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CAPTER I 

INTRODUCTION 

We survive in a biosphere of less than 100 kilometers in depth with­

in a volume which comprises but a miniscule fraction of the total mass 

of the solar system. This biosphere is a balanced and self sustaining 

assembly of life forms interacting together and with the nonliving sub­

stances around them. This system has often been referred to as a deli-

cate one. But if this characterization is at all accurate, it can be 

just as accurately described in its natural state as resilient and mani­

festly stable over the long term. 

Our state of evolution and survival is living witness to the epoch-

al endurance of the balance of I ife within the biosphere. Abundant 

evidence exists of massive glacial periods consuming whole continents, 

of significant fluctuations of solar radiation(!) and of an early age 

( A z o i c ) w h e n t h e b i o s p h e r e w a s a I mo s t t o t a I I y an a e r o b i c ( 2 , 3 ) . T h r o u g h 

all of these environmental upheavals and planetary changes, I ife succes-

sfully evolved. But more importantly it developed the abi I ity to adapt 

and survive. Just as lower I ife forms survive cataclysm through sheer 

fecundity, higher life forms, including man, survive primarily through 

uti I ization of complex actions and reactions to the environment summar­

ily defined as intelligence. 

For thousands of years this i nte I I i gence and surv iva I through wi I 1-

ful change caused man to alter his immediate environment and the balance 

of life by building shells around himself. More recently, a moment ago 
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in geologic time, humanity developed the abi I ity to cause significant 

planet wide environmental alterations. Ironically this was made pos-

sible by burning the decomposed remains of I ife forms from a complex 

energy soup of hydrocarbons ca I I ed petro I eum. This recent period during 

which we withdrew and used this power source was the industrial revolu­

tion, and it was an age responsible for the wholesale plundering of what 

appeared to be a planet of endless resources. We have taken ful I advan­

tage of our newly found power and in less than one century, have flooded 

our environment with bi II ions of kilograms of thousands of individual 

pollutants. Our elegant environmental system is being pushed to and 

?Omet imes beyond its I imi ts and ab iIi ty to respond. 

There are at least two most simplified categories of this pollution: 

one that we can see, such as dirty air, dirty water, and a planetary 

abundance of trash. The other kind is that which we cannot see and often 

do not worry about. Within the latter category are air and water pollu­

tants from the simply annoying to the deadly. Among the most dangerous 

of these unseen pollutants are the heavy metals. 

Met a I s are not genera I I y thought of i n a r o I e of b I end i n g w i t h so i I 

and water in their ionized and molecular forms. For many it is diffi-

c u I t to t h i n k of met a I s as a p o I I uta n t at a I I , b u t the i r presence and 

reality have proven exceedingly toxic and in many cases they are fatal 

to man. 

Of the .106 elements represented on the Periodic Table, 80 are con­

sidered metals. A "heavy metal" is defined generally as one with a high 

atomic weight. From a human nutritional standpoint, these metals can 

also bear the title of "trace element" which is defined as an element 

normally injested by man at levels below 100 mi II igrams per day 14l. 
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Of the 80 metals, 20 have been documented as potentially toxic to man 

at higher levels. However, there is a curious overlapping of the toxic 

effects of some metals at higher concentrations and their central meta­

bolic role as an essential requirement for life at their "trace" concen­

trations. This metabolic contradiction is further complicated by 

attempting to pinpoint the actual. causes of intracellular dysfunction 15). 

Each heavy metal reacts somewhat differently within the eel I and 

even reacts somewhat differently in various cell types, and if this com­

plexity was not enough, the metals can enter the biological system and 

organism in different forms. They can form inorganic and organic com­

pounds or they can complex with other macromollecular forms. Each of 

these individual species can further react differently and/or synergest­

ically within the cell even though each may attach the same metal ion (4). 

Within the cell there are abundant metal binding I igands in enzymes, 

substrates and structural components. These I igands can be very specif­

ic for certain ionic species, but for the most part they are unspecific 

and can attach most metal I ic ions. In fact, the affinity of the amino, 

imidazole and carboxyl groups for heavy metals overlap considerably. 

Chelation can also enhance, decrease or mask affinities by orders of 

magnitude. Other reactions seem to lie dormant for various periods fur-· 

ther obscuring the exact relationships of heavy metals and their species 

to cellular metabolism. Some of this may in fact be caused by the ionic 

species becoming involved with genetic replication in actually inhibit­

ing process itself 16). 

However, some metals have been observed long enough to have enabled 

a reasonable information base to emerge and allow for some predictable 

results based upon some defined parameters. Some generalizations are 
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very broad and are whole organism responses rather than those based 

upon specific cytochemical etiology. Data on other metals hardly exists 

at a I I and much research is needed. 

Two heavy metals (also defined as trace elements) that constitute 

both a metabolic necessity at low concentrations and a toxic substance 

at higher concentrations are copper and nickel. These heavy metals re­

act in biological systems as previously discussed. They appear in vast 

quantities in our environment and they are concentrated in and around 

our society as inexpensive, widely used metals for everything from pock­

et change to water distribution systems and pots and pans. That these 

metals end up injested in man is no surprise. 

There is much evidence that both of these metals have bioaccumula-

tion characteristics, and that under certain conditions they are carcin­

ogenic, toxic and can damage internal organs. They have also been 

directly associated with death in certain cases. Given their abundance 

and heavy usage in our society, it is important that we know exactly 

what effect they do have down to the cellular level. It is also import-

ant that we know how to reduce the opportunities for human consumption. 

Of the methods for removing heavy metals from wastewater, activated 

carbon provides an a I ready exp I o i ted resource. Many mun i c i pa I it i es 

either already have or are looking to activated carbon as a unit opera­

tion in both waste treatment and water treatment to remove a host of 

pollutan.ts. The removal efficiencies for this process are now under 

investigation. The same carbon columns are expected to provide a pan­

acea of solutions for every trace poI I utant, but exact I y how much of 

each pollutant and under what conditions they are removed is not fully 

known. 
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The purpose of this study was to determine the amounts of copper 

and nickel removed from water using granulated activated carbon columns 

under aerobic conditions and multiple pH ranges. 



CHAPTER I I 

LITERATURE REVIEW 

Copper ICul has an atomic weight of 63.5, atomic number of 29, 

density of 8.9, melt_ing point of 1083.4°C and boiling point of 2567°C. 

Copper is second only to silver- in conductivity of heat and electr-icity. 

World ~r-oduction in 1970 was estimated to be 6 x 106 metr-ic tons 17J. 

In the human body copper- is found at 1.4 pads per- mi II ion lppml 

or- a total of approximately 100 mg for- a 70 kg man (8)." The daily r-e­

quir-ement of copper- is about 30 vg/kg/body weight for- adults and 80 

\lg/kg/body weight for- infants 19l. 

