full
three bytes for the operand field, the DSPREG
value should be zero and ASOFF should contain a
right justified three byte operand field. If
OPCODE is zero, then it is assumed that the word
has already been constructed and properly formed
in ASOFF.

Parameters:
OPCODE
DSPREG
ASOFF

Common Blocks:
GENCOD
IODEVS
SWITCH
SYSTEM

operation code (right justified)
display register code (right justified)
automatic storage offset

opcode numbers & code generation support
input/output device unit numbers
user controlled option switches
system dependent word characteristics

PSAPOP PSeudo-code Address stack POP

Parameters:
NSTK

Common Blocks:
GENCOD
IODEVS
SWITCH

which stack

opcode numbers & code generation support
input/output device unit numbers
user controlled option switches

85

RPSADS Reserve Pseudo-code ADdress Stack entries

CHRST

Parameters:
NSTK
NRESRV

Common Blocks:
GENCOD
IODEVS
SWITCH

which stack
number of entries to reserve

opcode numbers & code generation support
input/output device unit numbers
user controlled option switches

CHaRacter STring subsystem

Purpose:
This subsystem contains the subroutines which deal
with variable length character string
manipulation. It is required because FORTRAN 77
does not support variable length character
strings.

ADDCH ADD CHaracter

Purpose:

CPYST

IEQST

This subroutine
length string.

adds a character to a variable

Parameters:
ISTRNG
IADCHR

variable length string
character to be added

CoPY STring

Purpose:
This subroutine copies a variable length
from one array (IORIG) to another (ICOPY}.

Parameters:

string

IORIG
ICOPY

array containing string to be copied
array into which string is copied

compare for EQuality of two STrings

Purpose:
This function compares two character strings for
equality, returning 1 (true) if equal, 0 (false)
otherwise. Equality requires complete identity,
including length and content (e.g. no dissimilar
blank fi 11).

Parameters:
ISTRl
ISTR2

variable length string
variable length string

86

IEXCL EXtract a Character and Left justify

Purpose:

IEXCR

This function extracts a specified character from
a specified string and delivers it left-justified
with blank fill. The string is an array with its
length in the first word.

Parameters:
ISTRNG
IPOS

variable length character string array
1-origin index of desired character

EXtract a Character and Right justify

Purpose:
This function extracts a specified character from
a specified string and returns it in right
justified form. The string is an array with its
length in the first word. The result is returned
with zero left fill and hence this routine may be
used to extract a 'small' integer which has been
packed in character sized units. This version is
intended only for the retrieval of integers in the
range of O - 127 inclusive from an eight bit byte.

Parameters:
ISTRIN
IPOS

variable length character string array
1-origin index of desired character

RPCHL RePlace CHaracter Left

Purpose:
This subroutine replaces a
a given string with a
character.

specified character in
specified replacement

RPCHR

Parameters:
ISTRNG
IPOS
IRPCHR

variable length string (input & output)
1-origin index of character to replace
replacement character (left justified)

RePlace a CHaracter Right justified

Purpose:
This subroutine replaces a specified character
with a specified right-justified character. It is
only intended for packing a 'small' integer in a
one character unit in a variable length string
because the value to be inserted (IRPCHR) is
right-justified. Left fill is not relevant to the
proper functioning of this routine.

Parameters:
ISTRNG
IPOS
IRPCHR

variable length string to be modified
1-origin index of character to replace
replacement character (right-justified)

87

CODLST CODe LiSTing subsystem

Purpose:
This subsystem handles the output to the printer
of the generated pseudo-code.

FRDUMP FRequency DUMP of opcode generation

Common Blocks:
GENCOD
IODEVS

opcode numbers & code generation support
input/output device unit numbers

PSTLST PoST LiST

Purpose:

DYNAM

DSALC

This subroutine dumps the generated
the printer in semi-symbolic form.

pseudo-code to

Common Blocks:
GENCOD
IODEVS
SYSTEM

opcode numbers & code generation support
input/output device unit numbers
system dependent word characteristics

DYNAMic storage subsystem

Purpose:
This subsystem contains the subroutines which
manage dynamic storage.

Dynamic Storage ALloCation

Purpose:
This subroutine allocates a block of storage
consistent with the request size. Only sizes in
the specified generalized Fibonacci sequence are
actually allocated. A large block may be split to
satisfy the request.

Parameters:
ASIZE

BLKIDX

Common Blocks:
DSINFO
DSTORP

requested size in words
(exclusive of control word)
index in ISBLK to beginning of allocated
block (index is to word beyond control
word)

dynamic storage control information
dynamic storage pool

DSINT Dynamic Storage INiTialization

Purpose:
This subroutine divides up the dynamic storage
pool (ISBLK) into maximum size blocks according to
a specified size sequence (generalized Fibonacci

DSRLS

88

sequence). Storage blocks determined are marked,
fictitiously, as having right buddies. Upon
release from use (directly or by a merge) the
right buddy does not have a zero left buddy count
(split counter), so a merge to a larger than
initial size is prevented.

Common Blocks:
DSINFO
DSTORP
IODEVS

dynamic storage control information
dynamic storage pool
input/output device unit numbers

Dynamic Storage ReLeaSe

Purpose:
This subroutine deallocates a block of dynamic
storage and merges it with its buddy if the buddy
is free and unsplit. The merge continues as far
as possible within the buddy system requirements.
The index to the block to be released from use
(BLKIDX) is expected to be one beyond the control
word and is nulled out prior to return.

Parameters:
BLKIDX

Common Blocks:
DSINFO
DSTORP

index in ISBLK of block to be released

dynamic storage control information
dynamic storage pool

ERROR ERROR message subsystem

ERNUM

Purpose:
This subsystem contains all the routines which
deal with compiler error message handling.

ERror NUMber

Purpose:
This subroutine maps the two part error number to
the print number and issues the error message.
The fact of the error occurrence is recorded for
later printing of the literal message.

Parameters:
IECLS error class
IENUM error number within class

Common Blocks:
ERINFO
IODEVS
PARSE
SWITCH
TABLE

error information
input/output device unit numbers
parsing stack, switches & counts
user controlled option switches
proc/block, constant and local symbol

89

ERRINT ERRor INiTialization

Purpose:
This subroutine
and type arrays

Common Blocks:

initializes the error class start
from the error message file.

IODEVS
ERINFO

input/output device unit numbers
error information

ERRWRP ERRor WRaPup

Purpose:
This subroutine
detected errors
potential next
processing.

Common Blocks:

issues the literal messages for
and restores things for a

round of external procedure

ERINFO
IODEVS

error information
input/output device unit numbers

LABVAL LABel/VALue subsystem

LBVLI

Purpose:
This subsystem deals with the reserved label/value
file.

LaBel VaLue Input

Purpose:
This subroutine inputs a file of 'standard'
label/value strings for use as key values for both
translation and execution. Proper use of this
facility can pay handsome dividends in both space
and time for execution of PLANS programs. A
separate program is provided which will build such
a file from PLANS trees.

Common Blocks:
DSINFO
DSTORP
IODEVS
TABLE

dynamic storage control information
dynamic storage pool
input/output device unit numbers
proc/block, constant and local symbol

LVOUT LAbel/Values OUT

Purpose:
This subroutine constructs
ordered reserved label/value
string constant table.

a collating sequence
file from the global

Common Blocks:
DSTORP
IODEVS
TABLE

dynamic storage pool
input/output device unit numbers
proc/block, constant & local symbol

LEX

LXCAL

LEXical analysis subsystem

Purpose:

90

This subsystem contains
routines.

the lexical analysis

LeXiCAL analyzer

Purpose:
This subroutine serves as an interface between the
first pass parser and the token extractor. Key
word identification, some contextual recognition
and symbol table work is also performed.

Common Blocks:
DSTORP
PARSE
SWITCH
TABLE
TOKDAT

dynamic storage pool
parsing stack, switches & counts
user controlled option switches
proc/block, constant and local symbol
token data

TADDCH Token ADD CHaracter

TOKEN

LIB

Purpose:
This subroutine adds a character to a variable
length string.

Parameters:
STRPTR
NCHARS
ADCHR

Common Blocks:
DSTORP

index to variable length string
length of string (input & output)
character to be added

dynamic storage pool

TOKEN extraction

Purpose:
This subroutine is the
extraction routine for the

basic token (symbol)
PLANS translator.

Common Blocks:
DSTORP
EDIT
IODEVS
LBINFO
PARSE
SWITCH
SYSTEM
TOKDAT

dynamic storage pool
edit switch
input/output device unit numbers
library information
parsing stack, switches & counts
user controlled option switches
system dependent word characteristics
token data

LIBrary subsystem

Purpose:
This subsystem
routines.

contains the library support

91

FINLIB FINish LIBrary

Purpose:
This subroutine scans the procedure block table
for external procedures to write to the library
index and creates the control record.

Common Blocks:

LIBINT

DSTORP
IODEVS
LBINFO
PGINFO
TABLE

dynamic storage pool
input/output device unit numbers
library information
page printing iRformation
procjblock, constant and local symbol

LIBrary INiTialization

Purpose:
This subroutine either creates
record (library creation mode)
control record (library use mode).

a dummy control
or retrieves a

Common Blocks:

LIBOUT

IODEVS
LBINFO
SWITCH

input/output device unit numbers
library information
user controlled option switches

LIBrary OUTput (create mode only)

Common Blocks:

PRCLIB

IODEVS
LBINFO
TOKDAT

input/output device unit numbers
library information
token data

PRoCess LIBrary

Purpose:
This subroutine determines, from the block table,
whether unresolved external procedure references
exist. If so, the matching library modules are
processed. New unresolved references from
processing a library module are also examined for
resolution from the library.

Common Blocks:
DSTORP
ERINFO
GENCOD
GSTACK
IODEVS
LBINFO
PARSE
PGINFO
SWITCH
TABLE
TOKDAT

dynamic storage pool
error information
opcode numbers & code generation support
general stack
input/output device unit numbers
library information
parsing stack, switches & counts
page printing information
user controlled option switches
proc/block, constant and local symbol
token data

MNCTL

92

MaiN ConTroL subsystem

Purpose:
This subsystem contains the main program for the
PLANS translator.

SYSINT SYStem INiTialization

Purpose:
This subroutine initialializes the system
dependent parameters for the PLANS translator.

Common Blocks:

TRCTRL

LBINFO
RUNBUF
SYSTEM

library information
runfile input/output buffer
system dependent word characteristics

TRanslator ConTRoL

Purpose:
This is the main control program for the PLANS
translator.

Common Blocks:

OPTION

GENCOD
GSTACK
IODEVS
PARSE
SWITCH
SYSTEM
TOKDAT

opcode numbers & code generation support
general stack
input/output device unit numbers
parsing stack, switches & counts
user controlled option switches
system dependent word characteristics
token data

OPTIONs subsystem

Purpose:

FILOPT

This subsystem processes the options for PLANS
external procedures.

FILe OPTion list

Purpose:

OPTION

This subroutine processes the '*FILES' control
records.

OPTION list

Purpose:
This subroutine processes the optional '*PROCESS'
control records and OPTION specifications on a
PROCEDURE declaration.

Common Blocks:
DSTORP
PARSE
SWITCH

dynamic storage pool
parsing stack, switches & counts
user controlled option switches

PAGE

TABLE
TOKDAT

procjblock, constant and local symbol
token data

PAGE subsystem

Purpose:

93

This subsystem contains the routines that control
the printed output page and line management.

LINCNT LINe CoNTrol

Purpose:

NUPAG

PRSSP

This subroutine increases the line count and
determines if page eject and headings are needed.

Parameters:
COUNT line count

Common Blocks:
PGINFO page printing information

New PAGe

Purpose:
This subroutine does
page headings for the

Common Blocks:

a page eject and
main print file.

prints the

IODEVS
PGINFO

input/output device unit numbers
page printing information

PaRSer SuPport subsystem

Purpose:
This subsystem contains all the non-recursive
parsing rules and the general stack management
routines.

