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PREFACE 

This work derives and demonstrates new and powerful features and measures for 

automatic speaker recognition and compares them with traditional ones using speaker 

discrimination criterion. Automatic speaker recognition is the use of a machine to 

recognize a person from a spoken phrase. Speaker recognition systems can be used in two 

modes: to identify a particular person or to verify a person's claimed identity. 

New perceptually based features were found which, unfortunately, did not outperform 

traditional speech production features with respect to speaker identification errors. 

Powerful new production features and measures for speaker verification were discovered. 

The main contribution of this work is a new information-theoretic shape measure between 

line spectrum pair frequency features. I call this new measure the divergence shape 

because it can be interpreted geometrically as the shape of an information-theoretic 

measure called divergence. LSPs were found to be very effective features in this 

divergence shape measure. Experimental results show this combination yields 99.95% 

correct speaker identification. The corresponding 0.05% speaker identification error is 

superior to the performance of any other claim reported in the literature by over an order 

of magnitude. 

As automatic speaker authentication systems gain widespread use, it is imperative to 

understand the errors made by these systems. There are two types of errors: the false 

acceptance of an invalid user (type I) and the false rejection of a valid user (type II). It 

takes two people to make a false acceptance error: an impostor and a target. Because of 

this hunter and prey relationship, the impostor is referred to as a wolf and the target as a 

sheep. Although automatic voice verification is not new, specific understanding of and a 
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means to reduce false acceptance errors have been virtually ignored in the literature. False 

acceptance errors are the ultimate concern of high-security speaker authentication 

applications. This dissertation develops a method to reduce false acceptance errors due to 

wolves and sheep. 
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Leon, Jean-Pierre Martens, Tony Richardson, and Malcolm Slaney. 
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CHAPTER I 

INTRODUCTION 

Speech processing is a diverse field with many applications. Figure 1-1 shows a few 

of these areas and how the topic of ibis research, shown in the box, relates to the rest of 

the field. 

Analysis/Synthesis Enhancement 

Identification Understanding 

Text Dependent Text Independent 

Cooperative Hjgh 
Speakers Quality 

Speech 

Figure 1-1. Speech Processing 

Automatic speaker authentication is the use of a machine to authenticate a person's 

claimed identity from his voice. The literature abounds with different terms for speaker 

authentication, including speaker verification, voice authentication, voice verification, 
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talker authentication, and talker verification. Additionally, the term recognition 

encompasses verification and identification. General reviews of speaker recognition are 

given in the Citations (Atal1976; Doddington 1985; Furui 1991; O'Shaughnessy 1987; 

Rosenberg 1976; Rosenberg and Soong 1992; Sutherland and Jack 1988). 

Speaker authentication is defmed as deciding if a speaker is whom he claims to be. 

2 

This is different than the speaker identification problem, which is deciding if a speaker is 

a specific person or is among a group of persons. In speaker authentication, a person 

makes an identity claim (e.g., entering an employee number or presenting a smart card). 

In text-dependent verification, the system then prompts the claimant (visually or orally) 

to say a phrase. The claimant speaks the phrase into a microphone. This signal is 

analyzed by an authentication system that makes the binary decision to accept or reject 

the user or it may request additional input before making the decision. 

A typical automatic speaker authentication setup is shown in Figure 1-2. The claimant 

has previously enrolled in the system and he presents an encrypted smart card containing 

his identification information. He then a~mpts to be authenticated by speaking a 

prompted phrase(s) into the microphone. There is generally a tradeoff between the test 

session duration and accuracy. In addition to his voice, ambient room noise and delayed 

versions of his voice enter the microphone via reflective acoustic surfaces. Prior to an 

authentication session, users must enroll in the system (typically under supervised 

conditions). During this enrollment, voice models are generated and stored (possibly on a 

smart card) for use in later authentication sessions. There is generally a tradeoff between 

accuracy and the duration and number of enrollment sessions. 

Many factors can contribute to verification errors. Table 1-1 lists some of the human 

and environmental factors that contribute to authentication errors, some of which are 

shown in Figure I-2. 

These factors are generally outside the scope of algorithms or are better corrected by 

means other than algorithms and, therefore, they will not be discussed further. However, 



Micropqone 

Smart Card 

(Ambient Room Noise 

Figure 1-2. Typical Speaker Authentication Setup 

these factors are important because, no matter how good a speaker authentication 

algorithm is, human error ultimately limits its performance. 

Motivation 

We are now living in an information age. Information has become a valuable 

commodity and needs to be protected. Institutions make critical decisions based on the 

information they have. Adversaries often try to acquire another institution's sensitive 

information to gain an unfair competitive or strategic advantage. Therefore, sensitive 

information must be protected. A means to this end is the U.S. Government's secure 

voice program. Under Presidential Directive 24, the goal of this program is to field 

1 million secure voice/data terminals within the next few years. 

The widespread proliferation of secure voice equipment lacking user verification 

capability increases the potential for their abuse. Speaker authentication is perhaps the 

most natural method to solve the problems of unauthorized use and multilevel access 
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TABLE I-I 

SOURCES OF VERIFICATION ERROR 

Misread or misspoken prompted phrases 

Time varying (intra- or intersession) microphone placement 

Poor or inconsistent room ac~ustics (e.g., multipath and noise) 

control. Past speaker authentication research has almost totally ignored verification errorS 

specifically due to false acceptance of im~stors~ Research in this area is required before 

speaker authentication systems can be trusted to guard against type I errors. 

Unlike other personal authentication methods, your voice cannot be lost or forgotten 

and, furthermore, speaker verification systems can be made resilient to attack from 

mimicry by humans and tape recorders. 

Problem Formulation 

Speech is a complicated signal produced a8 a result of several transformations 
\ 

occurring at several different levels: semantic, linguistic, articulatory, and acoustic. 

Differences in these transformations appear as differences in the acoustic properties of the 

speech signal. Speaker-related differences are a result of a combination of anatomical 

differences inherent in the vocal tract and the learned speaking habits of different 

individuals. In speaker authentication, both these differences can be used to discriminate 

between speakers. 

The focus of this research is on understanding the causes and reducing type I speaker 

authentication errors without raising type IT errors to unacceptable levels. Past speaker 

authentication research has almost totally ignored those errors specifically caused by false 



acceptance of impostors. Research in this area is required before authentication systems 

can be trusted. 

Generic Voice Verification 

The general approach to voice verification consists of five steps: digital speech data 

acquisition, feature extraction, pattern matching, making an accept/reject decision, and 

enrollment to generate speaker reference models. A block diagram of this procedure is 

shown in Figure 1-3. Feature extraction maps each interval of speech to a 

multidimensional feature space. (A speech interval typically represents 20 ms of the 

speech waveform and is referred to as a frame of speech.) This sequence of feature 

vectors, x,, is then compared to speaker models by pattern matching. This results in a 

match score, z,, for each vector or sequence of vectors. The match score measures the 

similarity of the computed input feature vectors to models of the claimed speaker or 

feature vector patterns for the claimed speaker. Finally, a decision is made to either 

accept or reject the claimant according to the match score or sequence match scores, 

which is a hypothesis testing problem. 

Feature 
Extraction 

Z; 

Match 
Scores 
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Figure 1-3. Generic Speaker Verification System 
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For speaker verification, features that exhibit high interspeaker variability and low 

intraspeaker variability are desired. The pattern matching approach depends mainly upon 

the type of model being used. The model can be template or stochastic based. 

Overview of Dissertation 

This dissertation is comprised of nine chapters. The purpose of this introductory 

chapter is to present some general moti~ational framework for speaker recognition, an 

overview of the entire dissertation, a discussion of the previous work in the area of 

speaker recognition, and a discussion of the contributions of the author's research. 

Chapter II contains an overview of digital signal acquisition, speech production, 

speech signal processing, linear prediction, and speech perception. Chapter ill presents 

singular value decomposition in the context of linear prediction and speech perception. 

Chapter N presents feature selection, estimation of mean and covariance, divergence, 

and Bhattacharyya distance. This chapter is highlighted by the development of the 

divergence shape measure< and the Bhattacharyya distance shape. Chapter V introduces 

statistical pattern matching ~d receiver ope~Jlting curves and Chapter VI presents 

classification and statistical decision theory. Chapter VII demonstrates the speaker 

identification performance of the new algorithm relative to two reference speaker 

verification algorithms and Chapter VIII presents the innovations of this research. 

Chapter IX concludes by reviewing the problem at hand, summarizing the major 

contributions of the research contained in this document, and by suggesting future 

research. 

Previous Work 

There is considerable speaker verification activity in industry, national laboratories, 

and universities. Both AT&T Bell Laboratories and Texas Instruments have researched 

and designed several generations of speaker verification systems. Currently, ITT, 
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Bellcore, Siemens, and the regional Bell operating companies are conducting research 

and development (Naik 1990). There are commercial offerings from Voxtron, ECCO, and 

Alpha Microsystems. Sandia National Laboratories and the U.S. Government are 

conducting evaluations of speaker authentication systems. The majority of speaker 

verification research at these companies is djrected at verification over telephone lines. 

One notable exception is TIT's project YOHO. 

Table 1-2 shows a sampling of the chronological advancement in speaker verification. 

The following terms are used to defme the columns in Table I-2: Source refers to a 

citation in the Citations, Org is the company or school wher:e the work was done, Features 

are the signal measurements (e.g., cepstrum)~ Input is the type of input speech 

(laboratory, telephone, or office quality"), Text indicates whether text-dependent or text­

independent phrases are used, Method is the heart of the matching process, Pop is the 

'' 
population size (number of people), and Error is the equal error percentage for speaker 

verification systems or the error percentage for speaker identification systems given the 

specified duration of test speech in seco~ds. This data is presented to give a simplified 

general view of past speaker recognition research. It is difficult to make meaningful 

comparisons between the text-dependent and the generally more difficult text­

independent tasks. It is also difficult t9 compare between the binary-choice verification 

task and the generally more difficult multiple-choice identification task (Doddington 

1985). 

The performance of current systems mak:es them suitable for many practical 

applications. However, for high-security applications, these perlormance levels would 

generally be unacceptable; they would need to be used in combination with other 

authenticators (e.g., smart card)~ The level of performance achieved in this work is 

acceptable for many high-security applications. · 
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TABLEI-2 

SELECTED CHRONOLOGY OF SPEAKER RECOGNITION PROGRESS 

Source Org Features Input Text Method Pop Error 

(Atal1974) AT&T Cep Lab Dep Pattern 10 2%@0.6s 
Match 

(Markel and STI LPC Lab lndep Long Term 17 2%@39s 
Davis 1979) Statistics 

(Furui 1981) AT&T Nonnal- Phone Dep Pattern 10 0.2%@3s 
izedCep Match 

(Schwartz BBN LAR Phone lndep Non- 21 3%@2s 
and others parametric 

1982) pdf 

(Liand ITT LPC, Lab lndep Pattern 11 21%@3s 
Wrench Cep Match 4%@10s 

1983) 

(Doddington TI Filter- Lab Dep DTW 200 -o.8%@6s 
1985) bank 

(Higgins and ITT Cep Lab lndep VQ 10 10%@2.5s 
Wohlford 5%@10.5s 

1986) 

(Soong and AT&T LPC Phone Dep VQ 100 6%@ls 
others 1987) (digits) 1.5%@5s 

(Attili and RPI Cep, · Lab lndep Projected 90 4%@3s 
others 1988) LPC, Long Term 

Autocorr Statistics 

(Higgins and ITT LAR, Office Dep DTW 186 0.7%@20s 
others 1991) LPCCep Likelihood 

Scoring 
-

(Tishby AT&T LPC - Phone Dep HMM 100 5.6%@1s 
1991) (digits) (mixAR) 0.8%@5s 
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Proposition 

The goal of this research is to reduce false acceptance errors in speaker authentication 

systems. The following topics are covered: speech processing by humans and machine, 

pattern recognition, decision theory, and to understand and reduce false acceptance errors 

in speaker authentication systems. 

The focus of this research is to discover powerful features and measures for automatic 

verification of a person's identity from a spoken phrase. The scope of this study is limited 

to speech collected from coo~tive users in real-world office environments and without 

adverse microphone or channel impairments. Unlike other personal authentication 

methods, your voice cannot be lost or forgotten and, furthermore·, speaker verification 

systems can be made resilient to attack from mimicry by humans and tape recorders. The 

success of speaker verification systems depends directly upon the power of the features 

and measures used to discriminate among people. Speaker verification applications 

include access control, telephone banking, and telephone credit cards. The LA Times 

recently reported that $1.2 billion is lost annually from telephone calling card fraud and 

the accounting firm of Ernst and Young estimates that high-tech computer thieves in the 

U.S. steal $3 to $5 billion annually! Automatic voice verification technology can 

substantially reduce this crime by authenticating these fraudulent transactions. As 

automatic speaker authentication systems gain widespread use, it is imperative to 

understand the errors made by these systems. There are two types of errors: the false 

acceptance of an invalid user (type I) and the false rejection of a valid user (type II). It 

takes a pair of subjects to make a type I' error: an impostor and a target. Because of this 

hunter and prey relationship, in this work, the impostor is referred to as a wolf and the 

target as a sheep. Although automatic voice verification is not new, specific 

understanding of and the means to reduce false acceptance errors have been virtually 

ignored in the literature. False acceptance errors are the ultimate concern of high-security 
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speaker-authentication applications. This dissertation develops a method and outlines a 

research plan to understand the causes of speaker authentication errors and to reduce false 

acceptance errors due to wolves and sheep. A thorough literature review of over 300 

references was conducted. Then, concepts were synthesized from diverse fields, including 

signal processing, information theory, pattern recognition, physiology, and speech 

production and perception. After identifying. over a dozen innovations, they were 

compared analytically as well as by computer simulation. All F,ORTRAN and C language 

computer simulations were verified using MatLabTM or MathematicaTM high-level 

languages. To enstire that statistically meaningful/results and conclusions could be 

obtained, an extensive experiment was necessary. A database of 186 people collected 

over a 3 month period was used in the experiments. These experiments consumed over 

3 months of Cray-2 supercomputer time and 5 billion bytes of storage; however, a 

speaker verification system using methods presented in this dissertation would be 

practical to implement in software on a modem personal computer. Since this exceeded 

the computational and storage capacity available at OSU, the experiments were 

performed at a Department of Defense facility. 

Experimental R~ults and Observations 

In this research, new features and measures for speaker verification were explored 

and compared with traditional ones using speaker discrimination criterion. It was found 

that new perceptually based features did .not outperform traditional speech production 

features with respect to speaker identification errors. Also discovered were powerful new 

production features and measures for speaker verifiCation. Experimental results show that 

these new features and measures yield 0.05% speaker.identification error. This is an order 

of magnitude better than the performance of any other claim reported to date. The main 

contribution of this work is a new information-theoretic shape measure between line 

spectrum pair (LSP) frequency features. This new measure, the divergence shape, can be 



interpreted geometrically as the shape of an information-theoretic measure called 

divergence. The LSPs were found to be very effective features in this divergence shape 

measure. 

Discussion 

The LSP divergence shape is shown to have strong speaker discriminatory power. 
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The LSP and LP cepstral features were found to be powerful in the divergence measures 

and Bhattacharyya distances. Numerical limitations precluded the use of sophisticated 

optimum information-theoretic, linear feature selection techniques. 

A speaker identification test yielded 99.95% correct speaker identification using 

motivated speakers with high-quality telephone-bandwidth speech collected in real-world 

office environments under a constrained grammar (YOHO). This experiment uses 44 

people from the YOHO database with 80 seconds of speech for training and testing. Each 

speaker is compared to a different session of himself and to 2 sessions of 43 other 

speakers. The "closest" speaker to each candidate is identified. Only 1 false identification 

error was made on a total of 1936 tests. The "closeness" criterion yielding this result is 

the information-theoretic divergence measure without mean information. This 

outperformed divergence with means (3 errors), Bhattacharyya distance (4 errors), and 

Bhattacharyya distance without means (2 errors). The features yielding these results are 

the line spectrum pair frequencies. Using the same speech data, conventional Euclidean 

distance commits 38 errors (1.96% error) and conventional Mahalanobis distance makes 

21 errors (1.08%). The LSP divergence shape performs the best among these tests with 

only 1 error (0.05% ). The implication of this powerful new measure is vastly improved 

speaker recognition performance relative to the state of the art. 

