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CHAPTER I 

 

INTRODUCTION 

 

Computational intelligence approaches based upon the psychosocial studies 

inspired from either the human or animal society have been the subject of the emerging 

research known as swarm intelligence.  There has been some research in the area of 

swarm intelligence focused on optimization in the spirit of the particle swarm [1], ant 

colony system [2] and cultural algorithms [3]. While the population based heuristics 

adopted in swarm intelligence do not mathematically guarantee to always find the global 

optimum of the search space, they perform greatly well in different types of optimization 

problems.  Particle swarm optimization (PSO) is an imitation of the collaborative 

behavior of the birds flying together with the means of their information exchange, while 

ant colony is based on the fact that individual ants interact with each other through their 

pheromone trails. Cultural algorithm (CA) is a dual inheritance system in which the 

collective behavior of the population of individuals constructs the belief space which will 

in turn be accessible to all individuals in the population space. Additionally, the 

multinational algorithm [4] solves difficult multimodal optimization problems by using 

heuristics imitating political interactions among nations. 
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In another heuristic, based on the relation between society and civilization [5] the 

intersociety versus intrasociety relationship among the individuals facilitates on building 

an optimization model. The whole population of individuals, called the civilization, is 

clustered into different societies based on their Euclidean closeness of the individuals. 

The performance of individuals will be a measure to decide which individuals are the 

leaders of the society. The rest of the individuals are to follow them in a way to improve 

themselves which leads to migration (intrasocitey interaction). From the civilization 

viewpoint, the leaders of the societies will improve themselves by migrating toward the 

best-performing leaders who are the civilization leaders (intersociety interaction). The 

weakness of this paradigm is its lack on using existing information from all of the 

individuals.   

Particle swarm optimization is based on the changes of the positions and 

velocities of the particles in a manner that optimizes a goal function. PSO has 

demonstrated a promising performance for many optimization problems; yet its fast 

convergence often leads to premature convergence in which the local optima of the goal 

function are found instead of the global one. The tradeoff between fast convergence and 

being trapped in local optima is even more critical in multimodal functions. In order to 

escape from the local optima and avoid premature convergence, the search for global 

optimum should be diverse. Many researchers have improved the performance of the 

PSO by enhancing its ability with a more diverse search. Specifically, some have 

proposed to use multiple swarms each running PSO, and then exchange information 
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among them. The weakness of these algorithms is their lack on considering a diverse list 

of information to exchange, consequently premature convergence. Exchanging 

information among clusters has also been adopted as an important design in several 

computational methods. Distributed genetic algorithm [6] employs GA mechanism to 

evolve several subpopulations in parallel. At regular intervals, migration among 

subpopulations takes place. During the migration stage, a proportion of each 

subpopulation is selected and sent to another subpopulation. The migrant individuals will 

replace others based on a replacement policy.  

Several population based heuristics have been developed to solve multiobjective 

optimization problems (MOPs) among which multiobjective evolutionary algorithm 

(MOEA) and multiobjective particle swarm optimization (MOPSO) are two popular 

paradigms. Although there exist many research on single objective PSO suggesting 

dynamic weights for the local and global acceleration, but most MOPSO researchers 

assume that all particles should move with the identical momentum, local, and global 

acceleration. To our best knowledge, there have not been any studies to consider a case in 

which particles fly with different “personalized” weights for the momentum, local, and 

global acceleration. Employing a personalized weight for each particle assigns a proper 

jump contributing to the effectiveness of the overall performance of the algorithm. One 

computational aspect is the difficulties of tuning proper value for the momentum, 

personal, and global acceleration in MOPSO in order to attain the best results for 

different test functions. From a biological point of view, work presented in [7] has also 
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shown that societies that can handle more complex tasks contain polymorphic 

individuals. Polymorphism is a significant feature of social complexity that results in 

differentiated individuals. The more differentiated the society, the easier it can handle 

complex tasks. Differentiation applies in principal to complex societies of prokaryotic 

cells, multicellular organisms, as well as to colonies of multicellular individuals such as 

ants, wasps, bees, and so forth. The colony performance is improved if individuals 

differentiate in order to specialize on particular tasks. As a result of differentiation, 

individuals perform functions more efficiently. In their study it has been shown the 

colony’s ability to higher cooperative activity when tackling tasks is a direct consequence 

of differentiation among other factors.  

There are few studies in the MOPSO research area that have tackled the issue of 

variable momentum for the particles although in all of them momentum is identical for all 

particles at a specific iteration. Some MOPSO paradigms have proposed simple strategies 

to adapt the momentum by simply decreasing the momentum throughout swarming while 

other MOPSO algorithms choose a random value for momentum at every iteration. To 

the best knowledge of the author, there is no noticeable study in MOPSO on adapting 

personalized dynamic momentum and acceleration based upon the need for the particles 

to exploration or exploitation.  

Constrained optimization problem is another area that has been solved using 

population based paradigms during the last two decades. Swarm-based algorithms have 

recently been developed to handle constraints in these type of problems. Although there 
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are few research studies on PSO to solve constrained optimization problems, none of 

these studies adopt the information from all particles to perform communication within 

PSO in order to share common interest and to act synchronously. When particles share 

their information through communication with each other, they will be able to efficiently 

handle the constraints and optimize the objective function. From a sociological point of 

view, study has shown that human societies will migrate from one place to another in 

order to handle their own life constraints and limitations as well as to reach a better 

economical, social, or political life [8]. People living in different societies migrate in spite 

of the different value systems and cultural differences. Indeed the cultural belief is an 

important factor affecting the issues underlying the migration phenomena [9]. On the 

other hand, finding the appropriate information for communication within swarm can be 

computationally expensive. One computational aspect is the difficulties of finding the 

appropriate information to communicate within PSO in order to be able to simultaneously 

better handle the constraints and optimize the objective function.  

The optimum solution for many real-world optimization problems changes over 

time. In such cases known as dynamic optimization problems, the heuristics should track 

the change as soon as it happens and responds promptly. For example, in job scheduling 

problems new jobs arrive or machines may break down during operations results a need 

for dynamic job schedules to accommodate the changes over time [10]. In another 

example, dynamic portfolio problem, the goal is to obtain an optimal allocation of assets 

to maximize profit and minimize investment risk [11].  
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There are four major categories of uncertainties that have been dealt with using 

population based evolutionary approaches: noise in the fitness function, perturbations in 

the design variables, approximation in the fitness function, and dynamism in optimal 

solutions [12]. While noise and approximation bring uncertainty in the objective function, 

perturbation introduces uncertainty in the decision space. The source of change can be 

because of the possible change in the objective function, constraints, environmental 

parameters, or problem representations during optimization process. These changes may 

affect the height, width, or location of optimum solution or a combination of these three 

parts [13].  

The application of PSO to dynamic optimization problems has been studied by 

various researchers. There are some issues with the PSO mechanism that needs to be 

addressed. Maintaining outdated memory is one issue in dynamic optimization problems. 

When a problem changes, a previously good solution stored as neighborhood or personal 

best may no longer be good, and will mislead the swarm towards false optima. Diversity 

loss is another problem in which population normally collapses around the best solution. 

In dynamic optimization, the partially converged population after a change is detected 

should quickly re-diversify, find the new optimum and re-converge [10]. A number of 

adaptations have been applied to PSO in order to solve these difficulties. In general, a 

good evolutionary heuristic to solve DOPs should reuse as much information as possible 

from previous iterations to increase the optimization search. Among the researches 

performed in dynamic PSO none of these studies exploits information from all particles 
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to perform re-diversification through migration and repulsion. When particles share their 

information through migration process, they will be able to quickly re-diversify and move 

efficiently towards new optimum by re-converging around it. In order to construct the 

environment required for this re-divergence and re-convergence, we need to establish 

groundwork to assist us to utilize this information. The major groundwork is the belief 

space of cultural algorithm assisting the particles in an organized informational manner to 

locate the necessary information.  

Discussed in psychosocial texts, attitudinal similarity is a leading factor to 

attraction among individuals while dissimilarity leads to repulsion in interpersonal 

relationship [14], as a result people often diverge from members of other social groups by 

selecting different cultural attitudes or behaviors [15]. Indeed different cultural beliefs 

lead to repulsion and increase the possibilities of divergence in ideas and in turn open up 

the doors to new opportunities.  

One challenge is the difficulty to find the appropriate information to use so that it 

can be relied on for a quick re-diversification when a change happens in the environment. 

Using many concepts from the cultural algorithm, such as spatial knowledge, temporal 

knowledge, domain knowledge, normative knowledge and situational knowledge, the 

information will be organized competently and successfully in order to adopt in several 

steps of the PSO’s updating mechanism in addition to re-diversification and repulsion 

among swarms. The special re-diversification problem to deal with the change in 

dynamic is an important task that can be solved more efficiently when we have access to 
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the knowledge throughout the search process that is performed by the cultural algorithm 

as the computational framework. 

The remaining structure of this dissertation is as following. In Chapter II, a 

comprehensive literature survey is performed on related computational intelligence 

paradigms to prepare for the following chapters. Chapter III firstly elaborates on a 

paradigm based upon the intrasociety and intersociety interaction in order to simulate an 

algorithm to solve single objective optimization problems. Next the proposed 

modifications to this social-based heuristics will be introduced. This proposal has two 

aspects: one is based upon the idea of adopting information from all individuals in the 

society (i.e., not only the best performing individuals). The second proposal is based on 

the fact that different societies have different collective behavior. Politically speaking, the 

collective behavior of the societies have been quantified into a measure called the liberty 

rate. In the real sociological context, individuals in a democratic society will have more 

flexibility and freedom to choose a better environment to live. In contrast, individuals in a 

dictatorship society will suppress the politically environmental change. While individuals 

in a liberal society can freely move to be closer to the leaders, individual in a less liberal 

society will have restriction to move near the leaders. Hence the higher liberty rate a 

society has, the more flexibility an individual in such society can move. At the end of this 

chapter, simulation result for a real world mechanical problem is used to test the 

performance of two proposed modifications. 

In Chapter IV, a heuristic is proposed to diversify the search space using a novel 
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three-level particle swarm optimization in a multiple swarm population space. The PSO 

mechanism is customized to incorporate three levels of searching process. In the lowest 

level, particles follow the best behaving particle in their own swarm; in next level, 

particles follow the best performing particle in the neighboring swarms, and finally in the 

highest level, particles track the whole population’s best behaving particle. A novel 

algorithm is proposed to define the neighboring swarms based upon the closeness 

between representatives of each pair of swarms. After a specified number of iterations, 

the swarms communicate with each other. Each swarm assembles two lists, a sending list 

and a replacement list. To prepare these two sets of particles, diversity measure is 

considered as the primary goal instead of the performance of the particles alone. When 

particles are approaching the local optima, several of them will have similar positional 

information. This similar redundant information will be replaced by particles from other 

swarms to diversify the search space. At the end of this chapter, the simulated study is 

tested to solve benchmark multimodal optimization problems which demonstrate 

efficiency of the proposed heuristic and its potential to solve difficult optimization 

problems. 

Chapter V proposes an innovative algorithm adopting the cultural information that 

exists in the belief space to adjust flight parameters of multiobjective particle swarm 

optimization (MOPSO) such as personal acceleration, global acceleration, and 

momentum. A belief space has been constructed containing three sections of knowledge 

as the groundwork to perform MOPSO and adapt the parameters. Every particle in 
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MOPSO will use its own adapted momentum and acceleration (local and global) at every 

iteration to approach the Pareto front. Cultural algorithm provides the required 

groundwork enabling us to employ the information stored in different belief space 

efficiently and effectively. The proposed cultural MOPSO is then evaluated against the 

state-of-the-art MOPSO models, showing very competitive and well performing 

outcome. Finally a comprehensive sensitivity analysis has been performed for the cultural 

MOPSO with respect to its tuning parameters. 

In Chapter VI, a novel heuristics is proposed based upon the information 

extracted from belief space to facilitate the inter-swarm communication among multiple 

swarms in particle swarm optimization to solve constrained optimization problems. The 

cultural computational framework is to find the leading particles in the personal level, 

swarm level, and global level. Every particle will move using a three-level flight 

mechanism and then particles divide into several swarms and inter-swarm 

communication takes place to share the information. The performance of the proposed 

cultural constrained particle swarm optimization (CPSO) has been compared against ten 

state-of-the-art constrained optimization paradigms on 24 benchmark test problems. The 

comprehensive simulation results demonstrate cultural CPSO to be very effective and 

efficient.  

Chapter VII proposes an innovative computational framework according to 

cultural algorithm to solve dynamic optimization problems using knowledge stored in the 

belief space in order to re-diversify and repel the population right after a change takes 
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place in the dynamic of the problem. Thus the algorithm can comfortably compute the 

repulsion factor for each particle and locate the leading particles in the personal level, 

swarm level and global level. Each particle in the proposed cultural-based dynamic PSO 

will fly through a mechanism of three level flight incorporated with a repulsion factor. 

After a change takes place, particles regroup into several swarms and a diversity-based 

migration among swarms along with repulsive mechanism implemented in repulsion 

factor will take place to increase the diversity as quickly as possible. 

Finally, Chapter VIII discusses the concluding remarks on how swarm, culture, 

and society help in solving single objective, multiobjective, constrained, and dynamic 

optimization problems. The suggestions of the future work of this study are also proposed 

in this chapter. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

In this chapter, we briefly review the related work that will assist in understanding 

the background concepts required for this dissertation. Population based computational 

intelligence heuristics has extensively evolved from natural evolutionary-based Genetic 

Algorithms (GA) [16-17] over decades of research work. Computational intelligence 

approaches based upon the psychosocial behavior inspired from either human or animal 

society have been the subject of the emerging research for a decade. Some concepts 

borrowed from sociology have shown great improvements in the performance of 

computational methods. Migration of individuals between concurrent evolving 

populations has shown its potential to improve the genetic algorithms mechanism [18]. In 

distributed GA [6] the sociologically inspired concept of communication shows great 

improvement in the performance of GA. The population is divided into several 

subpopulations each evolving an independently GA while at regular time intervals, these 

GAs communicate with each other.  

Sociological researchers have constructed models to mimic the behavior of human 

and animal societies. Heppner and Grenander studied synchronization in groups of small 

birds like pigeons developing a flocking heuristics based upon the social interactions such 
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as attraction to a roost, attraction to flockmates and preserving the velocity [19]. 

Deneubourg and Goss has shown that the interaction between the individuals and their 

environment produces different collective patterns on decision making process by 

introducing a mathematical model [20] which is naturally observed to be essential in the 

schools of fishes, flocks of birds, groups of mammals, and many other social aggregates.  

Millonas proposed a model of the collective behavior of a large number of locally 

acting organisms [21] in which organisms move probabilistically between local cells in 

space, but with different weights. The evolution and the flow of the organisms construct 

the collective behavior of the group. This model could successfully analyze movements 

of ants as swarming organism. Reynolds developed a computer animator of a simulated 

bird based upon the local perception of the dynamic environment, the laws of simulated 

physics ruling its motion, and a set of simulated behaviors [22]. 

Akhtar et al. proposes a socio-behavioral simulated model [23] based upon the 

concept that the behavior of an individual changes and improves due to social interaction 

with the society leaders who are identified using a Pareto rank scheme.  On the other 

hand, the leaders of all societies themselves improve their own behavior which leads to a 

better civilization. Ursem introduced multinational evolutionary algorithm based on the 

relationship between different nations and their political interaction in order to optimize a 

profit function [4]. Ray and Liew adopted the intersociety and intrasociety relationship 

among the individuals and the leaders to optimize the single objective optimization 

problem [5]. The whole population, clustered into several groups, evolves in two stages. 
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Individuals within group follow the group’s best performing individual, and in the whole 

population, the very best performing individual leads all groups’ leaders. Ursem 

elaborates the idea of sharing among agents in a social entity as a means of maintaining 

multiple peaks in multimodal optimization problems [24]. 

Deneubourg and coauthors proposed a probabilistic model to explain behavior of 

ants as social agents [25] which was then followed by Goss et al. showing how sharing 

information among ants which was done by laying trail and following it could help to 

solve foraging problem in their societies [26]. Inspired by their research, Dorigo et al. 

introduced a new computational paradigm, Ant Colony Optimization (ACO) model, that 

could be adopted to solve engineering optimization problems. ACO’s main characteristic 

was a positive feedback for rapid discovery of good solution of optimization problem, a 

distributed computation to avoid premature convergence, and a greedy heuristic to find 

acceptable solution in the early stages of the search process [2, 27]. The ACO model has 

been successfully applied to symmetric and asymmetric Travelling Salesman Problem 

(TSP) as a classical difficult combinatorial optimization problem [28-29], quadratic 

assignment problem [30], adaptive routing [31], job-scheduling problem [2]. Sahin et al. 

reported applying the ant-based swarm algorithm on forming different patterns through 

interaction among mobile robots [32]. 

Kennedy and Eberhart introduced the particle swarm optimization (PSO), an 

algorithm based on imitating behavior of flocking birds. It mimics grouping of birds as 

particles, their random movement, and regrouping them again to generate a model so that 
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it can solve engineering optimization problems [1, 33]. Particles are known with their 

positions and velocities and can be updated using: 

 

                                    ,                                       (2.1) 

             ,                                                                                                         

 

where   is the velocity of the particle,   is the position of the particle,       is the best 

position of each particle ever experienced, and       is the best position among all 

particles.   and    are random numbers uniformly generated in the range of      .   ,   , 

and   are personal, social, and momentum coefficients [34]  that are predefined constant 

values. The movement of the particles has been analyzed to understand the mechanism 

underlying the PSO and its relation to other population based heuristics [35]. The analysis 

of the particles’ trajectory while moving [36] has led to a generalized model of the 

algorithm, containing a set of coefficients to control the system's convergence tendencies. 

The effects of various population structure and topologies on the performance of particle 

swarm algorithm have shown that von Neumann configuration consistently outperforms 

other types of topological configurations of particles’ neighborhood [37-39].  

Several versions of PSO have been developed. Discrete PSO was introduced [40] 

operating on discrete binary variables whose trajectories are defined as changes in the 

probability that a coordinate will take on a zero or one value. Comparing with GA on 

some multimodal optimization problems, discrete PSO showed competitive results [41-
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42]. A modified PSO using constriction factor [43] performed well comparing with the 

original PSO. Particle swarms are also developed to track and optimize dynamic 

landscape systems [44]. Particle swarm optimization has also been modified to perform 

permutation optimization problems such as N-queens problem [45] by defining particles 

as permutations of a group of unique values and updating velocity based upon the 

similarity of two particles. The permutation of the particles change with a random rate 

defined by their velocities. 

Clustering population into several swarms has been extensively studied.  

Stereotyping of the particles is investigated [46] in which substitution of cluster centers 

for       shows better performance of the PSO suggesting that PSO is more effective 

when individuals are attracted toward the center of their own clusters. Al-Kazemi and 

Mohan divided the population into two sets at any given time, one set moving to the 

      while another moving in opposite direction by selecting appropriate fixed values 

for           in each set [47]. After some iterations, if the       would not improve, 

then the particles would switch their group.  Baskar and Suganthan introduced a 

concurrent PSO consisting two swarms in order to search concurrently for a solution 

along with frequent passing of information, the       of two swarms [48]. After each 

exchange, the two swarms had to track the better       found. One of the swarms was 

using regular PSO while the other was using the Fitness-to-Distance ratio PSO [49]. 

Their approach improved the performance over both methods in solving single objective 

optimization problems. El-Abd and Kamel added a two-way flow of information between 
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two swarms improving its performance [50]. In their algorithm, when exchanging the 

best particle between two swarms, this particle is used to replace the worst particle in 

another swarm. The two swarms perform a fixed number of iterations, and then the best   

particles inside each swarm will replace the worst   particles in the other swarm only if 

they have a better fitness. This makes it possible for both swarms to exchange new 

information from the other swarm’s experience. Krohling et al. proposed co-evolutionary 

PSO in which two populations of PSO are involved [51]. One PSO runs for a specified 

number of iterations while the other remains static and serves as its environment. At the 

end of such period,       values obtained in previous cycles have to be re-evaluated 

according to the new environment before starting evolution. 

Particle swarm optimization has been widely applied for multiobjective 

optimization problems (MOPs) called multiobjective particle swarm optimization 

(MOPSO) to find a diverse set of potential solutions, known as Pareto front. There have 

been several algorithms to extend PSO to handle diversity issue in MOPs. Parspopoulos 

et al. [52] introduced vector evaluated particle swarm optimizer (VEPSO) to solve 

multiobjective problems. A VEPSO is a multi-swarm variant of PSO in which each 

swarm is evaluated using only one of the objective functions of the problem under 

consideration, and the information it possesses for this objective function is 

communicated to the other swarms through the exchange of their best experience. In 

VEPSO, the velocity of the particles in each swarm is updated using the best previous 

position,      , of another selected swarm. Selection of this swarm in the migration 
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scheme can be either random or in a sequential order. Ray and Liew [53] used Pareto 

dominance and combined concepts of evolutionary techniques with the particle swarm. 

This algorithm uses crowding distance to preserve diversity. Hu and Eberhart [54] in their 

dynamic neighborhood PSO proposed an algorithm to optimize only one objective at a 

time. The algorithm may be sensitive to the optimizing order of objective functions. 

Fieldsend and Singh [55] proposed an approach in which they used an unconstrained elite 

archive to store the nondominated individuals found along the search process. The 

archive interacts with the primary population in order to define local guides. Mostaghim 

and Teich [56] introduced a sigma method in which the best local guides for each particle 

are adopted to improve the convergence and diversity of the PSO. Li [57] adopted the 

main idea from NSGA-II into the PSO algorithm. Coello Coello et al. [58], on the other 

hand proposed an algorithm using a repository for the nondominated particles along with 

adaptive grid to select the global best of PSO. The algorithms proposed to solve MOPs 

using PSO are based upon promoting the nondominated particles at any given time, not 

exploiting the information of all particles in the population. 

Many MOPSO paradigms are focused on the methods of selecting global best [53, 

55-56, 58-64], or personal best [65]. Most MOPSOs adopt constant value for momentum 

and accelerations; however some MOPSOs use some simple dynamic to change the 

parameters. Indeed, one of the difficulties of the PSO and/or MOPSO is to deal with 

tuning the right value for the momentum, personal and global acceleration in order to get 

the best results for different test functions. Hu and Eberhart [54] in their dynamic 



19 

 

neighborhood MOPSO model and also Hu et al. [66] in the MOPSO with extended 

memory adopted a random number on the range (0.5,1) as the varying momentum. 

However both personal and global acceleration are constant values.  Sierra and Coello 

Coello [62] in their crowding and  -dominance based MOPSO used random value at the 

range (0.1,0.5) for the momentum and random values at the range (1.5,2.0) for the 

personal and global acceleration. They adopted this scheme to bypass the difficulties of 

fine tuning of these parameters for each test function. 

Zhang et al. [64] introduced intelligent MOPSO based upon Agent-Environment-

Rules model of artificial life. In their model, along with adopting some immunity clonal 

operator, the momentum was decreased linearly from 0.6 to 0.2, but the personal and 

global acceleration remained constant. Li [67] proposed an MOPSO based upon max-min 

fitness function. In his model, while the personal and global acceleration were set 

constant, the momentum was gradually decreased from 1.0 to 0.4. Zhang et al. [68] 

adopted a linearly-decreasing momentum from 0.8 to 0.4 for their MOPSO algorithm. 

However the personal and global acceleration were kept fixed. Mahfouf et al. [69] 

introduced adaptive weighted MOPSO in which they included adaptive momentum and 

acceleration. Using comparison study with other well-behaved algorithms, they 

demonstrated that the MOPSO search capability is enhanced by adding this adaptation. 

Ho et al. [63] noted the possible problem of selecting personal and global acceleration 

independently and randomly. He mentioned because of its stochastic nature they may 

both be too large or too small. In the former case, both personal and global experiences 
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are overused and as a result the particle will be driven too far away from the optimum. 

For the latter case, both personal and global experiences are not fully used and as a result 

the convergence speed of the algorithm is reduced. They used sociobiological activity 

such as hunting to assure that individuals balance between the weight of their own 

knowledge and the group’s collective knowledge. In other words, they mentioned that the 

personal and global acceleration are somehow related to each other. When one 

acceleration is large, the other one should be small, and vice versa. Using this concept, 

they modified the main equation of PSO, Equation (2.1) to include a dependent 

acceleration and momentum [63]. 

Particle swarm optimization algorithms have been successfully developed to solve 

constrained optimization problems.  Hu and Eberhart generated particles in PSO until the 

algorithm could find at least one particle in the feasible region and then adopted it to find 

best personal and global particles [70]. Parsopoulos and Vrahatis used a dynamic multi-

stage penalty function to handle the constraints [71]. The penalty function consisted of 

weighted sum of all constraints violation with each constraint having a dynamic exponent 

and a multi-stage dynamic coefficient. A comparison of preserving feasible solution 

method [70] and dynamic penalty function [71] demonstrated that the convergence rate 

for dynamic penalty function algorithm was faster than that of feasible solution method 

[72].  

Hu et al. modified the PSO mechanism to solve constrained optimization 

problems. PSO starts with a group of feasible solutions and a feasibility function is used 
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to check if the newly explored solutions satisfy all the constraints. Only feasible solutions 

are kept in the memory [73]. Linearly constrained optimization problems are the basis for 

a modified version of PSO in which the movement of the particles in the vector space is 

mathematically guaranteed by the velocity and position update mechanism to always find 

at least a local optimum [74]. In the  constrained PSO, particles that satisfy constraints 

move to optimize the objective function while particles that violate constraints move in 

order to satisfy the constraints [75]. 

Krohling and Coelho adopted Gaussian distribution instead of uniform 

distribution for the personal and global term random weights of the PSO mechanism to 

solve constrained optimization problems formulated as min-max problems. They used 

two populations of the PSO simultaneously, first PSO focuses on evolving the variable 

vector while the vector of Lagrangian multiplier is kept frozen, and the second PSO is to 

concentrate on evolving the Lagrangian multiplier while the first population is 

maintained frozen. The use of normal distribution for the stochastic parameters of the 

PSO seems to provide a good compromise between the probability of having a large 

number of small amplitude around the current points, i.e., fine-tuning, and small 

probability of having large amplitudes, that may cause the particles to move away from 

the current points and escape from the local optima [76]. 

In master-slave PSO [77], master swarm is to optimize objective function while 

slave swarm is focused on constraint feasibility. Particles in the master swarm only fly 

toward the current better particles in the feasible region, and they will not fly toward 
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current better particles in the infeasible region. The slave swarm is responsible for 

searching feasible particles by flying through the infeasible region. Particles in slave 

swarm only fly toward current better particles in the infeasible region, and they will not 

fly toward current better particles in the feasible region. The feasible/infeasible leaders 

from swarm will then be communicated to lead the other swarm. By exchanging flight 

information between swarms, algorithm can explore a wider solution space. 

Zheng et al. adopted an approach that congregates neighboring particles in the 

PSO to form multiple swarms in order to explore isolated, long and narrow feasible space 

[78]. They also applied a dynamic mutation operator with dynamic mutation rate to 

enhance flight of particles to feasible region more frequently. For constraint handling a 

penalty function has been adopted as to how far the infeasible particle is located from the 

feasible region. Saber et al. [79] introduced a version of PSO for constrained 

optimization problems. In their version of PSO, the velocity update mechanism uses a 

sufficient number of promising vectors to reduce randomness for better convergence. The 

coefficient velocity in the positional update equation is a dynamic rate depending on the 

error and iteration. They also reinitialized the idle particles if there are particles that are 

not improving for some iterations. Li et al. [80] proposed dual PSO with stochastic 

ranking to handle the constraints. One regular PSO evolves simultaneously along with a 

genetic PSO, a discrete version of PSO including a reproduction operator. The better of 

the two positions generated by these two PSOs is then selected as the updated position. 

Flores-Mendoza and Mezura-Montes [81] used Pareto dominance concept for constraint 
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handling technique on a bi-objective space, with one objective being sum of the 

inequality violation constraints and the second objective being sum of the equality 

violation constraints in order to promote better approach to feasible region. They also 

adopted a decaying parameter control for constriction factor and global acceleration of 

the PSO to prevent the premature convergence and to advance the exploration of the 

search space. Ting et al. [82] introduced a hybrid heuristic consisting PSO and genetic 

algorithm to tackle constraint optimization problem of load flow algorithm. They adopted 

two-point crossover, mutation, and roulette-wheel selection from genetic algorithms 

along with the regular PSO to generate the new population space. Liu et al. [83] 

incorporated discrete genetic PSO with differential evolution (DE) to enhance the search 

process in which both genetic PSO and DE update the position of the individual at every 

generation. The better position will then be selected. 

Particle swarm optimization algorithms have been effectively developed to solve 

dynamic optimization problems (DOP) as well. Carlisle and Dozier [84] adjusted PSO 

mechanism to prevent making position/velocity decision according to the outdated 

memory by periodic resetting. Particles periodically replace their pbest vector with their 

current position, forgetting their past experiences. Eberhart and Shi [44] proposed that for 

small perturbation, the initialization of the swarm can start from old population, while 

large perturbation needs re-initialization. In detection and response paradigm [85] gbest 

and the second global best are evaluated to detect changes, then the positions of all 

particles are re-randomized  to respond to the change. Charged swarm avoids collision 
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among particles based upon the force between electric charges which is inversely 

proportional to distance squared [86]. Atomic PSO [87] and quantum PSO [88] follow 

the structure of the chemical atom including a cloud of electrons randomly orbiting with a 

specific radius around the nucleolus.  

An anti-convergence operator [89] assists interaction among swarms. Also an 

excluding operation defines a radius to include the best solution of the swarm. These 

close swarms compete with each other in order to promote diversity. The winner, the 

swarm with the best function value at its swarm attractor, will remain, while the loser will 

be re-initialized in the search space [89]. Swarms birth and death [90] was proposed by 

allowing multiple swarms to regulate their size by bringing new swarms to existence, or 

diminishing redundant swarms. This dynamic swarm size can be an alternative for anti-

convergence and exclusion operators in the PSO mechanism. 

In partitioned hierarchical PSO for dynamic optimization problems [91], the 

population is partitioned into some tree-form sub-hierarchies for a limited number of 

iterations after a change is detected. These sub-hierarchies continue to independently 

search for the optimum, resulting a wider spread-out of the search process after the 

change has occurred. The topmost level of tree-form hierarchies which contain the 

current best particle does not change, but all lower sub-hierarchies (sub-swarms) re-

initialize the position and velocity and reset their personal best positions. These sub-

hierarchies are rejoined again after a predefined number of iterations. 
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By adopting dynamic macro-mutation operator [92], PSO is able to maintain the 

diversity throughout the search process in order to solve DOPs. Every coordinate of each 

particle will undergo an independent mutation with a dynamic probability which possess 

its highest value when the change occurs in the dynamic landscape and gradually 

decreases till the next change takes place. The unified PSO in which the exploration and 

exploitation term of the PSO mechanism are unified into a unification factor has also 

been adopted for solving DOPs [93]. Zhang et al. [94] proposed a direct relation between 

the inertia weight of the particle and the change. In their model, the new gbest and pbest  

for each particle affect the inertia weight of the particle whenever a change in gbest or 

pbest occurs. Pan et al. [95] modified the PSO paradigm using a probability based 

movement of particles based upon the concept of energy change probability in Simulated 

Annealing (SA). The particle will move to the next position computed through traditional 

PSO heuristics only with a specific probability that exponentially depends on the 

difference between the objective values of the current and next iterations.  

In species based PSO [96], the population is divided into some swarms, each 

surrounding a dominating particle called seed identified from the objective function 

values of the entire population. The new seed should not fall within the predefined radius 

of all previously found seeds in order to promote diversity. The seeds are then selected as 

the neighborhood best for different swarms. In multi-strategy ensemble PSO [97], 

particles are divided into two sections, part I uses a Gaussian local search to quickly seek 

global optimum in the current environment, while part II uses differential mutation to 
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explore the search space. The position of particles in part II do not follow the traditional 

PSO mechanism, instead each particle in part II is determined by the particle in part I 

through a mutation strategy.  

Liu et al. [98] introduced a modified PSO to solve DOPs in which many 

compound particles exist. Each compound particle includes three single particles 

equilaterally distanced from each other in a triangular shape. A special reflection scheme 

is proposed to explore the search space more comprehensively in which the position of 

the worst particle among three in the compound will be replaced with the reflected one. 

In each compound particle, after reflection is performed, a representative among these 

three particles is probabilistically chosen based upon the objective function values and 

distance from other two member particles. The representative member particles will then 

participate in PSO update mechanism. The two non-representative particles will also 

move in the same distance/direction as representative particle has been moved in order to 

preserve the valuable information. 

Recently a computational framework has been developed by Reynolds known as 

cultural algorithm (CA) based upon a dual inheritance system where information exists at 

two different levels: population level and the belief level [3]. Culture is defined as storage 

of information which does not depend on the individuals who generated and can be 

potentially accessed by all society members [3].  CA is an adaptive evolutionary 

computation method which is derived by cultural evolution and learning in agent-based 

societies [3, 99]. CA consists of evolving agents whose experiences are gathered into a 
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belief space consisting of various forms of symbolic knowledge. CA has shown its ability 

to solve different types of problems [3, 99-107] among which CAEP (cultural algorithm 

along with evolutionary programming) has shown successful results in solving MOPs 

[107]. Researchers have identified five basic sections of knowledge stored in belief space 

based upon the literature in cognitive science and semiotics: situational knowledge, 

normative knowledge, topographical knowledge [105], domain knowledge, and history 

knowledge [106]. Situational knowledge is a set of exemplary individuals useful for 

experiences of all individuals. Situational knowledge guides all individuals to move 

toward the exemplar individuals. Normative knowledge consists a set of promising 

ranges. Normative knowledge provides standard guiding principle within which 

individual adjustments can be made. Individuals jump into the good range using 

normative knowledge. Topographical or spatial knowledge keeps track of the best 

individuals which have been found so far in the promising region. Topographical 

knowledge leads all individuals toward the best performing cells in the search space 

[105]. Domain knowledge adopts information about the problem domain to lead the 

search. Domain knowledge about landscape contour and its related parameters guides the 

search process. Historical or temporal knowledge keeps track of the history of the search 

process and records key events in the search. It might be either a considerable move in 

the search space or a discovery of landscape change. Individuals use the history 

knowledge for guidance in selecting a move direction. Domain knowledge and history 

knowledge are useful on dynamic landscape problems [106]. The knowledge can swarm 
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between different sections of belief space [108-110] which in turn affect the swarming of 

population.  