Copper- is an essent i a I par-t of sever- a I human enzymes such as ty­

r-osinase which for-ms melanin, cytochr-ome oxidase and ur-icase. Copper- is 

also essential for- the utilization of ir-on in the for-mation of hemoglob-

in. Defficiencies of copper- in humans ar-e associated with anemia, str-uc-

tur-al defects in major- ar-ter-ies and some nervous disor-der-s 17J. 

Excessive copper- concentr-ations in man can culminate in death al­

though there is some disagr-eement as to what levels and for-ms of copper-

ar-e r-equir-ed to pr-oduce evidence of toxicity. The information now 

avai I able suggests that ther-e is a wide var-iance of toler-ance among in-

dividuals and age gr-oups. One case r-epor-ted the death of an infant 

appar-ently due to copper- poisioning. The child's water- supply was tound 

to contain 675 ~g/100 ml copper- IIOJ. Nielsen r-epor-ts a link between 

excessive copper- and hemolytic jaundice 1111, hepatic and r-enal failur-e, 

6 
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severe anemia, cancer (12, 13, 14, 151, cadriovacular disease (101, and 

death (4, 5, 101. 

According to a National Research Council report: "Rocks are the 

primary natural source of most elements that enter the human system," 

I 16). The pathways from the rocks vary. Much is carried from geologic 

formations within aquifers to the ground water. Other sources include 

bioabsorption at all levels up the food chain to and including man. 

The highest copper bearing minerals are basaltic igneous and 

shales ( 16), but in most cases the most direct source of copper to humans 

is tap water (from distribution I ines and fittings), food processing 

and water treatment chemicals 14, 10). It is also significant to note 

that most tap water contains enough copper to inhibit many enzyme reac­

t ions ( 6) • 

Limits to copper concentration, however, were not established from 

a concern for health but for taste. Copper gives water an astringent 

taste at concentrations ranging from 1-5 mg/1. The limit for drinking 

water has been set at I mg/ I (4). 

Nickel (Ni) has an atomic weight of 58.71, atomic number of 28, 

density of 8.9, melting point of 1453°C, and a boiling point of 2732°C. 

It comprises .008 percent of the earth's crust. World production of 

1963 was 6.6 x 105 tons ( 17l. 

In the human body nickel is found at .14 ppm or a total of 10 mg 

for a 70 kilogram man (8). The daily requirement for nickel has been 

reported at 50-80 ng/g diet (18) which relates to approximately 90-150 

~g nickel per day per adult. 

Nickel is, like copper, an essential enzyme constituent and also 

plays an important role in the development of melanin (19). Nickel has 



8 

been known to play a vital role in the structural stabi I ization of nu­

cleic acids and can preserve ribosomal structures against thermal de­

naturation ( 18, 20l. Nickel serves the purpose of an enzyme activation 

ion and as an inhibitor of other enzymes (21, 22, 23). Nickel has also 

been found to play a vital role in the action and sustained function of 

insulin and the conversion of glucose into glycogen. Deficiencies of 

nickel in laboratory animals have been associated with growth retarda­

tion, dermatitis (19), impaired liver function and birth abnormali­

ties ( 24l. 

Reports of excessive nickel concentrations causing toxic effects in 

man can be traced to the 19th century when a report surfaced that ·Emperor 

Franz Josef of Austria had developed an iII ness due to the use of nickel 

cooking pots (25l. The most profound and widespread toxicity associated 

with nickel is cancer. A larger base of evidence has I inked human can­

cer with excessive or long term exposure to nickel and its compounds, 

especially nickel carbonyl (4, 12, 17, 21, 26). Dermatitis, gastroin­

testinal irritation, renal failure, paralysis, neural membrane degenera­

tion and I iver damage have been reported and associated with excessive 

exposure to nickel (4, 5, 17, 21, 27, 28l. 

The primary source of nickel in the biological pathways to man 

occur from food processing equipment (such as the nickel-copper a/ loy 

Monell, from fungicides and food. The highest nickel containing food 

products are Wheaties with 3 ppm, squash with 4.6 ppm, cabbage and mush­

rooms with 3.3 ppm, tea with 7.6 ppm, cocoa with 5 ppm, black pepper 

with 3.93 ppm and baking soda with 13.4 ppm (2/ l. One source notes that 

the consumer may pick up a few mi II igrams of nickel daily from nickel 

or nickel alloy cookware (29l. Another study reported the mean 
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concentration of nickel in water is 19 )lg/1 (30). The Governmental 

Industrial Hygienists IACGIHl have established the threshold limit value 

3 for nickel and its salts in the atmoshpere at I mg/m for nickel car-

bony I 14). 

Now that mi II ions of kilograms of copper and nickel have been re-

leased into the biosphere and are moving through the human food and water 

cycles, it is imperative that their effects, bioaccumulation character-

istics, reactivity and methods of removal are clearly understood. These 

are minute pollutants that .~equire special and specific research methods 

to find and will also require special and specific methods of removal. 

The Environmental Protection Agency has named copper and nickel as 

two of the 129 priority pollutants that may pose a significant hazard to 

the environment. These pollutants are I isted in section 307 !all I l of 

the 1977 Clean Water Act 133 U.S.C. 466 et seq; Committee Print HR. 

3199) I 31 l. 

The fate and transport of nickel and copper in the environment, 

therefore, are receiving special attention. It is important to recog-

nize the most efficient methodology of the removal of these metals from 

waste water or potable water sources. The metals have been described 

as "highly associated with hard water" 132), and standard treatment 

processes to soften water have been shown to be effective in removing 

the metals !i.e., lime softening) 1101. However, a recent study indi-

cates that sorption is a more important removal mechanism than precipi-

tation for copper and that sorption "exerts the major control" over the 

mob i I i t y of n i c k e I I 3 I ) . 

Activated carbon can provide such a sorption removal mechanism 

under controlled and_steady state conditions. Studies have confirmed 
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the viabi I ity of activated carbon as a removal mechanism for trace met­

als including copper and nickel (33, 34, 35, 361. Activated carbon is 

now used in many industrial and municipal treatme.nt processes. Two such 

examples are Water Factory-21 in Orange County, California and the city 

of Pamona, California (37, 381. 

Chemical Speciation 

Copper exists in natural waters in several forms. The only copper 

compounds stable under aerobic conditions in water are also highly in­

soluble (391. Some examples are: 

CuCI 

CuCN 

However, there are some copper sa Its that are read i I y so I ubI e and 

they are (31): 

CuCI 2 

CuiN0 3 12 

CuS04 

Other examples of copper species present in waters includes 1401: 

Cui0Hl 2 

Cuco3 

Cu 2 IOH1 2Co 3 

Cu 3 iOHI 2 1C0 3 12 

Cu 2 IOHI 2 

The sol ubi I ity of the copper species and/or their subsequent pre­

cipitation are pH dependent. Figure I shows the presence of various 

species vs. pH 1401. The most significant process by which divalent, 

hydrated copper (II I is removed from unpolluted water is the precipi­

tation of malachite: Cu 2 IOHI 2co3 1411. 



