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CHAPTER I 

INTRODUCTION 

Forest watershed managers are often interested in quantifying the potential 

nonpoint source (NPS) pollution generation from different management practices. NPS 

pollution generation is often a major consideration when selecting a management plan 

for a_ large forest watershed. NPS pollution generation from forest watersheds is in 

large part a function of rainfall. Thus, NPS pollution generation from forest watersheds 

is a stochastic process. When estimating potential NPS pollution generation from 

different watershed management plans one should account for the variability due to 

different but equally likely weather sequences. In reality, watershed management 

decisions are often based upon the results of short-term, small-scale experimental 

study results. Haan et al. (1994) discuss the characterization of variability due to 

natural weather sequences as well as the care which must be taken when basing 

conclusions on results representing single weather sequences. 

A method of quantifying NPS loading and the variability in NPS loading from 

large clear cut watersheds in the Ouachita Mountains would be a valuable tool for 

forest managers in the region. The concept of total maximum daily load (TMDL) has 

focused attention on quantifying daily NPS loading from large watersheds. Thus, a 

method of quantifying daily NPS loading and the variability in daily NPS loading due to 

natural weather sequences is needed for the Ouachita Mountains. 

1 



Total Maximum Daily Load 

The TMDL concept was introduced in the Clean Water Act of 1972 (PL 92-500 

Sec~ 303 (d)). A TMDL is a tool for implementing State water quality standards and is 

based on the relationship between pollution sources and in-stream water quality 

conditions. A TMDL establishes the allowable loadings or other quantifiable 

parameters for a waterbody and thereby provides the basis for States to establish 

water quality-based controls (USEPA 1991). TMDLs are developed based upon the 

assimilative capacity of a given waterbody. Point and nonpoint source (NPS) pollution 

contributors must be managed such that they do not combine to generate daily 

pollutant loadings in exceedance of estimated TMDLs. 

2 

The TMDL concept is one portion of the water quality-based approach to 

pollution control. A brief description of the water quality-based approach to pollution 

control directed by the Clean Water Act of 1987, and the role TMDLs play in it is 

warranted. The USEPA (1991) states that a water quality-based approach to pollution 

control emphasizes the overall quality of water within a waterbody and provides a 

mechanism (TMDL) through which the amount of pollution entering a waterbody is 

controlled based upon the intrinsic conditions of that body of water and the standards 

set to protect it. A water quality standard defines the water quality goals of a waterbody 

by designating the use or uses to be made of the water, by setting criteria necessary to 

protect the uses, and by preventing degradation of water quality through 

antidegradation provisions. The water quality-based approach to pollution control is 

comprised of the following steps: 1. identification of waterbodies in the State which are 

water quality-limited in terms of the State's water quality standards; 2. prioritization of 

waterbodies from most to least water quality-limited; 3. development of TMDLs for the 
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water quality-limited waterbodies in the order of priority; 4. implementation of the control 

actions identified during the TMDL development; 5. assessment of the success of the 

water quality-based pollution control actions through monitoring programs. 

Development of a working definition of TMDL first requires the definition of 

several associated terms. All definitions are taken from the United States 

Environmental Protection Agency (USEPA 1991). Daily loading capacity (LC) is the 

greatest amount of loading of a given pollutant that a water can receive on a daily basis 

without violating water quality standards. Loading allocation (LA) is the portion of a 

receiving water's daily loading capacity that is attributed either to one of its existing or 

future nonpoint sources of pollution or to natural background sources. Wasteload 

allocation (WLA) is the portion of a receiving water's daily loading capacity that is 

allocated to one of its existing or future point sources of pollution. A TMDL serves as a 

means of assigning portions of the daily loading capacity to WLAs and LAs contributing 

to a water quality-limited waterbody. A TMDL is the sum of the loadings contributed 

from the WLAs and LAs, and cannot exceed the LC. A margin of safety (MOS) is 

incorporated into the estimated TMDL to account for uncertainty in the estimates of LC, 

LA, and WLA. A TMDL can be represented as shown in the following equation. 

TMDL = LC = WLA + LA + MOS 1.1 

LC = Loading Capacity 

WLA = Point Source Contribution 

LA = Nonpoint Source Contribution 

MOS = Margin of Safety 
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The TMDL development process involves the following steps: 1. definition of the 

pollutant types (identification of the cause of the water quality impairment); 2. 

quantification of pollutant loadings from all sources (identification of the source of the 

water quality impairment); 3. estimation of the waterbody's assimilative capacity for the 

identified pollutants (LC); 4. analysis of the potential to reduce loading from point and 

nonpoint sources under alternate management; 5. allocation of the LC among pollution 

sources on the watershed (WLAs and LAs) based upon reductions estimated in step 4 

and some MOS; 6. USEPA approval of the TMDL; 7. establishment of monitoring 

programs to assess water quality following implementation; 8. determination of 

compliance with water quality standards (if not then revise the TMDL, if so then 

proceed to step 9); 9. removal of waterbody from water quality-limited list; and 10. 

continuation of the monitoring program. The USEPA recommends that State's develop 

TMDLs on a watershed basis. 

A significant amount of information about daily loading is required to develop 

meaningful TMDLs. The amount of information available on the sources, fate, and 

transport of the pollutant of interest will be extremely limited for most water quality­

limited waterbodies. Such information may often be nonexistent. This is especially the 

case when nonpoint source pollution is involved. However, the USEPA (1991) 

specifically states that lack of information about certain types of pollution problems (for 

example, those associated with nonpoint sources or with certain toxic pollutants) should 

not be used as a reason to delay implementation of water quality-based pollution 

control measures. 

In the absence of adequate information, emphasis is placed upon developing a 

monitoring program which will begin to provide the information in question, upon the 

use of water quality models to simulate daily loading in lieu of forthcoming data, and 
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upon the development of a MOS to account for the uncertainty introduced by modeling. 

Modeling schemes may be used to simulate loading from nonpoint sources on the 

watershed, to evaluate the effectiveness of potential Best Management Practices 

(BMPs), and to evaluate alternative pollution allocation scenarios. A MOS is often 

incorporated by using conservative assumptions and by considering reasonable worst 

case conditions during TMDL development (USEPA 1991). In addition, Monte Carlo 

simulation techniques can be utilized during the modeling process. The water quality 

model is run a large number of times based upon random input, and model outputs are 

ranked to determine a frequency distribution which may be compared to in-stream 

criteria to determine if water quality standards are met (USEPA 1991). 

On a watershed with both point and nonpoint sources contributing loadings to a 

water quality-limited waterbody, the only Federally enforceable pollution controls are 

thos~ for point sources through National Pollutant Discharge Elimination System 

(NPDES) permitting (USEPA 1991). Thus, when allocating loads among point and 

nonpoint sources on a watershed, assurances must be obtained from those managing 

the nonpoint sources that they will implement the BMPs determined most effective 

during TMDL development. If such assurances cannot be obtained, the point source 

operators on the watershed must accommodate the entire load reduction required to 

meet water quality standards. State and local laws may be utilized to enforce the 

installation of BMPs. Also, funds from Federal, State, and local subsidy programs may 

be withheld until BMPs are installed. It is ultimately the State's responsibility to 

establish TMDLs such that water quality standards are attained for all water quality­

limited waters in the State. 
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Forest Management and NPS Pollution in the Ouachita Mountains 

Land use in the Ouachita Mountains of southeastern Oklahoma is dominated by 

silviculture. Clear cut harvesting and forest roads have been identified as silvicultural 

practices which generate nonpoint source pollution in the region (Scoles et al. 1994). 

In general, research conducted on small experimental watersheds in the Ouachita 

Mountains indicates that the impacts of clearcutting on water quality are short lived. 

Miller (1984) reported a significant increase in sediment yield during the first three years 

following clearcutting on three small watersheds in southeast Oklahoma. No significant 

increase in sediment yield was realized in the fourth year. Miller et al. (1988) reported a 

significant increase in sediment yield during the first year following clearcutting on small 

watersheds in west-central Arkansas. Sediment yields from clear cut watersheds were 

not significantly different from control watersheds during the remaining two years of the 

study. Clear cut watershed to control watershed sediment yield ratios were 20: 1, 6: 1, 

and 2.6:1 for the first, second, and third year following clearcutting, respectively. 

Naseer (1992) reports clear-cut watershed to control watershed yield ratios for 

sediment, total phosphorus, and nitrate..,nitrogen from small watersheds in southeast 

Oklahoma. Clear cut to control sediment yield ratios were 11: 1, 2: 1, 2.5: 1, and 1.8: 1 

for the first, second, third, and fourth year following clearcutting, respectively. Clear cut 

to control total phosphorus yield ratios were 6: 1, 3: 1, 3: 1, 1.5: 1 for the first, second, 

third, and fourth year following clearcutting, respectively. Clear cut to control nitrate­

nitrogen yield ratios were 138: 1, 12: 1, 10: 1, 37: 1 for the first, second, third, and fourth 

year following clearcutting, respectively. Table 1 summarizes annual NPS loadings 

observed in each year of the three studies discussed above. 



Rogerson (1971) reports an average annual sediment loss of 0.0025 t ha·1 

based upon nine years of data from three undisturbed watersheds in the Ouachita 

Mountains of central Arkansas. Annual sediment loss ranged from 0.0010 to 0.0040 t 

ha·1. Scoles et al. (1994) summarize many of the watershed studies conducted in the 

Ouachita Mountains (including Miller 1984 and Miller et al. 1988). Scoles et al. (1994) 

estimate sediment delivery rates of 0.157 t ha·1 yr"1 due to harvesting, site preparation, 

and erosion from forest roads. The authors also concluded that clearcutting increases 

the loss of phosphorus and nitrogen the first year following harvest, but that nutrient 

losses return to natural levels by the fourth year after harvesting. 

Scoles et al. (1994) attribute relatively low soil losses from clear cut watersheds 

7 

· to the low erodibility of forest soils, to sediment trapping due to harvest and site 

preparation activities, and to the rapid re-vegetation of clear cut sites. Following a 

typical clearcutting operation in the Ouachita Mountains, a wide range of plant species 

immediately establish themselves on the disturbed site. This is the beginning of a 

process known as secondary succession. The plant community found on a "young" 

clear cut site is a mixture of competing pine seedlings, grasses, forbs, and woody 

species. This is a complex plant community which can be expected to rapidly cover the 

soil surface, utilize soil water at a high rate, and tie up most available nutrients on the 

site. 

Large Clear Cut Watersheds and TMDLs in the Ouachita Mountains 

A well-defined scientific framework does not exist to guide TMDL development 

efforts in the Ouachita Mountains. One certainty is that one must be able to quantify 

daily NPS loading due to current and alternative management plans on large clear cut 
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watersheds. Quantifying daily NPS loading from large clear cut watersheds in the 

Ouachita Mountains is a complex problem. Land use patterns are commonly mosaics 

of undisturbed, freshly clear cut, recovering clear cut, and recovered clear cut sites. 

Daily NPS pollution loading realized from a large clear cut watershed depends upon the 

temporal and spatial arrangement of undisturbed, freshly clear cut, recovering clear cut, 

and recovered clear cut sites, as well as upon the weather occurring during the time 

period of interest. On any given large watershed, there are a large number of possible 

temporal and spatial combinations of undisturbed, freshly clear cut, recovering clear 

cut, and recovered clear cut sites. Considering the countless number of weather 

scenarios that could coincide with each temporal and spatial combination one can see 

that a countless number of daily NPS loadings are possible due to clearcutting on large 

watersheds. 

Ideally, observed data from the particular watershed and waterbody of interest 

would be used in combination with some modeling scheme during TMDL development. 

The availability and applicability of such data is limited. The next best source of 

information for use during TMDL development efforts would be data from large 

experimental watersheds in the region. Such data would be of value for investigating 

the source, fate, and transport of NPS pollution from large clear cut watersheds in the 

region, as well as for calibrating water quality models to simulate daily NPS pollution 

from clear cut watersheds in the region. 

For several reasons, large watershed studies are essentially nonexistent in the 

Ouachita Mountains. First, it is difficult to locate large watersheds on which the 

exp~rimenter can attain complete control of the activities occurring on the watershed. 

Second, forest management cycles range from 30 to 50 years, thus large watershed 

experiments are longer than most research careers. Third, traditional statistical and 



experimental design concepts such as repetition over time and space are difficult to 

incorporate into large-scale watershed studies for three basic reasons: 1. locating 

comparable large watersheds is difficult; 2. once a watershed is clear cut it will be a 

long time, if ever, before the experiment can be repeated on that particular watershed; 

and 3. time, funding, and labor requirements limit sample size. 
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Limited amounts of daily NPS loading data from short-term, small-scale 

watershed studies does exist in the region. It is important to note that small watershed 

data often reflects watershed response generated by a single storm, a series of storms, 

or several years of rainfall at one location. Thus, data from small-scale, short-term 

watershed studies is of limited value for quantifying daily NPS loading and the 

variability due in daily NPS loading. Whatever its short-comings, small watershed data 

forms the basis of our understanding of NPS pollution generation from clear cut and 

undisturbed forest watersheds in the Ouachita Mountains. 

Objectives 

The purpose of this project was to develop a stochastic framework for 

evaluating forest management impacts on water quality from watersheds in the 

Ouachita Mountains. The framework was developed to allow characterization of the 

variability in NPS loading due to natural weather sequences. One possible application 

of the framework would be during TMDL development (step 4 of the TMDL 

development process) to quantify daily NPS loading from large clear cut watersheds. 

The framework would quantify daily NPS loading as well as allow assessment of the 

risk of daily NPS loading exceeding estimated waterbody loading capacity under 

various clearcutting management schemes. 
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As a case study, the framework was applied to Clayton Lake Watershed to 

evaluate daily NPS loading under four hypothetical clearcutting management scenarios. 

Conservative assumptions and worst case conditions were used to account for the 

MOS. 

The objectives of this study are listed below. 

1. Develop a stochastic framework which quantifies worst case daily total 

suspended solid (TSS), total phosphorus (PHOS), and nitrate-nitrogen (N03N) loading 

from large clear cut watersheds in the Ouachita Mountains in such a manner as to allow 

assessment of the risk of exceeding estimated waterbody loading capacity for TSS, 

PHOS, and N03N. 

2. Apply the stochastic framework to Clayton Lake Watershed to quantify worst 

case daily TSS, PHOS, and N03N loading under four hypothetical clearcutting levels 

and demonstrate the potential of the stochastic framework. 
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Table 1. Annual NPS loads reported in the Ouachita Mountains. CC indicates a clear 
cut treatment and UN indicates a control watershed. 

Year After Harvest 
Reeort Pollutant TRT 1 2 3 4 
Miller (1984) Sediment (t ha-1) cc 0.28 0.04 0.02 0.04 

UN 0.04 0.01 0.01 0.02 

Miller (1988) Sediment (t ha-1) cc 0.24 0.09 0.18 
UN 0.01 0.02 0.07 

Naseer (1992) Sediment (t ha-1) cc 1.95 0.37 0.14 0.14 
UN 0.18 0.19 0.05 0.08 

Total Phosphorus (kg ha-1) cc 1.20 0.35 0.13 0.09 
UN 0.20 0.13 0.04 0.06 

Nitrate-nitrogen (kg ha-1) cc 7.40 1.04 0.18 0.96 
UN 0.05 0.09 0.02 0.02 



CHAPTER II 

METHODS 

Clayton Lake and Clayton Lake Watershed 

Clayton Lake and Clayton Lake Watershed are located in Pushmataha County 

in the Ouachita Mountains of southeastern Oklahoma. Clayton Lake is found on Peal 

Creek at latitude 34° 32' 30" by longitude 95° 22' 18", approximately 6.44 km southeast 

of Clayton, Oklahoma. Clayton Lake has a normal pool surface area of 163 ha, 

storage capacity of 1,176,002 m3, shoreline of 3.2 km, and surface elevation of 202 m 

(OWRB 1990). The lake was constructed in 1935 and is owned by the State of 

Oklahoma. Clayton Lake is currently used for public recreation. 

The following description of the climate at Clayton Lake is based upon a 23-year 

climatic record at Antlers, OK, which is approximately 42 km southwest of Clayton 

Lake. Average annual precipitation is 1194 mm and sixty percent of the total annual 

precipitation falls from April to September. The maximum recorded 24-hour rainfall is 

157 mm. Average annual snowfall is 75 mm, with accumulations generally less than 25 

mm. Regional estimates of average annual streamflow, evapotranspiration and 

percolation are listed in Table 2. Average daily temperatures range from 5.2° C in 

January to 27.8° C in July. Average minimum and maximum daily temperatures are -

1.6° C and 34.6° C in January and July, respectively. Average relative humidity at 

dawn and at mid-afternoon is 82 and 50 %, respectively. 

12 
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The area of Clayton Lake Watershed is approximately 2097 ha. Soils on the 

watershed were formed from highly weathered, thin, tilted interlaminations of 

sandstones and shales. Soil properties are highly spatially variable over short 

distances. Three soil associations are found on the watershed (Bain and Watterson 

1979). In order of dominance they are the Camasaw-Pirum-Clebit association (12 to 20 

% slopes), the Clebit-Pirum-Camasaw association (20 to 45 % slopes), and the 

Camasaw-Stapp association (8 to 12 % slopes). All three associations have high<~ 25 

%) rock content throughout their profile. The Camasaw, Clebit, and Pirum soil series 

are found on upland sites such as mountain sides, benches, and ridge tops. Stapp 

soils are found on gently sloping to strongly sloping areas. The reaction of the four soil 

series range from acidic to extremely acidic. Soils on Clayton Lake Watershed are 

typical of those found on hillslopes throughout the Ouachita Mountains. 

Native vegetation on the watershed is a pine-hardwood complex. The overstory 

is composed primarily of shortleaf pine (Pinus echinata), hickory (Ca,ya sp.), and oaks 

(Quercus sp.). The understory is composed primarily of elms (Ulmus sp.), flowering 

dogwood (Comus f/orida), blueberry (Vaccinium sp.), poison ivy (Rhus radicans), and 

bluestem grasses (Andropogon sp.) (Turton 1989). 

Definitions 

Certain terms require definition prior to introduction of the stochastic framework 

and its application to Clayton Lake Watershed. 



14 

Management Unit 

A management unit is the basic land area of a commercial forest landscape. An 

analogy would be a field in an agricultural landscape. Management practices are 

uniform across a management unit. Typical management unit size in the Ouachita 

Mountains is 65 ha. 

Clearcutting 

The stages typically involved in clearcutting a management unit in the Ouachita 

Mountains are: 1. harvesting of all merchantable pine trees (Jun); 2. lodging and 

chopping of all remaining vegetation (Jul); 3. prescribed burning (Aug); 4. subsoiling 

(Oct); and 5. regeneration with loblolly pine seedlings (Feb). In general, pine trees are 

cut using either chain-saws or harvesting machines. Cut trees are dragged by wheeled 

or tracked skidders along temporary skid trails to a landing and removed from the 

management unit. Site preparation starts with a bull-dozer pulling a drum chopper 

through the management unit, lodging and crushing all slash and remaining vegetation. 

Following a drying period, the management unit is burned. Site preparation is 

completed by subsoiling, which consists of a bull-dozer pulling a chisel-like implement 

along the contour at 2.5 m intervals. Pine seedlings are planted in the furrows at about 

a 2 m spacing. 

Management Cycle 

A management cycle is the basic time unit in commercial forest management. 

For large watersheds, management cycle is defined as the period of time required for 
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the pine crop planted on to the first clear cut management unit to reach maturity. In the 

Ouachita Mountains this time period can range from 30 to 50 years. 

Active Clearcutting Period 

The active clearcutting period is the period of time (years) within a management 

cycle during which clearcutting is occurring on a large watershed. The duration of the 

active clearcutting period depends upon the number of management units on the 

watershed (watershed size), and how many management units are clear cut per year. 

Clearcutting Level 

Clearcutting level is the number of management units which are clear cut per 

year during the active clearcutting period. Clearcutting level may or may not be 

constant throughout the active clearcutting period. Year to year variation in economics, 

timber demand, social perceptions, multiple use demands, and weather cause year to 

year variation in clearcutting level. 

Recovery Period 

The recovery period for a clear cut management unit is the 4 year period 

following clearcutting. This is the period of time required for the hydrologic, erosion, 

and nutrient transport dynamics of the management unit to return to near undisturbed 

levels (Miller 1984, Miller et al. 1988, Naseer 1992, and Scoles et al. 1994). 
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Recovery Status 

The recovery status of a management unit refers to the number of years since 

that management unit was clear cut. The R 1 recovery status indicates a management 

unit is in the first year following clearcutting. The R2 recovery status indicates a 

management unit is in the second year following clearcutting. The R3 recovery status 

indicates a management unit is in the third year following clearcutting. The R4 recovery 

status indicates a management unit is in the fourth year following clearcutting. The U/R 

recovery status indicates the management is either undisturbed or has recovered (> 4 

years since clearcutting) from the clearcutting activity. 

Clearcutting Management Scenario 

Each clearcutting management scenario represents a different clearcutting 

scheme for a large forest watershed. Clearcutting management scenarios may vary in 

clearcutting level, size of streamside management zones, size of clear cut management 

units, etc. An almost endless number of clearcutting management scenarios could be 

implemented on a large forested watershed. 

This project addresses step 4 of the TMDL development process. Step 4 

involves the investigation of alternative clearcutting management scenarios to replace 

the current clearcutting management scenario, thus reducing NPS loading from the 

watershed. When applying the stochastic framework to complete step 4, the forest 

manager is interested in quantifying daily NPS pollution due to hypothetical clearcutting 

scenarios. 
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Worst Case Condition 

The USEPA (1991) suggests that one component of the MOS associated with a 

given TMDL be the consideration of worst case conditions during the development of 

the TMDL. Daily TSS, PHOS, and N03N loadings estimated for step 4 of the TMDL 

development process should be calculated under the worst case condition. The worst 

case condition is different for each clearcutting management scenario applied to a 

given watershed. There are three components to the worst case condition for any 

clearcutting management scenario on any watershed. 

The first component is the timing of clearcutting activities. For the worst case 

condition to occur, the maximum number of disturbed management units possible 

under a given clearcutting management scenario must be present on the watershed. 

The second component is the location of the R 1, R2, R3, and R4 recovery status 

management units (disturbed management units) on the watershed. For the worst 

case condition to occur, the disturbed management units must be arranged on the 

watershed to provide the greatest opportunity for NPS pollution generation. The third 

component is rainfall. The timing and location of disturbed management units may be 

such that the greatest opportunity for daily NPS pollution generation exists under a 

given clearcutting management scenario, but NPS pollution will not be generated 

unless it rains. 

General Description of the Stochastic Framework 

The stochastic framework is based upon stochastic weather input to a water 

quality model to simulate worst case daily TSS, PHOS, and N03N loading under one or 

more clearcutting management scenarios. The worst case temporal and spatial 
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arrangement of disturbed management units must be determined for each clearcutting 

management scenario. The model is applied to estimate worst case daily TSS, PHOS, 

and N03N loading under each clearcutting management scenario of interest on the 

large watershed. Monte Carlo simulation techniques are used to account for the 

stochastic influence of weather and to generate samples of worst case daily TSS, 

PHOS, and N03N loading populations. Descriptive statistics and relative frequency 

plots are computed to quantify worst case daily TSS, PHOS, and N03N loading under 

each clearcutting management scenario. Frequency analysis are employed to examine 

the probability of LA exceeding LC under each clearcutting management scenario. 

Application of the Stochastic Framework to Clayton Lake Watershed 

Model Selection 

Proper model selection was identified as the most crucial component of the 

framework. Inadequate model selection would result in unsatisfactory performance of 

the stochastic framework. In general, a model selected for use in the framework 

should: 1. be designed for the application it is to be employed for; 2. be designed for 

the region in which it is to be applied; 3. simulate daily TSS, PHOS, and N03N loading; 

4. be continuous; 5. be well documented; 6. be relatively easy to use; and 7. be well 

suited for the application of Monte Carlo techniques. 

For the application of the framework to Clayton Lake Watershed it was 

determined that the water quality model selected must be able to simulate daily TSS, 

PHOS, and N03N loading from R1, R2, R3, R4, and U/R recovery status management 

units on Clayton Lake Watershed. Unfortunately, a water quality model designed 

specifically to simulate daily TSS, PHOS, and N03N loading from large forested 
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watersheds in the Ouachita Mountains does not exist. The following field-scale 

agricultural water quality models were examined: 1. GLEAMS (Groundwater Loading 

Effects of Agricultural Management Systems); 2. AGNPS (Agricultural Nonpoint 

Source); 3. HSPF (Hydrologic Simulation Program Fortran); 4. ANSWERS (Aerial, 

Nonpoint Source Watershed Environment Response Simulation); 5. SWRRB (Simulator 

for Water Resources in Rural Basins); and 6. EPIC (Erosion I Productivity Impact 

Calculator). 

