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INTRODUCTION

The oral cavity contains a plethora of specific and non-specific 
defense factors. The non-specific factors include some mucins, 

proline-rich proteins, salivary glycoproteins, lactoferrin, lysozyme, 
histatins, cystatins, and peroxidases. This review focuses on the 
role of peroxidases in the context of oral health and disease, with an 
emphasis on the relevant inorganic chemistry. Particular attention 
is paid to the antimicrobial properties of the inorganic chemicals 
of the oral cavity that are associated with the peroxidases, and 
to the inter-person differences in the inorganic chemistry of the 
oral cavity that may influence peroxidase function. For further 
information on the structures and origins of human oral peroxidases, 
the reader is referred to the recent review by Tenovuo and 
co-workers (Ihalin et al., 2006). There are two principal defensive 
peroxidase systems in the oral cavity, salivary peroxidase (SPO) 
and myeloperoxidase (MPO). SPO is structurally and catalytically 
similar to lactoperoxidase (LPO) (Ihalin et al., 2006). In vivo, 
the SPO and LPO systems essentially use only the pseudohalide 
SCN- as a substrate to produce OSCN- (Pruitt et al., 1988). Such 
defensive peroxidases are commonly found in regions of the human 
body that are controlled by the mucosa: e.g., breast milk (Shin et 
al., 2000), lachrymal fluid ( Van Haeringen et al., 1979; Tenovuo 
et al., 1985), and the mucosal lining of the lungs (Gerson et al., 
2000). LPO and SPO are coded for the same gene (Ueda et al., 
1997). In contrast to peroxidases that essentially employ only 
SCN- as a substrate (e.g., LPO and SPO), the MPO system is also 
capable of oxidizing Cl- to produce hypochlorite (OCl-) (Arnhold et 
al., 2006). Hypobromite (OBr-) can also be generated by the MPO 
system (Thomas et al., 1995), but only in minor amounts in the 
oral cavity. All of the human defensive peroxidases can also utilize 
iodide (I-) as a substrate. However, because of sequestration in the 
thyroid, the environmentally rare halide I- is not abundant in most 
physiologic fluids, including the fluids of the oral cavity (Anttonen 
and Tenovuo, 1981). Accordingly, the limited bioavailability of I- 
precludes its significant involvement in host defense. 

SPO is a normal, non-inducible component of the saliva of 
the parotid and submandibular glands (Riva et al., 1978), whereas 
MPO is an offensive mechanism of neutrophilic polymorphonuclear 
leukocytes (PMNs). Leukocytes are not normal components of the 
saliva of healthy individuals, but rather are introduced to the oral 
cavity by gingival crevicular fluid (GCF) during inflammatory 
responses (Kowolik and Grant, 1983). The leukocytes in the 
GCF are comprised of ca. 90% PMNs (Ebersole, 2003), and 
MPO accounts for about 5% of the total PMN protein (Pullar 
et al., 2000). PMNs degenerate in saliva due to osmotic lysis, 
thereby releasing the content of the azurophilic granules (including 
MPO). It has been estimated that ca. 75% of the peroxidase 
activity in mixed saliva is due to MPO, with the remaining activity 
attributed to SPO (Thomas et al., 1994a). Most of the SPO activity 
is associated with the soluble portion of the saliva, whereas most 
of the MPO activity is associated with the sediment (Thomas et al., 
1994a). Note that, in contrast to other regions of the mucosa—for 
example, the lungs—eosinophils are not usually recruited into 
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the oral cavity, although they can be introduced to saliva 
via the sputum of individuals who have asthma eosinophilia 
(Spahn, 2007) and from eosinophilic ulcers (rare lesions of 
the oral mucosa) (Mezei et al., 1995; Hirshberg et al., 2006). 
Consequently, there is no evidence that eosinophil peroxidase 
(another common defensive peroxidase that has properties 
somewhat different from those of LPO, SPO, and MPO) 
plays a significant role in oral fluids. Accordingly, this review 
focuses on SPO and MPO. 

PEROXIDASES: ORAL HEALTH AND DISEASE
The two disease states of the oral cavity that we consider here 
are caries and periodontal diseases. The etiology of caries 
is clear: Acidogenic bacteria cause damage to tooth enamel 
in the presence of fermentable carbohydrates (e.g., sucrose, 
fructose, and glucose) (Featherstone, 2000). When the pH 
at the surface of the tooth falls below 5.5, demineralization 
proceeds faster than remineralization, and decay ensues. The 
role of inorganic chemistry in this process is multifaceted: e.g., 
the (de)mineralization process largely involves the inorganic 
mineral hydroxyapatite [ca. 96% for enamel and 70% for 
dentin (with some amorphous calcium phosphate)], and the 
aforementioned peroxidase-derived reactive inorganic species 
are involved in controlling the microbial growth (OSCN- in 
particular, although other inorganic chemical species have been 
proposed to be significant, vide infra).

Like caries, periodontal diseases are also caused by 
microbial infection (Smalley, 1994; Genco, 1996; Mombelli, 
2003). Although the primary cause of periodontal diseases is 
the accumulation of dental plaque at the gingival margin and 
the consequential host response (Azuma, 2006), numerous 
factors affect the severity of the diseases, include smoking 
(Bergström, 2004), poorly controlled diabetes (Mealey and 
Oates, 2006), and genetic susceptibility (Baker and Roopenian, 
2002; Shapira et al., 2005). Both soft tissues (gingival and 
periodontal ligaments) and hard tissues (alveolar bone and 
cementum, which are both largely hydroxyapatite) are 

affected, but the cause of this tissue damage is a complex and 
as-yet-unresolved matter. It appears likely that inflammatory 
agents (including OCl-) produced by the host (Pullar et al., 
2000; Klebanoff, 2005) and virulence factors produced by the 
infectious agents (Graves et al., 2000) are both responsible 
for the tissue damage. The supragingival environment in 
which caries develops and the subgingival environment of 
periodontal diseases exhibit different chemistries that have a 
marked influence on the functions and activities of the human 
defensive peroxidases, which will be discussed next (Fig. 1, 
Table 1). 