In addition to being a powerful measure, the data used by the LSP divergence shape 

to characterize a speaker can be compactly represented. In these experiments, each 

speaker is represented by the covariance matrix of his 10 LSP frequencies. A covariance 



matrix can be represented by its upper (or lower) triangular section. Exploiting this 

symmetry, a person's 10 x 10 covariance matrix can be represented with only 55 

elements. 
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In a practical sense, a large portion of the billions of dollars currently lost to fraud 

annually could be saved by verifying transactions through the application of this powerful 

LSP divergence shape measure to speaker verification systems. 

The following chapter contains an overview of digita,l signal acquisition, speech 

production, speech signal processing, linear prediction, and speech perception. 



CHAPTER II 

SPEECH PROCESSING 

Speech processing extracts the desired information from a speech signal. To process a 

signal by a digital computer, the signal must be represented in digital form so that it can 

be used by a digital computer. 

Voice Signal Acquisition 

Initially, the acoustic sound pressure wave is transformed into a digital signal suitable 

for voice processing. A microphone or telephone handset can be used to convert the 

acoustic wave into an analog signal. This analog signal is conditioned with antialiasing 

filtering (and possibly additional filtering to compensate for any channel impairments). 

The antialiasing filter limits the bandwidth of the signal to approximately the Nyquist rate 

(half the sampling rate) before sampling. The conditioned analog signal is then sampled 

to form a digital signal by an analog-to-digital (NO) converter. NO converters for 

speech applications typically generate 8,000 to20,000 samples per second with 10 to 14 

bit resolution samples. Oversampling is commonly used to allow a simpler analog 

antialiasing filter and to precisely control the fid~lity of the sampled signal. 

In local speaker authentication applications, the analog channel is simply the 

microphone, its cable, and analog signal conditioning. Thus, the resulting digital signal 

can be very high quality; as opposed to, for example, authentication using analog signals 

over long-distance telephone lines. 
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YOHO Database 

This research will initially be based on high-quality signals for benign-channel 

speaker authentication applications. The primary database for this research is known as 

the YOHO database and was collected by TIT under a U.S. Government contract 

administered by the author. This database is already in digital form, so the first signal 

processing block of the verification system in Figure 1-3 (signal conditioning and 

acquisition) is taken care of. 
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The signal con4itioning and acquisition was designed by the author using a 4-times 

oversampling method to provide bandwidth and linear phase up to 3.8 kHz. First, the 

analog signal is low pass filtered at approXimately 5 kHz by a mild 4th order elliptic 

analog antialiasing filter that has negligible effect on the signal below 4 kHz. This analog 

antialiasing fllter sufficiently limits the bandwidth to 16kHz to prevent aliasing when it 

is then oversampled at 32kHz with 12 bits of precision. Next, the 32-kHz sampled signal 

is passed through a 255-tap, finite duration impulse response (FIR) digital bandpass fJ.J.ter. 

This digital filter limits the bandwidth of the signal so that it can be decimated by 4:1 to 

arrive at the fmal desired sampling frequency of 8 kHz. Using iterative inverse- and 

forward-Fourier transforms, the author designed a frequency-sampling symmetric-FIR 

filter-design routine to determine the 255 coefficients that best approximate a secure 

voice terminal's input characteristics in a least mean-square magnitude-response error 

sense. The resulting response models the STU-rn secure voice terminal's input 

characteristics very closely and is given in Table 11-1. 

The key to oversampling is that the analog antialiasing filter need not have steep 

skirts in the vicinity of the half sampling frequency, as in the Nyquist sampling methods, 

whereas the symmetric digital FIR filter has linear phase and can have arbitrarily flat 

magnitude response. The advantage of the oversampling method is that the magnitude 

and phase distortions near the half sampling frequency are far less than is common in 



. TABLEll-1 

FREQUENCY RESPONSE OF YOHO 

DECIMATION Fll...TER 

Frequency (Hz) Response (dB) 

0 -25 

<50 -21 

100 -7 

150 -2 

200 -0.2 

200-3600 -0.2 to +0.3 peak ripple 

3600 -0.2 

3800 -3 

4000 -25 

4400 -42 

>5000 -50 

16,000 -57 
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traditional Nyquist sampling methods. For example, Digital Sound Corporation's -3 dB 

analog bandwidth for 8 kHz sampling is only 3.6 kHz, as opposed to the 3.8 kHz, -3 dB 

bandwidth achieved by this method. This additional200 Hz of bandwidth is vital for 

listeners to be able to distinguish between sounds concentrated in high frequencies (e.g., 

the affricate sounds differentiating "chew" and "jew''). 
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The YOHO database is the only large scale, scientifically controlled and collected, 

high-quality speech database for speaker authentication testing at high confidence levels. 

Table ll-2 describes the YOHO database (Higgins 1990). 

TABLEIT-2 

THE YOHO DATABASE 

"Combination lock" phrases (e.g., 36-24-36) 

186 subjects: 150 males, 36 females 

Collected over 3 month period in a real-world office environment 

4 enrollment sessions per subject with 24 phrases per session 

-10 test sessions per subject with 4 phrases per session 

Total of 1900 validated test sessions 

8 kHz sampling with 3.8 kHz analog bandwidth 

1.5 gigabytes of data 

In a text-dependent speaker verification scenario, phrases are prompted and the 

claimant is requested to say them. The syntax used in the YOHO database is 

"combination lock" phrases. For example, the prompt might read: "Say: thirty-six, 

twenty-four, thirty-six." Where the claimant is to speak the phrase as three doublets. 

The U.S. Government is very interested in improving speaker authentication 

performance with "clean" data. However, there is an enormous consumer market that 

deals with noisy corrupted data (e.g., telephone services). 
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Speech Production 

There are two main sources of speaker-specific characteristics of speech: physical and 

learned. Vocal tract shape is an important physical distinguishing factor of speech. The 

vocal tract is generally considered as the speech production organs above the vocal folds. 

As shown in Figure ll-1 (Flanagan 1972): this'incl~des the laryngeal pharynx (beneath 

epiglottis), oral pharynx (behind tongue, between epiglottis an~ velum), oral cavity 

(forward of the velum and bounded by the lips, tongue, and palate), nasal pharynx (above 

velum, rear end of nasal cavity), and the nasal cavity (above the palate and extending 

from the pharynx to the nostrils). An adult male vocal tract.is approximately 17 em long 

(Flanagan 1972). 

The vocal folds (also known as vocal cords) are shown in Figure ll-1. The larynx is 

composed of the vocal folds, the top of the cri~oid cartilage, the arytenoid cartilages, and 

the thyroid cartilage (also known as "Adam's apple"). The vocal folds are stretched 

between the thyroid cartilage and the alytenoid cartilages. The area between the vocal 

folds is called the glottis. 

As the acoustic wave passes through the vocal tract, its frequency content (spectrum) 

is altered by the resonances of the vocal tract. Vocal tract resonances are called formants. 

Thus, the vocal tract shape can be estimated frOm the spectral shape (e.g., formant 

location and spectral tilt) of the voice signal. 

Voice verification systems typically use features derived only from the v~al tract. As 

seen in Figure ll -1, the human vocal mechanism is driven by' an excitation source which 

also contains speaker-dependent information. The excitation is generated by airflow from 

the lungs, carried by the trachea (also called the "wind pipe"), through the vocal folds (or 

the arytenoid cartilages). The excitation can be characterized as phonation, whispering, 

frication, compression, vibration, or a combination of these. 



Nasal Cavity 
·•· • Hard Palate Soft Palate 

(Velum) ----~l"~a~~~ 
Hyoid Bone •••• 

Epiglottis -·-···fiilli.<E~P-
Cricoid 
Cartilage··· 

Esophagus 
r=--,...'T'h,,..n;r~ Cartilage 

. • . . . ... Vocal Folds 
.......... Trachea 
·· · ..... Lung 

·· .. ··Sternum 

Figure IT-1. Human Vocal System 
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During phonation, air flow is modulated by the vocal folds. When the vocal folds are 

closed, pressure builds up underneath them until they blow apart. Then, the folds are 

drawn back together again by their tension, elasticity, and the Bernoulli effect. The pulsed 

airstream, arising from the oscillating vocal folds, excites the vocal tract. The frequency 
' ' 

of oscillation is called the fundamental frequency and it depends upon the length, tension, 

and mass of the vocal folds. Thus, fundamental frequency is another distinguishing 

characteristic which is physically based. 

Whispered excitation is produced by airflow rushing through a small triangular 

opening between the arytenoid cartilages at the rear of the nearly closed vocal folds. This 

results in turbulent airflow, which has a wide-band noise characteristic (Parsons 1987). 
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Frication excitation is produced by constrictions in the vocal tract. The place, shape, 

and degree of constriction determines the shape of the broadband noise excitation. As the 

constriction moves forward, the spectral concentration generally increases in frequency. 

Sounds generated by frication are called fricatives or sibilants. Frication can occur 

without phonation (e.g., "s" as in sass) or with phonation (e.g., "z" as in zoos). 

Compression excitation results from releasing a completely closed and pressurized 

vocal tract. This results in silence (during pressure_accumulation) followed by a short 

noise burst If the release is sudden, a stop or plosive is generated. If the release is 

gradual, an affricate is formed. 

Vibration excitation is caused by air being forced through a closure other than the 

vocal folds, especially at the tongue (e.g., trilled "r"). 

Speech produced by phonated excitation is called voiced; while other types of 

excitation produce unvoiced speech (phonation plus frication is called mixed voiced). 

Because of the differences in the manner of production, it's reasonable to expect some 

speech models to be more accurate for certain classes of excitation than others. Unlike 

phonation and whispering, the points of frication, compression, and vibration excitations 

are actually inside the vocal tract, itself. This could cause difficulties for models that 

assume an excitation at the bottom end of the vocal tract. For example, the linear 

prediction model assumes a vocal tract excited at a closed end. Phonation excitation is the 

only one that approximates this assumption. Thus, it's reasonable to use different models 

or different weighting for those regions of speech that violate the model assumptions. 

The respiratory (thoracic area) plays a role in the resonance properties of the vocal 

system. The trachea is a pipe, typically 12 em long and 2 em in diameter, made up of 

rings of cartilage joined by connective tissue joining the lungs and the larynx. When the 

vocal folds are in vibration, there are resonances above and below the folds. Sub glottal 

resonances are largely dependent upon the properties of the trachea (Pentz 1990). 
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Because of this physiological dependence, sub glottal resonances have speaker-dependent 

properties. For this reason, subglottal resonances are pursued in this research. 

Other physiological speaker-dependent properties include: vital capacity (the 

maximum volume of air you can blow out after maximum intake), maximum phonation 

time (the maximum duration a syllable can be sustained), the phonation quotient (ratio of 

vital capacity to maximum phonation time), glottal air flow (amount of air going through 

vocal folds). Because sound and airflow are different, these dimensions may be difficult 

to acquire from the acoustic signal alone. 

Other aspects of speech production that could be useful for discriminating between 

speakers are learned characteristics, including speaking rate, prosodic effects, and dialect 

(which might be captured spectrally as a systematic shift in formant frequencies). 

Linear Prediction 

The all-pole linear predictor models a signal, s,., by a linear combination of its past 

values and a scaled present input (Makhoul1975): 

p 

s =-""a ·s +G·u ,. ~A; IJ-.t ,. (Il-l) 
1=1 

where s,. is the present output, pis the prediction order, a1 are the model parameters 

called the predictor coefficients (PCs), s,._~; are past outputs, G is a gain scaling factor, 

and u,. is the present input. In speech applications, the input, u,., is generally unknown, so 

it's ignored. Therefore, the linear prediction approximation, s,., depending only on past 

output samples, is: 

(II-2) 
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This greatly simplifies the problem of estimating the at because the source (i.e., the 

glottal input) and ftlter (i.e., the vocal tract) have been decoupled. The source, U11 , which 

corresponds to the human vocal tract excitation is not modeled by these PCs. It is 

certainly reasonable to expect that some speaker-dependent characteristics are present in 

this excitation. signal (e.g., fundamental frequency). Therefore, if the excitation signal is 

ignored, valuable speaker authentication discrimination information could be lost. 

Defming the prediction error, e11 (also know as the residual), as the difference 

between the actual value, S11 , and the predicted value, S11 , yields: 

(11-3) 

Therefore, the prediction error, e11 , is identical to the sealed input signal, G · U11 • Letting E 

represent the mean squared error (MSE): 

(11-4) 

The minimum MSE criteria resulting from: 

'dE =0, . 12 v . l = ' , ... ,p 
'dat . 

(11-5) 

is: 

'fat· Is~~-~~~-; =-LS11S11_, v i = 1,2, ... ,p (11-6) 
1;:1 II II 

The summation ranges on n have been intentionally omitted for generality. If the 

summation is of infinite extent (or over the nonzero length of a finite extent window 

(Harris 1978)), the summations on s are the autocorrelations at lags i- k for the left sum 



and at lag i for the right sum. This results in the "autocorrelation method" of linear 

prediction (LP) analysis. (Other methods, such as "covariance" and Burg's, arise from 
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variations on windowing, the extent of the signal, and whether the summations on s are 

one or two sided.) The time-averaged estimates of the autocorrelation at lag 't can be 

expressed as: 

N-1--c 

Rr = l',s(i) · s(i + 't) (ll-7) 
a=O 

The autocorrelation method yields the system of equations named after Yule's pioneering 

all-pole modeling in sunspot analysis and given by Equation ll-8. 

Ro R1 Rz Rp-1 ~ R1 

R1 Ro R1 Rp-2 a,. R2 

Rz R1 Ro Rp-3 ~ =- R3 (ll-8) 

Rp-1 Rp-2 Rp-3 Ro aP RP 

The LP model parameters we seek are the at. For a ptlt order prediction, the speech 

signal is modeled by a p dimensional at vector and, as the Yule-Walker equations show, 

this requires the computation of p + 1 autocorrelations and matrix inversion. The matrix 

inversion problem is greatly simplified because of the symmetric Toeplitz autocorrelation 

matrix, R,,i = ~~-,1, and the form of the autocorrelation vector, which are exploited by 

Durbin's recursive algorithm. This algorithm is the most efficient method known for 

solving this particular system of equations (Makhoul1975): Note that in the process of 

solving for the predictor coefficients, at, of order p, the at for all orders less than p are 

obtained with their corresponding mean-square prediction error: MSE, = E, I Ro. In each 

recursion of Durbin's algorithm, the prediction order is increased and the corresponding 

error is determined; this can be monitored as a stopping criteria on the prediction order, 

p. Durbin's procedure is so efficient that it requires only roughly an eighth of the 



a~;>= k. 
I I 

E1 = (1- k1
2 )E1_ 1 

a = a<P> 
J J 

v 1SiSp 

v i = 1,2, .. . ,p 

v 1SjSp 

operations required to compute the autocorrelations (Fussell 1986). 
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(TI-9) 

Using the a" model parameters, the following equation represents the fundamental 

basis of LP representation. It implies any signal is defmed by a linear predictor and the 

corresponding linear prediction error. Obviously, the 'residual contains all the information 

not contained in the PCs. 

p 

s,. =-I,a" ·s,._" +e,. 
t=l 

From Equation ll-1, the LP transfer function is defined as: 

which yields: 

H(z) = S(z) = Z[s,.] 
, U(z) Z[u,.] 

where A(z) is known as the prA order inverse filter. 

(TI-10) 

(TI-11) 

(TI-12) 

LP analysis determines the PCs of the inverse filter, A(z), that minimize the 

prediction error, e,., in some sense. Typically, the MSE is minimized because it allows a 

simple, closed-form solution of the PCs. Minimizing MSE error tends to produce a flat 
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(band-limited white) magnitude spectrum of the error signal. Hence, the inverse filter, 

A(z), is also known as a "whitening" filter. This band-limited whitened spectrum leads to 

a narrow (nearly impulsive) sine pulse in the time domain. 

H a voiced speech signal "fits the model," then the residual consists of a pitch 

periodic impulse train. Therefore, the maximum prediction errors (residual peaks) occur 

at the pitch rate. (Many pitch detection algorithms exploit this property.) Thus, in the time 

domain, the majority of information lost in the PCs occurs in the vicinity of these "pitch 

peaks." 