EPIC was chosen for this project because it: 1. simulates daily TSS, PHOS, and 

N03N loading; 2. is continuous; 3. is well documented; 4. accounts for lateral 

subsurface flow; 5. has a component for the simulation of TSS, PHOS, and N03N 

loading from pine tree plantations; 6. is relatively easy to use; 7. was designed to be 

applicable to a wide range of soils, crops, and climates; 8. contains a stochastic 

weather generator; and 9. is well suited for the application of Monte Carlo techniques. 

EPIC is a lumped parameter model. EPIC model components are weather, hydrology, 

erosion, nutrients (nitrogen and phosphorus), soil temperature, crop growth, tillage, 

plant environmental controls, and economics. Details of the calibration of EPIC to 

simulate daily TSS, PHOS, and N03N loading from R 1, R2, R3, R4, and U/R 

· management units on Clayton Lake Watershed are presented in Chapter 3. A review 

of the pertinent components of EPIC is given in Appendix I. 

Clearcutting Management Scenarios and Identification of Worst Case Conditions 

Clearcutting Management Scenarios 

The four hypothetical clearcutting management scenarios selected for 

examination on Clayton Lake Watershed represented an incremental increase in the 



percentage of the watershed disturbed by clearcutting activities. This set of 

clearcutting management scenarios was selected so that the performance of the 

stochastic framework. could be compared with the generally accepted concept that 

watershed response (flow and NPS pollution) increases proportionally with the 

percentage of a watershed that is clear cut. The four hypothetical clearcutting 

management scenarios were defined in terms of clearcutting level. It was assumed 

that clearcutting level was constant throughout the active clearcutting period. 

Definitions of the worst case condition for each of the four clearcutting management 

scenarios are discussed in the next section. 
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Clayton Lake Watershed was divided into 11 management units (Figure 1) 

using a digital terrain model (Sabbagh et al. 1994). The area, percent of Clayton Lake 

Watershed, average land slope, and maximum travel distance for each management 

unit was determined (Table 3). Management unit size was larger than commonly found 

in the Ouachita Mountains. Examination of the four clearcutting management 

scenarios did not require high spatial resolution, so the largest reasonable 

management unit sizes were selected. 

The first clearcutting level investigated was n = 0 (CCOO). This level reflects 

background or natural daily TSS, PHOS, and N03N loading. At this level 0% of 

Clayton Lake Watershed would be disturbed under the worst case condition. Note that 

(n) is the number of management units clear cut each year of the active clearcutting 

period, and that disturbed refers to management units in the R1, R2, R3, and R4 

recovery status. The second clearcutting level investigated was n = 1 (CC33). At this 

level approximately 33% of Clayton Lake Watershed would be disturbed under the 

worst case condition. The active clearcutting period would be 11 years. The third 

clearcutting level investigated was n = 2 (CC66). At this level approximately 66% of 
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Clayton Lake Watershed would be disturbed under the worst case condition. The 

active clearcutting period would be 6 years. The final clearcutting level investigated 

was n = 3 (CC100). At this level 100% of Clayton Lake Watershed would be disturbed 

under the worst case condition. The active clearcutting period would be 4 years. 

Worst Case Condition 

Recall that clearcutting management scenarios were defined in terms of 

increasing clearcutting level, and that a clear cut management unit recovers in 4 years. 

Under a constant clearcutting level, the period of time from 4 years into the 

management cycle until the end of the active clearcutting period represents the period 

during which the maximum amount of Clayton Lake Watershed would be disturbed 

under each of the four hypothetical clearcutting management scenarios. During this 

period of the management cycle, an equilibrium would be achieved between the 

percent of the watershed in the disturbed and in the undisturbed/recovered condition. 

During this equilibrium period there would be (n) R 1 units, (n) R2 units, (n) R3 units, 

and (n) R4 units. The remaining (k) management units would be in the U/R recovery 

status. On Clayton Lake Watershed the equilibrium period would last 7, 3, and 1 years 

for the CC33, CC66, and CC100 clearcutting management scenarios, respectively. 

The worst case spatial arrangement of clear cut units for each clearcutting 

management scenario occurs when the (n) R1 management units are located on the 

most erodible set of units, the (n) R2 management units on the second most erodible 

set of units, the (n) R3 management units on the third most erodible set of units, the (n) 

R4 management units on the fourth most erodible set of units, and the (k) U/R 



management units are located on the least erodible set of units on Clayton Lake 

Watershed. 
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Management units on Clayton Lake watershed were ranked in order of most to 

least erodible. The ranking would normally be based upon the soil characteristics and 

slope of each management unit. However, uniform soils were assumed across all 

management units on Clayton Lake Watershed. Soils found on Clayton Lake 

Watershed are associations of the Carnasaw, Clebit, Pirum, and Stapp soils. The 

dominant soil series on Clayton Lake Watershed, as well as within Pushmataha 

County, is the Carnasaw Soil Series (Bain and Watterson 1979). During this project, a 

relatively large amount of soil survey and research data was found for the Carnasaw 

soil series, while little information was available for the other three soil series. For 

these reasons, the physical and chemical characteristics of the Carnasaw Soil Series 

were applied to all management units. Due to the application of the Carnasaw Soil 

Series to all management units, estimation of individual management unit erodibility 

could not be based upon soil characteristics. 

Management units on Clayton Lake Watershed were ranked from most to least 

erodible based upon average land slope (S) and area (A) (Table 4). Erodible was 

defined as having characteristics which facilitate sediment generation. It was assumed 

that those characteristics which facilitate sediment generation also facilitate PHOS and 

N03N generation. The erosion component of EPIC is defined by equation A.84 in 

Appendix I. Given that K (USLE K-factor) and CE (USLE C-factor) are computed 

automatically within EPIC based upon user defined soil characteristics, and that PE 

(USLE P-factor) and ROKF (rock content of the soil) are constant, only LS (USLE 

slope-length factor) and qP (peak overland flow rate) vary among management units. 

Examination of equations A.39, A.42, and A.43 indicates that as management unit area 
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and average land slope increase, simulated sediment yield increases. Also, 

examination of equations A.103, and A.104 indicate as S increases, simulated 

sediment yield increases. Thus, management units were ranked from most to least 

erodible based first upon S, and second upon A. Table 5 lists the allocation of 

management units to present the worst case spatial and temporal arrangement of 

management units on Clayton Lake Watershed for each of the four hypothetical 

clearcutting management scenarios. Figures 2, 3, and 4 indicate the location of R 1, 

R2, R3, R4, and U/R management units for the CC33, CC66, and CC100 clearcutting 

management scenarios, respectively. 

Finally, the worst case condition for daily TSS, PHOS, and N03N loading only 

occurs when the worst case daily rainfall event coincides with the worst case temporal 

and spatial arrangement of disturbed management units. It is often difficult to quantify 
., 

the worst case daily rainfall event, and thus the worst case condition. The occurrence 

of extreme daily rainfall events was incorporated into the stochastic framework using 

synthetic weather records and Monte Carlo simulation techniques. The worst case 

temporal and spatial arrangement of management units for each clearcutting 

management scenario was held constant over Monte Carlo simulation. 

Monte Carlo Simulation Techniques 

Prior to a description of the Monte Carlo simulation techniques employed during 

application of the stochastic framework to Clayton Lake Watershed, a limited 

discussion of the functioning of EPIC is required. At the beginning of a simulation, 

EPIC assumes that bare, unprotected soil exists on the site to be modeled. EPIC was 

designed to simulate the planting, growth, and harvesting of a crop, Thus, a pine crop 



must be planted and grown to obtain daily TSS, PHOS, and N03N loading estimates 

from management units in any recovery status. 
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Because EPIC is a spatially lumped model, daily TSS, PHOS, and N03N 

loading were simulated individually for each management unit. Daily TSS, PHOS, and 

N03N loading from a management unit in the R 1 recovery status was simulated by 

planting the pine crop, simulating for one year, and recording daily TSS, PHOS, and 

N03N loading from that one year. Daily TSS, PHOS, and N03N loading from a 

management unit in the R2 recovery status was simulated by planting the pine crop, 

simulating for two years, and recording daily TSS, PHOS, and N03N loading from the 

second year. Daily TSS, PHOS, and N03N loading from a management unit in the R3 

recovery status was simulated by planting the pine crop, simulating for three years, and 

recording daily TSS, PHOS, and N03N loading from the third year. Daily TSS, PHOS, 

and N03N loading for a management unit in the R4 recovery status was simulated by 

planting the pine crop, simulating for four years, and recording daily TSS, PHOS, and 

N03N loading from the fourth year. Daily TSS, PHOS, and N03N loading for a 

management unit in the U/R recovery status was simulated by planting the pine crop, 

simulating for twenty years, and recording daily TSS, PHOS, and N03N loading from 

the twentieth year. 

The recovery status assigned to each management unit was dependent upon 

the clearcutting management scenario (Table 5). For example, the simulation of one 

year of daily TSS, PHOS, and N03N loading from Clayton Lake Watershed under 

CC33 for one possible weather scenario requires simulation of the R 1, R2, R3, and R4 

recovery status on Units 8, 9, 3, and 11, respectively. The U/R recovery status would 

be simulated on Units 1, 2, 4 through 7, and 10. Simulations would be timed such that 



the year-long data set recorded for the R 1, R2, R3, R4, and U/R management units 

resulted from the same year of synthetic weather record. 
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Daily TSS, PHOS, and N03N loading from Clayton Lake Watershed under each 

clearcutting management scenario was found as the sum of daily loading from each of 

the management units on the watershed. In order for annual maximum daily TSS, 

PHOS, and N03N loading estimates for the CCOO, CC33, CC66, and CC100 

clearcutting management scenarios to be comparable, the estimates had to be 

generated under common weather. Due to the method required to simulate daily 

loading from management units in the R1, R2, R3, R4, and U/R recovery status, five 

weather files were necessary to simulate one year of daily loading from Clayton Lake 

Watershed. The last year of each weather file had to be identical. 

The following is an explanation of the process used to develop one weather set 

containing the five weather records required to simulate one year of daily TSS, PHOS, 

and N03N loading from Clayton Lake Watershed. The EPIC weather generator 

(described in Appendix I and by Sharpley and Williams 1990) was used to generate a 

20-year (WTH20) daily weather record to simulate the U/R recovery status. The 

generated WTH20 contained average daily solar radiation (RAD) as MJ m·2, maximum 

daily temperature (TMAX) in °C, minimum daily temperature (TMIN) in °C, daily rainfall 

(RAIN) in mm, and average daily relative humidity (RHO) in a fraction. The last 1, 2, 3, 

and 4 years of data in the WTH20 daily weather record were extracted and duplicated 

to generate 1-year (WTH1), 2-year (WTH2), 3-year (WTH3), and 4-year (WTH4) daily 

weather records. In this manner, a total of five daily weather records were obtained 

such that WTH1 matched year 20 of WTH20 (for simulation of the R1 recovery status), 

WTH2 matched years 19 and 20 of WTH20 (for simulation of the R2 recovery status), 

WTH3 matched years 18, 19, and 20 of WTH20 (for simulation of the R3 recovery 



26 

status), and WTH4 matched years 17, 18, 19, and 20 of WTH20 (for simulation of the 

R4 recovery status). Daily weather files WTH1, WTH2, WTH3, WTH4, and WTH20 are 

collectively referred to as a weather set. 

Monte Carlo simulation techniques simply involved the repetition of the process 

to generate one year of daily TSS, PHOS, and N03N loading from Clayton Lake 

Watershed. This process was repeated 1500 times. A single repetition in the Monte 

Carlo simulation was defined as a Monte Carlo run. A different and independent 

weather set was developed for each Monte Carlo run. Initial conditions were identical 

at the beginning of each Monte Carlo run. Each of the four hypothetical clearcutting 

management scenarios were considered during each Monte Carlo run. In this manner 

1500 independent, directly comparable year-long records of daily Q and daily TSS, 

PHOS, and N03N loading estimates for Clayton Lake Watershed were generated for 

each clearcutting management scenario. Annual maximum daily Q and annual 

maximum daily TSS, PHOS, and N03N loading were extracted from each of the 1500 

independent year-long daily records to develop four data sets (annual maximum daily 

Q, TSS, PHOS, and N03N) for each clearcutting management scenario (a total of 16 

data sets). Based upon worst case conditions and the selection of annual maximum 

daily estimates, these synthetic data sets are samples of the worst case populations for 

daily Q and daily TSS, PHOS, and N03N loading from Clayton Lake Watershed under 

each clearcutting management scenario. Monte Carlo runs were conducted on a 

Pentium 66-mhz personal computer. 



Analysis 

Weather 

Annual rainfall, maximum daily rainfall, mean daily solar radiation, maximum 

daily solar radiation, minimum daily solar radiation, maximum daily temperature, 

minimum daily temperature, and mean daily relative humidity were calculated for the 

year common within each weather set (i.e. year 20 of WTH20, year 4 of WTH4, etc.). 

The grand minimum, maximum, and mean were calculated for the 1500 weather sets 

and compared to statistics computed from long-term observed weather records. 

Annual Maximum Daily Q. TSS, PHOS, and N03N 

Descriptive statistics and relative frequency plots were computed to quantify 

annual maximum daily flow (Q) as well as annual maximum daily TSS, PHOS, and 

N03N loading from Clayton Lake Watershed under each clearcutting management 

scenario. Frequency analysis in the form of probability plotting was conducted on the 

1500 annual maximum daily Qs and annual maximum daily TSS, PHOS, and N03N 

loadings for each clearcutting management scenario. 

Frequency analysis is generally applied to time series of data. Although the 

synthetic data sets generated for Clayton Lake Watershed were not time series, 

frequency analysis could be employed as long as certain assumptions were met. The 

main assumptions were: 1. the observations within a data set were statistically 

independent of each other; 2. the observations were from a stationary time series. 

Considering annual maximum daily Q and annual maximum daily TSS, PHOS, and 

N03N loading satisfied the first assumption of frequency analysis. The second 

27 
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assumption was satisfied because .the scope was limited to the worst case condition for 

each clearcutting management scenario, and the worst case condition did not change 

from Monte Carlo run to Monte Carlo run. 

The steps followed during the development of the probability plots were: 1. 

ranking of the estimates in each data set from largest to smallest; 2. calculation of the 

plotting position for each estimate in each data set; and 3. plotting annual maximum 

daily Q, TSS, PHOS, or N03N on the y-axis and plotting position on the x-axis of log­

normal probability paper. The plotting position (p) for each estimate was determined 

using the Weibull plotting position formula (Haan 1977). 

p=m/(n+1) 2.1 

Where m was the rank of the estimate in relation to the other estimates in the sample, 

and n was the sample size. By ranking the estimates from largest to smallest the 

plotting position corresponded to 1 - Px (x), the probability of the occurrence of a daily 

load with a magnitude equal to or greater than the event in question (Haan 1977). This 

probability is the exceedance probability. Exceedance probability is equal to the 

reciprocal of the return period for a T-year event. AT-year event is defined as an event 

of such magnitude that over a long period of time (much longer than T years), the 

average time between events having a magnitude greater than the T year event is T 

years (Haan et al. 1994). Return period was displayed on the secondary x-axis of the 

probability plot. 



Forest Roads 

EPIC cannot simulate the generation and transport of TSS, PHOS, and N03N 

from forest road networks. Thus, the annual maximum daily TSS, PHOS, and N03N 

loading estimates from Clayton Lake Watershed generated under the stochastic 

framework will not account for contributions from forest roads. This is a major short­

coming of the framework because the construction and maintenance of roads, trails, 

and landings associated with clearcutting have been identified as major sources of 

NPS pollution (Scoles et. al. 1994). 
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Miller et al. (1985) conducted a 17 month study (1-Jun-1982 to 31-May-1983 

and 1-Aug-1984 to 31-Dec-1984) to characterize the erosion rates and sediment 

delivery potential of a road system on a large watershed in the Ouachita Mountains. 

Precipitation during the study period was 143 % above normal. A single storm 

exceeding the 100 year 24 hour rainfall amount occurred during the study, and total 

monthly rainfall for Oct-1984 was the greatest on record. The authors present 56.05 t 

ha·1 as an upper limit estimate of the erosion rate which can be expected from unpaved 

roads on large forest watersheds in the Ouachita Mountains. This translated to 40.59 t 

km road·1 yr"1. Sediment delivery rate to the stream was estimated to be 0.085 t ha·1 

yr"1, or 4.45 t km road·1 yr"1• 

In the batholith of Idaho, Megahan and Kidd (1972) determined that 85% of the 

soil loss due to road construction occurred in the first year following construction while 

Fredricksen (1970) reported a 250 X, 2 X, and 3 X increase in TSS compared to the 

control for the first, second, and third year following road construction. An estimated 

245 t ha·1 of soil erosion occurred in the first year. Average erosion rate over eight 

years was 27 t ha·1 yr"1. Anderson and Potts (1987) reported an average TSS 
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concentration of 6.7 mg L"1 and a 7.7 X increase in annual sediment yield during the 

first year following the construction of 2.5 km of logging road on a small watershed in 

west-central Montana. Based upon observations of low levels of soil disturbance and 

overland flow following timber harvest the authors concluded that erosion from roads 

contributed more to the total watershed soil loss than did timber harvest. This supports 

observations by McCashion and Rice (1983) that on a 12,262 ha of commercial forest 

land in northwest California, 40% of the total erosion associated with the management 

of the area was due to a road system which comprised only 6% of the land surface. 

Average road related erosion was approximately 17 X that due to the timber harvest 

operation. 

Forest roads associated with clearcutting activities are a major source of NPS 

pollution generation, and may in fact be responsible for more NPS pollution generation 

than the clearcutting activity. Although significant NPS pollution can be generated from 

forest roads, simple BMP's can be installed to effectively reduce the amount of NPS 

pollution which reaches waterbodies. Simulation of NPS pollution from forest roads 

must eventually incorporated into the framework. No attempt was made to account for 

forest roads on Clayton Lake Watershed. 
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Table 2. Regional estimates of average annual P, Q, ET, and PRK as well as the 
percent of P lost to Q, ET, and PRK for north-central Pushmataha County (Pettyjohn et 
al. 1983). 

p 
a 
ET 
PRK 

Average Annual (mm) 
1219 
356 
788 
75 

Percent of Average Annual P 
100.0 
29.2 
64.6 
6.2 

Table 3. Area (A), percent of Clayton Lake Watershed(%), average land slope (S), 
maximum travel distance (L) for each management unit. 

Unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

A 
(ha) 
151 
180 
121 
189 
210 
108 
275 
276 
273 
208 
106 

% 

7.1 
8.5 
5.7 
8.9 
9.9 
5.1 
12.9 
13.0 
12.8 
9.8 
5.0 

s 
(%) 
13.8 
13.3 
16.2 
15.5 
13.4 
14.8 
12.6 
19.1 
17.2 
15.7 
16.2 

L 
(km) 
2.08 
2.47 
2.23 
2.36 
2.75 
2.22 
4.10 
3.52 
3.29 
3.00 
2.03 

Table 4. Management units ranked from most to least erosive based first upon average 
land slope (S) and area (A). 

Unit 

8 
9 
3 
11 
10 
4 
6 
1 
5 
2 
7 

A 
(ha) 
276 
273 
121 
106 
208 
189 
108 
151 
210 
180 
275 

% 

13.0 
12.8 
5.7 
5.0 
9.8 
8.9 
5.1 
7.1 
9.9 
8.5 
12.9 

s 
(%) 
19.1 
17.2 
16.2 
16.2 
15.7 
15.5 
14.8 
13.8 
13.4 
13.3 
12.6 

L 
(km) 
3.52 
3.28 
2.22 
2.02 
3.00 
2.36 
2.22 
2.07 
2.74 
2.47 
4.10 
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Table 5. Allocation of management units for each clearcutting management scenario. 
A is the area (ha) in each recovery status and % is the percent of Clayton Lake 
Watershed in each recovery status. 

Scenario Recovery Status Management Units A % 

ccoo R1 0 0 
R2 0 0 
R3 0 0 
R4 0 0 
U/R 1 - 11 2097 100.0 

CC33 R1 8 276 13.2 
R2 9 273 13.0 
R3 3 121 5.8 
R4 11 106 5.0 
U/R 10,4,6, 1,5,2, 7 1321 63.0 

CC66 R1 8, 9 549 26.2 
R2 3, 11 227 10.8 
R3 10,4 397 18.8 
R4 6, 1 259 12.5 
U/R 5,2, 7 665 31.7 

CC100 R1 8, 9, 3 670 32.0 
R2 11, 10, 4 503 24.0 
R3 6, 1,5 469 22.4 
R4 2, 7 455 21.6 
U/R 0 0 
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Figure 1. Clayton Lake Watershed divided into 11 management units. 
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Figure 2. Allocation of management units on Clayton Lake Watershed 
for the CC33 clearcutting management scenario. 

N 

• Recovery Status R 1 

Recovery Status R2 

• Recovery Status R3 

• Recovery Status R4 

Recovery Status U/R 
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Figure 3. Allocation of management units on Clayton Lake Watershed 
for the CC66 clearcutting management scenario . 

• Recovery Status R 1 

Recovery Status R2 

• Recovery Status R3 

• Recovery Status R4 

Recovery Status U/R 
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Figure 4. Allocation of management units on Clayton Lake Watershed 
for the CC100 clearcutting management scenario . 

• Recovery Status R 1 

Recovery Status R2 

• Recovery Status R3 

• Recovery Status R4 

Recovery Status U/R 



CHAPTER Ill 

MODEL CALIBRATION 

Introduction 

For this project, parameter estimation is referred to as calibration. Haan et al. 

(1994) define parameter estimation as the process by which the parameters of a model 

are estimated for a particular application, and state that rational parameter estimation 

must be based upon some criterion in order to identify a unique set of parameter 

estimates. The parameter estimation criteria applied in this effort can be described as 

personal judgment optimization univariately by trial and error. Initial parameter 

estimates were developed based upon research data, soil survey information, monthly 

weather data available in EPIC, topographic data, suggestions within the EPIC 

documentation, and the judgment of the model user. Model performance evaluation 

was conducted following each model run. Based upon that evaluation, the estimate for 

a selected parameter was modified and the model was run again. This process was 

continued until satisfactory model performance was attained. Satisfactory model 

performance will be defined later in this chapter. 

Recall that annual maximum daily TSS, PHOS, and N03N loadings are the 

quantities of interest. Unfortunately, limited observed annual maximum daily loading 

data was available for model performance evaluation. Upon identification of the final 

37 
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parameter set, EPIC's performance was evaluated on its ability to simulate monthly and 

daily Q, TSS, PHOS, and N03N loading as well as to simulate annual maximum daily 

Q, TSS, PHOS, and N03N loading. Model performance evaluation methods included 

linear regression analysis, graphical analysis, and comparison of simulated and 

observed annual summaries. Although evaluating EPIC based upon monthly and daily 

loadings does not directly evaluate EPIC's ability to simulate annual maximum daily 

loadings, it does provide insight to EPIC's overall performance. 

In the interest of space, a condensed format was developed for the presentation 

of model performance evaluation results for daily TSS, PHOS, and N03N loading. The 

presentation format consists of the following per final model run: 1. one page 

containing the tabular results of linear regression analysis (i.e. ANOVA, coefficients, 

etc.) and tests of the slope and intercept of the linear regression model; 2. a plot of 

observed and simulated values over time; and 3. a scatter plot of the linear regression 

line through the data. Results of day-to-day model performance evaluations of the final 

models are presented in Appendix II and Ill. 

Model Performance Evaluation Methods 

Several simple methods of comparing simulated and observed values were 

employed during the calibration process. Linear regression analysis was applied to 

predict observed values by simulated values. The slope of the regression line (b) 

provides a measure of the bias in the model estimates, while the coefficient of 

determination (r2) is a measure of how model output tracks observed values in a 

relative sense (Haan et al. 1994). The coefficient of determination is the ratio of the 

sum of squares due to regression to the total sum of squares corrected for the mean 
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and can be used as a measure of the ability of the regression line to explain variations 

in the dependent variable (Haan 1977). If EPIC output exactly matched observed data, 

r2 would equal 1, b would equal 1, and the intercept of the regression line (a) would 

equal 0. Graphical evaluation of model performance was conducted using plots of 

simulated and observed values over time. Annual sums of simulated and observed 

values were computed and compared. 