DCLST DeCLare STatement

Purpose:
This subroutine parses declaration statements and
performs appropriate symbol table work in support
of the main parser.

Common Blocks:
DSTORP
GENCOD
IODEVS
PARSE
SWITCH
TABLE
TOKDAT

dynamic storage pool
opcode numbers & code generation support
input/output device unit numbers
parsing stack, switches & counts
user controlled option switches
proc/block, constant and local symbol
token data

ERRCV

94

ERror Recovery

Purpose:
This subroutine handles error recovery. It does
not allow a scan past EOF, END, DO, BEGIN or PROC.

Parameters:
TYPE

Common Blocks:
TOKDAT

dictates the scan type:
0 scan to semi.colon
1 scan to comma
2 scan to THEN
3 scan by semicolon
4 scan to right parenthesis

token data

FPARM Formal PARaMeter

Purpose:
This subroutine parses the formal parameter list
and performs the requisite symbol table operations
in support of the main parser.

Common Blocks:

GENPOP

DSTORP
IODEVS
PARSE
TABLE
TOKDAT

dynamic storage pool
input/output device unit numbers
parsing stack, switches & counts
proc/block, constant and local symbol
token data

GENeral stack POP

Purpose:
This subroutine recovers an integer value from the
general stack and pops the stack. If the stack
type does not match the type parameter then it
issues

Parameters:
an error message.

TYPE
VALUE

identification code
integer value recovered

Common Blocks:

GENSTK

GSTACK
IODEVS
SWITCH

general stack
input/output device unit numbers
user controlled option switches

GENeral STaCK

Purpose:
This subroutine puts an integer value and
identification code on the general stack for later
recovery.

Parameters:
TYPE identification code
VALUE integer value

Common Blocks:
GSTACK general stack

IODEVS
SWITCH

input/output device unit numbers
user controlled option switches

95

GENSWP GENeral stack SWaP

Purpose:
This subroutine swaps the top two items on the
general stack.

Common Blocks:
GSTACK general stack

IGNORE IGNORE any commas

SEMI

STKUP

TOUT

Common Blocks:
TOKDAT token data

SEMI colon

Purpose:
This subroutine checks for a semicolon, issues
error message if it is not there and bypasses
if it is there.

Common Blocks:
PARSE
TOKDAT

STacK UP

Purpose:

parsing stack, switches & counts
token data

an
it

This subroutine checks the
top limit and increments it
its limit.

address (parse) stack
if it has not reached

Common Blocks:
PARSE parsing stack, switches & counts

Trace OUT

Purpose:
This subroutines outputs parsing trace flow
. information.

Parameters:
CODE numeric rule identification

Common Blocks:
IODEVS
PARSE
PGINFO

input/output device unit numbers
parsing stack, switches & counts
page printing information

RUNFIL RUNFILe subsystem

Purpose:
This subsystem contains all the runfile management
routines.

96

OUTAB OUTput TABles

Purpose:
This subroutine outputs tables to the runfile.

Common Blocks:
DSTORP
GENCOD
IODEVS
RUNBUF
SWITCH
TABLE

dynamic storage pool
opcode numbers & code generation support
input/output device unit numbers
runfile input/output buffer.
user controlled option switches
proc/block, constant and local symbol

OUTCOD OUTput CODe

RNINT

Purpose:
This subroutine
runfile.

dumps any generated code

Common Blocks:
GENCOD
IODEVS
RUNBUF
SWITCH

opcode numbers & code generation
input/output device unit numbers
runfile input/output buffer
user controlled option switches

RuN INiTialization

Purpose:

to the

support

This subroutine initializes
present.

the runfile, if

Common Blocks:
IODEVS
RUNBUF
SWITCH

input/output device unit numbers
runfile input/output buffer
user controlled option switches

TRVNUM TRaVerse NUMeric

WRPUP

Purpose:
This subroutine traverses
place numeric constants in
specified output vector.

the numeric table to
address order in the

Parameters:
ROOT
OUTPUT

Common Blocks:
DSTORP
GSTACK
TABLE

WRaP UP

Purpose:

root index of table (binary tree)
vector for recording output

dynamic storage pool
general stack
proc/block, constant and local symbol

This subroutine checks for
block

loading
table to requirements and dumps the

runfile.

map
the

97

Common Blocks:

SRCH

BINSR

DSTORP
FILES
GENCOD
IODEVS
PARSE
RUNBUF
SWITCH
TABLE

dynamic storage pool
system unit numbers & names
opcode numbers & code generation support
input/output device unit numbers
parsing stack, switches & counts
runfile input/output buffer
user controlled option switches
proc/block, constant and local symbol

SeaRCH subsystem

Purpose:
This subsystem contains all the subroutines which
deal with binary tree management.

BINary SeaRch

Purpose:
This subroutine performs a binary search on
of character strings ordered and linked
vector of links.

a list
by a

Parameters:
LINK

LAST
IARG

IRSLT

index links to list of variable length
character strings maintained in the
dynamic storage pool
index to last link in list
index to dynamic storage for character
string search argument
index to link where match occurs (0 for
failure)

BSTSR Binary Search Tree SeaRch

Purpose:
This subroutine serves three roles as directed by
the input parameter ITYPE. One is to search for a
given symbol in a binary search tree. The second
is to find or enter a given symbol in a binary
search tree. The third is to delete a given
symbol from a binary search tree. In any case, a
preliminary search takes place.

Parameters:
NSFLG

ITYPE
LROOT
IARG
LMATCH
NMCNT

0 - numeric search argument & target
1 - variable length character string
search argument & target
role selection
link to root node
search argument
search match or insertion
I/0 parameter incremented
symbol is in fact entered

location link
by 1 if a new

BTINT

STCMP

98

Common Blocks:
dynamic storage pool DSTORP

TABLE proc/block, constant and local symbol

Binary Tree INiTialization

Purpose:
This subroutine initializes a
nodes. Right links are used
available nodes. Left links

pool of binary tree
to create a list of

are null. The node
in position 1 is used as a dummy node with its
left link used for a root node pointer and its
right link used as a list header for available
nodes. Name and value links are also set to null.

Common Blocks:
TABLE proc/block, constant and local symbol

STring CoMParison

Purpose:
This subroutine performs a collating sequence
comparison of two character strings. Note that
strings of unequal length cannot be equal.

Parameters:
NMl
NM2
IRSLT

Common Blocks:

left character string operand pointer
right character string operand pointer
result of the comparison

DSTORP dynamic storage pool

STGTF Symbol Table GeT First

Purpose:
This subroutine determines the first node in a
binary tree symbol table by finding the leftmost
node (first node in collating sequence order).

STGTN

Parameters:
LROOT
LRSLT

Common Blocks:

index to root node of tree
index to leftmost node

TABLE proc/block, constant and local symbol

Symbol Table GeT Next

Purpose:
This subroutine finds the next node in collating
sequence order in a symbol table binary tree.

Parameters:
LROOT
LPRVNM

LRSLT
Common Blocks:

index to root node of tree
index to dynamic storage for
name string
index to tree node found

DSTORP dynamic storage pool

previous

TRINI

99

TABLE proc/block, constant and local symbol

TRanslator static INitialization

Purpose:
This blockdata routine contains all
statements needed to do all the
initializations for the common blocks.

the data
translator

Common Blocks:
DSINFO
DSTORP
EDIT
ERINFO
FILES
GENCOD
PARSE
PGINFO
RUNBUF
SWITCH
TABLE
TOKDAT

dynamic storage control information
dynamic storage pool
edit switch
error information
system unit numbers & names
opcode numbers & code generation support
parsing stack, switches & counts
page printing information
runfile input/output buffer
user controlled option switches
proc/block, constant and local symbol
token data

APPENDIX E

CHANGES TO THE TRANSLATOR AS A RESULT OF

THE CHARACTER .STRING EXTENSION

100

101

COMMON

GENCOD

COMMON blocks

GENerate CODe

Changes:
Operation codes for string functions were added
(83-88, 108-118).

TOKDAT TOKen DATa

Changes:
Tables which deal with key symbol subtype
information and key word information were altered
to include the concatenation symbol and the FLOAT,
INDEX, INTEGER, LENGTH, STRING and VERIFY key
words.

PRSCG

AASTMT

PaRSe with Code Generation

Arithmetic Assignment STateMenT

INIT

Changes:
The possiblity of a string variable on the left
side of the equal sign was handled.

String Instructions Generated:
CVS Convert to String
AS Assign String

INITialization

Changes:
String related rule names were added to the
initializations.

PRIMRY PRIMaRY

REXPR

Changes:
A call to STFN
keywords LENGTH,
call to STFN was
suggested that
possible.

(string function)
INDEX or VERIFY
also generated
the substring

String Instructions Generated:
CVS Convert to String
LSA Load String Address

Relational EXPRession

Changes:

was added if
were found. A
if the context
function was

A call to
so that
priority

STEXPR (string expression) was generated
the concatenation operator could have
over the relational operators but not

102

over the arithmetic operators. With the existing
relational instructions, if either operand was
string type, it would be converted to floating
point. String relational operators were added so
that if both operands were of string type then
string comparisons would be made.

String Instructions Generated:
SEQ String EQual
SGE String Greater than or Equal
SGT String Greater Than
SLE String Less than or Equal ,
SLT String Less Than
SNE String Not Equal

STEXPR STring EXPRession

STFN

Changes:
This unit was added to handle the rule dealing
with concatenation. It is called by REXPR
(relational expression) and calls AEXPR
(arithmetic expression).

String Instructions Generated:
CVS Convert to String
SCAT String conCATenation

STring FuNction

Changes:
This unit was added to handle the index, length,
substring and verify functions. It is called by
PRIMRY (primary).

String Instructions Generated:
CVS Convert to String
SIND String INDex
SLEN String LENgth
SSUB String SUBstring
SVER String VERify

SOURCE SOURCE statements

BLKTB

DFTID

BLocK TaBle

DeFine Tree or IDentifier symbol

Changes:
An identifier type parameter was added to allow
for explicit type declarations.

103

RFTID ReFerence to a Tree or IDentifier

Changes:

CGSUP

CRFID

An identifier type parameter of U (undefined) was
added to the call to DFTID (define tree or
identifier) to force default type if the
identifier is not found.

Code Generation SUPport routines

Compile Reference to an IDentifier

Changes:
This unit was altered to generate string loading
instructions for string array, string variable
and string parameter references.

String Instructions Generated:

ERROR

ERRINT

LSD Load String array Descriptor address
• LSDI Load String array Descriptor address

LSVA
LSVI

Indirectly
Load String Variable Address
Load String Variable address Indirect

ERROR message routines

ERRor INiTialization

Changes:
This unit was changed to expand the error number
to three columns.

ERRWRP ERRor WRaPup

LEX

LXCAL

Changes:
This unit was changed to expand the error number
to three columns.

LEXical analysis

LeXiCAL analyzer

Changes:
An identifier followed directly by a colon was
treated as one unit. A check was added to see if
it was a valid label context and, if not, code was
added to treat it as two separate tokens. This
was necessary because the colon could be part of
the substring function.

104

TOKEN TOKEN extraction

Changes:

PRSSP

DCLST

FPARM

TRINI

Two new states were added (31 and 32) to change I
(the OR symbol) from just a one character token to
either a one character or a two character (II
concatenation) symbol.

PaRSer SuPport

DeCLare STatement

Changes:
Parsing of
was added.

the three
This was

new declaration statements
to allow for explicit type

declarations.
String Instructions Generated:

LSD Load String array Descriptor address

Formal PARaMeter

Changes:
A parameter of U (undefined) was added to the call
to DFTID. If an explicit type declaration is
encountered in the subroutine, the default type is
overridden.

