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ABSTRACT

The objective of this research is to develop robust and accurate tracking algorithms for

various tracking applications. These tracking problems can be formulated as nonlinear

filtering problems. The tracking algorithms will be developed based on an emerging

promising nonlinear filter technique, known as sequential importance sampling (nick-

name: particle filtering). This technique was introduced to the engineering community

in the early years of 2000, and it has recently drawn significant attention from engineers

and researchers in a wide range of areas. Despite the encouraging results reported in

the current literature, there are still many open questions to be answered. For the

first time, the major research effort will be focusing on making improvement to the

particle filter based tracking algorithm in the following three aspects: (I) refining the

particle filtering process by designing better proposal distributions (II) refining the

dynamic model by using multiple-model method, (i.e using switching dynamics and

jump Markov process ) and (III) refining system measurements by incorporating a data

fusion stage for multiple measurement cues.
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CHAPTER 1: INTRODUCTION

Target tracking is a fundamental component of many modern engineering applications

[1]-[3]. In this dissertation, the research effort is focused on developing advanced track-

ing algorithms for various applications by utilizing the emerging nonlinear filtering

technique, known as particle filtering. In real-world applications, the tracking problem

may have very different forms because of the following two reasons: (1) the specific

type of target under track, (2) the type and the number of sensors employed for detec-

tion and tracking. In this research, the contributions were made to the following three

tracking applications: (1) radar target tracking, (2) target tracking in wireless sensor-

networks, and (3) visual target tracking (i.e. tracking a target in image sequences

using a single camera). Although these applications look quite different, they share

some common fundamental theories.

1.1 Radar Target Tracking

The problem of radar target tracking, especially with monopulse techniques, can

be divided into two categories: viz. active tracking and passive tracking [1] [3]. Active

radar target tracking uses both range and bearings measurements. This is the most

common type of tracking in real applications. Traditionally, the Kalman filter and its

variations have been used for active tracking. However, when the target under track can

perform maneuvers, multiple dynamic models will be adopted to describe the target.

These models usually involve strong nonlinearities. In these cases, Kalman filter based

methods will not provide accurate estimations. Passive tracking is different from active

tracking, where only the bearings measurement, i.e. the direction of arrival (DOA),

is available. Because of this reason, bearings-only tracking is also called DOA track-

ing. The problem of bearings-only tracking arises in a variety of important practical

applications in surveillance, guidance or positioning systems [3]. Typical examples are

aircraft surveillance (using a radar in a passive mode or an electronic warfare device),
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underwater target tracking using passive sonar [3] [5] [6]. The purpose of bearings-

only tracking is to estimate the kinematics (the positions and velocities) of a target

using its noise-corrupted bearings measurements. Due to the inherent nonlinearities in

the observation model, bearings-only target tracking has become a standard nonlinear

filtering problem that receives intensive investigations.

1.2 Target Tracking in Sensor Networks

Target tracking using sensor networks is an emerging new tracking application [7]

[8] [9]. Sensor networks are typically composed of one or more central information

processing units with a large number of sensor nodes, which have limited communi-

cation and computation capabilities and limited power supply. During recent years,

the continuing miniaturization of computing and (wireless) communication circuitry as

well as sensor devices has enabled mass production of intelligent wireless micro-sensors

at a low cost. Tracking targets with geographically dispersed and cooperating sen-

sors is attractive for several reasons. First, it can improve the robustness of tracking

algorithms; sensors deployed close to targets would result in more reliable signal read-

ings. Also, it can be more cost effective. The challenge is to design a tracking method

which ingeniously reconciles the two defining characteristics, abundance in quantity

and inferiority in quality, to realize the desired robustness. One important applica-

tion of wireless sensor networks is target tracking, where the target of interest ranges

from moving objects in civil and military surveillance applications, to changes in light,

temperature, pressure, and acoustics in environmental monitoring [10]. The type of

signals to be sensed is determined based on the types of objects to be tracked. In this

dissertation, a multiple sensor fusion and tracking algorithm based on particle filtering

was developed for ground vehicle tracking using acoustic sensor networks [11] [12].

1.3 Visual Target Tracking

Visual target tracking is also an important issue in many applications, such as

intelligent video surveillance systems [13], human computer interfacing [14], smart

2



room and teleconferencing [15], and others [16]. The objective of visual target tracking

is to estimate the target’s position and the velocity in the image plane or develop its

trajectory over time by using a combination of the objects appearance and movement

characteristics. Visual target tracking remains a challenging research topic not only

because of the target dynamics can be highly nonlinear and its distribution can be

non-Gaussian, but also the target may have changes in scale (zooming), illumination,

pose, and possible occlusion. In this dissertation, several particle filter based visual

tracking algorithms were developed by exploring the method of multiple target dynamic

models and multiple measurement cues to achieve reliable and accurate estimations,

as published in the works of the dissertation’s author [17] [18] [19].

1.4 The State Space Approach and State Estimation

In a tracking problem, a target is usually described by a state space model, which

contains a state process model and an observation model (or measurement model). The

state space approach to time series modeling focuses the attention to the state vector

of a system. The state vector contains all relevant information required to describe the

system. For example, in tracking problems, the system state could be the kinematic

characteristics of the target (i.e. position, velocity, etc.). In the current literature, the

target tracking problem is always formulated as a state estimation problem, which is

also known as filtering [1] [3]. In state estimation, the Kalman filter is widely used

when the model is linear and the additive noise is Gaussian. But the real world dy-

namic systems are often more complex, typically involving nonlinear and non-Gaussian

elements. Estimating the states of such systems is a difficult problem in general, and

the optimal solution cannot be expressed in a closed form. Sub-optimal methods are

widely used in these situations. In these sub-optimal methods, various approximation

schemes have been used, which includes the extended Kalman filter (EKF), Gaussian

sum approximations and grid-based method. More recently, a new sequential Monte

Carlo method has been introduced [21] [22] [23]. This method is also widely known

as particle filtering (PF). The particle filter algorithm is based on the approximation

3



of successive prediction and filtering density functions by many particles that can be

considered as an independent realization from these distributions. The main advantage

of this scheme is that it can be applied to nonlinear models with non-Gaussian noise.

1.5 Organization of the Dissertation

This dissertation is focused on developing advanced particle filter tracking algo-

rithms by designing better proposal distributions and utilizing the multiple model

method with multiple sensors (or multiple measurement cues). The remainder of this

dissertation is organized as follows: Chapter 2 discusses the fundamental theories of

particle filtering, problems associated with particle filters and the strategies for improv-

ing particle filters. Chapter 3 presents the general framework of an improved particle

filter using the state partition technique. Chapter 4 discusses improving the particle

filters using Galerkin’s method, while Chapter 5 provides an analysis of improving

particle filters using the pseudo-grid based method. Further discussions about particle

resampling and other applications are provided in Chapter 6.
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CHAPTER 2: FUNDAMENTALS OF PARTICLE FILTERING

This chapter discusses the fundamentals of particle filtering, the problems associated

with particle filters, and the strategies for improving particle filters.

2.1 Nonlinear Filtering

To lay the theoretical foundations for the analysis in this chapter, the setup of the

nonlinear filtering problem is now briefly reviewed. Consider the following general form

of a nonlinear system:

xt = f(xt−1) + wt−1,

zt = h(xt) + vt, (1)

where xt and zt denote the states and the measurements of the system at time t,

respectively. The function f(·) denotes the state process or the dynamic model, while

h(·) denotes the measurement process. The variables wt and vt denote the process and

measurement noises, respectively. The system given in equation (1) is usually assumed

to be Markovian, nonlinear and non-Gaussian. The state sequence is {xt; t ∈ T},
which is a hidden Markov process with an initial distribution of p(x0) and transition

distribution p(xt|xt−1). The measurements of this system {zt; t ∈ T} are conditionally

dependent on the hidden states. For the notational convenience, let x0:t , {x0, · · ·xt}
and z1:t , {z1, · · · zt}, where t represents that the system response is up to time t.

The goal of the filtering problem is to estimate the following distributions:

p(x0:t| z1:t) or p(xt| z1:t) (2)

and the expectation:

I(f) = Ep(x0:t|z1:t)[f(x0:t)] ,
∫

f(x0:t)p(x0:t|z1:t)dx0:t . (3)
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It is assumed that the function f(·) is integrable with respect to p(x0:t|z1:t). The

posterior distribution of this system is given by Bayes’ theorem:

p(x0:t|z1:t) =
p(z1:t|x0:t) p(x0:t)∫

p(z1:t|x0:t) p(x0:t) dx0:t

. (4)

The recursive formula for the joint distribution p(x0:t+1|z1:t+1) is given in [4] as:

p(x0:t+1|z1:t+1) = p(x0:t|z1:t)
p(zt+1|xt+1)p(xt+1|xt)

p(zt+1|z1:t)
. (5)

From the above equation, the marginal distribution p(xt|z1:t) can be evaluated by the

following two equations:

The prediction distribution (the Chapman-Kolmogorov equation):

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1) dxt−1 (6)

The updated distribution (the Bayesian equation):

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)∫
p(zt|xt)p(xt|z1:t−1)dxt

(7)

The above expressions are known as the “conceptual solution,” and are generally im-

possible to solve except for some special cases. The problem of nonlinear filtering has

been intensively studied. Among the many nonlinear filtering algorithms, the extended

Kalman filter (EKF) is the most widely used. Other methods include the Gaussian

sum filter, the unscented Kalman filter (UKF) and others. However, these methods

require either the linearization of the nonlinear system or the Gaussian assumption,

or both. Because of these restrictions, the aforementioned methods are not able to

provide accurate estimations for highly nonlinear systems with non-Gaussian noise in

general [3].
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2.2 Particle Filter

Recently, an alternative nonlinear filtering method, known as sequential impor-

tance sampling (SIS), has been introduced to provide better estimations with more

flexibilities for the nonlinear filtering problem. The rationale behind this method is

to approximate the posterior distribution of the system via a set of weighted samples

(also called particles) as illustrated in Figure 1. This is how this technique gets its

popular nickname “particle filter.” Within a sequential framework, a set of particle

Figure 1: Representing a PDF using weighted particles.

are initially drawn from an arbitrary distribution q(x0:t|z1:t), known as the proposal

distribution, which has the support of the true posterior distribution p(x0:t|z1:t). The

particles are then propagated through the system, and the corresponding weights are

calculated whenever the most recent measurements are received. More specifically, if

our purpose is to estimate I(f) given in equation (3), then we can rewrite the equation

into the following form:

I(f) =

∫
f(x0:t)ω(x0:t)q(x0:t|z1:t)dx0:t∫

ω(x0:t)q(x0:t|z1:t)dx0:t

, (8)

where ω(x0:t) is known as the importance weight or the particle weight given by:

ω(x0:t) =
p(x0:t|z1:t)

q(x0:t|z1:t)
. (9)

This weight is considered as the ratio of the true posterior to the proposal. Next, if

we can draw Ns i.i.d particles {xi
0:t; i = 1, · · · , Ns} according to q(x0:t|z1:t), then the

7



estimate of the integral is:

ÎNs(f) =
1

Ns

∑Ns

i=1 f(x
(i)
0:t)ω(x

(i)
0:t)

1
Ns

∑Ns

j=1 ω(x
(i)
0:t)

=
Ns∑
i=1

f(x
(i)
0:t)ω̃

(i)
t , (10)

ω̃
(i)
t is the normalized importance weight,

ω̃
(i)
t =

ω(x
(i)
0:t)∑Ns

j=1 ω(xj
0:t)

. (11)

In order to construct a sequential estimation method, proposal distributions of the

following form can be used:

q(x0:t|z1:t) = q(x0:t−1|z1:t−1)q(xt|x0:t−1, z1:t) . (12)

This equation allows us to evaluate the importance weight recursively in time:

ω̃
(i)
t ∝ ω̃

(i)
t−1

p(zt|x(i)
t )p(x

(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

0:t−1, z1:t)
. (13)

The first practical implementation of particle filter was reported in 1993 [24]. At

that time, Gordon solved the degeneracy problem. This made the sequential Monte-

Carlo method possible to run on modern computers of that time. After this, par-

ticle filtering was relatively undiscovered in the engineering community until 2002.

Since then it has drawn increasing attention due to its superior performance in various

nonlinear/non-Gaussian estimation problems, such as radar target tracking, robot lo-

calization and mapping, communications, visual target tracking, and others [3] [4] [23]

.

2.3 Improving Particle Filters

Particle filters provide a flexible framework for nonlinear filtering in general. How-

ever, to design a robust and accurate particle filter for real applications, several prac-

tical implementation issues have to be carefully studied. In this section we will discuss
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the problems associated with implementing particle filters and different strategies for

improving particle filters.

2.3.1 Designing Better Proposal Distributions

A major problem of designing a particle filter is to choose a good proposal distri-

bution [23]. Due to the fact that the particles are drawn from this distribution, and

the particle weights are also related to this distribution, the performance of a parti-

cle filter is strongly influenced by the choice of the proposal distribution. A standard

scheme is to choose the state transition prior p(xt|x(i)
t−1) as the proposal distribution.

This algorithm is known as the bootstrap filter or the condensation method [3]. The

advantage of this method is that it’s efficient to implement. However, this proposal

(the transition prior) simply relies on one-step ahead predictions, and does not take

into account of the current measurements. When the likelihood distribution is narrow

with respect to the transition prior distribution, many particles will receive negligible

weights, which means an abundance of computation will be wasted. Designing a good

proposal is a challenging task, and it’s also the major topic of this research. A good

proposal needs to have enough support from the posterior distribution of the true state

and has to be easy to sample from.

An optimal proposal distribution was proposed in [21], where optimal is in the

sense of minimizing the conditional variance of the importance weights defined as

ω∗it =
p(xi

k|z1:t)

q(xi
t|xi

t−1,zt)
. However, as indicated in [21][23], the optimal proposal distribution

is only useful for two special nonlinear systems, i.e. the discrete state space systems

and the Jump-Markov linear systems. This is because the optimal proposal distribution

is required to sample from the distribution q(xi
t|xi

t−1, zt) and integrate over the new

state, where it’s impossible for most nonlinear systems. To design better proposal

distributions for particle filters which are applicable to more applications, the local

linearization technique was first introduced [21]. This strategy can be divided into two

categories: First, linearization of the state space model. In this method, an extended

Kalman filter (EKF) is used to generate the proposal distribution. Then, particles
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are drawn from a normal distribution in which the mean and variance are provided

by the EKF. The proposal distribution obtained by using an EKF includes the most

recent measurement information, which shows the advantage over the transition prior

proposal. Nevertheless, the linearization stage introduces modeling errors, which can

yield large estimation errors if the system is highly nonlinear. The second method

is to linearize the optimal proposal, which will also result in a Gaussian proposal

distribution. The unscented Kalman filter (UKF) was proposed to replace the EKF to

generate the proposal. This type of particle filter is known as the unscented particle

filter (UPF) [25]. The basic idea is to use multiple deterministically generated sigma

points to approximate the systems state, then prorogate these points through the

actual nonlinear system. An UKF does not require the linearization of the state space

model, but it requires the Gaussian assumption. As reported in [25], the UPF can

achieve better performance when compared to the bootstrap filter and the PF with

EKF proposals. Other improvements for designing a proposal also include the auxiliary

particle filter [26], the gradient proposal [27] and others.

A major task of this research is to design better proposals for various particle

filter based target tracking algorithms. Three new proposal distributions have been

developed, which are (1) the technique of state-partition with parallel EKF bank, (2)

Galerkin’s method and (3) the state space discretization method. These methods have

been applied to different tracking applications and scenarios. It has been demonstrated

through extensive experiments that better results can be achieved by using these new

methods, which will be thoroughly discussed in Chapter 3, 4 and Chapter 5, respec-

tively.
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2.3.2 Resampling and Markov Chain Monte Carlo (MCMC)

Another problem associated with a particle filter is the so called “degeneracy prob-

lem,” which means the variance of the importance weights increases over time [4] [22]

[23]. This implies that after a few iterations, all but one weight will converge to zero.

In this case, a resampling scheme is introduced to avoid the degeneracy problem. The

effective sample size Neff was introduced in [28] as the measure of degeneracy, and it

was defined as follows:

Neff =
Ns

1 + V ar(ω∗it )
(14)

where Ns is the sample size and ω∗it = p(xi
k|z1:t)/q(x

i
t|xi

t−1, zt). As indicated in [23],

Neff usually cannot be exactly calculated. In this case, the estimated effective sample

size N̂eff can be used, which is defined as: N̂eff = 1/
∑Ns

i=1(ω
i
t)

2. To mitigate the

particle degeneracy problem, a resampling stage is always adopted in the practical

implementation of particle filters. Particle resampling is based on the idea of discarding

the particles with small weights and focusing on the particles with more significant

weights. In other words, the resampling stage of a particle filter is a process that

generates a set of uniformly weighted particles from a set of weighted particles, where

these two sets of particles have the same discrete PDF. This idea is illustrated in

Figure 2. In this figure, the blue circles on the top symbolize the resampled particles

at previous time index. The same size of these particles represents that they are equally

weighted. After the particles are propagated through the system, their weights will be

evaluated. The particles with large weights are represented as large circles (i.e. the

red circle has the largest weight). After resampling, the particles with large weights

will generate multiple children particles. For example, in this figure the particle with

the largest weight will have four equally weighted children particles.

There have been many resampling methods reported in current literature. The most

basic approach among them is the sampling-importance resampling and multinomial

resampling [25], where it is required to construct the discrete cumulative distribution

function (CDF). Then, the uniformly drawn sampling indices are projected onto the

distribution domain. The intersection with the distribution domain gives the resampled
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Figure 2: Resample the particles

index. This method has O(Ns) of operations. Another resampling method is called

residual resampling, which was introduced to improve the resampling step by reducing

the particle weight variance [28]. Residual resampling involves two stages: first, set

the number of each resampled particle using Ni = bNωi
tc, second, for the remaining

Nr = Ns −
∑Ns

i=1 Ni particles, use the SIR algorithm. The residual resampling can

provide a better sample population and requires less computation compared to SIR.

Another resampling method is called “systematic resampling” [23]. This method is the

most widely used resampling algorithm because of its computational simplicity and

good empirical performances. In addition, it can also provide minimum Monte Carlo

12



variations. The basic idea of systematic resampling is to draw a set of samples from

[0, 1] with each has a distance of Ns
−1 apart. Then project these samples to the CDF.

The resampled index is given by the number of intersections inside each step of the

CDF. This method is illustrated in Figure 3.
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Figure 3: An illustration of the systematic resampling algorithm.

In the resampling stage, some new particles (the children particles) will be repeated

copies of a previous particle (the parent particle). The worst-case scenario is that vir-

tually all new particles were repeated copies of a single parent particle with significant

weight. This leads to a loss of particle diversity, which is often called “sample impov-

erishment.” This phenomenon will be aggravated when the process noise variance is

small. A strategy to mitigate this situation is to introduce the Markov Chain Monte

Carlo (MCMC) steps after resampling. The motivation is that if the particles are dis-

tributed according to the posterior p(x̃0:t|z1:t), after applying a Markov chain transition

kernel K(x0:t|x̃0:t), the resultant set of particles are still distributed according to the
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same posterior distribution. But the new particles will be distinct with with respect

to each other. The Metropolis-Hastings (M-H) method is a major group of algorithms

belonging to the class of Markov Chain Monte Carlo (MCMC), and the performance

of particle filters with MCMC is closely related to the choice of the specific M-H al-

gorithm. Chapter 6 provides a thorough analysis of using various M-H algorithms for

particle filters, which is also reported in our previous work [29].

2.3.3 The Method of Multiple Dynamic Models

For most of the nonlinear filtering problems, estimations can also be improved by

refining the dynamic model that approximates the true system and improves the mea-

surement model to provide more reliable measurements. In target tracking problems,

multiple dynamic models have been used to describe the targets which have complex

motions. More specifically, in these cases, the targets are assumed to operate accord-

ing to one model from a finite set of models at each sampling rate. This set of models

captures all the possible dynamics of the target. The switching process from one model

to another is governed by a model transition probability matrix. The multiple model

particle filter (MMPF) is a significant extension of the single model particle filter, and

it’s proven to be a powerful tracking framework for many applications. The multiple

model particle filter is also a research focus of this dissertation, and will be discussed

in Chapter 3 and Chapter 5, where two improved MMPF algorithms have been suc-

cessfully developed and applied to various tracking scenarios.

2.3.4 Using Multiple Measurement Cues or Multiple Sensors

It has been reported that the filtering performance can also be improved by incor-

porating multiple measurement cues [16]. One important advantage of particle filtering

is that it allows the information from different measurement sources to be fused in a

principled manner without increasing the dimension of the state vector. This is espe-

cially important for visual target tracking, since a single imaging sensor can provide

different measurement cues, e.g. edge information, color information and others. These
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independent measurements will greatly improve the estimation performance. In this

case, special signal processing is needed for extracting these features. For radar and

acoustic sensor network applications, multiple sensors will also help to improve esti-

mation accuracy. The last research topic of this dissertation is to develop tracking

algorithms which can synergistically fuse multiple measurement cues or measurements

from multiple sensors for various tracking applications. In Chapter 3 and Chapter 5,

it is shown that with the newly designed proposal distribution with multiple measure-

ment cues, the improved MMPF can provide greatly improved estimation accuracy and

robustness for complicated tracking problems.
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CHAPTER 3: PARTICLE FILTER WITH THE STATE PARTITION

TECHNIQUE AND PARALLEL EKFS

The sequential importance sampling (SIS) technique, with the nickname of particle

filtering (PF), has emerged as a promising filtering technique for nonlinear and non-

Gaussian systems in which state estimation is the ultimate objective. In a particle

filter framework, the accuracy of the estimation depends on the choice of the proposal

distribution. As indicated in [3] [22][23] and our analysis in Chapter 2, using the state

transition prior as the proposal (also known as bootstrap filter) cannot produce precise

estimates for systems which have strong nonlinearities and with severe noise corruption,

since this proposal does not include the most recent measurements of the system. In

this chapter, a novel particle filtering algorithm is developed based on state partitioning

and a bank of extended Kalman filters to render a more accurate proposal distribution

and hence yield a more precise estimation of the state. Moreover, because of the

improved proposal distribution, the new filter can achieve a given level of performance

using fewer samples than its conventional SIS counterparts. Our results show that

this new approach yields significantly improved estimates of the state. We name this

algorithm as a particle filter with state partition and parallel EKFs (PF-SP-PEFK)

[30].