Features are constructed from the speech model parameters; for example, the at, 

above. In this research, the linear prediction coefficients are estimated on 

unpreemphasized speech sampled at 8 kHz every 10 ms using a 1Oth order autocorrelation 

analysis method with 20 ms overlapping Hamming windows and 15 Hz bandwidth 

expansion. The bandwidth expansion operation replaces the LP analysis predictor 

coefficients, at, by at yk, where y = 0.994 for a 15 Hz expansion. This broadens the 

formant bandwidths by shifting the poles radially toward the origin in the z-plane by the 

weighting factor, y, for 0 < y < 1. These LP coefficients are typically nonlinearly 

transformed into perceptually~meaningful domains suited to the application. Some 

domains useful for speech coding and recognition include: reflection coefficients (RCs); 

log-area ratios (LARs) or arcsin of the RCs; LP cepstrum (Rabiner and Schafer 1978); 

and line spectrum pair frequencies, recently introduced by Itakura (ltakura 1975; Saito 

and Nakata 1985). 

Reflection Coefficients 

If Durbin's algorithm is used to solve the LP equations, the reflection coefficients are 

the intermediate k, variables in the recursion. The reflection coefficients can also be 

obtained from the LP coefficients using the backward recursion (Rabiner and Schafer 

1978): 



25 

a<P> =a 
J J 

k = a<•> 
I I 

a<!> + a<i> • a<•> } v i = p,p -1, ... ,1 
v 1~j~i-1 

(II-13) 

a<.•-n = J , •-J 

J 1-k2 
I 

Log Area Ratios 

The vocal tract can be modeled as an electrical transmission line, a waveguide, or an 

analogous series of cylindrical acoustic tubes. At each junction, there can be an 

impedance mismatch or an analogous difference in cross-sectional areas between tubes. 

At each boundary, a portion of the wave is transmitted and the remainder is reflected 

(assuming lossless tubes). The reflection coefficients, k,, are the percentage of the 

reflection at these discontinuities. If the acoustic tubes are of equal length, the time 

required for sound to propagate through ea.Ch tube is equal (assuming planar wave 

propagation). Equal propagation times allow simple z-transformation for digital fllter 

simulation. For example, a series of five acoustic tubes of equal lengths with cross­

sectional areas Ao, A1. ... , As could look like Figure II-2. This series of five tubes 

represents a fifth order system that might fit a vocal tract minus the nasal cavity. Given 

boundary conditions, the reflection coefficients are determined by the ratios of the 

adjacent cross-sectional areas (Rabiner and Schafer 1978). For an Nth order system, the 

boundary conditions given below correspond to a closed glottis (zero area) and a large 

area following the lips. 

Ao =0 

AN+l >>AN 

A.t+t-A.t 
r.t= 

A.:+t +A.: 

(II-14) 
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Figure ll-2. Acoustic Tube Model of Speech Production 

Thus, the reflection coefficients can be derived from an acoustic tube model or an 

autoregressive model. To paraphrase the late Professor Feynman, one measure of the 

degree of our understanding is the number of different ways in which we can arrive at the 

same result. 

If the speech signal is preemphasized prior to LP analysis to compensate for the 

effects of radiation and the nonwhite glottal pulse, then the resulting cross-sectional areas 

are often similar to the human vocal tract configuration used to produce the speech under 

analysis (Rabiner and Schafer 1978). They cannot be guaranteed to match, however, 

because of the nonuniqueness properties of the vocal tract configuration. For example, to 

keep their lip opening small, ventriloquists exploit this property by compensating with the 

remainder of their vocal tract configuration. 

Narrow bandwidth poles result in lk,l = 1. Inaccurate representation of these RCs can 

cause gross spectral distortion. Taking the log of the area ratios results in more unifonn 

spectral sensitivity. The LARs are defined as the log of the ratio of adjacent cross-

sectional areas: 
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(ll-15) 

Arcsin Reflection Coefficients 

To avoid the singularity of the LARs at k; = 1, while retaining approximately uniform 

spectral sensitivity, the arcsin of the RCs are a common choice: 

g'= sin-1 k 
' ' 

(ll-16) 

Line Spectrum Pair Frequencies 

The LSPs are a representation of the PCs of the inverse filter, A(z), where the p zeros 

of A(z) are mapped onto the unit circle in the z-plane through a pair auxiliary p + 1 order 

polynomials: P(z) (symmetric) and Q(z) (antisymmetric) (Kang and Fransen 1985): 

A(z) = t[P(z) + Q(z)] 

P(z) = A(z) + z-<p+1) A(z-1) 

Q(z) = A(z)- z-<p+1> A(z-1) 

(ll-17) 

where the LSPs are the frequencies of the zeros of P(z) and Q(z). By definition, a stable 

LP synthesis filter has all its poles inside the unit circle in the z-plane. The corresponding 

inverse fllter is therefore minimum phase inverse because it has no poles or zeros outside 

the unit circle. Any minimum phase polynomial can be mapped by this transform to 

represent each of its roots by a pair of frequencies (phases) with unit magnitude. The LSP 

representation of the LP fllter has a direct frequency domain interpretation that is 

especially useful in efficient (accurate and compact) coding and smoothing of the LP 

fllter coefficients (Campbell and others 1991). 



For example, an 8th order 8 kHz LP analysis of the vowel /U/ (as in foot) had the 

predictor coefficients shown in Table 11-3. 

TABLEII-3 

EXAMPLE LINEAR PREDICTOR COEFFICIENTS 

Powerofz 0 -1 -2 -3 -4 -5 -6 -7 -8 
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Predictor 1 -2.346 1.657 -0.006 0.323 -1.482 1.155 -0.190 -0.059 
Coefficient ' 

Evaluating the magnitude of the z-transform of H(z) at equally spaced intervals on the 

unit circle yields the following power spectrum having formants (vocal tract resonances 

or spectral peaks) at 390Hz, 870Hz, and 3040Hz (Figure 11-3). These resonance 

frequencies are in agreeJ;Dent with the Peterson and Barney formant frequency data for the 

vowel /U/ (Rabiner and Schafer 1978). 

Because the PCs are real, the Fundamental Theorem of Algebra guarantees that the 

roots of A(z), P(z), and Q(z) will occur in complex conjugate pairs. Because of this 

conjugate property, the bottom half of the z-plane is redundant. The LSPs at 0 and 1t are 

always present by construction of P and Q. Therefore, the PCs can be represented by the 

number of LSPs equal to the prediction order, p, and are represented by the frequencies 

of the zeros of P and Q in the top-half z-plane (Figure 11-4). 

The LSPs satisfy an interlacing property of the zeros of the P and Q polynomials, 

which holds for all minimum phase A(z) polynomials (Kang and Fransen 1985): 



0 = O)(Q) <O>(P) < O)(Q) < < O)(P) < O)(Q) < O)(P) =.,.. 
0 1 2 • • • p-1 p p+1 '" 
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(ll-18) 

Each complex zero of A(z) maps into one zero in each P(z) and Q(z). When the P(z) and 

Q(z) frequencies are close, it is likely that the original A(z) zero was close to the unit 

circle and a formant is likely to be in between the corresponding LSPs. Distant P and Q 

zeros are likely to correspond to wide bandwidth zeros of A(z) and most likely contribute 

only to shaping or spectral tilt Figures 11-3 and 11-4 demonstrate this behavior. 

·Speech Perception 

The human hearing system's extraordinary dynamic range, speaker identification and 

speaker-independent speech recognition and understanding is nothing short of 

miraculous. The ear, shown in Figure II-5 (Slaney 1988) is a complex structure 
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Figure II-4. LSP Frequencies and LP Poles in the z-Plane 
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The outer ear is a large directional acoustic horn. The ear canal leading from the outer to 

middle ear is open at the outer ear and closed at the ear drum and forms a quarter­

wavelength Helmholtz resonator with its ftrst resonance at approximately 3 kHz. The 

middle ear is the ear drum and the ossicles (three bones) which nonlinearly transmit 

sound to the inner ear's oval window. The oval window couples to the cochlea, which has 

a dividing basilar membrane forming two concentric "snail shells" (at the tip of the 

cochlea arrow in Figure II-5). The organ of Corti lies along the basilar membrane and has 

about 20,000 sensory hair cells. The endings of the auditory nerve terminate on these hair 

cells, each having about 100 hairs that bend from vibrations to cause neural ftrings. The 

neural information then ascends to the brain (Fussell 1986). 

The basilar membrane varies in. shape and tautness along its length. Vibrations at 

different frequencies excite different regions of hair cells. Regions of hair cells 

responding to a particular frequency of vibration are labeled by this characteristic 



frequency. The organ of Corti produces electrical potentials, called the cochlear 

microphonic, which represent the acoustic signal (Martin 1991). 

Outer 
Ear 

Figure ll-5. The Human Ear 

Auditory 

Nervy 

Except in the remotest sense, it would be naive to think that the simple features 

discussed so far could capture the subtleties and complexities of the human hearing 

system. Therefore, the next section will explicitly set out to fmd features that are more 

directly related to the human hearing system. 

31 
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Perceptually Motivated Features 

Although LP-derived features are common, other popular feature sets have a greater 

perceptual influence, such as critical-band ftlter-bank parameters and mel-warped 

cepstrum (the Fourier transform of a log magnitude spectrum which has been frequency 

warped according to the mel scale). One would expect that strong feature selection 

methods combined with speech perception and speech production based features would 

yield powerful new speaker discriminatory feature Sets. However, one must be cautioned 

that attempting to imitate the human verification system is not necessarily the optimum 

solution. For example, airplanes don't flap their wings!· 

To make speech comparisons in a perceptually ineaningf\11 domain and greatly reduce 

storage and computation, speaker authentication systems extract features based on 

parametric models of the speech signal, rather than using the raw digital signal, itself. 

Features are extracted from the speech signal to construct speaker models during 

enrollment and for use in comparison with those models during authentication. The most 

common speech signal parameterization begins with LP analysis to derive a vector of PCs 

with much lower dimension than the input (typically, the input is 9t100 and the PCs are 

9{10). The PC vector is then nonlihearly transformed to form the feature vector in a 

domain where simple distance measures relate to the application (e.g., inter- versus 

intraspeaker variability). The search for the ultimate feature vector remains elusive and, 

as can be seen from the literature, there is no universally agreed upon "best" speech 

feature vector. It's especially ironic that cepstrum based features are commonly used for 
' ~, L 

both speaker recognition and speech recognition because what's considered information 

for one is noise for the other and vise versa. 

Table ll-4lists some coinmonly used speech processing features. As described below, 

not all of these features are desirable for speaker verification. Fundamental frequency 

might come to mind when we think of someone's ''pitch" as helpful speaker identifying 
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TABLEll-4 

COMMON SPEECH PROCESSING FEATURES 

Fundamental frequency 

Short term energy 

Zero crossing rate 

Short term spectrum: 

• LP coefficients 

• Nonlinear transforms ofLP coefficients (e.g., reflection coefficients) 

• Cepstrum, possibly mel warped 

information. Unfortunately, it exhibits large intraspeaker variability and is strongly 

influenced by the subject's mood; thus, it cannot be used by itself as a reliable feature. 

The short term energy represents the dynamics of a person's speech, but is also somewhat 

mood dependent and is also too weak to use by itself. The zero crossing rate represents 

the dominant spectral component and could be useful. Measures related to the short term 

spectrum will be shown later to correlate with the speaker's vocal tract configuration. 

Because the speech signal is stationary only on a short-time basis, the short-term spectral 

characteristics are a powerful measure. This is much less sensitive to the speaker's mood 

and is the basis of most feature sets in use today for speaker authentication. 

Feature vectors can be constructed by concatenations of these features. For example, 

one might consider a feature vector consisting of the short term energy and 10 reflection 

coefficients. The features could also be speaker dependent or adaptive (Attili and others 

1988). 
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Pitch 

Acoustic dimensions such as intensity and frequency can be measured. The perceptual 

correlates to these dimensions are loudness and pitch, which are determined by subjective 

psychoacoustic experiments. In an attempt to model human hearing, various 

measurement approximations have been tried to mimic perception, as shown in 

Table ll-5. 

TABLEll-5 

ACOUSTIC AND PERCEPTUAL CORRELATES 

Acoustic Perceptual 

Dimension Units Dimension Units 

Intensity dBSPL Loudness Phon (equal) 

(2 ·10-4 dyne) 
Sone (scaling) 

cm2 

Frequency Hz Pitch mel (scaling) 

The mel scale is the result of a psychoacoustic experiment where subjects are asked to 

judge if one tone is "half as high in pitch as another." The resulting mel scale frequency 

warping nonlinearly maps the input frequency in Hertz to subjective pitch in mels. This 

scale is referenced to 1 kHz = 1000 mels. As shown in Figure ll -6, for equal intervals on 

the mel axis, the listener perceives equal pitch ratios projected through the curve to the 

Hz axis (Borden and Harris 1984) and is closely approximated (Neuburg 1981) by: 
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Figure ll-6. The mel Pitch Scale 
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(II-19) 

The Bark scale is the result of a psychoacoustic experiment where a pure tone is 

masked (i.e., inaudible) by a band of noise. centered in frequency on the tone. As the 

bandwidth of the noise increases, the amplitude of the noise needed to just mask the tone 

decreases up to the critical bandwidth. Beyond this critical bandwidth (which depends on 

the tone frequency), the noise amplitude needed to mask the tone remains constant and 

independent of the noise bandwidth. Figure ll-7 shows an approximation of the Bark 

scale (Neuburg 1981) by: 

Barks= 7 sinh-1 _[_ 

650 
(II-20) 
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Figure ll-7. The Bark Masking Scale 

Its shape bears very close resemblance to the mel scale. In applications where only the 

relative ratio of mels or Barks is of importance, these two frequency scales can be 

considered identical (Neuburg 1981). 

Auditory Model Pitch Estimation 
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In this research, voicing and pitch frequency are estimated by a new state-of-the-art 

auditory model-based pitch extractor, called AMPEX (Van Immerseel and Martens 

1992). As shown in Figure ll-8 (Hermes 1992), AMPEX performs a temporal analysis 

using delayed decisions (e.g., dynamic program) of the outputs emerging from a new 

auditory model. The auditory components modeled are the outer and middle ear chain, 

filtering in the cochlea, mechanical-to-neural transduction (with short-time adaptation in 

the hair cells), and auditory nerve transmission. AMPEX was found to outperform other 

methods, including the subharmonic summation method without delayed decisions 

(Hermes 1988; Hermes 1992); however, its computational burden is immense. 

After tuning the parameters of the AMPEX and SHS algorithms for optimum 

performance on the YOHO database, AMPEX's pitch track was found to be closer to the 
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Figure II-8. Auditory Model Pitch Extractor 
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subjective true pitch for speech from the database; The band-pass filtering (BPF) of the 

YOHO database appears to cause errors in the pitch estimated by SHS. The lack of a 

delayed decision (e.g., dynamic program) caused additional errors in the SHS pitch track. 

The parameters optimized in SHS were adjustments to the high frequency deweighting 

factor, the weighting function, the down sampling filter, and FFT length. The parameters 



optimized in AMPEX were the input level scaling factor and minimum evidence of 

voicing threshold. The input level sensitivity of AMPEX is a potential weakness in 

practical implementations, but, fortunately, its setting doesn't appear to be too critical. 
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To try many feature extraction variations on the YOHO database (about 20 hours of 

speech), AMPEX had to process 1he speech data files quickly (preferably faster than real 

time). With full optimization, Sun's C compiler (cc) generated code that was 9.7 times 

real time on a Sun SPARC-2 workstation computer. Sun's ANSI C compiler (ace) and the 

GNU C compiler (gee) did a little better at 8 times real SPARC-2 time, but this was still 

too slow. Using one head on a Cray-2, AMPEX ran in 4.4x real time (the AMPEX C 
-

code vectorized poorly). Although the Cray-2 ran AMPEX faster than a single SPARC2, 

it was still too slow. A throughput of 0.2x real time was achieved using a suite of Bourne­

shell scripts to multiprocess AMPEX across a network of 40 Sun SPARC-2s! AMPEX is 

well suited to multiprocessing because it consumes very little memory (few page faults) 

and was able to run at low priority on people's SPARC-2s without them noticing. 

Loudness 

Perceived loudness is at least a function of both frequency and level. A phon level is 

the result of a psychoacoustic experiment where listeners are asked to adjust the 

amplitude of various tones to match the amplitude of a 1 kHz reference tone at a given 

amplitude. By conducting a series of experiments using different amplitude reference 

tones, a family of curves with contours of equal subjective loudness is found. These 

curves, shown in Figure ll-9 (Borden and Harris 1984) are known as the Fletcher-Munson 

curves. 

Equal-loudness compensation is an approximation of the ear's unequal sensitivity at 

different frequencies; i.e., frequency equalization. These curves show that maximum 

acuity (frequencies we are most sensitive to) occurs between 2 and 4kHz. It's no 
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Figure 11-9. Equal-Loudness Level Contours 

coincidence that this is in the neighborhood of the Helmholtz resonance of the ear canal 

and that human speech evolved in this vicinity. 

