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ABSTRACT

Mitochondrial DNA sequence variation and allele frequencies for five
microsatellite DNA loci was used to assess the genetic structure of spotted bass
populations in the upper Red, Ouachita, and Arkansas river basins, with emphasis on
those in the Red River Basin. Results for 318 spotted bass from 14 localities provide no
evidence that the present spotted bass populations in western reaches of the Red River
Basin carry remnants of variation that originated in a pre-glacial Ouachita River. The
population in East Cache Creek, which potentially supported native populations of the
nominal subspecies M. p. wichitae, appears to have been introduced from farther east in
the Red River Basin. The pattern of overall similarity for both mtDNA and microsatellite
DNA indicates that spotted bass in the Ouachita River Basin are more similar to those in
the Arkansas River Basin than to those in the Red River Basin, a result that conflicts with
expectations based on a previous Pleistocene model for the biogeography of the fishes of
the region. These results, together with a nested clade analysis of mtDNA variation,
suggest that the present pattern of genetic variation in spotted bass of the region is a result
of recent events, possibly post-Pleistocene dispersal into the region. The results for
microsatellite DNA showed no evidence of hybridization with smallmouth bass as a
factor in the present genetic structure of spotted bass. The corresponding results for
mtDNA provided no added resolution to this question because mtDNA 1is not divergent

between the two species in the study area.



INTRODUCTION

Mitochondrial DNA (mtDNA) and microsatellite DNA variation was used to
describe the genetic structure of spotted bass (Micropterus punctulatus) in the Red River
Basin of Oklahoma, Texas, and Arkansas. The spotted bass in western portions of this
basin are of particular interest from a conservation standpoint because of the presence of
disjunct populations in the Wichita Mountains region of southwestern Oklahoma (Hubbs
and Bailey 1940; Cofer 1995). Biogeographic considerations indicate that several other
primarily eastern fishes with disjunct populations in the Wichita Mountains are relicts of
pre-glacial times (Mayden and Matthews 1989, Taylor et al. 1993).

Native populations of spotted bass occur from the Great Plains east to the
Appalachian Divide and from the Ohio and Wabash River drainages south to the Gulf of
Mexico (MacCrimmon and Robbins 1975). Two subspecies, both described by Hubbs
and Bailey (1940), are currently recognized: M. p. punctulatus throughout most of the
native range of the species, and M. p. henshalli, from the Mobile Bay drainage of
Mississippi, Alabama, and Georgia. In Oklahoma, native populations are primarily
restricted to the eastern half of the state, but a disjunct population occurs in Cache Creek,
a tributary of the Red River in Comanche County, southwestern Oklahoma (Miller and
Robison 1973; MacCrimmon and Robbins 1975; Vogele 1975). This population, which
represents the western-most native population of the species (Hubbs and Bailey 1940),
was first described as M. pseudaplites (Hubbs and Ortenburger 1929) based upon
collections taken from the West Cache Creek portion of the system in 1923-1928. Hubbs
and Bailey (1940) subsequently classified these specimens as M. punctulatus wichitae.

More recently however, Cofer (1995) concluded that recognition of this taxon was based



on hybrids between spotted bass and non-native smallmouth bass (M. dolomieu) that
were introduced into West Cache Creek as early as 1907. Regardless of taxonomic
status, however, the possibility remains that the historically disjunct populations in the
Cache Creek drainage are genetically divergent.

Various surveys since 1930 indicated extirpation of the spotted bass from the
West Cache Creek drainage, probably because of habitat changes associated with
construction of a number of small reservoirs in the 1930s and replacement of the species
by largemouth bass (Cook 1979, Cofer 1995, Hostettler and Cofer 1996). Extant
populations of spotted bass are present in the nearby East Cache Creek drainage (Cofer
1995) where the species occurs in approximately 200 square miles of artificial reservoir
habitat (lakes Lawtonka and Ellsworth) and 50 miles of stream (L. Cofer, unpubl.).

The genetic status of the East Cache Creek populations is not clear, but it is
possible that they comprise either non-natives or natives genetically introgressed by non-
native spotted bass stock. During 1977-1979, the Oklahoma Department of Wildlife
Conservation released non-native spotted bass in Lake Ellsworth (Federal Aid Project F-
36-R-3, Job 4). This involved three different stockings of fingerlings: 6000 in 1978 from
Lake Texoma (Red River Basin) broodstock, 22,000 in 1978 from Holdenvilie Lake
(Arkansas River Basin) broodstock, and several hundred fingerlings of unknown origin in
1979. Further, there is hearsay evidence that in 1972 fishermen caught a small number of
spotted bass into Lake Kemp, a western Red River Basin reservoir in the Wichita River
drainage of Texas, and released them alive in Lake Lawtonka (Ken Cook, pers. comm.).
Finally, the Lake Kemp population itself may have been introduced (Lewis and Dalquest

1957), but the non-native status of this population is not well substantiated because it is



based only on the observation that the species was restricted to Lake Kemp during a
basin-wide survey of the Wichita River from 1953 to 1955. There are no documented
introductions of spotted bass in eastern portions of the Red River Basin. The species is
historically common in this area and most stockings of spotted bass would have been
incidental to introductions of other fishes, particularly smallmouth bass. Further, because
of the prior presence of spotted bass populations, such incidental stockings are likely to
have had little effect on native stocks.

