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Abstract

In this dissertation, we first show that for a class of uncertain nonlinear systems,
the robust output feedback stabilizability is equivalent to the existence of robust
output Lyapunov functions with the small control property. This is a generaliza-
tion of a previous result of Tsinias and Kalouptsidis{1][2]. Then we construct state
feedback and output feedback controls for some specific uncertain systems using
either variable structure controls or continuous feedback controls. The feedback
controls are designed to compensate for uncertainties and disturbancees present in

the systems. Some control designs are robust versions of those proposed by Gu/[6].
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0. Introduction

Feedback stabilization of linear and nonlinear systems at a specified equilibrium
is a central topic in control theory and has been studied by many authors ([1]-
[37]). One approach is via Lyapunov’s second method, where the feedback laws
and Lyapunov functions are applied to stabilize the closed loop system (see, for
example, [1]-[5], [6]-[8], [11], [12], [16]). Tsinias and Kalouptsidis ([1], [2]) studied
the output feedback problem for the system

& = f(z) + g(z)u, z€ R*,uec R

(0.1)

y = h(z) € R*.
They showed that the stabilization at the origin by means of an output feedback
law u = ®(y), where ® : R* — R!, is equivalent to the existence of an output

feedback Lyapunov function with the small control property.

In section 1.1 of Chapter 1 of this dissertation we will show that the above state-
ment is true for a broader class of systems which involve an uncertainty w that
takes values in a known compact set:

z = F(z,u,w)

y = h(z)

(0.2)

This generalization is theoretically important. However, the proof is based on the
partition of unity techniques, which are inherently nonconstructive and thus do
not offer a practical means of constructing the feedback control laws when the
Lyapunov functions are given. Specific applications require methods for explicit
construction of the feedback control laws. Sontag and Wang ([11], [16]) gave
explicit formulas for the output feedback laws for the system (0.1) under full state
feedback and with no uncertainty. In section 1.2, we will generalize this result
to allow an uncertainty in f(z) through the consideration of a so-called marginal

function associated to the system.



The more practical problem is how to find the Lyapunov functions if some informa-
tion about the system is known. One approach to the control of uncertain systems
was proposed by Leitmann and coworkers ([23]-[26]). This approach requires that
the nominal system, that is, the system without uncertainty, be already uniformly
asymptotically stable and that a Lyapunov function for this nominal system be
known. Then the stabilization of the system with uncertainty proceeds from this
point. Motivated by this idea, we construct several feedback control laws through-
out the remainder of this dissertation. In section 1.2, we consiruct a simple partial

feedback control law for the diagonally uncertain system

¢ =(A+wl)z+ Bu
(0.3)

y==2,, z(0) =z¢
under the assumption that (A, B) is controllable. The essence of the proof is that
with proper choice of the linear state feedback for the nominal system, we can
make the resulting system matrix diagonal and negative. Then we can keep the
fast modes untouched and design a feedback law according to the slow modes.
Under reasonable assumptions, this will result in a closed loop system that is

stable.

In Chapters 2—4, we will construct state feedback control laws for partially matched

systems with uncertainty

i = (A + AA(w(t)))z + B(1 + Ab(w(t)))u + BAD(w(t)) (0.4)

using Variable Structure Control (VSC) or differential inclusions. The VSC ap-
proach results in a feedback control which is discontinuous on some switching
surface in the state space ([27]-[36]). Although the feedback control law is not
continuous along the so-called “sliding surface” s(z) = 0, when the equivalent
control on the sliding surface exists (that is, when there exists a controller u.,

such that 3(z) = 0), then the sliding surface is invariant under the closed loop
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dynamics. Therefore we can apply the Lyapunov function to stabilize the closed
loop system. Furthermore, if we have s'(z)$(z) < 0 in a neighborhood of a
region of the sliding surface s(z) = 0 (in which case we have achieved “sliding
mode control”), then the system dynamics on the sliding surface are insensitive
to the uncertainty ([30], [31]). Differential inclusions are introduced in section 3.1
to overcome technical difficulties when the equivalent control strategy is imple-
mented in multiple-input/multiple-output (MIMO) systems. As a byproduct, in
Chapter 3 we present some related results to another class of systems with delayed

perturbation:

i = (A + AA(w(t))z + E(t)z[t — h(t)] + B(1 + Ab(w(t)))x + BAD(w(t)) (0.5)

Also in Chapters 2-4, we show that for systems that satisfy rather stringent struc-
ture conditions one can actually obtain continuous output feedback control laws.
The presence of these strong structure assumptions is hardly surprising since the
possible loss of state information inherent in output feedback laws will invariably
limit their applicability [6]. Our output feedback laws will drive the closed loop
system flows to some fixed ball, whose radius, in some cases, can be made as small

as we wish.

We conclude this introduction by giving some background of the structure of (0.4).
In [6]-[8], the system

z = (A+ AA(w(t)))z + B(1 + Ab(w(t)))u
was studied under the so-called “matching condition”

AA=BAE, AB=BAb
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To make the system more robust, we will drop the matching condition for AA and
add the term BAD to the system. Thus some of the results in this dissertation

can be viewed as extensions of [6]-[8].

As a further extension, in Chapter 4, we consider a modified version of the system
(0.4) which has a partitioned structure into a family of subsystems of the same
general form. Each subsystem has an associated input and output, distinct from
those of the other subsystems, and all of the states enter into each subsystem
linearly. What is surprising is that, in addition to the presence of uncertainties
and disturbances (on which we must impose priori bounds), we can achieve either
asymptotic or practical stabilizability even in the case where each subsystem is
affected by outputs from the remaining subsystems in a rather arbitrary(e. g.,

unbounded and/or nonlinear) manner. These results are related to, and partially

generalize, those in [21].



1. ROLC Vs ROFS

1.1. A Sufficient And Necessary Condition
For Robust Control

We consider a nonlinear input-output system with uncertainty of the form
z = F(z,u,w)
y = h(z)

where z € R™,y € R*(k < n),u € R\, w € R%. Here z is the state variable, u is

(1.1)

the control, w is the disturbance, and y is the output. We further assume that F

is smooth and u-affine, ( i. e., for any a, b and u;, uz
F(z,au; + bup,w) = aF(z,u;,w) + bF(z,u2,w) ),

F(0,u,w) = 0, h is an open map such that h(0) = 0, and w € W, a compact

subset in R? containing 0.

Definition 1.1 (1.1) satisfies the robust output Lyapunov condition (ROLC) if
there exists a real-valued function V : R® — R*, which is smooth in a punctured
neighborhood of 0 and satisfies:

(1) V is positive definite; i. e., V(0) = 0 and V(z) > 0 for every z # 0 in a compact
neighborhood S of zero;

(2) there exist a neighborhood K of 0 € RF with K C h(S) and a continuous,
positive-definite function ¢ : R* = R* (i. e., ¢(0) = 0, and ¢(t) > 0 for ¢ # 0) such
that for any y € K there exists v = u(y) € R' depending on y with »(0) = 0 and

F(z,u(y),w) < —c(ll=]l) (1.2)

for any z € (h™!(y) N S)\{0} and w € W, where F(z,u,w) = VV - F(z,u,w),
h~Y(y) = {z € R™: h(z) = y}, and || - || is the usual norm.

5



Note in particular that
F(zrovw) < —c(”z”)

for any z € (R~1(0) N S)\{0} and w € W.

Definition 1.2 (1.1) satisfies the ROLC with small control property if it satisfies
the ROLC and if there exists a positive continuous function L(y) defined on a
neighborhood K of 0 € R* such that L(y) — 0 as y — 0 and for every y € K
there exists u = u(y) € R depending on y such that ||u(y)|| < L(y) for y # 0 and

F(z,u(y),w) < —c(|l=]]) (1.3)

for any z € (h™}(y) N S)\{0} and w € W.

Definition 1.3 (1.1) said to be robust output feedback stabilized (ROFS) if there
exist a neighborhood K of 0 € R* and a mapping u : R* — R' which is continuous
on K, smooth on K\{0}, and is such that the closed-loop analog of (1.1) after
feedback, given by

& = F(z,u(h(z)), w),

satisfies:

(1) robust stability: Ve > 0 there exists a § > 0 such that
Hz:(t,z:o,w)ll <e

for all w € W whenever |zg| < § and ¢ > 0;
(2) robust attraction: Ve > 0 and = > 0 there exists T > 0 such that for every
weWw,

|[2(, zo, w)l| < e

whenever ||zg|| <7 and £ > T.

Lemma 1.1. If (1.1) satisfies ROLC, and the set A~1(0)N S is positively invariant
for the system z = F(z,0,w), then (1.1) is OFS (output feedback stabilized).
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The corresponding output feedback law & : R* — R! is smooth in a punctured
neighborhood of 0.

Proof. Let
_ 1
Qle,v,w) = Flz,u,0) + sellz).
Since (1.1) satisfies ROLC, for every y € K\ {0} there exists u = u(y) € R, such
that

Qe u(y),w) = Flz,uly), w) + ze(llel)

1
< ~5<lllell)

<0

Yz € R~ (y) NS, Yw € W. Since Q is continuous and both A~1(y) N S and W are
compact, there exists a @ > 0 such that Q(z,v,w) < —a forevery z € A~} (y)N S
and w € W. Thus there is an open neighborhood O of A~!(y) N S such that for
every z € O and w € W we have

Q(z,u,w) < —g <0

Since h is open, we infer that h(O) is open neighborhood of y. We claim that we
can always find a closed ball B(y) such that

h"Y(B(y)) NS CO.