PH 

Speciation of copper(II)(total concentration 2 ppm) and 

carbonates as a function of pH. (A) cu+2. (B) Cuz(OH) 2+2. 

(C) CuO~. (D) Cuco 3 • (E) HC0 3-. (F) HzC03 . (G) pH 
at which Cu(OH)z will precipitate. (H) pH at which 

Cu3(0H)zCC03)2 (azurite) will precipitate. (I) pH at 

which Cuz(OH)zC03 (Qalachite) will precipitate. From Sylva 
( 19 7 6). 

Figure 1. Speciation of Copper (II) And Carbonates 
As A Function of pH 

I I 
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Callahan et al. have found that the pr-edominant species of soluble 

+ +2 3 
copper- ar-e Cu(OH) Cu , CuCO . Their- existance in solution occur-s in 

the or-der- of: 
+ +2 3 

Cu ( OH) > Cu > CuCO However-, another- sour-ce r-epor-ts 

the major-ity of copper- wi II exist in unpolluted water-s as Cuco 3 (31). 

Callahan et al. also descr-ibed copper- concentr-ations as being con-

tr-olled by hydr-ous oxides of ir-on and manganese and not by the sol ubi 1-

ity of the copper- compounds. 

It is impor-tant to note, however-, that copper- also has a ver-y 

str-ong tendency to for-m complexes and when or-ganic mater-ial or- or-ganic 

pollutants ar-e pr-esent the soluble copper- wi II consist of almost entir-e-

ly complexed or-ganic for-ms (42). 

Nickel is also found in sever-al for-ms in natur-al water-s. Ni+ 2 is 

t~e pr-edominant oxidation state in these water-s (39) and some of the 

var-ious species existing under- aer-obic conditions and at a pH of ~ 9 

ar-e as follows (43): 

+ 
N i (OH) 

N i ( 01-1) +2 

NiCI 

Ni - Si 

Ni - Fe 

Ni - Mn 
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Figure 2 shows the nickel species present (moles/11 as a function of 

pH (431. 

The predominant species of soluble nickel exists as follows (431: 

+2 . + 
N i > N i ( OH l 3 > N i SO 4 > N i C I 

Nickel is a much more highly mobile metal than is copper in the environ-

ment. Sorption is a much more important mechnism and organic complexa-

tion seems to play a very small role in the fate of nickel in aquatic 

systems ( 44 l . 

Adsorption by Activated Carbon 

Adsorption is defined as "adherence of materials to the surface of 

sol ids in a thin layer" (451. The adherence can be caused by electro-

static attraction of ions between the material (activated carbon) and 

the solid, by physical entrapment within the carbon pores or crystal! ine 

lattice of the surface or by intramollecular attraction by another sub-

stance already adhered to the activated carbon. The most tenacious 

adsorption occurs within the smallest pores and most "active" parts of 

the carbon's surface from unsatisfied valence bonds and charges (461. 

There is but a slight distinction between true adsorption and pre-

cipitation on the surface of the adsorbent. The carbon can provide a 

nucleating force to cause the actual precipitation in a solution that 

is supersaturated (461. 

Adsorption of heavy metals such as copper and nickel onto the sur-

face of activated carbon is dependent on several factors. They are: 

pH, pore size and distribution, molecular size and distribution, concen-

tration or ionic strength of metal ions in solution and the stoichiome-

try of the adsorbate molecule (47, 48, 49, 501. 
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Speciatic'n of nickel as a function of pH. 

Figure 2. Speciation of Nickel As A Function of pH 
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Each factor does affect another, of course, but generally the ad­

sorption capacity of the activated carbon increases as the pH 

decreases ( 48). At pH ranges above 6, copper wi I I precipitate. In fact, 

one study has shown a removal efficiency of copper and nickel by precipi­

tation with lime (followed by recarbonationl of 99 percent at pH's of 

8.7 for each metal. 

Figure I shows the precipitation of CulOHJ 2 at a pH of 6.8, of 

Cu 3 tOHJ 2 tc0 3 l 2 at a pH of 6.2 and Cul0Hl 2co 3 (malachite) at a pH of 

6 (31). At a pH ~ 9 nickel wi II precipitate as the hydroxide or car-

bonate species. In aerobic environments below a pH of 9 the nickel com-

pounds remain soluble 151 l. Figure 3 shows the distribution in percent 

of nickel hydrolysis species as a function of pH l43l. A chart summariz­

ing the precipitation ranges of nickel and copper as a function of pH is 

shown in Figure 4 148). 

Studies done in Japan, a country experiencing severe heavy metal 

pollution, have shown significant removal of copper with activated car­

bon columns 152). Another study showed a 95-100 percent removal effic­

iency of nickel and copper from secondary effluent by activated carbon 

following a high lime coagulation system. In this study the copper 

species accumulated in the upper portion of the carbon column and the 

nickel species in the lower. Table I summarizes these findings (53). 

This i I lustration points out and supports an EPA report that nickel 

is the most mobile of the heavy metals 131 l. Maruyama et al. notes that 

the location of nickel far down onthe column appeared to be true adsorp­

tion. He also noted that the concentrations of nickel probably would 

have not been so high if a filtration or a precipitation mechanism were 

involved 153). 
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TABLE 

ADSORPTION OF COPPER AND NICKEL ONTO ACTIVTED 
CARBON DEPTH lm) VERSUS WEIGHT OF CARBON 

lmg/100 grl 

Carbon Depth Copper 
IMl I mg/ I l 

0.00-0.91 26.4 

0.91-1.83 12.6 

I . 83-3.05 I I .6 

3.05-4.27 2.4 

4.27-5.49 I .0 

18 

Nickel 
I mg/ I l 

4.0 

8.0 

16.0 

76.0 

I 14.0 
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It should be noted again that in the study above, the information 

regarding the mobi I ity of nickel came from an actual operating waste 

treatment faci I ity using secondary effluent through a carbon column for 

four days. The author mentioned the possibi I ity of short term anaerobic 

conditions developing within the lower portions of the columns and pre­

ceipitating the nickel out as sulfides. Again, the backwash failed to 

change the distribution. However, one cannot totally rule the possi-

bi I ity of anaerobic conditions. Given the tendency of carbon columns 

to provide a surface for microorganisms and for sui fides to be present 

downstream in the columns there remain a signficant question 154). 

Adsorption Isotherms 

The adsorption isotherm for activated carbon is a relationship 

which defines themass adsorbed vs. concentration remaining in solution. 

There are various methods for expressing this relationship and the meth­

od selected is the one that most closely approximates a straight I ine 

when plotted. With this isotherm data, the following information can 

be obtained directly about the activated carbon and nature of adsorption 

of the adsorbate such as: 

I. The amount of impurity adsorbed when the adsorbate solution is 

in equi I ibrium with the carbon (i.e. [X/M]/Co, this represents the ulti­

mate capacity of the carbon for the adsorbate[s]l 154l. 