This study addresses the following questions: 1) Are the populations in the East
Cache Creek drainage and Lake Kemp native or non-native? 2) Is there evidence of
genetic introgression of a native East Cache Creek stock with stocks from elsewhere
(Lake Texoma and Lake Kemp)? 3) Is there any indication of introgression between
spotted bass and non-native smallmouth bass? 4) Does the genetic structure of
populations in the Red River Basin indicate the presence of evolutionarily significant
units (ESU; Waples 1991) deserving special attention from fish managers interested in
preserving genetic diversity?

Moritz (1994) recommended that ESU recognition be based on reciprocal
monophyly for mtDNA, and that populations or clusters of populations representing
“management units” (Waples 1991) within ESUs be recognized on the basis of allele
frequency divergence at nuclear loci (microsatellite DNA in this study). ESU recognition
might be warranted even if the genetic structure suggests genetic introgression by non-
natives, particularly if the introgressed population is the last remaining representative of a
significant portion of the evolutionary legacy of a species (Campton 1987; Allendorf and

Leary 1988, Dowling and Childs 1992). Previous genetic studies of spotted bass have



dealt primarily with hybridization between the species and various congeners
(Koppelman 1994; Avise et al. 1997, Pierce and Van Den Avyle 1997). In the only other
study addressing population structure of spotted bass, Fuller (1998) concluded, from
allozymes and randomly amplified polymorphic DNA, that two populations in Louisiana

belong to the subspecies M. p. punctulatus and not M. p. henshalli.

METHODS

In 1999 and 2000, samples of 19-30 specimens each were collected from 12 sites
encompassing the major streams in the Red River Basin in Arkansas, Oklahoma, and
Texas, and two Oklahoma localities in the Arkansas River Basin. Localities were as
follows (in parentheses, locality numbers as in Fig. 1 and Table 1): (1) Medicine Creek
at state highway 115 crossing upstream of Lake Lawtonka, Comanche Co., Oklahoma;
(2) East Cache Creek on Fort Sill Military Reservation, Comanche Co., Oklahoma, (3)
Lake Ellsworth, Comanche Co., Oklahoma; (4) Lake Kemp near the dam, Baylor Co.,
Texas; (5) Washita Arm of Lake Texoma, Marshall and Bryan Counties, Oklahoma; (6).
Blue River at Blue River Public Hunting and Fishing Area, Johnston Co., Oklahoma; (7)
McGee Creek Reservoir, McGee and Potapo arms, Atoka Co, Oklahoma; (8) Sardis
Reservoir just N of junction between state highways 2 and 43, Pushmataha Co.,
Oklahoma; (9) Pine Creek Reservoir 6 km W of New Ringold, McCurtain Co.,
Oklahoma; (10) Broken Bow Reservoir in the Hochatown State Park area, McCurtain
Co., Oklahoma; (11) Greeson Reservoir near U.S. Highway 70 bridge, Pike Co.,
Arkansas; (12) DeGray Reservoir, Clark Co., Arkansas; (13) Lake Tenkiller, Cherokee

Co., Oklahoma; (14) Skiatook Lake, Osage County, Oklahoma.



To allow assessment of genetic introgression and as an initial outgroup for the
mtDNA phylogenetic analysis, smallmouth bass (Micropterus dolomieu) from the
following three sources were included: captive stock at Byron State Fish Hatchery,
Byron, Alafalfa Co., Oklahoma (derived originally from the Cumberland River Basin,
Tennessee, n = 22); Baron Fork of the Illinois River 1.2 km S, 0.4 km E of Welling,
Cherokee Co., Oklahoma (n = 2); Mountain Fork River near Jet, McCurtain Co.,
Oklahoma (n = 2). For the phylogenetic analysis, one specimen of redeye bass (M.
coosae) from Alabama River, Walker Co., Alabama, and a largemouth bass (M.
salmoides) from Stillwater Creek, Payne Co., Oklahoma were included.

Collections were made by seining, angling, and boat and backpack electrofishing.
Captured specimens were kept alive in water or immediately put on ice until tissues were
removed for analysis. At time of collection muscle and/or liver tissue was removed from
spotted bass and placed in 15 ml tubes with 5 ml of lysis buffer (2M TRIS HCL pH 8.0,
0.5M EDTA, 5M NaCl, ddH,0, 10% SDS). In the lab, 0.1 g of tissue was used for DNA
extraction following Longmire et al. (1997).