Otherwise, there exists a sequence {B;(y)}2; of balls, where B;(y) has radius
r; > 0 and lim;_,o 7; = 0, and a sequence {z;}32; such that z; € A™1(B;(y)) N S
and z; ¢ O for every i. Note that S is compact, so after passing to a subsequence
we can assume z; — Zg € S. By continuity, h(z;) — h(zg), which implies zq €
h~1(y) n'S. However, this contradicts the fact that zo € R*\O. Consequently,
there exists B(y) such that y € B(y), K 2 B(y) and A"}(B(y)) NS C O and
Vz € O, Vw € W, we have



Q(z,u,w) < —g <0

where 0 ¢ A~1(B(y)) and v = u(y).

Since we can obtain such a ball B(y) for every y € K\{0}, there exists a
partition of unity {B:,p:}, where B; = B(y:), UIntB; D K\{0}, p; : R* - Rt is
a smooth map supported on B;, and Y pi(y) =1 Vy € K\{0}.

Let .
zi:l v(yi)pi(y), fory#0

(y) = { 0, fory = 0.

Observe that @ is well defined on K and smooth on K\ {0}, since for y # 0 there
are a only finite number of indices i such that y € B;.

Now, for every y € K\{0} there exists a positive integer ¢ such that y ¢ B; for
i > g+ 1. Thus for every z € h~}(y) N S and w € W the fact that F is u-affine

yields
F(z,%(y),w) = F(z, y_ pily)u(yi), w)

=1

= (Q_ pi¥))F (2, u(w:), w)

=1

< (3 mw))(—=(ll=ID)

=1
= —¢(]|z]])-
Therefore

F(z, ®(h(z)), w) < —c(l|zll) (1.4)
Vz € h"1(K\{0}) N S, Vw € W. We also have Vz € (A~1(0) N S)\{0}, w € W,
F(z,%®(0),w) = F(z,0,w)
(1.5)
< —e(|l=l]).

From (1.4) and (1.5), one can see that

V(z) la.)< —<(li=]l) (1.6)
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Since F(z,®(h(z)),w) is smooth for z € h~1(0) near 0 and ~A~1(0) N S is invari-
ant,the inequality (1.6) implies that 0 € R"™ is a stable equilibrium of the closed
loop system Yw € W, whereas every trajectory z(t, o, w) of the closed loop system
is defined for all ¢ > 0 and z¢ in a neighborhood of zero.

We further claim that the equilibrium 0 € R™ is attractive. Otherwise we would

have

tl_i)rf’loz(t,zo,w) #0

for some w € W and zg € S. Because V(z(t, zo,w)) is monotonically decreasing,
we can assume that lim¢_, o, V(z(t,zg,w)) = vg > 0 for some positive real number
vg. The positive definiteness of V' implies the existence of a § > 0 such that
|(¢, 20, w)| > & for every t > 0, and this in turn yields a real number a > 0 such
that c(|z(t,zo,w)|) > ¢(a) for all t > 0. From (1.6) we obtain

V(z(t,zo,w)) — V(20) < —tc(a) VEt>O0. (1.7)

However, the right hand side of (1.7) tends to vg — V(zg) as ¢ — oo, and this
fact is clearly incompatible with (1.7). This proves that the equilibrium 0 € R" is
indeed attractive. Therefore, u = ®(y) is the desired output feedback stabilizing
controller. QED.

Theorem 1.1. (1.1) is ROFS iff (1.1) is ROLC with the small control property.

Proof. (<)

If (1.1) is ROLC with the small control property, then, similar to the proof of
Lemma 1.1, we can find a locally finite sequence of closed balls {B;}$2, such that
| w(v:) < L(y) for y € B; and U;IntB; 2 K\{0}, V < —¢(||z||) for all z €
h=1(B;) N S, u(y:) satisfies || u(y:) ||[< L(y), fory € B;, 1 =1,2,---.

Now, take u = ®(y) as in the proof of Lemma 1.1, then it suffices to show that

®(y) is continuous at zero.



Indeed Vy € K\{0}, without loss of generality, we can assume y ¢ B;, : = ¢ +
1,9+2,---. Then

= llu(w) lI< Lg),i = 1,2,

= || 8(y) 1< X, I ulw) |l pi(y) < L(y)

= || 2(y) I< L(y) asy > 0

= u = ®(y) is continuous at y = 0, where $(0) = 0.

Note that with ®(y) is smooth for y # 0, continuous at y = 0, it follows that every
trajectory z(t,zg,w) of the closed loop system is forward complete, ie, defined for
all ¢ > 0.

(=)

If (1.1) is ROFS, then there exists a feedback control law v = u(y) that is contin-
uous on a neighborhood K of 0 € R, smooth on K\{0}, and such that the closed

loop system

z = F(z,u(h(z)),w) (1.8)

is asymptotically stable on S uniformly with respect to w € W. Therefore, by
Theorem 2.9 of [4] we deduce that (1.1) is ROLC. The small control property

follows from the continuity of u(y) at y = 0. QED.

We conclude this section by presenting a result which illustrates the limited nature
of the class of systems for which one can expect to achieve robust output feedback
stabilization. Consider the following stand-alone disturbance system

z = f(z) + g9(z)u +w

y = h(z)

(1.9)

where z € R*,y € R*,u € R,w € R,k < n. We assume f,g,h are smooth,
R=1(0) # {0}, and f(0) = 0,9(0) = 0,h(0) = 0. We further assume that the

disturbance has an a priori bound || w ||< 8 for some positive constant S.

Corollary 1.1. (1.9) is never ROFS.
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Proof. If (1.9) were ROFS, then, according to Theorem 1.1, (2.1) would be ROLC
with the small control property, ie,there was a positive definite V : R™ — R, with
V(0) =0,V (z) > 0 for z # 0, such that

VV - (f(z) +g(z)u +w) < —c(l|z]]) (1.10)

for all || w ||< B, where c is also positive definite.

Now, for v = 0, we have
UV - (f(z) + w) < —c(ll=l]) (1.11)

for Vz € (h=1(0) N S\{0}, | w ||< B.
Observe that (1.3) can never hold, because when z — 0, we can pick w = — f(z)

which will contradict (1.3). Note also that h~1(0) # {0}. QED.

An illustrative example. Consider an example of a salt solution of two tanks[37]

with some uncertainties on the flow rates:

i1 = =)o+ (R)er + (@ - Qe
2 = (F)e1 - (B)en
y= (31;)32

where @1 = Q1 + w1, Q2 = Q2 + ws for small w,, wy and Q; > Q..

Take u = u(y) = 0 as the control; then since the system matrix without uncer-
tainties has two negative eigenvalues, for small enough w; and wy we still have
asymptotical stability of the state variables z; and z;. Therefore the system is
ROFS.

According to Theorem 1.1, the system is ROLC with small control property. In
fact, when take u = u(y) = 0, since the closed loop system without uncertainties

is asymptotically stable, there is a positive V(z) = T Pz such that V < —z7Qxz
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for some positive Q. Certainly this V tolerates some small perturbations of @
and Qg.

1.2. Construction of Feedback Controls
Using Lyapunov Functions

The proof of Theorem 1.1 is based on partitions of unity and is highly noncon-
structive. In this section we consider some special situations where robust feedback
controls can be explicitly constructed if the Lyapunov functions are known. The
results are direct extensions of those in [11] and [16]. Then we will give another

construction that applies to certain linear systems.

Consider the nonlinear system
z = f(z,w) + G(z)u (1.12)

where all entries of the vector f and n x m matrix G are smooth functions of their

arguments and f(0,w) = 0 Vw. As before w is the uncertainty and we assume

w € By = {w € R, ||w|| < 1}.
For any positive definite function V(z), we denote

a(z,w) = VV(z) - f(z,w)
B(z) = vV(z) - G(z) = (b1(2), - , bm(2))

Lemma 1.2. [11] Fix w = 0. If there is a smooth control Lyapunov function V
for the system (1.12) (with w = 0), then there is a feedback stabilizer u = k(z)
which is smooth for &k # 0. Moreover, if V satisfies the small control property,

then k(z) can be chosen to be continuous at z = 0.
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In fact, in [11] it is shown that & is given by the formula
u=k(z) = (va(z),- - ,um(z))
ui(z) = —bi(z)é(a(z), B(=))
where 8(z) = Yz, b3(z) = || B(z)||?, ¢#(a,0) =0 for a < 0, and for a > 0
a+VaZ+b

#lab) = 255

The result of Lemma 1.2 can be extended to the system (1.12) with the uncertainty

as follows.

Theorem 1.2. If (1.12) has a RCLF V(z), then the continuous feedback law

u = (u1(z), - ,um(z)), where
ui(z) = —bi(z)¢(a(z), B(=)),
will be a stabilizer of (1.12), where ¢ is defined as above and
a(z) = maxyep, a(z, w)

Moreover, if V satisfies the small control property, then the stabilizer is continuous

at z = 0.

Proof. Note that the continuity of a(z) is guaranteed by Corollary 3.6 of [17].
Also note that ¢(a,d) is well defined on the set in {(a,b) € R2 :b > 0 or a < 0}
and for every z the pair (a(z),8(z)) will satisfy a(z) < 0 whenever B(z) = 0. We
claim that the same V will serve as the Lyapunov function for the closed loop
system. For if 8(z) = 0, the RCLF property implies a(z) < 0, so that

V =a(z,w) < a(z) < 0.

