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CHAPTER I 

INTRODUCTION 

1.1 Uncertainty in Modeling 

Significant advances have been made in the area of sequential 

state estimation due to the works of Kalman and Bucy[l-3]. Their 

approach has led to the well known Kalman-Bucy filter. Since the 

publication of this result, there have been numerous papers written 

on alternative ways of deriving the conditions for the optimal 

linear filter and on extensions of the original work[4-6]. The area 

of stochastic control theory [27,28] is an important application 

of sequential estimation techniques, and is itself a research topic 

of considerable interest. This investigation is concerned with 

extending results in estimation theory and stochastic control to 

cases where the model is uncertain. 

It is ordinarily assumed that the parameters describing the 

system are completely known including the st~tistic of the associated 

noise vectqrs. In many engineering problems, however, the parameters 

may not be completely known. For example, an aerospace system such 

as a high performance aircraft may have aerodynamic parameters 

which change as a function of altitude, speed, and angle of attack. 

The estimation of the state of such a system is relatively simple 

if one can directly measure the uncertain parameterse In this case, 

when parameters are randomly changing, estimation schemes have been 
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developed[29]. There are physical processes, however, where one cannot 

measure the parameters which describe the system, and has to rely on 

available statistical data for modeling the system. One way to handle 

the indicated type of problem is to develop an estimation technique 

which takes into account the uncertainty of the model. The formulation 

of this type of problem has been ref~rred to as "Estimation-Under

Uncertain ty"[ 14 J. 

Just as state estimation for uncertain models may be treated by 

considering the uncertainty directly in the problem formulation, 

controls for uncertain systems may be developed in the same way. The 

philosophy which motivates this work is that one should include in 

the initial problem statement the fact that modeling of physical 

systems is seldom perfect. Although such an approach adds to the 

complexity of both the estimation and control problems, in many cases 

it may be preferable to ignoring the inherent uncertainty of modeling. 

1.2 The Approach 

This section indicates some of the significant aspects of the 

approach taken. Motivation and relationships to re~earch ~rticte~ 

whi.ch ar.e of central importance to this work are alsb pointed out. 

Among the key features of the approach taken, the following are 

important points. 

(1) Uncertainty of the model is treated by assuming that the true 

model is one of·a set of a finite number of possible models. 

(2) It is assumed that each candidate model has linear continuous 

dynamical behavior and linear observations which are discrete in time. 

(3) A recursive estimation algorithm and system identification 



technique are developed. 

(4) A feedback control strategy is developed using the results of 

estimation-under-uncertainty. 

1.2.1 Candidate Models 

As mentioned previously, consideration of uncertainty in system 

parameters is important since systems are seldom known precisely. If 

some knowledge about a system is available, then it may be reasonable 

to assume that the system may be modeled by one of a finite set of 

possible candidate models. This set consists of the possible systems 

which one might in. fact have. Parameters, as well as the order of 

the models, may differ. A set of prior probabilities associated with 

each model may be approximated o.r guessed. The approach indicated 

here is fundamental to this investigation. Much of this thesis is 

based on the work of Hilborn and Lainiotis[9], who also considered 

the true system to be one of~ finite number of possible systems. 

A slightly different app3:oach is adopted in this investigation, in 

which each of the dynamical models is assumed to be continuous in 

time while the observations are assumed to be discrete. 

1.2.2 Continuous-Discrete Modeling 

While most physical processes have dynamical behavior best 

described using differential equations, practical considerations 
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often suggest t~at a discrete observation model is appropriate. The 

continuous-discrete modeling approach is motivated in part by problems 

arising in estimation of state variables, for example, finding 

Cartesian position and velocities of a target, using radar observations 

which are discrete in time. In such problems, the difficulty is one 
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of estimating the state variables of a continuous-time dynamical 

system where some of describing parameters are uncertain. At discrete 

instants of time, certain output variables, for example, range, 

azimuth, elevation, etc., are observed in the presence of measurement 

noise. The solution of this type of continuous-discrete estimation 

problem without uncertainty of the system model has been developed 

by Jazwinski[22], and Athans, et a1[25], where more general nonlinear 

dynamical systems were considered. Jazwinski's result is combined 

with Hilborn and Lainiotis' approach to obtain a recursive filter 

for the continuous-discrete model *ith uncertain parameters. The 

researchers mentioned above provide a convenient basis for the 

estimation portion of this thesi_s, and a logical starting point for 

the control section. 

1.2.3 Recursive Filters and System Identification 

The problem of estimating the state of each candidate model from 

noisy observations is a.classical problem, where the recursive filter 

may ~e broken into two parts: in between observations the estimator 

is merely a predictor, and after.a measurement is taken, information 

is available to the corrector which may update the estimates of each 

predictor[22]. The optimal state estimate of the system is the sum 

of the state estimates of the candidate models weighted by the 

appropriate posterior probabilities[9]. 

The posterior probability of each candidate model is updated 

whenever measurements are available[9J. The posterior probability 

also provides a measure indicating the closeness of the candidate 

model to the actual system. Hence, system identification may be 

achieved concurrently with state estimation. If the posterior 



probability of one of the candidate models reaches unity after many 

observations, then the true system is known, and the estimation 

problem reduces to that of estimation under certainty. 

1.2.4 The Control Algorithm 

A closed-loop control algorithm is developed, which can be 

implemented on-line. That is, the computation of the control law 
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can be carried out at the same time as the estimation and system 

identification are taking place. This is in contrast to the situation 

in which one must first identify the system, and then design a 

controller. The control strategy is referred to as a closed-loop or 

feedback control law since it makes use of all information available 

up until the time of application. The closed-loop nature of the 

control is important, since in stochastic problems open-loop controls 

are usually unacceptable resulting in increased performance measures. 

1.3 Objectives and Findings 

There are two basic objectives that this study is intended to 

accomplish. The first is to develop a general formulation and 

solution of the state estimation and control problems for a large 

class of linear, stochastic continuous processes with discrete 

observations and uncertain model!?• The second objective is to 

exemplify the usefulness of the proposed techniques by developing 

the algorithms in detail for some typical models and illustrating 

the techniques by simulation. 

The first objective is accomplished in the following manner~ 

(1) For estimation problems, the predictor and corrector equations 

are derived to generate conditional mean estimatese The 



identification or posterior probability of each candidate model is 

obtained by employing Bayesian techniques. 

(2) For control problems, a control strategy is obtained using 

dynamic programming, and the separation principle[20,26]. In a 

general sense, the separation principle implies that a stochastic 

control problem can be solved by considering estimation and control 

separately. 

The second objective is achieved by providing numerous 

illustrative examples where the results are compared with the case 

in which the system is completely known. An application to the 

problem of stream qualitY, control is also presented in detail to 

demonstrate the techniques. 

In the estimation portion of the investigation, algorithms are 

obtained in which simultaneous estimation, and system identification 

are achieved using a recursive technique. The algorithms are optimal 

in the sense that a conditional mean estimate is d~veloped. The 

devglopment makes use of linear requirements on the dynamical and 

observation models, and Gaussian assumptions for the stochastic 

processes considered. If these assumptions are violated in practice, 

the resulting application, of course, will be suboptimal. In the 

case where it is possible for switching from one system to another 
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to occur in the interval of interest, it is found that practical 

constraints force one to consider a suboptimal rather than an optimal 

solution. 

In the control portion of the study, feedback controls which 

utilize the state estimates are obtained, where the control criterion 

is a quadratic performance measureo As in the estimation portion, 



suboptimal results are more practical if switching is ~llowed during 

the control interval. In the extensive example concerned with 

stream quality control, it is clear that the system identification 

aspect of the algorithm may be of considerable importance, and 

furthermore it is seen that the technique works reasonably well even 

when certain fundamental assumptions are violated. 

1.4 Organization 

The remainder of this study is arranged in the following waye 

Chapter II presents a brief review of classieal estimation theory and 

stochastic control. The existing estimation and control schemes 

under uncertainty are also discussed and compared. 

The estimation problem is formulated and solved in Chapter III, 

where optimal and suboptimal techniques of estimation are developed. 

In Chapter IV, the application of uncertain estimation techniques 

to stochai:;tic control_ problems i-s developed. Examples are included 

to compare the results with alternative control strategies. 
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In Chapter Va stochastic model describing water quality is 

proposed and an application of the techniques developed in Chapter III 

and Chapter IV to the stream quality control problem is presentede 

Simulation results are also included in detaile Chapter VI contains 

a surrnnary and conclusions of the results obtained in the dissertation. 

Suggestions for further research and extensions are also presentede 



CHAPTER II 

A SURVEY OF BACKGROUND MATERIAL 

2.1 Introduction 

The purpose of this chapter is to review various existing 

techniques in estimation and stochastic cont.rol problems. In Section 

2.2 some of the classical estimation techniques are discussed for 

static as well as dynamic systems. Section 2.3 is concerned with the 

topic of estimation for systems with uncertain parameterso These 

subjects are presented since they form the basis of the estimation 

techniques in the next chapter. Section 2o4 is intended to provide 

background in the area of stochastic control, and in particular, 

the control of stochastic systems with uncertain models. 

2o2 Estimation Problems 

The problem of estimation in a system arises whenever an accurate 

measurement of the variable of interest cannot be made directly or 

indirectly due to the presence of noise in the observations. Two 

common types of estimation problems are~ 

(1) Parameter estimation, where the value of a parameter of a static 

system is of intereste 

(2) State estimation, where the estimation of the state of a dynamic 

system is required. 

In parameter estimation, a pa-rameter may be deterministic or 



randomo A deterministic but unknown parameter[29] is usually 

estimated by using statistical methods such as moving average[30] 

and least squares[16]o In the case of a random parameter with a 

known distribution, Bayesian estimation techniques[31] are often 

employed yielding "maximum a posteriori probability"(MAP) or 

"minimum variance"(MV)[17,32] estimates depending upon the chosen 

cost criterion. When the prior distribution on a parameter is not 

known, but the statistical knowledge about the noise is known, then 

the "maximum likelihood''(ML)[ 17] estimation scheme is often used. 

These schemes are used extensively in practice but certainly do not 

exhaust the available estimation techniqueso 

In the case of state estimation, the initial state vector may 

be random. In addition, the system may be excited by noise and the 

observation may also be corrupted by noise. If the statistical 

information concerning the noise and the state are not known, the 

''least' square"(IS) method is commonly used. Whenever partial or 

complete statistical knowledge on the system dynamic and observation 

structure is available, extended versions of MAP, MV, and ML. 

algorithms are applicable[17]. For a linear stochastic Gauss-Markov 

system with normally distributed additive noise and linear obser

vations, all the above mentioned schemes yield the same optimal 

sequential filter, referred to as the Kalman filter[1-3]o Kalman 

derived this result using the principle of orthogonal projectiono 

The same result has been derived by various methods such as dynamic 

programming[33], maximum principle[S], invariant imbedding[34], and, 

more recently, the "innovation" approach[6]. The Kalman filtering 

algorithm is of fundamental importance to this study, providing a 
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convenient recursive procedure to achieve the desired estimates. 

The algorithm is therefore presented below for various cases of 

importance. 

The Kalman filter for the cases of discrete systems, continuous 

systems[27], and continuous-discrete systems[22] is summarized in 

the following. 

For the discrete version of the Kalman filter, it is assumed 

that the discrete system is described by the difference equation[27] 

10 

x(k+l) = i (k+l,k)x(k) + r (k+l,k)w(k) (2-1) 

with observation 

z(k+l) = H(k+l)x(k+l) + v(k+l) (2-2) 

where xis an nth order state vector, w is a qth order plant 

disturbance vector, z is an mth order measurement vector, vis a 

measurement noise vector, and k=l,2, ••• , is the discrete-time index. 

In ~d9.itiqn, .. i is an nxn state transition matrix, r is an nxq 

disturbance transition matrix, and His an mxn measurement matrix. 

'rhE: prQcesses ( w(k)} and ( v(k)} are independent gaussian white 

sequences with zero means and covariance matrices 

E(w(k)wT(j)} =Q(k)8 kj 

E ( v(k)vT(j)} = R(k)8 kj 

The initial state x(O) is a gaussian random vector with mean 

E (x(O)} = x(O) 

and variance 

(2-3) 

(2-4) 
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VAR [ x(O)} = E [[x(O)-i(O)][x(O)-x(O)]T} = V (0) . x 
(2-5) 

It is assumed that x(O) is independent of [w(k)} and [v(k)} for 

all k. Given a set of measurement data Zk = [z(l),z(2), ••• ,z(k)} and 

a new measurement z(k+l), the optimal filtered estimate ~(k+l/k+l) is 

given by the recursive relation 

~(k+l/k+l) = 9i(k+l,k)x(k/k) + K(k+l)[z(k+l) - H(k+l) gi(k+l,k)~(k/k)] 

(2-6) 

A fork= 0,1,2, ••• , where x(k/k) is defined as the conditional mean 

estimate, 

~(k/k) = E [x(k)/Zk} (2-7) 

with ~(0/0) = i(O). The Kalman gain K(k+l) is obtained from the 

expression 

K(k+l) = V (k+l/k)HT(k+l)[H(k+l)V (k+l/k)HT(k+l) + R(k+l)]-l 
x x 

(2-8) 

where the predicted conditional covariance matrix V (k+l/k) is defined x 

as 

V /k+l/k) = VAR [x(k+l)/Zk} (2-9). 

which is given by the relationship 

v (k+l/k) = Hk+l,k)v (k/k) 9i T(k+l,k) + r (k+l,k)Q(k) r T(k+l,k) 
x x 

( 2-10) 

and the updated conditional covariance matrix in Eq. 2-10 satisfies 

the equation 
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V (k+l/k+l) = [I - K(k+l)H(k+l)]V (k+l/k) 
x x 

(2-11) 

with V (0/0) = V (0). 
x x 

Equations 2-6 through 2-11 provide a recursive means of calcu-

lating conditional mean estimates, for known discrete time systems. 

For the continuous time version of the Kalman filter[27], the 

linear continuous system is assumed to described by the dynamic and 

observational equations 

0 . 

x(t) = F(t)x(t) + G(t)w(t) (2-12) 

and 

z(t) = H(t)x(t) + v(t) (2-13) 

The stochastic processes [ w( t)} and [ v( t)} are zero mean gaussian 

white noise with covariance matrices 

(2-14) 

The optimal continuous fi-ltered estimate for the system described by 

Eqso 2-12 and 2-13 is governed by the relation 

. 
~(t) = F(t)~(t) + K(t)[z(t) - H(t)~(t)] 

for t ~ t , where the conditional mean Q(t) is defined as 
0 

( 2-15) 

~(t) =E[x(t)/Zt} (2-16) 

with ~(t) =°x(t) and Z = [z(T), t ~ T ~t}. The filter gain K(t) 
0 0 t O 

is given by the expression 



T -1 K(t) = V (t)H (t)R (t) 
x 

where the conditional covariance matrix V (t) is defined as 
x 

V (t) = VAR[x(t)/Z} 
x t 
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(2-17) 

(2-18) 

with V (t) = V (o), and is obtained from the matrix Riccati equation 
X O X 

V (t) = F(t)V (t) + V (t)FT(t) - V (t)HT(t)R-l(t)H(t)V (t) 
x x x x x 

for t ~ t • 
0 

+ G( t)Q( t)G\ t) (2-19) 

The continuous-discrete type of Kalman filter[22] is a combination 

of the above mentioned types which plays a role of central importance 

in this thesis. The linear continuous system with discrete observation 

is described by 

. 
x(t) = F(t)x(t) + G(t)w(t) (2-20) 

and 

( 2-21) 

In between the observations, the estimator is a continuous filter, a 

predictor, without new data available to correct the estimate. The 

estimate is governed by the relation 

. 
A )/\ x(t) = F(t x(t) (2-22) 

and the conditional covariance matrix is given by the solution to the 

matrix differential equation 

• T 
V (t) = F(t)V (t) + V (t)F(t) + G(t)Q(t)G (t) 

x x x 
( 2- 23) 
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A - . 
for tk~ t ~ tk+l and k = o, 1, 2, ••• , where x( t ) = ,c(t ) and V (t ) 

0 0 X O 

= V (0). At an observation instant, the estimator is a discrete 
x 

filter, a corrector. The estimate is updated by the additional 

information obtained and is given by the difference equation 

where the Kalman gain is given as 

I\ 
and the conditional mean estimate x(tk/zk_ 1) and the conditional 

covariance matrix Vx(tk/Zk-l) are defined as 

and 

(2-24) 

(2-25) 

(2-26) 

(2-27) 

which are the results obtained from the predictor equations, Eqso 2-22 

and 2-23. The covariance matrix is also updated according to the 

relationship 

(2-28) 

It is this last version, the continuous-discrete Kalman filter 

algorithm, which is used in the computational algorithms developed 

in the remaining chapters. 

A basic assumption conunon to all the various approaches mentioned 

above is that the coefficients associated with the system and 

observation models as well as the statistical parameters of the noisr 



terms are known. This assumption is not valid in many practical 

situations so that an entirely new class of estimation problems may 
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be considered, i.e., problems of estimation with parameter uncertainty. 

2.3 Estimation-Under-Uncertainty 

There has been considerable effort in recent years directed at 

the problem of state estimation for systems with uncertain parameters. 

Although both continuous[35] and discrete problems have been consid

ered, only discrete versions of the estimation-under-uncertainty 

problem are presented in this section. 

The linear system of interest is given in Eqs. 2-1 and 2-2. The 

uncertainty may exist in the elements of the matrices, m, r, and H 

as well as in the statistical parameters of noise terms, wand v, 

and initial condition x(O). In general, the uncertainties may be 

classified in two categories: 

(1) The nonswitching case, where it is assumed that all unknown 

parameters are members of a finite set with known probability 

distribution, and parameters are unchanging within the duration of 

interest. 

(2) The switching case, where it is assumed that the unknown 

parameter may take on any particular value from their respective 

finite sets, and are randomly switching during the interval of 

interest. 

In the following subsections, results of previous works, related 

to this study, from the categories indicated above are presented. 

2.3.1 Nonswitching Case 

Magill[8] made one of the first contributions in this problem 



16 

area, in a paper in which he considered a scalar system subject to 

uncertainty. Hilborn and Lainiotis[9] extended the problem to the 

vector case. Middleton and Esposito[7] also worked on a closely 

related problem concerning the presence or absence of a signal. 

Dajani[lO] has investigated a class of problem where a random 

coefficient is associated with either the plant noise vector, output 

vector, or observations. The work of Hilborn and Lainiotis is 

indicated below as typical of the approaches used in estimation-under-

uncertainty problems. 

The system under consideration is described by Eqs. 2-1 and 2-2, 

where only the matrix i is subject to uncertainty. It is assumed that 

N models are possible, each with a known prior probability of any 

candidate model, i.e., P [t =i. J = P. is assumed known. It is 
r 1 1 

desired to have a minimum variance estimate ~(k) of the state vector 

x(k) based on the set of data available up to stage k, Zk 

:::;:: (z(l), z(2), ••• , z(k)} • The performance index to be minimized is 

J = E ([x(k) - ;(k)]T[x(k) - ~(k)]/Zk} (2-29) 

The estimate which minimizes this performance measure is the 

conditional mean, 

~(k) = ~~(k)p(x(k)/Zk)dx(k) 
-co 

(2-30) 

Since the uncertain system ~trix I may have N possible values, 

Eq. 2-4 may be expressed as 

Leo N 
~(k) = x(k) I:· p(x(k), 

(X) i=l 

(2-31) 



The joint density function p(x(k), ~i/Zk) can be written as the 

product of the marginal density and the conditional density. 

By interchanging the order of summation and integration, Eq. 2-31 

may be further simplified. The resulting equation is 
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(2-32) 

The expression under integral sign is identical to the conditional 

mean of ~(k) given ~ =~i and the data Zk, for i = 1, 2, ••• , N. Thus 

N 

~(k) = L p( ti /Zk)~i (k) (2-33) 
i=l 

where 

The_ estimate is then obtained by summing all the estimates given the 

value of ~- , multipJi~d_by correspi;>nding conditional posterior 
1 . . 

prob~bilities. The posterior probJbilities are obtained using 

Bayes' rule 

p( ~i )f(Zk/ ~i ) 
p ( ~ i I Zk) = _N _ _.,..__,__. ___ _ 

L p( ~j )p(Zk/ ~j ) 

j=l 

The estimation scheme is summarized pictorially in Fig. 1. 

