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PREFACE

The purpose of this study was to examine improvements to reinforcement learning (RL)

algorithms in order to successfully interact with dynamic environments. The scope of the

research was that of RL algorithms as applied to robotic navigation. Proposed

improvements were: addition of a forgetting mechanism, feature based state inputs, and

hierarchical structuring of an RL agent. Experiments were perfonned to evaluate the

individual merits and flaws of each proposal, to compare proposed methods to prior

established methods, and to compare proposed methods to theoretically optimal solutions.

Addition of a forgetting mechanism did improve the learning times of RL agents in a

dynamic environment. Direct implementation of a feature~based RL agent did not result

in any performance enhancements, as pure feature-based navigation results in a lack of

positional awareness, and the inability of the agent to determine the location of the goal

state. [nclusion of a hierarchical structure in an RL agent resulted in improved

performance, specifically when one layer of the hierarchy included a feature-based agent

for obstacle avoidance, and a standard RL agent for global navigation. In summary, the

inclusion of a forgetting mechanism, and the use of a hierarchically structured RL agent

offer substantially increased performance when compared to traditional RL agents

navigating in a dynamic environment.
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NOMENCLATURE

The current state of the RL agent.

The reward received by the agent at time t .

The action taken by the agent at time t .

The value ofbeing in state S , called the state value function.

The value of taking action a from S • called the action value function.

The probability of taking action a from S. Called the policyfunction.

The total reward expected beginning from time t. Called the return.

Probability of taking a non-greedy action when using a e -soft policy.

Learning rate for value function updates.

Weighting factor for the estimated next state in value function updates.

State-to-state transition penalty.

The penalty associated with taking action a from S .

State value decay factor used in forgetting.

Binary function indicating whether an obstacle is present in state S .
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CHAPTER I

INTRODUCTION

t.1 Background

This thesis addresses the subject of reinforcement learning (RL) as applied to robotic

navigation in a dynamic environment. Prior to discussion of the proposed work, detailed

overviews of the fields of RL and robotic navigation will be presented. Following the

introductory material, proposals for the enhancement of traditional RL algorithms will be

presented and examined in depth. An experimental methodology will be presented that is

suitable for analysis of the proposed solutions, and the results of performed experiments

will be detailed and analyzed.

1.1.1 Reinforcement Learning

Reinforcement learning (RL) refers to a class of unsupervised machine learning

algorithms that seek to maximize a numerical reward signal. Instead of utilizing

examples of correct action, as in supe.rvised learning methods, RL methods achieve

learning by trying many actions and learning which of those actions produce the most

reward. A discussion of supervised vs. unsupervised learning methods can be found in

[Huang, 1994]. In the most general case, the reward signal may be delayed, or even time­

varying, making credit assignment to actions very difficult. The remainder of this

subsection discusses motivations behind the use of RL and typical implementations and

applications of RL algorithms. More detailed information will be presented in Chapter II.



As mentioned above, RL refers to a large group of learning algorithms. The common

thread between these algorithms is that they all attempt to solve a particular class of

problems. These problems are defined as those problems which involve an agent

learning to achieve a goal through interaction with its environment [Watkins, 1989]. It

can be seen that this definition is very broad; however, certain necessary elements can be

extracted from the definition. The elements necessary to any RL algorithm include an

agent, its environment, a method of selecting actions, a method of determining the

immediate utility of each action, and a method of estimating the long term utility of

actions taken [Sutton and Barto, 1998]. In addition, an RL algorithm may include a

model of its environment [Whitehead, 1990]. The form and implementation of each

element will be discussed in detail in Chapter II of this thesis.

The strength of reinforcement learning is that it does not require explicit examples of

correct action, and can thus be applied to systems for which such examples are not

readily available. RL methods have been used to train neural networks [Tesauro, 1995],

to control dynamic channel assignment in communications networks [Nie, 1999] and to

construct fuzzy logic rule bases for fuzzy control systems [Beom, 1995]. It can be seen

that RL methods do lend themselves to the solution of many diverse problems. However,

there are some limitations to the use of RL. One primary difficulty faced by application

designers is that RL methods tend to learn very slowly. This can lead to poor

performance in dynamic environments [Coelho, 1998]. Another weakness of RL

methods is the tradeoff between exploration and exploitation. Although RL agents are

trying to reach a goal as quickly as possible (exploitation), they must also seek to learn

more information about their environment in order to enhance future performance
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(exploration). The exploration/exploitation dilemma is analogous to the tradeoff between

system control and system identification in the field of optimal control [Witten, 1976].

Transference of knowledge from one agent to another is another difficulty when

considering RL systems [Malak, 2001]. This is due to the fact that RL is a global

learning method that contains all of the information learned about the environment in a

single value function. Knowledge gained by an RL agent is very specific to the

environment the agent was operating in, and cannot be easily transferred to another agent,

even if the environments are very similar. For example, the knowledge gained by an RL

agent that learned to drive from Stillwater to Oklahoma City could not be transferred to

an agent that was to drive from Stillwater to Tulsa. Even though the problem domains

are very similar, and it seems that much general knowledge obtained from one agent

could benefit the other, there is no efficient method for transference of that knowledge.

Due to the weaknesses of RL methods, little work has been done to date on the use of RL

to directly control navigation of an autonomous robot. RL methods have been used in the

development of robotic control systems, as was mentioned earlier, but they have not been

used as a method of directly controlling a robot. Typically, RL systems are used to

determine the parameters of another type of control system, such as a fuzzy controller

[Beom, 1995]. The following subsection discusses methods that have been used in

robotic navigation, and the dilemmas faced by these methods.

1.1.2 Robotic Navigation

One of the dominant topics in current mobile robotics research is that of autonomous

navigation. As the sensory capabilities of mobile robots expand, devising control

systems to efficiently utilize the large amount of sensory data available will become an

3



increasingly difficult task. Establishing useful relationships between a robot's perception

space and control space will be increasingly complex [Davesne, 1999]. Much research

has been done towards automatic analysis of sensory features. This work has touched

upon many machine-learning techniques, including fuzzy logic [Buschka, 2000], neural

networks [Song, 1999], and reinforcement learning [Gaskett, 2000]. Hybrid learning

techniques such as neuro-fuzzy control have also been examined [Ng, 1998]. Although

there are difficulties associated with the use of RL in a robotic environment, if these

difficulties can be overcome RL can provide several benefits. For example, fuzzy logic

control systems face the difficulty of detennining the fuzzy sets used in the system

[Russell and Norvig, 1995]. RL methods require no expert knowledge of the problem

domain to implement, and as such are less prone to the difficulties that beset fuzzy logic

systems. In addition, as RL methods are unsupervised, they require no examples of

correct action to be successful, unlike most neural network training algorithms.

1.2 Research Goals

This thesis proposes methods to allow RL to be used in the direct control of a robot

navigating in a dynamic environment. Two primary sub-goals will be considered: to

extend RL algorithms so that they are more effective in dealing with a dynamic

environment, and to develop methods of transferring knowledge from one RL agent to

another.

One key to adaptation in a dynamic environment with a non-stationary fitness landscape

is the maintenance of a diversity of possible solutions [Kirley, 2000]. In order to achieve

the flexibility to cope with the difficulties a dynamic environment presents, RL methods

will be considered that favor exploration over exploitation. This is crucial in dynamic
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environments, as exploitation based methods respond very slowly to environmental

changes. This reflects upon the first goal above of achieving flexibility in dealing with

dynamic environments.

The second goal, of effectively transferring knowledge among RL agents, was chosen as

an effective method of combating the slow learning experienced by RL agents. If even

partial domain knowledge can be transferred from an experienced RL agent to a less-

experienced agent, the second agent would experience the benefit of having to obtain

much less information to achieve functionality in the target environment.

When considered together, reaching both of these goals will enable RL methods to be

used in direct control of robotic navigation in dynamic environments.

1.3 Significance of Study

To date, reinforcement learning has not been demonstrated as a learning method suitable

for handling the intricacies of navigation in a complex dynamic environment. The rate at

which RL methods learn is slow enough that RL methods are incapable of dealing with

moving obstacles, or even of dealing efficiently with terrain that changes over time. The

presented work will show that the proposed extensions to RL methods allow for effective

performance in a dynamic environment. The knowledge sharing ability could be applied

to multi-agent systems to facilitate collaboration and cooperation in a multi-robot system,

such as the unmanned aerial vehicle (UAV) systems used by [Godbole, et. al., 2000].

1.4 Outline of Work

The remainder of this thesis is organized as follows. Chapter II will present an overview

of the reinforcement-learning paradigm, as well as an examination of the current related

5



literature. Following that is an examination of recent work in the field of robotic

navigation in Chapter III. Chapter IV proposes extensions to the traditional RL methods.

These extensions are designed to meet the research goals presented above. Chapter V

details the methods of implementation, data collection, and analysis that will be used to

gauge the results of the proposed algorithms. Following this, Chapter VI presents the

results of the research performed. Chapter VII contains an analysis of the findings, and a

summary of the work performed.
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CHAPTERll

OVERVIEW OF REINFORCEMENT LEARNING

2.1 Origins

Reinforcement learning has three distinct roots. The idea of learning from experience

originates in behavioral psychology [Thorndike, 1911], [Pavlov, 1927]. The method of

dynamic programming, stemming from the field of optimal control [Bellman, 1957],

provides a mathematical formalism suitable for learning algorithms. Dynamic

programming is discussed in Subsection 2.3.1. Temporal difference (TO) methods

[Samuel, 1959], [Klopf, 1975] are often used to solve the temporal credit assignment

problem typically associated with RL methods. These methods are discussed in

Subsection 2.3.3. Elements of all three of these threads combine to create the modem

field of reinforcement learning.

2.2 Elements of Reinforcement Learning

As discussed in Chapter I, the elements common to any RL algorithm are an agent, its

environment, an action selection policy, a value function, and a reward function. The

RL agent is a discrete-time control system that outputs an action at each time step, and

observers feedback from the environment. The environment includes all elements of the

RL problem that are external to the agent. The action selection policy, hereafter simply

referred to as the policy, is used to determine what action the agent takes from each state.

A reward function, considered part of the environment, provides feedback to the agent

about the level of success of the agent's actions. A value function is maintained

7



internally by the agent, and is an estimation of the long-tenn total reward for a set of

actions starting at a specific state. Each of these elements will be discussed in

Subsections 2.2.1 through 2.2.5. In addition, two optional features of RL algorithms -

eligibility traces and environment models - will be discussed in Subsections 2.2.6 and

2.2.7. Figure 2.1 [Sutton, 1998] shows the architecture of a simple RL problem.

state
51

.......
Agent......

reward
r,

r t +]

Delay Environment
........

~-

5 t+l

Figure 2.1: A Simple RL Algorithm

action
at

-

2.2.1 The RL Agent

An RL agent is an instantiation of the policy and valu~ functions of an RL algorithm.

The agent can be as simple as an element in a simulation, or as complex as a completely

autonomous robot. Referring to Figure 2.1, the agent takes as inputs from the

environment the state, Sr , and reward, r, , resulting from the agent's previous action,

Qt-l' The agent uses these inputs to maintain internally a value function, V, and an

action selection policy, Jr. Using the value function and policy, the agent determines the

action to take, which results in another reward and a new state. The goal of the agent is

8
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to update the policy and value function so that the total reward obtained is the maximum

possible.

2.2.2 Environment

In the case of a computer simulation, the environment is a representation of the world

outside the agent. In this case, the environment includes a reward function, r, , that

provides the agent with information concerning its rate of success. In the case of an

agent implemented in hardware, the environment is the actual environment where the

agent is located. In this case, the reward function must be implemented as part of the

hardware. Formally, the reward function is considered to be part of the environment in

either case.

The environment in an RL problem can be classified as one of two types based on the

nature of the task to be performed by an agent. An episodic environment is an

environment in which the agent attempts to achieve a specific goal. When the agent

achieves this goal, the episode is over, and a new episode can begin. A continuing

environment is one in which the agent continuously explores, without a specific goal to

achieve. Episodic tasks are similar in nature to indefinite-horizon tasks from the theory

of Markov Decision Processes (MDP's). Continuing tasks are related to infinite-hori.zon

tasks. Further discussion ofRL in the context ofMDP's will be presented in Subsection

2.3.1 of this chapter.

One environment commonly used in RL research is the gridworld [Ono, 1995]. In its

simplest form, the gridworld is simply a two-dimensional grid where each location can

either be empty or contain an obstacle. The task is usually to traverse the gridworld from

a starting location to a goal location in the shortest amount of time while avoiding

9



obstacles. An RL agent in a gridworld typically has a very simple action set consisting of

one action each for moving in the four cardinal directions. A 16 x 16 gridworld problem

is pictured in Figure 2.2. The square marked S indicates the agent's starting state, and the

square marked G indicates the location of the goal state. The black squares indicate

obstacles that the agent cannot pass through.