3.1 The State Partition Technique

In this section, we will first discuss the method of state partition and parallel EKFs

(SP-PEKF), and then we will show how it can be incorporated within the particle filter

framework. Next, we will provide an example, which the PF-SP-PEKF algorithm is

applied to a nonlinear scalar system.

3.1.1 The Method of SP-PEKF

For notational convenience, we denote each component of the state vector xt as x(t),

and use the subscript to represent the filter channel. The rationale of SP-PEKF is as
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follows: for each component x(t) of xt, we generate a set of samples xi(t), i ∈ [1, N ]

denotes the i-th filter, according to the given initial distribution N (xi(0), R(0)). The

variable N denotes the total number of filter banks. These samples are partitioned as

xi(t) , xni
(t)+xri

(t), where xni
(t) and xri

(t) denote the nominal and residual parts of

the true state, respectively. After partitioning, the samples are propagated through a

bank of parallel filters and the estimated states are calculated using the weighted sum

of filtered samples. Initially, samples xi(0) are generated according to

x(0) = xni
(0) + xri

(0) (15)

x̂(0) = x̂ni
(0) + x̂ri

(0) (16)

R(0) = Rni
(0) + Rri

(0) . (17)

and

x̂ni
(0) = x̂(0) Rni

(0) = R(0)

x̂ri
(0) = 0 Rri

(0) = 0 .

The scalar variables Rni
and Rri

represent the covariance associated with the nominal

state and the residual state, respectively. In the case when x̂(0) and R(0) are known,

the nominal state propagates through the system as follows:

xni
(t) = f(xni

(t− 1)) + wni
(t− 1) (18)

where wni
(t) has the same distribution as w(t), which is the process noise. But wni

(t)

is a different realization. Following that, the system is linearized about xni
(t) as:

x(t) ≈f(xni
(t− 1)) + F(xni

(t− 1)) · [x(t− 1)− xni
(t− 1)] + w(t− 1)

=f(xni
(t− 1)) + F(xni

(t− 1)) · xri
(t− 1) + w(t− 1)
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where F is the Jacobian of the state process given as:

F(xni
(t)) =

∂(f(x))

∂x

∣∣∣∣
x=xni (t)

. (19)

The above equation can be simplified as:

xri
(t) ≈ F(xni

(t− 1)) · xri
(t− 1) + w(t− 1)− wni

(t− 1) , (20)

Furthermore, the following equation is constructed in a similar way:

z(t) ≈ h(xni
(t)) + H(xni

(t)) · xri
(t) + v(t) (21)

where

H(xni
(t)) =

∂(h(x))

∂x

∣∣∣∣
x=xni (t)

. (22)

Equations (20) and (21) form an approximate dynamic model to the nonlinear system

given by (1). This approximate model is linear to the residual part of the state xri
(t).

A bank of EKFs is then applied to update xri
(t) as follows. For further readings about

SP-PEKF filters, see [31] [32] [33].

To begin, the one step ahead prediction of the residual state x̂ri
(t|t−1) and the filtered

estimate of x̂ri
(t|t) are given by:

x̂ri
(t|t− 1) = F(xni

(t− 1)) · x̂ri
(t− 1|t− 1)− wni

(t− 1) (23)

and

x̂ri
(t|t) = x̂ri

(t|t− 1) + Gi(t) · ẑi(t|t− 1) , (24)

where Gi(t) is the i-th filter gain given as:

Gi(t) = Ri(t|t− 1)H(xni
(t))TRzi

(t|t− 1)−1 . (25)

18



The residual state prediction covariance and its update covariance are:

Rri
(t|t− 1) = F(xni

(t− 1))Ri(t− 1|t− 1)F(xni
(t− 1))T + σ2

w (26)

and

Rri
(t|t) = [I−Gi(t)H(xni

(t))] Ri(t|t− 1) .

The pseudo-innovation process and its covariance are:

ẑi(t|t− 1) ≈ z(t)− h(x̂i(t|t− 1)) (27)

Rzi
(t|t− 1) =H(xni

(t))Ri(t|t− 1)× H(xni
(t))T + σ2

v .

The variables σ2
w and σ2

v denote the variance of the process noise and measurement

noise, respectively. The estimation of the state at time t is given by the following

weighted sum:

x̂total(t|t) =
N∑

i=1

x̂i(t|t) · ψi(t) (28)

where x̂i(t|t) = xni
(t) + x̂ri

(t|t). The weight for each filter is given as:

ψi(t) =
Li(t|t) · ψi(t− 1)∑N
i=1 Li(t|t) · ψi(t− 1)

, (29)

where

Li(t|t) = |Rzi
(t|t− 1)|−0.5 exp

[
−1

2
‖ẑi(t|t− 1)‖2 ·R−1

zi
(t|t− 1)

]
.

Finally, the overall estimation error covariance Rtotal is:

Rtotal(t|t) =
N∑

i=1

{
Ri(t|t) +

[
x̂(t|t)− x̂i(t|t)

]× [
x̂(t|t)− x̂i(t|t)

]T
}
· ψi(t) . (30)

The above filtering method is based on the idea of using a bank of EKFs to generate

multiple state trajectories to simulate the true state trajectory. The weighted sum
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Figure 4: The block diagram of the single model PF-SP-PEKF algorithm.

gives the estimation of the system state, and the weights are adaptively updated as

time evolves.

3.1.2 The New Particle Filter Algorithm (PF-SP-PEKF)

The SP-PEKF filter uses multiple trajectories to simulate the true state, which can

provide more accurate estimates of a nonlinear system than the EKF, which uses only

one trajectory. However, the SP-PEKF still rests on the assumption that the state

distribution is Gaussian; on the other hand, the PF algorithms can accommodate ar-

bitrary distributions, but an appropriate proposal is needed. To take advantage of the

strength of both PF and SP-PEKF, we suggest a new particle filter algorithm (PF-

SP-PEKF) which uses the SP-PEKF filter as its proposal. More specifically, in each

iteration of the PF-SP-PEKF, the particles are drawn from a normal distribution with

a mean and variance given by equations (28) and (30). Then, these particles are feed

into the PF algorithm and propagated according to equations (11) and (13) with a re-

sampling step. The new algorithm is illustrated in Figure 4 and summarized in Table 1.
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Table 1: Algorithm 1: The Single Model Particle Filter (PF-SP-PEKF)

• Sequential Importance Sampling (SIS) Step:

¦ Sample from the proposal distribution according to:

x(i)(t) ∼ q
(
x(i)(t)|x(i)(0 : t−1

)
, z(1 : t)),

= N (
x̂total(t|t), Rtotal(t|t)

)

¦ Evaluate the particle weight using the weight update equation
given in (13), then normalize the particle weights ;

• Resampling Step:

¦ Generate a new set of particles xi?(t) from x(i)(t) by sampling Ns

times the approximate distribution of p(x(t)|y(1 : t)) so that

Pr
(
xi?(t) = x(j)(t)

)
= ω̃(j)(t);

• Output and Update Step:

¦ Estimate x(t) according to x̂PF(t)≈ 1
Ns

∑Ns

i=1 xi?(t)

¦ Update the proposal.

Two additional remarks are as follows: First, in order to take the advantage of

the estimates derived from the particle filter, the final estimate is recursively feed back

into the SP-PEKF filter at the end of each iteration and repartitioned as: x̂?
ri
(t|t) =

x̂PF(t) − xni
(t), where x̂?

ri
(t|t) will be used to replace x̂ri

(t|t) as the residual state at

time t. This re-partition step serves as a “correction” step for the SP-PEKF filter at

each interaction. Second, as indicated in [31], a memoryless scheme can produce better

estimates for highly nonlinear systems. More explicitly, in the memoryless scheme, the

filter weight does not depend on its previous value, i.e. ψi(t − 1) in equation (29) is

omitted. Thus, it is assumed that all of the filters are equally weighted at the previous

step. The bank of weighted EKFs (SP-PEKF) are only used to generate the proposal

distribution from where the particles are drawn. This proposal includes the most recent

observation y(t), which gives more support from the true posterior distribution. The
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PS-SP-PEKF algorithm differs from the interacting multiple model extended Kalman

filter (IMM-EKF) method in the sense that PS-SP-PEKF applies multiple EKFs to a

single dynamic model to generate a proposal distribution. However in the IMM-EKF,

a system is assumed to operate according to multiple dynamic models, and each EKF

is applied to a different model. In addition, we typically choose the number of the filter

bank channels N in equations (28)-(30) much smaller than the number of particles Ns;

our experience is that taking 10 ≤ N ≤ 20 is generally sufficient to obtain significantly

improved performance compared to bootstrap filters (PF taking transition prior as its

proposal).

3.1.3 Example: A Nonlinear Scalar Case

In this section, we provide one simple example to illustrate the superior performance

of the new designed particle filter (PF-SP-PEKF). Here we apply the new PF to a

nonlinear scalar system given in equations (31) and (32), which is similar to the example

given in [31] except for more nonlinearities are incorporated to yield a bimodal PDF.

The variable x(t) is the state of the nonlinear system at time t, and z(t) denotes the

system measurement. The time index is incremented as t = 1, · · · , 50. The variables

w(t) and v(t) represent the process noise and the measurement noise, respectively. And

they are distributed according toN (0, 1). In this system, the gain of the sinusoidal term

in equation (31) has an important impact on both the state PDF and the measurement

PDF, which is shown in Figure 5. Figures 6 and 7 illustrate the PDFs evolve with time

as the gain is equal to 5.0. It is clear from these figures that the system is highly

nonlinear and non-Gaussian in nature.

x(t + 1) = 1.7 exp
(−2x2(t)

)
+ 5.0 sin(x(t)) + w(t) (31)

z(t + 1) = x3(t + 1) + v(t + 1) (32)
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Figure 5: This figure illustrates the effects of different sinusoidal gains on the PDF of both
the state and the measurement. From the top row, gain is given as 1, 5, 10, 50 and 100,
respectively. As seen, with the increase of the gain of the sinusoidal term, the PDFs become
more complex.
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Three different filters are implemented: (a) EKF, (b) bootstrap filter, (c) PF-SP-

PEKF. Moreover, the systematic resampling scheme discussed in [23] was used since

it is efficient to implement and minimizes the MC variation. In addition, for the PF-

SP-PEKF algorithm, the memoryless scheme is applied, and 20 sub-filters are used,

i.e. N = 20. Considering the ensemble average, one thousand Monte Carlo runs

were implemented to produce the statistical performance, the root mean square error

(RMSE), which is shown in Figure 8. In addition, the mean and variance of the

estimation RMSE are summarized in Table 2. Moreover, Figure 9 illustrates the true

states vs. the estimates from one realization of the simulation. As indicated in Figure

8 and Table 2, the PF-SP-PEKF algorithm gives fairly accurate estimations compared

to that of the bootstrap filter and the EKF. The improvement of PF-SP-PEKF over

EKF in terms of the mean RMSE is about 78%. Furthermore, PF-SP-PEKF also has

the minimum variance of the RMSE.

Table 2: The Average RMSE of the Filter Estimations

Filters Mean RMSE Var of RMSE Time (s)
EKF 2.9232 0.3175 0.0067
Bootstrap 1.5580 0.0558 0.7967
PF-SP-PEKF 0.6442 0.0247 1.5217

Table 3 provides a comparison of the PF-SP-PEKF and the bootstrap filter in terms

of sample size and run time. As indicated in this simulation, even using 2000 particles,

the bootstrap filter still cannot achieve the same estimation accuracy as that of the

PF-SP-PEKF with 200 particles. However, the bootstrap with 2000 particles takes sig-

nificantly longer time compared to the PF-SP-PEKF with 200 particles, which clearly

demonstrates the strength of the PF-SP-PEKF.
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Table 3: A Comparison of the PF-SP-PEKF and the Bootstrap Filter

Filter (Sample Size) RMSE Time (s)
Mean Var

Bootstrap (200) 1.5581 0.0558 0.7967
Bootstrap (1000) 1.3339 0.0485 4.1495
Bootstrap (2000) 1.1803 0.0344 7.3011
PF-SP-PEKF (200) 0.6442 0.0247 1.5217
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Figure 8: The RMSE generated from the ensemble average of the different filtering
algorithms: EKF, bootstrap and PF-SP-PEKF.
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3.2 PF-SP-PEKF for Bearings-only Target Tracking

Next, the PF-SP-PEKF algorithm is applied to a radar target tracking problem.

Target tracking is a fundamental component of surveillance, guidance or positioning

systems, whose objective is to determine the number, position, and velocity of a moving

target. This section focuses on tracking a non-maneuvering target using bearings-only

measurement. The problem of bearings-only tracking is also known as direction of

the arrival (DOA) tracking, whose objective is to estimate the kinematics (the posi-

tions and velocities) of a target using its noise-corrupted measurements. Bearings-only

tracking has many practical applications, such as passive sonar applications and air-

craft surveillance [3]. Nonlinearities in the measurement equation preclude the use

of conventional linear analysis, although pseudo-linear formulations are possible. The

DOA sensor, which is also known as ownship, could be stationery or mobile. In this

section we assume it is stationery. In the case of a single-sensor, the bearings measure-

ments are extracted from only one sensor, which makes the tracking problem ill-posed

in the general case of arbitrary target motion. Indeed, unique solutions exist only

for non-maneuvering targets. Despite the aforementioned difficulties, numerous tech-

niques have been developed for bearings-only target tracking, which include EKF [34],

modified polar coordinate EKF [3], bootstrap filter [24] and others. Recently, this

challenging problem has become a standard nonlinear problem that many people have

investigated [31] [35] [36] .

Here, we analyze the state space model for the bearings-only tracking problem.

Assume the target is a non-maneuvering target (maneuvering target tracking will be

analyzed later), then target can be represented by a vector given as:

xt =
[

x(t) y(t) vx(t) vy(t)
]T

, (33)

The variables (x(t), y(t)) describe the target location in a Cartesian coordinate system.

The variables vx(t) and vy(t) denote the target velocities along the x-axis and y-axis,

respectively. The discrete time model for the kinematics of a non-maneuvering target
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is given as [3]:

xt = F · xt−1 + Γ ·mt−1 , (34)

where

F =




1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1




Γ =




T 2/2 0

0 T 2/2

T 0

0 T




where T is the sampling rate. The process noise mt is a 2-by-1 noise vector with a

distribution mt ∼ N (0,Qm), where

Qm =

[
σ2

m 0

0 σ2
m

]

This model is called the constant velocity model, where the target has a rectilinear

motion. The measurement of the tracking system is the angle between the observation

platform (the coordinate origin) and the location of the target referenced to the y-axis,

which is given by:

z(k) = arctan

(
x(t)

y(t)

)
+ n(t) , (35)

where the scalar variable n(t) denotes the measurement noise which is distributed

as n ∼ N (0, σ2
n). Equations (34) and (35) constitute the state space model for the

bearings-only tracking problem, in which the observation equation contains nonlinear-

ities. In addition, the velocities vx(t) and vy(t) are the hidden states of the system,

which do not have direct measurements. Three different filters are applied to this

nonlinear tracking model, which are an extended Kalman filter, a bootstrap filter (PF

using transition prior as its proposal) and the proposed new particle filter algorithm

(PF-SP-PEKF). The initial conditions of this simulation are given as

x1 =
[

1 1 1 1
]T

and

Qm =

[
0.05 0

0 0.05

]
, σ2

n = 0.01 .
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The time index is incremented as t = 1, · · · , 100. To evaluate the the tracking accuracy,

we define the distance between the estimated location and the true location as the

estimation error, which is given by

e(t) =
√

[x(t)− x̂(t)]2 + [y(t)− ŷ(t)]2 . (36)
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Figure 10: The estimation RMSE of 100 MC runs: The dash-dot line (−·) represents
the RMSE of EKF; the dash line (−−) represents the RMSE of PF-prior; the dotted
line (· · · ) represents the the RMSE of PF-SP-PEKF. As seen, the our proposed PF-
SP-PEKF method has the least error.

Then, one hundred Monte Carlo runs of the tracking simulation were implemented, and

the RMSE of the estimation errors was evaluated as the performance index. Figure

10 shows the estimation RMSE, in which it is indicated that the extended Kalman

filter loses the target after t = 30, and the estimation error increased dramatically. In

addition, although the bootstrap filter keeps the tracking, the estimation error is large

and non-convergent. However, the proposed new PF algorithm (PF-SP-PEKF) can
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Figure 11: One realization of targeting trajectories in the Cartesian coordinates: The
solid line represents the true trajectory ( – ); the dash-dot line (−·) represents the
estimates of EKF; the dash line (−−) represents the estimates of PF-prior; the dotted
line (· · · ) represents the the estimates of PF-SP-PEKF.

follow the target throughout the whole simulation with small estimation error. Figure

11 shows one realization of the tracking simulation, which is typical in the Monte Carlo

runs. It is clear from this figure that the EKF loses the target, and the tracking error

subsequently becomes huge. On the contrary, both the bootstrap filter and the PF-

SP-PEKF maintains close tracking of the moving target. However, the PF-SP-PEKF

gives much more accurate estimations of the target positions. Next, we present another

example of bearings-only tracking using the PF-SP-PEKF. The data in this experiment

shows the air-traffic at a major airport (Oklahoma City International Airport), as

measured by the National Weather Radar Testbed (NWRT) in Norman, Oklahoma.

This data was taken on September of 2005. Here, detections were made within a 90

degree sector, looking towards the airport, and the origin establishes the location of
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Figure 12: The plus marks indicate the true locations. The line with the circles indicates
our estimates with the new method. The line with the triangles denotes the output of
the traditional bootstrap filter. Finally, the line with the stars indicates the estimates
with the extended Kalman filter. As the results indicate, the new approach yields very
close estimates of the true states, while the others weakly follow or lose track.

the radar. We apply three tracking algorithms to a specific path. These algorithms are

an extended Kalman filter (EKF), a bootstrap filter, and the PF-SP-PEKF. Figure 12

depicts the experimental results of one typical realization of the tracking algorithm. As

indicated in the figure, our new algorithm gives better estimates of the target locations,

as compared to the EKF and the bootstrap filter. Also, this example shows that a small

motion perturbation can cause the EKF estimates to diverge from the true trajectory,

although the target has a rectilinear motion in general. This experimental result is

important because tracking based on single DOA measurements has traditionally been

a difficult task.
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3.3 Particle Filter for Target Tracking in Sensor Networks

In this section, we address the problem of target tracking in collaborative acoustic

sensor networks. To cope with the inherent characteristics and constraints of wireless

sensor networks, we present a novel target tracking algorithm with power aware con-

cerns. The underlying tracking methodology is described as a multiple sensor tracking

and fusion technique based on particle filtering (PF). As discussed in the most recent

literature, particle filtering is defined as an emerging Monte-Carlo state estimation tech-

nique with proven superior performance in many target tracking applications. More

specifically, in the proposed method, each activated sensor transmits the acoustic in-

tensity and the direction of arrival (DOA) of the target to the sensor fusion center (a

dedicated computing and storage platform, such as a micro-server). In addition, each

sensor node uses its DOA to generate a set of estimations based on the state partition

technique as described earlier. Meanwhile, a set of sensor weights are calculated at the

fusion center based on the acoustic intensity transmitted from each of the activated

sensors. Next, the weighted sum of the estimates are used to generate the proposal

distribution for the particle filter implemented at sensor fusion center. We name this al-

gorithm as the centralized particle filter with state partition (CPF-SP). This technique

renders a more accurate proposal distribution, hence yields more precise and robust es-

timations of the target with using fewer samples than that of the traditional bootstrap

filter. In addition, since the majority of the signal processing resides efficiently on the

fusion center, thus the computation load at the sensor nodes is limited, which is desir-

able for power aware systems. Finally, the performance of the new tracking algorithm

in various tracking scenarios is thoroughly studied and compared to standard tracking

methods. As shown in the theory and demonstrated by our experimental results, the

CPF-SP reliably outperforms traditional methods in all experiments.

3.3.1 Introduction of Sensor Networks

During recent years, with the dramatic advances in the design of micro-electro me-

chanical systems (MEMS) and ad-hoc networking protocols, there has been an emerging
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trend towards the use of sophisticated wireless networks of unattended sensor devices

for a variety of new monitoring and control applications [7][8][9]. Sensor networks pro-

vide the monitoring for the physical world via many distributed wireless sensing devices

deployed in the region of interest. Each of these low-cost tiny devices, also known as

a sensor node, has limited processing and communication capabilities with a limited

power supply. The sensing information is processed collaboratively between the sensor

nodes and at sensor fusion center (e.g. micro-server), which has significantly greater

bandwidth, computation and energy capabilities compared to sensor nodes. Locating

and tracking moving stimuli or targets is a primary task for a sensor network in many

practical applications, such as robot navigation, security surveillance and battlefield

awareness [7]. In this section, we consider tracking a ground vehicle in a wireless acous-

tic sensor network using the DOAs as the measurements. Similar research can be found

in many works, including [39] [40] [44]. The sensor network studied here consists of a

large number of sensor nodes and one mobile sensor fusion center, which has the ac-

cess to the information gathered by the sensor nodes and is installed on a monitoring

vehicle. The tracking scenario is illustrated in Figure 13. For tracking targets in a

sensor network, it is important to design a sequential method that can dynamically

fuse the information sent by multiple sensors without requiring significant processing

capabilities at the sensor nodes and excessive communication within the network. In

general, the selection of data routing scheme and communication protocol is out of the

scope of this study.

This section is based our previous work [11][12] and is organized as follows: in

sub-section 3.3.2, we briefly review the work of target tracking in sensor network.

Sub-section 3.3.3 analyzes the mathematical model for target tracking in an acoustic

sensor network. The new tracking algorithm is formulated in sub-section 3.3.4. Finally,

simulation results and a summary are provided in sub-section 3.3.5.
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Figure 13: Target tracking in a wireless sensor network: Sensor nodes 1-3 are in the
active mode, and sensor nodes 4 and 5 are in the sleep mode. The fusion center is
installed on the monitoring vehicle, which has the access to all sensor nodes.

3.3.2 Related Work in Sensor Network Target Tracking

The earliest work of target tracking using multiple sensors involves various Kalman

filter based methods, such as the extended Kalman filter (EKF), the interacting multi-

ple model IMM-EKF, and the probability data association (PDA) methods [37]. Later,

the hidden Markov model (HMM) based methods were studied. In [38], an IMM track-

ing algorithm was developed based on a discretized target state space; meanwhile, the

“theory of evidence” was used in [38] to construct the observation model. In addition,

a maximum likelihood source localization method based on acoustic sensor readings

was also proposed for target tracking in sensor networks [39]. But as indicated in

[40], this method is sensitive to the parameter perturbation and the computational

complexity is high for multi-target location estimation. Recently proposed methods

also include the “dynamic convoy tree” target tracking [41] as well as others. More

recently, particle filter based methods are receiving increased attention. For example,

a PF tracking method was developed in [40], in which a simple form of particle filtering
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(known as the bootstrap filter) was used and its particle weights were calculated based

on the acoustic energy readings. However, it is well known that a bootstrap filter

takes the state transition prior as the proposal distribution, which does not take into

account of the current measurements – it simply relies on one-step ahead predictions.