SPATIAL NATURE OF PEROXIDASE SYSTEMS AND 
THEIR CONSENSUS SUBSTRATES
The oxidation reactions that are catalyzed by the peroxidase 
systems of the oral cavity are governed by the amount of 
available hydrogen peroxide (H2O2), the limiting chemical 
reagent. A dual-oxidase system from the salivary glands is 
an endogenous source of H2O2 (Geiszt et al., 2003; Donko 
et al., 2005; Ris-Stalpers, 2006). Oral bacteria also produce 
H2O2 during anaerobic glycolysis (Carlsson et al., 1983). A 
third source of H2O2 is derived from activated neutrophils 
during oxidative bursts (Dahlgren and Karlsson, 1999; Quinn, 
2005). The amounts of OCl- and OSCN- that are produced by 
the MPO system are related to the relative concentrations of 
Cl- and SCN- ( van Dalen et al., 1997; Arnhold et al., 2006). 
At equal concentrations of (pseudo)halide, MPO catalyzes 
the oxidation of SCN- about 1000 times faster than Cl-, but 
Cl- is about 1000 times more abundant in most physiologic 
fluids [e.g., plasma and GCF (Anttonen and Tenovuo, 1981)]. 
Consequently, comparable amounts of OSCN- and OCl- are 
produced by the MPO system in such fluids. However, SCN- 
is essentially the only substrate of MPO in saliva, where the 
concentration of SCN- is higher than in most other extracelluar 
fluids (Tenovuo and Makinen, 1976), as a consequence of its 
active transport (Fragoso et al., 2004). While analysis of the 
data in Table 1 suggests that OCl- should also be generated 
in saliva, albeit in a minor amount with respect to OSCN-, it 
can be estimated that the half-life of the OCl- in saliva is less 
than 15 msec, as a consequence of its very fast non-enzymic 
reaction with SCN- (Ashby et al., 2004). The reaction of OCl- 
and SCN- yields OSCN- (Nagy et al., 2006a). Thus, in effect, 
the only hypohalite of the SPO and MPO systems in saliva is 

Figure 1. Spatial relationship between the inorganic host defense factors 
of the oral cavity and the ion gradients that influence their relative 
abundance. Refer to the text for an explanation of pathways A-E and 
the meaning of the variable Z.

Table 1. Two-electron Redox Couples for X- (Eo, pH = 7 vs. SHE), 
Apparent Rate Constants (k) of MPO Compound I (x 10-4M-1s-1) with 
X-,a Reference Range Values (RRV) of X- in Physiologic Fluids (mM or 
mM), and Specificities (S)b for Oxidation of X- by MPO (consensus 
substrates in bold) 

X- 	 Eo 	 k 	 RRV in GCF 	 GCF S 	 RRV in Saliva 	 Saliva S

Cl- 	 1.08 	 2.5 	 90 mM 	 6 	 25 mM 	 1 	

SCN- 	 0.77 	 960 	 40 mM 	 1 	 1 mM 	 15 	

a	 Furtmueller et al. (1998).
b	 S = kx-

maj[X
-
maj]/kx-

min[X
-
min].
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expected to be OSCN-, but a continuum of products is expected 
at the gingival margin, where a gradient of concentration of 
Cl- and SCN- exists. The spatial relationship between these 
gradients and the areas of the oral cavity that are respectively 
controlled by the OCl- and OSCN- defense factors is illustrated 
in Fig. 1:
•	 Extraphagosomal OCl- is cytotoxic to oral bacteria (Path 

A) (Briseno et al., 1992; Webb et al., 1995; Yesilsoy et al., 
1995; Barnard et al., 1996; Winniczuk and Parish, 1997; 
Calas et al., 1998; D’Arcangelo et al., 1998; D’Arcangelo 
and Varvara, 1998; Huque et al., 1998; Ferreira et al., 1999; 
Wunder and Bowen, 1999; Spratt et al., 2001; Mikami 
et al., 2003; Sassone et al., 2003a,b; Moller et al., 2004; 
Nagayoshi et al., 2004; Radcliffe et al., 2004; Vianna et 
al., 2004; Carson et al., 2005; Fang et al., 2006; Sena et 
al., 2006; Ozok et al., 2007) and gingival tissue (Path B) 
(Schraufstatter et al., 1990; Vissers et al., 1999; Hidalgo 
and Dominguez, 2000; Pullar et al., 2000; Vile et al., 
2000; Hidalgo et al., 2002). Importantly, nearly all of the 
investigations of the efficacy of OCl- on oral bacteria have 
been carried out for single species in planktonic cultures. 
However, a recent study has focused on the effects of OCl- 
on single- and dual-species biofilms of Fusobacterium 
nucleatum and Peptostreptococcus micros (Ozok et al., 
2007).

•	 Alternatively, OCl- can react with SCN- to produce HOSCN 
(Path C) (Ashby et al., 2004). HOSCN is also produced 
by the SPO-catalyzed oxidation of SCN- by H2O2 (Ihalin 
et al., 2006 ; Nagy et al., 2006a). HOSCN is antimicrobial 
toward oral bacteria (Path D) (Clem and Klebanof, 1966; 
Hoogendoorn, 1976; Pruitt et al., 1979; Carlsson et al., 
1983; Thomas et al., 1983, 1994b; Ellen et al., 1988; Lopatin 
et al., 1991; Lumikari et al., 1991; Courtois et al., 1992; 
Lenander-Lumikari et al., 1993, 1997; van der Hoeven and 
Camp, 1993; Kirstila et al., 1994; Jones et al., 1998; Fadel 
and Courtois, 1999, 2001; Yu et al., 2000; Ihalin et al., 
2001, 2003; Korpela et al., 2002; Garcia-Graells et al., 2003; 
Vannini et al., 2004), but relatively non-injurious to the host 
(Bjoerck and Claesson, 1980; Marshall and Reiter, 1980; 
White et al., 1983; Carlsson et al., 1984; Carlsson, 1987). 

•	 In addition to the reaction of OCl- with SCN-, it may react 
with other small molecules (Path E) to produce secondary 
antimicrobials [e.g., when Z is an amine, a cytotoxic chlora–
mine is produced, vide infra (Abia et al., 1998; Hawkins and 
Davies, 1998; Hawkins et al., 2003; Davies, 2005)].
The corresponding relevance of OCl- vs. OSCN- in the oral 

cavity is related to the aforementioned spatial heterogeneity 
of the peroxidase defense systems and the corresponding 
chemistry. For example, the median concentration of OSCN- 
in freshly collected whole saliva is ca. 10 mM, although the 
concentration increases when the saliva is incubated at 37°C 
(Thomas et al., 1980). However, direct measurement of the 
concentrations of these hypohalite species is problematic, 
because they are chemically reactive, and consequently the 
abundance of free ions does not necessarily reflect their 
significance in vivo. The fluxes of the hypohalites (the rates 
at which these reactive species are produced and consumed) 
are difficult to define in the context of the oral cavity. An even 
more complex issue is the relationship between these fluxes 
with respect to oral health and disease. This topic will be 
revisited in the concluding section of this review.