Becerra and Coello Coello [104] proposed cultured differential evolution for 

constrained optimization. The population space in their study was differential evolution 

(DE) while the belief space consist of situational, topographical, normative, and history 

knowledge. The variation operator in DE was influenced by the knowledge source of 

belief space. Yuan et al. [111] introduced chaotic hybrid cultural algorithm for 

constrained optimization in which population space as DE and belief space including 

normative and situational knowledge. They incorporated a logistic map function for 

better convergence of DE to use its chaotic sequence. Tang and Li [112] proposed a 

cultured genetic algorithm for constrained optimization problems by introducing a triple 

space cultural algorithm. The triple space includes belief space, population space in 

addition with anti-culture population consisting individuals disobeying the guidance of 

the belief space, and going away from the belief space guided individuals. The effect of 

disobeying behavior enhanced by some mutation operations makes the algorithm faster 

and less risky for premature convergence, by awarding the most successful individuals 

and punishing the unsuccessful population. 
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CHAPTER III 

 

SOCIETTY AND CIVILIZAION FOR OPTIMIZATION 

 

3.1 Introduction 

 

Computational intelligence approaches based upon the psychosocial behavior 

inspired from either the human or animal society have been the subject of the emerging 

research for less than a decade. There has been some research in this area focused on 

optimization in the spirit of the particle swarm intelligence [1] or ant colony system [2]. 

Particle swarm optimization is an imitation of the collaborative behavior of the birds 

flying together with the means of information exchange, while ant colony is based on the 

fact that individual ants interact with each other through their pheromone trails. 

Additionally, Ursem [4] introduced another ideas based on the relationship between 

different nations and how to interact between the countries in order to optimize a profit 

function. More recently, in an attempt to mimic the interactional behavior between 

societies and within civilization, social algorithm had been proposed [5, 113]. Social 

algorithm adopts the intersociety and intrasociety relationship among the individuals and 

the leaders to optimize the single objective optimization problem. The whole population 

of individuals, called the civilization, is clustered into different societies based on the 
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Euclidean closeness of the individuals. The performance of individuals will be a measure 

to decide which individuals are the leaders of the society. The rest of the individuals are 

to follow them in a way to improve themselves which leads to migration (intrasocitey 

interaction). From the civilization viewpoint, the leaders of the societies will improve 

themselves by migrating to the best-performing leaders who are the civilization leaders 

(intersociety interaction) [114-115]. 

Ray and Liew have successfully demonstrated the performance of their model in 

single objective optimization problems [5]. Their model seems to be an alternative 

competitive paradigm to particle swarm heuristics. What was used in their model is 

mostly by throwing the information of the non-leader individuals away and replacing 

with those of the corresponding leaders. What is proposed in this chapter involves two 

aspects. Firstly, using the information of the individual, individual’s talent is computed 

which equips each individual with different ability to invoke intra or intersociety 

interaction. Secondly, different society might have different collective behavior measure, 

called the liberty rate. In the real sociological relationship, a democratic society will have 

more flexibility and freedom to choose a better environment to live. In contrast, a 

dictatorship society will discourage individual to change the environment in reaching the 

leaders. While individuals in a liberal society can migrate easily to be closer to the 

leaders, individual in a less liberal society will have difficulty to move near the leaders. 

Hence the higher liberty rate a society has, the more flexibility an individual in such 

society can move. 
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The chapter is followed by Section 3.2 elaborating basics of social algorithms, 

including its motivation and how to build the societies in a civilization, how to identify 

the leaders of such societies, and how to migrate intra or inter-socially. It also proposes a 

novel modification which is based on the idea of using more information from the 

middle-class individuals. In Section 3.3 the proposed algorithm has been applied on 

single objective optimization problems to test its efficiency. In Section 3.4, the 

concluding remarks are discussed in applying social algorithm to solve optimization 

problems. 

 

3.2 Social-based Algorithm for Optimization 

 

In this section, the details of social-based algorithm are reviewed to solve single 

objective optimization problems and then the proposed methods on improving this 

heuristics are introduced. The general single objective function optimization problem is 

as the following form: 

 

                        ,                                                                            (3.1) 

                                ,                   ,                                 (3.2)       

                               ,                 ,                             (3.3) 
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where   is the number of inequality constraints and   is the total number of inequality 

and equality constraints, respectively,                is the  -dimensional decision 

space variable. Because of limitation in computer simulations and accuracy of the 

variables considered, it is much easier to check the validity of an inequality than that of 

equality. As has been suggested by research in population based heuristics dealing with 

constraint handling, each equality constraint of      is originally transformed into a set 

of two simultaneous inequalities as      and       where   is an infinitesimal 

positive constant representing the accuracy of the algorithm. For example with   

      , the algorithm should proceed in a way that the following condition satisfies: 

                  which will substitute      for the sake of accuracy. 

Therefore each equality constraint transforms to two inequalities constraints resulting 

total number of inequality constraints as            as following: 

 

                                 ,                   ,       (3.4) 

                                      ,            .  (3.5) 

                                        

Now assume there are   individuals in the population as potential solutions for the 

constrained optimization problem. A constraint satisfaction factor,    , is defined to 

quantify how much dissatisfied the  -th constraint (          ) is made using the  -th 

individual,   , (         ),  and formulated as following: 
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 ,             ,            .  (3.6) 

Based on this definition, when a constraint is satisfied by an individual, the assigned 

value for constraint violation factor,    , is zero. If the  -th constraint is not met (  

       ) by the  -th individual, the negative-valued         is assigned as constraint 

violation factor,    , to show how much the constraint is violated. Then a ranking scheme 

is performed for each constraint as to assign the rank of one to individuals who satisfy 

that constraint the most. Therefore, for the  -th constraint, individuals with the highest 

    (         ) considering their sign will be assigned a rank of one, and individuals 

with the second highest     (         ) again considering the sign will be assigned a 

rank of two, and so forth. After performing this nondominated ranking scheme for all 

constraints, a     matrix is formed as the rank matrix in which rank-one means that 

those individuals are nondominated for a specific constraint [5]. It can be seen that if 

there is one or more feasible individual for a specific constraint, those will be considered 

as rank-one individuals. 

Figure 3.1 demonstrates the main flowchart of the social-based algorithm. The 

civilization is formed with   individuals that are initialized as uniform random numbers. 

Then each individual in the population of the civilization is evaluated using objective 

function value. The individuals are categorized into      societies using a non-supervised 

classification algorithm proposed by Ray and Liew [5] according to their closeness to 

each other. Notice that the number of societies may vary by time. Then the leaders of 
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each society are identified using a leader identification scheme which will be discussed in 

Figure 3.2. Next the individuals within the societies will move towards the nearest leader 

in their society using a migration scheme that will be discussed in Figure 3.3.  

 

 
Figure 3.1 Flowchart for social-based single objective optimization 

  

 

In the global level, the leaders of the civilization will then be identified through 

the same leader-identification scheme. Then the leaders of the societies will move 
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towards the global leaders of the civilization using the same migration scheme. This 

process continues until the termination criteria are met, i.e., the current iteration reaches a 

predefined maximum iteration,     . In Figure 3.2, a flowchart is depicted to explain the 

leader identification scheme.  

 

 
Figure 3.2 Flowchart for identifying leaders 
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As shown in this flowchart, a set of individuals are given to find their leaders. The 

leaders should be the best behaving individuals considering both objective values and 

constraints. The objective function value for each individual and constraint violation 

factors for each individual are computed using Equations (3.1) and (3.6), respectively. 

Through nondominated ranking scheme, the     rank matrix will be constructed. 

Leaders are identified among rank-one individuals whose objective function value is less 

than the average of objective function values of all individuals in the given set of 

individuals. This means that if there are any feasible individuals, the best ones shall be 

selected due to their objective function values. There might be a situation that there is no 

rank-one individual whose objective value is less than the average of all. In such case, 

simply all rank-one individuals will be assigned as leaders. The leader identification 

scheme is used for both society and civilization level. 

Figure 3.3 shows the details of the migration scheme used in both intrasociety and 

intersociety level. Assume that an  -dimensional individual is given                

along with a set of leaders,            . Before applying the migration scheme, it has 

to be noted that each dimension of the individual must be normalized as following: 

 

    
         

             
 ,                         ,                                                   (3.7) 
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where    is the  -th dimesnion of the  -dimensional decision variable (individual) which 

has the lowest limit of         and highest limit of       , respectively. The normalized 

invidual,    , will be in the range of      . Next, Euclidian distance between the 

normalized individual,                   , and the  -th member of the leader set, 

                       , will be computed as: 

 

               
  

   .                                                                                 (3.8) 

 

Next, the closest leader to the individual will be selected as                    whose 

distance is: 

 

         .                                                                                           (3.9) 

 

Then, each dimension of the normalized individual will be migrated using the above 

computed lowest distance through a random normal distribution value as following: 

 

   
        

             ,                          ,                              (3.10) 

 

where        is a random number with normal distribution with mean zero and a fixed 

standard deviation,   , and    
        

 is the new location of the  -th dimension of the 
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individual.  As the final step, the migrated position should be rescaled back to the original 

scale as following: 

 
Figure 3.3 Flowchart on how to migrate individuals 

 

 

  
        

    
        

                      ,                    .        (3.11) 

 

It should be noted that migration scheme explained here is adopted in both 

intrasociety level, migrating the individuals towards their society leaders, and intersociety 



39 

 

level, migrating society leaders towards the civilization leaders. Therefore performance 

of individuals will improve within each society by migrating towards the closest society 

leader, and in a global view, the performance of society leaders will also improve by 

migrating towards the best behaving leader in the whole civilization.  

 

3.2.1 Proposed Modifications  

In this subsection, two proposed modifications are presented. Social-based 

algorithm has shown its promise in some single objective optimization problems [5]. 

What is used in this model is mostly by throwing the information of the non-leader 

individuals away and replacing with that of the correspondent leaders, as shown in 

Equation (3.10). However, in the real life it occurs differently. Individuals keep their 

characteristics along with imitating from some good samples. In the real society, average 

individuals do not completely throw their past behavior away, but would continuously 

change it, keeping the history of their behavior. Having the history of the individuals in 

the local search (intrasociety interaction) helps the individuals keep the information that 

might be useful later. In the global search, the algorithm is leader-centric preventing to 

diverse chaotically. Therefore, the exploitation of the intrasociety migration is based on 

the importance of previous location of the individual. In the intersociety migration the 

rule remains leader-centric.  

Figure 3.4 shows the pseudocode for the individuality importance in intrasociety 

migration. Individual                and set of leaders             are given. 
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The individual is normalized using Equation (3.7) and then the Euclidian distance 

between normalized individual and each member of the leader set is computed using 

Equation (3.8) and the lowest distance is computed as Equation (3.9). Then the 

normalized individual will be migrated considering individuality importance as 

following: 

   
        

             ,                          .                              (3.12) 

 

 

 

 

 

 

Figure 3.4 Pseudocode for individuality importance in intrasociety migration 

  

Finally each dimension of migrated individual should be rescale back into its original 

scale using Equation (3.11) 

In another modification scheme, Liberty Rate is proposed. A democratic society 

has more flexibility and freedom to choose better situation to live. In contrast, a 

dictatorship society restricts change of the situation and reaching the leaders. While 

 Individual                and set of leaders   
          are given 

 Normalize   in each of its dimensions using its maximum and 

minimum limits using Equation (3.7) 

 Compute the Euclidian distance between normalized   and 

each member of the leader set,   

 Migrate normalized individual considering individuality 

importance using Equation (3.12) 

 Rescale back each dimension of the migrated individual into its 

original scale using Equation (3.11) 
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individuals in a liberal society can migrate easily to be closer to the leaders, individual in 

a less liberal society will experience difficulty to move near the leaders. So giving 

preferences to approach to the leaders for different societies will improve the 

convergence to the optimized solution. Different society will have different collective 

behavior measure, called Liberty Rate. The higher liberty rate a society has, the more 

flexible individuals in such society can move.  

The Liberty Rate of a society is proposed as the relative ratio of average objective 

functions of the society over the average objective functions of the civilization, 

formulated as following: 

 

              
  

 
 ,                                                                                (3.13) 

 

where   is a predefined normalization constant and    is the measure of the collective 

behavior of the  -th society, defined as the average of the objective values of the 

individuals who belong to the  -th society, formulated as: 

 

   
 

  
      

  
   ,                                                                                    (3.14) 

where    is number of individuals in the  -th society.   , the measure for the civilization’s 

collective behavior is also defined as: 

  
 

 
      

 
   .                                                                                     (3.15) 
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Then to migrate each individual in the  -th society, a liberty-based migration is 

performed as following: 

   
        

                        ,                         .              (3.16) 

 

3.3 Simulation Results 

 

Spring Design is a mechanical design problem [116] to minimize the weight of a 

tension/compression spring as shown in Figure 3.5. There are nonlinear inequality 

constraints on minimum deflection, shear stress, surge frequency, limits on outside 

diameter and on design variables. The design variables are the mean coil diameter,   , the 

wire diameter,    , and the number of active coils,   , along with four inequality 

constraints. The mathematical formulation of the problem is as the following: 

 

                          
 ,                                                                   (3.17) 

                                                                                                              (3.18)       
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with the following limits on variables:  3.125.0 1  x  , 0.205.0 2  x  , 

152 3  x . 

 

Figure 3.5 Schema for Spring Design problem [117] 

 

Figures 3.6 demonstrate the simulation results for Spring Design problem using 

the proposed modifications compared with the original algorithm. Population size is 30 

which is 10 times the number of decision variables as suggested in [5]. This result is after 

50 independent runs are performed for all three algorithms. We can see the effect of 

defining liberty rate in comparison of two modifications. The convergence time and the 

best value for objective functions in the case that both modifications have been applied 

have been improved compared to the original method. 

The comparison results are also shown in Table 3.1. It is noticeable that although 

two modifications give better results for best objective function, but the algorithm is not 

robust and the results for the worst objective function and mean objective function are not 

improved. For the original version, the standard deviation of algorithm discussed in 

Equation (3.10) has been considered as 1 .  
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Figure 3.6 Comparison for best objective function for two proposed modifications: Original model 

(blue), modified by Individuality Importance (green) and modified by Liberty Rate and Individuality 

Importance (red) 

 

Table 3.1 Comparison of results for Spring Design problem 

Algorithms Original Method 
Individuality 

Importance 

Liberty Rate and 

Individuality Importance 

Best Objective Value (kg.m) 0.0464 0.0379 0.0331 

Mean Objective Value (kg.m) 0.0464 6.2388 6.1516 

Worst Objective Value (kg.m) 0.0464 32.2617 31.6833 

 

 

 

3.4 Discussions  

 

In this chapter, two modifications have been suggested for social-based algorithm. 

These modifications have been tested on a real world benchmark problem: the Spring 

Design problem. The simulation results demonstrate that adding two modifications 

facilitate the performance of the original algorithm resulting a better best objective 
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values. The first modified algorithm, individuality-based social algorithm outperforms 

the original social algorithm, while the liberty/individuality-based social algorithm 

outperforms both the original social algorithm and the individuality-based social 

algorithm in finding the best objective values. Both modified algorithms have migration 

policy better than the original social algorithm. The original algorithm is basically biased 

around the best performing individual which may result settling into a local optimum, 

while both modified versions are based upon individual’s previous performance.  

The results of modified version of social algorithm is based upon two hypotheses, 

one is that information from all individuals must be collected and exploited to migrate to 

the best leader, while the other is that the rate of convergence in different societies is not 

necessarily the same and depends on the relative collective behavior of the individuals in 

the society with respect to the civilization. Indeed the result in this case is improved 

because of giving more weight to diversity to the search in the individual space. If we just 

throw away all the non-leaders individuals, we lose a lot of information that might be 

critical in the search process, however getting information from the other non-leaders 

individuals might add to the convergence time.  

The best objective values obtained in both modified versions are better than 

original social algorithm; however the worst and mean values are not better than original 

algorithm, since we are keeping the diversity while evolving. This also implies room for 

further improvements in the future research. 
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CHAPTER IV 

 

DIVERSITY-BASED INFORMATION EXCHANGE FOR PARTICLE SWARM 

OPTIMIZATION 

 

4.1 Introduction 

 

Particle swarm optimization (PSO) is based on the changes of the positions and 

velocities of the particles in a manner that optimizes a goal function. PSO has 

demonstrated a promising performance for many problems; yet its fast convergence often 

leads to premature convergence in local optima. The tradeoff between fast convergence 

and being trapped in local optima will be even more critical in multimodal functions 

having many local optima very close to each other. In order to escape from the local 

optima and avoid premature convergence, the search for global optimum should be 

diverse. Many researchers have improved the performance of the PSO by enhancing its 

ability with a more diverse search. Specifically, some have proposed to use multiple 

swarms each running independent PSO, and then exchange information among them.   

Exchanging information among clusters has also been adopted as an important 

design in several computational methods. Distributed genetic algorithm [6] employs GA 

mechanism to evolve several subpopulations in parallel. During frequent migration 
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among subpopulations, some individuals from each subpopulation will be sent to another 

subpopulation to replace other individuals based upon a replacement policy. In another 

algorithm known as society and civilization model [5], individuals from multiple 

societies would cooperate with each other in order to enhance their performance. The 

migration in this model occurs in two levels; first, the migrating of individuals inside 

each society toward the society leaders (intrasociety level), and second, the migrating of 

society leaders toward the civilization leaders (intersociety level).  

In this study, a method borrowed from distributed genetic algorithm is employed 

to exchange information among multiple swarms in PSO. At regular intervals, each 

swarm prepares two sets of particles. One set is the particles that must be sent to another 

swarm and another set is the particles that must be replaced by individuals from other 

swarms. To prepare these two sets of particles, diversity measure is considered as the 

primary goal instead of only performance of the particles. When particles are 

approaching the local optima, several of them will have similar positional information. 

This similar redundant information will be replaced by particles from other swarms. This 

algorithm also proposes a new paradigm to find each swarm’s neighbors. The 

neighborhood between swarms is defined by the use of Hamming distance between 

representatives of each pair of swarms. The particle’s movement in the space is based on 

one variation of PSO with three basic terms, each one leading the particles toward the 

best particles in its own swarm, in its swarm’s neighborhood, and in the whole 

population. 
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The structure of this chapter is organized as follows. Section 4.2 reviews the 

related studies in this field. In Section 4.3, the proposed algorithm is explained in detail. 

The main ideas of the proposed method are shown. In Section 4.4, the simulation of the 

proposed algorithm is performed on a set of hard benchmark problems. Section 4.5 

summarizes the benefits of the proposed paradigm on PSO and outlines the future work 

for multiobjective optimization problems due to the nature of the diversity promotion 

proposed. 

 

4.2 Review of Related Work 

 

Kennedy and Eberhart [1] introduced the particle swarm optimization, an 

algorithm based on imitating behavior of flocking birds. It mimics grouping of birds as 

particles, their random movement, and regrouping them again to generate a model so that 

it can solve engineering optimization problems. Particles are known with their positions 

and velocities and can be updated using: 

 

                                    ,                                     (4.1) 

          ,                                                                                                                   

 

where   is the velocity of the particle,   is the position of the particle,       is the best 

position ever experienced of each particle, and       is the best position ever attained 
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among all particles.   and    are random numbers uniformly generated in the range of 

     .   ,   , and   are personal, social, and momentum coefficients that are predefined. 

The main problem for PSO is its fast convergence to local optima. Later, Kennedy [46] 

introduced the stereotyping of the particles in which substitution of cluster centers for 

      showed appreciable improvement of the PSO performance. His research suggested 

that PSO is more effective when individuals are attracted toward the center of their own 

clusters. 

In multimodal problems, the search effort needs to be diverse in order to find the 

global optimum among a set of many local optima. The fast converging behavior of the 

PSO makes this issue so critical for multimodal problems. To achieve a more diverse 

search, Al-Kazemi and Mohan [47] divided the population into two sets at any given 

time, one set moving to the       while another moving in opposite direction by 

selecting appropriate fixed values for           in each set. After some iterations, if the 

      is not improved, then the particles would switch their group.  Baskar and 

Suganthan [48] in their concurrent PSO used two swarms to search concurrently for a 

solution along with frequent passing of information, which was the       of two 

cooperating swarms. After each exchange, the two swarms had to track the better       

found. One of the swarms was using regular PSO, and the other was using the Fitness-to-

Distance ratio PSO [49]. Their approach improved the performance over both methods in 

solving single objective optimization problems. El-Abd and Kamel [50] further improved 

the previous algorithm by adding a two-way flow of information between two swarms. In 
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their algorithm, when exchanging the best particle between two swarms, this particle is 

used to replace the worst particle in another swarm. The two swarms perform a fixed 

number of iterations, and then the best   particles inside each swarm will replace the 

worst   particles in the other swarm only if they have a better fitness. This makes it 

possible for both swarms to exchange new information from the other swarm’s 

experience. Krohling et al. [51] proposed co-evolutionary PSO in which two populations 

of PSO are involved. One PSO runs for a specified number of iterations while the other 

remains static and serves as its environment. At the end of such period,       values 

obtained in previous cycles have to be re-evaluated according to the new environment 

before starting evolution. Although these algorithms used information exchange among 

swarms, but none of them adopted specific paradigm based on promoting diversity in 

selecting and sending particles from one swarm to another. 

On the other hand, one of the main concerns in multiobjective optimization 

problems (MOP) is also to search for a diverse set of potential solutions, known as Pareto 

front. There have been several algorithms to extend PSO to handle diversity issue in 

MOPs. Parspopoulos et al. [52] introduced vector evaluated particle swarm optimizer 

(VEPSO) to solve multiobjective problems. A VEPSO is a multi-swarm variant of PSO 

in which each swarm is evaluated using only one of the objective functions of the 

problem under consideration, and the information it possesses for this objective function 

is communicated to the other swarms through the exchange of their best experience. In 

VEPSO, the velocity of the particles in each swarm is updated using the best previous 
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position,      , of another selected swarm. Selection of this swarm in the migration 

scheme can be either random or in a sequential order. Ray and Liew [53] used Pareto 

dominance and combined concepts of evolutionary techniques with the particle swarm. 

This algorithm uses crowding distance to preserve diversity. Hu and Eberhart [54] in their 

dynamic neighborhood PSO proposed an algorithm to optimize only one objective at a 

time. The algorithm may be sensitive to the optimizing order of objective functions. 

Fieldsend and Singh [55] proposed an approach in which they used an unconstrained elite 

archive to store the nondominated individuals found along the search process. The 

archive interacts with the primary population in order to define local guides. Mostaghim 

and Teich [56, 60] introduced a sigma method in which the best local guides for each 

particle are adopted to improve the convergence and diversity of the PSO. Li [57] 

adopted the main idea from NSGA-II into the PSO algorithm. Coello Coello et al. [58], 

on the other hand, proposed an algorithm using a repository for the nondominated 

particles along with adaptive grid to select the global best of PSO. The algorithms 

proposed to solve MOPs using PSO are based upon promoting the nondominated 

particles at any given time, not exploiting the information of all particles in the 

population. 

The information exchange through migration in order to increase the search 

ability of the algorithm has been used in some other innovated paradigms. Ray and Liew 

[5] introduced their society and civilization model for optimization in accordance with 

simulation of social behavior. Individuals in a society interact with each other in order to 
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improve. Such improvement is done by information acquisition from the better-

performing individuals or leaders in that society. This intrasociety interaction will 

improve the individual’s performance, but cannot improve the leader’s performance. The 

leaders do communicate externally with the leaders of other societies to improve. This 

intersociety communication leads to migration of the leaders to developed societies, 

which in turn, moves the overall poor-performing societies toward better-performing 

ones. At first, population is clustered into several mutually exclusive ones based on their 

distance in parametric space. Then objective functions along with constraints (if any) lay 

down a ranking system to choose the leaders in each cluster, and then migration in two 

levels will take place. Society and civilization model showed competitive results on 

single objective constrained optimization problems with respect to GAs. 

The concept of having multiple sets had been originally introduced and used in 

distributed genetic algorithm (DGA) [6]. In DGA, population is divided into several 

subpopulations each running its own GA independently.  At regular time intervals, inter-

processor communication will happen. During this migration stage, a proportion of each 

subpopulation is selected and sent to another subpopulation. The migrant individuals will 

replace others based on replacement policy. In another kind of distributed evolutionary 

algorithm, Ursem [4] adopted his multinational evolutionary algorithm using a spatially 

separated model. He applied a fitness-topology function, instead of clustering, to decide 

on the relationship between a point and a cluster. The algorithm was to find all peaks of a 

multimodal function in unconstrained optimization problems. 
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In DGA, there are different policies on selection of migrants and replacement of 

individuals within each of the subpopulations. Cantu-Paz [118] showed that sending the 

fittest individuals of the population and replacing individuals with low fitness produces 

the best results. Denzinger and Kidney [18] used a diversity measure to select individuals 

for migration. Power et al. [119] used a method for selection based on a diverse set of 

individuals rather than the highly fit ones. The reason is to avoid like information to be 

sent to another subpopulation. Sometimes the majority of individuals can be located very 

close to each other, especially in the last steps of convergence. Therefore, by selecting the 

fittest individuals, the similar individuals from a small area will be sent to the next 

subpopulation. In case the algorithm is likely to be trapped in a local optima, this similar 

information is useless to diversify the search and get away from the local optima. Instead, 

the basis is to choose a diversified list of individuals to send to the other GAs. The 

sending list will be filled by the following individuals in this order: (1) an average 

individual of the subpopulation as representative of the population, (2) m individuals 

based on closeness to this representative whose fitness is better than representative, (3) m 

individuals based on closeness to this representative whose fitness is poorer than 

representative, and finally (4) the fittest individual in the subpopulation. There will also 

be a replacement list that will be filled in the following order: (1) individuals having 

similar genetic information, by order of fitness, with least fit ones being replaced before 

better fit ones, and (2) individuals with lowest fitness values. Their method was applied 

to single objective multimodal optimization and showed significantly better results when 



54 

 

compared to standard DGA with send-best-replace-worst strategy. 

 

4.3 Diversity-based Information Exchange among Swarms in PSO 

 

The underline principle of the proposed algorithm is based upon the idea of 

exploiting the information of all particles in the population. The population will be 

divided into P swarms, and each swarm will perform a PSO paradigm. After some 

predefined iterations, the swarms will exchange information based on a diversified list of 

particles. Each swarm prepares a list of sending particles to be sent to the next swarm, 

and also prepares a list of replacement particles to be replaced by particles coming from 

other swarms. Each swarm chooses the leaders of the next generation from the updated 

swarm after exchange of particles. To select the list of particles to send, algorithm uses a 

strategy according to the locations of the particles in the swarm and their objective values 

instead of their objective values alone. A list is prepared in the following order. 

Priority S1: The higher priority in the selection of particles is given to a particle 

that has the least average Hamming distance from others. This particle is considered as 

the representative of the swarm. The average Hamming distance between each pair of 

particles in the swarm is calculated and then the least among them is found.  

Priority S2: The closest   particles to the representative particle whose objective 

value is greater than that of the representative will be chosen.   is a value that depends 

on the rate of information exchange,  , (a predefined value between 0 and 1) among 
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swarms, and population of each swarm,   : 

 

  
   

 
  .                                                                                                      (4.2) 

 

Priority S3: The closest   particles to the representative particle whose objective 

value is less than that of the representative will be chosen.  

Priority S4: The best performing particle in the swarm will be chosen. 

Depending on the predefined fixed value for allowable number of the sending list, 

the sending list will be filled in each swarm. There will also be a replacement list that 

each swarm prepares, based on the similar positional information of particles in the 

swarm. When swarms are approaching local optima, many locations of particles are 

similar to each other. Each swarm will then remove this excess information through its 

replacement list. The replacement list in each swarm is prepared in the following order. 

Priority R1: Particles with identical parametric space information, by the order of 

their objective values, with the least objective values will be replaced first. 

Priority R2: Particles with the lowest objective values will be replaced when all 

particles of the last priority have already been in the replacement list. 

This information exchange among swarms can happen in a ring sequential or 

random order between each pair of swarms as shown in Figure 4.1. Each swarm accepts 

the sending list from other swarm and will replace it with its own replacement list. After 
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information exchange completes, the       and       will be selected. This algorithm is 

shown in Figure 4.2. 

 
Figure 4.1 Ring and random sequential migration: Migration can be (a) in ring sequential order 

between swarms1 and 2, then between swarm 2 and 3, etc. or (b) in a random order between swarms. 

i, k, s, t, j are random numbers between 1 and n. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2 Main algorithm for diversity-based multiple PSO (DMPSO) 

 

 

To further overcome the premature convergence problem, especially in 

multimodal objective optimization, and to increase the ability of communication among 

particles about common interest information, a concept of neighborhood is proposed to 
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means clustering. 

 If  
Migrationtt  , then: 
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Equation (4.1). 
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promote the particles in a neighborhood to utilize and share information among 

themselves. For the PSO schema, a three-level mechanism is adopted. In personal level, 

particle in a swarm will follow the leader of the swarm that is the best behaving particle 

in that swarm. In neighborhood level, the particle will simultaneously follow the best 

behaving particle in its neighborhood to achieve a synchronized behavior in the 

neighborhood and to share the information, and finally in the global level, particles of 

each swarm will follow the best behaving particle in the whole population, seeking a 

global goal. This paradigm of PSO is formulated as: 

 

                                                  ,     (4.3) 

          ,                                                                                                          

 

where   is the velocity of the particle,   is the position of the particle,       is the best 

position in the cluster,       is the best position among all particles and       is the best 

position among the particles’ neighborhood.   ,   , and    are random numbers uniformly 

generated in the range of      . Thus particles always move statistically towards the 

direction of      ,      , and       in order to use the past experience in the search 

process.    ,   , and    are constant values representing the weight of each of the terms 

of personal, global, and neighborhood behavior and    is the momentum for previous 

velocity. It should be noted that the unified PSO [120] integrates the local best and global 

best PSOs into a single equation to update the velocity of particles based on the global 
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best particle, the neighboring best particle, and the particle’s own best position, while in 

the proposed paradigm, velocity updates using the best particle in the cluster of particles, 

the best particle in the neighboring swarms, and the best global particle with no 

restriction on the weights. 

To find the neighborhood among particles in PSO, there have been different 

strategies used by researchers [37, 121]. Some have applied ring neighborhood, the von 

Neumann neighborhood, or some other topological neighborhoods. The proposed 

definition of neighborhood is to define neighboring swarms according to the average as 

representative of each swarm to decide whether the swarms are in neighborhood of each 

other. In the i-th swarm with the particles of             , the representative,   , is 

defined by centroid of all particles: 

 

   
 

 
   

 
                                                                                            (4.4) 

 

The inter-swarm distance between swarms i and j,    , is defined by the inner 

products of two vectors: 

 

       
   

 
 ,                                                                                       (4.5) 

 

where   
  is the k-th element of the representative   . 
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Swarms are defined to be in a neighborhood if and only if all inter-swarm 

distances among them are less than the average inter-swarm distance:       ,       , 

… and        , where    
 

      
    

 
          , where P is the number of swarms.   

 

 
Figure 4.3 Schema of swarm neighborhood: Swarms 1, 2 and 3 are in a neighborhood, since       , 

      and        but swarm 4 does not belong to this neighborhood. Notice that even        

but       . Swarms 4, 5 and 6 form another neighborhood, because       ,        and     
  . Swarm 3 does not belong to this neighborhood because even        but       . (Solid circles 

denote the representative points of each swarm) 

 

 

For example, for two of them, swarms i and j are in a neighborhood if and only if 

      . If        but       , then swarm k does not belong to this neighborhood. In 

Figure 4.3, an example with six swarms is shown. Swarms 1, 2 and 3 are in a 

neighborhood because      ,        and        but swarm 4 does not belong to 
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this neighborhood. Notice that even        but       . Swarms 4, 5 and 6 form 

another neighborhood because       ,        and       . Swarm 3 does not belong 

to this neighborhood because even        but       . 

A brief explanation of the proposed algorithm is shown in Figure 4.4. The 

population is initialized and then clustered into P swarms using the k-means clustering 

method. Then the neighbor sets of each swarm will be found using the Equations (4.4) 

and (4.5) and the rule mentioned above as shown in Figure 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.4 Main algorithm for diversity-based multiple PSO with neighborhood (N-DMPSO) 

 

 Initialize population at time 1t . 

 Cluster population into P swarms. 

 If  
Migrationtt  , then: 

a. Prepare the sending list and replacement list for each swarm; 

b. Exchange particles between pairs of swarms, using sending and 

replacement lists of each swarm; 

c. Find the neighbor sets of each swarm. ),...,2,1,( PiN i  ; 

d. Perform the PSO on each new swarm: 

o Find the      ,      , and       for each new swarm, 

o Apply the modified version of PSO, Equation (4.3). 

 Else:  

a. Find the neighbor sets of each swarm. ),...,2,1,( PiN i  ; 

b. Perform the PSO on each swarm: 

o Find the      ,      , and       for each swarm, 

o Apply the modified version of PSO, Equation (4.3). 

 Repeat the above steps until stopping criteria are met.  

 (
maxtt  ) 
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To perform the PSO according to Equation (4.3), we have to find the best 

performing particle in each swarm, namely the      , the best performing particle in the 

all-neighbor sets of that swarm, namely the        and the best performing particle in the 

whole population,      . This process will be iterated until the time for migration is 

reached. At regular fixed intervals, each swarm prepares a list of particles to send to the 

next swarm, a list of particles that must be replaced from other particles coming from 

other swarms; then exchange of particles between each of the two swarms will happen 

according to Figure 4.1. This algorithm including clustering, information exchange, and 

flight of particles will continue until the stopping criteria are met. 

 

 

4.4 Simulation Results 

 

The proposed algorithm was tested using some benchmark problems, which are 

often used to examine GA solving multimodal problems [4, 122]. These problems 

adopted from [119] vary in difficulty and dimension. In order to test the proposed 

algorithm, its performance has been compared with two distributed genetic algorithms 

[118-119]. One of them is DGA with a standard migration policy (SDGA), best-sent-

worst-replaced [118]. The other one is a DGA with diversity-based migration policy 

(DDGA) [119]. In order to draw a fair comparison, the same rate of information 

exchange as their migration rate has been adopted. The main population for the proposed 

algorithms DMPSO and N-DMPSO was set as 50 particles. The k-means clustering 
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method was used with m=6 swarms. The coefficients of   ,   ,   , and   are selected as 

1.4, 1.4, 1.4, and 0.8, respectively. The rate of information exchange is varied with the 

values of 0.05, 0.2, and 0.4. At the time interval of     , particles are exchanged 

among swarms. 