2. The efficiency of adsorption per dose of adsorbate. 

3. The approximate time of carbon exhaustion I time to equi I ibriuml 

per dose. 

4. The approximate time to breakthrough when comparing batch sys­

tems to dynamic (column) systems. 
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Indirect information may be obtained such as: 

I. The effects of pH, temperature and concentration of adsorbate 

on the over a I I efficiency of remova I. 

2. The effects of competitive adsorption on individual components 

of a waste water. 

3. The extrapolation to dynamic systems in consideration of dis­

placement or rollover, and the effects of regeneration and granular 

size (55 l . 

These isotherm relationships commonly considered are as follows: 

I. X/M vs. C or Langmur for high adsorbate concentrations; 

2. 1/(X/Ml vs. 1/C or Langmur for low adsorbate concentrations; 

3. Log X/M vs. Log C or Freund I i ch; and 

4. C/(X/Ml vs. C. 

As was stated previously, each of these isotherms demonstrate the rela­

tionship to the carbon loading, or X/M as a function of the equi I ibrium 

concentration of the adsorbate after treatment (551. The selection of 

the proper isotherm is based upon the approximation of I inearity to 

most accurately extrapolate the desired information. 



CHAPTER I I I 

MATERIALS AND METHODS 

This study was designed to obtain the information necessary to 

formulate isotherms from both batch and column systems of aqueous Cu 

and Ni. Nuchar ITMl granulated activated carbon I 12 x 401 IWestvaco 

Corp., Covington, VAl was uti I ized in both the batch and column studies. 

The copper used for the study was made up from an aqueous solution of 

CuS04, while the nickel used for the study was made from an aqueous 

solution of NiN03: 6H20. For each metal, a standard solution of 1000 

mg/1 metal was prepared and used as the stock solution. When it was 

necessary to adjust the pH, HCL or NaOH was used. 

Batch Studies 

The purpose of the batch studies was to develop isotherm data on 

increasing metal concentrations at a given carbon dosage at increasing 

pH values. The study selected pH values of 2, 4, 6, 8, 10, 12 and 

metal concentrations of I, 2, 5, 10, 25, 50, 100,200,300,400,500, 

and 600 mg/1. A carbon dosage of 3 grams of Nuchar was selected based 

upon the maximum amount of carbon that cou.ld be continuously suspended 

in a 100 ml solution on a shaker table. For each run, a 24 hour time 

period was selected to insure the solutions reached equi I ibrium. 

Initially the flasks and all equipment were cleaned with nitric 

acid. A volume of pH adjusted, distilled, deionized water was added 
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to the flasks and manually shaken gently to wet the car-bon. The metal 

solution was then added to each 300 ml flask to br-ing the total I iguid 

volume in the flask to 100 ml. Thr-ee gr-ams (dr-y weightl of activated 

car-bon wer-e added and the flasks wer-e sealed with Par-afi lm (TMl and sub­

sequently placed on the mechanical shaker table for 24 hour-s at room 

temper-ature (approximately 23 degr-ees centr-igr-adel. At the end of each 

r-un, the solutions wer-e allowed to settle for 10 minutes then filter-ed 

through Whatman Glass Fiber Filter-s, 934 AH. Another set of flasks were 

pr-epared and r-un i dent i ca I I y except no car-bon was added. These ser-ved 

as contr-ol f I asks. 

Column Studies 

The purpose of the column studies was to develop br-eakthr-ough cur-ve 

data on the metals at a given pH, to develop br-eakthr-ough cur-ve data on 

the metals when in secondary municipal waste water and to develop br-eak­

thr-ough cur-ve data of the metals mixed in solution with one another to 

deter-mine any competition or displacement effects. 

Tap water was used for the column studies due to the prohibitive 

expense of using large volumes of disti lied or deionized water. The 

tapwater, however, was analyzed for Cu and Ni. These metals wer-e not 

found to be pr-esent. 

Thr-ee inch diameter glass columns wer-e used for each r-un except 

the waste water studies. The thr-ee inch glass columns wer-e Pyr-ex (TMl, 

custom blown with nylon stop-cocks. They were mounted ver-tically to 

allow gr-avity flow. Plastic fiber webbing was used in the bottom of the 

columns to support the car-bon bed. A one inch plastic splash-plate was 

installed between the dischar-ge outlet of the influent tube at the top 



of the carbon bed to insure uniform distribution of the influent. 

Nuchar was used as the carbon in 18 inch (860 graml beds. 
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For the metals in the secondary municipal wastewater phase of the 

study, a I. I inch inside diameter column was prepared with 100 grams 

of carbon. A gravity flow system was also used in these trials. These 

columns were plexiglass columns with rubber stoppered ends, allowing for 

gravity flow of the wastewater. Glass wool was uti I ized in the bottom 

of the columns to support the carbon medium and a 0.25 plastic disc was 

used for a splashplate. 

The smaller columns were used for the wastewater effluent studies 

because of the amount of time it was predicted for I .0 mg/1 metal to 

break through and saturate the columns. Negating the effects of competi­

tion from the wastewater, it was predicted from the results of the 

large columns, that in a column of 860 grams of carbon, saturation would 

have taken approximately 17 hours. 

The Nuchar was prepared for each run by soaking in tap water at 

room temperature for 24 hours. This was done to accomplish degassing 

and wetting of the carbon. Each run was made at room temperature. 

For the three inch glass column studies, two 25 I iter bottles con­

nected by a siphoning system were set up above the columns. Siphoning 

by gravity was used as the input system to the columns. The flow rate 

was monitored before initiating the run to maintain approximately I gpm/ 

ft 2 or 200 ml/min average flow rate over the period of the run. Through 

several trial runs it was determined that 10 mm diameter tubing was re­

quired to maintain this flow rate to the columns. 

The selection of the pH and the concentrations for these studies 

was based upon an informal survey made of various metal plating 
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industries in Oklahoma. It was determined that the pH of metal wastes 

were acidic in the 3 to 5 pH range and, of course, much more highly con­

centrated than commonly found in municipal wastes or drinking water sup­

pi ies. Therefore, the pH and concentrations of this phase of the study 

were set at those levels associated with metal plating wastes: at a 

pH of 3.5 and a concentration of 350 mg/1. After startup, the columns 

were run near the breakthrough times approximated by the batch isotherms 

and samples were taken for later analyses. Finally, following these 

studies with individual metals at this concentration, the metals were 

mixed at 150 mg/1 each Cu and Ni, bringing the total metal concentration 

to 300 mg/1 in solution. This was then run in a column using the same 

procedure as uti I ized in the individual metal studies. 

The wastewater from the secondary clarifier of the Sti I !water 

Municipal Wastewater Treatment facility was filtered through cloth be­

fore use to remove a major portion of the large suspended sol ids. The 

metal was added to bring the concentration to I mg/1. A sample of the 

wastewater was analyzed for background contamination. The pH of the 

wastewater was 6.8 as it came from the plant. The carbon was prepared 

as before and the startup initiated and samples taken for analyses. 