An initial screening of 14 previously developed microsatellite primers (Colbourne
et al. 1996; Malloy et al. 2000) was conducted on seven specimens from each of eight
different collections of spotted bass. Five polymorphic loci were then selected for
analysis (Table 2). In the initial screening and the subsequent survey, forward primers
for the polymerase chain reaction (PCR) were end-labeled with o’*P dCTP and
conditions for the reaction were as follows: an initial 12 min denaturation at 95 °C,
followed by 10 cycles at 94 °C for 15 s, 55 °C for 60 s, 72°C for 30 s, followed by 25

cycles at 89 °C for 15 s, 55 °C for 60 s, and 72 °C for 30 s, and ending with a 30-min



elongation at 72 °C. The resulting amplicons were electrophoresed through 5%
acrylamide gels and visualized with autoradiography.

Universal primers L15926 (Kocher et al. 1989) and H16498 (Meyer et al. 1990)
were used to amplify a 447-bp portion of the mitochondrial DNA control-region
following protocol described in Echelle et al. (2000). All spotted bass, two specimens
from each of the three smallmouth bass collections, and one specimen each of redeye and
largemouth basses were sequenced in one direction (forward primer L15926) using an
ABI Prism™ 377 automated sequencer (Applied Biosystems Inc., Foster City, CA).
Sequences were aligned using CLUSTAL X (Thompson et al. 1997) and visually verified
in MacClade 4.0 (Maddison and Maddison 2000). Haplotypes were determined by using
the Search and Merge option under Redundant Taxa in MacClade 4.0. Those haplotypes
differing by only a single nucleotide were sequenced in both directions as a check against
PCR error.

For microsatellite DNA data, the computer program GENEPOP (Raymond and
Rousset 1995; web version 3.1c at Http://wbiomed.curtin.edu.au/genepop/index. html)
was used to calculate departures from Hardy-Weinberg equilibrium (HWE), and allele
frequencies. Arlequin version 2.0 (Schneider et al. 2000) was used for analyses of
genetic structure, including observed and expected heterozygosity, pairwise Fsr values,
and hierarchical analysis of gene diversity based on Wright's F-statistics (Wright 1951).
The hierarchical analyses partitioned the genetic diversity into proportions attributable to
variation among populations in different basins, among populations within basins, and

within populations. For this analysis, localities were grouped into three basins as



follows: Red River (sites 1-10 in Fig. 1), Ouachita (11 and 12), and Arkansas (13 and
14).

Two different approaches were employed to analyze the mtDNA sequence data.
Arlequin was used to estimate haplotype and nucleotide diversities and pairwise ®gr-
values among populations and to obtain a hierarchical analysis of molecular structure
based on ®sr statistics (AMOVA; Excoffier et al. 1992). For the hierarchical analysis,
localities were grouped as described for microsatellite DNA data.

Significance levels of all multiple tests were adjusted using the sequential
Bonferroni correction (Rice 1989) for Type I error (tablewide a = 0.05). To summarize
patterns of overall genetic similarity among localities, separate minimum spanning trees
were constructed by hand to summarize the pairwise Fsr-values from microsatellite DNA
loci and the ®sr-values from the mtDNA sequences. In a minimum spanning tree, each
collection is connected to the collection which it is most similar.

For phylogenetic analysis of relationships among haplotypes, PAUP* (version
4.062, Swofford 1998) was used in heuristic, maximum-parsimony searches with TBR
branch swapping, equal-weighting of characters, and 20 random addition replicates. This
analysis included all haplotypes detected in spotted bass and three haplotypes detected in
smallmouth bass; redeye bass and largemouth bass were the designated outgroups.

The second approach. nested clade analysis, uses objective statistical tests to
separate population structure from population history (Templeton et al. 1992, 1995). The
computer program TCS (Clement et al. 2000) was used to estimate, with the algorithm
presented by Templeton et al. (1992), an unrooted network of relationships that grouped

haplotypes (zero-step clades), into one-step clades; (member clades differ by one



substitution), two step clades (member clades differ by two substitutions), and so on, until
the next level of nesting encompasses the whole tree (Templeton et al. 1992). The
program GeoDis (version 2.0; Posada et al. 2000) incorporates spatial information
(pairwise river-kilometer distances among collection sites; Table 3) to calculate for each
haplotype or higher level clade, its average distance from its geographical center (clade
distance = D), and its average distance from the geographical center of the next higher-
level clade (nesting clade) to which it belonged (nested clade distance = D,; Templeton
etal. 1992). Following an inference key (latest edition at:
http://bioag.byu.edu/zoology/crandall lab/geodis.htm), the GeoDis output was used to
identify which historic events (e.g., range expansion, long distance, dispersal, allopatric
fragmentation, or isolation by distance) best explain the geographic structure of mtDNA

variation.

RESULTS

Microsatellite DNA Variability

The five loci selected for this study were polymorphic in all samples except for
monomorphy of Mdo5 and Mdo!2 in one sample each (Table 4). Number of alleles
ranged from 3 (Mdo5 and Mdol2) to 11 (Lma21). None of the alleles detected in
smallmouth bass were found 1in spotted bass. Tests for conformity to HWE revealed no
significant deviations (initial a for each population = 0.01; calculated by dividing 0.05 by
the number of loci).