For a linear Gauss-Markov procE;!SS with linear observation 

(2-34) 

structure and a specified coefficient ~i, the optimal filter which 

gives the conditional estimate :i,s tl:).e K.alman filter described in 
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Figure 1. An Optimal Adaptive Estimation with Unknown 
Coefficients 
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Section 2.2. The estimation algorithm then includes a bank of Kalman 

filters, and the optimal estimate is the sum of all the filter outputs 

weighted by their associated posterior probability. 

Hilborn and Lainiotis[9] also showed that if one of the posterior 

probabilities approaches 1 fork large, then the estimate is unbiased. 

It is also convergent in performance, in that the covariance of error 

approaches a steady state value. In another research result[35], 

where Lainiotis considered continuou~ time systems, the model was 

allowed to vary both parametrically qnd structurally, and the optimum 

estimate of the output, a linear combination of the state variables, 

was obtained. This type of structural uncertainty is also considered 

in this thesis. 

2.3.2 Switching Case 

Nahi[ll] developed an optimal estimation algorithm for a 

restricted class of systems with an uncertain observation structure, 

having rand9mly _ switching coeffici,ents, Ackerson and Fu[l2], later 

obtained a suboptimal estimation technique for switching environments. 

They showed that optimal estimation is impossible due to evergrowing 

memories required with increasing observations. Parekh and Melsa[14] 

have ext~nded Nahi' s results to' include uncertainty i~ the system 

matrix, i • In Dajani 1 s[l3] work, the case of random coefficients 

under "hypothesis" switching has also been considerede All of these 

works have resulted in suboptimal estimation strategies. 

In the remainder of this section, the optimal estimation strategy 

is deriveq, and indications are given where difficulties arise. The 

problem formulation of P~rekh and Melsa is used here, as it is typical 

of the approaches used on such problems. 
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The system dynamic and observation struGtures considered are the 

same as in Eqs. 2-1 and 2-2, except that matrices i and Hare subject 

to uncertainty as well as randomly switching in time. It is assumed 

that the matrices i and H may be selected from finite sample 

spaces m and HI, i.e., 

and 

In addition, T and l::i. are defined as the tr~nsition probability 

matrices whose ijth element represents the probability that event i 

will occur on the kth stage, given that event j occurred on the stage 

(k-1). At any stage k, the probability P ( i = i.) and P (H = H.) 
r 1 r 1 

are described by 

n 
p ( i (k) = i. ) = E, T .. p ( i (k-1) = i. ) 

r 1 1J r J 
j=l 

(2-35) 

m 

p (H(k) = H.) = L 'A1. J" p (H(k-1) = H .) 
r 1 r J 

j=l 
(2-36) 

Given a sequence of data Zk = [z(l), z(2), ••• , z(k)} and 

assuming that the initial condition on x(O) is N[x(O), V (O)] and the 
x 

prior probabilities p ( i (0) = iii. ) = p. and p (H(O) = H.) = q., it is 
r 1 1 r 1 1 

desired to obtain the minimum mean square estimate of ~(k) such that 

is minimized. 

The solution to the problem is the conditional mean estimate of 

the form 
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~(k) = !00 
x(k) L L. p(w(k-1), \(k)/Zk)p(x(k)/w(k-1), \(k),Zk)dx(k) 

l-oo O A 
k k (2-37) 

where w(k-1) and \(k) represent the specific sequence of events 

which have occurred and are defined as 

w (k-1) = [~(O), ~(l), ••• , ~(k-1)} 

and 

\ (k) = [H(l), H(2), ••• , H(k)} 

and Ok and Ak are the sample spaces of the sequences w(k-1). and 

\ (k), and constitute Nk and Mk, respectively mutually exclusive and 

exhaustive sequences. The joint posterior probability 

p[w(k-1), \ (k)/Zk] can be expressed as 

(2-38) 

whereas each term in the right hand side of the equation .can be 

expressed in terms of new measurement by using Bayes' rule, 

p[z(k) n .. (k),w(k-1) ,zk-1 Jp[\ (k) /w(k.:1) ,zk-1] 
p[\ (k) /w(k-1), zk] = -------------------

I: p[z(k)/\(k),w(k-1),Zk-l]p[\(k)/w(k-l),Zk-l] 

Ak 
(2-39) 

and 
~ p[ z(k) /\ (k), w(k-1), zk- l Jp[Jc (k) /w(k-1), zk- l J 

p[ (k-1)/Zk] = __ k_·-----------------
1: Z:: p~z(k)/Jc(k),w(k-1),zk-l]p[\(k)/w(k-l),zk=l] 
Ok 11.k . 

O p[ W(k-1)/Zk-l] 

• p[ UJ (k-1) /Zk- l] 
(2-40) 
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Since it is assumed that the sequence A (k) is independent of the 

sequence w (k-1), the posterior probability can be written as 

(2 .. 41) 

The probabilities p[A (k)/Zk-l] and p[W (k-l)/Zk_ 1] can be obtained 

from the probability transition matrices, i. e;., 

and 

p[w (k-1) = m. /Zk l] =T .. p[ w(k-2) = t. /Zk 1J 
1 - 1J · J -

p[ A (k) = H. /Zk 1] = l:i . . p[ A (k-1) = H ./Zk 1] 
1 - 1J J -

Equation 2-37 may be rewritten in the form 

x(k) = L L p[ w (k-1), A (k) /Zk]51[k/ w (k-1), A (k), zk] 

Ok J\ 

(2-42) 

(2-43) 

(2-44) 

A 
where x(k/w (k-1), A (k), Zk) represents the Kalman filter estimate 

UIJ.der tbe assumption that the sequences w(k-1) and A (k) took place. 

It is seen that the space Ok-and Ak increase rapidly with k 

increasing. Figure 2, shows the tree type representations of the 

sample spaces Ok' Ak as well as the combined space O kx Ak. This 

leaves the optimal solution impossible in a practi~al sense, and the 

need for a suboptimal solution is evident. 

Parekh and Melsa have investigated several suboptimal strategieso 

Their single stage strategy is also used by others [12], and is used 

also in this investigation. Basically the method consists of trun-

eating the growing memory requirements of the filter one stage back. 
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2.4 Stochastic Linear Regulator Problems 

The problem of stochastic optimal control has received consid

erable attention. It has been shown that the general solution to 

the problem is extremely difficult to obtain[lS,16,17]. There are 

cases, however, where relatively simple solutions are possible. 
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Joseph and Tou[l8] have shown that for linear discrete stochastic 

systems with quadratic cost functions and independent normally 

distributed observation noise, plant disturbance, and initial states, 

the optimal stochastic controller is separated into two parts~ a 

Kalman filter to sequen~ially calculate the conditional me~n estimate 

of the state, and a deterministic optimal linear controller. Gunkel 

and Franklin[20] described more general conditions under which the 

so-called separation theorem is valid. Recently Curry[19] has 

extended the result of the separation theorem to the problem of 

nonlinear measurements. Sims and Melsa[21] have shown that the 

optimal solution given by the separation theorem is not a unique 

result. The stochastic linear regulator problem for the discrete-time 

case and the continuous-time case[27] are summarized below. 

For the discrete-time case, the system of interest is the 

similar to Eq. 2-1, except that a control vector is added, i.ee, 

x(k+l) = ~ <IF+l,k)x(k) + r (k+l,k)w(k) + * (k+l,k)u(k) (2-45) 

The observation is given as 

Z(k+l) = H(k+l)x(k+l) + v(k+l) (2-46) 

The problem is to find a control sequence [u(k), k = O, 1, Q e o, N-1 } 

over a fixed interval of time [O,N] such that a given quadratic 
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performance measure 

N 
J = ii;( L [xT(i)A(i)x(i) + u\i-l)B(;i.-l)V(i-1)]} (2-47) 

i=l 

is minimized. 

The optimal control strategy for the problem consists of the 

optimal linear filter cascaded with the optimal feedback gain matrix 

of the deterministic linear regulator. That is 

u(k) = L(k)~(k/k) (2-48) 

where 

L(k) =-[ tT(k+l,k)S(k+l) t(k+l,k) +B(k)T1 

• t T(k+l,k)S(k+l) !Ii (k+l,k) (2-49) 

and 

S(k) = !liT(k+l,k)S(k+l) !li(k+l,k) 

+ !Ii T(k+l,k)S(k+l) t (k+l,k)L(k) + A(k) (2-50) 

:for k == N-l, N-2, ••• ,. 0, and S(N) = A(:t,J). The evaluation ot' ~(k/~) __ 

is as indicated in Eqs. 2-6_ through 2-11, except that in Eq. 2-6 the 

control term is added, i.e., 

~(k+l/k+l) = !Ii (k+l,k)~(k/k) + t (~1,k)u(k) + K(k+l) 

• ( z(k+l)-H(k+l)[ !Ii (k+l, k)~(k/k) + r (k+l, k)u(k)]} · (2-51) 

For the continuous-time case, the system of interest is described 

by the differential equation 

• 
x(t) = F(t)x(t) + G(t)w(t) + C(t)u(t) (2-52) 

the performance measure to be minimized is 
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J = E 

tf 

{xT( tf)A( tf)x(tf) +J [x\ t)A(t)x( t) + uT( t)B( t)u(t) ]dt] 

0 (2-53) 

The optimal control law for the continuous stochastic linear regulator 

problem is characterized by the set of relations 

u(t) = L(t)~(t) (2-54) 

-1 T L(t) = -B (t)C (t)S(t) (2-55) 

T -1 S(t) = -F (t)S(t) - S(t)F(t) + S(t)C(t)B (t)S(t) - A(t) (2-56) 

and the optimal linear filter is as presented in Eq. 2-15 through 

Eq. 2-19, except that the estimate is 

• 
A A [ A J x(t) = F(t)x(t) + C(t)u(t) + K(t) z(t) - H(t)x(t) (2-57) 

The solution to the control problem f~r the case of continuous

discrete model is derived in detail in Chapter IV. This control 

strategy is_ a new and significant step in obtaining the contra 1 

alg9rithm for the class of uncertain models considered in this 

research. 

The problems of stochastic control under uncertainty has not yet 

received great attention, except in the area of adaptive stochastic 

control with unknown gain. This topic has been investigated by 

several researchers[l5,16,23,24]. Dajani[l3] has obtained a controller 

for a class of problems subject to uncertainty, where the separation 

theorem is applicable. The result reported by Dajani is presented 

below, since it is closely related to the findings presented in 

Chapter IV of this studyo 
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2.4.1 Stochastic.Control for Linear Discrete System with Uncertain 

Constants. 

In Dajani's work, the class of uncertain stochastic systems is 

described by 

x(k+l) = ~(k+l),k)x(k) + *(k+l,k)u(k) +yr (k+l,k)w(k) (2-58) 

y(k+l) = Tl x(k+l) (2-59) 

z(k+l) = s H(k+l) + v(k+l) (2-60) 

where w(k) and v(k) are independent gaussian white noise terms with 

known statistics. Constants y , Tl , and s are multivalued statistical 

parameters representing system uncertainty. Three types of problems 

are investigated 

Problem I: Tl = s = 1 

y = Yi for i = 1,2, ••• , M with P ( y = y. ) = pi r i 

Problem II: Y= s = 1 

Tl= Tli for i = 1,2, ••• , M with P ( T] = T] • ) = p. r l. ]. 

Problem III: y= Tl = 1 

s= si for i = 1,2, ••• , M with P ( S = si) = pi r 

The assumed prior statistics are 

E [ x(O)} = x(O) VAR [x(O)} = V (0) 
x 

E [ w(k) } = w(k) VAR [w(k)} = Q(k) 

E [ v(k)} = 0 VAR [v(k)} = R(k) 

COV [w(k),v(k)} = GOV [x(k),w(k)} = GOV [x(k),v(k)} = 0 
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Problem III is discussed below. It is desired to determine an 

optimal feedback control law that will minimize the cost function 

N .· T T 
J = E ( I: [x (k)A(k)x(k) + u (k-l)B(k-l)u(k-1) J} (2-61) 

k=l 

At any stage k, the solution to the problem based on the given 

data Zk = ( z(l),z(2), ••• , z(k)} is sununarized as follows. The 

control strategy is 

M 

u(k) = '°" P '( S ./Zk)u. (k) l....,r i i 

i=l 
where 

A u.(k) = L(k)x.(k) 
]. ]. 

L(k) = -[ 'V T(k+l,k)S(k+l) 'V (k+l,k) + B(k)T1 

1j1 T(k+l,k)S(k+l) 9i (k+l,k) 

S(k) = 9iT(k+l,k)S(k+l) 9i(k+l,k) 

+ 9i \k+l, k)S(k+l) 1jl (k+l, k)L(k) + A(k) 

for S(N) = A(N). The conditional mean estimate x.(k) is 
]. 

~.(k) = E ( x(k)/ s .,zk } 
]. ]. 

which is the estimate of a discrete Kalman filter given that s, 
]. 

is known. 

(2-62) 

(2-63) 

(2-64) 

(2-65) 

It is noted that the result presented here are not optimal when. 

the parameters are subject to switching during the control interval. 



2.5 Sunnnary 

The formulations of the problem of estimation-under-uncertainty 

as presented in this chapter are restricted in a certain sense. 
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There are situations arising in practice where the mathematical models 

describing the system are more complicated, especially since the 

uncertainties might exist in all the parameters of the plant dynamics 

and the observation model, or even the order of the system. Only 

Lainiotis has considered this degree of generality as was the case 

in the treatment of continuous time problems presented in [36]. 

General solutions, as indicated in this thesis, are obtained by 

extending or combining various features of the methods which have 

been discussed. 

The stochastic linear regulator problem which has been considered 

has importance when a feedback controller is needed[36]. A general 

solution to the stochastic control problem under uncertainty may be 

obtained, using the result? presented here as a basis. 

The main theme of this investigation is the derivation of 

g~neral estimation-under-uncertainty algorithms for both nonswitching 

and switching cases as well as feedback controllers for the same 

class of systems. The material presented in this chapter should 

serve as an appropriate background for the remainder of this 

dissertation. 



CHAPTER III 

OPTIMAL AND SUBOPTIMAL SOLUTIONS 

OF ESTIMATION-UNDER-UNCERTAINTY 

3ol Introduction 

Problems of estimation-under-uncertainty are considered in this 

chapter. Nonswitching and switching cases are treated separately. 

The general statement of the problems are given in Section 3.2o The 

optimal and suboptimal solutions to the problems are presented in 

Sections 3.3 and 3.4 for nonswitching and switching cases, respectivelyo 

Illustrative examples are included at the end of these sections. 

3.2 Problem Statement 

The purpose of this section is to define in mathematical terms 

the estimation-unc.ier-uncertainty problem for a stochastic linear 
,I 

! 

continuous dynamical system with discrete observations. It is assumed 

that a set of candidate systems are modeled where each candidate 

represents one possible dynamical structure for the system. The actual 

system which is active in the time interval of interest is also one of 

candidates. If e. is used to index the ith candidate model, the 
1 

structures of the models are described by the linear stochastic differ= 

ential equations 

. 
0.: x.(t) = F.(t)x.(t) + C.(t)u(t) + G.(t)w.(t) 

1 1 1 1 1 1 1 
(3-1) 
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for t)t, and i = 1,2,o .. ,N, N is finite. Where x.(t) is an n. vector 
O i i 

which represents the state of the ith system, u(t) is an r-dimensioned 

control vector, and wi(t) is a disturbance vector whose qi elements 

are zero mean white noise. The output of the ith model is a linear 

transformation of the state, 

y.(t) = H.(t)x.(t) 
i i i 

0-2) 

where y.(t) is an m vector. The matrices F.(t), C.(t), G.(t), and 
i i i i 

H.(t) are, in general, function of time, and are subject to uncertainty. 
i 

The order of the vectors u(t) and y.(t) is unsubscripted, since the 
i 

dimension of the input and output of a system is usually fixedo The 

observations are taken at discrete instants of time 

z(k) = y.(tk) + v.(k) 
i i 

(3-3) 

for k = 1, 2, ••• , and depend on which model is active during the time 

interval of .interest. The measurement noise term v.(k) is an m vector 
. i 

of zero mean discrete Gaussian processes. It is assumed that the plant 

disturbance and the measurement noise are independent. The covariance 

matrices of the noise terms are 

E [ w. ( t )w. \ T)} = Q. ( t) 6 ( t- T ) 
i i i 

and 

E [ v. (k)v. \ j) } = R. (k) S k. 
i i i J 

for i = 1,2, .. o, N. The statistics concerning initial conditions of 

candidate model are assumed known, 

E[x.(t )} =x.(t) 
i O i O 



and 

VAR [x.(t )} = E [[x.(t ) - x.(t )][x.(t ) - x.(t )i} = V (t ) 
1 0 1 0 1 0 1 0 1 0 x. 0 

Here, again, the matrices 

vector x.(t) may reflect 
1 0 

Q.(t), R.(k) and V (t) as well 
1 1 x. 0 

1 

the uncertainty of the system. 

1 

as initial 

Given a set of prior probability p (8.), the problem is to find 
r 1 

the best estimate of the output of the true system (in the sense of 

mean square errors) based on the observations available. Two kinds 

of sit~ations are considered: 
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(1) The nonswitching case, where a set of dynamical parameters which 

describes the system are fixed but unknown$ 

(2) The switching case, where the operation of the system may switch 

from one model to the another during the time interval of interest. 

The generalized problem formulation presented here may reduce to 

the_cases discussed in the previous chapter with the exception of the 

continuous-discrete model formulation. In the nonswitching case, 

(1) if the uncertainties are in the matrix G. or H., Dajani's problem 
1 1 

is obtained[ 10], 

(2) if only the C I s are uncertain, it is the problem of unknown 
i 

gain[27,29]. 

In the switching case, 

(1) if the uncertainties are in the matrices Fi and Hi, it is Parekh 

and Melsa's problem[14],· 

(2) if the statistics of w. is uncerta~n, Ackerson and Fu's problem 
1 

[12] is obtained. 

The algorithms for the solution of the problems considered are 

presented in the following sections. 
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3.3 Estimation-Under-Uncertainty--Nonswitching Case 

It is desired to estimate the output y(t) from the observations 

available over the time interval (t ,t)o The measurement record up to 
0 

time tis denoted by Zt = [z(j); tj~ t, j = 1,2, ••• }. The condi

tional mean estimate is sought, since it is optimum with respect to a 

quadratic error criterion, and other performance measures under certain 

restrictions[17]. The best estimate of y(t) is then determined by the 

conditional probability density function p(y(t)/Zt)o In view of 

Eq. 3-2 if p(yi(t)/Zt) denotes the conditional probability density 

function given by the model 8., and p (8./Zt), the posterior proba-
1 r 1 

bility of the model active at time t, the conditional density p(y(t)/Zt) 

can ·be described by [33] 

N 

P(y(t)/Zt) = i~ pr(0i/Zt)p(yi(t)/Zt) 

Since y.(t) is re.lated to x.(t) by Eq. 3-2.,_the density function 
1 1 

p(yi(t)/Zt) can be obtained from the conditional density function 

p(x/t)/Zt) provided that H/t) is knowno 

The conditional mean estimate 
' 

I\ !J. 
y(t) = E [y(t)/Zt} 

can be obtained using the fundamental theorem of expectation as 

Y<t) = ~"'y(t)p(y(t)/Zt)dy(t) 

(3-4,) 

(3-5) 

(3-6) 

from the relationships in Eqo 3-2, which is linear between y.(t) and 
1 

x.(t), and Eqo 3-4, the conditional mean estimate of Eqo 3-6 may be 
1 

rewritten in the form 



Y<t) - itl pr (6/ zt )/ :H,{ t)xi (t)p(x,{ t)/Zt)dxi ( t) 

N 
= ~ pr(Si/zt)Hi(t)~i(t/Zt) 

i=l 
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{3-7} 

/\ 
where xi(t/Zt) is conditional mean estimate of the state given model 

ei' 

=/00
x.(t)p(x.(t)/Z )dx.(t) 

l l . t l 

- 00 

(3-8) 

The problem of finding the conditional mean estimate y(t) reduces 

to the problem of finding the conditional mean estimate of each candi-

I\ 
date, x.(t/Z ), and the posterior probability p(S./Z ). In the 

l t . l t 

remainder of this section the derivation of algorithms are presented. 