13



On the other hand if f(z) > 0, then

V= a(z,w) + Z bi(z)ui(z)

i=1

< a(z) + (—a(z) + Va? +5*)
=—vaT + bt

<0.

Therefore, u is a stabilizer of (1.12). The second statement about the continuity
of the stabilizer follows from Lemma 1.2. QED.

Remark. A sufficient condition for a(z) to be smooth, which would then imply
that the stabilizer u(z) is smooth, can be found in [17].

Corollary 1.2. If f(z,w) = f(z) + Q(z)w and if ¢(z) = YV(z) - Q(z) is never

zero, then

a(z) = vV(=z) - f(z) +la(=)ll

is smooth, whence u(z) is also smooth.

The feedback control law u(z) given by Theorem 1.2 may be unbounded. If one
modifies Definition 1.1 to require that « € B, = {||u|| < 1}, then one can argue

in a manner similar to [16] to obtain a bounded feedback control.

Lemma 1.3. If (1.12) has a RCLF V with u € Bp,, then the feedback control law
of Theorem 1.2, with the function ¢ modified as

_ a+ va? +b*
¢(a1b)-b(1+m—): b#0,

will be a stabilizer of (1.12).

14



In the remainder of this section, we will construct a simple output feedback control

for a class of linear input-output systems of the form

z=(A+wl,)z + Bu

Yy==2z3, z(0) = zq

(1.13)

where z = (z;,z;) € R*™ x R™ — R™(m < n) and the uncertainty w occurs
diagonally and is bounded by |w| < a. The decomposition of the state space as
R™ = R*™ x R™ allows us to write

0=(50) 4= (B 42).2=(5).

If (4,B) is controllable, then for any given family of real numbers {A;,... ,An}

such that

A1 <A2<---<An<—a<0,

we can find an n x m matrix F = (Fy, Fy) such that A* = A + BF has eigenvalues

A1, ), - »An}. In particular, w(z) = Fyz) + Foz, is a stabilizer of (1.13), or
equivalently the closed loop system

¢ =(A+BF)z = A*z (1.14)

is asymptotically stable. Let P be the nonsingular n x n-matrix such that

2 _ (A 0
P(A+BF)P-! = ( . M)
where A = diag(/\h T, A'n.—m.), Ay = diag(An—m+1a tt :'\ﬂ-)' Write A* in block

form according to the decomposition of the state space

. _ _(Au+BFy Ap +31F2>
A*=A+BF = (Azl + ByFy Axg 4+ By Fy )

15



and denote

P P2 b ) -1 (Qu Q12 )

= = P = =

P (le Pzz) (Pz ’ Q21 Q22 (@ Q)

where Pll, Qll c R(n—m)x(n—m), P22, sz € Rmxm’ P1 € R(n—m)xn’ and Ql c

Rnx(n=m)_ Then the solution of (1.13) can be written as
( m(t)) = p-leAtul)tpy

22(t)
- (Qu) A +wlam)tp oy (812) eAz+uln)tp, o
22

@2
(1.15)
Now, if we for the moment ignore the first term in (1.15), then
z1(t) = Quaeld2 ¥ In)tPyz,
z2(t) = QaaelA2¥uin)tpyz,
so that
Zl(t) = Q12Q;2122(t). (1.16)
Next replace z;(t) in u = Fiz; + Faza by (1.16) to obtain
u(t) = (F1Q12Q3 + F2)y(t) (1.17)
With the output feedback (1.17), the closed loop system is
= (A+wl)z (1.18)

where
A= (Au A1z + B1F; + BiF1Q12Q5;
Azr Ass + BaFy + BoF1Q12Q5, )

Theorem 1.3. The matrix A + wl, has Ap—my1 +w <0+, A\p+w < O0asm

of its eigenvalues. The remaining n — m eigenvalues are determined by the matrix

P1AQ1 +wlp_m.
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Proof. Since

P(A+wl)P! = (g) A(Q1 Q) +wl,

PLAQ, Plfin) I
(PzAQ1 PAQ, ) T

and
AQ, = A1y A2+ B1F + B1FiQ12Q55 ) (Qu )
2 As;  Ass + BaFy + BaFi1Q12Q55 Q22
_(Aun+BiFy Ajpn +B1F2) (Qu)
T \A21 + BaFy Az + BoF> Q@22
= A*Q
we obtain

P(A + wl,)P™?

PAQ: PIAQ; )
1 i I,
<P2AQ1 P AQ: tw

PIAQ, PA*Q, )
1 1 I,
<P2AQ1 P A*Q, tw

P2AQ1 Ao +wln )’

where P A*Qq = 0, P,A*Q2 = Ay. Therefore A+ wl,, has as m of its eigenvalues
An—m4+1 +w < 0,---, Ap +w < 0, and the remaining n — m eigenvalues are

determined by the matrix Py AQ; + wln—m.
Corollary 1.3. If the eigenvalues of P; AQ,, denoted by X;(P1AQ;), satisfy
Re(Mi(PLAQ1)) < —a, i=1,2,--- ,n —m,

then the closed loop system (1.18) is asymptotically stable under the output feed-
back (1.17).

We examine more closely the eigenvalues \;(P1AQ,) of P, AQ;. Since PLA*Q; =
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A1, we have

P1fiQ1 =A; + Pl(f-i —_ A.)Q1

AP —-B,F, B1F1Q12Q2—21) (Qu)
T TN -ByFy BaF1Q12Q57 Q@21

= A, + PIBF(Q12Q5; Q21 — Q1)
It is easy to show that
Pl = —Q12Q57 Q21 + Qu1,

so we obtain

P, AQ, = A, - PBFP".

Corollary 1.4. If
ReM(Ay — PLBFP') < —a,

then the closed loop system (1.18) is asymptotically stable under the output feed-
back (1.17).

An illustrative example. Consider a 141 dimensional system

-5 2 1
A—( 1 0),B—(O>, lw| € a=1.

An elementary computation shows that (A, B) is controllable. If we take F =

(—1,-10), then
-6 -8
A+ BF = ( L 0 )

has eigenvalues A\; = —4, Ay = —2. The matrix P that diagonalizes A + BF is

(1 2 a_ (4 -1
P-(l 4)”’ -(—% %)’

18
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so that @12Q5; = —2. According to (1.17), we can take u(t) = —(—2)z2 — 10z, =
—8z,, which results in the closed loop system

(@)= D) E6)

with eigenvalues —2 4+ w < —1 and —3 + w < -2 (the inequalities follow from the
assumed bound on w). Therefore the closed loop system is asymptotically stable.
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2. Feedback Designs For A Class of SISO Systems

In this chapter we consider a class of so-called “partially matched” linear systems

with uncertainty of the form
z=(A+ AA(w(t)))z + b(1 + Ab(w(t)))u + bAD(w(t)) (2.1)

where £ € R™,u € R,b € R™ (a constant vector), and A4, Ab, AD are con-
tinuous functions of a scalar parameter. It is assumed that the uncertainty w(t)
is Lebesgue measurable function of ¢ which takes values in a fixed compact set
Q C R. The terms AA, Ab, AD represent the disturbances, which are either
known or unknown. Similar systems have been studied in [6]-[9].

We make the following assumptions

(H2.1) There exist « > 0,0 < 8 < 1,4 > 0 such that
[AA(w(E)]] < a, |[Ab(w()I] < B, [[AD(w(e))l] < 4,

where || - || denotes the usual norm.
(H2.2) There exist p € R™ and an n X n symmetric, positive definite matrix P
such that the matrix Ag = A +b< p,- > and P result in

Q =AJ P+ PAg

being negative definite; i. e., < Qz,z >< —2A < z,z > for some A > 0.

The following lemma establishes a sufficient condition for (H2.2) for a class of

systems.
Lemma 2.1. If the nominal system of (2.1) (i. e., with AA, Ab, and AD all zero)

can be decomposed as

2, = A1z1 + A12z0 + b1u (2.2)
9 = Agzy + bou (23)
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where A; is Hurwitz and (A2, b2) is controllable, then (H2.2) holds.

Proof. Since (A2, bs) is controllable, there is ps such that Ma = A3 +by < p2,- >
is Hurwitz. Setting p = (0,p2)", we see that

Ag=A+b<p,->
_ (Al Ay +b1P;r)

“\ 0 Ay +bap)
(A A +bip]
“\0 M, :

(2.4)

Since both A; and M, are Hurwitz, it follows easily that Ag is Hurwitz. Therefore,
there is a symmetric, positive definite matrix P such that

Q = Aj P+ PAg
is negative definite. Hence (H2.2) is satisfied. QED.

