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Abstract 

Urban traffic congestion is common and the cause for loss of productivity (due to 

trip delays) and higher risk to passenger safety (due to increased time in the automobile), 

not to mention an increase in fuel consumption, pollution, and vehicle wear. The fiduciary 

effect is a tremendous burden for citizens and states alike. One way to alleviate these ill 

effects is increasing state roadway and highway capacity. Doing so, however, is cost 

prohibitive. A better option is improving performance measurements in an effort to 

manage current roadway assets, improve traffic flow, and reduce road congestion. 

Variables like segment travel time, speed, delay, and origin-to-destination trip time are 

measures frequently used to monitor traffic and improve traffic flow on the state 

roadways. In 2014, ODOT was given access to the FHWA’s National Performance 

Management Research Data Set (NPMRDS), which includes average travel times divided 

into contiguous segments with travel time measured every 5 minutes. Travel times are 

subsequently segregated into passenger vehicle travel time and freight travel time. Both 

types of time are calculated using GPS location transmitted by way of participating 

drivers traveling along interstate highways.  

This thesis presents research detailing the use of NPMRDS dataset consisting of 

highway vehicle travel times, for computing performance measurements in the state of 

Oklahoma. Data extraction, preprocessing, and statistical analysis were performed on the 

dataset. A comprehensive study of the dataset characteristics, including influencing 

variables that affect data measurements are presented. A process for identifying 

anomalies is developed, and recommendations for improving accuracy and alleviating 

data anomalies are reported. Furthermore, a process for filtering and removing speed data 



xvii 

outliers across multiple road segments is developed, and comparative analysis of raw 

baseline speed data and cleansed data is performed. Identification and computational 

comparison of travel time reliability performance measurements is done. A method for 

improved congestion detection is investigated and developed. Finally, traffic analytics 

using machine learning is performed to identify and to classify congested segments and 

a novel approach for identifying non-recurrent congestion sources using Bayesian 

inference of speed data is also developed and introduced. 
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Chapter 1: Introduction 

Traffic congestion is commonplace in populated cities where most commuters expect 

delays, especially during peak driving hours. Accordingly, travelers and transportation 

companies (i.e., shippers) adjust their schedules and budget additional time for 

unforeseen circumstances that alter travel time. However, unexpected congestion (i.e., 

traffic delay worse than usual) is even more troublesome for travelers [1] who desire 

travel time reliability (i.e., consistency or dependability in travel time) based on their 

typical day-to-day driving experience at various times throughout the day.  

Traffic congestion is typically communicated in terms of simple averages. However, 

most travelers are quick to recall an incident that was much worse than their average 

travel time. Travel time can vary greatly from day to day, and days when a driver spent 

time suffering through an unexpected delay often stands out. Figure 1 illustrates this 

concept. In essence, averages do not tell the full story. 

 

Figure 1 - Theoretical vs. perceived notion of congestion. 
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1.1.  What is travel time reliability? 

Work done by the University Of Florida Transportation Research Center in 

collaboration with Florida Department of Transportation (DOT) [2], provides a 

comprehensive review of travel time reliability. In an early report they quote Ebling’s [3] 

widely accepted definition of reliability: “the probability that a component or system will 

perform a required function for a given period of time when used under stated operating 

conditions. It is the probability of a non-failure over time.” Ebling states that travel time 

reliability must be made specific by providing an unambiguous and observable 

description of a failure, including the unit of time over which failure will be evaluated. In 

other words, travel time reliability is the absence of variability in travel times. In a 

roadway network context, users perceive a reliable system as one in which each traveler 

or shipper experiences actual time-of-arrival (ATA) that matches desired-time-of-arrival 

(DTA) within some accepted window of time. This notion is shown in Figure 2. 

 

Figure 2 - Desired vs. actual times of arrival in defining travel time reliability. 
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1.2.  What affects travel time reliability? 

 Researchers in [4], detail seven main causes that affect travel time reliability. These 

can roughly be grouped into three categories:  

Category 1 — Non- Recurrent causes: 

1. Traffic incidents. Traffic incidents are defined as events that disrupt the normal 

flow of traffic. In general, such incidents represent physical impedances in travel 

lanes on the roadways. Examples include roadway vehicle accidents, vehicle 

breakdowns, and debris obstructing travel lanes used for commute. In addition to 

physical, on-road impediments, events that occur on the shoulder or side of the 

road, even fire or accidents, can also impact traffic flow by distracting drivers, 

which can cause changes in driver behavior. 

2. Work zones: Work zones include construction activity on the roadway that affects 

traffic flow and results in physical changes to the highway environment (e.g., 

reduction in the number or width of travel lanes, lane diversions, and temporary 

roadway closures). Unpredicted delays caused by work zones are one of the most 

frustrating conditions travelers encounter. 

3. Weather: Environmental conditions like high levels of snow or rain precipitation, 

bright sunlight, fog, or icy roadway surface conditions can cause reduced visibility 

or hazardous driving conditions. Drivers will often react by lowering their speed 

and/or increasing their headway.  

Category 2 —Recurrent causes: 
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4. Demand fluctuations. In-demand day-to-day variability in demand leads to higher 

traffic volume on some days than on others. When superimposed on a system with 

fixed capacity, such variability results in unreliable travel time. 

5. Repetitive events. An out-of-the-ordinary, abnormally large traffic volume (e.g., 

special events like sporting events or concerts) occasionally occur and cause a 

surge in traffic demand that often times overwhelms a traffic system. 

Category 3 — Continuous causes: 

6. Traffic control devices. Intermittent disruption caused by control devices (e.g., 

poorly timed traffic signals and railroad grade crossings) could contribute to 

congestion and travel time variability, sometimes causing traffic disruption and 

changes in driver behavior at disjoint instances of time. 

7. Inadequate base capacity. This effect on travel time reliability is defined as the 

maximum amount of traffic managed by a given highway section. Transportation 

engineers have long studied and addressed the physical capacity of roadways, 

which is determined by a number of factors (e.g., number and width of lanes and 

shoulders; merge areas, such as onramps and off ramps; and roadway alignment, 

such as grades and curves). Given that congestion occurs when volume is larger 

than roadway capacity, it can be said that inadequate base capacity creates delay 

in the same way traffic volume variations and fluctuations do, namely as 

bottlenecks in areas where section capacity is ineffective at supporting traffic 

volume. 
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1.3.  Why travel time reliability? 

Costs associated with travel time are critical factors when evaluating transportation 

infrastructure initiatives and investments aimed at minimizing time delay. As mentioned 

above, travel time reliability is a measure of the extent of unexpected delay. This measure 

is highly significant to a variety of transportation system users, including vehicle drivers, 

transit commuters, freight shippers, and air travelers. Personal and business travelers 

value reliability, as it affords them the utmost use of their time. Shippers and freight 

carriers require predictable travel times to remain competitive. Reliability is a value-

added tangible on privately financed highways (i.e., tollways). The importance of 

reliability has forced transportation planners and decision-makers to consider travel time 

reliability a key performance measure. 

1.4.  National Performance Management Research Data Set 

(NPMRDS) 

The Federal Highway Administration (FHWA) recognizes the importance of travel 

time reliability and its significance for quantifying the benefits of traffic management and 

roadway operations. Accordingly, the FHWA offers state DOTs a dataset of travel times 

for all National Highway System (NHS) roadways as a way of promoting the adoption 

and use of travel time reliability measures. Such nationwide data is designed to 

complement existing state DOT’s travel time measurements and reports. The relationship 

of this National Performance Management Research Data Set (NPMRDS) and the 

Oklahoma Department of Transportation (ODOT) is the focus of this thesis and all work 

presented herein. 
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1.4.1. Overview of the NPMRDS 

In 2013, the FHWA acquired a national dataset of average travel times for use in its 

performance measurement reports [5], most notably the Freight Performance Measures 

(FPM) and the Urban Congestion Report (UCR). The latter leverages data toward 

developing congestion and reliability measures in the 52 most populated urban areas in 

the U.S [6]. States and Metropolitan Planning Organizations (MPOs) can utilize the data 

to meet their Moving Ahead for Progress in the 21st Century Act (MAP-21) performance 

management requirements. Monthly data reports detail the entire NHS. Observed average 

travel time measurements are collected 24 hours-a-day in 5-minute intervals for freight 

truck vehicles and passenger vehicles, as well as for combined vehicles records for both 

types. 

The NPMRDS is a probe based traffic data [7] characterized by high spatial-temporal 

record count variability generated by vehicles (i.e., probes) reporting to a central server 

via some type of telemetry. Passenger probe data is collected by HERE, and freight probe 

data is collected by the American Transportation Research Institute (ATRI). HERE data 

is collected from mobile phones, vehicle navigation systems, and portable navigation 

devices [8]. Freight data leverages embedded fleet data-collection systems. Combined 

travel time data is a weighted average of freight and passenger vehicle travel times based 

on respective traffic volumes. Neither freight nor passenger volumes are reported. The 

Geographic Information System (GIS) roadway network divides the NHS into directed 

segments. Time statistics are binned in 5-minute intervals per Traffic Message Channel 

(TMC) segment per vehicle type. Probe coordinates are based on Global Positioning 

System (GPS) equipment (e.g., smartphones, navigation devices) located in vehicles. 



7 

Recorded data is referenced to segments on a map, and multiple speed records collected 

from all probes in a single segment during any given 5-minute time bin are used to assign 

a travel time value to that particular segment. HERE’s static files contain all TMC 

segment information details. The information is only updated when necessary changes 

are present. Table 1 details information associated with a static NPMRDS file and also 

provides a description of each entry. 

A separate NPMRDS data file reports average travel times for roadways geo-

referenced to each of the TMC location codes. Table 2 details a description of associated 

fields. Given the continuous, large scale, and probe-based nature of traffic data, the 

number of observations reported in variable traffic conditions can fluctuate significantly. 

Furthermore, because the FHWA has specified that no smoothing, outlier detection, or 

imputation of traffic will be performed on the NPMRDS data after it is collected by 

HERE, the dataset is known to contain unique characteristics that yield traditional 

processing techniques that are routinely performed by DOT agencies ineffective. This 

presents several challenges, as well as several opportunities for DOT agencies to make 

beneficial use of the data. 
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Table 1 - TMC static file format. 

Field Name Type Example Description 

TMC String 111N06515 

The TMC code is an industry convention that 

defines a particular directional segment of the 

road. In North America, a consortium consisting 

of HERE (NAVTEQ) and Tele Atlas created 

and continually maintain the location code table 

that adheres to the international standard on 

location referencing (ISO 14819-3:20043) [9]. 

Traffic Location code in the format of: 

CLLDTTTTT 

• C is the Country Code (1 digit). 

• LL is the Country Code (2 digit). 

• D (’P’ Positive or ’N’ Negative direction 

of the TMC). 

• TTTTT is the Country Code (5 digit). 

ADMIN_LEVEL_1 String USA The Country where the listed TMC is located. 

ADMIN_LEVEL_2 String Oklahoma 
The State/Province where the listed TMC is 

located. 

ADMIN_LEVEL_3 String Osage The County where the listed TMC is located. 

DISTANCE Float 7.2245 
The length of TMC segment measured in Miles 

to five decimal places. 

ROAD_NUMBER String US-60 The Route Number of the road. 

ROAD_NAME String Bartlesville Rd The Local Name of the route. 

LATITUDE Float 36.74456 WGS84 Latitude coordinate to five decimal places 

LONGITUDE Float     -96.29404 WGS84 Longitude coordinate to five decimal places 

ROAD_DIRECTION String Westbound Represents the direction of travel on the road. 

 

Table 2 - Travel time file format. 

Field Name Type Example Description 

TMC String 111N06515 Traffic location code 

DATE String 01022014 Day Month Year (DDMMYYYY) 

EPOCH Integer 48 

A value from 0 through 287 that defines the 5-

minute peruid the average speed applies (local 

time) 

Travel_TIME_AL

L_VEHICLES 
Integer 44 

Travel times calculated in seconds between the 

segment length and the average speed on the 

segment. Average segment speed is determined 

from a combination of the passenger and freight 

trucks GPS probe speed observations. 

Travel_TIME_PA

SSENGER_VEHI

CLES 

Integer 76 

Travel times calculated in seconds between the 

segment length and the average speed on the 

segment. Average segment speed is determined 

from only passenger individual GPS probe speed 

observations. 

Travel_TIME_FR

EIGHT_TRUCKS 
Integer 66 

Travel times calculated in seconds between the 

segment length and the average speed on the 

segment. Average segment speed is determined 

from only freight trucks individual GPS probe 

speed observations. 



9 

1.4.2. Existing and related work using NPMRDS 

Currently, DOTs, MPOs, and research institutions with some experience concerning 

analyzing probe data and performing big data analytics are utilizing the NPMRDS data 

in their performance measurements and reliability reports. Public documentation 

describing the NPMRDS dataset was first made available via a presentation given by the 

FHWA Office of Operations and Resource center, HERE, and The Volpe Center in 

November of 2013 [7]. Soon afterwards, research was reported by academic institutions 

and other parties who were interested in investigating ways to utilize the dataset. One of 

the earliest presentations was made by the Wisconsin Traffic Operations and Safety 

Laboratory during the second quarterly NPMRDS webinar in February, 2014 [10], [11] 

and [12]. Researchers discussed performance measures, along with a representation of 

the data on maps. Also, during the same webinar, the University of Maryland highlighted 

differences in the Traffic Message Channel (TMC) codes and map realizations used by 

NPMRDS and the I-95 Corridor Coalition’s Vehicle Probe Project (VPP). Results 

indicated that direct comparisons between different sources should be carefully executed 

to account for differences in segment properties [10]. In March 2014, a collaborative 

effort by the University of Minnesota and Minnesota Department of Transportation 

explored the feasibility of using one month of NPMRDS data gathered in Minnesota to 

compute freight mobility and speed variations along the NHS during AM and PM peak 

periods [13]. No data filtering was performed prior to analysis and visualization. In April 

2014, the ATRI center published work using NPMRDS data to compute congestion and 

the cost of delay incurred by the trucking industry [14]. Freight truck data from NPMRDS 

and data from ATRI’s Freight Performance Measures database was used in the study. 
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During the third quarterly NPMRDS webinar in May 2014, Iteris shared their work 

implementing performance measures for Utah DOT [15]. The presentation indicated data 

imputation was the result of smoothing, although no filtering was applied to the dataset. 

A study comparing NPMRDS data with Bluetooth re-identification and VPP probe data 

was conducted at the University of Maryland and presented at the 2014 ITS World 

Congress [16]. Results were further expanded and subsequently presented at the 94th 

Annual Meeting of Transportation Research board in January 2015 [17]. Researchers 

concluded that congestion measures using the NPMRDS were accurate 95% of the time, 

and reliability measures were accurate 15% of the time.  Researchers stated that “At this 

point it is not clear whether the source of this difference is because NPMRDS data is non-

filtered and not validated or something more intrinsic is occurring”. In 2015, the 

University of Maryland published a report [18] discussing the benefits of the NPMRDS 

dataset. In the report, they addressed how agencies could include travel time reliability as 

part of a cost-benefit analysis when making decisions about congestion reduction–related 

project investments. The University of Maryland also published their findings in the 

Transportation Research Board (TRB) [19]. Researchers discussed their methodology for 

processing NPMRDS data. In the article, the researchers described the use of 24-hour 

overlay plots for imputing missing values for any particular epoch. No outlier filtering 

was applied. The group also demonstrated a case study of comparing NPMRDS data and 

Bluetooth traffic probe data from INRIX. Researchers recommended investigating 

NPMRDS fidelity as the basis of performance and basic outlier detection. Researchers at 

Old Dominion University [20] (in collaboration with the Virginia Center for 

Transportation Innovation and Research) conducted a study based on data gathered 
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during a one month time period. Results suggested differences in freight and general 

traffic characteristics with slightly higher freight travel times and slightly lower 

reliability. CDMsmith [21] [22], a private engineering solutions firm, presented a study 

for Oklahoma DOT about using NPMRDS data for analyzing road traffic congestion. 

To date, all related, published work had relied on data imputation with no filtering or a 

process for outlier removal for the NPMRDS specific domain. The University of 

Wisconsin-Maddison Traffic Operations and Safety (TPOS) [23] however, introduced 

early work addressing filtering the dataset. Researchers identified outliers with a 

negligible effect on summary statistics and recommended scanning the dataset for 

observations several standard deviations above the mean that occurred throughout the 

analysis period. In July 2015, the University of Washington (in collaboration with the 

state of Washington DOT) published a more comprehensive report for computing freight 

performance measures characterized by outliers [24]. Three primary limitations to the 

NPMRDS dataset were the impetus for researchers to recommend data pre-processing by 

eliminating speeds below 2 mph, resetting all speeds above the speed limit to the posted 

speed limit, and implementing an epoch correction phase to reset epochs based on the 

value of the consecutive epochs of the same segment. Researchers also reported that 

segments longer than one mile resulted in data that were less accurate and that optimum 

results are found in segments one mile in length and less. In February 2016, the university 

of Wisconsin-Maddison published a guidebook for freight transportation planning using 

truck GPS data [25]. A section of the study included data for one month from the FHWA’s 

NPMRDS dataset, which was used to compute freight mobility and speed variations along 

Minnesota’s NHS. The Upper Midwest Reliability Resource Center maintains an online 
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Travel Time Reliability Reference Manual [26] where NPMRDS data is compared with 

probe data from INRIX. Results indicate NPMRDS data has a lower mean for travel time 

with a higher variance than data from INRIX. 

Several academic research communities have developed tools based on NPMRDS 

probe data. The University of Wisconsin’s developed a traffic tool for Wisconsin DOT 

that featured an interactive map of the interstate system based on NPMRDS data [27]. A 

working prototype, operations coordination mapping application, namely “The Interstate 

Mobility Performance Scanning Tool” (IMPST) [28], was developed as part of the Great 

Lakes Regional Transportation Operations Coalition (GLRTOC), which includes, Illinois 

Department of Transportation, Illinois State Toll Highway Authority, Indiana 

Department of Transportation, Indiana Toll Road Concession Company, Iowa 

Department of Transportation, Kansas Department of Transportation, Kentucky 

Transportation Cabinet, Michigan Department of Transportation, Ministry of 

Transportation Ontario, Minnesota Department of Transportation, Missouri Department 

of Transportation, Ohio Department of Transportation, Skyway Concession Company, 

and the Wisconsin Department of Transportation. Also, researchers at the University of 

Maryland at the Center for Advanced Transportation Technology (CATT) laboratory 

have developed the Regional Integrated Transportation Information System (RITIS), 

which is an automated data sharing, dissemination, and archiving system that includes 

many performance measures that are available for agencies use. The CATT Laboratory 

operates three independent data centers.  Most data centers are used, in part, to collect 

and archive nearly 60 incoming transportation data feeds from agencies across the 
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country, one of which is the NPMRDS dataset.  The RITIS website allows registered 

public safety and DOT employees to view real-time RITIS data in a browser.   

Tools and services offered in the industry sector include HERE-based services such 

as HERE Real Time Traffic Services [29], INRIX, which provides roadway congestion 

information in real time and claims to report accurate real time traffic conditions; and 

Iteris [30], which offers a range of services and software that includes arterial, freeway, 

and transit route online traffic monitoring tools.  Iteris also offers a software solution 

called IterisPeMS, which is a performance management system for transportation 

networks. TomTom is another traffic index provider offering traffic congestion 

information about traffic jams and accidents occurring during rush hour, as well as 

telematics, maps, and location-based services. The tool relies on data collected from its 

network of users. Privately owned companies are also beginning to provide solutions for 

using NPMRDS data. 

Nevertheless, an online investigation has proven that few DOT agencies are utilizing 

the NPMRDS dataset due to the sheer volume of records, which requires big data 

analytics capabilities. Also, there is significant complexity associated with analyzing and 

visualizing the datasets in a meaningful way. Although the FHWA provides reports that 

utilize travel time data from the NPMRDS dataset [31] (e.g., Urban Congestion Report 

(UCR)), reports are produced on a quarterly basis and reflect only the collective 

congestion trend of each state. State DOT agencies have been left to their own to develop 

tools for investigating a more detailed view of intrastate highway conditions, for 

analyzing types and locations of congestion, and finding methods for mitigating the 

effects. Previous work has indicated that the shorter the roadway segment, the more 
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accurate the NPMRDS data. In many cases, however, this finding was contrary to results 

presented herein for the current NPMRDS data. In fact, shorter segments exhibit an 

unknowingly problematic anomalous data, as will be shown in subsequent chapters of 

this thesis. Furthermore, the notion of congestion expanding both in time and space 

renders scanning for congestion in only the same segment insufficient, as travel times 

over roadways follow trajectories spanning consecutive segments over time. In short, 

scanning must be performed for both the selected and the segments subsequent to the 

selected segment. Thus, further research is required to formulate correct processes for 

filtering the dataset prior to using it in reliability reports, as the presence of outliers greatly 

affects results accuracy. 