Convergence properties and deficiencies of the identification algorithm 

are discussed. Exqmples are given to illustrate the results obtained. 

3.3.1 Estimation Algorithm 

Since throughout this study, Gauss-Markov stochastic processes 

are considered, the random vector x.(t) is normally distributed. The 
l 

conditional mean and covariance completely describe the density func-

tion of the state vector. The solution to the estimation problem is 

obtained in a recursive manner consisting of two basic parts~ 

(1) In between observations, the estimator is a predictor. 

(2) At the observation instants, the measurements provide the infor~ 

mation to the cor~ector portion which updates the estimate of the 

predictor. 
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The predictor: 

At any time t in an observation interval ti,:S t <tk+l' the avail

able measurements are Zk = (z(l), z(2), ••• , z(k)}. The conditional 

mean and covariance of the state of each candidate model are described 

by[22] 

(3-9) 

and 

~ (t/Zk) = F.(t)V (t/Zk) + V (t/Zk)F.T(t) + G .. (t.)Q.(t)G.T(t) x. 1 x. x. 1 1 1 1 
1 1 1 

(3-10) 

for i = 1,2, ••• ,N. 
/\ 

Where xi(t/Zk) is defined in Eq. 3-8, and vx_(t./Zk) 
1 

is defined as 

The initial conditions at time tk are ~i(tk/Zk) and vx_(tk/Zk), while 
1 

at k = O, they are x.(t ). The conditional density function 
1 0 

p(xi(t)/Zk) is gaussian with mean vector ~i(t/Zk) and covariance 

matrix V (t/Zk). Thus, it is described by the expression 
x. 

1 

p(xi(t)/Zk) 'v N[~i(t/Zk), Vx (t/Zk)] 
i 

-ni 

=[(2/ Iv x. 
1 

I -~]EXP(-~[(x1. - ~- lv -l(x. - ~- )]} 
1 x. 1 1 

1 

(3-12) 

. /\ 
where x. and V are short for the conditional mean and the covariance 

1 x. 
1 

matriJ. 
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From Eq. 3-7, the best estimate of the output during the time 

interval tk ~ t < tk+l is giv~n by 

N 
= \' p (8./Zk)H.(t)~.(t/Zk) Li r i i l. 

0-13) 
i=l 

The Corrector: 

At time instant tk+l' a measurement z(k+l) is obtained. One must 

update the density function p(xi(tk+1)/Zk) utilizing this extra infor-

mat.ion. That is, the relationships between the conditional means and 

covariance matrices, which describe the conditional density functions 

p(x(tk+l)/Zk) and p(x(tk+1)/zk+1), and the new measur~ment is sought. 

Since the conditional density function p(xi(tk+l)/Zk+l) can be 

written as the density function p(xi(tk+l), Zk), using Bayes' rule, 

the relationship between p(xi(tk+l)/Zk) and p(xi(tk+l)/Zk+J can be 

obtained as 

p( z(k-:H) /xi ( tk+l), Zk)p(xi ( tk+l) /Zk) 
= 

p(z(k+l)/Zk, t\) 
(3-14) 

where 

p( z(k+l) /Zk, ei) =La;( z(k+l) /xi ( tk+l)' Zk)p(xi ( tk+l) /Zk) dxi ( t.k+l) 

-co 
(3-15) 

Furthermore, since the measurement noise is assumed white gaussian 

with zero mean in Eq. 3-3, it follows that 

(3-16) 



which is gaussian from Eq. 3-2 and 3-3, i.e., 

Thus, Eq. 3-14 can be rewritten as 

p(z(k+l)/xi(tk+l))p(xi(tk+l)/Zk) 

p( z(k+l)/Zk, 8) 
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{3-17) 

{3-18) 

By substituting from Eqs. 3-17 and 3-12 in the numerator of Eq. 3-18, 

collecting terms involving xi(tk+l), and completing the quadratic 

forms, one may obtain an expression for p(xi(tk+1)/Zk+l) in a form 

similar to Eq. 3-12 [see Appendix A]. The normal density has updated 

conditional mean and covariance matrix indicated by the relations 

(3-19) 

and 

T T 
= [I-K.H.]V (tk+l/Zk)[I-k.H.] + K.R.K. 

1 1 x. 1 1 1 1 1 

(3-20) 

1 

where 

(3-21) 

which is referred to as the Kalman gain[27]. These equations 3-19 

through 3-21 are corrector equations for every model. It is noted 

that the last form of Eq. 3-20 has a computational advantage which 

will assure one that the covariance matrix V will never take on a 
x. 

1 

negative value due to inherent computer errors. 
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3.3.2 Identification Algorithm 

The posterior probability p (9./Zk) in Eq. 3-13 provides a measure 
r J. 

of the closeness of the candidate model to the actual system. Whenever 

a measurement is obtained, this information may be used to update the 

probability. At time tk+l' the posterior probability is 

p (9./Zk+l) = p (9./z(k+l), Zk) r J. r J. 

Using Bayes' rule, it can be expressed as 

N p( z(k+l) /Zk, 8.) p ( 9 ./Zk) l 
= [1 + I: _____ ..::-J r J r 

j=l p(z(k+l)/Zk, ®:t) p/9/Zk) 
j:foi 

Defining the likelihood ratio as 

L .. J]. 

= p(z(k+l)/Zk' Sj) 

p(z(k+l)/Zk' Si) 

(3-22) 

which is the ratio of two conditional functions and is also a measure 

of likelihood of two distributions upon a measurement value, Eq. 3-22 

may be simplified, 

L .. J]. 
p (9./Zk) ]-1 r J 

p (8./Zk) r J. 

(3-23) 

The conditional density functions p(z(k+l)/Zk, Si) are given in 

Eq. 3-15, which may be expressed as 



[see Appendix A]. The likelihood ratio can then be evaluated by 

where 

L .. = 
J1 

T 
H.V H. + R. 

1 x. 1 1 
1 EXP[-\[•]} 

T H.V H. + R. 
J x. J J 

J 
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(3-24) 

(3-25) 

(3-26) 

It is seen that Eq. 3-23, may be computed recursively and the 

memory requirements are finite. Most of the elements in Eq. 3-26 are 

. already computed in Eqs. 3-19 and 3-21, and may be stored for use in 

evaluating likelihood ratios. 

3.3.3 A Summary of the Results 

Combining the results of sections 3.3.1 and 3.3.2, the algorithm 

for estimation-under-uncertainty for the nonswitching case is summa-

rized as indicated below. 

ALGORITHM 3-1 

The solution to the nonswitching case of the estimation problem 

stated in Section 3.2 is presented in recursive form. Between obser-

vations the estimation is merely prediction, and at an observation time 
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instant, the estimate as well as the posterior probability of each 

candidate model is updated. 

At any time t, the best estimate of the output is 

{3-13) 

for tk~t< tk+l' k = 1,2, ••• N, where N is finite and the estimate of 

each model is given as follow 

I\ 
(1) In between observations, x. is described by 

1 

• I\ A 
x.(t/Zk) = F.(t)x.(t/Zk) + C.(t)u(t) 

1 1 1 1 

and its covariance matrix by 

(3-9) 

Vx_(t/Zk) = Fi(t)Vx_(t/Zk) + Vx. (t/Zk)F~(t) + Gi(t)Qi(t)G~(t) 
1 1 1 . 

for i = 1,2, ••• ,N, where the initial conditions at time tk are 

~i(tk/Zk) and Vx_(tk/Zk) and, fork= O, xi(t0 ) and Vx_(t0 ). 
1 1 

I\ 
(2) At an observation instant tk+l' xi and Vx. are updated by 

1 

and 

where the Kalman gain Ki(tk+l) is 

{3-10) 

(3-19) 

(3-20) 
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T[ T ]-1 K.(tk+l) = V (tk+l/Zk)H. H.V H. + R. 1 x. 1 1 x. 1 1 (3-21) 
1 1 

for i = 1,2, ••• ,N. The posterior probability of each candidate model 

is updated according to the relationship 

where 

N 

p < e . I zk+1) = [ 1 + I: 1 .. 
r 1 . 1 J1 

j= 

jfi 

p (9./zk) 
r J 

p (8./zk) 
r 1 

r1 (3-24) 

L .. = 
]1 

[ ~[( A )T T )-1 A) EXP - 2 z-H.x. (H.V H. + R. (z-H.x. 
J J J x. J J J J T 

H .V H. + R. J 
J x. J J 

J 

-(z-H ~ )T(H V H~ + R.)-l (z-H.~.)]} 
ii i xi 1 1 1 

(3-25) 

The algorithm is shown schematically in Figure 3. 

3.3.4 Convergence Test 

The convergence properties of the identification algorithm devel-

oped in the previous section are of importance, since one needs to 

know what to expect from the procedure. In this section, it is shown 

that a sequence of conditional probabilities p (8./Z.), p (8./z2), ••• , 
r 1 1 r 1 

converges to 1 or O according to whether or not 8. = 8, when 8 
1. a a 

denotes the actual model. 

In order to investigate this topic, rigorous mathematical theo-

re.ms from the theory of random processes are needed. Some of the 

related definitions and theorems are presented here without proof. 

Especially useful is the concept of a bounded martingale and related 

theorems. 
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Definition[40]: A sequence of random variables [gk} is a bounded 

"martingale," if 

(3-26) 

Theorem 1[40]: A bounded martingale [gk} converges to a limit go:, 

with probability 1 (WPl), i.e., 

A random variable Y which is to be estimated from a set of data 

Y1,Y2, ••• is considered. If the sequence defined by 

(3-27) 

is a martingale and such that E[ I YI } < co , it follows from Theorem 1 

that 

lim Zn= Z = E[Y/Y1,Y 2, ••• ,Yn,•••} 
n~co 

with probability 1. If, moreover, the ~robability space of Y is 

defined on Y, then 
n 

lim Z = Y 
n n~co 

The result is summarized in the following theorem: 

Theorem 2[41]: If a sequence defined by Eq. 3-27 is such that 

E[ I Y I } < CP , then 

lim Z = Z 
n n~co 

(3-28) 
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When the probability space of Y is defined on Y , then Eq. 37 28 reduces 
n 

to 

lim Z = Y 
n 

n~co 

Furthermore, if Y = I where the event Bis defined on Y, and B B n 

is a "property" of the sequence, then the conditional density function 

lim p(B/Y 1,Y 2, ••• ,Yn) = IB WPl 
n~a:> 

The above is st~ted in the following corollary. 

Corollary 1[41]: The sequence of conditional probability densities 

p(B/Yl'Y 2, ••• ,Yn) of a property B of the sequence Y1,Y 2, ••• ,Yn' con

verges to 1 or O with probability 1 depending on whether the sequence 

has this property or not. 

It is seen that the convergence test hinges on constructing a 

bounded martingale sequence. In Agrawala's[51] paper, theorems for 

constructing a martingale sequence are developed, and the convergence 

of the estimation of a parameter with a continuous probability function 

is proved. These results are stated in the following theorems; 

Theorem 3[42]: Any sequence [g1,g2, ••• ,gk} such that 

(3-29) 

is a bounded martingale, if 

(1) f(S) is any non-negative Lebesque measurable function, 

(2) max f(S) = M < oo, bounded. 

where p is a conditional probability density function and ~ is the 

space on which 8 is defined. 
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Theorem 4[42]: If there exists a sequence of functions [g (Z )1 m m 

defined on~ such that lim g = 8, WPl, whete 8 is the true val~e 
m-+-co m o o 

of 8, then 

lim p(8/Zk) = 0(8 - 80 ) 

k-+- CXJ 

WPl (3-l-O) 

The problem described in the previous section is a discrete type 

of problem where 8 takes on discrete values 8., i = 1,2, ••• ,N, and N 
1 

is finite. The theorems presented can be used to show that the 

sequence of conditional probabilities p (8./z1), p (8./z2), ••• , 
r 1 r 1 

converges to 1 or O according to whether or not 8. = 8, for 8 
1 a a 

denoting the actual value of 8. That is, if the actual system is 

described by one of the candidate models selected, the probability of 

that candidate model will go to 1 after enough observations. 

Defining I as a random variable indicating the event 8. = 8, 
a 1 a 

i.e., 

8. = 8 
1 a 

0-31) 

It is desired to show that 

lim p (8./Zk) = I r 1 a 
k-+00 

(3-32) 

for i = 1,2, ••• ,N, with probability 1. 

Modifying the continuous formulation of a sequence in Eq. 3-29 

for a discrete probability mass, one may construct a sequence [gk} as 

N 
gk = L f(8i)pr(8/Zk) 

i=;:l 

(3-33) 
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where f(Si) is bounded for all i. To show that gk is a bounded mar

tingale, conditions in Eq. 3-26 have to be satisfied. For the first 

condition, since f(S.) ~ M <~ for all i, it follows that 
1 

gk = L f(Si)p/8/Zk) ~ ML P/8/Zk) = M < 00 

i i 

So, 

E[ I gk I } ~ M < 00 (3-34) 

and the sequence is bounded. For the second condition, one may con-

sider 

(3-35) 

From Eq. 3-22, it can be seen that 

p(z(k-1-1)/9., Zk)p (8./Zk) p / 8/Zk+l) = ______ 1 ______ r;;;.__1 _____ _ 

I:p(z(k-1-1)/8., Zk)p (8./Zk) 
. J r J 
J 

p(.z(kH)/8., Zk)p (8./Zk) 
1 r 1 

= ------------
p ( z(ld-1)/zk) 

(3-36) 

The expected value of p(S/Zk+l) conditioned on Zk is evaluated over 

all the possible values of z(k+l) conditioned on zk. 



Thus, 

=p (8./Z) 
r i k 
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{3-37) 

{3-38) 

From Eqs. 3-34 through 3-38, one may conclude that the sequence 

given by Eq. 3-33 is a bounded martingale. It may also be seen from 

Theorem 1 that 

independent of zk. It remains to show that p(Si/Zk) approaches Ia 

for e = e . 
i a 

By chosing f(S.) =I, it is seen that the conditions of Theorem 3 
i a 

are satisfied. The constructed sequence takes the form, 

(3-~39) 

From corollary 2, the convergence follows 

lim gk = Ia WPl 
k ~00 

and therefore, one may conclude from Eq. 3-29 that 

WPl (3-40) 



This complete the proof. It is summarized in the following theorem. 

Theorem 5 If there exists a sequence [gk(Zk)} defined by Eq. 3-33 

on a discrete probability space ~N such that 

lim gk = I WPl 
k~ro a 

where I is defined by Eq. 3-31, then 
a 

lim p (8./Zk) = I WPl 
k r 1 a 
~co 

For completeness, the results of Hilborn and Lainiotis[9] con-

cerning the properties of convergence of the adaptive filters in the 
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discrete case are stated below as theorems without proof. The theorems 

do not depend on the strictly discrete formulation used and hence may 

be extended to the continuous-discrete case considered here. 

Theorem 6[9]: Suppose that, given a positive definite synnnetric 

matrix Q, there exists a bound M <co such that 

for all k and for r ~ 1. Where the estimate is described by 

~(k) = ~p (8./Zk)~.(k) l.J r 1 1 

Then if p (8. /Zk) ~ I r 1 a 

lim E[[~(k) 
k~CP 

i 

WPl, and 8 is the true model 
a 

~ (k)]TQ[~(k) - Q (k)]} = 0 
a a 

(3-41) 

(3-42) 

This theorem implies the convergence of [~(k) - Q (k)] to zero 
a 

in a quadratic mean sense. In addition, the optimal quadratic 

.:t: 
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* performance Jk of the adaptive filter converges to the optimal quad-

** ratic performance Jk of the filter with known actual model, where 

* ** Jk and Jk are defined 

J: = E[[x(k) - ~(k)]TQ[x(k) - ~(k)]} 

and 

** A T A Jk = E[[x(k) - x (k)] Q[x(k) - x (k)]} 
a a 

The next theorem indicates this fact. 

Theorem 7[9]: For the same condition given in Eq. 3-41, if 

p (9./Zk)-+I WPl, then r 1 a 

* ** lim [Jk - Jk J = 0 
k -+oo 

{3-4-3) 

The above guarantees convergence in "performance" so that after 

enough data has been obtained, the true system is known, and the 

estimation-under-uncertainty problem has become an estimation-under-

certainty problem. This of course depends on having selected one of 

the candidate models as the true one, and in practice, one could rarely 

expect_that_this would be the c.ase. The next_ sect;i.011 deals_with_the 

difficulty of having none of the candidate models describe the actual 

system. 

3.3.5 Supplement to the Identification Problems 

In the previous sections, the development of the algorithms 

is based on the assumption that the true model is one of the candidate 

models. This assumption may not be valid in practical applications 

where the candidate models are usually obtained by guessing based on 
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past experiences. There are cases for which either the posterior 

probability may not converge or converges to the wrong solution due 

to the indicated difficulties. This section describes an approach 

which one may use when none of the candidate models is true. 

At any observation time, the estimate of each candidate model 

is corrected according to Eq. 3-19, where the measurement z(k+l) is 

used for all models. The term 

(3-44) 

is defined as the predicted measurement residual error or the predicted 

residual. The correction to the state estimate is then proportional 

to the predicted residual. If the i-th model represents the true 

system then 

for all k, and the variance of r. is expressed by 
]. 

V (k+l/Zk) = VAR(r. (k+l/Zk)} r. J. 
]. 

(3-45) 

(3-46) 

The predicted residual provides a useful tool for judging the per-

formance of the filter. By checking whether residuals indeed possesses 

their statistical properties, one is able to assess the performance of 

the filter. 

The problem of filter diverge.nee has been discussed in the liter-

ature[22,27,37], for cases in which the filter is constructed on the 
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basis of an erroneous model. The problem is particularly acute when 

the plant noise is small and the measurement noise is large. Even-

tually, in this case; the filter gain becomes small, and subsequent 

observations have little effect on the estimate. When the filter tends 

to become decoupled from the system, as happens with a small gain, then 

the residual computed from Eq. 3-44 will be nonzero mean, if the filter 

is not matched to the true system. The filters described by the 

algorithms in previous sections which are different from the actual 

model should manifest the divergence property. The statistic provided 

by Eq. 3-44 may serve as a measurement criterion for testing whether 

a model i.s true or not. That is, one may check to see whether the 

residual error is zero mean, and in this way determine whether or not 

the candidate model of interest is true active, or whether it was only 

the best choice from a selection of poor candidates. 

At a time instant tk' there are k sets of observations available. 

The time average of the residuals is defined by 

r.·(k) 
1 

1 k 
= \' r.(j/Z. 1) 

k ~ 1 J-
j=l 

(3-47) 

The time_ average can be recursively computed using the following 

relationship. 

1 k 
r.(k:+1) = [ \' r.(j/Z. 1) + r.(k:+1/Zk)] 

1 k:+1 L, 1 J- 1 
j=l 

= _!_ [kr. (k) + r. (k:+1/Zk)] 
k:-1-1 1 1 

(3-48) 

The time averages presented here are not the same as the ensemble 

average residual defined according to Eq. 3-45, since the systems are 
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not even assumed to be stationary. They may still be used as a measure 

of whether or not a candidate model is erroneous, .however. In general, 

one should use a normalized form of the time average residual[22] 

rather than the residual itself, to help reduce the effects of the 

different levels of measurement noise. 

The time average of the normalized residuals is defined as 

k 
Y/k) ~ ! L 

j=l 

r.(j/Z. 1) 
1. J-

I R/ j) I\ 
(3-49) 

and the recursive relationship is expressed by 

1 ri(k+l/Zk) 
y. (k+l) = [ky. (k) + ---- J 

1. k+l 1. IR. (k+l) I 2 
1. 

(3-50) 

Since the residual at any stage is available in the estimation 

algorithm, it is easy to accomplish these computations. It should be 

noted that the arguments presented here depend on the noise level and 

the sepaxation between models. That is, under large noise disturbances 

or if the distributions of.the state of each candidate model are almost 

equal. Eq. 3-47 or Eq. 3~49 may not give satisfactory indications to 

judge which model do possess the statistical property. The use of 

time average residuals is shown in one of the examples of the following 

section. 

3.3.6 Examples 

Two examples are presented here. The first example is used to 

demonstrate the proposed estimation and identification algorithm. 
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The second example is given to examine the relationship of noise levels 

to identification. 