Monthly values for Q, TSS, PHOS, and N03N loading were used for evaluation 

of model performance during the initial and subsequent model runs of the parameter 

estimation process. Daily values of Q, TSS, PHOS, and N03N loading were used for 

evaluation of final model performance (the model determined to be the "best" based 

upon evaluation of monthly values). Graphical evaluation was employed to examine 

the relationship between simulated and observed annual maximum daily TSS, PHOS, 

and N03N loadings. 

In order to evaluate model performance, some standard of model performance 

must be established. Few guidelines exist to aid in the development of such a 

standard. In the absence of guidelines, satisfactory model performance was defined as 

follows: 1. r2 ~ 0. 70; 2. b not significantly different from 1; and 3. a not significantly 

different from 0. 

Observed Data 

Two small-scale experimental watersheds, WS-1 and WS-111, are located on 

Clayton Lake Watershed (Figure 5). WS-1 was clear cut in Sep-83. Site preparation for 

pine establishment consisted of lodging hardwoods and drumchopping slash in Jul-84, 

prescribed burning in Aug-84, and subsoiling in Jan-85 (Naseer 1992). WS-1 was 
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planted to a monoculture of loblolly pine in Mar-85. WS-111 was left undisturbed to serve 

as a control watershed. 

Streamflow was measured using 1.2 m concrete H-flumes (Naseer 1992). ISC.O 

(Instrument Specialties Company) Model 1680 automatic pumping samplers (28 sample 

capacity) were installed 1 m upstream of the flume inlet to collect discrete water quality 

samples. Floats equipped with mercury switches were used to activate the automatic 

pumping samplers during runoff events. During runoff events, discrete water quality 

samples were collected by the ISCO Model 1680 at 0.25 to 0.30 hr intervals. Rainfall 

was measured using one weighing-bucket recording rain gage per watershed. 

TSS concentrations were determined by vacuum filtering through 0.45 µm 

filters, oven drying the filtrate at 11 O °C, and weighing the dry filtrate (Naseer 1992). 

PHOS concentrations were determined by persulfate digestion and the ascorbic acid 

colormetric method (APHA 1976). N03N concentrations were determined by the 

cadmium reduction method (APHA 1976). 

Rainfall charts were digitized and a digital precipitation record developed. 

Streamflow charts were digitized and a digital record of streamflow developed. Water 

quality samples were matched with streamflow data. Digital files containing stormflow 

volume (Q) as well as TSS, PHOS, and N03N concentrations were developed for all 

stormflow events during the study period. 

For the purposes of this project, a continuous record of daily rainfall (RAIN) in 

mm, daily Q in mm, daily TSS loading in t ha·1, daily PHOS loading in kg ha·1, and daily 

N03N loading in kg ha·1 was developed for WS-1 and WS-111. The record extends from 

1-0ct-83 to 30-Sep-88. Annual maximum daily Q as well as annual maximum daily 

TSS, PHOS, and N03N loading for the R 1, R2, R3, and R4 recovery status were 
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computed (water years 1985, 1986, 1987, and 1988 on WS-1). This resulted in one 

observation each of annual maximum daily Q, TSS, PHOS, and N03N for the R 1, R2, 

R3, and R4 recovery status. Annual maximum daily Q as well as annual maximum 

daily TSS, PHOS, and N03N loadings for the U/R recovery status were computed 

(water years 1984, 1985, 1986, 1987, and 1988 on WS-111). This resulted in five 

observations of annual maximum daily Q, TSS, PHOS, and N03N for the U/R recovery 

status. 

EPIC System FUe Structure 

Throughout this chapter parameters are categorized and discussed based upon 

their location within the EPIC system file structure, thus a brief description of the EPIC 

system file structure is warranted. EPIC system files are text files which contain the 

estimates for the parameters of EPIC. Figure 6 illustrates the EPIC system file 

structure. The Basic-User-Supplied Data File, the Crop Parameter File, and the Tillage 

Parameter File are discussed in the following sections. The reader is referred to 

Dumesnil (1993) for a detailed description of the remaining files, and to Appendix I for 

complete descriptions of the parameters discussed in this chapter. 

Basic User-Supplied Data File 

As the name indicates, the Basic User-Supplied Data File must be developed by 

the user. The EPIC User's Guide (Dumesnil 1993) identifies 9 categories of user­

supplied data: title; program control codes; general data; water erosion data; weather 

data; wind erosion data; soil data; management information; and daily weather data. 
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A total of 617 values must be estimated to develop a Basic User-Supplied Data 

File (Table 6) (149 parameters, assuming 8 soil horizons, and 12 months of monthly 

weather statistics). Parameters NBYR through IHUS are program control codes (Table 

6). Parameters WSA through CHO provide general data about the site to be modeled, 

while parameters SL through ORV provide the water erosion data required by the EPIC 

erosion component. 

Monthly weather data files for over 137 sites in the United States are available 

within EPIC. These files contain estimates for parameters YWI through RH and WVL 

through DIR16 in Table 6. These parameters supply the basic information required by 

EPIC to simulate daily weather and evapotranspiration. Parameters FL through ACW 

relate to the simulation of wind erosion. Soil data files containing estimates for 

parameters SALB through WP are available for 737 soil series found within the United 

States are available within EPIC. Parameters NRO through PAR comprise the 

management information data. These parameters define the management scenario 

associated with the production of the crop(s) of interest. Observed daily weather data 

for one or more of the six driving weather variables can be incorporated by inserting the 

name and location of the Daily Weather Data File at the end of the Basic User-Supplied 

Data File. 

Crop Parameter File 

The Crop Parameter File stores estimates of the crop parameters of EPIC. 

Table 7 lists the 45 parameters required per crop contained in the Crop Parameter File. 

During a simulation EPIC reads crop parameter estimates from the Crop Parameter File 

based upon the crop type specified in the Basic User-Supplied Data File. The EPIC 



Crop Parameter File contains information for 22 crops, one of which is pine trees 

(PINE). 

Tillage Parameter File 
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The Tillage Parameter File stores information about tillage, planting, harvesting, 

and other operations. During a simulation EPIC reads tillage parameter estimates from 

the Tillage Parameter File based upon the tillage operation specified in the Basic User­

Supplied Data File. Table 8 lists the 12 parameters required for each tillage operation 

contained in the Tillage Parameter File. Table 9 lists the tillage operations contained in 

the EPIC Tillage Parameter File. 

Parameter Selection 

In the previous section, 205 parameters are identified for which a total of 674 

estimates must be determined. Within EPIC a parameter can represent a physical I 

chemical characteristic, a ratio, or a code to specify the use of a particular calculation I 

evaluation technique. Only a limited number of the parameters in EPIC are of value for 

calibration. Parameters not employed for calibration purposes were set to values 

suggested within the EPIC User's Guide, to values determined by research on the 

study site, or to values determined from the literature. The initial task was to determine 

which of the 205 parameters were to be considered as candidates for parameter 

estimate modification during the model calibration process. 
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Tillage and Crop Parameter Files 

All parameters contained within the Tillage Parameter File were excluded from 

modification. With the exception of the CVM parameter (minimum daily USLE C-factor 

value), those parameters contained in the Crop Parameter File were excluded from 

modification. CVM is a factor in the calculation of CE and thus TSS (equations A.102 

and A.84 in Appendix I). There are two reasons for the exclusion of the remaining 

parameters within the Crop and Tillage Parameter Files. First, other than those 

estimates provided within EPIC data files, it is extremely difficult to obtain estimates for 

most of the parameters contained within the Crop and Tillage Parameter Files. 

Second, the effect that manipulating crop and tillage parameters has upon the 

functioning of the crop growth model is difficult to assess. 

Basic User-Supplied Data File 

The majority of parameters within the Basic User-Supplied Data File were 

excluded as candidates for modification. Referring to Table 6, program control codes 

NBYR through LPYR, ISCN through ICODE, and ISTA through IHUS were excluded as 

candidates for modification. General information parameters WSA, CHL through SN, 

and YLT through S were not modified during model calibration. Monthly weather 

parameters YWI through RH and WVL through D1R16 were not modified during model 

calibration. Wind erosion parameters FL, FW, ANG, UXP, DIAM, and ACW were not 

modified during model calibration. Soil property parameters SALB through XIDS, Z 

through SIL, PH through ROK, RSD, BOD, and SC were not modified during model 

calibration because soil survey and research data were available for the estimation of 



these parameters. All management information parameters were excluded as 

candidates for modification. 
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A total of 14 parameters were identified as candidates for parameter estimate 

modification during model calibration (Table 10). Based upon this particular parameter 

selection, the calibration of EPIC amounts to the development of one Basic User­

Supplied Data File for clear cut management units and another for undisturbed 

management units. 

Clear Cut Management Unit 

EPIC was calibrated to simulate the entire four year recovery period following 

clearcutting on WS-1. Simulation began 1-0ct-84 and ended 30-Sep-88. Observed 

data from water years 1985 (R1), 1986 (R2), 1987 (R3), and 1988 (R4) was used for 

model performance evaluation. Daily rainfall data for the period 1-Jan-84 to 12-Dec-88 

was input and the remaining required daily weather variables were estimated. The 

transplant tillage operation was applied to plant a pine crop at the beginning of the 

simulation. Parameter estimates provided within EPIC for the transplant tillage 

operation and the pine crop were utilized. Results of final model performance 

evaluations are presented in Appendix II. 

Initial Parameter Estimates 

The first step was to identify initial estimates for the 149 parameters contained 

in the Basic User-Supplied Data File. Initial parameter estimates are based upon 

research data, soil survey information, monthly weather data available in EPIC, 

topographic data, suggestions within the EPIC documentation, and the judgment of the 
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model user. A portion of the parameters were set to default values. CVM was initially 

. set at its default value of 0.001. Initial program control code settings are listed in Table 

11. Initial estimates for general information parameters are listed in Table 12. 

Estimates for monthly weather parameters are listed in Table 13. Monthly 

weather parameter estimates are based upon 7 years of daily weather data recorded at 

Smithville, OK, approximately 56 km east of Clayton Lake Watershed. Wind erosion 

parameters were set to their default values (Table 14). STD (standing dead residue) 

was set to 3 t ha·1 in an attempt to represent the residue found on clear cut sites. 

Soil parameters fall into two categories, those requiring an estimate for each soil 

layer and those requiring one estimate for the entire soil profile. Initial estimates for soil 

parameters in the first category are listed in Table 15. Initial estimates for general soil 

parameters are listed in Table 16. 

Management operation parameters NIRR through FDSF do not pertain to this 

project and were assigned default values (Table 17). The management operation 

schedule used for clear cut simulations is shown in Table 18. Operation 4 represents 

the transplanting of a crop, and crop ID number 23 indicates that pine trees were the 

crop transplanted. MAT (years until the pine trees reach maturity) was set at 40. 

Operation 72 represents irrigation of the site. EPIC requires that at least one 

management operation be performed within each year of simulation. Irrigation of the 

site with 1 mm of water in years other than the transplanting year was determined to be 

a operation that could be employed with minimal impact upon model performance. 
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Calibration and Model Performance Evaluation 

Initial and Subsequent Model Runs 

Hydrology. The initial hydrology model run was conducted using the initial Basic 

User-Supplied Data File described above. Monthly simulated Q estimates were 

calculated as the sum of daily overland and lateral subsurface flow for each month. 

Model performance evaluation results indicated that EPIC initially over-predicted 

monthly Q. Hydrology model run two was conducted with subsurface travel time 

(RFTI) set to 2 days. Examination of equations A.48 through A.56 indicated that 

increasing RFTT would increase soil water retention time which increases 

evapotranspiration (ET) and percolation (PRK), decreasing Q. Evaluation of hydrology 

model run two indicated that EPIC satisfactorily estimated monthly Q. 

TSS. The initial TSS model run, TSS model run two, and TSS model run three 

were conducted using the Basic User-Supplied Data File developed in hydrology model 

run two with the equation for water erosion (ORV) equal to the Modified Universal Soil 

Loss Equation (MUSLE), the small watershed version of MUSLE (MUSS), and the 

Universal Soil Loss Equation (USLE), respectively. Evaluation of the first three model 

runs indicated that EPIC initially under-predicted TSS, but did not indicate which 

erosion model was most appropriate. 

Examination of equations A.84 and A.102 showed that increasing CVM 

increases CE and thus TSS. TSS model run four was conducted with CVM equal to 

0.002 and ORV equal to MUSLE. TSS model run five was conducted with CVM equal 

to 0.002 and ORV equal to MUSS. TSS model run six was conducted with CVM equal 

to 0.002, and ORV equal to USLE. Evaluation of model runs three through six 
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indicated USLE was not well-suited for predicting TSS from WS-1. The evaluation also 

indicated that EPIC under-predicted TSS in year 1 (R1). 

Examination of equations A.84 and A.102 showed that reducing STD would 

reduce CE in year 1 and thus increase TSS in year 1 (R1). TSS model run seven was 

conducted with STD equal to 2 t ha·1, CVM equal to 0.002, and ORV equal to MUSS. 

TSS model run eight was conducted with STD equal to 2.5 t ha·1, CVM equal to 0.002, 

and ORV equal to MUSLE. Model performance evaluation indicated that MUSLE was 

the most appropriate erosion model. Evaluation also indicated that EPIC 

unsatisfactorily estimated monthly TSS. Subsequent parameter modification and 

model runs did not improve upon the model fit realized under TSS model run eight. 

Model run eight provided the best model fit achieved. 

PHOS. The initial PHOS model run was conducted using the Basic User­

Supplied Data File developed in TSS model run eight. The results of model 

performance evaluation indicated EPIC initially under-predicted PHOS. Setting AP1 

and AP2 to a low value reduced PHOS by reducing the amount of phosphorus 

available to be transported from the site. PHOS model run two was conducted with 

AP1 and AP2 set to 5 g f 1. Evaluation indicated that EPIC satisfactorily estimated 

monthly PHOS. 

N03N. The initial N03N model run was conducted using the Basic User­

Supplied Data File developed in PHOS model run two. The results of model 

performance evaluation indicated EPIC initially over-predicted N03N. Setting WN1-8 

to a low value reduced N03N by reducing the amount of N03N available to be 

transported from the site. N03N model two was conducted with WN1-8 equal to 1 g f 1. 



Evaluation indicated EPIC over-predicted N03N. N03N model three was conducted 

with WN 1-8 equal to 0.1 g f 1. Evaluation indicated EPIC satisfactorily estimated 

monthly N03N. 
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Final Model. Monthly Q, as well as monthly TSS, PHOS, and N03N loading 

estimates were generated using the final Basic User-Supplied Data File developed in 

N03N model run three. Model performance evaluation indicated EPIC did not 

satisfactorily estimate monthly PHOS and TSS. The change in EPIC's ability to 

satisfactorily simulate monthly PHOS was probably due to an interaction between the 

nitrogen and phosphorus components of EPIC. Thus, it was necessary to continue the 

calibration of EPIC for PHOS. 

PHOS model run three was conducted with organic phosphorus concentration in 

all soil layers (WP1-8) set to 500 g r1. WP1-8 were set to 500 g r1 to increase the 

amount of PHOS available for transport. Evaluation indicated that EPIC over-predicted 

annual PHOS. PHOS model four was conducted with WP1-8 equal to 450 g r1. 

Evaluation indicated that EPIC satisfactorily estimated monthly PHOS. 

The final model performance evaluation indicated EPIC satisfactorily estimated 

monthly Q, PHOS, and N03N loading from WS-1 during the four year recovery period. 

EPIC did not satisfactorily estimate monthly TSS (r2=0.68). No further parameter 

estimate modification was conducted. 

Daily Evaluation of the Final Model 

The final model developed above was evaluated based upon simulated and 

observed daily Q, as well as daily TSS, PHOS, and N03N loading (Appendix II). 
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Evaluations were conducted individually for recovery status R1, R2, R3, and R4. Model 

performance evaluations were less favorable for Q, TSS, PHOS, and N03N at the daily 

time step than at the monthly time step. Low coefficients of determination indicated 

that simulated values inadequately tracked observed values. Regression line slopes 

and intercepts indicated bias in the model estimates. Model performance evaluations 

indicated that EPIC unsatisfactorily estimated day-to-day Q, as well as day-to-day TSS, 

PHOS, and N03N loading. 

Annual Maximum Daily Q and TSS, PHOS, and N03N Loading 

Simulated and observed annual maximum daily Q as well as annual maximum 

daily TSS, PHOS, and N03N loading were compared for the R 1, R2, R3, and R4 

recovery status. These values, as well as the day of record on which they were 

realized, are listed in Table 19. Figures 7 through 10 illustrate simulated and observed 

values. 

Undisturbed I Recovered Management Unit 

EPIC was calibrated to simulate Q as well as TSS, PHOS, and N03N loading 

from WS-111, an undisturbed watershed. The simulation period was 20 years, beginning 

1-0ct-69 and ending 30-Sep-88. Initially, both a 40 and 20 year simulation duration 

were examined. Improved model performance was not realized at the 40 year duration, 

while computation time was significantly increased. Observed and simulated values for 

water years 1984 through 1988 were used for model performance evaluation. Daily 

rainfall data was input directly and the remaining required daily weather variables were 

estimated. The daily rainfall record was constructed such that the last five years 
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matched that realized on WS-111 for the period 1-Jan-83 to 12-Dec-88. The transplant 

tillage operation was applied to plant pine trees at the beginning of the simulation. 

Parameter estimates provided within EPIC for the transplant tillage operation and the 

pine crop were utilized. Results of final model performance evaluations are presented 

in Appendix Ill. 

Initial Parameter Estimates 

Initial parameter estimates were based upon research data, soil survey 

information, monthly weather data available in EPIC, topographic data, suggestions 

within the EPIC documentation, and the judgment of the model user. A portion of the 

parameters were set to default values. CVM was initially set to its default value of 

0.001. Initial program control code settings are listed in Table 20. Initial estimates for 

general information parameters are listed in Table 21. Estimates for monthly weather 

parameters are listed in Table 13. Wind erosion parameters are listed in Table 14. 

STD was assigned an initial estimate of 2.5 t ha·1• Initial estimates for soil parameters 

are listed in Tables 21 and 22. Management operation parameters NIRR through 

FDSF are listed in Table 17. The management operation schedule used for 

undisturbed simulations is shown in Table 23. MAT was set to 40. 

Calibration and Model Performance Evaluation 

Initial and Subsequent Model Runs 

Hydrology. The initial hydrology model run was conducted using the initial Basic 

User-Supplied Data File described above. Model performance evaluation results 
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indicated EPIC initially over-predicted annual Q. Decreasing CN would decrease the 

amount of RAIN lost as surface runoff, thus increasing the amount of water entering the 

soil profile. This would allow a greater portion of RAIN to be lost as ET or PRK, 

decreasing Q (equations A.22 and A.23). Hydrology model run two was conducted with 

CN set to 25. Evaluation indicated that EPIC unsatisfactorily estimated monthly Q 

during model run two (r2=0.63). Subsequent parameter modification and model runs 

did not improve upon the model fit realized under hydrology model run two. Model run 

two provided the best model fit achieved. 

TSS. The initial TSS model run was conducted using the Basic User-Supplied 

Data File developed in hydrology model run two with ORV equal to MUSLE. Model 

performance evaluation results indicated EPIC did not satisfactorily estimate monthly 

TSS. TSS model run two was conducted with ORV set to USLE and CVM set to 0.002. 

Evaluation indicated a better model fit than under the initial TSS model run. The 

evaluation also indicated EPIC over-predicted annual TSS. TSS model run three was 

conducted with ORV set to USLE, CVM set to 0.002, and the USLE P-factor (PE) equal 

to 0.06. Reducing PE reduced TSS (equation A.84). Results of model performance 

evaluations indicated EPIC still unsatisfactorily estimated monthly TSS. Subsequent 

parameter modification and model runs did not improve upon the model fit realized 

under TSS model run three. Model run three provided the best model fit achieved. 

PHOS. The initial PHOS model run was conducted using the Basic User­

Supplied Data File developed in TSS model run three. Results of model performance 

evaluation indicated EPIC initially under-predicted PHOS. PHOS model run 2 was 

conducted with WP1-8 set to 1000 g r1. Evaluation indicated that EPIC unsatisfactorily 



estimated monthly PHOS during model run two. Subsequent parameter modification 

and model runs did not improve upon the model fit realized under PHOS model run 

two. Model run two provided the best model fit achieved. 
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N03N. The initial N03N model run was conducted using the Basic User­

Supplied Data File developed in PHOS model run two. The results of model 

performance evaluation indicated EPIC initially over-predicted N03N. N03N model two 

was conducted with WN031-8 set to 20 g r1. Evaluation indicated EPIC over-predicted 

N03N. It was suspected that the over-prediction was due to nitrogen contributions to 

WS-111 from rainfall. N03N model run three was conducted with the average 

concentration of nitrogen in rainfall (RCN) reduced to 0.015 ppm. Evaluation indicated 

that EPIC unsatisfactorily estimated monthly N03N during model run three, but was 

improved over model run two. Subsequent parameter modification and model runs did 

not improve upon the model fit realized under N03N model run three. Model run three 

provided the best model fit achieved. 

Final Model. The final model was run and model performance evaluation 

conducted. Results of model performance evaluation indicate that EPIC 

unsatisfactorily estimated monthly Q, TSS, PHOS, and N03N. Additional efforts to 

calibrate for Q were not successful. No further parameter estimate modification was 

conducted. 
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Daily Evaluation of the Final Model 

The final model was evaluated based upon simulated and observed daily Q, as 

well as daily TSS, PHOS, and N03N loading (Appendix Ill). Evaluations were 

conducted for the period beginning 1-0ct-83 and ending 30-Sept-88. In general, model 

performance evaluations were less favorable at the daily time step than they were at 

the monthly time step. The exception being PHOS, for which model performance 

evaluations were more favorable at the daily time step. Low coefficients of 

determination indicated that simulated values inadequately tracked observed values. 

Regression line slopes and intercepts indicated bias in the model estimates. Model 

performance evaluations indicate that EPIC unsatisfactorily estimated day-to-day Q, as 

well as day-to-day TSS, PHOS, and N03N loading. 

Annual Maximum Daily Q and TSS, PHOS. and N03N Loading 

Simulated and observed annual maximum daily Q as well as annual maximum 

daily TSS, PHOS, and N03N loading were compared for water years 1984, 1985, 

1986, 1987, and 1987. These values, as well as the day of record on which they were 

realized, are listed in Table 24. Figures 11 through 14 illustrate simulated and 

observed values. 

Discussion 

There are several possible explanations for EPIC's failure to predict observed 

values. The majority of these explanations are·rooted in the fact that EPIC was not 

designed for forested watersheds in the Ouachita Mountains. 



The first possible explanation is that EPIC does not adequately represent the 

hydrologic regime of forested watersheds in the Ouachita Mountains. EPIC employs 

the SCS Curve Number approach to estimate the amount of rainfall lost as overland 

flow (equations A.22 through A.31 of Appendix I). EPIC determines the amount of 

rainfall entering the soil profile as the difference between total rainfall and the amount 

of rainfall lost as overland flow. EPIC simultaneously calculates the loss of soil water 

as lateral subsurface flow and percolation (equations A.SO through A.58). Overland 

flow is the principle stormflow generation mechanism on thinly vegetated or disturbed 

watersheds located in arid to sub-humid climates (Dunne 1983). This description 

encompasses most agricultural lands. Thus, overland flow-based stormflow models 

have been widely accepted and incorporated into agricultural field-scale water quality 

models such as EPIC. 

55 

Attempts to estimate stormflow generation from heavily vegetated forest 

watersheds located in humid regions using overland flow -based runoff models have 

met with limited success (Dunne and Black 1970a, Medina and Helfrich 1979, Hewlett 

1982, and Bras 1990). Extensive calibration must be conducted to achieve satisfactory 

model performance (Dunne 1983, Hewlett and Hibbert 1967). Horton (1943) stated 

that "owing to somewhat unusual conditions, surface runoff rarely occurs from soil well 

protected by forest cover." The fact that there was often no observable overland flow 

on forested watersheds (Muller 1966, Tsukamoto 1966, and Dunne and Black 1970a) 

coupled with observed infiltration rates on forest soils ranging from 14 to 50 in hr"1 

(Trimble et al. 1958) cast serious doubt on the applicability of overland flow-based 

runoff models to heavily vegetated watersheds. 

Despite the fact that overland flow rarely occurs on well protected forest soils, 

significant stormflows are generated from forest watersheds. Numerous intensive field 
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studies have been conducted in an attempt to identify the mechanisms of stormflow 

generation on heavily vegetated, humid watersheds ( Dunne and Black 1970b, Freeze 

1974, Mosley 1979, Abdul and Gillham 1989, Turton 1989, Pearce 1990, Weis et al. 