All pairwise Fsr-values among samples from the Red River Basin were

statistically significant except the one comparing the sample from Lake Ellsworth of the



East Cache Creek system with the Sardis Reservoir sample. Other instances of non-
significance included the comparison of the two samples from reservoirs (Greeson and
DeGray) of the Ouachita River Basin, and, somewhat surprisingly, comparisons of those
two samples with the one from Lake Tenkiller of the Arkansas River Basin (Table 5).

The minimum spanning tree based on the matrix of Fsr-values shows that two of
the spotted bass collections from three closely spaced locations in the East Cache Creek
system (sites 1, 2, and 3 in Figure 1) were more similar to collections from locations
farther east than they were to each other (Figure 2). The Medicine Creek collection (site
1) from that system was most similar to the one from Lake Texoma, whereas the Lake
Ellsworth collection (site 3) was most similar to the one from Sardis Reservoir. In
addition, the three collections from the East Cache Creek system were not notably
divergent from other populations of spotted bass.

The collection from Lake Kemp was the most divergent spotted bass collection in
the survey. All other collections overlapped each other in allele composition at all five
microsatellite loci, whereas, for Mdo3, the Lake Kemp collection overlapped only with
the Lake Ellsworth and Lake Texoma collections (Table 4). In addition, the Lake Kemp
collection had, at moderate frequencies (0.24 and 0.57), two alleles, Lma2 /-G and

Mdol1-E, that were absent in all other spotted bass examined.

Mitochondrial DNA Variability
The amplified d-loop segment comprised 447 base pairs of which 39 were
variable across all taxa and only 7 of which were variable within spotted bass. Eight

mtDNA haplotypes were detected in spotted bass (Table 6), all of which are deposited in
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GenBank. Excluding Blue River, all populations contained two-or more haplotypes.
Haplotype diversity ranged from 0.000 to 0.540 (mean =0.437; Table 7). Nucleotide
diversity ranged from 0.000 to 0.003 (mean = 0.0017; Table 7), indicating low levels of
intrapopulational sequence divergence.

Two haplotypes (A and B) represented 92% of all spotted bass analyzed.
Haplotype A occurred in all collections except the two from the Ouachita River system
(Greeson and DeGray reservoirs), and haplotype B occurred in all except two collections
from the Red River basin (Lake Kemp and Blue River). Among the remaining
haplotypes detected in spotted bass, C, was shared between collections from the Ouachita
and Arkansas river basins, occurring in, respectively, DeGray and Tenkiller reservoirs, G
occurred in Kemp and Sardis reservoirs of the Red River basin, and the remaining
haplotypes were detected only in single individuals.

The smallmouth bass samples included threc different haplotypes, one of which
occurred in a spotted bass from Lake Tenkiller (Table 6). The remaining seven spotted
bass haplotypes were no more divergent from smallmouth bass haplotypes (1 to 4
substitutions; uncorrected p = 0.004-0.010) than they were from each other (also 1-4
substitutions). Correspondingly, the maximum parsimony analysis of relationships gave
no resolution. There were 259 equally parsimonious trees (tree length = 43; consistency
index = 0.88; retention index = 0.74), and the strict consensus included one large
polytomy comprising all haplotypes detected in spotted and smallmouth bass. The
haplotypes of the spotted/smallmouth bass clade differed from those of the outgroup taxa,
redeye and largemouth bass, at, respectively, 12 to 14 ( uncorrected p = 0.027-0.031) and

27 t0 29 (p = 0.061-0.065) base-pair positions.



The ®sr-values ranged from near zero for a number of pairwise combinations of
collections to 0.98 between the Blue River and Greeson Reservoir collections (Table 5).
The Blue River population was significantly divergent from all others except the
population in Lake Kemp. The latter was significantly divergent from all populations
except for a group comprising four of the five other western-most populations in the Red
River Basin: the one in Blue River, the Lake Texoma population, and two of the three
East Cache Creek populations (sites 2 and 3, Figure 1). The two collections from the
Ouachita River Basin (Greeson and DeGray reservoirs) differed significantly from all
collections from the Red River Basin. The two samples from the Arkansas River Basin
differed significantly from all of the six western-most populations in the Red River Basin,
but a number of between-basin (Arkansas vs Red and Ouachita) combinations were not
significantly divergent (Table 5).

The minimum spanning tree for the matrix of ®sr-values reflects some aspects of
the comparable tree based on Fsy-values for microsatellites (Figure 2). In both trees, the
East Cache Creek populations are weakly divergent from eastern populations in the Red
River Basin, the Lake Kemp population is one of the most divergent populations, and the
two populations from the Quachita River system (DeGray and Greeson reservoirs) cluster

most closely with those from the Arkansas River Basin (Tenkiller and Baron Fork).

Hierarchical Analysis of Genetic Diversity
For both forms of DNA data, the majority of the genetic diversity (72.6% for
microsatellite DNA; 60.3% for mtDNA) was attributable to variation within populations.