Remark. Generally speaking, the existence of P in (H2.2) is still an open problem
[9]-

2.1 State Feedback Design

Under assumptions (H2.1) and (H2.2), we seek a state feedback of the form
u(z) =<p,z > +v(z) (2.5)

where v(z) is to be determined. The substitution of (2.5) into (2.1) results in the

closed loop system

& = (Ao + AA + bAb < p,- >)z + b(1 + Ab)u(z) + bAD (2.6)
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We will determine conditions under which V(z) = % < Pz,z > is a Lyapunov
function for (2.6), where P is as in (H2.2). A straightforward computation of 14

and the bounds in (H2.1) yields

V l2e =< Pa(t),(t) >
=< Pz(t), Aoz(t) > + < Pz(t),(AA +bAb < p,- >)z(t) >
+ < Pz(t),b(1 + Ab)u(z) + bAD >
= 3 < (PAo+ ATP)a(t),2(t) > + < Pa(t), Ada(t) >
+ Ab < Pz(t),b >< p,z(t) > + < Pz(t),b(1 + Ab)v(z) + bAD >
<-A<z,z>+al|lP||<z,z >

+ Bl < Pz,b> || < p,z > |+ < Pz(t),b(1 + Ab)v(z) + bAD >

(2.7)
We define
v(z) = —Lﬁj_%alsgnk Pz,b>), for bT Pz #0
az)- <pz >, for bT Pz =0,
(28)

where i(z) is the equivalent control on the sliding surface s(z) =< Pz,b >; i. e.,

it is the solution to

§(z) = b P[(Ao + AA+bAb < p,- >)z

+ b(1 + Ab)a + bAD]
=0,
which yields
1
a(z) = — (T Pb)"[bT P(Ag + AA+bAb < p,- >)z + b PbAD]

14+ Ab
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(note 5T Pb # 0 and 1 + Ab > 0).
Substituting (2.8) in the last expression in (2.7), we obtain
Bl < Pz,b> || <p,z > |+ < Pz(t),b(1 + Ab)u(t) + bAD >

=Bl < Pz,b> || <p,z>|+(1+ Ab) < Pz,b> v(t)+ < Pz,b> AD
20+ Bl <p,z>|

=ﬂ|<stb>H<paz>l—(1—u3) 1-8 |<szb>|
+ 48| < Pz,b > |
<0.
Therefore, (2.7) yields
V l2.6)< —(A = al|Pll) < =(t),2(t) > (2.9)

This estimate leads immediately to the following result.

Theorem 2.1. If (H2.1) and (H2.2) hold and if A — «f|P|| > 0, then the state
feedback u(z) defined by (2.5), where v(z) is defined by (2.8), will stabilize the
closed loop system (2.6).

Proof. Since the matrix P is positive definite and symmetric, there exist k; >
0, k2 > 0 such that

ki <z,z><LV(z) = % < Pz,z ><ky < z,z>
This and the inequality (2.9) imply that V < —/\0%1 where A\g = A — «f|P|| > 0.

Hence we obtain

V < exp(—22t)Vo
= k; < z(t),z(t) >< exp(—-iil‘?-t)kg||:¢:0[|2
= |[2(t)|[* < & exp(—32¢)]lzol[* — 0 as t — co. QED.

Remark. The feedback design (2.8) is such that the sliding surface s(z) = 0 is

invariant for the closed loop system, though there is some design uncertainty on
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the sliding surface. However, the sliding surface motions are insensitive to this
uncertainty because s’ (z)é(z) < 0 in a neighborhood of a region of the sliding
surface. To verify this we simply compute

s7 (z)é(z) =< Pb,z >< Pb,(A + AA(uw(t)))z
+b(1 + Ab(w(t)))u + bAD(w(t)) >
< (I[APB]| + a + |[3]] [[pI)l|=l| < Pb,z > |
+d8 < Pbb>|< Pbyz>|—26 < Pbb>|< Pbz> |
= (||AP8|| + a + [[B]] [Ip[DI[=[]| < Pb,z > |
—§< Pbb>| < Pbz>|

It follows that if
§ < Pb,b >

|APB|| + a + (3] {IpII’

ll=]] <

then
sT(z)é(z) < 0.

An illustrative example. Consider the system

. 1 1
1 =-:z:1+azg+§(1+b)u+§D

22 =azy +z2+(1+bu+D
where all the variables are scalars. Then we can take a = |a| and

1 0 -2 -1
A_‘ivp-(_2)7p—l2aQ—(_l _2)

Therefore, if [b| < 1and § —[a]| >0 (i.e, -1 <a< 3 and —1 < b < 1), then the
state feedback u(z) defined by (2.5) and (2.8) will drive the closed loop system to

zero. Note that there is no restriction on ¢ in this example.
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2.2 Output Feedback Design

Next we consider the system
£y = Ajz1 + AAj1z1 + AAjsze + b1(1 + Ab)u + 5 AD (2.10)

g = Aszs + AAg1z1 + AAgezs + 62(1 + Ab)u + b5 AD (2.11)
y=<cz>=<c,21 > +<c,Ty >

where the notations are similar to those used in (2.1). The following assumptions

are made.

(H2.3) A; + A] is negative definite

(H2.4) (A2,b2,c2) is minimum phase and (2.11) has nonsingular high-frequency
gain; i. e., det(c2b2) # 0.

Lemma 2.2([6]). If (H2.4) holds, then there is a symmetric, positive definite

matrix P, such that for some constant & the matrix
1
Q> = -2-[(A2 + kbgCg)Tpg + Pz(Az + kszz)] (2.12)

is negative definite and c; = b; P;.

Under assumptions (H2.3) and (H2.4) we seek a stabilizing output feedback of the

form

u(y) = ky + v(y) (2.13)

where v(y) is yet to be determined. An application of the feedback (2.13) yields

the closed loop system

T = [A1 + AA; + kbl(l + Ab)01]221
+ [kby (1 + Ab)ea + AAz)ze + b1 AD(t) + b1 (1 + Ab)u(t)

(2.14)
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z2 = [A2 + AAzs + kba(1 + Ab)Ca]zy + [kb2 + (1 + Ab)er + AAa]z:
+ b2 AD(8) + ba (1 + Ab)u(t)

(2.15)
Yy =121 + c2Z2.

As the Lyapunov function, we take V(z) = $(< 21,21 > + < Paz3,z2 >). Then
a direct computation using (2.14) and (2.15) gives

V=<zi1,21 >+ < Przy, %2 >
=< z1,A1Z1 > + < 21,< 21,[AA11 + kb1 (1 + Ab)es]z; >
+ < z1,[kby(1 + Ab)ca + AAps)zs > + < 21,0y > AD
+ < z1,b1 > (1 + Ab)v(t)+ < Paza, [kba(1 + Ab)er + AAai]z: >
+ < Pozy, (A2 + kbaca)za > + < Pyza, (AAaz + kbaAbcy)zy >
+ < Pazg,by > AD+ < Paza, by > (1 4 Ab)u(t)
< -A <z, z1 > Ha+ k] [Ba]] |e||(1 4 8)] < 21,21 >
+ e + [kl [Bal] lle2ll(1 + A)lleal| l|z2]|+ < 21,81 > AD
+<21,b1 > (14 Ab)u(t) + [a + K| || P2l [[B2]] e [I(1 + B)]l|z1]] ||=2]|
+ < Q222,22 > +||P2[|(a + Blk[ [|B2]] |le2l]) < 22,22 >
+ < Paz3,by > AD+ < Pyz3,by > (1 + Ab)u(t)

(2.16)

where —); < 0 is the maximum eigenvalue of 1(A; + 4] ).

Since < Pyzy,by >=< ¢3,29 >= y— < c1,; >, we obtain
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V< (M —a~ k(L +B)ball lleall) < 21,21 >

+ [2a + [k|(L + B)(|[Ba |l llez1ll + 11 P2} 1182l [lealDIHl=1 1 [|=2]]
= (A2 = || P2[|(a + Blk] |[b2] lle2l]) < z2,22 > +8]y(t)]

+ &(lleall + [[ba [zl

+ (1 + AbJy(t)v(t) + (1 + B)([1bail + llea [Dlw(2)] ||zl

We define )
ot) = { ~rpeEn(u(®), for ly(t)| > ¢

- for [y(t)] < .

1-8 ¢

Observe that for |y(t)| > € we have
Sly(t)| + (1 + Ab)y(t)v(2)
)
< dfy(t) — (1 - 5)1—_ﬁ-|y(t)|
=0,

while for |y(¢)| < € we have

Sly(t)] + (1 + Ab)y(t)v(t)

1
< -tg(zy2 - lyl)
< -5—6-;
- 4

also in either case we have

S(llexll + 1[Ba [l [l + (1 + BY(I[ba [} + [lea v (E)] {[z1 ]

1
<80+ TEE)laall + lea el

28
1 _ﬂ(”clll + (|1 [[)[1]]-

27
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Therefore, these estimates and (2.17) yield

. de
V(z) < —aillz1|]* — az|lz2|® + 2a12]lz1]] ||22l] + asllzal] + (2.19)

— 4 3
where

a1 =\ —a = [k|(L+B)[|ba]] [lexll,
az = Az — || P2[|(a + Blk[ |[b2ll l]e2]l),

12 = (20 + [KI(L+ ) leall + l1al] Ileal)

s = (Il + el

and ¢ is any real number satisfying 0 < € < 1.
The following theorem is an immediate consequence of (2.19).

Theorem 2.2. Suppose (H2.1), (H2.3) and (H2.4) hold. If a; > 0, az > 0, and
ajas > a?,, then there exists » > 0 such that the output feedback u(t) defined
by (2.13) and (2.18) will drive the solutions of the closed loop system (2.14) and
(2.15) to the ball B, = {|[z|| < r}.

Remarks.

1. It is easy to see that with @; >0, a3 > 0, ajas > a%z, the surface

de
G(z1,22) = —a1||z1||? — az||z2||? + 2a12][z1]| |[z2]] + asllz1]] + T

is a parabaloid which opens downward in the ambient three dimensional space in
which it is plotted. Therefore, there exists » > 0 such that 2 + z2 > r? implies

G(z1,z2) < 0. Moreover, if we choose positive constants k; > 0, k2 > 0 such that

ki <z,z>LV(z)< ks <z, z>,
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then we see that V < 0 whenever z2 +z3 > r2, so the solutions of (2.14) and (2.15)
converge to B,. However, the explicit computation of r requires tedious algebraic
computations and so is omitted here.