(1) Examp 1 e 3 - 1 

A second order differential equation with the damping ratio sub-

ject to uncertainty is considered 

• 2 
~ (t) + 2sw ~(t) + w ~(t) = w(t) 

n n 

wheres is the damping ratio, w is the natural frequency, and w is 
n 

the plant noise. Rewriting the differential equation in state model 

form, one obtains 

[2 
1 

J x(t) + [°] w(t) . 
x(t) = 

-2sw 1 n n 

where 

[x1(t)l c(t) J 
x(t) = = 

x2(t) ~(t) 

The output and measurement are assumed to be 

y(t) = [1 O]x(t) 

and 

z(k) = y(tk) + v(k) 

The covariance of plant and measurement noise are given by 

T E[w(t)w (T)} = Q(t)8(t-T) 

and 
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The problem is simulated on the digital computer. The gaussian 

white noise is generated using a standard algorithm[38]. White noise 

of a continuous type is implemented using a discrete white noise 

equivalent with <li!2 as the approximated covariance [27], where ~tis 
~t 

the integration step size. The rectangular integration method is 

adopted here for simplicity. In the simulation results presented 

below, the observation is scheduled once every twenty integration 

steps. 

Result 1: In this case, four values for the uncertain parameter are 

considered, i.e. , ~ = 1. 2, 1. o, 0.8, and 0.4. While the value of w n 

is fixed as 1. o. The candidate models under consideration are 

indicated as 

. [ o . 
l. J xl(t) + [ 0

Jw(t) 8.: x1(t) 
= -1. l. 

-2.4 1 

. [ o. 1. J x/t) + [: J w(t) 82: x/t:) 
= -1. -2. 

. [ o . 1. J [: J w(t) 83: x/t) 
= -1. -1. 6 

x/t) + 

. [ o . 1. ] 
[:] w(t} 84: x4(t) 

= -1. 
x4(t) + 

-0.8 

The model with~= 1.0, or 82, is the true (or active) system. The 

initial statistic of x(t) and 8 are given as 
0 



and 

for all i. 

x. (t ) 
l. 0 

v (t) 
x. 0 

l. 

P < e.) = • 25 
r i 
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o. ] 
.5 

A typical single run of the estimated output and the true output 

are shown in Fig. 4(a). The associated identification capability is 

also plotted in Fig. 4(b). It is seen that the estimated output is 

very closed to the true output. Identification of the true model e2 

is indicated after 100 samples, by the greater posterior probability, 

p(82/zk). In Fig. 4(b) the plot of the posterior probability of 

model 84 is not shown, because it goes to zero rapidly. 

The average performance as well as the identification capability 

of the algorithm are examined by applying different noise sequences 

for 26 runs. The trajectories of the averaged estimated output and 

the true output are plotted in Fig. 5. The plots of the averaged 

posterior probabilities and their related variances are presented in 

Fig. 6. In Fig. 6(b), it is seen that the variation of the posterior 

probabilities of model 83 is as great as that of the true model, 82• 

In certain runs model 83 achieved favorable posterior probability. In 

fact, in 1 out of 26 runs the identification algorithm confirmed that 

model 83 is the correct model. This is due to an extraordinary noise 

sequence. A question arises from this result. What is the effect of 

plant noise on the identification algorithm? This question is exam-

ined and illustrated in a later example. 
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Result 2: It is interesting to consider the case where the true 

model is not included among the candidate models, i.e., the candidate 

models are e1, e3 , and e4 , and e2 is the active system. All other 

aspects of the problem correspond to those of result 1, except that 

the prior probabilities of the candidate models are pr(81) = .3, 

pr(83 ) = .3, and pr(84) = .4. The estimation and identification 

capability for two typical single runs are shown in Fig. 7 and Fig. 8 

where in Fig. 7 the model e1 is dominant and in Fig. 8 the model e3 

is dominant. It is seen that even though the posterior probability 

indicates that the algorithm may converge to either e1 or e3 , the 

estimated output is still fairly close to the true output. The 

average identification capability for 20 runs is shown in Fig. 9, where 

mean and variance of the posterior probabilities are indicated. From 

Fig.9, it is learned that the variations of model 81 and 83 are almost r,, 
identical. One may guess that the posterior probability of model e1 

and e3 may be close together if averaged over more runs. The identi

fication then depends on the closeness of the model to the true model. 

Nevertheless, if the range of the modeled value$ includes tbe_ coi;-rgct 

value, the algorithm gives fairly good estimates. Furthermore, the 

algorithm has the advantage that aft.er more information is obtained, 

the range of the value of parameter subject to uncertainty may be 

reduced. A new set of candidate models may then be postulated. One 

may either apply the algorithm for the. new models on-line or off-line 

(using the obtained data). The true value of the uncertain parameter 

may then be identified after enough iterations. From single run 

results, it is suggested that even though the posterior probability 

may approach 1, it does not guarantee that the true model is identified, 
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as indicated in Section 3.3.5. The time average of the normalized 

residuals associated with the cases of Figures 4, 7, and 8 are shown 

in Table I. It is seen that in the case of Fig. 7 and Fig. 8, the 

residuals do not show much different between models, but in the case 

of Fig. 4, the residual of the true model is less than the others, as 

one would expect. 

TABLE I 

THE RESIDUALS 

1 
Model 81 Model e2 Model e3 Model 84 

Fig. 4 -0.08641 0.02947 0.15250 --

Fig. 7 -0.12049 -- o. 12186 --

Fig. 8 -0.13780 -- 0.10319 --

1The residuals of model e4 are not ~btained due to the fact that 
its poste;rior probability goes to zero rapidly, and the further compu
tations eventually may be ignored. 

(2) Example 3-2 

This example is presented to elaborate on a question which 

occurred in result 1 of the previous example. What is the effect of 

the plant disturbance on the identification algorithm investigated? 

Intuitively, identification depends on the shape of the posterior 
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probability density functions and the separation between them[48]. 

At an observation instant tk' the density function of each prospective 

system is p(xi(tk)/Zk). The shape of the density function depends on 

the covariance matrix V and the separation depends on the mean. x. 
]. 

Moreover, the covariance matrix V is related to Q(t) and R(k) are 
x. 

]. 

described in Eqs. 3-10 and 3-12. In Fig. 10, two sets of density 

functions with the same separation are indicated. Case (a) seems 

"more identifiable" than (b) due to the small variance V The 
xi 

likelihood ratio would also indicate that (a) is more favorable toward 

model el than (b). 

In the previous example where the nonzero initial estimates 

" x.(t) were given, the dynamics of the filter provides good separation. 
]. 0 

It, therefore, follows from the above arguments that smaller plant 

noise results in better identification. It is of interest to consider 

" the case where the initial estimates x.(t) are zero, so that the 
]. 0 

density functions all have'the same mean value initially. The response 

is governed by the noise input, rather than the homogeneous portion. 

A scalar example with two alternatives is simulated with ~.(t) 
]. 0 

given as zero. The dynamics are described by 

-1 x. (t) + w(t) 
]. . 

-5 xz<t) + w(t) 

with the observation 

The noise terms are zero mean white gaussian with variances 
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z(k) 

(a) With Small Covariance Matrix 

z(k) 

(b) With Large Covariance Matrix 

Figure 10. Illustratibn for Identification Capability 



and 

VAR[w(t)} = Q 

VAR[v(k)} = R = 1. 

With the same prior probability p (8.) = .5 and using the same 
r l. 
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noise sequence for cases with different values of Q, the identification 

capability of the algorithm is shown in Fig. 11 averaged over 15 runs. 

In Fig. ll(b), the variance for various value of Q appears almost the 

same. It is shown that with larger variance for the noise, better 

separation is eventually achieved, and hence better system identifi-

cation. 

From this example, the following trends may be noted. In the 

initial phase, when the response is dominated by initial conditions, 

good identification requires small noise. Identification is enhanced 

by plant noise, however, after the response due to initial conditions 

dies out. In general, more observations seem to be required when the 

response is primary due to the input rather than the initial condi-

tions. 

3.4 Estimation-Under-Uncertainty--Switching Case 

The system description remains the same as previously defined 

in Eq. 3-1 through Eq. 3-3, except that the active candidate mode.1 

may switch from one to another. The switching between models is 

governed by a transition probability matrix~' where the i-j th element 

represents the probability that model 8. is active on the k-th obser-
1. 

vation interval given that model 8. was active on the k-1 st obser
J 

vation interval. The probability that 8. is active on the k-th 
l. 
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observation interval is described by 

N 
P (9( t) = e. > = 

r 1 
[ fl . . P < 9( T > = e . > 

. 1 iJ r J 
J= 

(3-51) 

where tk~ t <tk+l and tk-l~T <tk. Here, only one switching between 

observation is assumed. 

In addition, the order of the state vector of each model is 

assumed to be the same. This is due to the fact that when the system 

switches from one model to another the information possessed by every 

state has to be transferred to the corresponding state in a different 

model. This means that the structure of each model is fixed which 

is different from the nonswitching case. 

At the k-th observation stage, a sequence A(k) is defined as 

A(k) = [9(1), 9(2), ••• , 9(k)} (3-52) 

where 9(i) is the label of a model from which the measurement z(i) is 

sampled, and the space~ on which A(k) is defined has Nk elements. 

Furthermore, a specific sequence of length k having last element of 

label 9(k) = 9. is defined by 
1 

A.(k) = [A .(k-1), 0(k) = 9.} 
1 . J 1 

(3-53) 

k-1 It is seen that there are N such sequences with the terminal label 

9(k) = 9 .• 
1 

Given a sequence of data Zk = [z(l), z(2), ••• , z(k)}, the optimal 

and suboptimal solutions for state estimation problems are presented 

in the following subsections. 



3.4.1 The Optimal Solution 

The times between observations and at observation instants are 

considered separately as in the nonswitching case. At time tk, it 

is assumed that the probability of the sequences \(k-1) is known, or 

p/\(k-1)/Zk) is given for \(k-l)el\c_ 1• At stage tk~ t <tk+l' each 

current sequence may take one of the N possible labels as the next 
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element. The prior probability of the genarated sequence is governed 

by 

p (\. (k) /Zk) = t:. • • p (\ . (k-1) /Zk) 
r 1 iJ r J 

0-54) 

for i = 1,2, ••• ,N, and the sequence \.(k) as defined in Eq. 3-53. 
1 

The estimate at time tk of each sequence \(k-1) provides the initial 

conditions for the N additional filters, needed for the next time 

interval. In between observations, the best estimate of the system is 

then expressed by 

N 

= I I: p (\.(k)/Zk)~(t/8., \(k-1), Zk) 
r 1 1 

= 

Ak_ 1i=l 

~ pr(\(k)/Zk)~(t/\(k), Zk) 

k 

(3-55) 

where ~(t/Zk) is the best state estimate and ~(t/Si, \(k-1), Zk) is 

the state estimate of a sequence given terminal label S(k) = 8 .• 
1 

The filter structure for a specific sequence given the terminal label 

is the same as in Eqs. 3-9 and 3-10 of the nonswitching case. That is, 

• 
~(t/8, \(k-1), Zk) = F.(t)~(t/8., \(k-1), Zk) + C.(t)u(t) 

i 1 · 1 1 

(3-56) 
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and 

V (t/8., A(k-1), Zk) = F.(t)V (t/8., A(k-1), Zk) x i i x i 

T T + V (t/8., A(k-1), Zk)F.(t) + G.(t)Q.(t)G.(t) 
x i i i i i 

where the initial conditions at tk are ~(tk/A(k-i), Zk) and 

V (tk/A(k-1), Zk), and at t, ~(t) and V (t ). 
X O O X O 

(3-57) 

At the observation instant tk+l' the conditional mean estimate and 

the covariance matrix are corrected according to Eq. 3-19 through 

Eq. 3-21 as in the nonswitching case, conditioned on the terminal label 

of the specific sequence given, i.e., 

(3-58) 

and 

(3-59) 

where 

(3-60) 
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The probability associated with each sequence then may be updated by 

a relationship similar to the nonswitching case, 

p(z(k-1-1)/A(k), Zk)pr(A(k)/Zk) 

I: p(z(k-1-1)/A(k), Zk)pr(A(k)/Zk) 

~ 

Moreover, if a sequence is terminated by label 8., 
l. 

p(z(k-1-1)/A(k), Zk) = p(z(k+l)/6i, A(k-1), Zk) 

(3-61) 

which may be evaluated as in Eq. 3-24. The best estimate at this 

moment is then 

~(tk-1-1/zk-l-1) = ~ pr(A(k)/zk+1)~(tk+1/A(k), zk-1-1) 

k 

The summation is taken over all the possible sequence A(k). 

(3-62) 

The results of Eqs. 3-58 and 3-59 are then used as initial condi-

tions for the next observation interval. The technique presented here 

is still recursive, except that the number of filters ~ncreases with 

measurements as mentioned in Chapter II. Consequently, a suboptimal 

technique which utilized a finite memory is sought. 

3.4.2 Suboptimal Solution--Single Stage Estimation 

The single stage estimation is obtained by truncating the growing 

memory requirements of the optimal algorithm one stage back. In fact, 

at the k-th observation stage, the optimal estimate may be obtained by 

grouping together the estimates of sequences ending with the same 

label. Interchanging the summation of the first expression in Eq. 3-55, 

and using the relationship 
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p (11.. (k)/Zk) = p (S(k) =A., A.(k-1)/Zk) 
r i r i 

= p (S(k) = 6./A(k-1),Z )p (ii.(k-1)/Zk) 
r i . k r 

equation 3-55 may be rewritten as 

N 

= L L p/S(k) = 6/ii.(k-1), 
i=l A.. 

"1<:-1 

for tk~t<tk-t-1" If the condition ii.(k-1) on the estimate 

~(t/Si, A(k-1), Zk) is dropped, Eq. 3-64 may be approximated by 

where 

N 

~(t/Zk) = I pr(S(k) = ei,zk)~(t/Si, Zk) 
i=l 

p (S(k) = 6./Zk) = "\'p (6./A(k-1), Zk)p (A(k-1)/Zk) r i '--' r i r 
,l\k-1 

(3-63) 

(3-64) 

(3-65) 

(3-66) 

which is the marginal probability of S(k) = Si over the space ~-l" 

In this fashion, a suboptimal algorithm involving only N filters is 

obtained •. Sine~ the memory is restricted one stage back, the best 

estimate at time tk for each filter is the estimate ~(tk/Zk) instead 

of the estimate of each filter ~(tk/Si, Zk). The probability expressed 

in Eq. 3-66 may be modified as 

N 

p (S(k) = S. /Zk) 
r i 

= I t. . . p (S(k-1) = e .tzk) 
j=l iJ r J 

(3-67) 

The estimates and covariance matrices associated with each filter are 

then the same as given by Eqs. 3-9 and 3-10. 
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At an observation time instant tk+l' the estimate as well as the 

covariance matrix of each filter is corrected as indicated by Eq. 3-19 

through Eq. 3-21. The probability of each filter should be updated 

at the new observation. The updated probability is given by 

p(z(k+l)/8., Zk)p (S(k) = 8./Zk) 
1 r 1 

p/S(k) = 8/Zk+l) = -N---------------
L p(z(k+l)/Sj, Zk)pr(S(k) = Sj/Zk) 

j=l 

N p (S(k) = 8/Zk) -1 
= [1 + I: r 

J L .. 
j=l J1 p (S(k) = 8/Zk) ·r 
j/i 

The expression is the same as Eq. 3-23 and where L .. is given in 
J1 

Eq. 3-25. 

(3-68) 

The computational algorithm suggested here is essentially the same 

as for the nonswitching case, except for the consideration of the 

initial conditions at each observation and the fact that system identi-

fication is not considered. The one stage algorithm is sununarized 

below. 

ALGORITHM 3-2 (Suboptimal) 

A suboptimal solution to the switching case of the estimation 

problem stated in Section 3.2 with N filters is presented in recursive 

form. At any time tk ~ t < tk+l' the best estimate is expressed as 

N 

I: pr(S(k) = Si/zk)~(t/81 , zk) 
i=l 

(3-69) 

where the probability of each filter is evaluated through the transi-

tion probability matrix. 



p (8(k) = 8./Zk) 
r l. 

N 

= L 6. .. p (8(k- l) = 8J./Zk) 
j=l l.J r 

with p (8(0) = 8./Z) = p (8.). 
r 1. o r 1. 
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(3-70) 

The estimate and covariance matrix of a given filter are described 

as follows. 

(1) In between observations 

(3- 71) 

and 

• T T 
V (t/8.,Zk) = F.(t)V (t/8.,Zk) + V (t/8.,Zk)F.(t) + G.(t)Q.(t)G.(t) x l. l. x l. . x l. l. l. l. l. 

(3- 72) 

for i = 1,2, ••• ,N, and with initial condition at time tk, 

(3-73) 

and 

N 

= \1 p (8(k-l) = 8./Zk)V (tk/8.,Zk) 
.L...l r i x i 
1.= 

(3- 74) 

for all i, and ~(t /8.) = ~.(t ) and V (t /8.) = V .(t ). 
O l. l. 0 X O 1. x. 0 

l. 

(2) At observation time tk+l' 

(3-75) 
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and 

(3-76) 

where the filter gain is 

(3-77) 

for i = 1,2, ••• ,N. The posterior probability of each filter is 

expressed as 

N 
p (S(k) ~ 9./Zk+l) == [1 ·+" L .. 

r i Ls. Ji 
j=l 

p (S(k) = 9./Zk) 1 
r J J-

P (S(k) = e. rzk 
r i 

(3- 78) 

j=foi 

where L .. is the likelihood ratio given in Eq. 3-25. 
Ji 

The block diagram of the algorithm is presented in Fig. 12. 

In a practical situation, the transition probability matrix may 

be difficult to obtain, but one should be able to make an appropriate 

assignment of transition probability values based on past experiences. 

3.4.3 Example 3-3 

The system under consideration is the same as in example 3-1, 

where four candidate models are also adopted. The transition proba-

bility matrix is assumed to be 
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The noise terms have zero mean and variances Q(t) = 1 and R(k) = 1. 

In simulation, the assignment of the active model is determined by a 

number from a random number generator. 

Two results are obtained where both small and large noise disturb-

ance are considered separately. 

Result 1: With the initial mean values and covariance matrices 

specified as 

= [ 100 •• ]· ~- (t ) 
1 0 

and v (t ) 
xi o 

= [ 1. 
o. 

o.J 
.5 

for all i, the results of suboptimal estimation and estimation under 

certainty (with known active model) are compared in Eqs. 3-11 and 

3-12. A typical single run result is plotted in Fig. 13 with 50 sam-

pled points, while Fig. 14 is the plot of averaging over 15 runs. It 

is seen that the suboptimal estimates are very closed to the optimal 

estimates with the known active model at each instant, for this case 

with small disturbances. 

Result 2: For the situation in which there are large noise disturb

ances, good results are also obtained. The initial mean value Q.(t) 
1 0 

-- [01..J h h is assumed, and t e covariance is as int e previous case. 

Results of typical single run and averaging over 15 runs are presented 

in Figures 15 and 16, respectively. It is shown that the suboptimal 

estimates are close to optimal estimate under certainty. Moreover, 

the results reveal that after gathering enough information, the esti-

mates are close to the true state. 
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3.5 Summary 

The formulation of the estimation-under-uncertainty problem as 

presented in this chapter encompasses many special cases discussed in 

the previous chapter. The solutions presented in Algorithms 3-1 and 

3-2 are therefore quite general. The convergence properties investi-

gated in Section 3.3.4 show that system identification can be achieved 

whenever one of the candidate models is the true system. In practice, 

( 

however, one may not be assured that a set of candidate models includes 

the true model. In a case where the active model may not be included, 

computation of the time average residuals as suggested in Section 3.3.5 

may be included as a part of the algorithm. The comparison of resid-

uals of models, in turn, may indicate whether or not the selection of 

models is good. 

In some cases where the noise disturbances are colored or cor-

related, the algorithms presented may be modified to suit the situa-

tion. In the case of colored plant noise, the algorithms are applied 

without modification, except that the order of the.state vector of 

interest is increased. In the correlated noise cases, the predictor 

equatipns of each ~andidate 1J10dels have to be modified. The expres-

sions are available in references[17], [27], and [28]. 