1.5. Contribution of thesis 

This thesis presents research detailing the use of the NPMRDS for computing 

performance measures in the state of Oklahoma. Data extraction, preprocessing, and 

statistical exploratory data analysis were performed on the NPMRDS dataset. Baseline 

historical raw calculations of road segment speed average (including outliers), variance, 

and standard deviation (STD) across various time scales are shown. A comprehensive 

study of NPMRDS data characteristics and influencing variables that affect probe data 

measurements (e.g., segment length, road geometry, and other external factors on speed 

data) is presented. A process for identifying anomalies is developed, and 

recommendations for improving accuracy and alleviating data anomalies are reported. 

Moreover, a process for filtering and removing speed data outliers across multiple road 

segments is developed, and comparative analysis of raw baseline NPMRDS speed data 

and cleansed data is presented. Identification and computational comparison of free flow 
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speed, 85th percentile, and travel time reliability performance measures were computed 

using both raw and cleansed datasets. A method for improved congestion detection was 

also investigated and presented. Finally, traffic analytics using machine learning was 

performed to identify and to classify congested segments. A novel approach for 

identifying non-recurrent congestion sources using speed data was also developed and 

introduced. 

The main contributions of this thesis are summarized below 

 This work applies traffic data analytics, statistical analysis, and machine learning 

to the NPMRDS to develop models, tools, filtering processes, and performance 

measures enabling agencies and other users to characterize, understand, and gain 

insight into actual traffic patterns of NHS roadways using the dataset.   

 To the author’s knowledge, this work includes a first-of-a-kind analysis 

incorporating an adapted version of Benford’s law, developed to detect 

inadvertent anomalous data generated in the dataset. Furthermore, models are 

formulated that alleviate and remove these anomalies. 

 This work presents a step-by-step process for filtering and removing outliers from 

the NPMRDS dataset. The process is highly beneficial for agencies and 

researchers interested in working with the NPMRDS dataset. 

 A novel approach is introduced for identifying non-recurrent congestion sources 

that affect roadway segments. The proposed method can promptly respond to 

changes in traffic patterns, proving it is suitable for implementing real-time 

detection technology. 
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The balance of this thesis is organized in the following manner. The next chapter presents 

the framework and tools utilized for NPMRDS data acquisition and preprocessing. It also 

provides information for a necessary understanding of the unique characteristics of the 

NPMRDS data, with a focus on challenges associated with probe data. Chapter 3 presents 

a core process for detecting anomalies/outliers in the dataset and develops models for 

alleviating said anomalies. An inclusive process for filtering outliers, which caters to the 

NPMRDS domain, is presented. Chapter 4 is devoted to statistical exploratory analysis 

of the dataset. A qualitative comparative analysis of both raw and cleansed datasets is 

presented to aid in determining the effect of outlier removal from final results. The 

chapter also includes an improved approach for detecting congested segments. Reliability 

performance measure computations follow in Chapter 5, wherein Free flow, 85th 

percentile, travel time index, buffer index, and planning time index are identified and 

computed—separately for each segment and collectively for the overall highway. Chapter 

6 presents traffic data analytics applied to the dataset via clustering and classification 

using a combination of unsupervised and supervised learning techniques. A novel 

solution for congestion identification is demonstrated at chapter end. Finally, summary 

findings and a conclusion are presented in Chapter 7. Future directions for research are 

suggested, as well. 
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Chapter 2: NPMRDS Acquisition, Characteristics and Processing 

NPRMDS data contains travel times for all NHS roadways, including those in the 

state of Oklahoma. This chapter provides information necessary to develop an 

understanding of the framework required for processing data collected from one 

particular interstate highway in Oklahoma, namely Interstate 35 (hereafter, I-35). This 

chapter discusses limitations and challenges associated with utilizing NPMRDS data. 

Such information is necessary to arm the reader with knowledge about specific features 

of this data domain. Once necessary tools and a framework are developed, they can be 

extended to collectively process travel times for all NHS roadways in Oklahoma.  

2.1.  Dataset acquisition  

Data records were obtained from ODOT following the successful collection of 

NPRMDS data files from a shared FHWA repository accessible only by state DOTs and 

MPO agencies. The dataset was composed of large files with the naming convention 

“FHWA_TASK_201x_xx_OK_TT,” where marked x’s represent the year and month of 

data collection. Travel times were recorded monthly per segment on NHS roadways. 

Figure 3 depicts Oklahoma’s NHS roadways and illustrates locations at which travel time 

data is captured. Figure 4 highlights the three interstate highways which form a crossroad 

in Oklahoma. According to NPMRDS static file, NHS roadways in Oklahoma are 

composed of 4,323 defined segments, each generating one epoch every five minutes, 

which is equivalent to 288 epochs per day, per segment. These figures scale to 

approximately 1,245,024 records per day, and 448,208,640 records annually. Nationwide, 

282,402 segments generate 81,331,776 records daily, which scale to approximately 
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29,279,439,360 annually. Figure 5 shows NHS roadways for all 50 states, including 

Puerto Rico [32]. 

 

Figure 3 - NHS roadways in Oklahoma. 

 

Figure 4 - NHS roadways in Oklahoma magnified. 
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Figure 5 - NHS for all states. 

The amount of travel time data records recorded inhibits the ability of using typical 

desktop software, which most public agencies rely on, for processing. Handling the files 

requires knowledge of, and access to, more advanced database or statistical analysis tools. 

2.2.  Hadoop environment and data extraction 

Apache™ Hadoop® is a popular open source tool that enables distributed processing 

and manipulation of large data sets across clusters of commodity servers [33]. The 

software is highly scalable from a single server to thousands of machines, with an 

extremely high degree of fault tolerance. Accordingly, a five-node Hadoop setup was 

constructed for data pre-processing on the large sets of NPMRDS data. See Figure 6. 
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Figure 6 - Illustration of analytics lab 5 node Hadoop setup. 

 

Processing using Hadoop commences with the copying of travel time files from the PC 

computer to the Hadoop NAMENODE server. Uploading data to the Hadoop File System 

(HDFS), and then storing it as an accessible, query-able file on the cluster, allows 

manipulation and processing of data in any order. In turn, the user is granted the flexibility 

to quickly and efficiently extract a particular record according to a predefined criterion 

from the millions of available records. The following steps are necessary to achieve this 

task:  

1- Create a new directory in the HDFS to save the files in the Hadoop cluster. 
hadoop fs -mkdir /user/hadoop/NPMRDS/2014 

hadoop fs -ls /user/hadoop/NPMRDS/ 

 

2- Copy the data to the HDFS 
hadoop fs -copyFromLocal ~/NPMRDS/*2014*.CSV /user/hadoop/NPMRDS/2014 

hadoop fs -ls /user/hadoop/NPMRDS/2014 

 

3-  Check the contents of a data file using the below command: 
hadoop fs -tail /user/hadoop/NPMRDS/test/testdata.csv 

 

Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing 

data summarization, query, and analysis [34]. Apache Hive supports analysis of large 

datasets stored in Hadoop's HDFS and provides a Structured Query Language (SQL)-like 

language, namely HiveQL, with schema on read to transparently convert queries to 
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map/reduce. HIVE was used to query the datasets in HDFS and execute desired 

map/reduce queries. HIVE-generated customized query commands necessary for the 

work in this thesis are shown below: 

1- Create a searchable internal container for the NPMRDS data 

CREATE TABLE sampletest_2015(col_value STRING); 

LOAD DATA INPATH '/user/hadoop/NPMRDS/2015' OVERWRITE INTO TABLE 

sampletest_2015; 

 

CREATE TABLE NP_2015(bef int, aft int, let string,month int, day int, year int, TMC 

string, DATE int, EPOCH int, TravelALL int, TravelPass int, TravelFre int); 

 

INSERT OVERWRITE TABLE NP_2015 

SELECT 

regexp_extract(col_value,'([0-9]+)[A-Z]') 

bef, 

regexp_extract(col_value,'[A-Z]([0-9]+)') 

aft, 

regexp_extract(col_value,'([A-Z]+)') 

let, 

regexp_extract(col_value,'[,]([0-9])[0-9]+[,]') 

month, 

regexp_extract(col_value,'[,][0-9]([0-9][0-9])[0-9]+[,]') 

day, 

regexp_extract(col_value,'[,][0-9]+([0-9][0-9][0-9][0-9])[,]') 

year, 

regexp_extract(col_value,'([0-9A-Z]*)[,]') 

TMC, 

regexp_extract(col_value,'[,]([0-9]*)[,]') 

DATE, 

regexp_extract(col_value,'([0-9]*)\,([0-9]*)\,([0-9]*)\,([0-9]*)$') 

EPOCH, 

regexp_extract(col_value,'([0-9]*)\,([0-9]*)\,([0-9]*)$') 

TravelALL, 

regexp_extract(col_value,'([0-9]*)\,([0-9]*)$') 

TravelPass, 

regexp_extract(col_value,'\,([0-9]*)$') 

TravelFre 

from sampletest_2015; 

2- Query for Oklahoma i35 TMC’s, Southbound, in January 2015. 

CREATE TABLE i3512015(TMC string, DATE int, EPOCH int, TravelALL int, TravelPass int, 

TravelFre int); 

 

INSERT OVERWRITE TABLE i3512015 

SELECT 

TMC, 

DATE, 

EPOCH, 

TravelALL, 

TravelPass, 

TravelFre  

from np_2015 WHERE bef= "111" AND let="N" AND DATE< 2000000 AND ((aft<5638 AND 

aft>5619)OR(aft<4932 AND aft>4894)OR(5144<aft AND aft<5160)OR(5481<aft AND 

aft<5505)OR(5398<aft AND aft<5404)); 

 

hadoop fs -cat  /user/hive/warehouse/i3512015/000000_0 > ~/Results/i3512015 

scp Results/i3512015 nbitar@156.110.167.57:~/Dropbox 
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Figure 7 - Output of Hive. 

Figure 7 shows Hadoop final output after the map/reduce execution is complete. At this 

stage, required data had been extracted and rearranged into segment–travel time) 

matrices. Adequate statistical processing requires a thorough understanding of the 

characteristics of the data. Accordingly, the following subsection investigates the 

availability, attributes, and limitations of the NPMRDS dataset, and, in particular, 

illustrates examples for I-35 southbound. 

2.3.  Dataset characteristics: challenges and limitations 

As aforementioned, NPMRDS data is based on instantaneous GPS data records 

obtained from vehicles that carry GPS devices reporting location and speed to HERE and 

ATRI, [19]  [23],  [24] and [22]. Combined travel time measurements reported in the 

NPMRDS dataset are computed as a weighted average of both recorded passenger and 

truck travel times according to the number of available probes for each. However, actual 

volume of each vehicle type is not reported by HERE/ATRI. Understanding the nature of 

the NPMRDS dataset is key for effective data post processing (e.g., anomaly and outlier 

detection, as well as measures for their removal). Challenges and limitations are 

enumerated below: 

2.3.1.   Size of the data: 

The monthly, HERE-generated NPMRDS dataset size is large. Moreover, the 

number of records generated per segment for each highway renders conventional tools, 
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such as Microsoft Excel, ineffective for post processing. Any given typical month can 

generate data in the order of 30 to 40 million records. This number far exceeds the one 

million record capability of Excel. Thus, working with NPMRDS data requires database 

and scripting expertise [23].  

2.3.2.   High spatial-temporal probe and record data variability: 

NPMRDS probe data is based on a variable number of available probes and resulting 

records generated at any segment location. Data varies considerably depending on time 

of day and day of the week. Also, variance in the spatial domain is due to variance in the 

number of probes between consecutive segments at any given time of day. Furthermore, 

variability is dependent upon the number of probes per vehicle type at the same location 

and the same time (i.e., passenger vehicle vs. truck probes). For example, Figure 8 shows 

TMC segment (111N04920) located south of Oklahoma City.  

 

Figure 8 - TMC "111N04920" located south of Oklahoma City. 

Figure 9 shows a bar plot for the total number of epochs recorded on TMC segment 

(111N04920) per day for 31 days during the month of January 2015. Mean value of 

recorded epochs was 219.5806, and Standard Deviation (STD) was 20.0678. Clearly, the 

number of epochs for the same segment fluctuates daily. 
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Figure 9 - Daily bar plot of epochs recorded for TMC 45 during Jan 2015. 

 

Figure 10 details the difference in epoch count per day for two bordering segments. For 

TMC 46, mean was 184.0968 epochs and STD was 24.2918. Epoch count variance 

between both segments is considerable. 

 
Figure 10 - Bar plot of epochs recorded for segments 45 and 46 during Jan 2015. 

Variance per day relative to three time groupings is as follows. Group 1 is indicated by 

morning hours from 12 a.m. to 8 a.m.; Group 2 indicates afternoon hours between 8 a.m. 

and 4 p.m.; and Group 3 represents the evening hours from 4 p.m. to 12 a.m. Group 2 

(i.e., afternoon) generated the greatest number of epochs; the least number of epochs were 
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generated during the evening. Table 3 illustrates the mean over 31 days per group for 

segment TMC 45. 

Table 3 - Probe epochs available per time of the day for segment 45. 

Group Group (1): 12am – 8am Group (2): 8am – 4pm Group (3): 4pm – 12am 

Mean 56.3508% 93.9180% 78.4610% 

STD 8.8708 6.0338 6.8185 

 

When inspecting the number of epochs recorded per vehicle type per day, a 

difference between probe types was evident. As count per probe type varies, the combined 

travel time computed as the weighted average is highly influenced. Table 4 shows the 

mean percentage of epochs per probe type, as well as the percentage of combined travel 

time mean. 

Table 4 - Mean number of epochs per probe type for segment 45. 

Group Combined Passenger Vehicles Trucks 

Mean 76.2433% 57.1909% 56.5076% 

STD 20.0678 30.4961 19.5703 

 

Given the average across all segments of highway I-35, we get similar results, as shown 

in Table 5 and Table 6. 

Table 5 - Probe epochs available per time of the day for i-35 (98 segments). 

Group Group (1): 12am – 8am Group (2): 8am – 4pm Group (3): 4pm – 12am 

Mean 58.1135% 87.8185% 76.6424% 

STD 8.6746 4.4879 5.8671 

Table 6 - Mean number of epochs per probe type for i-35 (98 segments). 

Group Combined Passenger Vehicles Trucks 

Mean 74.1915% 49.8046% 60.9439% 

STD 16.4836 25.1715 16.4760 
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2.3.3. Missing data: 

A special case of spatial and temporal variance in epochs was reported for segments 

per probe type when probe data was unavailable for any type of vehicle. The result is a 

gap in travel time, as HERE fails to generate any record data for such special cases. This 

phenomenon was evident on certain rural NHS roadways in Oklahoma when probe 

number was very low on average and resulted in an extremely small number of epochs. 

The result was large data gaps for several hours, which made characterizing travel time 

for a particular segment highly skewed. This problem was found to a lesser extent on 

interstate highways and large arterial roadways, where the number of probes is higher on 

average. A comparison between the number of epochs generated on I-35 during January 

2014 and January 2015 can be drawn by looking at Table 7 and Table 8, the number of 

probes increased for both types of vehicles, particularly for trucks. This phenomenon is 

reflected in an increase in combined travel time epochs, from 54% to approximately 73%. 

Table 7 - Number of epochs recorded per probe type. 
Group Combined  Passenger Vehicles Trucks 

January 2014 481338 388040 234403 

January 2015 649134 435762 533225 

 

Table 8 - Percentage of total epochs per probe type. 
Group Combined  Passenger Vehicles Trucks 

January 2014 53.913306% 43.463262% 26.254816% 

January 2015 72.707661% 48.808468% 59.725022% 

2.3.4. Bias toward Lower speeds: 

Travel time data in NPMRDS is probe data based on GPS records reported at fixed 

rates of time. Hence, the slower the probe vehicle speed, the larger the number of samples 

generated as the vehicle travels the length of the roadway segment. Consequently, a slow 
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vehicle will report more records than a fast vehicle. Since travel time reported for a 

segment is the average of all probe travel times calculated during a fixed time period and 

since slow moving vehicles report a higher number of records, average travel time is 

biased toward slower moving vehicle speeds. This limitation can be overcome by 

implementing a weighted average, where each vehicle is weighted according to the 

number of samples generated prior to computing travel time average of the segment. 

Doing so increases data collection complexity, but it also eliminates the effect of bias 

toward slower moving vehicles.  

2.3.5. Variability of segment lengths: 

 TMC segments defined for use in NHS roadways vary considerably in length. This 

variability entails several effects on travel time reliability and measurement accuracy. On 

one hand, shorter segments exhibit a smaller number of samples. Figure 11 illustrates 

Oklahoma I-35 southbound between the Kansas and Texas borders, per segment, per day. 

Several factors are at play, one being that the shorter the length of the segment, the less 

the density of vehicles contained in any unit of time. Moreover, because probe vehicles 

traverse the length of a short segment faster than they do a long segment, they generate a 

smaller number of samples in the shorter segment. In some cases, it is possible that probe 

vehicles could pass through an entire segment without reporting any record, especially if 

the sample time for instantaneous data being reported is larger than the time required to 

traverse the segment.  
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Figure 11 - Trend plot for number of epochs recorded versus length of segment. 

 

Consequently, this affects the number of samples recorded per segment for any roadway. 

Figure 12 illustrates the variability of average number of epochs recorded per day for I-

35 southbound. 

 
Figure 12 - Average number of epochs recorded per day reported per segment. 
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Long segments could experience different travel times across different parts of the 

segment, rendering average travel time an inaccurate representation of actual travel time 

across the entire segment.  

2.3.6. Vehicle performance and roadway geometry effect: 

In particular cases, truck-reported travel times were higher than passenger vehicle-

reported travel times. Inversely, this means that trucks traveling those particular segments 

are moving slower on average than passenger vehicles. Truck-reported travel times are 

prone to what is known as the Power-to-Weight ratio model [13], [24], which adversely 

affects truck speed. Trucks with heavier cargo tend to slow their speed for precautionary 

measures. In addition, traversing steep or elevated roads could also cause trucks to reduce 

their speeds. In such cases, reported travel time would model vehicle performance or 

roadway geometry characteristics rather than traffic conditions. 

2.3.7. Instantaneous speed reporting increases variability: 

Given a small number of probes, average speed for all vehicles on the roadway might 

not be accurately represented by the average of the probe samples. Moreover, because 

travel time is derived from instantaneous speeds reported by GPS devices, resulting 

captured values could project higher variability than might actually be occurring on the 

roadway. As vehicles maintain an average speed when traversing a roadway during these 

periods, it is possible that vehicles might continually increase and/or decrease at speeds 

above and below that average. Reporting instantaneous speeds results in travel time 

variation that might indicate variation that is different from that actually occurring on the 
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roadway. Figure 13 illustrates the variation in speed for segment 45 for one entire, non-

congested day. Clearly, there is significant variation between each consecutive epoch. 

 

 
Figure 13 - TMC 45 complete day epoch scatter plot for non-congested day of 

January. 

2.3.8. GPS in-acccuracy: 

In some cases, GPS coordinates of NHS roadways could match coordinates of non-

NHS roadways. Consequently, vehicles traveling non-NHS roadways could be 

mistakenly accounted as those traveling NHS roads and, as a result, distort collected 

travel time measurements. For example, bridges, tunnels, and parallel roadways cause 

NHS and non-NHS roadways to be located at the same geographical coordinate. If 

directionality is not provided or if the accuracy of GPS positioning is not precise, a 

traveler can easily be mistaken on an NHS roadway, even though he/she is actually 

traveling a non-NHS roadway, adjacent or near the NHS road. At an intersection, GPS 

location is associated with directionality, thus the error can be detected. Ultimately, the 

result of miscounted data is an increase in the variability of road travel times. 
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Figure 14 shows TMC 47 characterized by 0.5m of roadway crossing SE Grand Blvd 

road, which happens to be a major arterial. The satellite view depicted in Figure 15 shows 

that the NHS passes under the roadway. If directionality was not reported as a function 

of GPS measurement, vehicles on SE Grand Blvd could be miscounted as traveling I-35. 

Figure 15 also shows two parallel non-NHS roadways adjacent to I-35 southbound and 

northbound. If GPS positioning is not completely accurate, an erroneous count is possible 

as a result of vehicles traveling on either road. 

 

Figure 14 - Map view of TMC 47 crossroads with a major arterial. 