2. ¢ is design parameter which can be used to adjust the value of r. In principle,
it should be small.

3. Note that & only appears in the expression for ag. This means that the hy-
potheses a; > 0, a2 > 0, a1a2 > a?, are independent of the bound on AD.

4. If AD(t) is replaced by AD(t, z), with [|JAD|| < §+£]|z||, then one can see that
the same design works with proper adjustments of the parameters. Consequently,

this uncertain system may tolerate some nonlinearities of the system.
An illustrative example. Consider the system

) 1 1
z; = —10z; + a1; + ajazs + 5(1 + b)u + §D

Zy = anzy + agzy +z2+ (1 +b)u+ D,

where all variables are scalars and we assume that |a;;] < 2—10-, (6] < -;-, and |D} < 4.

The aforementioned formulas for a;, ag, as, and a;3 yield

109 9 46

ai =?0->0, 02=%>0, 0,12=-2-6, az = 64,
whence we obtain ajas > a2, and
109 9 49 de
G(Zl,zz) = —%23 - '2—0'1:3 + '5"561”1!2' +65|31| + 'Z
1 de

< ——ng — ez3 + 68|z1| + 1

where ¢ is a small positive constant. One verifies that z? + 22 > (316)? implies
G(z1,z2) < 0 when we take e sufficiently small, so r = 314 is the radius of the
stable ball.
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3. Feedback Designs For A Class of MIMO Systems

In this section we will consider partially matched systems with uncertainty of the

form

i = (A+ AA(w(t))z + B(1 + Ab(w(t)))u + BAD(w(t)) (3.1)

where z € R*, u € R¥, A, B are constant matrices of the appropriate dimensions,
and AA: R* - R**™ Ab: R* - R, and AD : R* - RF are continuous. The
uncertainty w : R — R? is assumed to be a Lebesgue measurable mapping taking

values in a fixed compact set 2 C R*. AA, Ab, AD represent disturbances which

are either known or unknown.
We make the following assumptions.
(H3.1) Thereexist « > 0,0 < f < 1,4 > 0 such that
[[AA(w(E)] £ a, ||Ab(w ()| < B, [|AD(w(E))| < &

where || - || is the usual norm.
(H3.2) There exist a £ X n matrix F, and an n x n symmetric, positive definite
matrix P such that for Ag = A + BF we have

Q =Aj P+ P4

is negative definite; i. e., there exists A > 0 such that < Qz,z >< -2\ < z,z >

for every z € R™.

The following lemma establishes a sufficient condition for (H3.2) to hold in a
specific class of systems.
Lemma 3.1. If the nominal system of (2.1) can be decomposed as

1 = A1z1 + A1222 + Biu (3.2)
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z9 = Aszq + Bou, (33)
where A; is Hurwitz and (A2, B;) is controllable, then (H3.2) holds.

Proof. Since (A3, B;) is controllable, there is a matrix F3 such that My = A, +
By F, is Hurwitz. Setting F' = (0, F2), we have

Ag = A+ BF
_ (A1 A By
—(0 A2)+(Bz)(O’F2)

_ (A Anp+BiF
=( " M, .

Since both A; and M, are Hurwitz, it follows that Ag is Hurwitz, which proves
the Lemma. QED.

3.1 State Feedback Design

Under assumptions (H3.1) and (H3.2) we will seek to stabilize (3.1) by a full state

feedback control law the form
u(z) = Fz + v(z) (3.4)
where v(z) € R* is yet to be determined.
The substitution of (3.4) into (3.1) yields the closed loop system
t =(A+BF + AA+ AbBF)z + B(1 + Ab)v(z) + BAD (3.5)

We take V(z) = ; < Pz,z > as the candidate for the Lyapunov function of (3.5)
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and compute V along trajectories of (3.5) to obtain

V =< Pz(t), (t) >

=< Pz,Agz > + < Pz,(AA + AbBF)z >

+ < Pz, B(1 + Ab)v(z) + BAD >

= 2 <(PAg+ AJP)z,z > + < Pz,(AA + AbBF)z >
+ < Pz, B(1 + Ab)v(z) + BAD >
<-(A-dlPl)<z,z>

+ < Pz,AbBFz > + < Pz, B(1 + Abju(z) + BAD >
(3.6)

We next define
_ps+vBllz"FT|| BTPz for z ¢ ker(B' P)
v(z) =

1-8 BT Pz||
¥(z), for z € ker(BT P).

(3.7)

where 4 > 1 and v > 1 are constants to be determined later and %(z) is defined

as follows.
(1) If BT PB is invertible, i. e., B has full column rank, then %(z) = @(z) — Fz,
where i(z) is the equivalent control on the sliding surface s(z) = B" Pz. That is,

4(z) is the solution of

é(z) = BTP[(A + AA(w(t))z
+ B(1 + Ab(w(t)))@ + BAD(w(t))]
=0

which yields

N 1
i(z) ~ "1+ Ab

(BTPB)~'[BTP(A+ AA)z + BTPBAD)
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where 1 + Ab > 0.
(2) If BT PB is not invertible, we will define %(z) by
i(z) = () @ f(z + B)
>0
where B is the unit ball in R™, 6(K) denotes the closed convex hull of K, and

_ §+B|lzTFT|| BTPz
f&) =———F g 5P

Because 7(z) is set valued in case (2) above, it follows that the closed loop system

will become a differential inclusion
z(t) € Q(z)

where Q(z) is a set valued map. Observe that )(z) consists of a single point if
z ¢ ker(BT P); on the other hand, if z € ker(BT P), then Q(z) may consist of
more than one point. However, in any case one can verify that @(z) is upper
semicontinuous with compact, convex values. Therefore, according to [18], the
existence of absolutely integrable solutions to () € Q(z) is guaranteed (of course,
when z ¢ ker{B" P}, then &(t) = the single value of Q(z)).

Thus for = ¢ ker(B T P) we see that

< Pz,AbBFz > + < Pz,B(1 + Ab)u(t) + BAD >
pd + Bz FT|

< —(1 -

+8||BT Pz|| +Bllz"F || ||BT Pz||

|BT Pe||

<0,
while for z € ker(BT P) we see that

< Pz,AbBFz > + < Pz,B(1 + Ab)v(t) + BAD >=0

Therefore, from (3.6), we have
V(z) < —(A = «||P|]) < =(t),=(t) > (3.8)
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Hence, in a manner similar to Theorem 2.1, we have established the following

result.

Theorem 3.1. Suppose that (H3.1) and (H3.2) hold. If A > al|P||, then the
feedback control law u(z) defined by (3.4) and (3.8) will render the closed loop
system (3.5) to be asymptotically stable.

Remark. The fact that A > «a||P|| is independent of 8 and 4.

Remark. In case (1), we can design g, v such that (3.7) is a sliding mode control.
The sliding surface is s(z) = BT Pz = 0. Since B is of full rank, one can see that
BTPB is positive definite. Take ¢ = min{\(BT PB)} > 0. Then

(BYPz)"BTPB(B" Pz) > q||B" Pzl|?
Therefore, we have

s'(z)é(z) = (BT Pz) BT P[(A+ AA)z
+ B(1 + Ab)ju + BAD]
= (BT Pz) B P[(40 + AA+ BAbF)z
+ B(1 + Abjw + BAD)

< (IIBTPAol| +«||BTP]))ll=l| +BI|BT PBI| || Fz||
BTPz)"BTPB(BT Pz)
||BT Pz||

— (w8 +vBIFXI
+45||BTPBJ| ||BT Pz||

< (IIBTPAo|| + al|BT P|)l|=l| ||BT P=|| + B||BT PB|| ||Fz|| || BT Pz||
- q||B7 Pz||(ud + vBl|F=|l)

+4||BTPB|| ||BT Pz|]

Now set

2HBTPBH} ,

p = max{1, = max{1, %}
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to obtain

sT(z)s(z) < (||BTPA|| + a||BT P||)||zl| ||BT P=||
—8||BTPB|| ||BT Pz||.

Hence, if
§||BTPB|

[BTPA|| +al|BT P

ll=l] <

then
s'(z)é(z) < 0.

Remark. In case (2), one can see that if z € ker{ BT P}, then

pé+vBllzTFT| _, BTPz

Q) = N @ (o)
- L C B

is a disk determined by the surface BT Bz = 0, whose radius is

e+ wBleTET|
- 2Bl

Therefore, we can simply take p = v = 1.

An illustrative example. Consider the example in 1.1 where we allow some

uncertainty on the solution source: that is,

# = — %)zl + (%)22 + (@1 — Q2)u + (@1 — Q2)AD
32 = (o1 - ()s
y= (zl—z)zz

where (@1 — @2)AD is some unknown source, and |AD| < §. In terms of the
notations in Theorem 3.1, a =8 =0, F =0, B = (Q; — @2,0)7, Ag = A. For
simplicity we assume L; = Ly = L. Take P = I to obtain
—201 Ai+Qs
dor sl = (ol fo).
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which is negative definite. Therefore, when take

2(Q1 — @)%, _
(Q1 — @2)? y=2

according to Theorem 3.1, the control for z; # 0

p = max{1,

u(z) = —28sgn(z1)

will asymptotically stabilize the closed loop system.