G

,

s
,-

Figure 2.2: A Grid World Environment

2.2.3 Reward Function

The reward function in an RL problem provides feedhack concerning the perfonnance of

the agent. This function detennines the individual rewards r, given to the agent at each

time step. The reward function is designed to provide positive feedback when the agent

is perfonning successfully, and negative feedback when the agent's perfonnance is

unsatisfactory. The exact definition of the reward function is domain specific, and must

10



be tailored to the application being developed. An example reward function for a

gridworld environment would be to provide a value of -I 0 for each action that results in

collision with an obstacle, +10 for an action that reaches the goal state, and -1 for each

other action. This would encourage the agent to find the goal while avoiding obstacles.

The -1 penalty on each other action encourages the agent to reach the goal as quickly as

possible.

2.2.4 Value Function

Although the reward function provides immediate feedback to an RL agent, the goal of

the agent is not simply achieving reward. The goal of an RL agent is to earn the

The value y is a positive constant less than one, and is called the discount factor. The

maximum possible cumulative reward. This cumulative reward is referred to as return,

R. A discounted return is usually used, in which the values of future rewards are

(2.1 )
co

R, = .Iykrl+k+1
k~O

reduced, as in Equation (2.1).

discounted return R, is used in order to place greater importance on immediate rewards.

In order to achieve the maximum possible return, an agent maintains a value function.

The value function is an estimate of the return an agent can expect to receive in the

future. The value function typically takes one of two forms: a state value function, V(S) ,

or an action value function V(S,a). A state value function estimates the return that an

agent can expect to receive starting from the state S. An action value function estimates

the return that an agent can expect to receive if starting from state S and taking action a.

Most modem RL algorithms learn by updating the value function, although there are

11



methods that update the policy as well [Santharam, 1997]. Section 2.3 discusses several

RL algorithms, and the method of learning for each.

2.2.5 Policy

Policy refers to the method used by an RL agent to determine the most effective action to

take based on the value function and its current state. A policy ,,(8,0) is defmed as the

probability of taking action 0 from state S. The most commonly used policies are the

greedy policy, which simply selects the action that has the highest value function, and the

c -soft policy, which selects the greedy action with probability 1- C , and selects a random

non-greedy action with probability &. The advantage of the & -soft policy is that it is less

susceptible to being trapped in local minima. The greedy policy, on the other hand, is

optimal if the agent has perfect information about the environment.

2.2.6 Eligibility Traces

One difficulty experienced by RL methods is the problem of assigning credit for rewards

to the actions that generated those rewards. The concept of an eligibility trace is used to

distribute reward to multiple actions preceding the reward, thereby improving the

distribution of reward to the generating actions. In its most simplistic implementation, an

eligibility trace is simply a record of the history of actions taken by an RL agent. This is

typically implemented by maintaining an array of the same size as the value function,

with each element in the eligibility trace corresponding to the same element in the value

function. Each time an action is taken from a state, the corresponding state action pair in

the eligibility trace is incremented to represent that action being taken. Following each

action, the entire eligibility trace is scaled by a factor less than one. When the value

12
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function is updated, the discounted reward value is multiplied by the eligibility trace and

added to the value function, rather than only being applied to the most recently visited

state or state-action pair. This has the desired effect of distributing rewards (and

penalties) to the actions that preceded those rewards.

2.2.7 Environment Model

Some approaches to RL incorporate a model of the environment [Atkeson, 1997] that the

RL agent is operating in. The environment model is used to speed up the learning

process and to allow for planning of future actions. Learning speed is increased by

allowing simulated actions to be taken by the agent before (or between) actual

movements [Boone, 1997]. For example, in a path fmding application, an agent could

evaluate the results of taking a sequence of actions based on the current environmental

model. The results of these simulated actions can be used to train the RL agent exactly as

if the actions were actually taken. If the environment model is accurate, training times

can be dramatically reduced through the use of simulated reinforcement.

2.3 Approaches

There are three main classes of RL algorithms: dynamic programming (DP) methods,

Monte Carlo (Me) methods, and temporal difference (TD) methods. Each method has its

own benefits and drawbacks, which will be discussed in Subsections 2.3.1 through 2.3.3.

2.3.1 Dynamic Programming

The problem-solving methods referred to collectively as dynamic programming are

algorithms that produce optimal policies if given a perfect model of the environment

[Bertsekas, 1995]. If the environment can be modeled as a finite MDP, then DP

13



techniques may be used to generate a policy producing the best-possible actions for the

environment. The primary methods used in DP algorithms are: policy evaluation, policy

improvement, policy iteration, and value iteration.

Policy evaluation refers to the act of computing the state value function V(S) based on

following a policy Jr. This value function is referred to as Vir (S). Policy evaluation is

very computation intensive, especially in large environments [Bertsekas, 1998]. Policy

improvement is an iterative process of determining a new policy, Jr' , that provides better

performance using the same value function. This is accomplished by evaluation the

action value function for each possible action from a given state. The process of

evaluating the action value function in this manner is referred to as state backup. Policy

improvement has been proven in [Bellman, 1957] to converge to an optimal policy for

the current value function. However, there is no guarantee on the speed of the

convergence.

By alternating steps of policy evaluation and policy improvement, an optimal policy, tr· ,

and its corresponding value function, V·, may be obtained [Howard, 1960]. This process

is referred to as policy iteration. A simplified version of policy iteration, called value

iteration, works in the same manner, but steps of policy improvement are stopped after a

single step, rather than iterating until optimality is reached. Value iteration has

substantial computational advantages over policy iteration [Puterman, 1978], and can be

shown to converge to an optimum value function if one exists.

The methods of dynamic programming that have been discussed provide a very important

theoretical background for the study of modern RL techniques. However, due to the

requirement of a perfect model of the environment as a MDP, the use of pure DP

14
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algorithms is very limited. The ideas presented in the discussion of DP will be returned

to when temporal difference learning is discussed in Subsection 2.3.3.

2.3.2 Monte Carlo Methods

Monte Carlo (MC) methods approach the RL problem by estimating value functions

through experience with the environment. The actual methods used are similar to OP

methods, and are referred to in the same manner - policy evaluation, policy

improvement, and policy iteration. The difference between DP and MC methods lies in

the technique of value estimation. but not in the results or use of the estimated value

functions. Where dynamic programming methods use calculations based on MOP

theory, Monte Carlo methods rely on averaging returns from following a policy [Barto,

1994]. One weakness of this method is that if a policy does not visit a certain state, the

value of that state will never be updated. In order to deal with this disadvantage, the

method of off-policy evaluation is often used. In off-policy evaluation, one policy is u ed

for action selection, but the results are used to improve a different policy. [n this case,

the control policy is typically £ -soft, while the policy estimation used for policy iteration

is greedy. Although Monte Carlo methods are rarely used in modern RL schemes, the

concept of off-policy evaluation is used quite often.

2.3.3 Temporal Difference Learning

Temporal difference (TD) learning combines many of the best features of both dynamic

programming and Monte Carlo methods. Like dynamic programming, TD methods are

iterative, updating value estimates based on previous estimates. Like Monte Carlo

methods, TO methods learn from experience. TD methods possess many advantages
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over either dynamic programming or Monte Carlo methods [Holland, 1975]. TD

methods do not require an environment model in order tol~ as does DP; they can also

be implemented in an on-line manner, unlike MC methods. The most common TD

methods in use are Q-Learning [Watkins, 1989] and Sarsa [Sutton, 1996]. The primary

difference between the two algorithms is that Q-Learning is an off-policy whereas Sarsa

is an on-policy method. Q-Learning will be discussed below. Sarsa is not discussed, as it

is very similar to Q-Learning with the exception that Sarsa uses actual values from the

resultant state of an action where Q-Learning uses an estimated value of the next state

when performing action value updates.

Watkin's Q-Learning algorithm estimates the optimal action value function QO regardless

of the policy being followed. The only policy requirement for convergence to optimality

is that all state-action pairs continue to be visited. The action-value function Q is

learned by updating following each action according to Equation (2.2) below. a is the

learning rate, which controls how quickly action values are modified. r is the

discounting factor used for determination of return.

(2.2)

2.4 Disadvantages of RL Methods

Although RL methods do provide a framework for efficient unsupervised learning, they

are not without drawbacks. One prominent drawback is the amount of training that can

be required to achieve efficient behavior. Especially in cases where a priori knowledge

is unavailable for tuning the design of the agent, learning times can become prohibitively

long. This is due to the large number of actions that must be taken in order to learn about

the problem domain. Although some methods, such as Q-Learning are proven to
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converge to optimal solutions when given enough time to learn, the amount of time

necessary is not guaranteed. In fact, the time required to learn correct behavior in an

environment is in general exponential in the size of the domain [Bellman, 1957].

Another disadvantage of RL methods, associated with the slow learning times IS

difficulty in acting successfully in a dynamic environment. As the environment around

the agent changes, the agent must perform further exploration in order to determine the

correct actions for interacting with the environment. If the rate of environmental change

is faster than the ability of the agent to learn. then the agent will become incapable of

finding a strategy that allows correct action.

Finally, RL methods also experience difficulty when attempting to transfer knowledge

from one agent to another. This is due to the fact that RL agents incorporate all of their

domain knowledge in the value function, typically with very little localization of

information. It is very difficult to extract useful information from an agent's value

function, as that value function is implicitly dependent on the agent's policy, the internal

architecture ofthe agent, and the details of the surrounding environment.

Although these weakness make it difficult to apply RL methods to dynamic

environments, the benefits of RL - model free, unsupervised learning - make it worth the

effort to counteract the effects of these disadvantages.
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CHAPTER III

OVERVIEW OF ROBOTIC NAVIGATION

3.1 Origins

The study of autonomous navigation is a fairly recent field, beginning with several

examples of vision based navigation in the late 1980's [Kuan, 1988], [Turk, 1988],

[Sridhar, 1988]. These studies primarily focused on the vision system itself, and very

little attention was given to the actual navigation systems. Other early work included

design of hierarchical robotic control systems [Isik, 1988], development of knowledge-

based reasoning systems for navigation [Le Moigne, 1988], and work in sensor fusion for

robotics [Mann, 1988]. Many of the concepts developed in these pioneering works have

been incorporated into current robotic navigation research.

3.2 Approaches and Techniques

Although many different approaches to autonomous robotic navigation have been

developed, in general robotic navigation methods fall into two categories [Ryu, 1999].

Deliberative, or planning, methods focus on determining a navigation path before

attempting to traverse it, while reactive methods rely on reacting to environmental

stimuli. Some approaches [Brooks, 1986], [Arkin, 1987] rely entirely on reactive

methods, integrating a large number of reactive mechanisms to implement a coherent

behavior method for the entire robot. Other efforts [Mitchell, 1987] focus entirely on the

planning aspect of behavior. Although these works provide important theoretical
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backgrounds that can be built upon to achieve meaningful results, most current research

relies on integrating both deliberative and reactive behaviors. Subsections 3.2.1 and 3.2.2

provide individual studies of deliberative and reactive behaviors, respectively, while

Subsection 3.2.3 presents methods that have been used to integrate the two types of

behavior. The reason for integration of the two types of navigation is to provide the

ability to perform large scale tasks that is afforded by deliberative control, yet to also deal

robustly with unexpected situations, which is the hallmark of reactive control.

3.2.1 Deliberative Navigation Methods

Deliberative methods have been used extensively for path planning in robotic

applications. Early path planning experiments [Klarer, 1990] operated under the

assumption of a structured static environment that was completely known prior to

undertaking planning. Planning was also performed in an off-line mode, where the entire

plan was determined prior to beginning navigation. These simplifications allowed for

easy development of basic navigation strategies that could be expanded upon to deal with

dynamic and uncertain environments, and to algorithms that could be used in an on-line

planning mode.

One navigation method that has received much attention is the method of artificial

potential fields (APF). This method is implemented by generating a model of the

environment as a potential energy field, and then following the path that represents the

steepest descent along that energy field. Most artificial potential field research has

focused on reactive, rather than deliberative, behavior, but some applications of APF

theory to path planning have been investigated [Warren, 1990], [Wang, 2000], [Ibrahim,

2001]. Warren's approach relies on using another method to generate an initial path) and
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then using repulsive forces from obstacles to modify the path. These repulsive forces

push the path as far as possible from obstacles while still maintaining the initial origin

and destination points of the path. Wang uses a novel approach by modeling the APF

after heat transfer equations, rather than the traditionally used electrostatic potential

fields. Ibrahim simplifies the problem by using attractive forces towards open spaces,

rather than repulsive forces away from obstacles. Although the final result is similar, this

approach simplifies the calculations that must be performed, especially in environments

containing large numbers of obstacles. One difficulty typically experienced by APF

methods is that a large number of local minima exist in the generated energy field.

Dynamic programming methods have been applied to APF [Kwok, 1999] in order to

eliminate this difficulty. The drawback to this approach is that dynamic programming

methods are very computation intensive.

Important recent work focuses on path planning in dynamic or uncertain environments.