The loudness level scale, measured in sones~ is the result of a psychoacoustic 

experiment where listeners are asked to set the loudness of a sound to t' 2, nr ' or 10 

times the loudness of a 1 kHz reference tone. As shown in Figure 11-10, the perceived 

loudness in sones is often approximated from the loudness level in phons (Parsons 1987) 

by: 

L. = 0.063 ·10o.03Lp (11-21) 
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Figure ll-10. Perceived Loudness Scale 

The intensity-loudness power law is roughly a cube-root amplitude compression to 

approximate the power law of hearing by simulating the nonlinear relation between the 

intensity of sound and its perceived loudness (Hennansky 1990). 

Perceptual-Model Filterbank 
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Combining all of the above, we can approximate the ear's frequency-dependent and 

amplitude-dependent responses to simple sounds such as pure tones. Complex sounds, 

such as speech, may need yet another level of understanding to accurately reflect their 

perceptual properties. The perceptual-model fllterbank used in this research was adopted 

for an 8 kHz sampling frequency from the front-end proposed by Hermansky in his 

method of perceptual linear prediction (Hermansky 1990). The processing steps for this 

filterbank are described in Table ll-6. In this research, the short-term power spectrum is 

estimated via the periodogram method (Oppenheim and Schafer 1989) every 10 ms using 

20 ms overlapping Hamming windows with 256 point FFTs. A fixed equal-loudness 

curve was selected to approximate the 40 pho~ level for the preemphasis. A cube-root 

nonlinearity is used for the compression to simulate the intensity-loudness power law of 

hearing. To sample the 0 to 4kHz (0 to 15.6 Bark) analysis bandwidth at approximately 



TABLEll-6 

PERCEPTUAL-MODEL FILTERBANK 

1. Estimate the short-term power spectrum. 

2. Convolve the power spectrum with a simulated critical-band masking pattern. 

3. Resample the critical-band power spectrum's frequency scale at approximately 
1 Bark intervals via Hertz-to-Bark frequency warping to obtain a critical-band 
Bark-frequency power spectrum. 

4. Preemphasize the critical-band Bark-frequency power spectrum by a simulated 
equal-loudness curve to obtain a critical-band, Bark-frequency power spectrum in 
phons. 

5. Compress the critical-band, Bark-frequency power spectrum in phons through 
a simulated intensity-loudness power law to generate a perceptual-model 
ftlterbank feature vector in sones. 
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1 Bark intervals, 15 bands were chosen with 0.97344 Bark spacing. The magnitude 

response of the resulting perceptual-model ftlterbank (a 15 channel critical-band, Bark­

frequency power spectrum in sones) is shown in Figure ll-11. This perceptual-model 

ftlterbank accounts for the human ear's nonlinear transformations of frequency and 

amplitude and its analysis and masking behavior in response to complex sounds. 

Therefore, measures between perceptual-model ft.lterbank feature vectors could correlate 

well with their perceptual closeness. 
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The next chapter presents singular value decomposition in the context of linear 

prediction and speech perception. 
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CHAPrERID 

LP AND SINGULAR VALUE DECOMPOSITION 

Changes in the LP filter excitation on the synthetic speech output can be directly 

observed via singular value decomposition (SVD). A change in one of the right singular 

vectors (eigenvectors of HTH) at the input produces a change in only one left singular 

vector (SV) at the output. The excitation waveform is expressed· as a linear combination 

of the eigenvectors of the autocorrelation matrix (HTH) of the LP filter's impulse 

response (h). The LP filter convolution is transformed to a simple multiplication, 

providing important advantages in interpreting the role of each SV component in the 

excitation. This can be exploited in speech coding, fast vector quantization, code book 

design, and pattern matching. 

Modern signal processing accounts for real-world observations that are incomplete 

and noisy. Traditional analysis techniques that assume stationarity and time invariance 

neglect these real-world conditions. SVD of the observation matrix allows robust 

separation of signal and noise spaces. SVD has given the modern counterparts of the 

traditional methods shown in Table ID-1. Examples of SVD applied to system 

identification, signal detection, harmonic retrieval, principal component analysis, model 

reduction, detection of multiple sinusoids in noise, and its implementation can be found 

in (Deprettere 1988; Vaccaro 1991). 
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TABLEID-1 

TRADmONAL VERSUS MODERN METHODS 

Traditional 

Least Squares 

Fourier Transform 

Modem 

Total Least Squares 

Hankel-Norm 
Approximation 

Prony-Type Modeling 
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SVD is generally the preferred method of rank determination. Many linear algebra 

theorems hinge upon a matrix being of full rank. Often the determination of rank is 

neglected. In the real world~ rank determination is nontrivial because of noisy 

observations and numerical difficulties. SVD can be used to quantify how close a matrix 

is to rank deficiency (Golub and Van Loan 1983). For singular or nearly singular 

matrices, the best choice for solution of linear algebraic equations is almost always 

singular value decomposition with back substitution (Vetterling and others 1989). SVD is 

an excellent tool for linear fitting. The purpose of linear fitting is to reduce the data to a 

few model parameters, where there is linear dependence of the function on its fitting 

parameters (as opposed to its argument). SVD is generally the recommended method for 

linear fitting of a model function to a set of data because it never fails in practice, even in 

cases where near degeneracy of some basis functions occurs (which wreaks havoc with 

traditional linear least-squares methods) (Vetterling and others 1989). Now that we know 

a little about SVD's powers, let's review how it is found. 
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Definition of SVD 

Singular value decomposition and eigenvalue-eigenvector decomposition (EVD) are 

intimately related. While EVD is restricted to square matrices, SVD can be used on both 

square and nonsquare matrices. By definition, the EVD of a symmetric matrix, 

A = QAQ T, yields eigenvalues in the diagonal matnx A and an orthogonal eigenvector 

matrix Q (Strang 1988). The EVD doesn't exist for rectangular matrices, but if the left 

and right matrices are allowed to be any two orthogonal matrices, as opposed to 

transposes of each other, a decomposition can be performed. Furthermore, the diagonal 

matrix (now rectangular) can be made nonnegative (Strang 1988). This is the spirit of 

SVD. 

Although SVD can be performed in the complex field, we'll restrict our results to the 

real field. (With minor alteration, these results can be extended to the complex field.) The 

literature abounds with proofs of these results (e.g., (Golub and Van Loan 1983), (Strang 

1988) ), so they wont be repeated here. For any real m x n matrix, A, of rank r: 

A E 9t"')(" rank(A)=r (III-1) 

there exist orthogonal matrices, U and V, and a diagonal (ali= 0 'Vi :F. j), strictly 

positive matrix, 1:: 

(III-2) 

such that A can be decomposed as: 

(III-3) 
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This is the singular value decomposition of A . (It should be noted that if m ~ n, then an 

"economical form" exists, where U is the same shape as A and ~ is square (Moler and 

others 1989)). 

U=[ul' ... , u"'] 
V=[v1, ••• , v,.] 

}; = [: :] E gt••• 

01 ~ ••• ~or>0 

u e9t"' 
' 

V E 9t" 
' 

(ID-4) 

The ith diagonal element, o,, of the matrix, S, is called the ith singular value of A . 

The number of singular values is equal to r, the rank of matrix, A . The columns of U 

are called the left singular vectors of A. The columns of V are called the right singular 

vectors of A. 

For symmetric positive definite matrices, the SVD degenerates to EVD, A= QAQT. 

For indefmite matrices, any negative eigenvalues in A become positive singular values in 

l:, which forces the left and right SVD matrices, U and V, to be different. As shown in 

Table ill-2, the columns of U and V give orthonormal bases for all four fundamental 

subspaces (Strang 1988). 

What does the SVD do geometrically? Given a sphere in n-dimensional space, if each 

vector in it is multiplied by an m x n matrix, A , an ellipsoid in m-dimensional space 

results. The singular values of A are the lengths of the principal axes of the ellipsoid and 

the left singular vectors of A are the directions of the principal axes. If the matrix, A, is 

singular, this will be reflected in the shape of the ellipsoid (Wolfram 1988). 

The SVD can always be done, no matter how singular the matrix is, and it is "almost 

unique." If a particular singular value is distinct, then the corresponding left and right 

singular vectors are also unique (Endsley 1991). Furthermore, the SVD is unique up to 

(1) making the same permutation of the columns of U, elements of l:, and columns of V 



TABLEID-2 

FUNDAMENTAL SUBSPACES 

Columns of U or V SVDMatrix Subspace of A 

first r u column space 

lastm- r u left null space , 

first r v row space 

lastn-r v null space 

(or rows of VT) or (2) forming linear combinations of any columns of U and V whose 

corresponding elements of :E happen to be exactly ~ual (Press and others 1990). 

So, how can U, V, and :E be determined and computed? First, let's determine :E: 

UTU=I 
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AT A= (U:EVT)T U:EVT 

= V:ETUTU:EVT 

= V(l:T:E)VT VVT =I~ yT =V-1 (ID-5) 

= V:ET:EV-1 v-1(•)V 

:ET:E= v-1AT AV 

AT A= v(:ET:E)VT is in the form of an EVD, so the modal matrix of AT A is given by v. 

Thus, the columns of V, the right singular vectors of A, are the orthonormal 

eigenvectors of AT A. Likewise, it's easy to show that the modal matrix of 

AA T = U.I.l:TUT is given by U (Hershey andY arlagadda 1986). Thus, the columns of 

U, the left singular vectors of A, are the orthonormal eigenvectors of AA T. It should be 

noted that EVD solutions have arbitrary scaling, so, if we restrict ourselves to 



orthononnal solutions, there is a sign ambiguity between an eigenvalue and its 

corresponding eigenvector. 
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~T~ = v-t AT A V is a similarity transform; thus, the matrices ~T~ and AT A are said 

to be similar. Similar matrices have the same eigenvalues (Strang 1988). Since~ is 

diagonal, the matrix l;T~ is also diagonal and contains the elements diag( a;, ... , a;). 

Thus, the singular values are equal to the positive square roots of the eigenvalues of AT A 

(or AA T, which has the same nonzero eigenvalues (Hershey and Yarlagadda 1986)). 

Note, this would be a poor numerical method to actually calculate singular values 

because of the precision lost by the matrix squaring operation. Householder reduction to 

bidiagonal form and diagonalization by QR procedure with shifts is a traditional SVJ) :,;;~~:, 
~ " ) ~~,:.,~ 

serial-computation method (Press and others 1990). A new method, yielding very 

accurate singular values, has been proposed for inclusion in LINPACK (Demmel and 

Kahan 1990). For parallel computation, Jacobi methods (one or two sided) are usually 

preferred (Deprettere 1988). 

Now, notice that A can be expanded into a sum of outer products using the SVD: 

r r 

A=Ul;VT = ~ua.v! = ~auv! 
~··· ~··· 

(ID-6) 
.~t •=1 

Thus, any rectangular matrix can be represented as a weighted sum of r rank one 

matrices. Because the singular vectors u, and V; are normalized, the rank one matrices, 

u, v J, have the same Frobenius norm. So, the relative importance of each of the rank one 

matrices is determined by its corresponding singular value. This important result is used 

in reduced rank matrix approximations and will be used later. 

As with vectors, norms are used to quantify the size of a matrix. The SVD is 

intimately related to various matrix norms. The squared 2-norm and squared Frobenius­

norm of A can be expressed via SVD: 
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~Afz =maximum eigenvalue of AT A= a~ 
(lll-7) 

Note, some authors distinguish between the Frobenius, Euclidean, and Schur norms, 

while others do not (Deprettere 1988). 

Only square, nonsingular matrices have inverses. Using singular value 

decomposition, however, it is possible to define a pseudoinverse even for nonsquare 

matrices or for singular square ones. The pseudoinverse of A, denoted A <-1>, is often 

defmed in terms of the SVD: 

s-1 = diag(..!.. •... ,..!..) (ID-8) 
(J1 (Jr 

This definition of the pseudoinverse is sometimes known as the generalized inverse or the 

Moore-Penrose inverse. This pseudoinverse has the desirable property of minimizing the 

sum of the squares of the elements of AA<-1>- I or, equivalently,: 

is minimized. The pseudoinverse found in this way is useful in performing fits to 

numerical data. 

(ID-9) 

The condition number of A is given by the ratio of the largest to smallest singular 

values: 

(ID-10) 

If K(A) is large, then A is said to be ill conditioned. IfK(A) is small, then A is said to 

be well conditioned, which is desirable. Perfect conditioning, K( A) = 1, implies that A is 

\ 

\ 
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orthogonal. The condition number measures the sensitivity of the solution of a system of 

linear equations to errors in the data and gives an indication of the accuracy of the results 

obtained from matrix inversion and solution of the set of linear equations. Because of the 

matrix squaring operation in EVD, SVD has smaller condition numbers. Thus, SVD is 

often preferable to an equivalent EVD (Deprettere 1988). Now that we've reviewed the 

SVD, let's apply it to an autoregressive (AR) model of speech synthesis. 

SVD-Based Speech Models 

Linear prediction is an autoregressive model. It is an extremely popular model of the 

short-term spectral envelope for speech signals. The spectral resonances (formants) of 

speech can be accurately represented by this all-pole model. 

As shown in Figure ill-1, the LP filter excited by x synthesizes a speech signal, s. 

fuput ~----x-ft---~· 
Excitation xft~~ft 

Linear Prediction Filter 
hft ~(Jft 

Figure ill-1. LP Synthesis 

sft = Yft + J.Lft • Output 
-->.. 9 Speech yft--, ft 

Since the LP fllter is AR, it has an infinite extent impulse response, h. At the nth 

sampling instant, let xft, hft, and S8 represent the input, impulse response, and output, 

respectively. While the LP filter is time invariant (fixed h), the output can be represented 

by the infmite extent convolution: 

n = 1,2, ... (ill-11) 
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Notice that a change in any one sample of the input, x, is propagated into every sample 

of the output, s. Thus, a time domain analysis of how the input affects the output is very 

complicated. Because we'll eventually want a time varying LP fllter, frequency domain 

analysis doesn't help, either. Let's see if SVD can help, but first we need to develop an 

LP matrix representation. 

Matrix Form of Linear Prediction 

Consider a frame of N speech samples over which the LP fllter is time invariant. The , 

convolution sum in Equation ID-11 can be split in two, where one component of the 

response is due to excitation in the present and the other is due to excitation in the past: 

" .. 
s,. = I,h,._txt + I,h,._~t 

l=l k=A+l 

n = l,2, ... ,N 
(ID-12) 

=y,.+J.L,. n = 1,2, ... ,N 

where y is the zero-state response (ZSR) and J.L is the zero-input response (ZIR). In 

vector form: 

s=y+J1 

where y is the ZSR vector and J1 is the ZIR vector. Now, let's define an impulse 

response matrix: 

then we can represent y: 

0 

ho 
0 

(ID-13) 

(ill-14) 
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Y = 'L,h,._txt 
k=l 

=Hx 

n = 1,2, ... ,N 

Linear Prediction Properties 
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(ill-15) 

The lower-triangular Toeplitz matrix, H, has some very interesting properties. For 

example, the determinant of His equal to/( and, since ho = 1, IHI = 1 (Ata11989). This 

has interesting implications because the determinant of a matrix is equal to the product of 

all its eigenvalues. 

jHTHI = IHTI·IHI = 1 =>II"-,= 1 (ill-16) 
i 

Recall that the singular values are equal to the positive square roots of the eigenvalues 

ofHTH: 

II"-,= 1 =>II o~ = 1 =>II a,= 1 (ill-17) 
I 

Because the singular values are in descending order and their product equals one, the first 

singular value must be greater than or equal to 1: 

(ID-18) 

Therefore, a large singular value will force subsequent singular values to be small. 

SVD of LP Impulse Response Matrix 

Now that we have a matrix form, we're fmally ready to apply the SVD to the square 

impulse response matrix, H: 
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N 

= I,a;u,v; 
(ID-19) 

i=l 

This follows from the important SVD result shown earlier, theN x N matrix, H, can be 

expressed as a weighted sum of N rank-one matrices. It should be noted that if the left, 

u,, and right, v,, singular vectors are both multiplied by -1, the summation still holds. 