The proportion attributable to variation among samples within basins was 16.9% for



microsatellites and 12.6% for mtDNA, both of which were highly significant (P <
0.0001). The corresponding values for proportion attributable to variation among

populations in different basins was 10.3% and 29.9% (P = 0.009 and 0.011).

Nested Clade Analysis

The nested clade analysis resulted in three one-step clades (1-1, 1-2, and 1-3)
grouped into a single two-step clade (2-1; Figure. 3). An ambiguous loop involving
haploypes A, B, F, and G was resolved according to nesting rules in Templeton and Sing
(1993). Based on the assumption that more widespread haplotypes constitute older
lineages (Templeton et al. 1995), clade 1-1 was designated as interior to clades 1-2 and 1-
3

There was significant geographic and genetic structure at the 1-step and entire
cladogram levels (Table 9). Clade 1-1 had significantly large D; and small D, values
(Figure 4). The inference chain for this clade, which occurred in 12 of the 14 populations
sampled and all three of the major basins, indicated restricted gene flow as a result of
long distance dispersal over areas not occupied by the species (Figure 4). The same
biological inference applied to the geography of the entire network (clade 2-1), which had
significantly large clade and nested-clade distances. Clade 1-3, which occurred in all
collections except those from the Ouachita River Basin, had a significantly large D, value
and a nonsignificant D, value, and the inference chain indicated restricted gene flow due

to isolation by distance
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DISCUSSION

Results of this study are compatible with the hypothesis that present populations
of spotted bass in the East Cache Creek drainage are non-natives introduced from
populations farther east in the Red River Basin. For both mtDNA and microsatellite
DNA, these populations exhibit no unique genetic markers and they do not cluster as a
separate group from other populations on the basis of marker frequencies. For mtDNA,
haplotype frequencies in the East Cache Creek populations are not divergent from those
in several eastern populations, and for microsatellite DNA alleles they are more similar to
various eastern populations than they are to each other. The latter is unusual for native
populations in such close proximity with no natural barriers to gene flow. In the other
two such instances among the collections (Pine Creek and Broken Bow reservoirs and
DeGray and Greeson reservoirs), which were from sites separated by greater distances
than the East Cache Creek sites (about 150-275 river-km vs <90), the highest similarities
were with the collection from the nearest location. The rather heterogeneous nature of
the East Cache Creek populations may reflect the earlier mentioned stockings of Lakes
Ellsworth and Lawtonka with non-native spotted bass after establishment of dams serving
as barriers to gene flow.

Other possibilities for the East Cache Creek populations are that they are native
populations that have been genetically introgressed by introduced non-native spotted bass
stocks, or that they are native populations that have been subjected to genetic drift
subsequent to population fragmentation, for example, as a result of reservoir construction.
My results cannot eliminate these hypotheses, but if either possibility is true, then the

native populations were originally weakly divergent from populations elsewhere in the



Red River Basin. There is no evidence of genetic markers restricted to the East Cache
Creek area.

The Lake Kemp population was divergent from all other samples on the basis of
both mtDNA and microsatellite DNA. There was no evidence of a fixed genetic
difference between this population and all others, but it did exhibit some unique
microsatellite alleles, two of which occurred at moderate frequencies (0.24 and 0.56). As
previously mentioned, this population may have been introduced (Lewis and Dalquest
1957), but this is not well documented. Insight into the native/non-native status of this
population would require a more extensive survey of the geographic range of spotted
bass.

These results provide little evidence of genetic introgression of spotted bass by
smallmouth bass. Hybdrization between the two species can be common, particularly in
areas where one has been introduced into the native range of the other (Koppelman 1994;
Avise et al. 1997; Pierce and Van Den Avyle 1997). Nonetheless, this survey revealed no
sharing of microsatellite DNA alleles between the two species. The mitochondrial DNA
is so similar between the collections of spotted and smallmouth bass that the results are
somewhat uninformative regarding hybridization, a situation that has also been observed
in populations of the two species in Missouri (J. Koppelman, pers. comm.). The
occurrence in a single spotted bass from Lake Tenkiller of an mtDNA haplotype that
otherwise occurred only in smallmouth bass from a nearby location (both specimens from
Baron Fork River) might reflect contemporary hybridization. However, without further
study of phylogenetic relationships among haplotypes in the two species, contemporary

hybridization cannot be separated from shared ancestral mtDNA lineages or from lincage




sharing as a result of ancient hybridization and replacement of the mtDNA of one of the
two species by that of the other.