Two approaches to this problem have been developed. The first approach [Kim, 2001]

generates an initial plan, and adapts that plan as necessary to the environment as

navigation proceeds. The second approach [Fiorini, 1996] involves planning for the

motions of dynamic obstacles in the environment. Although this approach does allow for

definitive analysis of behavior with respect to obstacles, it is only applicable to cases

where the environment dynamics can be completely specified.

An example of adaptive planning is the re-planning method [Kim, 2001] that uses

localization methods to limit the scope of modification to the current plan. By onJy

modifying the smallest possible section of the current plan, subsequent modifications to

the remainder of the plan are minimized. Another adaptive planning method [Ferrari,
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1997] considers both temporal and spatial modification to the path plan. Ferrari also

introduces the use of two planning metrics - plan quality and plan robustness - that can

be used to characterize planned navigation paths, and to analyze the impact of variations

to a given plan.

Exact planning in a dynamic environment involves the calculation of obstacle paths as

well as the path of the robot. The concept of velocity obstacles [Fiorini, 1996] allows for

simplification of the required planning by defining a class of dynamic obstacles whose

behavior can be analyzed in general tenDS prior to planning. At the time of actual

planning, the precalculated obstacle dynamics can be used, simplifying the actual path

planning process. Recent work [Shiller, 2001] extends velocity obstacles to include

obstacles with non-linear velocities and arbitrary trajectories.

Deliberative approaches to navigation are capable of dealing with very complex

circumstances. However, their weakness is in dealing with unknowns in the

environment. These unknowns can take the form of an unexpected obstacle, a

malfunction in the robot itself, or some other event that the planning engme was

incapable of foreseeing. The next subsection discusses reactive navigation methods,

which are very robust when dealing with unexpected events.

3.2.2 Reactive Navigation Methods

Many approaches have been applied to reactive navigation. Artificial potential fields,

neural networks, reinforcement learning, and neuro-fuzzy controllers have all been used

to generate reactive behavior in autonomous robots. This subsection will explore various

methods of reactive navigation.
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Artificial potential fields, which were discussed in the context of deliberative behavior in

Subsection 3.2.1, have also been used to generate reactive behavior. An APF algorithm

based on electrostatic potential fields [Valavanis, 2000], has been demonstrated to

generate an approximately optimal path through a general static environment without the

use of prior knowledge. This APF approach was implemented in real-time using a

mobile robot and was demonstrated to successfully generate collision-free paths.

An extension of the APF method is to use more advanced methods of sensory processing

to generate the APF, and to then use traditional APF methods to generate a path. A

neural network system capable of integrating inputs from several sensors [Song, 1999]

has been used to detect and track moving obstacles, and to predict future states of those

obstacles. This multisensor predictor method was integrated with an APF navigation

method to generate real-time obstacle avoidance behavior in the presence of moving

obstacles.

Reinforcement learning has been used in a limited form to train a neural network

designed for reactive navigation [Millan, 1996]. Initially, Millan's controller generates

actions based only on a set of "basic reflexes" that are determined a priori based on

domain knowledge. As the robot navigates the environment, each time a new situation is

encountered, the controller generates a new action based on those basic reflexes. When a

familiar situation is encountered (i.e. the neural network successfully maps the situation

to one of the generated actions), that action is used. Over time, an RL algorithm is used

to determine the suitability of each of the generated actions, and to tune the operation of

the neural network. Although this controller architecture does learn very quickly, it does

have some severe limitations. The primary difficulty is that the size of the neural
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network can grow very large when dealing with complex environments. In the extreme,

this leads to slowed reaction times as the robot must perform increasingly more complex

calculations each time a new situation is encountered. Another difficulty is that new

actions may be generated for familiar situations due to incorrect classification because of

sensor nOIse.

Neuro-fuzzy controllers have also been used in reactive navigation research [Ng, 1998].

Ng proposed a three-level neuro-fuzzy controller called Nif-T (Neural Integrated Fuzzy

Controller). Nif-T consists of: fuzzy logic membership functions (FMF), a rule neural

network (RNN), and an output-refinement neural network (ORNN). The FMF fuzzifies

the sensory input data. This fuzzy data is operated on by the RNN, with the output of the

RNN being defuzzified. The defuzzified data is then used to train the ORNN level of the

controller. Using only a few rules to train the RNN, both wall-following (5 rules) and

multi-robot convoying (9 rules) behaviors were implemented. Neuro-fuzzy control has

been shown to be very robust; however, like all fuzzy logic based algorithms, it suffers

from the requirement that a priori expert knowledge be used to generate the FMF.

It can be seen that reactive navigation schemes have been implemented using many

different algorithms and architectures. The main weakness that defines reactive

navigation schemes is a very poor ability to scale to large problem domains. Although

purely reactive schemes may perform very well in small environments, the number of

reactive behaviors required to interact successfully with a very large or complex

environment is prohibitive to actual implementation. The next subsection will discuss

integration of reactive and deliberative navigation methods to implement a

comprehensive navigational controller.
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3.2.3 Combined Deliberative and Reactive Navigation

There are several approaches to coordinating plan-based and reaction-based behaviors

into a coherent control system. For sake of explanation, these approaches will be divided

into two basic categories: those methods where reactive behaviors may override planned

behavior, and those methods where planning is used to control reactive behaviors.

The first category is typified by Payton's autonomous land vehicle (ALV) control system

[Payton, 1990]. In this control system, navigation routes are planned using a map-based

planner. Then, the plans are executed using a set of planned behaviors. However, if at

any time a possible collision with an obstacle was sensed, reactive behaviors were

allowed to override the planned behaviors until the obstacle was cleared. This approach

provided acceptable paths in most situations. In some cases, though, unacceptable

behaviors were generated due to the interaction of planned and reactive behaviors. For

example, when being used to control a car driving on a road, the controller could

occasionally cause the car to veer completely off the road in order to avoid an obstacle,

even if it were possible to stay on the road and still avoid it. Payton concluded that some

level of interaction between the deliberative and reactive behaviors was necessary, but

did not specify the exact nature of that interaction.

An example of the second type of integrated navigation is that presented by [Ryu, 1999].

In this case, a topological map based planning engine implements the deliberative

navigation element. In addition to route planning, the planner also determines what

reactive behaviors should be used based on the robot's current situation. As the robot

navigates the planned path, the plan based controller either activates or inhibits each of a

set of reactive navigation tools. This approach avoids the difficulties experienced by
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Payton, but brings about its own set of difficulties. One possible problem is if a situation

arises that the planning engine had no conception of. Even if a reactive behavior exists

that is appropriate to deal with the incident, it is possible that at the time that behavior

was inhibited. This inability to deal with unplanned events is one prominent weakness of

deliberative navigation. In the case of Ryu's work, the incorporation of reactive control

would combat that effect to some degree, but it is still possible to suffer from the

weakness.

3.3 Summary

This chapter has presented examples of the two main types of robotic navigation, and

examples of methods used to combine those two approaches. Examples of both reactive

and deliberative navigation were presented, and the strengths and weaknesses of each

were discussed. In swnmary, deliberative, or plan-based, navigation is capable of solving

large navigation problems that would be very difficulty for reactive approaches to deal

with. However, purely deliberative control schemes have no ability to respond to

unplanned events or to unknown obstacles. On the other hand, reactive navigation is very

competent at obstacle avoidance and at dealing with unexpected occurrences, but is very

weak when trying to solve a large problem that planning approaches would have little

difficulty with. The combined strengths of the two methods allow for a very robust

navigation system, which is why a large arnOlll1t of research into robotic navigation has

focused on integrating the two approaches into a single controller.
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CHAPTER IV

PROPOSED SOLUTIONS

This chapter will present several proposed solutions to deal with the difficulties of

applying RL based learning systems to autonomous navigation problems in dynamic

environments. The three main ideas are: incorporation of a forgetting mechanism into

RL, use of feature-based state infonnation in an RL system, and hierarchical structuring

of an RL system. In addition, the combination of feature-based and hierarchical RL will

be considered.

4.1 Incorporating a Forgetting Mechanism into Q-Learning

One difficulty that stems from interacting with a dynamic environment is that an agent

may attempt to make use of knowledge that has become outdated due to the dynamics of

the environment. This difficulty is one facet of the exploration vs. exploitation dilemma

discussed in Chapter I. In order to mitigate the effects of using outdated knowledge, it is

proposed that a forgetting mechanism be incorporated into a penalty-based Q-Leaming

algorithm. Subsections 4.1.1 through 4.1.3 below detail this proposed algorithm.

4.1.1 Penalty Based Value Function

The proposed learning algorithm is an adaptation of Q-Learning to a detenninistic

environment. In a detenninistic environment, the subsequent state following an action is

known, allowing a simplification of the Q-Learning process by storing only values

associated with each state, rather than with each state-action pair. This modification

reduces the number of state values that must be maintained, consequently resulting in a
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more efficient learning algorithm. The state value function that is maintained is a penalty

function, which tracks the expected total cost associated with being in a given state.

As with most RL strategies, prior knowledge may be used to effectively initialize the

state value function. The method used here is to simply initialize the state-value function

to the distance from that state to the goal state. As the agent explores the environment, it

learns the penalty associated with each state, which is approximated by the value function

for that state. After each time step, the value function for the visited state is updated as

per Equation (4.1) presented below.

(4.1)

The parameter a is the learning rate, which controls how large the updates to the value

function are. Typical values of a for this algorithm are 0.05 to 0.2. The parameter y

controls the extent to which the value function update is based on the value of the next

state. Large values of y mean that the value function is very dependent on the value of

the following state, while small values of y mean that the value function update is more

dependent on the state to state transition penalty, p.

As the agent explores, the value of states arbitrarily far from the goal will approach a

maximum value VMAX, while the value of states arbitrarily near the goal will approach a

value VMlN. The value of VMAX can be derived from Equation (4.1) by assuming that,

after an infinite period of exploration, all states arbitrarily far from the goal will achieve

the same value, VMAX . Substituting into Equation (4.1), we obtain
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This equation can be solved to yield VMAX =~. Likewise, assuming that the values of
l-y

all states arbitrarily near the goal approach the value VMIN, Equation (4.1) can be

rewritten

VMIN =(I-a). VMIN+a(p+ y. 0).

This can be solved for VMIN = P .

4.1.2 Action Selection Policy

The action selection policy implemented for this research is very simple, selecting the

action a that minimizes the penalty associated with selecting that action. The penalty is

defined by a function that evaluates the penalty of taking action a from state S:

p(S,a) = 100· D(S') + VS'(i) , (4.2)

D(S') is a binary function, with a value of 1 indicating that an obstacle is present in the

resultant state. The scale factor on the obstacle function is chosen to be larger than VMAX,

so an action will never be chosen that results in collision with an adjacent obstacle.

As this action selection policy is a greedy policy, it favors exploitation rather than

exploration. The forgetting mechanism presented in Subsection 4.1.3 will add

exploratory behavior to the algorithm.

4.1.3 Forgetting Mechanism

The forgetting mechanism is implemented as a decay of the state value function:

V(S) =1-" V(S),
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where Il is a positive scalar between zero and one. This is applied to the value ftmction

of each state after the conclusion of each episode. For values of J..l close to 1, very little

forgetting will take place, resulting in an agent very similar to traditional Q-Learning.

For values close to zero, almost all penalty will be forgotten between episodes,

effectively causing the agent to explore the environment each episode, without any

reliance on previously learned knowledge.

4.1.4 Summary

A modified Q-Learning algorithm incorporating a forgetting mechanism has been

proposed. The algorithm differs from Q-Learning in that it maintains a state based value

function rather than a state-action pair based value function. The algorithm is

characterized by a value function update rule (4.1), an action evaluation function (4.2),

and a forgetting mechanism (4.3). The goal of this algorithm is to provide enhanced

performance in a dynamic envirorunent by utilizing exploratory behavior that maintain a

larger set of possible solutions than is kept by traditional Q-Learning.

4.2 Feature-Based Reinforcement Learning

One difficulty involved in the use of RL in large environments is that the number of state

values that must be maintained may increase to unmanageable sizes [Bellman, 1957]. In

order to reduce the number of state values that must be maintained, a modification to the

typical RL structure is proposed. Rather than storing a value for each individual state in

the environment, it is proposed that the value function be used to store the value of each

of a set of features.
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4.2.1 Motivation

The primary motivation for using a feature-based RL algorithm is to reduce the number

of state values that must be maintained. This will allow for use of RL agents in much

larger environments. Another possible benefit of feature based RL is an increased ability

to transfer knowledge from one agent to another. As the state values will be based on

some feature of the surrounding environment, rather than raw state data, information

about how to deal with certain features could be transferred from one agent to another. In

Chapter V, methods of evaluating performance both in terms of number of state values

maintained and in terms of ability to transfer knowledge will be discussed.

4.2.2 Implementation

Two approaches to the implementation of a feature-based RL algorithm will be

discussed. The first approach is a simple encoding of the agent's immediate

environment, while the second approach involves more sophisticated methods.