Moreover, because of the Toeplitz structure of H, the left and right singular vectors are 

mirror images of each other. This is because the mirror image permutation matrix (a 

reverse diagonal identity matrix) times any Toeplitz matrix times the transpose 

permutation matrix equals the original Toeplitz matrix. Let u,(n) and v,(n) represent the 

nth vector elements. Then, as verified in (Campbell1991): 

u,(n) = ±v,(N -n+ 1) (ID-20) 

Now, let's consider the special case of an input, x, equal to one of the right singular 

vectors, v 1 : 

y=Hx 
N 

= l',a,u,v;v1 
i=l 

(ID-21) 

The output is solely the singular value times the left singular vector corresponding to the 

input. What if the right singular input is changed by a scale factor a? 

y=Hx 
N 

= l',a,u;v[v1a 
•=1 

x=av1 

T -~ v VL -0· L ' ,. ,_,. (ID-22) 
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Thus, a scaling change in one right singular vector at the input produces a change in 

only one left singular vector at the output. This suggests a method of transform coding. 

So, how are the right singular vectors related to our time varying LP filter? Let's do 

an SVD of HTH: 

HTH=(u~Tru~T 

=V~TUTU~T 

=V~T~T 

=V~2VT 

(ill-23) 

Thus, this EVD form shows that the right singular vectors, v ~ , are also the eigenvectors 

of HTH. The ij element of HTH is: 

(ill-24) 

HTH is called the autocorrelation matrix of the impulse response of the LP filter because 

it approximates this as N gets large (Atall989). 

Thus, when the LP filter is varied, we can determine the right singular vectors that 

will exhibit the desirable localization pro~rties shown above, so now we're ready to 

consider an SVD basis representation. 

SVD Transform Representation 

In our case, we'd like to transform the time domain signal to a domain where the 

effects of changes in the input can be easily controlled in the output. As shown in the 

previous section, SVD of the filter appears to be an appealing solution. 

Let's rewrite the ZSR equation for y: 

(ill-25) 
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Transform both sides by the left SVD matrix: 

(ill-26) 

Now, let's transform the time domain signals to the SVD domain according to: 

(ill-27) 

Thus, the input is represented as a linear combination on the orthonormal basis signals 

derived from SVD of the matrix of the LP filter's truncated impulse response. 

The SVD domain input-output LP filter relation becomes: 

(ill-28) 

Or, in scalar notation: 

n = 1,2, ... ,N (ill-29) 

Thus, by using SVD, we've transformed the LP filter convolution to a simple 

multiplication that provides significant advantages in interpreting the role of each SV 

component in the excitation. The singular value components associated with the input and 

output signals are proportional. Thus, an error in one input component affects only the 

same output component. 

Recall that the singular values, o ~~~ are in descending order, so the elements near the 

beginning of the transformed input vector will dominate the output in the SVD domain. 

This allows us to determine numerically significant transformed excitation components 

based upon the size of the singular values. Now, we need to find the perceptually 

significant transformed excitation components. 
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Perceptually Based SVD 

The eigenvectors of the autocorrelation matrix for a typical LP fllter for voiced 

speech demonstrate an approximately sinusoidal shape (Atal 1989). This suggests that the 

eigenvectors have a narrow-band spectrum, resembling bandpass filters. As shown in 

Figure IIT-2, this is verified using the LP coefficients extracted from the vowel/U/. The 

sinusoidal structure of the right SV s is especially apparent in the early components. 

Figure IIT-2. Sinusoidal Structure of Right SVs of H 

As is clear from Figure IIT-3, the "narrow mountain range" verifies the claim that the 

right SV s of H have a bandpass characteristic (for the LP filter chosen in this example). 

Note that the middle right SVs have a bimodal (dual bandpass) characteristic, which also 

agrees with Atal's findings. 

So, let's try to perceptually exploit this narrow-band property of the SVD transform 

domain basis vectors. A very important perceptual process is called auditory masking 
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Figure m-3. Narrow-Band Structure of Power Spectrum of Right SVs ofH 

(Tobias 1970). Auditory masking is the perceptual obscuring of one sound by another. 

This obscuring occurs when two sounds are in close temporal proximity (i.e., 

forward/backward masking) or close in frequency proximity (i.e., simultaneous masking). 

Critical bands are used to quantify simultaneous masking. Consider a pure tone 

masked by a band of noise sUJTOunding the tone. As the bandwidth of noise is increased, 

the amplitude of the noise needed to just mask the tone decreases, but not forever. 

Beyond a critical bandwidth (which depends on the frequency of the tone), the noise 

amplitude needed to mask is constant, no matter how wide the noise bandwidth. This 

frequency versus critical bandwidth relation is known as the Bark scale and was depicted 

in Figure ll-7. 

The effects of masking of noise by tones not in the same critical band is known as 

out-band masking. It can be quantified by the signal-to-noise ratio (SNR) necessary to 

mask a critical bandwidth noise placed in other critical bands. For each tone centered in a 

critical band, the masking threshold (the minimum SNR needed to keep the noise signal 

masked by the tone) as a function of frequency is reported in reference (De Iacovo and 
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others 1990). The masking threshold can be determined by (De Iacovo and others 1990) 

as shown in Table ill-3. 

TABLEill-3 

CALCULATING Tim MASKING THRESHOLD 

1) Determine a critical-band piecewise LP spectrum 

2) Compute the masking threshold for each band 

3) Evaluate the overall noise level at the masking threshold by adding the 
contributions of each band 

Because of the bandpass filter characteristics of the singular vectors and the error 

component isolation properties of the SVD, it is now possible to determine (for each LP 

filter) which transformed excitation components control the frequency regions where the 

ear can tolerate larger errors. This allows us to determine the perceptually significant 

singular components of the transformed excitation. 

Speech Coding 

In speech coding, one goal is to reduce the data rate needed to transmit the excitation 

signal, while providing perceptually high quality synthesized speech. We can do precisely 

this using the SVD transform domain techniques just presented. One could quantize the 

excitation components based upon their perceptual significance. The quantization should 

be adaptive because the perceptual significance of these excitation components is based 

upon the varying LP fllter. 
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The SVD synthesis equation, e .. = a .. ~ ... shows that changes associated with large 

singular values produce large changes in the output speech. Thus, to minimize distortion, 

transformed excitation components with large singular values require greater precision in 

coding relative to components with small singular values. An oversimplified procedure 

would be to select the largest (first) K transformed excitation components (Sanchez-Calle 

and others 1990). A better scheme could allocate a different number of bits to different 

SV components depending upon their singular values. Atal reports that using such a 

scheme to allow coding of 2 bits per excitation sample on the average is sufficient to keep 

the quantizing noise inaudible, and, if differential vector quantization is used, this can be 

reduced to 1 bit (Atal 1989). This is still a rather high data rate, but we have yet to 

include perceptual knowledge. An even better scheme uses the perceptual threshold 

masking information discussed above to select the transformed excitation components for 

transmission. By using this scheme, the number of excitation components can be reduced 

by 25% without introducing any audible distortion (De Iacovo and others 1990). 

Vector Quantization Code Book Design 

Vector quantization code books could be designed in the SV transform space. An 

iterative design procedure was introduced by De Iacovo (De Iacovo and others 1990). 

Unfortunately, this procedure was overly simplified (e.g., the pitch predictor was omitted) 

to make it mathematically tractable and computationally feasible. It appears that this area 

has yet to be fully harvested. 

Fast Vector Quantization 

SVD could allow a fast vector quantization of the excitation signal (Trancoso and 

Atal1990). If the excitation code book is transformed to the SVD domain, a fast search 

procedure could be based upon only the perceptually significant SV components. The 

computational cost of transforming the code book for each new linear predictive coding 



(LPC) frame might be more compute intensive than traditional, brute force search 

methods. To avoid the computational expense of transforming a code book for each LP 

fJ.lter, at the expense of memory, one could store multiple code books, with each one 

corresponding to a class of LP fJ.lters. 

Speaker Authentication 
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SVD might provide a compact and powerful set of observation vectors that efficiently 

capture speaker-dependent features in a perceptually meaningful sense. Vector 

quantization (VQ) based speaker authentication approaches, as shown later in 

Equation V -4, could benefit from the VQ code book design and fast VQ ideas outlined 

above. The perceptual aspects of SVD could be exploited to yield perceptually 

meaningful features in speaker authentication applications. Use of SVD in speaker 

authentication has not been reported in the literature. The speaker discriminatory power 

of SVD based features was investigated. 

As shown previously in Figure ill-2, the response of the singular vectors have 

desirable properties closely related to perception. Since the response of the singular 

vectors is not directly controllable, using them as features was not further pursued at this 

time. However, in the process of feature selection, the power of SVD was brought to bear 

on the analysis of poorly conditioned covariance matrices. 

SVD Advantages 

The SVD allows representation of perceptually based errors in a transform domain 

where each error on the transformed excitation signal is reflected only in the same 

component of the transformed output signal. Perceptual phenomena is accounted for by 

the band-limited characteristics of the singular vectors used in the decomposition. This 

allows us to reduce the number of transformed excitation components in a systematic and 

perceptually meaningful way. This reduction in the transformed excitation components is 



useful for efficient coding, fast vector quantization, and vector quantization code book 

design. 

Generalized SVD 

The basic SVD utilizes one matrix and the singular values can be used for various 

applications as outlined above. We can still use this approach and more by using the 

generalized singular value decomposition (GSVD) which uses two matrices. 

Given two matrices, A and B: 
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Ae9t"'x" (m~n) (ill-30) 

There exist orthogonal matrices, U e 9t"'x"' and V e 9t'x', and an invertible X e 9t"x" 

such that: 

UT AX= DA = diag(a1,a2 , ••• a,.), a;~ 0 

VTBX = n. = diag(~~·~z·· .. ~q ~ ~~ ~ 0; q = min{p,n} 
(ill-31) 

where: 

r =rank(B) (ill-32) 

This is the generalized singular value decomposition of A and B (Golub and Van Loan 

1983). The simultaneous equations are coupled through X. Since X need not be a unitary 

matrix (just a nonsingular matrix), it may have some parameters that could give some 

normalization and other information. 

If A and B are sequential measurements of a speech signal, then X might contain 

information about transition regions between A and B. GSVD could be used on 

sequences of speech measurement matrices to yield an Xi sequence of matrices. These Xi 



matrices could be used as features in a speaker authentication system as a means to 

capture transition information (Yarlagadda 1991). 

Reproducing accurate transition regions of speech are crucial to its high quality 

synthesis. The speaker discriminatory power of speech transition regions using GSVD 

was briefly evaluated. Normalization problems precluded this from being useful at the 

present time. Hopefully, these problems will be solved in the future. 

The next chapter presents feature selection, estimation of mean and covariance, 

divergence, and Bhattacharyya distance. It is highlighted by the development of the 

divergence shape measure and the Bhattacharyya distance shape. 
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CHAFfER IV 

FEATURE SELECTION AND MEASURES 

In order to apply mathematical tools, and without loss of generality, the speech signal 

can be represented by a sequence of feature vectors. In this section, the selection of 

appropriate features is discussed along with methods to estimate (extract or measure) 

them. This is known as feature selection and feature extraction. 

Traditionally, pattern recognition paradigms are divided into three components: 

feature extraction and selection, pattern matching, and classification. Although this 

division is convenient from the perspective of designing system components, these 

components are not independent The false demarcation among these components can 

lead to suboptimal designs because they all interact in real-world systems. 

In speaker authentication, the goal is to design a system that minimizes the 

probability of authentication errors. Thus, the underlying objective is to discriminate 

between the given speaker and all others. A modem comprehensive review of the state of 

the art in discriminant analysis is given in (Gnanadesikan and Kettenring 1989). 

Traditional Feature Selection 

Feature extraction is the estimation (measurement) of variables, called an observation 

vector, from another set of variables (e.g., a speech signal time series). Feature selection 

is the transformation of these observation vectors to feature vectors. The goals of feature 

selection are to fmd a transformation that preserves the information pertinent to the 

application, to realize a transform domain where meaningful comparisons can be 
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performed using simple distance measures, and to form a relatively low dimensional 

feature space. 
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Although it might be tempting at ftrst to select all the extracted features, the "curse of 

dimensionality" quickly becomes overwhelming (Duda and Hart 1973). As more features 

are used, the feature dimensions increase, which imposes severe requirements on 

computation and storage in both training and testing. The demand for a large number of 

training samples grows expo~entially with the dimension of the feature space. This 

severely restricts the usefulness of nonparametric procedures (no assumed underlying 

statistical model) and nonlinear transforms because this compounds their voracious 

appetite for large training sets. 

The traditional statistical methods to reduce dimensionality, and avoid this curse, are 

principal compone~t analysis and factor analysis. Principal component analysis seeks to 

fmd a lower dimensional representation that accounts for variance of the features. Factor 

analysis seeks to find a lower dimensional representation that accounts for correlations 

among the features. In other disciplines, principal component analysis is called the 

Karhunen-Loeve expansion (KLE) or eigenvector orthonormal expansion. Since each 

eigenvector can be ranked by its corresponding eigenvalue, a subset of the eigenvectors 

can be chosen to minimize the mean square error in representing the data. Although KLE 

is optimum for representing classes with the same mean, it is not necessarily optimum for 

discriminating between classes (Tou and Gonzalez 1974). Since speaker authentication is 

a discrimination problem instead of a representation problem, we seek other means to 

reduce the dimensionality of the data. 

Linear transformations are capable of dividing the feature space by a hyperplane. If 

data is linearly separable, then it can be discriminated by a hyperplane. In the case of a 

two-dimensional feature space, the hyperplane collapses to a line. As shown below, if 

p(x)- N(JLs, C11 ), A is an m by n matrix, andy= Ax is an m-component image vector, 

then p(y)- N(Ap.11 , AC11AT). 



y=Ax 

Jly = E(y) = E( Ax] = AE[ x] 
=AJ.L. 
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C1 = ~(y- J1y )(y- Jly )T] = E[A(x- Jlx)(A(x- Jlx)f] (IV-1) 

= E(A(x- Jlx)(x- J.L.)T AT]= AE((x- J.L.)(x- J.L.)T]AT 

=AC AT 
l( 

Thus, a linear transformation of a multivariate normal vector also has a normal density. 

Any linear combination of normally distributed random variables is again normal. This 

can be used to ,tremendous advantage if the feature densitit?s of the speakers are assumed 

normal. This allows us to lump all the other speaker probability density functions (pdfs) 

into a single normal pdf. Pairwise (two class) discriminators are usually much easier to 

design than multiclass discriminators. Thus, pairwise discriminators can be designed for 

the claimant talker versus all other talkers. 

In the special case where the transformation is a unit length vector, a, y =ax is a 

scalar that represents the projection of x onto a line in the direction of a. In general, 

ACxA T is the variance of the projection of x onto the column space of A. Thus, 

knowledge of the covariance matrix allows us to calculate the dispersion of the data in 

any direction. 

In Figure IV -1, two classes are represented by boxes and circles in a two-dimensional 

feature space (x1, x2 ). Here we see that if feature x1 or x2 was used by itself, 

discrimination errors would occur because of the overlap between the projected classes 

onto the ~ or x2 axes. However, it is quite clear that the data is perfectly linearly 

separable by the dashed line. H the data is linearly transformed onto the column space of 

A, perfect discrimination is achieved. In addition, one can see a clustering effect by the 

reduced variance of the projection onto the column space of A. 
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y=Ax 

Figure IV -1. Linear Transformation 

It should be noted that data may not always be discriminated well by linear 

transformation. In these cases, nonlinear transformation may lead to improved 

discrimination. An example of this are the classes defined by the members of interlocking 

spirals. No line can separate the spirals, but a nonlinear transformation could yield perfect 

discrimination. 

The goal of speaker authentication feature selection is to find a set that minimizes 

probability of error. Unfortunately, an explicit mathematical expression is unavailable, 

except for trivial cases, which hinders rigorous mathematical development. Even for 

normal pdfs, a numerical integration is required to determine probability of error (except 

for the equal covariance case) (Fukunaga 1990). 

To make the problem mathematically tractable, consider discriminant feature 

selection with respect to a Bayes classifier. This reduces discrimination to the probability 

of error due to a Bayes classifier. This implies a set that exhibits low intraspeaker 

variability and high interspeaker variability. ~ technique that can be used to find good 

features is analysis of variance (ANOV A), which involves measuring Fisher's F-ratio 
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(Equation iv -2) between the sample pdfs of different features. For speaker verification, 

high F-ratios are desirable. 

F = variance of speaker means 
average intraspeaker variance 

(IV-2) 

Unfortunately, ANOVA requires evaluating the F-ratio for many different combinations 

of features to really be useful. For example, two features \\ith high individual F-ratios 

might contain redundant information and as a feature vector be less effective than two 

features which individually had low F-ratios. The usefulness of the F-ratio as a 

discrimination measure is further reduced if the classes are multimodal or if they have the 

same means. This is a fatal flaw with any criterion that is dominated by differences 

between class means. This will now be demonstrated. 