TRanslator INitialization

Changes:
Changes and
statements to
keywords.

additions were
allow for the

made to the data
new key symbols and

APPENDIX F

INDEX TO THE INTERPRETER SUBSYSTEM

105

106

NAME ACCESS MECHANISM APPENDIX

ADDCH SOURCE.FORT(CHRST) D-85

ALAB SOURCE.FORT(TRESUP) H-127

ALLA SOURCE.FORT(ARRAY) H-114

ARRAY SOURCE.FORT(*) H-114

ATRE SOURCE.FORT(TRESUP) H-127

BINIO COMMON.FORT(*) G-111

BINSR SOURCE.FORT(*) H-115

BINSR SOURCE.FORT(BINSR) H-115

BOUNDS COMMON.FORT(*) G-111

CCOPY SOURCE.FORT(*) H-115

CCOPY SOURCE.FORT(CCOPY) H-115

CHRST SOURCE.FORT(*) D-85

CMBPRM SOURCE.FORT(*) H-115

CNUM SOURCE.FORT(CONVRT) H-117

COMMON *.FORT G-111

CONVRT SOURCE.FORT(*) H-117

CONVRT SOURCE.FORT(CONVRT) H-117

CPYST SOURCE.FORT(CHRST) D-85

CPYTRE SOURCE.FORT(TRESUP) H-128

CVF SOURCE.FORT(CVICVF) H-117

CVI SOURCE.FORT(CVICVF) H-117

CVICVF SOURCE.FORT(*) H-117

DSALC SOURCE.FORT(INDYNAM) H-119

DSINFO COMMON.FORT(*) B-70

DSINT SOURCE.FORT(INDYNAM) H-120

DSRLS SOURCE.FORT(INDYNAM) H-120

107

NAME ACCESS MECHANISM APPENDIX

ELMT SOURCE.FORT(TRESUP) H-128

ENCODE SOURCE.FORT(*) H-118

ENCODE SOURCE.FORT(ENCODE) H-118

EQ SOURCE.FORT(TRESUP) H-128

ERINFO COMMON.FORT(*) B-70

ERNUM SOURCE.FORT(INERROR) H-120

ERRINT SOURCE.FORT(INERROR) H-121

ERWRP SOURCE.FORT(INERROR) H-121

FCMB SOURCE.FORT(CMBPRM) H-115

FPRM SOURCE.FORT(CMBPRM) H-116

GET SOURCE.FORT(GETPUT) H-118

GETED SOURCE.FORT(GETPUT) H-118

GETPUT SOURCE.FORT(*) H-118

GPLAB SOURCE.FORT(NODE) H-122

GPSIB SOURCE.FORT(NODE) H-122

GRFT SOURCE.FORT(TRESUP) H-128

GRIS SOURCE.FORT(TRESUP) H-128

GTVAL SOURCE.FORT(NODE) H-123

HARD SOURCE.FORT(TREQUAL) H-126

IDNT SOURCE.FORT(TRESUP) H-129

IDXA SOURCE.FORT(ARRAY) H-114

IDXV SOURCE.FORT(ARRAY) H-114

IEQST SOURCE.FORT(CHRST) D-85

IEXCL SOURCE.FORT(CHRST) D-85

IEXCR SOURCE.FORT(CHRST) D-86

INCNTL COMMON.FORT(*) G-111

108

NAME ACCESS MECHANISM APPENDIX

INDAT SOURCE.FORT(*) H-119

INDAT SOURCE.FORT(INDAT) H-119

INDEVS COMMON.FORT(*) G-111

INDYNAM SOURCE.FORT(*) H-119

INEDIT COMMON.FORT(*) G-111

INERROR SOURCE.FORT(*) H-120

INGLOB COMMON.FORT(*) G-111

ININT SOURCE.FORT(INTCNTL) H-121

INNODE COMMON.FORT(*) G-112

INSTAC COMMON.FORT(*) G-112

INTCNTL SOURCE.FORT(*) H-121

INTCTL SOURCE.FORT(INTCNTL) H-121

INTFE SOURCE.FORT(*) H-122

INTFE SOURCE.FORT(INTFE) H-122

ISRT SOURCE.FORT(TRESUP) H-129

MVLBVL SOURCE,FORT(WRITE) H-130

NCMB SOURCE.FORT(CMBPRM) H-116

NEWNOD SOURCE.FORT(NODE) H-123

NODE SOURCE.FORT(*) H-122

NPRM SOURCE.FORT(CMBPRM) H-116

ORDER SOURCE.FORT(*) H-124

ORDER SOURCE.FORT(ORDER) H-124

PPLAB SOURCE.FORT(NODE) H-123

PPSIB SOURCE.FORT(NODE) H-123

PREOR SOURCE.FORT(*) H-125

PREOR SOURCE.FORT(PREOR) H-125

109

NAME ACCESS MECHANISM APPENDIX

PREOR2 SOURCE.FORT(PREOR) H-125

PRUNE SOURCE.FORT(TRESUP) H-129

PTVAL SOURCE.FQRT(NODE) H-124

PUT SOURCE.FORT(GETPUT) H-118

PUTED SOURCE.FORT(GETPUT) H-119

READ SOURCE.FORT(*) H-125

READ SOURCE.FORT(READ) H-125

RESERV SOURCE.FORT(READ) H-126

RPCHL SOURCE.FORT(CHRST) D-86

RPCHR SOURCE.FORT(CHRST) D-86

RTREE SOURCE.FORT(READ) H-126

SBST SOURCE.FORT(TRESUP) H-129

SHELLM SOURCE.FORT(ORDER) H-124

SNIP SOURCE.FORT(TRESUP) H-130

SOFT SOURCE.FORT(TREQUAL) H-127

SOURCE *.FORT H-114

STAT SOURCE.FORT(INTCNTL) H-122

SYSTEM COMMON.FORT(*) B-71

TRAVER COMMON.FORT(*) G-112

TREQUAL SOURCE.FORT(*) H-126

TRESUP SOURCE.FORT(*) H-127

WORK COMMON.FORT(*) G-112

WRIT SOURCE.FORT(WRITE) H-130

WRITE SOURCE.FORT(*) H-130

WTREE SOURCE.FORT(WRITE) H-130

APPENDIX G

INTERPRETER COMMON BLOCKS

110

111

COMMON COMMON blocks

BINIO

Purpose:
This subsystem contains all the parameter and
common statements for the PLANS routines.

BiNary Input/Output

Purpose:
This common block contains control variables used
to access and manage the buffer used~y PLANS for
input/output of trees in binary form.

BOUNDS

Purpose:

INCNTL

This common block serves as the PLANS
machine control block. It defines
boundaries within the PLANS run file that
it into its nine logical address spaces.

INterpreter CoNTroL

pseudo
physical
separate

Purpose:

INDEVS

This common block contains data needed for control
of the PLANS interpreter fetch/execute cycle.

INterpreter DEViceS

Purpose:

INEDIT

This parameter block contains the default file
unit numbers used by the PLANS interpreter.

INterpreter EDIT input/output

Purpose:

INGLOB

This common block contains information used by the
PLANS interpreter support routines that implement
the GET EDIT and PUT EDIT statements.

INterpreter GLOBal

Purpose:
This common block serves as the global address
space for the PLANS interpreter pseudo-machine.
It contains all the pseudo-code and run-time data.
(The boundary markers that separate it into the
nine major sections are defined in the BOUNDS
common block.)

112

INNODE INterpreter NODE storage

Purpose:
This common block contains data used to manage the
tree node storage space of the PLANS interpreter.
Node storage is dynamically managed by controlled
allocation from a "free" list.

INSTAC INterpreter STAck

Purpose:
This common block contains the
machine run-time stack, the stack
and their associated data.

PLANS pseudo
barrier stack

TRAVER TRAVERsal stacks

WORK

Purpose:
This common block contains two stacks used for
preorder tree traversal (TSTAC and TSTAC2) . .

Purpose:
This common block serves as a place to
pointers to common work areas maintained
common block INGLOB.

record
in the

APPENDIX H

INTERPRETER SOURCE ROUTINES

113

114

SOURCE SOURCE statements

ARRAY

ALLA

IDXA

IDXV

Purpose:
This subsystem contains
translator and interpreter
form.

all the non-recursive
subsystems in source

ARRAY subsystem

Purpose:
This subsystem handles array management
insructions.

Array ALLocation instruction

Purpose:
This subroutine allocates array space in display
storage for a declared array, computes a mapping
descriptor for the array and places it in already
allocated display storage space.

Common Blocks:
BOUNDS
INCNTL
INGLOB
INSTAC

pseudo-machine control block
interpreter fetch/execute control
interpreter pseudo-machine storage
run-time & stack barrier stack

InDeX to an Address instruction

Purpose:
Given an array descriptor address and subscripts
on the run-time stack, this subroutine computes
the address of the referenced element and places
this address on the stack.

Common Blocks:
BOUNDS
INCNTL
INGLOB
INSTAC

pseudo-machine control block
interpreter fetch/execute control
interpreter pseudo-machine storage
run-time & stack barrier stack

InDeX to a Value instruction

Purpose:
Given an array descriptor address and subscripts
on the run-time stack, this subroutine locates the
referenced array element and puts its value on the
run-time stack.

Common Blocks:
INGLOB
INSTAC

interpreter pseudo-machine storage
run-time & stack barrier stack

BINSR

BINSR

BINary SEarch subsystem

BINary SEarch

115

Purpose:
This subroutine performs a binary search on
of character strings ordered and linked
vector of links.

a list
by a

Parameters:

CCOPY

CCOPY

LINK

LAST
IARG

IRSLT

index links to list of variable length
character strings maintained in dynamic
storage pool
index to last link in list
index to dynamic storage for character
string search argument
index to link where match occurs
(0 for failure)

Conditional COPY subsystem

Conditional COPY

Purpose:
This subroutine reserves dynamic storage space for
the character string pointed to by POLD. If the
string already resides in string constant space or
reserved label/value space, it is not necessary to
reserve new space for an extra copy. A pointer to
the existing or newly allocated string is
returned.

Parameters:
POLD
PNEW

Common Blocks:
BOUNDS
INGLOB

pointer to input character string
pointer to location of character string
(output)

pseudo-machine control block
interpreter pseudo-machine storage

CMBPRM CoMBination and PeRMutation subsystem

FCMB

Purpose:
This subsystem contains the routines necessary to
handle the instructions dealing with combinations
and permutations of tree subnodes.

First CoMBination instruction

Purpose:
This subroutine computes the list of pointers for
the first combination of a specified (sub)tree.

FPRM

NCMB

NPRM

Parameters:
CSIZE

Common Blocks:
BOUNDS
INCNTL
INDEVS
INGLOB
INSTAC

116

to assist FPRM which calls this routine

pseudo-machine control block
interpreter fetch/execute control
interpreter device unit numbers
interpreter pseudo-machine storage
run-time & stack barrier stack

First PeRMutation instruction

Purpose:
This subroutine computes control information for
(sub)tree permutation processing. FCMB (first
combination) is called first since permutations
are determined by permuting combinations.

Common Blocks:
BOUNDS
INCNTL
INGLOB

pseudo-machine control block
interpreter fetch/execute control
interpreter pseudo-machine storage

Next CoMBination instruction

Purpose:
This subroutine determines the next combination in
the current combinatorial loop by updating the
pointer list in display storage. If all
combinations have been exausted, this is indicated
on the run-time · stack by a logical 0. A
successful next combination returns a logical 1.

Common Blocks:
INCNTL
INGLOB
INSTAC

interpreter fetch/execute control
interpreter pseudo-machine storage
run-time & stack barrier stack

Next PeRMutation instruction

Purpose:
This subroutine establishes the next permutation
for the current combination loop from information
in display storage. If failure occurs (indicated
by an attempt to get the next combination),
additional display storage allocated for
permutation processing is released.

Common Blocks:
INCNTL
INGLOB
INSTAC

interpreter fetch/execute control
interpreter pseudo-machine storage
run-time & stack barrier stack

117

CONVRT CONVeRT subsystem

CNUM

Purpose:
This subsystem contains subroutines which attempt
to convert a string to internal numeric form.

Convert to NUMeric

Purpose:
This subroutine attempts to convert a string to
internal numeric form.