1991, Sames 1992, Navar 1992, and Turton et al. 1992). The current consensus is 

that the major stormflow generating processes on undisturbed, heavily vegetated, 

humid watersheds are shallow lateral subsurface flow through highly permeable soil 

horizons and saturation overland flow from near-stream areas of the watershed. 

The variable source area concept was developed to explain stormflow 

generation from forested watersheds (Hewlett and Hibbert 1967, Hewlett and Troendle 

1975, Troendle 1985, and Hibbert and Troendle 1988). Hibbert and Troendle (1988) 

state that the central precept of the variable source area concept is that water generally 

infiltrates undisturbed forest soils, migrates downslope, and maintains saturation or 

near saturation at lower slope positions. These lower slope positions readily contribute 

subsurface flow to stormflow as the zone of saturated soil surface expands laterally 

and longitudinally. The degree to which saturation and subsequent expansion would 

occur for a given slope varies as a function of antecedent soil moisture, precipitation 

volume, and duration of input. 

More specifically, a small but spatially variable portion of an undisturbed forest 

watershed will generate stormflow in a given storm. The stormflow generating area is 

fed water as subsurface flow from up slope areas of the watershed. As the water table 

near the stream builds or "mounds" during a storm, the soil surface will become 

saturated from below. This area of saturation will grow in size as the storm continues, 

and decrease as the storm subsides. Precipitation which falls onto the saturated area 

becomes saturation overland flow and contributes to stormflow. Infiltrated stormflow 

traveling as subsurface flow can exfiltrate at the boundary of the saturation zone and 
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contribute to stormflow as return flow. Saturated subsurface flow can contribute to 

stormflow at the stream channel face. Hortonian overland flow can only contribute to 

stormflow if the impervious source of the flow is connected to the stream, otherwise it is 

infiltrated on its path to the stream and becomes subsurface flow. 

Given the current theories of stormflow generation from forested watersheds, it 

is likely that use of the SCS Curve Number model in EPIC does not adequately 

represent the hydrology of forest watersheds in the Ouachita Mountains. EPIC does 

attempt to simulate lateral subsurface flow, and is one of the few water quality models 

which does. However, there is no way of determining if EPIC's lateral subsurface flow 

component is accurately depicting lateral subsurface flow from WS-1 or WS-111. The 

hydrology component of EPIC drives all other EPIC model components. 

A second possible explanation for EPIC's inability to estimate monthly and day­

to-day Q, TSS, PHOS, and N03N is inadequate simulation of the water, energy, and 

nutrients dynamics of the pine "crop" found on WS-1 and WS-111. Unfortunately, the 

EPIC documentation does not discuss the development of the parameter estimates for 

the pine crop contained in the Crop Parameter File. It is known that the parameter 

estimates are intended for a pine plantation setting. The species of pine, nor the 

ecosystem, which the pine crop parameter estimates represent is not identified. The 

presence or absence of a forest understory is not specified in the model 

documentation. 

Because there is no description of the pine crop contained in the Crop 

Parameter File, it is not known if that crop is representative of the plant community 

found on clear cut management units in the Ouachita Mountains (Chapter 1). Nor is it 

known if it is representative of a mature pine plantation plant community found in the 

Ouachita Mountains. No crop production data exists for WS-1 or WS-111, so the EPIC 



crop model could not be evaluated for pine production. Within EPIC the crop model 

impacts evapotranspiration, percolation, lateral subsurface flow, erosion, and nutrient 

transport estimates. 
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A third possible explanation for EPIC's inability to satisfactorily estimate day-to­

day Q, TSS, PHOS, and N03N deals with the timing of rainfall and subsequent 

stormflow. In reality, the majority of stormflow realized from a day's rainfall may not 

occur in the same day the rainfall occurred. For instance, if a storm began in the 

evening of day 1 and the majority of the rainfall in that storm fell prior to 12:00 p.m., the 

majority of stormflow could well be realized during the early hours of day 2. This 

phenomena was present in the observed data. Within EPIC, daily rainfall is assumed 

to fall at the beginning of the day and all surface runoff occurs in the day of question. 

The timing of lateral subsurface flow depends upon the porosity (PO), field capacity 

(FC), and saturated conductivity (SC) of each soil layer as well as upon RTTN 

(equations A.SO and A.53). 

A fourth possible explanation for EPIC's inability to satisfactorily estimate day­

to-day Q, TSS, PHOS, and N03N is the calibration process followed in this project. 

Improper parameter selection and estimation will of course lead to unsatisfactory model 

performance. There exists some optimal combination of parameter estimates which will 

provide the best possible model fit. However, there is no guarantee that parameter 

estimates under this optimal combination will be within some realistic range. That 

depends in part upon the quality of the model and its suitability for the task assigned. 

Several decisions made prior to and during the calibration of EPIC for this 

project certainly influenced model performance. First, personal judgment parameter 

estimation methods were employed during model calibration. Haan et al. (1994) 

discuss the advantages and disadvantages of the personal judgment parameter 
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estimation method. Perhaps the use of an objective parameter optimization method 

would have lead to a better model fit than the personal judgment method. Second, a 

select group of parameters were chosen for use during the calibration of EPIC. Limiting 

the number of parameters certainly lead to a worse model fit than if the entire set of 

parameters contained in EPIC had been used. Third, optimization was based on 

monthly Q, TSS, PHOS, and N03N loading. This decision was made in part to limit the 

amount of time spent on computing, data processing, and model performance 

evaluation. It was the judgment of the model user that these were acceptable 

optimization functions. Better model performance might have been realized if the 

optimization had been based on daily Q, TSS, PHOS, and N03N loading. Finally, 

parameter estimation was based upon a univariate optimization process, while a 

multivariate optimization process would have made better use of the information 

contained in the observed data sets {Haan et al. 1994). The reader is referred to Yan 

and Haan {1991a and 1991b) as well as Allred and Haan (1991) for further information 

on parameter estimation procedures. 

A fifth possible explanation for EPIC's inability to satisfactorily estimate day-to­

day Q, TSS, PHOS, and N03N is the presence of errors in the calibration data. There 

will of course be errors in any data set. Error can be introduced into a data set by poor 

experimental design, poor sampling technique, faulty equipment, and human 

imperfection. Although experimental design and sampling technique were sound, error 

could have been introduced into either data set during data processing. 

The actual explanation for EPIC's inability to satisfactorily estimate day-to-day 

Q, TSS, PHOS, and N03N is probably a combination of all five possible explanations 

discussed above. How large a role, if any role at all, each played cannot be 

determined. 



60 

Conclusion 

In general, EPIC did a better job of estimating monthly and day-to-day Q, TSS, 

PHOS, and N03N from WS-1 than from WS-111. This is logical because WS-1 more 

closely resembles the agricultural scenarios for which EPIC was designed than does 

WS-111. Using the parameter estimates selected in this effort, EPIC failed to 

satisfactorily estimate certain monthly, as well as all daily Q, TSS, PHOS, and N03N 

loading. Conclusions about EPIC's ability to simulate annual maximum daily TSS, 

PHOS, and N03N loading can only be based upon a limited set of observations. 

However, EPIC's inability to predict the day of occurrence for the annual maximum daily 

Q, TSS, PHOS, and N03N cannot be over-looked. Results indicate that fundamental 

problems exist concerning the application of EPIC to simulate daily Q, TSS, PHOS, and 

N03N from forested watersheds in the Ouachita Mountains. EPIC did simulate the 

rapid recovery (reduction in TSS, PHOS, and N03N across R1, R2, R3, and R4) of 

clear cut sites. 

It was decided to utilize EPIC in this project despite its short-comings estimating 

day-to-day Q, TSS, PHOS, and N03N loading. EPIC is an interchangeable component 

of the stochastic framework. Further investigation of the application of EPIC to forested 

watersheds must be conducted before any management or regulatory decisions in the 

region can, if ever, be confidently based upon EPIC model predictions. 



Table 6. Parameters contained within the Basic-User-Supplied Data File. 

Parameter 
NBYR 
IYR 
IMO 
IDA 
NIPD 
IPD 
NGN 
IGN 
IGSD 
LPYR 
IET 
ISCN 
IGRAF 
ICODE 
ITYP 
ISTA 
IHUS 
WSA 
CN2 
CHL 
CHS 
CHN 
SN 
APM 
YLT 
ELEV 
SNO 
RCN 
RTN 
CO2 
CN03i 
CHD 
SL 
s 
PEC 
DRV 
YWI 
BTA 
EXPK 
OBMX (1-12)8 

OBMN (1-12) 
STDMX (1-12) 
STDMN (1-12) 
RMO (1-12) 
RST2 (1-12) 
RST3 (1-12) 

Description 
number of years of simulation duration 
beginning year ·of the simulation 
beginning month of the simulation 
beginning day of the simulation 
printout interval 
print code to select type of output 
weather input code 
number of times the random number generator cycles 
day weather generator stops generating same weather 
leap year considered 
potential evapotranspiration equation 
stochastic CN estimation code 
graph display code 
output conversion code 
peak runoff rate estimate code 
static soil profile code 
automatic heat unit scheduling 
watershed area (ha) 
SCS curve number for moist soil conditions 
distance from outlet to most distant point on watershed (km) 
average channel slope (m m-1) 

channel roughness factor (Manning's N) 
surface roughness factor (Manning's N) 
peak runoff rate-rainfall energy adjustment factor 
latitude of watershed 
average watershed elevation (m) 
water content of snow on ground at start of simulation (frac.) 
average concentration of nitrogen in rainfall (ppm) 
number of years of cultivation before simulation 
CO2 concentration in the atmosphere (ppm) 
CN03 concentration in irrigation water (ppm) 
mean channel depth (m) 
slope length (m) 
slope steepness (m m-1) 

erosion control practice factor 
equation for water erosion 
years of maximum monthly 0.5-h rainfall data available 
coefficient used to estimate wet-dry probabilities 
coefficient used to modify exponential distribution of R 
average monthly maximum air temperature (C) 
average monthly minimum air temperature (C) 
monthly standard deviation for OBMX (C) 
monthly standard deviation for OBMN (C) 
average monthly rainfall amount (mm) 
monthly standard deviation of RMO (mm) 
monthly skew coefficient of RMO 
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PRW1 (1-12) 
PRW2 (1-12) 
UAVM (1-12) 
WI (1-12) 
OBSL (1-12) 
RH (1-12) 
FL 
FW 
ANG 
STD 
UXP 
DIAM 
ACW 
WVL (1-12)8 
D1R1 (1-12) 
D1R2 (1-12) 
D1R3 (1-12) 
D1R4 (1-12) 
D1R5 (1-12) 
D1R6 (1-12) 
D1R7 (1-12) 
D1R8 (1-12) 
D1R9 (1-12) 
D1R10 (1-12) 
D1R11 (1-12) 
D1R12 (1-12) 
D1R13 (1-12) 
D1R14 (1-12) 
D1R15 (1-12) 
D1R16 (1-12) 
SALB 
TSLA 
ZQT 
ZTK 
ZF 
FFC 
WTMN 
WTMX 
WTBL 
XIDS 
RFTT 
Z (1-8)b 
BD (1-8) 
U (1-8) 
FC (1-8) 
SAN (1-8) 
SIL (1-8) 
WN (1-8) 
PH (1-8) 

monthly probability of wet day after a dry day 
monthly probability of wet day after a wet day 
average number of wet days per month 
monthly maximum 0.5 h rainfall (mm) 
average monthly solar radiation (MJ m"2) 

monthly average solar radiation (frac.) 
field length (km) 
field width (km) 
clockwise angle of field length from north 
standing dead crop residue (t ha"1) 

coefficient of the modified, exponential wind-speed distribution 
soil particle diameter (µm) 
wind erosion adjustment factor 
average monthly wind velocity 
percent of the month a N wind is realized(%) 
percent of the month a NNE wind is realized(%) 
percent of the month a NE wind is realized(%) 
percent of the month a ENE wind is realized(%) 
percent of the month a E wind is realized (%) 
percent of the month a ESE wind is realized (%) 
percent of the month a SE wind is realized(%) 
percent of the month a SSE wind is realized(%) 
percent of the month a S wind is realized (%) 
percent of the month a SSW wind is realized (%) 
percent of the month a SW wind is realized (%) 
percent of the month a WSW wind is realized (%) 
percent of the month a W wind is realized (%) 
percent of the month a WNW wind is realized(%) 
percent of the month a NW wind is realized (%) 
percent of the month a NNW wind is realized(%) 
soil albedo 
maximum number of soil layers 
minimum soil layer thickness (cm) 
initial soil layer splitting thickness (cm) 
profile thickness at which to stop simulation (cm) 
initial soil water capacity, or fraction of field capacity 
minimum water table depth (m) 
maximum water table depth (m) 
initial water table depth (m) 
soil weathering code 
subsurface flow travel time (d) 
depth from surface to bottom of soil layer (m) 
bulk density of soil layer (t m"3) 

wilting point of soil layer (m m"1) 

field capacity of soil layer (m m"1) 

sand content of soil layer (%) 
silt content of soil layer(%) 
organic N concentration (g f 1) 
pH of soil layer 
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SMB (1-8) 
CBN (1-8) 
CAC (1-8) 
CEC (1-8) 
ROK (1-8) 
WN03 (1-8) 
AP (1-8) 
RSD (1-8) 
BDD (1-8) 
PSP (1-8) 
SC (1-8) 
WP (1-8) 
NRO 
NIRR 
IRR 
IRI 
IFA 
LM 
IFD 
IDR 
IFFR 
BIR 
EFI 
VIMX 
ARMN 
ARMX 
BFT 
FNP 
FMX 
ORT 
FDSF 
MON (n)° 
DAY (n) 
COD (n) 
CRP (n) 
GRZ (n) 
MAT (n) 
PHU (n) 
CND (n) 
WSF (n) 
FPP (n) 
MCF (n) 
HUSC (n) 
FN (n) 
FAP (n) 
FOP (n) 
IA (n) 
QVOL (n) 
PST (n) 
PCF (n) 

sum of bases in soil layer (cmol kg"1) 

organic carbon content of soil layer(%) 
calcium carbonate content of soil layer (%) 
cation exchange capacity of soil layer 
coarse fragment content of soil layer (% by vol.) 
nitrate concentration of soil layer (g f 1) 

labile phosphorus concentration of soil layer (g f 1) 

crop residue in soil layer (t ha"1) 

oven-dry bulk density of soil layer (t m"3) 

phosphorus sorption ratio of soil layer 
saturated hydraulic conductivity of soil layer (mm hr"1) 

organic phosphorus concentration of soil layer (g f 1) 

crop rotation duration 
rigidity of irrigation code 
irrigation code 
minimum automatic irrigation application interval 
minimum automatic fertilizer application interval 
liming control code 
furrow diking code 
drainage code 
automatic fertilization rigidity code 
water stress factor to trigger automatic irrigation 
irrigation runoff ratio 
maximum allowable irrigation volume per crop (mm) 
minimum irrigation volume per application (mm) 
maximum irrigation volume per application (mm) 
N stress factor to trigger automatic fertilization 
fraction of maximum N fertilizer potentially applied at plant 
maximum annual N fertilizer rate per crop (kg ha-1) 

time required for drainage to eliminate aeration stress (d) 
fraction of water in furrow dike available for soil storage · 
month of operation 
day of operation 
operation/tillage code number 
crop ID number 
grazing duration (d) 
number of years necessary for crop to mature 
potential heat units 
curve number after this operation 
plant water stress factor 
fraction of original plant population 
maximum annual N fertilizer applied to crop (kg ha"1) 

timing of operation as a fraction of the growing season 
fertilizer ID number 
fertilizer application rate (kg ha"1) 

depth of fertilizer placement (mm) 
irrigation volume applied (mm) 
runoff ratio for irrigation water (manual application only) 
pesticide ID number 
pest control factor 
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PAR (n) pesticide application rate (kg ha"1) 

a 

b 

C 

Parameter estimate required for month 1 through 12. 
Parameter estimate required for soil layer 1 through 8. 
Parameter estimate required for management operation 1 through n. 
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Table 7. Parameters contained within .the Crop Parameter File. 

Parameter 
WA 
HI 
TB 
TG 
DMLA 
DLAI 
DLP1 

DLP2 

RLAD 
RBMD 
ALT 
GSI 

CAF 
sow 
HMX 
RDMX 
WAC2 
CVM 
CNY 
CPY 
WSYF 

PST 
COSD 
PRY 
WCY 
BN1 
BN2 
BN3 
BP1 
BP2 
BP3 
BW1 
BW2 
BW3 
IDC 
FRS1 

FRS2 

WAVP 

Description 
potential energy to biomass conversion factor 
normal harvest index (crop yield I aboveground biomass) 
optimal temerature for plant growth 
minimum or base temperature for plant growth 
maximum potential leaf area index 
point in the growing season when leaf area begins to decline 
defines S-shaped curve relating percent maximum leaf area 
development to percent of the growing season 
defines S-shaped curve relating percent maximum leaf area 
development to percent of the growing season 
leaf-area-index decline rate parameter 

biomass-energy decline rate parameter 
index of crop tolerance to aluminum saturation 
maximum stomata! conductance at high solar radiation and low vapor 
pressure defict. 
critical aeration factor 
normal planting rate 
maximum crop height 
maximum root depth 
describes the effect of atmospheric [CO2] on the parameter WA 
minimum value of water erosion C factor (CE) 
normal fraction nitrogen in yield 
normal fraction P in yield 
lower limit of harvest index (lowest level of HI expected due to water 
stress) 
pest damage factor (fraction of yield remaining after damage) 
seed cost 
price of yield 
fraction of water in yield 
normal fraction of N in crop biomass at emergence 
normal fraction of N in crop biomass at mid-season 
normal fraction of N in crop biomass at maturity 
normal fraction of P in crop biomass at emergence 
normal fraction of P in crop biomass at mid-season 
normal fraction of P in crop biomass at maturity 
wind erosion factor for standing live biomass 
wind erosion factor for standing standing dead crop residue 
wind erosion factor for flat residue 
crop catagory number 
point on the frost damage curve relating minimum temperatures to 
fraction of biomass lost each day that the specified minimum 
temperature occurs. 
point on the frost damage curve relating minimum temperatures to 
fraction of biomass lost each day that the specified minimum 
temperature occurs. 
rate of decline in WA per unit increase in vapor pressure deficit (VPD) 
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VPTH 

VPD2 

SM42 
RWPC1 
RWPC2 
CONV 
UNTC 

threshold VPD (leaf conductance is insensitive to VPD until VPD 
exceeds VPTH 
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relates a value of VPD above VPTH to a corresponding fraction of the 
maximum leaf conductance at that value of VPD. 
crop number 
fraction of root weight at emergence 
fraction of root weight at maturity 
metric to english conversion factor 
identifies English units for use with crop yield 

Table 8. Parameters contained in Tillage Parameter File. 

Parameter 

TILL 
COTL 
EMX 
RR 
TLD 
RHT 
RIN 
DKH 
OKI 
IHC 

HE 

ORHI 

Description 

type of tillage operation (equipment) 
cost of tillage operation per hectare 
mixing efficiency of tillage operation 
surface random roughness created by operation 
tillage depth(+ is below ground, - indicates aboveground harvest) 
ridge height 
ridge interval 
furrow dike height 
furrow dike interval 
operation code (-2 desroys furrow dikes, -1 builds furrow dikes, 1 kills 
crop, 2 harvests w/o killing crop, 3 applies manual irrigation, 4 applies 
fertilizer, 5, plants in rows, 6 plants w/ drill, 7 applies pesticides) 
harvest efficiency (fraction of the harvested material removed from the 
field 
override of harvest index 
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Table 9. Tillage operations available within the Tillage Parameter File. 

Operation 
LISTPLT 
ROWPLT 
PLANT DR 
TRSPLANT 
I NJ-PEST 
SPREADER 
SPRYER 
ANHYDAP 
LISTER 
DISK BED 
ROWBUILD 
CULTIPACK 
ROW CULT 
FLO CULT 
ROT HOE 
ROD WEED 
SWEEP 
NOBLE PL 
SPIK HAR 
SANDF 
MB PLOW 
TAN DISK 
PT-CHS 
TWPT-CHS 
SWP-CHS 
OFFSET-D 
SUBSOIL 
KILL 
HARV2.95 
HAROR85 

HARVOR95 

SWATHER 
BALER 
PNUTDIG 
SHREDDER 
BURNED 
CLEARCUT 
BAGMOWER 
MULCH MOW 
GRAZE1 
GRAZE2 
GRZ2-AUM 
GRZ1-AUM 
FERTILIZE 

Description 
lister planter 
row planter 
drill planter 
transplant trees 
inject pesticide 
apply fertilizer 
apply pesticides 
anhydrous ammonia applicator 
lister 
disk bedder 
row builder for sugar cane 
culti-packer 
row cultivator 
field cultivator 
rotary hoe 
rod weeder 
sweep 
noble plow 
spike harrow 
sand fighter (for wind erosion control) 
mold board plow 
tandem disk 
point chisel 
twisted point chisel 
sweep chisel 
oftest disk 
deep tillage device 
use after harvest to kill crop 
harvest with 95% efficiency - does not kill crop 
harvest with 95% efficiency - does not kill crop (harvest index overide 
85% - used for forage crop) 
harvest with 95% efficiency - does not kill crop (harvest index overide 
95% - used for forage crop) 
harvests - does not kill crop 
bale hay or crop residue 
peanut digger 
shredder 
burning operation - does not kill crop 
harvests trees in a clearcut operation 
bag mower 
mulch mower 
cattle grazing - 50 kg of biomass removed per day 
cattle grazing - 5 kg of biomass removed per day 
25 kg consumed and 25 kg trampled, daily; feed conversion 1 O: 1 
12.5 kg consumed and 12.5 kg trampled, daily; feed conversion 10:1 
applies user-specified dates and amounts of fertilizer · 



IRRIGATE 
BD1KE100 
BDIKE300 
RMV-DIKE 
PADDYBD 

applies user-specified dates and amounts of irrigation water 
builds 100 mm tall furrow dikes 
builds 300 mm tall furrow dikes 
removes furrow dikes 
rice paddy simulation - builds paddy borders 

Table 10. Parameters determined to be candidates for modification during model 
calibration. 

Parameter 
IET 
ITYP 
CN2 
APM 
PEC 
ORV 
STD 
RFTT 
WN (1-8) 
WN03 (1-8) 
AP (1-8) 
PSP (1-8) 
WP (1-8) 
CVM 

Description 
potential evapotranspiration equation 
peak runoff rate estimate code 
SCS curve number for moist soil conditions 
peak runoff rate-rainfall energy adjustment factor 
erosion control practice factor 
equation for water erosion 
standing dead crop residue (t ha-1) 

subsurface flow travel time (d) 
organic N concentration (g f 1) 

nitrate concentration of soil layer (g f 1) 

labile phosphorus concentration of soil layer (g f 1) 

phosphorus sorption ratio of soil layer 
organic phosphorus concentration of soil layer (g f 1) 

minimum value of water erosion C factor (CE) 

Table 11. Initial estimates for program control codes. 

Parameter 
NBYR 
IYR 
IMO 
IDA 
NIPD 
IPD 
NGN 
IGN 
IGSD 
LPYR 
IET 
ISCN 
IGRAF 
ICODE 
ITYP 
ISTA 
IHUS 

Units Initial Estimate 
5 

84 
10 
1 
0 
3 
1 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
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Table 12. Initial estimates for general information parameters. 

Parameter 
WSA 
CN2 
CHL 
CHS 
CHN 
SN 
APM 
YLT 
ELEV 
SNO 
RCN 
RTN 
CO2 
CN03i 
CHD 
SL 
s 
PEC 
DRV 
YWI 
BTA 

Units 
ha 

degrees 
m 

fraction 
ppm 
yr 

ppm 
ppm 
m 

yr 

Initial Estimate 
7.7 
70 

0.48 
0.15 
0.10 
0.59 
1.0 

34.5 
277 

0 
0.8 
0 

350 
0 
0 

31 
0.15 

1 
4 
7 
0 

Source 
Naseer (1992) 
Dumesnil (1993) 
USGS (1971) 
USGS (1971) 
Dumesnil (1993) 
Ogden ( 1992) 
Dumesnil (1993) 
USGS (1971) 
Turton (1989) 
Dumesnil (1993) 
Dumesnil (1993) 
Dumesnil (1993) 
Dumesnil (1993) 
Dumesnil (1993) 
Dumesnil (1993) 
Young et al. (1987) 
USGS (1971) 
Dumesnil (1993) 
Dumesnil (1993) 
EPIC Monthly Weather File8 

EPIC Monthly Weather Filea 

a Coresponds to the estimates of monthly weather parameters provided for 
Smithville, OK. 