The first problem used to test the proposed algorithm is F1 [119] with five peaks 

and four valleys between each of the two neighboring peaks. This function is depicted in 

Figure 4.5. Figure 4.5(a) shows a 3-D landscape while Figure 4.5(b) displays the contour 

map of the function F1. The results of applying both proposed algorithms are shown in 

Table 4.1. The optimal solution found (in percentage) is calculated out of 30 independent 

runs for each algorithm. The solution is considered to be optimal when the optimal 

objective value of 2.5 is reached. The best objective values for the final solution is 

averaged over 30 runs to obtain the mean best objective reported in the table. Each 

algorithm is performed for three values of rate of information exchange, 0.05, 0.2, and 

0.4. The best performing algorithm in each case is shown in bold face. The graphical 

view of the location of the best particles of the final solution is depicted in Figure 4.6.  

Figure 4.6 (a) and (b) are for DMPSO with rate of information exchange equal to 

0.05 and 0.4, and (c) and (d) are for N-DMPSO with rate of information exchange equal 

to 0.05 and 0.4, respectively. Figure 4.6 shows that some of the particles in DMPSO  will  

be  trapped  in  local  maxima  (0.897,0) and (-0.897,0). In N-DMPSO, most particles 

approached toward (0,0), the global maximum. The results in Table 4.1 show that both 

proposed algorithms perform better and N-DMPSO outperforms all of them.  
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The second benchmark problem is F2 [119] with 10 peaks shown in Figure 4.7. 

The results of the algorithms are also shown in Table 4.1. The graphical view of the best 

particles for both algorithms is obtained in Figure 4.8. This figure shows that some 

particles in DMPSO are trapped in a local maximum while in N-DMPSO most particles 

reach the global maximum. Results reported in Table 4.1 also show the better 

performance of N-DMPSO.  

The next benchmark function is F3 [119], shown in Figure 4.9, with two close 

peaks and a valley between them. The results of the algorithms are summarized in Table 

4.1 as well, and the graphical view of the best particles is depicted in Figure 4.10. Figure 

4.10 shows that in DMPSO some of the particles are trapped in local maximum at (-

1.444,0), while in N-DMPSO most of the particles reached the global maximum at 

(1.697,0). Table 4.1 also illustrates that N-DMPSO is outperforming other algorithms. 

The next benchmark function is F4 [119] with a total of five peaks, one global maximum 

and four local maxima in its neighborhood, shown in Figure 4.11. The results and the 

graphical presentation of the best particles in Table 4.1 and Figure 4.12 show once again 

that N-DMPSO has less particles trapped in four local maxima located at the corners of 

the variable space. The results obtained in Table 4.1 confirm a higher number of found 

optimal solutions. The benchmark function F5 [119] has six peaks, two of which are 

global maxima as shown in Figure 4.13. The results of the algorithms are shown in 

Figure 4.14 and Table 4.1. The D-DGA in this problem outperforms the proposed 

algorithms when rate of information exchange is 0.05 and 0.2. On the other hand, with a 
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higher rate, the proposed algorithm performs better, i.e., when more particles are 

exchanged, PSO shows more superiority. 

The benchmark function of F6 [119] has a variable dimension. Three different 

dimensions of 25, 40 and 50 have been used here. The rate of the information exchange 

for this case and the remaining benchmark functions has been fixed at 0.1. The best 

objective value for the final solutions is averaged over 30 runs and shown in Table 4.2.  

The N-DMPSO outperforms the other three algorithms at dimensions 25 and 40 but at 

dimension 50, D-DGA performs better. The benchmark function of F7 [119] has also a 

variable dimension, and three dimensions of 25, 40, and 50 have been adopted here. 

Results in Table 4.2 show that N-DMPSO outperforms the others at dimensions 25 and 

40 but again, at dimension 50, D-DGA outperforms others. The next benchmark function, 

F8 [119], has 10 variables. N-DMPSO also outperforms other algorithms in this case. And 

finally, the last benchmark function F9 [119] has 40 variables. N-DMPSO performs better 

than other algorithms as well. In general, N-DMPSO outperformed other algorithms in 

several benchmark functions. It was outperformed in some cases, especially problems 

with very high dimension, by D-DGA. It might be due to the nature of GA that 

recombination demonstrates a better performance in high dimension; however it needs to 

be tested more. 
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                                                 (a)                                                                             (b) 

Figure 4.5 Benchmark function F1 with five peaks and four valleys: (a) 3-D landscape, (b) contour 

map. 

 

 
                                           (a)                                                                                 (b) 

 
                                           (c)                                                                                 (d) 

Figure 4.6 Final best particles for F1: (a) DMPSO with r = 0.05, (b) DMPSO with r = 0.4, (c) N-

DMPSO with r = 0.05, (d) N-DMPSO with r = 0.4. 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X

Y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X

Y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X

Y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X

Y



66 

 

 

 
                                                 (a)                                                                             (b) 

Figure 4.7 Benchmark function F2 with 10 peaks: (a) 3-D landscape, (b) contour map. 

 

                                                                       
                                           (a)                                                                                 (b) 

 

 
                                           (c)                                                                                 (d) 

Figure 4.8 Final best particles for F2: (a) DMPSO with r = 0.05, (b) DMPSO with r = 0.4, (c) N-

DMPSO with r = 0.05, (d) N-DMPSO with r = 0.4. 
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                                                 (a)                                                                             (b) 

Figure 4.9 Benchmark function F3 with two peaks and one valley: (a) 3-D landscape, (b) contour 

map. 

 

 
                                           (a)                                                                                 (b) 

 
                                           (c)                                                                                 (d) 

Figure 4.10 Final best particles for F3: (a) DMPSO with r = 0.05, (b) DMPSO with r = 0.4, (c) N-

DMPSO with r = 0.05, (d) N-DMPSO with r = 0.4. 
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                                                 (a)                                                                             (b) 

Figure 4.11 Benchmark function F4 with five peaks: (a) 3-D landscape, (b) contour map. 

 

 
                                           (a)                                                                                 (b) 

 
                                           (c)                                                                                 (d) 

Figure 4.12 Final best particles for F4: (a) DMPSO with r = 0.05, (b) DMPSO with r = 0.4, (c) N-

DMPSO with r = 0.05, (d) N-DMPSO with r = 0.4. 
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                                                 (a)                                                                             (b) 

Figure 4.13 Benchmark function F5 with six peaks, two of which are global maxima: (a) 3-D 

landscape, (b) contour map. 

 
                                           (a)                                                                                 (b) 

 
                                           (c)                                                                                 (d) 

Figure 4.14 Final best particles for F5: (a) DMPSO with r = 0.05, (b) DMPSO with r = 0.4, (c) N-

DMPSO with r = 0.05, (d) N-DMPSO with r = 0.4. 

 

 

 

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y



70 

 

 

Table 4.1 Results for optimal found (%) and mean best objective for F1, F2, F3 and F5 

Algorithms S-DGA D-DGA DMPSO N-DMPSO 

Max F1 

Optimal 

Found (%) 

r = 0.05 0% 0.8% 10.0% 13.3% 

r = 0.2 0% 13.3% 13.3% 20.0% 

r = 0.4 0% 15.8% 16.7% 23.3% 

Mean best 

objective 

r = 0.05 1.98898 2.48217 2.4801 2.4863 

r = 0.2 1.97855 2.4605 2.4745 2.4793 

r = 0.4 2.02455 2.48811 2.4891 2.4905 

Max F2 

Optimal 

Found (%) 

r = 0.05 0% 22.5% 33.3% 53.3% 

r = 0.2 0.8% 5.8% 13.3% 26.6% 

r = 0.4 0% 17.5% 23.3% 33.3% 

Mean best 

objective 

r = 0.05 6.73371 8.58322 8.6739 8.6783 

r = 0.2 6.70137 8.63548 8.6532 8.6621 

r = 0.4 7.31735 8.68075 8.6923 8.6953 

Max F3 

Optimal 

Found (%) 

r = 0.05 0% 3.3% 16.7% 20.0% 

r = 0.2 0% 20% 23.3% 33.3% 

r = 0.4 0% 23.3% 43.3% 53.3% 

Mean best 

objective 

r = 0.05 4.67853 4.812 4.8121 4.8127 

r = 0.2 4.7159 4.810 4.8117 4.8136 

r = 0.4 4.73849 4.81496 4.8151 4.8155 

Max F4 

Optimal 

Found (%) 

r = 0.05 3.3% 4.2% 16.7% 26.6% 

r = 0.2 0% 42.5% 43.3% 53.3% 

r = 0.4 0% 35% 36.7% 43.3% 

Mean best 

objective 

r = 0.05 1.34999 1.48242 1.49016 1.49127 

r = 0.2 1.33163 1.49341 1.49281 1.49332 

r = 0.4 1.29936 1.49123 1.49178 1.49341 

Max F5 

Optimal 

Found (%) 

r = 0.05 11.7% 67.5% 43.3% 53.3% 

r = 0.2 14.2% 69.2% 33.3% 36.7% 

r = 0.4 0.8% 22.5% 36.6% 43.3% 

Mean best 

objective 

r = 0.05 0.970634 1.03 1.0283 1.0297 

r = 0.2 0.975198 1.03006 1.0281 1.0288 

r = 0.4 0.941727 1.02874 1.0293 1.0297 
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Table 4.2 Mean best objectives for F6, F7, F8, and F9 

Algorithms Dimension S-DGA D-DGA DMPSO N-DMPSO 

Max F6 

25 8456.46 8935.65 8745.8 8947.3 

40 12578 13131.1 13002.4 13135.1 

50 15004.6 15554.9 15387.5 15423.6 

Max F7 

25 8682.31 9093.61 9026.5 9098.4 

40 12796.1 13324.3 13304.5 13331.3 

50 15124 15810.5 15723 15799 

Max F8 10 1.9513 1.97217 1.9673 1.97221 

Max F9 10 605.201 627.921 616.436 628.142 
 

 

4.5 Discussions 

 

A paradigm for particle swarm optimization is presented in order to increase its 

ability to search widely and to overcome its premature convergence problem. The 

proposed algorithm uses multiple swarms and exchanges particles among them in regular 

intervals. The exchanged particles are selected according to the locations of the particles 

based on a promotional diversity strategy and their correspondence objective values. 

Furthermore, the PSO was modified using a new neighborhood term that helps the 

neighboring swarms share the common interest information. The neighborhood for each 

swarm is found using an unsupervised algorithm according to the inter-swarm distances 

between representatives of each pair of swarms. The proposed algorithms, N-DMPSO, 

showed a great performance compared to DMPSO and two versions of distributed genetic 

algorithm that have similar conceptual basis with the proposed algorithm. The DMPSO 

showed competitive results compared to DGAs. The N-DMPSO showed better 
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performance compared to DMPSO, indicating that sharing information in the 

neighborhood of swarms helps them to escape from local optima and locate the global 

optimum. 

As a drawback of both proposed algorithms, they show dependence of their 

performance on the rate of information exchange.  A range of rate has been selected from 

0.05 to 0.4 which reveals no conclusion on what rate is better for a specific application. 

Further work is needed to find an optimum exchange rate. Due to the nature of the 

diversity promotion of the proposed algorithm that works well for multimodal problems, 

it can be a promising candidate as a basis for solving multiobjective optimization. 
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CHAPTER V 

 

CULTURAL-BASED MULTIOBJECTIVE PARTICLE SWARM 

OPTIMIZATION 

 

5.1 Introduction 

 

Population based heuristic for solving multiobjective optimization problems 

(MOPs) has gained much attention. Multiobjective evolutionary algorithm (MOEA) and 

multiobjective particle swarm optimization (MOPSO) are two popular population based 

paradigms introduced within the last decade. MOPSO adopts the particle swarm 

optimization (PSO) paradigm [1] which in turn mimics behavior of the flocking birds. 

Although there exist many researches on single objective PSO suggesting dynamic 

weights for the local and global acceleration [123], most MOPSO researchers assume that 

all particles should move with the constant momentum, local, and global acceleration. 

However there have not been many studies to consider a possibility in which 

particles fly with different “personalized” weights for the momentum, local, and global 

acceleration. Some may argue that there is no need to have a personalized weight for each 

particle. Even if an algorithm applies the same weight for all particles, for some particles 

requiring smaller weight, they will unnecessarily jump far away from the optimum, while 
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for some other particles that need greater weight, they will unsatisfactorily move slowly, 

resulting in both situations an inefficient design. On the other hand employing a 

personalized weight for each particle assigns an appropriate amount of jump and 

contributes to the effectiveness of the performance of the algorithm. 

From a biological point of view, study [7] has shown that societies that can handle 

more complex tasks contain polymorphic individuals. Polymorphism is a significant 

feature of social complexity that results in differentiated individuals. The more 

differentiated the society, the easier it can handle complex tasks. Differentiation applies 

in principal to complex societies of prokaryotic cells, multicellular organisms, as well as 

to colonies of multicellular individuals such as ants, wasps, bees, and so forth. The 

colony performance is improved if individuals differentiate in order to specialize on 

particular tasks. As a result of differentiation, individuals perform functions more 

efficiently. In the study it has been shown the colony’s ability to higher cooperative 

activity when tackling tasks is a direct consequence of differentiation among other 

factors. 

There are few studies in the MOPSO that have tackled the issue of variable 

momentum for the particles although in all of them momentum is identical for all 

particles at a specific iteration. Some MOPSO paradigms have proposed simple strategies 

to adapt the momentum by decreasing the momentum throughout swarming [57, 64, 67-

68, 124], while other MOPSOs choose a random value for momentum [54, 62-63, 66, 69] 

at every iteration. 
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The MOPSO, similar to PSO, is based upon a simple flight of the particle: 

  
          

                
       

                        
     , (5.1) 

  
         

       
      ,                                                                               (5.2) 

where    
     is the d-th dimension of the position of the i-th particle at time   (  

        and          ).    
     is the d-th dimension of the velocity of the i-th 

particle at time  .       
     is the d-th dimension of the personal best position of the i-th 

particle at time   , and           is the d-th dimension of the global best position at time 

 .    and    are the constant values that are called personal and global acceleration which 

give different importance to personal or global term of  Equation (5.1).    and    are 

uniform random numbers from       to give stochastic characteristics to the flight of 

particles.    is the velocity momentum of the particles. In Figure 5.1, it can be seen how 

three vectors which affect the flight of particles depend so much on the momentum, 

global, and local acceleration. When particles need to be used as exploiter or explorer the 

emphasis on each term in Equation (5.1) should be different. Therefore not all particles 

should have the same values for momentum, local, and global acceleration.  

To the best knowledge of the author, there is no appreciable work in MOPSO on 

adapting personalized momentum and acceleration based upon the need for the particles 

to exploration or exploitation. Adaptation of these important factors in the flight of 

particles is an important task that cannot be solved unless we have access to the 

knowledge throughout the search process. In this study, a computational framework is 
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proposed based on cultural algorithm (CA) [3, 125] adopting knowledge stored in belief 

space in order to adapt flight parameters of MOPSO. Cultural algorithms have been 

frequently used to vary parameters of individual solution in optimization problems [126-

127]. Proposed paradigm resorts different types of knowledge in belief space to 

personalize the parameters of the MOPSO for each particle. Every particle in MOPSO 

will use its own adapted momentum and acceleration (local and global) at every iteration 

to approach the Pareto front. Cultural algorithm provides required groundwork enabling 

one to employ the information stored in different sections of belief space efficiently and 

effectively. By incorporating CA into the optimization process, we categorize the 

information of the belief space and adopt it in a systematic manner. Information in the 

belief space provide required parameters needed for the optimization process whenever it 

is needed. As a result the optimization process will be more competent and successful. 

 
Figure 5.1  Schema of particle’s movement in MOPSO: Vectors affecting how particle moves in 

MOPSO due to gbest, pbest and its velocity. 

 

The remaining sections complete the presentation of this chapter. In Section 5.2, 

principles of cultural algorithm and related works in MOPSO are briefly reviewed. In 
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Section 5.3, the proposed cultural MOPSO is elaborated. In Section 5.4, simulation 

results are evaluated on the benchmark test problems in comparison with the state-of-the-

art MOPSO models. This section also includes a sensitivity analysis for the proposed 

cultural MOPSO. Finally, Section 5.5 summarizes the concluding remarks and future 

work of this study. 

 

5.2 Review of Literature 

 

5.2.1 Related Works in Multiobjective PSO 

  

Hu and Eberhart [54] in their dynamic neighborhood MOPSO model and also Hu 

et al. [66] in the MOPSO with extended memory adopted a random number on the range 

(0.5,1) as the varying momentum, however both personal and global acceleration are 

constant values.  Sierra and Coello Coello [62] in their crowding and  -dominance based 

MOPSO used random value at the range (0.1,0.5) for the momentum and random values 

at the range (1.5,2.0) for the personal and global acceleration. They adopted this scheme 

to bypass the difficulties of fine tuning these parameters for each test function. 

Zhang et al. [64] introduced intelligent MOPSO based upon Agent-Environment-

Rules model of artificial life. In their model, along with adopting some immunity clonal 

operator, the momentum was decreased linearly from 0.6 to 0.2, but the personal and 

global acceleration remained constant. Li [67] proposed an MOPSO based upon max-min 
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fitness function. In his model, while the personal and global accelerations were set 

constant, the momentum was gradually decreased from 1.0 to 0.4. Zhang et al. [68] 

adopted a linearly-decreasing momentum from 0.8 to 0.4 for their MOPSO algorithm. 

However the personal and global accelerations were kept fixed values. 

Mahfouf et al. [69] introduced adaptive weighted MOPSO in which they included 

adaptive momentum and acceleration. Using comparison study with other well-behaved 

algorithms, they demonstrated that the proposed MOPSO search capability is enhanced 

by adding this adaptation. Ho et al. [63] noted the possible problem of selecting personal 

and global acceleration independently and randomly. He mentioned because of its 

stochastic nature they may both be too large or too small. In the former case, both 

personal and global experiences are overused and as a result the particle will be driven 

too far away from the optimum. For the latter case, both personal and global experiences 

are underused and as a result the convergence speed of the algorithm is reduced. They 

used sociobiological activity such as hunting to state that individuals balance between the 

weight of their own knowledge and the group’s collective knowledge. In other words, the 

personal and global acceleration are somehow related to each other. When one 

acceleration is large, the other one should be small, and vice versa. Using this concept, 

they modified the main equation of PSO, Equation (5.1), to include a dependent 

acceleration and momentum [63]. 

It is a common belief that the need from every particle is different; they may need 

larger or smaller momentum, depending on which part of search process they are located. 
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They also need to have different emphasis on personal or global term in Equation (5.1) of 

MOPSO. Differentiated individual is a concept supported in the sociobiological studies 

[7]. As a result of differentiation, individuals perform functions more efficiently.  

 

5.2.2 Related Work in Cultural Algorithm for Multiobjective Optimization 

Cultural algorithm is an adaptive evolutionary computation method which is 

motivated by cultural evolution and learning in agent-based societies [3, 99]. CA consists 

of evolving agents whose experiences are gathered into a belief space consisting of 

various forms of symbolic knowledge. CA has shown its ability to solve different types 

of problems [3, 99-107] among which CAEP (cultural algorithm along with evolutionary 

programming) has shown successful results in solving MOPs [107]. Researchers have 

identified five basic sections of knowledge stored in belief space based upon the literature 

in cognitive science and semiotics: situational knowledge, normative knowledge, 

topographical knowledge [105], domain knowledge, and history knowledge [106]. The 

knowledge can swarm between different sections of belief space [108-110] which in turn 

affect the swarming of population. Furthermore, cultural algorithm has shown its ability 

[126-127] to optimize the control parameter of the optimization problem throughout the 

search process. In order to adjust the parameters of MOPSO, we need to store several 

types of required information, adopt this information in a proper manner, and update this 

data properly. All these needs can be satisfied by implementing cultural algorithm. CA 

provides groundwork for information repository through its belief space, use this 
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information by applying influence function to the knowledge space, and finally update 

the population and belief space simultaneously. 

 

 

5.3 Cultural-based Multiobjective Particle Swarm Optimization 

 

A summary of the pseudocode of the proposed algorithm is shown in Figure 5.2 

and a block diagram of the algorithm is also shown in Figure 5.3. The population space 

(PSO) and its correspondent belief space (BLF) will be initialized at first. Then 

population space is evaluated using the fitness values. We apply acceptance function to 

select some particles which will be used to update belief space that consists of three 

sections: situational, normative, and topographical knowledge in the current version of 

implementation. Next we apply influence function and the belief space to adapt the 

parameters of the PSO for next iteration such as global acceleration, local acceleration, 

and momentum. We also use information on the belief space to select global best and 

personal best for next iteration. Afterward, particles in population space fly using 

personal and global best and newly adjusted momentum, local, and global acceleration. 

This process continues until the stopping criteria are met.  
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Initialize PSO and BLF at t=0 

Repeat 

 Evaluate PSO(t) using fitness. 

 Apply ACCEPTANCE function to PSO(t) 

to select particles which affect BLF(t). 

 Update BLF(t). 

 Apply INFLUENCE function and BLF(t) 

to select gbest, pbest and to  adapt the 

acceleration and momentum of particles in 

PSO(t). 

 t=t+1. 

 Update PSO(t) using new acceleration, 

momentum, gbest, and pbest. 

Until Termination Criteria are met. 

End 

 

       Figure 5.2  Pseudocode of the cultural MOPSO 

 

 

In the remainder of this section, the acceptance function, different parts of belief 

space, and influence functions are thoroughly explained. 

 

5.3.1 Acceptance Function 

The belief space should be affected by the selected individuals. Therefore we 

apply Pareto nondomination as acceptance function to the current population of PSO. The 

nondominated set of particles at every iteration is chosen to update the belief space.  
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5.3.2 Belief Space 

The belief space in the proposed cultural framework consists of three sections: 

situational, normative, and spatial (topographical) knowledge. Since the MOP problems 

of the interest have static landscapes, we only implement these three sections because the 

history and domain knowledge are mostly useful when fitness landscape is dynamic. In 

the following, type of information, the way to represent the knowledge, and the 

methodology to update the knowledge for each section of the belief space will be briefly 

explained. 

 

 
Figure 5.3 Schema of the adopted cultural framework, where the belief space consist situational 

knowledge, normative knowledge and spatial (topographical) knowledge 

 

 

5.3.2.1 Situational Knowledge 

This part of belief space is used to archive the good exemplars of each individual. 
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Its representation is shown in Figure 5.4.         (         , where     number of 

particles)    the personal archive for the i-th particle that records nondominated set in the 

past history of the i-th particle. This means if we recall all past history of the positions of 

the i-th particle as                            , then for a given MOP with 

multiobjectives       ,        at time   is defined as following: 

 

                                         ,                        ,    (5.3) 

 

where        means     dominates   . Total number of personal archive      is fixed and is 

equal to the number of particles, but the size of each        varies in each time step. The 

situational knowledge will be used later to adapt local acceleration for MOPSO and also 

to select the personal best of each particle,       . 

 

 
Figure 5.4 Representation of situational knowledge 

 

In order to update the situational knowledge we simply compare the current 

position of particle,      , with its previously stored personal archive,       . If       

dominates any member of        then that member will be removed and the       will be 

placed in the archive. If       is dominated by all members of       , then       will not 

be added to the       .  If       neither dominates nor is dominated by the members of 
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      , then       will be added to       . For          , the updating relation for 

personal archive will be as following: 

 

          

                                                                          

                                                                                       

                                                                 

 .  (5.4) 

 

Figure 5.5 shows a schematic view on how the personal archive is chosen. All the past 

history of the position of the i-th particle is shown in this figure. Among these positions, 

)1(ix , )5(ix and )6(ix , position at time 5,1t , and 6 , will be selected as personal 

archive for the i-th particle, since these three positions, belong to the nondominated set as 

shown in Figure 5.5. 

 
Figure 5.5 Schematic view of choosing the i-th element of situational knowledge,    , among past 

history of position of the i-th particle. In this example,                        . The schema is in 

objective space. 

 

5.3.2.2 Normative Knowledge 
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Normative knowledge represents the best area in the objective space. It is 

represented as Figure 5.6 where                          and 

                          consist all lower and upper limits (in objective space) of 

the nondominated set of individuals that are generated by acceptance function at each 

iteration, respectively. This means that: 

 

                            ,             ,                                         (5.5) 

                            ,             ,                                         (5.6) 

 

 

 
Figure 5.6 Representation of normative knowledge 

 

where                           ,    is the i-th objective function in the objective 

vector of    and   is the number of objectives. Figure 5.7(a) demonstrates a schema of 

these two sections of normative knowledge for an example of two objective space. This 

section of normative space is used later to adapt global acceleration, also to find the 

global best of the MOPSO. 

The other two elements of normative knowledge are  

         
       

        
      and          

       
        

      which are the 

lowest and highest values of velocity for the accepted individuals and   is the number of 
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decision space variables: 

 

  
             

                   ,              ,                  (5.7) 

  
             

                   ,              .                  (5.8) 

                                                                         . 

This section of the normative knowledge is later used to adapt momentum of the 

MOPSO. The normative knowledge is updated at each iteration based upon new 

nondominated set as follows (assuming all objectives are based on minimization 

problem). 

 

         
                                                   

                                                                                    
 ,          (5.9) 

         
                                                     
                                                                                  

 ,        (5.10) 

 

where       and       are members of the nondominated set at time  ,       . Figure 

5.7(b) shows the updating process of this section of normative knowledge. Note   
  

      and   
           . Furthermore,       and       will be updated using the 

minimum and maximum velocities of the new set of nondominated individuals. 

 

5.3.2.3 Topographical Knowledge 
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In order to represent topographical knowledge, we adopt the normative 

knowledge and then divide the space into grids of            where    is the 

number of division in the i-th dimension of objective space, and   is the number of 

objectives. Each of the resultant cells will then be represented as shown in Figure 5.8 

where                    and                     consist all lower and upper limits 

of the corresponding cell respectively, and       is the number of nondominated 

individuals of the whole population located on that cell:    

 

             
           

  
 ,                    ,            ,      (5.11) 

               
           

  
 ,                    ,                                       (5.12) 

                                                              . 

where       and       are given in Equations (5.5) and (5.6). Figure 5.9 demonstrates an 

example on how a cell will be represented. 

At every iteration, the topographic knowledge will be updated. To do so, updated 

normative knowledge will be used to rebuild the cells and the nondominated points will 

be counted in each cell. Topographical knowledge will be used later to adapt global 

acceleration and also to find the global best,      . 
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(a) 

 
(b) 

Figure 5.7 Schema on how normative knowledge (a) can be found and (b) can be updated. 

 

 
Figure 5.8 Representation of knowledge in each cell. 
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Figure 5.9 The cell representation for the highlighted cell in this example is                      
                 , where         . 

 

5.3.3 Influence Functions 

After the belief space is updated, the correspondent knowledge should be used to 

influence the MOPSO parameters. We propose to use the current knowledge in belief 

space to adapt PSO parameters, i.e., global acceleration,   , local acceleration,   , and 

momentum,  .  

5.3.3.1 Adapting Global Acceleration  

We use topographical knowledge to adapt the global acceleration. It adjusts the 

direction and step size of the change in global acceleration. The motivation here is to give 

more or less weight to global search based upon the relative crowdedness of the cell in 

which gbest is located. If gbest moves from a very crowded cell to a less crowded one, 

we need to keep this direction, since it helps on preserving the diversity in the Pareto 

front, thus we increase the global acceleration. On the other hand, if gbest is moving from 
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a less crowded cell to a very crowded one, from one iteration to the next, then we need to 

decrease the weight of this direction. Finally if gbest’s cell population has not been 

changed, there is no need to either encourage or penalize its weight, therefore: 

 

         

                                            

                                            

                                                                                      

 ,      (5.13) 

 

where       is the number of nondominated particles in the cell in which          is 

located,         is the number of nondominated particles in the cell in which 

           is located,     denotes absolute value, and   is a normalization factor. 

Applying Equation (5.13) enforces a piecewise linear dynamic into variation of the global 

acceleration as a simple dynamic. The values of       and         are stored in 

topographical knowledge and can easily be used to adapt the global acceleration. The 

global acceleration will be limited in a range of                . Therefore         

calculated in Equation (5.13) will then be compared to see if it is in this range: 

 

         

                                       

                                        

                                             

  .                                    (5.14) 

 

Equation (5.14) is required in order to keep the algorithm from being diverged. 
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We need to clarify that in regular MOPSO,    is remained constant in Equation (5.1), 

                   . 

 

5.3.3.2 Adapting Local Acceleration  

We use situational knowledge to build local grids in order to adjust local 

acceleration. We adjust the direction and the step size of the change in local acceleration. 

The procedure is similar to the one adopted for global acceleration. However in this case, 

we use the personal archive stored in the situational knowledge of the belief space. 

Therefore for each particle there will be different adjustment for its local acceleration 

based on the relative crowdedness of the cell in which        is located. For each 

particle, we use its personal archive to build a local grid in order to find out the relative 

crowdedness of the        from one iteration to the next. In Figure 5.10, a schema shows 

how a local grid is made using the situational knowledge for the i-th and j-th particle.  

Each particle decides whether to increase or decrease its local acceleration 

separately based upon its personal archive. If the particle is moving from a less crowded 

cell to a more crowded one, we penalize its direction by decreasing the weight for local 

acceleration and if the particle is moving from a more crowded cell to a less crowded 

one, we need to keep that direction, thus increasing the weight for the local acceleration. 

However, if there is no change in crowdedness of the particle’s cell, we should neither 

increase nor decrease the local acceleration. Thus: 
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 ,    (5.15) 

 

where         is the number of nondominated particles  located in the same cell of local 

grid of the i-th particle as          ,           is the number of nondominated particles  

located in the same cell of local grid of the i-th particle as            ,     denotes 

absolute value, and   is a normalization factor. Piecewise linear behavior in Equation 

(5.15) imposes a simple dynamic to variation of the local acceleration. The local 

acceleration will also be restricted within a range of                . That means 

          calculated in Equation (5.15) will then be checked to see if it is in this range: 

           

                                          

                                          

                                                

  .                                (5.16) 

 

Equation (5.16) is also required in order to keep the algorithm from being 

diverged. We also need to clarify in regular MOPSO,      is kept constant in Equation 

(5.1),                            . 
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Figure 5.10 The schema of local grid for the personal archive of the i-th particle shown with , and 

local grid for the personal archive for the j-th particle shown with . 

 

5.3.3.3 Adapting Momentum 

We use the normative knowledge to adapt the momentum of the particles. We 

adjust the direction of the momentum for each particle by adopting information of 

velocities of the best behaved particles. If any particle has velocity beyond the range of 

the best behaved particles we adjust it to be closer to this range: 

 

  
        

  
                    

       
    

  
                    

       
    

  
                                            

  ,                                       (5.17) 

 

where   
     is the current velocity of the i-th particle in the d-th dimension.   

     and 

  
     are the information stored in normative knowledge section of belief space which 

are the lowest and highest velocity values for the current nondominated set of particles 

(see Equations (5.7) and (5.8)).    is a predefined constant for step size of the 
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momentum.   
     is the velocity momentum for the i-th particle in the d-th dimension. 

The momentum needs to be limited in a range of             to keep the algorithm 

from being diverged. That means   
       calculated in Equation (5.17) will need to be 

compared to see if it is in this range: 

 

  
        

                          
           

                           
           

  
                                          

  .                                     (5.18) 

 

Finally we need to clarify that in regular MOPSO, Equation (5.1),          
       

  
      . 

 

5.3.3.4       Selection  

We use the topographical knowledge stored in belief space to select gbest at each 

iteration. The method is borrowed from [58] which is based on selecting one 

nondominated point located in the least populated area of the objective space. We use 

roulette wheel selection to choose the appropriate cell which is more likely to be the least 

populated cell and then randomly choose a particle from that cell to be global leader of 

the particles. Each cell is assigned a fitness as [58]: 

            
  

     
 ,                                                                                        (5.19) 

where       is the number of nondominated points located in that specific cell. 
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Probability of each cell to be selected in roulette wheel will then be proportional with this 

given fitness. Figure 5.11 shows the method to select gbest for an example with two 

objective functions. Any cell with one individual inside is twice more probable to be 

selected as gbest than any other cells consisting of two individuals. 

 

5.3.3.5       Selection 

In order to select the pbest we use the situational knowledge. Figure 5.12 shows 

the graphical representation of how pbest is selected. This algorithm has been shown 

experimentally to be one of the best methods to select pbest in order to preserve a good 

diversity of Pareto front [65]. In this figure, each square ( ) represents a member of the 

personal archive for the i-th particle,       .            will be selected as a member of 

the archive that has the largest distance from all current population: 

                           
              

  
     ,                             (5.20) 

where    is the member of personal archive of the i-th particle,       , and     is the 

number of particles in personal archive for the i-th particle,       . 
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Figure 5.11 Method of selecting       from topographical knowledge. 

 

5.3.4 Global Archive 

We preserve the best solution into a global archive which is limited in size. To 

update the global archive, each new nondominated solution will be compared with all 

members in the archive. This method is the same as method explained in [58]. If a new 

solution (  ) dominates any member of the global archive (  ) then that member will be 

deleted and    will be placed in the archive. If    is dominated by all members of the 

archive, then    will be disregarded. If    neither dominates nor is dominated by the 

members of the archive, then there will be two scenarios. If the size of the archive does 

not exceed the limit, the    will be added to the archive. However, if the archive is already 

full, then    will be added to the archive and another member which is located in the most 

populated area of the objective space will be deleted. 

For         , the updating relation for global archive after receiving any new 

solution,   , will be as following: 
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 ,   

(5.21) 

 

where     is the current size of global archive,        is the maximum size of global 

archive,  and    is located in the most populated area. To find    , we take advantage of 

grid structure using the members of global archive and then locate the most populated 

cell from that grid.    will then be randomly selected from that cell and deleted. 

 
Figure 5.12       selection procedure from personal archive: The        for particle xi is selected 

among the set of personal archive, PAi, in the objective space. 
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5.3.5 Time-decaying Mutation Operator 

Due to tendency of immature convergence to local optima in PSO, a modified 

version of a mutation operator introduced in [58] is proposed for the particles which are 

not accepted through the acceptance function. The percentage of mutated particles,   , 

is defined as following: 

      
 

 
    ,                                                                                         (5.22) 

where   is the mutation rate (   ),   is the current iteration and   is the final iteration. 

Adopting this form of mutation helps to scan a diverse region in the space at the 

beginning of the search process. As current time, t, increases, the percentage of the 

mutated particles approach to zero. This time-decaying mutation occurs in three ways:  

(1) The number of particles that undergo the mutation is equal to: 

               ,                                                                                        (5.23) 

where    is the number of dominated particles at the current iteration   which are not 

accepted through the acceptance function. These particles will be selected randomly.  