The simplest approach to implementing a feature-based RL algorithm is to directly

encode the area of the environment surrounding the agent. For example, consider the

gridworld environment discussed in Chapter II. If the 3x 3 square area surrounding the

agent's location was considered the current environmental feature, then the number of

possible features would be 256 - eight squares, each of which could either contain an

obstacle or be empty. Although this encoding method is very rudimentary, it could

conceivably be used in simple environments.

A more advanced approach would be to use a feature recognition tool, such as a neural

network, to process feature information. The neural network suggested is a multi-layer
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perceptron (MLP) trained to recognize environmental features prior to inclusion in the

RL agent. The input to the neural network would be the area surrounding the agent, and

the output would be an index representing the current state to be used by the RL agent.

An example would be to train a MLP to recognize vertical walls, horizontal walls, open

areas, and the goal. A block diagram illustrating the operation of this simple feature

based RL agent is shown below in Figure 4.1.

~ ""\
Reward, rt .....

Action, Cit
RL AgentState, St ... Feature Processed State, Spt ....

Processing
..

\... ~

JI+I
.....

Delay Environment
~

....
..../1+1
.....

Figure 4.1: Architecture of a Feature-Based RL Agent

4.2.3 Applications of Feature-Based RL

One possible application of feature-based RL is as the obstacle avoidance component of a

robotic navigation system. By using a feature-based RL system designed to recognize

potential obstacles, an agent could learn through interaction the most successful way to

deal with each obstacle present in the environment. Another related application would be

tor landmark recognition in a navigation system. As the RL agent learned the best path,
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the feature-based RL would enable learning of landmarks that were on or near the best

path.

One difficulty of feature-based RL is that, without modification, it provides no way of

allowing the agent to know its current position in the environment. As such, it is

unsuitable for direct use in most RL applications. However, when it is incorporated into

a system that utilizes other methods for knowledge of position, feature-based RL can add

the benefits of knowledge transference and reduced state complexity. This topic will be

covered in greater detail in Section 4.3, in the discussion of hierarchical RL. As the

applicability of purely feature-based RL is very limited, feature-based RL will not be

considered in experiments except as a component ofa hierarchical RL system.

4.3 Hierarchical Reinforcement Learning

In order to further increase the ability of RL agents to deal with a dynamic environment,

a two-level hierarchical reinforcement-learning scheme is proposed. This is postulated to

increase performance through two specific effects. First, by reducing problem

complexity, in the spirit of divide and conquer. Second, by allowing increased

knowledge transference from one agent to another through the separation of specific

elements of the problem domain. Hierarchical control schemes have been used to reduce

complexity in many applications [Pappas, 2000]. This section will present a method for

implementing a hierarchical structure in an RL agent.

4.3.1 Motivation

As discussed in Subsection 4.2.1, the performance of an RL agent may be enhanced by

reducing the complexity of the environment that the agent must deal with. This can be
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accomplished by reducing the amount of state information that must be maintained by the

agent. Also, although it does not directly result in performance increases, an ability to

transfer knowledge from one agent to another is a desirable characteristic of an RL

algorithm.

4.3.2 Implementation

A block diagram of a hierarchical RL agent is presented in Figure 4.2. The two layers of

this architecture each consist of a reinforcement-learning agent. By utilizing each level

of RL to handle a subset of the desired tas~ the complexity of the problem is reduced. In

this type of hierarchical scheme, the low-level agent generates the actions to be taken by

the system as a whole, using the output of the high-level RL agent as an additional input.

In the example of robotic navigation, the high-level agent could be used to choose a

general course of action, while the low-level agent would choose the specific action.

/ '\
Reward, rH.t ... Reward, rl,l ..... High-Level ..
State, SH.t .. Agent Des ired Course, c, - Low-Level Action, a.

r ...
AgentState, SL.t -...

"" -/

.....Sl.f+1...
Delay

..... SH,t+1
Environment ......... .....

....,rH.t+1....,

Figure 4.2: Architecture of a Simpte Hierarchica' RL Agent
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There are several issues to address when considering this type of hierarchical scheme.

First, a decision must be made about the method of presenting state information and

reward information to the two different agents.

Although the decision as to how to present state information is specific to the application,

in general the high-level agent should be presented with information that is global,

pertaining to the largest scope of the problem to be solved. The low-level agent should

be presented with local information pertaining to the specific type of sub-problem that the

low-level agent is supposed to handle. For example, in a robotic navigation system, the

high-level agent could use for its state information the current location of the robot; while

the low-level agent could use the state of the nearby environment. The high level agent

would generate a desired course to reach the goal as quickly as possible, while the low-

level agent would attempt to follow that course while avoiding any nearby obstacles.

The separation of reward values for the high- and low-level agents is a much more

difficult problem than the separation of state information, and is much more specific to

the problem domain. As such, we will discuss the reward values specifically in the

context of robotic navigation. As the high-level agent is designed to choose the overall

course to follow, the reward signal used for it should be the same as that used for

standard reinforcement learning agents: a small penalty for each step taken, a large

penalty for collisions with obstacles, and a large reward for reaching the goal. The exact

magnitudes of each reward and penalty should be determined based on the specific

environment.

The reward given to the low-level agent should be designed so as to provide accurate

feedback as to the suitable of that agent's actions. In order for this to happen. the reward
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function must be designed specifically to fit the task designated to the low-level agent

Continuing with the example of robotic navigation, it is suggested that the low-level

agent be given the task of obstacle avoidance. The output of the high-level agent would

indicate the direction of travel desired, and the low-level agent would attempt to move in

that direction unless obstacles were in the way. The reward to the low-level agent should

be generated by the high-level agent and should reflect whether or not the low-level agent

achieved travel in the desired direction, and if so, the speed with which the low-level

agent achieved the goal. The low-level agent should be heavily penalized for travel in the

wrong direction or for impacting obstacles, and slightly penalized for each step taken, in

order to assure that it attempts to attain results as quickly as possible. It should be

rewarded for travel in the direction chosen by the high-level agent.

4.3.3 Advantages of Hierarchical RL

The primary advantage of using multiple agents is to allow separation of different

elements of the problem, allowing for faster learning and for transference of knowledge.

This is best illustrated through example. Considering the autonomous navigation

problem, an agent could be designed to drive a car from Stillwater to Oklahoma City.

The high-level agent would choose the desired direction of travel with the goal of

reaching Oklahoma City. The low-level agent would implement obstacle avoidance

behavior. This would allow faster learning as the high-level agent would learn

exclusively about the route from Stillwater to Oklahoma City, while the low-level agent

would learn about avoiding obstacles, without consideration of the current location of the

car. The separation of navigation and obstacle avoidance would also allow some

transference of knowledge from one agent to another. Although the high-level
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knowledge gained would be specific to a particular problem, the low-level knowledge

could be directly transferred to another agent, as long as the structure of the agent

remained the same. For example, a second agent designed to drive from Stillwater to

Tulsa could use the obstacle avoidance information from the low-level agent, and have

the benefits of only having to learn route information.

4.4 Hierarchical, Feature-Based Reinforcement Learning

An extension of the hierarchical RL scheme discussed above is to use the output of a

feature recognition algorithm as the state input to the low-level RL agent. Considering

the example of robotic navigation, the "state" perceived by the low-level RL agent could

be the output of a neural network that is connected to a video camera. This would allow

the low-level agent to focus specifically on obstacle avoidance behavior, and would

reduce the complexity of the problem dealt with by the low-level agent.
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CHAPTER V

METHODOLOGY

5.1 Implementation of Reinforcement Learning Agents

All data presented in this thesis was obtained by simulation of RL agents using Matlab.

Functions were developed to implement each type of RL agent discussed: forgetting Q-

Learning, feature based Q-Learning, and hierarchical Q-Learning. Functions were also

developed to implement both static and dynamic gridworld environments. Each

experiment was performed using a Matlab script file containing instructions for

initializing the agent(s) and environment, collecting the data, and storing the data to a

file. Many experiments were performed in a batch mode, so that a large number of trials

could be performed without intervention. Section 5.2 below presents an overview of the

experiments perfonned, as well as the methodology used to analyze the results. Source

code used in experimentation is presented in Appendix A.

5.2 Summary of Experiments

This section presents a summary of the experiments performed, and an explanation of the

methods used to analyze the collected data. This chapter presents only the methodology

used for experimentation; actual results, and the analysis of those results, are presented in

Chapter VI.

Four main types of experiments were performed, the details of these are presented in

Subsections 5.2.1 - 5.2.4 below.
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5.2.1 Variation of Parameters

Each type of learning algorithm has several parameters that must be adjusted for optimal

performance. Prior to any comparative testing of algorithms, the behavior of each

algorithm was analyzed with respect to variation of its learning parameters, and with

respect to variation of environmental parameters. The results of these experiments were

used to determine agent parameters used in all further experiments.

For a standard Q-Learning agent, the parameters that were considered are: a, A., and r.

The forgetting Q-Learning agent is dependent on the same set of parameters as the

standard Q-Learning agent. In addition, it is dependent on the decay value for the

forgetting mechanism, fl .

For the hierarchical agent incorporating feature-based RL, the parameters to be

considered are: the parameters of both the low-level and high-level RL agents, which are

standard Q-Learning agents.

Environmental parameters were considered as well as agent parameters. For a static

environment, the parameters considered were the size of the gridworld, and the density of

obstacles in the gridworld. For dynamic environments, the parameter used to

characterize the environment was the dynamic period of environmental change.

In order to reduce the amount of data that must be analyzed, agent parameters were

optimized one at a time. For example, considering the standard Q-Leaming agent, the

values of the agent parameters were initially fixed at nominal values of a = 0.), A. = 0.9,

and r=0.9. For each environmental configuration that was examined, a was initially

varied from 0 to 1, and the value that produced the best performance selected. The same
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procedure was repeated for A, and then for r. Although this approach may lose some

generality, it is believed to be acceptable for the purpose of clarity.

In addition to establishing appropriate parameters for each RL agent in each type of

environment, the data obtained in this step allows for analysis of the behavior of each

proposed algorithm. By observing how each agent performs based on its internal

parameters, and the features of the environment it is operating in, some information

concerning the function of that algorithm can be deduced.

5.2.2 Comparison to Established Methods

In order to establish a baseline for analysis of the proposed RL algorithms, the

performance of each algorithm was compared to that of established algorithms in each

environment of interest. The established method used for comparison was traditional Q-

Learning, incorporating an eligibility trace. The method of comparison consisted of two

parts: first, comparison of average performance over a large number of samples; and

second, comparison of the speed of learning of each method. The algorithms to be

compared were implemented using parameters determined from the first set of

experiments performed.

5.2.3 Comparison to Optimal Solutions

If the simulation environment allowed for exact calcutation of the optimal solution, the

results of each RL algorithm were compared to the optimal solution. This comparison

provides two pieces of information: first, if the best solution that the agent obtains is

optimum or near-optimum, and second, how quickly the agent converges to a near-

optimum solution. In the case of dynamic environments where a true optimal solution
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could not be calculated, the optimal solution was calculated as if for a static trial, using

the state of the environment at the start of the trial.

5.3 Knowledge Transfer Experiments

Knowledge transfer experiments were performed using the hierarchical RL methods

described in Chapter IV. The method of evaluation was as follows:

1) Train two hierarchical RL agents in different gridworld environments.

2) Exchange the value functions of the low-level RL algorithm in each agent.

3) Evaluate the performance of the agents immediately, without allowing any

training time.

The difference in performance following the exchange of low-level agent data will be

indicative of the suitability of knowledge transference. In the ideal case, knowledge is

completely transferable, and agent performance will be unchanged. In the case that

complete transference is not obtained, the magnitude of the performance difference must

be analyzed. A small change in performance indicates a mostly successful transfer, while

a large decrease in performance indicates an unsuccessful transfer. In the case that no

knowledge was successfully transferred, it would be expected that the performance of the

agent following the data exchange would be similar to or worse than the agent's

performance at the beginning of training.

5.4 Summary

This Chapter presented an overview of the experiments that were performed, and the

methods to be used to analyze the data obtained. Chapter VI will present all experimental

results, and an analysis will follow in Chapter VII.
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CHAPTER VI

FINDINGS

6.1 Standard Q-Learning

In order to provide a baseline for analysis of the proposed methods, simulations were first

performed for a standard Q(A) agent. Subsection 6.1.1 presents the data obtained.

6.1.1 Variation of Parameters

As discussed in Subsection 5.2.1, the parameters were optimized in the order: a, A., then

r. The parameters were first optimized in a randomly generated 32 x 32 static gridworld

envirorunent with an obstacle density of 0.2 (20% of all states contained obstacles). Data

was averaged over 100 trials in differing envirorunents, with 300 episodes being

performed per trial. The data collected was: average time to completion, in actions

performed by the agent, over 300 episodes, best time to completion (as compared to the

optimal solution), and the number of episodes required to reach the best time to

completion. Table 6.1 contains the results of the optimization, presented in the order that

the experiments were performed. In the columns containing the parameters of

optimization, the parameter that was being modified is in boldface text. In the results

column, the best result is highlighted for each parameter that is being varied. The first

entry in the Best Performance column is the actual best time to completion in that group

of trials. The second number, in parentheses, is the optimal soLution for those trials.