System_identifi~ation is an important application of Algorithm 

3~1. In_physical systems the problem of finding a mathematical model 

wbich describes the processes is often encountered. If the stochastic 

approach is adopted, it is seen that the estimation algorithm presented 

may serve as a system identification procedure. A most probable model 

or a set of probable models may be obtained from a set or many sets 

of data. This application feature is illustrated in Chapter v. 
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There is an aspect of digital computation which the author has 

noted. The finite word length of a computer imposes computational 

errors. Once one of the posterior probabilities approaches 1 within 

the accuracy of a fixed word length, the identification algorithm 

fails to function. That is, if the posterior probability of a wrong 

model approaches 1 due to an abnormal noise sequence and computational 

errors, the additional data will not effect the identification algo

rithm so that the true model is eventually identified, as indicated 

by the convergence theorem presented in section 3.3.4. The indicated 

difficulty can be avoided by perturbing the posterior probability 

from its unity value and testing to see whether it will return to a 

value of unity, given more data. 



CHAPTER IV 

STOCHASTIC LINEAR REGULATOR PROBLEMS 

4.1 Introduction 

The stochastic linear regulator problem with uncertain dynamics 

is examined in this chapter. Two classes of regulator problems are 

considered. In the nonswitching case, where the order of the candidate 

models may be different, the "output" regulator[43] problem is inves

tigated. In the switching case, the order of each system is the sc;tme, 

and the "state" regulator[43] problem is considered. 

In Section 4.2, the control strategy for the output regulator 

problem with certain parameters is obtained for the continuous-discrete 

model. In subsequent sections, the nonswitching and switching cases 

subject to uncertainty are examined. 

4.2 The Stochastic Control Problem--Continuous-Discrete Systems 

4.2.1 The Problem Statement 

The dynamics of the system to be controlled are governed by the 

linear stochastic differential equation 

;(t) = F(t)x(t) + C(t)u(t) + G(t)w(t) (4-1) 

where xis an n vector which represents the state of the system, u is 

an r dimensioned control vector, and w is a disturbance vector whose 

q elements are represented by zero-mean white noise. The observations 
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are taken at discrete instants of time 

z(k) = y(tk) + v(k) (4-2) 

where 

y(t) = H(t)x(t) (4-3) 

is them-dimensioned output, and vis a zero mean white noise. The 

noise terms are assumed uncorrelated with covariance matrices 

E{w(t)wT(T)} = Q(t)5(t-T) 

It is assumed that the mean and the covariance of the initial condi-

tions of the\- state are known 

E{x(t )} = ~(t) 
0 0 

VAR{x(t )} = V (t) 
O X O 

The problem is finding the control u(t) based on observations such 

that a quadratic performance measure 

J = E(yT(tf)Ay(tf) + ~tf[yT(t)A(t)y(t) + UT(t)B(t)u(t)]dt} 

o (4-4) 

is minimized. Where A, A(t), B(t) are weighting matrices. The expec-

tation is taken over the joint probability distribution space of 

w(t) v(k), and x(t ). This is equivalent to taking the expectation 
0 

over the joint distribution space of x(t) and zk. 
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In deriving the solution, a technique is used which is well 

suited to the class of problems being considered, and convenient to 

apply. First the system model is discretized so that dynamic program-

ming can be employed. Then the continuous time solution is obtained 

by considering the limit of the discrete solution as the time increment 

approaches zero. 

4.2.2 A Discretized Formulation 

The dynamic programming scheme is used to find the control u(t) 

in a manner similar to that used in references [27,28]. The dis-

cretized form of Eq. 4-1 is 

x(t +At)= ~(t + At,t)x(t) + ~(t + At,t)u(t) + f(t + At,t)w(t) 

whe.re 

~(t + At,t) =I+ F(t)At + O(At 2) 

~(t + At,t) = C(t)At + O(At 2) 

f(t + At,t) = G(t)At + O(At2) 

and t is the discrete tim.e index [ t = t + jAt,_j = O, 1, ••• } with 
0 

(4-5) 

(4-6) 

(4- 7) 

(4-8) 

At> O, and O(At 2) indicates the collection of terms involving At with 

power of two and higher. In Eqs. 4-6 through 4-8 only first order 

terms in At are retained. The plant noise [w(t),t = t. + jAt,j = 0,1, 
0 

••• } is zero mean white gaussian with covariance matrix 

(4-9) 



where Tis the discrete time index [T = t + kAt,k = 0,1, ••• }. 
0 
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Utilizing the partitioning as above, the performance measure 

Eq. 4-4 may be rewritten as 

s-1 
J = E[yT(tf)Ay(tf) + I: [yT(t + i8t)A(t + iAt)y(t + iAt) 

i=O o o o 

+ uT(t + iAt)B(t + iAt)u(t + iAt)]At} 
0 0 0 

(4-10) 

where the values of y(t) and u(t) are defined at the left end points 

of the partitions, and Sis the number of intervals of interest. 

At any time instant t, the output signals Zk = [z(l),z(2), ••• ,z(k)} 

have been observed. Equation 4-10 may be split in two parts 

11~ 1 
J = E[ '°' [yT(t + iAt)A(t + iAt)y(t + iAt) ~o o o o 1= 

+ uT(t + iAt)B(t + iAt)u(t + iAt)]At} 
0 0 0 

s-1 
+ E[ I: [yT(t + iAt)A(t + iAtJy(t + iAt) 

i='fl O O O 

+ uT(t + iAt)B(t + iAt)u(t + iAt)]At + yT(tf)Ay(tf)} 
0 0 0 

(4-11) 

where TJLlt = t-t. Using the principle of optimality [27], the problem 
0 

of minimizing J is reduced to minimize the second term of J at time t, 

for all t = 'flAt in the control interval, i.e., 

s-1 
= mim E[yT(tf)Ay(tf) + I: [yT(t + iAt)A(t + iAt)y(t + iAt) 

u . rn o o o 1=,, 

+ uT(t + iAt)B(t + iAt)u(t + iAt)]At} 
0 0 0 

(4-12) 
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It is noted that the expectation is taken over the joint probability 

space of y(t) and Zk, Equation 4-12 may be expressed as [28] 

( 4-13) 

where the time argument for variables are dropped for simplicity. The 

inner expectation in Eq. 4-13 is the conditional expectation given Zk' 

and the minima are taken with respect to all strategies which express 

u(t) as a function of zk. Examining the cases for single stage, double 

stage, and multiple stage backward from time tf [27], or fort= tf-Atj 

tf-2At, ••• , under the assumption that all minima exist and unique, it 

is seen that 

[ T \' T T]} min E y Ay + L. [y Ay + u Bu At = EV(Zk,t) 
u(t), ••• ,u(tf-At) 

where the minima are taken with respect to all admissible control 

strategies, and the function Vis defined as 

(4-14) 

and satisfies the following functional equation 

= min 
u 

T T I } E[y (t)A(t)y(t) + u (t)B(t)u(t)]At + V(Zk' t-fiit)/Zk 

( 4-15) 

I 

which is the Bellman equation [44], and where Zk depends on whether or 

not an additional observation is obtained at time t, i.e., 

I 

Zk = Zk if there is no new measurement 

and (4-16) 
I 

Zk = Zk+l if there is a new me.asurement 
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It is a complicated equation for the reason that the dimension of Zk 

increases with the number of observations obtained. Some simplifi-

cations should be done such that Eq. 4-15 is easy to solve. The case 

where t falls in between observations is considered first, and the 

case oft occurring at an observation instant is then developed. 

(1) Between observations: In the time interval tk ~ t < tk:+l' the 

observed data available is Zk. From the estimation algorithm devel

oped, it is seen that the conditional distribution of the output 

y(t + At) given Zk is uniquely determined by the conditional distri

bution of x(t + At) given Zk' i.e., 

or 

and 

E[y(t + At)/Zk} = H(t + At)E[x(t + At)/zk} 

V / t + At/Zk) = VAR[y( t + At)/Zk} 

= H(t + At)VAR[x(t + At)/Zk}HT(t + At) 

= H(t +06t)Vx(t + At/Zk)HT(t + At) 

In view of the fact that the statistics of x(t) given Zk are the 

sufficient stat_istics for the normal. conditional. distribution, of 

y(t) given Zk, it is convenient to introduce the notation 

= min 
u 

( 4-17) 
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for tk ~ t <tk+1• Here the conditional expectation is understood to be 

with respect to both ~(t/Zk) and Vx(t/Zk), but since Vx is non-random 

and can be precomputed, only~ is indicated as a sufficient statistic. 

In this way, Eq. 4-15 may be rewritten as 

W(~(t/Zk),t) = m&n E[[yT(t)A(t)y(t) + uT(t)B(t)u(t)]At 

+ W(~(t + At/Zk),t)/~(t/Zk)} (4-18) 

I\ This is a considerable simplification because the argument x of Wis 

of constant dimension. The terminal condition for Wat tf is 

(4-19) 

where Z~ indicates the data available before the time tf. The form 

of the solution of the Bellman equation, Eq. 4-18, is assumed to be 

[ 44, 28] 

(4-20) 

with initial condition specified by Eq. 4-19. From optimal filtering 

result for discrete stochastic system [27], it fol.lows that 

~(t + At/Zk) = ~(t + At,t)~(t/Zk) + t(t + At,t)u(t) (4-21) 

and 

(4-22) 
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Consequently, the expectation of y(t-1-llt/Zk) given ~(t/Zk) is 

• 
E[9(t-l-llt/Zk)/~(t/Zk)} = y(t+At/Zk) 

= H(t-l-llt)[~(t--1-At,t)~(t/Zk) + w(t--1-At,t)u(t)] 

(4-23) 

and variance is 

(4-24) 

Equation 4-18 may be evaluated as 

. [[AT T A T ] = min x H AHx + t AV + u Bu At 
u r y 

( 4-25) 

By expanding the second term of Eq. 4-25 collecting terms of~ and u 

t9gether, and completing a quadratic form, the following expression 

is obtained 

W(~,t) = min rnT[HTAH8t + ~THTS(t-Mt)H~]~ 
u 

(4-26) 

where 

(4-27) 
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The control which achieves the minimum value is the given by 

(4-28) 

Equating both sides of Eq. 4-26 and using the expression in Eq. 4-21 

for W(~,t), the equations for Sand cp are obtained. 

and 

cp(t) = cp(t-f-At) + t AV 6t 
r y 

It is convenient to define 

then Eq. 4-30 may be rewritten as 

(4-29) 

(4-30) 

(4-31) 

(4-32) 

The control strategy in between observations is given by Eq. 4-28, 

where .th~ control gain L(t) depends on the solution of Eq. 4-29 or 

Eq. 4-32. 

(2) At the observation instant tk+l' the Bellman equation may be 

expressed as . 
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After an observation is taken, the state estimate is updated using the 

corrector equation 

(4-34) 

and 

(4-35) 

where the distribution of the term z - H~ is normal with zero mean and 

T 
covariance matrix [H Vx(tk-1-1/zk)H + R(k+l)]. The expection of 

y(tk+l + At/Zk+l) given ~(tk+l/Zk) is 

which is similar to Eq. 4-24, and the covariance matrix is 

The expression, Eq. 4-33, may be rewritten as 

= min 
u 

+ t S(t+At)HK[HV HT+ R]KTHT + ~(t+At)] 
r x 

( 4-36) 

(4-37) 

(4-38) 
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It can be noted that Eq. 4-38 differs from Eq. 4-25 by an extra term 

t S(t-filt)HK[HV HT+ R]KTHT, which only effects~· The control strategy r x 
is then indicated by Eq. 4-29 and the equation for Sor S remains the 

same as indicated in Eq. 4-29 or Eq. 4-32. The equation for~ is 

~(t) = ~(t-+ilt) + t AV At+ t S(t-+ilt)HK[HV HT+ R]KTHT 
r y r x 

- [ T ] T = ~(t-+ilt) + t AV At + t S(t+ At)K HV H · + R K 
. r y r x 

(4-39) 

4.2.3 The Continuous Solution 

If one applies a limiting procedure, letting At~O in Eqs. 4-27, 

4-30, and 4-32, and using the expressions for~ and w from Eqs. 4-6 

and 4-7, the continuous form for the control gain L(t) is obtained. 

-1 T -= B (t)C (t)S(t) (4-40) 

The limiting form of the equation for Sis 

s<t) = HTAHAt + <I + FAtls<t-+llt)(I + FAt) 

or 

s ( t ) - s ( t-+il t ) 

At 
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letting At-+O, 

(4-41) 

The same process may be applied to the equation for~, resulting in 

the expression 
~(t) = -t AV 

r y (4-42) 

At an observation instant tk' ~ is updated according to the relation

ship 

(4-43) 

where "+'' and "-" indicate the quantity of ~ after and before a 

measurement is obtained. The boundary conditions for Eqs. 4-41 and 

The expected performance measure 'is the expected value of Wat 

time t. It lllqly be evaluated from the equation 
0 

min J = E[W(~(t ),t )} = E[yT(t )S(t )y(t ) + ~(t )} 
0 0 0 0 0 0 

s 
= ~T(t )S(t )~(t ) + L [t S(tk)K[HV HT + R]KT 

o o o k=l r x 

+[ft AV dt + t AV } r y r y 
0 

The foregoing derivation is summarized below. 

(4-44) 
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ALGORITHM 4-1: 

The solution of the optimal control problem for the continuous 

time system with discrete time observations is governed by the fol-

lowing equations which describe the control strategy. 

u(t) = -L(t)~(t/Zk) (4-39) 

where 

(4-40) 

(4-41) 

Between observations, the conditional mean estimate ~(t/Zk) is the 

solution to 

(4-45) 

The associated covariance matrix is obtained by solving the equation 

At observation instant tk+l' the mean and covariance are updated 

(4-47) 

and 

(4-48) 

where 

(4-49) 
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Equations 4-45 through 4-49 comprise the estimation algorithm for 

continuous-discrete system presented in Chapter II. The minimal 

expected performance measure is indicated in Eq. 4-44. The algorithm 

is schematically indicated in Fig. 17. 

It is noted that the separ~tion theorem is·appli~able in the 

continuous-discrete formulation of the stochastic linear regulator 

problems. The control strategy for the case of model uncertainty is 

derived in the following sections, utilizing results developed in 

this section. The cases of nonswitching and switching are treated 

separately as in the previous chapter. 

4.3 The Control Problem Under Uncertainty--Nonswitching Case 

The system dynamics and observation model are as indicated in 

Eqs. 4-1 through 4-3, except that the model is subject to uncertainty. 

The contr<;)l u(t) is to be found such that a performance measure J is 

minimized..,. wher.e .J is given by Eq. 4-4. 

As_in __ tbe pr~vipus chapter the uncerta_inties are treated by 

a.ss:gming._ that :t:be.r:e are N possible candidate models. Each candidate 

model has the form 

. 
91..: x.(t) = F.(t)x.(t) + C.(t)u(t) + G.(t)w.(t) 

l. l. l. ' l. ' l. l. 
(4-50) 

for i = 1,2, ••• ,N. The control u(t) is the same for all models. 

The expectation in the performance measure in Eq. 4-4 is now 

evaluated over the joint probability space of x(t), Zk, and Si. 

Dynamic programming is used to obtain the control strategy, as in the 

previous section. 



w(t) 
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{3-25) and Eq. 

{3-37) and Eq. 
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r-----------, 
I l~(t/Z ) 

k 
Predictor 

Corrector 

IV/t/Zk) 

I 
I 
I 
J 

I 
I 

I I L __________ _J 

Estimator or Filter 

I\ u Control Gain x 

Computer 

(3-26) 

(3-38) 

Control Gain: Eq. (4-37) and Eq. (4-35) 

Figure 17. Block Diagram for Optimal Line~r Combined 
Estimation and Control System 
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4.3.1 Discretized Formulation 

It is convenient to consider the discretized form of the problem 

first. The performance measure stated in Eq. 4-12 may be rewritten 

as 

min J 1 = min 
u 

+ u\t + jllt)B(t + jllt)u(t + jllt)]At} 
0 0 0 

where the minima is taken with respect to all admissible control 

(4-51) 

strategies which give u(t) as a function of zk. In a manner similar 

to that of the previous section, one may define V(Zk;t) as in Eq. 4-14, 

which satisfies the functional equation 4-15. Equation 4-15 may be 

reduced further to take into account the probability space of the model 

index, e .. 
1 

V(Zk,t) = min 
u 

N 
~ pt(Si/Zk)E[[yT(t)A(t)y(t) + ut(t)B(t)u(t)]Llt 

i=l 

where Zk is defined by Eq. 4-16. Here the problem of the growing 

dimensionality of the measurement record Zk still exists. The simpli-

fications for time between observations and at an ob$ervation instant 

are considered separately. 

4.3.2 In Between Observations 
I 

In the time interval tk ~ t < tk+l' the measurement reco~d Zk in 

Eq. 4-52 is simply zk. Defining auxiliary variables 
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~-1 
V/Zk,t) = E[yT(tf)Ay(tf) + L [yT(t +jAt)A(t +jAt)y(t +jAt) 

• 'r1 0 0 0 
J=,, 

+ uT(t +jAt)B(t +jAt)u(t +jAt)]At/Zk,8.} 
0 0 0 1 

(4-53) 

where u(t) is not dependent on i, one obtains 

N 

fu p (8./Zk)V.(Zk,t) 
. r i i 1 . 

(4-54) 

Given the model 8., 
1 " x.(t/Zk) and V (t/Zk) are sufficient statistics 

1 x. 
1 

for the conditional distribution p(yi(t)/Zk). Thus, one may define an 

auxiliary variable 

= E[y7(tf)Ay.(tf) + \' [y7Ay. + uTBu]At/Q.} 
1 1 L, 1 1 1 

(4-55) 

It_ is seen that if p (8./Zk) = I , where I is defined by Eq. 3-29, 
r i a a 

the problem reduces to that of the previous section under certain 

conditions. For a given model 8., W.(Q.,t) satisfies the following 
1 1 1 

Bellman equation 

W.(~.,t) = min E[[y:(t)A(t)y.(t) + uT(t)B(t)u(t)]At 
1 1 1 1 . 

" " } + w . < x . , t-fil. t ) Ix . 
1 1 1 

(4-56) 

The solution to Eq. 4-56 is assumed, as in the previous section, to 

be of the form 

W.(~.,t) = y!(t)S(t)y.(t) + ~.(t) 
1 1 1 1 1 

( 4-57) 
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Using the relationship indicated in Eq. 4-56, Eq. 4-52 may be rewritten 

as 

N 
\' p (8./Zk)W.(t,t) L..r1 ·11 

i=l 
= min 

u 

N . T 
~ p (8. /Zk)E[[y. (t)A(t)y. (t) Li r 1 1 1 

i=l 

+ uT(t)B(t)u(t)]~t + W,(Q.,t~t)/~.} 
1 1 1 

(4-58) 

by substituting the solution of W,(Q.,t~t) from Eq. 4-57 into Eq. 4-58, 
1 1 

one obtains, 

N 
~ P (6./Zk)W.(~.,t) = min L.. r 1 1 1 u 
i=l 

N 

L P (S. /zk)[[y:Ay. + t AV . + uTBu]At 
i=l r 1 1 1 r y1 

+ y: < t~ t > s < t~ t > 9 . < t-1-b. t > + cp. < t~ t > J 1 1 1 

N . L ).[["T T I\ T J = min P (8./Zk x.H.AH.x. + t AV + u Bu At 
u . r 1 1 1 1 1 r Yi 

1=1 

AT T A } + x . ( t~ t) H . S ( t-1-8 t) H . x . ( t-1-b. t) + cp. ( t+A t) 1 1 1 1 1 

From the optimal filtering results indicated in Eqs. 4-21 and 4-22, 

one can see that Eq. 4-59 reduces to 

LN /\ . LN [ AT T I\ T 
P (8./Zk)W.(x.,t) = min P (8./Zk) (x.H.AH.x. + t AV.+ u Bu)At r 1 1 1 u 1. __ 1 r 1 1 1 1 1 r y1 

i=l 

A T T . " . 
+ (m.x. + w.u) H.S(t+tlt)H.(m.x. + W,u) 

1 1 1 1 1 1 1 1 

+ cp.(t~t)] (4-60) 
1 

By collecting terms, the following quadratic form results, 
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N 
I: P (9./Zk)W.(~.,t) = min 
·. 1 r 1 1 1 u 1= 

N 
\1 ["T T LJ P (9./Zk) x.(H.AH.At 

i=l r 1 1 1 1 

N 
T T · "'A ] [ " A ]T + i.H.S(ti'tlt)H.i.JX. - L.. P (6./Zk)L.x. 
1. 1 1 I 1 j=l r J J J 

N 

• [BAt + L p (S./Zk),j,~H~S(t-+At)H.,j,.] 
j=l r J J J J J 

N N 
. [ L p ( e ./ zk) L . ~ . J + ( u + L p ( e . I zk) L . ~ . ) T 

j=l r J J J j=l r J J J 

N 
\' TT • [BAt + L, P (S./Zk),j,.H.S(t-+6t)H.,j,.] 

j=l r J J J J J 

N N 
• cu + L P < e .I zk) 1 J . ) + I P < e . I zk) 

j=l r J J J i=l r 1 

• [t AV .~t + ~.(t-+6t)] r y1 1 (4-61) 

where 
N 
~ T.T -lTT L.(t) = [BAt + L, P (9./Zk),j,.H.S(t-h'.it)H.,j,.] ,j,.H.S(t-+At)H.i. 