ANTIMICROBIAL PROPERTIES  
OF INORGANIC COMPOUNDS

Chemical Basis of Cytotoxicity
In contrast to antibiotics that typically target a single chemical 
step in a biosynthetic pathway, inorganic antimicrobials are 
generally biocides (they have a propensity to cause wholesale 
disruption of cellular processes) (Ashby, 2007; Zhu, 2007). 
Accordingly, these inorganic species tend to be cytotoxic, to 
greater or lesser degrees, to both eukaryotes and prokaryotes. 
Thus, any discussion of the antimicrobial properties of inorganic 
compounds toward infectious agents goes hand-in-hand with a 
related discussion of host tissue damage. It is fascinating to 
the author that the human body has found generally effective 
ways of harnessing the potentially indiscriminant cytotoxic 
properties of some of these compounds for defensive purposes. 
The cytotoxic properties of the inorganic compounds that are 
discussed herein can ultimately be traced to their chemistry, 
which can be roughly divided into two categories: (1) 
compounds that engage in one-electron (radical) chemistry, 
and (2) compounds that engage in two-electron chemistry 
(generally electrophilic, with eventual oxygen atom transfer). 
An example of one-electron chemistry is the reduction of O2 by 
NADPH oxidase to give O2

.- (a reaction that is carried out by 
PMN NADPH oxidase):

NADPH + 2 O2 → NADP+ + 2 O2
.- + H+

Note that NADPH is a two-electron reductant, so the 
chemical stoichiometry requires one NADPH to react with two 
oxygen molecules. However, the chemistry in fact involves 
one-electron steps, vis-à-vis enzyme intermediates. The reaction 
of HOCl with reduced glutathione (GSH) is an example of a 
two-electron (O-atom transfer) reaction (GSH is the principal 
cytoplasmic oxidative defense mechanism of eukaryotes, vide 
infra). The reaction occurs via a multistep mechanism, because 
the intermediate sulfenic acid (GSOH) is unstable (Nagy and 
Ashby, 2007; Nagy et al., 2007b):

GSH + HOCl → GSOH + H+ + Cl-
GSOH + GSH → GSSG + H2O
2 GSH + HOCl → GSSG + H2O + H+ + Cl-

Note that the first equivalent of GSH that reacts with 
HOCl involves a two-electron reaction (O-atom transfer, albeit 
probably via the hydrolysis of a sulfenyl chloride intermediate), 
as does the second reaction, even though the stoichiometry of 
the net reaction makes it appear that GSH is a one-electron 
reductant. In fact, the thiyl radical (GS.) is never involved 
in the reaction. While the distinction between one- and two-
electron processes may appear to be a superfluous detail, 
in fact the difference distinguishes radical processes from 
non-radical processes. Radicals tend to target unsaturated 
functional groups in lipids, nucleotides, and aromatic amino 
acids (Buettner, 1993). In contrast, the hypohalites tend to 
target the nucleophiles in proteins (Hawkins et al., 2003; 
Davies, 2005).

Unsaturated organic compounds (e.g., aromatic amino 
acids and nucleotides) are particularly susceptible to derivation 
by high-energy radical species; hence, nuclear damage and 
mutagenesis are frequently the result of one-electron chemistry 
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(Box et al., 2001; Marnett, 2002; Wang, 2008). Because 
radical chemistry tends to be very facile and comparatively 
indiscriminant from a chemical perspective, it is difficult for 
cells to mount an effective defense against radical species. In 
contrast, the reactivities of two-electron oxidants are typically 
related to the nucleophilicities of their reaction partners. 
Consequently, the chemistry of two-electron oxidants is 
usually well-defined (cf. radical chemistry). Cysteine (Cys) 
and methionine (Met) are usually the most reactive amino 
acid residues toward two-electron oxidants (because sulfur-
containing compounds tend to be good nucleophiles) and 
are therefore often the first targets of two-electron oxidants 
(Hawkins et al., 2003). It is not a coincidence that the 
cytoplasms of eukaryotes (Meister, 1988; Fernandes et al., 
2007) and many prokaryotes (Fahey et al., 1978; Smirnova 
and Oktyabrsky, 2005) contain high concentrations of 
GSH (a tripeptide containing Cys, which is used to combat 
oxidative stress by two-electron oxidants that operate by the 
aforementioned electrophilic mechanism) (Meister, 1988). 
It should be noted that glutathione also erects a significant 
defense against radical species (Sitte and Von Zglinicki, 2003; 
Djordjevic, 2004) (Table 2). 

Oxygen Derivatives
Water (H2O) and molecular oxygen (O2) represent limiting 
extremes in the oxidation state of the element oxygen (O) in 
an aqueous environment. From a thermodynamic perspective, 
O exists as O2 in an overall aerobic (oxidative) environment, 
whereas it exists as H2O in an anaerobic (reductive) 
environment. The oral cavity contains microenvironments 
that represent these extremes. Molecular oxygen is itself 
“antimicrobial” toward strict anaerobes (which are routinely 
found in mature supragingival plaques and are abundant in 
subgingival plaques). However, ground-state O2 (3O2, triplet 
oxygen, a di-radical) is not generally included among the 
so-called “reactive oxygen species” (ROS, Table 2). The ROS 
of Table 2 can be divided into the radical species (O2

.-, .OH) 
and the “closed-shell” species (1O2, H2O2, and O3). Hydroxyl 
radical (.OH) is not produced in large quantities by the 
defensive peroxidases of the oral cavity, so it will not be further 
discussed here, but we refer the reader to reviews of the role 
of ROS in periodontal tissue destruction for more information 
(Waddington et al., 2000; Chapple and Matthews, 2007). In 
contrast, O2

.- is pertinent in that it is produced by NADPH 
oxidase during neutrophilic respiratory bursts (vide supra). 

Despite being a radical, O2
.- is relatively chemically unreactive, 

and mammalian cells [and some oral bacteria (Amano et 
al., 1986)] contain superoxide dismutase that catalyzes the 
disproportionation of O2

.- to give H2O2 and O2 (Packer, 2002). 
It is noteworthy that the conjugate acid HOO. (hydroperoxyl 
or perhydroxyl radical) is considerably more reactive than the 
conjugate base O2

.-. It is conceivable that HOO. (pKa ca. 4.8) 
(Bielski et al., 1985) plays a role in the oral cavity (e.g., during 
the development of acidogenic plaques). However, since O2

.- 
and HOO. are in rapid acid/base equilibrium, no distinction will 
be made between the two species in this review (cf. HOCl vs. 
OCl-, vide infra). Of the closed-shell species, only H2O2, 

1O2, 
and O3 are relevant to our discussion.