When the three performance measures used were optimal for a different set of parameters

- i.e. one set of parameters produced the best time to completion, but another had a better
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speed of learning - the set of parameters producing the best average time to completion

was used.

Table 6.1: Variation of Parameters for. Standard Q-Learning Agent

a A r Average Time to Best Number of
Completion Performance Episodes 10

Reach Best

0.1 0.9 0.9 140.5 37 27) 238
0.3 0.9 0.9 101.6 34 (27) 327
0.5 0.9 0.9 96.6 34 (27) 68
0.7 0.9 0.9 73.5 28 27) 156
0.9 0.9 0.9 77.2 30 (27) 99
0.7 0.1 0.9 97.3 33 (30) 134
0.7 0.3 0.9 81.3 35 (30) 100
0.7 0.5 0.9 69.5 33 (30) 209
0.7 0.7 0.9 71.8 39 (30) 86
0.7 0.9 0.9 73.6 39 (30) l32
0.7 0.5 0.1 128.9 29 (29) 190
0.7 0.5 0.3 89.5 29 (29) 154
0.7 0.5 0.5 68.9 29 (29) 94
0.7 0.5 0.7 51.8 29 (29) 45
0.7 0.5 0.9 49.9 29 (29) 66

For the remaining experiments using standard Q-Learning, the parameters determined

from this experiment were used: a =0.7 , A=0.5, and r =0.9.

After parameter values were determined, the performance of a standard Q-Leaming agent

was analyzed with respect to obstacle density and to environment size. Performance with

respect to obstacle density was analyzed in a static environment of size 16 by 16. Figure

6.1 is a chart showing the average time to completion over 100 trials of 200 episodes

each. The obstacle density was varied from zero to 0.3 in steps of 0.05. Figure 6.2

presents a graph of time to completion vs. environment size for a standard Q-Learning

agent. In this experiment, obstacle density was fixed at 0.2. The time to completion is

averaged over 100 trials of 200 episodes each. The environment size was varied from

8 x 8 to 64 x 64 in steps of 8 units. The environment shape remained square.
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Following analysis in a static environment, the perfonnance of standard Q-Learning in

dynamic environments was investigated. The performance of a Q-Learning agent was

analyzed with respect to the dynamic period of the environment. Figure 6.3 shows a

graph of average time to completion vs. the dynamic period of the environment. Data

was averaged over 100 trials consisting of 200 episodes each.

Time to Completion vs. Dynamic Period of Environment
for Standard Q-Learning Agent

-
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Figure 6.3: Time to Completion n. Dynamic Period for Standud Q-Lelrning Agent

6.2 Incorporation of a Forgetting Mechanism

As discussed in Section 4.1, a forgetting mechanism was incorporated into a modified Q-

Learning agent. This section presents the results of experiments incorporating a

forgetting mechanism.

6.2.1 Variation of Parameters

As the Forgetting Q-Learning agent is very similar to the standard Q-Learning agent, the

optimal parameters determined for standard Q-Learning were used, and analysis was

performed only over variation of the forgetting constant. Table 6.2 shows the 'results of
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varying the forgetting parameter. Only values from 0.9 to 1.0 were used, as values below

0.9 resulted in the agent being incapable of any learning.

Table 6.2: Variation of Parameters for Forgetting Q-Learning

J1 Average Time to Besl Number of
Completion Perfonnance Episodes to

Reach Best

0.90 140.5 1932 (31) 194
0.92 101.6 1467 (31) 198 I

0.94 96.6 873 (31) 193
0.96 73.5 287 (31) 189
0.98 77.2 77 (31) 120
1.00 51.3 31(31) 72

No further data is presented in the context of static environments for forgetting Q-

Learning, as in a static environment the forgetting mechanism causes a decrease in

performance. Performance vs. the dynamic period in a dynamic environment was

analyzed, and the results are presented in Figure 6.4. The experimental parameters were

the same as those used in Subsection 6.1.1 for a Standard Q-Learning Agent, with the

exception that the forgetting constant was set to a value of 0.99.

6.2.2 Comparison to Estahlished Methods

As the data obtained from Subsection 6.2.1 indicates, the forgetting parameter is best left

at, or very near, one. As such performance data for the forgetting Q-Learning agent in a

static environment will be identical to that for a standard Q-Learning agent.

In a dynamic environment, a difference between Q-Learning and Forgetting Q-Learning

can be seen. Figure 6.5 presents a comparative chart of Q-Learning and Forgetting Q-

Learning performance vs. the environment's dynamic period. For clarity, the optimal

time to completion is also presented in Figure 6.5
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6.2.3 Comparison to Optimal Solutions

As discussed in Subsection 6.2.4, performance of Forgetting Q-Learning in a static

environment is arbitrarily close to the performance of Standard Q-Learning. As such,

only data concerning dynamic environments is presented here. Figure 6.5 includes the

optimal time to completion data for the experiment.
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number of states maintained by a standard Q-Leaming agent in a 22x 22 gridworld.

Figure 6.6 illustrates the inputs to the high and low-level RL agent. The arrow represents

tile current location of the agent, and the area in the 3x 3 square represents the input to

the feature-based low-level agent. In this case, the high-level agent would be in location

(1,2), assuming the origin starts at the lower left hand comer.

The reward provided to the low-level agent after each action is one of three possibilities:

a large (-100) penalty if a collision with an obstacle results, a small bonus (+5) if the

high-level agent detects a transition to a state (in the reduced state space) with a higher

value function, and a small penalty (-1) on each action that produces no other results.

G

--- -- --- --~------- -- ----- - --- - ~

--------

s

Figure 6.6: Illustration for Hierarchical RL Eumple
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6.3.1 Variation of Parameters

As the learning rate, Q, has the largest effect on the performance of an RL agent, the

other parameters for both of the agents were fixed at the values established in Subsection

6.1.1. Then, the effects of varying the learning rates of both the high-level and low-level

agents was examined. Table 6.3 presents the results of varying the learning rates of the

two agents in a hierarchical scheme. The data was obtained using the same experimental

setup as was used for variation of parameters in Subsection 6.1.1.

Table 6.3: Variation of Parameters for Hierarchical Q-Learning

Qh a, Average Time to Best Number of
Completion Performance Episodes to

Reach Best

0.1 0.9 81.9 52 (31) 35
0.3 0.9 68.3 44 (31) 41

f-------

0.5 0.9 73.4 48 (31) 37
0.7 0.9 80.7 54 (31) 43
0.9 0.9 94.6 65 (31) 51

---
0.3 0.1 99.5 57 (29) 39
0.3 0.3 93.9 53 (29) 43
0.3 0.5 77.9 48 (29) 45
0.3 0.7 72.3 45 (29) 38
0.3 0.9 67.9 42 (29) 40

Following the establishment of the parameters for the agent, performance was tested vs.

environment size and obstacle density in a static gridworld environment. Figures 6.7 and

6.8 present the results of these experiments.

In a dynamic gridworld environment, the performance of a Hierarchical Q-Learning

agent was analyzed with respect to the dynamic period of the environment. Figure 6.9

presents the results of this experiment.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Summary

This thesis has presented an overview of the fields of reinforcement learning and of

robotic navigation, and has proposed solutions for the use of RL methods to perform

navigation in dynamic environments. Two major goals have been presented: improving

performance of RL agents in dynamic environments, and increasing the ability to transfer

knowledge among multiple agents. Three proposed solutions have been presented and

analyzed: Forgetting Q-Learning, Feature Based Q-Learning, and Hierarchical Q-

Learning.

Forgetting Q-Learning is proposed to improve performance in a dynamic environment by

maintaining possible navigation paths that would be considered unacceptable by

traditional Q-Leaming. The forgetting mechanism is implemented as a decay of

unexplored state values. This leads to a higher tendency towards exploration, which

should allow for increased performance in a dynamic environment.

Hierarchical Q-Learning is proposed as a method of subdividing the problem domain into

a set of more manageable problems. This is accomplished by using two interacting RL

agents. One agent generates desired goal-seeking behavior, while the other implements

direct actions. This architecture could be considered similar to a robotic navigation

scheme incorporating both deliberative and reactive elements. The high-level RL agent

would represent deliberative behavior, while the low-level agent exhibits reactive

behavior. Hierarchical RL algorithms are proposed to lead towards both goals of
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navigation m a dynamic environment and knowledge transference among multiple

agents.

Feature Based Q-Learning is proposed as a method of enhancing Hierarchical Q-

Learning. Feature based RL is accomplished through the use of a feature identification

method to process state inputs to the RL agent. Using a feature processing and

identification scheme allows for a reduction of the state space that must be searched.

However, a purely feature based RL agent would be overly simplified, and incapable of

solving problems that depended on more infonnation than just local features. When

considered in the context of a hierarchical RL algorithm, a feature based RL agent makes

more sense. As a low-level agent, a feature based algorithm could implement obstacIe-

avoidance behavior, easing the work load on the high-level agent, and allowing for faster

reaction to changes in a dynamic environment.

Three primary methods were used to analyze the performance of the proposed

algorithms. All three methods were implemented in Matlab simulation. The first method

is to vary the parameters of the algorithm being examined and the environment it is in,

and to observe the performance of the agent. This provides a baseline for comparison to

other methods, and gives basic data about the behavior of the algorithm. The second

analysis method used is comparison to an established RL method, Q-Learning with

eligibility traces. The final method of analysis is to compare the performance of the

proposed algorithms to the optimal performance in the given environment. Section 7.2

presents a discussion ofthe results given in Chapter VI.
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7.2 Discussion of Research Finding~

7.2. I Forgetting Q-Learning

As can be seen in Table 6.2, incorporation of a forgetting mechanism into a Q-Learning

agent offers no performance improvements when dealing with a static environment. We

suggest that the reason for the performance decrease is that the agent is forgetting the

optimal path to the goal. In a static environment, further exploration is not necessary

once an optimal path has been discovered, therefore the forgetting mechanism IS

degrading performance by causing the agent's behavior to be-eome too exploratory.

Figures 6.4 and 6.5 illustrate that the forgetting mechanism affords a slight performance

increase (approximately 5% at the best case) when dealing with a dynamic environment.

This performance increase is likely due to the same effect as the performance decrease

seen in a static environment - a higher degree of exploration benefits the robot when

dealing with a rapidly changing environment.

Overall, the performance gains associated with Forgetting Q-Learning are limited.

7.2.2 Hierarchical Q-Learning

Hierarchical Q-Learning has been proposed as an approach to dealing with dynamic

environments that are normally not handled well by traditional RL methods. This

subsection will discuss the results of experiments performed using a Hierarchical Q­

Learning algorithm. Before drawing any conclusion about Hierarchical Q-Learning as a

whole, the results of each experiment will be discussed.

When examining the data for variation of parameters of a Hierarchical Q-Learning agent

(Table 6.3), it can be seen that the high-level and low-level RL agents reach their best
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perfonnance when using differing learning rates. The learning rate that produced the best

results for the high-level agent was 0.3, while for the low-level agent it was 0.9.

The reason for the low learning rate associated with the high-level agent is likely due to

the fact that the agent is operating in a very small state-space. As such, when using an

eligibility trace to assign credit to previous actions, overgeneralization occurs. From the

perspective of the high-level agent, very few actions are taken to traverse from start to

goal. The use of an eligibility trace, couple with a high learning rate, results in assigning

some credit for reaching the goal to all actions taken by the high-level agent. Without the

ability to distinguish between more and less successful actions, the high-level agent

learns more slowly.

The high learning rate for the low-level agent is hypothesized to be due to the complexity

of the state space that it operates in. Although the actual number of states is not large, the

transitions from one state to the next are non-Markovian, and in a dynamic environment

are also non-stationary. In addition, the rewards seen by the low-level agent only occur

at intervals of several actions. It is important for correct learning that the low-level agent

associates the rewards seen with all actions taken to achieve that reward.

When examining the behavior of the Hierarchical RL Agent in a static environment

(Figures 6.7 - 6.12), it is immediately apparent that large perfonnance gains are to be had

by simplification of the state space seen by the controlling agent. As the environment

size grows very large, the Hierarchical Q-Learning Agent achieves an improvement of

nearly an order of magnitude over the results seen by the Standard Q-Learner. We

believe that this is due to the reduction in size of the state space of the high-level agent.

As is seen with the integration of deliberative and reactive navigation schemes, great
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performance enhancements are to be had by separating path planning tasks from obstacle

avoidance tasks. This is, in essence, what is done by the Hierarchical Q-Learning

algorithm.