1 j =l r J J J J J 1 J 1 1 

(4-62) 

The control strategy is then obtained by finding the value of u which 

minimizes the right hand side of E~. 4-61. 

N 
u(t) = - \' P (9,/zk)L.(t)~.(t/Zk) 

~l r 1 1 + 

Equation 4-61 then may be rewritten as 
N 

LP (6./Zk)(~)I.SH.~. + cp.) . 1 r 1 1 1 1 1 1 
1= 

N 
" AT[ T .• . T T . ;1, ]"' = L, P (6./Zk)x .. H.AH.At + i.H.S(t-+At)H,':I:, x. 

i=l r 1 1 1 1 1 1 1 1 1 
N N 

(4-63) 

\' A T \' . T T ] 
- ( L, P (9./Zk)L.x.) [B4t + L, P (®./Zk),j,.H.S(t-+6t)H.,j,. 

j=l r J J J . j=l r J J, J J J 
. N , ·( f P (6./Zk)L.~.) + LP (6./Zk)[t AV .At+cp.(t-Mt)] (4-64) 
j=l r J J J i=l r 1 r y1 . } 
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It is seen that the expression above does not simplify, indicating 

that the form assumed as the solution to the Bellman equation 4-58 

is not correct in general, and consequently, the control strategy 

obtained may not be optimum in all cases. By substracting and adding 

terms 

N ·· N \ 
LP (6./Zk)~~r}[BAt + L P (6Jzk·~)1,clitt:~(t+At)H.w.]L.~. 

i=l r 1 1 1 j=l r J .1. . 1 1 1 1 

in Eq. 4-59, one obtains the expression 

N '°' AT T A L,p (9./Zk)(x.H.SH.x. + ~.) 
'lr l. 1.1. ii l. i= 

N . A T T T 
= '°' P ( 6 . / zk) x . [ H . AH . 8 t + ~ . H . S ( t-f-A t) H . ~ . 

L, r l. i i l. i l. i i 
i=l 

T N TT 
- L.[Bllt + \' P (9./Zk)w.H.S(t-f-At)H.w.]L.]~. + t AV .At 

1. .L.1 r · J J J J J 1. 1. r yi 
J= 

N 

+ ~.(t-Mt) + LP (9./Zk)[(L.t )T 
1 i=l r 1 1 1 

N 
N T T " • [Bllt +LP (9./Zk)w.H.S(t-Mt)H.w.](Lix. 

j=l r J J J J J l. 
- I: P < e .1 zk) L . Q . ) J 

j=l r J J J 

(4-65) 

The expression in the bracket of the first term of Eq. 4-65 is the 

same as in Eq. 4-26 given model 9 with certainty. If 
i 

" u.(t) = -L.(t)x.(t/Zk) (4-66) 
]. ]. ]. 

is the optimal control strategy given that model 9. is true, the 
]. 

expression in the second term of Eq. 4-65 is then the cost of applying 

the control u(t) to the model 9. which differs from u.(t). It is seen 
]. ]. 

that if P (9./Zk) = I , or a true system is identifi~.d, the cost due r 1. a 

to the second term of Eq. 4-65 is zero. Therefore, the control strategy 
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becomes optimal when a true system is identified. Denoting 

u.(t) = u(t) - u.(t) 
1 1 

N 

= 1/i - t=i P/9/Zk)L/j (4-67) 

as the control error between model S. and the actual control, then 
1 

N N TT 
i\ ( t) = " p ( e . I zk) t [ BA t + " p ( e ./ zk) 1jr . H . s ( t+6 t) H .1jr . J 

.L..1 r 1 r .L.. r J J J J J 
1= J=l 

• [u.u7] + i\(t+At) (4-68) 
1 1 

can be evaluated as the extra cost due to uncertainty. Furthermore, 

having defined 

T S.(t) = H.S(t)H. 1 1 1 

one may obtain expressions for S. and~-
1 1 

T T N T 
S.(t) = H.AH.At + ~.S.(t+At)~. - L.[BAt + I: P (9./Zk)1jr.S.(t-1-At)1jr.]L. 

1 1 1 1 1 1 1 j=l r J J J J 1 

(4-69) 

~.(t) = t AV .At+ ~.(t-1-At) 
1 r yi 1 

(4- 70) 

Letting At approaches zero, one may obtain the continuous version 

of Eqs. 4-62, 4-68, 4-69, and 4-70. The results are indicated below 

for each candidate model. 

L.(t) = B- 1(t)c:(t)S.(t) (4-71) 1 1 1 

• N - T 
i\(t) = - '°' P (S /Zk)t B[u.u.J. (4-72) L, r i r 1 1 

i=l 
• T -1 T 
S.(t) = -F.(t)S.(t) - S.(t)F.(t) + S.C.B C.S. - H.AH. 1 1 1 1 1 1 1 1 1 1 1 

(4., 73) 
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~ 1. (t) = -t AV 
r Yi 

(4-74) 

for i = 1,2, ••• ,N. The boundary conditions for Eqs. 4-72, 4-73, and 

4-74 are 

S.(tf) = H.AH., 
1 1 1 

~.(tf) = t Av (tf/Z~) 
i r Yi '=> 

and 

4.3.3 At Observation Instants 
I 

At an observation instant tk+l' the measurement record Zk in 

Eq. 4-52 is Zk+l' and the control u(tk+1) is applied before the new 

measurement is obtained. Using the sufficient statistic ~i(tk+1/zk) 

and vx.<tk+1/zk), Eq. 4-58 is rewritten as 
1 

N L Pr(ei,zk)Wi(Qi(tk+l/Zk),tk+l) +A(tk+l) 
i=l . 

= min 
u 

N . . T 
i~l Pr(Si/Zk)E{[yi(tktl)A(tk+l)yi(tk+l) 

(4-75) 

Since the filtered estimate of each model is updated according to 

Eqs. 3-19 and 3-20, Eq. 4-75 may be put 

N 

in the following form 

~ P/9/Zk)W/~i,tk+l) + A(tk+l) 
i=l N 

= min '°' P (9./zk){[97AQ. + t AV + uTBu]~t u ~ r 1 1 1 r y. 
i=l . 1 

AT A ) + y i (tk+l-1-At)S(tk+l-Mt)y i (tk+1-tAt) + ~i (tk+1-tAt 

+ t S(tk+1-Mt)H.K.[H.V H7 + R]K7H7} + 7i.(tk+1-Mt) 
r 1 1 1 xi 1 1 1 . 

(4-76) 
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Comparing Eqs. 4-76 and 4-59, a result similar to that of Eq. 4-39 

is obtained, i.e., 

~ 1.(tk+l) = ~1.(tk+l-1-At) + t AV + t S.(t-+tit)K . . r Yi r l. l. 

• [H.V H: + R. ]K: 
l. x. l. l. l. 

l. 

and the equation for S., Eq. 4-69, remain unchanged. 
l. 

(4- 77) 

The overall expected performance measure may be evaluated as 

N 
J = E[ LP (8.)W.(~.(t ), t ) + 11.(t ) 

i=l r l. 1. l. o o o 

N 
= I: P (S.)[~7(t )S.(t )~.(t ) + ~.(t )] + 11.(t ) 

i=l r 1. 1. o l. o 1. o 1. o o 
(4-78) 

where 

= t [[t S.(tk)K.[H.V H: + R]K: +j\ t AV dt} 
k-1 r i l. ix. l. l. r y. 

- 1 tk-1 1 

(4-79) 

and 
t 

S-1 N ik+l 
11.(t0 ) = "\' [ \1 P (8./Zk) t Bu.u:dt} · -~ ~ r l. r l. l. 

k=O i=l t 
k 

(4-80) 

Since the posterior probabilities depend on measurements, the 

cost due to 11.(t) is unpredictable. That is one may not precalculate 
0 

the cost function associated with the control strategy derived. But 

as indicated previously, when the posterior probability P (8./Zk) = I , 
r 1. a 

the strategy becomes optimal, and one can evaluqte the cost before 

hand. The algorithm is surmnarized as follows. 

ALGORITHM 4-2: 

A control strategy (which may be suboptimal) for the problem of 

continuous-discrete system with model uncertainty is given by 
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N 
u(t) = I: P (6./Zk)u.(t) 

i=l r 1. 1. 
(4-63) 

where 

S.(t) 
l. 

T = -F .S. 
l. l. 

u.(t) = -1.(t)~.(t/Zk) 
l. l. l. 

-1 T L.(t) = B (t)C.(t)S.(t) 
l. l. l. 

T S.F. + S.C.B + C.S. 
l. l. l. l. l. l. 

T H.AH. 
l. l. 

(4-66) 

(4- 71) 

T 
S.(tf) = H.J\.H. 

l. l. l. 

(4- 73) 

for i = 1,2, ••• ,N. These last three equations are obtained in Algo-

rithm 4-1, and the conditional mean estimates used in the control 

algorithm are given in Algorithm 3-1. The block diagram representing 

Algorithm 4-2 is shown in Fig. 18. 

The control algorithm developed in this chapter has been derived 

in such a way as to make use of the estimation algorithm obtained in 

Chapter III. .Hence a. separation principle ( separation between control 

and estil)lation) has been imp9sed on the solution. A discrete version 

of the control strategy suggested here has recently been presented 

by Lainiotis et al.[46]. 

4.3.4 Examples 

Three examples are presented in this section to demonstrate the 

control algorithm which has been derived. In order to help in evalu-

ating performance, the results of control under uncertainty are com-

pared with the results under certainty. A typical regulator problem 

is presented in the first example, where nonzero initial conditions 

and small disturbance are considered. The case where the system is 

dominantly driven by noise is examined in the second example. The 
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Figure 18. Block Diagram for Algorithm 4-2 
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third example illustrates the situation where the true system is not 

included among the candidate models. 

( 1) Example 4-1: 

A scalar system is described by the formal stochastic differential 

equation 

;(t) = Fx(t) + u(t) + w(t) 

where Fis a constant which is subject to uncertainty. The observa-

tions are taken at discrete intervals of time through a noisy channel 

z(k) = x(tk) + v(k) 

The noise terms, w(t) and v(k), are independent, white, and gaussian 

with zero mean and covariance given by 

and 

The mean and variance of the initial co~dition of the state are 

~(t) = E[x(t )} = 2. 
0 0 

and 

V (t) = VAR[x(t )} = 1. 
X O O 

The performance measure to be minimized is 
1 . 

J = E[~ [x2(t) + .su2(t)]dt} 

Two candidate models are·proposed: 

Si: ; 1 (t) = 4.x1 (t) + u(t) + w()!) 

ei: ;2(t) = x2(t) + u(t) + w(t) 



where the model 62 represents the true system. The optimal control 

strategy, given a model to be true, is given by Algorithm 4-1. The 

deterministic procedure for evaluating the control gains requires 

solving the Riccati equations 

The solution for s1(t) and s2(t) may be obtained analytically [52] 

S/t) = .5 

and 

where 

1 + < 4+s1 )ExP[2s1 < t-tfJ.J, < s 1 ..,4) 

S2 + 1 - (l+s2)EXP[2s2(t-tf)] 

1 + <1+s2)ExP[2s/t-tf)J l <s2-l) 

and s =/2:.+12=fi 
2 • 5 
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The trajectories of the state and control are plotted in Figs. 19 

and 20, while the identification capability is shown in Fig. 21. In 

part (a) of the figures, the sample mean trajectory for the case of 

model 62 having .5 prior probability is compared with the trajectory 

having model 62 known with certainty. In part (b) of the figures, the 

sample variance for the 15 simulated runs using different noise se-

quences is plotted. There are 100 observations for each run. 

It is noted that since the given models have positive eigenv,lues, 

the uncontrolled system is unstable and the magnitude of the state will 
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increase with time. From Fig. 19(a), one may argue that the trajectory 

for the uncertain case is better than that under certainty, but from 

Fig. 20(a), one may observe that the control effort for the uncertain 

case is greater than that under certain conditions. Therefore, the 

cost is higher as expected. In Table II the averaged performance 

value computed from Eq. 4-78 is compared to that the optimum result 

computed from Eq. 4-44 from Algorithm 4-1, under certainty. The 

expected cost without control is computed analytically, and compared 

with the other costs. 

From Fig. 20(a), it is seen that the cost of control in the ear

lier stages of the control interval is relatively high. When the 

algorithm gathers enough informations to begin to identify the true 

system, as shown in Fig. 21, the cost of control is reduced. 

TABLE II 

PERFORMANCE VALUE$ FOR EXAMPLE 4-1 

Certain Uncertain Uncontrolled 
' 

Expected Actual Actual Expected 

Average 3.348 2.266 3.498 8.535 

Variance -- 0.615 1.087 --
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(2) Example 4-2: 

In this example, the situation is examined where the system is 

dominantly driven by the plant noise. The same dynamical structure 

and candidate models as in the previous example are considered. In 

this case the mean and variance of the initial state are given as 

~(t ) = o. 
0 

and v ( t ) = o. 
X O 

and the covariance of the plant noise is larger. 

E(w(t)wT(T)} = 10.6(t-T) 

The results of applying the control algorithm under these circum-

stances are shown in Figs. 22 through 24. The trajectories for the 

state, the control, and the posterior probability are plotted with 

the prior probability of the true model 62 having values .5 and .8. 

These trajectories are compared with the trajectories for the system 

optimally controlled under certainty and with no control applied. 

It is seen that the controlled trajectories compare favorably with the 

uncontrolled trajectories. It can also be seen that when the prior 

probability of the correct model increases, the trajectory under 

uncertainty approaches the trajectory under certainty as one would 

expect. The performance measures associated with various trajectories 

are indicated in Table III. It is seen that for the higher prior 

probability of the correct model, the cost is close to the cost under 

certainty. 

(3) Example 4-3: 

The purpose of this example is to illustrate the use of the scheme 

proposed in Algorithm 4-2, when the true system is not.a candidate 
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TABLE III 

PERFORMANCE VALUES FOR EXAMPLE 4-2 

Certain Uncertain Uncontrolled 

Expected Actual p(El2)=. 5 p(62)=. 8 Expected Actual 

Average 3.350 1.843 3l663 2. 512 5.475 3.568 

Variance -- 1.629 5.627 2.682 -- 23.055 

model, as might often occur in practice. The possible models are as 

in Example 4-2. Here, however, the true system has a parameter value 

F = 2.5. The initial conditions as well as the noise terms remain 

the same. With the prior probability Pr(S1) = Pr(S2) = .5, the control 

algorithm was applied. The resultant trajectories averaged over 15 

runs are shown in Figs.25 through 27. The averaged performance values 

are shown in Table IV. The trajectories are compared to the trajec

tories under certainty. Surprisingly, the two trajectories are close 

together. Since the true value of F falls in between of the model 

values, one may observe a "balance effect." That is, apparently if 

the eigenvalue of the true system is between the eigenvalues of the 

proposed candidate models, good results may be obtained even though 

the true model is not considered as a candidate. 

This "balance" effect may be important in practical application, 

especially, in the case where the mathematical model for a physical 

process may not be found exactly. When a set of candidate models 

expressing the possible mathematical models of the process is 
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TABLE IV 

PERFORMANCE VALUES FOR EXAMPLE 4-3 

Certain Uncertain Uncorltro lled 

Expected Actual Actual Expected 

Average 7.299 3. 710 5 .197 57.012 

Variance -- 4.856 11. 940 --

available, the control strategies developed here may be implemented 

on-line. One may apply the control at the same time as the system 

identification is taking place. This is opposed to the procedure of 

first identifying the system, and then designing a control algorithm. 

This feature of the approach is important for application where the 

model may change before one could design an off-line control. This 

type of application is exemplified in Chapter V. 

4.4 The Control Problem Under Uncertainty--Switching Case 

In the last chapter, it is seen that the optimal estimation struc

ture for the switching case requires a growing memory as the number 

of observations increase. This is due to the fact that a switching 

sequence may not be determined before hand. The same reasoning is 

applied to the control problem. Suboptimal control strategies which 

are reasonable to implement are desirable for this type of control 

problem. 



The state estimate given the filter 8. from Algorithm 3-2 is 
l. 

used as the sufficient statistic for the Bellman equation stated in 
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Eq. 4-47. The suboptimal control strategy proposed in Algorithm 4-2 is 

applicable for this case when the output reguLation is desired and one 

uses the estimate provided by Algorithm 3-2. In the case of the state 

regulator problem, the performance measure is described by 

J - E{xT(tf)Ax(tf) + ~f [xT(t)A(t)x(t) + uT(t)B(t)u(t)]dt] 
t 

0 (4-81) 

and the Bellman equation of interest is 

N T T 
V(Zk,t) = min LP (8./Zk)E[[x (t)A(t)x(t) + u (t)B(t)u(t)]At 

u i=l r i 

(4-82) 

A suboptimal control strategy similar to Algorithm 4-2 may be 

obtained with only slight modification due to the fact that the entire 

state vector may be of interest, as opposed to only the output. The 

algorithm is sununarized as below. 

ALGORITHM 4-3: 

A suboptimal control strategy for the state regulator problem 

under uncertainty, and subject to switching operation, is given by 

N 

u(t) = LP (S(k) = 8./Zk)u.(t) 
i=l r 1. 1. 

(4-83) 

where u.(t) is the control strategy of a given model 8., and is 
l. l. 

expressed by the following relationships 

/\ 
u.(t) = -1.(t)x.(t/Zk) 

l. l. l. 
(4-84) 

-1 T L.(t) = B (t)C.(t)S.(t) 
l. l. l. 

(4-85) 
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and 
. 
S.(t) 

i 

T 
= -F.S. 

i i 

-1 T S.F. + S.C.B C.S. - A 
i i i i i i 

(4-86) 

The only difference is in the last term of Eq. 4-86. The conditional 

estimate ~i(t/Zk) is indicated in Algorithm 3-2. A schematic block 

diagram of the algorithm is provided in Fig. 28. 

It is noted that if the switching sequence is known, the control 

problem reduces to the problem of "discontinuities in the system 

equations at interior points"[45]. The optimal control solution of 

this type of problem is obtained and compared to the results using 

Algorithm 4-3 in the following example. 

Example 4-4: 

The scalar system described in Example 4-3 is considered where 

F has a nominal value of 2.5 and may switch to some other value during 

the interval of interest. With the same noise terms as indicated in 

Example 4-3 and with the prior statistic of the state assumed to be 

~(t) = 5. 
0 

and V (t) = 1. 
X O 

the control strategy is to be determined such that a performance 

measure 
1 

J = E[~ [x2(t) + .5u2(t)]dt} 

is minimized. 

It is assumed that the value of F may jump to two other values, 

4. and 1. That is, there are three structures under consideration • 

. 
e1: x1(t) = 4 x1(t) + u(t) + w(t) 

. 
62: x2(t) = 2.5x2(t) + u(t) + w(t) 

. 
63: x3(t) = x3(t) + u(t) + w(t) 
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The prior probabilities of the models are 

and 

and the transition probability matrix assignment is given as 
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The results of simulation using Algorithm 4-3 with 100 observa

tions during the time interval of interest are obtained and compared 

to the optimal control results when the switching sequence is known. 