Parameters:
NCHARS
SPCPTR
TYPE
IVAL
RNUM

Common Blocks:
INGLOB

number of characters in string
pseudo-machine space subscript
resulting type
internal value of integer string found
internal value of real string found

interpreter pseudo-machine storage

CONVRT CoNVeRT

Purpose:
This subroutine attempts to locate an integer or
floating point number in the string argument and,
if found, converts it to internal form.

Parameters:
STRING
NCHAR
TYPE
INUM
RNUM
CLOC

vector of characters
number of characters in string
resulting type
internal value of integer string found
internal value of real string found
location of first non-blank character

CVICVF Convert to Integer and Convert to Floating point
subsystem

CVF

CVI

Convert to Floating point instruction

Purpose:
This subroutine converts the item
run-time stack to floating point.

Common Blocks:

on top

BOUNDS
INGLOB
INSTAC

pseudo-machine control block
interpreter pseudo-machine storage
run-time & stack barrier stack

Convert to Integer instruction

Purpose:

of·the

This subroutine converts the item on top of the
run-time stack to integer.

Common Blocks:
BOUNDS
INGLOB
INSTAC

pseudo-machine control block
interpreter pseudo-machine storage
run-time & stack barrier stack

ENCODE

ENCODE

ENCODE subsystem

Purpose:

118

This subroutine is used to get around FORTRAN 77
implementation restrictions.

Common Blocks:

GETPUT

GET

INGLOB interpreter pseudo-machine storage

GET and PUT subsystem

GET instruction

Purpose:
This subroutine implements the GET EDIT statement.

GETED

PUT

Common Blocks:
INEDIT
INGLOB
INSTAC

GET EDit

Purpose:

interpreter EDIT I/0
interpreter pseudo-machine storage
run-time & stack barrier stack

This subroutine performs formatted input
numeric values into PLANS display storage.

Parameters:
LENFMT
IFMT

Common Blocks:
INCNTL
INEDIT
INGLOB
INSTAC

character length of user format string
user supplied format string

interpreter fetch/execute control
interpreter EDIT I/0
interpreter pseudo-machine storage
run-time & stack barrier stack

PUT instruction

Purpose:

of

This subroutine
instruction.

implements the PLANS PUT EDIT

Common Blocks:
BOUNDS
INEDIT
INGLOB
INSTAC

pseudo-machine control block
interpreter EDIT I/0
interpreter pseudo-machine storage
run-time & stack barrier stack

119

PUTED PUT EDit

Purpose:
This subroutine performs formatted output of
numeric values and character strings.

Parameters:

INDAT

INDAT

LENFMT character string length of user supplied
format string
IFMT user supplied format specification
string

Common Blocks:
INCNTL
INEDIT
INGLOB
INSTAC

interpreter fetch/execute control
interpreter EDIT I/0
interpreter pseudo-machine storage
run-time & stack barrier stack

INterpreter block DATa subsystem

INterpreter block DATa

Purpose:
This block
values in

Common Blocks:
DSINFO
ERINFO
INCNTL
INDEVS

data routine initializes static
the PLANS interpreter common blocks.

dynamic storage control information
error information
interpreter fetch/execute control
interpreter device unit numbers

data

INDYNAM INterpreter DYNAMic storage subsystem

DSALC

Purpose:
This subsystem handles interpreter dynamic storage
management.

Dynamic Storage ALloCation

Purpose:
This subroutine allocates a block of storage
consistent with the request size. Only sizes in
the specified generalized Fibonacci sequence are
actually allocated. A large block may be split to
satisfy the request.

Parameters:
ASIZE

BLKIDX

request size in words (exclusive of
control word)
index in ISBLK to beginning of allocated
block

DSINT

DSRLS

Common Blocks:
DSINFO
INGLOB

dynamic storage control information
interpreter pseudo-machine storage

Dynamic Storage INiTialization

Purpose:

120

This subroutine divides
pool (ISBLK) into maximum
the specified generalized

up the dynamic storage
size blocks according to
Fibonacci sequence.

Common Blocks:
DSINFO
INGLOB

dynamic storage control information
interpreter pseudo-machine storage

Dynamic Storage ReLeaSe

Purpose:
This subroutine deallocates a block of dynamic
storage. If its buddy is free and not split they
are merged. Merging continues as far as possible
within the buddy system requirements.

Parameters:
BLKIDX

Common Blocks:
DSINFO
INGLOB

index to block to be released from use

dynamic storage control information
interpreter pseudo-machine storage

INERROR INterpreter ERROR subsystem

ERNUM

Purpose:
This subsystem contains the routines which handle
errors.

ERror NUMber

Purpose:
This subroutine maps the two part error number to
the entry in the table of error messages and
issues a message.
recorded so that
printed later.

The occurrence of the error
the literal message will

Parameters:
IECLS
IENUM

Common Blocks:
BOUNDS
ERINFO
INCNTL
INDEVS
INGLOB

error class
error number within class

pseudo-machine control block
error information
interpreter fetch/execute control
interpreter device unit numbers
interpreter pseudo-machine storage

is
be

121

ERRINT ERRor INiTialization

ERWRP

Purpose:
This subroutine
and class start

Common Blocks:

initializes the error
array.

type array

ERINFO
INDEVS

error information
interpreter device unit numbers

ERrorWRaPup

Purpose:
This subroutine
detected errors
potential next
processing.

Common Blocks:

issues
and

round

the literal messages for
restores things for a

of external procedure

ERINFO
INDEVS

error information
interpreter device unit numbers

INTCNTL INTerpreter CoNTroL subsystem

ININT

Purpose:
This subsystem contains the main interpreter
program, initialization and wrapup routines.

INterpreter INiTialization

Purpose:
This is the main initialization subroutine for the
PLANS interpreter. It sets up the PLANS pseudo
machine address space with values obtained during
translation. It also assigns initial values to
other common areas used by the interpreter.

Common Blocks:
BOUNDS
DSINFO
INCNTL
INDEVS
INGLOB
INNODE
INSTAC
TRAVER
SYSTEM
WORK

pseudo-machine control block
dynamic storage control information
interpreter fetch/execute control
interpreter device unit numbers
interpreter pseudo-machine storage
interpreter node storage management
run-time & stack barrier stack
preorder traver~al stacks
system dependent word characteristics
record pointers to common work areas

INTCTL INTerpreter ConTroL

Purpose:
This is the interpreter's main program.

Common Blocks:
INCNTL interpreter fetch/execute control

STAT

INTFE

INTFE

NODE

INDEVS
SYSTEM

STATistics

Purpose:

interpreter device unit numbers
system dependent word characteristics

122

This subroutine
to the printer.

dumps the performance statistics

Common Blocks:
INCNTL
INDEVS

interpreter fetch/execute control
interpreter device unit numbers

INTerpreter Fetch/Execute subsystem

INTerpreter Fetch/Execute

Purpose:
This subroutine is the main fetch/execute control
loop for the PLANS pseudo-machine. It iteratively
decodes and executes pseudo-machine instructions.

Common Blocks:
BOUNDS
INCNTL
INDEVS
INSTAC
SYSTEM

pseudo-machine control block
interpreter fetch/execute control
interpreter device unit numbers
run-time & stack barrier stack
system dependent word characteristics

NODE subsystem

Purpose:
This subsystem handles tree node management.

GPLAB Get Pointer to a LABel

GPSIB

Purpose:
This function returns a label pointer of a tree
node.

Parameters:
INDEX

Common Blocks:
INGLOB
SYSTEM

index in tree node storage space

interpreter pseudo-machine storage
system dependent word characteristics

Get Pointer to a SIBling

Purpose:
This function retrieves the
size -1 bits of any word in
and is frequently used for
pointer retrieval.

low order half word
pseudo-machine space
other than sibling

GTVAL

Parameters:
INDEX

Common Blocks:
INGLOB
SYSTEM

index in tree node storage space

interpreter pseudo-machine storage
system dependent word characteristics

Get Type and VALue

Purpose:

123

This subroutine retrieves the type code for a node
and a pointer (descendant or string), integer
value or real value, depending on the value of
ITYPE.

Parameters:
INDEX
ITYPE
IVALUE
RVALUE

Common Blocks:
INGLOB
SYSTEM

index in tree node storage space
type code for word 2
integer number or pointer
floating point number

interpreter pseudo-machine storage
system dependent word characteristics

NEWNOD NEW NODe

PPLAB

Purpose:
This subroutine removes a node
list, initializes its components
pointer to it.

from the "free"
and returns a

Parameters:
PNODE pointer to new tree node

Common Blocks:
INGLOB
INNODE

interpreter pseudo-machine storage
interpreter node storage management

Put Pointer to a LABel

Purpose:
This subroutine sets a label pointer of a tree
node.

Parameters:
INDEX
VALUE

Common Blocks:
INGLOB
SYSTEM

index in tree node storage space
label pointer value

interpreter pseudo-machine storage
system dependent word characteristics

PPSIB Put Pointer to a SIBling

Purpose:
This subroutine sets the low order half word -1
bits of a word. A sibling pointer may or may not
be involved.

Parameters:
INDEX index in tree node storage space

PTVAL

VALUE
Common Blocks:

INGLOB
SYSTEM

pointer value

interpreter pseudo-machine storage
system dependent word characteristics

Put Type and VALue

Purpose:

124

This subroutine sets the type code for a node and
a descendant pointer, string pointer, integer
value or floating point val~e, depending upon the
value of type.

Parameters:
INDEX
TYPE
IVALUE
RVALUE

Common Blocks:
INGLOB
SYSTEM

index in tree node storage space
type code for word 2
integer number or pointer
floating point number

interpreter pseudo-machine storage
system dependent word characteristics

ORDER

ORDER

ORDER subsystem

Purpose:
This subroutine supports the ORDR primitive of the
PLANS pseudo-machine. It processes the
qualifications to locate the subtree values to
sort and constructs a vector of subtree node
pointers and an array of values on which to sort.
Display storage is used as "working" storage for
this information. It sorts the array of values
carrying along subtree pointers and processes the
ordered subtree pointers to position (logically)
the subtrees in the prescribed order.

Common Blocks:

SHELLM

BOUNDS
INCNTL
INDEVS
INGLOB
INSTAC

pseudo-machine control block
interpreter fetch/execute control
interpreter device unit numbers
interpreter pseudo-machine storage
run-time & stack barrier stack

Multiple field extended SHELL sort

Purpose:
This subroutine performs a
support of the PLANS ORDER

multiple field sort in
feature.

Parameters:
N
NPROP
TAG

number of columns of SORTF
number of rows of SORTF
vector of tags to be ordered

PREOR

PREOR

SORTF
AD

array of sort fields
ascending(l)/descending(O) flag

PREORder traversal subsystem

PREORder traversal

Purpose:
This subroutine
preorder.

traverses a PLANS tree

Parameters:
PNODE
LEVEL

PNEXT
Common Blocks:

INGLOB
TRAVER

pointer to current node in tree
level of node in tree (input)
level of next node (output)
pointer to next node in preorder

interpreter pseudo-machine storage
preorder traversal stacks

125

in

PREOR2 PREORder traversal

READ

READ

Purpose:
This subroutine traverses a PLANS tree in
preorder. It is used in comparisons when two
trees are being traversed at the same time.

Parameters:
PNODE
LEVEL

PNEXT
Common Blocks:

INGLOB
TRAVER

pointer to current node in tree
level of node in tree (input)
level of next node (output)
pointer to next node in preorder

interpreter pseudo-machine storage
preorder traversal stacks

READ subsystem

READ instruction

Purpose:
This subroutine
statement. All

implements
formats are

the PLANS READ
supplied by the

interpreter, not the user.
Common Blocks:

INCNTL
INDEVS
INGLOB
INSTAC

interpreter fetch/execute control
interpreter device unit numbers
interpreter pseudo-machine storage
run-time & stack barrier stack

126

RESERV RESERVe string space

RTREE

Purpose:
This subroutine searches the reserved label/value
table for a copy of the string and if not found,
it has space allocated in dynamic storage.