To investigate the effects of Biochemical Oxygen Demand (BODl on 

the adsorption process for the metals, the· small columns were prepared 

as they were for the metal runs, but the secondary wastewater effluent 

was run through the columns without metals in solution. This was done 

to investigate the change in BOD on passage through the column, inde­

pendent of what effects the metals may have had. The BOD test was 

performed as specified in Standard Methods for the Examination of Water 

and Wastewater (561. Abundant evidence exists to support the concept 
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that competition fo1 adso1pitive sites does play a crutial 1ole in the 

adsorption of metals (36, 54). 

Analyses 

All samples and blanks we1e analyzed fo1 copper and nickel using a 

Pe1kin-Eime1 5000 Spect1ophotomete1 equipped with a HGA 400 g1aphite 

furnace. Both flame and flameless atomic absorption techniques were 

used. Detection limits for flame we1e specified by the manufactu1e1 as 

0.15 mg/1 Ni and 0.09 mg/1 Cu. Values below these were analyzed by the 

HGA 400 g1aphite fu1nace. Isotherm data was calculated by computer pro-

g1ams developed by the author for this project and alI data was plotted 

by NEC PCSOOI compute1 on an AMDEK DXYIOO plotter. 



CHAPTER IV 

RESULTS 

The batch studies, as discussed previously, investigated the capa-

city of the carbon for metal adsor-ption and produced information allow-

ing prediction of column br-eakthrough and exhaustion. In this study, 

br-eaktr-hough was defined for both copper and nickel as the point where 

10 per-cent of the or-iginal concentration was observed coming thr-ough 

the columns. Exhaustion; or- equi I ibr-ium, was defined as the point wher-e 

90 percent of the or-iginal concentr-ation was obser-ved coming thr-ough the 

columns (571. 

For- the batch studies, a set of control flasks wer-e set up; as de-

scr-ibed previously, and were shaken during the batch tr-ials without 

car-bon. From these controls, sever-al pieces of information wer-e col-

lected. It was noted that at pH's gr-eater- than 6 for copper- and greater-

than 7 for- nickel, pr-ecipitation was pr-esent. It was also obser-ved 

that the pr-ecipitation was quite heavy and clouded the solution signifi-

cantly at the higher- pH values. The contr-ols also allowed a determina-.. 
tion of the amount of metal sor-bed onto the glass walls of the flasks. 

i-11! samples including controls wer-e fliter-ed pr-ior- to analysis and 

ther-efor-e only soluble metals was analyzed. Control values wer-e sub-

tr-acted for- the cor-r-esponding batch r-uns including car-bon to eliminate 

the effects of precipitation and sor-ption onto glass fr-om the final 

answer-s. 
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Results from the batch studies were analyzed to determine the 

effects of pH and concentration on adsorption. In addition, X/M at 

each pH and concentration was determined. This data is shown in Table 

II. The X/M ratio defines the amount of contaminate !metal) adsorbed 

IX) to the amount of carbon in the column IMl. Missing values in Table 

II were those omitted because of loss of sample or experimental error. 

Table II shows higher X/M values for nickel than for copper, indicating 

a higher affinity for nickel in the batch studies. 

The isotherms developed from the batch studies !Figures 5-16) were 

plotted as low and high concentration isotherms. This was seen as nec-

essary after several attempts were made to plot them together as a 

single isotherm. These single isotherms tended to plot the lower points 

non-uniformly and the higher concentrations as I inear. 

Isotherms were developed for copper and nickel for concentrations 

of 100-600 mg/1 using the data in Table II and the isotherm relation­

ships of 1/IX/Ml vs. 1/c (Langmuir Highl, where cis the concentration 

of metal remaining in solution. These isotherms are shown in Figures 

5-16. The data for both copper and nickel collected at the high concen-

trations (Figures 5-16) fit the Langmuir high isotherm very well with 

I inearity apparent at almost every pH studied. 

No single isotherm was found to fit the lower concentrations 

I 1-50 mg/ I l. The data comprising the low isotherms were campi led from 

metal concentrations that were exceedingly low and approaching the de-

tection limit of the spectrophotometer. In many cases, these values 

were read in parts per bi II ion. Some of the scatter accounting for the 

non- I i near i ty observed at the I ower concentrations cou I d be due to 

analytical error or the inherent difficulty in analyzing near the 



TABLE I I 

X/M VALUES VERSUS METAL CONCENTRATIONS 

Copper 
X/m lmg/grl Values Vs. Concentration & pH 

Cone I 2 5 10 25 50 100 200 

pH 2 0.012 0.001 0.021 0.046 0.236 I .018 - 0.381 
ph 4 0.012 0.003 0.051 0.054 0. 166 - 2.033 I .083 
pH 6 0.008 0.006 0.028 0.072 0. 145 - 0.525 0.046 
pH 8 0.024 0.005 0.047 0.081 0. 137 0.302 0.335 -
pH 10 0.017 0.026 0. 101 0. I 03 0.630 0.316 0.425 0.443 
pH 12 0.026 0.020 0.067 0.060 0.266 0.362 0.417 0.920 

Nickel 
X/M lmg/grl Values Vs. Concentration & pH 

pH 2 0.023 0.039 0.034 0.054 0. 100 0. 150 0.527 2.243 
pH 4 0.004 0.001 0.0017 0.010 0.093 0.246 0.520 I. 337 
pH 6 0.003 0.013 0.007 0.061 0.371 0.612 - I. 543 
pH 8 0.021 - 0.062 0.219 0.401 0.569 0.757 2.480 
pH 10 0.004 0.010 0.020 0.061 0.097 0.230 0.667 2.400 
pH 12 0.033 - 0.066 0. 100 0. 100 0.406 0.730 5.850 

300 400 

2. 122 I .989 
7.733 8.800 
0.091 I. 116 
0.488 -
I. 588 .0905 
2.880 I. I 07 

4.433 7.033 
3.300 5. I 00 
4.247 7.267 
4.387 8.233 
3.467 6.400 
9.717 -

500 

4.317 
I I .23 
3.583 
3.413 
3.540 
I .058 

8.667 
8.567 
7.500 
8.733 
9.433 
10.30 

600 

6.847 
13.90 
6.403 
5. 160 

3.666 

I 0. 16 
10.86 
9.567 
13.60 

.12. 70 
16.00 
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detection limits of the analytical instrument. As an example of the 

problems encountered in attempting to fit the low concentration range 

data to an isotherm, Figures 5-16 show the results from the attempt to 

fit the data to the Langmuir low isotherm. 