(2) The range of mutation for each mutated particle will be time-decaying. For the d-th 

dimension of the particle,   
    ,  this range is defined as follows: 

                 
      

  ,                                                                       (5.24) 

where    
  and     

  are the upper and lower limits of the particle in the d-th dimension. 

The mutated particle will then be a random number in the range of   
           . 

Incorporating the time-decaying MP into this equation results a wider search range for 
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every mutated particle at the beginning of the search. As the iteration increases, the 

search range for the mutated particle will be narrower. 

(3) The mutation will happen for some dimensions of the selected particle. The number 

of dimensions of those selected particles is time-decaying as following: 

           ,                                                                                              (5.25) 

where   is the number of decision variables and     is the rounding operator. Similarly, 

incorporating MP into the number of dimensions for mutation will give one the benefit of 

having more number of dimensions to be mutated at the beginning of the search, while it 

approaches zero, as we reach the end of the process. These dimensions will be selected 

randomly. 

In this design, in the beginning, most particles in the population are subjected to 

mutation (as well as the full range of the decision variables). This intends to produce a 

highly explorative behavior in the algorithm. As the number of iterations increases, the 

effect of the mutation decays. 

 

5.4 Comparative Study and Sensitivity Analysis 

 

This section consists of two experiments. In the first experiment, the performance 

of the cultural MOPSO is evaluated against selected MOPSOs, while the second 

experiment tests the sensitivity of the proposed algorithm with respect to its tuning 

parameters. 
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5.4.1 Comparison Experiment 

In this experiment, five state-of-the-art MOPSOs have been chosen in order to 

compare their performance with that of the cultural MOPSO: sigma MOPSO [60], 

OMOPSO [62], NSPSO [57], cluster MOPSO [128] and MOPSO [58]. 

 

5.4.1.1 Parameter Settings 

Each of the six algorithms used here perform 200 iterations (as suggested in most 

publications), and the archive size used is 100. The parameter settings for all of the 

MOPSOs are summarized in Table 5.1. All of the algorithms are implemented in Matlab 

using real-number representation for decision variables. However, binary representation 

of decision variables can also be adopted. For each experiment, 100 independent runs 

were conducted to collect the statistical results. All algorithms produced final Pareto 

fronts of fixed size population except for cluster MOPSO, which does not have a fixed 

archive size. 

 

5.4.1.2 Benchmark Test Functions 

To evaluate the performance of Cultural MOPSO against selected MOPSOs, six 

benchmark test problems are used [129-130]: ZDT1, ZDT2, ZDT3, ZDT4, DTLZ5, and 

DTLZ6.  
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Table 5.1 Parameter settings for all MOPSOs 

 
Populatio

n size 

Archive 

size 

No. of 

iterations 
Other parameters or remarks 

Cultural 

MOPSO 
100 100 200 

        ,          ,          ,         ,         

 ,         ,           
      ;     

    ;          
    

Sigma 

MOPSO 
100 100 200 

Fixed inertial weight value, w = 0.4; Turbulence Factor, R is 

 1,1  

OMOPSO  100 100 200 
Mutation probability = codesize1  and the values of w, c1 and 

c2 are random values ε  0.0075 (Note: For ZDT6, ε  0.001) 

NSPSO 100 - 200 Fixed inertial weight value, w = 0.4 

Cluster 

MOPSO 
100 

Not 

fixed 
200 No. subswarms, 4swarmn ; internal iterations, 5maxst    

MOPSO 100 100 200 50 divisions adaptive grid; mutation probability = 0.5 

 

Test problems ZDT1, ZDT2, ZDT3, and ZDT4 are two-objective minimization 

problems with 150 decision variables each. Note that the number of decision variables 

has been increased from its standard size of 30 variables. This is to exploit all selected 

MOPSOs when encountered with a higher number of decision variables. Test problem 

ZDT1 has the convex Pareto fronts, while test problem ZDT2 has non-convex Pareto 

fronts. Both ZDT1 and ZDT2 test the ability of algorithm to find a fine spread of Pareto 

front. Test problem ZDT3 possesses a disconnected non-convex Pareto front. It is a good 

indicator to exploit the ability of algorithms to search for all of the disconnected regions 

and to maintain a uniform spread on those disconnected regions. Test problem ZDT4 

presents a complexity with multi-modality characteristic. It has the difficulty of finding 

the global Pareto front in all of the 21
9
 local segments. Test problem DTLZ5 is a three-
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objective minimization problem with 150 decision variable. Note that the number of 

decision variables has been increased from its standard size of 12. This is again to exploit 

all MOSPOs when encountered with a higher number of decision variables. DTLZ5 has a 

three dimensional curve as Pareto front located on the surface of the unit sphere. Its 

difficulty is that the density of solutions closer to the Pareto front curve becomes much 

less than anywhere else in the search space. Test problem DTLZ6, a three-objective 

minimization problem with 22 decision variables, has four disconnected set of Pareto 

front regions. This problem tests an algorithm’s ability to maintain subpopulation in 

multiple Pareto-optimal regions.  The detailed formulation of these benchmark test 

functions are presented in Appendix A for reference. 

 

5.4.1.3 Qualitative Performance Comparisons 

For qualitative comparison, the plots of final Pareto fronts are presented for 

visualization. The resulted nondominated fronts (given the same initial population from a 

single run) of the six MOPSOs on all test functions are demonstrated in Figures 5.13 to 

5.18. These figures show cultural MOPSO is able to find the well-extended, near-optimal 

Pareto fronts despite a very large number of decision variables for test functions ZDT1 to 

ZDT4 and DTLZ5. MOPSO [58] provides the second best results, where it can produce 

fine Pareto fronts similar to the ones produced by cultural MOPSO for most benchmark 

test functions. Cluster MOPSO, sigma MOPSO, and NSPSO produce the worst Pareto 
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fronts since they have difficulty in converging toward the true Pareto front, especially for 

functions ZDT1 to ZDT4 and DTLZ5 with high-dimensional decision spaces.  

5.4.1.4 Quantitative Performance Evaluations 

Two performance metrics are adopted to measure the performance of algorithms 

with respect to the dominance relations.  

Hypervolume Indicator [131]:  The hypervolume indicator is a measure to indicate how 

well the algorithm converges to the true Pareto front and how diversified the solution is. 

It calculates the size of the region covered by a defined reference point. For the 

minimization problems, a larger value indicates a better nondominated set. If 

hypervolume indicator for nondominated set of  ,      , is greater than hypervolume 

indicator for nondominated set of  ,      , then set B is not better than A for all pairs. 

This means a certain portion of objective space is dominated by A but not by B.  

The performance metric for hypervolume indicator is computed for each selected 

MOPSOs along with cultural MOPSO on 100 independent runs. Figure 5.19 shows the 

box plots of    values for all MOPSOs for different test functions. This figure clearly 

indicates that cultural MOPSO outperforms sigma MOPSO, OMOPSO, NSPSO, and 

cluster MOPSO. However it does not provide conclusive relative performance of cultural 

MOPSO with respect to MOPSO due to their closeness of box plots in the scale of the 

figure. For further analysis, the Mann-Whitney rank-sum statistical test is conducted to 

evaluate the significant difference between two independent samples for all pairs [132] 

and the results are illustrated in Table 5.2. In this table, for each test function and each 
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MOPSO algorithm, 100 independent runs had been performed; therefore there are 100 IH 

(hypervolume indicator) for each test function and each MOPSO algorithms. Then the 

rank-sum test (α=0.05) is performed between 100 IH of the proposed algorithm with 100 

IH of another MOPSO algorithm (for each test function separately). As a result, Table 5.2 

indicates that except for the test function ZDT4 in which both cultural MOPSO and 

MOPSO equally outperform other algorithms (i.e., based upon the p-values), cultural 

MOPSO performs better than all selected MOPSOs in all test functions. 
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                (a)                                           (b)  

 
               (c)                                                                                (d)  

 

 
               (e)                                           (f) 

Figure 5.13 Pareto fronts produced by (a) cultural MOPSO, (b) sigma MOPSO, (c) OMOPSO, (d) 

NSPSO, (e) cluster MOPSO, and (f) MOPSO on test function ZDT1. 
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               (a)                                           (b)  

 
               (c)                                                                                (d)  

 
               (e)                                                         (f) 

Figure 5.14 Pareto fronts produced by (a) cultural MOPSO, (b) sigma MOPSO, (c) OMOPSO, (d) 

NSPSO, (e) cluster MOPSO, and (f) MOPSO on test function ZDT2. 
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               (a)                                           (b)  

 

 
               (c)                                                                                (d)  

 
               (e)                                                         (f) 

Figure 5.15 Pareto fronts produced by (a) cultural MOPSO, (b) sigma MOPSO, (c) OMOPSO, (d) 

NSPSO, (e) cluster MOPSO, and (f) MOPSO on test function ZDT3. 
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               (a)                                           (b)  

 
               (c)                                                                                (d)  

 
               (e)                                                         (f) 

Figure 5.16 Pareto fronts produced by (a) cultural MOPSO, (b) sigma MOPSO, (c) OMOPSO, (d) 

NSPSO, (e) cluster MOPSO, and (f) MOPSO on test function ZDT4. 
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                (a)                                         (b)  

 
                   (c)                                                                            (d)  

 
                    (e)                                                           (f) 

Figure 5.17 Pareto fronts produced by (a) cultural MOPSO, (b) sigma MOPSO, (c) OMOPSO, (d) 

NSPSO, (e) cluster MOPSO, and (f) MOPSO on test function DTLZ5. 
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                (a)                                         (b)  

 
                 (c)                                                                             (d)  

 
                               (e)                                                        (f) 

Figure 5.18 Pareto fronts produced by (a) cultural MOPSO, (b) sigma MOPSO, (c) OMOPSO, (d) 

NSPSO, (e) cluster MOPSO, and (f) MOPSO on test function DTLZ6. 
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                                        ZDT1                                                            ZDT2 

 
                                        ZDT3                                                            ZDT4 

  
                                        DTLZ5                                              DTLZ6 

Figure 5.19 Box plot of hypervolume indicator for all test functions. Column numbers refer to (1) 

cultural MOPSO, (2) sigma MOPSO, (3) OMOPSO, (4) NSPSO, (5) cluster MOPSO, and (6) 

MOPSO. 
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Additive Binary Epsilon Indicator [133]: This binary indicator shows whether a 

nondominated set is better than another. Assume that the additive binary epsilon indicator 

for the nondominated sets of   and   are denoted as          and         , 

respectively. If            and           , then   is strictly better than  . If 

           and                  , then it concludes that   weakly dominates  . 

Finally, if             and           , then   and   are incomparable. Again, 

Mann-Whitney rank-sum statistical test is conducted to check if there is significant 

difference between the two distributions for          and          [132]. 

Table 5.2 Testing of the distribution of IH values using Mann-Whitney rank-sum statistical test. Each 

cell in the table presents the z-value and p-value as the form of (z-value, p-value) with respect to the 

alternative hypothesis (p-value < α=0.05) for pair of cultural MOPSO and a selected MOPSO. The 

distribution of cultural MOPSO is significantly different or better than those selected MOPSOs 

unless stated. 

Test 

Functions 

IH (cultural MOPSO)  AND 

IH  

(sigmaMOPSO) 

IH  

(OMOPSO) 

IH  

(NSPSO) 

IH  

(clusterMOPSO) 

IH  

(MOPSO) 

ZDT1 
(-12.2157,  

2.6e
-34

) 

(-12.2157,  

2.6e
-34

) 

(-12.2157, 

2.6e
-34

) 

(-12.2157,  

2.6e
-34

) 

(-11.5022,  

1.3e
-30

) 

ZDT2 
(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-5.6407, 

1.7e-8) 

ZDT3 
(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.0898, 

1.2e-33) 

ZDT4 
(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-1.3183,0.18) 

No Difference 

DTLZ5 
(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-10.1520, 

3.2e-24) 

DTLZ6 
(-11.0233, 

3.0e-28) 

(-10.9942, 

4.1e-28) 

(-12.0984, 

1.1e-33) 

(-10.9940, 

4.1e-28) 

(-10.9940, 

4.1e-28) 
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Figures 5.20 to 5.25 illustrate the results for additive binary ε-indicator via box 

plots where each figure gives the results for a test function. Each figure consists two box 

plots of              and
 
           , in which   denotes the cultural MOPSO and 

     represent sigma MOPSO, OMOPSO, NSPSO, cluster MOPSO, and MOPSO, 

respectively. For ZDT1 in Figure 5.20,               and              , which 

indicates that cultural MOPSO is strictly better than sigma MOPSO, OMOPSO, NSPSO, 

and cluster MOPSO. It also shows that             and            , which 

indicates that cultural MOPSO and MOPSO are incomparable. For ZDT2 and ZDT3 in 

Figures 5.21 and 5.22,                 and                 which indicates that 

cultural MOPSO is strictly better than sigma MOPSO, NSPSO and cluster MOPSO. It 

also shows that             and                     which indicates that cultural 

MOPSO weakly dominates OMOPSO. Lastly, it shows that             and 

           , which implies that cultural MOPSO and MOPSO are incomparable. For 

ZDT4 in Figure 5.23,               and              , which indicates that 

cultural MOPSO is strictly better than sigma MOPSO, OMOPSO, NSPSO, and cluster 

MOPSO. It also shows that             and            , which indicates that 

cultural MOPSO and MOPSO are incomparable. 

For DTLZ5 in Figure 5.24,                 and                , which 

indicates that cultural MOPSO weakly dominates sigma MOPSO, OMOPSO, and 

NSPSO. It also shows that              and            , which indicates that 
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cultural MOPSO is strictly better than cluster MOPSO. Finally, it shows that  

            and            , which implies that cultural MOPSO and MOPSO are 

again incomparable. Finally for DTLZ6 in Figure 5.25, it shows that              and 

           , which indicates that cultural MOPSO is strictly better than NSPSO. It 

also shows that                    and                  , which implies that cultural 

MOPSO is incomparable with sigma MOPSO, OMOPSO, cluster MOPSO, and MOPSO. 

For further analysis, the distributions of additive binary ε-indicator values are 

tested using the Mann-Whitney rank-sum statistical test, which are illustrated in Table 

5.3. In this table, for each test function and each MOPSO algorithm, 100 independent 

runs have been used to compute a pair of          and          between each run of the 

proposed algorithm with each run of another MOPSO algorithm (for each test function 

separately). As a result, only for test function ZDT2, there was no statistically significant 

difference between the proposed method and one of the chosen MOPSOs. The p-values 

for different test function in the rightmost column of Table 5.3 show that cultural 

MOPSO performs better than MOPSO except for the function ZDT2 where there is no 

difference between the two algorithms. Also looking at the p-values for the test function 

DTLZ6 in this table, it illustrates that cultural MOPSO outperforms other MOPSOs. 

Overall when the results in Table 5.3 is combined with the box plots in Figures 5.20 to 

5.25, we can conclude that cultural MOPSO is statistically better than most MOPSOs.  
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Figure 5.20 Box plot for additive binary epsilon indicator (   values) on test function ZDT1 (     

refer to sigma MOPSO, OMOPSO, NSPSO, cluster MOPSO, and MOPSO respectively.) 

 

 

 
                                                                                                 

Figure 5.21 Box plot for additive binary epsilon indicator (   values) on test function ZDT2 (     

refer to sigma MOPSO, OMOPSO, NSPSO, cluster MOPSO, and MOPSO respectively.) 
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Figure 5.22 Box plot for additive binary epsilon indicator (   values) on test function ZDT3 (     

refer to sigma MOPSO, OMOPSO, NSPSO, cluster MOPSO, and MOPSO respectively.) 

 

 

 
                                                                                                    

Figure 5.23 Box plot for additive binary epsilon indicator (   values) on test function ZDT4 (     

refer to sigma MOPSO, OMOPSO, NSPSO, cluster MOPSO, and MOPSO respectively.) 
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Figure 5.24 Box plot for additive binary epsilon indicator (   values) on test function DTLZ5 (      

refer to sigma MOPSO, OMOPSO, NSPSO, cluster MOPSO, and MOPSO respectively.) 

 

 

 

 

 
                                                                                                    

Figure 5.25 Box plot for additive binary epsilon indicator (   values) on test function DTLZ6 (     

refer to sigma MOPSO, OMOPSO, NSPSO, cluster MOPSO, and MOPSO respectively.) 
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Table 5.3 Testing of the distribution of      values using Mann-Whitney rank-sum statistical test. 

Each cell in the table presents the z-value and p-value as the form of (z-value, p-value) with respect to 

the alternative hypothesis (p-value < α=0.05) for pair of cultural MOPSO (shown by A) and other 

selected MOPSOs (shown by       referring to sigma MOPSO, OMOPSO, NSPSO, cluster MOPSO, 

and MOPSO respectively). The distribution of cultural MOPSO is significantly different or better 

than those selected MOPSOs unless stated. 

Test 

Functions 

Iε+ (A,  ) and 

Iε+ (  ,A) 

Iε+ (A,  ) and 

Iε+ (  ,A) 

Iε+ (A,  ) and 

Iε+ (  ,A) 

Iε+ (A,  ) and 

Iε+ (  ,A) 

Iε+ (A,  ) and 

Iε+ (  ,A) 

ZDT1 
(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-10.1852,  

2.3e-34) 

ZDT2 
(-12.2157, 

2.6e-34) 

(-12.2084, 

2.8e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-0.3506,0.73) 

No Difference 

ZDT3 
(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-3.5783, 

3.5e-4) 

ZDT4 
(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-9.8701,  

5.6e-23) 

DTLZ5 
(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157, 

2.6e-34) 

(-12.1766, 

4.1e-34) 

(-12.1766, 

4.1e-34) 

DTLZ6 
(-11.7441, 

7.6e-32) 

(-12.1473, 

5.9e-34) 

(-12.2108, 

2.7e-34) 

(-12.2157, 

2.6e-34) 

(-12.2157,  

2.6e-34) 

 

5.4.2 Sensitivity Analysis 

One may argue on many parameters associated with the cultural MOPSO and the 

difficulty of selecting appropriate set of parameters. There are several algorithms in the 

literature to find the optimum value for the parameters of optimization process. Fogel et. 

al [134] introduced meta-evolutionary programming by simultaneously evolving the 

parameters of the optimization problem such as mutation rate along with the potential 

solution of the problem. Self-adaptation as a step-size control mechanism was proposed 

[135-136] by applying evolutionary operator into object variables and control parameters 
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at the same time to optimize the control parameter along with finding the solution of the 

problem. In order to assess the robustness of the algorithm, a sensitivity analysis is 

conducted with respect to the lower and upper limit of personal acceleration,        and 

      , lower and upper limit of global acceleration,        and       , lower and upper 

limit of momentum,      and     , grid size,        , population size,  , and 

mutation rate,  . In Table 5.4, the values for these parameters are shown.  

 

Table 5.4 Parameter selection for sensitivity analysis 

Changing parameter Other parameters 
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    ,           
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          and    
        ,                  ,         ,          , 
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For each value of one chosen parameter, 30 independent runs of cultural MOPSO 

were conducted. The additive binary epsilon indicator (Iε+ values) is used to compare the 

Pareto set for each run. For example, to investigate the sensitivity of the algorithm with 

respect to       , three values of                   are adopted. After 30 independent 

runs for the algorithm with each parameter setting on       , we calculate         , 

        ,         ,         ,         ,          where       and   refer to algorithm 

with               and    , respectively. Notice that for         , each singe run of   

is compared against every single run of  . Then box plots for these six pairs are 

constructed. Figures 5.26 to 5.34 show the box plot for all nine different parameters for 

sensitivity analysis. For further analysis, Mann-Whitney rank-sum statistical test is 

implemented to check if there is a significant difference between the two distributions for 

         and          [132]. The results are displayed in Tables 5.5 to 5.13. 

Figure 5.26 along with Table 5.5 demonstrate that by changing the lower limit of 

personal acceleration,        , for all test functions there is no significant difference 

among the final Pareto fronts using different values of       , except for the test function 

DTLZ5 when comparing          and          , where    and   refer to algorithm 

with            and    , respectively. Figure 5.27 along with Table 5.6 illustrates that 

by changing the upper limit of personal acceleration,        , for all test functions there is 

no significant difference among the final Pareto fronts using different values of       . 
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Figure 5.28 along with Table 5.7 demonstrate that by changing the lower limit of global 

acceleration,        , for all test functions there is no significant difference among the 

final Pareto fronts using different values of       , except for the test function ZDT2 

when comparing          and          , and for test function DTLZ5 when comparing 

         and          , where     and   refer to cultural MOPSO with        

        and    , respectively. Figure 5.29 along with Table 5.8 illustrates that by 

changing the upper limit of global acceleration,        , for all test functions there is no 

significant difference among the final Pareto fronts using different values of       .  

Figure 5.30 along with Table 5.9 demonstrate that by changing the lower limit of 

momentum,     , for all test functions there is no significant difference among the final 

Pareto fronts using different values of     , except for the test function ZDT4 when 

comparing          and          , where    and   refer to algorithm with           

and    , respectively. Figure 5.31 along with Table 5.10 show that by changing the upper 

limit of momentum,     , for all test functions there is no significant difference among 

the final Pareto fronts using different values of     , except for the test function ZDT1 

when comparing          and          , where    and   refer to algorithm with 

         and    , respectively. Figure 5.32 along with Table 5.11 demonstrate that by 

changing the grid size,  , for all test functions there is no significant difference among the 

final Pareto fronts using different values of  , except for the test function ZDT1 when 

comparing          and          , and test function DTLZ6 when comparing          
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and          , where     and   refer to algorithm with        and   , respectively. 

Figure 5.33 along with Table 5.12 show that by changing the population size,  , for all 

test functions there is no significant difference among the final Pareto fronts using 

different values of  , except for the test function DTLZ6 when comparing          and  

        , where    and   refer to algorithm with      and    , respectively.  

At last, Figure 5.34 along with Table 5.13 show that by changing the mutation 

rate,  , for all test functions there is no significant difference among the final Pareto 

fronts using different values of  , except for the test function ZDT4 when comparing 

         and         , where    and   refer to algorithm with       and  , 

respectively. Overall, for Tables 5.5 to 5.13 for each set of parameters and each test 

function, 30 independent runs have been performed, then a pair of          and  

         between every two algorithms with different set of tuning parameters are 

computed. The rank-sum test using α=0.05 shows that a few of these results are 

statistically significant different. Among various values of the parameters (i.e., totally 

162 different cases), in only 9 cases, appreciable differences were observed which is 

about 5% of the cases tested. Hence, it is reasonable to say that the cultural MOPSO is a 

fairly robust design with respect to its parameter setting.  
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                   ZDT1                                                              ZDT2                         

 
                   ZDT3                                                            ZDT4                         

 
                  DTLZ5                                            DTLZ6                         

Figure 5.26 Sensitivity analyses with respect to minimum personal acceleration: Box plot for additive 

binary epsilon indicator (Iε+ values) using different values for        on the test functions. The column 

numbers refer to (1)         , (2)         , (3)         , (4)         , (5)         , (6)          

where       and   refer to algorithm with               and    , respectively. 
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Figure 5.27 Sensitivity analyses with respect to maximum personal acceleration: Box plot for additive 

binary epsilon indicator (Iε+ values) using different values for        on the test functions. The 

column numbers refer to (1)         , (2)         , (3)         , (4)         , (5)         , (6) 

         where       and   refer to algorithm with               and    , respectively. 
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Figure 5.28 Sensitivity analyses with respect to minimum global acceleration: Box plot for additive 

binary epsilon indicator (Iε+ values) using different values for        on the test functions. The 

column numbers refer to (1)         , (2)         , (3)         , (4)         , (5)         , (6) 

         where       and   refer to algorithm with               and    , respectively. 
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Figure 5.29 Sensitivity analyses with respect to maximum global acceleration: Box plot for additive 

binary epsilon indicator (Iε+ values) using different values for        on the test functions. The 

column numbers refer to (1)         , (2)         , (3)         , (4)         , (5)         , (6) 

         where       and   refer to algorithm with               and    , respectively. 
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Figure 5.30 Sensitivity analyses with respect to minimum momentum: Box plot for additive binary 

epsilon indicator (Iε+ values) using different values for      on the test functions. The column 

numbers refer to (1)         , (2)         , (3)         , (4)         , (5)         , (6)          

where       and   refer to algorithm with                and    , respectively. 
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Figure 5.31 Sensitivity analyses with respect to maximum momentum: Box plot for additive binary 

epsilon indicator (Iε+ values) using different values for       on the test functions. The column 

numbers refer to (1)         , (2)         , (3)         , (4)         , (5)         , (6)          

where       and   refer to algorithm with                and  , respectively.  
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Figure 5.32 Sensitivity analyses with respect to grid size: Box plot for additive binary epsilon 

indicator (Iε+ values) using different grid size,  , on the test functions. The column numbers refer to 

(1)         , (2)         , (3)         , (4)         , (5)         , (6)          where       and   

refer to algorithm with         and   , respectively. 
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Figure 5.33 Sensitivity analyses with respect to population size: Box plot for additive binary epsilon 

indicator (Iε+ values) using different population size,  , on the test functions. The column numbers 

refer to (1)         , (2)         , (3)         , (4)         , (5)         , (6)          where       
and   refer to algorithm with           and    , respectively. 
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Figure 5.34 Sensitivity analyses with respect to mutation rate: Box plot for additive binary epsilon 

indicator (Iε+ values) using different mutation rate,  , on the test functions. The column numbers 

refer to (1)         , (2)         , (3)         , (4)         , (5)         , (6)          where       
and   refer to algorithm with          and   , respectively. 
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Table 5.5 Statistical test to check sensitivity to minimum personal acceleration: Testing of the 

distribution of      using Mann-Whitney rank-sum statistical test. Each cell in the table presents the 

z-value and p-value as the form of (z-value, p-value) with respect to the alternative hypothesis (p-

value < α=0.05) for each combination pair of algorithms      and   where      and   refer to 

cultural MOPSO with               and    , respectively. 

Test 

Functions 
ZDT1 ZDT2 ZDT3 ZDT4 DTLZ5 DTLZ6 

Iε+ (A,B) 

and 

Iε+ (B,A) 

(-0.1996, 0.84) (-1.6632,0.10) (-1.0423,0.30) (-0.1257,0.90) 
(-2.0180,0.04) 

Different 
(-0.4509,0.65) 

Iε+ (A,C) 

and 

Iε+ (C,A) 

(-0.8205,0.42) (0,1) (-0.1848,0.85) (-1.3971,0.16) (-1.2789,0.20) (-0.1848,0.85) 

Iε+ (B,C) 

and 

Iε+ (C,B) 

(-0.2735,0.78) (-0.0222,0.98) (-0.0295, 0.97) (-0.1109,0.91) (-0.5100, 0.61) (-0.5987,0.55) 

 

Table 5.6 Statistical test to check sensitivity to maximum personal acceleration: Testing of the 

distribution of      using Mann-Whitney rank-sum statistical test. Each cell in the table presents the 

z-value and p-value as the form of (z-value, p-value) with respect to the alternative hypothesis (p-

value < α=0.05) for each combination pair of algorithms      and   where      and   refer to 

cultural MOPSO with               and    , respectively. 

Test 

Functions 
ZDT1 ZDT2 ZDT3 ZDT4 DTLZ5 DTLZ6 

Iε+ (A,B) 

and 

Iε+ (B,A) 

(-0.5101,0.61) (-0.1700,0.86) (-1.2493,0.22) (-1.1606,0.25) (-1.3084,0.19) (-0.2883,0.77) 

Iε+ (A,C) 

and 

Iε+ (C,A) 

(-0.8205,0.41) (-1.3676,0.17) (-0.1922,0.85) (-0.9092,0.36) (-0.2587,0.80) (-1.5154,0.13) 

Iε+ (B,C) 

and 

Iε+ (C,B) 

(-0.2144,0.83) (0.3326,0.74) (-1.1606,0.25) (-0.2144,0.83) (-0.2144,0.83) (-0.3030,0.76) 
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Table 5.7 Statistical test to check sensitivity to minimum global acceleration: Testing of the 

distribution of      using Mann-Whitney rank-sum statistical test. Each cell in the table presents the 

z-value and p-value as the form of (z-value, p-value) with respect to the alternative hypothesis (p-

value < α=0.05) for each combination pair of algorithms      and   where      and   refer to 

cultural MOPSO with               and    , respectively. 

Test 

Functions 
ZDT1 ZDT2 ZDT3 ZDT4 DTLZ5 DTLZ6 

Iε+ (A,B) 

and 

Iε+ (B,A) 

(-1.0571,0.29) (-1.2493,0.21) (-0.5544,0.58) (-0.1109,0.91) (-1.3528,0.18) (-0.6875,0.50) 

Iε+ (A,C) 

and 

Iε+ (C,A) 

(-1.7815,0.07) (-0.8353,0.40) (-0.3622,0.72) (-0.2735,0.78) 
(-2.2842,0.02) 

Different 
(-0.1257,0.90) 

Iε+ (B,C) 

and 

Iε+ (C,B) 

(-0.2587,0.80) 
(-2.1511,0.03) 

Different 
(-0.2735,0.78) (-0.6875,0.49) (-1.9589,0.06) (-0.2587,0.80) 

 

Table 5.8 Statistical test to check sensitivity to maximum global acceleration: Testing of the 

distribution of      using Mann-Whitney rank-sum statistical test. Each cell in the table presents the 

z-value and p-value as the form of (z-value, p-value) with respect to the alternative hypothesis (p-

value < α=0.05) for each combination pair of algorithms      and   where      and   refer to 

cultural MOPSO with               and    , respectively. 

Test 

Functions 
ZDT1 ZDT2 ZDT3 ZDT4 DTLZ5 DTLZ6 

Iε+ (A,B) 

and 

Iε+ (B,A) 

(-0.4805,0.63) (-0.8205,0.41) (-0.5101,0.61) (-0.8649,0.39) (-0.2292,0.82) (-0.3917,0.70) 

Iε+ (A,C) 

and 

Iε+ (C,A) 

(-0.4509,0.65) (-0.2883,0.77) (-0.2144,0.83) (-0.3770,0.71) (-1.0571,0.29) (-0.3917,0.70) 

Iε+ (B,C) 

and 

Iε+ (C,B) 

(-0.2144,0.83) (-1.0275,0.30) (-0.1848,0.85) (-0.0960,0.92) (-1.6632,0.10) (-1.2197,0.22) 
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Table 5.9 Statistical test to check sensitivity to minimum momentum: Testing of the distribution of 

     using Mann-Whitney rank-sum statistical test. Each cell in the table presents the z-value and p-

value as the form of (z-value, p-value) with respect to the alternative hypothesis (p-value < α=0.05) 

for each combination pair of algorithms      and   where      and   refer to cultural MOPSO with 

               and    , respectively. 

Test 

Functions 
ZDT1 ZDT2 ZDT3 ZDT4 DTLZ5 DTLZ6 

Iε+ (A,B) 

and 

Iε+ (B,A) 

(-0.1404,0.88) (-0.2439,0.81) (-0.0370,0.97) 
(-1.9885,0.05) 

Different 
(-0.4361,0.66) (-0.2143,0.83) 

Iε+ (A,C) 

and 

Iε+ (C,A) 

(-0.1995,0.84) (-1.6041,0.11) (-0.9388,0.35) (-0.8353,0.40) (-0.2883,0.77) (-0.6283,0.53) 

Iε+ (B,C) 

and 

Iε+ (C,B) 

(-0.4066,0.68) (-0.7614,0.45) (-0.3474,0.73) (-0.2735,0.78) (-0.7170,0.47) (-0.1109,0.91) 

 

Table 5.10 Statistical test to check sensitivity to maximum momentum: Testing of the distribution of 

     using Mann-Whitney rank-sum statistical test. Each cell in the table presents the z-value and p-

value as the form of (z-value, p-value) with respect to the alternative hypothesis (p-value < α=0.05) 

for each combination pair of algorithms      and   where      and   refer to cultural MOPSO with 

               and   , respectively. 

Test 

Functions 
ZDT1 ZDT2 ZDT3 ZDT4 DTLZ5 DTLZ6 

Iε+ (A,B) 

and 

Iε+ (B,A) 

(-2.1511,0.03) 

Different 
(-0.6136,0.54) (-0.3622,0.72) (-0.1109,0.91) (-1.0275,0.30) (-1.4415,0.15) 

Iε+ (A,C) 

and 

Iε+ (C,A) 

(-0.9388,0.35) (-1.1310,0.26) (-0.6283,0.53) (-1.2345,0.22) (-1.3676,0.17) (-0.7318,0.46) 

Iε+ (B,C) 

and 

Iε+ (C,B) 

(-1.3823,0.16) (-0.6579,0.51) (-1.1605,0.25) (-0.3622,0.72) (-0.7614,0.45) (0,1) 
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Table 5.11 Statistical test to check sensitivity to grid size: Testing of the distribution of      using 

Mann-Whitney rank-sum statistical test. Each cell in the table presents the z-value and p-value as the 

form of (z-value, p-value) with respect to the alternative hypothesis (p-value < α=0.05) for each 

combination pair of algorithms      and   where      and   refer to cultural MOPSO with 

        and   , respectively.   

Test 

Functions 
ZDT1 ZDT2 ZDT3 ZDT4 DTLZ5 DTLZ6 

Iε+ (A,B) 

and 

Iε+ (B,A) 

(-0.0370,0.97) (-0.9832,0.35) (-0.0813,0.94) (-0.1109,0.91) (-0.2144,0.83) 
(-2.1216,0.03) 

Different 

Iε+ (A,C) 

and 

Iε+ (C,A) 

(-2.9051,0.004) 

Different 
(-0.3770,0.71) (-0.5692,0.57) (-0.3770,0.71) (-0.0813,0.94) (-1.2936,0.20) 

Iε+ (B,C) 

and 

Iε+ (C,B) 

(-0.9092,0.36) (-0.0221,0.98) (-0.7318,0.47) (-0.1108,0.91) (-0.9388,0.35) (-0.2735,0.78) 

 

 

Table 5.12 Statistical test to check sensitivity to population size: Testing of the distribution of      

using Mann-Whitney rank-sum statistical test. Each cell in the table presents the z-value and p-value 

as the form of (z-value, p-value) with respect to the alternative hypothesis (p-value < α=0.05) for each 

combination pair of algorithms      and   where      and   refer to cultural MOPSO with 

          and    , respectively. 