Parameters:
LENGTH
STRPTR

PSTRIN

Common Blocks:
BOUNDS
INCNTL
INGLOB

Read TREE

Purpose:

number of characters in the string
pointer to string to be found or
allocated
pointer to string in reserved
label/value table or in dynamic storage

pseudo-machine control block
interpreter fetch/execute control
interpreter pseudo-machine storage

This subroutine inputs a PLANS tree structure in
standard format and returns a pointer to its root.
Standard format uses three column indentation for
each node sub-level, separating label from
value, '@' for a null label and END in column one
following the entire structure.

Parameters:
PROOT
TLEVEL

Common Blocks:
BOUNDS
INCNTL
INDEVS
TRAVER
WORK

pointer to root node of tree
tree level

pseudo-machine control block
interpreter fetch/execute control
interpreter device unit numbers
preorder traversal stacks
record pointers to common work areas

TREQUAL

HARD

TREe QUALification subsystem

HARD qualification instruction

Purpose:
This subroutine uses information on the run-time
stack to qualify a "hard" node. A 11 hard 11 node
means that the node must exist so if it does not,
one is created. Note that the barrier stack
(BSTAC) points to the first item in the run-time
stack for qualification and this must be a tree
address. (The barrier stack allows nested
qualification to occur.)

Common Blocks:
BOUNDS
INCNTL

pseudo-machine control block
interpreter fetch/execute control

SOFT

INDEVS
INGLOB
INSTAC

interpreter device unit. numbers
interpreter pseudo-machine storage
run-time & stack barrier stack work;

SOFT qualification instruction

Purpose:

127

This subroutine uses qualification information on
the run-time stack to qualify a "soft" node. A
"soft" node means that the node need not exist and
if it does not, the result is a null node
reference. Note that the barrier stack (BSTAC)
points to the first item in the run-time stack for
qualification and this must be a tree address.

TRESUP TREe SUPport subsystem

ALAB

ATRE

Purpose:
This subsystem contains both support routines for
trees and instruction routines which also
occasionally serve as support routines.

Assign LABel

Purpose:
This subroutine assigns
node. Although a string
assignment, the source of
be in string form. If so,

Common Blocks:

a new label to a
address is required
the assignment may

it is converted.

BOUNDS
INGLOB
INSTAC
WORK

pseudo-machine control block
interpreter pseudo-machine storage
run-time & stack barrier stack
record pointers to common work areas

Assign TREe instruction

Purpose:

tree
for
not

This subroutine assigns a numeric
(sub)tree to the node of a tree.
string, copying may be required.
(sub)tree as the source, copying

value, string or
In the case of a
In the case of a

Common Blocks:
BOUNDS
INCNTL
INGLOB
INNODE
INSTAC

is required.

pseudo-machine control block
interpreter fetch/execute control
interpreter pseudo-machine storage
interpreter node storage management
run-time & stack barrier stack

128

CPYTRE CoPY TREe

ELMT

EQ

GRFT

GRIS

Purpose:
This subroutine makes a copy of an

Parameters:
existing tree.

ORIGIN
NEWADR

Common Blocks:
BOUNDS
INGLOB
TRAVER

address of original tree
address of new tree

pseudo-machine control block
interpreter pseudo-machine storage
preorder traversal stacks

ELeMenT of instruction

Purpose:
This subroutine determines whether the node (P) on
the top of the run-time stack has a subnode which
is identical in every respect (including
substructure) to the node (Q) next to the top of
the stack. If true, a one is put on the top of
the stack, otherwise, a zero.

Common Blocks:
BOUNDS
INGLOB
INSTAC

pseudo-machine control block
interpreter pseudo-machine storage
run-time & stack barrier stack

EQual instruction

Purpose:
This subroutine performs the relational operation
equal. Each operand on the stack can be a numeric
value, a string pointer or a tree node pointer.

Common Blocks:
BOUNDS
INDEVS
INGLOB
INSTAC

pseudo-machine control block
interpreter device unit numbers
interpreter pseudo-machine storage
run-time & stack barrier stack

GRaFT instruction

Purpose:
This subroutine
target node.

grafts a 11 snipped" subtree

Common Blocks:
BOUNDS
INCNTL
INGLOB
INNODE
INSTAC

pseudo-machine control block
interpreter fetch/execute control
interpreter pseudo-machine storage
interpreter node storage management
run-time & stack barrier stack

GRaft Insert instruction

Purpose:

to a

This subroutine does a graft and insert tree

IDNT

ISRT

operation.
Common Blocks:

INGLOB
INSTAC

interpreter pseudo-machine storage
run-time & stack barrier stack

IDeNTical to instruction

Purpose:

129

This subroutine compares two trees.
identical in every way, a one
Otherwise a zero is returned.

If they are
is returned.

Parameters:
PTREE
QTREE
ANSWER

Common Blocks:
BOUNDS
INGLOB
TRAVER

address of first tree
address of second tree
result of comparison

pseudo-machine control block
interpreter pseudo-machine storage
preorder traversal stacks

InSeRT instruction

Purpose:
This subroutine
new node with
next to top
address found

inserts a (sub)tree or creates a
the numeric or string value on the

of the run-time stack at the tree
on the top of the stack.

Common Blocks:
BOUNDS
INGLOB
INSTAC

pseudo-machine control block
interpreter pseudo-machine storage
run-time & stack barrier stack

PRUNE PRUNE instruction

SBST

Purpose:
This subroutine prunes the requested node and
substructure and updates the link to the node.

Parameters:

any

PNODE index of word containing pointer to node
to be pruned

Common Blocks:
BOUNDS
INCNTL
INDEVS
INGLOB
INNODE
TRAVER

pseudo-machine control block
interpreter fetch/execute control
interpreter device unit numbers
interpreter pseudo-machine storage
interpreter node storage management
preorder traversal stacks

SuBSeT of instruction

Purpose:
This subroutine checks if the
given by the next to the top
stack is a subset of the tree

tree at the address
item on the run-time
at the address given

SNIP

130

by the top item
returned on the

Common Blocks:

on the stack. If it is, a one is

INGLOB
INSTAC

stack, otherwise a zero.

interpreter pseudo-machine storage
run-time & stack barrier stack

SNIP instruction

Purpose:
This subroutine detaches a subtree
present location in preparation for a
GRFT or GRIS instruction.

Common Blocks:

from its
following

INGLOB
INSTAC

interpreter pseudo-machine storage
run-time & stack barrier stack

WRITE

MVLBVL

WRITE subsystem

MoVe LaBel or VaLue string

Purpose:

WRIT

WTREE

This subroutine moves a label or value string from
the global common block location identified by
STRPTR to the TARGET array.

Parameters:
STRPTR
NCHARS
TARGET

pointer to string
number of characters in string
output array

WRITe instruction

Purpose:
This subroutine
statement. All

implements
formats are

the PLANS WRITE
supplied by the

interpreter, not the user.
Common Blocks:

INCNTL
INGLOB
INSTAC

Write TREE

Purpose:

interpreter fetch/execute control
interpreter pseudo-machine storage
run-time & stack barrier stack

This subroutine outputs the PLANS tree in standard
indented form. Each node label and value is
output on a separate line. Indentation is used to
show the level of each node in the tree structure.

Parameters:
PNODE

Common Blocks:
BOUNDS
INCNTL

pointer to root node of tree

pseudo-machine control block
interpreter fetch/execute control

INDEVS
INGLOB
TRAVER

interpreter device unit numbers
interpreter pseudo-machine storage
preorder traversal stacks

131

APPENDIX I

PSEUDO-MACHINE INSTRUCTION SET

132

133

This appendix contains a table of the pseudo-machine
instruction set, by category, followed by a detailed
description of these instructions also by category.

Symbolic
op code

Numeric
op code

Logical Operations

OR
AND
NOT

1
2
3

IFORM
entry

1
1
1

Tree Relation Operations

ELMT
IDNT
SBST
NULL

4
5
6
7

1
1
1
1

ELEMENT OF
IDENTICAL TO
SUBSET OF
null node or tree reference test

Scalar Relational Operations

EQ 10 1 equal
LT 11 1 less than
LE 12 1 less than or equal
GT 13 1 greater than
GE 14 1 greater than or equal
NE 15 1 not equal

Scalar Arithmetic Operations

ADD 16
SUB 17
MULT 18
DIV 19
EXP 20
NEG 21

Assignment Operations

AI
AF
ALAB

23
24
25

1
1
1
1
1
1

1
1
1

subtract
multiply
divide
exponentiation
negation

assign integer
assign floating point
assign label

ATRE
AETA
ATA

26
27
28

Other Tree Operations

PRUT 22
SNIP 29

HQAL 30
SQAL 31
SIBL 32
GRFT 33
PRUN 34
ISRT 35
GRIS 36
LABL 37

NUMB . 38

ORDR 39

1
1
1

2
1

1
1
1
1
1
1
1
1

1

1

assign tree
assign $ELEMENT tree address
assign tree address

134

PRUNE (tree address operand)
detach a subtree from its present
location
"hard" qualification
"soft" qualification
sibling reference
GRAFT
PRUNE (run-time stack operand)
INSERT
GRAFT INSERT
LABEL function (retrieve label
string address)
NUMBER function (count subnodes of
current (sub)tree)
sort subtree according to
specified properties

Delayed Subscript Qualification Operations

FRST
LAST
NEXT

40
41
42

1
1
1

first

Elementary Transfer of Control Operations

JMP
JMPT
JMPF

45
46
47

6
6
6

jump
jump true
jump false

Other Transfer of Control Operations

JMPN

JPLE

48

49

Indexing Operations

IDXA 50

6

6

1

jump if top of stack is null node
reference
jump on iterative loop end

index to an address

135

IDXV 51 1 index to a value

Elementary Stack Loading Operations

SWAP
DUP

LSA
LIC
LFC
LIF
LIA
LIAI

LIV
LIVI

LFA

LFAI

LFV
LFVI

LID

LIDI

LFD

LFDI

LNTA
LTA
LTAI
LETA
LCMB

53
54

55
56
57
58
59
60

61
62

63

64

65
66

67

68

69

70

71
72
73
74
75

1
1

3
5
4
1
2
2

2
2

2

2

2
2

2

2

2

2

1
2
2
1
1

Conversion Operations

CVI
CVF

76
77

1
1

swap the top two stack items
duplicate the stack top with a
copy of the current stack top
load string address
load integer constant,
load floating point constant
load infinity (floating point)
load integer variable address
load integer variable address
indirectly
load integer variable value
load integer variable value
indirectly
load floating point variable
address
load floating point variable
address indirectly
load floating point variable value
load floating point variable
value indirectly
load integer array descriptor
address
load integer array descriptor
address indirectly
load floating point array
descriptor address
load floating point array
descriptor address indirectly
load $NULL tree address
load tree address
load tree address indirectly
load $ELEMENT tree address
load combinatorial tree address

convert to integer
convert to floating point

Operations Affecting Display Storage

CALL
BENT
EXIT

79
80
81

7
7
1

procedure entry
block entry
block or procedure exit

ALLA 82 7 array space allocation

String Relational Instructions

SEQ 83 1
SLT 84 1
SLE 85 1
SGT 86 1
SGE 87 1
SNE 88 1

I/0 Operations

GET 90 7
PUT 91 7
READ 92 7
WRIT 93 7
WCMP 94 7
RDBN 95 7
WRBN 96 7

Combinatorial Operations

FCMB
NCMB
FRPM
NPRM

String

AS
CVS
LSVA
LSVI

LSD

LSDI

SCAT
SIND
SLEN
SSUB
SVER

100
101
102
103

Related

108
109
110
111

112

113

114
115
116
117
118

1
1
1
1

Operations

1
1
2
2

2

2

1
1
1
1
1

string equal
string less than
string less than or equal
string greater than
string greater than or equal
string not equal

write compressed
read binary
write binary

first combination
next combination
first permutation
next permutation

assign string
convert to string
load string variable
load string variable
indirectly

address
address

load string array descriptor
address
load string array descriptor
address indirectly
string concatenation
string index
string length
string substring
string verify

136

137

Miscellaneous Operations

STMT 121 7 statement number
ASRT 122 7 assertion debugging test
TLOW 123 1 set trace low if master trace

switch is on
THGH 124 1 set trace high -~ l- master trace

switch is on
TOFF 125 1 turn off tracing
STOP 126 7 stop interpretation

An Explanation of the Operations

Logical Operations

The obvious interpretation of run-time stack items (logical
values) is applied. No conversion is required. Improper
run-time stack values represent a system error.