Figures 17 through 20, plotting effluent concentration versus time, 

show breakthrough curves for the column studies using both tapwater and 

wastewater. Tables I I I ·and IV show the relationships between column 

runs, i I lustrating breakthrough times, saturation times and weight of 

metal adsorbed given the seperate conditions of each run. In every case 

nickel breakthrough occurred first in both individual and mixed metal 

trials. Nickel also reached saturation ahead of copper. T-herefore, 

the carbon demonstrated a greater adsorptive capacity for copper than 

for nickel in the column studies and nickel demonstrated the greater mo­

b i I i ty. 

Figure 21 shows the results investigating soluble BOD uptake by the 

carbon. These results show that the BOD in the effluent from the column 

increased over time, while the BOD in the influent remained constant at 

27 mg/1 . It also shows the column adsorbed I .27 mg/gr soluble, biode-

gradable organics during the first 120 minutes of the trial. 
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Figure 18. Large Column Trial - 150 mg/1 Mixed Metals 
Effluent Concentration Versus Time 
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Figure 19. Small Column Trial - 1.0 mg/1 Individual Metals 
Effluent Concentration Versus Time 



c 
0 

.... 
d 
$... .... 
c 
CD 
0 
c 
0 

u 
.... 
c 
CD 
::3 

...-4 

...... .... 
w 

Small Column Tr~al 

0.5 mg/1 
Mtxed Met~ls T~t~l 

COPPER CJ 

NICKEL o 

45 

.50~------·-------------------------------~----~ 

.45 

I 
I 

.401 

. 351 

I 
.30 

.25 

.20 

.15 

.1 Ol 
I 
I 

I 

1!1 

T l me (min) flDw R~te = 100 ml/mLn 

Figure 20. Small Column Trial - 0.5 mg/l Mixed Metals 
Effluent Concentration Versus Time 



TABLE I I I 

LARGE COLUMN SUMMARY 

Sol ubi I ized Metals in Tap Water 

Trial Description 

350 mg/1 Ni 
Individual 
Metals Trial 

350 mg/1 Cu 
Individual 
Metals Trai I 

150 mg/1 Ni 
Mixed 
Metals Trial 

150 mg/1 Cu 
Mixed 
Metals Trial 

Mixed Metal 
Summary 
300 mg/1 Total 

Breakthrough 
Time 
(minl 

12 

32 

12 

45 

Trial Condition Summary 

pH 
Temp 

Carbon Weight 
F I ow Rate· 

Contact Time 

Saturation 
Time 
(minl 

3.5 
23°C 

50 

105 

38 

92 

860 grams .. 
200ml/min 
10.50 min 

Weight of 
Metal Ads 

at 
Brkthrgh 

mg/gr 

0.97 

2.58 

0.41 

I .53 

I .94 

46 

Weight of 
Metal Ads 

at 
Saturat 

mg/gr 

4.07 

8.47 

I. 30 

3. 14 

4.44 



TABLE IV 

SMALL COLUMN SUMMARY 

Trial Description 

I • 0 mg/ I N i 
Individual 
Metals Trial 

I . 0 mg/ I Cu 
Individual 
Metals Trial 

0.5 mg/1 Ni 
Mixed 
Metals Trial 

0.5 mg/1 Cu 
Mixed 
Metals Trial 

Mixed Metal 
Summary 
I.Omg/1 Total 

Breakthrough 
Time 
(minl 

10 

10 

8 

12 

Trial Condition Summary 

pH 
Temp 

Carbon Weight 
Flow Rate 

Contact Time 

6.8 
23°C 

Saturation 
Time 
(minl 

85 

140 

82 

115 

100 grams 
100 ml/min 
I. 860 min 

47 

Weight of Weight of 
Metal ~.ds Metal Ads 

at at 
Brkthrgh Saturat 

mg/gr mg/gr 

0.010 0.085 

0.010 0. 140 

0.008 0.082 

0.012 0. I 15 

0.020 0. 197 
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CHAPTER V 

DISCUSSION 

Simply stated, the purpose of this study was to examine the rela­

tive adsorptive properties of copper and nickel on activa;ed carbon. 

The results, gathered from both batch and column studies, were influenc­

ed by the initial concentration of metals, the pH of the solvent, total 

time of contact with the carbon and type of solvent the metals were 

mixed with; i.e., deionized water, tap water or secondary municipal 

wastewater effluent. The significance of each of these factors as re­

lated to the practical applications of activated carbon for removal of 

copper and nickel are appropriate areas for discussion. 

Batch Studies 

The I iterature stated that the adsorption capacity of the activat­

ed carbon generally increases as the pH decreases (48J. However, this 

effect is influenced heavily by precipitation at pHs above 6 tor copper 

and above 9 for nickel (31, 43, 48). In the concentration range of 

1-50 mg/1 for both copper and nickel, there was no apparent trend of 

increasing adsorption with decreasing pH. For copper in the concentra­

tion range of 100-600 mg/1, there is an obvious trend of increasing 

adsorption with decreasing pH for pH values of 12-4. In all cases, X/M 

at a pH of 2 was less than at a pH of 4. Maximum adsorption of copper 

1n this study occurred at a pH of 4. Decreased sorption of copper at a 

49 
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pH of 2 could have-resulted from an increase in competition of copper 

and H+ for adsorptive sites. This phenomena of metal ion-hydrogen ion 

competition has been observed in other studies (58). For nickel at con­

centrations of 100-600 mg/1 the observed trend is opposite of that for 

copper in that maximum sorption occurs at the highest pH values for alI 

cases except the 400 mg/1 concentration. 

In summary, copper at high concentrations was the only case in 

which increasing sorption with decreasing pH was observed. There are 

several possible reasons for this. It should be remembered that pre-

cipitation is a competing mechanism at higher pH values and could have 

affected the sorption reaction. In addition, the relationship between 

adsorption and pH was described as being general and possibly does not 

apply to all metals. Cadmium is a notable exception. Huang and Smith 

(581 and Huang and Wirth (59) have investigated the removal of cadmium 

from metal plating wastes using activated carbon. In studies conducted 

to determine the effects of pH on cadmium removal, it was pointed out 

that because of pH affects the formation and distribution of the various 

species of cadmium, adsorption characteristics may vary with the pH. 

Figures I and 2 indicate that the species of copper and nickel do defi­

nitely vary with pH and therefore, because different species ar~ being 

sorbed at different pH values, there may be no definitive trend. 

Similar to the behavior of copper and nickel in this study, the adsorp­

tion of cad~ium in Huang and Smith's (58) study varied with the pH, yet 

showed maximum adsorption at a specific pH of 6.7. 

The effects of concentration on adsorption were distinct. Table 

II shows this most graphically as the X/M values increased from the 

lower to higher concentrations with copper and nickel at alI pH ranges. 
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Huang and Smith {58J also pointed out that increasing the cadmium con­

centration increased adsorption over the entire pH range {2-IOJ they 

studied. 

Batch studies using activated carbon not only i I lustrate the ex­

tent of adsorption and factors affecting it, but are also commonly 

used to predict the usefulness of the carbon in removing a given waste 

in a "once through" column system. The batch studies accomplish this 

by the following: 

I. Given a general idea of how effectively carbon wi II adsorb im­

purities present in a given wastewater. 