Hydrogen peroxide is a powerful oxidant that is produced 
in the oral cavity by the aforementioned mechanisms (Duox, 
anaerobic glycolysis, disproportionation of O2

.-, etc.). Like O2
.-, 

H2O2 is relatively chemically inert. For example, it takes more 
than an hour for H2O2 to react with millimolar concentrations 
of Cys (Ashby and Nagy, 2006a,b). Nonetheless, H2O2 is 
cytotoxic toward mammalian cells (Ward, 1991) and most 
prokaryotes (Asad et al., 2004). Singlet oxygen has been 
detected in saliva (Takahama, 1993; Kou and Takahama, 1995; 
Sun et al., 2006). However, many of the reported measurements 
of 1O2 remain controversial, because the probes that are used 
to detect it tend to be insensitive and frequently non-specific 
(Martinez et al., 2000). Nonetheless, it is believed that human 
peroxidases produce 1O2 during their decomposition of H2O2 
(Kanofsky, 1991). In addition to the use of therapeutic O3 
(Azarpazhooh and Limeback, 2008), it has been suggested 
that 1O2 is converted to O3 via an immunoglobulin-catalyzed 
reaction (Wentworth et al., 2000, 2002). Secretory IgA (SIgA), 
the most abundant immunoglobulin in saliva, is also proposed 
to catalyze the reaction (Uehara et al., 2006). However, the 
involvement of O3 remains controversial, because the probes 
that have been used are not specific (Kettle et al., 2004; Smith, 
2004; Kettle and Winterbourn, 2005). 

As a consequence of their reactive nature, all of the ROS 
exhibit cytotoxic properties. The relative importance of ROS 
as defensive agents in the oral cavity is difficult to assess, 
because various amounts act on microcosm plaques in diverse 
environments. There are likely synergisms in multi-species 
plaques. For example, pure cultures of oral streptococci produce 
H2O2 (they are catalase-negative), but H2O2 is not found 
in dental plaque or salivary sediment, despite streptococci 
being major components of their mixed bacterial populations. 
This is presumably due to the fast consumption of free H2O2 
by catalase-positive species of bacteria (e.g., Neisseria, 
Haemophilus, Actinomyces, and Staphylococcus spp.) (Ryan 
and Kleinberg, 1995). Furthermore, the SPO and MPO systems 
of the oral cavity may protect H2O2-sensitive bacteria (Adamson 
and Carlsson, 1982). In addition to synergism between bacterial 
species, there are likely to be additive and/or cooperative effects 

Table 2. Major Inorganic (Reactive) Oxygen Species in the Oral Cavity

Name	 Symbol	 Major Sources in the Oral Cavity

Triplet oxygen	 3O2	 The atmosphere	
Singlet oxygen	 1O2	 Peroxidase-catalyzed reactions of  
		     H2O2	
Superoxide	 O2

.-	 NADPH reductase and leakage from  
		     peroxidases	
Hydrogen peroxide	 H2O2	 Human dual oxidases (Duox) and  
		     aerobic metabolism of glucose
Hydroxyl radical	 .OH	 Metal-catalyzed homolysis of H2O2  
		     (Fenton chemistry)	
Ozone	 O3	 Catalytic decomposition of 1O2 by SIgA

Table 3. Major Inorganic (Pseudo) Hypohalites in the Oral Cavity

Name	 Symbol	 Major Sources in the Oral Cavity	

Hypochlorite	 OCl-	 Myeloperoxidase	
Hypobromite	 OBr-	 Myeloperoxidase (eosinophil peroxidase?)
Hypothiocyanite	 OSCN-	 Myeloperoxidase and salivary peroxidase
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between defensive agents. For example, there is some evidence 
that O2

-. can act synergistically with OCl- (vide infra) to induce 
oxidative damage (Hawkins et al., 2002) (Table 3). 

(Pseudo) Hypohalites
The archetypal example of a biocide is hypochlorite (OCl-, 
the principal component of household bleach). In sufficient 
concentrations, it is toxic to all life. Note that the reactive form 
of OCl- (and the other hypohalites as well) is the corresponding 
conjugate acid, hypohalous acid (HOCl, pKa = 7.4). As a 
neutral species, HOCl is presumably membrane-permeable, 
and therefore more cytotoxic. However, since the acid-base 
equilibrium between HOCl and OCl- is exceedingly fast, the 
issue of which species is actually active is academic. Under 
acidic conditions (and in the presence of excess Cl-), OCl- 
comproportionates to give Cl2, the corresponding halogen 
(Adam et al., 1992). However, since the equilibrium between 
the hypohalites and the halogens is relatively fast, they are not 
generally treated as different biocides. Instead, the term “total 
active chlorine” is often used to describe the sum amount of 
hypohalous acid, hypohalite, and halogen. Furthermore, HOCl/
OCl- are the predominant species at physiologic pH. The 
relative ease with which the halides are oxidized is I- > Br- > 
Cl- (note that F- is never oxidized in an aqueous environment), 
so the trend in oxidative strengths of the hypohalous acids is 
HOCl > HOBr >> HOI. As mentioned before, I- is not abundant 
in most physiologic fluids, so only Cl- and Br- are relevant to 
this discussion. 

HOCl and HOBr exhibit somewhat promiscuous 
reaction chemistry (the relative reactivities of HOCl toward 
proteinaceous groups are Cys ' Met >> cystine ' His ' 
a-amino > Trp > Lys >> Tyr ' Arg > backbone amides > Gln 
' Asn, and a similar trend is observed for HOBr) (Pattison 
and Davies, 2001, 2004). However, the kinetics of some of 
the reactions of HOCl, and especially HOBr, approaches 
the diffusion limit (Nagy et al., 2006b). As a consequence 
of their facile reaction, HOCl and HOBr probably exhibit 
poor chemical selectivity in a biological setting. In addition, 
secondary reactive species are produced during the reactions 
of HOCl and HOBr that likely contribute significantly to the 
overall toxicity—for example, haloamines (Grisham et al., 
1984; Abia et al., 1998; Hawkins and Davies, 1998, 2003; 
Davies, 2005). From a chemical perspective, it is appropriate 
to view the reactions of HOX (X = Cl, Br) as a redox cascade 
(thermodynamically downhill) with the eventual production of 
chemically stable derivatives. Because of the labile nature of 
many of the intermediate species in such chemical cascades, and 
because of the fact that many of these species exhibit similar 
chemistries (e.g., HOCl and chloroamines are both electrophilic 
chlorinating agents, albeit with different reactivities), it is 
difficult to chart the consequences of the damage that occurs. 
Accordingly, the complexity of the chemistry precludes a 
definitive assignment of the antimicrobial mechanism of HOX 
(X = Cl, Br). Nonetheless, there have been many studies of 
the effects of HOX (X = Cl, Br) on both eukaryotes (Hawkins 
and Davies, 2000; Hidalgo and Dominguez, 2000; Hawkins et 
al., 2001; Hidalgo et al., 2002; Soszynski et al., 2002; King 
et al., 2004) and prokaryotes (Albrich et al., 1981, 1986; 
Albrich and Hurst, 1982; Barrette et al., 1987, 1989; Hurst et 
al., 1991; Palazzolo et al., 2005). Although it is problematic 
to follow the reaction cascade that begins with the production 
of HOX (X = Cl, Br) in vivo, there is considerable interest in 