Normal Density With Equal Means 

The normal pdf is often a good approximation to real-world density functions. Classes 

will exhibit normal densities when each pattern of a class is a random vector formed by 

superposition of a random vector upon a nonrandom vector, where the superimposed 

random vectors are drawn from the same normal density. This is a good approximation to 

real-world situations characterized by independent identically distributed (i.i.d.) additive 

Gaussian noise (AGN). The normal pdf has some striking advantages. It is one of the 

simplest parametric models, being characterized by a mean and variance. In addition, the 

sum of normal random variables yields a normal random variable. 

Then-variate normal pdf is defined as: 

p(x) = (2xf"' 21Cr1' 2 exp[-Hx- PY c-1 (x -p.)] 
- N(p.,C) 

(IV-3) 
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where C is the n-by-n covariance matrix and J1. is an n-dimensional column component 

mean vector. Note that in Equation IV-3, contours of constant probability occur for 

values of x where the argument of the exponential is constant. Neglecting the scale factor, 

the argument of the exponential is referred to as the Mahalanobis distance, di,, between 

x and J.L: 

(IV-4) 

Thus, the loci of points of constant density are hyperellipsoids of constant Mahalanobis 

distance to J.L. The principal axes of these hyperellipsoids are given by the eigenvectors 

of C and their eigenvalues determine the lengths of the corresponding axes. 

Samples drawn from a multivariate normal density tend to cluster. The center of the 

cluster is determined by the mean and the shape of the cluster is determined by the 

covariance matrix. In the bivariate (n=2) case, it is convenient for pwposes of display to 

show the 1-sigma ellipse. For example, Figure IV -2 shows the bivariate 1-sigma ellipses 

for two classes with equal means, J.l.t = J12 = [0 0], and unequal covariance matrices. 

Figure IV -2. Unequal Covariance 
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Although there is no line that can perfectly discriminate these two classes, it's easy to 

visualize that a 45 degree projection would provide some discrimination power. 

However, the F-ratio would indicate that these features, x1 and x2 , are powerless because 

the classes have the same means in the x1- x2 space. 

Now consider a bimodal pdf. Figure IV-3 shows class 1 as being bimodal in x1 • The 

means of both classes are the same; hence, the F-ratio would show feature x1 as 

powerless. However, it is clear from Figure IV-3 that Xt is powerful because significant 

discriminatory information exists along feature Xt • 

Figure IV-3. A Bimodal Class 

Thus, caution should be used with any criteria, such as the F-ratio, that relies on class 

means. If the classes have the same means or are not unimodal, the F-ratio can be a poor 

measure of discriminati~n power. Clearly, we seek a criterion that more accurately 

portrays discrimination power. 



Importance Sampling 

Statistical methods such as imponance sampling (Whalen 1971) are used to study 

outliers (e.g., wolves and sheep). Importance sampling relies on models of the outlier 

pdfs, which are unknown for wolves and sheep. Importance sampling may allow 

systematic study of wolves and sheep. Perhaps the parameters necessary for accurate 

importance sampling models could be derived from the massive YOHO database. 

Mean and Covariance Estimation 

The unbiased estimate (UBE) of the covariance is given by the sample covariance: 
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A 1 ~ T 
C = ---'-(x, - J.l)(x, - J.l) 

N -1 •=l 
(IV-5) 

The UBE and maximum likelihood estitpates (MLE) of covariance differ by their scaling 

factors of "'lf=r. and 1r, respectively. They are both termed a sample covariance matrix. 

When the mean is being estimated too, the UBE is generally preferred; however, they are 

practically identical when N is large. 

To estimate the mean and covariance when all samples are not yet available or when 

dealing with a large number of samples, recursive computation methods are desirable. 

Denoting an estimate based upon N samples as fi.N and on N+ 1 samples as fi.N+l• the 

sample mean is: 

A 1 N+l 
II --~X 
r-N+l - N + 1 f::t k 

=-1-(fxt +xN+l) 
N +1 t=l 

1 ( 'A ) = -- NJ.lN + XN+l 
N+1 

A 1 ( A ) = llN + N + 1 XN+l- llN 

(IV-6) 
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The UBE sample covariance matrix recursion can be similarly derived, with C N 

representing the estimate based upon N samples: 

(IV-7) 

Sample covariance matrices using LSP features are shown in the mesh plots of 

Figures N-4 and N-5. In each plot, the variances and covariances of 10 LSP coefficients 

are represented in the vertical direction on a 10 x 10 mesh. From a total of 80 seconds of 

speech, each matrix (mesh plot) was generated from the LSP vectors conesponding to 

voiced speech. 
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Figure N -4. LSP Covariance Matrices: Different Sessions, Same Speaker 

Notice that these covariance matrices for different sessions of the same speaker appear to 

be similar. 

Figure N-5. LSP Covariance Matrices, Different Speakers 
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These LSP covariance matrices appear to have more differences between speakers 

than similarities for the same speaker. As shown later, the LSP covariance matrices can 

capture speaker identity. 

Divergence Measure 

Divergence is a measure of distan<?e or dissimilarity between two classes based upon 
' . 

information theory (Kullback 1968). I~ provides a means of feature ranking and 

evaluation of class discrimination effectiveness (Tou and Gonzalez 1974). The following 

equations are based· upon Tou' s rather COil)plicated derivation (Tou and Gonzalez 197 4 ). 

To allow the reader to more readily un~erstand Tou's equations, the derivations are given 

in easy to follow form; complete with intermediate steps. Let the probability of 

occurrence of pattern x,. given that it belongs to class m,, be: 

P;(x) = p(x I m;) (IV-8) 

and likewise for class m i: 

(IV-9) 

Then, the discriminating iriformation of an observation x, in the Bayes classifier sense, 

for class m, versus class m 1 can be measured by the logarithm of the likelihood ratio: 

(IV-10) 

Entropy is the statistical measure of information or uncertainty. The population entropy 

for a given ensemble of pattern vectors is: 

H = -E[ln p(x)] (IV-11) 
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The entropy of the ith population of patterns is: 

H1 =-I p1(x)ln P1(x)dx (IV-12) 
:1 

The average discriminating information for class ro1 versus class ro 1 over all 

observations, also known as directed divergence, Kullback-Leibler nwnber (Kullback 

1968), or discrimination (Blahut 1987), is then: 

/(i,j) =I P;,(X)U.;dx 
:1 

(IV-13) 

Likewise, the discriminating information for class ro i versus class ro 1 can be measured 

by the logarithm of the likelihood ratio: 

u =lnP/X) 
11 P1(x) 

(IV-14) 

The average discriminating information for class ro 1 is then: 

I p.(x) 
/(j,i) = pi(x)ln ~dx 

s P~(x) 
(IV-15) 

The divergence (the symmetric directed divergence) is defined as the total average 

information for discriminating class ro 1 from class ro 1 : 

JIJ =l(i,j)+l(j,i) 

= I[P (x)- p (x)]ln p1(x) dx 
s I J .. pJ(x) 

(IV-16) 
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Now, in order to select features with this measure, we need the feature pdf for each 

pattern class. Assuming the pattern classes are n-variate normal populations: 

(IV-17) 

Substituting Equation IV-3 into Equation IV-10 yields the log likelihood ratio: 

The average information for discrimination between these two classes is: 

l(i,j) = J p,(x)u,,dx 
~ 

= J (2n:r"'2jcJ112 ex~-t(x- JJ.JT c,-1(x- 11J]. 
~ 

{tIn ~:I-t tr{ <:;"1 (x - Jl.)(x - 11. l'] + 

ttr[Cj1(x- JJ.)(x- JI.,)T]}dx 
(IV-19) 

=tin~+ttr[c.(c;-'-c;-')]+ttr{c~'<ll. -~t,>(Jl. -~tf] 

Let the difference in the means be represented as: 

(IV-20) 

The average information for dis~ation between these two classes is: 

I(i,j) =tin~+ttr[c.(c~' -c;' )] + ttr{CJ'li5•] (IV-21) 

Hence, the divergence for these two normally distributed classes is: 



1. =tin ~;I +ttt{c,(c~· -c;-')]+ttr(c~'()L, -JL)(JL, -JLf] 

+t 1n ~ + t n[c ,( c;-• - CJ' )] + ttr(c~'()L, - JL,)(JL, - 11.>'] 

= ttr[(c;- cJ(c~~ -c~~ )]+ttr[(c~~ + c~~ )<JL,- JL)(JL,- JL)T] 

=ttr[(c, -cJ(c;~-c~~)]+ttr[(c~~ +C~1 )~T] 
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(IV-22) 

Note that Equation N -22 is the sum of two components, one is based solely upon 

differences between the covariance matrices and the other involves differences between 

the mean vectors, ~.These components can be characterized respectively as differences 

in shape and size of the pdfs. This shape component, the divergence shape, will prove 

very useful later on: 

(IV-23) 

Equation N -22 is slightly complicated, so let us consider two simplifying special 

cases. 

Equal Covariance Divergence 

First, for the equal covariance case, let: 

C.=C.=C 
I J 

This leaves only the last term from Equation N-19: 

I(i,j) =ttr[c-1(J1, -JL,)(JL; -JL,l] 

= ttr[c-l~T] 
=t~Tc-~~ 

(IV-24) 

(IV-25) 
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and, therefore: 

(IV-26) 

Comparing this with Equation N -4, the divergence for this normal equal covariance case 

is simply the Mahalanobis distance between the two class means. 

For a univariate (n=l) normal equal variance, a2, population: 

/( . ") - 1 (J.l, - J.1 )2 
l,J - . 2 2 (J 

Reassuringly, the divergence in this equal covariance case is the familiar F-ratio: 

Equal Mean Divergence 

Next, for the equal population means case: 

~=0 

The average information is: 

The divergence is: 

I(i,J) = tin~+ttr[c.(c;• -c~')] 

= .11nfJ+ .ltr[c c-1] _!!. 
-z IC,I -z I I 2 

(IV-27) 

(IV-28) 

(IV-29) 

(IV-30) 



Divergence Properties 

Jlj = ttr[(c; -cj)(c~1 -C~1 )] 

= ttt{C;C"/]+ tt{CiC~1]- n 
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(IV-31) 

The divergence satisfies all the metric properties except the triangle inequality; thus, 

divergence is not termed a distance (Kullback and Leibler 1951 ). The following 

properties of divergence are proven in the landmark paper of Kullback and Leibler 

(Kullback and Leibler 1951). Positivity (i.e., almost positive definite) and symmetry 

properties are satisfied: 

Jv ~ 0 andJv = 0 iff P, * P, 

J" = Jft 
(IV-32) 

By counterexample, divergence can be shown to violate the triangle inequality by taking 

p1 - N{0,1), p2 - N{0,4), and p3 - N(0,5); thus, 113 > 112 + 123 • 

Additional measurements (increased dimensionality) cannot decrease divergence: 

(IV-33) 

As should be expected from an information-theoretic measure, processing cannot 

increase divergence (Blahut 1987). Thus, transformation of the feature space must 

maintain or decrease divergence. Furthermore, divergence can be shown to be invariant 

under onto measurable transformation (Kullback and Leibler 1951). Kullback's real 

analysis based proof is rather difficult to follow, so let's consider the special case of 

proving the invariance of the divergence measure under nonsingular linear transformation 

(affme transformation could be similarly shown): 



if p(x)- N(J.L:r,C:r) where x e 9t• and A e 9t"'x" 

let y = Ax where y e 9tm 

then Jl, = E[y] = E( Ax] = AE[ x] = AIJ.:r 

, C, = E[(Y-Il,)(y- Jl,t] = E[(Ax- AJJ.z)(Ax- AJJ.:r)T] = AC:rAT 

:. p(y)- N(AJJ.:r,AC,zA T) 

let J~:r) = ,. tr[ ( c~:r) - c~:r) X ( c~:r) r ~ ( c~:r) r) J 
+t~ ( (c~:r)r + ( c~:r) r )(ll~:r) ~ Jl~:r) )(ll~:r) - Jl~:r) f] 

then J,~> = ! tr[ ( AC!:r> AT - AC~:r> AT) 

·( (A Tr ( C~:r> t A-~ - (A Tr ( C~:r> r A-1)] 

+ttr[((ATt(c~:r>t A-1 +(ATf(c~:r>f1A-1 ) 

·(AJJ.~:r>- AJl~:r>)(AJl~:r>- AJl~:r>t] 

=ttr[ A(C~:r> -C~:r>)AT(ATt((c~:r>t -(C~:r>f)A-1 ] 

+!tr[(ATf((c~:r>f + (c~:r>t)A-1A(JJ.~:r> -JJ.~:r>) 

·(A(JJ.~:r> -JJ.~:r>)f] 
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=!tt[AA-1 (c~:r> -c~:r>)((c~z>t -(c~:r>t)] <N-34) 

+!tr[(ATr AT((c~:r>t +(C~:r>t )(Jl~:r)- Jl~:r>)(Jl~:r) -JJ.~:r>)T] 
=l(:r) 

IJ 

This is a powerful result because of the many useful linear transformations (e.g., 

discrete Fourier transform, discrete cosine transform, and discrete convolution). For 

example, if the frequency domain can be attained via linear transformation, there is no 

neeQ. to separately consider this mapping of the features. This invariance also implies that 

linear feature selection is unnecessary unless dimensionality reduction is desired. 

Divergence is additive for independent measurements: 
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Ill 

Jv(~.x2, ••• ,x.) = l',JiJ<x.) (IV-35) 
i=l 

This allows ranking the importance of each feature according to its associated divergence, 

as shown in the following example. 

Example of Equal Mean Divergence 

The preceding concepts are demonstrated here based upon an example taken from 

Tou and Gonzalez (Tou and Gonza.lez_1974). Intermediate steps have been added to aid 

the reader. Given the following observations: 

(IV-36) 

where the first index indicates class co1 or c,o2• These patterns are shown in Figure N -6. 

From this figure, it is obvious that the data could be perfectly discriminated by a plane 

slicing through the data. Let us see how the divergence metric cuts the data. 

To estimate the population means, we approximate the mean vectors by the sample 

average over N samples: 

~=E[x] 

= J xp(x)dx (IV-37) 
:.;, 

1 N 
=-:Lx. 

N J=l I 



Qe~ 

Figure N -6. Original Observation Vectors 

If the mean is not considered a random variable, the covariance may be similarly 

estimated using a sample average: 

C = E[<x- Jl)(x- JJl] 
= E[<x- Jl)(xT- JlT)] 

= E[xxT -XJJ.T -pxT +JlJJ.T] 

= E[xxT -2XJ1T +J1JJ.T] 
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= E[xxT]-2E[xJLT]+ E[J1JJ.T] 

= E[nT]-2J1JJ.T +JlJJ.T (N-38) 

= E[xxT]_JlJJ.T 

T 1 ~ T =-JJ.Jl +-~xix, 
N ,=t 

For each class, plugging in the observation vectors, we find that the means are unequal 

and the covariances are equal: 
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(IV-39) 

[
8 -4 -4] 

c-l = -4 8 4 

-4 4 8 

(IV-40) 

To maximize divergence in this special case, choose the transformation matrix as the 

transpose of the only nonzero eigenvalue's normal eigenvector of c-tMT (Tou and 

Heydorn 1967): 

y=·Ax 

Yu = 0 Ytz = -1 Yt3 = 0 Yt4 = 0 

Yzt = 1 Y22 = 1 Y23 = 2 Y24 = 1 

(IV-41) 

(IV-42) 

(IV-43) 

(IV-44) 

(IV-45) 

A perfect discrimination rule would be to choose class 2 if the image pattern is greater 

than zero. These image patterns are nonoverlapping between the classes and, hence, the 



3-D observation vectors have been successfully mapped to 1-D points with perfect 

discrimination. For comparison, the KLE transformation to 1-D fails to perfectly 

discriminate the data (Tou and Gonzalez 1974). 