In addition to the large performance increase seen with respect to the size of the

environment, the Hierarchical RL agent also sees a small performance increase with

respect to the complexity of the environment (Figure 6.11). Although the benefit is small

(14% improvement at an obstacle density of 0.30), it is noticeable. Again, this is

believed to be due to the effect of separating the problem domain into two sub-problems

that are each much smaller than the original problem.

When dealing with a dynamic environment, the structure of the Hierarchical RL

algorithm allows the agent to deal effectively with unexpected obstacles. As the dynamic

period of the environment decreases - indicating a more rapidly changing environment ­

the Hierarchical Q-Learning agent pulls steadily away from the traditional Q-Learning

agent. Although the performance of the Hierarchical Agent is fairly poor compared to

the optimal path, it is far superior to the performance of Standard Q-Learning - the

perfonnance improvement is approximately 35% at a dynamic period ofone episode.

Section 7.3 presents a summary of the thesis, and attempts to project the direction of

future work in this area.

7.3 Conclusions

This thesis presented three new approaches to the application of reinforcement learning

methods to robotic navigation. In specific, the area of navigation in a dynamic

environment was explored. The dilemma between exploration and exploitation as it

relates to RL methods was discussed, leading to the conclusion that a greater d~gree of
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exploration is required in a dynamic environment. From the perspective of robotic

navigation, the contrast between deliberative vs. reactive behavior was examined, and the

benefits of combining the two approaches were presented.

In Chapter IV, three approaches to the RL based navigation problem in a dynamic

environment were discussed. The concept of forgetting as a method of furthering

exploration was presented, and a modified Q-Leaming technique based on that concept

was proposed. Inspired by the hierarchical structure of robotic navigation schemes

incorporating both reactive and deliberative behavior, a hierarchical RL method was

suggested. Another proposed improvement to traditional RL methods was to incorporate

a feature processing technique into the state sensor of an RL agent. Through analysis, it

was determined that a purely feature-based RL method would be incapable of true

navigation, and it was proposed that a feature-based agent be incorporated as one part of

a hierarchical control scheme.

The proposed solutions were implemented in simulation, and results were presented for

analysis. It was detennined that Forgetting Q-Learning, although offering small

performance improvements, was not applicable to the majority of the problems seen in

RL. The largest part of the analysis was devoted to the behavior of the Hierarchical RL

scheme.

Hierarchical RL has been demonstrated to offer improved performance not only in

dynamic environments, but also in static environments. This is due to the reduction in

the number of stored states that is made possible by separation of the problem domain

into multiple smaller problems. Although the feature processing algorithm incorporated
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into the agent studied was a very simple direct pattern-matching method, it provided

improved performance in both static and dynamic environments.

7.4 Contributions to the Field

The work presented in this thesis provides a strong correlation between the fields of

robotic navigation and reinforcement learning. Parallels have been drawn between

deliberative and reactive navigation from the robotic navigation world and different

aspects of the reinforcement learning paradigm. Further, a hierarchical RL approach

based on integrated deliberative and reactive control, has been implemented and

demonstrated to provide large performance increases over traditional RL in a variety of

environments.

7.5 Future Work

This thesis has only scratched the surface of possible RL based autonomous navigation

schemes. The work on feature-based RL could be extended through the incorporation of

a neural network based feature recognition system into the agent. Extension of the

hierarchical RL agent to multiple levels, possibly including multiple agents per level

could easily be implemented. The effects of forgetting on RL agents could be studies in

greater depth, perhaps implementing an eligibility trace based method to determine which

states have not been visited in a long time, and thus which states the forgetting

mechanism should be applied to. Another possible direction of research is to examine

current work in robotic navigation, and draw further ideas from the parallelism between

robotic navigation and reinforcement learning research. The field of robotic navigation is
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very exciting right now, and reinforcement learning methods have a lot to offer to this

field.
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Figure 7.1: Vision-Based RL Robotic Navigation System

As an example of implementation in a robotic system, consider Figure 7.1. This figure

shows a robotic navigation system incorporating a feature-based, hierarchical RL agent.

The RL agent utilizes an environment model, in the fonn of a map, in order to increase

learning speed, as discussed in Section 2.2.7. The navigation systems includes both dead

reckoning and feature based methods of position estimation, and uses both feature data
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and estimated location to update the environment map used by the RL agent. The reward

used in training the agent is generated externally to the agent; this reward could be

detennined prior to implementation by the designer, or could be incorporated as part of a

more complex goal-based navigation system. The exact method of implementation of

each block of the pictured system is yet to be completely specified, but this figure

provides a framework for implementation in an actual physical system.
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Appendix A

Source Code

A.I Summary

This Appendix contains the source code used to generate the experimental data in this

thesis. Figure A.I below presents a calling tree for the software generated. Each

function in the tree utilizes functions connected below it. In Figure A.I, the

Experimental Script block does not represent a specific file, instead it represents a MatLab

script used to perfonn an experiment. Section A.2 contains the listings of all functions

used, and Section A.3 contains example experimental scripts.

I~A~,onl

Figure A.I: Calling Tree for RL Simulations

A.2 Source Listings

The text of all source files in the calling tree above is presented in this section. Each file

is presented in a separate subsection.
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A.2.t lnitEnvironment

function E = InitEnvironment(Type, M, Parameters)
% E = InitEnvironment(Type, Map, Parameters)
% Type = 's' for Static Environment
% = 'D' for Dynamic Environment
% Map - 2-dimensional array containing values 0 through 3:
% 0 Empty Square
% 1 Obstacle
% 2 Goal Location (Only one in map)
% 3 Start Location
% Note - if there are no start locations specified, at
% the beginning of each episode a start location will be
% chosen randomly from all empty states. If there is
% more than one start location, the start location will
% be chosen randomly from those locations at the
% beginning of each episode.
% Parameters = Column vector containing environment specific
% information:
% For Static Environments: Parameters =
% [ObstaclePenalty, StepPenalty, GoalReward] ,
% ObstaclePenalty - Value of Reward function if an obstacle is hit
% - StepPenalty - Value of Reward function for a normal move
% - GoalReward - Value of Reward function if goal is reached
% For Dynamic Environments:
% Parameters =

%[ObstaclePenalty, StepPenalty, GoalReward, DynamicPeriod, Density]'
% - First 3 parameters as per static environments
% - Dynamic Period - Number of episodes between environment change
% - Density - Fraction of environment occupied by obstacles

if(Type == 'S') % Static Environment
E. Type = 'S I ;

E.Size.X size(M,1);
E.Size.Y size(M,2);

E.Map = M;

E.ObsPen = Parameters(1);
E.StepPen Parameters(2);
E.GoalRew Parameters(3);

E.State.X 1;
E.State.Y 1;

end

if(Type == 'D') % Dynamic Environment
E . Type = 'D I ;

E.Size.X size(M,l);
E.Size.Y size(M,2);

E.ObsPen Parameters(1);
E.StepPen = Parameters (2) ;
E.GoalRew = Parameters (3) ;
E.DynPeriod = Parameters(4);
E.Density = Parameters (5) ;
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E.Start.X floor(rand(l)*E.Size.X + 1) ;

E. Start. Y floor(rand(l)*E.Size.Y + 1) ;

E.Goal.X floor(rand(l)*E.Size.X + 1);
E.Goal.Y floor(rand(l)*E.Size.Y + 1) ;

E.Map = RandomMap(E.Size, E.Density, E.Start, E.Goal);

E.State.X = 1;
E.State.Y = 1;
E.EpisodeCount 0;

End
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A.2.2 Random Map

function M = RandomMap(Size, Density, Start, Goal}
%Generates a random gridworld environment

-

% M =
%
%
%
% M
%
%
%
% M
%
%
%

RandomMap(Size, Density)
Size - Structure containing two elements: Size.X and Size.Y

Determines horizontal and vertical size of gridworld
Density - Fraction of environment occupied by obstacles

RandomMap(Size, Density, Start)
As above, but agent's start location is specified.
Start is a structure containing Start.X and Start.Y
If Start is not specified, it is determined randomly.

RandomMap(Size, Density, Start, Goal)
As above, but agent's start and goal are specified.
Goal is a two-element structure containing Goal.X and Goal.Y
If Goal is not specified, it is determined randomly.

NumFilled
MaxBlobSize
Done = 0;

Size.X * Size.Y * Density; % Number of obstacle locations
ceil(NumFilled I 16); % Max. size of single obstacle

% Flag indicating that generation of env. is finished

while(Done 0)
M = zeros(Size.X, Size.Y); % Start with empty gridworld
cfill = 0; % Count of obstacle squares
while(cfill < NurnFilled)

BlobX = floor(rand(l}*Size.X + 1);
SlobY = floor(rand(l}*Size.Y + 1);
BlobSize = floor(rand(1)*MaxBlobSize + 1);
width = floor (sqrt (BlobSize) );
for x = BlobX: (SlobX+width)

for y = SlobY: (SlobY + width)
if( (x <= Size.X) & (y <= Size.Y»

if(M(x,y) == O}
cfill = cfill + 1;
M(x,y) = 1;

end
end

end
end

end
if(nargin <= 2}

SX = floor(rand(1)*Size.X + 1);
SY = floor(rand(1}*Size.Y + 1);
M(SX, SY) = 3; % Start Location

else
M(Start.X, Start.Y) = 3;

end
if(nargin <= 3}

SX = floor(rand(1)*Size.X + 1};
SY = floor(rand(1)*Size.Y + 1);
M(SX, SY) = 2; % Goal Location

else
M(Goal.X, Goal.Y) = 2;

end
test.Map = M;

70



% Generated environment must have an open path from start to goal

if (OptimalDist (test) > -1)
end

end

Done = 1;
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A.2.3 OptimalDist

function 00 = OptimalDist(E)
% 00 = OptimalDist(E)
% Determines optimal distance from start to goal for a gridworld.
% E = Input Environment
% 00 = Optimal Distance. A return value -1 indicates that there is no
% open path from the start state to the goal state

SL
GL
OL

(E.Map
(E.Map
(E. Map

3) ;

2) ;

1) ;

% Start Location
% Goal Location
% Obstacle Location

MaxX
MaxY

size(SL,I);
size (SL, 2);

% Horizontal size of map
% Vertical size of map

MaxDist = MaxX * MaxY; % Maximum Distance (assumes every state is
visited)

% This function maintains the distance of each environmental state from
% the start state.
% The map is initialized to zero at the start location, and to the
% maximum possible distance plus one everywhere else.

SM ones(size(E.Map)) * MaxDist;
SM SM + 1;
SM SM - (SM .*SL);

% The map containing the distance from each state to the start state is
% updated in a series of passes through the map. On each pass, any
% state that has not yet been updated is checked to see if it is
% adjacent to any state that has already been updated. If it is, the
% distance from the new state to the start state is s t to one higher
% than that of it's neighboring state that is closest t the start. The
% process is finished when the distance to the goal state has been
% determined.

Done = 0;
f = zeros(4,1);
Pass = 0;

% Flag to indicate completion
% Stores temporary data
% Number of passes completed

while(Done == 0)
Pass = Pass + 1;
for x = I:MaxX

for y = I:MaxY

% Only update if there is no obstacle present

SM (x-I, y) ;

x = 1, so no valid neighbor to the left
MaxDist + 1;

if( (OL(x,y) == 0) & (SM(x,y)
if(x > 1)

f(l)
else %

f (1)

end
if(x < MaxX)

f(2) = SM(x+l,y);

> MaxDist))

72



min(£) + 1;

SM(x,y-l)i
Y = 1, so no valid neighbor above

MaxDist + 1;

else % x = MaxX, so no valid neighbor to the right
f (2) MaxDist + li

end
i£(y > 1)

£(3)
else %

£(3)
end
if (y < MaxY)

£(4) SM(x,y+l)i
else % y = MaxY, so no valid neighbor below

£(4) MaxDist + 1;
end
SM(x,y)

End

% Goal distance has been determined

% No open path to the goal> MaxDist)
= 1;
-1;

i£((SM(x,y) < MaxDist)
Done = 1 i

OD = SM(x, Y) i

end
i£(Pass

Done
OD

end
end

end
end

& (GL(x,y) == 1))
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A.2.4 lnitAgent

function P = InitAgent(Type, Size, Parameters, Parameters2)
% P InitAgent(Type, Size, Parameters, Parameters2)
% - Parameters2 argument ONLY used for hierarchical agents
% P Agent's InitialState
% Type 'QL ' Q-Learning
% Type 'FQ' - Forgetting Q-Learning
% Type 'FB' - Feature based Q-Learning
% Type 'HQ' - Hierarchical, Feature Based Q-Learning
% Size Size of environment - structure containing Size.X and Size.Y
% Parameters = Column vector containing Agent's internal parameters
% For Type 'QL' : Parameters = [Alpha, Lambda, Gamma, Epsilon]'
% - Alpha = Learning rate
% - Lambda = Decay constant for eligibility trace
% Gamma = Weighting of expected-best outcome in backup
% - Epsilon = Greediness of action selection policy
% (0 = Pure Greedy, 1 = Random)
% For Type 'FQ' : Parameters = [Alpha, Lambda, Gamma, Epsilon, Mu]'
% - Alpha = Learning rate
% - Lan~da = Decay constant for eligibility trace
% - Gamma = Weighting of expected-best outcome in backup
% - Epsilon = Greediness of action selection policy
% - Mu = forgetting factor.
% (1 = No forgetting, 0 = forget everything)
% For Type 'FB' : Parameters = [Alpha, Lambda, Gamma, Epsilon, F)'
% - Alpha = Learning rate
% - Lambda = Decay constant for eligibility trace
% Gamma = Weighting of expected-best outcome in backup
% - Epsilon = Greediness of action selection policy
% - F Size of feature detector (odd integer) .
% Suggested values are 1 or 3
% For Type 'HQ' Parameters = [Alpha, Lambda, Gamma, Epsilon, R] I