 

 

Figure 15 - Satellite view of TMC 47 cross with a major.  
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Chapter 3: Dataset Cleansing: Anomalies and Outliers 

In the previous chapter, limitations and challenges inherit in the NPMRDS dataset 

were described and discussed. Despite the aforementioned limitations, the NPMRDS 

dataset has important advantages that make it a valuable tool for crafting traffic 

performance measures. For example, because NPRMDS is a probe data set, travel times 

can be easily collected from different geographic regions. Compared to traditional fixed 

location detectors, NPRMDS data has higher granularity without the confines of location 

or forced infrastructural physical constraints. Moreover, NPRMDS data is continuously 

generated, enabling DOT agencies to look beyond separate periodic surveys of unusual 

highway conditions. However, capturing this information requires developing the right 

tools to extract, manipulate, and process NPRMDS data. A thorough understanding of the 

domain characteristic is necessary for accurate and effective statistical processing. 

Accordingly, the aforementioned limitations serve as guidelines for further anomaly 

detection and outlier removal procedures. These accommodations are presented in the 

next sections. 

A report published by CDMSmith—a private consulting company shows a procedure 

reportedly adopted by HERE (Provider of the NPMRDS) for dataset validation and 

quality assurance. a summary of which is shown in Figure 16. Details of this can be found 

in [22].  

Speed records acquired by HERE and ATRI  can be affected by anomalies and outliers, 

which collectively affect the accuracy of travel time reported in NPRMDS, as well as 

other performance measures that rely on travel time accuracy. See Figure 17. In short, the 

study begins analyzing data anomalies present in NPMRDS data, and then further 
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presents recommendations to alleviate and remove them. Moreover, the study continues 

to address outliers present in the dataset, offering suitable techniques to detect and remove 

outlier points from the data. 

 

Figure 16 - NPMRDS procedure for probe data validation and quality assurance 

  

 

 

Figure 17 – Summary of limitations generating outliers and anomalies in the 

NPMRDS 
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3.1. Data Anomalies: 

Data anomalies refer to erroneous, illegitimate data points present in a dataset that are 

caused by pre-processing, incorrect filtering, or other external processes or procedures 

irrelevant to the phenomena under measure. Anomalies threaten statistical soundness of 

a quantitative dataset.  

A prominent approach for evaluating statistical soundness of a quantitative dataset 

commonly applied in forensics and admissible in U.S. courts, is to check the digit 

distribution of a measured quantity. This stems from a famous law described by Benford 

in 1938 [35], and proved mathematically by T. Hill in 1995 [36]. Benford’s law is 

applicable to occurrences of natural events [37]. Simply stated, it is the principle that in 

any large, randomly produced set of natural numbers, there exists an expected distribution 

for digits in numerical data that deviates from the uniform, commonly known as Benford’s 

distribution. One limitation for this law is when a digit is capped by a maximum or 

minimum. Nevertheless, applying a similar approach, as a digit count process for the 

second digit of the speed converted time data recorded gives an understanding of the 

statistical distribution of measured speeds and provides insight to the statistical soundness 

of the data. Then, taking the variance of the distribution, instead of the actual histogram 

values, yields a prominent indicator for the occurrence of natural randomness in the events. 

The significance of this test is that the variance of the digits will not be heavily affected 

by sample outliers that might occur in particular days due to external factors such as 

weather, incident, or other causes. On the contrast, taking speed opposed to digits as a 

measure would be heavily influenced by such outliers in any variance measurement. 
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Consider a vector used to represent a set of measured speeds for consecutive vehicles 

traveling on a road. Let 𝜓1=[71 62 73 64 67 29 65 68 66] be the vector. Statistical analysis 

demonstrates that vector speed has a mean of 62.77 mph and a variance of 171.994. These 

are an inadequate indicator for anomalies. In the example, high variance was the result of 

a recorded outlier speed of 29 mph. Intuitively, speeds such as those reported in the vector 

could be expected for consecutive vehicle speeds, as they tend to be random in nature.  

However, the proposed distribution digit test for this same vector has a variance of zero, 

mainly because each second digit occurred only once. In this way, the test indicated that 

in spite of the outlier, data was not anomalous because recorded samples were random 

enough to represent actual natural occurrence. Given 𝜓2=[65 65 65 65 65 65 65 65 64], it 

is logical to assume the probability of eight consecutive vehicles traveling the exact speed 

is highly unlikely. Applying the speed variance statistical test results in a very small 

variance of 0.11, which inconclusively indicates vector speed data is natural. On the other 

hand, the proposed digit variance test reports a variance of 7, indicating the data exhibits 

abnormality in speed records recorded. 

Accordingly, a matrix of second digit distribution per segment for I-35 Southbound 

was constructed. Normalized variance was computed, and variance versus segments with 

decreasing length was plotted. The variance of Benford’s law for the second digit was 

calculated and can be found in [38] equal to 0.0011. Figure 18 illustrates the results with 

the Benford variance plotted in red. Clearly, a trade-off exists between segment length and 

the variability of second digit distribution. In other words, as segment length is reduced 

there exists a higher repetition in recorded consecutive speed. This means that recorded 

samples tend to deviate from the randomness expected in any natural occurrence. 
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Figure 18 - Variance between percentages of digits vs length of segment on I-35. 

 

 

This fact gives insight that the NPMRDS data contains anomalous entries being generated 

by HERE unknowingly. The reason we say unknowingly, is that we are sure the process 

is of natural occurrence and should always exhibit the random statistical soundness all 

natural occurrences generate. This is not the case in the NPMRDS data for smaller 

segments as Figure 18 shows. Further investigation reveals the cause of this anomaly. 

The reason is an inherent trade-off between segment length, system time granularity and 

the speed of vehicles traveling the segment. Assume a segment is of length 0.0426 miles. 

If the vehicle were traveling at the speed limit of 65 mph, it should traverse the entire 

segment in 2.3627 seconds. Because HERE reports epochs with a time granularity of 

integer seconds, the value will be rounded to 2 seconds, effectively translating speed to 

76.6 MPH. Furthermore, if a vehicle were traveling slower than 65 mph, for instance 62 

mph, then that time would be rounded to 3 seconds, effectively translating speed to 
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51.1920 mph. Thus, the range of actual speed suffers from a quantization error when 

reported. The error quantifying the range of ambiguous speeds, including actual vehicle 

speed measured, will hereafter be referred to as the Error Range (𝑬𝒓) of speed for a 

particular segment. 𝑬𝒓 for the example described above is 40 mph. According to the 

theory, speeds between 62.3 and 102 mph would be rounded off to 76.6 mph. The 

ramifications of this on accuracy and reliability are severe. Figure 19 shows such effects 

on segment 41, which has a length of length 0.0426 miles. By plotting measurements in 

the NPMRDS data, it is clear that exactly 2 speeds were reported. 

 

Figure 19 – Segment 41 daily epoch plot

Accordingly, interaction between time granularity and segment length should be modeled 

to provide 𝐸𝑟 for reported vehicle speed, given segment length and reported time 

granularity of the system. 

 Let 𝐸𝑟   represent the Error range for any given segment of length 𝐷 at speeds 

𝑉𝑖  where 𝑖 ∈ {1,2,3, … . }. 𝐸𝑟 encompasses all speeds that when rounded due to time 

granularity, report identical time. Thus, the difference between two speeds that yield the 

same time can be expressed as. 
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V2 − V1 = 𝐸𝑟 
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2
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4

] 

= D ∗ 3600 [
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] 

Substituting β = 3600*4 = 14400, 𝑇𝑡𝑖𝑚𝑒 =
𝐷 (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

𝑆 (𝑆𝑝𝑒𝑒𝑑)
  yields 

𝐸𝑟(S, D, Tgran) =    
D ∙ β ∙ Tgran  ∙ S2

β ∙ D2 ∙ 3600 − Tgran
2 ∙ S2

                              (1) 

 

where D is given in miles (M); Tgran is the reported time granularity in seconds (s); Ttime 

is the travel time reported by HERE in seconds (s); and S is the reported speed of vehicles 

in mph. 

Agencies can utilize equation (1) to validate speed accuracy reported by HERE. Figure 

20 plots 𝐸𝑟 vs. speed for segment 41.  
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Figure 20 - Plot of vehicle speed vs. error range in mph for Segment 41. 

 

Notably, the faster the vehicle speed, the larger the 𝐸𝑟. Section 41 was identified as the 

segment with the worst speed accuracy among all sections tested. Vehicles traveling at 

faster speeds create a larger bin of lumped speeds that confirm the same rounded-off 

second. Figure 20 demonstrates that even at moderate speeds of 50-60 miles, variance of 

20 to 40 mph is possible. Two critical questions and equations to solve them are presented 

below: 

1. Given segment length and maximum speed limit, what is the optimum time 

granularity for a system to achieve desired 𝐸𝑟? After solving equation (1), 

executing equation (2) can provide the solution to the question: 

 

𝑇𝑔𝑟𝑎𝑛(𝐷, 𝑆, 𝐸𝑟) = −
1

2
[(

𝐷 ∙ 𝛽

𝐸𝑟
) − √

𝐷2 ∙ 𝛽2

𝐸𝑟
2

+ 16 ∙ (
𝐷

𝑆
∙ 3600)

2

 ]               (2) 
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Figure 21 - Plot of Vehicle Speeds vs. Time resolution for Segment 41. 

 

Figure 21 shows a plot diagram for equation 2 for segment 41. Recorded time must 

be increased to 2 decimal points in order to achieve a 1 mph 𝐸𝑟. DOT agencies are advised 

to apply this equation to a road according to the highest speeds expected and smallest 

segment lengths to ensure that any data reported is correct for all segments of any 

roadway. 

2. Given a maximum speed limit and system capability for time granularity, what is 

the minimum acceptable length of a segment to achieve desired 𝐸𝑟 for a particular 

speed? Equation (3) provides the solution: 

 

             𝐷 (𝑆, 𝐸𝑟 , 𝑇𝑔𝑟𝑎𝑛) =

𝛽 ∙ 𝑇𝑔𝑟𝑎𝑛 + √(𝛽 ∙ 𝑇𝑔𝑟𝑎𝑛)
2

+
16 ∙ 𝐸𝑟

2 ∙ 𝑇𝑔𝑟𝑎𝑛
2 ∙ 36002

𝑆2

8 ∙ 𝐸𝑟 ∙
36002

𝑆2

            (3) 

  

The benefit calculating the answer to Equation 3 is twofold. First, for currently deployed 

systems, engineers are able compute minimal segment length to ensure a desired 𝐸𝑟. 
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Meaning that they are able to detect the number of segments falling below a threshold 𝐸𝑟 

and flag those particular segments as less reliable data sources. Second, Equation 3 allows 

researchers interested in constructing a new travel time reporting system to properly plan 

placement of capture devices to insure segment length achieves the desired  speed 

accuracy. In short, Equation 3 can be used by DOT agencies and interested parties during 

the development phase of a system when segment length is a factor.   

When applying Equation 3 to Interstate I-35, results show that to achieve 𝐸𝑟 of 1 mph, 

the smallest segment with average speed limit of 65 mph and time-capture granularity of 

1 sec must be 1.1736 miles in length. In Oklahoma, there are 50 segments shorter than 

this distance, meaning that 50 out of 98 segments are affected by this anomaly. Statistical 

analysis using NPMRDS data in these segments will be affected. Measurements such as 

detecting free flow speeds, 85th percentile, and others can be skewed by this error. Figure 

22 shows speeds recorded for another segment, #91, an example of a segment which is 

of length 1.373 miles; longer than the minimum distance calculated.  

 

Figure 22 - Segment 91 reported speed scatter plot 
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We observe the natural occurrence of randomness in speeds to be present in this segment. 

Moreover, for the purposes of congestion detection, most of the shorter segments can still 

be used if the extent of quantization error is acceptable at lower speeds, which could 

indicate congestion. Figure 23 illustrates this effect for segment 49. Applying Equation 1 

to a speed limit of 65 mph and time granularity of 1 sec, 𝐸𝑟 is calculated at 10.296 mph. 

The blue scatter plot illustrates the original, uncleansed data points and shows that a step 

size of approximately 10 mph occurs between 60 and 70 mph as a result of calculated 𝐸𝑟. 

The step size increases to 13 mph when a vehicle surpasses 70 mph. This error does not 

come into effect at lower speeds. For example, at a speed of 40 mph, the error becomes 

3.89 mph, and at speeds of 30 mph, the error reaches 2.19 mph. Thus, congestion 

detection algorithms could be applied at speeds of 40 mph and below. 

 

Figure 23 - TMC 49, January 2015 monthly speed plot illustrating the 𝑬𝒓 at 

different speeds. 

Figure 24 demonstrates that a speed of 50 mph in segment 41 has an 𝐸𝑟 of 16.7 mph. As 

such, congestion detection could not be considered accurate at this level. However, at a 
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speed of 30 mph, 𝐸𝑟 becomes 5.9 mph. For both plots, we find that there exists cases of 

extreme congestion where cars come to an almost complete stop. 

.  

Figure 24 - TMC 41, January 2015 monthly speed plot illustrating the Er at 

different speeds. 

In conclusion, the aforementioned study indicates that the FHWA should recommend to 

HERE changing time granularity of NPMRDS data reported according to Equation (2) 

which should alleviate inherent errors in the nationwide NPMRDS dataset. 

3.2. Data Outliers: 

Congestion on segmented roadways is a function of both time and space. In space, a 

shock wave starts at the observed segment and then ripples to subsequent segments 

lagging behind the observed segment. The result is increased reported travel time. In the 

time domain, the aforementioned shockwave manifests at the observed segment with an 

increased travel time for a recorded epoch, and then expands to later epochs of the same 

segment as congestion continues. At a certain point of time—given that the duration of 

congestion is long enough—spill over to epochs of segments behind the observed 
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segment occurs and expands congestion in space. Consequently, congestion can first be 

detected in time in the observed segment, and then stretch in space to adjacent segments. 

Given the observed segment is short in length, time and space can expand nearly 

simultaneously, meaning epoch travel time duration simultaneously increases in the 

observed and lagging segments when sampling time is long enough to allow congestion 

spillover to adjacent segments. In light of this understanding, we proceed to analyze 

outliers and formulate procedures for removing them from the NPMRDS dataset. 

3.2.1. Effect of high spatial-temporal variance 

As aforementioned, there exists high spatial-temporal variance in the number of 

epoch records in the NPMRDS data for the NHS roadway segments. The chief cause for 

this variance is the varying number of probe vehicles present on any segment at any 

instance of time. A particular case occurs when the sample size is very low. The small 

sample size could result in outliers’ non-representative of actual travel times for vehicles 

on the segment. These outliers can either be high or low valued points. Cases where 

sampled data points exhibit extreme unrealistic values could also be caused by a system 

related error during data acquisition or conditioning. Detecting these outliers is achieved 

by checking for data points that are too extreme to be realistic in the dataset.  Researchers 

at Wisconson Madison in [23] pointed to this type of outlier, and recommended scanning 

for observations that are several standard deviations above the mean of the analysis time 

period, or setting the data as panel observations and flagging points that are significantly 

different from their lagging and leading neighbors. In the Wisconsin study, researchers 

detected points that were 73 standard deviations above the mean. In the work presented 

in this thesis, average speed above 3 mean standard deviations from the speed limit (e.g., 
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speed equal to 20.8 mph) is considered an outlier. This equates to approximately 90 mph 

on a roadway with a speed limit of 70 mph. Reported speed represents averages. Thus, it 

is unrealistic for all cars traveling on the roadway to be averaging 90 mph or above. If 

such findings would occur, results could be indicative of a very small sample size. Values 

for I-35 southbound were first threshold above 90 mph. Results were plotted per segment 

in ascending order for combined travel time, as shown in Figure 25. Figure 26 shows 

similar results for passenger car travel time, and Figure 27 shows the same for freight 

truck travel time. 

 
Figure 25 - Combined vehicle count plot for number of epochs with speeds greater 

than 90 mph for i-35 southbound segments. 
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Figure 26 - Passenger vehicle count plot for number of epochs with speeds greater 

than 90 mph for i-35 southbound segments. 

 

Figure 27 - Truck vehicle count plot for number of epochs with speeds greater 

than 90 mph for i-35 southbound segments. 

 

Figure 25 demonstrates that 111 records were detected for passenger vehicles traveling I-

35 southbound at speeds higher than 90 mph. Speeds were reduced for the combined car-
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truck matrix when averaging with truck speed records. Notably, samples were collected 

on shorter segments of I-35. It is obvious two phenomena were at play.  

1- Shorter segments have smaller densities, which in turn affects sample size. 

Thus, a fast traveling vehicle might be the only sample present at a 

particular instant of time, making its speed not representative of average 

vehicle speed. Nevertheless, if the high speed is considered an accurate 

value of vehicle speed, it could be surmised that vehicles can travel at free 

flow speed with no obstruction or congestion regardless of actual free flow 

speed. If the outlier were to remain in the dataset, it would cause problems 

when performance metrics were calculated. For statistical analysis 

integrity, the outlier must be removed. 

2- Speed quantization error related to the variability of segment length. The 

fifth spike observed in Figure 25 demonstrates this for segment 76, which 

has an 𝐸𝑟 of 13 mph for speed 91.5 mph. 

In the case of congestion analysis, we can set all these points to the speed limit, as they 

are merely indicative that no congestion is present and cars have the ability to travel at 

free flow.  Three matrices were generated: 1) Combined values matrix with speeds above 

90 mph reset to the speed limit; 2) passenger vehicle speed-corrected matrix; and 3) truck 

speed-corrected matrix. Collectively, there are six matrices: three original and three 

corrected. Speeds slower than 2 mph were not excluded as in [23], because there were 

instances when probes reported 0 mph, indicating traffic had come to a complete stop. 
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3.2.2. Vehicle specific performance data points (Power-to-Weight)  

In order to detect outliers that might be caused by vehicle specific characteristics on 

the road as explained in the power-weight phenomena occurring in heavier vehicles, we 

build on the assumption that trucks recording slow speeds in correlation with passenger 

cars recording faster speeds is indicative that the faster speed characterized by a car 

represents a better approximation to the true speed of the road, and the slower truck speeds 

represent characteristics of the truck itself, or what is termed as vehicle specific 

performance data. In this case we set the speed of the combined (car-truck) data matrix, 

to the speed of the highest of the car or the truck and remove the outlier. Thus, detection 

is done by correlating speeds of trucks and passenger vehicles for the same epoch and 

segment, and removal is done by replacing speed entries with the higher of the two 

speeds.  

 
Figure 28 - Epoch record count for difference of max (truck, car) matrix to 

combined matrix. 
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Figure 29 - Epoch record count for difference between car and truck matrices. 

Figure 28 shows a plot of the maximum speed matrix subtracted from the NPMRDS 

dataset combined-all-vehicles matrix. Figure 29 shows a plot of the number of epochs 

when passenger car speeds were higher than truck speeds. Both figures nearly identical, 

indicate that the majority of slower speeds were caused by trucks slowing for vehicle-

specific reasons rather than roadway conditions affecting all traffic. Figure 29 

demonstrates that as segment length increases, the number of effected epochs averaged 

down from the maximum value increases, as well. This was confirmed when examining 

the percentage of down shifted epochs relative to the total number of epochs available per 

segment. See Figure 30 for a plot of this ratio. Results prove that the shorter the segment, 

the less epochs were averaged down. Nevertheless, as one would intuitively guess, an 

outlier would have a more profound effect due to the fact that fewer samples decreases 

the probability of correction when there is an outlier.  
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Figure 30 - Ratio of averaged epoch count to the total number of epochs available. 

Figure 31 and Figure 32 show the mean and the standard deviation of the speed difference 

between the maximum and the combined vehicle speeds. Average difference for most 

segments is approximately 5 mph, and the standard deviation is approximately 2 to 3 

mph. As segment length decreases, mean increases. Reported combined speeds in the 

NPMRDS dataset show on average a 5 mph reduction in speed compared to actual 

roadway speed as a result of slower freight trucks. 

 
Figure 31 - Mean speed difference between max passenger and combined speeds. 
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Figure 32 - Standard deviation of speed difference between max passenger and 

combined speeds. 

3.2.3. Roadway geometry 

When roadway geometry affected travel time, segments continually reported slow 

travel time when compared to speed limits. This phenomena builds on the assumption 

that slower travel times are a result of highway topography caused by the nature of 

the road itself, which consistently forces vehicles to slow down. Admittedly, roadway 

conditions might only affect larger truck speeds and not, passenger car speeds. In such 

a case, the power-weight ratio law would not consistently be cause for slowing down 

traffic. When slow trucks were identified based on passenger vehicles traveling at free 

flow speeds, changes were not made to the dataset. Instead, such cases were marked 

for post check in GIS. These cases are of interest to DOT agencies, as they show 

locations where segments could possibly undergo optimization for freight travel time.  
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Figure 33 - Average epoch truck speed per segment for January 2015. 