Note. Physically, the above example means that if we have some unknown solu-
tion source added to the first tank, we should pump out some solution from the
first tank to guarantee the solution will be eventually drained.

Next, we will extend Theorem 3.1 to a case involving delayed perturbations. The

following lemma is a modification of a result in [15].

Lemma 3.2. If P is a positive definite matrix, then

G(t) = = (t)PE(t)=lt — h(t)] — £[1 — h(t)]= " [t — A(t)]z[t — h(t)]
¢? 2

< 0 1P ||=]?
where 0 < h(t) < 1, £ > 0, ||E(t)]] < ¢.

Proof. Simply set v = > 0 and compute to obtain

1
E—h(8)
1 1 rpT 1
G(t) = —;[z(t ~ h(t)] - §7E Pz] ' [z(t - h(t)] - §7E Pz]
+ vz "PEE Pz
< -yz"PEE"Pz
< CIPIR [l=IP
C2

< ;ifl_—mlll’ll2 ll=I1®

36



which completes the proof. QED.

Now we consider a generalization of (3.1), which contains a delay term, of the form
2 = (A+ AA(w(t)))z + E(t)z[t — h(t)] + B(1 + Ab(w(t)))u + BAD(w(t)) (3.9)

where ||E(¢)]| < ¢, 0 < h(t) < 1,0 < h(t) < r for some 7 > 0 and the remaining

terms are as before.

Corollary 3.1. Suppose that (H3.1) and (H3.2) hold. If there exists £ > 0 such

that

¢ :
A>alPll+ ¢+ e lIPIP >0,

then the feedback control law defined by (3.4) and (3.8) will render the closed loop
system to be asymptotically stable.

Proof. Define V : R x C([-r,0],R*) = R*
1 0 T
V(t,¢) = 5 < P$(0),(0) > +¢ " )¢ (t + 6)g(t + 6)d0,
—h(t
and observe that V is a positive definite, since
1 1 2
21 < PY(0),4(0) > | S V(t,8) < (5 +r)lgl"
Using (3.4), (3.8) and Lemma 3.2, we have

V [is.0) £ —(A = al|Pll) < 2(t),2(t) > +€ < 2(t), z(t) >
+ 2 (t)PE(t)z[t — h(t)] — £[1 — h(t)]z T [t — R(t)]z[t — R(t)]

< == allPll =€ = e lIPIP) <0 2(0) >

Therefore if

¢ ;
2> allPll+€+ s lIPIP > 0
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then the closed loop system will be asymptotically stable(see [38]). QED.

3.2 Output Feedback Design

Consider the following system
2 = A1z1 + AAnz + AApazs + Bi(1 + Ab)u + B1AD (3.10)
2o = Aaza + AA2izi + AAgazy + B2 (1 + Ab)u + B2 AD (3.11)
y = Ciz1 + Cazy

where the notations have similar meanings as in (3.1) and C;, C; are constant
matrices. The following assumptions are made.

(H3.3) A; + A] is negative definite.

(H3.4) (A2, Ba,C,) is minimum phase and (3.11) has nonsingular high-frequency
gain;i. e., det(CyB;) # 0.

According to [6], if (H3.4) holds, then there exist a symmetric, positive definite

matrix P,, a nonsingular matrix K, and a real number p such that
1
Q2 = 5[(42 +pB:KC3) " P + Po( 42 + pBrCy)|
is negative definite and KC, = B;r Ps.

With assumptions (H3.1), H(3.3) and (H3.4), we will look for a stabilizing feedback
control law for the system (3.10), (3.11) of the form

u(y) = pKy +v(y) (3.12)

The substitution of (3.12) into (3.10), (3.11) and the use of the output relation
y = Ciz1 + Cazy results in the closed loop system

il = [A]_ + AAII + pBlK(l + Ab)C]]iBl + [pBlK(l + Ab)C2 + A14-12]:':2
+ B1AD(t) + By(1 + Ab)u(t)
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(3.13)

Ty = [Ag + AAx + szK(l + Ab)Cz]zz + [szK(l + Ab)C;l + AA21]2:1
+ B2 AD(t) + Ba(1 + Ab)u(t)

(3.14)
y = C1z1 + Caz

We take V(z) = (< z1,21 > + < Paza,z2 >) as our candidate for the Lyapunov
function, and compute V along solution of (3.14) and (3.15) to obtain

V =<z, >+ < Pazy, 23 >
=< 21,4121 > + < z1,< z1,[AA11 + pB1 K (1 + Ab)Ch]z; >
+ < z1,[pB1K(1 + Ab)Cy + AAjs]zs >
+ < z1, B1AD(t) + B1(1 + Ab)u(t) >
+ < Pyzy, [pBaK (1 + Ab)C, + Adg]z; >
+ < Pyzy, (A2 + pB2 KCh)zy >
+ < Pyzy,(AAgs + pBa KAWCy)zy >
+ < Pz, ByAD(t) + Ba(1 + Ab)u(t) >
< 5 < (A1 + AT)er,z1 > Ha+ |ol Bl [KCLlI(L +B)] < 21,21 >
+ [a+ lol [|Ball [[KC2|I(L + B)ll|z1]] l|=2]]
+ < z1,B1AD > + < z1,(1 + Ab)B; > v(t)
+[a+ [l [|P2|] [|B2ll HECAlI(L + B)llza]l [lz2]l+ < Q222,22 >
+ || Pall(a + Blol || B2f| [|KCal) < 22,22 >
+ < Pyz3, BoAD > + < Pyzg, By > (1 + Abo(t)

(3.15)

39



Since B] Przy = KCazy = K(y — C121) = Ky — KC1z1, we have

V < —a1 < 21,21 > +2ap2]|21]| |22l — @2 < 22,22 > +6]|K]| [y(t)]
+ 8(IIKCu|l + || Ball)llzall + (1 + Ab)v(t) T Ky(t)
+ 1 +B)(1B1l| + [KCu1l) v (2)] [z ]l

(3.16)
where
a1 =M —a—|p|(1 +B)|Bil[ | KCAll
a2 = Az — ||P2||(a + Blp| [|B:|| [ KC][)
1
a1z = 3[2a + lpl(1 + B)(II Bull [IKCez|l + (| P[] || Bl I K C1 )]
A1 = minimum eigenvalue of ~ -;—(Al +4A7)>0
A2 = minimum eigenvalue of Q2 > 0
We define the function v(y) in the desired feedback control law by
K||s K="
oft) { ~ LK B30 for [ly(e)]| > €
1T
—UEIRE 3O for [ly(e)l| <.
(3.17)

Observe that if ||y(t)|| > ¢, then

|IK1lé

SIK|| @)l + (1 + Ab)oTKy(t) < SIIKI| [yl - (1 - B)3 my?

=0,

ly (@)l

while if |[y(¢)|| <, then

SIKI| ly(8)]] + (1 + Ab)v T Ky(2)

< 811Kl y(e)1] - 1K 16y(2)?
- IKiise
- 4
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which yields
Kllée
S lly(e)l + (1 + AbjoT Ky(e) < 1K1

and

d(lIC1ll + 1K Bal)llzall + (1 + B)(IBall + K CalD ()] [l ]

<iu+ 128 L)l + 1Bl |

= 1—_E(IIKC’1H + 1B1l])lz ]

Therefore we obtain

|| K1|de

: (3.18)

V(z) < —ailz1]]?* = asallz2||? + 2a12(lz1]] [|22]| + asllz1]| + ———
where
2 (l1B1ll + [IKC1})
ar = —
3 1 "‘ﬁ 1 1

and e is any real number satisfying 0 < e < 1.
In a manner similar to Theorem 2.2, these computations prove the following result.

Theorem 3.2. Suppose that (H3.1), (H3.3) and (H3.4) hold. If a; > 0, a2 > 0,
aia; > a?y, then there exists # > 0 such that the output feedback u(y) defined
by (3.12) and (3.17) will drive the solutions of the closed loop system (3.13) and
(3.14) to the ball B, = {||z|| < r}.

Remark. Note that § only appears in the formula for az. This means that the
truth of the inequalities ¢; > 0, a2 > 0, and a;a3 > a%z is independent of the term

AD.

An illustrative example. We modify the example in section 1.1 to allow the
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input solution in the second tank to have some uncertainty on the solution source:

= ( )1+( )32

4y = (%)1—( ©lyzy +(Q1 ~ Qa)u+ (Q1 — @)AD

where (Q; — @2)AD is some unknown source, and |AD| < 4. In line with the
notations in Theorem 3.2, a = =0, 4 = -3, 4, =-%,C, = £, B =0,
By = @1 — Q2.

Take K = Ly(@1 — Q2), P» = 1, p = —1, then according to Theorem 3.2, when
v =u(y) = —Ky +v(y),

—dsgn(zz), for |za| > Lae
v(y) =

—-0{Z, for |z3] < Lae.

then
Ly (Q1 — Q2)d¢
4

V< —@ z3 - %—HQl - @2)|=3 +

Therefore, by taking € small enough, we can make the ball of attraction as small as
we wish, which means that for all practical purposes the solution will be drained

eventually.