evaluation of the relevance of the HOX (X = Cl, Br) chemistry, 
particularly in the context of the host tissue damage that occurs 
with inflammatory disease. One approach to monitoring the 
chemistry of HOX (X = Cl, Br) in vivo is through the use of 
biomarkers, thermodynamically stable derivatives of HOX (X 
= Cl, Br). Promising biomarkers that appear to be specific for 
HOX (X = Cl, Br) include 3-halotyrosines (Winterbourn and 
Kettle, 2000) and a sulfonamide derivative of GSH (Harwood 
et al., 2006). 

In the field of inorganic chemistry, SCN- is called a 
“pseudohalide”, because its reaction chemistry frequently 
mirrors that of the halides (Lappert and Pyszora, 1966). This 
is reflected in the fact that defensive peroxidases use SCN- (in 
addition to the halides) as a substrate. The oxidation potential 
of SCN- falls between those of I- and Br-. Accordingly, the 
chemical properties of HOSCN are most similar to those of 
HOI (Nagy et al., 2007a). In contrast to HOCl and HOBr 
(which react with a variety of functional groups), the only 
characterized reactions of HOSCN are with thiol moieties 
(which are among the most powerful nucleophiles), generally 
Cys and its derivatives (Ashby and Aneetha, 2004; Nimmo et 
al., 2007; Lemma and Ashby, 2008). Given that SH groups are 
apparently the targets of the HOSCN, it is important to note 
that roughly 40% of all enzymes are rendered ineffective by 
chemical agents that are reactive toward thiols (Leung-Toung 
et al., 2002). Thus, the destruction of functional SH moieties 
by HOSCN is one basis for its cytotoxicity. Importantly, 
the hypohalites can be interconverted through their reactions 
with other halides, but the process must be exothermic. For 
example, HOCl (Ashby et al., 2004) and HOBr (Nagy et al., 
2006b) react with SCN- to give HOSCN and the corresponding 
halides, but not vice versa. In vivo, these reactions are important 
because they restrict the lifetimes of the more powerful 
(and less discriminant) hypohalites, thereby limiting their 
propensity to cause collateral host tissue damage. In addition, 
the antimicrobial OSCN- is produced in the reaction (Nagy et 
al., 2006a). 

Halides
Fluoride is the only halide that is known to be antimicrobial 
without oxidation (Hamilton, 1990; Van Loveren, 1990; 
Marquis, 1995; Jenkins, 1999). Fluoride influences the 
metabolism of cariogenic and other bacteria via multiple 
mechanisms (Marquis et al., 2003): F- can bind directly to 
many enzymes (especially metalloenzymes) (Segal et al., 
1968; Wever and Bakkenist, 1980; Zgliczynski et al., 1983; 
Thibodeau et al., 1985; Ferrari et al., 1997; Suzuki and 
Ohshima, 2003), thereby affecting their activities; catalase is 
inhibited by F- [thereby affecting the ability of H2O2 to kill oral 
bacteria (Phan et al., 2001)]; and some F- complexes of metals 
(e.g., AlF4

- and BeF3
-∙H2O) can mimic phosphate, thereby 

affecting a variety of enzymes and regulatory phosphatases 
(Thongboonkerd et al., 2002). The weak-acid property of HF 
(pKa = 3.15), which is a transmembrane proton conductor, 
appears to be important for inducing the glycolytic inhibition 
of oral bacteria that is observed at low pH in dental plaque 
(Eisenberg and Marquis, 1981) (Table 4). 

Nitrogen Derivatives
After many decades of angst about nitrates in our diet and 
their propensity to form potentially carcinogenic N-nitroso 
derivatives (Eichholzer and Gutzwiller, 2003), there is 
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mounting evidence that NO3
- is concentrated in saliva for 

beneficial purposes (McKnight et al., 1999) (although the 
potential deleterious properties of NO3

- on systemic health 
should not be discounted). The concentration of NO3

- in saliva 
is proportional to the dietary intake (Eisenbrand et al., 1980), 
it varies with the salivary flow rate (Granli et al., 1989), and 
it is influenced by smoking (Tsuchiya et al., 2002). Since 
NO3

- is a relatively inert chemical species, the mechanism of 
antimicrobial action of NO3

- probably involves a redox cascade. 
Facultative anaerobic bacteria in the oral cavity use NO3

- as 
a terminal electron acceptor (cf. O2 for aerobic bacteria) to 
produce nitrite (NO2

-). Acidified NO2
- inhibits the growth and 

affects the survival of cariogenic bacteria (e.g., Streptococcus 
mutans, Lactobacillus casei, and Actinomyces naeslundii) 
(Silva Mendez et al., 1999). Acidified NO2

- has a similar 
effect on periodontal bacteria (e.g., Fusobacterium nucleatum, 
Eikenella corrodens, and Porphyromonas gingivalis) (Allaker 
et al., 2001). Importantly, while the growth of periodontal 
bacteria is known to be inhibited by acid in the absence of 
NO2

-, there is a dose-dependent decrease in these bacteria in the 
presence of NO2

- (Allaker et al., 2001). Nitrous acid (HNO2, 
pKa = 3.4) is unstable and will spontaneously disproportionate: 
3 HNO2 → H3O+ + NO3

- + 2 ∙NO. Some bacteria possess 
nitrite reductase (e.g., S. mutans), an enzyme that is capable of 
accelerating the disproportionation of NO2

- (Choudhury et al., 
2007). It appears that nitric oxide (.NO) is the antimicrobial 
component of the NO3

-/NO2
-/.NO redox cascade (Fang, 1997; 

Smith et al., 1999; Sato et al., 2008). The mechanism by which 
.NO induces cell death is the subject of ongoing investigation. 
Alternative models include “oxidative stress” and “nitrosative 
stress” [e.g., nitrosylation of proteins without a major alteration 
in cellular redox state (Eu et al., 2000)]. Nitric oxide also reacts 
with O2

.- to produce peroxynitrite (ONOO-), which may also 
contribute to collateral host tissue damage in the oral cavity 
(Lohinai and Szabo, 1998; Lohinai et al., 2001; Barley et al., 
2004).