To investigate roadway segments, mean truck speeds were collectively monitored vis-a-

vis speed limit during a one month time period. Figure 33 shows results for I-35 

southbound. Average truck speed in January 2015 was somewhat below the speed limit. 

A plot of the highest mean day speed per segment is shown for trucks and passenger cars 

in Figure 34 and Figure 35, respectively. 

 

Figure 34 - Max day mean epoch truck speed for Januray 2015. 
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For most segments, average truck speed was recorded below the roadway speed limit. 

Also, some segments recorded average passenger car speed below the speed limit. 

Segment 44 in particular stands out for having speeds significantly below the speed limit 

throughout the month of January 2015. This result was consistent for both freight trucks 

and passenger cars. 

 

Figure 35 - Max day mean epoch car speed for January 2015. 

Coordinates for segment 44 were extracted and are shown on the google map satellite 

image in Figure 36 and Figure 37. 

 

Figure 36 - Segment 44 I-35 intersect with the centennial express way HW 235. 
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Segment 44 begins at the intersection of I-35 and Centennial Expressway Highway 235. 

The on-ramp is only one lane, which causes traffic slowdown for cars and trucks alike, 

as evidenced in the NPMRDS dataset. 

 

Figure 37 - Close view of segment 44 I-35 intersect with the centennial express way 

HW 235 

 

3.2.4. GPS In-accuracy (non-NHS roadway data points). 

Either faulty GPS units or insufficient positioning accuracy result in inclusion of data 

points that are not part of NHS roadways. As mentioned earlier, data records could 

actually belong to roadways adjacent to the NHS. When sample size is large, outlier effect 

is minimal. When the sample size is small, outlier effect is possibly measurable. Recall 

that detection relies on the assumption that there is a speed difference between NHS 

roadways and adjacent non-NHS roadways. Thus, any record mistakenly reported due to 

GPS inaccuracy would be different from lagging and leading epochs for any segment 

under study. Another indicator is when passenger car speeds are slower than truck speeds 

by one or more standard deviation in the same segment. By extracting all cases where 

trucks are faster than cars and removing all cases where cars are slower than trucks by 
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less than the maximum standard deviation (e.g.15 mph for I-35 southbound), all cases 

with noteworthy speed difference between cars and trucks can be identified. See Figure 

38. Although such cases could be indicative of non-NHS roadways, the differences could 

be the results of a small sample size for passenger vehicles that reported outliers that were 

not representative of the average speed per segment. Threshold results were based on 

number of occurrences. Empirically, 20 occurrences were chosen, assuming the higher 

occurrence was indicative of GPS inaccuracies.   

 
Figure 38 - (a) Cars one standard deviation less than trucks. (b) Threshold result 

for count >= 20. 

Coordinates of a random sample of segments were extracted, and google maps were used 

for validation. In Figure 38, segment 53 is shown as the highest peak and was found to 

be adjacent to the I-35 southbound service road (See Figure 39). Similarly, segment 30, 

which proved to be the segment with the third highest error count, was found to be 

adjacent to the I-35 northbound service road (See Figure 40). 
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Figure 39 - Segment 53 adjacent to S I-35 service road. 

 

                

Figure 40 - Segment 30 adjacent to N-I35 service road. 

To identify and remove outliers the following two procedures were performed: 

1- A new output speed matrix was generated and consisted of the maximum speed 

record between both cars and trucks reported for each given epoch. The matrix 

alleviated non-NHS outliers when both car and truck speeds were available.  
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2- Building on the notion of congestion, as described earlier in this chapter, a mask 

filter was constructed to scan the entire database and to identify, then remove 

remaining outliers.  

Figure 41 illustrates the mask used to scan the speed database. The mask filter 

identified three types of congestion: 1) New congestion evident in future epochs; 2) 

Present congestion evident in past epochs; and 3) Propagating congestion evident in 

adjacent segment epochs. Figure 42 illustrates a flow chart for the process used to 

remove outliers from the database. The process commences with thresholding a 

current segment epoch based on a modified congestion detection approach, which is 

described in Chapter 4. Once an epoch has been identified as likely congestion, all 

gray marked entries in the mask are thoroughly inspected likely congestion. If speed 

value of any grey entry is indicative of congestion, a flag is raised for the particular 

corresponding entry. If a check flag is detected at the end of the process, the current 

segment epoch is not altered. Given there is no flag, the current segment epoch is reset 

to the speed limit. A 20-minute detection range was chosen for the NPMRDS dataset, 

primarily because some missing epochs (i.e., epoch holes) were evident for 

consecutive records in particular segments in the dataset. 
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Figure 41 - Mask filter to scan for outliers. 
 

 

Figure 42 - Flow chart for scanning outliers using mask filter. 
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3.3. Cleansed dataset 

After applying the aforementioned methods and processes, a cleansed dataset was 

generated. Table 9 shows a database example for segment 97 with outlier speed reported. 

Epoch 1818 speed of 34.6485 mph is considerably lower than previous, consecutive and 

adjacent recorded epoch speeds. As such, the value was considered an outlier, and was, 

accordingly, reset to the speed limit for the segment.  

Table 9 - Database outlier for segment 97 in raw database. 

  

Figure 43 and Figure 44 illustrate a plot for segment 97 and segment 69 speed records in 

January 2015 composed of both raw speed data obtained from the travel time 

measurements without processing, as well as the cleansed dataset following anomaly and 

outlier detection and removal procedures. 
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Figure 43 - Comparison for Segment 97 speed records, raw vs cleansed data for 

the month of January 2015. 

 

Figure 44 - Comparison for Segment 69 speed records, raw vs cleansed data for 

the month of January 2015. 
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Chapter 4: Dataset Exploration, Analysis and Congestion Detection 

Classical applications of central tendency and variation—specifically means and 

standard deviations—are influenced by outliers. Appropriate measures discussed above 

were applied to alleviate the dataset of anomalous and outlier data points to obtain 

accurate aggregated measures of central tendency. In this section, comparative 

exploratory data analysis is performed for both the baseline raw dataset and the cleansed 

dataset as reported in the previous section. Limitations of standard statistical analysis for 

congestion detection are discussed, in particular the use of variance. This chapter also 

presents a robust method for detecting congestion by using the NPMRDS dataset to 

identify abnormal travel times on the roadway. 

4.1.  Statistical mean and variance 

Utilizing travel time measurements in the NPMRDS, each segment extracted from 

the dataset was linked with its equivalent row of the geographical information system 

(GIS) static file provided by HERE. This fusion was then used to convert travel time to 

speed measurements using segment length. To determine speed limit per segment, ODOT 

provided a Google earth data file to facilitate manual-visual extraction of speed limits, as 

well as manual location coordinate matching for each segment. This task proved tedious 

and error prone. Nevertheless, as a preliminary tool for processing, the data served its 

purpose, noting that speed limit data has to be acquired with relatively higher accuracy 

for improved processing. Data linkage was done between extracted segments and the 

created speed limit file.  

Figure 45 shows average speed of epochs for one month for all segments of I-35 

southbound. Records were gathered for segments spanning from segment 1 at the Kansas 
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border to segment 98 at the Texas border. The top graph shows the raw dataset mean, and 

the lower graph shows the cleansed dataset mean after outliers were removed. Mean speed 

of the raw unprocessed dataset was 62.5475 mph across all segments. Cleansed dataset 

mean speed was 64.3716 mph across all segments. Average speed limit across all 

segments of I-35 southbound was 65.4082 mph. 

 

Figure 45 - Mean speed per segment vs. speed limit. 

Raw data was utilized to calculate an average speed that was below the speed limit in 

nearly all segments, except those located in and around Oklahoma City. These are 

found in the center of the graph. Average speed correlated to speed limit in the 

cleansed dataset. Figure 46 shows speed variance per segment for all epochs during 

the month of January, 2015. 
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Figure 46 - Speed variance per segment for I-35. 

 

Raw and cleansed graphs demonstrated that TMC stations had increased variance 

values, which could be indicative of abnormal, non-free flow traffic. Although 

variance in the cleansed dataset was slightly lower than variance in the raw dataset, 

the results were indicative of abnormal traffic speed (i.e., travel time fluctuations). 

[39] Suggested that a variance metric could be used to detect congested segments 

characterized with such abnormal traffic flow. Researchers concluded that travel time 

had little variance when estimated under non-congested conditions and high variance 

with increased value when estimated under congested conditions. 
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4.2.  Epoch variance, segment weight and traffic correlation 

As mentioned earlier, NPMRDS data is affected by several limitations and several 

challenges. One important factor is number of epochs generated per segment relative 

to the number of probes available at any location and at any specific point in time. 

Discontinuities in epoch availability can skew results and affect accuracy of computed 

travel time performance measures. Epoch availability is depicted in a 3D surface plot 

in Figure 47 which shows number of epochs per day for each segment of I-35. The 

plot shows a correlation of epoch numbers on most days of the month. Slight changes 

on weekends are visible as wave patterns for all segments throughout the month. 

 

Figure 47 - 3D surface plot of epochs recorded per segment, per day, for January 

2015. 

Figure 48 shows an overlay epoch count plot for TMC segment per day during the month 

of January 2015. Each segment has to a large extent a repetitive pattern for nearly all 

segments. 
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Figure 48 - Overlay epoch daily count for January 2015, per segment 

 

Correlation between epoch counts can be validated numerically. Consider the correlation 

of two random variables A and B as a measure of their linear dependence. Given that 

each variable has N scalar observations, then the Pearson correlation coefficient can be 

applied as given in equation 4: [40] 

𝜌(𝐴, 𝐵) =
1

𝑁 − 1
∑ (

 𝐴𝑖 − 𝜇𝐴
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝜎𝐴
) (

 𝐵𝑖 − 𝜇𝐵
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝜎𝐵
)

𝑁

𝑖=1

                                       (4) 

where μA, μB and σA, σB are the mean and standard deviation of A and B, respectively. 

Alternatively, this is also defined in terms of the covariance of A and B [40]: 

𝜌(𝐴, 𝐵) =
𝑐𝑜𝑣(𝐴, 𝐵)

𝜎𝐴𝜎𝐵
 

𝑅 = (
𝜌(𝐴, 𝐴) 𝜌(𝐴, 𝐵)
𝜌(𝐵, 𝐴) 𝜌(𝐵, 𝐵)

) 

𝑅 = (
1 𝜌(𝐴, 𝐵)

𝜌(𝐵, 𝐴) 1
) 

The correlation coefficient matrix of two random variables is the matrix of correlation 

coefficients for each pairwise variable combination. Since A and B are always directly 
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correlated to themselves, diagonal entries are the value of 1. Figure 49 shows mean 

correlation coefficient results per segment.  

 

Figure 49 - Mean correlation coefficient per segment stem plot. 

A box plot was used to generate the coefficient correlation matrix shown in Figure 50. 

The central mark of each box is the median; box edges are the 25th and 75th percentiles; 

whiskers extend to the most extreme data points not considered outliers; and outliers are 

plotted individually. The whiskers extend to a corresponding t +/–2.7σ, which should 

cover 99.3% of the data, assuming normal distribution.  Correlation between epoch count 

patterns on I-35 is obvious for the majority of segments (i.e., there is a correlation in 

traffic flow across segments due to the fact that epochs are generated by probes). We note 

the following observations: 

1- Most days, the effect of increasing or decreasing probe count spreads 

across the interstate from the Kansas border to the Texas. Assuming probe 

density is a fixed percentage of total traffic flow, traffic could be assumed 

to consist of mostly interstate transit vehicles. 
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2- Without prior knowledge of the type of highway being investigated. High 

correlation could be used as an indicator. i.e. Interstate or Non-Interstate 

roadways.   

 

Figure 50 - Boxplot of correlation coefficient matrix. 
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Furthermore, each segment can be weighted based on average number of daily epochs 

over the course of the month— in this case January 2015. Figure 51 depicts the results 

of normalized weight per segment. 

 

Figure 51 - Normalized epoch count weight plot 

4.3.   Congestion detection  

Road traffic congestion has a negative environmental impact and causes significant 

loss to productivity to the economy. A beneficial use of the NPMRDS dataset is detecting 

congested roadway segments. By studying congestion and its correlation with various 

causes, a deeper understanding is gained about the impact each source has on traffic 

performance. Collective understanding of both the cause and the effect allow accurate 

inference and prediction for travel time and, more importantly, travel time reliability. 

Literature shows two methods of congestion detection have been utilized. Statistical 

methods, and thresholding methods [39] [41]. The latter shows thresholds being defined 

in one of two ways. Either, using free-flow speed as a congestion threshold, or, 

establishing acceptable minimum speed for various types of facilities and operating 

environments. An example given is Washington DOT in [42] which defined a threshold 
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for congestion detection to be 75 % of the posted speed limit, resulting in a threshold for 

urban freeways with a speed limit of 60 mph to equal 45 mph. And for arterial streets 

with a posted speed limit of 40 mph to equal to 30 mph.  

Assuming vehicles commuting under normal traffic conditions travel at free flow with 

speeds varying slightly above and below the mean. Given abnormal traffic conditions, 

speeds tend to vary to a greater extent. Determining statistical variance serves as a simple 

indicator of congestion [39].  

 
Figure 52 - Mesh plot for speed variance per segment, per day for I-35, Jan. 2015. 

Figure 52 illustrates a mesh plot of speed variance per day per segment on I-35 

southbound for January 2015. Figure 53 depicts a contour plot of speed variance where 

peaks of congestion can clearly be identified. Both figures show that commuters most 

often experience a variance in speed in and around segments 30 to 60 in the Oklahoma 

City area.  
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Figure 53 - Contour plot of speed variance per segment, per day for I-35 Jan. 2015. 

Extracting the high variance segments and combining with the previously derived 

weights, a histogram plot shown in Figure 54 depicts congested segments and the number 

of congested days as well as segments in decreasing variance combined with the number 

of congestion days. Low reliability segments are marked based on these numbers, 

indicating the possibility of false congestion detection. In this work, a threshold of 55 

epochs per day was chosen as the least number of epochs considered to provide an 

accurate daily measurement (i.e., any segment generating less 55/288 epochs on any 

given day was deemed a low reliability segment).  

We observe 16 of 98 segments were congested on days that totaled half the month. The 

majority of the remaining segments experienced congestion on an average of only three 

days per month, indicating a significant drop in the number of congested days. 
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Figure 54 - Histogram and decreasingly sorted bar plots of congested segments on 

I-35. 

It is noted that accuracy could be jeopardized when detecting congestion based on 

statistical variance. This drawback stems from reliance on false assumptions: 1) 

Congestion does not occur at all times; When congestion does occur for extended periods 

of time—equal to duration of analysis—variance measured does not accurately indicate 

congestion and 2) Variance is related to the number of samples obtained over time, 

meaning that when congested probes are measured over a short duration they are over 

masked by a higher number of normal samples. Thus, short bursts of congestion cannot 

be detected. Such an occurrence is evident in Figure 55, where congestion in segment 69 

was not detected when merely considering variance in results. In fact, when examining 

the monthly plot of epochs for segment 69, undetected congestion occurred for a short 

period of time on January 25.  
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Figure 55 – Segment #69 shows congestion on both raw and cleansed datasets not 

detected using a standard variance test. 

To remedy this problem, probability theory and decision theory independent of 

sample number daily congestion is proposed as a more robust approach for detecting 

congestion. Leveraging probability theory in combination with decision theory allows 

optimal decisions in situations involving uncertainty [43] [44]. 

4.3.1. Modified congestion detection approach 

Assume all free flow traffic over segments can be modeled using a Gaussian 

distribution without loss of generality [45]. Figure 56 illustrates probability theory 

suggests that for a normal distribution, values less than one STD from the mean account 

for 68.27% of the set; two STD from the mean account for 94.45%; and three STD from 

the mean account for 99.73%. Figure 57 shows three examples of random segments 

collected on non-congested days and fitted to a normal distribution. 
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Figure 56 - Normal Gaussian distribution Model 

 

A decision threshold can be established by defining a specific threshold for each segment 

based on its free flow model at a chosen number below STD from the non-congested 

mean. Doing so aptly indicates congestion in each segment. The threshold chosen in this 

work was three STD from the non-congested mean, yielding a confidence of 99.7% 

approximate to free flow speed.  

 
(a) 
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(b) 

 
(c) 

 

Figure 57 - Three random segments examples (a, b, c) depicting free flow Gaussian 

modeled segment speeds. 

 

A database of STD free flow models was constructed, and thresholds per segment were 

set three STDs from the mean. On average four congested epoch counts occurred for most 

segments per non-congested days, as shown in Figure 61. Thus, a filter was applied for 

cases of five or fewer congested epochs during an entire day. Figure 58 shows the results 

for all segments per day on I-35 southbound during January 2015. Figure 59 and Figure 

60 show results in contour and heat map plots. When comparing previous variance test 

results, it is clear that both results indicate the majority of congestion occurred in and 

around Oklahoma City in segments 30 through 60. The modified approach, on the other 
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hand, detected segments not previously discovered with the variance method (e.g., 

segment 69).  Figure 62 illustrates a comparison of variance and threshold test results on 

segment 69 for detecting congestion. 

 

Figure 58 - Mesh plot for thresholded speed variance, per day for I-35, Jan. 2015. 

 

Figure 59 - Contour plot for thresholded speed variance per segment, per day for 

I-35, Jan. 2015. 
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Figure 60 – Heat map for speed variance per segment, per day for I-35, Jan. 2015. 

 

 

Figure 61 – Congested epoch count for January 2015 on I-35 southbound. 
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Figure 62 –Variance and threshold congestion detection comparison on segment 69  

Further optimization of the congestion detection approach can be achieved by adjusting 

the filter for the number of epochs required for detection. The filter value establishes a 

tradeoff between false congestion due to dataset outliers and minimum duration required 

for the system to detect congestion.  

Table 10 offers a numeric comparison between results for raw and cleansed datasets. 

Figure 63 presents bar plots for both datasets. Congested segments are depicted in order 

according to decreasing number of congested days. Furthermore, each graph plots a 

histogram of the number of congested segments and number of congested days. As 

expected, the raw dataset generated a higher number of congested segments. Outliers 

present in the raw dataset cause a number of false detections. Three groups of congestion 

were identified: 1) Segments {12, 7, 6, 4, 91, 80, 84, 11, 85, 86, 9} detected only in the 

raw dataset (See the table to identify segments for this group), colored in red. Figure 64, 

Figure 65 and Figure 66 demonstrate outliers in the raw dataset caused false detection. 

 



78 

 

Table 10 - Result comparison between raw and cleansed dataset. 

 

Segment 

number 

# of 

congested 

days in Raw 

dataset 

# of 

congested 

days in 

Cleansed 

dataset 

2 30 30 

29 28 4 

53 28 18 

30 27 7 

55 27 21 

42 26 12 

27 24 14 

46 23 22 

49 23 22 

52 23 20 

40 22 10 

43 22 21 

47 22 21 

48 22 21 

50 22 22 

51 22 18 

54 21 18 

68 20 9 

45 19 19 

44 18 14 

33 17 4 

59 17 9 

3 16 2 

25 16 8 

58 16 13 

65 16 3 

89 16 2 

37 15 12 

26 14 4 

35 13 7 

36 13 10 

57 13 11 

91 13 0 

23 11 5 

24 11 8 

56 11 7 

90 11 4 

32 10 4 

39 10 1 

60 10 4 

98 10 4 

31 9 3 

61 9 4 

4 8 0 

74 8 5 

6 7 0 

17 7 1 

Segment 

number 

# of 

congested 

days in Raw 

dataset 

# of 

congested 

days in 

Cleansed 

dataset 

41 7 6 

64 7 2 

19 6 1 

7 5 0 

14 5 1 

20 5 3 

21 5 3 

28 5 3 

62 5 2 

66 5 1 

73 5 2 

12 4 0 

16 4 2 

22 4 3 

38 4 3 

69 4 4 

72 4 1 

80 4 0 

84 4 0 

8 3 1 

11 3 0 

15 3 2 

63 3 2 

85 3 0 

86 3 0 

87 3 2 

94 3 1 

9 2 0 

13 2 2 

71 2 2 

78 2 2 

79 2 2 

81 2 2 

83 2 2 

92 2 2 

95 2 2 

96 2 2 

97 2 2 

1 1 1 

18 1 1 

67 1 1 

70 1 1 

75 1 1 

82 1 1 

93 1 1 
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Figure 63 - Modified congestion detection results for raw (a) and cleansed dataset (b). 