In the remainder of this section, we extend Theorem 3.2 to a class of systems

involving delayed perturbations by the use of Lemma 3.2.
Consider the partitioned linear system with disturbances and delay
21 = A1z +AAnz +AApzs + By (t).’cl[t - h(t)] + B1(1 + Ab)u + B1AD (3.19)

= Az + AAgjz1 + AArezs + Ea(t)z2[t — h(t)] + B2(1 + Ab)u+ BoAD (3.20)
y = Ciz1 + Caz2
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where [|Ei(t)|| < ¢i=1,2, 0 < A(t) < 1, 0 < k(t) < r for some r > 0 and the

remaining terms have the same meanings as before.

Corollary 3.2. Suppose that (H3.1), (H3.3) and (H3.4) hold. If @, >0, @ > 0,
and @@ > a?,, then there exists r > 0 such that the output feedback law u(y)
defined by (3.12) and (3.17) will drive the solutions of the closed loop system of
(3.19) and (3.20) to a ball B, = {||z|| < r}, where @, and @, are certain constants
(to be defined in the proof).

Proof. Similar to the proof of Corollary 3.1, if we take
t

V(z) = %(< 21,21 > + < Pazy,za >) + € z " (0)z(6)do
t—h(t)

then V is positive definite.
Using (3.18) and Lemma 3.2, we have

. _ _ Kllé
74 |(3.19)+(3.20)S _a1”2:1”2 —0,2“2:2”2 +2a12||:z:1||||:32|l +0:3||21”+ ‘—” 4” :
where
IpI(L + BBl 1K Call - —>
&1=,\1—a-—§—p 1+,B Bl Kcl T T e 3 s
31— 7()
2
82 = Ao — £ — [|P2ll(a + Blo| [1Bball IKCall) — —S—|1P|?
31— A1)

and a;2, and a3 are defined as before. Therefore, if &; > 0, @ > 0, and @a; > a2,,
then the output feedback u(y) defined by (3.12) and (3.17) will drive the solutions
of the closed loop system of (3.19) and (3.20) to a ball B, = {||z|| < r}. QED.
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4. Additional Feedback Designs
For A Class of MIMO Systems

4.1. State Feedback Design

In this chapter we consider a class of so-called “partially matched” input-output

systems with uncertainty and having the partitioned structure

!
£ = (Ai + DA:(w(t)))z + busi + b;AD;(w(t)) +b: Y fijys) (4.1)
¥
Yi = cix; (4.2)
where z = (z1,... ,z1)T € R™ x--- x R™ = R™,u; € R,b € R™ (a constant
vector), y; € Rand AA;, AD;, and f;; are continuous functions of their arguments.
It is assumed that the uncertainty w(t) is Lebesgue measurable function of ¢ which

takes values in a fixed compact set Q C R*. The terms AA; and AD; represent

the disturbances, which are either known or unknown.

We will impose the following assumptions:

(H4.1) There exist nonnegative constants a; > 0, §; > 0, M;; > 0 such that
[AAi(w(t))]| < ai, [ADi(w(E)l| < &, | fi (yi)| £ Mijly;l,

and the functions f;; satisfy a Lipschitz condition with constants L;; > 0; that is,

for an arbitrary pair of real numbers y;1,y2 we have
|fii(31) = fii(y2)l < Lijlyr — w2l

(H4.2) The triple (A, b;, ¢;) is minimum phase and has nonsingular high-frequen-
cy gain in the sense that c;b; # 0.



According to [6], if (H2.4) holds, then there exist foreach z = 1,... ,l a symmetric,
positive definite matrix P; (of dimension n; X »;) and p; € R™ such that ¢; = b,T P;

and for A;p = A; + b; < pi,- > the matrix
Qi = AP + P.Aq

is negative definite; 1. e., there exists A; > 0 such that < @;z;,z; >< —A; <

z;,z; > for some z € R™.

Under assumptions (H4.1) and (H4.2), we will seek a feedback control law of the
form

u(z) = (w(z1), - .- wi(z1))

where for each ¢ = 1,...[ we have
u,-(z:i) =< p;i, z; > —Niciz; — v,-(a:,-) (4.3)

where the scalars N; and the functions v;(z;) are to be determined later. It is
essential to note that the ith component of the feedback law u; will be designed
so that it only depends on the ith component of the state variable z;, even though
the remaining outputs y;, j # ¢, enter into the dynamics that determine z;.

Substituting (4.3) into (4.1) and (4.2), we obtain the closed loop system

z; = (Ai + AA;)z; + bi(< piyzi > —Nyi — v;)

l
+b:(ADi + ) fij(y5))
i
Yi = CiTy
(=1,2,--,1)

(4.4)

We next determine conditions under which V(z) = Ei=1 < Piz;,z; > is a Lya-
punov function for the closed loop system (4.4). The computation of V along the
trajectories of (4.4) yields
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i
Vla.e) = 22 < Pizi(t),zi(t) >

I
= Z[< (A T P2 + Py Aj)zi(t), zi(t) > +2 < Pizi(t), AA;zi(t) >

=1

l
—2N; < Pbi,zi(t) > yr +2 < Pbi,z: > ) fii(y5)
i#I
+2 < P,z > (AD; —v;)

<Z (i — 24| P]|) < 25,2 > —2ZN,y,

=1 =1

! ! !
+2) (lwl Y Mijlyil) +2) (AD; — vy
=1 A =1
!
<Y =% = 2ail| Pl - 25T My
=1
!
+2 Z(AD,’ — v;)yi

=1

(4.5)

where § = (jy1],-- -, Isz)T

N My .. =My
— M. N. ... —M.

M= : 21 :2 . . a1
My -Mp ... Np

and the N;’s are yet to be determined. Take

o f Tsga(w), for u(t) #0
vilt) = { Bi(z), for y;i(t) = 0.

where T; > 4; is yet to be determined and #(z) is given by
i(2i) =< pi, & > ~Niyi(t) — @i(z:)
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where #;(z;) is the equivalent control of the sliding surface s;(z;) = c;z;; i. e., it

is the solution of
$i(zi) = cil(Ai + AAi(w(t)))z:

1
+ i@l + b:ADi(w(t)) +b: Y fii(w5)]

J#i
=0
which yields
1 l
wi(z:) = — ——[ci(Ai + Adi(w(t)))zi + cibiADi(w(t)) + cibs > fiiwi)]
o i
For c;z; # 0 we see that
(AD; — vi)yi < dilys| — Tilys| <0,
while if ¢;z; = 0 we have
(AD,’ - vi)y,- =0.
Therefore, from (4.5) we have
. l
Vo< Y, —(A = 2a4][B]) llzil P~ < (M + MT)7,5 > (4.6)

=1

Theorem 4.1. Suppose that (H4.1) and (H4.2) hold. If \; > 2a;||P;f|, then
we can choose the constants T; > §; and N; sufficiently large so that the matrix
M + MT is positive definite and the feedback u(z) defined by (4.3) will render the
closed loop system (4.4) asymptotically stable.

Proof. Let A; = \; — 2a;||P;|| > O and observe that if T; > §; and N, are

sufficiently large the matrix M 4+ M " is positive definite, whence we obtain

!
Vi< =) Xillzil 2.

=1
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Since P; is positive definite, there exist constants k;; > 0, kiz > 0 such that
k,-1||:c,-||2 << szi,zi >_<_ k,‘z”:l:g”z.

It follows that

<
Vs < - ; i\:—:' < Biz;,z; >
< =XV (z),
where A\g = m.m{%'l—} > 0. This results in
V(z) < exp(—Xot)V(0)
= Yoy kallzill® < exp(=Xot) Tic,y kizlleall? = 0 2s £ 0
= z(t) = (z1(t),--- ,zi(t))T = 0ast— 0. QED.

Remark. One can show that with the proper choice of the N;’s, (4.3) is a sliding
mode control. Indeed let s(z) = (si(z))T = (ciz:)T. Then since c;b; = b P;b; > 0,
we have
sT(:c)s'(z) = (yi)(ci[(Ai + AA,‘)Q: + b;u;
1
+8:AD; +b; Y fii(y;)])T
i
l
= Zyi{< Apci, zi > + < ci, Adiz; >}

=1

!
+)_{eibil~(Niy? + Tilwil)

=1

:
+y:i(AD; + ) fii (i)}

J#d

1
< S (lAGell + alledDlle:dl ls:)

=1

;
=3 cibi(Ts — &) wil
i=1

! L
—q Y Nyl +q ) > Myl lysl

i=1 i=1 j#i
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where q; = min{c;b;} > 0, g2 = max{c;b;} > 0. One can see that

4 l l
Y N +@ )Y Mlyl lysl = -5 M5

i=1 =1 ji
where
alN1  —q@M; . —@2My
M= —Q2.Mz1 ¢I1{V2 —qz.Mzz
-42.Mz1 —412.M 12 @ Nl

It is not hard to see that one can choose N;'s such that M* + M*' is positive
definite. Hence

{
sT(2)s(z) < D (lApeill + allesl izl lssl

=1
l
- eabi(T: — &)yl
i=1
Therefore, if
cibi(T; — 6:)
llzil] <
lA5eill + allel|
then
sT(z)é(z) <O.
as required.