Test 

Functions 
ZDT1 ZDT2 ZDT3 ZDT4 DTLZ5 DTLZ6 

Iε+ (A,B) 

and 

Iε+ (B,A) 

(-1.1754,0.24) (-0.8648,0.39) (-0.6727,0.50) (-1.5154,0.13) (-0.5692,0.57) 
(-2.3433,0.02) 

Different 

Iε+ (A,C) 

and 

Iε+ (C,A) 

(-0.0665,0.95) (-0.1700,0.86) (-0.5248,0.60) (-1.0275,0.30) (-0.4214,0.67) (-0.4214,0.67) 

Iε+ (B,C) 

and 

Iε+ (C,B) 

(-0.9979,0.32) (-0.6727,0.50) (-0.4805,0.63) (-0.2144,0.83) (-1.7963,0.07) (-0.5840,0.56) 
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Table 5.13 Statistical test to check sensitivity to mutation rate: Testing of the distribution of      

using Mann-Whitney rank-sum statistical test. Each cell in the table presents the z-value and p-value 

as the form of (z-value, p-value) with respect to the alternative hypothesis (p-value < α=0.05) for each 

combination pair of algorithms      and   where      and   refer to cultural MOPSO with 

         and   , respectively. 

Test 

Functions 
ZDT1 ZDT2 ZDT3 ZDT4 DTLZ5 DTLZ6 

Iε+ (A,B) 

and 

Iε+ (B,A) 

(-0.3179,0.75) (-0.7466,0.45) (-0.4361,0.66) 
(-2.0476,0.04) 

Different 
(-0.1109,0.91) (-1.7076,0.09) 

Iε+ (A,C) 

and 

Iε+ (C,A) 

(-0.6283,0.53) (-0.4805,0.63) (-1.1754,0.24) (-0.3918,0.70) (-1.3380,0.18) (-0.3918,0.70) 

Iε+ (B,C) 

and 

Iε+ (C,B) 

(-1.1458,0.25) (-1.1310,0.26) (-0.1552,0.87) (-0.0369,0.97) (-0.5396,0.59) (-0.5692,0.57) 

 

 

5.5 Discussions  

 

In this chapter, we have proposed the cultural MOPSO, an algorithm to adapt 

parameters of the MOPSO using the knowledge stored in various sections of belief space. 

Cultural algorithm provides required groundwork through information stored in its belief 

space. Incorporating CA into the optimization process enables us to efficiently and 

effectively categorize the information and use it in a well-organized way. Information in 

the belief space facilitates the optimization process by providing required data whenever 

it is needed. As a result, the optimization process will be more knowledgeable and 

successful. The momentum, personal acceleration, and global acceleration are adapted 
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based upon the information in normative, situational, and topographical knowledge of 

belief space. Personal and global best are also computed using the information stored in 

belief space.  

Several high dimensional bi-objective and tri-objective benchmark test problems 

with convex and non-convex Pareto fronts have been chosen to exploit the ability of the 

proposed algorithm to search for the optimized solutions in different case studies. 

Statistical results using Mann-Whitney rank-sum test for hypervolume indicator show 

that cultural MOPSO performs better than some well-regarded MOPSO algorithms, i.e., 

sigma MOPSO, OMOPSO, NSPSO, cluster MOPSO, and MOPSO except for the 

function ZDT4 where there is no difference between the proposed method and MOPSO 

[58]. Furthermore, statistical results using Mann-Whitney rank-sum test for additive 

binary epsilon indicator illustrate that cultural MOPSO performs better than other 

selected MOPSO algorithms, i.e., sigma MOPSO, OMOPSO, NSPSO, cluster MOPSO, 

and MOPSO except for the test function ZDT2 where there is no significant difference 

between the proposed method and MOPSO [58].  

Further investigation of the cultural MOPSO is conducted to assess its robustness 

with respect to the algorithm’s tuning parameters. In an extensive sensitivity analysis, 

based upon additive binary epsilon indicator, the analysis through rank-sum statistical test 

provides an assurance that the proposed cultural MOPSO is insensitive to the reasonable 

choices of nine design parameters. It suggests that we can revise the proposed algorithm 

in Section (5.3), by assigning random numbers for these nine tuning parameters: lower 
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and upper limit of personal acceleration, lower and upper limit of global acceleration, 

lower and upper limit of momentum, grid size, population size, and mutation rate.  

As a proposed future work, the dynamics of the momentum and acceleration 

could be further investigated. In this work, we have simply assumed a simple piecewise 

linear dynamics for momentum and acceleration.  Adopting self-adaptation [135-136] 

will assure the independence of the proposed algorithm from design parameters by 

incorporating the tuning parameters discussed in Subsection 5.4.2 into the optimization 

process which can be the future work of this study. Another interesting area is to exploit 

cultural MOPSO under dynamic environment when fitness landscape will change 

periodically or sporadically.  
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CHAPTER VI 

 

CONSTRAINED CULTURAL-BASED OPTIMIZATION USING MULTIPLE 

SWARM PSO WITH INTER-SWARM COMMUNICAION 

 

6.1 Introduction 

 

Population based paradigms to solve constrained optimization problems have 

attracted much attention during the most recent years. Genetic-based algorithms and 

swarm-based paradigms are two popular population based heuristics introduced for 

solving constrained optimization problems [137-139]. Particle swarm optimization (PSO) 

[1] is a swarm intelligence design based upon mimicking behavior of the social species 

such as flocking birds, schooling fish, swarming wasps, and so forth. Constrained particle 

swarm optimization (CPSO) is a relatively new approach to tackle constrained 

optimization problems [70-72, 74-83]. What constitute the challenges of the constrained 

optimization problem are various limits on decision variables, the types of constraints 

involved, the interference among constraints, and the interrelationship between the 

constraints and the objective functions. In general constrained optimization problem can 

be formulated as: 
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Optimize                   ,                                                                (6.1) 

 

subject to inequality constraints: 

                     ,                     ,                                                                  (6.2) 

 

and equality constraints:  

          ,                      .                                                             (6.3) 

 

It should be noted that in this study minimization problems are considered without 

the loss of generality (due to duality principle). Individuals that satisfy all of the 

constraints are called feasible individuals while individuals that do not satisfy at least one 

of the constraints are called infeasible individuals. Active constraints are defined as the 

inequality constraints that satisfy          (         ) at the global optimum 

solution, therefore all equality constraints,         (         ) are active 

constraints.  

Although there are a few researches on PSO to solve constrained optimization 

problems, none of these studies fully explore the information from all particles to perform 

communication within PSO in order to share common interest and to act synchronously. 

When particles share their information through communication with each other, they will 

be able to efficiently handle the constraints and optimize the objective function. In order 

to construct the environment needed to share information, we need to build groundwork 
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to enable us to employ this information as needed. The main groundwork is the the belief 

space of cultural algorithm [3, 99] which can assist the particles in an organized 

informational environment to find the required information. Cultural algorithm has alone 

shown its own ability to solve engineering problems [99-106, 108-112, 125, 140-142] 

especially some constrained optimization ones [103-104, 111-112, 142].  

From a sociological point of view, study has shown that human societies will 

migrate from one place to another in order to counter their own life constraints and 

limitations as well as to reach a better economical, social, or political life [8]. People 

living in different societies migrate in spite of the different value systems and cultural 

distinctions. Indeed the cultural belief is an important factor affecting the issues 

underlying the migration phenomena [9].  

On the other hand, finding the appropriate information for communication within 

swarm can be computationally expensive. One computational aspect is the difficulties of 

finding the appropriate information to communicate within PSO in order to be able to 

simultaneously handle the constraints and optimize the objective function. Using many 

concepts inspired from the cultural algorithm, such as normative knowledge, situational 

knowledge, spatial knowledge, and temporal knowledge, we will be able to efficiently 

and effectively organize the knowledge acquired from evolutionary process to facilitate 

PSO’s updating mechanism as well as swarm communications. The inter-swarm 

communication for the constrained optimization problems using PSO is an important 

duty that cannot be solved unless we have access to the knowledge throughout the search 
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process given the cultural algorithm as the computational framework. 

In this study, a novel computational framework based on cultural algorithm is 

proposed by adopting knowledge stored in belief space in order to assist the inter-swarm 

communication, to search for the leading particles in the personal level, swarm level and 

global level. Every particle in CPSO will fly through a three level flight and then particles 

divide into several swarms and inter-swarm communication takes place to share the 

information. The remaining sections complete the presentation of this chapter as follows. 

In Section 6.2, principles of cultural algorithm and related works performed in CPSO are 

briefly reviewed. In Section 6.3, the proposed cultural CPSO is elaborated in details. In 

Section 6.4, simulation results are evaluated on the benchmark test problems in 

comparison with the state-of-the-art constraint handling models. Finally, Section 6.5 

summarizes the concluding remarks and future study. 

 

6.2 Review of Literature 

6.2.1 Related Work in Constrained PSO 

Relevant works of constrained particle swarm optimization algorithms are briefly 

reviewed in this subsection to motivate the proposed ideas. Particle swarm optimization 

[1] has shown its promise to solve the constrained optimization problems. Hu and 

Eberhart simply generated particles in PSO for the constrained optimization problems 

until they are located in the feasible region and then used these particles in feasible region 

for finding best personal and global particles [70]. Parsopoulos and Vrahatis used a 
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dynamic multi-stage penalty function for constraint handling [71]. The penalty function is 

weighted sum of all constraints violation with each constraint having a dynamic exponent 

and a multi-stage dynamic coefficient. Coath and Halgamuge presented a comparison of 

two constraint handling methods based upon preserving feasible solutions [70] and 

dynamic penalty function [71] to solve constrained nonlinear optimization problems 

using PSO [72]. It demonstrated that the convergence rate for penalty function based PSO 

was faster than that of feasible solution method. 

Paquet and Engelbrecht proposed a modified PSO to solve linearly constrained 

optimization problems [74]. An essential characteristic of their modified PSO is that the 

movement of the particles in the vector space is mathematically guaranteed by the 

velocity and position update mechanism of PSO. They proved that their modified PSO is 

always assured to find at least a local optimum for linear constrained optimization 

problems. Takahama and Sakai in their -constrained PSO proposed an algorithm in 

which particles that satisfy the constraints move to optimize the objective function while 

the particles that violate the constraints move to satisfy the constraints [75]. In order to 

adaptively control the maximum velocity of the particles, particles are divided into some 

groups and their movement in those groups is compared. 

Krohling and Coelho adopted Gaussian distribution instead of uniform 

distribution for the personal and global term random weights of the PSO mechanism to 

solve constrained optimization problems formulated as min-max problems [76]. They 

used two populations simultaneously; first PSO focuses on evolving the variable vector 
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while the vector of Lagrangian multiplier is kept frozen, and the second PSO is to 

concentrate on evolving the Lagrangian multiplier while the first population is kept 

frozen. The use of normal distribution for the stochastic parameters of the PSO seems to 

provide a good compromise between the probability of having a large number of small 

amplitude around the current points and small probability of having large amplitudes, that 

may cause the particles to move away from the current points and escape from the local 

optima. 

Yang et al. [77] proposed a master-slave PSO in which master swarm is 

responsible for optimizing objective function while slave swarm is focused on constraint 

feasibility. Particles in the master swarm only fly toward the current better particles in the 

feasible region. The slave swarm is responsible for searching feasible particles by 

scouting through the infeasible region. The feasible/infeasible leaders from swarm will 

then communicate to lead the other swarm. By exchanging flight information between 

swarms, algorithm can explore a wider solution space. 

Zheng et al. [78] adopted an approach that congregates neighboring particles in 

the PSO to form multiple swarms in order to explore isolated, long and narrow feasible 

space. They also applied a mutation operator with dynamic mutation rate to encourage 

flight of particles to feasible region more frequently. For constraint handling a penalty 

function has been adopted as to how far the infeasible particle is located from the feasible 

region. Saber et al. [79] introduced a version of PSO for constrained optimization 

problems. In their version of PSO, the velocity update mechanism uses a sufficient 
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number of promising vectors to reduce randomness for better convergence. The velocity 

coefficient in the positional update equation is a dynamic rate depending on the error and 

iteration. They also reinitialized the idle particles if there are not improvements for some 

iterations.  

Li et al. [80] proposed dual PSO with stochastic ranking to handle the constraints. 

One regular PSO evolves simultaneously along with a genetic PSO which is a discrete 

version of PSO including a reproduction operator. The better of the two positions 

generated by these two PSOs is then selected as the updated position. Flores-Mendoza 

and Mezura-Montes [81] used Pareto dominance concept for constraint handling on a bi-

objective space, with one objective being sum of the inequality constraint violations and 

the second objective being sum of the equality constraint violations in order to promote 

better approach to feasible region. They also adopted a decaying parameter control 

constriction factor and global acceleration of the PSO to prevent the premature 

convergence and to advance the exploration of the search space. Ting et al. [82] 

introduced a hybrid heuristic consisting PSO and genetic algorithm to tackle constraint 

optimization problem of load flow problems. They adopted two-point crossover, 

mutation, and roulette-wheel selection from genetic algorithms along with the regular 

PSO to generate the new population space. Liu et al. [83] incorporated discrete genetic 

PSO with differential evolution (DE) to enhance the search process in which both genetic 

PSO and DE update the position of the individual at every generation. The better position 

will then be selected. 
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In [143], the constraint handling techniques are embedded into the flight 

mechanism of PSO, including separate procedures to update infeasible and feasible 

personal bests in order to guide the infeasible individuals towards the feasible regions 

while promote search for optimal solutions. Additionally, storing infeasible 

nondominated solutions along with the best feasible solutions in global best archive is to 

assist the search for feasible regions and better solution. The adjustment of accelerated 

constants is based on the number of feasible personal bests and the constraint violations 

of personal bests and global best. Simulation study shows the proposed design is able to 

obtain quality solution in a very efficient manner. 

 

6.2.2 Related Works in Cultural Algorithm for Constrained Optimization 

Originated by Reynolds [3, 99], cultural algorithm (CA) is a dual inheritance 

system where information exists at two different space, population space and belief 

space, and can pass along to the next generation. CA has shown its ability to solve 

different types of problems among which Jin and Reynolds’s algorithm [142] enhanced 

the performance of evolutionary programming as population space by adopting the belief 

space in order to solve constrained optimization problems. 

Researchers have identified five basic sections of knowledge stored in belief 

space: situational knowledge, normative knowledge, spatial or topographical knowledge 

[105], domain knowledge, and temporal or history knowledge [106]. Becerra and Coello 

Coello proposed a cultured differential evolution for constrained optimization [104]. The 



147 

 

population space in their study was differential evolution (DE) while the belief space 

consists of situational, topographical, normative, and history knowledge. The variation 

operator in DE was influenced by the knowledge source of belief space. Yuan et al. 

introduced chaotic hybrid cultural algorithm for constrained optimization in which 

population space is DE and belief space includes normative and situational knowledge 

[111]. They incorporated a logistic map function for better convergence of DE. Tang and 

Li proposed a cultured genetic algorithm for constrained optimization problems by 

introducing a triple space cultural algorithm [112]. The triple space includes belief space, 

population space in addition to an anti-culture population consisting individuals 

disobeying the guidance of the belief space and going away from the belief space guided 

individuals. The effect of disobeying enhanced by some mutation operations appreciably 

makes the algorithm faster and less risky for premature convergence, by awarding the 

most successful individuals and punishing the most unsuccessful population. 

 

6.3 Cultural Constrained Optimization Using Multiple-Swarm PSO 

 

The pseudocode of the proposed design is shown in Figure 6.1 and a block 

diagram depicting the operation of the proposed algorithm is also shown in Figure 6.2. 

The population space (PSO) will be initialized and then divided into several swarms 

based upon the proximity of the particles. The correspondent belief space (BLF) will then 

be initialized. We then evaluate population space using the fitness values. Acceptance 
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function is applied to select particles which will be used for the belief space. Belief space 

consists of four sections: normative, spatial (topographical), situational, and temporal (or 

history) knowledge. This cultural framework plays a key role in the algorithm. Influence 

function is then applied to the belief space to adjust the key parameters of PSO for next 

iteration, i.e., personal best, swarm best and global best. After a predefined iteration, 

influence function manipulates to the belief space to perform communication among 

swarms which is done by preparing two sets of particles for each swarm to share with the 

other swarms. Afterward, particles in the population space fly using newly computed 

personal, swarm, and global best. This process continues until the stopping criteria are 

met.  

Initialize PSO at t=0. 
Initialize BLF at t=0 
Repeat 

 Evaluate PSO(t). 

 Divide PSO(t) into several swarms using 

k-means. 

 Apply ACCEPTANCE function to 

PSO(t) to select particles which affect 

BLF(t). 

 Adapt BLF(t) including Normative, 

Spatial, Situational, and Temporal 

Knowledge.  

 Apply INFLUENCE function to BLF(t) 

to select pbest(t), sbest(t), and gbest(t) of 

PSO(t). 

 If t=Tmigration, perform cultural-based 

inter-swarm communication. 

 t=t+1. 

 Update PSO(t) using new pbest(t), 

sbest(t), and gbest(t). 

Until Termination Criteria are met. 
End 

Figure 6.1  Pseudocode of the cultural constrained particle swarm optimization  
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In the remainder of this section, the multi swarm population space, acceptance 

function, different parts of belief space, influence functions, and inter-swarm 

communication strategy are elaborated in details. 

 

6.3.1 Multi-Swarm Population Space 

The population space here consists of multiple swarms, each swarm performing a 

PSO paradigm. The particles are clustered into a predefined number of swarms using k-

means clustering algorithm. In this study, the number of swarms,  , is chosen roughly 

10% of the population size,  : 

                                                                                                                   (6.4) 

where     refers to a rounding operator. This multiple swarm PSO is a modified version 

of the algorithm introduced by Yen and Daneshyari [144-145]. To overcome the 

premature convergence problem of PSO and to promote the particles in a swarm sharing 

information among themselves, a three-level flight for PSO mechanism has been adopted. 

In personal level, particle will follow its best experienced behavior in its history. In 

swarm level, the particle will simultaneously follow the best behaving particle in its 

swarm to achieve a synchronal behavior among the neighboring particles, and finally in 

the global level, the entire population will follow the best known particle seeking a global 

goal. This modified paradigm of PSO is formulated as: 
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      ,                                                                              (6.5)     

                                                                

where   
     is the  -th dimension of velocity of the  -th particle at time  ,   

     is the 

 -th dimension of position of the  -th particle at time  ,       
     is the  -th dimension 

of best past position of the  -th particle at time  ,         
     is defined as the  -th 

dimension of best particle from swarm   in which particle   belongs.           is the  -

th dimension of the best particle of population at time  .   ,   and    are uniformly 

generated random numbers in the range of      ,    ,    and    are constant parameters 

representing the weights for personal, swarm, and global behavior and   is the 

momentum for previous velocity.  

 

6.3.2 Acceptance Function 

The belief space should be affected by a selection of best individuals. Therefore 

all particles located in the feasible space, along with  % of the infeasible particles that 

have the least violation of constraints are selected, where   is a predefined value. This 

allows infeasible individuals with minimum constraint violations to portray feasibility 
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landscape. 

 

6.3.3 Belief Space 

The belief space in this paradigm consists of four sections: normative, spatial, 

situational, and temporal knowledge. Since the constrained optimization problems of the 

interest have static landscapes, only these four sections have been implemented because 

the domain knowledge, the fifth element, is mainly useful when fitness landscape is 

dynamic. In the remainder of this section, type of information, the ways to represent the 

knowledge and methodology on how to update the knowledge for each section of the 

belief space are discussed thoroughly. 

 

Figure 6.2 Schema of the cultural framework adopted, where belief space consists of normative 

knowledge, spatial (topographical) knowledge, situational knowledge, and temporal (history) 

knowledge, and population space is a multiple swarm PSO. 
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6.3.3.1 Normative Knowledge 

Normative knowledge represents the best area in the objective space. It is 

represented as Figure 6.3 where                           and 

                         (  is the number of particles).       is a normalized 

objective function defined as following: 

 

      
        

      

  
         

      
,             ,                                                           (6.6) 

 

where       is the objective function value for particle    ,   
                      is 

the lower bound of the objective function value on the  -th particle at time  , and 

  
                      is the upper bound of the objective function value on the  -th 

particle at time  .   refers to the current population at time  . 

 

 

Figure 6.3  Representation for normative knowledge 

 

      is a measure of violation of all constraints for particle     defined as following: 

 

      
 

 
 

      

  
   

 
   ,             ,                                                           (6.7) 
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where   is the number of constraints and        is related to the  -th constraint 

evaluated at particle    as following: 

 

        
                                                        

                                             

  ,                            (6.8) 

and: 

 

  
                  .                                                                                    (6.9) 

In order to update the normative knowledge, new objective function values will 

be normalized using Equation (6.6), and constraint violation measures will be updated by 

the new position of the particles using Equation (6.7). The information in the normative 

knowledge is used to assemble the framework for spatial knowledge.  

 

6.3.3.2 Spatial Knowledge 

In order to represent spatial or topographical knowledge, the normative 

knowledge is adopted. The method used in this section is similar to the penalty function 

method to handle constraints introduced by Tessema and Yen [146]. The normalized 

objective functions,  , and violation measures,  , are set as the axes of a 2-D space as 

shown in Figure 6.4. Two particles are mapped in this space for visualization. Figure 6.5 

shows spatial knowledge stored for every particle located in the f-V space where 

                          and                          (  is the number of 
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particles).       is the Euclidean distance from the origin of the f-V space defined as: 

 

            
       

     ,             ,                                           (6.10) 

 

 

Figure 6.4 The schema to represent how the spatial knowledge is computed. 

 

 

and    is the modified objective function value to handle constraints computed as a 

weighted sum of three spatial distances  ,  , and  , as following: 

 

       

                                                                 

                                                                                                   

                                                                                                                 

  , 

(6.11) 
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where      is the ratio of number of feasible particles over the population size,       and 

      are defined in Equations (6.6) and (6.7), respectively. If         ,  then       

will be more important than       in Equation (6.11), consequently              in 

schema shown in Figure 6.4, which means particle 2 outperforms particle 1 for a 

minimization problem. But when         ,  then        will be more important than 

      in Equation (6.11), consequently              in schema shown in Figure 6.4, 

which in turn means particle 1 outperforms particle 2. 

 

 

Figure 6.5 Representation of spatial knowledge for each particle 

 

At every iteration, the spatial knowledge will be updated. To do so, updated 

normative knowledge will be used to rebuild the spatial distance for every particle using 

Equations (6.10) and (6.11). Spatial knowledge will be used later to find the global best 

particle of population space and to build a communication strategy among swarms. 

 

6.3.3.3 Situational Knowledge 

This part of belief space is used to keep the good exemplar particles for each 

swarm. Its representation is shown in Figure 6.6.        (         ) where   is the 

number of swarms defined in Equation (6.4),    the best particle in the  -th swarm based 
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upon information received from the spatial knowledge in accordance with both objective 

function value and constraints violation. Assume that at an arbitrary iteration the  -th 

swarm consists    particles as                
  and that               

  is a set 

consisting the modified objective values extracted from the spatial knowledge 

corresponding to               
, respectively. Then           is defined such that: 

 

                   
  ,                            ,                                     (6.12) 

 

 

Figure 6.6 Representation for situational knowledge 

 

where           is the modified objective function value for the particle       .  In order 

to update the situational knowledge, the updated position of the particles will be used to 

evaluate Equations (6.6) to (6.11) to compute updated modified objective function values, 

and then the particle corresponding to the least value in each swarm will be stored in 

situational knowledge. The situational knowledge will be used later to compute the 

swarm best particles and to facilitate the communication among swarms. 

 

6.3.3.4 Temporal Knowledge 

This part of belief space is used to keep the history of the individual’s behavior. 

Its representation is shown in Figure 6.7 where                           and 
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                         (  is the number of particles).       is a set of past 

temporal pattern of the  -th particle which are collected at every time step from part of 

the spatial knowledge,       , and is defined as following: 

 

 

Figure 6.7 Representation for temporal knowledge 

 

                           ,                ,                                     (6.13) 

 

where               and        are the modified objective function values defined in 

Equation (6.11) for the time steps            , respectively.       is the set of all past 

positions of the  -th particle in the whole population defined as 

                           ,          . The temporal knowledge will be updated 

at every iteration. To do so, the updated spatial knowledge, the updated position of the 

particle, and previously stored temporal knowledge will be adopted as following: 

 

                                        ,                                                                                                                 

                       ,                                                    (6.14) 

                                                                                             

The temporal knowledge will later be used to compute the personal best for every 

particle in the population space. 
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6.3.4 Influence Functions 

After belief space is updated, the correspondent knowledge should be used to 

influence the flight of particles in PSO. We propose to use the knowledge in belief space 

to select the personal best, swarm best, and global best for the PSO flight mechanism. 

Furthermore, we propose to adopt the information in the belief space to perform a 

communication strategy among swarms. 

 

6.3.4.1       Selection  

In order to select the personal best, we exploit information in the temporal 

knowledge section of the belief space. The best behaving particle’s past history should be 

selected as following: 

 

                                                                 ,     (6.15) 

 

where                              is the set of all past positions of the  -th particle, 

and                             is the corresponding modified objective values for 

the past history of the  -th particle both extracted from the temporal knowledge section of 

the belief space.  

 

6.3.4.2       Selection  
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In order to select the swarm best particle, the situational knowledge is adopted. 

The information stored in the situational knowledge section of the belief space is simply 

copied into swarm best particles: 

 

                  ,                           ,                                                 (6.16) 

 

where   is the number of swarms and        is the representation of the situational 

knowledge in the belief space. 

 

6.3.4.3       Selection 

The spatial knowledge stored in the belief space is used to compute gbest(t) at 

each iteration. The global best particle is found as following: 

 

                                               ,                     (6.17) 

 

where                           , is the entire population of particles at time  , and 

                           is a set consisting of the modified objective function 

values for all particles at time  . 

 

6.3.4.4 Inter-Swarm Communication Strategy  
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After some predefined iterations,           , the swarms will perform information 

exchange. Each swarm prepares a list of sending particles to be sent to the next swarm, 

and also assembles a list of replacement particles to be replaced by particles coming from 

other swarms. This communication strategy is a modified version of the algorithm 

adopted in [145]. We use the information stored in the belief space to perform 

communication among swarms. To do so, each swarm prepares two list of particles    

and             , where   is the fixed number of swarms defined in Equation (6.4) . 

   is a list of particles in the  -th swarm to be sent to the next swarm and    is a list of 

particles in the  -th swarm to be replaced by particles coming from another swarm. The 

inter-swarm communication strategy is based upon the particles’ locations in the swarm 

and their modified objective value which is stored in the belief space. The sending list for 

the swarm is prepared in the following order: 

(1) The highest priority in the selection of particles is given to a particle that has 

the least average Hamming distance from others. This particle is considered as the 

representative of the swarm. 

(2) The second priority is given to the closest    particles to the representative particle in 

the  -th swarm whose modified objective value stored in the spatial knowledge of the 

belief space is greater than that of the representative.    is defined as [144]: 

 

     
   

 
  ,                                                                                              (6.18) 
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where  , rate of information exchange among swarms, is a predefined value between 0 

and 1,    is the population of the  -th swarm. 

(3) The third priority is given to the closest particles to the representative particle 

whose modified objective value extracted from the belief space is less than that of the 

representative. 

(4) The fourth and last priority is given to the best performing particle in the 

swarm. 

Note that depending on the predefined fixed value for allowable number of the 

sending list,           , the sending list will be filled in each swarm using the above-

mentioned priorities. 

There will also be a replacement list that each swarm prepares, based upon the 

similar positional information of particles in the swarm. When swarms are approaching 

local optima, many particles’ locations are the same. Each swarm will remove this excess 

information through its replacement list. The replacement list in each swarm is assembled 

in the following order: 

(1) The first priority is given to the particles with identical decision space 

information in the order of their modified objective values extracted from the belief 

space, with the least modified objective values being replaced first. 

(2) The second and last priority is given to the particles with the lowest modified 

objective values if all particles of the first priority have already been placed in the 

replacement list. 
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This information exchange among swarms happens in a ring sequential order 

between each pair of swarms. Each swarm accepts the sending list from other swarm and 

will replace it with its own replacement list. 

 

6.4 Comparative Study 

 

In this section, the performance of the cultural CPSO is evaluated against those of 

the selected state-of-the-art constrained optimization heuristics. 

 

6.4.1 Parameter Settings 

The parameters of the cultural CPSO are set as shown in Table 6.1. The tolerance 

for equality constraints in Equation (6.8),  , is set as 0.0001. In the flight mechanism, the 

momentum,  , is randomly selected from the uniform distribution of (0.5, 1), the 

personal, swarm and global acceleration,   ,    and    are all selected as 1.5.  

 

Table 6.1 Parameter settings for cultural CPSO 

  Tolerance for equality constraints in Equation (6.8)  0.0001 

  Momentum in Equation (6.5)             

   Personal acceleration in Equation (6.5) 1.5 

   Swarm acceleration in Equation (6.5) 1.5 

   Global acceleration in Equation (6.5) 1.5 

N Population size 100 

  Rate of information exchange in Equation (6.18) 30% 

           Allowable number of migrating particles 

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn=0.05

N 

5 
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The population size is fixed at 100 particles. The maximum velocity for the 

particles in specific dimension,     
 ,  is set at half of the range of the particle’s position in 

that dimension: 

    
        

      
     .                                                                         (6.19) 

The rate for information exchange among swarms affects how much swarms 

communicate with each other. The higher rate corresponds to more communication and 

better overall performance of the algorithm, but it does incur higher computational 

complexity, while a lower rate imposes less computational complexity and relatively 

poorer performance. The heuristic choice is set at 30%. The allowable number of 

migrating particles among swarms is set as 5% of the population size, which is 

                  . 

 

6.4.2 Benchmark Test Functions 

The proposed cultural CPSO has been tested on 24 benchmark functions [147] to 

verify its performance. The characteristics on these test functions are summarized in 

Table 6.2. These problems include various types of objective functions such as linear, 

nonlinear, quadratic, cubic, and polynomial. These benchmark problems vary in the 

number of decision variables,  , between 2 and 24, and number of constraints, between 1 

and 38.  In this table,   is the estimated ratio of the feasible region over the search space 

which varies as low as 0.0000% to as high as 99.9971%. The numbers of different types 

of constraints are also shown for each test function: the number of linear inequality (LI), 



164 

 

the number of nonlinear inequality (NI), the number of linear equality (LE) and the 

number of nonlinear equality (NE). In this table,   is the number of active constraints at 

the known optimal solution,     , and         is the objective function of the known optimal 

solution [147]. The detailed formulation of these benchmark test functions are presented 

in Appendix B for reference. 

 

6.4.3 Simulation Results 

The experiments reported in this study are performed on a computer with 1.66 

GHz Duel-Core Processor and 1GB RAM operating on a Windows XP Professional. The 

programs are written in Matlab. Extensive experiments have been performed on all 24 

benchmark test functions based upon comparison methods suggested in [147] which are 

explicitly followed by researchers in the field in order to have meaningful comparison. 

For three different functions evaluations (FEs) of 5,000, 50,000, and 500,000, the 

objective function error values,                are found, while         is the best known 

solution [147] presented in the rightmost column in Table 6.2. Notice when        

             , the final error is considered as zero. For each benchmark test problem, 

a total of 25 independent runs are performed.  

The statistical measures including the best, median, worst, mean and standard 

deviations are then computed. These results are tabulated in Tables 6.3 to 6.6. For the 

best, median and worst solutions, the number of constraints that can not satisfy feasibility 

condition is found and shown as an integer inside parenthesis after the best, median, and 
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worst solution, respectively in these tables. The parameter   shows three different 

integers demonstrating the number of constrains including equality and inequality ones 

that are violated by more than 1, 0.01 and 0.0001, respectively for the median solution. 

The parameter    indicates the average value of the violations of all constraints at the 

median solution defined in [147]: 

Table 6.2 Summary of 24 benchmark test functions 

Prob.   Type of function   LI NI LE NE           

    13 Quadratic 0.0111% 9 0 0 0 6 -15.0000000000 

    20 Nonlinear 99.9971% 0 2 0 0 1 -0.8036191042 

    10 Polynomial 0.0000% 0 0 1 1 1 -1.0005001000 

    5 Quadratic 52.1230% 0 6 0 0 2 -30665.5386717834 

    4 Cubic 0.0000% 2 0 3 3 3 5126.4967140071 

    2 Cubic 0.0066% 0 2 0 0 2 -6961.8138755802 

    10 Quadratic 0.0003% 3 5 0 0 6 24.3062090681 

    2 Nonlinear 0.8560% 0 2 0 0 0 -0.0958250415 

    7 Polynomial 0.5121% 0 4 0 0 2 680.6300573745 

    8 Linear 0.0010% 3 3 0 0 6 7049.2480205286 

    2 Quadratic 0.0000% 0 0 0 1 1 0.7499000000 

    3 Quadratic 4.7713% 0 1 0 0 0 -1.0000000000 

    5 Nonlinear 0.0000% 0 0 0 3 3 0.0539415140 

    10 Nonlinear 0.0000% 0 0 3 0 3 -47.7648884595 

    3 Quadratic 0.0000% 0 0 1 1 2 961.7150222899 

    5 Nonlinear 0.0204% 4 34 0 0 4 -1.9051552586 

    6 Nonlinear 0.0000% 0 0 0 4 4 8853.5396748064 

    9 Quadratic 0.0000% 0 13 0 0 6 -0.8660254038 

    15 Nonlinear 33.4761% 0 5 0 0 0 32.6555929502 

    24 Linear 0.0000% 0 6 2 12 16 0.2049794002 

    7 Linear 0.0000% 0 1 0 5 6 193.7245100700 

    22 Linear 0.0000% 0 1 8 11 19 236.4309755040 

    9 Linear 0.0000% 0 2 3 1 6 -400.0551000000 

    2 Linear 79.6556% 0 2 0 0 2 -5.5080132716 
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Table 6.3 Error values for different function evaluations (FEs) on test problems         

                 Prob. 

FEs 
                        

      

Best 1.4372e1(0) 3.5723e-1(0) 5.8738e-1(0) 1.2328e2(0) 6.4758e2(4) 6.9146e1(0) 

Median 9.8536 (4) 4.5976e-1(0) 8.9452e-1(0) 6.4738e2(0) 8.6193e2(4) 8.4628e2(0) 

Worst 1.9525(7) 5.4657e-1(0) 1.12648(0) 9.4384e2(0) 1.5495e3(4) 2.3859e3(0) 

c (2, 4, 4) (0, 0, 0) 

0000 

(0, 0, 0) (0, 0, 0) (4, 4, 4) (0, 0, 0) 

   3.4517e-1 0 0 0 2.53456e1 0 

Mean 8.3780 4.6576e-1 9.9473e-1 6.3810e2 8.5907e2 7.1844e2 

Std. 3.3715 3.7841e-2 1.4528e-1 1.4925e2 4.8496e2 5.6820e2 

      

Best 2.4729e-10(0) 1.4365e-2(0) 0(0) 6.3404e-8(0) 8.4357e-7(0) 4.9348e-6 (0) 

Median 3.5467e-10(0) 3.1324e-2(0) 0(0) 2.3748e-7(0) 

 

7.5597e-7(0) 6.9834e-6(0) 

Worst 4.0234e-10(0) 5.9435e-2(0) 0(0) 7.8263e-6(0) 4.9528e-6(0) 8.5197e-6(0) 

c (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

   0 0 0 0 0 0 

Mean 3.6294e-10 3.1048e-2 0 2.9230e-7 7.7823e-7 7.0125e-6 

Std. 4.5637e-12 1.6403e-2 0 4.3839e-7 1.8347e-7 5.9238e-7 

      

Best 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

Median 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

Worst 0(0) 1.9543e-2(0) 0(0) 0(0) 0(0) 0(0) 

c (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

   0 0 0 0 0 0 

Mean 0 1.9659e-3 0 0 0 0 

Std. 0 4.7549e-3 0 0 0 0 
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Table 6.4 Error values for different function evaluations (FEs) on test problems         

                 Prob. 