When the likelihood distribution is narrow with respect to the transition prior distri-

bution, many particles will receive negligible weights, which means an abundance of

computation will be wasted. In [6], a new PF tracking algorithm was proposed with

an improved Gaussian proposal and a more complex measurement model.

In general, PF tracking algorithms for sensor networks can be categorized as cen-

tralized or decentralized. The aforementioned works [6][40] are examples of centralized

versions. Centralized particle filters (CPF) implies that most signal processing tasks

are carried out at the fusion center. On the other hand, various de-centralized (or

distributed) particle filter (DPF) tracking algorithms are discussed in the current lit-

erature. In [42], a DPF algorithm is proposed, but this algorithm demands significant

communication in the sensor network to update the complete particle set and also in-

volves complicated learning procedures. In [44], the sensors are divided into disjoint

“cliques,” and the particle filters associated with each clique run in parallel. Follow-

ing this, a Gaussian mixture model is used to approximate the whole particle set.

Although this strategy does not require significant communications between sensor

nodes, it requires computationally intensive filtering algorithms to be implemented at

the sensor node, whose computation capability and power supply are very limited in

many applications. Finally, the work in [44] depends on many sensors to be turned

on to achieve their desired performance. In general, many tracking methods discussed

here either require the sensor nodes to have substantial signal processing capabilities

or require a more complex sensor network architecture. For example, the recent work

of [41] requires an elaborate multi-node structure that includes multiple “lead nodes”

to track the target. To rectify these problems, this section suggests a new particle

filter tracking algorithm which is based on the state partition technique and parallel

EKFs (SP-PEKFs). As demonstrated in our simulation results, the new algorithm
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renders considerably accurate tracking results while requiring only a small amount of

communication protocol in the network and limited processing tasks at each sensor

node, which in turn reduces the power consumption.

3.3.3 Problem Formulation

Here we describe the tracking problem in two steps. The acoustic sensor model is

first introduced, then the dynamic model of the moving target is discussed.

Acoustic Wave Intensity Decay Model

Here, a distributed wireless acoustic sensor network is one which is composed of

deterministically or randomly deployed sensors whose positions are known to the fusion

center, and this fusion center can be either stationary or mobile. The sensor locations

could be computed by using methods proposed in [45]-[48] or using an on board GPS

system. An acoustic sensor is capable of detecting the DOA of a perambulating (or

moving) target when the target comes into the neighborhood (i.e. effective range)

of this sensor. A sensor has limited computing capabilities to calculate the received

acoustic intensity, and it also serves as a transmitter/receiver. We assume the sensor

nodes are dense enough such that during each sampling period there is at least one

sensor is in the active mode. Assuming that the acoustic source can be treated as

a point target and sound propagation is isotropic, the acoustic intensity received by

sensor nodes can be modeled as follows [7] [49] [50]:

P(t) =
S(t)

‖x(t)− r(t)‖α
2

+ ε(t) , (37)

where S(t) denotes the acoustic intensity emitted from the source (target) located at

x(t), P(t) represents the acoustic intensity received by a sensor located at r(t). The

variable α is an attenuation coefficient, and ε(t) is the additive noise assumed to have

a zero-mean Gaussian distribution. In the sensor network, the sensors are designed

to switch to their active mode when the received acoustic intensity is above a certain

threshold. Once a sensor is in the active mode, the acoustic intensity received by the
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sensor will be calculated and sent to the fusion center. At the fusion center, a set of

sensor weights are calculated as Wk(t) = Pk(t)/
(∑K

k=1 Pk(t)
)
, where Wk(t) denotes

the sensor weight for sensor k, where K is the total number of the active sensors, and

finally where Pk(t) is the acoustic intensity received by sensor k.

Target Dynamic Model

In this section, we focus on wireless acoustic sensor networks, where the sensor

node will only provide the bearings measurement (i.e. DOA), and there is no range

measurement available. As the target moves through the network field, sensors which

are located in the neighborhood of the target will be turned on and will send out the

DOA of the target to the sensor fusion center. For each single activated sensor, this is

a bearings-only tracking problem, where the target is represented by the vector given

as:

xt =
[

x(t) vx(t) y(t) vy(t)
]T

, (38)

where (x(t), y(t)) is the target location in a local Cartesian coordinate system which

takes the sensor location as its origin. The variables vx(t) and vy(t) denote the target

velocities along the x-axis and y-axis in the sensor local coordinate system, respectively.

The state space model is given by equations (34) and (35), in which the observation

equation contains nonlinearities. An interesting feature of this problem is the system

will have multiple DOA measurements at each sampling period, and the total num-

ber of measurements that are available to the fusion center is not fixed. Also, these

measurements are not equally “reliable” because of the sensor noise and clutter.

3.3.4 Power-Aware Particle Filter For Target Tracking in Sensor Networks

The New Scheme for Tracking in Sensor Networks

As indicated in Section 3.3.1, the sensor nodes in the network have both limited

computation and communication capabilities. In addition, it is difficult or even im-

possible to replenish the power supply frequently in many sensor networks. All of
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these constraints pose new challenges for the target tracking problem. On the other

hand, particle filtering has emerged to be a promising tracking algorithm in various

applications. The design of the proper proposal distribution is crucial to implement

a particle filter. This distribution governs the weights of the particles that approxi-

mate the posterior distribution. In light of this, we propose a novel particle filtering

algorithm with its proposal generated from a weighted sum of estimates calculated by

using each sensor measurement. More specifically, at the fusion center, the DOAs of

each activated sensor are used to formulate a set of individual trackers. These trackers

can generate fast but perhaps not very accurate estimates. However, these estimates

should remain in the neighborhood of the true target location. In addition, a set of

sensor weights Wk(t) are calculated by using the acoustic intensity received by each

active sensor node. Then, a weighted sum is calculated based on the these estimates

and the sensor weights. Finally, by taking the weighted sum of the estimates as the

proposal distribution, a particle filter is applied for target sensor fusion. Here in this

section, we analyze the use of the state partition technique with a bank of EKFs (SP-

PEKFs) to generate individual trackers using each DOA, and discuss how the particle

filter framework can be applied to achieve the task of sensor fusion and target tracking.

Particle Filter (PF) Based Sensor Network Tracking

Recently, numerous particle filter algorithms have been developed for sensor net-

work applications [6] [39] [40] [44] which provide promising results. In this section, we

will present a new multiple sensor particle filter tracking algorithm (CPF-SP) which is

based on the state partition technique and parallel EKFs as we discussed earlier. More

specifically, an independent tracker (i.e. a SP-PEKF tracker) is implemented at each

active sensor node, which returns the local DOA information, the received acoustic in-

tensity and estimated target distribution, i.e. the mean and variance given in equations

(28) and (30), to the fusion center. The fusion center will evaluate the sensor weights

based on the received acoustic intensities and the total number of active sensors. Then

the fusion center will construct a weighted Gaussian sum or a Gaussian mixture as
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the proposal distribution. Next, a particle filter is implemented at the fusion center,

in which the particles are drawn from the aforementioned proposal distribution. The

particle weights will be calculated based on the multiple DOA measurements. Finally,

the fusion center will send the terminal estimates to the active sensors to update the

next iteration. Our new multiple sensor CPF-SP algorithm is illustrated in Figure 14

and is summarized in Table 4.
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Table 4: Algorithm 2: the Multiple Sensor Particle Filter (CPF-SP)

• At each active sensor node:

¦ Implement an individual SP-PEKF algorithm using the local
DOA to provide a normal distribution N (x̂k(t), R̂k(t))

¦ Calculate the received acoustic intensity Pk(t)

¦ Sent local DOA, local estimates and acoustic intensity to the
fusion center

• At the fusion center:

¦ Calculate the sensor weights based on the number of active sen-
sors and the received acoustic intensities

¦ Construct a weighted Gaussian sum or a Gaussian mixture based
on the sensor weights

¦ Sample from the weighted Gaussian sum

x(i)(t) ∼
K∑

k=1

Wk(t) · N
(
x̂k(t|t), R̂k(t|t)

)

= N (
x̂all(t|t), R̂all(t|t)

)

¦ Calculate and normalize the particle weights according to equa-
tion (13)

¦ Resampling: generate a new set of particles xi?(t) from x(i)(t) by
sampling Ns times the proposal distribution so that

Pr
(
xi?(t) = x(j)(t)

)
= ω̃(j)(t);
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3.3.5 Data Fusion and Tracking Results

Extensive experiments have been conducted to test the accuracy and robustness of

the new proposed algorithm. The experimental results are presented in this section.

Next, we examine the application of the CPF-SP for ground vehicle tracking in an

acoustic sensor network for three different tracking scenarios: (1) a rectilinear motion

disturbed by random noise, (2) motion that involves sharp coordinate turns with peri-

odically changing velocities and accelerations, and (3) a dual-mode motion trajectory

that is initially described by a constant acceleration then followed by a constant decel-

eration. Based on our research, these three motion models are the major components

that represent the true motions of a ground vehicle.

Tracking Scenario No. 1

In this tracking scenario, we analyze tracking a target, which has a rectilinear

motion disturbed by random noise. The target trajectory together with a grid sensor

topology are shown in Figure 15(a). In all the simulations in this study, we assume

that the moving target, i.e. a ground vehicle, has a noise level of 70dB, which is a

typical value for this type of target. The sensor threshold is set to 72%, 75%, and 78%

of the source acoustic intensity, respectively. Once the acoustic intensity received by

a sensor exceeds these thresholds, the sensor will be switched to the active mode and

will be able to transmit the target’s DOA to the fusion center. The activated sensors

that above thresholds are plotted in Figure 15(b)-(d), respectively. As illustrated in

this figure, when the threshold is set to 78% of the source intensity, only one or two

sensors are in the active mode during each sampling period. This indicates that 78%

is approximately the highest threshold that can be used for this particular network

topology, since it is assumed that at least one sensor is active during each sampling

period.

Next, a CPF-SP and a centralized bootstrap filter (a standard PF) are applied

to this problem for a comparison. The sensor threshold is set to 75% of the source

acoustic intensity. One hundred Monte Carlo runs are implemented to generate the
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(a)Sensor Topology
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(b) Threshold: 72%
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(c) Threshold: 75%
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(d) Threshold: 78%

Figure 15: This figure shows: (a) The grid sensor topology and the true target trajectory,
(b)-(d) The activated sensors with sensor thresholds setting to 72%, 75%, and 78% of the
source energy, respectively.

statistical performance index, the root mean square error (RMSE). The RMSEs for

both the x-coordinate and the y-coordinate are shown in Figure 16. As indicated in

this figure, the CPF-SP gives very accurate estimations while the traditional bootstrap

filter yields huge estimation error. This is mainly because use the bootstrap filter takes

the target state transition prior as the proposal distribution for the particle filter,

which does not include the current measurement. When the likelihood distribution

is narrow with respect to the state transition prior distribution, many particles will

receive negligible weights, and large estimations errors will occur. Moreover, the overall

mean and variance of the RMSEs are shown in Table 5. From this table, it is clear

that the CPF-SP not only gives small estimation error, but also gives small estimation
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Figure 16: Root mean square errors (RMSE) of Scenario No.1: The red line denotes the
RMSE from the CPF-SP, while the green line represents the RMSE from the bootstrap
filter.

error variance, which means that the CPF-SP gives much more consistent estimations

compared to the bootstrap filter. It should be also noted that the CPF-SP renders

these good estimations with only 200 particles, however the bootstrap filter uses 2000

particles. The execution time for each algorithm is also provided in Table 5.

Table 5: A Comparison of the CPF-SP and the Bootstrap Filter
RMSE for x RMSE for y Time

Mean Var. Mean Var. (Sec.)
CPF-SP 1.909 1.693 4.004 6.978 2.161

Bootstrap 23.180 154.63 30.060 223.291 8.109

Figure 17 and 18 illustrate a typical realization of this tracking scenario. As demon-

strated in this figure, the CPF-SP algorithm keeps a close track of the target throughout

the whole experiment. But for the bootstrap filter, although it can follow the general
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Figure 17: The location estimations from one typical realization of the scenario No.1:
blue line: true target trajectory, red line: the CPF-SP estimations, green line: the
bootstrap filter estimations.
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Figure 18: The velocity and acceleration estimations from one typical realization of the
scenario No.1: blue line: true target, red line: the CPF-SP estimations, green line: the
bootstrap filter estimations.
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Figure 19: Root mean square errors (RMSE) of Scenario No.2.

direction of the target, it gives large estimation errors when compared to that of the

CPF-SP, as shown in Figure 17. In addition, this research also shows that when set-

ting the threshold to 78%, the CPF-SP can provide estimation results similar to the

aforementioned, which demonstrates that this algorithm has the advantage to reduce

the computation and communication load at the sensor node required to give accurate

results.

Tracking Scenario No. 2

In the second scenario, we apply the tracking algorithm to a target whose motion

trajectory has two sharp coordinate turns with periodic changing velocities and ac-

celerations. In the target tracking community, this kind of target is classified as a

maneuvering target [52]. By definition, this implies that target’s x and y velocities are

non-constant as it makes a path. This aspect presents additional tracking challenges,

as compared to tracking non-maneuvering targets. Traditionally, multiple-model tech-

niques are used to track maneuvering targets [37]. However, to test the algorithm
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Figure 20: The location estimations from one typical realization of the scenario No.2:
blue line: true target trajectory, red line: the CPF-SP estimations, green line: the
bootstrap filter estimations
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Figure 21: The velocity and acceleration estimations from one typical realization of the
scenario No.2: blue line: true target, red line: the CPF-SP estimations.
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Figure 22: The location estimations from one typical realization of the scenario No.3:
blue line: true target trajectory, red line: the CPF-SP estimations, green line: the
bootstrap filter estimations

robustness for model uncertainties, we still use the single non-maneuvering model for

the CPF-SP. Similar to the previous example, 100 Monte Carlo runs were implemented.

As shown in the experiments, the CPF-SP can keep a close track in every realization.

However, the bootstrap filter looses the target in more than 80% of the 100 realizations.

Due to fact that most of the bootstrap filters lose track, the RMSE for the CPF-SP is

only provided, as depicted in Figure 19. A typical realization is shown in Figure 20 and

21. As it is evident from this simulation, the CPF-SP follows the target closely despite

the model utilized here is a single non-maneuvering model. This fact demonstrates that

the CPF-SP can achieve certain robustness under model uncertainties. Moreover, this

robust tracking is achieved by using only 200 particles, which is a rather small sample

size compared to the standard bootstrap particle filter which uses 2000 particles.

Tracking Scenario No. 3

In the third scenario, tracking a target with a dual-mode motion trajectory that is

initially described by a constant acceleration then followed by a constant deceleration is
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Figure 23: The velocity and acceleration estimations from one typical realization of the
scenario No.3: blue line: true target, red line: the CPF-SP estimations, green line:
bootstrap filter estimations.
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Figure 24: Root mean square errors (RMSE) of Scenario No.3.
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investigated. Due to the instantaneous change in the velocity and the acceleration, the

target makes a significant maneuver operation, although its motion is still rectilinear.

As indicated in the 100 Monte Carlo runs, the bootstrap filter can follow the general

direction of the target, but it fails to detect the instantaneous acceleration change and

finally it loses the target. Figure 22 and 23 depicts one realization. It is very clear in

Figure 23 that the bootstrap filter cannot detect the velocity and acceleration change.

On the other hand, the CPF-SP yields very good estimates for both target locations

and velocities. In addition, the RMSEs of the Monte Carlo runs are shown in Figure 24.

3.3.6 Summary

This section proposed a new sensor network target tracking method based parti-

cle filtering and state partition techniques. Simulation results demonstrate that this

technique is capable to yield accurate and robust estimations while reducing the com-

putations and channel requirements in the sensor network. In particular, the dynamic

model of a moving target via an acoustic sensor network has been analyzed. The net-

work has been defined as a distributed wireless acoustic sensor network which is com-

posed of deterministically or randomly deployed sensors whose positions are known to

the fusion center which is either stationary or mobile. The work here has provided

contributions by showing that improved sequential Monte-Carlo methods can be used

to efficiently generate precise estimations for targets which may has complex motion

patterns, and that sensor nodes can be switched between the active mode and the sleep

mode adaptively based on the requirements of power consumption and estimation ac-

curacy.
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3.4 Multiple Model Particle Filter

As indicated in Section 2.3.3, the estimation accuracy can be also improved by

refining the modeling process. In many real world problems, the system under study

is so complex that a single model can not fully describe its behavior. In these cases,

multiple dynamic models are often utilized to approximate the true system. The sys-

tem under study is assumed to have a switching structure that the system may change

from one model to anther during each sampling period. This kind switching process

is known as a jump Markov process. In tracking problems, the target can be divided

into two categories: non-maneuvering targets and maneuvering targets, where a ma-

neuvering target represents the target that can make sudden and dramatic changes in

motion patterns. Recently, various particle filter based algorithms have been devel-

oped for tracking maneuvering targets. Among them, multiple model particle filter

(MMPF) has been proven to be successful [3] [55] [56]. Based on the choice of different

proposal distributions and different target models, MMPFs may have many different

forms. In this section, we will first analyze the fundamental concepts of the multiple

model method. Next, we will provide a study of target dynamic models used for ma-

neuvering target tracking. Then, we will present the general form of a multiple model

particle filter (MMPF) with two examples. These are the MM-bootstrap and the multi-

sensor MM-bootstrap, respectively. Finally, in the next section, we will develop a more

advanced MMPF, called MMPF-SP, and apply it to visual target tracking problems.

3.4.1 The Fundamentals of the Multiple Model Method

When tracking a target which can perform maneuvers, the estimations generated

by a bootstrap filter based on the aforementioned model, equations (34) and (35) are

not always accurate enough [3][54]. The problem of maneuvering target tracking is

often referred to as a jump Markov process [3] [52], in which the system is assumed

to operate according to one model from a finite set of hypothetical models, known as

regimes or modes. In this scenario, the general form of the state space model for the
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hybrid system is defined as:

xt = ft−1(xt−1,wt−1, rt)

zt = ht(xt,vt, rt) (39)

where xt is the system state vector at time t, and rt indicates the system operates

according to r-th model at time t. The variable rt is a function of time, and its

transition is governed by a regime transition matrix or model transition matrix defined

as:

Π =




π11 π12 · · · πNr1

π21 π22 · · · ·
...

...
. . .

...

π1Nr · · · · · · πNrNr




(40)

where

πij = Pr

(
rt =j

∣∣ rt−1 = i

)
i, j ∈ 1 · · ·Nr (41)

and
∑Nr

j=1 πij = 1. In other words, πij represents the probability of model i at time

t− 1 switching to model j at time t. And the variable Nr is the number of all possible

models. In addition, the state vector can be taken as [xt rt]
T. The variable xt,

which describes the target kinematics, has a high dimensional continuous state space.

The regime variable rt (or the model variable), which represents the current system

model, has a one dimensional discrete state space. Figure 25 provide an example of

model switching structure for a 4-model case. The switching structure is based on an

initial model distribution and the model transition matrix. In this example, we initially

generate a uniformly distributed model particles (10,000 samples), i.e. each model has

approximately the same probability. Then, this uniform model distribution is updated

based on the following transition matrix:

Π =




0.7 0.1 0.1 0.1

0.4 0.5 0.05 0.05

0.4 0.3 0.2 0.1

0.4 0.3 0.2 0.1
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Figure 25: A demonstration of model distribution transition.

It is clear from Π and demonstrated from the figure that model one has highest proba-

bility. Model two has a higher probability than model three, while model four has the

lowest probability.

3.4.2 A Study of Target Dynamic Models

In this subsection, we study various target dynamic models which are commonly

adopted in the current literature. A complete study of dynamic models for target

tracking can be found in [52], which covers both 2D and 3D models. In this research,

we focus only on 2D models, which can be easily extended to 3D. We have already

discussed the dynamic model for the non-maneuvering target, the constant velocity

model, which is given by equations (34) and (35). Here we will discuss three more

models for describing maneuvering targets: (1) coordinated turn (CT) model, (2) con-

stant acceleration model (CA), and (3) curvilinear motion model. These are below.
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The Coordinate Turn (CT) Model

The CT model is used to describe a target which has a circular-type motion

with a constant turn rate. This kind of model has two forms: (1) the counter-

clockwise CT model and (2) the clockwise CT model. By taking the state vector

as xt = [xt yt vxt vyt ]
T, consider a state space model of the form given as:

xt = Frt (xt−1) · xt−1 + Γ ·Vt−1 . (42)

We use r = 2 and 3 to denote the counter-clockwise and the clockwise CT models,

respectively. And r = 1 is reserved for representing the non-maneuvering CV model.

The CT models are given as:

Fr(xt)=




1 0
sinΩ

(r)
t T

Ω
(r)
t

− (1−cosΩ
(r)
t T )

Ω
(r)
t

0 1
(1−cosΩ

(r)
t T )

Ω
(r)
t

sinΩ
(r)
t T

Ω
(r)
t

0 0 cos Ω
(r)
t T − sin Ω

(r)
t T

0 0 sin Ω
(r)
t T cos Ω

(r)
t T




, (43)

where Ω
(r)
t denotes the model-conditioned turning rate given as:

Ω
(2)
t =

am√
v2

xt
+ v2

yt

Ω
(3)
t =

−am√
v2

xt
+ v2

yt

.

The variable am in the above equation represents the maneuver acceleration. Figure

26 illustrates the possible turns result from various maneuver accelerations with the

target initial condition given as: xt = [0 0 1 0]T. As indicated above, the two CT

models have strong nonlinearities. In addition, for the bearings-only tracking problem,

the measurement model is same as equation (35).
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Figure 26: The coordinated turn (CT) models with different turn rate.