Bhattacharyya Distance 
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The calculation of error probability is a difficult task, even when the observation 

vectors have a normal pdf. Closed-form expressions for probability of error exist only for 

trivial, uninteresting situations. Often the best we can hope for is a closed-form 

expression of some upper bound of error probability. The Bhattacharyya distance is 

closely tied to the probability of error as an upper bound on the Bayes error for normally 

distributed classes (Fukunaga 1990). For normal pdfs, the Bhattacharyya distance 

between class m1 and m2 , also referred to as Jl( t), is: 

(IV-46) 

The Bhattacharyya distance directly compares the estimated mean vector and covariance 

matrix of the test segment with those of the target speaker. If inclusion of the test 

covariance in the metric is useful, Bhattacharyya distance will outperform Mahalanobis 

distance. Neglecting scaling, the second term is the Mahalanobis distance using an 

average covariance matrix. As will be shown later, if the Mahalanobis distance using an 

average covariance matrix performs poorly, a different pair of scale factors can yield 

better discrimination. 

Note that Equation IV-46 is the sum of two components, one is based solely upon the 

covariance matrices and the other involyes differences between the mean vectors. These 

components can be characterized respectively as an average shape and the difference in 

\ 
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size of the pdfs. This shape component, the Bhattacharyya shape, will prove very useful 

later on: 

(IV-47) 

The Bhattacharyya distance and the divergence measure have many similarities 

(Devijver 1974; Kailath 1967; Lee 1991). As will be seen later, they both yield similar 

speaker identification performance. 

The next chapter introduces statis~cal pattern matching and receiver operating curves. 



CHAPTERV 

PATTERN MATCHING 

The pattern matching task of speaker verification involves computing a match score, 

which is a measure of the similarity of the input feature vectors to some model. Speaker 

models are constructed from the features extracted from the speech signal. To enroll users 

into the system, a model of the voice, based on the extracted features, is generated and 

stored (possibly on an encrypted smart card). Then, to authenticate a user, the matching 

algorithm compares/scores the incoming speech signal with the model of the claimed 

user. 

There are two types of models: template models and stochastic models. In stochastic 

models, the pattern matching algorithm is probabilistic, typically a likelihood measure. 

For template models, the pattern matching algorithm is distance based. Likelihood 

measures can be approximated in template based models by scoring against the claimed 

speaker model versus a global speaker model (Higgins 1990). 

The template model and its corresponding distance measure is perhaps the most 

intuitive method. The template method can be dependent or independent of time. An 

example of a time-independent template model is vector quantization modeling (Soong 

and others 1987). All temporal variation is ignored in this model and global averages 

(e.g., centroids) are all that is used. A time-dependent template model is more 

complicated because of human speaking rate variability. 
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Template Models 

The simplest template model consists of a single template, x, which is the model for 

a frame of speech. The match score between the template, x, for the claimed speaker and 

an input feature vector, X;, from the unknown user is given by d(x,,x). The model for 

the claimed speaker could be the centroid (mean) of a set of N training vectors: 

1 N 
x=Jl=-I,x; 

N •=t 
(V-1) 

Many different distance measures between the vectors x, and x can be expressed as: 

(V-2) 

where W is a weighting matrix. If W is an identity matrix, the distance is Euclidean; if W 

is the inverse covariance matrix corresponding to mean x, then this is the M ahalarwbis 

distance, as shown in Equation IV -4. The Mahalanobis distance gives less weight to the 

components having more variance and is equivalent to a Euclidean distance on principal 

components, which are the eigenvectors of the original space as determined from the 

covariance matrix (Duda and Hart 1973). 

Dynamic Time Warping 

The most popular method to compensate for speaking rate variability is known as 

dynamic time warping (DTW) (Sakoe and Chiba 1978). A text-dependent template model 

is a sequence oftemplates (x1, ••• ,xN) which must be matched to an input sequence 

(x1, ... ,xM). In general, N is not equal toM because of timing inconsistencies in human 

speech. The asymmetric match score, z, is given by: 

M 

z= I,d(x;,x) (V-3) 
•=l 
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where the template index, j, is typically given by a dynamic time warping algorithm. 

Given reference and input signals, the D1W algorithm does a constrained, piecewise 

linear mapping of one (or both) time axis(es) based on a minimum distance criteria to 

align the two signals. At the end of the time warping, the accumulated distance is the 

basis of the match score. Instead of using global averages, this method accounts for the 

normalized variation over time (trajectories) of parameters. This corresponds to the 

dynamic configuration of the human artic~tors and vocal tract. For example, Figure V -1 

shows what a warp path might look like if the energies between two speech signals are 

used as warp features. 

m 

n 

Figure V -1. Dynamic Time Warping Two Energy Signals 



If the warp signals were identical, the warp path would be a diagonal line and the 

warping would have no effect. The Euclidean distance between the two signals in the 

energy domain is the accumulated deviation off the dashed diagonal warp path. The 

parallelogram surrounding the warp path represents the Sakoe slope constraints of the 

warp, which act as boundary conditions to prevent excessive warping over a given 

segment. 

Vector Quantization Source Modeling 
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Another form of template model uses multiple templates to represent a frame of 

speech and is referred to as vector quantization source modeling (Soong and others 1987). 

A VQ code book is designed by standard clustering procedures for each enrolled speaker 

using his training data based upon reading a specific text. The pattern match score is the 

distance between an input vector and the minimum distance codeword in the VQ code 

book C. The match score is: 

L 

z = I,J!lin{d(x,,x)} 
J=l lleC 

(V-4) 

The clustering procedure, used to form the code book, averages out temporal information 

from the codewords. Thus, there is no need to perform a time alignment. The lack of time 

warping greatly simplifies the system; however, there is likely to be some speaker 

dependent information that is lost. The disadvantage of this approach is that it ignores 

temporal information. 

Nearest Neighbors 

A new method combining the strengths of the D1W and VQ methods is called nearest 

neighbors (NN) (Higgins 1990). Unlike the VQ method, the NN method does not cluster 



the enrollment training data to form a compact code book. Instead, it keeps all the 

training data and can, therefore, use temporal information. 
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As shown in Figure V -2, the interframe distance matrix is computed by measuring the 

distance between test session frames (the input) and the claimant's enrollment session 

frames (stored). The nearest neighbor distance is the minimum distance between a test 

session frame and the enrollment frames. The nearest neighbor distances for all the test 

session frames are,then averaged to (orm a match score. Similarly, as shown in the rear 

planes of Figure V -2, the tes~ session frames are also measured against a set of stored 

reference speakers to form match scores. The match scores are then combined to form a 

likelihood approximation. 

t I 

Test 
Session 
Frames 

t N 

Interframe 
Distance 
MatrixD 

Figure V -2. Nearest Neighbor Method 
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The NN method is one of the most memory and compute intensive speaker authentication 

algorithms. It is also one of the most powerful methods, as illustrated later in 

Figure Vll-1. 

Stochastic Models 

Template models have dominated work in text-dependent speaker recognition. The 

distance measure approach in an intuit;ively reasonable test of similarity, but stochastic 

models can offer more flexibility and result in a more theoretically meaningful score. 

Using a stochastic model, the pattern matching problem can be formulated as 

measuring the likelihood of an observation (a featUre vector of a collection of vectors 

from the unknown speaker) given the speaker n;todel. The observation is a random vector 

with a conditional pdf which depends upon the model corresponding to the class of the 

observation (the claimed identity or an impostor). The conditional pdf of the feature 

vector can be estimated from a set of training vectors and, given the estimated density, 

the probability that the observation was generated by the claimed speaker can be 

determined. 

The estimated pdf can either be a parametric or nonparametric model. From this 

model, for each frame of speech (or average of a sequence of frames), the probability that 

it was generated by the claimed speaker can be estimated. This probability is the match 

score. If nothing is known about the trile densities, then nonparametric statistics can be 

used to find the match score. If the model is parametric, then a specific pdf is assumed 

and the appropriate parameters of the density can be estimated using the maximum 

likelihood estimate. For example, one useful parametric model is the multivariate normal 

model. Unbiased estimates for the parameters of this model, the mean J.L and the 

covariance C, are given by Equations IV-6 and IV-7, respectively. In this case, the 

probability that an observed feature vector, x,, was generated by the model is: 
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p(x.lmodel) = (21tft/ZJ C rl/Z exp{-t(x,- JI.)TC-l(X,- J1)} (V-5) 

Hence, p(x;lmodel) is the match score. 

The match scores for text-dependent models are given by the probability of a 

sequence of frames without assuming independence of speech frames. The model 

represents a specific sequence of speech frames. One stochastic model that is very 

' popular in modeling sequences is the hidden Markov model (HMM). The HMM is a 

finite-state machine, where each state, S;, is associated with a pdf (or feature vector 

stochastic model), p(x Is;)· The states are connected by a transition network, where the 

state transition probabilities are a'l = P( s; I s1 ). For example, a hypothetical three-state 

HMM is illustrated in Figure V -3. 

Figure V-3. An Example of a Three-State Hidden Markov Model 

The probability that a sequence of speech frames was generated by this model is found by 

using Baum-Welch decoding (Rabiner and Juang 1986; Rabiner 1989). This probability 

is the score of the input speech given the model: 
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L 

p(x(1;L) I model)= L IJp(x, I s;)p(s; I s;_1) (V-6) 
.n lltafo ... 1 ...--

This might be a more theoretically meaningful score. HMMs were not further pursued in 

this research because the recent results of Tishby showed this method to be comparable in 

performance to conventional VQ methods (Tishby 1991). 

Oassification methods and statist).cal decision theory is presented in the following 

chapter. 



CHAPTER VI 

CLASSIFICATION AND DECISION THEORY 

Having computed a match score between the input speech feature vector and a model 

of the claimed speaker's voice, a decision is made whether to accept or reject the speaker 

or ask for another token. The accept or reject decision process is actually an accept, 

continue, time-out, or reject hypothesis-testing problem. Thus, the decision making, or 

classification, procedure is a sequential hypothesis-testing problem (Wald 1947). 

Hypothesis Testing 

Given a match score, the classification problem involves choosing between two 

hypotheses: that the user is the claimed speaker or that he 1s an impostor. Let Ho be the 

hypothesis that the user is an impostor and let H 1 be the hypothesis that the user is, 

indeed, the claimed speaker. As shown in Figure VI-1, the match scores of the 

observations form two different pdfs according to whether the user is the claimed speaker 

or an impostor. 

The names of the probability areas (or volumes in the case of multidimensional match 

scores) in Figure VI-1 are given in Table VI-1. To find a given performance probability 

volume, the hypothesis determines over which pdf to integrate and the threshold 

determines which decision region forms the limits of integration. 

Let p(zl H0 ) be the conditional density function of the observation score, z, generated 

by an impostor and likewise p(z I H1) for the claimed speaker. If the true conditional 

score densities for the claimed speaker and the impostor are known, then the Bayes test 
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Figure VI-1. Valid_ and Impostor Densities 

for minimum error, with equal misclassification costs, for speaker A is based upon the 

likelihood ratio for speaker A , A. A (z) (Fukunaga 1990): 
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(VI-1) 

Figure VI-2 shows an example of two score pdfs. The probability of error is 

determined by the amount of overlap ~ the two pdfs. The smaller the overlap between 

the two pdfs, the smaller the probability of error. The overlap in two Gaussian pdf's with 

means J.10 and J.lt and equal variance a can be measured by the F-ratio: 

(VI-2) 

If the true conditional score densities for the claimed speaker and the impostor are 

unknown, the two pdfs can be estimated from sample experimental outcomes. The 

conditional pdf given true speaker A, p A (zl H1 ), is estimated from the speaker's own 



95 

TABLE VI-1 

PROBABILITY TERMS AND DEFINITIONS 

Performance D H Name of Decision Result 
Probabilities Probability 

Qo 1 0 Size of test Type I False acceptance or 
"significance" error alarm 

Ql 0 1 Typell False rejection 
error 

Qd= 1-Ql 1 1 Power of test True acceptance 

1-Qo 0 0 True rejection 

scores using his model. The conditional pdf given an impostor, p A (z I H0), is estimated 

from other speakers' scores using speaker A's model. 

p(z) p(ziH1) p(zl%) 

z 

Figure VI-2. An Example of Score Densities 
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Now that the likelihood ratio for speaker A , A. A ( z), can be determined, the 

classification problem can be stated as choosing a threshold, T, so that the decision rule 

is: 

{~ T, choose H0 

. ifAA(z) T h H < ,coose 1 
(VI-3) 

The threshold, T, can be determined by: (1) setting T equal to an estimate of p1/ p0 to 

approximate minimum error performance, where Po and p1 are the a priori probabilities 

that the user is an impostor and that the user is the true speaker, respectively; (2) choosing 

T to satisfy a flx.edfalse acceptance (FA) or false rejection (FR) criterion (Neyman­

Pearson); or (3) varying T to fmd different FAIFR ratios and choosing T to give the 

desired FAIFR ratio. With cautious constraints, T could be made speaker specffic, 

speaker adaptive, and/or risk adaptive (e.g., break-ins may be more likely at night). 

Receiver Operating Curve 

Since either of the two types of errors can be reduced at the expense of an increase in 

the other, a measure of overall system performance must specify the levels of both types 

of errors. The tradeoff between FA and FR is a function of the decision threshold. This is 

depicted in the receiver operating curve (ROC), which plots probability ofF A versus 

probability of FR (or FA rate versus FR rate). For example, Figure VI-3 shows a 

hypothetical family of ROCs plotted on a log-log scale. The line of equal error 

probability is shown as a dotted diagonal line. The family of lines at -45 degrees 

represents systems with different FA•FR products, with better systems being closer to the 

origin. For any particular system, the ROC is traversed by changing the threshold of 

acceptance for the likelihood ratio. The straight line ROCs in Figure VI-3 indicate that 

the product of the probability of FA and the probability of FR is a constant for this 

hypothetical system (this is not true in general) and is equal to the square of what is 
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referred to as the equal error rate (EER). The EER is the value for which the type I errors 

and type IT errors are equal. 
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Figure VI-3. Hypothetical Receiver Operating Curves 

Data Fusion 

Combining fundamentally different features is the topic of data fusion (Hedges and 

Olkin 1985). In speaker authentication, features arise from physiologically different 

phenomena. For example, some features may correspond to learned traits and others to 

physical ones. They may also have different sampling rates. Different test methods might 
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be useful in reducing the error rate. The tools of data fusion may provide a mathematical 

foundation for combining these disparate features and different tests. 

For example, the results show different wolf and sheep populations for two different 

authentication systems. Data fusion methods could allow these systems to be merged into 

a single system whose performance is more powerful than either system, alone. 

The next chapter demonstrates the speaker identification performance of the new 

algorithm relative to two reference speaker verification algorithms. 



CHAPTERVll 

PERFORMANCE 

Using the YOHO prerecorded speaker authentication database, the following results 

on wolves and sheep were measured. The impostor testing was simulated by randomly 

selecting a valid user (a potential wolt) and altering their identity claim to match that of a 

randomly selected target user (a potential sheep). Because the potential wolf is not 

intentionally attempting to masquerade as the potential sheep, this is referred to as the 

"casual impostor" paradigm. The YOHO database has 10 test sessions for each of 186 

subjects. For only 1 test session, there are t86C2 = 17,205 pairwise combinations. 

Because of computational limitations, it is impractical to test all pairwise combinations 

for all10 test sessions. Thus, the simulated impostor testing randomly drew across the 10 

test sessions. Testing the system to a certain confidence level implies a minimum 

requirement for the number of trials. In this testing, there were 9300 simulated impostor 

trials to test to the desired confidence (Higgins 1990). 

DTWSystem 

Table VII-1 shows two measures of wolves and sheep for the DTW system: those 

who were wolves or sheep at least once and those who were wolves or sheep at least 

twice. Thus, type I errors are spread across a very narrow portion of the population, 

especially if two errors are required to designate a person as a wolf or sheep. The 

difficulty in acquiring enough data to adequately represent the wolf and sheep problem is 

perhaps the main reason why there has been relatively little work specifically directed at 

understanding and improving type I errors. 

99 



100 

TABLEVll-1 

KNOWN WOLVES AND SHEEP, DTW SYSTEM 

186 Subjects of the YOHO Database 

At least one Type I Error At least two Type I Errors 

17 Wolves (9%) 2 Wolves (1%) 

11 Sheep (6%) 5 Sheep (3%) 

From the 9300 trials, there were 19 type I errors for the DTW system. Table Vll-2 

shows that these 19 pairs of wolves and sheep have interesting sexual relationships. Even 

though the database contains four times as many males as it does females, the ratio of 

male wolves to female wolves (18:1) seems disproportionate. It's also interesting to note 

that one male wolf successfully preyed upon three different female sheep. 

The YOHO database provides at least 19 pairs of wolves and sheep under the DTW 

system for further investigation. It should be noted that because of computational 

limitations, not all possible wolf and sheep combinations have been tested. Even with this 

massive database, relatively few wolves and sheep have been discovered to date. 