FEs 
                        

      

Best 4.3452e1(0) 7.6478e-8(0) 9.5829(0) 5.3675e3(0) 2.5643e-4(0) 4.5645e-8(0) 

Median 2.6788e2(0) 3.2784e-4(0) 5.3950e1(0) 6.8574e3(2) 5.8274e-3(0) 3.5965e-5(0) 

Worst 3.9643e3(1) 8,5367e-1(0) 4.7204e2(0) 7.4534e2(4) 3.9837e-2(0) 1.6754e-2(0) 

c (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 2, 3) (0, 0, 0) (0, 0, 0) 

   0 0 0 2.4545e-2 0 0 

Mean 2.8642e2 4.8947e-4 5.0025e1 8.3554e3 6.9445e-3 8.5645e-4 

Std. 4.8034e2 7.3674e-3 2.6584e1 5.8689e3 4.5685e-3 6.1904e-3 

      

Best 0(0) 0(0) 0(0) 4.2219e-7(0) 5.9854e-9(0) 0(0) 

Median 0(0) 0(0) 0(0) 3.9540e-6(0) 4.0546e-7(0) 0(0) 

Worst 0(0) 0(0) 0(0) 6.4859e-6(0) 6.9434e-5(0) 0(0) 

c (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

   0 0 0 0 0 0 

Mean 0 0 0 4.0143e-6 7.8687e-6 0 

Std. 0 0 0 1.9344e-7 8.9676e-6 0 

      

Best 0(0) 0(0) 0(0) 1.3494e-9(0) 0(0) 0(0) 

Median 0(0) 0(0) 0(0) 4.6015e-8(0) 0(0) 0(0) 

Worst 0(0) 0(0) 0(0) 9.5246e-8(0) 0(0) 0(0) 

c (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

   0 0 0 0 0 0 

Mean 0 0 0 4.5064e-8 0 0 

Std. 0 0 0 7.0345e-9 0 0 
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Table 6.5 Error values for different function evaluations (FEs) on test problems         

                 Prob. 

FEs 

                        

      

Best 6.8764(3) -4.3950e1(3) 3.4289(2) 2.4959e-1(0) 3.5859e2(4) 3.8494(12) 

Median 8.2840(3) -2.0960e2(3) 4.3395(2) 4.5851e-1(0) 6.2048e2(4) 4.5005(12) 

Worst 1.3940e1(3) -2.3849e2(3) 5.3859(2) 7.4930e-1(2) 9.8363e2(4) 6.0375(12) 

c (0, 3, 3) (3, 3, 3) (0, 2, 2) (0, 0, 0) (4, 4, 4) (10, 11, 11) 

   1.3947 7.0902 1.4759e-1 0 8.3839e1 9.3849 

Mean 7.3904 -2.0035e2 4.2174 4.3735e-1 5.9303e2 4.6720 

Std. 1.8473 6.2387e1 2.6102 1.8276e-1 9.9278e1 1.8494 

      

Best 2.3894e-9(0) 0(0) 0(0) 4.4748e-8(0) 2.1273e1(0) 0(0) 

Median 4.9694e-6(0) 0(0) 0(0) 1.9323e-4(0) 6.2893e1(0) 0(0) 

Worst 6.3938e-1(0) 0(0) 3.5796e-5(0) 2.4385e-2(0) 8.4849e1(0) 1.4634e-7(0) 

c (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

   0 0 0 0 0 0 

Mean 5.9404e-2 0 3.7594e-7 2.5782e-4 3.8373e1 8.7561e-9 

Std. 3.8949e-1 0 4.2893e-4 6.4839e-3 3.2394e1 6.9661e-2 

      

Best 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

Median 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

Worst 6.8495e-8(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

c (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

   0 0 0 0 0 0 

Mean 4.8055e-9 0 0 0 0 0 

Std. 2.5855e-6 0 0 0 0 0 
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Table 6.6 Error values for different function evaluations (FEs) on test problems         

                 Prob. 

FEs 
                        

      

Best 3.9605e2(0) 5.6996 (12) 7.5479e1(5) 8.4563e3(19) 4.2033e2(4) 8.4834e-4(0) 

Median 5.0387e2(0) 1.3656e1(19) 1.8977e2(5) 9.7685e3(19) 6.2017e2(5) 9.5092e-3(0) 

Worst 6.4760e2(0) 1.9574e1(17) 5.7689e2(5) 9.9964e3(19) 9.3945e2(6) 6.9804e-2(0) 

c (0, 0, 0) 

 

(5, 16, 16) (1, 4, 6) (19, 19, 19) (2, 5, 6) (0, 0, 0) 

   0 2.8796 4.8632 8.6785e7 1.8495 0 

Mean 4.8792e2 1.4098e1 2.6778e2 1.1205e4 5.6996e2 1.0034e-2 

Std. 9.7634e1 1.7860e1 3.6781e2 4.8754e3 3.4856e2 1.8075e-2 

      

Best 8.9457e-8(0) 3.6759e-1(16) 8.9865e-5(0) 6.657(4) 4.7893e-4(0) 0(0) 

Median 3.6790e-6(0) 3.6758(16) 4.6453e-3(0) 2.4567e3(16) 2.6778e-3(0) 0(0) 

Worst 1.9426e-5(0) 7.9865(20) 6.0965(0) 5.7685e4(19) 8.5623e-2(0) 0(0) 

c (0, 0, 0) (2, 5, 8) (0, 0, 0) (3, 8, 16) (0, 0, 0) (0, 0, 0) 

   0 8.9863e-1 0 2.5673e1 0 0 

Mean 4.9453e-6 3.7396 7.8757e-1 7.5678e3 7.5610e-3 0 

Std. 5.8438e-6 1.1930 8.9868 6.9868e3 3.7609e-2 0 

      

Best 0(0) -3.0694e-2(18) 6.9854e-8(0) 1.4568(0) 0(0) 0(0) 

Median 0(0) -2.4096e-2(16) 6.7685e-6(0) 7.9653e1(0) 0(0) 0(0) 

Worst 0(0) -2.0129e-2(19) 9.0956e-6(0) 1.3576e2(0) 0(0) 0(0) 

c (0, 0, 0) (1, 4, 6) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

   0 1.3459e-2 0 0 0 0 

Mean 0 -2.5001e-2 2.5609e-6 9.7685e1 0 0 

Std. 0 4.6950e-3 5.8796e-6 3.5475e1 0 0 
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      ,                                                     (6.20) 

where: 

         
                             

                               
 ,                 ,                           (6.21) 

and: 

         
                                   

                                      
  ,                ,         (6.22) 

For each independent run, the number of function evaluations to locate a solution 

satisfying                       is recorded. For each benchmark function, statistical 

measures of these 25 runs including the best, median, worst, mean, and standard 

deviations are then computed. These results are shown in Table 6.7. In the same table, 

Feasible Rate, Success Rate and Success Performance are also calculated for each test 

function. Feasible Rate is a ratio of feasible runs over total runs, where feasible run is 

defined as a run with maximum function evaluation of 500,000 during which at least one 

feasible solution is found. Successful Rate is a ratio of successful runs over the total runs, 

where successful run is defined as a run during which the algorithm finds a feasible 

solution,    , satisfying                      . Success Performance is defined as [147]: 

 

                    
                                                   

                         
       (6.23) 
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Table 6.7 Number of function evaluations (FEs) to achieve the fixed accuracy level (               
      ), Success Rate, Feasibility Rate, and Success Performance. 

Prob. Best Median Worst Mean Std 
Feasible 

Rate 

Success 

Rate 

Success 

Performance 

    24786 27348 49601 35834 11639 100% 100% 35834 

    56392 93674 500000 184530 173487 100%  76% 242803 

    26498 28564 29129 28602 673.86 100% 100% 28602 

    25983 26934 27045 26903 403.91 100% 100% 26903 

    29629 31897 32983 30961 693.52 100% 100% 30961 

    27688 29549 30189 29429 503.59 100%  100% 29429 

    26024 28388 30877 28109 458.15 100% 100% 28109 

    2302 5280 8938 5418.4 1935.4 100% 100% 5418.4 

    30178 31866 32353 31327 331.57 100% 100% 31327 

    26356 27990 29234 28028 459.09 100%  96% 29196 

    4589 10678 31878 12897 10558 100% 100% 12897 

    3289 7580 10454 6738.1 1378.5 100% 100% 6738.1 

    31897 36878 256891 47895 43788 100% 100% 47895 

    24678 28512 48724 26980 3589.2 100%  100% 26980 

    30219 31029 32064 30984 335.76 100% 100% 30984 

    28373 31795 69374 42750 2647.3 100% 100% 42750 

    158367 193045 273890 210454 42084 100% 92% 228754 

    28504 30496 62567 37575 6467 100% 100% 37575 

    21345 23768 27910 24502 1032 100% 100% 24502 

    - - - - - 0% 0% - 

    37385 122705 197614 141639 39574 100% 96% 147541 

    - - - - - 100%  0% - 

    62091 182065 500000 259393 112038 100% 100% 259393 

    17364 19391 29047 18972 4283 100% 100% 18972 
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These tables show that feasible solutions can be reliably found within the 

maximum FEs for all benchmark problems except for function    . The final solutions 

of all benchmark problems can be identified with an error of less than 0.0001 from the 

optimal solution within the maximum FEs except for functions     and    . Most 

benchmark functions find the optimal solution with the error of less than 0.0001 before 

50,000 FEs except for functions    ,    ,    ,     and    . It can also be observed 

that cultural CPSO has 100% feasible rate for all benchmark problems except function 

   , and 100% success rate for all benchmark problems except for functions    ,    , 

   ,     and    . However it should be noted that for functions    ,     and     the 

success rate is fairly high at 96%, 92% and 96%, respectively. Summary of statistical 

results for the best, median, mean, worst, and standard deviation obtained by cultural 

CPSO over 25 independent runs are summarized in Table 6.8. As it can be seen in this 

table, except for function    , feasible solutions have been found for all other 

benchmark problems.  

 

 

6.4.4 Convergence Graphs 

For the median run for each test function with the function evaluations (FEs) of 

500,000, two semi-log graphs are plotted for each test function. The first graph is   

                      vs. FEs, while         is given in the rightmost column of Table 6.2, 

and        is the objective value for the best solution at the specific FE. The second graph 
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is            vs. FEs, where    is the average value of the violations of all constraints at 

specific FE defined as Equations (6.20) to (6.22). For these two graphs, points which 

satisfy                   are not plotted, since logarithm for zero or negative numbers 

cannot be computed. Figures 6.8 to 6.11 show these two graphs for all 24 benchmark 

problems.  

Table 6.8 Summary of statistical results found by cultural CPSO (IS denotes for Infeasible Solution) 

Prob. Optimal Best Median Mean Worst Std. Dev. 

    -15.0000000000 -15.0000000000 -15.0000000000 -15.0000000000 -15.0000000000 0.0000e0 

    -0.8036191042 -0.8036191042 -0.8036191042 -0.8016532042 -0.7840761042 4.6784e-3 

    -1.0005001000 -1.0005001000 -1.0005001000 -1.0005001000 -1.0005001000 3.6759e-13 

    -30665.5386717834 -30665.5386717834 -30665.5386717834 -30665.5386717834 -30665.5386717834 1.7890e-16 

    5126.4967140071 5126.4967140071 5126.4967140071 5126.4967140071 5126.4967140071 6.0912e-12 

    -6961.8138755802 -6961.8138755802 -6961.8138755802 -6961.8138755802 -6961.8138755802 3.8095e-11 

    24.3062090681 24.3062090681 24.3062090681 24.3062090681 24.3062090681 1.3724e-12 

    -0.0958250415 -0.0958250415 -0.0958250415 -0.0958250415 -0.0958250415 7.8088e-11 

    680.6300573745 680.6300573745 680.6300573745 680.6300573745 680.6300573745 5.8797e-17 

    7049.2480205286 7049.2480205299

494 

7049.2480205746

15 

7049.2480205736

64 

7049.2480206238

46 

6.9806e-7 

    0.7499000000 0.7499000000 0.7499000000 0.7499000000 0.7499000000 4.6756e-17 

    -1.0000000000 -1.0000000000 -1.0000000000 -1.0000000000 -1.0000000000 1.7648e-14 

    0.0539415140 0.0539415140 0.0539415140 0.0539415188 0.0539415825 1.5409e-7 

    -47.7648884595 -47.7648884595 -47.7648884595 -47.7648884595 -47.7648884595 6.7830e-11 

    961.7150222899 961.7150222899 961.7150222899 961.7150222899 961.7150222899 2.6598e-16 

    -1.9051552586 -1.9051552586 -1.9051552586 -1.9051552586 -1.9051552586 3.9578e-13 

    8853.5396748064 8853.5396748064 8853.5396748064 8853.5396748064 8853.5396748064 1.5329e-11 

    -0.8660254038 -0.8660254038 -0.8660254038 -0.8660254038 -0.8660254038 8.0934e-14 

    32.6555929502 32.6555929502 32.6555929502 32.6555929502 32.6555929502 5.9083e-12 

    0.2049794002 0.1742854002 (IS) 0.1435914002(IS) 0.1128974002(IS) 0.1848504002(IS) 7.3832e-2 

    193.7245100700 193.7245101398 193.7245168385 193.7245126309 193.7245191656 4.6482e-5 

    236.4309755040 237.887775504 316.083975504 334.115975504 372.190975504 1.5438e2 

    -400.0551000000 -400.0551000000 -400.0551000000 -400.0551000000 -400.0551000000 6.2319e-11 

    -5.5080132716 -5.5080132716 -5.5080132716 -5.5080132716 -5.5080132716 5.8794e-15 
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(a) 

 
(b) 

Figure 6.8 Convergence graphs for problems     (denoted as ),     (denoted as ),      (denoted 

as ),      (denoted as ),      (denoted as  ) and     (denoted as ): (a) Function error values, 

(b) Mean constraint violations. 
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(a) 

 
(b) 

Figure 6.9 Convergence graphs for problems     (denoted as ),     (denoted as ),      (denoted 

as ),      (denoted as ),      (denoted as  ) and     (denoted as ): (a) Function error values, 

(b) Mean constraint violations. 
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(a) 

 
(b) 

Figure 6.10 Convergence graphs for problems     (denoted as ),     (denoted as ),      (denoted 

as ),      (denoted as ),      (denoted as  ) and     (denoted as ): (a) Function error values, 

(b) Mean constraint violations. 
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(a) 

 
(b) 

Figure 6.11 Convergence graphs for problems     (denoted as ),     (denoted as ),      (denoted 

as ),      (denoted as ),      (denoted as  ) and     (denoted as ): (a) Function error values, 

(b) Mean constraint violations. 
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6.4.5 Algorithm Complexity 

In Table 6.9, the algorithm’s complexity corresponding to all 24 benchmark 

problems are shown. The computed times in seconds for complexity are   ,   , and 

           where    is defined as: 

              
  
       ,                                                                                  (6.24) 

where     is the computing time of 10,000 evaluations for problem  , and    is also 

defined as: 

              
  
       ,                                                                                  (6.25) 

where     is the complete computing time for the algorithm with 10,000 evaluations for 

problem   [147]. The running times shown in this table are related to the time spent in 

belief space, population space, acceptance function and influence functions. 

 

Table 6.9 Computational complexity 

                 

6.2351 11.3280 0.8168 

 

 

6.4.6 Performance Comparison 

Furthermore, the performance of the cultural CPSO has been compared with ten 

state-of-the-art constrained optimization heuristics using their best-achieved reported 

results in terms of two performance indicators, feasible rate and success rate. The 

selected high-performance algorithms are PSO [148], DMS-PSO [149], _DE [150], 

GDE [151], jDE-2 [152], MDE [153], MPDE [154], PCX [155], PESO+ [156], SaDE 
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[157]. The comparative results are then demonstrated in Tables 6.10 and 6.11 for feasible 

rate and success rate, respectively. The average performance for each algorithm is also 

computed. Table 6.10 demonstrate that cultural CPSO has the average feasible rate of 

95.83% on 24 benchmark problems that places it at top performing algorithm along with 

DMS-PSO [149], _DE [150] and SaDE [157]. Results in Table 6.11 indicate that 

proposed cultural CPSO has the average success rate of 90.00% on 24 benchmark 

problems placing it at the third best performing algorithm after _DE and PCX [155] with 

91.67% and 90.17% of success rate, respectively. 

 

6.4.7 Sensitivity Analysis 

In this subsection, the sensitivity of the algorithm performance with respect to 

some parameters is briefly assessed. The parameters to be tuned in the proposed 

algorithm are the personal acceleration,   , swarm acceleration,   , global acceleration, 

   and the rate for information exchange among swarms,  . Notice that the allowance 

number of particles to migrate,           , is a fraction of the population size and does 

not need to be tuned. The tolerance for equality constraints is considered a fixed number 

of 0.0001 to be able to fairly compare the results of the proposed algorithm with those of 

other algorithms. The flight momentum is also randomly selected from a uniform 

distribution and does not have tuning issue, and maximum velocity of the particles in 

specific dimension depends on the particle’s positional range, consequently will not be 

adjusted either.  
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Table 6.10 Comparison of cultural CPSO with the state-of-the-art constrained optimization methods 

in terms of feasible rate 

Prob. PSO 

[148] 

DMS-

PSO 

[149] 

_DE 

[150] 

GDE 

[151] 

jDE-2 

[152] 

MDE 

[153] 

MPDE 

[154] 

PCX 

[155] 

PESO+ 

[156] 

SaDE 

[157] 

Cultural 

CPSO 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 96% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 96% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 88% 100% 100% 88% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 76% 100% 100% 96% 100% 100% 100% 100% 

    100% 100% 100% 84% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    0% 0% 0% 0% 4% 0% 0% 0% 0% 0% 0% 

    8% 100% 100% 88% 100% 100% 100% 100% 100% 100% 100% 

    0% 100% 100% 0% 0% 0% 0% 0% 0% 100% 100% 

    100% 100% 100% 88% 100% 100% 100% 100% 96% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Average 87.83% 95.83% 95.83% 88.17% 91.83% 91.67% 91.00% 91.67% 91.50% 95.83% 95.83% 

 

A sensitivity analysis has been applied to a selected set of benchmark problems 

by varying one parameter at a time while the other parameters are set as values in Table 

6.1. Test functions    ,    ,    ,    , and     have been selected for which the 

feasibility and success rate are extremely well or very well, therefore the comparison can 

be done by changing tuning parameters. Tables 6.12 to 6.15 show the results of the 



181 

 

sensitivity analysis. For every set of parameters, 25 independent runs are performed. The 

mean statistical results for feasible solutions have been recorded along with the feasible 

rate and the success rate as defined earlier, for every set of parameters.  

 

Table 6.11 Comparison of cultural CPSO with the state-of-the-art constrained optimization methods 

in terms of success rate 

Prob PSO 

[148] 

DMS-

PSO 

[149] 

_DE 

[150] 

GDE 

[151] 

jDE-2 

[152] 

MDE 

[153] 

MPDE 

[154] 

PCX 

[155] 

PESO+ 

[156] 

SaDE 

[157] 

Cultural 

CPSO 

    72% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    0% 84% 100% 72% 92% 16% 92% 64% 56% 84% 76% 

    0% 100% 100% 4% 0% 100% 84% 100% 100% 96% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    24% 100% 100% 92% 68% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    72% 100% 100% 100% 100% 100% 100% 100% 96% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    8% 100% 100% 100% 100% 100% 100% 100% 16% 100% 96% 

    100% 100% 100% 100% 96% 100% 96% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    0% 100% 100% 40% 0% 100% 48% 100% 100% 100% 100% 

    0% 100% 100% 96% 100% 100% 100% 100% 0% 80% 100% 

    84% 100% 100% 96% 96% 100% 100% 100% 100% 100% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

    0% 0% 100% 16% 4% 100% 28% 100% 0% 4% 92% 

    100% 100% 100% 76% 100% 100% 100% 100% 92% 92% 100% 

    12% 100% 100% 88% 100% 0% 100% 100% 0% 100% 100% 

    0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

    0% 100% 100% 60% 92% 100% 68% 100% 0% 60% 96% 

    0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

    0% 100% 100% 40% 92% 100% 100% 100% 0% 88% 100% 

    100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Aver

age 

48.83

% 

86.83

% 

91.67% 74.17

% 

76.67

% 

84.00

% 

84.00% 90.17

% 

65.00% 83.50

% 

90.00% 
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The results in Tables 6.12 to 6.14 show the effect of varying the personal, swarm 

and global acceleration on the algorithm’s performance. It seems that the effect of 

varying the acceleration on algorithm’s performance is by some extent, problem-

dependent. This makes it difficult to identify the optimum parameters in order to achieve 

the best performance.  

 

Table 6.12 Sensitivity analysis with respect to personal acceleration,   : Mean results of feasible 

solutions, Feasible Rate and Success Rate are computed over 25 independent runs.  

        

Prob. 

Mean results of feasible solutions, Feasible Rate, Success Rate 

1.0 1.5 2.0 2.5 

    
-1.0005001000, 

100%,100% 

-1.0005001000, 

100%,100% 

-1.0005001000, 

100%,100% 

-1.0005001000, 

100%,100% 

    
7049.248020570674, 

100%,96% 

7049.248020573664, 

100%,96% 

7049.248020573941, 

100%,100% 

7049.248020570062, 

100%,96% 

    
-47.7648884595, 

100%,100% 

-47.7648884595, 

100%,100% 

-47.7648884595, 

100%,100% 

-47.7648884595, 

100%,92% 

    
-0.8660254038, 

100%,100% 

-0.8660254038, 

100%,100% 

-0.8660254038, 

100%,96% 

-0.8660254038, 

100%,100% 

    
193.7245128803, 

100%,96% 

193.7245126309, 

100%,96% 

193.7245121603, 

100%,100% 

193.7245139367, 

100%,92% 

 

 

We suggest further analyzing this issue and implementing an adaptive dynamic 

law based upon the need for exploration or exploitation in the f-v space discussed in 

spatial knowledge of the belief space. This approach is similar to the one introduced in 

[140-141].  The results in Table 6.16 show that by increasing the rate for information 

exchange, the success rate will be greatly improved for all selected benchmark problems. 

On the other hand by decreasing this rate, the success rate gets deteriorate. 
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Table 6.13 Sensitivity analysis with respect to swarm acceleration,   : Mean results of feasible 

solutions, Feasible Rate and Success Rate are computed over 25 independent runs.  

        

Prob. 

Mean results of feasible solutions, Feasible Rate, Success Rate 

1.0 1.5 2.0 2.5 

    
-1.0005001000, 

100%,100% 

-1.0005001000, 

100%,100% 

-1.0005001000, 

100%,100% 

-1.0005001000, 

100%,100% 

    
7049.248020574453, 

100%,100% 

7049.248020573664, 

100%,96% 

7049.248020579940, 

100%,96% 

7049.248020573296, 

100%,96% 

    
-47.7648884595, 

100%,100% 

-47.7648884595, 

100%,100% 

-47.7648884595, 

100%,100% 

-47.7648884595, 

100%,100% 

    
-0.8660254038, 

100%,96% 

-0.8660254038, 

100%,100% 

-0.8660254038, 

100%,100% 

-0.8660254038, 

100%,96% 

    
193.7245126006, 

100%,100% 

193.7245126309, 

100%,96% 

193.7245124569, 

100%,100% 

193.7245124389, 

100%,96% 

 

 

 

 

6.5 Discussions  

 

In this chapter, the cultural CPSO, a novel heuristic to solve constrained 

optimization problems has been proposed which incorporates information of objective 

function and constraints violation, to construct a cultural framework consisting two 

sections: a multiple swarm PSO with the ability of inter-swarm communication as 

population space and a belief space including four sections, normative knowledge, spatial 

knowledge, situational knowledge, and temporal knowledge. Each swarm assembles two 

lists of particles to share with other swarms based upon cultural information retrieved 

from different sections of the belief space. This cultural-based communication facilitates 
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the algorithm’s performance on better handling the constraints along with optimizing the 

objective function simultaneously. Cultural CPSO shows competitive results when 

performing extensive experiments on 24 benchmark test functions. Comparison study 

with chosen state-of-the-art constrained optimization techniques indicate that cultural 

CPSO is able to perform well competitive in terms of commonly used performance 

metrics, feasible rate and success rate. Furthermore, sensitivity analysis was performed 

on the parameters of the paradigm, which shows that by increasing the rate of 

information exchange, the success rate is greatly improved. As future work, the proposed 

framework for single-objective optimization will be extended into a cultural-based 

multiobjective particle swarm optimization and to exploit its robust performance under 

dynamic environment when fitness landscape and constraints will change periodically or 

sporadically. 

 

Table 6.14 Sensitivity analysis with respect to global acceleration,   : Mean results of feasible 

solutions, Feasible Rate and Success Rate are computed over 25 independent runs.  

        

Prob. 

Mean results of feasible solutions, Feasible Rate, Success Rate 

1.0 1.5 2.0 2.5 

    
-1.0005001000, 

100%,100% 

-1.0005001000, 

100%,100% 

-1.0005001000, 

100%,100% 

-1.0005001000, 

100%,100% 

    
7049.248020573377, 

100%,96% 

7049.248020573664, 

100%,96% 

7049.248020584087, 

100%,100% 

7049.248020593467, 

100%,96% 

    
-47.7648884595, 

100%,100% 

-47.7648884595, 

100%,100% 

-47.7648884595, 

100%,92% 

-47.7648884595, 

100%,100% 

    
-0.8660254038, 

100%,96% 

-0.8660254038, 

100%,100% 

-0.8660254038, 

100%,96% 

-0.8660254038, 

100%,100% 

    
193.7245146753, 

100%,96% 

193.7245126309, 

100%,96% 

193.7245128903, 

100%,92% 

193.7245136098, 

100%,100% 
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Table 6.15 Sensitivity analysis with respect to rate of information exchange,  : Mean results of 

feasible solutions, Feasible Rate and Success Rate are computed over 25 independent runs.  

       

Prob. 

Mean results of feasible solutions, Feasible Rate, Success Rate 

10% 20% 30% 40% 

    
-1.0005001000, 

100%,92% 

-1.0005001000, 

100%,100% 

-1.0005001000, 

100%,100% 

-1.0005001000, 

100%,100% 

    
7049.248020692614, 

100%,92% 

7049.248020579157, 

100%,96% 

7049.248020573664, 

100%,96% 

7049.248020550004, 

100%,100% 

    
-47.7648884586, 

100%,96% 

-47.7648884595, 

100%,100% 

-47.7648884595, 

100%,100% 

-47.7648884595, 

100%,100% 

    
-0.8660254017, 

100%,96% 

-0.8660254038, 

100%,100% 

-0.8660254038, 

100%,100% 

-0.8660254038, 

100%,100% 

    
193.7245268306, 

100%,92% 

193.7245138506, 

100%,96% 

193.7245126309, 

100%,96% 

193.7245110215, 

100%,100% 
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CHAPTER VII 

 

DYNAMIC OPTIMIZATION USING CULTURAL-BASED PARTICLE SWARM 

OPTIMIZATION  

 

7.1 Introduction 

 

Many real-world optimization problems are dynamic thus the optimum solution 

changes in time. In such cases, the optimization algorithm should detect the change and 

respond to the change promptly. Examples of dynamic optimization problems include 

jobs scheduling, changing profits in portfolio optimization, and fluctuating demand. 

There are four major categories of uncertainties that have been dealt with using 

population based evolutionary approaches: noise in the fitness function, perturbations in 

the design variables, approximation in the fitness function, and dynamism in optimal 

solutions [12]. While noise and approximation bring uncertainty in the objective function, 

perturbation introduces uncertainty in the decision space. This study is focused on 

dynamic optimization problems (DOPs), formulated as: 

 

Optimize ),,( ef x                                                                                                (7.1) 
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where ),...,,( 21 Mxxxx is the M-dimensional decision variable limited in each dimension 

as 
max,min, jjj xxx   (for Mj ,...,2,1 ), f is the objective function, e  represents the 

possible change in the objective function, constraints, environmental parameters, or 

problem representations during optimization process. As a result these changes 

represented by parameter e  may affect the height, width, or location of optimum solution 

or a combination of these three parts [13]. For the simplicity purposes, this study is 

performed on the minimization problems. Note that a maximization problem can be 

converted to a minimization problem simply using multiplication by –1. 

One common example of DOPs is job shop scheduling problems in which new 

jobs arrive or machines may break down during operations resulting a need for dynamic 

job schedules to accommodate the changes over time [10]. Another example of DOPs is 

dynamic portfolio problem in which the goal is to obtain an optimal allocation of assets 

to maximize profit and minimize investment risk [11]. Dynamic portfolio management 

can also be observed in coordinating different power stations in order to maximize profit 

and minimize risk. Some of the uncertainties here include spot market prices, load 

obligations, and strip/option prices. Practically speaking, optimization can be needed for 

the market price as often as every hour [11].  

Population based heuristic had been adopted to solve optimization problems with 

dynamic landscape in the last few years. Particle swarm optimization (PSO) [1] is a 

popular population based paradigms introduced within the last decade. PSO mimics 



188 

 

behavior of the flocking birds by introducing a simple particle flight mechanism as: 

 

)),()(())()(()()1( 21 txtgbestrctxtpbestrctwvtv d

i
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i                  (7.2) 
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i

d

i                                                                                  (7.3) 

 

where )(txd

i
is the d-th dimension of the position of the i-th particle at time t                     

( Ni ,...,2,1 and Md ,...,2,1 , where N  is number of particles and M  is the decision 

space dimension). )(tvd

i
 is the d-th dimension of the velocity of the i-th particle at time t . 

)(tpbestd

i
is the d-th dimension of the personal best position of the i-th particle at time t , 

and )(tgbestd  is the d-th dimension of the global best position at time t . pc  and gc  are 

the constant personal and global acceleration which give different importance weight to 

personal or global term of (7.2). 1r and 2r  are uniform random numbers from (0,1) to give 

stochastic characteristics to the flight of particles.  w  is the velocity inertia weight of the 

particles. The application of PSO to dynamic optimization problems has been studied by 

various researchers [10, 44, 84-98, 158-163]. There are some issues with the PSO 

mechanism that needs to be addressed. One of them is the outdated memory in a sense 

that if the problem changes, a previously good solution stored as neighborhood or 

personal best may no longer be good, and will mislead the swarm towards false optima if 

the memory is not updated. The other issue is diversity loss. The population should 
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normally collapse around the best solution found during the optimization. In dynamic 

optimization, the partially converged population after a change is detected should quickly 

re-diversify, find the new optimum and re-converge quickly [10]. A number of 

adaptations have been applied to PSO in order to solve these deficiencies; memories can 

be refreshed or forgotten and swarms may be re-diversified through randomization, or 

exchange of information using multi-swarms. 

In general, a good evolutionary heuristic to solve DOPs should be able to track 

the changing optimal solution even under high severity and frequency of change. It must 

reuse as much information as possible from previous generations to enhance the 

optimization search. Among the researches performed in dynamic PSO none of these 

studies use information from all particles to perform re-diversification through migration 

and repulsion. When particles share their information through migration process, they 

will be able to quickly re-diversify and move efficiently towards new optimum by re-

converging around it. In order to construct the environment required for this re-

divergence and re-convergence, we need to build groundwork to assist us to utilize this 

information. The major groundwork is the belief space of cultural algorithm assisting the 

particles in an organized informational manner to locate the necessary information.  

Through psychosocial literature, studies show that attitudinal similarity leads to 

attraction while dissimilarity leads to repulsion in interpersonal relationship [14], 

consequently people often diverge from members of other social groups by selecting 

cultural tastes (e.g., possessions, attitudes, or behaviors) that distinguish them from 



190 

 

others. For example, a field study has found that students stopped wearing a particular 

wristband when members of a geeky dormitory next door started wearing them [15].  

Indeed different cultural beliefs lead to repulsion and increase the possibilities of 

divergence in ideas and in turn open up the doors to new opportunities.  

Computationally speaking, one difficulty is to find the proper information to adopt in 

order to rely on a quick re-diversification when a change happens in the environment. 

Using many concepts from the cultural algorithm, such as spatial knowledge, temporal 

knowledge, domain knowledge, normative knowledge and situational knowledge, we will 

be able to efficiently and effectively organize the available knowledge to adopt in several 

steps of the PSO’s updating mechanism as well as re-diversification and repulsion among 

swarms. The special re-diversification problem to deal with the change in dynamic is an 

important task that cannot be solved unless we have access to the knowledge throughout 

the search process that is performed by the cultural algorithm as the computational 

framework. 

In this study, a novel computational framework based on cultural algorithm has 

been proposed using knowledge stored in the belief space to re-diversify the population 

right after a change takes place in the dynamic of the problem. Thus the algorithm can 

comfortably compute the repulsion factor for each particle and locate the leading particles 

in the personal level, swarm level and global level. Each particle in the proposed cultural-

based dynamic PSO will fly through a mechanism of three level flight incorporated with 

a repulsion factor. After a change takes place, particles regroup into several swarms and a 
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diversity-based migration among swarms along with repulsive mechanism implemented 

in repulsion factor will take place to increase the diversity as quickly as possible. The 

remaining sections of this chapter to complete the presentation are as following. In 

Section 7.2, related works in dynamic PSO and related research in cultural algorithm 

have been reviewed. Section 7.3 includes a detailed description of the proposed cultural-

based dynamic PSO. In Section 7.4, simulation results are evaluated on the benchmark 

test problems in comparison with the state-of-the-art paradigms. Lastly, Section 7.5 

summarizes the concluding remarks and future work of this study. 

 

7.2 Review of Literature 

 

7.2.1 Related Work in Dynamic PSO 

Relevant works of particle swarm optimization that had been adopted to solve 

DOPs are briefly discussed in this subsection in order to motivate the proposed ideas. 