Table 13. Estimates of monthl~ weather earameters erovided for Smithville, OK. 
Month 

Parameters Units 1 2 3 4 5 6 7 8 9 10 11 12 
OBMX C 10.66 13.23 18.03 23.19 26.84 30.93 33.75 33.55 29.68 24.47 17.37 12.47 
OBMN C -2.82 -0.91 3.55 8.71 13.19 17.39 19.31 18.23 14.78 8.34 2.84 -1.35 
STDMX C 6.63 6.51 5.94 4.29 3.46 3.29 3.26 3.42 4.28 4.74 5.76 6.02 
STDMN C 6.51 5.97 6.22 5.73 4.56 3.31 2.30 2.66 4.74 5.87 6.17 6.29 
RMO mm 80.0 85.1 99.9 112.4 144.7 102.9 112.2 87.2 89.9 110.2 72.0 91.1 
RST2 mm 14.7 17.8 17.8 15.0 21.8 19.0 20.8 17.3 19.6 28.2 18.5 22.1 
RST3 mm 1.21 3.24 1.48 0.67 1.59 0.91 2.24 1.23 2.05 3.71 1.93 3.92 
PRW1 - 0.16 0.18 0.18 0.21 0.20 0.15 0.16 0.16 0.14 0.14 0.14 0.13 
PRW2 - 0.42 0.37 0.40 0.47 0.46 0.45 0.43 0.37 0.44 0.41 0.34 .40 
UAVM d 6.70 6.44 7.15 8.51 8.38 6.43 6.79 6.36 6.00 5.95 5.25 5.52 
WI mm 10.7 17.5 21.6 25.9 33.8 32.5 31.2 34.0 34.0 24.4 25.9 12.4 
OBSL MJ m·2 197.0 269.0 364.0 451.0 528.0 574.0 564.0 529.0 448.0 352.0 253.0 195 
RH frac. 0.72 0.68 0.65 0.66 0.70 0.70 0.65 0.66 0.64 0.67 0.62 0.65 
WVL m s·1 4.43 4.51 5.08 4.90 4.21 3.94 3.58 3.55 3.62 3.86 4.24 4.28 
D1R1 % 12 10 8 8 5 3 4 4 6 8 8 8 
D1R2 % 7 6 6 6 5 3 4 5 7 6 5 5 
D1R3 % 7 8 7 7 8 7 10 11 13 10 8 8 
D1R4 % 8 8 7 7 7 7 9 10 11 9 7 8 
D1R5 % 6 7 8 7 8 8 9 10 11 7 7 7 
D1R6 % 3 3 4 4 5 5 6 6 6 4 3 3 
DIR? % 5 5 7 7 9 10 9 10 8 8 5 5 
D1R8 % 6 6 8 11 12 14 11 10 9 10 8 7 
D1R9 % 11 9 9 13 14 20 16 14 12 12 11 10 
D1R10 % 5 4 5 6 6 9 8 7 5 5 5 5 
D1R11 % 4 4 4 4 4 5 6 5 3 3 4 4 
D1R12 % 4 4 3 2 2 2 3 2 2 2 4 4 
D1R13 % 7 6 6 4 4 2 2 2 2 4 6 7 
D1R14 % 5 5 5 4 4 1 1 1 1 3 5 6 
D1R15 % 5 6 6 5 3 2 2 2 2 4 7 6 
D1R16 % 8 8 7 6 4 2 2 2 3 5 7 6 .....:i 

0 



71 

Table 14. Wind erosion parameters set to default values (Dumesnil 1993). 

Parameter Units Estimate 
EXPK 0 
FL km 0 
FW km 0 
ANG degrees 0 
UXP 0 
DIAM µm 0 
ACW 0 



Table 15. Initial estimates of soil parameters for soil layers 1 through 8 of the Carnasaw Soil Series. 

Soil La;ter 
Parameter Units 1 2 3 4 5 6 7 8 Source 
z m 0.10 0.09 0.15 0.36 0.69 0.91 1.35 1.78 Bain and Watterson (1979) 
BO t m·3 1.30 1.30 1.30 1.45 1.35 1.35 1.35 1.35 Abernathy et al. (1983) 
u m m·1 0.05 0.05 0.05 0.05 0.05 0.18 0.18 0.27 Turton (1989) 
FC m m·1 0.25 0.25 0.25 0.23 0.23 0.36 0.31 0.40 Turton (1989) 
SAN % 20.0 20.0 14.6 6.0 5.7 1.4 1.7 1.3 Abernathy et al. (1983) 
SIL % 59.3 59.3 67.8 47.8 43.5 31.8 51.7 68.3 Abernathy et al. (1983) 
WN g r1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dumesnil (1993) 
PH - 5.1 5.1 5.1 5.0 5.0 5.0 4.9 5.0 Abernathy et al. (1983) 
SMB cmol kg·1 4.1 4.1 1.5 4.3 5.1 8.4 8.8 10.9 Abernathy et al. (1983) 
CBN % 5.1 5.1 1.2 0.8 0.6 0.6 0.6 0.8 Abernathy et al. (1983) 
CAC % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dumesnil (1993) 
CEC cmol kg·1 19.3 19.3 11.7 20.7 24.3 36.5 30.0 21.4 Abernathy et al. (1983) 
ROK % vol. 25.0 25.0 25.0 25.0 25.0 25.0 5.0 5.0 Turton (1989) 
WN03 g r1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dumesnil (1993) 
AP g f1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dumesnil (1993) 
RSD t ha·1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dumesnil ( 1993) 
BOD t m-a 1.6 1.6 1.6 1.6 1.7 1.6 1.6 1.6 Bain and Watterson (1979) 
PSP frac. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dumesnil (1993) 
SC mm hr"1 1461.0 1461.0 1461.0 1461.0 1461.0 1461.0 2.32 2.32 Williams ( 1990) 
WP g f1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dumesnil (1993} 

i::J 



Table 16. Initial estimates of general soil profile parameters. 

Parameter 
SALB 
TSLA 
ZQT 
ZTK 
ZF 
FFC 
WTMN 
WTMX 
WTBL 
XIDS 
RFTT 

Units 

cm 
cm 
cm 

fraction 
m 
m 
m 

Initial Estimate Source 
0.13 EPIC Soil Data Filea 

0 Dumesnil (1993) 
0 Dumesnil (1993) 
O Dumesnil (1993) 
0 Dumesnil (1993) 
O Dumesnil (1993) 
0 Dumesnil (1993) 
0 Dumesnil (1993) 
0 Dumesnil (1993) 
0 Dumesnil (1993) 

d 1 Turton (1989) 
a Data provided for the Camasaw Soil Series within EPIC's soil data file. 

Table 17. Default values for parameters NIRR through FDSF. 

Parameter 

NIRR 
IRR 
IRI 
IFA 
LM · 
IFD 
IDR 
IFFR 
BIR 
EFI 
VIMX 
ARMN 
ARMX 
BFT 
FNP 
FMX 
ORT 
FDSF 

Units 

d 

mm 
mm 
mm 

fraction 
kg ha·1 

d 
fraction 

Default Value 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 18. Management operation schedule used to simulate recovery period. 

Year 

H 
R1 
R2 
R3 
R4 

MON 

1 
2 
1 
1 
1 

Management Operation Parameters 
DAY COD CRP 

1 
1 
1 
1 
1 

72 
4 
72 
72 
72 

23 

IA (mm) 

1 

1 
1 
1 

73 



Table 19. Observed and simulated annual maximum daily Q (mm), TSS (t ha·\ PHOS (kg ha·\ 
and N03N (kg ha-1) on WS-1 for the recovery period. 

R1 R2 R3 R4 
Value Da~ Value Da~ Value Da~ Value Da~ 

ObsQ 55.04 49 53.80 201 23.98 168 33.30 86 
SimQ 85.34 20 60.80 57 33.31 253 28.47 86 

Obs TSS 0.2581 49 0.0932 57 0.0648 354 0.0121 86 
SimTSS 0.2201 20 0.1450 57 0.0501 353 0.0267 46 

Obs PHOS 0.2266 6 0.0873 201 0.0152 35 0.0093 86 
Sim PHOS 0.2110 6 0.0848 57 0.0638 350 0.0322 46 

Obs N03N 0.6119 49 0.2039 126 0.0203 168 0.0097 80 
Sim N03N 0.4894 20 0.1252 57 0.0565 35 0.0313 46 

-.J 
~ 



Table 20. Initial estimates for program control codes. 

Parameter Units Initial Estimate 
NBYR 
IYR 
IMO 
IDA 
NIPD 
IPD 
NGN 
IGN 
IGSD 
LPYR 
IET 
ISCN 
IGRAF 
ICODE 
ITYP 
ISTA 
IHUS 

20 
69 
1 
1 
0 
3 
1 
0 
0 
0 
1 
1 
1 
1 
0 
1 
0 

Table 21. Initial estimates for general information parameters. 

Parameter Units Initial Estimate Source 
WSA ha 7.9 Naseer (1992) 
CN2 30 Dumesnil (1993) 
CHL km 0.61 USGS (1971) 
CHS m m·1 0.12 USGS (1971) 
CHN 0.10 Dumesnil (1993) 
SN 0.59 Ogden (1992) 
APM 1.0 Dumesnil (1993) 
YLT degrees 34.5 USGS (1971) 
ELEV m 277 Turton (1989) 
SNO fraction O Dumesnil (1993) 
RCN ppm 0.8 Dumesnil (1993) 
RTN yr O Dumesnil (1993) 
CO2 ppm 350 Dumesnil (1993) 
CN03i ppm O Dumesnil (1993) 
CHO m O Dumesnil (1993) 
SL · m 31 Young et al. (1987) 
S m m·1 0.15 USGS (1971) 
PEC 1 Dumesnil (1993) 
ORV 4 Dumesnil (1993) 
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YWI yr 7 EPIC Monthly Weather Filea 
BTA O EPIC Monthly Weather Filea 
a Coresponds to the estimates of monthly weather parameters provided for 
Smithville, OK. 



Table 22. Initial estimat.es of general soil profile parameters for the Camasaw Soil 
Series. 

Parameter Units Initial Estimate Source 
SALB 0.13 EPIC Soil Data Filea 
TSLA 0 Dumesnil (1993) 
ZQT cm 0 Dumesnil (1993) 
ZTK cm 0 Dumesnil .(1993) 
ZF cm 0 Dumesnil ( 1993) 
FFC fraction 0 Dumesnil (1993) 
wrMN m 0 Dumesnil (1993) 
wrMX m 0 Dumesnil (1993) 
wrBL m 0 Dumesnil (1993) 
XIDS 0 Dumesnil (1993) 
RFTI d 2 
a Data provided for the Camasaw Soil Series within EPIC's soil data file. 
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Table 23. Management operation schedule used to simulate the U/R recovery period. 

Management Oeeration Parameters 
Year MON DAY COD CRP IA {mm} 
69 1 1 4 23 
70 1 1 72 1 
71 1 1 72 1 
72. 1 1 72 1 
73 1 1 72 1 
74 1 1 72 1 
75 1 1 72 1 
76 1 1 72 1 
77 1 1 72 1 
78 1 1 72 1 
79 1 1 72 1 
80 1 1 72 1 
81 1 1 72 1 
82 1 1 72 1 
83 1 1 72 1 
84 1 1 72 1 
85 1 1 72 1 
86 1 1 72 1 
87 1 1 72 1 
88 1 1 72 1 



Table 24. Observed and simulated annual maximum daily Q (mm), TSS (t ha·1>, PHOS (kg ha·1>, and 
N03N (kg ha"1) on WS-111. 1 

• • 

1984 1985 1986 1987 1988 
Value Da:t Value Da:t Value Da:t Value Da:t Value Da:t 

ObsQ 24.46 150 44.25 205 28.65 228 23.98 24 29.89 87 
SimQ 17.61 361 45.34 21 27.72 58 22.16 241 17.57 46 

Obs TSS 0.0044 150 0.0122 205 0.0090 228 0.0077 169 0.0064 87 
SimTSS 0.0049 361 0.0172 21 0.0046 237 0.0105 241 0.0042 317 

Obs PHOS 0.0085 176 0.0538 21 0.0154 237 0.0199 · 152 0.0071 47 
Sim PHOS 0.0048 361 0.0633 21 0.0159 228 0.0205 102 0.0041 317 

Obs N03N 0.0016 176 0.0086 21 0.0034 - 237 0.0035 169 0.0014 185 
Sim N03N 0.0030 297 0.0066 21 0.0034 58 0.0032 241 0.0017 46 

-...I 
-...I 
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Figure 5. Location of WS-1 and WS-111 on Clayton Lake Watershed. 



Figure 6. EPIC system file structure (Dumesnil 1993). 
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Figure 7. Observed and simulated annual maximum daily Q for WS·I. 
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Figure 8. Observed and simulated annual maximum daily TSS loading for WS-1. 
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Figure 9. Observed and simulated annual maximum daily PHOS loading for WS-1. 
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Figure 10. Observed arid simulated annual maximum daily N03N loading for WS-1. 
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Figure 11. Observed and simulated annual maximum daily Q for WS-111. Each water year represents 
the U/R recovery status. 
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Figure 12. Observed and simulated annual maximum daily TSS loading for WS-111. Each water year 
represents the U/R recovery status. 
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Figure 13. Observed and simulated annual maximum daily PHOS loading for WS-111. Each water year 
represents the U/R recovery status. 
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Figure 14. Observed and simulated annual maximum daily N03N loading for WS-111. Each water year 
represents the U/R recovery status. 
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CHAPTER IV 

RESULTS AND DISCUSSION: APPLICATION OF THE STOCHASTIC 

FRAMEWORK TO CLAYTON LAKE WATERSHED 

Simulated Weather 

It was important to test the assumption that the simulated weather utilized 

during the Monte Carlo process was representative of the climate at Clayton Lake 

Watershed. Annual rainfall, maximum daily rainfall, mean daily solar radiation, 

maximum daily solar radiation, minimum daily solar radiation, maximum daily 

temperature, minimum daily temperature, and mean daily relative humidity were 

calculated for the year common within each weather set (i.e. year 20 of WTH20, year 4 

of WTH4, etc.). The grand minimum, maximum, and mean were calculated for the 

1500 weather sets and compared to statistics calculated from 23 years of observed 

daily weather record at Antlers, OK (Bain and Watterson 1979) (Table 25). Long-term 

observed and simulated grand mean annual rainfall, maximum and minimum recorded 

daily temperature, and mean daily relative humidity compared well. Grand simulated 

maximum daily rainfall was more than double the long-term observed maximum daily 

rainfall. This indicates that synthetic storms much larger than those contained within 

the 23 year observed weather record were generated. The assumption that simulated 

weather was representative of the long-term observed weather near Clayton Lake 

Watershed was accepted. 
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A scatter plot of simulated annual rainfall versus Monte Carlo run (Figure 15) 

was developed during examination of the 1500 daily weather sets. This plot does not 

represent a time sequence of·annual rainfall. Each data point represents the output of 

one Monte Carlo run, and the sequence of data points over Monte Carlo runs has no 

bearing upon the independence of the data points with respect to time. Figure 15 

implies that simulated annual rainfall realized from one Monte Carlo run is correlated 

with the simulated annual rainfall realized from the previous Monte Carlo run. This 

correlation was unexpected and required investigation. 

During Monte Carlo simulation, a different daily weather set was developed for 

each Monte Carlo run. This was accomplished by utilizing a different IGN value for the 

generation of each weather set. IGN is an EPIC program control code which defines 

the number of times the random number generator cycles before a uniform random 
' .... ··. 

number (u) between (0.0 - 1.0) is generated. The uniform random number, u, is used 

to stochastically generate a series of daily weather data to drive EPIC during each 

Monte Carlo run. Changing IGN will alter the sequence of generated weather data 

without changing its long-term statistical properties (Dumesnil 1993). If IGN were not 

changed the same daily weather data would have been generated for each Monte 

Carlo run. Based upon the selection of a different IGN value for Monte Carlo run, the 

author expected the scatter plot of annual rainfall versus Monte Carlo run (Figure 15) to 

be random in nature. 

In a time series, correlation from one observation to the next is called serial 

correlation or autocorrelation. Autocorrelation in a time series can be examined by 

comparing data points at 1, 2, 3, ... , k time lags (where k is less than sample size). A 

correlation coefficient and its associated confidence intervals can be calculated for 
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each time lag comparison. If the correlation coefficient for a given time lag comparison 

falls outside the confidence intervals, one can reject the hypothesis that the correlation 

coefficient is equal to 0. This implies that autocorrelation exists for that time lag. The 

process described above will be referred to as autocorrelation analysis. The results of 

autocorrelation analysis are often displayed as correlograms. Correlograms are plots of 

correlation coefficients plus their associated confidence intervals over lag. 

Autocorrelation analysis was applied to examine the correlation of annual 

rainfall over Model Carlo run. The lag in this analysis was not a lag in time step, but a 

lag in Monte Carlo run. Figure 16 displays the results of autocorrelation analysis for 

simulated annual rainfall, confirming that correlation existed within the annual rainfall 

data set with respect to Monte Carlo run. The author was interested in knowing if the 

correlation with respect to Monte Carlo run found in annual rainfall had been 

transmitted through EPIC to the output variables. Figures 17 through 19 display the 

results of autocorrelation analysis conducted for annual maximum daily TSS, PHOS, 

and N03N loading at the CCOO clearcutting level. Correlation with respect to Monte 

Carlo run did exist in each of these data sets. It was assumed that correlation with 

respect to Monte Carlo run existed for the CC33, CC66, and CC100 clearcutting level 

data sets. 

The obvious question is what caused this correlation. It is the author's 

contention that the correlation is a figment of the process by which IGN values were 

selected for each Monte Carlo run. IGN values for each Monte Carlo run were selected 

incrementally. IGN for Monte Carlo run 1 was 1, IGN for Monte Carlo run 2 was 2, .... , 

IGN for Monte Carlo run 1499 was 1499, and IGN for Monte Carlo run 1500 was 1500. 

It appears that by incrementally increasing IGN value for each Model run, correlation 

with respect to Monte Carlo run was built into the weather data sets. Why this caused 
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the correlation cannot be explained because the relationship between IGN, selection of 

u, and daily weather series generation is not adequately defined in the EPIC model 

documentation. It is not known if the correlation represents the cyclic nature found in 

long-term weather data, or if it represents some procedural or "looping" step within 

EPIC. 

In the absence of model documentation the author decided to conduct an 

investigation of the significance of the correlation with respect to Monte Carlo run for 

this project. The author theorized that the correlation with respect to Monte Carlo run 

could be removed by conducting the Monte Carlo process with IGN values (as integers) 

selected randomly, without replacement, from a uniform distribution (1 - 1500). It was 

also theorized that the exact same data sets would be generated under random IGN 

selection as under non-random IGN selection, given that the same set of IGN values 

was chosen. The data points contained in the data sets generated under random IGN 

selection would occur in a random order, and no correlation with respect to Monte Carlo 

run would exist. If this were the case, one can see from the frequency analysis process 

detailed in Chapter 2 that the probability plots developed under random and non­

random IGN selection would be identical. 

To test these theories, a small study was conducted to compare data sets 

generated under non-random IGN selection to data sets generated under random IGN 

selection. Annual rainfall, annual maximum daily TSS, PHOS, and N03N loadings at 

the CCOO clearcutting level were generated under each IGN selection scheme and 

evaluated for correlation with respect to Monte Carlo run. Descriptive statistics were 

developed to determine if the data sets generated under each IGN selection scheme 

were identical. Monte Carlo runs/lGN values 451 through 550 were used for this study. 



These Monte Carlo runs/lGN values were chosen because they represent one of the 

more pronounced cycles in the annual rainfall data reported in Figure 15. 
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The data sets for non-random IGN selection were extracted from the larger data 

sets (output from Monte Carlo runs 451 to 550). Figure 20 is a scatter plot of simulated 

annual rainfall generated under non-random IGN selection versus Monte Carlo run. 

Figures 21 through 24 are correlograms for annual rainfall and annual maximum daily 

TSS, PHOS, and N03N loading under non-random IGN selection. Table 26 reports 

descriptive statistics for annual rainfall, and annual maximum daily TSS, PHOS, and 

N03N loadings. 

Under random IGN selection, an integer between 451 and 550 was selected 

randomly without replacement for each Monte Carlo run. Utilizing the Monte Carlo 

process described in Chapter 2, 100 estimates of annual rainfall and annual maximum 

daily TSS, PHOS, and N03N loading were generated. Figure 25 is a scatter plot of 

simulated annual rainfall generated under random IGN selection versus Monte Carlo 

run. Figures 26 through 29 are correlograms for annual rainfall and annual maximum 

daily TSS, PHOS, and N03N loading under random IGN selection. Table 26 reports 

descriptive statistics for annual rainfall, as well as annual maximum daily TSS, PHOS, 

and N03N loadings. 

Correlation with respect to Monte Carlo run is implied in Figure 20 while Figure 

25 implies that annual rainfall is random over Monte Carlo run. Correlograms 

pres_ented in Figures 21 through 24 indicate the data sets generated under non-random 

IGN selection contained correlation with respect to Monte Carlo run. Correlograms 

presented in Figures 26 through 29 indicate the data sets generated under random IGN 

selection contained no correlation with respect to Monte Carlo run. Examination of 

Table 26 shows that the data sets generated under random and non-random IGN 
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selection were identical. The proposed theories are supported by the results of this 

investigation. The correlation with respect to Monte Carlo run detected in Figures 15 

through 19 is a function of the IGN selection process, and does not affect the suitability 

of the data sets for probability plotting. 

Although not critical for this project, the problem identified above could have 

been critical under different circumstances. This case brings to light the need for 

complete and detailed model documentation on the part of the model developer. It also 

brings to light the responsibility of the model user to insure that the modeling process 

he/she is employing is doing what he/she thinks it is. This requires an understanding of 

the relationships, assumptions, and limitations of the model being used. If the model 

developer has neglected to properly document some component of the model which 

influences the modeling process being employed, the model user should evaluate the 

influence of that model component on said modeling process. The investigation above 

is one such example. Ideally, such evaluations should be conducted before the fact to 

avoid wasted time and effort. 

Quantification of Worst Case Daily Loading 

Descriptive Statistics 

Descriptive statistics for annual maximum daily Q, as well as annual maximum 

daily TSS, PHOS, and N03N loading from Clayton Lake Watershed under each 

clearcutting management scenario are reported in Table 27. Minimum, maximum, arid 

mean annual maximum daily Q, and annual maximum daily TSS, PHOS, and N03N 

loading increased as clearcutting level increased. This is logical because as 

clearcutting level increased the amount of the watershed generating elevated levels of 
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Q, TSS, PHOS, and N03N increased. Variance and standard deviation of the four 

output variables also increased as clearcutting level increased. Coefficient of Variation 

(Cv), a dimensionless measure of dispersion, of each of the four output variables 

tended to decrease as clearcutting level increased. The coefficient of skew (SKEW), a 

measure of the symmetry of the data, was positive in all cases and decreased as 

clearcutting level increased. Cv and SKEW were noticeably larger at the CCOO 

clearcutting level than at any other clearcutting level for all output variables. The 

reduction of Cv as clearcutting level increased indicates that the standard deviation of 

simulated annual maximum daily Q, and annual maximum daily TSS, PHOS, and 

N03N loading decreased faster than the mean increased as more of the watershed 

became disturbed. In a sense, watershed response became more predictable as the 

watershed became more disturbed. The output of the stochastic framework agrees 

with the generally accepted concept that watershed response (flow and NPS pollution) 

increases proportionally with the percentage of a watershed that is clear cut (Bosch and 

Hewlett 1982). 

Population Distribution Information 

· The data sets developed under the stochastic framework contain more 

information for quantifying worst case daily TSS, PHOS, and N03N loading than can 

be revealed by descriptive statistics alone. There exists some population probability 

distribution which describes the populations of worst case annual maximum daily Q and 

annual maximum daily TSS, PHOS, and N03N loading at the CCOO, CC33, CC66, and 

CC100 clearcutting management scenarios on Clayton Lake Watershed. The form and 

parameters of these probability distributions must be estimated from samples taken 



95 

from the populations. The data sets generated within this project are such samples. 

The point should be made that these samples are representative of the population of 

worst case daily loading from Clayton Lake Watershed as predicted by EPIC. Whether 

or not these samples are representative of the populations of actual worst case daily 

loading from Clayton Lake Watershed depends upon how well EPIC represented 

"reality" on Clayton Lake Watershed. 