A notable result of this survey was the observation from both mtDNA and
microsatellite DNA that populations in the Ouachita River Basin (DeGray and Greeson
reservoirs) were more similar to those in the Arkansas River Basin than to those in the
Red River Basin. This pattern is in conflict with results of a phylogenetic analysis of
genetic variation in smallmouth bass (Stark and Echelle 1998) and with expectations
based on the hypothesis (Mayden 1988; Taylor et al. 1993) that the localities examined in
the Ouachita River Basin and most of those in the Red River Basin were part of a pre-
glacial Ouachita River. This result, together with biological inferences from the nested
clade analysis, which indicate restricted gene flow based on either isolation by distance or
occasional long dispersal across largely uninhabited area, suggests that the present pattern
of genetic variation in the study region is largely explained by relatively recent events,
possibly post-Pleistocene dispersal into the upper Red, Arkansas, and Ouachita river

basins.
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Table 1. Spotted bass sampling locations. Locality numbers correspond with those in

Figure 1.
State Basin Drainage Stream/Reservoir
1. Oklahoma Red River Cache Creek Medicine Creek
2. Oklahoma Red River Cache Creek East Cache Creek
3. Oklahoma Red River Cache Creek Lake Ellsworth
4. Texas Red River Wichita River Lake Kemp
5. Oklahoma Red River Red River Lake Texoma
6. Oklahoma Red River Blue River Blue River
7. Oklahoma Red River Muddy Boggy River  McGee Creek Reservoir
8. Oklahoma Red River Kiamichi River Sardis Reservoir
9. Oklahoma Red River Little River Broken Bow Reservoir
10. Oklahoma  Red River Little River Pine Creek Reservoir
1. Arkansas Ouachita Ouachita River DeGray Reservoir
12. Arkansas Ouachita Ouachita River Greeson Reservoir
13. Oklahoma  Arkansas River Illinois River Lake Tenkiller
14. Oklahoma  Arkansas River  Verdigris River Skiatook Reservoir
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Table 2. Primer sequences for the five microsatellite loci used in this study. Forward
primers are denoted by F and reverse primers by R.

Locus Primer Sequence Reference Source Species
Lma2l F:CAGCTCAATAGTTCTGTCAGG Colbourne et  Lepomis
al. (1996) macrochirus
R: ACTACTGCTGAAGATATTGTAG
Mdo3 F: AGGTGCTTTGCGCTACAAGT Malloy et al.  Micropterus
(2000) dolomieu
R: CTGCATGGCTGTTATGTTGG
Mdo5 F: CAGGTTCCCTCTCACCTTCA Malloy et al. M. dolomieu
(2000)
R: ATGGTCTCACCAGGGACAAA
Mdoll F: TTGTGGAGAGGGGCATAAAC Malloy etal. M. dolomieu
(2000)
R: GCATCCTCCCACGTTACCTA
Mdol2 F:CACCCTCCCTCTCTTCCTCT Malloy et al. M. dolomieu
(2000)

R: CCATCAACACACGGAGACAC




§C

Table 3. Pairwise sample site distances based upon river kilometers. Locality numbers correspond to those in Table 1 and Figure 1.

l 2 3 4 5 6 7 8 9 10 11 12 13
60 =
85 25 -
400 340 365 -
660 600 625 690 -
950 890 915 980 290 --
970 910 935 1000 310 340 --
1190 1130 1155 1220 530 560 420 --
1555 1495 1520 1585 895 925 785 835 --
1505 1445 1470 1535 845 875 735 785 150 --
2538 2478 2503 2568 1878 1908 1768 1818 1503 1453 --
2463 2403 2428 2493 1803 1833 1693 1743 1428 1378 275 --
3069 3009 3034 3099 2409 2439 2299 2349 2034 1984 1955 1880 --
3334 3274 3299 3364 2674 2704 2564 2614 2299 2249 2220 2145 325




Table 4. Microsatellite allele frequencies and measures of variability for 14 populations of spotted bass. Locality numbers correspond

with those in Figure 1. Numbers in parentheses = number of individuals. Measures of variability: a = number of alleles, /, =
observed heterozygosity; H. = expected heterozygosity.

Locality number

Locus/ 1 P 3 4 5 6 7 8 9 10 11 12 13 14
allele (19) (24) (22) (23) (25) (19) (24) (20) (19) (24) (21) (18) (30) (24)
Lma2l
A 0.026 -- -- -- - -- 0.042 0.150 0.053 0.080 - - - -
B - 0.063 0.188 -- -- - 0.021 0.025 0.211 0.280 0.262 0.237 0433 0.625
C -- -- 0.083  0.500 -- -- 0.021 0.025 0.132 0300 0.262 0.342 0.100 -
D = - -- -- -- -- - 0.050 -- -- -- -- 0.017 0.042
E 0947 0938 0688 0.044 0860 0643 0917 0.725 0605 0320 0452 0368 0450 0.333
F 0.026 - 0.042 - 0.140 0.357 -- 0.025 -- 0.020 - - - -
G - -- -- 0.239 - -- - - -- - - - -- --
H -- -- -- 0.022 - - -- - -- -- - - -- -
l -- - -- 0.109 - - -- - -- -- 0.024 0.053 - --
J - - - 0.022 - -- -- - -- -- - - -- --
K - -- -- 0.065 -- - - -- -- -- - -~ - --
Mdo3
A -- -- -~ -- -- 0.136 0.042 0.175 0.053 - 0.050 0.125 - --
B 0947 0804 0.375 - 0.440 0432 0438 0425 0.553 0.640 0.200 0.325 0317 0.250
[ 0.053 0.196 0.271 -- 0.220 0432 0521 0400 0.395 0360 0.750 0.550 0.683 0.750
D = i o 0.783 0.0R80 - -- -- - - - - - -
E - -- 0354 0.217 0.260 -- -- -- -- -- - - - --