INTER-PERSON DIFFERENCES
There is considerable variability in the physiological 
concentrations of many of the chemically stable inorganic 
ions that have been discussed herein. In most cases, these 
differences can be attributed to diets or smoking. Given 
the influence of these ions on the activity and function of 
the defensive peroxidases, there has been some interest in 
correlating interperson differences to oral disease. As a caveat, 
it is important to note that many of the relevant inorganic ions 
are chemically reactive, and consequently the abundance of 
free ions may not reflect their relevance in vivo. Some ions may 
exist as transient species (e.g., OCl-) or as their conjugates with 
reaction partners (e.g., CN- and OCN-). In some cases, steady-
state concentrations of reactive species may accumulate (e.g., 
OSCN-), but measured concentrations may not reflect the time-
dependent flux of such species. 

Thiocyanate
The main source of SCN- in vivo is CN-, vide infra. Cyanide 
is principally introduced by the digestion of glucosinolate-
containing vegetables (e.g., the Brassica) (Weuffen et al., 
1984). However, as a consequence of detoxification of 
hydrogen cyanide (HCN, pKa = 9.2, which is known to be 
present in microgram amounts per cigarette), the level of 

SCN- in smokers is considerably elevated relative to that in 
non-smokers. Indeed, this difference is routinely used as a 
biomarker for the evaluation of smoking behavior (Morabia et 
al., 2001). While most of the CN- that is converted to SCN- in 
vivo is exogenous in origin, endogenous sources contribute 
the sulfur vis-à-vis a multitude of reactions, some of which 
are enzyme-catalyzed (Wood, 1975). It has been shown that 
higher concentrations of SCN- in saliva can contribute to an 
enhancement of peroxidase activity (Tenovuo, 1976; Lamberts 
et al., 1984; Fonteh et al., 2005; Tahboub et al., 2005). 
Furthermore, as noted earlier, SCN- is a potent sequestering 
agent for some reactive oxidants (Ashby et al., 2004; Nagy et 
al., 2006b). Accordingly, one might conclude that higher SCN- 
(either as a consequence of diet or through smoking) should 
result in a suppression of oral disease. However, while smokers 
have elevated SCN- and OSCN- levels in their saliva, no 
corresponding correlation with dental caries has been observed 
(Lamberts et al., 1984). Interestingly, although there is not an 
association between smoking and caries among adults, there 
is a positive correlation between environmental (second-hand) 
tobacco smoke and primary tooth caries in children (Shenkin 
et al., 2004). In contrast to caries, there is a strong correlation 
between smoking (and consequently SCN- levels) and some 
periodontal diseases (Rivera-Hidalgo, 2003). Since there is 
also a correlation between smoking and SCN- levels in GCF, 
SCN- levels presumably exhibit a positive correlation with 
periodontal diseases. However, SCN- is only one of many 
inorganic and organic chemicals that are elevated by smoking. 
Two other inorganic ions are CN- and cyanate (OCN-), vide 
infra.

Cyanide
It addition to dietary sources (e.g., cyanogenic glucosides, vide 
supra) and tobacco smoke, other sources of CN- in vivo include 
micro-organisms (in particular certain pseudomonads) and 
industrial exposure (e.g., vis-à-vis organonitriles) (Wong-Chong 
et al., 2006). There appear to be no studies that have determined 
the normal concentration of CN- in the fluids of the oral cavity. 
However, there is a statistical correlation between blood and 
salivary SCN- levels (Tsuge et al., 2000). As noted earlier, 
the concentrations of SCN- in physiological fluids (including 
GCF and saliva) in smokers are substantially higher than those 
for non-smokers. Therefore, it follows that the oral cavity is 
exposed to higher concentrations of CN- for smokers compared 
with non-smokers. HCN contributes to the loss of peroxidase 
activity in saliva upon exposure to cigarette smoke (Klein et 
al., 2003). This is due to the strong complexation of CN- to the 
iron-active sites of the peroxidases (fundamentally the same 
mechanism that renders CN- toxic to the respiratory system 

Table 4. Major Inorganic (Reactive) Nitrogen Compounds in the Oral 
Cavity

Name	 Symbol	 Major Sources in the Oral cavity	

Nitrate	 NO3
-	 Diet	

Nitrite	 NO2
-	 Reduction of nitrate by oral microflora	

Nitric oxide	 .NO	 Acidification of nitrite and by enzymic  
		     reactions	
Peroxynitrite	 ONOO-	 Reaction of .NO and O2

.-
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vis-à-vis the complexation of hemoglobin and myoglobin). It is 
noteworthy that there is no correlation between CN- in plasma 
and the concentration of HCN in breath (Lundquist et al., 
1988). Furthermore, the concentrations of HCN measured in 
breath are higher than expected for blood concentrations, which 
suggested a local production of HCN in the oropharynx. Under 
some circumstances, OSCN- can decompose to give CN- (Aune 
and Thomas, 1977). While the major cyanide-derived product 
of the decomposition of OSCN- is OCN-, we have observed the 
formation of substantial amounts of CN- during the hydrolysis 
of thiocyanogen [(SCN)2, analogous to a halogen] at neutral 
pH (unpublished observations). It is conceivable that the latter 
reaction is the source of HCN in breath.

Cyanate
Cyanate (OCN-) is produced by the oxidation of CN-. Thus, 
OCN- levels are higher in smokers. Under some conditions, 
the decomposition of OSCN- also produces OCN- (Oram 
and Reiter, 1966). MPO is inhibited by OCN- (Qian et al., 
1997). The inhibition could be caused by heme binding of 
OCN- (thereby blocking the active site) or by carbamylation 
of the protein by OCN-. It is noteworthy that the functional 
impairment of proteins through carbamylation by OCN- is 
thought to promote human inflammatory diseases (Wang et al., 
2007). However, the possible relevance of carbamylation in 
the oral cavity has not been investigated. There is very limited 
information available regarding the effect of OCN- on oral 
bacteria (Morita, 1977).