ROC of DTW and NN Systems 

The ROC in Figure Vll-1 was made on the nearest neighbor system using the YOHO 

database. The log-log plot has the same axes scaling so it is easy to see the 0.5% equal 

error rate on the dashed diagonal line. The NN system meets the U.S. Government's 

performance requirement of 0.1% FA and 1% FR. The NN system !s the first one known 

to meet this level of performance. 



TABLEVIT-2 

WOLF AND SHEEP SEXUAL RELATIONSHIPS 

19 type I errors across 9300 impostor trials 

Number of type I errors Wolf sex Sheep sex 

15 males males 

1 female female 

3 1 male 3 females 

The U.S. Government's goal of 0.01% FA and 0.1% FR is an order of magnitude 

beyond the required performance by an order of magnitude in each dimension. 

Extraordinary improvements in the state of the art of speaker authentication will be 

required to meet this goal. Because of the more demanding false acceptance objective, 

my research focused on false acceptance errors. 

101 

Figure Vll-1 shows the NN system's receiver operating curve and a point on the ROC 

of the D1W system; ROCs of better systems are toward the origin. The NN system 

outperforms the D1W system by about half an order of magnitude. More importantly, the 

NN system meets the U.S. Government's performance requirement. 

These overall error rates do not show the individual wolf and sheep populations of the 

two systems. As shown in the following sections, the tWo systems commit different 

errors. Perhaps these systems could be fused to exploit their respective strengths (Hedges 

and Olkin 1985). 



102 

DTW / 
~System/ 

0. 00 1 ....,-""T""'!..,.,.,.mt--r"'lr"T"I'"1rmf---r"T"TT'nTrt--r"TT'1mnt 

0.001 0.01 0.1 1 10 
False Acceptance(%) 

Figure Vll-1. Receiver Operating Curves 

Wolves and Sheep 

Figure Vll-2 shows the individual speakers who were falsely accepted as other 

speakers by the DTW system. The following 3-D histogram plots can be interpreted by 

example. In Figure Vll-3, the person with an identification number of 97328 is a never a 

wolf and is a sheep once under the DTW system. 



Figure VII-2. Speaker vs FA Errors for D1W System's Wolves and Sheep 

To get a better angle on seeing if there are speakers who are both wolves and sheep, 

Figure VII-2 is rotated into Figure VII-3. 
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Figure Vll-3. FA Errors for D1W System's Wolves and Sheep 

The D1W system rarely has the same speaker as both a wolf and a sheep (only two 

exceptions in this data). These exceptions, called wolf-sheep, probably have poor models 

because they match a sheep's model more closely than their own and a wolf's model also 

matches their model more closely than their own. These wolf-sheep would likely benefit 

from retraining to improve their models. 
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Now, let's look at the Nearest Neighbor system. Figure Vll-4 shows NN test sessions 

for which an impostor's training data matched the session better than the speaker's own 

training data. 

Figure Vll-4. Speaker vs FA Errors for NN System's Wolves and Sheep 
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Two speakers, who are sheep, are seen to dominate the false acceptance errors. The 

NN system performance would be greatly improved if these two speakers were better 

handled by the system. 

Now we'll investigate the relations between the NN and D1W systems. Figure Vll-5 

shows the sheep of the NN and D1W systems. 

Figure Vll-5. Speaker vs FA Errors for D1W and NN Systems' Sheep 
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It should be noted from Figure Vll-5 that the two sheep who dominate the FA errors of 

the NN system were not found to be sheep in the DTW system. This suggests the 

potential for making a significant performance improvement by combining the systems. 

Figure Vll-6 shows that the wolves of the NN system are dominated by a few 

individuals who do not cause errors in the DTW system. Again, this suggests the 

Figure Vll-6. Speaker vs FA Errors for DTW and NN Systems' Wolves 
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potential for realizing a performance improvement by combining elements of the NN and 

DTW systems. 

Figure Vll-7 shows the number of false acceptance errors that occur for each test 

session of the NN system. The figure clearly shows that a couple sessions, namely 

numbers 880 and 1858, have an inordinate number of false acceptance errors. Something 

appears to be wrong with these sessions. Upon listening to sessions 880 and 1858, it 

sounds like these sessions have more boominess than the other test (and enrollment) 

sessions. It's possible that the acoustic environment changed in between the sessions. 
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Figure Vll-7. FA Errors vs Session Number for NN System 
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For example, an open door into a reflective room could add boominess to the sound and 

alter the spectral features. 

Wolves and sheep come in pairs. Figure Vll-8 shows the D1W system's wolf and 

sheep pairings for the YOHO database. 

Figure Vll-8. Wolf and Sheep Pairings of the D1W System 
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It should be noted that, under the DTW system, speaker 82798 is a particularly wlnerable 

sheep with respect to wolves 81920, 82866, and 79866. These speakers, in addition to the 

others shown in Figure VII-8, will be of prime interest in the following experiments. 

LSP Divergence Shape Speaker Identification 

A speaker identification test using motivated speakers, a high-quality stationary 

channel, and constrained grammar yielded 99.95% correct speaker identification. This 

experiment uses 44 people from the YOHO database with 80 seconds of speech for 

training and a separate 80 seconds of speech for testing. Each speaker is compared to a 

different session of himself and to 2 sessions of 43 other speakers. The "closest" speaker 

to each candidate is identified. In one experiment, only 1 false identification error was 

made on a total of 1936 tests. The line spectrum pair frequency features measured by the 

divergence shape (an information-theoretic divergence measure without mean 

information) "closeness" criterion yielded this result This outperformed the LSP 

Bhattacharyya shape (2 errors), the LSP Bhattacharyya distance (4 errors), and the LSP 

divergence measure (3 errors). 

In the following mesh plots, each of the 44 people are shown along the x- and y-axes; 

the x-axis represents speech collected from session 1 versus the y-axes with speech 

collected from session 2. Thus, there are 442 tests, each represented by a point on the 

mesh. The z-axis is the reciprocal of the measure indicated in the figure's caption using 

LSP features. Thus, "close" speakers will cause a peak in the z-axis. The ideal structure, 

representing perfect speaker identification, would be a prominent diagonal such that 

a, > a,/Vi :F. j. 

Notice the nearly ideal prominent diagonal structure in Figure VII-9 provided by the 

LSP divergence shape; thus, its discrimination power is very strong. The single error 

made by the LSP divergence shape, shown by an arrow in Figure VII-9, is between 

session 1 of speaker 59771 and session 2 of speaker 79082. It's interesting to note that 
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this is not one of the D1W system's pairs of wolves and sheep as shown in Figure VTI-8. 

It's also interesting to note that this same error occurs in all the LSP based divergence and 

Bhattacharyya distance systems as shown by a peak in the following mesh plots at the 

same location as the arrow in Figure VII-9. 

Figure Vll-9. LSP Divergence Shape (1 error) 

Notice the similarity in structure between the mesh plots of the LSP Bhattacharyya 

shape shown in Figure VII-10 and ~e LSP divergence shape. Not only do these measures 

perform similarly well, but the measures also appear to be closely related. 
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Figure Vll-10. LSP Bhattacharyya Shape (2 errors) 

Note the degraded performance of the LSP Bhattacharyya distance, Figure Vll-11, 

versus the LSP Bhattacharyya shape. Including the means in the Bhattacharyya distance 

degraded its performance. This discovery provided the insight toward the development of 

the shape measures. 

Figure Vll-11. LSP BhattacharyyaDistance (4 errors) 



Note the degraded performance of the LSP divergence measure, Figure VII-12, 

relative to the divergence shape. Again, including the means degraded performance. 

Figure Vll-12. LSP Divergence Measure (3 errors) 

The power of using the LSP features in these measures is clearly shown by the 

prominent diagonal structure in the previous figures. 
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The author's previous results are summarized in Table Vll-3, with additional 

identification experiments performed on the same data. Out of the 1936 tests, Euclidean 

distance commits 38 errors (1.96% error) and Mahalanobis distance makes 21 errors 

(1.08%) using LP cepstrum combined with LAR features. The LSP divergence shape 

performs the best among these experiments with only 1 error (0.05%). 
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TABLEVIT-3 

ERRORS OF VARIOUS FEATURES AND MEASURES 

LSP Cep I LAR 

Divergence Shape 0.05% 0.15% 

Bhattacharyya Shape 0.10% 0.10% 

Bhattacharyya Distance 0.21% 0.10% 

Divergence Measure 0.15% 0.21% I 0.52% 

Mahalanobis Distance -1.08% 

Euclidean Distance 1.96% 

One might conclude from these results that the means of the features tested tend to be 

unreliable, while the variances and covariances in the features have strong discrimination 

power. In fact, the author was led to the divergence shape and Bhattacharyya shape 

(removing the means) by the mediocre performance of the Euclidean and Mahalanobis 

distances. 

The innovations of this research are presented in the following chapter. 



CHAPTERVlll 

INNOVATIONS 

Some of the innovations discovered during the course of this research are shown in 

Table VIII-1. A synergy was achieved by combining ideas from physiology, speech 

perception, speech production, statistics, and previous speaker authentication work. As 

mentioned previously, many speaker verification systems exclude information that 

contains speaker-dependent information. To meet demanding performance objectives 

(e.g., the U.S. Government's), speaker discriminatory information cannot be wasted. The 

speaker discrimination power of perceptually and auditory based features was not 

successfully demonstrated in this research. Hopefully, future research will uncover 

effective methods to use these features. 

The LSP divergence shape is shown to have strong speaker discriminatory power. 

The LSP and LP cepstral features were found to be powerful in the divergence measures 

and Bhattacharyya distances. Numerical limitations precluded the use of sophisticated 

optimum information-theoretic, line~ feature selection techniques. Hopefully, these 

difficulties can be overcome in future research, as well. 

Figure VIII-1 shows some of the basic signal processing blocks used to carry out this 

research. To process all 20 hours of speech contained in the YOHO database, the 

computational and disk storage demands of this system are high because of the vast 

flexibility afforded by this architecture. The storage of all the intermediate processing 

(e.g., the entire feature set), requires nearly 5 billion bytes (5GB). The computation of 

the perceptual model filter bank and the auditory pitch and voicing consumed the 

equivalent of 3 months of Cray-2 supercomputer CPU time. After this daunting 
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• Use excitation information 

• LP residual 

TABLEVlll-1 

INNOVATIONS 

• Subglottal characteristics 

• Phrase dependent weighting 

• Additional use of LP information 

• Singular value decomposition of the LP impulse response matrix 

• Phrase dependent weighting 

• Perceptually motivated observation set 

• Perceptually-based filterbank 

• Speech production features 

• Line spectrum pair frequencies 

• Discriminatory measures 

• Divergence shape 

• Bhattacharyya shape 

• Statistical methods of feature selection 

• Divergence 

• Bhattacharyya distance 

• Speaker dependent weighting 

• Importance sampling 

• Risk adaptation 

• Data Fusion 

• Combine merits of different systems 
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realization, the author developed a suite of scripts to multiprocess these jobs on a network 

of 40 Sun SPARC-2 workstation computers. For this processing, the Sun network 

achieved the throughput of 10 Cray-2 supercomputers! These scripts have revolutionized 

the way the author's colleagues perform large computational tasks. 

The feature and measure found most powerful in this research is the line spectrum 

pair frequencies feature measured by the divergence shape. Table VITI-2 provides a 

convenient summary of the performance of a few standard verification systems with the 

performance of the identification system developed in this research. 

Source Org 

(Doddington TI 
1985) 

(Soong and AT&T 
others 1987) 

(Higgins and ITT 
others 1991) 

Campbell OSU/ 
1992 DoD 

TABLEVITI-2 

RELATIVE PERFORMANCE 

Features Input Text Method 

Filter- Lab Dep DTW 
bank 

LPC Phone Dep VQ 
(digits) 

LAR, Office Dep DTW 
LPCCep Likelihood 

LSP Office Indep Divergence 
ShapeLSPs 

Pop Error 

200 -D.8%@6s 

100 6%@1s 
1.5%@5s 

186 0.7%@20s 

44 0.05%@80s 
+43 

The main contribution is a new information-theoretic shape measure between line 

spectral pair (LSP) frequency features. This new measure, the divergence shape, can be 

interpreted geometrically as the shape of an information-theoretic measure called 
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Figure Vlll-1. Signal Processing Blocks of New System 
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divergence. The LSPs were found to be very effective features in this divergence shape 

measure. This powerful combination will likely become a new standard of reference for 

future speaker recognition research. The implication of this new measure is vastly 

improved speaker verification performance relative to the state of the art. This will help 

save a large portion of the billions of dollars currently lost to telephone credit card fraud 

annually. Past speaker verification research concentrated in the defense industry and the 

proposed work will allow for technology transfer to commercial areas. 

Accomplishments 

The following were developed and implemented by the author in this research LP 

analysis and conversions (cepstrum, LSPs), perceptual filterbank, and subharmonic 

summation pitch estimator features; DTW; recursive estimation of mean and covariance; 

divergence, Bhattacharyya, Mahalanobis and Euclidean measures. An auditory pitch 

estimator, an HMM, and GSVD were implemented. 

A multiprocessing system that revolutionized large computational problems and a 

linear algebra library optimized for Sun SPARC workstations was developed. Over 6000 

lines of documented and verified FORTRAN, C, Bourne shell, MatLabTM and 

Mathematica TM code were written to conduct the experiments in this research. 

Cross-speaker testing (casual impostors) was performed; confusion matrices for each 

system were generated; wolves and sheep of DTW and NN systems were identified; and 

weaknesses in features, matching, and models were discovered. 

Finally, we are ready to conclude by reviewing the problem at hand, summarizing the 

major contributions of the research contained in this document, and by suggesting future 

research. 



CHAPfERIX 

SUMMARY AND CONCLUSIONS 

This work derives and demonstrates new and powerful features and measures for 

, automatic speaker recognition and compares them with traditional ones using speaker 

discrimination criterion. Automatic speaker recognition is the use of a machine to 

recognize a person from a spoken phrase. Speaker recognition systems can be used in two 

modes: to identify a particular person or to verify a person's claimed identity. 

The Problem 

The problem under consideration is to discover features and measures to discriminate 

among individual voices. The scope of this study is limited to speech collected from 

cooperative users in real-world office environments and without adverse microphone or 

channel impairments. 

Important Findings 

In this research, new features and measures for speaker verification were explored 

and compared with traditional ones using speaker discrimination criterion. It was found 

that new perceptually based features did not outperform traditional speech production 

features with respect to speaker identification errors. 

Powerful new production features and measures for speaker verification were 

discovered. The main contribution of this work is a new information-theoretic shape 

measure between line spectrum pair frequency features. This new measure, the 

divergence shape, can be interpreted geometrically as the shape of an information-
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theoretic measure called divergence. The LSPs were found to be very effective features in 

this divergence shape measure. Experimental results show that these new features and 

measures yield 0.05% speaker identification error. This is an order of magnitude better 

than the performance of any other claim reported to date. A speaker verification system 

using methods presented in this dissertation would be practical to implement in software 

on a modern personal computer. 

Suggestions for Future Research or Study 

Additional testing should be performed to increase the statistical confidence level of 

the experimental results. This would require even greater computational and storage 

capacity than was used in this work. 

For many commercial applications, it's necessary to operate over telephone channels. 

These channels typically have narrower bandwidths and more noise than the recording 

conditions of the speech data used in this test (the YOHO database). The features and 

measures introduced in this research should be evaluated over these channels to test their 

feasibility for commercial telephone applications. 

If a normalization problem can be solved, the generalized singular value 

decomposition based measures should be further investigated. 

The application of these new features and measures in an HMM-based speaker 

recognizer should be investigated. HMMs offer a powerful way to capture the timing 

information in speech signals. If this timing information could be combined with the 

long-term statistical information of the new features and measures (which ignore timing), 

a very powerful system may result. 

The speaker discrimination power of perceptually and auditory based features was not 

successfully demonstrated in this research. Hopefully, future research will uncover 

effective methods to use these features. 



Numerical limitations precluded the use of sophisticated optimum information­

theoretic, linear feature selection techniques. Hopefully, these difficulties can be 

overcome in future research. 
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This dissertation has demonstrated the feasibility and power of new features and 

measures as the front end for a speaker recognition system. To build the back end of a 

speaker verification system, a method of determining accept/continue/reject thresholds 

needs to be designed. It's anticipated that the fmished system will be able to provide 

powerful speaker verification because of the strength of those features and measures 

demonstrated in this dissertation. 
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