Table 4 continued

Locality Number

Locus | 2 3 4 5 6 T 8 9 10 11 12 13 14
allele  (19) (24) (22)  (23) (25) (19) (24)  (20) (19) (24) (21) (18) (30) (24)
Mdos
A 0.974 0.750 0.566 1.000 0.854 0925 0.729 0425 0.263 0.520 0.167 0.290 0.217 0.396
B 0.026  -- -- -- -- -- -- 0.025 - -- -- -- -- --
C -~ 0.250 0.438 -- 0.146 0.075 0.271 0.550 0.737 0480 0833 0711 0.783 0.604
Mdoll
A -- -- - - -- -- - -- - -- -- - 0.117 0.063
B 0.500 0.438 0479 0435 0500 0.886 0.604 0.525 0.842 0.700 0405 0395 0417 0.188
C 0.500 0.563 0.521 - 0.500 0.114 0.396 0475 0.158 0300 0452 0474 0.467 0.750
D = -- - -- -- -- -- -- -- -- 0.119 0.132 - -
E -- -- -- 0.565 - -- - -- -- -- -- -- -- --
F - - -- - - -- - -- -- -- 0.024 -- -- -
Mdol2
A 0.632 0.188 0.229 - 0.583 - -- 0.125 0.361 0.300 -- - -- 0.063
B 0.263 0.729 0.604 0457 0354 0.750 1.000 0650 0639 0660 0952 0.895 0950 0.771
C 0.105 0.083 0.167 0.544 0.063 0.250 - 0.225 - 0.040 0.048 0.105 0.050 0.167
Variability
a 3 2 3 3 3 2 2 3 3 3 3 3 3 3
H, 0.29 0.39 0.62 0.49 0.42 0.38 0.39 0.56 0.51 0.53 0.45 0.49 041 0.50
H. 0.40 0.39 0.55 0.54 0.51 0.33 0.44 0.56 0.50 0.55 0.45 0.56 0.45 0.48




Table 5. Pairwise mtDNA ®gy values (above diagonal) and microsatellite Fst values (below diagonal) estimates for 14 populations of
spotted bass. Bold & underlined values signify statistical significance with the sequential Bonferroni correction.

Locality 1 2 3 4 5 6 7 8 9 0 11 12 13 14

l 0.032 0.089 0.408 0058 0.611 -0.049 -0.048 -0.029 -0.043 0325 0.278 0.179 0.169
2 0.140 0.019 0299 -0.001 0.490 -0.029 -0.009 0033 -0.038 0398 0352 0258 0.260
3 0210 0.074 0.130 -0.042 0314 0088 0.137 0207 0049 0592 0.524 0.429 0.465
4 0.528 0470 0.351 0.159 0250 0.393 0452 0.534 0332 0842 0768 0.670 0.740
5 0.085 0.097 0.061 0.393 0339 0058 0.102 0167 0024 0.542 0484 0393 0.417
6 0.314 0.183 0.146 0379 0.182 0.579 0.653 0.722 0.515 0.976 0.898 0.787 0.881
7 0341 0.088 0.104 0480 0.188 0.122 0.041 -0.020 -0.038 0313 0279 0.186 0.172
8 0.261 0.085 0031 0395 0.127 0.136 0.080 -0.043 -0.027 0277 0242 0.148 0.125
9 0.338 0.197 0.102 0454 0202 0202 0.191 0.064 0.003 0213 0.193 0.101 0.062
10 0.260 0.143 0.073 0365 0.164 0.150 0.158 0.072 0.037 0338 0302 0214 0.206
1 0.505 0.298 0.155 0.482 0332 0305 0.220 0.109 0.139 0.143 0.116 0.098 0.024
12 0.407 0215 0.098 0396 0256 0.226 0.170 0.062 0.102 0.074 0.003 0.016 0.098
13 0.477 0.270 0.146 0.492 0324 0295 0205 0.108 0.131 0.130 0.006 0.024 0.056
14 0.465 0.282 0.150 0.482 0307 0329 0261 0.148 0230 0.174 0.093 0.078 0.055




Table 6. Distribution of mtDNA haplotypes. Locality numbers correspond to those in
Figure 1. Values represent number of individuals.

Species/ Haplotype
Sample site A B C D E F G H I J K
Spotted Bass
1 7 12
2 11 13
3 14 8
4 16 7
5 15 10
6 19
7 9 15
8 6 13 1
9 5 14
10 9 14 |
11 20 1
12 13 4 1
13 2 20 7 |
14 2 21 1
Smallmouth bass
Mountain Fork 2
River
Byron | ]
Hatchery
Baron Fork 2
River




Table 7. mtDNA diversity indexes for 14 populations of spotted bass in the Red and
Arkansas River basins. Locality numbers correspond with those in Figure 1.