Fluoride
In the absence of supplementation by fluoride-containing 
dentrifices, the concentration of F- in saliva (and presumably 
GCF) is somewhat lower than the concentration in plasma 
(Oliveby et al., 1989). The normal concentration of F- in saliva 
(ca. 1 mM) can increase markedly after the ingestion of F-, and 
change dynamically thereafter (Dawes and Weatherell, 1990). 
An early study that used PMN granules (and not isolated 
enzymes) suggested that F- does not influence the activity 
of MPO (which was determined by measurement of the 
iodination of zymosan) (Gabler and Leong, 1980). In contrast, 
the same study reported that the iodination of zymosan was 
inhibited by F- for intact PMNs (Gabler and Leong, 1980). 
However, the pH-dependent competitive inhibition of isolated 
LPO (Segal et al., 1968; Thibodeau et al., 1985) and MPO 
(Zgliczynski et al., 1983; van den Abbeele et al., 1992) by 
F- has been demonstrated. For example, half of the activity of 
bovine LPO occurs for < 0.05 mM at pH 4, 0.3 mM at pH 5, 
4.0 mM at pH 6, and greater than 10 mM at pH 7, as assayed 
with 5 mM I- and 150 mM H2O2 (Thibodeau et al., 1985). It 
is noteworthy that SPO was found to have lower pH optima 
relative to LPO, but it also was inhibited by F- at sufficiently 
low pH (Thibodeau et al., 1985). A similar inhibitory effect 
of F- on peroxidase activity has been observed in whole 
saliva (Thibodeau et al., 1985; Hannuksela et al., 1994; van 
den Abbeele et al., 1995). These observations suggest that 
F- in dental plaque may inhibit the peroxidase defense system. 
However, when F- and OSCN- are added simultaneously at 
pH 5.0, an additive effect of growth inhibition of S. mutans 
was observed (Lenander-Lumikari et al., 1997). Thus, the 
small inhibitory effect of F- on the defensive peroxidase 
systems of the oral cavity may be offset by the combinatorial 
antimicrobial effects of F- and OSCN-.

Nitrate and Nitrite
Basal levels of NO3

- in saliva are 10-20 times those found in 
plasma (and presumably GCF) (Duncan et al., 1995; Benjamin 
and McKnight, 1999; Pannala et al., 2003; Lundberg et al., 
2004). For the average diet in the US, ca. 80% of dietary NO3

- 
is derived from vegetables (White, 1975). Cured meats, for 
example, typically represent a minor source of NO3

- in most 
diets. However, urinary, plasma, and saliva NO3

- concentrations 
increase markedly after the consumption of a high-nitrate meal 
(Pannala et al., 2003). The maximum concentration is achieved 
within a few hours following the meal, and NO3

- concentrations 
return to basal levels within 24 hours. The amount of NO3

- that 
is excreted in the urine following the consumption of a high-
nitrate meal suggests that the majority of urinary NO3

- can 
be accounted for in dietary sources (Pannala et al., 2003). In 
contrast to NO3

-, an increase in NO2
- is observed in saliva 

only after the consumption of a high-nitrate meal (Pannala 
et al., 2003), which is consistent with the fact that NO3

- is 
metabolized to NO2

- by bacterial flora on the posterior surface 
of the tongue in rat models (Duncan et al., 1995). Nitrite has 
been shown to enhance the reactivity of LPO (Reszka et al., 
1997, 1998, 1999; van der Vliet et al., 1997; Gebicka, 1999; 
Bruck et al., 2001) and MPO (Burner et al., 2000). In addition 
to an enhancement in the rate of catalysis by NO2

-, it has been 
suggested that NO3

- reduces acidity in the oral cavity (Li et al., 
2007). Thus, NO2

- and NO3
- may play a beneficial role in the 

oral cavity. We note that there has apparently been no attempt 
to correlate oral health with inter-person differences in nitrate-
reducing capacity. 

PEROXIDE TOXICITY AND PEROXIDASE FUNCTION
At sufficient concentrations, H2O2 is cytotoxic to mammalian 
cell lines, including human epithelial cells (Mattana et al., 
1992) and gingival fibroblasts (Tenovuo and Larjava, 1984; 
Tipton et al., 1995a). While H2O2 is a relatively chemically 
inert molecule, its homolysis to give .OH radicals is catalyzed 
by transition metals, particularly iron, in a reaction that is 
referred to as Fenton chemistry (Prousek, 2007). Much of 
the cytotoxicity of H2O2 is attributed to Fenton chemistry 
(Winterbourn, 1995). In the presence of SCN-, the LPO 
system protects cultured mammalian cells against H2O2 
toxicity (Hänström et al., 1983). This is consistent with the 
observation that OSCN- is not toxic toward mammalian cells 
(Bjoerck and Claesson, 1980; Marshall and Reiter, 1980; 
White et al., 1983; Carlsson et al., 1984; Carlsson, 1987). 
It has been previously suggested that one of the important 
roles of human peroxidases is to detoxify H2O2 to prevent 
host tissue damage (Carlsson, 1987; Tipton et al., 1995b). 
Since many prokaryotes are also sensitive to H2O2, the human 
peroxidase systems may also protect certain bacteria by 
sequestering H2O2. However, the OSCN- that is produced is 
inhibitory toward most bacteria. Consequently, it is difficult 
to envisage the net effect of H2O2 sequestration vs. OSCN- on 
bacterial growth (Fig. 2).