The Constant Acceleration Model

This model assumes that the target under track has a constant acceleration, which

is corrupted noise. There are two types of acceleration models: (1) the white-noise

acceleration model, and (2) the constant acceleration (CA) model [52]. The white-

noise constant acceleration model is the most basic form of acceleration model. In

this model, the target’s acceleration is deemed as an independent process corrupted by

white noise. This model is similar to the CV model, except that it has a higher noise

level, which is used to model unpredictable maneuver operations. Strictly speaking this

kind of model is not a constant acceleration model. The white-noise acceleration model

is also known as white-noise jerk model (the second derivative of velocity). The second

type acceleration model is the constant acceleration model, where the acceleration is a

process with “independent increments.” In other words, the CA model assumes that

the acceleration increment is an independent process. This model is also called the

Wiener-process acceleration model. But the studies of [52], the authors indicate that

the acceleration process is not necessarily a Wiener process. In acceleration models,
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the state vector has the following form:

xt = [xt yt vxt vyt axt ayt ]
T

and the dynamic model is:

xt = F4 (xt−1) · xt−1 + Γ ·wt−1 . (44)

where

F(4) =




1 0 T 0 T 2

2
0

0 1 0 T 0 T 2

2

0 0 1 0 T 0

0 0 0 1 0 T

0 0 0 0 1 0

0 0 0 0 0 1




(45)

and for white-noise acceleration model:

Γ =

[
0 0 0 0 1 0

0 0 0 0 0 1

]T

for constant acceleration model:

Γ =

[
T 2

2
0 T 0 1 0

0 T 2

2
0 T 0 1

]T

Curvilinear motion model

Various curvilinear motion models were reported in current literature [52][51]. Here

we introduce the basic form of the curvilinear model. Taking the state vector as

xt = [xt yt vxt vyt ]
T, the curvilinear motion model is defined as:

xt = F1 · xt−1 + B(xt−1) · at + wt (46)
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where

F =




1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1




and

B(xt) =




0 0
vxt√

v2
xt

+ v2
yt

− vyt√
v2

xt
+ v2

yt

0 0
vyt√

v2
xt

+ v2
yt

vxt√
v2

xt
+ v2

yt




with At = [Atangent Anormal]
T. The matrix B(xt) is the curvilinear motion transition

matrix. The vector at represents the maneuver acceleration along the tangential and

normal directions, respectively. It is clear that this model has strong linearities. An-

other improved curvilinear motion model was reported in [51], which is one of the most

sophisticated 2D motion model in target tracking [52].

3.4.3 The General Form of Multiple Model Particle Filter

Maneuvering target tracking is a hybrid state estimation problem. By definition,

hybrid state estimation is the estimation of a quantity that has both continuous and

discrete components [53]. In maneuvering target tracking, the state components that

describe the target kinematics has continuous values, while the model variable only

has discrete values. In the problem of maneuvering target tracking, the multiple model

method has been widely used and is considered as the mainstream approach [53]. Cur-

rently, the most widely used method is the interacting multiple model extended Kalman

filter (IMM-EKF) [59]-[62]. The basic idea of IMM-EKF is to use a separate EKF for

each hypothetical model, then the final estimate is the weighted sum of the all compo-

nents. The filter weight is a function of the regime transition probabilities and the filter

weight at previous time index. The approximation error of an IMM-EKF comes from

two sources. First of all, each EKF approximates a nonlinear system by linearizing it

about a certain operating point. This procedure introduces the linearization error. For
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example, some models, such as the coordinated turn model and the curvilinear motion

model, have strong nonlinearities. Linearizing these models produces large modeling

error. Secondly, the IMM approximates the exponentially growing Gaussian mixture

with a finite Gaussian mixture which results in an approximation error. These two

kinds of errors may cause the filter to diverge from the true target trajectory in some

scenarios. More recently, inspired by IMM-EKF, some researchers have developed

various interacting multiple model particle filters (IMM-PF) [63][66] [67]. However,

these algorithms still use the same method as the IMM-EKF that approximates the

exponentially growing Gaussian mixture with a finite Gaussian mixture.

An improvement over the IMM-PF is the recently introduced multiple model parti-

cle filter (MMPF). Actually, MMPF is a flexible framework and is a superior alternative

to the IMM-EKF to perform nonlinear filtering with switching dynamic models [54][55]

[56][57]. The MMPF framework can be modified to couple with different applications.

For example, in [65], a MMPF with gating and data association was designed for track-

ing multiple targets. As a novel extension of the single model particle filter, the MMPF

generates state estimates based on all models. More specifically, at each iteration, a

set of model samples {r(i)
t }Ns

i=1 are generated based on the model transition matrix Π

defined in equation (40) and the model samples at previous time {r(i)
t−1}Ns

i=1 such that:

Pr
(
r
(i)
t = j|r(i)

t−1 = i
)

= πij , (47)

where Ns is the sample size. Then, the state particles are drawn from the proposal

q(x
(i)
t |x(i)

t−1, r
(i)
t , zt), and the particle weights are calculated as follows:

ω
(i)
t = ω

(i)
t−1

p(zt|x(i)
t , r

(i)
t )p(x

(i)
t |x(i)

t−1, r
(i)
t )

q(x
(i)
t |x(i)

t−1, r
(i)
t , z1:t)

(48)

where x
(i)
t and zt denote the state and the measurement, respectively. This equation

is similar to single model particle filter, except that the model variable r
(i)
t is incor-

porated. In addition, the proposal distribution q(x
(i)
t |x(i)

t−1, r
(i)
t , z1:t) also involves the
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Table 6: Algorithm 3: The General Form of A Multi-model Particle Filter

• Generating regime samples (particles) based on regime transition matrix:

– generate {r(i)
t }Ns

i=1 based on {r(i)
t−1}Ns

i=1

such that
Pr

(
r
(i)
t = j|r(i)

t−1 = i
)

= πij ,

where πij is given in equation (40) and Ns is the sample size.

• Evaluating particle weights:

– Draw samples x
(i)
t according to

x
(i)
t ∼ q(x

(i)
t |x(i)

t−1, r
(i)
t , z1:t)

– Calculate particle weights based on equation (48).

– Normalize the weights as:

ω̃
(i)
t =

ω
(i)
t∑Ns

j=1 ω
(j)
t

.

• Resampling and updating the estimates:

– Generate a new set of particles x
(i?)
t from x

(i)
t so that

Pr
(
x

(i?)
t = x

(i)
t

)
= ω̃(i)(t) .

– Output and update: The final extimate is given as x(t) ≈
1

Ns

∑Ns

i=1 x(i?)(t).
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model variable, which means that the proposal is generated based on the current dy-

namic model. After this, the particle weights are normalized followed by a resampling

step. The aforementioned algorithm is a general framework of MMPF. For the sake of

completeness, this algorithm is summarized in Table 6.

3.4.4 Multiple Model Bootstrap Filter

Based on different choices proposal distribution, various MMPF algorithms can be

developed. Among them, the multi-model bootstrap filter is a special case, in which

the proposal distribution of the PF, q(x
(i)
t |x(i)

t−1, r
(i)
t , z1:t), is taken as the state transition

prior p(x
(i)
t |x(i)

t−1, r
(i)
t ). In this case, the particles weights only depend on the system’s

likelihood p(zt|x(i)
t , r

(i)
t ) as indicated in previous subsection.
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Figure 27: Tracking Maneuvering target using MMPF: The blue dots represent the true
target location. The red triangle-line represents the estimated location.

An example to demonstrate the strength of the MM-bootstrap is now provided. In

Figure 27, the blue dots represent the ground truth of a target trajectory which makes

a dramatic maneuver, a clockwise sharp turn at t = 7. In addition, we assume this
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is a bearings-only tracking scenario. The challenge of this problem comes from two

sources: first the target is a maneuvering target, second only the angle measurement

is available. A multi-model bootstrap filter was implemented for this tracking problem.

The estimated trajectory is represented by the red line. From this example, we can

see that MM-bootstrap can follow the general direction of the target, even when the

target makes a sharp turn. In this problem, three dynamic models were used, i.e.

one CV model and two CT models. Figure 28 shows the number of particles of each

model after resampling, which is proportional to the model probability. The blue line

represents the constant velocity (CV) model, while the green line and red line denote

the counter-clockwise and the clockwise CT model, respectively. It is obvious that the

counter-clockwise has a higher probability than the other models at time t = 7, when

the target makes the sharp counter-clockwise turn. This figure fully demonstrates the

strength of the multiple model approach.
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Figure 28: The number of particles of each model after resampling. The blue line: the
constant velocity (CV) model, the red line: the clockwise coordinated turn model, the
green line: the counter-clockwise coordinated turn model.
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Figure 29: This figure illustrates the multiple model particle filter (MMPF) tracking
algorithm with using the DOA measurements from multiple sensors.

3.4.5 MM-Bootstrap with Multiple Sensors

Moving further, we have developed a multiple-sensor multi-model bootstrap filter to

track a maneuvering target. In this tracking scenario, we have applied separate multi-

model bootstrap filters using DOA measurements from each sensor, then the overall

estimation is given by a weighted sum of these individual estimates. The sensor weights

are chosen as the normalized reflectivity received by each radar, which is proportional

to the inverse of the distance squared. The algorithm of the MMPF using multiple

sensors is illustrated in Figure 29. In addition, a single-sensor single-model bootstrap

filter and a single-sensor MM-bootstrap filter are also implemented for the purpose of

comparison. The estimation results of these three tracking algorithms are shown in

Figure 30.

In this figure, the true trajectory is denoted by the plus signs (+). The estimates

from the single-sensor single-model bootstrap filter are represented by the line with a

cross (−×−), while estimates from MMPF with a single sensor and with multiple sensors

are depicted by the upward triangle line (−4−) and the line with dots (−•−), respectively.

In addition, each PF algorithm uses 5000 particles. As indicated in the figure, although
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the single-model single-sensor bootstrap filter can follow the general direction of the

target, it failed to detect the small turns made by the target. On the other hand, the

multiple-sensor MMPF algorithm is able to detect the maneuvers made by the target

and outperforms single-sensor MMPF.
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Figure 30: This figure illustrates the tracking results of three algorithms: single-sensor
single-model bootstrap filter (−×−), single-sensor MMPF (−4−) and multi-sensor MMPF
(−•−). In addition, the true target location is represented by plus signs (+). It is clearly
demonstrated from this figure that the MMPF algorithm with multiple sensors yield
very accurate estimates.
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3.5 Improved Multiple Model Particle Filter for Visual Target Tracking

Robust, accurate visual object tracking is fundamental to a variety of computer

vision applications including robotics, human tracking and biometric identification,

intelligent transportation systems, smart rooms, and military targeting systems. Usu-

ally, the objects of interest in a video sequence are represented by state space models

that may involve strong nonlinearities. In addition, the noise and background clutter

are almost always present in real-world video sequences which make the visual track-

ing problem particularly challenging. Conventional methods for rectifying nonlinear

and non-Gaussian problems include the extended Kalman filter (EKF), the Bayesian

multiple-hypothesis filters, and similar variants including the probability data asso-

ciation filter (PDAF) and the joint probability data association filter (JPDAF) [69].

Hidden Markov models (HMM) have also been widely used [72][76].

As it is evident from the works of many recent authors, the particle filtering frame-

work has revolutionized probabilistic visual target tracking. In this section, a new

particle filter tracking algorithm is developed, in which it combines switching multiple

dynamic models and the technique of state partitioning with parallel filter banks. This

chapter is based on the previous work of the author’s in [19][20]. Traditionally, most

tracking algorithms assume the target operates according to a single dynamic model.

However, the single model assumption causes the tracker to become unstable, espe-

cially when the target has complex motions, and the camera has abrupt ego-motions.

In our new tracking algorithm, the target is assumed to operate according to one dy-

namic model from a finite set of models. The switching process from one model to

another is governed by a so-called jump Markov process. This strategy can effectively

capture the target’s dynamics. In addition, the state partition technique and a parallel

bank of extended Kalman filters (SP-PEKF) are used to generate the proposal dis-

tribution used in the particle filter to achieve further estimation accuracy. The main

purpose of this research is to improve the visual tracking performance for a given type

of measurement cue. Extensive tests have been conducted to evaluate the new track-

ing algorithm, and key outcomes are given in the results section. For the first time,
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it has been demonstrated by our experiments that this new approach yields a signif-

icantly improved estimate of the state, enabling the new particle filter to effectively

track human subjects in a video sequence where the standard condensation filter fails

to maintain track lock.

3.5.1 An Introduction of Visual Target Tracking

Visual target tracking is an important task for many industrial applications, such as

intelligent video surveillance systems [13] [70] [71], human machine interfaces [14][16],

remote sensing and defense systems [72] [73], and others. Despite the ubiquitous appli-

cations, visual target tracking still remains a challenging problem. This is due to the

fact that besides the traditional tracking challenges (such as complex target motions

and background clutters), the targets in visual data are always subject to deformation,

occlusion, camera ego-motion, changes in scale, and various illuminations.

In general, visual target tracking algorithms can be divided into two categories, i.e.

(1) deterministic methods and (2) stochastic methods. In the deterministic approach,

a cost function is always designed based on features generated/extracted from visual

data. Then, the tracking problem is reduced to an optimization problem: seeking a

target location which minimizes the cost function. The gradient descent [74] and mean

shift [75] are two common methods. In the second category, the stochastic approach,

the objects of interest are represented by state space models and the tracking problem

is then formulated as a filtering or a state estimation problem. Early works of stochastic

target tracking were based on the Kalman filter or its variants. These methods take

the Gaussian assumption and require linearization of nonlinear systems. In addition,

hidden Markov model (HMM) based methods were also reported [76]. More recently, a

sequential importance sampling (SIS) technique, known as particle filtering, has been

recognized as a significant target tracking algorithm because of its accuracy, robustness

and flexibility in non-linear and non-Gaussian systems [2][4].
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Various methods have been proposed in the current literature to improve the track-

ing results by either (1) developing more advanced dynamic models and refining track-

ing algorithms or (2) designing better detection method to improve measurement accu-

racy. Using the first strategy [80], an unscented particle filter is used for contour-based

human face tracking, where an unscented Kalman filter is used in this algorithm to

generate a better proposal distribution. In [81], an auxiliary particle filter was imple-

mented for tracking a target in infrared videos. In the work of [17], the state partition

technique was incorporated into the PF framework to achieve better tracking result.

Also, in [82] a motion-based particle filter was proposed, where an “optimal imple-

mentable” proposal was designed based on the Kullback-Leibler (KL) measure. On

the other hand, some researchers focus on the second strategy, which is designing bet-

ter observation models to improve the tracking algorithms. For example, in [83], the

target under track is represented by its histogram. Then, a kernel object tracking

algorithm based on the Bhattacharyya coefficient and Epanechnikov profile was devel-

oped to achieve robust tracking. In [16], multiple measurement cues were fused using a

unified particle filter framework. These measurement cues include: color cues, motion

cues and sound cues. Each cue is used both for generating the proposal and calculating

the particle weight. Of course these two strategies can be combined. For instance, in

[84], a particle filter with both adaptively varying sample size and model noise variance

is developed. This algorithm also uses intra frame information to adaptively update

the gray scale template online.

In this section, a new particle filter tracking algorithm is presented by focusing

on the first strategy, i.e. by developing more advanced dynamic models and refining

tracking algorithms. The contribution of this work is twofold:

1. A target operates according to one of a finite set of dynamic models is considered.

The switching process from one model to another is governed by the so called jump

Markov process with a predefined model transition matrix. As noted in current

literature, most tracking algorithms assume the target operates according to a

single dynamic model. However, this assumption can cause the tracker to become
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unstable especially when the target has complex motions and the camera has

strong ego-motions. With our new modeling strategy, the tracker can effectively

capture the target’s dynamics.

2. A new design strategy is offered that adopts the state partitioning technique and

a bank parallel EKFs to generate the proposal distribution used in the particle

filter to achieve further estimation accuracy.

3.5.2 Visual Target Tracking Models

In this subsection, we briefly review the target model before introducing the new

tracking algorithm. In many visual target tracking applications, the objective is to

track the target’s centroid, while the target maybe rigid or deformable. For example,

in problem of people face tracking, the objective is usually to detect the face and track

face center. In these cases, the target centers are treated as a point target similar to

radar target tracking, although the measurement model is fundamentally different. The

research in this section is focused on human face tracking, where the face is modeled

as a moving ellipse.

Target Dynamic Model

Here the row and column index of the ellipse center in the image plane (row, col) =

(r, s) is taken as the target’s centroid. Then, the Langevin process is used to approxi-

mate the centroid’s dynamics. Used in various current research [76][80], the Langevin

process is a modified constant velocity model, which is given below:




r(t + 1)

s(t + 1)

ṙ(t + 1)

ṡ(t + 1)




=




1 0 1 0

0 1 0 1

0 0 ar 0

0 0 0 as







r(t)

s(t)

ṙ(t)

ṡ(t)




+




0

0

br

bs




m(t) ,
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where x(t) = [r(t) s(t) ṙ(t) ṡ(t)]T is the state vector. Other parameters are given as

follows.

ar = exp (βr∆T )

as = exp (βs∆T )

br = v̄r

√
1− a2

r

bs = v̄s

√
1− a2

s

The variables βr and βs are rate constants, ∆T is the discretization time step, v̄r and v̄s

are the steady-state root-mean-square velocity, and m(t) is the process noise. Later we

will develop a multiple model particle filter, where the target has the ability to operate

according to coordinated turn models and constant acceleration models. These models

have been discussed in Section 3.4.

Target Measurement Model for Visual Target Tracking

In general, the measurement models for visual target tracking are based on different

type of features (also called measurement cues) extracted from each frame. Commonly

used features include edge information, grayscale texture-type information, color infor-

mation. Other more advanced features include localized frequency information. The

purpose of this section is to provide robust visual target tracking methods for a given

same type of measurement cue. For this reason, only the edge information was used

here. More sophisticated algorithms using multiple measurement cues will be discussed

in Chapter 5. Edge cues were widely used in visual target detection, tracking and other

image processing applications [77][78]. This is because edges carry significant informa-

tion of the image content and those measurement cues are robust to change in the

illuminations and target pose. Also, they are relatively straight forward to extract. As

discussed earlier, in this section we use an ellipse to model the target under track, which

is a person’s face. The ellipse serves as a target template. This type template is one
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Figure 31: An ellipse is used a template to model human’s head.

of the simplest form of parametric templates, yet it can provide robust detections as

demonstrated in [76][80]. More advanced templates use B-splines to model the target

boundary, which are also known as active contours [2][16][79].

To begin, an ellipse, shown in Figure 31, is used to model human’s head. The

boundary of the ellipse is utilized as the observation given the estimated states (the

estimated center of the ellipse). Then, K equally spaced rays are drawn from the center

of the ellipse. The intersections of these rays with the ellipse boundary are taken as

observations. In the local coordinates, the intersection point of the ellipse with the kth

ray is obtained according to

ck =
√

a2b2/(b2 + a2 tan2 θk)

dk = tan θk ·
√

a2b2/(b2 + a2 tan2 θk) (49)

and by solving the ellipse equation

(ck −m)2

a2
+

(dk − n)2

b2
= 1

and the ray equation dk = ck tan φk, where a and b denote the major and minor axes

of the ellipse, respectively. By letting z represent the observation and converting the
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Figure 32: Equally space rays from the target center.

local coordinates back to image coordinates, the observation model is given by

zt =

[
ck + xt

dk + yt

]
+ vt (50)

where vt is a 2-by-1 noise vector. Figure 32 shows the equally spaced rays overlaid

on the target in an image, which is a frame from one of our test videos. Then the

Canny edge detection is implemented to the image to extract the image edge features.

The Canny edge detection algorithm is known to many as the optimal edge detector.

The details of this algorithm can be found in [77]. The target edge information can be

easily contaminated by background clutters, which is demonstrated in Figure 33. In

this figure, we implement the edge detection algorithm inside the tracking aid window.

In order to to develop robust tracking algorithm, the background clutter rejection has

to be considered. To reject clutter, we apply edge detection, and search along each ray.

The edges are labeled as j = 1 · · · Jk, where Jk is the total number of edges detected

along the kth ray. The likelihood of each ray is then
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Figure 33: The edge detection algorithm is implemented inside the tracking aid win-
dow. This figure shows how the target edge information can be contaminated by the
background clutter.

pk(zt|xt) = Nm

JK∑
j=1

N (
(uk, vk), σ

2
kj

)
, (51)

where Nm is a normalizing factor. The overall likelihood is

p (zt|xt) =
K∏

k=1

pk (zt|xt) , (52)

which is a simplified version of the model used in [76][80].
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3.5.3 New Tracking Algorithm: MMPF-SP

We have discussed the SP-PEKF technique and the improved particle filter algo-

rithm (PF-SP-PEKF). We also introduced the multiple model method and the MMPF.

In this section, we develop a new particle filter algorithm, which is a novel extension of

single model PF-SP-PEKF. Four models are used in this algorithm: constant velocity

model, clockwise coordinated turn model, counter-clockwise coordinated turn model

and constant acceleration model. More specifically, at each iteration, a set model sam-

ples {r(i)
t }Ns

i=1 are generated based on the model transition matrix Π defined in (40) and

the model samples at previous time {r(i)
t−1}Ns

i=1 such that: Pr
(
r
(i)
t =j|r(i)

t−1 = i
)

= πij,

where Ns is the sample size. Then, the state particles are drawn from the proposal

q(x
(i)
t |x(i)

t−1, r
(i)
t , z1:t), and the particle weights are calculated as follows:

ω
(i)
t = ω

(i)
t−1

p(zt|x(i)
t , r

(i)
t )p(x

(i)
t |x(i)

t−1, r
(i)
t )

q(x
(i)
t |x(i)

t−1, r
(i)
t , z1:t)

. (53)

It should be noted that the proposal distribution q(x
(i)
t |x(i)

t−1, r
(i)
t , z1:t) in the above

equation is evaluated based on the partitioning method discussed in the previous sub-

section. More specifically, using the SP-PEKF to generate the proposal, we have the

following formula:

q(x
(i)
t |x(i)

t−1, r
(i)
t , zt) = N (x̂rt

total(t|t),Rrt
total(t|t)) (54)

where xrt
total(t|t) and Rrt

total(t|t) can be evaluated based on model rt and equations (28)

and (30). For the two coordinated turn (CT) models, to implement the parallel EKF,

we need the Jacobian matrices which are given in [3] and are also provided here:
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where am and Ω
(j)
t are defined in subsection 3.4.2
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Figure 34: The block diagram of the proposed multiple model particle filter (MMPF-SP).

Once the particles are drawn from the aforementioned proposal distribution, the

particle weights are evaluated based on the likelihood model discussed earlier. Next,

the particle weights are normalized followed by a resampling step. In this research

work, the systematic resampling was used. The new MMPF-SP algorithm is illus-

trated in Figure 34 and also summarized in Table 7.