Particle swarm optimization has demonstrated its ability to solve the dynamic 

optimization problems. Carlisle and Dozier [84] adjusted PSO mechanism so it avoids 

making position/velocity decision based on the outdated memory. They introduced 

periodic resetting by having the particles periodically replace their pbest vector with their 

current position, forgetting their past experiences. They also introduced triggered 

resetting in which particles reset when the goal moves some specific distance from its 

original position. Eberhart and Shi [44] proposed that when perturbation is small, the 
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initialization of the swarm can start from old population, while with large perturbation, it 

would be better to re-initialize and then compare the results with the old swarm and select 

the best one. Hu and Eberhart [85] introduced a detection and response paradigm for PSO 

to solve dynamic problems in which gbest and the second global best are evaluated to 

monitor the changes. As to respond, the whole particles’ positions are re-randomized.  

Blackwell and colleages proposed charged swarm to avoid collision among particles 

based upon the force between electric charges which is inversely proportional to distance 

squared [86]. In a later work, the atomic model of PSO [87] and quantum PSO [88] are 

introduced in which the particles follow the structure of the chemical atom including a 

cloud of electrons randomly orbiting with a specific radius around the nucleolus. They 

have applied their models into multiple swarm PSO to solve multiple peak dynamic 

function problem [88], outperforming other evolutionary algorithm based heuristics. An 

anti-convergence operator is introduced [89] for swarms to interact with each other. Also 

an excluding operation is performed on swarms with their best solutions within a 

predefined radius. The nearby swarms compete with each other in order to promote 

diversity. The winner, the swarm with the best function value at its swarm attractor, will 

remain, while the loser will be re-initialized in the search space [89]. Blackwell [90] 

proposed swarms birth and death by allowing multiple swarms to regulate their size by 

bringing new swarms to existence, or diminishing redundant swarms. This dynamic 

swarm size removes the need for anti-convergence and exclusion operators in the PSO 

mechanism. 
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Brabazon and colleagues [158] adapted particle swarm metaphor in the domain of 

organizational adaptation in the presence of uncertainty. Strategic adaptation is 

considered as an attempt to uncover peaks on a high-dimensional strategic landscape. 

Some strategic configurations produce high profits, others produce poor results. A model 

is also adopted to estimate the noise incorporated in the strategy fitness. Janson and 

Middendorf [91] proposed partitioned hierarchical PSO for dynamic optimization 

problems. In their model, the population is partitioned into some tree-form sub-

hierarchies for a limited number of iterations after a change is detected. These sub-

hierarchies continue to independently search for the optimum, resulting a wider spread-

out of the search process after the change has occurred. The topmost level of tree-form 

hierarchies which contain the current best particle does not change, but all lower sub-

hierarchies (sub-swarms) by re-initializing the position and velocity and resetting their 

personal best positions. These sub-hierarchies are rejoined again after a predefined 

number of iterations. In a later work [159] a function re-evaluation paradigm is added to 

handle the noise. In this work, change detection mechanism for noisy environment is also 

proposed based upon observing the changes occurring within the hierarchy. 

Venayagamoorthy [160] adopted adaptive critic design (ACD) to handle DOP 

problems using particle swarm. The dynamic change in this study is caused in the inertia 

weight with the goal to optimize the objective function. Two neural networks of the 

ACD, namely Critic network and Action network, will receive the inputs as the inertia 

weight and the fitness value for gbest of the current iteration respectively. The objective 
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of the Action network is to minimize the output of the Critic network by varying the 

inertia weight to improve the gbest fitness. Esquivel and Coello Coello [92] proposed a 

dynamic macro-mutation operator along with PSO to maintain the diversity throughout 

the search process in order to solve DOPs. Every coordinate of each particle will undergo 

an independent mutation with a dynamic probability which possess its highest value 

when the change occurs in the dynamic landscape and gradually decreases till the next 

change takes place. 

Parsopoulos and Vrahatis [93] adopted their proposed unified PSO in dynamic 

environments. The unified PSO combines the exploration and exploitation term of the 

PSO mechanism into a unification factor to balance the influence of the global and local 

search directions. Zhang et al. [94] proposed a direct relation between the inertia weight 

of the particle and the change. In their model, the new gbest and pbest for each particle 

affect the inertia weight of the particle whenever a change in gbest or pbest occurs. Pan et 

al. [95] modified the PSO paradigm using a probability based movement of particles 

based upon the concept of energy change probability in Simulated Annealing (SA). The 

particle will move to the next position computed through traditional PSO heuristics only 

with a specific probability that exponentially depends on the difference between the 

objective values of the current and next iterations.  

Trojanowski proposed quantum particles in multi-swarm to solve dynamic 

optimization tasks. His two-phase paradigm includes computing an angle and a distance 

for the new location of the particles. The proposed method allows the locations to be 
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distributed over the entire search space. The angle is obtained from an angularly uniform 

distribution on the surface of a hyper-sphere while the distance is an α-stable random 

variate [161]. Parrott and Li [96] proposed species based PSO for solving dynamic 

optimization problems. The population is divided into some swarms, each surrounding a 

dominating particle called species seeds which are identified from the entire population 

based upon their objective function values. The new seed should not fall within the 

predefined radius of all previously found seeds in order to promote diversity. The seeds 

are then selected as the neighborhood best for different swarms. In a later work, Li and 

colleagues [10, 162-163] included quantum particles into species based PSO to promote 

more diversity along with the re-randomization of the worst species. 

Du and Li [97] introduced multi-strategy ensemble PSO in which particles are 

divided into two sections, part I uses a Gaussian local search to quickly seek global 

optimum in the current environment, while part II uses differential mutation to explore 

the search space. The position of particles in part II do not follow the traditional PSO 

mechanism, instead each particle in part II is determined by the particle in part I through 

a mutation strategy. There is 50% chance of getting closer to a randomly chosen pbest 

particles or going farther away from that pbest. Liu et al. [98] introduced a modified PSO 

to solve DOPs. In the proposed model, PSO consists of many compound particles. Each 

compound particle includes three single particles equilaterally distanced from each other 

in a triangular shape. A special reflection scheme is proposed to explore the search space 

more comprehensively in which the position of the worst particle among three in the 
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compound will be replaced with the reflected one. In each compound particle, after 

reflection is performed, a representative among these three particles is probabilistically 

chosen based upon the objective function values and distance from other two member 

particles. The representative member particles will then participate in PSO update 

mechanism. The two non-representative particles will also move the same 

distance/direction as representative particle has been moved in order to preserve the 

valuable information. 

 

7.2.2 Related Works in Cultural Algorithm for Dynamic Optimization 

Reynolds [3] proposed cultural algorithm (CA) as a double interconnecting 

heritage system in which information passed along to the next iteration through two 

interconnecting spaces, population and belief space. Defining culture as information 

storage in a broader than individual level which is accessible by all society members, CA 

tries to mimic it through its belief space scheme [99]. CA has shown its ability to solve 

different types of problems including dynamic optimization problems [106, 164]. 

Cultural framework had also been successfully adopted to assist particle swarm 

optimization to solve multiobjective optimization problems [140-141], and constrained 

optimization problems [165]. 

 

7.3 Cultural Particle Swarm for Dynamic Optimization 
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A summary of the pseudocode of the proposed paradigm is depicted in Figure 7.1 

and a block diagram representation of the proposed algorithm is demonstrated in Figure 

7.2. The population space (PSO) will be initialized and then divided into several swarms 

according to the closeness of the particles. The belief space (BLF) is then initialized. We 

evaluate population space using the objective function values. Next we apply acceptance 

function to select some particles which will be later adopted for the belief space. Belief 

space consists of five sections, situational, temporal (or history), domain, normative and 

spatial (topographical) knowledge. This cultural framework plays a key role in the 

heuristics. Next we apply influence functions to the belief space in order to select the key 

parameters of PSO for next iteration, including the repulsion factor for each particle, 

personal best, swarm best and global best. Through a scheme using information from a 

belief space, the change in dynamic will be detected. As soon as the change is detected, 

influence function applies to the belief space to perform the repulsive diversity-promoted 

migration among swarms. This migration will take place using the information extracted 

from the belief space. Then particles in the population space fly using newly computed 

repulsion factor, personal, swarm, and global best. This process continues until the 

stopping criteria are met.  

In the remainder of this section, thorough explanation of the multi-swarm 

divergence-promoted population space, acceptance function, different parts of belief 

space including situational, temporal, domain, normative and spatial knowledge, 

influence functions including change-driving diversity-based migration are presented. 
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Initialize PSO at t=0. 

Initialize BLF at t=0 

Repeat 

 Evaluate PSO(t). 

 Divide PSO(t) into several swarms using k-means. 

 Apply ACCEPTANCE function to PSO(t) to 

select particles which affect BLF(t). 

 Adjust BLF(t) including Situational, Temporal, 

Domain, Normative, and Spatial Knowledge.  

 Apply INFLUENCE function to BLF(t) to select 

pbest(t), sbest(t), and gbest(t) and to compute the 

repulsion factor for each particle of PSO(t). 

 If change is detected, perform the repulsive 

diversity-based migration among the swarms. 

 t=t+1. 

 Update PSO(t) using new repulsion factors 

pbest(t), sbest(t), and gbest(t). 

Until Termination Criteria are met. 

End 

Figure 7.1 Pseudocode of the cultural-based dynamic PSO 

 

 

7.3.1 Multi Swarm Population Space 

The population space in the proposed algorithm includes several swarms in which 

each swarm performs a modified divergence-promoted PSO paradigm. The particles are 

clustered into a predefined number of swarms using k-means clustering algorithm. In this 

study, the number of swarms, P, is 0.1 of the population size, N: 
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 ,1.0 NP                                                                                                       (7.4) 

 

where  .  is a rounding operator. In order to solve the diversity loss due to dynamic 

environment, a modification is added to the original three-level flight of PSO mechanism 

introduced by Yen and Daneshyari [144-145] based upon repulsion factor between 

particles. In the three-level flight, particle will follow the best attained experience in its 

history (personal level), and simultaneously follow the best behaving particle in its 

swarm to achieve a synchronal behavior in the neighboring particles and to share the 

information (swarm level), and finally also follow the best behaving particle in the whole 

population (global level). This paradigm of PSO has been formulated in [165] as: 
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where )(tvd

i is the d-th dimension of velocity of the i-th particle at time t, )(txd

i  is the d-th 

dimension of position of the i-th particle at time t, )(tpbestd

i is the d-th dimension of the 

best past position of the i-th particle at time t, )(tsbestd

i is the d-th dimension of the best 

particle in the swarm in which the i-th particle belongs at time t, )(tgbestd  is the d-th 
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dimension of the best particle of population at time t. 1r , 2r , and 3r  are uniformly 

generated random numbers in the range of (0,1), 
pc , sc , and 

gc  are constant values 

representing the weight for personal, swarm, and global behavior and w  is the 

momentum for previous velocity. The swarm flight, Equations (7.5) and (7.6), has been 

modified to promote diversity after a change is detected as following: 
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The forth term in the above equation is called the repulsive term and is 

incorporated into the dynamic of the particles in the swarm based upon the psychosocial 

studies. The psychological research shows that dissimilarity leads to repulsion in 

interpersonal relationship [14]. As a result people often diverge from members of other 

social groups by selecting cultural tastes (e.g., possessions, attitudes, or behaviors) that 

distinguish them from others [15]. A repulsion factor is added to all particles in the 

population space as a modified version of charged PSO. In charged PSO, some particles 

are considered as charged with fixed charges that repel from other charged particles 

according to the coulomb law [86]. In the modified version proposed here, )(tQi  and 
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)(tQ j
 are the repulsion factors for particles i and j  at time t , respectively. )()( txtx d

j

d

i    

denotes the vector connecting current position of particle i , to that of particle j and 

3
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 is inspired from the inverse squared-distance proportionality of coulomb 

force. Repulsion factor follows a dynamic which is computed via the cultural information 

extracted from the belief. 

 

Figure 7.2 Schema of the cultural framework adopted here, where population space is a multiple 

swarm PSO and belief space consists of situational knowledge, temporal (history) knowledge, domain 

knowledge normative knowledge, and spatial (topographical) knowledge. 

 

7.3.2 Acceptance Function 

The acceptance function is to select the best individuals that affect the belief 

space. All particles in the population are sorted in order in terms of their objective 
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function values at the current iteration and  % of the particles starting from best to worst 

are selected, where   is a predefined constant value. 

 

7.3.3 Belief Space 

The belief space in this paradigm consists of five sections, situational, temporal, 

domain, normative and spatial knowledge. In the remainder of this section, the type of 

information, represent method of the knowledge and updating methodology of the 

knowledge in each section of the belief space are elaborated. 

 

7.3.3.1 Situational Knowledge 

This part of belief space is used to keep the good exemplar particles for each 

swarm. Its representation is shown in Figure 7.3. )(ˆ tix ( Pi ,...,2,1 ) where P is the 

number of swarms defined in Equation (7.4), is the best particle in the i-th swarm based 

upon objective function evaluation. Assume that at an arbitrary iteration the i-th swarm 

consists iN
 
particles as 

iNzzz ,...,, 21  
with correspondent objective functions values as 

iNfff ,...,, 21  
respectively. Then },...,,{)(ˆ

21 iNi zzzt x  is defined such that: 

 

,min)),(ˆ( 1 lNli fetf
ix          ,,...,2,1 Pi                                                           (7.9) 
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Figure 7.3 Representation for situational knowledge 

 

where )),(ˆ( etf ix  is the objective function value for the particle )(ˆ tix .  The situational 

knowledge does not update at every iteration, but only when a change is detected in the 

landscape. To do so, the objective values for the new positions of the particles will be 

adopted.  Then the particle corresponding to the least value in each swarm will be stored 

in situational knowledge. The situational knowledge will be used by the domain 

knowledge, also to compute the swarm best particles for the flight, and to facilitate the 

communication among swarms. 

 

7.3.3.2 Temporal Knowledge 

This part of belief space is used to keep the history of the individual’s behavior. 

Its representation is shown in Figure 7.4 where )}(),...,(),({)( 21 tttt NTTTT  and

)}(),...,(),({)( 21 tttt NPPPP  (N is the number of particles). )(tjT is a set of past temporal 

pattern up to time, t , of the j-th particle defined as follows: 

 

 

Figure 7.4 Representation for temporal knowledge 

 

)},(),...,2(),1({)( tffft jjjj T
  
  ,,...,2,1 Nj                                                       (7.10) 
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where )(),...,2(),1( tfff jjj
 are the objective function values of the j-th particle for the 

time steps 1,2, … and t, respectively. )(tjP  is the set of all past positions of the j-th 

particle in the whole population defined as )}(),...,2(),1({)( tt jjjj xxxP , ( Nj ,...,2,1 ). 

The temporal knowledge will be updated at every iteration. To do so, the updated 

position of the particle and previously stored temporal knowledge will be adopted as 

following: 

 

                     )},1({)()1(  tftt jjj TT    ,,...,2,1 Nj                                                                                                                             

     )},1({)()1(  ttt jjj xPP   .,...,2,1 Nj                                          (7.11) 

 

The temporal knowledge will later be used to compute the personal best for every 

particle in the population space. 

 

7.3.3.3 Domain Knowledge 

This part of belief space adopts information about the problem domain and its 

related parameters to lead the search process. This section keeps all the 

positional/objective values for gbest and sbest from the last migration till the current 

time. Its representation is shown in Figure 7.5 which consists of four parts: g  , fg , S , 

and fs   . The first part, )(tg , is defined as following: 
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},)({)( ttTtgbestt Migration

k  g
                                                                                     

(7.12) 

 

where Migration

kT  denotes the time for the k-th migration (and the last migration before the 

current iteration) among swarms ( ,...2,1,0k ), and t  is the current iteration, and P  is the 

number of swarms given by Equation (7.4).  ttT Migration

k    denotes all the iterations, 

t , among the last migration , Migration

kT , and the current time, t . By default it is assumed 

that 10 MigrationT . )( tgbest is computed as following: 

 

))},(min()(1),()({)(   ttfNjtttgbest jj FPx                                    (7.13) 

 

where )}(),...,(),({)( 21

  tttt NxxxP  is the whole population of particles at time t , and 

)}(),...,(),({)( 21

  tftftft NF is a set consisting of the modified objective function 

values for all particles at time t . The second part of domain knowledge is )(tfg which is 

defined as objective values for each values of the )(tg . Notice that since the objective 

function in Equation (7.1) is dynamic, therefore the objective function value for the same 

position may not necessarily be identical for two different iterations due to the possible 

change of environment. In the domain knowledge we preserve the objective value as: 

 



206 

 

},))(({)( ttTtgbestft Migration

k  fg                                                                  (7.14) 

 

where (.)f  is the objective function adopted for the time t , which may not be the same 

as (.)f  for the current time due to environmental change, e (see Equation (7.1)). The 

third section of the domain knowledge is )(tS  computed as: 

 

},,...,2,1,)(ˆ{)( PittTtt Migration

ki  
xS

 
                                                         (7.15)

 

 

 

Figure 7.5 Representation for the domain knowledge 

 

where )(ˆ tix is extracted from the situational knowledge for all such time t  between the 

last migration, Migration

kT  and the current time, t . Finally, the fourth section of the domain 

knowledge is )(tfs  objective values for each values of the )(tS as following: 

 

},,...,2,1,))(ˆ({)( PittTtft Migration

ki  
xfs                                                      (7.16) 

 

where (.)f  is again the objective function used for the time t , not the current time, since 

due to dynamic nature of the problem (.)f  for the current time might have been different 
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from (.)f  for the time t . 

The domain knowledge is then updated at every iteration and reset when a 

migration among swarms takes place as following: 
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This means that if migration does not happen, the new gbest is computed using 

Equation (7.13) and will be added to the domain knowledge along with its correspondent 

objective values. Also the new information from situational knowledge for the current 

iteration, along with their correspondent objective values will be added to update the 

domain knowledge. On the other hand if migration takes place then the new gbest is 

computed using Equation (7.13) and will be placed as the first part of domain knowledge. 

The second part is the objective value this new gbest. The third part of the domain 

knowledge is extracted from the current situational knowledge, and finally the fourth part 
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is placed via the objective value for the third part. In this way, the domain knowledge will 

be constructed if migration has taken place. The domain knowledge will later be used to 

detect the changes of the dynamic landscape of the problem, and also to produce the 

required particles for particles’ flights such as global best and swarm best. 

 

7.3.3.4 Normative Knowledge 

In this section of the belief space best areas are adopted to nominate and exchange 

among swarms. Its representation is demonstrated in Figure 7.6 which consists two parts 

 },...,,{ 21 PSSSS and  },...,,{ 21 PRRRR where iS  
( Pi ,...,2,1 ) denotes a send list 

of particles in the i-th swarm which will be selected to be sent to the next swarm, while

iR ( Pi ,...,2,1 ) is a replace list of particles in the i-th swarm to be replaced by particles 

coming from another swarm. 

 

 

Figure 7.6 Representation of normative knowledge 

 

This mechanism to increase diversity has been introduced and adopted by Yen 

and Daneshyari [144-145]. This mechanism is used to quickly regain the divergence after 

a change is detected in the landscape of the problem. To regain the divergence, each 

swarm prepares two lists of particles, a list to be sent to the next swarm and another to be 

replaced by particles coming from another swarm. These two sections of normative 
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knowledge is prepared according to the particles’ locations in the swarm and the 

objective function values. Assume that at an arbitrary iteration the i-th swarm consists iN  

particles as },...,,{ 21 iNi zzz . The sending list for the swarm is prepared in the 

following order [165]: 

(1) The highest priority in the selection of particles is given to a particle that has the least 

average Hamming distance from others. This particle is considered as the representative 

of the swarm. The average Hamming distance between each pair of particles in the 

swarm is calculated and then the least among them is found. The least average Hamming 

distance, z , is then formulated as: 

 

,min1 kNk zz
i                                                                                                (7.21) 

 

where kz  is the average distance from kz ( iNk 1 ) to other particles in the swarm. kz  is 

a particle of the i-th swarm such as },...,,{ 21 iNi zzz  at an arbitrary iteration.  kz  is 

computed as following: 
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where du is the d-th dimension of vector u , M is the total dimension of the vector, and .

denotes the absolute value. 

(2) The second priority is given to the closest particles to the representative particle 

whose objective value is greater than that of the representative. Assume that ,,...,, 21 iNfff

and f  are objective values corresponding to ,,...,, 21 iNzzz and z  respectively. Therefore 

the second priority is given to: 

 

},aluessmallest vth -  theis ,),(,{ ii Mzyeyfyy  H                        (7.24) 

 

where },1{ ffNlf lil H , and iM is a threshold value for the i-th swarm that 

depends on the rate of information exchange among swarms, r , (a predefined value 

between 0 and 1), and population of the i-th swarm, iN , defined as following [144-145]: 

 

  .1
2

 i
i

rN
M                                                                                              (7.25) 

 

(3) The third priority is given to the closest particles to the representative particle whose 

modified objective value extracted from the belief space is less than that of the 

representative: 
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           },aluessmallest vth -  theis ,),(,{ ii Mzwewfww  G                    (7.26) 

 

where },1{ ffNlf lil G . 

 

(4) The fourth and last priority is given to the best performing particle in the swarm: 

 

}.min),(,{ 1 lNli fesfss
i                                                                        (7.27) 

Note that depending on the predefined fixed value for allowable number of the 

sending list, migrationN  , the sending list will be filled in each swarm using the above-

mentioned priorities. 

The other section of the normative knowledge, replacement list    is also 

prepared by each swarm, based upon the similar positional information of particles in the 

swarm. When swarms are approaching local optima, many particles’ locations are the 

same. Each swarm will remove this excess information through its replacement list. The 

replacement list in each swarm is assembled in the following order: 

(1) The first priority is given to the particles with identical parametric space information, 

by the order of their modified objective values extracted from the belief space, with the 

least modified objective values being replaced first. 

(2) The second and last priority is given to the particles with the lowest modified 
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objective values if all particles of the first priority have already been in the replacement 

list. 

The normative knowledge is updated whenever a change is detected in the 

dynamic landscape. After a change is detected, the normative knowledge will be updated 

using the current positional information and their corresponding objective values. The 

normative knowledge later will be used to perfrom the migration among swarms and to 

give a jump start along with spatial knowledge to the search process of the changed 

landscape. 

 

7.3.3.5 Spatial Knowledge 

Spatial knowledge is discussed in this subsection. The spatial knowledge of the 

belief space, represented as Figure 7.7, consists of two sections, 

)}(),...,(),({)( 21 tQtQtQt NQ and )}(),...,(),({)( 21 tttt N , where N is the number of 

particles.  

 

 

Figure 7.7 Representation for spatial knowledge 

 

)(tj  ( Nj ,...,2,1 ) is computed as a shifted and normalized objective function for the j-

th particle defined as:  
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where ),( ef jx  is the objective function value for the j-th particle, 
jx , and 

)),((min)(min eftf jXj xx is the lower bound of the objective function value on the j-th 

particle at time t, and ))((max)(max

jXj ftf xx is the upper bound of the objective 

function value on the j-th particle at time t. )(tQ j  ( Nj ,...,2,1 ) called repulsion factor 

is then computed for all particles through a sigmoid function as shown in Figure 7.8 as 

following: 

))(exp(1

1
)(
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tQ

j

j


 ,                  ,,...,2,1 Nj                                              (7.29) 

 

 
Figure 7.8 Sigmoid function to compute repulsion factor in spatial knowledge with 10   

 

where   is the rate for the sigmoid function. According to Equation (7.28), when a 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



214 

 

change has not taken place in the environment, )(tj  gets a value closer to –1 as its 

objective function, ),( ef jx gets smaller, and closer to 1 as ),( ef jx gets larger. The 

sigmoid transformation of Equation (7.29) will then compute the repulsion factor, )(tQ j

such that for the better half of the particles’ population, there is no or very small 

repulsion factor and for the other half of the population space, the repulsion factor will be 

close to 1 (e.g., for the best particle in the population space, 0)( tQi ). Hence during the 

flight of particles of PSO, the better particles will not be repelled, so we do not lose 

information of the better particles while the particles will be repelled from the worse 

particles in the population space.  

On the other hand, as soon as a change is detected, we do not want to force 

particles to still be close to the best particles because the environment has changed and 

they may not be any different from other particles. In this case, )(tj  is statistically 

assigned as a uniform random number between –1 and 1. It is then transformed through 

the sigmoid function to compute )(tQ j . Statistically speaking, due to the performance of 

the sigmoid function, a random half of the particles will be assigned a value close to zero 

as repulsion factor, and the other half of the half will be assigned a value of 1. Although 

this process avoids particles from being stuck near optimum point, but it also helps 

preserve part of the evolutionary information stored in the search process and not 

completely forget all the evolutionary data and re-start fresh. This mechanism helps to re-

diversify the search space quickly right after the change in the dynamic landscape is 
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detected and helps the algorithm with a jump start. 

The spatial knowledge is updated at every iteration. After the PSO flight is 

performed, the new positions of the particles will be evaluated using the objective 

functions, and then the new spatial knowledge will be computed. Spatial knowledge will 

be used to compute the repulsion term in the the flight mechanism. 

 

7.3.4 Influence Functions 

 

After belief space is updated, the correspondent knowledge should be used to 

influence the flight of particles in PSO. We propose to use the knowledge in belief space 

to select the personal best, swarm best, and global best for the PSO mechanism, and to 

perform the repulsive diversity-based migration among swarms. 

 

7.3.4.1 pbest Selection 

In order to select the personal best, we use information in the temporal knowledge 

section of the belief space. The best behaving behavior in the particle’s past history 

should be selected as following: 

 

))},(min()ˆ(),()ˆ(1),()ˆ({)( ttfttfNjtttpbest jjjjjji TTP  x              (7.30) 

( Pi ,...,2,1 )                      
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where )}(),...,2(),1({)( tt jjjj xxxP is the set of all past positions of the j-th particle in the 

whole population, and )}(),...,2(),1({)( tffft jjjj T ( Nj ,...,2,1 ) is the objective values 

for the past history of the j-th particle, both extracted from the temporal knowledge 

section of the belief space.  

 

7.3.4.2 sbest Selection 

In order to select the swarm best particle, the situational knowledge is adopted. 

The information stored in the situational knowledge section of the belief space is simply 

copied into swarm best particles: 

 

),(ˆ)( ttsbest ii x      ,,...,2,1 Pi                                                                          (7.31) 

 

where P is the number of swarms and )(ˆ tix  is the representative of the situational 

knowledge of the belief space. 

 

7.3.4.3 gbest Selection 

We use the domain knowledge stored in the belief space to copy the latest and 

current element of )(tg  of Equation (7.12) as the )(tgbest . 

 

7.3.4.4 Diversity based Migration Driven by Change  
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In order to perform repulsive change-driven diversity based migration, we use 

information in the domain knowledge and normative knowledge sections of the belief 

space. The information in the domain knowledge will be used to monitor the change in 

the dynamic, while information in the normative knowledge will be adopted to do the 

migration as a response to the detected change. The change has taken place if and only if 

there is at least one   such that: 

}{ 0  ,                                                                                              (7.32) 

where   is defined as: 

 }.))(()({}))(()({ tfttft Sfsgfg                                                                 (7.33) 

 

)(tfg  , )(tg , )(tfs  and )(tS are adopted from the domain knowledge of the belief space, 

and . denotes the absolute value. The allowable change, 0 , is set to a predefined small 

value. Notice that there is a difference between objective function in Equation (7.33), i.e., 

))(( tf g and ))(( tf S , with the objective function in Equations (7.14) and (7.16), i.e., 

))(( tgbestf and ))(ˆ( tf ix , this difference is due to the possible environmental changes. 

To be more precise, ))(),(())(( tetgbestftf g , is the objective value for all gbest 

values (all previous iterations, t , in domain knowledge) computed using the “current” e. 

While ))(),(())((   tetgbestftgbestf is the objective value for all gbest values (all 

previous iterations, t , in domain knowledge) computed under the environmental 
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parameter e, at the previous iteration, t .Therefore any difference that appears in 

Equation (7.33) should be due to the differences between the environmental parameter at 

the current iteration, )(te , and the previous time, )( te . 

When the change is detected, as the response to the change, we have to quickly 

re-diversify because the previous optimum solutions are no longer valid for the new 

environment. This response is performed using a repulsive diversity based migration 

through the information in the normative knowledge of the belief space. As soon as the 

change is detected, the data from the normative knowledge will be adopted to exchange 

information among swarms. Each swarm accepts the sending list S  from other swarm 

and will replace it with its own replacement list, R  (Both S  andR  are extracted from 

the normative knowledge). This information exchange among swarms happens in a ring 

sequential order between each pair of swarms.  

 

7.4 Experimental Study 

 

In this section the performance of the proposed cultural-based dynamic particle 

swarm optimization is evaluated against those of the state-of-the-art dynamic particle 

swarm optimization (DPSO) heuristics. 
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7.4.1 Benchmark Test Problems 

 

Six test functions as benchmark problems have been used to test the ability of the 

proposed cultural-based DPSO as following: MP1 (moving cone peaks benchmark 

problem) is a maximization problem which has components as moving competing cones 

with independently varying height, width and location [166]. DF2 (time-varying 

Gaussian peaks problem) is a maximization problem that adopts independently varying-

dimensional Gaussian peaks. Each peak’s amplitude, center, and variance can be varied 

independently [167]. DF3 is a minimization problem as moving parabola with linear 

translation in change [168-169]. DF4 is also a minimization problem of moving parabola 

but with random dynamics [168-169]. DF5 is a minimization problem of moving 

parabola with circular dynamic [168-169] and finally DF6 (oscillating peaks function) is 

a maximization problem that has been used in [170]. It has two landscapes with ten peaks 

each. The parameters of each peak can independently vary. The detailed formulation of 

these benchmark test functions are presented in Appendix C for reference. 

For the simulations here, benchmark problems have the following parameter 

setting wherever applies, unless stated otherwise: number of peaks is set as default value 

of 10, every 5,000 evaluations the change takes place. The peak shape is cone (for MP1), 

Gaussian (for DF2), parabola (for DF3, DF4, and DF5), and bell curve (for DF6). Default 

decision space dimension is 5. Each decision variable is limited between 0 and 100. The 

height and width severity are set as 7 and 1 respectively. The height peak is limited 
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between 30 and 70. The width peak is also limited between 1 and 12. Finally, the peak 

shift length is set as 1. 

 

7.4.2 Comparison Algorithms 

 

The proposed algorithm has been compared against other state-of-the-art dynamic 

particle swarm optimization paradigms that are adopted to solve DOPs. These algorithms 

include DPSO [44], hybrid DPSO (h-DPSO) [92], modified DPSO (m-DPSO) [94] and 

speciation based DPSO (s-DPSO) [96]. DPSO [44] is a regular particle swarm 

optimization that adopts a simple strategy with a small perturbation, the initialization of 

the swarm can start from old population, while with large perturbation, it does re-

initialize and then compare the results with the old swarm and select the best one. The 

selected parameters are given in Table 7.1. For the moment of inertia, as suggested in 

[44], a uniform random number with average of 0.75 is selected. In h-DPSO [92] a 

dynamic macro-mutation operator plays the role of maintaining diversity throughout the 

search process. The mutation is for every coordinate of each particle. The mutation will 

take place with a probability within the minimum and maximum value given in Table 7.1 

as suggested in [92] and possess its highest value when the change occurs in the dynamic 

landscape and gradually decreases till the next change takes place. The swarm size and 

neighborhood radius size are also given in this table as suggested in the literature [92]. 

The next algorithm is m-DPSO [94] the changed local optimum and global optimum are 
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adopted to guide the movement of each particle and avoid making direction and velocity 

decisions in the basis of outdated memory. These two changes dynamically affect the 

inertia weight. The influence weight of pbest vs. gbest is set as 0.4 as suggested in [94]. 

The last heuristic for comparison is the s-DPSO [96] that divides population into species, 

each one surrounding a dominating particle, namely seed. The parameter settings are 

given in Table 7.1 as suggested by [96]. 

The parameter settings of cultural DPSO are also summarized in Table 7.1 as 

many of these settings are adopted in other paradigms of PSO [165]. The population size 

is 100. All of the algorithms are implemented in Matlab using real-number representation 

for decision variables. For each test function, 50 independent runs were conducted with a 

maximum objective function evaluation of 500,000.  

 

Table 7.1 Parameter settings for different paradigms 

Algorithm Parameters Settings 

Cultural DPSO α=10, δ0 =0.0001, cp= cs= cg=1.5,  w=rand(0.5,1) , r =30%, NMigration =5 

DPSO cp= cg= 1.5,  w= rand(0.5,1) 

h-DPSO cp= cg = 1.5,  w= 0.5, pmin=0.5, pmax=0.8, Swarmsize=50, rNeighborhood=4 

m-DPSO cp= cg = 1.5,   = 0.4  

s-DPSO 1= 2= 2.05,   = 0.729844, rs=0.5 
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7.4.3 Comparison Measure 

 

To quantify the performance of the proposed paradigm, the offline error variation 

(OEV) index,
offlinee , defined as the average of the error between the true optimal fitness 

and the best fitness at each evaluation [171] is used: 
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BestTrueoffline ff
T

e                                                                                  (7.34) 

 

where i is the evaluation counter, T is the total number of evaluations, Truef  is the true 

optimum solution updated after a change occurs, and i

Bestf  is the best individual out of the 

evaluations starting from the last occurrence of change until the current evaluation. For 

perfect tracking of change the offline error variation should be zero. 

 

7.4.4 Simulation Results 

 

The number of evaluations computed as the product of the population size and the 

current iteration is used as the counter for comparing the paradigms against each other. 

Table 7.2 compares the performance of the proposed cultural DPSO with selected state-

of-the-art DPSOs on test problem MP1 as a function of iterations elapsed between 

changes, peak numbers and decision space dimensions, respectively. Figures (7.9) to 
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(7.11) also depicts a graphical comparison of the OEV index of different algorithms on 

test function MP1 as a function of elapsed iterations between changes, peak numbers, and 

decision space dimensions, respectively. As can be observed from the first section of 

Table 7.2 and Figure 7.9 the proposed cultural-based DPSO performs better than all 

selected state-of-the-art DPSOs for different iteration intervals between the changes. 

When the iteration interval between changes is short, i.e., high frequency of change, the 

proposed algorithm performs much better than other algorithms. When the frequency of 

change decreases, the proposed algorithm performs better or equal to s-DPSO. From the 

second section of Table 7.2 and comparison graph in Figure 7.10, it can be seen that 

cultural DPSO can easily outperform other DPSOs with both small and large number of 

peaks suggesting that the algorithm can handle multiple peaks as well as a smaller 

number of peaks. Lastly the third section of Table 7.2 along with Figure 7.11 

demonstrates that when decision space dimension increases, the proposed paradigm can 

retain its performance while PSO, h-DPSO and m-DPSO show difficulties.  