2. Predicting the maximum quantity of impurities the carbon wi II 

adsorb. 

3. Giving a rough estimate of the economics of using activated 

carbon for column removal of impurities by estimating the volume of 

carbon required per volume of wastewater and predicting the total cost 

of the required operation in terms of capitol costs and operation/main­

tenance costs {60). 

The batch studies yield the values of X/M for a given concentration 

and pH {Table I I J. The X/M value for a given concentration relates to 

whether or not a column system would be financially feasible to con-

struct. ICI Corporation of Wilmington, Delaware, a company experienced 

in pi lot studies and constructing these .columns, has set the following 

general guide! ines for relating X/M values to the economic advisabi I ity 

of building activated carbon columns for removal of a given contaminate. 

If X/M at a given concentration is greater than 0.10 {10 per­

cent), a carbon system is I ikely to be economically feasible and carbon 

column tests should be considered. 
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2. If X/M at a given concentration is between 0.05 and I .0, a 

carbon system is questionable, but the carbon tests should be consider­

ed. 

3. If X/M at a given concentration is less than 0.05 then a car-

bon system does not appear to be economically practical (54, 60). 

In comparing the X/M va I ues for both copper and n i eke I at a I I pH's 

and concentrations, and relating them to the 0.10 I imit as previously 

discussed, it appears that at concentrations below 25 mg/1 for both 

metals, carbon columns would not appear to be given consideration for 

column studies, and may not be economically practical. However, at 

concentrations at the greater than 25 mg/1, co I umn systems appear to be 

feasible as previously discussed and the concept that this term is used 

as a general guideline for defining the practicality of future studies 

as predicted for finally bui I ding a system (54, 60). 

When discussing the batch systems and the results obtained, it is 

important to distinguish between how the results are interpreted and how 

batch and column systems relate to each other. Table V shows the values 

of c, or concentrations remaining in solution, in the batch systems. 

Although the X/M was uniformly below 0.10 at low concentrations, a look 

at the actual adsorption values yields an impressive record with respect 

to remova I by the batch systems. Near I y a I I the va I ues are be I ow the 

discharge rimitations of 1.00 gm/1 (61, 62l and many are below even 

drinking water limits of 0.1 mg/1 (4l. These results appear, then, at 

least on a preliminary basis, to indicate that batch systems for very 

small volumes and small metal concentrations are possible and quite ef­

ficient for removal of copper and nickel, if these systems were to be 

justified economically and practically on a volume and cost basis. 



Cone 

pH 2 

pH 4 

pH 6 

pH 8 

pH 10 

pH 12 

pH 2 

pH 4 

pH 6 

pH 8 

pH 10 

pH 12 

TABLE V 

METAL CONCENTRATION REMAINING VERSUS INITIAL 
CONCENTRATION AND pH 

Copper-
Concentr-ation Remaining (c) vs. In it Concentr-ation & pH 

I 2 5 10 25 

0.00 0.03 0. 12 0.32 3. 19 

0.00 0.01 0.66 0.75 0.29 

0.00 0.05 0.52 0.92 2.36 

0.00 0.01 0~61 I .56 0.82 

0.01 0.01 0.07 0.52 0.39 

0.00 0.01 0.02 0. II 0.38 

Nickel 
Concentr-ation Remaining (c) Vs. In it Concentr-ation & pH 

0.65 0.87 I .00 I .21 2.89 

0.03 0.04 0.03 0. I 0 

0.07 0.08 0. 14 0. 13 

0.02 0.01 0.04 0.02 0.03 

0.09 0.07 0. I I 

0.02 0.03 0.08 0. 17 

53 

50 

10.94 

0.26 

0.60 

4. I I 

0.67 

0. 15 

0.08 

0. I 7 

0. 19 
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Column Studies 

The most obvious discovery from the results of the column studies 

was actually a re-confirmation of information found in the literature 

that states that nickel is much more highly mobile than copper 131, 44, 

53l. The breakthrough curves !Figures 17, 20J demonstrated that the 

carbon had an affinity for copper over nickel at a ratio of at least 

2:1 in the column studies, even though the ultimate affinity for nickel 

was shown to be greater than copper in the batch studies. 

In the large column individual metals trial !Figure 17l, the curves 

assumed nearly identical shapes for both copper and nickel. However 

breakthrough for nickel occurred 20 minutes before copper and exhaustion 

occurred 73 minutes before copper. The results for the mixed metals 

trial in the large columns !Figure 18J showed that breakthrough o~curr­

ed for nickel at the 12 minute point and breakthrough for copper occu11-

ed at the 40 minute point. In this trial, exhaustion occurred for 

nickel 54 minutes before copper. 

Table Ill shows the large column summary for individual and mixed 

met a I t 1 i a Is. It shows the carbon adsorbed 2.08 times more copper than 

nickel in the individual metals run and 2.41 times more copper than 

nickel in the mixed metals run at saturation. Table Ill also shows that 

the carbon adsorbed 1.9 times more metal during the individual metals 

trial than it did during the mixed metals trial .. There are several pos­

sible reasons for this behavior. The most obvious reason is, of course, 

the concentration of each metal during the mixed metals trials was one 

half that of the concentration during the individual metals trial. 

Another possible reason is rollover t54J. Rollover is defined as 

displacement of one contaminant by another on the surface of the carbon. 
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As two contaminant species flow through a column, a more strongly ad­

sorbed species may displace the less strongly adsorbed componenJ, fore-

ing it deeper into the bed, and utlimately out. If this were occurring, 

then the competition for sites would result in the nickel breaking 

through first and at a weight per weight value less than if nickel were 

in the solution alone. This was in fact observed, although the lower 

weight to weight value could also have been the result of the lower con­

centration. Copper should then breakthrough last; and because this 

competition was occurring at a uniform level (as the metals were equally 

mixed), and because the copper did not replace every nickel site, the 

total displacement or rollover would result in a curve roughly equiva­

lent to that of the curve represented by the metal alone in solution 

(54). This, too, was observed. 

Table IV shows the results of the small columns trial in which 

wastewater was the solvent for the metals. Figure 19 shows the smal 

column with 1.0 mg/1 metals run through the columns individually. 

Breakthrough occurred for both copper and nickel at the 10 minute point, 

but saturation occurred 55 minutes later for copper than for nickel. 

The mixed metals trial (Figure 20) showed breakthrough 4 minutes ear­

lier for nickel than copper, and saturation for nickel in the mixed 

metals trial occurred 33 minutes earlier than for copper. 

The weight per weight adsorption for the metals at saturation show­

ed the carbon adsorbing I .64 more copper than nickel on an individual 

metals basis and I .40 times more copper when the metals were mixed. 