3.5.4 Computational Complexity Analysis

As noted in the current literature, many researchers approximate the number of

operations required for their algorithms as they prepare for real-time implementations

[85]-[88]. We follow a similar approach and also approximate the number of operations

required for our method. As indicated in Figure 34, the MMPF-SP contains three

stages. The first stage analyzes the previous model associated with each particle in

the previous iteration, and calculates the current model based on the regime transition

matrix defined in equation (40). There are approximately O(Ns) operations in this

stage, where Ns is the sample size, i.e. the number of particles. In the second stage,

the state partition technique is applied to the four hypothetical models (or regimes).
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Table 7: Algorithm 4: Multiple Model Particle Filter with a State Partition

• Step 1: Generating a set of model samples using model
transition matrix Π and regime samples at previous
iteration, see equation (40) and Section 3.4.1.

• Step 2: Generate particles based on the four models
given in equations (34),(42),(44) and using SP-PEKF
(28)-(30). Then calculate the particle weights based
on the state transition prior, the likelihood and the
proposal using equation (53).

• Step 3: Resampling the particles by using the same
procedure discussed earlier, and output the estimation
result x(t) according to x(t) ≈ 1

Ns

∑Ns

i=1 xi?(t) and
update the proposal.

Assuming that each EKF has K operations and this number is model-dependent, then

there are O(4NK) operations in the second stage, where N is the number of filter bank

channels. In the last stage, the particle weights are calculated with approximately

O(Ns) operations, and if the basic systematic resampling method is used, as indicated

in [85], there will be another O(Ns) operations. So there are approximately a total of

O(4NK) + 3O(Ns) operations in the MMPF-SP algorithm.

This proposed algorithm is highly parallizable, which will be beneficial for fast

hardware implementation. More specifically, the parallelism can be implemented at

three different levels: (1) top level: parallelizing the state partition method applied to

the four hypothetical models, (2) medium level: inside each state partition method,

parallelizing the filter bank channels, and (3) low level: parallelizing the calculation

of particle weights. However, the focus of this chapter is to propose the theoretical

foundation for the new particle filter tracking algorithm (MMPF-SP). Further analysis

about computational complexity, code optimization, and hardware parallel implemen-

tation will be presented in future research.
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3.6 Laboratory Experiments and Results

In this section, the problem of tracking a human moving in cluttered environments

is studied. This topic has major applications in intelligent video surveillance systems

[13] and human computer interfacing [16]. Furthermore, our algorithm can certainly be

applied to other applications, such as target tracking in infrared data, by only minor

modifications of the observation model. Extensive experiments have been conducted

to test the accuracy and robustness of the new proposed algorithm. The experimental

results are presented in this section. In order to show the effectiveness of the new

algorithm, first the new single model particle filter (PF-SP-PEKF) is applied to a test

video which was recorded in a standard laboratory, and compare it to the common

condensation method (also known as the bootstrap method). Next, the new MMPF is

tested for the following three different cases: (1) tracking a target which has signifi-

cant complex motions, such as sudden maneuvers, (2) tracking a target with complex

motions and with partial occlusions, and (3) tracking a football player with strong

background clutter, occlusions, change of poses and camera ego-motions.

3.6.1 Single Model PF (PF-SP-PEKF)

In the first example, we use the single model PF-SP-PEKF algorithm to track a

person walking in a highly cluttered laboratory environment. As for a comparison,

the standard condensation method is also implemented. Tracking results for the two

filters are shown in Figure 35 and Figure 36, respectively, where the estimated target

centroid is indicated by a white cross. For the first 20 frames the motion was nearly

rectilinear with minimal acceleration and both filters performed well. Beginning around

frame 25, however, the motion became more complicated with nontrivial accelerations

and increased background clutter around the head. While the PF-SP-PEKF filter

maintained a consistent track lock throughout the video sequence, however, it can

be seen in Figure 35 that the condensation filter progressively diverged in frames 30

through 50, ultimately locking onto the clutter structure and losing the tracked object

all together. These results demonstrate the performance advantage that can be gained
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with the PF-SP-PEKF approach by explicitly considering the most recent observation

when constructing the proposal distribution.
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Figure 35: Using the condensation method: frames 1, 10, 20, 30, 40, 50 are shown
here. Divergence is observed in frame 30 with track loss by frame 50.
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Figure 36: Using the single model particle filter (PF-SP-PEKF): frames 1, 10, 20, 30,
40, 50 are shown here. The track is maintained throughout the video.
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3.6.2 MMPF-SP: Case No. 1

In this section, the new multiple model particle filter (MMPF-SP) is applied to

the visual target tracking problem. In addition, the condensation method is also used

for a comparison. The video data used in this simulation is recorded in a standard

office. The purpose in this experiment is to track the person’s head as it takes four

maneuvers in this video. More specifically, in about the first 10 frames in this video,

the target has an approximate rectilinear motion. At this stage, both trackers keep a

close track. The first maneuver takes place between frames 11 and 15, when the target

begins to have a moderate acceleration with a change of the heading direction. Then,

the target takes the second maneuver between frames 30 to 40 as it de-accelerates and

stops. The third maneuver happens from frame 55, when target begins a sudden and

dramatic move to the left side in the image plane, and waves back during frames 70-80.

This maneuvering is illustrated by a large positive acceleration. Finally, the fourth

maneuver takes places as the target suddenly stops around frame 85.

The new proposed tracking algorithm has been extensively tested. One hundred

Monte Carlo runs were implemented to generate the statistical performance, and the

root mean square error (RMSE) was used as the performance index. In the simulations,

the condensation method gives unstable performances. More specifically, sometimes

the condensation method can keep a good track up to frame 55 but it fails when the

target makes the third maneuver. But in some other realizations, the condensation

method can only track for about 10 frames. On the other hand, the new tracking

algorithm keeps a close track in every realization. The RMSE of estimated locations

and velocities generated by the MMPF-SP are shown in Figure 37 and Figure 38.

As demonstrated from the simulation results, the new tracking algorithm gives very

accurate estimations for both target locations and velocities.

In addition, the simulation results from one typical realization are provided here.

Figure 40 depicts the tracking results of the MMPF-SP algorithm, while Figure 39

depicts the results of the condensation method for a comparison. The condensation
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method loses track after the first few frames, so only a few frames are shown. As indi-

cated in these figures, the MMPF-SP tracker always maintain a close track throughout

the entire sequence of frames, in spite of sudden maneuvers made by the target. Here

a variety of frames are illustrated to highlight the dynamics of the maneuvers. Fig-

ure 41 illustrates the estimated target center and its true locations, while Figure 42

exemplifies the relation between the estimated and true velocities. Next, to further

demonstrate the accuracy and the robustness of the new tracking algorithm, two more

examples are discussed in the subsequent subsections.

3.6.3 MMPF-SP: Case No. 2

There are two targets present in the second example. We track one of the two

targets, and treat another as background clutter. The challenge of tracking the target

in this video comes from two sources: first, the target under track has relatively complex

motions. It is still for about the first ten frames, then it moves to the left side with a

nontrivial acceleration followed by a deceleration, and moves back. Second, the target

under track was partially occluded for several times. The upper portion of Figure

43 demonstrates one realization of the MMPF-SP method, while the lower portion of

Figure 43 depicts one realization of the condensation method. As indicated in this

figure, the condensation method lost the target when the two targets crossing over,

i.e. when the occlusion occurs. Despite there is no special algorithm to deal with the

occlusion problem, our new method can effectively handle the disturbances caused by

the partial occlusions (frames 20-27 and frames 80-90), and the tracker closely followed

the target throughout the whole video.

3.6.4 MMPF-SP: Case No. 3

Recently, there has been extensive research on pursuit of individuals within video

sequences. In practical settings there are many factors that contribute towards the

uncertainty in an object’s exact location and configuration [89]. One such setting is

the tracking of athletes on an outdoor playing field. A variety of researchers around the
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world have benchmarked their tracking algorithms in these complicated environments

[83, 90, 91]. The new tracking algorithm proposed in this paper is tested in a similar

manner. The video was obtained from the website of the University of Oklahoma.

The objective in this case is to track the head of one specific player running while

crossing the football field. This video is especially challenging due to the constantly

changing back ground, substantial background clutter, occlusions, changes in the target

scale and pose, and strong camera ego-motions. More specially, after a couple of

occlusions at the beginning of the video, the target starts to move at a high speed.

During this processing, the background, which has similar color to the target, changes

dramatically. Also during this process, strong camera ego-motions occurred due to the

cameraman try to keep the player at the center of the image plane. Meanwhile, the

target gradually changes it pose. Despite all of these challenges, our new tracker can

always maintain a close track. The simulation results are shown in the Figure 44. The

standard condensation method is also tested for this video. However, as demonstrated

by the simulation result, the condensation method fails to provide a close track for

every implementation.

3.6.5 Summary

In this section we propose a new visual target tracking algorithm which can to be

applied to an intelligent surveillance system. The novelty of this algorithm lies in the

fact that unlike other visual target tracking methods which use single dynamic model,

the new algorithm uses a switching state space model and a jump Markov process to

approximate the true target dynamics. In addition, the technique of state partition and

parallel EKFs are used to generate the proposal distribution used in the particle filter,

which in turn further improves the tracking results. This algorithm was extensively

tested on different tracking scenarios, which contain complex target motion, strong

background clutter, occlusion, changes of pose and strong camera ego-motion. When

compared to the standard condensation method, our new algorithm gives a much more

robust and reliable tracking result for all of these videos.
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Figure 37: MMPF-SP (Case 1): Estimation errors for the row and the column
indices. The errors are terms of pixels.
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Figure 38: MMPF-SP (Case 1): Estimation errors for the velocities. The
errors are terms of pixels.
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Figure 39: The tracking result for the second visual tracking example using the con-
densation method. Frames 1, 5, 11, 13, 15, 20 are provided here. As shown in these
figures, the condensation method fails to provide reliable track.
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Figure 40: MMPF-SP (Case 1): The tracking result for the second visual tracking
example. These illustrate the tracking results using our MMPF-SP. Frames 1, 10, 15,
20, 30, 40, 50, 57, 60, 67, 75, 78, 80, 87, 97 are shown here. As shown here, the
MMPF-SP algorithm keeps close track, while the condensation method fails to provide
reliable track.

84



0 20 40 60 80 100
0

50

100

150

200

Frame

R
ow

0 20 40 60 80 100
0

100

200

300

Frame

C
ol

um
n

Figure 41: MMPF-SP (Case 1): the estimated target centers (solid blue line)
vs. the true target centers (red dashed line).
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Figure 42: MMPF-SP (Case 1): the estimated velocities (solid blue line) vs.
the true velocities (red dashed line).
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The tracking results using the MMPF-SP algorithm.

Frames 10, 20, 24, 27, 58, 78, 86, 92, 115 are shown here.
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The tracking results using the condensation method.

Frames 10, 15, 22, 25, 30, 40 are shown here.

Figure 43: MMPF-SP (Case No. 2): The tracking result for the second example. The
top two rows illustrate the tracking results using our MMPF-SP, while the bottom two
row show the results by using traditional condensation method. As shown here, the
MMPF-SP algorithm can closely follow the target despite partial occlusions, while the
condensation tracker diverges when occlusion occurs.
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Figure 44: MMPF-SP (Case No. 3): Tracking one football player in the video. Despite
the substantial background clutter, occlusions, and strong camera ego-motions, a robust
track lock is maintained. Frames 2, 7, 9, 18, 20, 30, 35, 40, 46, 50, 60, 65, 70, 75, 78
are shown here.
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CHAPTER 4: IMPROVING PARTICLE FILTER USING

GALERKIN’S PROJECTION METHOD

In Chapter 3, a new particle filter framework was developed based on the technique

of state-partitioning and parallel EKFs. Also, this chapter provides two modified

particle filter algorithms for multiple sensor and multiple measurements, respectively.

However, there are problems associated with these algorithms. First, to implement

the parallel EKFs, the nonlinear system has to be linearized, which may result in large

modeling error. Second, the proposal distribution of these particle filters is constructed

by using the weighted Gaussian sum generated for the SP-PEKF. This idea assumes

the proposal is a Gaussian distribution, which is not true in general. In this chapter,

we present a new particle filter (PF) algorithm, which uses a mathematical tool known

as Galerkin’s projection method to generate the proposal distribution. By definition,

Galerkin’s method is a numerical approach to approximate the solution of a partial

differential equation (PDE). By leveraging this method with L2 theory and the FFT,

this new proposal is fundamentally different to various local linearization or Kalman

filter based proposals.

To test its performance, we first apply this algorithm to the bearings-only track-

ing problem, and then use it for a visual target tracking. This chapter is based on

our previous work [18][92]. As we discussed earlier, the bearings-only target tracking

is a fundamental component of many engineering applications. Due to the inherent

nonlinearities in the observation model, bearings-only target tracking has become a

standard nonlinear filtering problem that receives intensive investigations. Tradition-

ally, various Kalman filter based tracking techniques have been used. However, for

many cases these methods cannot provide satisfactory results. More recently, particle

filtering techniques have received increasing attention. Inspired by the work [24], many

particle filter based tracking algorithms were proposed [3][23]. Bearing the nature of

sequential importance sampling and the Monte Carlo approach, particle filtering has

emerged as a superior alternative to the traditional tracking methods.
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This chapter discusses a new particle filter algorithm in which the Galerkin’s pro-

jection method is used to generate the proposal distribution. Applying the Galerkin’s

method to the nonlinear filtering problem has been reported in [93] [94]. The rationale

behind Galerkin’s method is to assume the state posterior distribution is in L2 space.

In this case, this distribution can be approximated by its projection onto a finite set of

orthogonal basis vectors. At each iteration, it only needs to update the projection on

each basis vector to approximate the true proposal distribution. In addition, by choos-

ing a set of special exponential basis vectors, the projection can be approximated by

the FFT which is computationally efficient to implement. Finally, we use this approx-

imated distribution as the proposal in the new PF algorithm. This proposal does not

require any local linearization of the nonlinear system and does not have any Gaussian

assumption of the systems’ states when calculating the proposal, which differs funda-

mentally to various Kalman filter based PF algorithms in [21][25][95]. As shown in the

theory and indicated by our simulations, this proposal renders more support from the

true posterior distribution, thereby significantly enhanceing the estimation accuracy

compared to standard bootstrap filters. In addition, because of this improved proposal

distribution, the new particle filter can achieve a given level of performance with less

sample size.

4.1 Particle Filtering Based On The Galerkin’s Method

In this section, we present a new particle filter algorithm based the Galerkin’s pro-

jection method. First, this section provides a brief review of the Galerkin’s projection

method and shows how it can utilized to construct the proposal distribution for a

particle filter. Then, the new particle filter algorithm will be formulated.

4.1.1 Generating The Proposal Using Galerkin’s Method

Galerkin’s method is a numerical approach to approximate the solution of a partial

differential equation (PDE) [93][94]. We let

P(x, t) = 0
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denotes a PDE, which is a function of both temporal variable t and spatial variable

x. The basic idea of Galerkin’s method is to assume that p(x, t) is the solution of the

above PDE, and it is in the L2 space, such that it can be decomposed by the following

equation:

p(x, t) =
∞∑

l=0

εl(t)φl(x) , (64)

where {φl(x)}∞l=0 is a set of complete orthogonal basis of the L2 space and εl(t) is the pro-

jection of p(x, t) onto basis φl(x) at time t defined by the inner product 〈p(x, t), φl(x)〉
as:

〈p(x, t), φl(x)〉 =

∫
p(x, t)φl(x)∗dx . (65)

Our objective is to find an approximation of p(x, t), denoted as p̂(x, t), such that

p̂(x, t) =
N−1∑

l=0

cl(t)φl(x) . (66)

Note that the approximation error arises from the replacement of infinite basis with

a set of finite orthogonal basis. The projections cl(t), l = 0, · · · , N − 1, are the val-

ues to be determined. Having this setup, we can project P(x, t) onto the subspace

span{φl(x)}N−1
l=0 as:

〈P(x, t), φl(x)〉 = 0, l = 0, · · · , N − 1 . (67)

By doing this, the problem of solving the PDE is converted into solving N ordinary

differential equations (ODE). Next we apply this method to the nonlinear filtering

problem defined in equations (6) and (7) and also provide here.

The prediction distribution (the Chapman-Kolmogorov equation):

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1) dxt−1 (68)
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The updated distribution (the Bayesian equation ):

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)∫
p(zt|xt)p(xt|z1:t−1)dxt

(69)

Initially, it is assumed that p(xt|z1:t−1) has the following form:

p(xt|z1:t−1) =
N−1∑

l=0

c̃l(t)φl

where c̃l(t) will be determined later. For simplification of notations, we drop the

variable x. Then we apply Galerkin’s method to equation (69) by projecting it onto

span{φl(x)}N−1
l=0 as:

〈p(xt|z1:t), φk〉 =
N−1∑

l=0

cl(t)〈φl, φk〉

=

∑N−1
l=0 c̃l(t)〈p(zt|xt)φl, φk〉∑N−1
l=0 c̃l(t)〈p(zt|xt), φ∗l 〉

(70)

where k = 0, · · · , N − 1. For simplification, the above equation can be written in a

matrix form as:

C(t) =
ΥtC̃(t)

υT
t C̃(t)

(71)

where Υt is a N ×N matrix with the element at kth row and lth column given by

[Υt]k,l = 〈p(zt|xt)φl, φk〉 .

The variables C(t), C̃(t) and υt are N × 1 vectors, with

[υt]l = 〈p(zt|xt), φ
∗
l 〉 .

Now we choose the exponential basis as the following form:

φl(x) =
1√

b− a
exp

(
j2πl

x− a

b− a

)
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where a and b are the integral limits. It has been shown in [93] that by using this set

of basis the inner product can be approximated by FFT as follows:




〈p(x), φ0〉
...

〈p(x), φN−1〉


 ≈

√
b− a

N
FFT[p(x)] ,




〈p(x), φ∗0〉
...

〈p(x), φ∗N−1〉


 ≈

√
b− a IFFT[p(x)] ,

see [93] [94] for details. Then, equation (71) can be approximated by using FFT as

follows:

[Υt]l =(
√

b− a/N) FFT [p(zt|xt) φl] (72)

υt =
√

b− a IFFT [p(zt|xt)] . (73)

To evaluate c̃l(t), we apply the Galerkin’s method in a similar way to equation (6).

Then we have:

c̃l(t)≈(
√

b− a/N)IFFTl

[
cl(t− 1)FFTl[p(xt|xt−1)]

]
, (74)

where the FFTl[·] represents the lth bin of FFT of the argument. In addition, c̃l(t) can

also be calculated by:

C̃(t) = FFT
[√

b− a · p(xt|xt−1) IFFT[C(t− 1)]
]

. (75)

Moreover, the prediction distribution and posterior distribution can be calculated by:

p(xt|z1:t−1) ≈ (N/
√

b− a) IFFT[C̃(t)] (76)

p(xt|z1:t) ≈ (N/
√

b− a) IFFT[C(t)] . (77)
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As a summary, in order to approximate the posterior distribution p(xt|z1:t), we only

need to update the vector C(t) at each iteration.

4.1.2 The Proposed New PF Algorithm

This section shows how Galerkin’s method can be incorporated within the particle

filter framework. More specifically, at each iteration, we use C̃(t) and C(t) to ap-

proximate the posterior distribution leveraging the IFFT defined in (77), then draw

particles from this approximated distribution. After that, the particles’ weights will

be evaluated. The final step is the resampling and update stage. Since the proposal

is generated by projecting the true posterior distribution onto a subspace of L2 space,

the accuracy of the proposal is guaranteed by choosing appropriate the number of ba-

sis. As indicated in the simulations, using a limited number of basis is good enough

to generate accurate proposal which in turn significantly reduces the number particles

used to achieve a given level of performance. The detailed algorithm is summarized in

Table 8.
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Table 8: Algorithm 5: The Galerkin Method Based PF Algorithm

• Sequential Importance Sampling (SIS) Step:

– Calculate the parameters C̃(t) and C(t) using equations
(72) to (74) or (75);

– Generate the proposal distribution using equation (77);

– Sample from the proposal distribution according to

x
(i)
t ∼ q(x

(i)
t |x(i)

0:t−1, y1:t)

≈ p(xt|z1:t)

≈ (N/
√

b− a) IFFT[C(t)];

– Evaluate and normalize the importance weights accord-
ing to equation (13);

• Resampling Step: Generate a new set of particles xi?
t from

x
(i)
t by sampling Ns times the approximate distribution of so

that Pr
(
xi?

t = x
(j)
t

)
= ω̃

(j)
t ;

• Output and Update Step: Approximate xt by x̂t ≈
1

Ns

∑Ns

i=1 xi?(t) and update the proposal.
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4.2 Application: Bearings-only Target Tracking

In this section, the proposed particle filter is applied to a single sensor bearings-only

tracking problem. The constant velocity model is used in this section, which is discussed

in Section 3.2. Here, we provide two tracking examples to test the performance of

the proposed particle filter tracking algorithm. In the first example, the target has

an approximate rectilinear motion. While the target in the second example has a

maneuver operation. In addition, for the purpose of comparison, an extended Kalman

filter (EKF) and a bootstrap filter (a PF algorithm using state transition prior as

proposal) are also implemented. The initial conditions of for the first example are

given as

X1 =
[

0 50 1 −1
]T

and

Qv =

[
0.05 0

0 0.05

]
σ2

n = 0.01 .

In the first example, the new PF algorithm uses 100 basis and 200 particles, i.e. N =

100, Ns = 200. While the bootstrap filter uses the sample size Ns = 200, 500, 1000, 2000,

respectively. To evaluate the tracking performance of these filters, 200 Monto Carlo

runs were implemented. In addition, the root mean square error (RMSE) along both

x-axis and y-axis are used as performance indices. The tracking results of the three

filters are shown in Figure 45, Figure 46 and Table 9. In Figure 45, the RMSE’s vs.

time from the 200 Monte Carlo run are plotted. It is obvious from this figure, the

new PF gives much more accurate estimation compared to the bootstrap filter using

the same sample size. In addition, the tracking results from a typical realization is

shown in Figure 46. As shown in this figure, the bootstrap filter can follow the general

direction of the target, and it fails to detect small maneuvering operations made by the

target. On the other hand, due to the improved proposal distribution, the new proposal

PF can keep a close track throughout the whole simulation. Next, for a comparison,

bootstrap filters with different sample size are implemented 200 times to generate the

performance index. Table 9 summarizes the mean and the variance of the RMSE’s
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for each bootstrap filter. It is observed from this table that even a bootstrap with a

sample size of 2000 still cannot achieve the estimation accuracy of the new proposed

PF algorithm.