THE ANTIMICROBIAL DEPLETION MODEL
The efficacy of chemically reactive antimicrobial agents 
can be diffusion-limited. This is one (but certainly not the 
only) explanation for the greater sensitivity of planktonic 
cultures to chemically reactive antimicrobials (Stewart, 1994; 
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Stewart and Raquepas, 1995; 
Dodds et al., 2000; Stewart et al., 
2001, 2004; Hunt et al., 2005). 
Planktonic cultures are generally 
agitated, and consequently fluid 
flows by a convection mechanism 
that transports solutes rapidly. In 
contrast, fluid flow in biofilms 
can be highly restricted. For thick 
biofilms, such as the plaques of 
the oral  cavity,  the primary 
mechanism of solute transport is 
diffusion (unagitated flow). For 
highly reactive molecules such 
as HOCl, which also exhibit 
promiscuous reaction chemistry, 
the biomass of plaques offers a 
formidable barrier to penetration. While HOCl is an extremely 
effective antimicrobial toward planktonic cell suspensions, 
it is a comparatively inefficient killing agent with respect to 
biofilms. For example, a 600-fold increase in concentration 
of HOCl (per cell) is required to kill certain biofilms of 
Staphylococcus aureus, compared with planktonic cultures 
of the same species (Luppens et al., 2002). More chemically 
selective antimicrobials, e.g., OSCN-, are more likely to 
penetrate thick biofilms before reacting. The relationship 
between chemical reactivity of the antimicrobial and biofilm 
penetrability forms the basis of the Antimicrobial Depletion 
Model (Fig. 2). There is presumably an inverse relationship 
between penetrability with respect to the antimicrobial 
reactivity. However, penetrability, of course, is not the only 
factor that determines the efficacy of the antimicrobial: OSCN- 
is generally considered to be bacteriostatic, whereas OCl- is 
bactericidal. But, as mentioned before, there is a tradeoff for 
the higher reactivity/poorer selectivity of OCl-: the potential of 
host tissue damage. In the oral cavity, it may be advantageous 
for the body to use a collection of antimicrobials that exhibit a 
continuum of reactivity. Thus, complementing HOCl is taurine 
chloroamine (TauCl), a less reactive (Carr et al., 2001) and 
more selective (Peskin and Winterbourn, 2006) electrophilic 
chlorinating agent that may play a role in host defense in 
the oral cavity (Woldring, 1955; Mainnemare et al., 2004). 
Similarly, we have discovered a corresponding less-reactive 
derivative of OSCN-, thiocarbamate-S-oxide [H2NC(=O)-
S-O-] (Nagy et al., 2007c). Thiocarbamate-S-oxide, which is 
formed by the hydrolysis of OSCN-, is one of the chemical 
species formed during the redox cascade that results in the 
decomposition of OSCN- (Nagy et al., 2007c). Recently, we 
have learned that H2NC(=O)-S-O- reacts with thiols via a 
mechanism that is analogous to the one that is observed for 
OSCN-, albeit with slower kinetics (unpublished observations). 
While the effect of H2NC(=O)-S-O- on bacterial physiology 
remains to be investigated, its discovery demonstrates that 
there is much to be learned about the inorganic antimicrobials 
produced by the defensive peroxidases. 

The Antimicrobial Depletion Model does not explicitly 
include the possibility that defensive peroxidases might 
generate hypohalites within the biofilms, thereby obviating 
the need for reactive species to diffuse into biofilms. We 
note that the production of acid in salivary sediment is more 
effectively inhibited when OSCN- is produced by sediment-

bound peroxidases than when salivary sediment is treated 
with exogenous OSCN- (Tenovuo, 1979). However, salivary 
sediment has a larger buffer capacity and “organic load” 
(e.g., non-viable cells) than plaque (Singer et al., 1983), so it 
is not clear whether the penetration of OSCN- into plaque is 
comparably diffusion-limited. The production of hypohalites 
from within plaques requires the transport of the components 
of peroxidase systems into the biofilm: peroxidase, (pseudo)
halide, and H2O2. Relevant to the issue of diffusion of 
peroxidases into plaques, it has been previously observed that 
LPO binds to S. mutans (LPO is a cationic protein, and the 
outer membranes of Gram-positive bacteria are negatively 
charged) (Pruitt et al., 1979). While cell-bound LPO remains 
catalytically active initially, it is eventually inactivated 
(Pruitt et al., 1979). Thus, the electrostatic attraction of the 
peroxidases for cells and the subsequent inactivation of the 
cell-bound enzyme may preclude the generation of hypohalites 
within a thick plaque (Pruitt et al., 1979). With regard to 
the availabilities of the other components of the peroxidase 
defense systems, it is probable that the concentrations of the 
(pseudo)halides in plaques reflect their concentrations in the 
physiologic fluids that surround them (i.e., saliva or GCF), 
but it was noted earlier that H2O2 has not been found in dental 
plaques (Ryan and Kleinberg, 1995). The issue of whether or 
not the human defensive peroxidase systems are active in thick 
plaques remains unresolved. 

CONCLUSION
The distinctive chemical environments of the supragingival 
and subgingival regions impose restrictions on the human 
peroxidase defense strategies of the oral cavity (e.g., vis-à-vis 
substrate bioavailability). Inter-person differences may also 
influence the function and activity of the enzymes and the 
chemistry of the reactive species that the enzymes generate. 
The abilities of the defensive agents produced by the peroxidase 
systems to differentiate between host tissues and the microbiota 
are an unsettled issue. Oral diseases are accompanied by 
microbial shifts of dental plaque, so a more subtle issue is 
whether these agents differentiate between commensal and 
pathogenic microbiota. While it seems likely that ecological 
principles, as in the March ecological hypothesis (Marsh, 
2003), can be applied to explain microbial shifts, it is not yet 
clear what ecological pressures are inducing these microbial 
shifts, nor is the root cause of host tissue damage completely 

Figure 2. Relationship between the reactivities of inorganic defense factors of the oral cavity and 
maturation of plaque biofilms. The penetrability of the hypohalites and their derivatives is inversely 
related to their reactivities and the extent of maturation of the biofilm. See the text for a discussion of the 
possibility that the defensive factors could be generated within biofilms.
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clear. For dental caries in enamel, damage is clearly a direct 
effect of the plaque. In dentinal and root caries, some host 
response may be involved (as in periodontitis). The microbial 
shift during cariogenesis is toward acidogenic and acid-tolerant 
Gram-positive bacteria, which displace the acid-sensitive 
commensal microbiota that are associated with intact tooth 
tissues. Since supragingivally generated OSCN- targets Gram-
positive bacteria (S. mutans may be particularly affected), it 
is possible that OSCN- may be important in modifying plaque 
cariogenicity. Other important health-maintaining functions 
of OSCN- may also occur, such as restricting supragingival 
intra-oral cross-infection by periodontal pathogens. During the 
development of periodontal diseases, an increase in disease-
associated anaerobes occurs in conjunction with increased 
inflammation. The inflammatory response is primarily due 
to antigens that have been introduced by the bacteria. It is 
unclear whether the inflammation is due to changes in the 
antigens introduced by the microbial shift (Lamster and Novak, 
1992), or whether the microbial shift has been induced by the 
inflammatory response, or both (Dalwai et al., 2006). Is the host 
tissue damage of periodontal diseases solely the consequence of 
host mediators (e.g., HOCl), or is there direct attack by bacterial 
virulence factors such as proteolytic enzymes? Definitive 
answers to these questions are critical for a rational approach 
to combating oral disease—Does one treat the inflammation, 
or does one target pathogenic bacteria, or is it necessary to treat 
both (Van Dyke, 2007)? Other risk factors being similar, is 
inter-individual variation in peroxidase activity a key factor in 
determining why some people develop oral disease and others 
do not? Whether inter-person differences between the inorganic 
chemistry of the oral cavity contribute to oral diseases is a topic 
that deserves further attention.
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