(a
) 

(b
) 
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Figure 64 - Segment 12 congestion detection comparison for raw and cleansed 

datasets. 

 

 

Figure 65 - Segment 7 congestion detection comparison for raw and cleansed 

datasets. 
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Figure 66 - Segment 6 congestion comparison for raw and cleansed datasets. 

2) The second group contains segments detected in both datasets. Characterized by a large 

difference in the number of congested days, evident when comparing the two datasets 

(e.g., segments {24, 44, 33, 59, 3, 25, 65, 89, 26, 35, 23, 56, 90, 32, 39, 60, 98, 31, 61, 

74, 17, 64, 19, 14, 62, 66, 73, 72, 29, 53, 30, 42, 27, 40, 68}). This group is colored in 

green. Three random examples are shown in Figure 67, Figure 68, and Figure 69. 

 
Figure 67 - Segment 17 congestion comparison for raw and cleansed datasets. 
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Figure 68 - Segment 24 congestion comparison for raw and cleansed datasets. 

 

Figure 69 - Segment 61 congestion comparison for raw and cleansed datasets. 

 

It is obvious that outliers were cause for false detection. 3) Includes segments detected in 

both datasets, characterized by the same or nearly the same number of congested days. 

This group is colored in white. Two examples of this group were randomly chosen and 

are depicted in Figure 70 and Figure 71. The cleansed dataset had no improvement over 

the raw dataset for this group. 
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As a result, for congestion detection, removal of outliers contributes to the reduction of 

false detections errors of congested segments and congested days for both variance and  

thresholding congestion detection methods alike. 

 

Figure 70 - Segment 45 congestion detection comparison for raw and cleansed 

datasets. 

 

Figure 71 - Segment 46 congestion detection comparison for raw and cleansed 

datasets. 
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Chapter 5: Computing Performance Measures 

Travel time, speed, and delay are closely related measures that convey the lag 

commuters experience and the time they expend in order to complete trips on a highway 

system. The purpose of computing traffic performance measures is to quantify the 

reliability of a traffic system. This chapter identifies and computes five basic travel time 

reliability measures which form the necessary building blocks for performance 

measurement of highway systems. Moreover, the study compares the results attained 

from these measurements using both the raw and the cleansed datasets demonstrating the 

effect outlier removal has on results attained. 

5.1.  Mean free-flow speed and travel time 

Mean free-flow speed of a vehicle describes the average travel speed of a motorist 

driving in low volume traffic conditions in the absence of obstructions, traffic control 

devices, congestion, or other adverse conditions (e.g., bad weather) on the road [46]. The 

most typical, congestion-free workday flow for each segment was selected to determine 

free flow speed of each segment. Weekdays were first filtered from all days of the month, 

and then the highest mean, lowest variance day was identified. After the appropriate day 

was selected, standard deviation, variance, and mean measurements were recorded. 

Gaussian model fitting was performed. 

Table 11 shows the segment-length weighted-average free flow speed, variance, and 

standard deviation of the datasets. The combined length, weighted-average speed limit 

for all segments was 67.007 mph. Both datasets showed mean free flow speed on I-35 

southbound was very close to the weighted-average speed limit of the roadway. The raw 
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dataset had a slightly lower average speed than the cleansed dataset. Appendix A details 

the mean, variance, and standard deviation for each segment of I-35 southbound. 

Table 11 – Free flow speed statistical measures for I-35 southbound. 

 Cleansed Dataset Raw  Dataset 

Mean: 67.13850 mph 64.31812 mph 

Variance: 19.2384 mph 13.43946 mph 

Std: 4.3590 mph 3.5999 mph 

The maximum difference of the datasets relative to average free flow speed was 5.76332 

mph for segment 96. Authors conclude, albeit minor, outlier removal has an impact on 

statistical analysis results for the NPMRDS. Figure 72 shows the difference of raw and 

cleansed mean free flow speed for all segments on I-35. 

 

Figure 72 – Mean free flow speeds for all I-35 segments. 

 

Mean travel time per segment was derived utilizing segment length obtained from the 

NPMRDS static file. Appendix A lists the mean travel time for each segment of I-35 

southbound. The difference between the datasets for mean free flow travel of each 
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segment is small, yet notable. Measures for both datasets are shown in ascending length 

in Figure 73. 

 

Figure 73 - Free flow travel time for I-35 southbound segments. 

5.2.  85th percentile 

Traffic engineers and transport planners typically use the 85th percentile speed as a 

key parameter. Standards like AS1742.4; traffic engineering text books; and federal 

reports [47], [48] define the 85th percentile speed as “The speed at or below which 85% 

of all vehicles are observed to travel under free flowing conditions past a nominated 

point.” [48]. The concept of the 85th percentile was first discovered in a comprehensive 

study entitled "Accidents on main rural highways related to speed, driver, and vehicle" 

conducted by David Solomon in the late 50s and early 60s. Findings were released in 

1964 [49]. Figure 74 shows the Solomon curve, which is a graphical representation of 

collision rate of automobiles as a function of their speed compared to the average vehicle 
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speed on the same road. [49] The lowest collision rate conforms to the smallest variation 

from the average. 

 

Figure 74 - Solomon Curve [49]. 

Several subsequent studies have been conducted, and each has reached similar 

conclusions. Thus, it is well documented that fewer and less severe collisions occur when 

speed limits are set near the 85th percentile. This practice is based on the premise that the 

majority of drivers are reasonable and prudent; want to avoid a crash; and desire to reach 

their destination in the shortest time possible. A speed at or below 85 percent of that 

which most people drive at any given location under good weather and visibility 

conditions is considered the maximum safe speed for that location. 

Statistical techniques show that a normal probability distribution will occur when a 

random sample of traffic in free flow is measured [45]. Frequency distribution curves 

demonstrate that a certain percentage of drivers travel faster than conditions warrant. 

Likewise, a certain percentage of drivers travel at unreasonably slow speeds relative to 



88 

traffic trend. Most cumulative speed distribution curves “break” at approximately 15 

percent and 85 percent of the total number of observations [45]. Consequently, motorists 

traveling in the lower 15 percent are considered to be traveling unreasonably slow, and 

those observed above 85 percent are assumed to be exceeding a safe and reasonable 

speed. Posting a speed below the 15 percent value would penalize a large percentage of 

reasonable drivers. The 85th percentile speed is considered a desirable characteristic of 

traffic for conforming to a speed limit that is considered safe and reasonable.  

In this work, the 85th percentile segment value was found subsequent to detecting free 

flow values. Free flow Gaussian models leveraged Cumulative Distribution Functions 

(CDFs) to detect the 85th percentile. An example of this process is shown in Figure 75. 

Figure 76  shows segment 73 when using the cleansed dataset. 85th percentile speed was 

72.7mph. 

 
Figure 75 – Segment 73 CDF with 85th percentile speed. (Cleansed dataset). 
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Figure 76 – Segment 73 PDF with 85th percentile speed (cleansed dataset). 

The weighted mean 85th percentile for all segments of I-35 southbound were 68.0492 and 

71.6563 mph for the raw and cleansed datasets, respectively. Appendix B illustrates the 

85th percentile for each segment of I-35 southbound for both datasets. Figure 77 shows a 

stem plot depicting the 85th percentile of both datasets for all segments of I-35 

southbound. A noticeable difference can be seen between 85th percentile results attained 

with and without the application of outlier removal measures.  

 

Figure 77 - I-35 85th percentile per segment. 
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5.3. Travel Time (TT) index,  

Travel Time Index (TTI) compares peak period travel conditions to free-flow 

conditions. In other words, it is the ratio of measured travel time during average 

congestion to required travel time for the same trip at free-flow speeds. For example, a 

TTI of 1.3 indicates a 20-minute free-flow trip required 26 minutes [50]. 

𝑇𝑇𝐼 =
𝑇𝑇𝑀𝑒𝑎𝑛𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛

𝑇𝑇𝐹𝑟𝑒𝑒𝐹𝑙𝑜𝑤
 

Appendix C reports TTI results per segment in each dataset.  

The worst TTI value in the raw dataset was 5.1921 for segment 41, translating the 2.5690 

second free-flow travel time to 13.3382 seconds. Segment 75 had the least congestion 

with a TTI of 1.031025, translating its 227.2721 second free-flow time to 234.3232 

seconds. In general, free-flow travel time for I-35 southbound from state border to state 

border—distance of 236.06537 miles over all segments—was 3 hours and 18.76 minutes. 

Total TTI measured for all segments was 1.244, resulting in total travel time of 4 hours 

and 7.28 minutes.  

For the cleansed dataset, the worst TTI was 5.0830 for segment 41, which is actually quite 

similar to the raw dataset. Free-flow travel time of 2.5690 translated to 12.97 seconds. 

Segment 65 had the best TTI of 1.0371, increasing its 63.98017 second free-flow to 66.35 

seconds. Notably, both datasets indicated segment 41 had the worst TTI. However, each 

set indicated a different segment as having the best TTI, primarily because outlier points 

were removed in the cleansed dataset. See Figure 78 for a dataset comparison of outliers 

removed for segment 65. 
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Figure 78 – Segment 65 comparison between cleansed and raw datasets. 

For the cleansed dataset, free flow travel time for I-35 southbound from border to border 

was 3 hours and 11.7344 minutes. Total TTI in this dataset was 1.166, resulting in 3 hours 

and 43.685 minutes total travel time with congestion. Figure 79 illustrates results obtained 

using Google maps destination route information. Free flow travel time without 

congestion is estimated at 3 hours 13 minutes, which is very close to results from the 

cleansed dataset. Table 12 details a comparison of both datasets.  Figure 80 illustrates 

TTI per segment for I-35 southbound for both datasets. 

Table 12 – Free flow speed statistical measures for I-35 southbound. 

 Cleansed Dataset Raw Dataset Google Maps 

No-Congestion time 3 hours 11.7 mins 3 hours 18.7 mins 3 hours 13 mins 

Normal Traffic time 3 hours 43.6 mins 4 hours 7.28 mins 3 hours 22 mins 
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Figure 79 - Google maps route results for I-35 southbound. January 12, 2016. 

 

Figure 80 - Segment TTI comparison for raw and cleansed datasets. 

5.4.  Buffer Index (BI) 

The Buffer Index (BI) represents the amount of time most travelers add to their 

average travel time when planning trips to account for any unexpected delay and ensure 

on-time arrival. BI is expressed as a percentage, and its value increases as reliability 

worsens. For example, a BI of 40% means that, given average travel time of 20-minutes, 
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a traveler should budget an additional 8 minutes to ensure on-time arrival most of the 

time (e.g., (20 minutes × 40% = 8 minutes buffer time). BI is computed as the difference 

between the 95th percentile travel time and average travel time, divided by the average 

travel time [51] and represents a near-worst case travel time.  

Whether expressed as a percentage or in minutes, buffer time is the extra time a traveler 

should allow to arrive on-time for 95 percent of all trips. A simple analogy explains that 

a commuter who uses a 95 percent reliability indicator would be late only one weekday 

per month [51]. 

Figure 81 illustrates results per segment for I-35 southbound for both raw and cleansed 

datasets. Appendix C shows numerical results per segment per dataset.  

 

𝐵𝐼 =
𝑇𝑇95% − 𝑇𝑇𝑀𝑒𝑎𝑛𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛

𝑇𝑇𝑀𝑒𝑎𝑛𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛
 

 

Figure 81 - BI for all segments I-35 raw and cleansed dataset. 
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5.5.   Planning Time Index (PI) 

Planning Time Index (PI) represents total travel time that should be planned when 

including adequate buffer time. PI differs from BI in that both typical delay and 

unexpected delay are included in the calculation. Thus, PI compares near-worst case 

travel time to light or free-flow traffic time. For example, given that PI is 1.60, total travel 

time for a 15-minute trip in light traffic should be 24 minutes (e.g., 15 minutes × 1.60 = 

24 minutes). PI is useful for directly comparing the TTI measure of average congestion 

on similar numeric scales. PI is computed as the 95th percentile travel time divided by 

the free-flow travel time [51]. Figure 82 illustrates results per segment for I-35 

southbound for both raw and cleansed datasets. Appendix C shows the numerical results 

per segment per dataset.  

𝑃𝐼 =
𝑇𝑇95%

𝑇𝑇𝐹𝑟𝑒𝑒𝐹𝑙𝑜𝑤
 

 

Figure 82 - PI for all I-35 segments, raw and cleansed datasets. 
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BI and PI statistics are significantly affected by outliers. Figure 82 shows a substantial 

difference between datasets for many segments. Figure 83 illustrates congestion 

comparison between datasets for segment 65. For the 15th of January a near 0 mph speed 

measurement was recorded in the raw dataset. Average travel time in the raw dataset for 

the 15th was 92.33 seconds. When the outlier was removed, average travel time for the 

cleansed dataset became 64.631seconds. Moreover, 85th percentile travel time was 78.088 

seconds in the raw dataset and became 71.499 seconds in the cleansed dataset. Similarly, 

Figure 84 shows a near zero speed in the raw dataset for segment 34, which was removed 

in the cleansed dataset. A substantial effect is evident in the 95th percentile travel time of 

the raw dataset (See Figure 85). 

 

Figure 83 - Segment 65 Congestion comparison between raw and cleansed 

datasets. 
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Figure 84 - TMC 34 January 2015 speed scatter plot. 

 
      (a)                                                       (b) 

Figure 85 - 95th percentile travel time for (a) cleansed (b) raw dataset.
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Chapter 6: Traffic Analytics 

Chapter 6 builds on congestion analysis results detailed in previous chapters and 

introduces work focused on obtaining insight and extracting knowledge from traffic 

attributes, patterns, and characteristics evident in congested segments observed. First, 

inherent segment congestion groups and clusters are identified. Next, an optimum 

classifier is constructed to automatically classify congestion, given common 

characteristics found in all segments. Finally, a demonstration-of-concept is provided for 

identifying non-recurrent congestion using a Bayesian inference engine, which estimates 

likelihood models of non-recurrent congestion sources using traffic speed probe data 

measurements. 

6.1.   Congestion clustering 

Results from previous congestion detection can be used to map the sole one-

dimensional segment speed data—used as input criteria for subsequent learning stages—

into a three-dimensional segment congestion data vector consisting of segment ID, 

number of congested days, total congestion duration, and number of consecutive 

congestion repetitions. A matrix of all data vectors can then be constructed. Total 

congestion duration is estimated as the number of congested epochs multiplied by the 

duration of an epoch (e.g., 5 minutes). Congestion Repetition (CR) represents congestion 

recorded on two or more consecutive days for any segment. A higher CR number is 

indicative of a congestion pattern in any given segment. 
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6.1.1. Cluster identification 

Unsupervised exploratory data analysis was performed to gain insight from reported 

results for sections previously identified with traffic congestion. The goal was to 

understand the inherent group structure of congested segments and their common 

characteristics. Implementing the widely used hierarchical clustering approach provides 

visual assessment toward predicting the number of clusters intrinsic in the data. The 

advantage of this approach is that an initial estimate or assumption about the number of 

clusters is not necessary. Strategies for implementing hierarchical clustering are generally 

categorized in the following two ways [52]. 

 Agglomerative: This clustering is described as a "bottom up" approach where each 

observation starts in its own cluster, and pairs of clusters are merged as one moves 

up the hierarchy. 

 Divisive: This clustering is described as a "top down" approach where all 

observations in one cluster are split recursively as one moves down the hierarchy. 

This work presented in this thesis used agglomerative clustering, as the method is faster 

than divisive clustering. Complexity of the former is 𝑂(𝑛3) compared to 𝑂(2𝑛) for the 

latter. Several methods exist for linkage criteria: 

1-  Single link clustering (i.e., nearest neighbor clustering) defines distance between 

two groups (G,H) as the distance between the two closest members of each group: 

𝑑𝑆𝐿(𝐺, 𝐻) = min
𝑖∈𝐺,𝑖′∈𝐻

𝑑𝑖,𝑖′  

2- Average link clustering measures average distance between all pairs: 

𝑑𝑎𝑣𝑔(𝐺, 𝐻) =
1

𝑛𝐺𝑛𝐻
∑ ∑ 𝑑𝑖,𝑖

𝑖′∈𝐻𝑖∈𝐺

. 
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Where 𝑛𝐺  and 𝑛𝐻 are the number of elements in groups G and H. Because average 

link clustering requires averaging 𝑑𝑖,𝑖′, any change to the measurement scale can 

change the result. In contrast, single linkage and complete linkage are invariant to 

monotonic transformation since they leave the relative ordering the same [52].  

3- Complete link clustering (i.e., furthest neighbor clustering) defines the distance 

between two groups as the distance between the two most distant pairs: 

𝑑𝐶𝐿(𝐺, 𝐻) = max
𝑖∈𝐺,𝑖′∈𝐻

𝑑𝑖,𝑖′ 

Because single linkage requires proximity of only a single pair of objects among two 

groups to be considered close—regardless of the similarity of other members of the group, 

clusters can be formed that violate the compactness property (i.e., all observations within 

a group should be similar). Complete linkage, on the other hand, considers two groups 

close only if all observations in their union are relatively similar, which tends to produce 

clusters with small diameter (i.e., compact clusters). For this reason, complete linkage 

was chosen. Figure 86 shows the complete linkage agglomerative clustering performed 

on the data. Table 13 shows the percentage of total cluster per cut performed on the tree. 

 

 
Figure 86 - Complete linkage agglomerative clustering 
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Table 13 - Clustering results per tree cut of complete linkage tree. 

Cut Value Cluster number Count Percent 

5.869 
1 14 14.29% 

2 84 85.71% 

4.12 

1 27 27.55% 

2 57 58.16% 

3 14 14.29% 

3.362 

1 1 1.02% 

2 13 13.27% 

3 27 27.55% 

4 57 58.16% 

2.45 

1 17 17.35% 

2 40 40.82% 

3 1 1.02% 

4 13 13.27% 

5 27 27.55% 

From the dendrogram shown in Figure 86, it can be seen that clusters exist between 

segment data. Visible “gaps” in the lengths of the links in the dendrogram (representing 

the dissimilarity between merged groups) allow cluster patterns to be identified indicating 

the existence of 2 to 4 clusters The exact number of clusters yielding optimum results is 

unclear. Results of hierarchical clustering align with intuitive assumptions about 

congestion and the types of congestion patterns typical on roadways. Determining the 

exact number of clusters remains an open research problem for machine learning in 

clustering. Fortunately, numerical validation criteria are suitable for evaluating various 

values of number of clusters [53]. . Hierarchical clustering output provides an initial 

estimate of a suitable number of clusters available in the data. K-means utilizes this initial 

estimate as an optimization criterion and objective function to partition the data into K 

disjoint groups so that the within-group sum-of-squares is minimized. An advantage of 

an optimization-based method like K-means is that the method scales very well to large 

data sets [53]. The objective criterion of K-means is used to assess which K yields better 

results. The same distance metric (i.e., Euclidene distance) used in hierarchical clustering 
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was implemented in K-means. Thirty repitions for each K value were performed and best 

results were chosen as representative of a particular K value. Results of K-mean are 

affected by the initial location of the centroid. Table 14 shows percentage of data-per-

cluster using each value of K. Table 15 shows total sum distance calculated for 30 runs 

for values of  K=1, 2, and 3. 

Table 14 - K-means clustering for K=2, 3 &4. 

K-Value Value Count Percent 

K=2 
1 81 82.65% 
2 17 17.35% 

K=3 
1 51 52.04% 
2 30 30.61% 
3 17 17.35% 

K=4 

1 17 17.35% 
2 32 32.65% 
3 28 28.57% 
4 21 21.43% 

Table 15 - 30 Replicative run sum of distance results for K-means; K=2, 3 &4. 

Run K=2 K=3 K=4 

Replicate 1, 2 iterations, total sum of distances 10510 2955.14. 1423.96. 
Replicate 2, 2 iterations, total sum of distances 11026.2. 2955.14. 1423.96. 

Replicate 3, 7 iterations, total sum of distances 11026.2. 2955.14. 1447.39. 

Replicate 4, 10 iterations, total sum of distances 11026.2. 2955.14. 1447.39. 

Replicate 5, 9 iterations, total sum of distances 11026.2. 2955.14. 1447.39. 

Replicate 6, 2 iterations, total sum of distances 10510 2955.14. 1447.39. 

Replicate 7, 8 iterations, total sum of distances 11026.2. 2955.14. 1423.96. 

Replicate 8, 2 iterations, total sum of distances 10510 2955.14. 1447.39. 

Replicate 9, 9 iterations, total sum of distances 11026.2. 2955.14. 1447.39. 

Replicate 10, 2 iterations, total sum of distances 10510 2955.14. 1423.96. 