Tree Relation Operations

See the PLANS User's Guide [6) for legitimate combinations
of tree and scalar references and the meaning for the first
three tree relation operations. The top two items on the
run time stack represent the two operands. With normal tree
operands, subtypes 1, 2 and 4 may occur. Note that when
comparing values of leaf nodes, mismatching data types may
require data conversion.

Scalar Relational Operations

The obvious binary meaning is applied. An operand which is
a tree address requires value extraction. Mismatched data
types imply conversion. For all relational operations
except EQ and NE, the operands are numeric (either integer
or floating point). For EQ and NE string comparisons are
possible. (If both operands are string variables and/or
string constants however, string relational operations are
used.) Tree operands require value extraction and type
testing to determine the proper comparison mode. If either
of the operands in the source implies numeric mode, the
conversion of the other, if necessary, will have been
performed by a convert to floating point (CVF) pseudo
instruction.

138

Scalar Arithmetic Operations

The obvious binary operator meaning is applied. An operand
which is represented by a tree address requires value
extraction. Mismatching data types may occur but only in a
numeric mode. (There may be integer to floating point
conversion but that is all. Other conversions of string or
tree values will have been performed by a convert to
floating point (CVF) operation.)

Assignment Operations

For AI and AF the top of the run-time stack is guaranteed to
be an integer or floating point number. A conversion (CVI
or CVF) will have been performed immediately preceding one
of these instructions, if necessary. The other assignment
instructions, in general, require testing to determine
conversion"requirements of the source of the assignment (top
of the run-time stack). The item next to the top in the
run-time stack contains the address of the target of the
assignment.

ALAB - assign label

This operation requires a string address for assignment but
the source of the assignment may not be in string form.
Thus, some work may be required to get the address of the
string.

The top of the stack may contain a numeric value, an
absolute string address, or a tree address. If the value to
be used as the source of the assignment is numeric, it is
converted to string form and stored in dynamic storage. The
pointer to this storage is placed in the label pointer field
of the target node (minus string address base). If the
source is already a string, it is checked for location. A
string in the reserved label/value table or string constant
space is not copied. A copy of the pointer to it is stored
in the label pointer field of the target node (minus string
address base). If the source string is in dynamic storage,
then a copy of the string is made in dynamic storage and the
pointer to this new copy is used for the label pointer
(minus string address base). If the top of the stack is a
tree address, the value of the identified node is retrieved.

Next to the top is the tree address of the target of the
assignment (or rather the address of the word which contains
a pointer to the target node). If the target node contains
a label, it is deleted. If the string pointer (relative to

139

the string address base) points to a reserved label/value
string or a string constant, the string pointer is zeroed
out. If it points to a string in dynamic storage, the space
is released.

The run-time stack and stack barrier stack must be empty
upon completion.

ATRE - assign tree

The top of the run-time stack represents the source of the
assignment and may be a tree address, a numeric value or a
string address. If it is a tree address, it may have a null
subtype.

If the source is a tree address, it is tested for null
subtype (4) or subtype 1 and zero node pointer. In either
case nothing remains to be done except stack popping.
Otherwise, it is traversed and copied in its entirety (new
nodes, values and pointers). Any string pointers for labels
or values are examined for location. If in label/value or
constant space, only the pointers are copied. If in dynamic
storage, then a new copy of the string is made (in dynamic
storage) and the pointer of the copy used.

If the source is a numeric value, then the numeric value is
copied into the second word of the target node and the type
field in the word node is set accordingly.

If the source is a string address, then it is checked for
location. If it is in dynamic storage, a copy of the string
is made (in dynamic storage) and this string address is
used. The string address is placed in the second word of
the target node and the type field in the first word of the
target node is set accordingly.

The next to the top of the
target of the assignment.
pruning of any value or
!!replace label switch" is
deleted as well.

stack is a tree address of the
The node identified requires

substructure. If the global
on, the label of this node is

The target node is guaranteed to exist - it cannot be null.
(This is a result of "hard" qualification.) The top two
stack items are popped and the stack must then be empty.

ATA - assign tree address

This operation is only used to update tree pointer variables
which must be located in the display. Since it is used only

to support assignment of a tree address to a PLANS
pointer variable, it may be a full word assignment.
concern for the number of bits of the assignment
required.

140

tree
No
is

The top of the stack must contain a tree address and must
not be zero. The next to the top of the stack must be a
tree address and must be in the display. The address on the
top of the stack is stored as is (full word) at the pseudo
machine word identified by the stack item next to the top.

Both the run-time stack and the stack barrier stack must be
set to null upon completion.

Other Tree Operations

PRUT - prune a tree whose address is computed by instruction
fetching

PRUN - prune a (sub)tree whose address is on the run-time
stack

For PRUN the address is immediately removed from the run
time stack and is stored in the FORTRAN variable used for
operand addresses.

If the word addressed by the operand address has a zero
(right-most 15 bits) then nothing is done. Otherwise, the
content represents an absolute binary tree node address.
This (sub)tree is pruned in its entirety. All binary tree
nodes are placed on the availability list and all strings
addressed in dynamic storage are released. The word
containing the absolute binary tree node address is set to
the sibling pointer of the binary tree node addressed
(right-most 15 bits to right-most 15 bits).

SNIP - detach a subtree

A subtree is detached from its present
preparation for a following GRFT (graft) or
insert) instruction.

location in
GRIS (graft

The top of the run-time stack contains a tree address (type
1). If a null subtype (4) or a subtype 1 with zero value is
at the top of the stack then a new node with no label and a
null descendant is allocated. Its absolute binary tree node
address is put on the run-time stack in place of the tree
address there. A subtype code of 2 is required.

If a non-null subtree exists, the word pointed at by the

141

tree address has its value retrieved and this replaces the
tree address on top of the stack. (It is an absolute binary
tree node address of subtype 2.) The word containing this
binary tree node pointer is then updated with the binary
tree node sibling pointer unless the binary tree node
pointer is zero.

Example:
Before interpretation

tree address on stack - 1000 (type 1, subtype 1)
word 1000 (right 15 bits) - 1234
word 1234 (right 15 bits) - 2311

After interpretation
top of stack - 1234 (type l, subtype 2)
word 1000 (right 15 bits) - 2311

HQAL - hard qualification

This operation references a context in
exist. If it does not exist, one
assignment).

which a node must
is created (e.g.

SQAL - soft qualification

This operation references a context in which a node need not
exist (e.g. source of an assignment).

SIBL - sibling reference

This operation is only used for updating a tree
variable in the sense of advancing one link down
list.

pointer
a linked

The address at the top of the stack must be a display
address with its value pointing to another word, unless the
value is already zero. The value at this "other word" is
stored back in the display word, unless this new value is
zero, in which case nothing is done. The value extracted
from the "other word" must come from the right-most 15 bits
because, in general, it will be the first word of a tree
node which contains a sibling pointer.

The stack must be empty upon completion.

142

GRFT - GRAFT tree operation

This operation grafts a snipped subtree to a target node.
The top of the run-time stack contains the target tree
address and the next to top contains the source of the
graft. (Note that the target address being on top differs
from the convention used for the other operations.)

The source for the graft must be a tree address of subtype 2
and the absolute binary tree node address on the stack must
be positive.

If the global "label replace" flag is on, then
label from the target node is removed. If the
has any substructure then it is pruned. If it
and it is a string address then it is removed.
the string addresses are in dynamic storage then
is released.)

an existing
target node
has a value

(If any of
the storage

If the gldbal "replace label" flag is on then the source
node label pointer is copied to the target node label
pointer. The source node type code and word 2 contents is
copied to the target node type code and word 2 contents.
The source node is put on the binary tree node availability
list.

The top two items are popped from the run-time stack.

ISRT - insertion tree operation

The top of the run-time stack must contain a tree address
(type 1, subtype 1) and this is the target of the operation.
Next to the top of the run-time stack is the source of the
operation. This may be a tree address (type 1, subtype 1 or
4), a numeric value or a string address.

If the source is a tree address then it is checked for a
null subtype (4) or a zero value of subtype 1. For either
of these, a new binary tree node, with a zero label pointer,
a zero descendant pointer and corresponding type field, is
allocated. Otherwise, the subtree is copied in its
entirety. The address of either new node is substituted for
the next to top of the run-time stack item and is coded with
a subtype of 2. A jump to GRIS (GRAFT INSERT tree
operation) interpretation code is then made.

If the source is a numeric value or string address, a new
binary tree node is allocated. The label pointer is set to
zero and the type code in the node is set according to the
source type. The second word of the node is filled in with
the numeric value or the string address. (If the latter is

143

in dynamic storage, a copy is made in dynamic storage and
the new address is used.) The new binary tree node address,
with a type of 1 and subtype of 2, replaces the entry in the
next to top of the stack position. A Jump to GRIS
instruction interpretation is then effected.

GRIS - GRAFT INSERT tree operation

The top of the run-time stack must contain a tree address
(type 1, subtype 1) and this represents the target of the
operation. The source of the operation is the next to the
top entry and must be an absolute binary tree node address
(type 1, subtype 2).

The node is inserted in a linked list before the target node
address and requires only binary tree node pointers to be
updated (right-most 15 bits). Any subtree detaching
required will previously have been performed by a SNIP
operation.·

The run-time stack is popped upon completion and must then
be empty.

Example:
Before interpretation

top of stack - 1000 (type 1, subtype 1)
word 1000 (right 15 bits) - 1234
next to top of stack - 2000 (type 1, subtype 2)
word 2000 (right 15 bits) - anything

After interpretation
word 1000 (right 15 bits) - 2000
word 2000 (right 15 bits) - 1234

LABL - LABEL function

The top of the stack contains a (sub)tree node pointer. The
label field is extracted and placed on the run time stack
(with the base of string address space added). Note that a
null address (0) will result in a pointer to the first word
of the reserved label/value table which always has a string
of length zero at that location.

NUMB - NUMBER function

This operation is used to count the number of subnodes of a
given node by following sibling pointers.

The top of the stack contains a tree pointer. After

144

locating the node identified, its descendant pointer is
extracted. If there is no descendant pointer or if the
descendant pointer is zero the the resulting count is zero.
Otherwise, the count is obtained by following the sibling
pointers. The top of the stack is replaced by the integer
number value.

Delayed Subscript Qualification Operations

These instructions have a delayed execution. The stack is
loaded with a keyword subscript type code (see run-time
stack description) for interpretation at the time a hard or
soft qualification is done.

Elementary Transfer of Control Operations

These instructions may modify the instruction pointer. The
target of a jump is on a full word boundary so the byte
indicator of the two word instruction pointer is set to
zero.

These are full word instructions of Format type 6. The base
address of pseudo-code storage (BCODE) plus the jump
instruction address field form the absolute operand address
that is the target of the jump. The jump is effected by
changing the instruction pointer (IPWORD and IPBYTE).

Whenever a JMP instruction is encountered, the run-time
stack should be empty. Whenever a JMPT or JMPF instruction
is encountered, only one item, either a O or 1 representing
logical false or true, should be on the stack. After
execution of any of these instructions, the stack must be
empty.

Other Transfer of Control Operations

JMPN conditions a jump on the existence of a null tree node
reference on top of the run-time stack. JPLE conditions a
jump on an iterative loop end condition on the stack. For
the latter, the top of the stack contains a numeric
increment, the next value down contains the final loop index
value and the next value down contains the current loop
index value. The direction of the loop end test depends on
whether the increment value is positive or negative.