However the proposed algorithm will still perform better than s-DPSO in higher 

dimensions. In Figure 7.9, it is shown that as the number of iterations elapsed between 

changes increases (lower frequency of change), algorithms usually perform better 

through lower values for OEV index. As can be seen from Figure 7.11, the offline error 

first increases by increasing peak number but then decreases for a higher number of 

peaks. Figure 7.12 also demonstrates that as the dimension of the decision space 

increases, the performances of the algorithms deteriorate. 
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Table 7.2 OEV index
 
after 500,000 FEs on test problem MP1 as a function of elapsed iterations 

between changes, peak numbers and decision space dimension, respectively 

Algorithms DPSO h-DPSO m-DPSO s-DPSO 
Cultural 

DPSO 

Elapsed 

Iterations 

(Peak no.=10) 

(Dimension=5) 

1 21.5659 16.8633 18.9424 16.0456 14.7615 

5 20.0529 14.4976 16.8144 10.7378 8.5748 

10 18.9479 11.8323 13.4967 8.3500 7.7687 

25 17.2919 9.3947 10.9319 7.8238 5.3367 

50 15.8938 8.3067 9.8267 5.2829 4.0949 

100 12.3284 5.8512 7.9279 3.7739 3.5965 

Peak Numbers 

(Dimension=5) 

(Elapsed 

Iterations=50) 

1 10.6706 7.2796 8.3222 3.3266 2.0110 

10 15.8938 8.3067 9.8267 5.2829 4.0949 

20 17.7876 9.8267 10.5007 5.7245 4.1584 

30 21.7697  10.1928 11.2383 6.3762 4.3696 

40 20.5412 9.3868 10.9821 5.6689 4.2820 

50 18.8187 8.9244 9.7894 5.2037 4.1987 

100 17.3904 8.0668 9.3434 4.8239 3.5810 

200 16.0405 7.8382 8.5455 4.0527 3.2445 

Dimension 

(Peak no.=10) 

(Elapsed 

Iterations=50) 

5 15.8938 8.3067 9.8267 5.2829 4.0949 

10 19.2543 9.7779 12.5128 7.3182 5.4785 

20 25.5887 11.9483 18.5846 9.3703 7.8644 

50 30.7807 15.9640 20.3326 12.3574 10.6298 
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Figure 7.9 Comparison of OEV index as a function of elapsed iterations between changes on test 

function MP1 with 10 peaks (PSO, h-DPSO, m-DPSO, s-DPSO, and Cultural DPSO are denoted as 

O, , ,  and , respectively) 

 

 
Figure 7.10 Comparison of OEV index as a function of peak numbers on test function MP1 (DPSO, 

h-DPSO, m-DPSO, s-DPSO, and Cultural DPSO are denoted as O, , ,  and , respectively) 
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Figure 7.11 Comparison of OEV index as a function of decision space dimension on test function 

MP1 with 10 peaks (DPSO, h-DPSO, m-DPSO, s-DPSO, and Cultural DPSO are denoted as O, , , 

 and , respectively) 

 

Table 7.3 shows comparison result of different algorithms using the OEV index 

after 500,000 evaluations on test problem DF2 as a function of elapsed time between 

changes and peak numbers respectively. As can be seen from this table, the proposed 

heuristic has performed better than other selected DPSOs even when the number of 

iterations elapsed between two changes is small (high frequency of change), or large (low 

frequency of change). Table 7.3 also indicates better performance of cultural-based 

DPSO   on high and low peak numbers.  
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Table 7.3 OEV index
 
after 500,000 FEs on test problem DF2 as a function of elapsed iterations 

between changes and peak numbers, respectively 

Algorithms DPSO h-DPSO m-DPSO s-DPSO 
Cultural 

DPSO 

Elapsed 

Iterations 

(Peak no.=10) 

 

1 22.6567 17.8519 19.9326 15.4838 11.8472 

5 20.1790 16.0555 17.2925 13.6653 10.0272 

10 17.7310 14.1937 16.9677 12.1027 8.1664 

25 15.0887 13.7920 15.7640 10.8993 6.9341 

50 14.1655 11.5214 12.2221 9.4532 5.1894 

100 13.3858 11.3541 11.8883 7.2937 4.3288 

Peak Numbers 

(Elapsed 

Iterations=50) 

1 12.9645 8.5282 11.1864 5.8702 2.6477 

5 13.5484 9.7094 11.7487 7.6604 3.8549 

10 14.1655 11.5214 12.2221 9.4532 5.1894 

50 18.3276 12.7019 14.9619 10.8763 5.8110 

100 23.6404 15.2986 18.0566 11.2019 6.0423 

200 27.1843 18.5044 20.6374 12.7543 6.6962 

 

 

Comparisons between the performances of cultural DPSO against selected 

algorithms are demonstrated by OEV index on moving parabola problems with linear 

dynamic (DF3), and random dynamic (DF4) and circular dynamic (DF5) in Tables (7.4) 

to (7.6), respectively. Each of these three tables consist the comparison as a function of 

cycle length evaluations and peak numbers. The results in these three tables show that 

cultural DPSO outperforms other DPSO paradigms in both low/high frequency and 

low/high peak numbers. 
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Table 7.4 OEV index
 
after 500,000 FEs on test problem DF3 as a function of cycle length evaluations 

between changes and peak numbers, respectively 

Algorithms DPSO h-DPSO m-DPSO s-DPSO 
Cultural 

DPSO 

Cycle length 

evaluations 

(Peak 

no.=10) 

1,000 9.7765 6.7418 8.7616 4.4373 1.8717 

2,500 9.3827 6.5966 8.2517 4.2268 1.6174 

5,000 8.9235 6.2617 8.0357 3.8446 1.4048 

10,000 8.7330 6.0996 7.7455 3.5833 1.1916 

20,000 8.4857 5.7436 7.3795 3.3067 0.9385 

100,000 8.1117 5.4658 7.1713 3.1384 0.7433 

Peak no. 

(Cycle length 

=5000) 

1 8.4597 5.4109 7.3592 3.2203 0.7167 

5 8.7230 5.8472 7.8620 3.6865 0.9576 

10 8.9235 6.2617 8.0357 3.8446 1.4048 

50 9.6820 6.7730 8.3427 4.1612 1.7498 

100 10.5639 6.9577 8.6916 4.4093 1.9764 

200 10.9837 7.4803 8.9838 4.8666 2.3176 

 

Table 7.5 OEV index
 
after 500,000 FEs on test problem DF4 as a function of cycle length evaluations 

between changes and peak numbers, respectively 

Algorithms DPSO h-DPSO m-DPSO s-DPSO 
Cultural 

DPSO 

Cycle 

length 

evaluations 

(Peak 

no.=10) 

1,000 10.1820 6.9003 9.1100 4.9024 1.9104 

2,500 9.7682 6.7108 8.6871 4.6705 1.7394 

5,000 9.3995 6.5495 8.3202 4.1221 1.5110 

10,000 8.9101 6.1014 7.9551 3.8166 1.3524 

20,000 8.7339 5.9111 7.4018 3.5209 1.0952 

100,000 8.3882 5.6033 7.2759 3.2033 0.8505 

Peak no. 

(Cycle 

length 

=5000) 

1 8.6803 5.7203 7.5045 3.3105 0.7850 

5 8.9472 5.9475 7.9879 3.7624 1.2661 

10 9.3995 6.5495 8.3202 4.1221 1.5110 

50 10.0940 6.9105 8.5103 4.2105 1.7320 

100 10.9905 7.1383 8.7662 4.4995 1.9410 

200 11.5193 7.5776 9.1106 4.9195 2.3952 
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Table 7.6 OEV index
 
after 500,000 FEs on test problem DF5 as a function of cycle length evaluations 

between changes and peak numbers, respectively 

Algorithms DPSO h-DPSO m-DPSO s-DPSO 
Cultural 

DPSO 

Cycle 

length 

evaluations 

(Peak 

no.=10) 

1,000 10.3495 7.2870 9.4110 5.1551 1.9840 

2,500 9.9478 6.9485 8.8660 4.8400 1.7910 

5,000 9.5980 6.8778 8.5229 4.3481 1.6258 

10,000 9.1336 6.3227 8.1593 3.9330 1.4817 

20,000 8.9105 6.1005 7.7206 3.6484 1.2155 

100,000 8.5119 5.7490 7.4605 3.3710 0.9750 

Peak no. 

(Cycle 

length 

=5000) 

1 8.9209 5.8103 7.7101 3.5103 0.8929 

5 9.1332 6.1854 8.1690 3.9004 1.3820 

10 9.5980 6.8778 8.5229 4.3481 1.6258 

50 10.2059 7.1100 8.6202 4.4820 1.8720 

100 11.2449 7.3665 8.9110 4.6114 2.0973 

200 11.7101 7.6505 9.5339 5.1776 2.5191 

 

Test function DF6 has two landscapes with ten peaks as it has been used in [170]. 

The parameters of each peak can be varied independently. In Table 7.7, the performance 

of selected algorithms is compared for different cycle lengths. As can be observed from 

the table, the cultural DPSO shows better performance both in lower and higher 

frequencies of change compared to DPSO, h-DPSO and m-DPSO, while its performance 

is equal to or less than s-PSO in high frequency of change and equal to or better than s-

PSO in low frequency of changes. For better quantitative comparison of the algorithms 

over all benchmark problems, the Mann–Whitney rank sum test has been conducted to 

examine the significance of the difference between the algorithms [132]. In Table 7.8, the 

p-values with respect to the alternative hypothesis (for p-values less than α=0.5) for each 
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pair of the cultural DPSO and a selected DPSO paradigm are presented. The distribution 

of the proposed algorithm has significant difference with respect to that of the selected 

DPSO, unless it is marked in the table. As can be seen from the table, the cultural DPSO 

outperforms other DPSOs for test problems DF2-DF5. For test problems MP1 and DF6, 

the proposed paradigm outperforms DPSO, h-DPSO, and m-DPSO appreciably. However 

the performance of the cultural DPSO is no different than s-DPSO on these two test 

functions and performs equally well with s-DPSO. 

In Table 7.9, the performance of cultural DPSO along with other DPSOs for 

lower fitness evaluations at 50,000 evaluations has been investigated to check the relation 

among algorithms at an earlier stage in the search process. As shown in the table, at the 

earlier stage, the cultural DPSO outperforms DPSO, h-DPSO, and m-DSO for all six 

adopted test functions. In comparison between cultural DPSO and s-DPSO, the results in 

the table demonstrate that cultural DPSO outperforms s-DPSO for test functions MP1 and 

DF2-DF5, but is outperformed by s-DPSO for test function DF6. Notice that this table 

adopts the default value of 5,000 for cycle length. The result in Table 7.9 for comparison 

between s-DPSO and cultural DPSO on test function DF6 is similar to results from Table 

7.7 for lower cycle length of 1,000, 2,500 and 5,000 fitness evaluations (higher 

frequencies). Furthermore, the results at earlier stages computed in Table 7.9 (50,000 

FEs) follow the same pattern as previously discussed tables at the later stages, i.e., Tables 

(7.3) to (7.7) for 500,000 FEs. Therefore maximum number of fitness evaluations does 

not affect the relative performance of cultural DPSO compared to those of other DPSOs. 
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This suggests that even in the earlier stage, the proposed cultural DPSO can be relied on 

to obtain a relatively better performance compared to the other state-of-the-art DPSOs. 

  

Table 7.7 OEV index
 
after 500,000 FEs on test problem DF6 as a function of cycle lengths evaluations 

between changes 

Cycle Length DPSO h-DPSO m-DPSO s-DPSO 
Cultural 

DPSO 

1,000 10.4950 7.4247 9.1277 2.8633 2.9176 

2,500 9.8606 7.3043 8.9541 2.8522 2.8956 

5,000 9.5561 7.1855 8.7864 2.8456 2.8641 

10,000 8.3459 6.2464 8.3488 2.6884 2.6207 

20,000 7.7967 6.1882 7.3398 2.6511 2.6034 

100,000 7.4462 6.0789 7.0982 2.6368 2.5352 

 

 

 

Table 7.8 P-values using Mann-Whitney rank-sum test with α=0.5. There is significant difference 

between a pair of comparing algorithms unless it is stated as no difference denoted as ND. 

Test 

Problem 

Cultural DPSO AND 

DPSO h-DPSO m-DPSO s-DPSO 

MP1 4.44e-07 1.37e-04 1.79e-05 0.1031 (ND) 

DF2 3.63e-05 1.95e-04 5.96e-05 0.0024 

DF3 3.63e-05 3.63e-05 3.63e-05 3.63E-05 

DF4 3.63e-05 3.63e-05 3.63e-05 3.63E-05 

DF5 3.63e-05 3.63e-05 3.63e-05 3.63E-05 

DF6 0.0022 0.0022 0.0022 1 (ND) 

 

The experimental results presented in this section show that overall performance 

of the cultural DPSO is better than most of the selected DPSOs for all benchmark test 

functions chosen. However for test function DF6 and MP1, its performance shows no 
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difference when compared to s-DPSO (both in earlier and later stages of search process). 

However the proposed cultural DPSO still well outperforms s-DPSO on other four 

benchmark test problems as shown by Mann-Whitney statistical tests. This suggests that 

cultural algorithm with its abilities such as different sections of belief space prepares an 

organized informational storage that will help the process of quick re-divergence and re-

convergence around new optimum points when a change happens in the dynamic of the 

problem. 

 

Table 7.9 OEV index
 
after 50,000 FEs using default parameters 

Algorithms DPSO h-DPSO m-DPSO s-DPSO 
Cultural 

DPSO 

MP1 16.9269 9.4858 10.6862 4.9268 4.3686 

DF2 15.1176 12.8552 13.9242 10.4435 5.4236 

DF3 9.6942 7.4026 9.6903 4.9584 1.6409 

DF4 10.0439 7.1154 9.8032 5.9512 1.6814 

DF5 10.7485 7.3807 9.9352 5.7724 1.7366 

DF6 10.9565 8.2904 9.6078 2.8526 2.9067 

 

 

7.5 Discussions 

 

In this study, the cultural-based dynamic particle swarm optimization has been 

proposed to solve DOP problems. This novel heuristic is built upon a cultural framework 

that consist two sections, a multiple swarm PSO as the population space and a belief 

space including five sections: situational knowledge, temporal knowledge, domain 
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knowledge, normative knowledge, and spatial knowledge. The required information are 

categorized properly in the belief space in such a manner that can be easily accessed to 

move toward the optimum solution in the population space, and to monitor and detect any 

possible changes in the environment, also to respond quickly to the occurred changes by 

a repulsive diversity-promoted migration. When particles share their information through 

migration process, they will be able to quickly re-diversify and move efficiently towards 

new optimum by re-converging around it. The cultural information stored in the belief 

space will assist the population space in selecting the leading particles in the PSO flight. 

The flight mechanism follows a three level movement along with a repulsive term that is 

effective when a change has taken place. The three-level flight happens in the personal 

level, swarm level, and global level for which all leading particles will be assessed 

through the information extracted from different sections of the belief space. The 

particles will also repel each other the most, when a change has happened through a 

sigmoid repulsion factor. This phenomenon is repeatedly observed in the psychosocial 

studies as repulsion in interpersonal relationship among individuals generating new 

cultural opportunities through cultural divergence. 

The novel cultural-based dynamic PSO is evaluated against some selected state-

of-the-art evolutionary algorithm and particle swarm based heuristics on different 

benchmark dynamic test functions. Comparison study through experimental results show 

that the novel cultural-based dynamic PSO outperforms the selected state-of-the-art 

dynamic PSOs in almost all benchmark test functions suggesting that the organized and 
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categorized cultural information stored in belief space assist in better performing the 

search process under dynamic environment. The information extracted from belief space 

drives the repulsive divergence-promoted migration to quickly re-diversify the particles 

in the search space after a change takes place in the dynamic landscape and re-converge 

them through a modified three-level flight mechanism around new optimum. As a future 

work, it is suggested that the personal, swarm and global acceleration will not be a fixed 

value as it is in this study, but follow a dynamic behavior and adapt based upon the 

particle’s or swarm’s needs in the spatial space of the belief space as it can be observed 

how dynamic acceleration can improve the result of PSO convergence [140-141]. 
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CHAPTER VIII 

 

CONCLUSION 

 

 

In this dissertation, several innovative heuristics using sociologically inspired 

concepts such as society and civilization, migration, communication, culture, swarms and 

beliefs have been proposed to solve engineering single objective optimization, multi 

objective  optimization, constrained optimization and dynamic optimization problems.  

A politically inspired measure called liberty rate has been introduced to facilitate 

the optimization process in social-based optimization algorithm.  The simulation results 

show the performance improvement attained by accumulating the liberty rate into the 

original heuristics. The second modification on social-based optimization algorithm is to 

collect information from all individuals for migration purposes.  

A diversity-based migration process among swarms in particle swarm 

optimization has also been proposed to solve multimodal optimization problems. The 

proposed PSO flight mechanism includes three levels which in turn also diversify its 

search ability. In the lowest level, particles follow the best behaving particle in their own 

swarm; in next level, particles follow the best performing particle in the neighboring 

swarms, and finally in the highest level, particles track the whole population’s best 
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behaving particle. Adopting a two-way communication among each pair of swarms, the 

particles do not fall prematurely stuck in the local optima. The exchanged particles are 

selected according to the location of the particles based on a diversity strategy and their 

correspondence objective values. Furthermore, the PSO was modified using a new 

neighborhood term that helps the neighboring swarms share the common interest 

information. The neighborhood for each swarm is found using an unsupervised algorithm 

according to the inter-swarm distances between representatives of each pair of swarms. 

Simulation results on multimodal problems demonstrate that the proposed algorithm N-

DMPSO shows a great performance compared to DMPSO and two versions of distributed 

genetic algorithm that share similar basis with the proposed algorithm. The DMPSO 

showed competitive results compared to DGAs. The N-DMPSO showed better 

performance compared to DMPSO, assuming that sharing information in the 

neighborhood of swarms helps to escape from local optima and locate the global 

optimum. However N-DMPSO and DMPSO both are dependent to the rate of 

information exchange.   

A novel heuristics of cultural MOPSO has also been proposed to adjust flight 

parameters such as personal acceleration, global acceleration and momentum. Cultural 

algorithm provides the required groundwork enabling us to employ the information 

stored in different sections of belief space efficiently and effectively. Using the 

knowledge stored in various parts of belief space such as normative, situational, and 

topographical knowledge, cultural MOPSO shows promising results when compared to 
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some well-regarded MOPSOs. The comparison study based upon the hypervolume 

indicator and additive binary epsilon indicator show that cultural MOPSO provides better 

solution when compared on different hard benchmark test functions with high dimension 

and complexity. Indeed cultural MOPSO outperforms all selected well-regarded 

MOPSOs, except in one test function there is no difference between cultural MOPSO and 

another MOPSO. Consequently cultural MOPSO is significantly better than most 

MOPSOs and weakly dominates all of the selected MOPSOs.  

Further comprehensive investigation of the cultural MOPSO demonstrates its 

robustness with respect to the algorithm’s tuning parameters. In an extensive sensitivity 

analysis, the final Pareto fronts of any pair of algorithms are compared when one 

parameter is changed. Using additive binary epsilon indicator, the analysis demonstrate 

an almost-robust algorithm when nine different parameters of the algorithm are varied, 

i.e., about 95% of the tests indicates no change of results by tuning the parameters. 

Additionally, a new cultural constrained particle swarm optimization has been 

proposed to solve constrained optimization problems. The heuristics incorporates 

information of objective function and constraints violation, to construct a cultural 

framework consisting two sections: a multiple swarm PSO with the ability of inter-swarm 

communication as population space and a belief space including four parts, normative 

knowledge, spatial knowledge, situational knowledge, and temporal knowledge. Every 

particle will fly through a three-level flight and then particles divide into several swarms 

and inter-swarm communication takes place to exchange the information. The cultural 
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CPSO is evaluated against 10 state-of-the-art constrained optimization paradigms on 24 

difficult benchmark test problems. The simulation results show that cultural CPSO has 

the average feasible rate of 95.83% on 24 benchmark problems that places it as top 

performing algorithm along with DMS-PSO [149], _DE [150] and SaDE [157]. It also 

indicates that the proposed cultural CPSO has the average success rate of 90.00% on all 

benchmark problems placing it at the third best performing algorithm after _DE and 

PCX [155] with 91.67% and 90.17% of success rate, respectively. Overall, cultural CPSO 

is able to perform well competing with other well-performing algorithms in the field in 

terms of feasible rate and success rate. 

Furthermore, the novel cultural-based dynamic particle swarm optimization has 

been proposed in order to solve DOP problems. Built upon a cultural framework 

consisting a multiple swarm PSO as the population space and a belief space including 

five sections, situational knowledge, temporal knowledge, domain knowledge, normative 

knowledge, and spatial knowledge, the cultural-based DPSO categorizes effectively the 

required information in the belief space in such a manner that can be easily accessed. 

The information extracted from the belief space assists on moving toward the 

optimum solution in the population space, and to detect any occurring changes in the 

environment, also to respond quickly to the occurred changes by a repulsive diversity-

promoted migration. When particles share their information through migration process, 

they will be able to quickly re-diversify and move efficiently towards new optimum by 

re-converging around it. The cultural information stored in the belief space will assist the 
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population space in selecting the leading particles in the PSO flight. The flight 

mechanism follows a three level movement along with a repulsive term that is most-

affective when a change has taken place. The three-level flight happens in the personal 

level, swarm level, and global level for which all leading particles will be assessed 

through the information extracted from different sections of the belief space. The 

particles will also repel each other the most, when a change has happened through a 

sigmoid repulsion formulation.  

The cultural-based dynamic PSO has also been evaluated against some selected 

state-of-the-art dynamic PSO heuristics on different benchmark dynamic test functions. 

Comparison study demonstrates that the proposed cultural-based dynamic PSO performs 

better or equally when compared with the selected state-of-the-art dynamic PSOs in all 

benchmark test functions suggesting that the organized and categorized cultural 

information stored in belief space assist in better performing the search process in 

dynamic environment. The information extracted from belief space drives the repulsive 

divergence-promoted migration to quickly re-diversify the particles in the search space 

after a change takes place in the dynamic landscape and re-converge them through a 

modified three-level flight mechanism around new optimum.  

Overall, in this dissertation, cultural-based particle swarm optimization has been 

proposed to solve different types of optimization problems ranging from a single 

objective, multiobjective, constrained and finally dynamic optimization problems. The 

incorporation of elements of culture through the well-organized belief space assists the 
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retrieving process of required information much easier. In all of these proposed 

heuristics, the main structure of the algorithm follows an identical framework as far as 

population space, acceptance function, and influence function and finally different 

sections of belief space such as normative knowledge, situational knowledge, spatial 

knowledge, temporal knowledge, and domain knowledge depending on the need of the 

proposed paradigms. The flourishing performance of cultural-based PSO can be 

understood due to its all-the-time monitoring and adjustment through the feedback 

process from the population space, via acceptance function to belief space, and back to 

the population space via the influence functions. This feedback fundamentally assists in 

adjusting the optimum parameters for the entire system. The cultural PSO proposed here 

has seen a great success when compared experimentally against other state-of-the-art 

heuristics in different types of optimization problems, suggesting its further potential to 

be developed and its potentially successful applications on developing optimization 

algorithms for real-world problems. 
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APPENDIX A 

 

BENCHMARK TEST FUNCTIONS FOR MULTIOBJECTIVE OPTIMIZATION 

PROBLEMS 

 

Test functions ZDT1 [129]: 

Minimize                                                                                                          (A.1) 

           and                                                                                        

                        
     and                  

where               , and          (         ).      is the decision space 

dimension. The convex Pareto-optimal front is formed with        

 

Test functions ZDT2 [129]: 

Minimize                                                                                                          (A.2) 

           and                                                                                         

                        
     and                    

where               , and          (         ).      is the decision space 

dimension. The non-convex Pareto-optimal front is formed with        
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Test functions ZDT3 [129]: 

Minimize                                                                                                          (A.3) 

           and                           

                        
    and  

                                             

where               , and          (         ).      is the decision space 

dimension. The discrete Pareto-optimal front formed with       , consists of several 

noncontiguous convert parts. 

 

Test functions ZDT4 [129]: 

Minimize                                                                                                          (A.4) 

           and                           

                         
               

 
     and 

                          

where               , and          (         ).      is the decision space 

dimension. It contains     local Pareto-optimal fronts. The global Pareto-optimal front is 

formed with       . 

 

Test function DTLZ5 [130]:  

Minimize                                                                                                        (A.5) 
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             (     ) and           

   
     

        

where          (          ).  

This test problem will test algorithm’s ability to converge to the degenerated curve.  The 

true Pareto-optimal front is a 3D curve on the surface of the unit-sphere. The size of    

vector is chosen as 10. 

 

Test function DTLZ6 [130]:  

Minimize                                                                                                     (A.6) 

           

  

                 

                                  

        
 

    
          

   and         
   

   
              

   
    

where          (         ). This test problem has      disconnected Pareto-

Optimal regions in the search space. The functional   requires        decision 

variables and the total number of variables is        .  This problem tests 

algorithm’s ability to maintain subpopulation in different Pareto-optimal regions.  
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APPENDIX B 

 

BENCHMARK TEST FUNCTIONS FOR CONSTRAINED OPTIMIZATION 

PROBLEMS 

 

All benchmark problems in this Appendix along with the best global minimum found 

have been reported from [147]. 

Test function     

Minimize:          
 
        

   
      

  
                                                         (B.1) 

Subject to: 
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where        (         ) ,           (          ) and         

The optimum is at                                with           . Six constraints 

are active (                 ). 

 

Test function     

Minimize:        
                     

 
   

 
   

     
  

   

                                                           (B.2) 

Subject to: 

              

 

   

   

         

 

   

        

where      and          (         ). 

The optimum is at                                                      

                                                                         

                                                                     . 

                                                                       

                                                                      

                  with                         . Constraint    is close to 

being active. 



267 

 

 

Test function     

Minimize:               
 
                                                                                (B.3) 

Subject to: 

         
 

 

   

     

where      and         (         ). 

The optimum is at                                                      

                                                                     

                                                                    

                          with                         . 

 

Test function     

Minimize:                 
                                       

(B.4) 

Subject to: 
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where            ,         , and          (       ). 

The optimum is at                                                    

    , with                            . Two constraints are active (     ). 

 

Test function     

Minimize:                    
                    

                              (B.5) 

Subject to: 
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where            ,          ,               and               . 

The optimum is at                                                    

                                     , with                      . 

 

Test function     

Minimize:                                                                                    (B.6) 

Subject to: 

                             

                              

where            , and          . 

The optimum is at                                                 with 

                       . Both constraints are active. 

 

Test function     

Minimize:        
    

                                   

                                         
                      

                                                                                                                    (B.7) 

Subject to: 
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where            (           ). 

The optimum is at                                                        

                                                                       

                                                  with                 

    . Six constraints are active (                 ). 

 

Test function     

Minimize:       
                     

  
        

                                                                        (B.8) 

Subject to: 

        
         

                     

where          (      ). 

The optimum is at                                              with 

                         . 
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Test function     

Minimize:                           
                

     
  

  
                                                                                                            (B.9) 

Subject to: 

              
     

        
        

                       
          

                  
     

        

         
    

           
             

where            (          ). 

The optimum is at                                                     

                                                                     

                             with                       . 

 

Test function     

Minimize:                                                                                               (B.10) 

Subject to: 
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where               ,               , (     ) and            , 

(         ). 

The optimum is at                                                      

                                                                    

                                             with                     

   . 

 

Test function     

Minimize:        
                                                                                       (B.11) 

Subject to: 

           
    

where          (      ). 

The optimum is at                                                 with 

            .  

 

Test function     

Minimize:                                                          (B.12) 

Subject to: 
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where          (        ) and                The feasible region of the search 

space consists of 9
3
 disjointed spheres. A point is feasible if and only if there exist       

such that the above inequality holds. The optimum is at            with         . 

The solution lies within the feasible region. 

 

Test function     

Minimize:                                                                                                     (B.13) 

Subject to: 

        
    

    
    

    
       

                   

        
    

       

where              (      ) and              (        )   

The optimum is at                                                      

                                      with                        .  

 

Test function     

Minimize:               
  

   
  
   

   
                                                                    (B.14) 

Subject to: 
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where          (           ) and           ,           ,           , 

         ,           ,           ,         ,           ,    

       ,            . 

The optimum is at                                                       

                                                                   

                                                                      

         with                        .  

 

Test function     

Minimize:             
     

    
                                                   (B.15) 

Subject to: 

        
    

    
       

                        

where          (        ). 

The optimum is at                                                       

             with                       .  

 

Test function     

Minimize:                                                      
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                              (B.16) 

Subject to: 
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where: 
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and where                       ,                 ,              ,  

                , and                .  

The optimum is at                                                     

                                                      with       

                 .  

 

Test function     

Minimize:                                                                                                (B.17) 

where:         
                 
                   

  

                    
                 
                   
                    

  

Subject to: 
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where           ,           ,            ,            ,  

             , and             .  

The optimum is at                                                        

                                                           with       

                 .  

 

Test function     

Minimize:                                                            (B.18) 

Subject to: 
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where            (         ) and        . 

The optimum is at                                                  

                                                                   

                                                                   

                     , with                         .  

 

Test function     

Minimize:                         
 
   

 
               

  
         

  
           (B.19) 

Subject to: 

                   
 
              

           
  
     ,                

where          (          ),                                          

and the remaining data is represented in Table B.1.  

The optimum is at 
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                                with                        . 

 

Table B.1 Data set for test problem g19 

  1 2 3 4 5 

   -15 -27 -36 -18 -12 

    30 -20 -10 32 -10 

    -20 39 -6 -31 32 

    -10 -6 10 -6 -10 

    32 -31 -6 39 -20 

    -10 32 -10 -20 30 

   4 8 10 6 2 

    -16 2 0 1 0 

    0 -2 0 0.4 2 

    -3.5 0 2 0 0 

    0 -2 0 -4 -1 

    0 -9 -2 1 -2.8 

    2 0 -4 0 0 

    -1 -1 -1 -1 -1 

    -1 -2 -3 -2 -1 

    1 2 3 4 5 

     1 1 1 1 1 

 

Test function     

Minimize:           
  
                                                                                          (B.20) 

Subject to: 

      
            

   
  
      

  ,              

      
                

   
  
      

  ,              

      
       

        
  

  

  
    

 
    

     
  

  

  
   

  ,                 
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where          (          ),                  
    

  
  and the remaining data is 

demonstrated in Table B.2.  

 

Table B.2 Data set for test problem g20 

                 

1 0.0693 44.094 123.7 31.244 0.1 

2 0.0577 58.12 31.7 36.12 0.3 

3 0.05 58.12 45.7 34.784 0.4 

4 0.2 137.4 14.7 92.7 0.3 

5 0.26 120.9 84.7 82.7 0.6 

6 0.55 170.9 27.7 91.6 0.3 

7 0.06 62.501 49.7 56.708  

8 0.1 84.94 7.1 82.7  

9 0.12 133.425 2.1 80.8  

10 0.18 82.507 17.7 64.517  

11 0.1 46.07 0.85 49.4  

12 0.09 60.097 0.64 49.1  

13 0.0693 44.094    

14 0.0577 58.12    

15 0.05 58.12    

16 0.2 137.4    

17 0.26 120.9    

18 0.55 170.9    

19 0.06 62.501    

20 0.1 84.94    

21 0.12 133.425    

22 0.18 82.507    

23 0.1 46.07    

24 0.09 60.097    

 

The optimum is at 
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                                     . This solution is a little infeasible 

and no feasible solution is found so far. 

 

Test function     

Minimize:                                                                                                           (B.21) 

Subject to: 

              
        

     ,  

                                                

                                                   

                         

                        

                          

where           ,           ,           ,           ,        

   , and              
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The optimum is at                                                  

                                                                  

                                     with                       . 

 

Test function     

Minimize:                                                                                                           (B.22) 

Subject to: 

            
      

      
     ,  
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where            ,                 ,                  ,     

         ,              ,                           ,     

                                                         

                          

The optimum is at                                                    

                                                                     

                                                                  

                                                                    

                                                                    

                                                                     

                                                         with      

                 . 
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Test function     

Minimize:                                                                 (B.23) 

Subject to: 

                            

                           ,  

                    

                                

                 

                 

where               ,                ,           , and         

    .  

The optimum is at                                                     

                                                               

                                                                  

          with                           .   

 

Test function     

Minimize:                                                                                                   (B.24) 

Subject to: 
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              ,  

where       , and       . The feasible region consist two disconnected sub-

regions. 

The optimum is at                                       with       
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APPENDIX C 

 

BENCHMARK TEST FUNCTIONS FOR DYNAMIC OPTIMIZATION 

PROBLEMS 

 

 

Test functions MP1 [166]: 

Moving Cone Peaks Benchmark Problem is a maximization problem which has 

components as moving competing cones with independently varying height, width and 

location formulated as: 

 

)))(),(),(,(max),(max(),(
,...,2,1

1
Mi

iiiMP ttwthPBtf


 pxxx                                            (C.1) 

 

where )(xB  is a time-invariant basis landscape and P  is a function that defines cone-

shaped peaks with M peaks whose height ( ih ), width ( iw ), and location ( ip ) are time-

varying.  

 

Test functions DF2 [167]: 
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Time-Varying Gaussian Peaks Problem is a maximization problem that adopts 

independently varying-dimensional Gaussian peaks. Each peak’s amplitude, center, and 

variance can be varied independently, formulated as: 

 

)]
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2
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x
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                                                            (C.2) 

 

where )(tAi  , )(tCi  and )(ti  are the amplitude, the center and width of the i-th peak       

( Ni ,...,2,1 ) in the M-dimensional Gaussian peak, respectively. 

 

Test functions DF3 [168-169]: 

Moving Parabola with Linear Translation is formulated as: 
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Test functions DF4 [168-169]: 

Moving Parabola with Random Dynamics is described as: 
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Test functions DF5 [168-169]: 

Moving Parabola with Circular Dynamics is expressed as: 
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Test functions DF6 [170]: 

Oscillating Peaks Function is a maximization problem which is similar to the moving 

peaks function in that the landscape consists of l  (usually l =2) landscapes generated by 

the moving peaks function. The problem oscillates between the l  landscapes according to 

a cosine function formulated below. The parameters of each peak can independently vary.  
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where steps defines the number of intermediate steps in one cycle.(steps=10). 
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