In the second example, three different filters were implemented to track a target

which makes a sharp turn approximately at the location (x=72, y=6). This kind of

target is always referred as a maneuvering target. Tracking a maneuvering target is

more challenging than tracking a target with constant velocities. Traditionally, multiple

model methods are used in this case. However, to test the accuracy and robustness of

our new PF, we still use the single constant velocity model given before. The tracking

result of one typical realization is shown in Figure 47. As indicated in this figure, both

the EKF and the bootstrap filter diverges from the true trajectory when the target

makes the sharp turn. However, the new PF still can keep a close track.

Table 9: A Comparison of the Projection-based PF and the Bootstrap Filter

Filter (Sample Size) Mean RMSE Var RMSE
ex ey Var ex Var ey

Bootstrap (200) 4.8312 4.0215 6.7798 5.7492
Bootstrap (5000) 4.0599 3.8300 4.0483 6.0063
Bootstrap (1000) 3.6181 3.6961 3.3728 5.8839
Bootstrap (2000) 3.6199 3.6489 3.3991 6.0310
New PF (200) 1.1391 1.1554 0.0535 0.0576
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Figure 45: The estimation RMSE vs. time for both x-axis and y-axis: the solid
line( −−) denotes the RMSE of the projection based PF; the dashed line (−−)
denotes the RMSE of the bootstrap filter with 200 particles; the dotted line (. . .)
represents the RMSE of the EKF.
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Figure 46: The first example: the line with a plus sign (−+−) represents the true
trajectory; the line with a triangle (−4−) represents the estimated trajectory
from the new PF; (−•−) represents the tracking results from EKF; (−∗−)
represents the tracking results from bootstrap filter. As seen, the our proposed
PF method has the closest track.
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Figure 47: The second example: The line with a plus sign (−+−) represents the true
trajectory; the line with a triangle (−4−) represents the estimated trajectory from the
new PF; (−•−) represents the tracking results from EKF; (−∗−) represents the tracking
results from bootstrap filter with 500 particles. As seen, the our proposed PF method
has the closest track.
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4.3 Application: Visual Target Tracking

As an illustrative example, the projection based PF algorithm is also applied to

track a human in a video sequence by using the Langevin process discussed in sub-

section 3.5.2. To test the performance of our improved PF algorithm, we choose a video

in which the target has relatively complex motions, which is same as the one we used

for MMPF-SP. The digital video was recorded in a standard laboratory environment

with a frame size of 240×320 pixels. Both the condensation method and the improved

PF algorithm were implemented for a comparison. Tracking results for the two filters

are shown in Figure 48 and Figure 49, where the estimated target centroid is indicated

by a white cross. In the first 10 frames the target’s motion was nearly rectilinear with

a constant velocity and both filters performed well. However, from frame 11 to 15, the

target begins to have obvious a negative acceleration followed by positive acceleration.

The condensation method (with 100 particles) begins to lose its target around frame

11, and it keeps a constant velocity. Finally, the estimated centroid moves out of

the image domain. On the other hand, our improved PF (with 100 particles) keeps

tracking the target throughout the whole video. Moreover, the target makes another

maneuver around frame 35 to frame 40, and the proposed PF algorithm still keeps a

close track. Figure 48 and 49 illustrate one typical realization of our simulations. It

is demonstrated that because of the improved proposal distribution, the new proposed

PF algorithm is able to yield accurate and robust estimations when tracking a target

with complex motions. Also, we can see from this example that the particle filter with

Galerkin’s method can produce approximately the same result as the MMPF-SP for

the same test video.
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Figure 48: Visual tracking by using the condensation method. These frames illustrates
a dramatic motion. Frames 1, 5, 11, 13, 15, 20 are provided here.
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Figure 49: Visual tracking using the projection based PF. Frames 1, 5, 11, 13, 15, 20,
25 and 45 are provided here. As shown in this figure, even under several maneuvers,
tracking is maintained.
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CHAPTER 5: A PARTICLE FILTER WITH STATE SPACE

DISCRETIZATION

In Chapter 4, a particle filter algorithm based on Galerkin’s projection method was

developed. As demonstrated in our simulations, this algorithm can provide quality

estimation results. On the other hand, this algorithm has its own limitations: it

requires the computation over the entire state space, where most of the operations are

focused on low probability regions. In this chapter, we present a more efficient particle

filter framework that only focuses on the high probability regions in the state space.

The algorithms of this framework are based on the idea of state-space discretization,

which is similar to the well know grid-based method [3]. More specifically, the state

space is first partitioned into finite cells, and the cell centers are used to represent

the “discretized” state space. Next, the weight of each cell is calculated based on the

target’s initial distribution. Then only a small number of cell centers are propagated

through the target’s dynamic system, provided that their weights are above certain

threshold. At each iteration, the cells with a large weight represent the high probability

area in the target distribution – this implies that the distribution of the state space is

nicely supported. The samples (or particles) are drawn from this area, which is serve as

the proposal distribution in the new particle filter. As shown in the developed theory

and indicated by our simulations, this proposal renders more support from the true

posterior distribution, thereby significantly improving the estimation accuracy.

5.1 Generating the Proposal Using State Space Discretization

As discussed in the previous chapters, designing a proposal distribution is an impor-

tant step for implementing a particle filter. Since this distribution governs the particles

and their weights, which will be used to represent the true posterior distribution. In

this section, a new strategy is presented for calculating the proposal distribution which

can effectively capture the high probability area in the target state space without sig-

nificantly increasing the computation complexity. More specially, we first partition the
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target state space into a set of square cells. Each cell is represented by its cell center.

For a given target initial distribution, we can evaluate the probability of each cell cen-

ter, and use the probability as the weight for that cell. Usually, many cells will have

negligible weight. In this case, we choose a threshold and only consider the cells whose

weights are above this threshold. Then, the cell centers are propagated through the

nonlinear system given by (1) to get a new set of cell centers at the next time index.

Next, the weights for the new cell centers are evaluated using equations (6) and (7).

Since we only consider a finite number of cells, the integrals in these equations can be

replaced by summations, and equations (6) and (7) can be rewritten as:

W̃t,j =
Nc∑
i=1

p(xt,j|xt−1,i)Wt−1,i , (78)

Wt,j = α p(zt|xt,j)W̃t,j . (79)

where xt,i and Wt,i represents the center location of the i -th cell and its weight at

time t, respectively. The variable Nc denotes the total number of cells, and α is a

normalizing factor. At this stage, we have a set of cells (i.e. Nc cells) centered at xt,i

with their weights defined by Wt,i , where i = 1, ..., Nc. These cells will serve as the

proposal distribution of a particle filter. The samples (or particles) will be uniformly

drawn from each cell, and the sample number within each cell is proportional to the cell

weight. In this way, the 2-D histogram of these samples will have a similar shape of the

cells. Now, an example is provided to illustrate the implementation of this algorithm.

Assuming a bearings-only tracking scenario, the target is initially located at the origin

[0 0] with a 2D Gaussian distribution, and it has an initial velocity of [10 5] units

per time increment. Then, we construct a discretized initial condition by using a set

of cells and their weights. Figure 50(a) illustrates continuous initial distribution and

Figure 50(b) depicts the discrete initial distribution, which is represented by a set of

cells and their weights. Next, these cells are propagated through the system by using

(34) and (35). The true posterior can be constructed when the DOA is available.
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Figure 50: The target initial condition: (a) the continuous initial distribution (b) the
discretized initial distribution presented by a set of cells and their weights.
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Figure 51: The target posterior distribution: (a) the true posterior distribution (b) the
approximate discrete posterior distribution using the weighted cells.
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Figure 51(a) illustrates the true posterior distribution, and Figure 51(b) depicts the

approximate discrete posterior distribution. For these figures the weighted cells are

used as the proposal distribution. Then particles are uniformly drawn from each cell,

and the sample number within each cell is proportional to its weight. The particles

are shown in Figure 52. Since the only measurement of the system is the DOA angle,

the majority of the particles will be drawn along this angle. As shown in Figure 51

the proposal distribution has significant support from the true posterior distribution.

Figure 52 indicates that the particles drawn from this proposal sufficiently represent

the high probability area in the state space. Also, if we only use a limited number

of cells, the computation complexity for calculating the proposal distribution can be

controlled.
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Figure 52: Particles drawn from the new proposal distribution calculated using the
state-space discretization method.
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5.1.1 A New PF with State Space Discretization

As discussed in the previous section, a set of particles will be generated from the

proposal distribution, which is actually the discretized posterior distribution. Once the

particles are generated, the particle weights will be evaluated based on equation (13).

In addition, the target posterior is represented by these weighted particles. When

constructing the proposal distribution, it is only required to consider a finite set of

cell centers. In this approach, there’s no restrictive assumption about the posterior

distribution, and there’s no need to linearize the system. The accuracy of the proposal

distribution and computational complexity can be balanced by choosing different cell

sizes and the different thresholds. Also, this algorithm does not require any transforms,

in contrast to the particle filter based on the Galerkin’s method. The following table

summarizes the new particle filter algorithm based on the state-space discretization

approach.

Table 10: Algorithm 6: A State Space Discretization Based Particle Filter

• Sequential Importance Sampling (SIS) Step:

– Calculate the cell centers and the weights using
(78) and (79).

– Construct the proposal distribution using the cells
and their weights.

– Draw particles: uniformly sample within each cell
such that the sample number of each cell is pro-
portional to the cell weight.

– Evaluate particles weights using (13) and normal-
ization.

• Resampling Step: generate a new set of particles
xi?

t from x
(i)
t by sampling Ns times the approximate

distribution such that: Pr
(
xi?

t = x
(j)
t

)
= ω̃

(j)
t .

• Approximate xt by x̂t ≈ 1
Ns

∑Ns

i=1 xi?(t) and update the
proposal.
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5.2 Application: Bearings-only Target Tracking

In this section, the proposed particle filter is applied to a single sensor DOA tracking

problem. In this example, the target has a rectilinear motion, and the DOA measure-

ments are corrupted by additive noise. For the purpose of comparison, an extended

Kalman filter (EKF) and a bootstrap filter (a standard PF using the state transition

prior as its proposal) are also implemented. In the experiment, the three algorithms

are extensively tested. The results are shown in Figures 53 and 54. Figure 53 depicts

the target ground truth (the black line) and the estimations from the three filters: the

EKF (the green line), the bootstrap filter (the blue line), and the new PF algorithm

(the red line). As shown in Figure 53, the EKF displays a non-stable behavior. As indi-

cated in [3], this is because a strong nonlinearity involved in the observation model, and

it is a common phenomenon in DOA tracking problem. The bootstrap filter can follow

the target in the general direction, but the estimation errors progressively increasing.

On the other hand, the new PF gives very accurate estimations. Furthermore, the

estimation errors of the bootstrap filter and the new PF are shown in Figure 54.
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Figure 53: The true target trajectory (black) and the estimates generated from three
filters: EKF (green), bootstrap (blue), the new PF (red).

108



0 10 20 30 40 50
0

10

20

30

40

time

x 
er

ro
r

Estimation error along x coordinate

0 10 20 30 40 50
0

5

10

15

time

y 
er

ro
r

Estimation error along y coordinate

Figure 54: The estimation errors of the bootstrap filter (blue line) and the new PF
algorithm (red line).

5.3 Application: Target Tracking with Range and Bearings Measurements

In this section, the problem of target tracking with both range and bearings mea-

surement are studied. This is most common type of target tracking. Various coordinate

systems have been used in this type of target tracking problem, which include the polar

coordinate system, Cartesian coordinate system, and mixed coordinate systems [96].

Among them, the most widely used approach is tracking in the mixed coordinates.

More specifically, the target observation model in this method is given as follows:

zt = h(xt) + vt (80)

where xt is the target state that describes the target kinematics. This state vector and

the target motion are defined in the Cartesian system, which are studied in Section

3.4. On the other hand, the system measurement zt is defined in the sensor coordinate

system, usually a polar coordinate system for a 2D case and a spherical system for

the 3D case. Let (x, y) be the true position of the target, then the measurement z

is defined as z = [r b]T, where r and b represent the range and bearings measurement
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given as follows:

r =
√

x2 + y2 (81)

b = arctan

(
x

y

)
. (82)

As seen, the measurement models are nonlinear and coupled across the Cartesian co-

ordinates, although the measurement noise is usually an additive Gaussian noise, be-

cause of the measurement model is in the sensor coordinate systems. The framework

of tracking in mixed coordinate systems have been extensively used in most nonlinear

estimation and filtering techniques for maneuvering target tracking. As reported in

the current literature [96], some research works also adopt the method of tracking in

Cartesian coordinate system, which is give as follows:

zt = Hxt + vt . (83)

In this case, the measurement zt is the noise contaminated target location. The advan-

tage of this method is that the measurement model is linear, so a Kalman filter can be

directly applied to this problem. However, the linear model is obtained by converting

the sensor readings to the Cartesian coordinate system, where the measurement noise

is under a nonlinear transform. More specifically, the measurement noise in this case

is generally non-Gaussian and state dependent [96]. Considering this, the framework

for tracking in this research is the mixed coordinate system.

Next, we present the improved multiple model particle filter based on the method

of state space discretization. This algorithm is actually a combination of the afore-

mentioned particle filter algorithm with the multiple model method. In this research

we use four dynamic models, i.e. one CV, two CTs and one CA. The structure of

this PF algorithm is as follows: Firstly, discretize the state space into a set of cells,

then calculate the cell center weights based on the initial target distribution. Secondly,

propagate the cells through the different dynamic models, and update the cell weights

based on the current measurements. In this way, four sets of cells will be generated.
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Thirdly, update the model particles based on the model transition matrix and previous

model particles. Then count the number of particles that belongs to each model, such

as

Ns =
Nr∑

rt=1

N (rt)
s , with rt ∈ [1, 2, 3, 4] , (84)

where N
(rt)
s represent the number of particles that will belong to model rt. Next, we

draw particles from the four sets of cells based N
(rt)
s . Finally, we evaluate the particle

weight followed by a resampling and an updating stage. The advantages of this filtering

algorithm come from two sources: (1) by using the multiple model method, the pro-

posal distribution can effectively capture the complex target dynamics, (2) since only a

limited number of cells are used to generate the proposal, the computation complexity

this algorithm can be controlled. Figures 55 and 56 demonstrate the strength of this

multiple model PF. Figure 55 depicts the cell centers after propagating through the

four model system with the given initial condition x0 = [0 0 3 3 5 5]T , where xt denotes

[xt yt vxt vyt axt ayt ]
T. It is clear that the target has a relatively large acceleration.

The cell centers with the color of red, green, blue and yellow represent the cell centers

obtained from propagating through the CV, counter-clockwise CT, clockwise CT and

CA model, respectively. The green circle symbolizes true target location, while the

pink diamond represents the noisy measurement. It is clear that if only one model

(such a CV model) is used, the target actual location and the measured location will

fall outside of the updated cells. However, if multiple models are used to update the

cells, the probability of the target being covered by at least one set of cells will increase

dramatically. Figure 56 shows the particles that were draw from this approach. Ini-

tially, the model particles are uniformly distributed. The model particles are updated

for the next iteration using the transition matrix given as:

Π =




0.7 0.1 0.1 0.1

0.4 0.2 0.2 0.2

0.4 0.2 0.2 0.2

0.4 0.2 0.2 0.2
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Figure 55: The cell centers after propagating through multiple models. The cell cen-
ters with the color of red, green, blue and yellow represent the cell centers obtained
from propagating through the CV, counter-clockwise CT, clockwise CT and CA model,
respectively. The green circle symbolizes true target location, while the pink diamond
represents the noisy measurement.
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Figure 56: The particles generated from weighted cells with using the multiple model
method.
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It is clear from the transition matrix that the CA model (4-th model) has a relatively

low probability. Thus in Figure 56 only a small number of particles are generated

from the CA model. However, these particles are more closer to the target ground

truth and the measured location. In addition, particles generated from the other

models are concentrated on the cells which are close to the target. This type irregular

particle distribution can only be achieved using the multiple model method. The block

diagram of this algorithm is shown in Figure 57, and Table 11 provides a summary of

this algorithm.
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Figure 57: The multiple model particle filter based on a state space discretization.
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Table 11: Algorithm 7: A State Space Discretization Based MMPF

• Sequential Importance Sampling (SIS) Step:

– Generate a set of model particles based on the previous
model distribution and the model transition matrix.

– For each dynamic model, generate a set of cells and
calculate the cell probability weights based on the
discretized state space.

– Construct the proposal distribution using the cells and
their weights.

– Draw particles: count the total number of model
particles from each model, then uniformly draw the
corresponding number of particles of each model such
that the sample number of each cell is proportional to
the cell weight.

– Evaluate particle weights using (13) and normalization.

• Resampling Step: Generate a new set of particles xi?
t from

x
(i)
t by sampling Ns times the approximate distribution such

that: Pr
(
xi?

t = x
(j)
t

)
= ω̃

(j)
t .

• Approximate xt by x̂t ≈ 1
Ns

∑Ns

i=1 xi?(t) and update the
proposal.

5.3.1 The Experimental Results

In this section, the new MMPF algorithm is applied to three different tracking

scenarios to evaluate its performance. In the first two tracking scenarios, the algorithm

for two different cases is implemented, where each having a different measurement noise

level. For the purpose of comparison, a bootstrap filter was also implemented in every

tracking scenarios.
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Tracking Scenario No.1

In the first tracking scenario, the target operates according to a constant velocity

model, but its motion was disturbed by high level process noise. Strictly speaking,

this type of target is not a maneuvering target. However, traditional single model

tracking algorithms usually can not provide reliable estimations in this case [97]. As

discussed earlier, four dynamic models were used in the new MMPF, which are the

constant velocity model, two coordinated turn models, and the constant acceleration

model. To illustrate the effect of the measurement noise, the new MMPF algorithm

was implemented for two different cases with each has a different measurement noise

level. The measurement noise variances of these two cases were set to σ2
r = 10 σ2

b = 1

and σ2
b = 20 σ2

r = 10, respectively. In fact, the bearings noise affects the estimation

accuracy more than the range noise. This is because if the target is far from the sensor,

even a small amount of bearing or angle noise can result in large errors in the Cartesian

coordinates. In this simulation, the unit of bearings measurement is defined in degrees.

To facilitate comparisons, the new MMPF is implemented with a standard bootstrap

filter, which both use 1000 particles. For the first case, i.e. Scenario No.1, case A

(low noise level case), the target’s true trajectory and the estimations from the two

filters are shown in Figure 58(a). Figure 58(b) provides the location estimation errors.

In addition, the estimated velocities and accelerations together with the estimation

errors are shown in Figures 59 and 60, respectively. It can be seen from these figures

that the new MMPF provide better estimations compared to the standard single model

bootstrap filter. Also, Figure 58(a) shows that as the target moves away from the sensor

location (the origin), the estimation error progressively increases, which is consistent

with the above discussion about the effect of the bearings noise. The tracking results

of case B (high noise level case) in this scenario are shown in Figures 61 to 63. As

indicated in these figures, both filters can follow the target in the general direction,

although the new MMPF provides better estimations.
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Tracking Scenario No.2

In the second example, the simulation is carried out in a more realistic tracking

scenario, where the target takes a sharp counter-clockwise turn as it moves away from

the sensor. This scenario is one of the most common case in maneuvering target

tracking. Similar to the first tracking scenario, two cases with different measurement

noise variances were used to demonstrate the superior performance of the new MMPF.

For the low noise level case A, the tracking estimations and the relevant estimation

errors are shown in Figures 64 to 66. As shown in Figure 64 (a), the new MMPF always

keeps a close track of the target in spite of the significant maneuver operations made

by the target around t = 20 to 25. On the other hand, the bootstrap filter gives large

estimation errors during t = 20 to 25, when the target made the maneuver. Figures 65

(b) and Figure 66 (b) illustrate that the bootstrap filter give huge estimation errors for

the target velocities and accelerations. Case B in this scenario further demonstrates

the strength of the new MMPF over the standard bootstrap filter. In this case, the

MMPF still keeps a good tracking throughout the whole simulation in spite of the

increased measurement noise level. However, the bootstrap filter almost diverges from

the target as it makes the maneuver operation. In addition, Figures 68(b) and 69(b)

reports that, when compared to the new MMPF, the the bootstrap filter gives huge

estimation errors for the target’s velocities and accelerations.

Tracking Scenario No.3

The tracking results in the third scenario are illustrated in Figures 70 to 72. In

this example, the target accelerates in a rectilinear motion followed by a sudden de-

acceleration. Like the second tracking scenario, this example is also a common case in

maneuvering target tracking. It is also challenging due to the dramatic change in the

target acceleration. Figure 71 shows that the target’s velocity increase linearly until

around t=25, when the velocity suddenly decreases. As demonstrated in these figures,

consistent with the two previous examples, the new MMPF outperforms the standard

bootstrap filter by providing better estimations.
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Figure 58: Scenario No.1 Case A: (a) The true (red) and estimated trajectory of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated location error of
the bootstrap (green) filter and the new MMPF (blue).
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Figure 59: Scenario No.1 Case A: (a) The true (red) and estimated velocity of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated velocity error of
the bootstrap (green) filter and the new MMPF (blue).
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Figure 60: Scenario No.1 Case A: (a) The true (red) and estimated acceleration of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated acceleration error
of the bootstrap (green) filter and the new MMPF (blue).
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Figure 61: Scenario No.1 Case B: (a) The true (red) and estimated trajectory of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated location error of
the bootstrap (green) filter and the new MMPF (blue).
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Figure 62: Scenario No.1 Case B: (a) The true (red) and estimated velocity of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated velocity error of
the bootstrap (green) filter and the new MMPF (blue).
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Figure 63: Scenario No.1 Case B: (a) The true (red) and estimated acceleration of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated acceleration error
of the bootstrap (green) filter and the new MMPF (blue).
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Figure 64: Scenario No.2 Case A: (a) The true (red) and estimated trajectory of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated location error of
the bootstrap (green) filter and the new MMPF (blue).
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Figure 65: Scenario No.2 Case A: (a) The true (red) and estimated velocity of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated velocity error of
the bootstrap (green) filter and the new MMPF (blue).
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Figure 66: Scenario No.2 Case A: (a) The true (red) and estimated acceleration of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated acceleration error
of the bootstrap (green) filter and the new MMPF (blue).
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Figure 67: Scenario No.2 Case B: (a) The true (red) and estimated trajectory of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated location error of
the bootstrap (green) filter and the new MMPF (blue).
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Figure 68: Scenario No.2 Case B: (a) The true (red) and estimated velocity of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated velocity error of
the bootstrap (green) filter and the new MMPF (blue).
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Figure 69: Scenario No.2 Case B: (a) The true (red) and estimated acceleration of the
bootstrap (green) filter and the new MMPF (blue) (b) The estimated acceleration error
of the bootstrap (green) filter and the new MMPF (blue).
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Figure 70: Scenario No.3: (a) The true (red) and estimated trajectory of the bootstrap
(green) filter and the new MMPF (blue) (b) The estimated location error of the bootstrap
(green) filter and the new MMPF (blue).
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Figure 71: Scenario No.3: (a) The true (red) and estimated velocity of the bootstrap
(green) filter and the new MMPF (blue) (b) The estimated velocity error of the bootstrap
(green) filter and the new MMPF (blue).
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Figure 72: Scenario No.3: (a) The true (red) and estimated acceleration of the bootstrap
(green) filter and the new MMPF (blue) (b) The estimated acceleration error of the
bootstrap (green) filter and the new MMPF (blue).
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5.4 Application: Visual Tracking with Multiple Measurements

In this section, the new MMPF discussed above is further improved for visual

target tracking problems. In this new algorithm, multiple measurement cues will be

fused within the particle filter framework to design more accurate likelihood models

that will result in more accurate tracking estimates.