For either of these the stack is popped the requisite number
of elements.

145

Indexing Operations

The run-time stack must previously have been loaded with the
address of the array descriptor and the subscript values for
addressing. The subscript values on the stack are
"guaranteed" to be numeric. The descriptor address loading
primitive is responsible for setting the top of the stack
barrier stack to point to the run-time stack location of
this address. The subscripts are above this in the stack.
Upon completion of either of these two instructions, the
stack barrier stack is popped.

The result of either of these two operations is a properly
coded entry on the run-time stack. It is a function of how
the array descriptor address is coded.

See the discussion of descriptor address loading below for
further information.

Elementary Stack Loading Operations

LTA - load tree address

As a function of instruction fetching and address
computation, an absolute pseudo-machine address is computed
and is an address in the display. This address is pushed
onto the run-time stack and marked as a tree address of
subtype 1. The stack barrier stack is loaded with a pointer
to this stack.

LTAI - load tree address indirectly

This instruction is like LTA except the loading is done
indirectly. The address computed by instruction fetching is
used as a pointer to the word containing the address to be
loaded. Full word extraction is acceptable because the word
containing the address to be loaded is in the display and is
not part of a binary tree node.

Conversion Operations

CVI - convert to integer
CVF - convert to floating point

The top of the run-time stack may be loaded with a tree

146

address, a string address or a numeric value. The result of
the interpretation is to replace the top of the stack with
an integer numeric value (CVI) or a floating point numeric
value (CVF).

In the case of a tree address, the value of the identified
node is retrieved. If the node has substructure and no
explicit value then, by convention, the value is interpreted
to be zero. If the value is a string (string address in the
second word of the node), then it is treated as described
below for string conversion. If the value of the node is
numeric, it is checked for conversion to a different data
type. (Coversion of a tree reference to a numeric data type
does not necessarily imply data conversion. It may be that
the retrieved value is of the proper data type.)

In the case of a string address, the string value is
converted to the proper internal numeric form. By
convention, a string value which will not convert to numeric
form is interpreted as having a numeric value of zero and a
warning message results. If the byte count is zero then, by
convention, the string converts to a numeric zero.

If the top of the stack is numeric, it should never be coded
as integer if CVI is being interpreted and it should never
be coded as floating point if CVF is being interpreted.

Operations Affecting Display Storage

CALL - procedure entry
BENT - block entry

CALL/BENT cause local display storage management in that a
new activation record with display vector must be allocated.
The operand references the procedure/block table. The fixed
display storage requirement is determined from this table.
In the case of either a procedure entry or a block entry the
very first word of display storage is loaded with the table
entry. This is followed by the block level pointers for
display entries. Then the address of the previously active
display is entered followed by the pointer to the display
stack top upon entry.

In the case of a procedure entry, the next word contains the
return address in pseudo-code address space followed by
parameter addresses, if any, which are retrieved from the
run-time stack. (The procedure/block table contains the
parameter count which may be zero.) The stack should
contain nothing but parameter information. A stack entry
which is a value due to an actual parameter which is a
constant or an evaluated expression, is stored in the

147

variable part of the display and the corresponding parameter
address in the fixed part is filled in accordingly.

EXIT - block or procedure exit

This operation causes an exit from a procedure or begin
block. In either case, pruning of local trees is done. A
list of local tree addresses is bn the run-time stack. The
stack barrier mechanism is used to indicate the first item
on the list. Interrogation of the procedure/block table
according to the currently active block indicates whether a
procedure return is required. In either case, local display
storage management is required because the previously active
storage area must be restored and the display storage stack
top must be restored to its value upon block entry.

If the exit is from the main procedure, DONE is set to TRUE
and subroutine INTFE is exitted.

ALLA - array space allocation

This operation causes the descriptor for an array, stored in
the fixed part of the display, to be computed according to
subscript information on the stack. (This information is
preceded by the descriptor address which has been loaded
with a descriptor loading instruction. The stack barrier
identifies the location on the stack of this item.) The
space for the array is allocated in the variable part of the
display and the local display stack top is adjusted
accordingly. (Array space is allocated separately from
fixed display storage because of variable bounds
capabilities.) The operand field for this instruction
specifies the number of dimensions and is recorded as the
second word of the descriptor.

String Relational Operations

The obvious binary meaning is applied and both operands a~e
guaranteed to be of string type.

1L.Q Operations

Input/output list information is on the run-time stack, last
list item on top.

148

Combinatorial Operations

These instructions are also responsible for setting the top
of the run-time stack with a logical value to indicate
whether generation of permutations or combinations has been
completed. Also display storage management for the list of
combinatorial subtrees is required.

String Related Operations

AS - assign string

The top of the run-time stack is guaranteed to be a string
because a conversion (CVS) will have been performed
immediately before, if necessary. The next to the top item
on the run-time stack contains the address of the target of
the assignment.

CVS - convert to string

The top of the
address or a
interpretation
pointer to the

run-time stack may be loaded with a tree
numeric value. The result of the

is to replace the top of the stack with a
newly created string.

In the case of a tree address, the value of the identified
node is retrieved. If the node has substructure and no
explicit value then the value is interpreted to be the null
string (the first string in the reserved label/value table).
If the value is a string then nothing is done. Otherwise,
it is treated in the same manner as a numeric value.

An integer is converted to a string of length 12 while a
floating point number is converted to a string of length 16.
The new string is created in dynamic storage with a type of
2 and subtype of 4 (temporary).

SCAT - string concatenation

The top two items on the run time stack contain the
addresses of the strings to be joined with the top string
coming last. Both are guaranteed to be strings because
conversion (CVS) will have been performed just before, if
necessary. A new string is created in dynamic storage with
a type of 2 and subtype of 4 (temporary). A pointer to this
string is placed on the run-time stack.

149

If either of the two source strings had a subtype of 4 their
space in dynamic storage is released.

SIND - string index

The next to the top item on the stack contains a pointer to
the string which is to be searched for the first occurrence
of the string whose pointer is contained on the top of the
stack. These two items are guaranteed to be strings because
of conversion (CVI) just prior to this instruction, if
necessary. They are popped from the top of the stack and
replaced by the integer value which represents the starting
location of the top string within the next to top string.

SLEN - string length

The top item on the run-time stack is guaranteed to be a
string address because of conversion (CVS) just preceding,
if necessary. This item is replaced by the integer value
which is the length of the source string.

SSUB - string substring

The top item on the run-time stack contains the integer
ending location for the substring operation and the next to
top item contains the integer starting location. The next
item down contains the address of the string upon which the
substring operation is to take place. All are guaranteed to
be of the proper type because of conversion (CVI and CVS)
which will have taken place just prior, if necessary. A new
string is created in dynamic storage with a type of 2 and
subtype of 4 (temporary). The top three items are popped
from the run-time stack and the address of the new string
just created is placed on the top.

If the starting or ending values are negative, the number is
replaced by 1. If the starting value is greater than the
ending value, a null string is returned. If the ending
value is greater than the length of the string, it is
replaced by the length of the string value.

SVER - string verify

Each character in the string pointed to by the
next to top position in the run-time stack is
see if it is contained in the string to which

item in the
examined to

the top item

150

in the run-time stack points. Both are guaranteed to be
strings because of conversion (CVI) which would have taken
place just prior to the execution of this instruction, if
necessary. These two items are popped from the stack and
replaced by the integer value O if all characters are
represented. Otherwise,. it is replaced by the integer value
which is the index of the first character in the next to top
string that is not represented in the top string.

Miscellaneous Operations

ASRT - assertion debugging test

The ASRT statement outputs the PLANS statement number if the
logical value at the top of the run-time stack is false and
pops the top item from the stack.

STMT - statement

STMT instructions are generated by the translator if the
STMT option was selected at compile time. (The option
should not be used indiscriminately because about 20% of the
code may then be such instructions.) The operand is a
literal operand containing the statement number of the
corresponding PLANS statement. This value is recorded in a
global location so detected run-time errors can be "tagged"
with the source statement number. It is also used if
tracing is selected.

STOP - stop interpretation

The STOP statement outputs the statement number and
procedure name where the stop occurs before setting the DONE
switch to TRUE and exitting from subroutine INTFE.

APPENDIX J

INTERPRETER PDL'S FOR THE CHARACTER

STRING EXTENSION

151

152

Translator PDL's

STEXPR string expression

This routine parses the concatenation rule for strings.

string_expr:=arith_expr $(cat_op arith_expr)

The general stack contains the type of the Dirst operand
upon entry to this rule. This is replaced by the string
type if the concatenation operator is found.

Invoke arith_expr rule.
IF error THEN

Return.
ENDIF.
DO WHILE new symbol is concatenation symbol.

Pop stack to OPR.
IF OPR not string THEN

Generate convert to string instruction.
ENDIF.
Get new symbol.
Invoke arith_expr rule.
IF error THEN

Generate missing or erroneous expression error
message.

Return.
ENDIF.
Pop stack to OPR.
IF OPR not string THEN

Generate convert to string instruction.
ENDIF.
Push string type onto stack.
Generate concatenation instruction.

ENDDO.

STFN string function.

This routine parses the string functions.

string function:=expr '(' expr ':' expr ')'
I-LENGTH'(' expr ')'
I INDEX'(' expr ',' expr ')'
I VERIFY'(' expr ',' expr ')'

Upon entry the general stack contains the operator
function being parsed at the top. It is replaced
result type on exit.

of the
by the

IF symbol is opening parenthesis THEN
Get new symbol.

ELSE
Generate missing opening parenthesis error message.

ENDIF.
Invoke expression rule.
IF error THEN

Pop 2 items from stack.
Return.

ENDIF.
Pop stack to TYPE.
Pop stack to TEMPOP.
IF substring function THEN

ELSE

IF TYPE not integer THEN
Generate convert to integer instruction.

ENDIF.
IF new symbol is colon THEN

Get new symbol.
ELSE

Generate missing colon error message.
ENDIF.

IF TYPE not string THEN
Generate convert to string instruction.

ENDIF ..
IF not length function THEN

IF new symbol is comma THEN
Get new symbol.

ELSE
Generate missing comma error message.

ENDIF.
ENDIF.

ENDIF.
IF not length function THEN

Invoke expression rule.
IF substring function THEN

IF TYPE not integer THEN
Generate convert to integer instruction.

ENDIF.
ELSE

IF TYPE not string THEN
Generate convert to string instruction.

ENDIF.
ENDIF.

ENDIF.
Generate whatever instruction is in TEMPOP.
IF new symbol is closing parenthesis THEN

Get new symbol.
ELSE

Generate missing closing parenthesis error message.
ENDIF.

153

154

Interpreter PDL's

INTFE interpreter fetch/execute

This is the main fetch/execute routine from which calls are
generated to subroutines which handle the details of the
more involved instructions. Since this routine already
exists the changes are in FORTRAN 77 rather than in PDL
form.

C SEQ - STRING .EQUAL
8300 CONTINUE

TOPSTA=TOPSTA + 1
IF (TOPSTA .GT. MAXSTA) THEN

C
C--STACK OVERFLOW

CALL ERNUM(6,2)
GO TO 50000

ENDIF
STACK(TOPSTA)=O
CALL SEQ
GO TO 50000

C
C SLT - STRING LESS THAN
8400 CONTINUE

TOPSTA=TOPSTA + 1
IF (TOPSTA .GT. MAXSTA) THEN

C
C--STACK OVERFLOW

C

CALL ERNUM(6,2)
GO TO 50000

ENDIF
STACK(TOPSTA)=-1
CALL SEQ
IF (OPCODE .EQ. 87) GO TO 300
GO TO 50000

C SLE - STRING LESS THAN OR EQUAL (NOT GREATER THAN)
8500 CONTINUE
C
C SGT - STRING GREATER THAN
8600 CONTINUE

TOPSTA=TOPSTA + 1
IF (TOPSTA .GT. MAXSTA) THEN

C
C--STACK OVERFLOW

CALL ERNUM(6,2)
GO TO 50000

ENDIF
STACK(TOPSTA)=l
CALL SEQ

C

IF (OPCODE .EQ. 85) GO TO 300
GO TO 50000 ·

C SGE - STRING GREATER THAN OR EQUAL (NOT LESS THAN)
8700 CONTINUE

C
C NE
8800

C

GO TO 8400

- NOT EQUAL
CONTINUE
TOPSTA=TOPSTA +
IF (TOPSTA .GT.