In general, the reliability of sample statistics for estimating population 

parameters depends upon how representative the sample is of the population and the 

sample size. In this case sample size was certainly large. The descriptive statistics 

reported in Table 27 are estimates of some of the parameters of the unknown 

underlying populations. Figures 30 through 33 illustrate the change in mean annual 

maximum daily Q and mean annual maximum daily TSS, PHOS, and N03N as 

predicted by EPIC at the CC33 clearcutting management scenario as sample size 

increased. These figures provide information on the reliability of the sample means to 

predict the population means as sample size increases. Note that each sample mean 

approached some value as sample size increases. The value approached·is the 

population mean. Similar plots at the CCOO, CC66, and CC100 clearcutting levels 

displayed the same form. 

Insight to the form of a probability distribution describing a population can often 

be obtained by developing relative frequency plots. Developing a relative frequency 

plot involves partitioning the observations in a sample into classes and determining the 

relative frequency of observations in each class. In this case, relative frequency plots 

are plots of the frequency of occurrence of annual maximum daily Q, and annual 

maximum daily TSS, PHOS, and N03N loading per class interval versus the class 

interval midpoint. The equation presented by Sturges (1926) was used as a guideline 
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for class size selection. A constant class interval was chosen for each output variable 

to allow examination of changes in the relative frequency distribution over clearcutting 

level. 

Figure 34, 35, 36, and 37 display relative frequency plots for simulated annual 

maximum daily Q and annual maximum daily TSS, PHOS, and N03N at the CCOO, 

CC33, CC66, and CC100 clearcutting levels. The class interval was set to 500,000 m3, 

200 t, 100 kg, and 100 kg for Q, TSS, PHOS, and N03N, respectively. The relative 

frequency plots displayed in Figures 34 through 37 reflect the SKEW estimates 

reported in Table 27. As clearcutting level increased the relative frequency distributions 

shifted to the right as the frequency of large values increased. In the case of annual 

maximum daily Q, annual maximum daily PHOS and N03N the relative frequency 

distributions became less positively skewed and more symmetrical in nature as 

clearcutting level increased. Annual maximum daily TSS became less positively 

skewed as clearcutting level increased, but did not approach a symmetrical shape as 

rapidly as the other output variables. Figures 34 through 37 imply that some probability 

distribution with a strong positive skew describes the populations of worst case annual 

maximum daily loading from Clayton Lake Watershed as simulated by EPIC. 

No attempt was made to identify probability distributions which describe worst 

case annual maximum daily loading from Clayton Lake Watershed. The discussion 

above was solely intended to point out that the stochastic framework developed in this 

project can provide a large amount of information about a given hydrologic variable. 

Again, this information is only representative of reality if the model employed in the 

stochastic framework is representative of the system being modeled. Unfortunately, 

the ability of EPIC to represent annual maximum daily loading from Clayton Lake 

Watershed could only be evaluated based upon the comparison of a small number of 
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observed and simulated samples. The reader is referred to Figures 30 through 33 as 

evidence of the variability which can be expected in statistics based upon small sample 

numbers. 

Risk Assessment 

Probability plots for annual maximum daily Q and annual maximum daily TSS, 

PHOS, and N03N loading under the CCOO, CC33, CC66, and CC100 clearcutting 

management scenarios are presented in Figures 38, 39, 40, and 41, respectively. As 

clearcutting level increased the magnitude associated with each exceedance probability 

increased. Considering a single magnitude, the probability of the occurrence of an 

event of equal or greater magnitude increased as clearcutting level increased. The 

increase from CCOO to CC33 was noticeably greater than the increase from CC33 to 

CC66 or CC66 to CC100. 

The probability plots displayed in Figures 39 through 41 are the end products for 

the risk assessment component of this project. Figure 38 contains valuable information 

concerning annual maximum daily flows, but is not of direct interest to this project. The 

question being asked is what is the probability of LA (nonpoint source pollution from 

dear cut management units) exceeding the estimated LC (daily loading capacity) for 

Clayton Lake under the four hypothetical clearcutting levels. The application of the 

probability plots to assess the risk of LAs from Clayton Lake Watershed exceeding LCs 

for Clayton Lake is detailed in Chapter 2. 

Daily loading capacity estimates are unknown for Clayton Lake. For the sake of 

illustration, assume that LC was estimated to be 120 t, 120 kg, and 120 kg for TSS, 

PHOS, and N03N, respectively. Examining Figure 39 reveals that under the 
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assumptions made in this project the risk of daily TSS loading exceeding the estimated 

LC for TSS would be O %, approximately 7 %, approximately 21 %, and approximately 

31 % at the CCOO, CC33, CC66, and CC100 clearcutting management scenarios, 

respectively. The risk of daily PHOS loading exceeding the estimated LC for PHOS 

would be approximately 0.5 %, 10 %, 23 %, and 43 % at the CCOO, CC33, CC66, and 

CC100 clearcutting levels, respectively (Figure 40). The risk of daily N03N loading 

exceeding the estimated LC for N03N would be O %, approximately 1.1 %, 

approximately 40 %, and approximately 88 % at the CCOO, CC33, CC66, and CC100 

clearcutting levels, respectively (Figure 41). 

The forest manager must determine what level of risk he/she is willing to accept, 

or what level of risk State and local law will allow him/her to accept. If that level of risk 

is low, then his/her management options are limited to either the CCOO or the CC33 

clearcutting level. If these options are unacceptable to the manager for reasons other 

than water quality related (i.e. economic), he/she must develop a different set of 

management scenarios and reapply the stochastic framework to determine if any of 

those proposed management scenarios would be suitable. 

An important side-note is that the LC estimated for a given waterbody will most 

likely be the result of simulations conducted using a lake response model. As such, the 

LC may or may not be realistic. Comparing estimated natural loading levels from a 

large forest watershed to the estimated LC for the waterbody of interest can provide 

valuable information about the quality of the LA and LC estimate as well as about the 

attainability of water quality standards. 

For example, assume that the LC for PHOS at Clayton Lake is estimated to be 

40 kg. The risk of daily PHOS loading exceeding 40 kg is approximately 43 %, 99 %, 

99.6 %, and> 99.95 % at the CCOO, CC33, CC66, and CC100 clearcutting level, 
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respectively (Figure 39). One might conclude that either the LC was under-predicted or 

LA was over-predicted. Both cases would lead to the development of a conservative 

TMDL, one which would mandate that little or no point and nonpoint source pollution 

generating activities be allowed on Clayton Lake Watershed. Conversely, one might 

conclude that the LC and LA estimates were realistic. In this case, acceptable water 

quality in the waterbody would not be sustainable under natural loading conditions and 

the water quality standards developed for that waterbody are too stringent. 

Faced with such a situation one would need to evaluate all three possible 

explanations. A reliable framework for estimating natural loading is an important, but 

often ignored part of TMDL development. Without an understanding of natural loading 

levels, unrealistic water quality standards might well lead to the development of TMDLs 

which cannot be attained under any watershed management plan. 



Table 25. Descriptive statistics for simulated and observed weather records. 

-
Annual Weather Parameter Unit Min. 
Rainfall mm Simulated 623 

Observed -
Maximum Daily Rainfall mm Simulated 37 

Observed -
Average Daily Solar Radiation MJ m2 Simulated 15.5 

Observed 

Maximum Daily Solar Radiation MJ m2 Simulated 28.0 
Observed 

Minimum Daily Solar Radiation MJ m2 Simulated 0.0 
Observed 

Maximum Daily Temperature C Simulated 38.1 
Observed -

Minimum Daily Temperature C Simulated -28.1 
Observed -23.3 

Average Daily Relative Humidity frac. Simulated 0.64 
Observed -

Max. 
2372 

-
375 
157 

17.4 

32.0 

4.0 

47.2 
43.9 

-8.9 

0.68 
-

Mean 
1193 
1194 

93 

16.5 

27.7 

0.7 

42.2 

-16.0 

0.66 
0.66 

.... 
0 
0 



Table 26. Descriptive statistics for annual rainfall, annual maximum daily TSS, PHOS, and N03N loadings at the 
CCOO clearcutting level- resulting from non-random and random selection of IGN. 

IGN Selection Outeut Units MIN MAX MEAN VAR ST DEV Cv 
Non-Random Rainfall mm 883 1800 1159 33259 182 . 0.16 

TSS t 2.39 51.18 10.89 · 58.84 7.67 0.71 
PHOS kg 7.50 259.37 55.63 2563.41 50.63 0.91 
N03N kg 1.31 19.17 5.39 11.15 3.34 0.62 

Random Rainfall mm 883 1800 1159 33259 182 0.16 
TSS t 2.39 51.18 10.89 58.84 7.67 0.71 
PHOS kg 7.50 259.37 55.63 2563.41 50.63 0.91 
N03N kg 1.31 19.17 5.39 11.15 3.34 0.62 

SKEW 
1.36 
2.31 
1.77 
1.50 

1.36 
2.31 
1.77 
1.50 

.... 
0 .... 



Table 27. Descriptive statistics for output of the Monte Carlo procedure. TRT = clearcutting management scenario. 

Outeut Unit TRT MIN MAX MEAN VAR ST DEV Cv SKEW 
Q m3 ccoo 133171 5100000 627397 179862000000 424101 0.68 3.61 

CC33 204790 5991000 897148 289002000000 537589 0.60 2.96 
CC66 253151 6548000 1061780 380322700000 616707 0.58 2.73 
CC100 293000 7400000 1289648 549610000000 741357 0.57 2.53 

TSS t ccoo 2.4 150.5 12.4 125.8 11.2 0.90 4.61 
CC33 6.9 1077.6 136.8 13399.8 115.8 0.85 2.73 
CC66 9.3 1718.0 217.3 33571.7 183.2 0.84 2.60 
CC100 10.6 2183.5 275.6 55918.6 236.5 0.86 2.65 

PHOS kg ccoo 5.5 403.0 59.1 2882.3 53.7 0.91 2.09 
CC33 30.1 723.0 173.4 9087.0 95.3 0.55 1.83 
CC66 45.5 955 245.5 15776.5 125.6 0.51 1.75 
CC100 61.3 1210.0 319.0 24075.3 155.2 0.49 1.71 

, 
N03N kg ccoo 0.8 44.6 6.1 21.5 4.6 0.76 2.81 

CC33 76.2 460.1 160.5 1778.1 42.2 0.26 1.72 
CC66 137.0 810.9 291.4 5517.0 74.3 0.25 1.58 
CC100 190.0 1114.0 389.0 10085.2 100.4 0.26 1.74 

..... 
0 
N 



· Figure 1-5. Simulated annual rainfall versus Monte Carlo run. · 

2500---~~~~~~--~~~~~~~~~~~~~~~~~~~~~~~~~--. 

0 

48 
~ 

2000 

- 1500 E 
E -
1u c 

&! 1000 fJl f:i1' 
,ft 0 

-v 
0 

I 
500 

0-+-~-+-~-+-~---1-~---....-~+-~-+-~-+-~-1-~---....-~-+-~-+-~-+-~-1-~~...-----1 

o 100 200 300 400 500 soo 100 aoo 900 1000 1100 1200 1300 1400 1500 

Monte Carlo Run .... 
0 w 



... 
C 
Q) 
·u 
:E 
Q) 
0 
() 

C 
0 .. 
ca 
Q) 

t: 
0 
() 

Figure 16. Correlogram for simulated annual rainfall. 
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Figure 17. Correlogram for simulated annual maximum daily TSS loading. 
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Figure 18. Correlogram for simulated annual maximum daily PHOS loading. 
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figure 19. Correlogram for simulated annual maximum daily N03N loading. 
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Figure 20. Simulated annual rainfall under non-random IGN selection versus Monte Carlo run. 
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Figure 21. Correlogram for simulated annual rainfall under non-random IGN selection. 
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Figure 22. Correlogram for simulated annual maximum daily TSS loading under non-random IGN · 
selestion. 
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Figure 23. Correlogram for simulated annual maximum daily PHOS loading under non-random IGN 
selection. 
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Figure·24. Correlogram for' simulated annual maximum daily·N03N loading under' non-random IGN 
selection. 
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Figure 25. Simulated annual rainfall under random IGN se·lection versus Monte Carlo run. 
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Figure 26. Correlogram for simulated annual rainfall under random IGN selection. 

1.0 

0.8 

0.6 

0.4 ... 
C 
Cl) 
·o 0.2 
:E 

----------------------------------------------------------------------------· 
Cl) 
0 
0 0.0 C 
0 .. 
ca 
~ -0.2 
0 -------------------------------------------------------------------------
0 

-0.4 

-0.6 

I I Correlation Coefficient 
-0.8 

· · · · · · 95% Confidence Interval 

-1.0 
0 10 20 30 40 50 

Lag --.i:,. 



Figure 27. Correfogram for simulated annual maximum daily TSS loading under random IGN selection. 
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Figure 28. Correlogram for simulated annual maximum daily PHOS loading under random IGN 
selection. 
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Figure 29. Correlogram for simulated an·nual maximum daily N03N loading under random IGN · 
selection. 
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Figure 30. Mean annual maximum daily Q under the CC33 clearcutting management scenario. 
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Figure 31. Mean annual maximum daily TSS loading at the·CC33 clearcutting management scenario. 
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Figure 32. Mean annual maximum daily PHOS at the CC33 clearcutting management scenario. 
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Figure 33. Mean annual maxumim daily N03N loading at the CC33 clearcutting management 
scenario. 
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Figure 34. Relative frequency of Q at the CCOO, CC33, CC66, and CC100 clearcutting level. Class 
interval equals 500,000 m"3. 
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Figure 35. Relative frequency of TSS at the CCOO, CC33, CC66, and CC100 clearcutting leveL Class 
interval equals 200 t. 
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Figure 36. Relative frequency of PHOS at the CCOO, CC33, CC66, and C0100 clearcutting level. 
Class interval equals 100 kg. 
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Figure 37. Relative frequency of N03N at the CCOO, CC33, CC66, and CC100 clearcutting level. 
Class interval equals 100 kg. 
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Figure 38. Probability plot for annual maximum daily Q at the CCOO, CC33, CC66, and CC100 clearcutting management scenario. 
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Figure 39. Probability plot for annual maximum daily TSS at the CCOO, CC33, CC66, and CC100 clearcutting management scenario. 
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Figure 40. Probability plot for annual maximum daily PHOS at the CCOO, CC33, CC66, and CC100 clearcutting management scenario. 
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Figure 41. Probability plot for annual maximum daily N03N at the CCO, CC1, CC2, and CC3 clearcutting levels. 
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CHAPTERV 

CONCLUSIONS 

The Clean Water Act of 1987 has focused attention on the restoration and 

maintenance of the chemical, physical, and biological integrity of the Nation's waters. 

The Act specifically addressed the issue of nonpoint source pollution (Sec. 101a(7)). A 

water quality-based approach to pollution control was mandated, and the TMDL 

concept developed as a means to achieve this mandate. Quantifying daily NPS 

loading contributions from large clear cut watersheds is an important component for 

developing TMDLs for water quality-limited waterbodies in the Ouachita Mountains. 

The first objective of this project was to develop a stochastic framework to 

quantify worst case daily total suspended solid (TSS), total phosphorus (PHOS), and 

nitrate-nitrogen (N03N) loading from large clear cut watersheds in the Ouachita 

Mountains in such a manner as to allow assessment of the risk of exceeding estimated 

waterbody loading capacity for TSS, PHOS, and N03N. The second objective was to 

apply the stochastic framework to Clayton Lake Watershed to quantify worst case daily 

TSS, PHOS, and N03N loading under four hypothetical clearcutting levels, and 

demonstrate the risk analysis potential of the stochastic framework. 

The first objective was not satisfied because of EPIC's inability to simulate daily 

NPS loading from clear cut and undisturbed forest watersheds. This application of 

EPIC was well beyond the use intended by the model developers, so the failure of 

EPIC in this application does not call into question the quality or value of the model for 

130 



131 

other applications. Also, the failure of EPIC does not imply that the stochastic 

framework is a failure. The framework is a valuable tool for quantifying NPS loading at 

any time step. The water quality model employed during a particular application of the 

framework is an interchangeable component of the framework. A model better suited 

for simulating daily NPS loading from large clear cut watersheds in the Ouachita 

Mountains must be identified for use in the framework. The second objective was 

satisfied in this project. However, due to the short-comings of EPIC the model results 

and thus the results of the framework have questionable value. 

The stochastic framework developed in this study is dependent upon predictions 

from a water quality model. Thus, the value of the output from the stochastic 

framework for real world application is dependent upon the model selected for use in 

the framework. If an unsuitable model is selected, or if model parameters are 

improperly estimated, the framework output will have little value. If an appropriate 

model is selected and model parameters are estimated correctly, the framework output 

will be of value for TMDL development efforts. 

This project served to introduce the stochastic framework and to demonstrate its 

potential for use during TMDL development efforts. However, the stochastic framework 

will not be complete until a method of accounting for NPS pollution loading from forest 

road networks is incorporated. The construction and maintenance of roads, trails, and 

landings associated with clearcutting have been identified as major sources of NPS 

pollution. NPS loading from large clear cut watersheds will be underestimated if 

contributions from forest road networks are not considered. 

The framework needs to be expanded to incorporate point source as well as 

nonpoint source contributions. A TMDL applies to both nonpoint and point sources of 

pollution. Clearcutting management plans must be developed with consideration of 
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the needs of point source contributors on the watershed. In addition, some form of 

assessing the long-term economic feasibility of clearcutting management scenarios 

must be incorporated into the framework. A clearcutting management scenario which · 

has desirable impacts on water quality may or may not be a viable option from the land 

owner's point of view. The land owner will not have much incentive to implement BMPs 

if he/she is losing money. 

ihe conclusions reached in this study are as follows: 

1. The framework proposed in this study is a viable procedure for quantifying 

worst case daily TSS, PHOS, and N03N loading from large clear cut watersheds in the 

Ouachita Mountains. However, EPIC is not a suitable water quality model for 

incorporation into the framework. 

2. The framework proposed in this study allows assessment of the risk of 

estimated daily NPS loadings (LAs) exceeding the daily loading capacities (LCs) of 

water quality-limited waterbodies. 

3. EPIC did not satisfactorily simulate day-to-day Q and TSS, PHOS, and 

N03N loading realized from a small clear cut and a small undisturbed sites on Clayton 

Lake Watershed. Further examination of the suitability of EPIC for simulating daily Q 

and TSS, PHOS, and N03N loading should be conducted prior to employing EPIC as a 

decisions making tool on forested watersheds in the Ouachita Mountains. Additional 

models should be investigated for use in the stochastic framework. 

Future research should be directed towards either identifying or developing a 

water quality model suitable for simulating daily NPS loading from large watersheds in 

the Ouachita Mountains. Also, some method of accounting for stochastic NPS pollution 

contributions from forest road systems must be identified. 
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APPENDIX I 

EPIC: MODEL DEVELOPMENT AND DOCUMENTATION 

Introduction 

The purpose of this appendix is to bring together several documentation 

publucations for EPIC to provide a reference for use during this project. Only those 

model components and relationships which are pertinent to this project are discussed. 

Following a 1980 United States Department of Agriculture (USDA) workshop focusing 

on improving the understanding of the crop yield I soil loss relationship a national 

Agricultural Research Service (ARS) modeling team was organized and began 

developing EPIC (Williams 1990). Team objectives were to develop a continuous, 

physically based model that is: 1. capable of simulating the biophysical processes 

relevant to the crop yield I soil loss relationship simultaneously and realistically using 

readily available inputs; 2. capable of simulating these processes for hundreds of 

years; 3. applicable to a wide range of soils, crops, and climates; and 4. efficient, 

convenient to use, and capable of assessing the effects of management changes on 

erosion and soil productivity. 

138 



139 

Weather Generator 

General Description 

EPIC is driven by precipitation, air temperature, solar radiation, wind speed, 

wind direction, and relative humidity. Daily observations of these weather variables can 

be input directly into the model. If data for one or more of these variables is not 

available, EPIC can simulate daily estimates for the missing variables. It is possible to 

utilize a combination of observed data and simulated values (ex. utilize daily 

precipitation data and simulate the remaining five variables). Richardson and Nicks 

(1990) report that the EPIC weather generator is designed to preserve the dependence 

in time, the internal correlation, and the seasonal characteristics that exist in the actual 

weather data. Precipitation, wind speed, and wind direction are generated independent 

of the other variables. Maximum and minimum temperature, solar radiation, and 

relative humidity are dependent upon the occurrence of precipitation on the day in 

question. Nicks et al. (1990) concluded that the EPIC weather generator was adequate 

to meet the requirements of the model. The techniques for generating daily estimates 

for the six weather variables are discussed below. 

Precipitation 

EPIC utilizes a first-order Markov chain model to simulate daily precipitation 

(Nicks 197 4). The probability of precipitation on day i is dependent upon the wet or dry 

status of day i-1. A wet day is defined as a day during which at least 0.2 mm of 

precipitation is realized. 



P(D I W) = 1 - P(W I W) 

P(D ID)= 1 - P(W ID) 

A.1 

A.2 
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P(D/W) is the probability of a dry day following a wet day, P((W/W) is the probability of 

a wet day following a wet day, P(D/D) is the probability of a dry day following a dry day, 

and P(W/D) is the probability of a wet day following dry day. Given P(W/W) and 

P(W/D) the transitional probabilities can be defined. 

If P(W/W) and P(W/D) are not available, the average number of rainy days in 

each month may be utilized to estimate them (Williams et al. 1990). 

PW=NWD 
ND 

A.3 

PW is the probability of a wet day during the month, NWD is the number of wet days in 

the month, and ND is the number of days in the month. P(W/D) is estimated as a 

fraction of PW. 

P(W /D)= P* PW A.4 

Where pis usually ranges from 0.6 to 0.9. P(W/W) is calculated directly. 

P(W I W) = 1.0 - p + P(W ID) A.5 

When p =1.0, the effect of wet days on the probability of precipitation is minimized 

(P(W/D) = P(W/W) = PW). When p =0.0 wet days have maximum effect upon the 

probability of precipitation ( p ~ 0.0, P(W/D) ~ 0.0, P(W/W) ~ 1.0). 

Following input or estimation of the wet-dry probabilities, a random number 

ranging from 0.0 to 1.0 is generated and compared with the appropriate wet-dry 

probability. If the random number is less than or equal to the wet-dry probability, 
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precipitation occurs on that day. No precipitation occurs if the random number is 

greater than the wet-dry probability (Williams et al. 1990). 

The amount of precipitation realized during a rainfall event is generated from a 

skewed normal daily precipitation distribution. 

SCFk SCFk 3 
(SNDi - 6.0) * 6.0) - 1.0 

Ri=(-----------)*RSDVk + Rk 
SCFk 

A.6 

R is the rainfall amount for day i (mm), SND is the standard normal deviate for day i, 

SCF is the skew coefficient, RSDV is the standard deviation of daily rainfall (mm), and 

R is the mean daily rainfall in month k. 

If the standard deviation and skew coefficient are not available, the weather 

generator estimates daily rainfall amount using a modified exponential distribution 

(Williams et al. 1990). 

(-Inµ)' * Rk 
R =110 1 

· (-lnz)' dx 
0.0 

A.7 

Whereµ is a uniform random number between 0.0 and 1.0, and (is a parameter 

usually ranging from 1.0 to 2.0. As the value of (increases, so does the simulated 

rainfall amount. If the average daily air temperature is 0°C or below, the precipitation is 

snowfall. Otherwise, it is rainfall. 

Air Temperature and Solar Radiation 

The EPIC air temperature and solar radiation,model generates the residuals of 

maximum and minimum temperature, and solar radiation from a multivariate normal 



distribution (Richardson 1981). It is assumed that the residuals of maximum and 

minimum temperature as well as solar radiation are normally distributed, and that the 

serial correlation of each variable may be described by a first-order linear 

autoregressive model (Williams et al. 1990). The reader is referred to Richardson 

(1981) and Richardson and Nicks (1990) for details of the multivariate generation 

model. Richardson (1982) describes the dependence structure of daily maximum 

temperature, minimum temperature, and solar radiation. 
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Monthly means and standard deviations for the maximum and minimum 

temperature are required to generate daily temperature and solar radiation estimates. 

If the standard deviations are not available, the long-term observed extreme monthly 

minimums and maximums may be substituted (Williams et al. 1990). 

SDTMXk = 0.25 * (TEmx,k - T mx,k) A.8 

SDTMX is the standard deviation of the daily maximum temperature, TE is the extreme 

daily maximum temperature, and T mx is the average daily maximum temperature for 

month k. The standard deviation of the daily minimum temperature can be found by 

equation A.8 where minimum values (mn) are substituted for maximum (mx) values. 