In Fig. 29, typical single run trajectories for the state and control 

are presented. The switching sequence is also indicated below the 

figures. The results of averaging over 15 runs is shown in Figs. 30 

and 31. In Fig. 30, the averaged state trajectories and their asso

ciated sample variance are plotted. The averaged control trajectories 

are shown in Fig. 31. It is interesting to note that the variance of 

the state trajectories is higher in the latter stages of the time 

interval. This is probably due to the fact that no penalty is imposed 

for final time errors. The variance of the control trajectories, on 

the contrary, is shown to be higher in the earlier stages. This is 

due to greater initial uncertainty of which system is active. It is 

also seen that the cost of control under uncertainty is very high 

at the earlier stages, but after more data is obtained it is reduced 

as in the nonswitching case. The averaged performance measures for 

15 runs are indicated in Table v. It is seen that the averaged costs 

are very close. The proposed suboptimal control strategy compares 
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favorably with the optimum control based on knowledge of the switching 

sequence. 

TABLE V 

PERFORMANCE VALUES FOR EXAMPLE 4-4 

Certain Uncertain 

Average 29.697 30.647 

Variance 24.862 19.319 

4.5 Summary 

The control strategy for uncertain systems which has been devel

oped here is in general suboptimal. It makes use of the estimation 

algorithms presented in previous chapter and is not of unreasonable 

complexity. In the nonswitching case, since system identification may 

be carried out on-line, the control strategy becomes optimal once a 

posterior probability approaches one. Even if the set of candidate 

models does not include the correct system, the "balance" effect may 

still provide good estimation as well as near optimal control. 

The examples which have been presented in this chapter, although 

of an academic type, serve to demonstrate the ability of the suboptimal 

control algorithm to control unknown systems. In the following chap

ter, the control techniques which have been developed are applied to a 

stream quality control problem. 



CHAPTER V 

APPLICATION TO WATER POLLUTION PROBLEMS 

5.1 Introduction 

This chapter is included to demonstrate a possible application 

of the findings of Chapters III and IV. The problem under considera

tion is classified as a water quality control problem. A brief intro

duction to water quality problems is presented in Section 5.2, and 

the related mathematical models describing variables of interest are 

indicated. A stochastic model is proposed in Section 5.3 to account 

for random effects. The model then serves as a basis for applying 

algorithms developed in the previous chapters to the water quality 

control problems. Applications to system identification and control 

problems are presented in Section 5.4 and 5.5, where the results of 

simulation of the proposed system are indicated. 

5.2 Water Quality Problems 

A complete description of the physical, chemical, and biological 

aspects of water quality, as a function of natural and man-made fac

tors, and the technological measures available for changing water 

quality can be found in the literature [47], [48], and [49]. Here, 

a partial background indicating some of the considerations of water 

quality control is presented. 

The wastes having a:n impact on the water quality of a stream as 

11 '.> 
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a result of domestic, industrial, agricultural, and recreational activ-

ities can be classified in two categories, nondegradabie and degradable . 

wastes. N'ondegradable wastes are usually diluted and may ch$nge· .form, 

but they are not appreciably reduced in weight in the receiving water. 

Degradable wastes are reduced in weight by the biological, physical, 

and chemical processes. 

The effect of degradable waste, especially the biological effect 

of organic waste, in receiving water is of great interest since it 

threatens aquatic life and presents a health problem to those using the 

water. 

5.2.1 Effects of Organic Waste Discharges on the Receiving Str~am 

The degradation process of organic waste in receiving waters is 

produced by the action of bacteria utilizing free oxygen. The imbal-

ance between available oxygen and oxygen demand may proceed to the 

point where septic or anaerobic ~onditions result. Water quality, if 

this situation occurs, is undesitable. The problems in water quality 

' control are to predict the time ~nd spatial pattern of concentration 

of wastes in a stream, and to control the waste discharge so that in 

any portion of a stream anaerobic conditions will not result. 

A measure of organic waste 1oad is biochemical oxygen demand 

(BOD), which indicates the amount of oxygen drawn upon in the process 

of decomposition of the waste. The amount of oxygen demanded and the 

rate at which it is drawn upon ~re functions of the type and quantity 

of the waste and of other factors, among which the most important are 

the chemical characteristics and the temperature of the receiving 

",.. 

water. The rate at which BOD is exerted combined with the rate at 

which oxygen is restored determines the level of dissolved oxygen (DO). 
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The rate of reaeration depends largely on the stream characteristics 

as they affect turbulance and the area of the air-water interface, the 

velocity of streamflow, and the net photosynthetic oxygen production. 

In a stream, the combined effect of an organic waste discharged 

at a specific location and reaeration in the stream results first in 

a decrease and then an increase in DO as the waste is carried or moved 

downstream. This phenomenon is illustrated by a characteristic curve 

known as the "oxygen sag" [50,51]. This gives a crude way of predict-

ing the time or spatial pattern of the concentration of wastes. But 

it is complicated by hydrological uncertainty [52,53], and the varia-

tion in quantity of waste discharged. Mathematical representations 

for the sag curve are discussed in the following sections. 

5.2.2 Equations of the ''Oxygen Sag" 

The oxygen sag and the equations relating to the sag curve were 

first formulated by Streeter and Phelps [so]. Subsequently, various 

modifications have been made utilizing different assumptions and 

conditions [53-58]. Basic.lly, the two processes involved in the 

oxygen sag are biochemical oxidation and reaeration. Under the assump-

tions that the stream has 

(1) constant velocity, 

(2) unidirectional flow, 

(3) one-dimensional space dependence, 

the oxygen sag can be characterized by a set of first-order differen-

tial equations 

BOD: dL(t) = 
dt 

L(t ) = L 
0 0 

(5-1) 



where 
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DO: 
dC(t) 

= k2(c -C(t)) - k1L(t) + C 
dt s a 

C(t ) = C 
0 0 

L = BOD concentration, mg/lit or ppm, 

C = DO concentration, mg/lit or ppm, 

C = DO concentration at saturation, mg/lit or ppm, 
s 

(5-2) 

C = Average Photosynthesis-respiration rate, mg/lit-time or 
a 

ppm/time, 

k1 = BOD removal coefficient, 1/time, 

k2 = Reaeration coefficient, 1/time, 

t = time of travel or distance divided by velocity, 

and L and C represent the initial concentrations. 
0 0 

The coefficient k 1 and k2 represent the natural ability of a 

stream to handle the degradable waste load. They are functions of a 

number of variables. Various experiments have been conducted by 

researchers to determine the value of these coefficients under differ-

ent conditions [59,60]. The experiments show that k 1 is sensitive to 

change of temperature and the type of waste, while k2 is more difficult 

to determine. Primarily, k2 depends on the slope, depth and velocity 

of the stream,temperature as well as the type of waste. C is also a 
s 

parameter to be determined. In general., it depends on the same condi-

tions as k2 , but temperature plays the dominant role. 

Typical "oxygen sag" curves are shown in Fig. 32. 

The mathematical model defined by Eqs. 5-1 and 5-2 is based on 

the assumption that there are only two major processes taking place, 

biochemical oxid~tion and reaeration. In addition to these processes, 

some or all of the following processes may be taking place in a stream. 
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Waste load less 
than aerobic 
assimilative 
capacity 

Waste load 
greater than 
aerobic assimi
lative capacity 

(1) The removal of BOD by sedimentation or absorption. 

(2) The addition of BOD along the stream by the scour of bottom 

deposits or by the diffusion of partly decomposed organic products from 

the benthal layer into the water above. 

(3) The addition of BOD along the stream by local run off. 

(4) The removal of oxygen from the water by diffusion into the 

benthal layer to satisfy the oxygen demand in the aerobic zone of this 

layer. 

(5) The removal of oxygen from the water by purging action of gases 

rising from the benthal layer. 

(6) The continuous redistribution of both the BOD anq DO by the 

effect of longitudinal dispersion. 

These processes may effect either the BOD or DO ~~uation or both. 



The processes (1) through (3) only effect Eq. 5-1, producing the 

modified mathematical model [47,54] 

dL(t) 

dt 
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(5-3) 

where k3 is a BOD removal coefficient of sludge sedimentation (process 

(1)), and L is the rate of addition of BOD due to processes (2) and 
a 

(3). The processes (4) and (5) effect Eq. 5-2. The definition of C 
a 

may be redefined, however, to include these processes, so that Eq. 5-2 

remains unchanged. 

In order to take into account the effects of process (6), 

Dobbins[60] has proposed two second-order models in the form of the 

partial differential equations 

where 

2 
o L = D o L - S e1L - (k +k )L + L 
~t L os2 ~S 1 3 a 

(5-4) 

ac c/c ac 
- = Il_- - S- + k2(Cs-C) - klL + ca 
ot Los2 cJS 

(5-5) 

D1 = the coefficient of longitudinal dispersion, ft 2/time, 

S = the average stream velocity, ft/time 

s = the distance along the stream, positive in the downstream 

direction, ft or mile 

It should be noted that Eqs. 5-4 and 5-5 include both spatial and 

temporal distribution consideration. The values of Land Care depend-

ent upon the variables sand t. More general representations can be 

found in [58]. The mathematical model indicated above has been widely 



used for the dissolved oxygen profile in tidal estuaries, sluggish 

streams, or ponds where longitudinal mixing occurs as a result of 

tides or wind-induced currents. 
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The mathematical models described by Eqs. 5-2 and 5-3 as well as 

Eqs. 5-4 and 5-5 are the types of models available water purification 

processes. 

The process of purification of a stream, which usually is termed 

"stream self-purification," is a dynamic phenomenon that reflects 

hydrologic and biologic variations, the interrelations of which are 

not yet fully understood in precise terms. However, sufficient knowl

edge is available to permit quantitative definition of resultant stream 

condition under expected ranges of variation and to serve as a prac

tical guide in decisions dealing with water resource use, development, 

and management. 

The value of the minimum DO of the "oxygen sag" which is termed 

"critical reach" is a governing factor in planning the size or capacity 

of waste treatment plants. Sanitary engineering practice has typically 

been to calculate the oxygen sag at a given low level of streamflow 

and to determine the capacity and design of a waste treatment plant 

which will result in a specified level of dissolved oxygen in the 

critical reach of the.oxygen sag. The stochastic nature of stream 

flow and its effect on the variation in the assimilative capacity of 

the stream has motivated consideration of the stream quality problem 

as an application of the theoretical results derived in previous 

chapters. 
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5.3 A Stochastic Model 

As indicated in the previous section, the hydrologic uncertainty 

and the variation in waste run off make the prediction of time and 

spatial patterns of concentration difficult. Changes in hydrologic 

characteristics are such that the parameters in Eqs. 5-2 and 5-3 are 

subject to doubt. It appears that consideration of a stochastic system 

may be appropriate. In view of the fact that biological oxidation and 

reaeration are the processes of primary importance, other effects may 

be considered as disturbances to these major processes. 

The mathematical models presented in Eqs. 5-2 and 5-3 may be 

modified so as to specifically indicate the stochastic nature of the 

models. 

In order to be within the frame work of the class of problems 

presented in previous chapters, a Gaussian-Markov process must be 

assumed. The residual of BOD and DO concentration which provide the 

initial conditions for the system are assumed to be normally distrib-

uted random variables. Since the contribution of the term L is 
a 

small and results in oxygen depletion, one may combine two parameters, 

L and C , into a disturbance variable, w(t) or noise term, to the 
a a 

reaeration equat.ion 5-2. The noise term is assumed to be normally 

distributed. If the disturbances are rapid enough relative to the main 

processes, the noise may be assumed to be white. Otherwise, a colored 

noise model may be appropriate. For the sake of simplicity, white 

noise, w(t), with nonzero mean w(t) and correlation function 

E[w(t)wT(T)} = Q(t)O(t-T) 

is assumed in the following developments. 
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By adding the control variables u1(t) and u2(t) in Eqs. 5-2 and 

5-3, where u 1(t) is the source of BOD, and u2(t) is the man-made 

reaeration DO source, and adding the random input w(t), a stochastic 

model is obtained. 

(5-6): 

(5- 7) 

where the initial conditions L(t) and C(t) have mean L(t) and C(t ), 
0 0 0 0 

and variance v1 (t) and V (t ), respectively. 
O C O 

Letting x1(t) = L(t) and x2(t) = C(t), Eqs. 5-6 and 5-7 may be 

rewritten in terms of the familiar notation used in previous chapters, 

[
u/t)J [OJ + + w(t) 
u2(t) 1 

(5-8) 

or in compact form . 
x(t) = -F(t)x(t) + D(t)C (t) + C(t)u(t) + G(t)w(t) 

. s 
(5-9) 

where 

D(t) = [O ] 
k2(t) 

C(t) = I and G(t) - [:] 
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Equation 5-9 differs from the equations presented in previous 

chapters only by an extra term D(t)C (t) and nonzero mean noise. Here, 
s 

Cs(t) may be unknown but not random. The coefficients k 1(t), k2(t) 

and k3(t), as well as the statistical parameters of w(t) and x(t0 ), 

are subject to uncertainty. 

The consideration of time varying coefficients k1(t), k2(t), 

and k3(t) reflects the fact that there may be branches which merge 

with the stream of interest, and in such cases the hydrological char-

acteristics of the stream definitely are changed as a function of time 

(or distance). The time varying coefficients may also apply if, in 

a section of the stream, the velocity varies significantly. 

Although time is the independent variable considered, time can 

be converted to distance whenever the velocity of the stream is known 

as a function of distance. At discrete intervals, observation stations 

may be set up along the stream to measure conditions, and the data 

related to time. The observation models is 

fork= 1,2, ••• , where v(k) is the measurement error which is assumed 

to be gaussian with zero mean and covariance 

The procedure for measuring BOD is tedious [61] often requiring five 

days or more. The measurement of DO may be obtained rather easily. 

At each station only the DO measurement is assum~d available, corre-

sponding to a measurement matrix, 
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The second order model indicated in Eqs. 5-4 and 5-5 is not 

considered due to the difficulties of considering distributed parameter 

stochastic processes. In the next section, the estimation algorithm 

developed in Chapter III is used with emphasis on system identification 

of the process described here. 

5,4 The Problem of System Identification 

It'is of interest to sanitary engineers that the coefficients 

and parameters of various proposed mathematical models of degradable 

wastes in a receiving water can be determined logically, The assimi

lative capacity of the receiving water then can be determined and may 

serve as the basis of designing a waste treatment plant. It is also of 

interest to people in water resources management that the "critical 

reach" can be imposed in every tributary such that the use of the 

water of the entire stream system is optimized. Among the coefficients 

and the parameters mentioned k 1 and k2 which are associated with BOD 

removal and DO recovery are the most important ones. 

The value of the coefficient k 1 is usually determined by labora

tory investigation. The procedures of analysis are well documented in 

Standard Methods [61]. In fact, the BOD concentration is measured by 

the same procedure. It requires five days or more to complete an 

investigation. Since non-turbulance is required for the procedure, 

the obtained value of k 1 is only true for a quiescent system, 

The primary source of dissolved oxygen in a stream is the atmos

phere. Reaeration is governed by two fundamental laws: the law of 

solution and the law of diffusion. The formulas for deriving the 

coefficient k2 are available [62-65], and are based on these two laws 
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together with stream conditions. 

It is difficult to simulate the dynamics of a river environment, 

including the biological chains. The experimentally obtained value k1 

and k2 are unsatisfactory to researchers. The conditions which are 

controlled in simulated streams are actually subject to uncertainty 

in the field. Hence, there is ample reason for adopting a systematic 

approach for identifying the parameters of interest, which takes into 

account the stochastic nature of the problem. 

A range in a stream of interest may be divided into sections such 

that in each section the value of k1, k2 and some other parameters may 

be considered steady. A known amount of waste is discharged at a point 

upstream. There is no additional waste dumping or man-made aeration 

along the stream. The situation is equivalent to having no control 

term u(t) in Eq. 5-9, so that the model is of the form 

~(t) = -Fx(t) + D(t)C + Gw(t) 
s 

the corresponding predictor structure is 

. 
~(t) = -F~(t) + D(t)C ' + Gi(t) 

. s 

(5-11) 

(5-12) 

A set of measurement data may be obtained from a finite number of 

observation points along the stream, and the estimation algorithm of 

Chapter III may be applied. Candidate models may be selected on the 

basis of past experiments. The procedure for applying the algorithm 

is described in the following section. 

5.4.1 An Application of the Estimation Algorithm 

The nonswitching algorithm for estimation-under-uncertainty pre-

sented in Chapter III has two important aspects, the optimal estimate 
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of the output, and system identification. System identification is 

of primary importance here. Although the algorithm was not developed 

to be used repeatedly with the same data, one may use it in that way. 

Repeated application of the algorithm seems to be appropriate for 

the stream quality problem. The procedure used is summarized below. 

(1) A set of candidate models may be chosen such that each model 

represents a possible description of the system. 

(2) A set of prior probabilities is assigned to the models, and 

the algorithm for estimation-under-uncertainty is used to process the 

obtained data. 

(3) After the first iteration when the data has been exhausted, if 

the posterior probabilities of the models do not show any significant 

difference, one may repeat the same procedure adopting the final pos

terior probabilities as the new prior probabilities. 

(4) If the posterior probabilities persist without any significant 

difference after several iterations, a different set of models should 

be considered. If the posterior probabilities show some significant 

difference, or the posterior probabilities of some models are rela

tively higher than others, then models with lower posterior probabil

ities may be dropped from consideration. One may repeat the procedure 

by reassigning prior probabilities to the remaining models. 

(5) If a model represents the true system or "close" to the true 

system, then the posterior probability should tend to one in a few 

iterations. In some cases, the posterior probability of two or three 

models may be significant. This is a sign that the true system may 

be in the range of the parameters of these models. A set of candidate 

~odels may be rechosen from the range indicated, and the procedure 
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reinitiated. 

(6) There is an exceptional case when the true system is outside the 

range of the candidate models. The posterior probability of the 

"closest" model will reach unity rapidly. In this case also, a new 

set of candidates should be selected. 

The procedures presented are illustrated in a flow chart in Fig.33. 

It is noted that this type of application repeated on the same data 

set violates the premises of the estimation algorithm developed. It 

is evident when one considers that the same noise set is encountered 

over and over, as the process is repeated, and this clearly violates 

the white noise assumption. From the following results, it is seen 

that the procedure may work well even when certain fundamental assump-

tions are violated. This is a desirable feature of any procedure, 

since applications seldom match theoretical developments exactly. 

5.4.2 Example 5-1: 

This example demonstrates the use of the procedure, just outlined, 

on the stream quality problem. It is assumed that the saturation DO 

level is known and constant, k3 is zero, and the variance of the 

disturbance term w(t) is also known. The coefficients k1 and k2 as 

well as the mean of w(t), ;, are subject to uncertainty. 

A set of data is generated by simulating the stream and measure-

ments on the digital computer. The initial conditions of BOD and DO 

are assumed known. There are 35 data points obtained along the stream. 

The time between two data point is preprogrammed and is not constant. 

The dynamical structure is described by Eq. 5-11, where k3 = O, 

C = 8.5, and the disturbance w(t) has mean; and variance Q = .01. 
s 

Coefficient k1 and k2 as well as the mean of w(t), ;, are uncertain, 
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but the range of each coefficient is known. The range of possible 

values is 

kl: .01 • 02 hr-l 

k2: • 02 .03 hr-l 

.01 • 05 -1 w . mg(lit.-hr) . 

The observation model is given by Eq. 5-11, there the measurement 

noise v(k) is zero mean and has variance R = .05. The initial concen-

tration of BOD and DO are 20. mg/lit and 7.0 mg/lit, respectively. 

The actual values of uncertain coefficients used in the simulation are 

k1 = .016, k2 = .023, and w = .02. 

As a first attempt, four models are chosen by selecting the pos-

sible parameter values 

e1= kl = .01, k2 = .02, w= • 01 

82: kl = • 013, k2 = .023, w= • 02 

83: kl = • 016, k2 = .026, w= • 03 

64: k = • 019, k2 = .029, w= .04 1 

Using Algorithm 3-1 with equal prior probability of .25 for each 

model, after the first iteration the posterior probabilities of the 

models are P(S1) = .00485, P(82) = .56656, P(S3 ) = .42820, and 

P(S4) = .00039. It is seen that models 82 and 93 are dominant. After 

three iterations, however, the posterior probabilities of models 6 
2 

and 83 do not show much different. The probability plots are shown 

in Fig. 34(a). One may postulate that the following alternatives may 

be true. 
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(1) The true system has value of parameters inside the range of 

those of models 92 and 93 • 
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(2) The true system has parameters which are associated with models 

92 and 63 , but the correct parameter set may not b.e obtained from just 

one of these. 