1
MAXSTA) THEN

C--STACK OVERFLOW

C

CALL ERNUM(6,2)
GO TO 50000

ENDIF
STACK(TOPSTA)=O
CALL SEQ
GO TO 300

C AS - ASSIGN STRING INSTRUCTION
10800 CONTINUE

CALL AS
GO TO 50000

C
C CVS - CONVERT TO STRING INSTRUCTION
10900 CONTINUE

CALL CVS
GO TO 50000

C
C LSVA - LOAD STRING VARIABLE ADDRESS INSTRUCTION
11000 CONTINUE

TOPSTA=TOPSTA + 1
IF (TOPSTA .GT. MAXSTA) THEN

C
C--STACK OVERFLOW

C

CALL ERNUM(6,2)
GO TO 50000

ENDIF
STACK(TOPSTA)=OPADDR
TYPE(TOPSTA)=2
SUBTYP(TOPSTA)=l
IF (OPADDR .GE. BSTRIN) SUBTYP(TOPSTA)=2
IF (OPADDR .GE. BDYNAM) SUBTYP(TOPSTA)=3
GO TO 50000

C LSVI - LOAD STRING VARIABLE ADDRESS INDIRECTLY
' C INSTRUCTION

11100 CONTINUE
TOPSTA=TOPSTA + 1
IF (TOPSTA .GT. MAXSTA) THEN

C
C--STACK OVERFLOW

CALL ERNUM(6,2)

155

C

GO T0.50000
ENDIF
STACK(TOPSTA)=SPACE(OPADDR)
TYPE(TOPSTA)=2
SUBTYP(TOPSTA)=l
IF (OPADDR .GE. BSTRIN) SUBTYP(TOPSTA)=2
IF (OPADDR .GE. BDYNAM) SUBTYP(TOPSTA)=3
GO TO 50000

C LSD - LOAD STRING DESCRIPTOR INSTRUCTION
11200 CONTINUE

TOPSTA=TOPSTA + 1
IF (TOPSTA .GT. MAXSTA) THEN

C
C--STACK OVERFLOW

C

CALL ERNUM(6,2)
Go TO ·soooo

ENDIF
STACK(TOPSTA)=OPADDR
TYPE(TOPSTA)=3
SUBTYP(TOPSTA)=5

C--SET BARRIER STACK
BTOP=BTOP + 1
BSTAC(BTOP)=TOPSTA
GO TO 50000

C
C LSDI - LOAD STRING DESCRIPTOR INDIRECTLY INSTRUCTION
11200 CONTINUE

TOPSTA=TOPSTA + 1
IF (TOPSTA .GT. MAXSTA) THEN

C
C--STACK OVERFLOW

C

CALL ERNUM(6,2)
GO TO 50000

ENDIF
STACK(TOPSTA)=SPACE(OPADDR)
TYPE(TOPSTA)=3
SUBTYP(TOPSTA)=5

C--SET BARRIER STACK
BTOP=BTOP + 1
BSTAC{BTOP)=TOPSTA
GO TO 50000

C
C SCAT - STRING CONCATENATION INSTRUCTION
11400 CONTINUE

CALL SCAT
GO TO 50000

C
C SIND - S.TRING INDEX INSTRUCTION
11500 CONTINUE

CALL SIND
GO TO 50000

156

C
C SLEN - STRING LENGTH INSTRUCTION
11600 CONTINUE

IF (TOPSTA .LT. 1) THEN
C
C--STACK UNDERFLOW

C

CALL ERNUM(6,l)
GO TO 50000

ENDIF
STACK(TOPSTA)=SPACE(STACK(TOPSTA))
TYPE(TOPSTA)=5
SUBTYP(TOPSTA)=l
GO TO 50000

C SSUB - STRING SUBSTRING INSTRUCTION
11700 CONTINUE

CALL SSUB
GO TO 50000

C
C SVER - STRING VERIFY INSTRUCTION
11800 CONTINUE

CALL SVER
GO TO 50000

SEQ string equal

157

This PDL describes the string comparison routine invoked
from INTFE. The top of the stack contains the type of
comparison result required - less than, equal or greater
than. The next item down contains the pointer to the to the
second string and the next item down contains the pointer to
the first string. These are popped and replaced by the
Boolean result.

IF stack underflow can occur below THEN
Generate stack underflow error message.
Return.

ENDIF.
Pop stack to CHOICE.
Pop stack to PTR2.
Pop stack to PTRl.
I<--1.
DO WHILE I<=length of first string at PTRl and

I<=length of second string at PTR2.
IF character at position (PTRl + I) >

character at position (PTR2 + I) THEN
IF CHOICE is greater than THEN

Push TRUE onto stack.
ELSE

Push FALSE onto stack.
ENDIF.

Return.
ELSE IF character at position (PTRl + I) <

character at position (PTR2 + I) THEN

ELSE

IF CHOICE is less than THEN
Push TRUE onto stack.

ELSE
Push FALSE onto stack.

ENDIF.
Return.

I<--I + 1.
ENDIF.

ENDDO.
IF CHOICE is equal and length of first string=

length of second string THEN
Push TRUE onto stack.

158

ELSE IF CHOICE is greater than and length of first string>
length of second string THEN

Push TRUE onto stack.
ELSE IF CHOICE is less than and length of first string<

length of secohd string THEN
Push TRUE onto stack.

ELSE
Push FALSE onto stack.

ENDIF.

AS assign string

This PDL describes string assignment. The top of the stack
contains the pointer to the source string while the next to
the top of the stack contains the target address.

IF stack underflow can occur below THEN
Generate stack underflow error message.
Return.

ENDIF.
Pop stack to PTR.
Pop stack to ADDRES.
IF ADDRES not in display THEN

ENDIF.

Generate stack addressing error message.
Return.

IF string at PTR in dynamic storage THEN
Get space in dynamic storage for copy of string.
Copy string.
Set PTR to point to new string.

ENDIF.
Store PTR in display location ADDRES.

159

CVS convert to string

This PDL describes the conversion of an integer, floating
point or tree node value to string. The top of the stack
contains an integer or floating point number or a tree node
pointer. It is replaced by a pointer to the string
generated.

IF stack underflow can occur below THEN
Generate stack underflow error message.
Return.

ENDIF.
Pop stack to VALUE.
IF VALUE type is tree THEN

IF subtype not 1 or 4 THEN
Generate wrong data subtype error message.
Return.

ENDIF.
IF VAGUE not null tree node reference THEN

Set VALUE to point to its sibling.
ENDIF.
IF VALUE null tree node reference or has descendant

pointer THEN
Push pointer to null string onto stack.
Set its type to string.
Set its subtype to reserved label/value.
Return.

ENDIF.
Set VALUE to the value in its tree node.
IF type of VALUE is string THEN

Push VALUE onto the stack.
Set its type to string.
Set its subtype to 1, 2 or 3 depending upon its

location.
Return.

ENDIF.
Set type to the VALUE type.

ENDIF.
IF VALUE type is integer THEN

ELSE

Get space in dynamic storage for string of length 12.
Convert VALUE to string of length 12 and place in new

string location.

Get space in dynamic storage for string of length 16.
Convert VALUE to string of length 16 with 4 decimal

digits and place in new string location.
ENDIF.
Push new string pointer onto stack.
Set type to string.
Set subtype to dynamic storage.

160

SIND string index function

This PDL describes the index function which is of the form
INDEX(Sl, S2). The top of the stack contains a pointer to
the second string while the next to top of the stack
contains a pointer to the first string. These are popped
from the stack and replaced by the integer value indicating
the position of the leftmost occurrence of the second string
in the first string. If either string is null or the second
string does not occur in the first, they are, replaced by
zero.

IF stack underflow can occur below THEN
Generate stack underflow error message.
Return.

ENDIF.
Pop stack to PTR2.
Pop stack to PTRl.
I<--1.
DO UNTIL result is pushed onto stack.

IF string starting at position {PTRl +I)=
second string THEN

ELSE

ELSE

Push I onto stack.

IF I > (length of first string - length of second
string) THEN

Push O onto stack.

I<--I + 1.
ENDIF.

ENDDO.
IF subtype of first string is temporary THEN

Release its space in dynamic storage.
ENDIF.
IF subtype of second string is temporary THEN

Release its space in dynamic storage.
ENDIF.

SSUB string substring function

This PDL describes the substring function which is of the
form Sl(Il : I2). The top of the run-time stack contains
the integer limit value I2. The next to the top of the run
time stack contains the integer value Il. The next item
down contains a pointer to the string Sl. These items are
popped from the stack and are replaced by the pointer to the
new string created.

IF stack underflow can occur below THEN

Generate stack underflow error message.
Return.

ENDIF.
Pop stack to HIGH.
Pop stack to LOW.
Pop stack to PTR.
IF HIGH< LOW THEN

ELSE

Push pointer to null string onto stack.
Set the subtype to reserved label/value.

LOW<-- maximum (LOW, 1).
HIGH<-- minimum (HIGH, string length).
Get space in dynamic storage for string of length

(HIGH - LOW+ 1).
Set. length of new string to (HIGH - LOW+ 1).
Copy the characters from position (PTR + LOW) to

(PTR + HIGH) inclusive into the new string.
Push the pointer to the new string onto the stack.
Set the subtype to temporary.

ENDIF.
IF subtype of source string is temporary THEN

Release its space in dynamic storage.
ENDIF,

SVER string verify function

161

This PDL describes the verify function which is of the form
VERIFY(Sl , S2). The top of the stack contains a pointer to
the second string while the next to top of the stack
contains a pointer to the first string. These are popped
and replaced by the integer value zero if each of the
characters in the first string occur in the second.
Otherwise, they are replaced by the integer indicating the
leftmost character of the first string which does not occur
in the second.

IF stack underflow can occur below THEN
Generate stack underflow error message.
Return.

ENDIF.
Pop stack to PTR2.
Pop stack to PTRl.
DO UNTIL result is pushed onto stack.

I<--1.
J<--1.
IF character at position (PTRl +I)=

character at position (PTR2 + J) THEN
IF I= length of first string THEN

Push O onto stack.
ELSE

I<--I + 1.

J<--1.
ENDIF.

ELSE IF J = length of the second string THEN
Push I onto stack.

ELSE
J<--J + 1.

ENDIF.
ENDDO.
IF subtype of first string is temporary THEN

Release its space in dynamic storage.
ENDIF.
IF subtype of first string is temporary THEN

Release its space in dynamic storage.
ENDIF.

162

Carol Anne Samuel

Candidate for the Degree of

Master of Science

Thesis: A SOFTWARE DESIGN FOR THE PROGRAMMING
LANGUAGE PLANS

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Montreal, Canada, August 18,
1946, the daughter of Mr. and Mrs. A. Shostak.

Education: Graduated from Outremont. High School,
Montreal, Canada, in May, 1963; enrolled in the
Bachelor of Science program at McGill University,
Montreal, Canada, 1963-1965; received Bachelor of
Arts degree in Mathematics from the University of
Rochester in May, 1967; completed requirements for
the Master of Science degree at Oklahoma State
University in July, 1982.

Professional Experience: Work/study student, Computing
Center, University of Rochester, 1966-1967;
programmer/analyst, Eastman Kodak Company,
1967-1969; graduate teaching assistant, Department
of Computing and Information Sciences, Oklahoma
State University, 1976-1977, 1978-1979;
analyst/programmer, City of Stillwater, 1980-1982;
analyst/programmer Time Management Software
Incorporated, 1982-.