Replicate 11, 2 iterations, total sum of distances 11026.2. 2955.14. 1447.39. 

Replicate 12, 4 iterations, total sum of distances 11026.2. 2955.14. 1423.96. 

Replicate 13, 3 iterations, total sum of distances 10510 2955.14. 1447.39. 

Replicate 14, 9 iterations, total sum of distances 11026.2. 2955.14. 1447.39. 

Replicate 15, 2 iterations, total sum of distances 10510 2955.14. 1447.39. 

Replicate 16, 2 iterations, total sum of distances 10510 2955.14. 1447.39. 

Replicate 17, 2 iterations, total sum of distances 10510 2955.14. 1447.39. 

Replicate 18, 2 iterations, total sum of distances 10510 2955.14. 1423.96. 

Replicate 19, 2 iterations, total sum of distances 10510 2955.14. 1447.39. 

Replicate 20, 5 iterations, total sum of distances 11026.2. 2955.14. 1423.96. 

Replicate 21, 9 iterations, total sum of distances 11026.2. 2955.14. 1423.96. 

Replicate 22, 2 iterations, total sum of distances 10996.8. 2955.14. 1423.96. 

Replicate 23, 10 iterations, total sum of distances 11026.2. 2955.14. 1447.39. 

Replicate 24, 2 iterations, total sum of distances 10996.8. 2955.14. 1423.96. 

Replicate 25, 2 iterations, total sum of distances 11026.2. 2955.14. 1447.39. 

Replicate 26, 2 iterations, total sum of distances 10996.8. 2955.14. 1447.39. 

Replicate 27, 2 iterations, total sum of distances 11026.2. 2955.14. 1423.96. 

Replicate 28, 2 iterations, total sum of distances 10510 2955.14. 1447.39. 

Replicate 29, 2 iterations, total sum of distances 10510 2955.14. 1447.39. 

Replicate 30, 9 iterations, total sum of distances 11026.2. 2955.14. 1423.96. 

Best total sum of distances 10510 2955.14 1423.96 
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To measure clustering accuracy and find the best K value for clustering, a silhouette plot 

was implemented. The silhouette plot is a special type of plot that uses output from 

clustering methods to display a measure of how close each data point is to observations 

in its own cluster, as compared to observations in other clusters [54]. Kaufman and 

Rousseeuw (1990) developed the silhouette width to measure the 𝑖𝑡ℎ  observation: 

𝑠𝑤𝑖 =
𝑏𝑖 − 𝑎𝑖

max (𝑎𝑖, 𝑏𝑖)
 

 

where 𝑎𝑖 is the average distance to all other points in its cluster. 𝑏𝑖 is found as follows. 

First, distance between the i-th point and all points in another cluster c are averaged, 

providing a measure of distance between the i-th point and cluster c. The minimum of 

these across all clusters is represented by 𝑏𝑖. Silhouette width ranges from -1 to 1. Given 

that an observation has a silhouette width close to 1, it is considered closer to observations 

in its own group rather than others, which is the objective of clustering. If an observation 

has a negative silhouette width, then it is not well clustered. Figure 87, Figure 88, and 

Figure 89 show the silhouette plot for K=2, 3 and 4. 

 
Figure 87 - Silhouette plot for K=2. 
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Figure 88 - Silhouette plot for K=3. 

 

 
Figure 89 - Silhouette plot for K=4. 

Figure 89 indicates that K=4 yields a negative silhouette width for particular segments in 

cluster 2, indicating that clustering accuracy deteriorated compared to lower values of K. 

Table 16 shows the average value of each silhouette plot. K=3 results are superior. 

Table 16 - Average Silhouette plot value K=2, 3 &4. 

 K=2 K=3 K=4 

Average Silhouette 

Value: 
0.7791 0.8128 0.7722 
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6.2. Congestion classification 

Clustering analysis was performed to identify common characteristics and formulate 

labels for segments. Segments were subsequently assigned to individual group IDs based 

on K-means results with K=3. Table 17 shows clustering results of K-means for each 

segment with K=3, including the segment to which each cluster ID belongs. Group 2 is 

primarily centered on segments of I-35 southbound located near OKC. This group tends 

to have high values for congested days, congestion duration, and congestion runs (i.e., 

repeated pattern of congestion occurring over the entire month). Results of a scatter-

matrix plot are illustrated in Figure 90. Congestion duration and congested days have a 

linear correlated relationship, indicating congestion duration is similar on separate days. 

Extracting sample segments and inspecting speed distributions provided further insight 

into the characteristics of each cluster. 

 

Table 17 - K-means clustering results per segment for K=3. 

Cluster 

Number 
Segment Number 

Cluster 1:     
(51) elements 

3 6 7 8 13 14 15 16 17 18 19 20 21 22 23 

25 26 28 31 32 34 38 41 60 61 62 63 64 65 66 

67 68 69 70 71 72 73 74 75 78 80 81 82 84 87 

89 91 94 95 96 98          

Cluster 2:                   
(30 elements) 

2 24 27 29 30 33 35 36 37 39 40 42 43 44 45 

46 47 48 49 50 51 52 53 54 55 56 57 58 59 90 

Cluster 3:                        
( 17 elements) 

1 4 5 9 10 11 12 76 77 79 83 85 86 88 92 

93 97              
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Figure 90 - Scatter matrix plot of input features assigned to clustering group IDs. 

 

 

A checkerboard plot is constructed in Figure 91 for all segments in cluster 2. The majority 

of the segments in this cluster have high repetition on congested days. In particular, day 

10, 11, 17, 18, 24, and 25 indicate reduced to nearly zero congestion compared with others 

days of the month. These particular days fall on weekends, suggesting these particular 

segments experience congestion on a repeated basis during weekdays. Several samples 

from Figure 91 were extracted for further illustration. 
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Figure 91 – Checkerboard plot of segments in cluster 2. 

 

 

Figure 92, Figure 93, and Figure 94 show a scatter plot of speeds for segments 46, 47, 

and 48 consecutively. Congestion is repetitive to the same extent at the end of the day for 

weekdays throughout the month. This validates the notion that these segments are 

experiencing recurrent congestion, as described in Chapter 1.  Figure 95, Figure 96, and 

Figure 97 show scatter plots for segments 27, 29, and 40. These segments also indicate 

recurrent congestion, but to a lesser extent than the previous example. These clusters 

share recurrent congestion (Recurrent_Cong) as a common characteristic. This particular 

cluster is important to ODOT agencies because it indicates segments that have an 

imbalance between high demand and low capacity during peak travel hours. 
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Figure 92 – Scatter plot of speeds segment 46 on I-35 southbound. 

 

 
Figure 93 - Scatter plot of speeds segment 47 on I-35 southbound. 
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Figure 94 - Scatter plot of speeds segment 48 on I-35 southbound. 

 

 

 
Figure 95 - Scatter plot of speeds segment 27 on I-35 southbound. 
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Figure 96 - Scatter plot of speeds segment 29 on I-35 southbound. 

 

 
Figure 97 - Scatter plot of speeds segment 40 on I-35 southbound. 

 

 

. 
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Figure 98 - Checkerboard plot of segments in cluster 1. 

 

Figure 98 depicts a checkerboard plot for segments in cluster 1. Congestion is sparse and 

is distributed randomly in space and time. Figure 99, Figure 100, and Figure 101 illustrate 

segments 15, 65, and 23 randomly selected from among the set of segments in cluster 1. 

It is evident in the cleansed dataset that sparse, non-recurrent congestion occurs in a non-

periodic manner. This could be indicative that non-recurrent congestion (Non-

Recurrent_Cong) is caused by non-recurring external conditions, such as weather, traffic 

incidents, or other factors discussed in Chapter 1. Figure 102, Figure 103, and Figure 104 

show the checkerboard plot for cluster 3, as well as two randomly selected segment 

samples—10 and 76. The cleansed dataset indicates there is no congestion (No-Cong) in 

these segments throughout the month. 
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Figure 99  - Scatter plot of speeds segment 15 on I-35 southbound. 

 

 
Figure 100 - Scatter plot of speeds segment 65 on I-35 southbound. 
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Figure 101 - Scatter plot of speeds segment 23 on I-35 southbound 

 

 

 
Figure 102- Checkerboard plot of segments in cluster 1. 
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Figure 103 - Scatter plot of speeds segment 23 on I-35 southbound. 

 

 

 
Figure 104 - Scatter plot of speeds segment 23 on I-35 southbound. 
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6.2.1.  Constructing the classifier 

Unsupervised learning allows separate groups of segments to be identified as 

distinguished characteristic clusters, as described in the previous section, namely 

recurrent congestion, non-recurrent congestion, and no congestion clusters. A classifier 

for online use was trained by labeling the data accordingly. Supervised learning enables 

classification of data with a known number of classes. Hence, a classifier was built based 

on observations of known true class labels (i.e., training the classifier). Classifier 

performance was assessed using a 10-fold cross validation operation, confusion matrices, 

and Receiver Operating Characteristic (ROC) measures. Response variable for 

classification is the class label, and predictor variables are the three aforementioned 

congestion data features. Results of several classifiers were compared for accuracy, 

speed, and interpretability of the algorithms under test.  

6.2.1.1. Naïve Bayes: 

Bayesian methods are highly desirable, as they avoid overfitting [55] by making 

early assumptions about the likely distribution of the answer. In Bayes decision theory, 

the classification problem is specified in terms of probabilities. Consider the following 

notations. Class membership 𝑤𝑚, with m = 1…. M;  features (or variables) are a p-

dimensional observation vector; and posterior probability of an observation belonging to 

the m-th class is 𝑃(𝑤𝑚|𝑥𝑖); 𝑚 = 1, … , 𝑀.  

Bayes’ Theorem decomposes the posterior probability as: 

 

𝑃(𝑤𝑚|𝑥𝑖) =
𝑃(𝑤𝑚)𝑃(𝑥𝑖|𝑤𝑚)

𝑃(𝑥𝑖)
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Where 

𝑃(𝑥𝑖) = ∑ 𝑃(𝑤𝑚)𝑃(𝑥𝑖|𝑤𝑚)

𝑚

 

 

Probability 𝑃(𝑤𝑚) is called the prior probability, and 𝑃(𝑥𝑖|𝑤𝑚) is called the likelihood 

or class-conditional probability. Prior probability represents the likelihood that an 

observation is placed into a class without knowledge about the observation, such as 

measured features discussed earlier. The class-conditional probability is the probability 

of observing a feature vector 𝑥𝑖 given it is in class 𝑤𝑚. 

Prior probability can be inferred from prior domain knowledge, estimated from the 

observed data, or assumed equal across classes. Given these are estimates from the data, 

prior probabilities are considered the relative frequency of observations in each class. 

�̂�(𝑤𝑚) =
𝑛𝑚

𝑛
 

 

where 𝑛𝑚 is the number of observations in the m-th class. Accordingly, a naïve Bayes 

classifier can be constructed to estimate class-conditional probabilities. The approach 

assumes that individual features are independent, given the class. Therefore, the 

probability density function for the within-class conditional probability is written as: 

 

𝑃(𝑥|𝑤𝑚) = 𝑃(𝑥1|𝑤𝑚) × … × 𝑃(𝑥𝑝|𝑤𝑚) 
 

In other words, when using data within a class, univariate density for each feature or 

dimension is first estimated and then multiplied together to obtain joint density. Results 

from implementing a Naïve Bayes classifier are shown in Figure 105, Table 18, and Table 

19. 



116 

 
Figure 105 - Confusion matrix for Naïve Bayes classifier. 

 

Table 18 - Detailed accuracy by class for Naïve Bayes classifier. 

Detailed Accuracy By Class 

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 

1 0.015 0.968 1 0.984 0.976 0.999 0.998 Recurrent_Cong 

0.98 0 1 0.98 0.99 0.98 0.993 0.995 Non_Recurrent_Con 

1 0 1 1 1 1 1 1 No_Cong 

0.99 0.005 0.99 0.99 0.99 0.982 0.996 0.997 Weighted Avg. 

 

Table 19 - Classification results of Naive Bayes classifier. 

 Naive Bayes Classifier 

Time taken to build model 0 

Correctly Classified 
Instances 

98.98% 

Incorrectly Classified 
Instances 

1.02% 

Kappa statistic 0.9832 

 

 

6.2.1.2. K-Nearest Neighbor (K-NN) 

In k-NN classification, output is class membership. Any given object is classified by 

a majority vote of its neighbors with the object being assigned to the class most common 

among its k-nearest neighbors [56]. K-NN has strong consistency results: as the amount 

of data approaches infinity, the algorithm is guaranteed to yield an error rate no worse 

than twice the Bayes error rate (i.e., the minimum achievable error rate given the 
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distribution of the data) [56]. Results of implementing K-NN are shown in Figure 106, 

Table 20, and Table 21. 

 
Figure 106 - Confusion matrix for K-NN classifier. 

 

Table 20 - Detailed accuracy by class for K-NN classifier. 

Detailed Accuracy By Class 

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 

0.967 0.015 0.967 0.967 0.967 0.952 0.976 0.997 Recurrent_Cong 

0.98 0.021 0.98 0.98 0.98 0.959 0.98 0.998 Non_Recurrent_Con 

1 0 1 1 1 1 1 1 No_Cong 

0.98 0.016 0.98 0.98 0.98 0.964 0.982 0.998 Weighted Avg. 

 

Table 21 - Classification results of K-NN classifier. 

 K-NN Classifier 

Time taken to build model 0 

Correctly Classified 
Instances 

97.96% 

Incorrectly Classified 
Instances 

2.04% 

Kappa statistic 0.9663 

6.2.1.3. Decision Trees: 

Decision trees are graphs that utilize a branching method to illustrate every possible 

outcome of a decision. Amongst other data mining methods, decision trees have various 

advantages [57]:  

1- Simple to understand and interpret.  
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2- Require little data preparation. (Other techniques often require data 

normalization, wherein dummy variables must be created and blank values must 

be removed).  

3- Manage both numerical and categorical data.   

4- Are robust and perform well even if assumptions are somewhat violated by the 

true model from which data were generated. 

Results of implementing K-NN are shown in Figure 107, Table 22, and Table 23. 

 

 
Figure 107 - Confusion matrix for simple decision tree classifier. 

 

 

Table 22 - Detailed accuracy by class for simple decision tree classifier. 

Detailed Accuracy By Class 

TP Rate FP Rate Precision Recall 
F-

Measure 
MCC 

ROC 
Area 

PRC Area Class 

0.967 0.015 0.967 0.967 0.967 0.952 0.976 0.945 Recurrent_Cong 

0.98 0.021 0.98 0.98 0.98 0.959 0.98 0.971 Non_Recurrent_Con 

1 0 1 1 1 1 1 1 No_Cong 

0.98 0.016 0.98 0.98 0.98 0.964 0.982 0.968 Weighted Avg. 

 

Table 23 - Classification results of simple decision tree classifier. 

 Decision Tree 

Time taken to build model 0 

Correctly Classified 
Instances 

97.96% 

Incorrectly Classified 
Instances 

2.04% 

Kappa statistic 0.9663 
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6.2.1.4. Support Vector Machine (SVM) 

In support vector machines (SVMs), a data point is viewed as a 𝑝-dimensional 

vector. SVMs determine the boundary that separates classes with a (𝑝-1) -

dimensional hyperplane by as wide a margin as possible. Given that two classes cannot 

be clearly separated, algorithms determine the best boundary. Such a hyperplane is 

recognized as the maximum-margin hyperplane, and its classifier is the maximum margin 

classifier [58]. In addition to performing linear classification, SVMs can efficiently 

perform non-linear classification using a non-linear kernel. A linear and radial SVM 

kernel were applied, and results are presented in Figure 108, Table 24, Table 25, and 

Table 26. 

  
(a)                                                                (b)  

Figure 108 - Confusion matrix for SVM classifier. (a) Radial kernel, (b) Linear 

kernel. 

 

 

Table 24 - Detailed accuracy by class for SVM radial kernel. 

Detailed Accuracy By Class – Radial kernel 

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 

0.067 0 1 0.067 0.125 0.217 0.533 0.352 Recurrent_Cong 

1 0.596 0.646 1 0.785 0.511 0.702 0.646 Non_Recurrent_Con 

1 0 1 1 1 1 1 1 No_Cong 

0.714 0.31 0.816 0.714 0.62 0.506 0.702 0.617 Weighted Avg. 
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Table 25 - Detailed accuracy by class for SVM linear kernel. 

Detailed Accuracy By Class – Linear  Kernel 

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 

0.967 0.015 0.967 0.967 0.967 0.952 0.976 0.945 Recurrent_Cong 

0.98 0.021 0.98 0.98 0.98 0.959 0.98 0.971 Non_Recurrent_Con 

1 0 1 1 1 1 1 1 No_Cong 

0.98 0.016 0.98 0.98 0.98 0.964 0.982 0.968 Weighted Avg. 

 

Table 26 - Classification results of SVM classifier. 

 SVM (Radial basis) SVM (Linear basis) 

Time taken to build model 0.1 0.03 

Correctly Classified Instances 71.43% 97.96% 

Incorrectly Classified Instances 28.57% 2.04% 

Kappa statistic 0.4749 0.9663 

 

In the end a simple decision tree classifier was chosen based on Occam’s razor. 

Factors for this choice include minimal execution time for the 2-diminesional classifier 

and the high interpretability. The classifier is illustrated in Figure 109. Clearly, two 

predictors suffice to classify segments with a 98% accuracy. 

 
Figure 109 – Simple decision tree classifier. 

 

6.3.   Congestion Identification 

Three distinct categories of congestion, namely recurrent, non-recurrent and no 

congestion, were identified. Re-current congestion is largely caused by lack of roadway 

capacity to support demand or load delivered onto it. Moreover, this lack is more apparent 

(i.e., more so than its non-recurrent counterpart) given a repeated pattern-like 

characteristic. Identifying recurrent congestion is important for DOTs and passengers 
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alike. DOTs recognize re-current congestion as segments and sections of roadway that 

require improvement, conditioning, and optimization to support present and future 

demand. Passengers gain an understanding that recurrent congestion should be considered 

to adequately plan travel time and make route decisions to circumvent delays caused 

during peak operating hours. Non-recurrent congestion, on the other hand, is sparse and 

disjoint in nature, thus difficult to identify. Causes of non-recurrent congestion are 

numerous, and identifying the source of each non-recurrent cause in a timely manner 

remains an open research problem. Understanding non-recurrent congestion is vital to 

alleviate its negative effect on traffic performance. Furthermore, obtaining insight on the 

effect and impact of various sources of non-recurrent congestion allows adequate trip 

planning, buffer time, and necessary resources to enhance travel time and improve traffic 

performance in an efficient, holistic manner. The next section presents a Bayesian 

probability approach to identify underlining operating conditions that cause non-recurrent 

congestion on a roadway. 

6.3.1. Bayesian probability and Bayesian methods 

Bayesian probability, in contrast to frequentist probability that interprets probability 

as the long run frequency or propensity of some phenomenon, is a quantity assigned to 

represent a state of knowledge or a state of belief [59]. Bayesian probability expresses a 

subjective degree of belief that rationally changes over time accounting for new evidence. 

A comical depiction of both [60] is shown in Figure 110. 
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Figure 110 - Frequentists vs. Bayesians 

Bayesian inference relies on Bayesian probability as a method of statistical 

inference in which Bayes' theorem is used to update the probability for a hypothesis as 

more evidence or information becomes available. As aforementioned, Bayesian 

inference derives the posterior probability as a consequence of two antecedents, a prior 

probability, and a "likelihood function" derived from a statistical model for the observed 

data. Bayesian inference computes the posterior probability according to Bayes' theorem:  

𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻) ∙ 𝑃(𝐻)

𝑃(𝐸)
 

where  denotes a conditional probability; 𝐻  is a hypothesis whose probability may be 

affected by data; evidence 𝐸 corresponds to new data not used in computing the prior 

probability; and 𝑃(𝐻) is the prior probability indicating a previous estimate of the 



123 

probability that a hypothesis is true before gaining current evidence. Thus, 𝑃(𝐻|𝐸) is 

the posterior probability that tells us what we want to know: the probability of a 

hypothesis given the observed evidence. 𝑃(𝐸|𝐻) is the probability of 

observing 𝐸 given 𝐻, and 𝑃(𝐸) is the marginal likelihood.  

The primary advantage of using Bayesian methods is that they incorporate probabilistic 

relationships among variables of interest. When used in conjunction with statistical 

techniques, Bayesian methods offer several advantages for data analysis [61]. First, 

because they encode interdependencies between variables, they can manage instances in 

which data is missing. Second, the methods have the ability to represent causal 

relationships. Therefore, they can predict consequences of an event or action. Lastly, 

because the methods have both causal and probabilistic relationships, they can model 

problems given a need to combine prior knowledge with current data.  