The solar radiation model is based on observed long-term monthly extremes. 

SDRAMXk = 0.25 * (RAMXk - RAk) A.9 

SDRAMX is the standard deviation of the maximum daily solar radiation (MJ m·2>, 

RAMX is the maximum daily solar radiation at mid-month, and RA is the mean daily 

solar radiation for month k. The standard deviation of the daily minimum solar radiation 

can be found by equation A.9 where minimum values (MN) are substituted for 

maximum (MX) values. 
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Mean maximum temperature and solar radiation are adjusted downward for 

rainy days. To adjust T mx it is assumed that wet day values are less than dry day 

values by some fraction of T mx - T mn (Williams et al. 1990) 

A.10 

TWmx is the daily mean maximum temperature for wet days (°C) in month k, TDmx is the 

daily mean maximum temperature for dry days, n is a scaling factor ranging from 0.0 to 

1.0, T mx is the daily mean maximum temperature, and T mn is the daily mean minimum 

temperature. Observed data indicate that nT usually lies between 0.5 and 1.0 

(Williams et al. 1990). Since equation A.10 generally gives lower mean maximum 

temperature values for wet days, a companion equation was developed to slightly 

increase mean maximum temperature for dry days. The companion equation is based 

upon the continuity equation. 

A.11 

Where NDD is the number of dry days in the month. Substitute equation A.10 into A.11 

and solve for TD for the final form of the companion equation . 

NWD 
TDmx,k = T mx,k + ND k * nT * (T mx,k - Tmn.k) 

k 

Solar radiation for wet and dry days is adjusted in a similar fashion. The 

radiation on wet days is a fraction of the dry day radiation. 

A.12 

A.13 

Where RAW is the daily mean solar radiation on wet days (MJ m·2), nR is a scaling 

factor ranging from 0.0 to 1.0, and RAD is the mean daily solar radiation on dry days. 
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The dry day equation is developed by replacing temperature with radiation in equation 

A.11 and substituting equation A.13 for RAW (Williams et al. 1990). 

A.14 

Where RAD is the daily mean solar radiation on dry days (MJ m·2), and RA is the daily 

mean solar radiation for month k (MJ m·2). 

Wind Velocity 

The wind simulation model was designed by Richardson and Wright (1984) 

specifically for EPIC. Average daily wind velocity is generated. Average daily wind 

velocity is estimated from a two-parameter gamma distribution (Williams et al. 1990). 

A.15 

U is a dimensionless variable (0-1) expressing the frequency with which wind velocity V 

(m s·1) occurs, Vp is the wind velocity at the peak frequency, and r, is the gamma 

distribution shape parameter. 

-2 
V 

T/ = sov2 
A.16 

Where V is the annual average wind velocity (m s·1) and SDV is the standard deviation 

of daily wind velocity (m s·1). This data can be difficult to find. Values for the average 

annual wind velocity and the standard deviation of hourly wind can be obtained from 

the USDC (1968). A correction factor of 0.7 was determined to be appropriate for 

converting hourly standard deviations to daily (Williams et al. 1990). 
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Relative Humidity 

The relative humidity model simulates average daily relative humidity from the 

monthly average based upon a triangular distribution. The mean daily relative humidity 

is adjusted to account for wet and dry day effects. The assumed relation between 

relative humidity on wet and dry days is as follows (Williams et al. 1990) 

RHWk =RHDk + ~ * (1.0 - RHDk) A.17 

Where RHW is the daily mean relative humidity on wet days for month k, RHO is the 

daily mean relative humidity on dry days, and nH is a scaling factor ranging from 0.0 to 

1.0. Using the continuity equation as described in the temperature and solar radiation 

section produces the following equation. 

RH _ n * NWD 
k ~~ ND 

RHDk = NWD 
1.0 - ~*ND 

A.18 

RH is the long-term average relative humidity for month k. Either RHW or RHO is used 

as the peak of a triangular distribution from which daily relative humidity is generated. 

The upper limit of the triangular distribution is set with the following equation. 

RHU. = RHP. + (1.0 - RHP.) * 9RHP1·1.0 
I I I 

A.19 

RHU is the largest relative humidity value that can be generated on day i, and RHP is 

the peak of the triangular distribution (RHW or RHO). The lower limit of the triangular 

distribution is set with the following equation. 

RH Li = RHPi * (1.0 - e·RHPi) A.20 
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Where RHL is the lowest relative humidity that can be generated on day i. 

Williams et al. (1990) state that to be assured the simulated long-term mean 

relative humidity value agrees with input RH, the simulated value is adjusted. 

A.21 

RHG* is the simulated relative humidity value for day i adjusted to the mean of the 

triangle, RGH is the relative humidity generated from the triangle, and RH is the mean 

of the triangle. 

Hydrology 

Surface Runoff 

Runoff Volume. Surface runoff volume (Q) is estimated using a modification of 

the Soil Conservation Service (SCS) curve number (CN) method. 

Q = (R- 0.2s)2 

R+O.Bs ' 

Q=O.O, 

R > 0.2s 

R ~ 0.2s 

Where Q is daily surface runoff {mm), and s {mm) is a retention parameter. 

100 
s=254 * (--1) 

CN 

A.22 

A.23 

Based upon the assumption that the CN2 values, CN values for moist soil 

conditions, listed in the SCS Hydrology Handbook {USDA-SCS 1972) are appropriate 

for a 5% slope, Williams et al. {1990) developed the following equation for adjusting 

that CN value for use on other slopes. 
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A.24 

CN2s is the SCS Hydrology Handbook CN2 value adjusted for slope, CN3 is the CN for 

wet soil conditions, and S is the average slope of the watershed. 

_ 20(100-CN2) 
CN1 - CN2 - 100- CN2 + 02.533-0.0636(100-CNi) A.25 

CN = CN 00.ooe1ac100-cN2> 
3 2 A.26 

The retention parameter, s, fluctuates over time with soil water content. 

. FFC 
s = s (1- ) 

1 FFC + 0 w1-w1<FFc> 
A.27 

Where s1 is the value of s with CN1, FFC is the fraction of field capacity, and w1 and w2 

are shape parameters. 

FC= SW-WP 
FC-WP 

A.28 

Where SW is the soil water content in the root zone, WP is the wilting point water 

content, and FC is the field capacity water content. Values for w1 and w2 ~re obtained 

from a simultaneous solution of equation A.27 according to the assumptions that s=s2 

when FFC = 0.5 and s = sa when FFC = 1.0. 

A.29 

w2 =2(1n(~)-0.5-ln(-1--1)) 
1-~ 1- S3 

A.30 

S1 S1 
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Where S3 is the CN3 retention parameter. Equations A.29 and A.30 assure that CN1 

corresponds with the wilting point and that the CN cannot exceed 100 (Williams et al. 

1990). 

The FFC value obtained in equation A.28 represents soil water uniformly 

distributed through the top 1.0 m of soil. EPIC estimates water content for each soil 

layer daily, thus providing the means to estimate runoff based upon a depth distribution 

of soil water. The effect of depth distribution on runoff is expressed in the depth 

weighting function Williams et al. (1990). 

M z -Z 
LFFCx { x Z x-1) 

FFC*= X=1 X f zx -Zx-1 
x=1 Zx 

Zx ~ 1.0 m A.31 

FFC* is the depth weighted FFC value for use in equation A.27, Z is the depth to the 

bottom of soil layer x and M is the number of soil layers. 

Stochasticity may be incorporated into the runoff estimate procedure through 

stochastic CN selection. Stochastic CN generation is optional. If chosen, the final 

curve number estimate is generated from a triangular distribution, the mean of which is 

the best estimate of CN based upon equations A.23, A.24, A.27, A.28 and A.31, and 

the extremes of which are ±5 curve numbers from the mean (Williams et al. 1990). The 

stochastically generated curve number is substituted into equation A.23. 

Peak Runoff Rate. Peak runoff rate (qp) estimation is based upon a 

modification of the Rational Formula (Lloyd-Davis 1906). 

{ p ) * (r) * (A) 
qp= 360 I 

A.32 
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Where qP is the peak daily runoff rate (m3 s·1), pis a runoff coefficient expressing the 

watershed infiltration characteristics, r is the rainfall intensity (mm hr"1) for the 

watershed's time of concentration, and A is the drainage area (ha). 

Q 
p=­

R 

R r = _!!:_ 
te 

A.33 

A.34 

Rte is the amount of rainfall (mm) during the watershed's time of concentration, tc (h). 

A.35 

Where a is the ratio of the maximum rainfall amount during a period equal to the 

watershed time of concentration to the total rainfall for the storm, and R24 is the 24-h 

duration accumulated rainfall from the Weather Service's TP-40 (Hershfield 1961). 

Williams et al. (1990) state that to properly evaluate a, variation in rainfall pattern must 

be considered. Storms with uniform intensity (pattern) cause a to approach a minimum 

value. Storms of other rainfall patterns (i.e. not uniform rainfall intensity for the duration 

of the storm) cause higher a values because Rte is greater than R24 for all patterns 

expect the uniform. For some short duration storms, most or all the rain occurs during 

tc, causing a to approach its upper limit of 1.0. Substituting the products of intensity 

and time into equation A.34 provides an expression for the minimum value of a,Clmn, 

(Williams et al. 1990). 

A.36 

Thus a has limits of 



t 
C < < 10 24 - a_ · 
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Williams et al. (1990) state that the value of a is assigned with considerable 

uncertainty when only daily rainfall and simulated runoff amounts are given. To 

account for some of this uncertainty, a is generated from a gamma distribution having a 

base ranging from tel24 to 1.0. The USLE and AOF water erosion models, to be 

discussed in the Erosion section of this chapter, utilize the maximum 0.5-h amount of 

each daily rainfall, thus a is computed with the following equation. 

R,c 
a=ao.s * R 

0.5 

A.37 

Ro.s is the maximum 0.5-h rainfall amount (mm), and ao.s is the ratio of the maximum 

rainfall amount during 0.5 h to the total rainfall for the storm. 

t 
R = R * (-)b 

I 6 6 A.38 

Where R1 is the rainfall amount (mm) for any time t, R6 is the 10-year, 6-h rainfall 

amount (mm) from Hershfield (1961), and bis a parameter used to fit the TP-40 

relationship (Hershfield 1961) at any location. Note that t of R, is set to 0.5 h in 

equation A.37. The estimation of ao.s is discussed in the Erosion section of this 

chapter. 

Substituting equations A.33, A.34, and A.35 into equation A.32 provides the 

peak runoff equation. 

(a)* (Q)* (A) 
qp = 360 (tc} 

Time of concentration is calculated by the following equation. 

A.39 

A.40 
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Where tee is the time of concentration for channel flow and tcs is the time of 

concentration for surface flow (h). Time of concentration for surface flow is estimated 

as follows. 

t =~ 
cs V 

s 

A.41 

Where 2 is the surface slope length (m) and Vs is the surface flow velocity (ms·\ 

Using Manning's Equation (Manning 1891) to estimate Vs gives the following. 

A.42 

Where qs is the average surface flow rate (mm hr"1) and S is the land surface slope (m 

m·\ Williams et al. (1990) assume that the average surface flow rate is about 6.35 

mm hr"1, and make substitutions into equations A.41 and A.42 to convert from m3 s·1 to 

mm hr"1 and seconds to hours to develop the final equation for estimating tcs. 

The tee is estimated as follows. 

L t =-c 
cc V 

C 

A.43 

A.44 

Le is the average channel flow length (km) for the watershed, and Ve is the average 

channel velocity (m s·1). 

A.45 

Lis the channel length from the most distant point to the watershed outlet (km), and Lea 

is the distance along the channel to the watershed centroid (km). Average velocity is 
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estimated by Manning's Equation, assuming a trapezoidal channel with 2: 1 side slopes 

and a 1 O: 1 bottom width/depth ratio (Williams et al. 1990). Substitution of A.45 for Le 

and Manning's Equation for Ve into equation A.44 gives the following equation. 

A.46 

Where n is Manning's n, qc is the average channel flow rate (m3 s-1>, and cr is the 

average channel slope (m m-1). Assuming that Lca=O.SL, that the average flow rate is 

about 6.35 mm h(1, and that the average flow rate is a function of the square root of 

drainage area yields the final equation for tee. 

Percolation 

t = 1.1* (L)* no.1s 
cc Ao.12s*ao.31s A.47 

A storage routing technique is used to simulate vertical flow through each soil 

layer. Flow from a soil layer occurs when the soil water content exceeds the field 

capacity of the soil layer, and water flows from the layer until field capacity is attained 

(Williams et al. 1990). The following equation estimates reduction in soil water. 

-M 

SWx =(SW0x -FCx)*enx +FCx A.48 

SW and SWa are the soil water contents at t = 0 and t = 24 h, respectively. TT is the 

travel time through layer x (h). Daily percolation rate for layer x (Ox) is computed in mm 

-81 

ox =(SWOx -FCx)*(1.0-eTT•) A.49 
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TT = POX -FCX 
X SC 

X 

A.50 

PO is the porosity {mm), FC is the field capacity {mm), and SC is the saturated 

hydraulic conductivity {mm hr"1). This process is applied to the soil profile layer by layer 

from the surface to the deepest layer. If a layer's porosity is exceeded, the excess 

water is transferred to the layer above. 

. SC may be input or estimated for each soil layer. If data are not available, SC is 

calculated as follows. 

12. 7* (100 - CLAX )* (SSX) 
sex= 100- CLA *011.45-0.097•(100•CLA.) 

X 

A.51 

Where Cl.A is the percentage of clay in soil layer x, and SS is the soil strength factor 

{described in the Growth Constraints section of this chapter). 

Lateral Subsurface Flow 

Lateral subsurface flow rate {SSF) in mm d"1 is calculated simultaneously with 

percolation. 

-1.0 
SSFx = (SW0x -FCx)*(1.0-e TTRx) A.52 

TT Rx is the lateral flow time { d) for soil layer x. 

1000* CLAx* SSx 
TTRx = CLA +e10.041-o.148•cLA. + 10 

X 

A.53 

Equations A.49 and A.52 are solved simultaneously. The sum of percolation and 

lateral subsurface flow is found as follows {Williams et al. 1990). 

•At •1.0 
Ox +SSFx = (SW0x -FCx)*(1.0-eTTx*e TTRx) A.54 
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Considering the ratio of SSF to O and substituting the resulting SSF into equation A.54. 

-1.0 
1.Q _ e TTRx -At -1.0 

0 + ~ ( -t1t ) = (SW0x - FCx )* (1.0 - e TT.* e TTRx) A.55 

1.0- 0 TT. 

Solving for O gives the final percolation equation. 

-l1t -1.0 -At 

(SW0x - FCx )* (1.0 - e TT.* e TTRx )* (1.0 - e TT.) 
O=~~~~~~~~~~~~~~~ 

-l1t -1.0 A.56 

2.0 - e TT. - e TTRx 

The calculated O value is substituted into equation A.54 to obtain the final estimate of 

SSF (Williams et al. 1990). 

Evapotranspiration 

Potential Evaporation. In EPIC, one of four methods of estimating potential 

evaporation (Eo) can be used per simulation. The Hargraves and Samani (1985) 

method, the Priestly-Taylor (1972) method, the Penman (1948) method, and the 

Penman-Moneith (Monteith 1965) method. The Penman-Moneith method serves as the 

default PET estimation method. Only the Penman and the Priestly-Taylor methods are 

detailed in the model documentation (Williams et al. 1990). 

The Penman (1948) option for estimating potential evaporation is based upon 

the following equation. 

E =__!___ * ho-G + _r_ * i(V) * (e -e ) 
o t5+y HV t5+y a d 

A.57 

Eo is the potential evaporation (mm), 8 is the slope of the saturation vapor pressure 

curve (kPa 0c·1>, r is a psychrometer constant (kPa 0 c·1>, ho is the net radiation (MJ m· 
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2), G is the soil heat flux (MJ m·2), HV is the latent heat of vaporization (MJ kg·1), f(V) is 

a wind speed function (mm d"1 kPa·1), ea is the saturation vapor pressure at mean air 

temperature (kPa), and ed is the vapor pressure at mean air temperature (kPa). 

HV = 2.5 - 0.0022 * T 

6791 ea : 0. 1 * e (54.88-5.03•1n(T+273)·T+273) 

A.58 

A.59 

A.60 

T is the mean daily air temperature (0C), and RH is the relative humidity expressed as a 

fraction. 

ea 6791 
o= T+273 * (T+273 - 5·03) A.61 

r = 6.6 X 10-4 * PB A.62 

PB is the barometric pressure (kPa). 

PB = 101 - 0.0115 * ELEV + 5.44 X 10-7 * ELEV2 A.63 

ELEV is the elevation of the site (m). 

Soil heat flux is estimated based upon air temperature on the day of interest as 

well as the air temperature for the previous 3 days. 

A.64 

Solar radiation is adjusted to obtain net radiation. 

A.65 
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RA is the solar radiation (MJ m-2), AB is the albedo, RAB is the net outgoing long wave 

radiation (MJ m-2) for clear days, and RAMX is the maximum solar radiation possible 

(MJ m-2) for the location on day i. 

RABi =4.9 X 10-9 * (0.34-0.14*.Je:-) * (Ti+273}4 

RAMX = 30*(1.0+0.0335*Sin(::s *(i+88.2)))*(XT* 

sin( ::s *LAT)* sinSD + cos( ::s *LAT)* cosSD* sinXT 

A.66 

A.67 

21r 
XT = COS-1*(-tan(365 *LAT)* tanSD)' 0::; XT::; 7r A.68 

LAT is the latitude in degrees, and SD is the angle of the sun's declination (radians). 

SDi = 0.4102 * sin( ::5 * (i - 80.25)) A.69 

The wind function of the Penman equation is approximated with the following equation. 

f(V) = 2.7 + 1.63 * V A.70 

The Priestly-Taylor (1972) method provides estimates of potential evaporation 

without wind and relative humidity inputs. 

0 
Eo = 30.6 * ho * 0 + 0.68 A.71 

A.72 

5304 5304 
t5: e <21 ·3 - T+273) • ((T+273)2 ) A.73 

Both the Penman and Priestly-Taylor methods estimate albedo by the following 

process (Williams et al 1990). If snow cover exists with 5 mm or greater water content, 

the value of albedo is set to 0.6. If snow cover is less than 5 mm water content and no 
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crop· is growing, the input soil albedo value is used. When crops are growing, albedo is 

estimated by the following equation. 

AB= 0.23 * (1.0 - EA) + AB 5 * EA A.74 

Where 0.23 is the albedo for plants, ABs is the soil albedo, and EA is a soil cover index 

ranging from 0.0 to 1.0. 

EA= e-0.1 * cv A.75 

CV is the sum of aboveground biomass and crop residue (t ha·1). 

Plant Water Evaporation. Potential plant water evaporation is estimated as 

follows. 

E = E0 *LAI 
P 3.0 ' 

0~ LAI ~3.0 A.76 

LAI> 3.0 A.77 

Ep is the predicted plant water evaporation rate (mm d·1). 

Soil Water Evaporation. Potential soil water evaporation is simulated by the 

following equation. 

A.78 

Es is the potential soil water evaporation rate (mm d-1>, and E0 is potential evaporation. 

Actual soil water evaporation is estimated considering only the top 0.2 m of the 

soil profile. Williams et al. (1990) state that soil water evaporation in the absence of 
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snow cover is governed by soil depth and water content according to the following 

equation. 

z 
EVz = Es(----'O'-=i.2;...__) 

z 
0.2 + e-2.92-1.43•0.2 

A.79 

EV is the total soil water evaporation (mm) from the soil profile to depth Z (m). Potential 

soil water evaporation for a given soil layer is estimated as the difference between EV's 

at the layer boundaries. 

SEVx = EVZ(x) -DVZ(x-1) A.BO 

SEV is the potential soil water evaporation for layer x (mm). SEV is reduced if soil 

water is limiting. 

2.S•(SW.-FCx) 

SEV * = SEV * e Fc.-WP. 
X X SWx < FCx A.81 

A.82 

SEVx* is the adjusted soil water evaporation estimate (mm). In order to assure that the 

soil water supply is adequate to meet the estimated soil water evaporation estimate the 

following process is utilized. 

A.83 

Equation A.83 allows soil in the top 0.2 m to dry half the soil water content 

corresponding to the wilting point (Williams et al. 1990). 
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Erosion 

When erosion occurs during an EPIC simulation, soil is removed from the soil 

surface. Recall that the first soil layer must be 10 mm in depth. In order to maintain the 

thickness of the first soil layer at 1 O mm during erosion, the first soil layer is moved into 

the second soil layer and the properties of the first layer are adjusted by interpolation 

according to the distance the first layer moves into the second. If the first layer is 

completely eroded, then the first layer essentially becomes the first 1 O mm of the 

second layer. 

EPIC simulates water-induced erosion by one or more of six methods. Only one 

of the six methods can be selected to interact with other model components during a 

given simulation, but erosion estimates from all six methods can be obtained. Soil 

erosion models incorporated into EPIC are the Universal Soil Loss Equation (USLE) 

(Wischmeier and Smith 1978), the Modified Universal Soil Loss Equation (MUSLE) 

(Williams 1975), the Onstead-Foster (AOF) equation (Onstead and Foster 1975), the 

small watershed version of MUSLE (MUSS), a version of MUSLE that allows the user to 

input four principal coefficients (MUSI), and a version of MUSLE that is derived 

theoretically and is not empirically fit (MUST) (Dumesnil 1993). 

Only the LISLE, MUSLE, and AOF soil erosion models are discussed in the 

model documentation (Williams 1990). The.main difference between MUSLE and the 

other two soil erosion models is that MUSLE does not contain a rainfall variable (Laflen 

et al. 1990). MUSLE uses runoff variables to simulate erosion and sediment yield, 

LISLE depends strictly upon rainfall as an indicator of erosive energy, and AOF utilizes 

a combination of the LISLE and MUSLE energy factors. In the absence of runoff, 

MUSLE will predict no erosion, and AOF will predict 63.6% as much as the LISLE. 
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The water-induced soil erosion model in EPIC uses an equation of the following 

form. 

Y = X * K * CE * PE * LS * ROKF 

z=EI 

X = 11.8* (Q** qP )o.ss 

X = 0.646* El+ 0.45* (Q* q \ )0·33 

A.84 

for USLE 

for MUSLE 

for AOF 

Where Y is the sediment yield (t ha·1), z is chosen by the user, K is the soil erodibility 

factor, CE is the crop management factor, PE is the erosion control practice factor, LS 

is the slope length and steepness factor, ROKF is the coarse fragment factor, El is the 

rainfall energy factor, Q* is the runoff volume (m\ qp is the peak runoff rate (mm s·1>, Q 

is the runoff volume (mm), and q* P is the peak runoff rate (mm h·1). 

El is found as the product of the maximum 0.5-h rainfall intensity (ro.s) and the 

rainfall energy realized during a given storm. 

El= R * (12.1 + 8.9 * (log rp - 0.434)) * r0_5 

1000 
A.85 

R is the daily rainfall amount (mm), rp is the peak rainfall intensity (mm h·1>, ro.s is the 

maximum 0.5-h rainfall intensity. A problem arises when estimating rp because time-

distributed rainfall is not available. EPIC estimates rainfall intensity based upon the 

assumption that rainfall intensity is exponentially distributed (Williams et al. 1990). 

A.86 

Where r is the rainfall intensity at time t (mm h·1), and K is the decay constant (h). 

Rainfall energy, RE, is computed as follows. 

A.87 
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~R is the rainfall amount (mm) during the time interval ~t (h). Analytically, the rainfall 

energy equation is expressed as follows. 

RE= 12.1 * I'" r dt + 8.9 * f."' r*log r dt 
0 0 

A.88 

Substituting equation A.86 into equation A.87 and integrating gives the equation for 

estimating daily rainfall energy. 

RE= R * [12.1 + 8.9 * (log rp - 0.434)] A.89 

To compute values for rp, equation A.88 is integrated. 

R= rp * ,c A.90 

A.91 

Ro.sis estimated by using ao.s, as mentioned in the hydrology section. 

Ro.s = ao.s * R A.92 

To determine the value of rp, equations A.90 and A.92 are substituted into equation 

A.91. 

rp = -2 * R * ln(1 - a0.5 ) A.93 

The frequency, F, with which the maximum 0.5-h rainfall amount occurs is estimated by 

using the Hazen plotting position equation. 