Population

Haplotype diversity

(h)

Nucleotide diversity

()

1. Medicine Creek

2. East Cache Creek

3. Lake Ellsworth

4. Lake Kemp

5. Lake Texoma

6. Blue River

7. McGee Creek Reservoir
8. Sardis Reservoir

9. Pine Creek Reservoir
10. Broken Bow Reservoir
I 1. Greeson Reservoir

12. DeGray Reservoir

13. Lake Tenkiller

14. Skiatook Reservoir

0.4912 +/- 0.0683
0.5181 +/- 0.0344
0.4848 +/- 0.0637
0.4427 +/- 0.0797
0.5000 +/- 0.0480
0.0000 +/- 0.0000
0.4891 +/- 0.0569
0.5105 +/- 0.0907
0.4094 +/- 0.1002
0.5399 +/- 0.0619
0.0952 +/- 0.0843
0.4510+/-0.1174
0.5126 +/- 0.0874

0.2355 +/- 0.1093

0.0022 +/-0.0017

0.0023 +/- 0.0018

0.0022 +/- 0.0017

0.0010 +/- 0.0010

0.0022 +/- 0.0017

0.0000 +/- 0.0000

0.0022 +/- 0.0017

0.0021 +/-0.0017

0.0018 +/- 0.0015

0.0025 +/-0.0019

0.0002 +/- 0.0004

0.0011 +/-0.0011

0.0017 +/-0.0014

0.0009 +/- 0.0010
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Table 8. Hierarchical distribution of genetic diversity for microsatellite loci and mtDNA.
For this analysis populations were grouped into one or the other of three river basins:
Red, Ouachita, and Arkansas (see text). Asterisks indicate statistical significance as
follows: * <0.01, ** <0.0001.

Percentage of variation

Source of variation Microsatellites mtDNA
Among basins 10.3* 29.9%
Among populations 169" 12.6%*

within basins

Within populations TL.Em 57.5%
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Table 9. Nested contingency analysis of geographical associations based upon 1000
resamples. Clades are the same as in Figure 3 and include only those with a probability

value less than 0.05, indicating significant geographical structure. Clades with no genetic
or geographic structure are not provided.

Clade X* Statistic Probability
[-1 52.5 0.014
1-3 50.3 0.029

Entire Clade 124.7 <0.001




z )
X ® : .

Medicine Creek B8 = Sardis Reservoir

1=
2 = East Cache Creek 9 = Pine Creek Reservoir
3 = Lake Elisworth 10 = Broken Bow Reservoir
4 = Lake Kemp 11 = Greeson Reservoir

[ 5 = Loke Texoma 12 = DeGray Reservoir
6 = Blue River 13 = Lake Tenkiller
7 = McGee Creek Res. 14 = Skiatook Reservoir

Figure 1. Map of sampling locations.
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Figure 2. Minimum spanning trees based on (A) pairwise Fsr values from five
microsatellite DNA loci and (B) pairwise st values for mtDNA. Locality numbers
correspond to those in Figure 1; names indicated are for the corresponding streams or
reservoirs. In B, sites within the same box were not divergent; negative dst values were
treated as zero (negative values are artifacts of computation; range of ®st is 0.0 to 1.0).
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2-1 1-2

Figure 3. Estimated cladogram based upon parsimony at the 95% level among eight
haplotypes found in 14 spotted bass populations. Solid branches between haplotypes
represent single mutations while dashed lines identify an ambiguous connection. The
zero indicates a missing haplotype. Thin-lined boxes surround I-step clades (1-1, 1-2, I-
3), and the thick-lined box surrounds the entire clade (2-1).
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Haplotypes 1-Step Clades
Clades D. Ds Clades D, D,
B 1652° 1659°
C 1268° 1709
D 275 1583
E 0 1967
=T 616" =515
1-2-3-5-6-7-8 Yes: RGFLDD 1-1 1675" 1635"
F . - 1-2 0 2078
| A 871 868
G 488° 799
H 0 1081
(15 3 437" 37
1-2-3-4 No: RGFIBD 1-3 8735 1311°
I-T 809" 318"

1-2-3-5-6-7-8 Yes: RGFLDD

Figure 4. Results of the nested clade analysis showing geographical distance for eight
haplotypes found in spotted bass. Enclosed boxes represent clades that were nested
together based upon one mutational step differences. The opening of each box leads to
the next higher level nesting clade. Superscript ‘L’ indicates a significantly large
distance (P < 0.05), and superscript ‘S’ indicates a significantly small distance. Shaded
areas represent interior clades. ‘I-T’ refers to the average distances between interior
minus tip clades within a nesting clade. Nested clades with a sequence of numbers in the
bottom of their boxes represent the inference chain followed; RGFLDD = restricted gene
flow with some long distance dispersal over intermediate areas not occupied by the
species; RGFIBD = restricted gene flow with isolation by distance.
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