Bayesian methods have previously been incorporated in travel time prediction studies 

[62] [63]. Bayesian Network (BN) models have been used in accident severity analysis 

[64] [65], non-recurrent incident detection [66], and other traffic studies. Recently, real-

time crash prediction using BN has been investigated [67] [68] [69]. Non-recurrent 

weather conditions have also been extensively studied and modeled by researchers. 

Studies concerning the effect of weather on traffic flow [70] [71] [72] and the impact of 

different weather conditions with the temporal and spatial variations of traffic have been 

reported [73] [74]. A survey of numerous weather characteristics and their effect on traffic 

can be found in [75]; weather forecasting and prediction using BN have also been heavily 

investigated [76], [77], [78] [79].  
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However, the majority of previous studies have adopted speed data collected from AVI 

sensors or loop detectors for modeling and analysis. Volume/occupancy/speed 

parameters were used to predict the likelihood of incidents. These measures are invalid 

for roads on which traffic conditions are estimated using only speed data extracted from 

sampled floating cars or smart phones (i.e., probe traffic). Furthermore, probe-based data 

permits collecting information in remote and non-urbanized locations where conventional 

data acquisition instruments and data collection stations are not available. Because 

current and historical traffic conditions could be factors used to predict future traffic 

conditions, it is vital to identify re-current congestion sources in locations that do not have 

adequate data acquisition sources. For example, weather data is not available at all 

roadway locations: weather stations are densely located in and around metropolitan areas 

and large cities, but few are located on stretches of highways connecting cities. Notably, 

because Bayesian forecasting revises the state of a priori knowledge with a posterior 

distribution per condition given real-time measurements of TT, a Bayesian system can 

promptly respond to real time changes in traffic pattern [80].  

6.3.2. Identification using Bayesian probability 

Various non-recurrent conditions characterize the manner in which vehicle speed is 

affected on road segments and routes. These conditions correspond to a variety of 

characteristic models, the impact of which are clearly visible and identifiable on the 

baseline distribution. Thus, distinguishable statistical models can be used to reveal 

assorted information for each condition. Combining distribution models with Bayesian 

probability, an approach can be determined to identify the underlining condition 

occurring in both offline and real-time speed analysis. This thesis proposes a Bayesian 
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engine for congestion identification. The engine utilizes statistical models derived from 

observed data records per condition, and then estimates a posterior credibility for each 

hypothesis. Figure 111 illustrates this concept for identifying three situations: incident 

(e.g., cash and collision), weather (e.g., snow) and free-flow traffic. Histogram 

distributions of speeds are used to create distribution density models from travel time 

data.  
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Figure 111 – Bayesian inference engine concept illustration 
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6.3.3. External Data Sources 

A major challenge to implementing the proposed concept is obtaining accurate and 

reliable information of non-recurrent congestion sources collocated with each segment 

data for NHS highways. Although extensive weather data is available in major 

metropolitan areas, this type of information is not collected on segments located near 

border crossings, un-populated rural areas, or large stretches of highway. Furthermore, 

categorical historical data (e.g., snow, hail, fog, visibility, thunderstorm) is neccassary for 

identification. The amount of this data type is rarely stored by weather data centers. 

Instead, temperature levels, perceipitation levels, wind direction, wind speed, and other 

numerical weather indicators are typically captured and retained.  

Historical categorical and numerical weather data for I-35 southbound was obtained 

online from www.wunderground.com. Only 10 sensors are used to report data for the 

entire 236 mile stretch of roadway across the state. Accordinlgy, there are concerns about 

data accuracy for segments located a signficant distance from weather sensor locations. 

Furthermore, segments around OKC experiencing recurrent congestion were excluded 

from analysis. This further reduced the number of sensors available for use in the analysis. 

Figure 112 illustrates weather senser locations. Incident data was obtained online from 

www.navibug.com, a website that relies on crowdsourced information collected from 

users in realtime, as well as aggregated online information captured from local news 

agency reports. Figure 113 illustrates a snapshot of the online archive and news reports. 

http://www.wunderground.com/
http://www.navibug.com/
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Figure 112 – I-35 southbound segments and weather station locations. 

A public government database of historical incidents in not available online. Although 

discussions are currently underway with ODOT to provide access to collected and stored 

highway incident information from public safety agencies, the information was not 

available at the time this thesis was prepared. 

  

Figure 113 – Incident data online arhive found at www.navibug.com. 
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As a result, the set of data samples collected for weather and incident data is not adequate 

for accurate results. Instead, a demonstration of concept is shown in the remainder of this 

work. Future work will include a through validation of the approach detailed below for a 

larger sample size when data is available. 

6.3.4. Implementation of Bayesian congestion identification 

Models pertaining to three distinct conditons, namely free flow, incident, and 

weather (snow) were constructed. A particular segment was chosen to derrive distribution 

models, which were subsequently used to evaluate the proposed Bayesian identification 

approach on additional segments for all three non-recurrent conditions cases. Segment  

64, west of Norman on highway I-35 (See Figure 114) is located proximate to a dedicated 

weather sensor gathering accurate historical weather data.   

 

Figure 114 - Segment 64 on I-35. 

A historic crash (incident) event occurred on segment 64 on March 13, 2015. Time and 

location were confirmed by local news agencies’ online articles. A snow fall event 
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occurring on March 4 was also confirmed in such a manner. No congestion (i.e., free flow 

traffic) was observed on March 2. Figure 109 illustrates the monthly epoch plot for 

segment 64 during March 2015. 

 

Figure 115 - Epoch speed plot for segment 64 during the month of March. 

Free-flow travel and snow travel cases were characterized by mean and standard 

deviation modeled according to a gaussian distribution model. See Table 27. Incident 

event modeling was performed using a non-parametric Kernal density estimater to 

generate probability density function (PDF). The formula for the model is given by a 

smoothing spline, 3rd degree piecewise polynomial. The resulting formula has 70 

parameter coeffificents, shown in Appendix D. Figures 114, 115, and 116 demonstrate 

fitted models per case. Although fitting of snow showed less goodness-of-fit than 

normalfree-flow traffic with regard to normal distribution, Bayesian inference results 

exhibited robustness in decison making and correctly identifying cases, as evident in 
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subsequent results. Results are indicative of the suitability of Bayesian inference for 

solving problems when accurate, closed form models are not possible. 

 

Figure 116 – Free Flow model fit. 

              

Figure 117 – Snow (weather) model fit. 

              

Figure 118 – Incedent model fit 
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Table 27 – Free flow- snow distribution model parameters 

 Free Flow Weather 

Mean 67.9814 59.412 

Standard Deviation 4.88 8.9821 

 

 

Figure 119 - Distribution fitting for 3 distinct events overlaid. 

Figure 117 illustrates probability for the three categories overlaid the model. High overlap 

occurs when value of free flow mean speed is near the speed limit.  

Figure 120 depicts a probablity plot showing various probability values for each model 

relative to various speed measurements on the highway. Three distinct regions are visible. 

Lower speeds of 0 to 30 mph result in higher probability of incident occurrance. As speeds 

increase to between 30 and 60 mph, the snow model tends to dominate with higher 

probability values over-all. For travel near the speed-limit, the free flow model dominates 

in probability values, in spite of overlap among distribution models in this region. 
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Figure 120 - Probability plot for 3 distinct distribution models 

6.3.4.1. Bayesian updating 

Implementing Bayes theorem in a time series input requires updating the prior. Each 

of the aforementioned cases occurs over individual time intervals. Snow, for instance, 

accumulates with time, and the effect on roadways becomes apparent after several hours 

of continuous snowfall. By contrast, effects of a road incident occur almost 

instantaneously. Thus, one can intuitively suggest that updating prior probabilities is 

related to the duration of the event and the time required for its effects to manifest. As a 

result, posterior probability was averaged over the course of an hour and a half for 

incident data and over five hours for the snow event. Free flow update time was chosen 

to match the shortest length of time for all cases. Values were chosen based on the 

duration each event modeled for one day. Prior update time remains an optimization 

research problem that requires a larger sample size to be studied. Furthermore, there is a 

tradeoff between the system’s ability to instantly detect an event (i.e., response time) and 

the stability and accuracy of the system. Decreasing update time results in near 
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instantaneous updating of the prior, which causes fast inference decisions. False detection 

is expected to occur when small values are used, particularly in cases where speed 

measurements caused by outliers and anomalies were present in the data, or, in cases 

when there is a high variance between consecutive data samples. On the other hand, 

increasing prior update time could result in the system’s inability to detect extremely short 

incident occurrences for durations of 15 or fewer minutes. After taking into account the 

aforementioned details, the Bayesian inference engine was coded using Matlab. Inputs of 

actual speed measurements obtained from the NPRMDS dataset, which simulated real-

time measurements, were fed to the system. System output was a prediction of the type 

of condition (event) causing the input speed measurements given. Results per case are 

offered below.  

6.3.4.2. Incident 

Figure 121 demonstrates a traffic accident at approximately 3 p.m. on I-35 

southbound over segment 15. Figure 122 shows a snap shot of the Bayesian inference 

engine GUI final output for a day of monitoring. The top subplot illustrates speed records 

arriving in real time. The bottom subplot illustrates the probability of the Bayesian engine 

pertaining to each of the three defined states; free-flow, incident and weather (in this case, 

snow). The right subplot illustrates system output. For this implementation, a threshold 

of 40% confidence was required for decision-making. The threshold is flexible and can 

be modified, as necessary. Figure 122 indicates incident detection between 4:23 and 5:20 

PM.  Figure 123 and Figure 124 illustrate an incident on segment 78 on March 13, 2015. 

System output indicates the incident was detected between 2:38 and 5:18 PM. Detection 

and incident time reported by news agencies was highly correlated, primarily because the 
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effect of an incident is profound and nearly instantaneous on traffic flow. As a result, 

Bayesian inference will allocate increased credibility and confidence to its probability. 

 

Figure 121 - Scatter plot of incident data which occurred at segment 15 during the 

18th of January 2015 

 

 

Figure 122 – System output of incident which occurred at segment 15 during the 

18th of January 2015. 
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Figure 123 – Scatter plot of incident data which occurred at segment 78 on March 

13 2015. 

 

 

 

Figure 124 – System output of incident which occurred at segment 78 on March 13 

2015. 
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6.3.4.3. Snow (Weather) 

Figure 125 illustrates a scatter plot segment 80 on a snowy March 4, 2015. Notably, 

rain also occurred between 5 and 9 AM that morning, followed by light snow and then 

heavier snow for nearly the entire second half of the day. Figure 126 illustrates that the 

system was capable of detecting the snow event, with no false detection during rainfall, 

primarily because rain results in a larger spread of speeds quite different from snow. 

Detection time of snow was much later than the instantaneous detection of incidents. 

Reported output was approximately 7:44 PM, whereas snow was reported to have started 

several hours earlier, and accumulation increased gradually over many hours. Credibility 

allocation to its probability is similarly affected by the duration resulting in a delayed 

response. Although this can be affected by changing the prior update time, nevertheless, 

accuracy will be affected, as will an increase in the rate of false detection. When incidents 

occur, real time response is critical. However, this might not be needed for weather 

events, such as rain and snow. Accordingly, a less stringent response time can be tolerated 

for weather as a tradeoff between improved accuracy and error due to an increase of false 

detection. Figure 127 and Figure 128 illustrate a second weather event that occurred 

March 4, 2015 on segment 90. Delayed identification between time reported and time 

predicted in the output of the Bayesian inference engine was two hours. 
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Figure 125 - Scatter plot of snow data which occurred at segment 80 on March 4 

2015 

 

Figure 126 – Snow (weather) congestion on segment 80 during the 4th of March 

2015. 
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Figure 127 - Scatter plot of snow data which occurred at segment 90 on March 4 

2015 

 

 

Figure 128 - Snow (weather) congestion on segment 90 during the 4th of March 

2015. 

6.3.4.4. Free Flow 

Figure 129 depicts a case of free flow where the system was able to identify traffic 

conditions with a high degree of accuracy, primarily because probability for the range of 
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speeds were dominate in the Gaussian model previously shown when compared to that 

which fit both weather and incident models. 

 

Figure 129 - Free flow occurring all day on March 9, 2015. 

Overall, 12 cases—four incident, four weather (snow), and four free flow—were tested 

and identified. Results inclusively demonstrated accurate identification when using the 

proposed method. The proposed approach shows promising results and could be 

integrated with real-time incident detection technologies. Validating the accuracy of the 

proposed approach requires a larger sample size that researchers will obtain in future 

work. Furthermore, models must be extended to account for additional sources of 

congestion (e.g., weather events such as rain, fog, or hail and non-weather, non–recurrent 

causes such as work zones). Finally, optimizing prior update time for each case remains 

a research problem that affects identification time, which is critical for reducing 

identification time response without decreasing accuracy and increasing false alarm rate. 
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Chapter 7: Conclusion and Future Work. 

Future ITS systems are expected to handle and resolve the arduous challenges of 

maintaining and improving roadway performance, facing today’s transportation 

engineers and agencies alike. This is achieved through systems incorporating intelligence, 

coupled with the ability to ingest highly heterogeneous data in real-time, to perform 

various types of inferences i.e., (analysis, diagnosis, exploration and predictions) that 

allow insight and knowledge to be extracted and optimal solutions to be employed. 

This thesis presented research detailing the use of one of the nation’s largest datasets 

of roadway travel times; the NPMRDS. A comprehensive study of dataset characteristics, 

including influencing variables that affect data measurements have been presented. 

Research affirms that understanding domain specific characteristics is vital for filtering 

data outliers and anomalies, and is key for accurate statistical analysis to be performed. 

Moreover, a process for identifying anomalies using Benford’s law was developed and 

models validating speed accuracy, computing optimum system time granularity, and 

computing minimum segment length for a desired CI were formulated. Models serve as 

tools for validating, designing and understanding the characteristics of travel time 

measurement systems. Furthermore, recommendations for improving accuracy and 

alleviating data anomalies in the NPMRDS were reported. Research affirms careful 

consideration of system capture time granularity and segment length has to be taken into 

account as the interaction between the two, coupled with the speed of vehicles on the 

road, could result in anomalous data being generated. Statistical analysis confirms that 

while summary statistics of data averaged over the course of a month is not highly 

effected by outliers, granular time periods are. Mean and variance statistics exhibited a 
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difference of around 3-5 mph when summarization was done over a period of one day. 

For congestion detection, removal of outliers contributed to the reduction of false alarm 

rate errors for congestion of segments and congested days for both variance and 

thresholding detection methods alike. More importantly, the effect of outliers was found 

to be severe on travel time reliability measures such as travel time index, buffer time 

index and planning time index. Thus, careful consideration for outlier removal has to be 

taken when computing these measurements. Finally, a novel approach for identifying 

non-recurrent congestion sources using Bayesian inference of speed data was developed 

and introduced. Results inclusively demonstrated accurate identification when using the 

proposed method. The proposed approach shows promising results and could be 

integrated with real-time incident detection technologies. Future work includes validating 

the accuracy of the proposed approach on a larger sample size, and extending the work 

to include models that account for additional sources of congestion (e.g., weather events 

such as rain, fog, or hail and non-weather, non–recurrent causes such as work zones). 

Optimizing prior update time for each case remains a research problem critical for 

reducing identification time response without decreasing accuracy and increasing false 

alarm rate. 
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Appendix A- Segment Free Flow Statistics  

 Mean, Variance and Standard Deviation Free Flow Statistics for I-35 southbound 

segments. 

 Cleansed Dataset Raw Dataset 

Segment 
number 

Mean Free-Flow 
Speed (Mph) 

Mean Free-Flow 
TT (Hour) 

Mean Free-Flow 
Speed (Mph) 

Mean Free-Flow 
TT (Hour) 

1 61.66524054 0.001649227 61.17955485 0.00166232 

2 67.08731889 0.061870262 65.33022804 0.063534295 

3 66.06997434 0.013342369 64.17450277 0.013736452 

4 66.9601723 0.122051359 64.32567135 0.127050054 

5 67.49851698 0.058101128 64.4582114 0.060841589 

6 67.55270124 0.060449544 64.62530094 0.063187791 

7 66.82871201 0.044904352 64.11301232 0.046806411 

8 68.154124 0.11782075 64.9426361 0.123647121 

9 67.89004955 0.14025207 64.4348242 0.147772887 

10 65.85834018 0.007057117 65.53922647 0.007091478 

11 67.67066542 0.103639442 64.958814 0.107966103 

12 65.90360087 0.016144793 64.67223829 0.016452191 

13 67.44063037 0.073530896 64.39276274 0.077011294 

14 67.910604 0.092766809 65.97099013 0.095494247 

15 68.13926467 0.057985657 66.0656925 0.059805625 

16 68.42562839 0.191117573 65.13803044 0.200763516 

17 69.0061864 0.064235255 65.60588673 0.067564516 

18 65.97643487 0.016374938 65.76510832 0.016427556 

19 68.06153442 0.07891741 65.682188 0.081776204 

20 68.13643832 0.043599285 66.36694617 0.04476174 

21 67.64449233 0.020750987 66.11406622 0.021231337 

22 67.15088743 0.010612369 66.44087892 0.010725776 

23 65.79103068 0.01447173 64.61205067 0.014735796 

24 67.29946605 0.014680206 66.00415522 0.0149683 

25 66.12270967 0.010302814 65.49048824 0.010402274 

26 64.94883504 0.005397633 64.35887496 0.005447112 

27 66.15905419 0.005592885 65.55209539 0.005644671 

28 62.74752951 0.004446709 62.99768748 0.004429051 

29 61.37458064 0.006754588 58.29798668 0.007111052 

30 64.72207619 0.016730149 62.31939187 0.01737517 

31 65.07052196 0.017121578 61.55176473 0.018100375 

32 63.47771023 0.01790471 63.88912054 0.017789414 

33 61.45625686 0.011404046 58.69982282 0.011939559 

34 56.80647264 0.004432593 56.29981718 0.004472483 

35 61.81037912 0.007400861 61.64593979 0.007420602 

36 61.09200709 0.012729488 61.03556378 0.01274126 

37 61.12660238 0.024466925 59.91950382 0.02495982 
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 Cleansed Dataset Raw Dataset 

Segment 
number 

Mean Free-Flow 
Speed (Mph) 

Mean Free-Flow 
TT (Hour) 

Mean Free-Flow 
Speed (Mph) 

Mean Free-Flow 
TT (Hour) 

38 60.25622985 0.007701776 59.7181227 0.007771175 

39 62.59966293 0.016836832 61.78030735 0.017060129 

40 61.06040563 0.018758146 59.06146461 0.019393017 

41 55.73322581 0.000765432 55.73322581 0.000765432 

42 59.0565178 0.006087389 57.90649905 0.006208284 

43 59.50885485 0.006816465 58.31667499 0.006955815 

44 45.40878513 0.008546364 43.56719285 0.00890762 

45 59.67275441 0.016289176 58.73563591 0.016549067 

46 60.68311543 0.007879457 61.84720832 0.007731149 

47 61.27757297 0.008370599 61.83553852 0.008295068 

48 60.48457311 0.006857616 60.20945043 0.006888952 

49 60.35539545 0.001900079 60.21293582 0.001904574 

50 62.67822894 0.016087723 61.64102904 0.016358423 

51 60.33337211 0.007845244 59.98279906 0.007891096 

52 62.3709272 0.007737419 61.97727192 0.007786564 

53 59.7644505 0.009690376 58.14718092 0.009959898 

54 59.44307705 0.004279556 58.97403454 0.004313593 

55 59.29862281 0.013847202 60.22639696 0.013633889 

56 62.82815139 0.01183721 61.73034293 0.012047722 

57 63.06477251 0.00989887 62.25236524 0.010028053 

58 63.45911062 0.009188909 62.73519521 0.009294942 

59 62.91178717 0.01462683 62.02384027 0.014836231 

60 64.425238 0.016896329 63.20654916 0.017222108 

61 66.45059617 0.029548569 64.13896686 0.030613527 

62 63.95021684 0.011166811 64.63241595 0.011048945 

63 65.8510601 0.021628809 63.5839177 0.022400004 

64 64.0931081 0.028794048 62.69267084 0.029437253 

65 63.61809243 0.018103498 62.84598588 0.018325912 

66 63.43268039 0.017900237 62.67005092 0.018118064 

67 62.10019048 0.00244186 61.89103186 0.002450113 

68 63.71379311 0.024715527 63.65203372 0.024739508 

69 66.63357803 0.032441302 63.71224071 0.033928802 

70 68.4063688 0.040409249 65.19442284 0.042400099 

71 68.52314306 0.052271099 65.34501489 0.054813363 

72 68.7496849 0.043377217 64.89445626 0.045954157 

73 68.46112402 0.063265686 65.09740065 0.066534761 

74 69.429769 0.069925193 65.98686188 0.073573585 

75 69.29693449 0.060533847 66.05350265 0.063506246 

76 67.54711882 0.002634013 67.10481199 0.002651375 

77 68.9493956 0.033883836 66.12933665 0.035328798 

78 69.40065146 0.06788236 65.43606963 0.071995155 

79 66.21493772 0.027654334 64.60356577 0.028344101 

80 68.13304135 0.037849771 63.89422431 0.040360769 
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 Cleansed Dataset Raw Dataset 

Segment 
number 

Mean Free-Flow 
Speed (Mph) 

Mean Free-Flow 
TT (Hour) 

Mean Free-Flow 
Speed (Mph) 

Mean Free-Flow 
TT (Hour) 

81 69.11564707 0.058634624 65.054351 0.062295141 

82 68.74351664 0.029569043 64.86759516 0.031335831 

83 69.54669978 0.053320143 65.94259672 0.056234364 

84 69.6324421 0.066895399 65.74340628 0.070852581 

85 65.71455304 0.064823236 63.63465181 0.066941986 

86 61.57738067 0.064198249 59.16915332 0.066811164 

87 69.1120471 0.068426421 65.86345312 0.071801428 

88 68.53741509 0.029945104 64.46393814 0.031837335 

89 68.79540773 0.103214738 64.36735015 0.110315245 

90 64.33101384 0.01145917 61.76074717 0.01193606 

91 65.20729204 0.021055161 60.84745779 0.022563802 

92 64.8212189 0.036800604 63.00393087 0.037862082 

93 66.54106319 0.07215304 64.10544052 0.074894423 

94 67.75966665 0.043913292 64.66671716 0.046013624 

95 67.36800295 0.090025231 63.36008548 0.095719883 

96 69.49386424 0.145272969 63.73054155 0.158410391 

97 65.77793942 0.0640879 64.74581694 0.065109534 

98 66.14158063 0.011421408 64.84266484 0.0116502 
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Appendix B – Segment 85th percentile 

85th Percentile Statistics for I-35 southbound segments. 