5.4.1 The Multiple Measurement Cues

As discussed earlier, in the new tracking algorithm multiple measurement features

(also known as measurement cues) will be analyzed and extracted to construct the

likelihood model. In this research work, three different type of features were used.

These are edge features, color features, and the grayscale texture-type features. The

methods of feature extraction and selection will be covered in this sub-section.

Adaptive Edge Template

Image edges always carry abundant information of regarding the image content.

Many high level image processing and computer vision applications rely on edge detec-

tion to provide measurement cues. In section 3.5, the well known Canny edge detection

method was adopted, and a parametric edge template was used to approximate human

face for face tracking applications. However, this type of template has its limitations.

First, it is not convenient to use for targets which have complex shapes. Second, such

fixed templates cannot provide good estimations for targets that are subject to change

in scales and poses, which is very common in visual tracking problems. To rectify this

problem, an adaptive edge template is used in the new algorithm. More specifically,

two consecutive frames were considered. Once an estimated target location for the pre-

vious frame is obtained, a small window centered at the estimated target location will

be used to select the template. Then, the edge detection algorithm is used to generate

the edge template, which will be used for the detection within the current frame. The

assumption for this method is that as long as the previous estimation is accurate and

the video sampling rate is high enough, then the targets in the two consecutive frames
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will have a large correlation. For common commercial video sequences, the sampling

rate is about 24 frames per second, which is usually high enough. This method has the

following three advantages: first, the template is adaptive, which is more robust than

the fixed template. Second, this method is efficient to implement. Third, the template

only considers the target of interest and a small neighborhood around it. In other

words, it does not count on the prior background information, which makes it suitable

for moving cameras (i.e. pan and zoom) tracking applications where most background

substraction algorithms fail. Of course, this template can be further improved by in-

corporating intra-frame information. In this algorithm, once the template is obtained,

the cross correlation of the template and the tracking aid window will be calculated as

follows [77]:

f(x, y) ◦ h(x, y) =
1

MN
·

M−1∑
m=0

N−1∑
n=0

f(m,n)h(x + m, y + n) (85)

where the variales m, n, x and y represent the pixel index in the image plane. The

pixel with the largest cross correlation corresponds to the location with the highest

probability that the target is present at this location.

Intra-frame Grayscale Template

The grayscale texture type template has been widely used in image analysis and

target detection [77][78]. Actually, the Kalman filter with a grayscale template match-

ing is one of the most classic visual tracking algorithms. The grayscale template can be

obtained by using the aforementioned method. However, more advanced on-line adap-

tive model for particle filtering have been reported in [84], which take the advantage of

intra-frame information. This template has two components: (1) one that characteriz-

ing the two-frame variations, and (2) the one that preserves the stable structure of the

target that persists for long preservations. The intra-frame grayscale template used

in this research is a simplified version of the template reported in [84], which consists

of several weighted past frames. The weight is normalized based on an “exponential
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forgetting parameter” defined by an exponential forgetting envelop function given as

[84]:

εt(k) = α · exp(−τ−1(t− k)) for k ≤ t (86)

where τ = nh/ log 2 and α = 1− exp(−τ−1). Also, the variable nh is called the half life

of the envelope in frames. After the template is obtained, the cross correlation will be

evaluated inside the tracking aid window using equation (85). Then the pixel with the

largest correlation value will be the measured target location in the image plane.

Extracting Color Features

Currently, most video recorded by cameras are color videos. Color can provide very

distinctive information of the target in contract to the background. Because of this

reason, the color measurement cues should be incorporated into the tracking algorithm

to provide extra useful information. Color representation is related to imaging science,

where various color models (color space) have been constructed [77]. Among them,

the most widely used color space is the RGB color space, where RGB stands for red,

green and blue channel, respectively. The RGB system is an additive color system.

Traditional color image processing techniques treat these three channels independently.

Also, these channels have strong correlation to each other. In this research, besides

the RGB color space, the HSI color model is also used, where HSI stands for hue,

saturation and intensity. As indicated in [77], the color image processing algorithms

implemented in HSI color space can produce better results for color image analysis

applications. The conversion from RGB to HSI is given as follows:

H =

{
θ if B ≤ G

360− θ if B > G
(87)

where

θ = cos−1

{
1
2
[(R−G) + (R + G)]

[(R−G)2 + (R−B)(G−B)]1/2

}
.
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The saturation component is given by:

S = 1− 3

R + B + G
[min(R, G, B)] . (88)

The intensity component is given by I = 1
3
(R + G + B). In the tracking algorithm,

the color histogram of the target is first calculated. Then it is compared to the color

histogram calculated inside the tracking aid window. Here the Kullback-Leibler di-

vergence (KLD) is adopted as a measure metric. Introduced in information theory

to measure the distance between two distributions, the Kullback-Leibler divergence is

defined as follows:

D(p1, p2) =
∑

i

p1(x) log

(
p1(x)

p2(x)

)
, (89)

where p1(x) and p2(x) denote the two distributions, and log is the natural logarithm.

Once the KLD is calcuated inside the tracking aid window, the pixel with smallest

KLD will be the measured target location.

5.4.2 The Tracking Algorithm

The new MMPF algorithm using multiple measurement cues is developed in this

subsection. As discussed earlier, three different templates were used, with each tem-

plate providing a measurement for the target location in the image plane. Assuming

the target true location has a 2-dimensional Gaussian distribution, then three different

likelihood models can be constructed. Let x = [xr xc] represent the target location,

and the variable rt and ct denote the row and column index, respectively. Suppose the

measured target location for the i -th template is y
(i)
t = [y

(i)
r y

(i)
c ], then the likelihood

for the i− th template is given as:

L(i) =
1

2πσ2
exp

[
(y

(i)
r − xr)

2 − 2(y
(i)
r − xr)(y

(i)
c − xc) + (y

(i)
c − xc)

2

σ2

]
. (90)
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Finally, the overall likelihood is give as:

L =
Nm∏
i=1

L(i), Nm = 3 . (91)

where Nm is the total number of measurement cues. The product in the above equation

assumes that all these measurements cues are independent. As a summary, the new

MMPF visual target tracking algorithm is given in the following block diagram:
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Figure 73: The mutiple model particle filter with multiple measurement cues.

5.4.3 Experimental Results

To evaluate the performances of the particle filter using multiple measurement

cues, three different tracking scenarios were studied in this section, which contains two

outdoor videos and one indoor video. The targets in the two outdoor videos have

relatively low image quality and are subject to large scale change, while the target in

the indoor video has more complex motions.
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Tracking Multiple Measurement Cues: Case No.1

The objective in this scenario is to track a group of people in an outdoor envi-

ronment. The challenge of this video is that the target is has a relatively small size,

which can be bounded in a 16 × 10 pixel window. Also, the target does not have

significantly distinctive color content with respect to the background. In addition, the

target background contains a large amount of edge clutter. For a comparison, the new

MMPF was implemented with a standard bootstrap filter with grayscale template as

the its sole measurement cue. As demonstrated in the simulation and shown in Figure

74 the new MMPF gives fairly accurate tracking results throughout the whole video.

However, the bootstrap filter can only keep the track to about 70 frames.

Tracking Multiple Measurement Cues: Case No.2

In the tracking case No.2, the objective is to track a vehicle in an outdoor video,

the target has a very different color contents with respect to its background. In this

case, the color measurement cue is especially helpful, which makes the target easy to

detect. Also in this video the target has significant change in its scale, although it’s

motion is relatively simple. The new MMPF is applied to this video. As demonstrated

by the tracking results that are shown in Figure 76, the new algorithm keeps a close

track of the target.

Tracking Multiple Measurement Cues: Case No.3

The last example is the most interesting, in which the target has very complicated

motion patterns. However, because this video is recorded indoors, the image quality

and the illumination conditions are perfect. Also, there’s no large change in the target

scales. With the help of multiple measurement cues, the tracking algorithm provides

a very good tracking results as shown in Figure 77.
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Figure 74: MMPF Multi-Cue Tracking (Scenario No.1): Using the new MMPF, a close
track can be achieved throughout the whole video. Frames 2, 10, 15, 20, 25, 30, 40, 50,
60, 70, 80, 90, 100, 110 and 120 are provided.
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Figure 75: Bootstrap Filter Tracking (Scenario No.1): The bootstrap filter looses the
target around frame 70. Frames 2, 10, 15, 20, 25, 30, 40, 50, 60, 70, 75 and 85 are
provided.
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Figure 76: MMPF Multi-Cue Tracking (Scenario No.2): Using the new MMPF, a close
track can be achieved throughout the whole video. Frames 2, 10, 15, 20, 25, 30, 40, 50,
60, 70, 75 and 80 are provided.
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Figure 77: MMPF Multi-Cue Tracking (Scenario No.3): Using the new MMPF, a close
track can be achieved throughout the whole video. Frames 2, 10, 15, 20, 25, 30, 40, 50,
60, 70, 80, 90, 100, 110 and 120 are provided.
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CHAPTER 6: FURTHER ANALYSIS AND OTHER APPLICATIONS

6.1 An Analysis of Particle Filter with MCMC

As discuss in Chapter 2, a resampling step is used in the particle filter framework to

mitigate the sample degeneracy problem. However, it can also introduce a new problem

called “sample impoverishment.” This means that after resampling, it is possible to

have a large number of repeated copies of particles, which will result in the loss of

the sample diversity. In this case, MCMC methods can be introduced to solve this

problem [98], which is known as an MCMC move in a particle filter. The theory

behind this strategy is that if an MCMC kernel is applied to the particle set with the

invariant distribution same as the posterior, then the resultant new particle set will

have the same distribution as the original particle set. However, the new particles

will have distinct values. Practically, many algorithms can achieve this task, which

include two major groups of MCMC algorithms, i.e. the Gibbs sampler and Metropolis-

Hastings (M-H) methods. This subsection numerically analyzed the effects of choosing

different Metropolis-Hastings methods on the performance of particle filtering. More

specifically, two special M-H algorithms, namely the random-walk metropolis (RWM)

and the metropolized independence sampling (MIS) techniques, are studied here. At

the end of this subsection, simulation results based on these two strategies are provided.

Although this study is cannot provide a theoretical foundation of choosing specific M-H

algorithm, it provides a new perspective of improving particle filtering.

6.1.1 The Metropolis-Hastings Algorithms

Although the degeneracy problem can be solved by applying a resampling step, this

scheme induces the “sample impoverishment” problem, which is after the resampling

step, multiple repeated particles are generated from heavily weighted former particles.

As a result, the particles of the next generation will lose their diversity. The worst case

scenario is that a large number of particles are produced by a single former particle

with a large weight. The MCMC algorithms have been proposed to solve this problem
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[25][98] [99].

In theory, if a Markov chain with a transition kernel K(x|x∗) satisfies the following

condition:

K(x∗|x)f(x) = K(x|x∗)f(x∗) (92)

where f(·) denotes the target distribution, then the resultant distribution will be same

as the target distribution. The Metropolis-Hastings algorithm is one of the most com-

mon MCMC methods, which employs a conditional distribution (known as the instru-

mental distribution) to generate a Markov chain with an invariant distribution f(·).
A Metropolis-Hastings algorithm has the following form summarized in Table 12, see

[100] for details:

Table 12: Algorithm 8: The General Form of Metropolis-Hastings

• Choose a starting point x0, and set i = 0.

• Given current state xt, draw x∗ from T(x∗|xt) and draw a random
number u from U(0, 1).

• Accept xt = x∗ if

u ≤ min

{
1,

f(x∗)T(xt|x∗)
f(xt)T(x∗|xt)

}
,

otherwise, xt+1 = xt.

• Set i = i + 1, go back to the first step.

The target distribution and the instrumental distribution are denoted by f(·) and

T (·), respectively. Usually, the instrumental distribution is chosen to be symmetric,

that is T(xt|x∗) = T(x∗|xt), and this promotes a possible displacement of the particles

to a better location in the state space. Then an acceptance-rejection rule is applied to

generate the chain. It is known that different M-H algorithms will affect the perfor-

mance of particle filters. To demonstrate this effect, two special M-H algorithms (the

RWM and the MIS) are implemented with a bootstrap filter for a simple nonlinear

scalar system.

143



Random-Walk Metropolis (RWM)

The rationale behind the use of this algorithm is to perturb the current state of the

chain by adding some “noise”, x′ = xt + εt, where εt ∼ gσ(·) is i.i.d. for different time

t. In addition, the new candidates still remain in the neighborhood of the state xt.

Then, it is required to determine if the new value x′ is of interest or not by applying

rejection rules. Usually, εt ∼ gσ(·) is chosen to be a symmetric distribution. For

example, the common choice of εt ∼ gσ(·) is a Gaussian distribution N (0, σ2I) or a

uniform distribution. In [100], the Random-Walk Metropolis is summarized as follows:

Table 13: Algorithm 9: Random-Walk Metropolis (RWM)

• Choose a starting point x0.

• Given the current state xt, generate εt ∼ gσ(·), then evaluate x′ =
xt + εt.

• Draw a random number u from U(0, 1), and accept xt+1 = x′ if

u ≤ f(x′)
f(xt)

,

otherwise, xt+1 = xt.

• Set i = i + 1, go back to the first step.

Metropolized Independence Sampler (MIS)

The Metropolized Independence Sampler is another class of special Metropolis-

Hastings algorithms, which the instrumental density is independent of the given state.

In other words, if T(xt,x
∗) in the standard M-H algorithm is chosen to be T(x∗), then

the standard M-H algorithm reduces to the MIS. The accuracy of this algorithm is

closely related to the choice of the instrumental distribution. The limitation associated

with this algorithm is that the instrumental distribution that has to be related to the

target distribution to some extent. However, if carefully selected, it can produce very

good results. The MIS algorithm is summarized in Table 14:
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Table 14: Algorithm 10: Metropolized Independence Sampler (MIS)

• Choose a starting point x0.

• Draw samples x∗ from the instrumental distribution T (x∗).

• Draw samples u from U(0, 1).

• Accept xt+1 = x∗ if u ≤ min
{

1, ω(x∗)
ω(xt)

}
, where ω(x) = f(x)/T (x)

is the sampling weight. Otherwise, xt+1 = xt.

• Set i = i + 1, go back to the first step.

6.1.2 Numerical Analysis

An illustrative example is provided in this subsection to evaluate the performance

of a bootstrap filter with the aforementioned two M-H algorithms. Consider following

nonlinear scalar system:

xt = 1.7 · exp (−2 · x2
t−1) + 5 · cos(xt−1) + wt (93)

yt = x2
t + vt (94)

where the initial state x0 is Gaussian N (0, 0.5). The process noise wt and the mea-

surement noise vt are also assumed to be Gaussian, which are distributed according to

N (0, 8) and N (0, 0.5), respectively. The time index is incremented as t = 1, ..., 25. In

this example, we have implemented the particle filters by taking the prior transition

distribution p(xt|x(i)
t−1) as the proposal distribution. Four particle filters (PF, PF with

standard form Metropolis-Hastings, PF with RWM, PF with MIS) are implemented

separately. The instrumental distribution of the standard Metropolis-Hastings algo-

rithm is chosen as the transition prior p(xt|xt−1). In the Random-Walk Metropolis,

gσ(·) is set to N (0, 0.2), and in the PF-MIS algorithm, T (x) is chosen as N (0, 0.15).

For each set of samples (N= 100, 200, 500, 1000), the simulation is run for fifty times

to produce an ensemble statistical performance index, the average Mean Square Error

(MSE). The numerical results are displayed in Table 15. From the simulation results,

we can see that the PF-MH gives better performance than the PF, as determined by
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Table 15: The Average MSE of Each Sample Set

Samples PF PF-MH PF-RWM PF-MIS
N=100 5.3494 4.8779 3.5558 3.7227
N=200 5.0470 4.0194 3.3813 3.5506
N=500 4.3868 3.3737 3.2536 3.3580
N=1000 3.4414 3.3238 3.1814 3.2574

the average of MSE. Additionally, as indicated by the results, PF-MH performance can

be further improved by implementing the RWM.

6.2 A Particle Filter For Image Denoising

As discussed in the previous chapters, the particle filter is a powerful algorithm

for nonlinear filtering. In addition, the particle filter algorithm can also be utilized in

other applications, such as image denoising. In this section, a hybrid image restora-

tion method has been developed that effectively combines a particle filter with wavelet

shrinkage to achieve robust performance against inhomogeneous noise mixtures. Specif-

ically, the particle filter acts to suppress outlier-rich components of the noise, while in a

subsequent step, the wavelet domain shrinkage attenuates any remaining, less heavily

tailed noise components. We present recent preliminary examples demonstrating excel-

lent rejection of salt-and-pepper like Cauchy noise mixed with additive white Gaussian

noise (AWGN). Although limited in scope, these preliminary results suggest that the

combination of particle filters with more traditional restoration techniques is a powerful

approach that can provide a new dimension of flexibility for addressing noise mixtures

involving difficult nonlinear and non-Gaussian components.

6.2.1 The Denoising Algorithm: A Hybrid PF-DWT Method

When an image is corrupted by noise comprised of both heavily tailed and Gaussian

components, we have observed that undesirable blurring artifacts are often introduced

if one attempts to suppress both components simultaneously. Therefore, we introduce a

two-stage hybrid denoising technique called PF-DWT. In the first stage, a spatial PF is

used to suppress the heavy tailed component of the noise. In the second stage, wavelet
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thresholding is applied to attenuate the remaining “Gaussian-like” noise. The input of

the second stage depends on the output of the first stage, thus realizing a synergistic

hybrid approach that is robust and effective against a wide variety of inhomogeneous

noise mixtures.

Particle Filter For Image Processing (Spatial Case)

To implement the PF, we employ a 2-D state space model similar to the ones used

for Kalman filtering in [102, 108, 109].

The Image Model

The image model proposed in [109] is used since it is efficient in the sense of using

only a small number of pixels:

I(i, j) =h1I(i, j − 1) + h2I(i− 1, j)

+ h3I(i− 1, j − 1), (95)

where I(i, j) denotes the pixel at the ith row and jth column of the image. In equa-

tion (95), h1, h2, and h3 are image parameters which can be estimated by various

methods including, e.g., least-squares. Next, the following state space model is con-

structed:

x(i, j) =Cx(i, j − 1) + Eu(i, j) + Dw(i, j), (96)

y(i, j) =Hx(i, j) + v(i, j), (97)

where

x =




I(i, j)
I(i, j − 1)

I(i− 1, j + 1)

I(i− 1, j)




C =




h1 0 h2 h3

1 0 0 0

0 0 0 0

0 0 1 0




E =
[

0 0 1 0
]T

D =

[
1 0 0 0

0 0 1 0

]T
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H =
[

1 0 0 0
]

The input term u(i, j) is introduced as the recent estimate of pixel I(i− 1, j + 1). The

variables w and v denote the process noise and the measurement noise, respectively.

The Spatial Particle Filter Algorithm

The first step in designing a particle filter is to choose a proposal distribution. While

arbitrary in form, the proposal must be supported by the posterior distribution of the

true system state and must be easy to sample. For PF-DWT a standard Kalman filter

is used to provide the proposal distribution, since the image model is a linear system

with non-Gaussian noise. Although the estimates delivered by the Kalman filter are

not optimal in this case, they still provide the required support for the true posterior.

The 2-D Kalman filter formulation is given by

x̄(i, j) =Cx̂(i, j − 1) + Eu(i, j) (98)

P̄ (i, j) =CP (i, j − 1)CT + DQDT (99)

K(i, j) =P̄ (i, j)HT [HP̄ (i, j)HT + R]−1 (100)

x̂(i, j) =x̄(i, j) + K(i, j)[y(i, j)−Hx̄(i, j)] (101)

P (i, j) =[I −K(i, j)H]P̄ (i, j) , (102)

where R and Q denote the covariance of the process noise and measurement noise,

respectively. Finally, the spatial particle filter algorithm is illustrated in Figure 78 and

is also summarized below.

6.2.2 Wavelet Thresholding for PF-DWT

To begin, the DWT is applied to decompose the data into subbands. A threshold

is then applied for noise removal. In the DWT domain, small coefficients in the high

frequency subband are assumed to arise primarily from noise. The idea is to “zero out”

the high frequency subband coefficients that are less than a particular threshold.
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Figure 78: Block Diagram of the Spatial Particle Filter

1. Sequential Importance Sampling (SIS) Step:

• At each iteration, calculate x̂(i, j) and P (i, j) according to (98)-(102).

• Sample from the proposal distribution:

x(i)(i, j) ∼ N (x̂(i, j), P (i, j)) .

• Evaluate the importance weights according to (13): calculate the transi-

tion prior, the likelihood and the proposal.

• Normalize the importance weights.

2. Resample and Update Step:

• Generate a new set of particles xi?(t) from x(i)(i, j),

so that

Pr
(
xi?(i, j) = x(j)(i, j)

)
= ω̃(j)(i, j) .

• The final estimate of x(i, j) is given by

x(i, j) ≈ 1

Ns

Ns∑
i=1

xi?(i, j) .

• Update the proposal with the resampled particles.
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These coefficients are used in an inverse wavelet transformation to reconstruct the data

set. In this section, the universal threshold is applied, similar to [103][104] and given

as:

T = σ
√

2 loge Nd (103)

where Nd is the size of the data set. By definition, basic thresholding methods are hard

thresholding:

ρT (x) =

{
x if |x| > T

0 if |x| < T
(104)

and soft thresholding:

ρT (x) =





x− T if x ≥ T

x + T if x ≤ −T

0 if |x| ≤ T .