% These parameters are for the high-level agent
% - Alpha = Learning rate
% - Lambda = Decay constant for eligibility trace
% Gamma = Weighting of expected-best outcome in ba kup
% - Epsilon = Greediness of action selection policy
% - R = Magnitude of state reduc ion for high-l vel agent.
% - e.g. if Size.X = 25 and Size.Y = 25 and R = 5,
% the high level agent would view the environment
% as a 5 x 5 area.
% For Type 'HQ' Parameters2 = [Alpha, Lambda, Gamma, Epsilon, F) I

% These parameters are for the low-level agent
% - Alpha = Learning rate
% - Lambda = Decay constant for eligibility trace
% Gamma = Weighting of expected-best outcome in backup
% - Epsilon = Greediness of action selection policy
% - F = size of feature detector for low-level agent.

if (Type ' QL I )

P. Type = I QL ' ;
P.Size = Size;
P.State.X = 1;
P.State.Y = 1;
P.OldState = P.State;
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P.V = zeros(Size.X, Size.Y, 4);
P.e = zeros(Size.X, Size.Y, 4);

P.Alpha = Parameters(I);
P.Lambda = Parameters(2);
P.Gamma = Parameters(3);
P.Epsilon = Parameters(4);
P.Action = 0;
P.OldAction = 0;
P.Reward = 0;

end

% Initialize Value Function
% Initialize Eligibility Trace

if (Type == 'FQ')
P. Type = 'FQ';
P.Size = Size;
P.State.X = 1;
P.State.Y = 1;
P.OldState = P.State;

P.V = zeros(Size.X, Size.Y,
P.e = zeros(Size.X, Size.Y,

P.f = ones(Size.X, Size.Y, 4);
P.Alpha = Parameters(l);
P.Lambda = Parameters(2);
P.Gamma = Parameters(3);
P.Epsilon = Parameters(4);
P.Mu = Parameters(5);
P.Action = 0;
P.OldAction = 0;
P.Reward = 0;

end

if (Type == 'FB')
P. Type ' FB I ;

P.Size = Size;

P.Alpha = Parameters(I);
P.Lambda = Parameters(2);
P.Gamma = Parameters(3);
P.Epsilon = Parameters(4);
P.FeatureSize = Parameters(5);

P.State = zeros(P.FeatureSize);
P.OldState = P.State;

4); % Initialize Value Function
4); % Initialize Eligibility Trace

% Forgetting trace

P.NumStates = 2 A (P.FeatureSize A 2); % Number of states
P.F = zeros (P.NumStates, 4); % Value function
P.Fe = zeros (P.NumStates, 4); % Eligibility trace

P.Action = 0; % Action
P.OldAction = 0;
P.Reward = 0; % Reward

% Direction from agent that feature map is obtained from
% 0 = centered on agent

P.Direction 0;
end
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if (Type == 'HQ')
P.Type = 'HQ';
P.Size = Size;
P.State.X = 1;
P.State.Y = 1;
P.Reduction = Parameters(S);

% Calculate Size of State space for high-level agent

RSize.X
RSize.Y

ceil(P.Size.X!P.Reduction);
ceil(P.Size.Y!P.Reduction);

% Initialize High-Level Agent

HP = Parameters(1:4);
P.High = InitAgent('QL', RSize, HP);

% Initialize Low-Level Agent

P.Low = InitAgent('FB', Size, Parameters2);

P.Action = P.Low.Action; % Movement (output of low-level agent)
P.Low.Direction = P.High.Action; % Desired direction of travel
P.OldAction = P.Action;
P.Reward = 0; % Reward to high-level agent
P.High.Reward = P.Reward;

end
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A.2.5 StartTrial

function [P, E) = StartTrial(P, E)
% function [P, E) = StartTrial(P, E)
% P = Agent data structure (from InitAgent)
% E = Environment data structure (from InitEnvironment)
% This function initializes one trial of an RL agent
% First, the environment is initialized, then the agent.

if(E.Type == 'S') % Static Environment
M = E.Map;
SL = (M == 3)i % Start location
NumSL = sum(sum(SL));

% Multiple possible start locations, choose one at random

if(NumSL >= 1)
[XC,YC,Temp) = FindMax(SL);
choose = floor(size(XC,ll*rand(l) + 1);
XS XC(choose);
YS = YC(choose);

else
% No start location specified, choose one anywhere without an obstacle

SL = (M == 0);

NumSL = sum(sum(SL) l;
[XC,YC,Temp) = FindMax(SL);
choose = floor(size(XC,I)*rand(l) + 1);
XS XC(choose);
YS = YC(choose);

end

E.State.X XSi
E.State.Y YS;

end

if(E.Type == 'D') % Dynamic Environment
E.EpisodeCount = E.EpisodeCount + Ii
EC E.EpisodeCount;
DP = E.DynPeriodi

% Dynamic period has elapsed, change environment

if((EC/DP) == floor (EC/DP) )
E.Map RandomMap(E.Size, E.Density, E.Start, E.Goal);

end

M = E.Map;
SL=(M==3);
NumSL = sum(sum(SL));
if(NumSL >= 1)

[XC,YC,Temp] = FindMax(SL);
choose = floor(size(XC,I)*rand(l) + 1);
XS XC(choose);
YS YC(choose);

else
SL (M == 0);
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NumSL = sum(sum(SL));
[XC,YC,Ternp] = FindMax(SL);
choose = floor(size(XC,I)*rand(l) + 1);
XS XC(choose);
YS = YC(choose);

end
E.State.X XS;
E.State.Y YS;

end

% Initialize Agent to be at start location
% Also, choose agent's first action

if(P.Type == 'QL')
P.State = E.State;
P.OldState = E.State;
P.Action = EGreedy(P.V, P.State, P.Epsilon);

end

if(P.Type == 'FQ')
P.State = E.State;
P.OldState = E.State;
P.Action = FGreedy(P.V, P.State, P.Epsilon);
P.V P.V.* P.f; % Forgetting
P.f = ones(size(P.V)) * P.Mu;

end

if(P.Type == 'FB')
P.Direction = 0;
P.State = DecodeState(E.State, E, P);
P.OldState = P.State;
P.Action = EGreedy(P.F, P.State, P.Epsilon);

end

if(P.Type == 'HQ')
P.State = E.State;
P.OldState = E.State;
P.High.State = ReduceState(E.State, P.Reduction);
P.High.OldState = P.High.State;
P.High.Action = EGreedy(P.High.V, P.High.State, P.High.Epsilon);
P.Low.Direction = P.High.Action;
P.Low.State DecodeState(P.State, E, P.Low);
TempState.X = DecodeFeature(P.Low.State);
TernpState.Y = 1;
P.Low.Action = EGreedy(P.Low.F, TernpState, P.Low.Epsilon);
P.Action = P.Low.Action;

end
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A.2.6 FindMax

function [I, J, Val) = FindMax(A);
% I and J are vectors containing Rowand Column indices of the location
% of the maximal elements of A
% Val is the value of the maximal element(s)
Val = max(max(A));
[I,J) = find(A == Valli
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A.2.7 EGreedy, FGreedy, and HGreedy

These three functions all calculate the epsilon-greedy action based on a value function.

The three versions are necessary due to differences in representation of the value

function.

function A = EGreedy(V, State, E)
% A EGreedy(Q, State, E)
% A = Action selected by Epsilon-Greedy Policy over Q
% V = State/Action Value Function
% State = Current State
% E = Greediness (0 = Greedy, 1 = Random)

NumActions = size(V,3);
Prob = rand(l);
if(Prob < E) % Choose Random Action

A = floor(NumActions*rand(l) + 1);
else

[M, A) = max(V(State.X,State.Y, :));
end

function A = FGreedy(V, State, E)
% A EGreedy(Q, StatG, E)
% A = Action selected by Epsilon-Greedy Policy over Q
% V = State/Action Value Function
% State = Current State
% E = Greediness (0 = Greedy, 1 = Random)

NumActions = size(V,3);
Prob = rand(l);
if(Prob < E) % Choose Random Action

A = floor (NumActions*rand(l) + 1);
else

[M, A] = min(V(State.X,State.Y, :));
end

function A = HGreedy(V, State, E)
% A EGreedy(Q, State, E)
% A = Action selected by Epsilon-Greedy Policy over Q
% V = State/Action Value Function
% State = Current State
% E = Greediness (0 = Greedy, 1 = Random)

NumActions = size(V,3);
Prob = rand(l);
if(Prob < E) % Choose Random Action

A = floor (NumActions*rand(l) + 1);
else

[ M, A) = rna x ( V ( Stat e . X, :));
end
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A.2.8 StepEnv

function [E, Reward, NewState] = StepEnv(E, Action)
% [E, Reward, NewState] = StepEnv(E,Action)
% Single step RL environment based on agent's action
% Inputs:
% E = Current Environment
% Action = Agent's action
% Outputs:
% E = Environment following action
% Reward = Agent's reward for action
% NewState = agent's state resulting from action

[I,J] = DecodeAction(Action);

M = E.Map;

XP E.State.X; %Current X Location
YP E.State.Y; %Current Y Location

XN XP + I; % New X Position
YN YP + J; % New Y Position

if( (XN < 1) I (YN < 1) (XN > E.Size.X) (YN > E.Size. Y)) % Tried to
leave edge of map

Reward = E.ObsPen;
XN XP;
YN = YP;

else
if(M(XN,YN) == 1) % Ran into obstacle

Reward = E.ObsPen;
XN XP;
YN = YP;

else
if(M(XN,YN) == 2) % Reached Goal

Reward = E.GoalRew;
else % Normal Movement

Reward = E.StepPen;
end

end
end

E.State.X = XN;
E.State.Y = YN;
NewState = E.State;
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A.2.9 DecodeAction

function [I,J] = DecodeAction(Action)
% [I,J] = DecodeAction(Action)
% I = North/South movement
% J = East/West movement

I 0;
J 0;

..

if (Action
I -1;
J = 0;

end

if (Action
I 0;
J = 1;

end

if(Action
I 1;
J = 0;

end

if (Action
I 0;
J = -1;

end

if(Action
I 0;
J = 0;

end

1)

2)

3)

4)

0)

% Move Up / North

% Move Right / East

% Move Down / South

% Move Left / West

% No Action
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A.2.10 StepAgent

function P = StepAgent(P, NewState, Reward, E)
% P = StepAgent(P,NewState, Reward, E)
% Inputs:
% P = current state of agent
% NewState = State resulting from agent's previous action
% Reward = Reward resulting from agent's previous action
% E = Environment data structure
% Outputs:
% P = resulting state of agent

if(P.Type == 'OL')

% Epsilon-Greedy Action
ANew = EGreedy(P.V, NewState, P.Epsilon);

% Pure Greedy Action
[MaxVal, AStar] = max(P.V(NewState.X, NewState.Y, :));

% If the greedy action has the same value as the chosen action,
% update AStart to reflect that
if(P.V(NewState.X,NewState.Y,AStar) == P.V(NewState.X, NewState.Y,
ANew) )

AStar = ANew;
end

% Calculate change to value function based on reward
Delta = Reward + (P.Garnrna * P.V(NewState.X, NewState.Y, AStar)) ­
P.V(P.State.X, P.State.Y, P.Action);

% Update eligibility trace for most recent action
P.e(P.State.X, P.State.Y, P.Action) = P.e(P.State.X, P.Stat .Y,
P.Action) + 1;

% Update value function
P.V = P.V + (P.Alpha)*De1ta*(P.e);

zeros(size(P.V) );

was greedy, update eligibility trace, otherwise clear it
AStar)

(P.Garnrna)*(P.Larnbda)*(P.e);

% If action
if (ANew

P.e
else

P.e
end

P.OldState = P.State;
P.State = NewState;
P.Action = ANew;

end

if(P.Type == 'FO')

% Epsilon-Greedy Action
ANew = FGreedy(P.V, NewState, P.Epsilon);

83



% Pure Greedy Action
[MaxVal, AStar] = min(P.V(NewState.X, NewState.Y, :));
if(P.V(NewState.X,NewState.Y,AStar) == P.V(NewState.X, NewState.Y,
ANew) )