Segment 
Cleansed Dataset 
85th Speed (Mph) 

Raw Dataset 
85th Speed (Mph) 

1 65.86968377 65.26930547 

2 72.34870957 70.2403965 

3 71.07483392 69.05935077 

4 71.51742405 67.84211459 

5 71.8592873 67.81281833 

6 72.23894079 68.9090222 

7 71.87795974 69.14174774 

8 72.61346272 68.49635651 

9 72.24792589 68.2267387 

10 70.64061208 70.00795137 

11 71.9499672 68.3872716 

12 70.69525299 69.13593709 

13 72.01360687 68.03164656 

14 72.33030844 69.73560137 

15 72.62882577 69.92358513 

16 72.42371343 68.56410637 

17 73.61645542 69.75562667 

18 70.97247156 70.15615174 

19 72.547095 69.74972286 

20 72.44961823 70.29799058 

21 72.39799505 70.60129169 

22 71.51054602 71.04467856 

23 70.43248047 69.15259184 

24 72.30689983 70.86195543 

25 71.42540555 70.39021558 

26 70.3797053 70.20233337 

27 70.13875642 69.50081753 

28 69.48681331 70.86592249 

29 68.32345341 67.13205625 

30 70.85124389 68.99065538 

31 70.06500745 66.11549515 

32 67.79082085 67.75494006 

33 66.20243128 63.36386536 

34 61.41264265 61.56850081 

35 66.29032548 66.30565407 

36 65.47507684 65.38079656 

37 65.07777281 63.7712409 

38 64.67946454 64.20319899 

39 66.44957663 65.80001587 

40 65.96895429 63.5868929 

41 65.95047923 65.95047923 

42 64.18180167 63.27311988 

43 64.52024831 63.96446706 

44 51.53899361 48.48420843 

45 64.94501663 63.61133081 

46 64.96243211 65.84983236 
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Segment 
Cleansed Dataset 
85th Speed (Mph) 

Raw Dataset 
85th Speed (Mph) 

47 65.15108078 65.75537094 

48 64.93376969 64.50230935 

49 65.40016529 65.14536937 

50 66.82967019 65.55977195 

51 64.8053382 64.34480645 

52 66.93830859 66.57387229 

53 64.93880868 64.76044573 

54 65.50450725 65.84957454 

55 63.88279413 64.70832981 

56 66.77113937 65.74112107 

57 66.64629936 65.88827599 

58 67.48900609 66.73407088 

59 66.62485146 65.8124439 

60 68.13472954 66.51034781 

61 70.05440568 67.3090086 

62 68.00987464 68.43905194 

63 69.73594782 66.73945257 

64 67.61302466 65.70823979 

65 66.94134299 65.9296451 

66 67.09231802 65.96599142 

67 67.01880376 67.00770684 

68 67.97744209 67.30110818 

69 71.06774055 67.10197826 

70 72.91213296 68.54952977 

71 72.91105445 68.63542442 

72 73.34535042 68.32470443 

73 72.71077907 68.20130845 

74 73.55524823 69.01425245 

75 73.56020382 69.42101829 

76 72.9537708 72.24048641 

77 73.57812093 69.85396119 

78 73.71980207 68.81547404 

79 70.96546918 68.22892562 

80 72.90797316 67.81317122 

81 73.56111548 68.91104048 

82 73.58976715 68.78220388 

83 73.84708072 69.50912971 

84 74.1377454 69.54628597 

85 70.50337691 67.11530434 

86 68.05492424 64.46671854 

87 73.76753277 69.17747246 

88 73.53606918 68.06676664 

89 73.37918982 67.90756958 

90 71.74779418 68.89733642 

91 71.16520626 66.4881897 

92 69.90900194 66.43048627 

93 71.05810536 67.02308329 

94 72.1841866 68.00657325 

95 71.95376168 66.45030258 

96 73.78785994 66.47864967 

97 70.17351327 67.89593266 

98 70.52800067 68.34023476 
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Appendix C – Segment Reliability Index Results 

TTI, BI and PI for all segments of I-35 Southbound. 

 Cleansed Dataset Raw Dataset 

Segment TTI BI PI TTI BI PI 

1 1.139358683 0.188340803 1.294207541 1.193652943 1.27053324 2.465210301 

2 1.222937137 0.941895726 2.10137121 1.427348576 2.754765009 4.085241935 

3 1.153085067 0.360080111 1.473022591 1.203651387 1.738778053 2.968346906 

4 1.124710015 0.191754465 1.280487944 1.120122617 0.219216446 1.320511257 

5 1.120834429 0.159637837 1.245972986 1.143874034 1.210802815 2.360346944 

6 1.140245516 0.198632403 1.311072422 1.142912217 0.216958096 1.323162172 

7 1.141222065 0.222989588 1.329521984 1.139397879 0.217462081 1.329147935 

8 1.12343795 0.168482612 1.257839888 1.104345758 0.275289252 1.355667708 

9 1.126319642 0.373102925 1.471924708 1.169809535 1.134154341 2.35274804 

10 1.172722807 0.19627674 1.320232636 1.296814926 2.70698406 4.103849897 

11 1.142093846 0.180189595 1.281680677 1.13273872 0.301868869 1.412799746 

12 1.143672207 0.329676582 1.46005814 1.337500522 4.657759301 6.099516647 

13 1.157935496 0.276064024 1.384757465 1.379306933 6.715918795 8.282164057 

14 1.141267154 0.225433244 1.327264358 1.664800381 7.267064619 8.905211485 

15 1.840234637 9.265768936 11.07844428 2.700214632 18.336497 20.87138286 

16 1.752599548 12.79834397 15.33813579 1.7660273 12.43703469 14.92670002 

17 1.160749771 0.242982316 1.333108448 1.19180989 0.722523512 1.839530407 

18 1.677838574 3.407957994 4.759774575 2.472111212 15.59523284 17.7894932 

19 2.153678192 14.05546207 16.18823809 2.122090528 13.60339883 15.61418527 

20 1.205808497 0.514819659 1.625025979 1.237915628 1.427382031 2.592317735 

21 1.734061404 5.500993987 7.012370653 1.827165344 6.073255732 7.602530178 

22 2.056942637 6.276760229 7.945306848 2.243342029 7.712967218 9.516187269 

23 1.344045684 1.462269432 2.66249112 1.651687074 4.833293972 6.352082891 

24 1.387157924 2.153293511 3.454471196 1.407223123 2.334434471 3.66054684 

25 1.470019048 2.862201032 4.219381896 1.495146028 2.953697564 4.358943684 

26 1.60589859 3.23553081 4.713988403 1.921280864 14.45549005 17.36993648 

27 1.544828298 3.043572581 4.44452547 1.555463667 3.145825024 4.425164114 

28 1.495097193 2.283130754 3.724554133 1.577761185 2.568157187 4.162415898 

29 1.445354341 1.65753905 3.128278513 1.662566671 1.869196661 3.670879589 

30 1.354829678 0.974493509 2.265072601 1.367794435 1.109488546 2.392279078 

31 2.723404505 9.094061193 10.9691557 3.060216745 9.998289379 12.10933622 

32 2.084434263 6.818953214 8.514703862 2.121287707 6.81499158 8.579285172 

33 3.018146871 19.53179571 22.573061 3.097996761 19.31342399 22.36827013 

34 1.3573433 0.700604423 1.921578726 4.346577803 29.09533205 33.60541473 

35 1.361769551 1.648229253 2.926557706 1.510090033 2.418088655 3.855575201 

36 1.303305532 1.40343139 2.625927448 1.604872138 11.20172785 13.18373126 

37 1.344887347 1.720818354 2.94539697 1.383637732 1.836224967 3.078439488 

38 1.260693504 0.87977508 2.045740527 1.256397681 0.870989028 2.035013754 

39 1.235663612 1.009090635 2.175487628 1.228114708 1.003363445 2.163804785 

40 1.834659123 4.836649717 6.461981309 2.01474297 7.556842103 9.316071413 

41 6.383835663 18.29057589 24.22707262 6.502588669 18.75599413 24.74258506 

42 2.377341883 7.840921015 9.883149352 2.576347918 8.692818329 10.91321803 

43 1.490288579 2.895528653 4.310731575 1.587799681 3.048824212 4.634719791 
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 Cleansed Dataset Raw Dataset 

Segment TTI BI PI TTI BI PI 

44 1.554221055 3.233273734 4.840271075 1.568954307 3.349843485 4.930734977 

45 1.680487006 4.312954469 5.907326532 1.72259753 4.566832277 6.177566175 

46 1.3806581 1.696889469 2.908122556 1.53151194 4.63983094 6.044781843 

47 1.369414302 1.673445589 2.877224308 1.40721149 1.814328755 3.027387988 

48 1.340352934 1.439590025 2.639363782 1.409165626 1.728643306 2.95839673 

49 1.565238101 2.057697338 3.389074732 1.89107914 8.532447449 10.7984543 

50 1.319834482 1.662970211 2.853698571 1.341738961 1.590040599 2.769771181 

51 1.432216271 2.339567774 3.627332653 1.940858089 12.91616125 15.08884015 

52 1.388083566 1.991526457 3.242840761 1.751621407 13.31817986 15.42241153 

53 1.456327425 1.335452413 2.642270932 1.569327555 1.520655049 2.992955511 

54 1.502247354 1.663985903 2.999614646 1.597896905 1.756132907 3.218609832 

55 1.225201122 0.606309516 1.763027071 1.613776049 10.92638658 13.11384491 

56 1.239101664 0.898311653 2.037578816 1.359185537 5.979001351 7.576369335 

57 1.269464597 1.201669518 2.36326166 1.312793627 1.442757414 2.624613384 

58 1.221831928 0.771622835 1.917904261 1.729275389 13.34445613 15.46752921 

59 1.19752333 0.512988063 1.630297786 1.252387553 2.736752202 4.07072471 

60 1.153226659 0.41317846 1.504772367 1.163530702 0.461060239 1.560606498 

61 1.169532107 0.322714976 1.435449203 1.133520431 0.325202587 1.402314761 

62 1.166218186 0.363690724 1.474871711 1.158255404 0.353909401 1.45687454 

63 1.135882458 0.248156803 1.339426658 1.119682757 0.244695266 1.330078488 

64 1.124861684 0.282218349 1.364845757 1.145159703 0.691632959 1.787309691 

65 1.10720321 0.165636369 1.24433707 1.525315759 10.90557695 12.89991789 

66 1.105971691 0.237196507 1.309574387 1.101057086 0.393732605 1.469768972 

67 1.497087845 2.283250172 3.651398777 2.331783702 13.07295849 15.78183327 

68 1.228635111 1.458639229 2.646789248 1.302111904 2.198884764 3.44615586 

69 1.14082778 0.211774335 1.31181476 1.128722425 0.442672541 1.539911424 

70 1.150543176 0.287894727 1.383020549 1.564754634 11.49931186 13.49306005 

71 1.154836053 0.300644789 1.404252954 1.169807843 1.274963232 2.435236134 

72 1.144347448 0.221663424 1.322648879 1.14210633 1.37469669 2.532394874 

73 1.137562999 0.211600995 1.304318838 1.543724645 11.31159682 13.10421826 

74 1.127767063 0.214913989 1.293547854 1.115563143 0.168153406 1.25347729 

75 1.138129985 0.19307852 1.288824255 1.103802005 0.130234349 1.210014148 

76 1.164527802 0.212074283 1.334949722 1.184697431 0.219458251 1.366647137 

77 1.14808477 0.203262907 1.311990829 1.122522105 0.194461438 1.294943027 

78 1.140720216 0.212000863 1.315708711 1.11884071 0.170841496 1.258188731 

79 1.149633566 0.233693024 1.346012129 1.166158418 1.286495973 2.473064387 

80 1.144213338 0.20105088 1.310738558 1.120976925 0.30648243 1.41134385 

81 1.136600897 0.224174459 1.31526414 1.151637159 1.159741919 2.343652182 

82 1.143381357 0.206331603 1.298885071 1.113005577 0.161689444 1.243426238 

83 1.136906711 0.199708729 1.288108936 1.14394732 0.637786935 1.769723966 

84 1.136083581 0.201969153 1.295166596 1.203746658 2.707028078 4.017876787 

85 1.144912699 0.175689167 1.274874917 1.146730584 0.321980225 1.439576422 

86 1.217744698 0.303403199 1.479365107 1.219496263 0.279338715 1.463138843 

87 1.145499863 0.206760562 1.310065706 1.578880807 11.85111423 13.82925512 

88 1.156930067 0.203362402 1.313361844 1.113756326 0.123428371 1.209068382 

89 1.161411268 0.206620157 1.313597356 1.163995625 0.149257044 1.277353425 

90 1.264036889 0.374529244 1.605376999 1.289182065 1.242498653 2.64103447 

91 1.195715515 0.316335337 1.464898244 1.262923297 1.321266425 2.617355012 

92 1.176995036 0.235954497 1.361438276 1.142253641 0.905741841 2.065587475 

93 1.17170211 0.208102838 1.331688284 1.145701256 0.392377517 1.513475419 
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 Cleansed Dataset Raw Dataset 

Segment TTI BI PI TTI BI PI 

94 1.154143718 0.200040035 1.303046933 1.123548189 0.175493617 1.261481225 

95 1.144131744 0.205971177 1.299069287 1.159710329 1.181900825 2.350134964 

96 1.154068261 0.207461284 1.309302846 1.130873913 0.163746406 1.259901792 

97 1.162582542 0.206692858 1.315841437 1.121703382 0.171662203 1.259749452 

98 1.19813794 0.266793986 1.397365338 1.221204527 0.371941573 1.499604501 
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Appendix D – Incident Model Coefficients 

Coefficient Number θ1 θ2 θ3 θ4 

1 0 0 0.0002 0.001 

2 0 0 0.0002 0.0018 

3 0 0.0001 0.0003 0.002 

4 -0.002 0.0003 0.0017 0.0048 

5 -0.0001 0 0.0017 0.0049 

6 -0.0001 -0.0003 0.0015 0.0064 

7 0 -0.0005 0.0008 0.0072 

8 0 -0.0005 0.0005 0.0075 

9 0 -0.0005 0.0003 0.0076 

10 0 -0.0005 0.0003 0.0076 

11 0 -0.0005 0 0.0076 

12 0.0001 -0.0003 -0.0009 0.007 

13 0.0001 -0.0003 -0.0012 0.0067 

14 0 -0.0002 -0.0015 0.0058 

15 0.0001 -0.0002 -0.0015 0.0055 

16 0 0.0001 -0.0015 0.0046 

17 0 0.0003 -0.0006 0.0018 

18 0 0 0.0002 0.0015 

19 0 0.0002 0.0005 0.0022 

20 -0.0001 -0.0001 0.0006 0.0035 

21 0 -0.0003 0.0003 0.0038 

22 0 -0.0003 0.0002 0.0039 

23 0 -0.0002 -0.0004 0.0038 

24 0.0001 -0.0002 -0.0008 0.0032 

25 0 0.0001 -0.0008 0.0023 

26 0 0 0.0003 0.0015 

27 0.0001 -0.0002 0 0.0018 

28 0 0.0003 0.0003 0.0018 

29 -0.0002 0 0.0011 0.0041 

30 0.0001 -0.0004 0.0008 0.0047 

31 0 -0.0003 0.0006 0.0049 

32 0.0001 -0.0003 0.0004 0.0051 

33 0 -0.0002 0.0002 0.0052 

34 0 0.0001 -0.0001 0.0051 

35 0.0001 0.0001 0.0001 0.0052 

36 0.0001 0.0005 0.0009 0.0057 

37 0 0.0006 0.0013 0.0061 

38 0 0.0007 0.0024 0.0077 

39 0 0.0007 0.0036 0.0103 

40 0.0001 0.0008 0.0043 0.0121 

41 0.0001 0.0009 0.0051 0.0143 

42 0.0002 0.0012 0.007 0.0199 

43 0.0001 0.0014 0.0083 0.0235 

44 0.0001 0.0016 0.0098 0.0279 

45 -0.0001 0.0017 0.0115 0.0332 

46 -0.0004 0.0015 0.0131 0.0395 

47 -0.0006 0.001 0.0144 0.0466 

48 -0.0007 0 0.015 0.0544 

49 -0.0007 -0.0011 0.0144 0.0623 
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Coefficient Number θ1 θ2 θ3 θ4 

50 -0.0007 -0.0014 0.0141 0.0644 

51 -0.0005 -0.0022 0.0126 0.0697 

52 -0.0002 -0.003 0.0098 0.0759 

53 0 -0.0033 0.0062 0.0805 

54 0.0001 -0.0034 0.0024 0.083 

55 0.0002 -0.0032 -0.0015 0.0832 

56 0.0003 -0.0029 -0.0051 0.0813 

57 0.0004 -0.0025 -0.0084 0.0771 

58 0.0005 -0.0018 -0.0111 0.071 

59 0.0006 -0.0009 -0.0127 0.0635 

60 0.0006 0.0003 -0.0131 0.055 

61 0.0004 0.0014 -0.012 0.0467 

62 0 0.0021 -0.0096 0.0394 

63 -0.0004 0.0021 -0.0067 0.0339 

64 -0.0004 0.0012 -0.0044 0.0301 

65 -0.0002 0.0004 -0.0032 0.0274 

66 0 0 -0.003 0.0252 

67 0 0 -0.003 0.023 

68 -0.0002 0 -0.003 0.0207 

69 0 -0.0005 -0.0034 0.0182 

70 0.0001 -0.0005 -0.0042 0.0152 
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Glossary 

ATA : Actual Time of Arrival  

ATRI : American Transportation Research Institute 

CATT : Center for Advanced Transportation Technology  

CDF : Cumulative Distribution Function  

DOT : Department Of Transportation  

DTA : Desired Time of Arrival  

FHWA : Federal Highway Administration  

FPM : Freight Performance Measures  

GIS : Geographic Information System 

GLRTOC : Great Lakes Regional Transportation Operations Coalition  

HDFS : Hadoop File System  

I-35: Interstate 35  

IMPST : Interstate Mobility Performance Scanning Tool  

MAP-21 : Moving Ahead for Progress in the 21st Century Act  

MPO : Metropolitan Planning Organization  

ODOT : Oklahoma Department Of Transportation 

RITIS : Regional Integrated Transportation Information System  

SQL : Structured Query Language  

STD : Standard Deviation  

TMC : Traffic Message Channel  

UCR : Urban Congestion Report  

VPP : Vehicle Probe Project  