(105)

Moreover, the universal thresholding method can be improved by using the translation

invariant technique given in [103]. The basic idea of this method is to estimate the

coefficients of all translations and take the average after a reverse translation. The

final estimate is given by this average. More specifically, the coefficients F̃ p of all the

translated data, denoted by Xp[n] = X[n− p], are calculated. By definition,

F̃ p =
N−1∑
m=0

ρT (Xp[m])gm , (106)

where ρT is a hard or soft thresholding function. Then, these coefficients are shifted

back and the averages are evaluated, which gives the final estimate as

F̃ [n] =
1

N

N−1∑
p=0

F̃ p[n + p] . (107)

As indicated in [103], the translation invariant method produces a better denoised

image than universal thresholding.
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6.2.3 Experimental Results

In this section, the standard 256×256 grayscale image “Lena” was used to assess the

performance of the proposed hybrid denoising algorithm. The noisy image is generated

by adding Gaussian noise with a variance of 200 and a Cauchy noise with a pdf defined

by f(x) = θ/π(x2 + θ2), where θ = 5. The original and the noise corrupted images

are shown in Figure 79(a) and (b), respectively. To construct the image model (95),

the parameters h1 = 0.815493, h2 = 0.489516, h3 = −0.308866 were employed. These

values were estimated by using the least squares method [109].

The two-stage PF-DWT hybrid denoising process is carefully tailored to operate

synergistically. In the first stage, a PF which uses Kalman filter state estimates as its

proposal is utilized to suppress the heavy tailed noise. After the this stage, the remain-

ing noise is “Gaussian-like” in character and is attenuated by wavelet thresholding. In

the second stage, translation invariant soft/hard thresholding is applied to the PF re-

sult to achieve further noise removal. Two examples of images restored in this way are

shown in Figure 79 and 80. As indicated in Figure 79(c), the PF removes most of the

heavy-tailed noise. The remaining noise, which is observed to have a “Gaussian-like”

distribution, can be removed using the wavelet thresholding method. The denoised

image obtained via PF and translation invariant hard thresholding is shown in Fig-

ure 79(d). As a second example, the grayscale image “cameraman” is also used to test

the performance of the proposed method. The original, noisy, and denoised images are

show in Figure 80(a)-(d), respectively. These results show that the restored images

Figure 79(d) and Figure 80(c), (d) are of remarkable visual quality. In addition, as

a quantitative performance measure, the improved signal to noise ratio (ISNR) of the

proposed hybrid method are also shown in Figure 79 and Figure 80.
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Figure 79: This figure shows: (a) the original image, (b) the noisy image, (c) the result
obtained by only applying the particle filter, (d) the restored images obtained by the PF with
the translation invariant thresholding.
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Figure 80: As another example, this figure shows: (a) the original image, (b) the noisy
image, (c) and (d) the restored images obtained by PF with translation invariant hard/soft
thresholding.
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CHAPTER 7: CONCLUSION REMARKS AND FUTURE

RESEARCH

In this dissertation, we have discussed the theories of particle filtering and its applica-

tions to various target tracking problems. We showed that the tracking estimations can

be improved by designing better particle filter algorithms (i.e. designing better propos-

als), refining a target’s dynamic models (i.e. using the multiple model method), and

building better system observation models (i.e. utilizing multiple measurement cues).

In particular, the following three particle filter frameworks have been developed:

• A particle filter based on the technique of state partitioning and parallel EKFs:

The PF-SP-PEKF provides a general framework, in which two advanced particle

filters were developed based this concept. The two particle filters are: (1) the

multiple-sensor CPF-SP, which is used for target tracking in sensor networks,

and (2) the multiple model particle filter based state partitioning (MMPF-SP)

for visual target tracking. In these algorithms, the development of the proposal

distribution still relies on the system linearization and the Gaussian assumption.

• A particle filter based on the Galerkin’s projection method: More specifically, in

this algorithm the Galerkin’s method is adopted to generate the proposal distribu-

tion used in a PF framework. This algorithm has been successfully implemented

for the problems of bearings-only tracking and visual target tracking, respec-

tively. A limitation of this PF algorithm is the requirement of the computation

over the entire state space when constructing the proposal distribution.

• A particle filter based on the idea of state space discretization: In this algo-

rithm, the computation is only focused on the high probability regions in the

target state space. In addition, a set of weighted cells are used to generate the

proposal distribution. Based on this rationale, two sophisticated particle filters
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have been developed: (1) An improved MMPF for maneuvering target track-

ing using both the range and the bearings measurements, and (2) An improved

multiple-measurement MMPF for visual target tracking. In these algorithms,

the estimation accuracy and the computational complexity can be balanced by

choosing different cell size and different number of cells.

Extensive experiments and simulations have been conducted to evaluate the new

designed algorithms, and promising results have been obtained. The possible future

research can be carried out the following three areas:

• In multiple model particle filters, the transition matrix is predefined. However,

it will be more interesting to design an algorithm that can update the transition

matrix adaptively or an algorithm which has a switching structure that can choose

a matrix from a finite set online. Also, a measure of model accuracy can be

developed based on the variance of the particle weights.

• For visual target tracking applications, advanced pattern recognition and clas-

sification techniques can be introduced to construct a more advanced likelihood

model using multiple measurement cues. For example, the support vector ma-

chine (SVM) has been proven to be a robust classifier for many applications. In

future tracking algorithms, a SVM can be incorporated into the PF framework

to achieve robust tracking.

• Advanced data association techniques can also be incorporated into the PF frame-

work for multiple target tracking. Improved importance sampling techniques and

new data association methods can be combined to achieve robust multiple target

tracking.

In summary, there are many issues to be explored in nonlinear filtering for target

tracking, especially in particle filtering. We expect the work in this dissertation will

inspire more research in this area.
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Appendix CHAPTER A: THE PROOF OF THE PARTICLE WEIGHT

UPDATE EQUATION

In this appendix, a detailed derivation of a particle filter is provided. Short proofs can

be found in [3][4][25]. As indicated in Chapter 2, the objective of nonlinear filtering is

to estimate the posterior distribution p(x0:t|z1:t) and the expectation E [f(x0:t)], where

f(·) denotes the state process in the nonlinear system given in equation (1). The

expectation is given as follows:

E [f(x0:t)] =

∫
f(x0:t)p(x0:t|z1:t) d x0:t

=

∫
f(x0:t)p(x0:t|z1:t)

q(x0:t|z1:t)

q(x0:t|z1:t)
d x0:t (108)

where q(x0:t|z1:t) is called the proposal distribution, which is an arbitrary density func-

tion that has the support from the posterior p(x0:t|z1:t). According the Bayes’ theorem,

equation (108) can be written in the following form:

∫
f(x0:t)

p (z1:t|p(x0:t))

p(z1:t)

q(x0:t|z1:t)

q(x0:t|z1:t)
dx0:t . (109)

Since p(z1:t) is not a function of x0:t, equation (109) can be modified as:

∫
f(x0:t)

p (z1:t|p(x0:t))

p(z1:t)

q(x0:t|z1:t)

q(x0:t|z1:t)
dx0:t

=
1

p(z1:t)

∫
f(x0:t)

p (z1:t|x1:t) p(x0:t)

q(x0:t|z1:t)
q(x0:t|z1:t) dx0:t

=
1

p(z1:t)

∫
f(x0:t)ω(x0:t)q(x0:t|z1:t) dx0:t (110)

where ω(x0:t) is known as the un-normalized importance weight defined as follows:

ω(x0:t) =
p (z1:t|x1:t) p(x0:t)

q(x0:t|z1:t)
. (111)
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Next, equation (110) is rewritten in the following form:

=

(∫
f(x0:t)ω(x0:t)q(x0:t|z1:t) dx0:t

)/ (∫
p(z1:t|x0:t)p(x0:t)dx0:t

)

=

(∫
f(x0:t)ω(x0:t)q(x0:t|z1:t) dx0:t

)/ (∫
p(z1:t|x0:t)p(x0:t)

q(x0:t|z1:t)

q(x0:t|z1:t)
dx0:t

)

=

(∫
f(x0:t)ω(x0:t)q(x0:t|z1:t) dx0:t

)/ (∫
p(z1:t|x0:t)p(x0:t)

q(x0:t|z1:t)
q(x0:t|z1:t)dx0:t

)

=

(∫
f(x0:t)ω(x0:t)q(x0:t|z1:t) dx0:t

)/ (∫
ω(x0:t)q(x0:t|z1:t) dx0:t

)
(112)

Equation (112) can be taken as:

=
Eq(·|y1:t) [f(x0:t)ω(x0:t)]

Eq(·|y1:t) [ω(x0:t)]

where Eq(·|y1:t) denotes that the expectation that is taken over the proposal distribution.

If the samples (also known as particles) are drawn from the proposal distribution, then

the expectations can be approximated by the following equation:

=

1

Ns

Ns∑
i=1

f(x
(i)
0:t)ω(x

(i)
0:t)

1

Ns

Ns∑
i=1

ω(x
(i)
0:t)

=
Ns∑
i=1

f(x
(i)
0:t)ω̃(x

(i)
0:t)

where ω̃(x
(i)
0:t) is the normalized importance weight. Then, we have

p(x0:t|z1:t) ≈
Ns∑
i=1

ω̃(x
(i)
0:t)δ

(
x0:t − x

(i)
0:t

)
. (113)

In addition, if Ns approaches to the infinity, the above summation approximation will

converge to p(x0:t|z1:t). The above proof is based on the concept of importance sampling

(IS). Next, the framework of the sequential importance sampling (SIS) is developed. In
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order to compute the posterior in a sequential framework, the proposals that satisfies

the following condition will be adopted:

q(x0:t|z1:t) = q(x0:t−1|z1:t−1)q(xt|x0:t−1, z1:t) . (114)

In addition, it is assumed that the system is Markovian and the measurements are

independent given the corresponding states. Then, the following equalities hold:

p(x0;t) =p(x0)
t∏

j=1

p(xj|xj−1)

=

[
p(x0)

t∏
j=1

p(xj|xj−1)

]
p(xt|xt−1) (115)

p(z1:t|x0:t) =
t∏

j=1

p(zj|xj)

=

[
t−1∏
j=1

p(zj|xj)

]
p(zt|xt) (116)

Plug equations (114) (115) and (116) into equation (111):

ω(x0:t) =

[ t−1∏
j=1

p(zj|xj)

]
· p(zt|xt) ·

[
p(x0)

t∏
j=1

p(xj|xj−1)

]
· p(xt|xt−1)

q(x0:t−1|z1:t−1)q(xt|x0:t−1, z1:t)

=
p(z1:t−1|x0:t−1)p(x0:t−1)

q(x0:t−1|z1:t−1)
· p(zt|xt)p(xt|xt−1)

q(xt|x0:t−1, z1:t)

=ω(x0:t−1) · p(zt|xt)p(xt|xt−1)

q(xt|x0:t−1, z1:t)
(117)

Equation (117) is the particle weight update equation, which is same as equation (13)

in Chapter 2.
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Appendix CHAPTER B: A DEMO CODE FOR VISUAL TRACKING

USING BOOTSTRAP FILTER

Main Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% This code implements a target tracking algorith based on %%
%% particle filtering and cross-corelation template matching. %%
%% %%
%% "Particle filter" (PF), also known as "sequential importance %%
%% sampling", is a family of new and powerfuly nonlinear %%
%% non-Gaussian filters for state estimation. For more details, %%
%% see [1]-[3] %%
%% %%
%% References: %%
%% [1] M. Arulampalam, and et. al., ‘‘A tutorial on particle %%
%% filters for online nonlinear/non-Gaussian Bayesian tracking," %%
%% IEEE Trans. Signal Process. vol. 50, pp. 174-188, Feb., 2002. %%
%% %%
%% [2] A. Blake and M. Isard, Active Contours, NY: Springer, 1998. %%
%% %%
%% [3] Y. Zhai, and et. al., ‘‘Visual tracking using sequential %%
%% importance sampling with a state partition technique,’’ IEEE %%
%% ICIP, vol. 3, no. 3, pp. 876-879, Sep. 2005. %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% ---------------------------------------------------------------
%% Created in: 6-10-2006 by Y.Zhai
%% Modifications:
%% (1) The MMPF using edge-detection were deleted. Date: 2-2-2007
%% (2) Variable names for particles were changed. Date: 2-2-2007
%% ---------------------------------------------------------------

clear all
close all
clc

%loading the video data (Matlab format)
load NoisyFrameData.mat

% -------- Setup initial conditions ------------
var_w=5; var_v=8; var_o=1;

ctr_1=[69 63]; % target centers in the first two frames
ctr_2=[68 61];
v_ini=ctr_2-ctr_1; % initial velocity vector
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% get the video size
[RowMax ColMax VideoLength] = size(NoisyFrameData)

% number of particles (samples)
Ns=200;

% get the initial gray-scale template
G_temp_hw=3;
G_temp_hh=3;
[G_template, Temp_bdries] = Func_GetWindow( ...

ctr_1, G_temp_hw, G_temp_hh, NoisyFrameData(:,:,1) );

% the aid window size
AW_hw=20; AW_hh=20;

% Setup particle buffers
p_row = zeros(VideoLength,Ns); % These are the particles for the estimates
p_col = zeros(VideoLength,Ns); % of locations and velocities. Note that
p_vrow = zeros(VideoLength,Ns); % there’s no need to store them for all t.
p_vcol = zeros(VideoLength,Ns); % The only reason for doing this here is for

% the optional tracking performance analysis
% (not in this code)

% Initializing the particles:
p_row(1,:) = ctr_1(1)*ones(1,Ns);
p_col(1,:) = ctr_1(2)*ones(1,Ns);
p_vrow(1,:) = v_ini(1)*ones(1,Ns);
p_vcol(1,:) = v_ini(2)*ones(1,Ns);

est_r(1)=ctr_1(1); % temporary variables
est_c(1)=ctr_1(2);

estimated_centroid=zeros(VideoLength,2); % final estimations
estimated_centroid(1,:)=ctr_1;
% ------------- end of initial condition ------------------------

% ------------- the main loop ------------------------
for FrNo=2:VideoLength

% FrNo is the frame number ( or time index)

% Show the current frame No.
fprintf(’frame: %g \n’, FrNo)

%% target dynamic model (constant velocity model):
%%
%% [ r(t) ] [ 1 0 1 0 ][ r(t-1) ] [ 0.5 0]
%% [ c(t) ]= [ 0 1 0 1 ][ c(t-1) ] + [ 0 0.5] [w_r(t-1)]
%% [ v_r(t) ] [ 0 0 1 0 ][ v_r(t-1) ] [ 1 0] [w_c(t-1)]
%% [ v_c(t) ] [ 0 0 0 1 ][ v_c(t-1) ] [ 0 1]
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%%
%% where r and c are row and column indices, v_r and v_r denote
%% the row and column velocities, respectively.

% Particle propagation ( prediction based the dynamic model )
particle_row = p_row( FrNo-1,:) + p_vrow( FrNo-1,: ) + var_w^0.5*randn(1,Ns);
particle_col = p_col( FrNo-1,:) + p_vcol( FrNo-1,: ) + var_w^0.5*randn(1,Ns);

% Take the mean of the predicted centers as the aid-window center
AW_Ctr = round( [ mean( particle_row ) ...

mean( particle_col ) ] );

% Target detection using cross correlation to find the a location
% that the target has the highest probability to present.
%
% obser_ctr: observed target center
obser_ctr = Func_TempMatching( NoisyFrameData(:,:,FrNo), ...

G_template, ...
AW_Ctr, AW_hw, AW_hh);

% We use 2D symmetric Gaussian to approximate the likelihood model.
% Then calculate the likelihood of each particle
lik_row = ( 2*pi*var_o )^(-0.5) * exp( ...

-( obser_ctr(1) - particle_row ).^2 / (2*var_o));

lik_col = ( 2*pi*var_o )^(-0.5) * exp( ...
-( obser_ctr(2) - particle_col ).^2 / (2*var_o));

% Calculate overall likelihood
lik = lik_row.*lik_col;

% Normalize the likelihood.
% The particle weight is the likelihood ( The condensation method )
lik=lik/sum(lik);

% Particles needs to resample, see ref [1] - [3] for theories behind this.
% Using the systematic resampling method
outIndex = systematicR(1:Ns,lik’);

p_row(FrNo,:) = particle_row(outIndex);
p_col(FrNo,:) = particle_col(outIndex);

% The estimated locations are the mean of the resampled particle.
est_r(FrNo)=mean(p_row(FrNo,:));
est_c(FrNo)=mean(p_col(FrNo,:));

% Calculate the final estimated velocities
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p_vrow(FrNo,:) = est_r(FrNo)-est_r(FrNo-1);
p_vcol(FrNo,:) = est_c(FrNo)-est_c(FrNo-1);

% The final estimaed center (integer row and column index)
% Keep the record of all tracking history for analysis
est_centroid(FrNo,:)=[round(est_r(FrNo)) round(est_c(FrNo)) ];

% need update the grayscale template sequentially
[G_template, Temp_bdries] = Func_GetWindow( ...

[est_centroid( FrNo,1 ) ...
est_centroid( FrNo,2 )], ...
G_temp_hw, G_temp_hh, ...
NoisyFrameData(:,:,FrNo) );

%% plotting the tracking result ON-LINE (optional)
OUTPUT(:,:,FrNo-1)=NoisyFrameData(:,:,FrNo);
%% plot the center
OUTPUT( est_centroid( FrNo,1 ), ...

est_centroid( FrNo,2 )-2 : ...
est_centroid( FrNo,2 )+2, ...
FrNo-1)=0;

OUTPUT( est_centroid( FrNo,1 )-2 : ...
est_centroid( FrNo,1 )+2, ...
est_centroid( FrNo,2 ), ...
FrNo-1)=0;

colormap(gray(256));
image(OUTPUT(:,:,FrNo-1));
pause(0.1)

end
% ------------- end of the main loop ------------------------

%% %%% Making an avi file ( Optional )
%%
%% aviobj = avifile(’TrackingResult.avi’, ’fps’,15,’quality’, 100);
%%
%% for i=1:VideoLength-1 %% from the second frame
%% colormap(gray(256));
%% image(OUTPUT(:,:,i));
%% frame = getframe(gca);
%% aviobj = addframe(aviobj,frame);
%% end
%% aviobj = close(aviobj);
%%
%% close all
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Func GetWindow

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This function returns a windowed image
%% which will be used either as the target template
%% or the aid-window for further processing.
%%
%% In other words, this function cuts off a
%% piece of image from the input image.
%% This small piece of image will be used
%% either as the target template (grayscale template)
%% or the aid-window for further processing.
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% Function Usage:
%%
%% [Windowed_Image, AW_bdries]=Func_GetWindow(center, AW_hw, AW_hh, InputImage)
%%
%% Function inputs :
%% center ( 1-by-2 vector ) -- the window center
%% AW_hw ( scalar ) -- half of the window width (AW: stands for aid window)
%% AW_hh ( scalar ) -- half of the window height
%% InputImage ( actual frame size) -- the input video frame
%%
%% Function returns:
%% AW_bdries ( 1-by-4 vector ) -- the corners of the aid-window or the template
%% Windowed_Image ( AW_hh*2+1--by--AW_hw*2+1 ) -- the aid-window or the template

%% -------------------------------------------------------- %%
%% Created in: 6-2-2006 by Y.Zhai
%% Modifications:
%% (1) adding the returned variable "AW_bdries" Date: 6-6-2006
%% -------------------------------------------------------- %%
function [Windowed_Image, AW_bdries]=Func_GetWindow(center, AW_hw, AW_hh, InputImage)

[RowMax, ColMax]=size(InputImage);

% find the aid-window corners
AW_RowMin = max(1, center(1)-AW_hh);
AW_RowMax = min(RowMax, center(1)+AW_hh);
AW_ColMin = max(1, center(2)-AW_hw );
AW_ColMax = min(ColMax, center(2)+AW_hw);

% the aid-window corners to be returned
AW_bdries=[AW_RowMin, AW_RowMax, AW_ColMin, AW_ColMax];

% the aid-window to be returned
Windowed_Image=InputImage( AW_RowMin : AW_RowMax, AW_ColMin : AW_ColMax);
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Func TempMatching

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This function implements a template matching using the
%% cross correlation method, for more information see [1] [2].
%%
%% More specifically, this function filters the input
%% image with the target template (actually, it only
%% searchs inside a piece of the input image: the
%% aid-window), and returns the location of a pixel,
%% which has the largest respone.
%%
%% The target is assumed to have the highest probability
%% to appear at this location.
%%
%% References:
%% [1] R. Gonzalez and R. Woods, ‘‘Chapter 12 Object Recognition,’’
%% \emph{Digital Image Processing}, 2nd Edition, Prentice Hall, NJ, 2001.
%%
%% [2] D. Forsyth and J. Ponce, ‘‘Chapter 7 Linear Filters: filter as
%% templates,’’ \emph{Computer Vision: A Modern Approach}, Prentice
%% Hall, NJ, 2003
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% Function Usage:
%% TargetCtr_Temp_Matching = Func_TempMatching( ...
%% InputImage, TemplateIM, WindowCenter, AW_hw, AW_hh)
%%
%% function inputs :
%% InputImage (2-D array) -- the input image
%% TemplateIM (2-D array) -- the target template image
%% WindowCener( 1-by-2 vertor) -- the aid-window
%% AW_hw ( scalar ) -- half of the window width
%% AW_hh ( scalar ) -- half of the window height
%%
%% function returns:
%% TargetCtr_Temp_Matching ( 1-by-2 vertor)
%% -- Target Center (i.e. the target location)

%% ------------------------------------------------
%% Created in: 6-2-2006 by Y.Zhai
%% Modifications:
%% (1) replaced self-written cross-corelation function
%% with filter2 Date: 6-5-2006
%% ------------------------------------------------

function TargetCtr_Temp_Matching = Func_TempMatching( ...
InputImage, TemplateIM, WindowCenter, AW_hw, AW_hh)
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% Get the aid-window
[Windowed_Image, AW_bdries] = Func_GetWindow(WindowCenter, ...

AW_hw, AW_hh, InputImage);
AW_RowMin=AW_bdries(1);
AW_RowMax=AW_bdries(2);
AW_ColMin=AW_bdries(3);
AW_ColMax=AW_bdries(4);

% 2D filtering
out = filter2(TemplateIM,Windowed_Image);

% seek the peak
out_peak = max(max(out));

% find the location
[TarI, TarJ] = find(out == out_peak);
TarI=AW_RowMin+TarI-1;
TarJ=AW_ColMin+TarJ-1;

% return the location
TargetCtr_Temp_Matching=[TarI TarJ];
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