AStar = ANew;
end

Delta = Reward
P.V(P.State.X,

P.e(P.State.X,
P.Action) + 1;

P.f(P.State.X,

+ (P.Gamma * P.V(NewState.X, NewState.Y, AStar) ­
P.State.Y, P.Action);

P.State.Y, P.Action) P.e(P.State.X, P.State.Y,

P.State.Y, P.Action) 1;

P.V = P.V + (P.Alpha)*Delta*(P.e);

if (ANew
P.e

else
P.e

end

AStar)
(P.Gamma)*(P.Lambda)*{P.e) ;

zeros(size(P.V»;

P.OldState = P.State;
P.State = NewState;
P.Action = ANew;

end

if(P.Type == 'FB')
FeatureNumber = DecodeFeature(NewState);
OldFN = DecodeFeature(P.State);
TState.X FeatureNumber;
TState.Y = 1;

% Epsilon-Greedy Action
ANew = HGreedy(P.F, TState, P.Epsilon);

% Pure Greedy Action
[MaxVal, AStar] = max(P.F(FeatureNumber, :));
if(P.F(FeatureNumber, AStar) == P.F(FeatureNumber, ANew))

AStar = ANew;
end

Delta = Reward + (P.Gamma * P.F(FeatureNumber, AStar)) - P.F(OldFN,
P.Action);

P.Fe(OldFN, P.Action) = P.Fe(OldFN, P.Action) + 1;

P.F = P.F + (P.Alpha)*Delta*(P.Fe);

if (ANew
P. Fe

else
P.Fe

end

== AStar)
(P.Gamma)*(P.Lambda)*(P.Fe);

zeros(size(P.F)) ;

P.OldState = P.State;
P.State = NewState;
P.Action = ANew;

end
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if(P.Type == 'HQ')
NewHigh = ReduceState(NewState, P.Reduction);

% Execute learning for high-level agent only if high-level state has
% changed

if((NewHigh.X -= P.High.State.X) (NewHigh.Y -= P.High.State.Y»)
G = GetGoal(E);

RedGoal = ReduceState(G, P.Reduction);
if((NewHigh.X == RedGoal.X) & (NewHigh.Y RedGoal.Y))

Reward = E.GoalRew;
end

P.High = StepAgent(P.High, NewHigh, Reward, E);
P.Low.Direction = P.High.Action;
% Bonus given to low-level agent if new high level state is more
% desirable than old one
LowRewardMod = max(P.High.V(NewHigh.X, NewHigh.Y, :)) ­

max(P.High.V(P.High.State.X, P.High.State.Y, :));
else

LowRewardMod = 0;
end

% Calculate Reward Given to Low-Level Agent

LowReward = 5*Reward + (P.Low.Direction == P.Low.Action) +
LowRewardMod;

% Execute Learning for Low-Level agent

NewLow = DecodeState(NewState, E, P.Low);
P.Low = StepAgent(P.Low, NewLow, LowReward, E);

P.OldState = P.State;
P.State = NewState;
P.Action = P.Low.Action + P.Low.Direction - 1;

end
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A.2.11 ReduceState

function RS = ReduceState(State, R)

% Returns reduced state value for use in hierarchical
% RL Agent

RS.X
RS.Y

ceil (State. X/R) ;
ceil (State. Y/R);
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A.2.12 DecodeState

function S = DecodeState(NewState, E, P)

% S = DecodeState(NewState, E, P)
% Returns decoded state perceptions for an RL agent
% The exact form of the return value S depends on the type of Agent
% contained in the structure P.
% If P is a standard Q-Learning agent (P.Type = 'QL'), or a
% forgetting Q-Learning agent (P.Type = 'FQ'), then the state
% merely contains the X and Y position of the agent :
% S.X = Horizontal position
% S.Y = Vertical position
% If P is a feature based Q-Learning agent (P.Type = 'FB'), then
% the state is the area around the agent of the size determined
% by the agent's FeatureSize parameter

if ( (P. Type == I QL I )

S = NewState;
end

(P.Type == 'FQ'))

if(P.Type == 'FB')
S = GetArea(E,NewState, P.Direction, P.FeatureSize);

end
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A.2.13 GetArea

function A = GetArea{E, State, Direction, FSize)

% A = GetArea{Environment, State, Direction, FeatureSize)

% Insure that FSize is an odd integer

FSize = 1 + 2 * floor{FSize/2);

% Determine direction for feature map
[I,J] = DecodeAction{Direction);

xs size (E.Map, 1);
ys size{E.Map, 2);

% Create a temporary environment map that contains a border large enough
% to encompass the entire feature map
% Any states outside the border of the actual map are padded with ones.

TempMap = ones{xs + (2*FSize), ys + (2*FSizel);

% These four numbers are the x and y borders of the actual map within
% the larger temporary map

xbl FSize + 1 ;
xbh FSize + xs;
ybl FSize + 1;
ybh FSize + ys;

TempMap (xbl:xbh, ybl:ybh) = E.Map;

% Remove Start and Goal Locations from temporary map

SL = (TempMap == 3); % Start Location
TempMap = TempMap - SL*3;

GL = (TempMap == 2);
TempMap = TempMap - GL*2;

% Goal Location

% Determine area within temporary map that corresponds to desired
% feature map

if (I == 0)

xbl State.X - floor{FSize/2) + FSize;
xbh = State.X + floor(FSize/2) + FSize;

end
if (I == 1)

xbl State.X + 1 + FSize;
xbh = State.X + FSize + FSize;

end
if (I == -1)

xbl State.X - FSize + FSize;
xbh = State.X - 1 + FSize;

end
if (J == 0)
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State.Y - floor(FSize/2) + FSize;
State.Y + f100r(FSize/2) + FSize;

ybl
ybh

end
if (J == 1)

ybl State.Y + 1 + FSize;
ybh = State.Y + FSize + FSize;

end
if (J == -1)

ybl State.Y - FSize + FSize;
ybh = State.Y - 1 + FSize;

end

A TempMap(xbl:xbh,ybl:ybh);

% Rotate selection so it is aligned with Direction
NumRots = Direction - 1;
for i = l:NumRots

A = ROT90 (A) ;
end
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A.2.14 ShowMap

function H = ShowMap(E);

M = E.Map;

% First, Remove Start Positions from Map (Value 3)

SP = (M == 3);

M = M - 3*SP;

% Next, Set Value of Current Agent Location to 3

XP
YP

E.State.X;
E.State.Y;

%Current X Location
%Current Y Location

M(XP,YP) = 3;
M = M + 1; % Offset, so colormap works ocrrectly;

% Colormap

CM = [[ 1 1 1]; [0 0 0]; [0 1 0]; [0 a 1]];
image (M) ;

colormap (CM) ;
axis off;
H = GCF;
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A.2.15 GetGoal

function G = GetGoal(E}

% G = GetGoal(Environment)
% Returns the goal location in a struct re containing G.X and G.Y

Map = E.Mapi
GL = (Map 2) i

[G.X,G.Y] = find(GL rnax(rnax(GL)})i
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A.3 Example Scripts

This section presents three experimental scripts that show how to use the functions

presented above to perfonn experiments. One example is presented for each type of RL

agent.
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A.3.1 Standard Q-Learning Example

NumEpisodes = 200;
MaxSteps = 5000;
EpisodeNurn = 1;

% Number of Episodes
% Maximum time per episode
% Starting Episode Number

AvgSteps = zeros(NumEpisodes,l); % Data Log
NurnTrials = 1000; % Number of Trials to perform

NumSteps = zeros(NurnTrials,NumEpisodes,l);

density = 0.20; % Environment obstacle density
S.X 32; % Width of environment
S.Y 32; % Height of environment
Map RandomMap(S, density);

for trial = l:NumTrials
disp(sprintf('Trial %d',
EP [-5, -1, 1000]';
QP = [0.7 0.5 0.9 0.05]';

trial»;
% Environment Parameters
% Agent Parameters

E = InitEnvironment('S', Map, EP);
OptLength = OptimalDist(E);
Q = InitAgent('QL', E.Size, QP);

for EpisodeNum = l:NumEpisodes
[Q, E] = StartTrial(Q, E);

A = Q.Action;
EndEpisode = 0;
while(EndEpisode == 0)

[E, Reward, NewState] = StepEnv(E, A);
Q StepAgent(Q, NewState, Reward, E);
A = Q.Action;
G = GetGoal(E);
if((Q.State.X G.X) & (Q.State.Y G.Y»

EndEpisode = 1;
end
NumSteps(trial, EpisodeNum) = NumSteps(trial,EpisodeNum) + 1;
if (NumSteps (trial, EpisodeNum) > MaxSteps)

EndEpisode = 1;
end

end %while
disp(sprintf('Episode %d: %d Steps', EpisodeNum, NumSteps(trial,

EpisodeNum»);
end %for episode

end %for trial
for j=I:NumEpisodes

AvgSteps(j) = sum(NumSteps(:,j»!NumTrials;
end %for j
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A03.2 Forgetting Q-Learning Example

NumEpisodes = 200;
MaxSteps = 5000;
EpisodeNum = 1;

% Number of Episodes
% Maximum time per episode
% Starting Episode Number

AvgSteps = zeros {NumEpisodes, 1);
NumTrials = 1000:

% Data Log
% Number of trials to perform

NumSteps = zeros (NumTrials, NumEpisodes, 1): % Data Log

density = 0.20; % Environment Obstacle Density
SoX 32; % Environment Size
SoY 32;
Map RandomMap(S, density): % Generate environment map

for trial = l:NumTrials
disp(sprintf('Trial %d', trial)):
EP [5, 1, -1000) '; % Environment parameters
QP = (0.7 005 009 0.05 0095) '; % Agent parameters

E = InitEnvironment('S', Map, EP);
OptLength = OptimalDist(E);
Q = InitAgent('FQ', EoSize, QP):

for EpisodeNum = l:NumEpisodes
(Q, E) = StartTrial(Q, E):
A = QoAction;
EndEpisode = 0:
while(EndEpisode == 0)

[E, Reward, NewState] = StepEnv(E, A):
Q StepAgent(Q, NewState, Reward, E):
A = Q.Action:
G = GetGoal(E);
if( (QoState.X G.X) & (Q.State.Y G.Y))

EndEpisode = I:
end
NumSteps(trial, EpisodeNum) = NumSteps(trial,EpisodeNum) + 1;
if (NumSteps(trial,EpisodeNum) > MaxSteps)

EndEpisode = 1;
end

end %while
disp(sprintf('Episode %d: %d Steps', EpisodeNum, NumSteps(trial,

EpisodeNum) ) ) ;
end %for episode

end %for trial
for j=l:NumEpisodes

AvgSteps(j) = sum(NumSteps(:,j))!NumTrials;
end %for j
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A.3.3 Hierarchical Q-Learning Example

NumEpisodes = 200;
MaxSteps = 5000:
EpisodeNum = 1;

% Number of episodes
% Maximum time per episode
% Starting episode number

AvgSteps = zeros(NumEpisodes,l);
NumTrials = 1000;

% Data log
% Number of trials to perform

NumSteps = zeros(NumTrials,NumEpisodes,l}; % Data Log

density = 0.20: % Environment obstacle density
S.X 32: % Environment size
S.Y 32:
Map RandomMap(S, density}; % Generate environment map

for trial = l:NumTrials
disp(sprintf('Trial %d',
EP = (-5, -1, 1000J':
QPl (0.7 0.5 0.9 0.05
QP2 = [0.7 0.5 0.9 0.05

trial) } ;
% Environment parameters

5 J '; % High-Level Agent Parameters
3J ': % Low-Level Agent Parameters

E = InitEnvironment('S', Map, EP);
OptLength = OptimalDist(E):
Q = InitAgent('HQ', E.Size, QPl, QP2}:

for EpisodeNum = l:NumEpisodes
[Q, E] = StartTrial(Q, El;
A = Q.Action;
EndEpisode = 0:
while(EndEpisode == O}

[E, Reward, NewStateJ = StepEnv(E, A};
Q StepAgent(Q, NewState, Reward, El:
A = Q.Action;
G = GetGoal(E):
RedGoal = ReduceState(G, Q.Reduction}:
RedAct = ReduceState(Q.State, Q.Reduction}:
if((RedAct.X == RedGoal.X} & (RedAct.Y == RedGoal.Y)}

EndEpisode = 1;
end
NumSteps(trial, EpisodeNum) = NumSteps(trial,EpisodeNum) + 1;
if (NumSteps(trial,EpisodeNum) > MaxSteps)

EndEpisode = 1:
end
%ShowMap(E);
%pause(0.05);

end %while
disp(sprintf('Episode %d: %d Steps', EpisodeNum, NumSteps(trial,

EpisodeNum} } ) ;
end %for episode

end %for trial
for j=l:NumEpisodes

AvgSteps(j) = sum(NumSteps(:,j})!NumTrials:
end %for j
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