An illustrative example. Consider the following example:

2y = (A1 + AAr)z1 + bjuy +b01AD) + by fia(y2)

29 = (1 4+ AAg)zs +u2 + ADy + 211 + z12

Y1 = Z11 + T12

Y2 =22
where, in light of the above notation, z; = (z11,212) ", |A41| < a1, ||AAs]] € a3,
|AD:| < &1, |AD;| < &2, fr2(y2) = y2, far(y1) =sin(y1), A2 =1, b =1, c2 = 1,
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Cc1 = (1, 1), and

4=z 1) 5=()

One cal see that Mm = M21 =1. Ta.kepg = —2, 1= (—2, —2)T, P1 = 1, P2 = I,
then A; = A3 = 2. According to (4.5), we can take the sliding mode control as

v =< p1, 21 > -Niy1 —n1

uz = —2z3 — Nays — v2
where
v; = Tisgn(y1)
vz = Tosgn(yz)
with T > §;, and N1, N, such that
(% w)- e (B 32)

are negative, eg,N; = 3, No = 2. Therefore, according to Theorem 4.1, if 0 <
a; < 1,0 < as <1, the control will render the closed loop system asymptotically
stable.

4.2. Output Feedback Design

We further refine the structure of the systems consider in the previous section by

considering systems of the form

l
i = (A +AAu(w(t)))zia +bia (1+AbiJui+ba ADi(w(t)) +bi1 Y fij(y;) (47)
i

!
Zi2 = (Aiz + AAiz(w(t)))ziz +bia (14 Ab;)u; +bia AD;(w(t)) +biz Z fii(y;) (4.8)
J#i

Yi = i + i
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where z = (2:11,212,--- ,zu,zzg)T €ER" u;€ R, yi €R,AD; € R, AA,'J', Ab,'j,
AD; are continuous, w(t) € Q is the Lebesgue measurable uncertainty taking
values in a fixed compact set 2 C R*. As before, AA;;, Ab;j, AD; represent the

disturbances, which are either known or unknown.

We make the following assumptions.

(H4.3) Ai + A]jis negative definite and c;; = b].

(H4.4) (A2, bi2, ¢i2) is minimum phase and (4.8) has nonsingular high-frequency
gain; i. e., det(ci2bi2) # 0.

According to [6], if (H4.4) holds, then there exist a symmetric, positive definite

matrix P; and a constant k; such that ¢;5 = b;‘; P; and
1
Qi = 5[(1‘1:'2 + kibiacia) T Py + Py(Aiz + kibizcia)]

is negative definite; i. e., there exists Aj2 > 0 such that < Qizi2,zi2 >< ~Aia <

Tiz, Tinp > for all £, € R™2,

Under assumptions (H4.1), (H4.3), and (H4.4), we will seek a stabilizing feedback

control law of the form

u(y) = (u1(z1)), - .- ,uz(yz))T,

where

ui(y:) = kg — Nayi + vi(ys)
(4.9)
and the scalars N; and the functions v;(y;) are yet to be determined.

Substituting (4.9) into (4.7) and (4.8), we obtain the closed loop system
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£i = (Aa + AAa)za + b (1 + Ab;)(kiyi — Niyi))

{
4.10
+ b1 (1 + Ab;)(AD; + Z fii(y;)) + bir(1 + Ab;)v; ( )
i
Zip = (Aix + AAp)zi2 + bia(1 + Ab;)(kiyi — N:yi))
! (4.11)
+ bia(1 + Ab;)(AD; + Z fii(y;)) +bia(1 + Ab;)v;
J#t
and
Yi = CiT
1=1,2,---,1

We will determine conditions under which

1
V(z) = §[< Pizia,z12 > + < 11,711 >
1
+ §[< Pyzgy,z99 > + < 21,221 >}
+...

1
+ §[< Pizia, 212 > + < zn1,znn >
l

1
= Z §[< Pizip,zio > + < i1, 21 >
=1
is a Lyapunov function for the closed loop system (4.10), (4.11).
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Indeed the computation of V along the trajectories of (4.10), (4.11) yields
. 1
V= Z(< zi1, 251 > + < Pizig, Ti2 >
=1
L1
= Z{'g' < [(Aiz + kibiaci2) T P2 + Pa(Aia + kibiacia)]zia(t), zi2 (t) >
=1
+ < Pizia(t), (AAiz + kibiaAbiciz)zia(t) >
+ < Pazig, kibia(1 + Aby)einzin > —Ni(1 + Ab;) < Piby, zi2(t) > us
+ < Pbip, zia(t) > AD; + (1 + Ab;) < Pibiz, zia(t) > v;
1
+ < Pibia,zi2 > Zfij(yj)}
J#i
L1
+ ;{5 < (Aa + A)za (), za (t) >
+ < zi1(t), (AAix + kibin (1 + Abi)ci )z (t) >
+ < zi1, kibin (1 + Abs)eciazia > —Ni(1 + Ab;) < big, zir(t) > i
+ < biz,zin (t) > AD;
!
+ (1 4+ Ad;) < biy,zia(t) > vit+ < biy,zin > Zfij(yj)}
J#i
1
< Z{—()\il — a; — |ki[(1 + Bi)llear [1) |z |1
i=1
+ 2{k:|(1 + Bi)llbar || leszl| llzaall ||2s2ll
= (M2 = l|Pillos — [ks] 1Bi] llea2l ) ||zizl|® — (1 + Ab;)Niy?
l
+ ADiyi + (1 + AbiJviys +v: Y fii(y5)}
J#

l
<Y {-aallzall® + azllzall llzall — aizlleal® + &yl

=1

!
— (1= B)Nig? + (1 + Abiviys + lwal D Mijly;l}
J#i

(4.10)
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where

@i = A1 — & — [k:|(1 + Bi)lfear ||
a1 = Aiz — || Billas — [k:] 1Bl llei|f®
air2 = |ki|(1 + Bi)l[barl] |leizll-

If we define 5
-—:‘g—sgn(yi(t)), for |yi(t)] > €
GE) =9\ _ 5w
—-ﬁ, e for Iyi(t)l <g
(4.11)
then we see that
il + (1 + AbiJo(t)ys < B (4.12)
If we denote § = (|v1],--- ,|w]) T and
(1 -pB1)N; —M;i2 —My
—M>; (1 — B2)N, — Moy
M= : : .. :
My —Mi, (1 -p81)N,
then from (4.12) and (4.14) we obtain
7 < Y (canlleall + aalloall lsall - aclizall? + &5 By
=1
1
-5< (M +M")g,§ >
(4.13)

Thus, in a manner similar to Theorem 2.2, we have proved the following result.

Theorem 4.2. Suppose that (H4.1), (H4.3), and (H4.4) hold. If a;; > 0, a;2 >0,
and a;ja;; > a}, for each i = 1,...,[, and if the constants N; are sufficiently
large that the matrix M + M " is positive definite, then there exists » > 0 such
that the feedback u(y) defined by (4.9) and (4.13) will drive every solution of the
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closed loop system (4.10 and (4.11) to the ball B, = {||z|| < r}. Furthermore, r
can be made arbitarily small.

Proof. One can see that when the N; are sufficiently large the matrix M + M "
is positive definite. Therefore

1
-3 < (M+M")g,§><0

Since a;; > 0, ais > 0, and a;1a:2 > 0'?12’ we can choose 0 < dj; < ai1, 0 < djz <
a;2 such that d;;di» = a?,. Denote t;; = aiy —di1 > 0, t;p = aip — di3 > 0, and
B = Z:.___l Bi. Then from (4.15) we have

V- }_j{ (dhllea]l - dillzal)™ Z&

=1 1—1

1
- Z(tu”zﬂ”z + tig||zi2|[?)

=1

<——ZHMP

=1

< ——toZH-'lelz

where ¢t; = min{t;1,ti2} > 0, to = min{¢;} > 0. It follows that if |[z]| > (4%%)%,
then V < 0. Hence, with r = ({5—2)% , the ball B, is an attractive ball for the closed
loop system (4.10) and (4.11). QED.

Remark. If we do not require u(t) to be continuous, then one can see that with
vi(t) = —l—f"ﬁsgn(yi(t)), the resulting u(t) will render the closed loop system to
be asymptotically stable.

An illustrative example. Consider an example without uncertainties on the
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input:
z1; = (-3 + AA11)z1 + w1 + ADy + sin(z21 + z22)
z12 = (1 + AAgz)zy2 + 2uy + 2AD; + 2sin(z21 + z22)
221 = (=7 + AAn)za +u2 + ADz 4+ 2(z11 + 2212)
Za2 = (1 + AAgz)zoz +u1 + AD2 + 2(z11 + 2212)
1 =z + 2212
Y2 = To1 + T2

where, in light of the above notation, |AA4;;| < a1, [AA| < as, |AD4] < 4,

[AD,| < 82, fr2(y2) = sin(y2), fa1(y1) =21, B1 = B2 = 0.
Now, take k; = —%, ko = —2, then we can take P, = P, = 1, A\;; = 3, A12 = 1,
A12 = 7, A22 = 1, and the output feedback control as

1
U1 =g = Ny +n

uy = —2y3 — Nayz + v2

where

—disgn(y1), for [y} > 1
vl(t) =
-4y, for jy;| < 1.
-4 , f
valt) = { 25gn(yz), for [y2| > 1
—d212, for |yo| < 1.

and N; and N, are such that

M+MT___<2N1 —3)

-3 2N,
is negative definite(e. g., Ny = N = 2). Since f; = 0, according to Theorem 4.2,
if
)
a =§—a1 >0, a9=1—-a; >0

a1 =5—a; >0, arys=1—a; >0
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and

ajjaiz > 1, anax >4

where aj12 =1, az12 = 2, that is
1
0$a1<§, 0SC!2<3—2\/§

then the output feedback control will render the system to be asymptotically

stable.
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