1 
F=-

2r 
A.94 

The total number of rainfall events for each month, i-, is the product of the number of 

years of record and the average number of rainfall events for the month. To estimate 

the mean value of ao.s, it is first necessary to estimate the mean value of Ro.s. In order 
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to compute Ro.s the maximum 0.5-h rainfall amounts are assumed to be exponentially 

distributed (Williams et al. 1990). 

R _ Ro.sF,k 
o.s.1c - -In F: 

k 
A.95 

Ro.s,1c is the mean maximum 0.5-h rainfall amount, Ro.sF,k is the maximum 0.5-h rainfall 

amount for frequency F, and the subscript k refers to the month. Mean ao.s is 

computed with the following equation. 

Ro.s,k 
ao.s.1c = Rk A.96 

R is the mean amount of rainfall for each event (average monthly rainfall I average 

number of days of rainfall). Daily values of ao.s are generated from a two-parameter 

gamma distribution which has a base defined by the upper and lower limits of ao.s. The 

lower limit, ao.s1, determined assuming a uniform rainfall rate is as follows. 

0.5 
a 0_51 = 24 = 0.0208 A.97 

The upper limit of a ao.s is estimated by substituting a high value for rp (250 mm h"1 is 

generally used) into equation A.98. 

-125 

ao.su =1 - e T 

The peak of the ao.s gamma distribution is calculated as follows. 

ao.s k * ( v - 1 ) 
a =--·----o.sP,k v 

A.98 

A.99 
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Where ao.sP,k is the ao.s value at the peak of the gamma distribution, and vis the 

gamma distribution shape parameter. 

The soil erodibility factor, K, is determined for the first soil layer at the start of 

each year of simulation. 

1-SIL SIL 
K = (0.2 + 0.3* e .o.02ss•sAN< 100 > )* ( CLA + SIL )°"a* 

A.100 

SAN, SIL, CLA, and C are the sand, silt, clay, and organic carbon contents of the soil 

layer(%), respectively. 

A.101 

According to Williams et al. (1990), equation A.107 is utilized because it allows K to 

vary from about 0.1 to 0.5. The first term gives low K values for soils with high coarse-

sand contents and high K values for soils with little sand. The fine sand content is 

estimated as the product of sand and silt divided by 100. The expression for coarse 

sand in the first term is simply the difference between sand and the estimated fine 

sand. The second term reduces K for soils that have high clay to silt ratios. The third 

term reduces K for soils with high organic carbon contents. The fourth term reduces K 

for soils with extremely high sand contents (SAN> 70%) (Williams et al. 1990). 

CE is evaluated for all days when surface runoff occurs. 

CE: e [(ln0.8-lnCEmnJ)*(e'1·15CV)+lnCEmnJl A.102 
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Where CEmnj is the minimum value of the crop management factor for crop j and CV is 

the sum of above ground biomass and crop residue (t ha-1)_ The role of CE in EPIC is 

also discussed by Laflen et al. (1990). 

The PE value is determined initially by considering the conservation practices to 

be a·pplied to the watershed. LS is calculated in the following manner. 

LS= (2;_ 1i•(65.41* S2 +4.565+0.065) A.103 

S is the land surface slope (m m-1>, l is the slope length (m), and i; is a parameter 

dependent upon slope. 

0.35 
i; = (S + 9 -1.41-s1.09s) + 0_2 A.104 

The coarse fragment factor is estimated following Simanton et al. (1984). 

A.105 

Where ROK is the percent of coarse fragments (> 3 in. diameter) in the surface soil 

layer. 

Nutrients 

Nitrogen 

Nitrate Loss in Surface Runoff. N03-N loss in surface runoff is estimated 

considering only the first soil layer (10 mm thickness). The total amount of water 

leaving the first soil layer is the sum of Q, SFF, and 0. 

A.106 
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QT is the total water lost from the first soil layer (mm). The amount of N03-N lost from 

the first layer is found as: 

A.107 

VNQ3 is the amount of N03-N lost from the first layer and CNoo is the NQ3-N 

concentration of the first layer. At the end of the day the amount of N03-N left in the 

first layer is: 

A.108 

WN030 and WN03 are the weights of N03-N (kg) contained in the first layer at the 

beginning and the end of the day, respectively. N03-N concentration in the first soil 

layer can be estimated by dividing the weight of N03-N by the water storage volume. 

I QT 
C N03 = CNo3 -CNo3* PO -WP 

1 1 

A.109 

Where c'No3 is the concentration of N03-N at the end of the day, P01 is the porosity of 

the first soil layer, and WP1 is the wilting point water content (mm) of the first soil layer. 

Equation A.109 is a finite difference approximation for the following exponential 

equation. 

-OT 

c'No3 = CNo3* 9P01-WP1 

VNOa is computed for any QT value by integrating equation A.110. 

-QT 
VNOa =WNoa*(1-ePO -WP) 

1 1 

The average concentration of QT for the day is found from the following. 

A.110 

A.111 

A.112 
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The amounts of N03-N lost to surface runoff, lateral subsurface flow, and percolation 

are estimated as the products of the volume of water passing through each pathway 

and the concentration calculated by equation A.112. N03-N loss is reported in kg ha·1. 

Nitrate Leaching. Leaching and lateral subsurface flow in lower soil layers are 

treated by the same approach used for the first soil layer except that surface runoff is 

not considered. 

Nitrate Transport by Soil Water Evaporation. When soil water is evaporated 

from the soil, N03-N is moved upward into the first soil layer by mass flow. The 

equation for estimating upward N03-N transport is as follows. 

M 

EN03 = L(SEVx * * ~03x) A.113 
x=2 

Where EN03 is the amount of N03-N (kg ha"1) moved from lower soil layers to the first 

layer by soil water evaporation Es (mm), the subscript x refers to soil layer, and M is the 

number of soil layers contributing to soil water evaporation (maximum depth is 0.2 m). 

EPIC accounts for organic N transport by sediment, denitrification, 

mineralization, and immobilization. The procedures used to estimate these processes 

will not be discussed, and the reader is referred to Williams et al. 1990). Nitrogen 

contribution from rainfall is calculated based upon an average rainfall N concentration 

at a location for all storms. The amount of N contributed to the watershed by each 

rainf_all is estimated as the product of rainfall amount and concentration. 
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Phosphorus 

Soluble P Loss in Surface Runoff. EPIC follows the assumption that majority of 

phosphorus is associated with the sediment phase (Williams et al. 1990). The soluble 

P runoff equation used in EPIC is as follows. 

vsP = o.01 * cLP1 * a 
kd 

A.114 

YSP is the soluble P (kg ha-1) lost in surface runoff of volume Q (mm), ~P1 is the 

concentration of labile P in the first soil layer (g r1), and ~ is the P concentration of the 

sediment divided by that of the soil solution (m3 r1). EPIC assigns a value of 175 to ~-

Phosphorus Transport by Sediment. Sediment transport of P is simulated as 

follows. 

yp = 0.001 * Y * Cp * ER A.115 

Wh~re YP is the sediment phase P lost in surface runoff (kg ha-1) and Cp is the P 

concentration of sediment in the first soil layer (g r1). 

The model documentation also discusses the procedures utilized by EPIC to 

estimate P minerilization, immobilization, and mineral P cycling. These components will 

not be discussed. The reader is referred to Williams et al. (1990). 
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Results of Model Performance Evaluation 
Daily Model Output 
Calibration for Total Suspended Solids (TSS) 
Recovery Year 1 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.519 
R Square 0.270 
Adj. R Square 0.268 
Standard Error 0.017 
Observations 365 

ANOVA for Linear Regression Analysis 

Regression 
Residual 
Total 

Coefficients 

Coefficient 
Standard Error 
Lower95% Cl 
Upper95% Cl 

Let alpha = 0.05 
Test statistic= 1.96 

df ss 
1 0.0395592 

363 0.10714 
364 0.1466992 

Intercept 
0.00200765 
0.00090648 
0.00022503 
0.00379026 

TSS" 
0.6616669 
0.0571529 
0.5492747 
0.7740591 

Ho: a equal to O ; Ha: a not equal to 0 
t = (0.0020076 - 0) I 0.0009065 = 2.21 
reject Ho: a equal to o 

Ho: b equal to 1 ; Ha: b not equal to 1 
t = (0.661667 -1) I 0.057153 = -5.92 
reject Ho: b equal to 1 

MS F 
0.039559 134.0302 
0.000295 
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Significance of F 
1.35735E-26 
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Results of Model Performance Evaluation 
Daily Model Output 
Calibration for Total Suspended Solids (TSS) 
Recovery Year 2 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.842 
R Square 0.708 
Adj. R Square 0.707 
Standard Error 0.004 
Observations 365 

ANOVA for Linear Regression Analysis 
df ss MS F 

Regression 
Residual 
Total 

1 0.0131304 0.01313 881.1862 

Coefficients 

Coefficient 
Standard Error 
Lower95% Cl 
Upper95% Cl 

Let alpha = 0.05 
Test statistic = 1.96 

363 0.005409 1.49E-05 
364 0.0185394 

Intercept 
0.00014391 
0.00020424 
-0.0002577 
0.00054555 

TSS" 
0.6189568 
0.020851 
0.577953 

0.6599607 

Ho: a equal to O : Ha: a not equal to O 
t = (0.0001439 - 0) I 0.0002042 = 0. 70 
fail to reject Ho: a equal to o 

Ho: b equal to 1 : Ha: b not equal to 1 
t = (0.618957 -1) I 0.020851 = -18.27 
reject Ho: b equal to 1 
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Significance of F 
3.9579E-99 
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Results of Model Performance Evaluation 
Daily Model Output 
Calibration for Total Suspended Solids (TSS) 
Recovery Year 3 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.180 
R Square 0.032 
Adj. R Square 0.030 
Standard Error 0.004 
Observations 365 

ANOVA for Linear Regression Analysis 

Regression 
Residual 
Total 

Coefficients 

Coefficient 
Standard Error 
Lower95%CI 
Upper95% Cl 

Let alpha = 0.05 
Test statistic= 1.98 

df ss 
1 0.0001587 

363 0.0048989 
384 0.0048558 

Intercept 
0.00036747 
0.00019001 
-6.187E-06 

0.00074113 

0.1414851 
0.0406658 
0.0615155 
0.2214546 

Ho: a equal to O : Ha: a not equal to O 
t = (0.0003675- 0) I 0.00019 = 1.93 
rejed Ho: a equal to O 

Ho: b equal to 1 : Ha: b not equal to 1 
t = (0.141485 - 1) I 0.040666 = -21.11 
rejed Ho: b equal to 1 

MS F 
0.000157 12.10508 
1.29E-05 
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Significance of F 
0.000563973 
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Results of Model Performance Evaluation 
· Daily Model Output 
Calibration for Total Suspended Solids (TSS) 
Recovery Year 4 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.716 
R Square 0.513 
Adj. R Square 0.512 
Standard Error 0.001 
Observations 365 

ANOVA for Linear Regression Analysis 
df ss MS F 

Regression 
Residual 
Total 

1 0.0004189 0.000419 382.2312 

Coefficients 

Coefficient 
Standard Error 
Lower95% Cl 
Upper95% Cl 

Let alpha = 0.05 
Test statistic = 1.98 

364 0.0003978 1.1 E-06 
365 0.0008166 

Intercept 
0.00020227 
5.5388E-05 
9.3349E-05 
0.00031119 

0.4917033 
0.0251501 
0.4422451 
0.5411815 

Ho: a equal to O ; Ha: a not equal to O 
t = (0.0002023 - 0) I 0.00005539 = 3.65. 
reject Ho: a equal to o 

Ho: b equal to 1 ; Ha: b not equal to 1 
t = (0.491703 - 1) I 0.02515 = -20.21 
reject Ho: b equal to 1 
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Significance of F 
1.16891 E-58 
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Results of Model Perfonnance Evaluation 
Daily Model Output 
Calibration for Total Phosophorus (PHOS) 
Recovery Year 1 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.698 
R Square 0.487 
Adj. R Square 0.486 
Standard Error 0.014 
Observations 365 

ANOVA for Linear Regression Analysis 

Regression 
Residual 
Total 

Coefficients 

Coefficient 
Standard Error 
Lower95% Cl 
Upper95% Cl 

Let alpha = 0.05 
Test statistic = 1.96 

df SS MS F 

1 0.0720496 0.07205 345.2081 
363 0.075763 0.000209 
364 0.1478126 

Intercept 
0.00169844 
0.00076314 
0.00019n 

0.00319918 

PHOSA 

0.8458748 
0.0455268 
0.7563459 
0.9354038 

Ho: a equal to O ; Ha: a not equal to 0 
t = (0.0016984- 0) I 0.0007631 = 2.23 
rejed Ho: a equal to o 

Ho: b equal to 1 ; Ha: b not equal to 1 
t = (0.845875 - 1) I 0.045527 = -3.39 
reject Ho: b equal to 1 
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Significance of F 
1.24547E-54 
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Results of Model Performance Evaluation 
Daily Model Output 
Calibration for Total Phosophorus (PHOS) 
Recovery Year 2 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.640 
R Square 0.410 
Adj. R Square 0.408 
Standard Error 0.005 
Observations 365 

ANOVA for Linear Regression Analysis 

Regression 
Residual 
Total 

Coefficients 

Coefficient 
Standard Error 
Lower95% Cl 
Upper95% Cl 

Let alpha = 0.05 
Test statistic= 1.96 

df SS MS 
1 0.0061375 0.006138 

363 0.0088441 2.44E-05 
364 0.0149816 

Intercept 
0.00017444 
0.00026277 
-0.0003423 
0.00069118 

PHQSA 

0.6247284 
0.0393813 
0.5473237 
0.7021332 

Ho: a equal to O ; Ha: a not equal to O 
t = (0.0001744- 0) I 0.0002628 = 0.67 
fail to reject Ho: a equal to 0 

Ho: b equal to 1 ; Ha: b not equal to 1 
t = (0.624728 - 1) I 0.039361 = -9.53 
reject Ho: b equal to 1 
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F Significance of F 
251.909 1.85207E-43 
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Results of Model Performance Evaluation 
Daily Model Output 
Calibration for Total Phosophorus (PHOS) 
Recovery Year 3 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.393 
R Square 0.155 
Adj. R Square 0.152 
Standard Error 0.001 
Observations 365 

ANOVA for Linear Regression Analysis 

Regression 
Residual 
Total 

Coefficients 

Coefficient 
Standard Error 
Lower95% Cl 
Upper95% Cl 

Let alpha = 0.05 
Test statistic = 1.96 

df SS MS F 
1 9.S03E-05 9.5E-05 66.42179 

363 0.0005193 1.43E-06 
364 0.0006143 

Intercept 
0.00018296 
6.3331E-05 
5.8416E-05 
0.0003075 

PHOSA 

0.0915605 
0.0112345 
o.oe946n 
0.1136534 

Ho: a equal to O ; Ha: a not equal to O 
t = (0.000183 • 0) I 0.00006333 = 2.89 
reject Ho: a equal to O 

Ho: b equal to 1 ; Ha: b not equal to 1 
t = (0.091561 -1) I 0.011234 = -80.87 
reject Ho: b equal to 1 
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Significance of F 
5.9606E-15 
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Results of Model Perfonnance Evaluation 
Daily Model Output 
Calibration for Total Phosophorus (PHOS) 
Recovery Year 4 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.81791268 
R Square 0.66898116 
Adj. R Square 0.66806926 
Standard Error 0.00059447 
Observations 365 

ANOVA for Linear Regression Analysis 

Regression 
Residual 
Total 

Coefficients 

Coefficient 
Standard Error 
Lower 950/o Cl 
Upper 950/o Cl 

Let alpha = 0.05 
Test statistic= 1.96 

df ss 
1 0.0002593 

363 0.0001283 
364 0.0003875 

Intercept 
6.6961E-05 
3.1666E-05 
4.6889E-06 
0.00012923 

PHQSA 

0.2922583 
0.0107903 

0.271039 
0.3134776 

Ho: a equal to O : Ha: a not equal to O 
t = (0.00006696 - 0) I 0.00003167 = 2.11 
reject Ho: a equal to o 

Ho: b equal to 1 : Ha: b not equal to 1 
t = (0.292258 -1) I 0.01079 = -65.59 
reject Ho: b equal to 1 

MS F 
0.000259 733.6143 
3.53E-07 
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Significance of F 
3.6447E-89 
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Results of Model Performance Evaluation 
Daily Model Output 
Calibration for Nitrate-Nitrogen (N03N) 
Recovery Year 1 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.649 
R Square 0.421 
Adj. R Square 0.419 
Standard Error 0.047 
Observations 385 

ANOVA for Linear Regression Analysis 
df ss MS F 

Regression 
Residual 
Total 

1 0.5874524 0.587452 263.7654 
383 0.8084855 0.002227 

Coefficients 

Coefficient 
Standard Error 
Lower95%CI 
Upper95% Cl 

Let alpha = 0.05 
Test statistic = 1.98 

364 1.3959179 

Intercept 
0.00254804 
0.0028222 

-0.0028088 
o.oon0484 

N03NA 

.0.8199974 
0.0504898 
0.7207083 
0.9192865 

Ho: a equal to O ; Ha: a not equal to 0 
t = (0.002548 - 0) I 0.0028222 = 0.97 
fail to reject Ho: a equal to O 

Ho: b equal to 1 : Ha: b not equal to 1 
t = (0.819997-1) I 0.05049 = -3.57 
reject Ho: b equal to 1 
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Significance of F 
5. 70826E-45 
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Results of Model Performance Evaluation 
Daily Model Output 
Calibration for Nitrate-Nitrogen (N03N) 
Recovery Year 2 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.435 
R Square 0.189 
Adj. R Square 0.187 
Standard Error 0.015 
Observations 385 

ANOVA for Linear Regression Analysis 
df ss MS F 

Regression 
Residual 
Total 

1 0.0179632 0.017963 84.67175 

Coefficients 

Coefficient 
Standard Error 
Lower95% Cl 
Upper95% Cl 

Let alpha = 0.05 
Test statistic = 1.96 

383 0.077011 0.000212. 
364 0.0949743 

Intercept 
0.0010322 

0.00078738 
-0.0005182 
0.00258058 

N03N" 
0.577353 
0.082744 

0.4539858 
0.7007403 

Ho: a equal to O : Ha: a not equal to 0 
t = (0.0010322 • 0) I 0.0007874 = 1.31 
fail to reject Ho: a equal to o 

Ho: b equal to 1 : Ha: b not equal to 1 
t = (0.577353 -1) I 0.082744 = -8.74 
reject Ho: b equal to 1 
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Significance of F 
2.83275E-18 
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Results of Model Perfonnance Evaluation 
Daily Model Output 
Calibration for Nitrate-Nitrogen (N03N) 
Recovery Year 3 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.304 
R Square 0.092 
Adj. R Square 0.090 
Standard Error 0.002 
Observations 365 

ANOVA for Linear Regression Analysis 
df ss MS F 

Regression 
Residual 
Total 

1 0.0001291 0.000129 36.91801 

Coefficients 

Coefficient 
Standard Error 
Lower95%CI 
Upper95% Cl 

Let alpha = 0.05 
Test statistic= 1.96 

363 0.0012896 3.5E-06 
364 0.0013988 

Intercept 
0.00028359 
0.00010006 
8.8813E-05 
0.00048037 

N03NA 
0.1299897 
0.0213939 
0.0879182 
0.1720812 

Ho: a equal to O ; Ha: a not equal to 0 
t = (0.0002838- 0) I 0.0001001 = 2.83 
reject Ho: a equal to o 

Ho: b equal to 1 ; Ha: b not equal to 1 
t = (0 .. 12999 - 1) I 0.021394 = -40.87 
reject Ho: b equal to 1 
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Significance of F 
3.11438E-09 
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Results of Model Performance Evaluation 
Daily Model Output 
Calibration for Nitrate-Nitrogen (N03N) 
Recovery Year 4 
WS-1 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.571 
R Square 0.326 
Adj. R Square 0.324 
Standard Error 0.001 
Observations 365 

ANOVA for Linear Regression Analysis 
df ss MS F 

Regression 
Residual 
Total 

1 0.0001071 0.000107 175.1876 
363 0.0002219 8.11 E-07 

Coefficients 

Coefficient 
Standard Error 
Lower95% Cl 
Upper95% Cl 

Let alpha = 0.05 
Test statistic = 1.96 

384 0.000329 

Intercept 
9.2217E-05 
4.2159E-05 
9.3112E-08 
0.00017512 

N03NA 
0.1649934 
0.012~ 
0.1404795 
0.1895073 

Ho: a equal to O ; Ha: a not equal to 0 
t = (0.00009222 - 0) I 0.00004216 = 2.18 
rejed Ho: a equal to O 

Ho: b equal to 1 ; Ha: b not equal to 1 
t = (0.164993-1) I 0.012466 = -66.98 
rejed Ho: b equal to 1 
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Significance of F 
6.6307E-33 
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UNDISTURBED WATERSHED: RESULTS OF MODEL 
PERFORMANCE EVALUATIONS 
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Results of Model Performance Evaluation 
Calibration for Total Suspended Solids (TSS) 
Daily Model Output 
Entire Data Set 
WS-lil 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.52165478 
R Square 0.27212371 
Adj. R Square 0.27172487 
Standard Error 0.0007612 
Observations 1827 

ANOVA for Linear Regression Analysis 
df ss MS F 

Regression 
Residual 
Total 

1 0.0003953 0.000395 682.2942 
1825 0.0010575 5.79E-07 

Coefficients 

Coefficient 
Standard Error 
Lower95% Cl 
Upper95% Cl 

Let alpha = 0.05 
Test statistic = 1.96 

1826 0.0014528 

Intercept 
0.00012863 
1.7965E-05 
9.3396E-05 
0.00016386 

TSSA 

0.768035 
0.0294032 
0.7103674 
0.8257026 

Ho: a equal to O ; Ha: a not equal to O 
t = (0.0001286- 0) I 0.00001797 = 7.16 
reject Ho: a equal to 0 

Ho: b equal to 1 ; Ha: b not equal to 1 
t = (0.768035 - 1) I 0.029403 = -7.89 
reject Ho: b equal to 1 
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Significance of F 
4.7948E-128 
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Results of Model Perfonnance Evaluation 
Calibration for Total Phosophorus (PHOS) 
Daily Model Output 
Entire Data Set 
WS-111 

Statistics for Linear Regression Analysis 
Statistic Value 

Multiple R 0.74332477 
R Square 0.55253172 
Adj. R Square 0.55228653 
Standard Error 0.00121186 
Observations 1827 

ANOVA for Linear Regression Analysis 
df ss MS F 

Regression 
Residual 
Total 

1 0.0033095 0.00331 2253.501 
1825 0.0026802 1.47E-06 

Coefficients 

Coe(f!cient 
Standard Error 
Lower95% Cl 
Upper95% Cl 

Let alpha = 0.05 
Test statistic= 1.96 

1826 0.0059897 

Intercept 
0.00014465 
2.8443E-05 
8.8863E-05 
0.00020043 

PHO SA 

0.7864023 
0.0165659 
0.7539121 
0.8188925 

Ho: a equal to O ; Ha: a not equal to 0 
t = (0.0001446- 0) I 0.00002844 = 5.08 
reject Ho: a equal to O 

Ho: b equal to 1 ; Ha: b not equal to 1 
t = (0.786402 -1) I 0.016566 = -12.89 
reject Ho: b equal to 1 
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Significance of F 
0 
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Results of Model Performance Evaluation 
Calibration for Nitrate-Nitrogen (N03N) 
Daily Model Output · 
Entire Data Set 
WS-IH 

Statistics for Linear Regression Analysis 
Statistic · Value 

Multiple R 0.38687448 
R Square 0.14967186 
Adj. R Square 0.14920593 
Standard Error 0.00027919 
Observations 1827 

ANOVA for Linear Regression Analysis 
df ss MS F 

Regression 
Residual 
Total 

1 2.504E-05 2.5E-05 321.2303 

Coefficients 

Coefficient 
Standard Error 
Lower95% Cl 
Upper95% Cl 

Let alpha = 0.05 
Test statistic= 1.96 

1825 0.0001423 7.79E-08 
1826 0.0001673 

Intercept 
2.1777E-05 
6.6458E-06 
8.7432E-06 
3.4811E-05 

N03N" 
0.410213 

o.022s8n 
0.3653243 
0.4551018 

Ho: a equal to O ; Ha: a not equal to O 
t = (0.00002178 - 0) I 0.000006646 = 3.28 
rejed Ho: a equal to 0 

Ho: b equal to 1 ; Ha: b not equal to 1 
t = (0.410213-1) I 0.022888 = -25.n 
rejed Ho: b equal to 1 
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Significance of F 
2.69194E-66 
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