However, when comparing the total metals weight adsorbed between the in­

dividual and mixed metals trials, it appeared that the carbon adsorbed 

slightly more metal in the- mixed metals run than when run individually 

in the small column runs. 
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It was clear at this point that the adsorption characteristics had 

changed from the metals at high concentrations applied to the carbon in 

tap water when compared to the characteristics of the metals applied to 

the carbon at low concentrations in wastewater effluent. The explana­

tion for this observation is probably that there is competition for 

sites by the other myriad contaminates in the effluent and it is this 

point which is essential in considering what is happening in the small 

columns. 

The carbon adsorbs anything that is highly polar or wi II physically 

fit into its pores. Its adsorption is also determined by pore size, 

distribution, total surface area, wetting characteristics, polarity, pH 

and contact time 157, 63l. Given this wide range of variables and the 

highly complex nature of what is in the waste effluent, it becomes dif­

ficult if not impossible to precisely or completely identify the exact 

processes that are occurring on the surface of the carbon and what is 

happening to the metals. 

However, it is very I ikely that aside from the bi II ions of indi­

vidual molecular interactions, several macromolecular processes can be 

identified with the substantive processes that are finally observed. 

Thus, it is probably sufficient to maintain an awareness of the micro­

molecular processes while understanding that in the large sense, though 

the final results will be highly influenced by these, they will not be 

completely overshadowed by that primary influence exerted by the summa­

tion of all the reactions and the physical priorities finally exhibited. 

Figure 21 shows the results of the secondary effluent BOD when run 

through the small columns. The BOD increased in a I inear fashon, re-

moving from 13.5 mg/1 BOD at tr1e start of the trial to 10 mg/1 at the 
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120 minute point into the trial. The total BOD adsorbed was I .27 mg BOD 

per gram of carbon. This was 9.07 times the amount of copper during its 

individual run and 6.44 times the total metals adsorbed by the carbon 

during the mixed metals run. Again, the influent concentration of the 

BOD must be considered (27 mg/1 BOD) and compared to the metals concen­

trations (1.0 mg/1 individually and 0.50 mg/1 mixed). But it is clear 

that the competition exists and given a highly polar, more adsorbable, 

more concentrated organic loading, the carbon wi I I almost certainly per­

ferentially adsorb the BOD as was observed. 

General Analysis of Data 

Although the data from each study presented interesting results, it 

is difficult to make too many comparisons between data from different 

studies because of widely different conditions of each trial ?uch as pH, 

concentration, contact time, nature of solvent and competition between 

metals or other contaminates with the metals for available sites of ad-

sorption. 

However, an interesting relationship observed is the comparison of 

the batch X/M values at the 24 hour point (Table I I l to the weight of 

metal adsorbed at saturation in the carbon column (individual metal at 

350 mg/1 l as shown on Tab I e I I I . In an approximate interpolation between 

the va I ues on Tab I e I I ( 350 mg/ I at a pH of 3. 5) for both copper and 

nickel, it is notable that the X/M value in the table approximates what 

was observed in the columns at 8.47 mg/gr for copper and 4.07 mg/gr for 

nickel, even though at nearly alI other pH ranges and concentrations, 

the carbon adsorbed nickel at higher values. 

Although the contact times accounting for these results were widely 

different (24 hours in the batch studies and 10.5 minutes in the large 



column studies), it is significant to note that the adsorption weights 

were so similar. This indicates that the adsorption process in this 

case occurred within a very short period of time; at least a majority 

of the process occurred within 10 minutes. 

It is also interesting to note the comparison of uptake of copper 

and nickel in this study to that of Maruyama et al. (53J. In their 

study, using secondary effluent, the capacity of carbon to adsorb cop-
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per was 0.264 mg/gr. In this study, the value was 0.120 mg/gr for nick-

el, their value for capacity adsorbance was 0.04 mg/gr and our value of 

0.085 mg/gr. Th.is comparison, again, is valid only if the conditions of 

his study were similar to those of this study in pH, concentration and 

type and quality of solvent. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Both copper and nickel were removed, to some extent, from tap water 

and secondary municipal wastewater effluent by granular activated carbon 

in both batch and column systems. The relative removal rates were dif-

ferent, with copper being removed most efficiently by the carbon than 

nickel in the column systems. Howeverj nickel was removed more effi-

ciently in the batch systems. 

Batch systems were shown to be highly effective in removing smal I 

concentrations of copper and nickel in given volumes with long contact 

times. However, column systems were found to be effective, in the short 

term, in removing large concentrations (350 mg/ll of the metals. Column 

systems were found to be quite ineffective for removing small concentra-

tions (1.0 mg/ll from secondary wastewater effluent, probably due to the 

competitive effects of organics and other contaminants in the water. 

~ 

The predictive abi I ities of isotherms from the batch studies were 

found to be quite good as was their abi I ity to predict relative affinity 

for each metal by the carbon. 

Competition for carbon sites was probably present when copper and 

nickel were mixed in the same solution and introduced into the columns. 

It was evident by less uptake by the carbon attributed to rollover. 

The effects of concentration were most pronounced and deomonstrated 
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that as the concentration increased, the adsorption increased in every 

. 
case investigated. The effects of pH on the adsorptive process was not 

so clearly evident, with adsorption occurring more efficiently at dif-

ferent pH's for each metal. This phenomenon was probably due to the ef-

fects of the different species of metal present and sorbed at different 

pH values. 

Finally, it should be noted that the feasibility of using activated 

carbon as the exclusive removal mechanism for these metals may not be at-

tractive or financially acceptable. As stated previously, precipitation 

occurs at pH values higher than 7 and at concentrations greater than 10 

mg/1. This has two primary implications for the adsorptive process using 

activated carbon. 

I. Precipitation could be uti I ized as a method for metal removal 

that is less expensive than using activated carbon. After pre-treatment 

by precipitation, the effluent could be sent to columns or batch reactors 

for polishing. 

2. Improper pH adjustment or monitoring before or within the col-

umns can radically influence uptake by coating the carbon with precipi-

tate or even clogging the carbon itself. 

Recommendations 

The recommendations are: 

I. Examine specific relationships between precipitation and the 

adsorptive process at all concentrations with both copper and nickel. 

2. Examine the effects of Biochemical Oxygen Demand on the adsorp-

tion of copper and nickel by relating BOD concentration to the amount 

of metal adsorbed per unit weight of carbon. 



3. Determine the most effective combination of removal of copper 

or nickel by precipitation followed by adsorption on activated carbon. 

4. Determine the exact relationships of adsorption of copper and 

nickel vs. pH and the effect of precipitation on this process. 

61 

5. Perform a series of studies with a! I conditions kept the same, 

such as concentration, column size, pH, metal concentration and solvent. 

6. Perform studies using column staging with low metal concentra­

tions in secondary effluent to investigate the effects of greater depth 

and contact time that would perhaps enhance the adsorption of copper and 

nickel and trap. the more polar, concentrated organic contaminants in 

the lead columns. 
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