For case (1), two additional moqels are chosen. The new set of 

models of interest is 

e1= k1 = • 013, k2 = .023, w= • 02 

62: k1 = • 014, k2 = • 024, w= . 02 

93: kl = • 015 k2 = .025, w= • 03 

64: k1 = .016, k2 = .026, 'W '::; • 03 

The above candidates are postulated in the hope that by narrowing down 

the range of the values of uncertain parameters, the true system may 

be identified. By applying Algorit~ 3-1 with equal prior probability 

again, posterior probabilities can be generated. After one iteration 

these are P(61) = .1986, P(92) = .462~5, P(93) = .18876, and P(94) 

= .15010. It is seen that model 92 is dominant. Posterior probabil

ities plots for models 91 and e2 are ~hown in Fig. 34(b). Eventually, 

after several more iterations, the po~terior prob4bility of ~odel e2 

may approach 1. Therefore, model 92 :f.s a likely tnodel. 

For case (2), a set of candidate models of interest is postulated. 

e1: k· = • 013, k2 =,= .023, w= .02 1 

92: k1 = • 013, k2 9' .026, w= • 03 

83: k1 = .016, k2 9' .023, w= .02 

64: k1 = .016, k2 =11 • 026, w= • 03 
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With the same procedure as before, posterior probabilities after the 

first iteration are P(81) = .12923, P(82) = .00262, P(83 ) = .77047, 

and P(84) = .09767. The probability plots of models 81 and 83 are 

shown in Fig. 34(c). It is seen that after three iterations, the 

posterior probability of model 83 is very close to unity. 

Model 82 of case (1) and model 83 of case (2) are favorable candi

date models. The algorithm is applied to these models, and the pos

terior probability plots are indicated in Fig. 34(d). It may be con

cluded that model 83 of case (2) is the most probable system. This 

is in fact the model which was simulated. It is noteworthy that the 

algorithm was able to identify the correct system, even though the 

application did not strictly fit the theoretical development. 

Remarks: 

(1) In practice, due to different sets of data, different favorable 

systems may result. These models may be considered candidate models 

for future use. 

(2) The estimated sag curve from the first set of trial models is 

presented in Fig. 35. It is seen that even when the correct system is 

unknown the estimate of the sag curve is still reasonably close to 

the actual trajectories. 

5.5 The Control Problem 

In this section, an open loop opti~al control problem for the 

water pollution system is posed in a deterministic sense. The result 

is used in a stochastic model of the system. A regulator problem is 

forrµulated such that a feedback correction term to the open loop control 

is obtained to keep the response near the optimal trajectories. The 
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situation of control under uncertainty is included to demonstrate a 

possible application of the algorithm developed in Chapter IV. 

5.5.1 An Optimal Control Criterion 

In current practice, two types of standards have been proposed 

for water resource management. 
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(1) Stream standard, which requires that the DO concentration in any 

part of a stream may not be lower than a specified level. 

(2) Effluent standard, which defines the maximum BOD concentration 

at any outfall. 

The stream standard limits maximal use of the stream assimilative 

capacity while the effluent standard sometimes may require increasing 

efficiency of a waste treatment to prevent violation of the standard. 

The criterion here is to optimally use the assimilative capacity of a 

stream such that stream standard is maintained, while a fixed effluent 

standard is imposed on the individual industrial pollutors as well as 

the domestic sewage plants. 

The water pollution problem is usually serious in a section of 

stream close to a municipal area, where, in addition to the domestic 

sewage discharges, the industrial pollutors cause the stream to be 

seriously polluted. It is assumed that the wastes in the area are 

under certain supervision, or the wastes are collected together and 

then discharged along the stream under some prograrrnned supervision. 

A certain length of a stream is said to be under control, where the 

concentrations of BOD and DO at the end of the section are specified 

such that further down stream the critical DO concentration will meet 

the standard requirements. 

An optimal control criterion is proposed as follows. In a section 
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of a stream, the waste should be discharged into the stream maximally, 

but the terminal conditions for BOD and DO must be met without intro-

ducing man-made reaeration. If stream velocity is known, time and 

distance may be related accordingly. For simplicity, the time domain 

formulation is presented here. The control criterion is equivalent 

to maximizing the following performance index. 

i f 
J 1 = 

0 
u 1(t)dt (5-13) 

where u1(t) is the waste discharged in mg/lit-time, which is assumed 

to be discharged continuously along the stream, and tf is the time of 

travel in between points of interest. 

This type of optimal control problem is known as "bang-bang" or 

switching control problem [34]. The derivation of the solution is 

presented in Appendix B. In the case where only one switching is 

considered for easy implementation, the control strategy is described 

by 

u1(t) ={E 
cpE 

for 
(5-14) 

for 

where both E and cp are constants and positive real numbers, and t is 
s 

the switching time. Given the boundary conditions and a specified 

value of E, one can find corresponding values of cp and t • 
s 

Since the initial concentrations of BOD and DO depend on the 

upstream residuals, they are random in nature. Due to this fact and 

other uncertain factors in the processes, the terminal conditions may 

differ from those desired levels. Hence, a closed loop control strat-

egy is needed allowing minor variations from the open loop control so 
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that the actual trajectory is close to the optimal trajectory. 

5.5.2 Stochastic Regulator Control Problem 

In this section, the solution to the stochastic regulator problem 

presented in Algorithm 4-1 is applied to the water quality control 

problem. An open loop optimal control strategy is to be modified 

using feedback so that variations about the nominal optimal trajectory 

are small. From the indicated control strategy u(t) in Eq. 5-14, the 

nominal predicted state trajectory may be obtained by solving the 

dynamic equation 

x(t) = -Fx(t) + DC + Cu(t) + Gw(t) 
s 

(5-15) 

where w(t) is the mean of the disturbance, w(t), and the initial state 

x(O) is the given mean of initial concentrations of BOD and DO., A 

stochastic regulator problem is formulated to find a control u(t) to 

insure that the actual trajectory is near that determined from Eq. 5-15. 

To accomplish this, a secondary performance measure is defined. The 

quadratic performance measure 

J2 = E[XT(tf)J\x(tf) + ~f(XT(t)A(t)X(t) + GT(t)B(t)U(t))dt} 

(5-16) 

is to be minimized, where i(t) = x(t) - x(t) is the difference between 

the actual state and the nominal state, and u(t) = u(t) - u(t) is 

the difference between the applied control and the nominal control. 

The control criterion is somewhat arbitrary but should have the effect 

of minimizing the error deviations from the nominal trajectory. 

Using Eqs. 5-9 and 5-15, the equation for the variations is 

obtained. 
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.. 
i(t) = -Fx(t) + Cu(t) + G;(t) (5-17) 

where w(t) is gaussian white noise with zero mean. If the measurements 

are obtained from observation stations measuring DO along the stream, 

the observation model is of the form 

(5-18) 

where H = [o 1]. The problem formulation is then similar to that 

which resulted in Algorithm 4-1. The solution to the problem may be 

stated accordingly. 

(1) The variational control strategy is governed by 

- -1 ~ -1 [A - J u(t) = -B CS(t)x(t) = -B CS(t) x(t/Zk) - x(t) (5-19) 

and 

u(t) = u(t) + u(t) (5-20) 

where 

(5-21) 

(2) The estimated state state x(t/Zk) is given by the estimation 

algorithm. 

( i) In between observations, tk ::S" t < tk+l 

. 
A A -
x(t/Zk) = -Fx(t/Zk) + DCs + Cu(t) + Gw(t) 

while the variance satisfies the matrix differential equation 

-FV x 

(5-22) 

(5-23) 
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where Q is the covariance matrix of the plant disturbance. 

(ii) At an observation instant tk+l' 

(5-24) 

and 

(5-25) 

where 

(5-26) 

It is seen that the estimation portion is the same as indicated 

in Chapter II, except for the nonzero mean of the disturbance con-

sidered. The control strategy for u is obtained from Algorithm 4-1, 

and then added to the nominal control. 

5.5.3 Stochastic Control Under Uncertainty 

The stochastic regulator problem presented in the previous section 

for stream pollution control is extended to cover the case where the 

model is uncertain in this section. As has been indicated, coeffi-

cient k 1 , k2 and k3 as well as statistical parameters of the initial 

state and disturbance term are subject to uncertainty due to hydrologi-

cal and temperature effects. Since the section of a stream under con-

trol is assumed to be rather short, the parameters may be considered 

unchanging in a given range, and the nonswitching control algorithm 

may be applied. 

A set of N candidate models is chosen where each model has a 



158 

set of possible value of uncertain parameters. The ith candidate model 

has dynamics described as 

. e . i. x. (t) = -Fx. (t) + DC . + Cu(t) + Gw. (t) 
1 1 si 1 

(5-27) 

Given that the model 8. is true, an open loop control u.(t) is obtained 
1 1 

such that the performance index Eq. 5-13 is maximized. For this control 

the optimal trajectory of the state for model 8. is obtained by solving 
1 

the dynamical equation 

e . i. 

. 
i. ( t) = -F . i. ( t) + DC . + Cu. ( t) + G;. ( t) 

1 1 1 si 1 1 

The variational model is then written as 

e.: 
1 

. 
x. (t) = -F .x. (t) + Cu. (t) + Gw. (t) 

1 1 1 1 1 

(5-28) 

(5-29) 

for i = 1,2, •.• ,N and where x. = x. - x., u. = u - u.;, and w. = w. - w .• 
1 1 1 1 ~ 1 1 1 

With the performance measure Eq, 5-16 modified as 

N itf ~T N NTN -T -'° p (8./Zk)E[x.(tf)Ax.(tf) + (x.Ax. + u.Bu.)dt/Zk} .L...1 r i i 1 1 1 1 1 
i= 0 

(5-3d) 

it is seen that the variational controls u. are different for every i, 
1 

which complicates the finding of a solution. In order to correspond 

to the development of the previous chapter, one may assume that 

N 
u = u - \' p (8./Zk)u. L... r 1 1 

(5-31) 
i=l 

is the normalized variational control, and the performance measure 

Eq, 5-30 is replaced by 

LN [NT ...., ( ltf -T ,., -T ,.., I } 
J 2 = p (8./Zk)E x.(tf)Ax. tf) + (x.Ax. + u Bu)dt zk 

r 1 1 1 1 1 
i=l O 

(5-32) 
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The problem is then cast in a framework similar to that which resulted 

in Algorithm 4-2. Hence, the solution of the control problem is 

summarized accordingly. 

The control strategy is governed by 

N 
u(t) = I: p (8./Zk)u.(t) 

'lr l. l. 
i= 

(5-33) 

where 

u.(t) = u.(t) + u.(t) 
l. l. l. 

(5-34) 

- -1 T [A - ] u.(t) = -B c s.(t) x.(t/Zk) - x.(t) 
l. l. l. l. 

(5-35) 

and 

( ) T -1 T 
S. t = F. S. + S. F. + S. CB C S. - A 

l. l. l. l. l. l. l. 

(5-36) 

The conditional estimate ~i(t/Zk) is given by Algorithm 3-1 with 

~inor modifications 

( 1) In between observations tk ~ t < tk+l' 

and 

• 
A A -x.(t/Zk) = -F.x,(t/Zk) + DC . + Cu(t) + Gw.(t) 

l. l. l. Sl. l. 

-F.V (t/Zk) 
l. x. 

l. 

T T 
V (t/Zk)F. + GQ.G x. l. l. 

l. 

for i = 1,2, ••• ,N, where the initial conditions at time tk are 

~i(tk/Zk) and vx_(tk/Zk). 
l. 

(2) At an observation time tk+l' 

' 

(5-37) 

(5-38) 

~i(tk+l/Zk+l) = ~i(tk+l/Zk) + ki(tk+l)[Z(k+l) - H~i(tk+l/Zk)] 

(5-39) 
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and 

(5-40) 

where 

(5-41) 

for i = 1,2, ••• ,N. The posterior probability p (e./zk) is updated at 
r l. 

time tk+l according to 

N 

p (9./Zk) = [1 + L 
r l. . 1 

. J= 
jfi 

p (e ./Zk) 
L .. r J rl 
Ji p (6./zk) 

r i 

where L .. is the likelihood ratio given by 
J l. 

L .. = 
J l. 

HV HT+ R \ 
x. 

l. 

HV HT+ R 
x. 

J 

(5-42) 

-(z - H~.)T(HV HT+ R)-l(z - H~.)]} (5-43) 
l. x. l. 

l. 

The schematic block diagram is presented in Fig. 36. It is noted 

that the control strategy presented here is a typical application of 

linear regulator theory to keep errors about a nominai trajectory 

small [36]. 

5.5.4 Example 5-2 

In this example the simulation is based on the following assump-

tions. 

(1) The velocity in various sections of the range of a stream is 
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relatively fixed. The conversion between distance and time of travel 

may then be easily computed. The range of a stream under control is 

15 hours of travel time, or tf = 15, e.g., for the average stream 

velocity of 3 fps, the range under consideration is 30 miles. 

(2) The coefficient k1 and k2 as well as the parameter ware subject 

to uncertainty. Within the time of travel, the environmental effects, 

such as the effect due to the changes of temperature or flow conditions, 

are insignificantly small, and the uncertainty is assumed to be prima-

rily due to upstream conditions. The range of the values of the param-

eters are known to be 

k1: .01 .02 hr -1 

k2: .02 • 03 hr -1 

w . .01 • 05 mg/lit-hr . 

(3) The initial concentration for BOD and DO are random variables 

with statistics 

BOD: 

DO: 

x 1(0) l'\.,N[3.2, 

x 2(o) f\J N[7., 

.5] 

.5] 

The desired terminal concentrations for BOD and DO are assumed to be 

11.88 mg/lit and 6.0 mg/lit, respectively, such that further down 

stream the critical reach will not be lower than the specified level 

(4.0 mg/lit). The other parameters are assumed known, i.e., k3 = O, 

C = 8.5 mg/lit, Q = .Ol, and R = .05. 
s 

(4) For simulation, the actual values for the uncertain parameter are 

assumed to be 

kl= .016, and w = .02 
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Two sets of candidate models are under consideration. The values 

of uncertain parameters used for each candidate model are listed as 

follows. 

Set A 

Set B 

J 

SAl: 

8A2: 

SA3: 

8A4: 

SBl: 

SB2: 

SB3: 

SB4: 

k1 = .01, 

k1 = .013, 

k1 = .016, 

k1 = .019, 

k1 = .013, 

k1 = .013, 

k1 = .016, 

k1 = .016, 

k2 = .02, 

k2 = .023, 

k2 = .026, 

k2 = .029, 

k2 = . 023, 

k2 = .026, 

k2 = .023, 

k2 = .026, 

w = .01 

w = .02 

w = .03 

w = .04 

w = .02 

w = .03 

w = .02 

w = .03 

where set B includes the actual model, SB3 • For the given boundary 

conditions, the nominal dumping control for each candidate model is 

obtained as follows [see Appendix B]. 

SAl: 

SBl: 

8B4: 

8A4: 

®B2: 

SB3: 

E = 3.386, 

E = 2.351, 

E = 1. 686, 

E = 1.215, 

E = 3.238, 

E = . 969, 

cpE = .0228 

cpE = • 3 

cpE = .485 

cpE = .621 

cpE = .099 

cpE = • 644 

mg/lit-hr 

mg/ lit-hr 

mg/lit-hr 

mg/lit-hr 

mg/lit-hr 

mg/lit-hr 

where the switching time is fixed at 3 for all models. The desired 

nominal trajectories of BOD and DO for each candidate model may be 
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computed and stored. In actual operation, due to the randomness in 

initial concentrations as well as the noise disturbances the response 

will not follow any of the nominal trajectories exactly. The terminal 

condition, which is important in guaranteeing that the critical reach 

will not be lower than 4.0 mg/lit, may not be met. A closed loop 

regulator control is used to minimize these errors. The performance 

measure used is 

It is assumed that there are 15 observation stations along the stream. 

The simulation results are presented in Fig. 37 through 42, where 

the following cases are considered and compared. 

Case 1: The closed loop control under uncertainty is used with set 

A as the candidate models. 

Case 2: Same as case 1 but set Bis adopted. 

Case 3: The closed loop control is applied with the correct model 

known with certainty. 

Case 4: Only the open loop control is applied with certainty of the 

model. 

Case 5: The open loop control is applied but the erroneous model 

SA4 is used. 

Case 6: The predicted nominal trajectories under certainty. 

In the figures, the numbers assigned to the various results cor-

respond to the cases stated above. In cases 1 and 2, the algorithm 

presented in Eqs. 5-33 through 5-43 is used with equal prior probabil-

ities. While in case 3, the algorithm presented in Eqs. 5-19 through 

5-26 is adopted. In Figs. 37 through 39, the results for BOD, DO, and 
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the control u(t) for typical single run are presented. The average 

performances of 20 runs are shown in Figs. 40 through 42. The sample 

variance is also plotted as shown in part (b) of the figures. The 

total waste dumped into the stream for the various cases is compared 

in Table VI. 

TABLE VI 

WASTE DUMPED (mg/lit) 

Case 1 Case 2 Case 3 Case 4 & 6 Case 5 

Single run 10.178 10.026 9.878 10. 632 10.879 

Average of 10.463 10.394 10.303 10. 632 10.879 20 runs 

Variance 0.365 o. 371 0.407 o. o. 

The BOD trajectories shown in Figs 37 and 40 are rather smooth, 

this is partly due to the s~il variation in dumping control shown in 

Figs. 39 and 42. The terminal concentrations of BOD and DO associated 

with closed loop control under uncertainty are shown to be better than 

those achieved by open loop control. The total waste dumped for each 

is nearly the same as shown in Table VI. Slightly more waste is 

deposited with an open loop control for a known system, but the ter-

minal concentrations are in error due to erroneous initial conditions. 

The DO trajectories presented in Fig. 38 and 41 are not as smooth 

as the BOD trajectories. This is due chiefly to the effect of additive 
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disturbances. The terminal concentrations are dependent on the initial 

concentrations. That is, with the higher initial DO concentration, 

the terminal concentration will also be higher. The average terminal 

DO concentration, when the feedback control under uncertainty is used, 

differs considerably from the nominal value, as shown in Fig. 41. If 

the penalty for terminal error in the cost function were increased, 

it is expected that the terminal concentrations would be close to the 

nominal values. Greater cost of control would probably result, meaning 

either too much waste deposited in the river or large variations about 

nominal controls which would cause difficulty in implementation. 

The predicted critical reach for various cases are shown in 

Table VII where model 6B3 is known to be the actual system. The values 

inside the parentheses indicate the time of travel in hours, when the 

critical reach occurred. It is seen that cases 1 and 2 are better 

than cases 4 and 5, since the critical reach is not exceeded by as 

great a margin and the variance is smaller. 

TABLE VII 

THE CRITICAL DO CONCENTRATION! 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

4.04658 3.99943 4,10283 3.87372 3.79050 4. 00117 
Single Run 

(37.17) (37.07) (38.83) (38.82) (37.72) (38.09) 

Averaged 3.93421 3.97175 4,00479 3. 90922 3.82528 4. 00117 20 Runs 

Variance • 05918 .05698 .04149 .17698 • 18273 --

1 
Value in parenthesis indicates the time where critical reach 

occurs. 
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The control algoritlun seems to work reasonably well for case 1, 

where the true system is not even a candidate model. When results are 

compared with that of case 2, where the true system is a candidate 

model, little difference is noted. 

5.5.5 Implementation 

A procedure for implementing the proposed control strategy for a 

given distance along the stream is described below. 

It is assumed that the region under control and the observation 

stations are fixed. Therefore, wh~never the stream velocity is changed, 

the time of travel from station to station as well as between the 

region of interest is changed. The observation time scheduled has to 

be redefined and the open loop optimal control strategy must be recom-

puted accordingly. Major changes in stream flow are usually seasonal, 

so that in daily operation one may consider the velocity as specified. 

The implementation of a continuous dumping u(t) could be diffi-

cult, so discretized dumping is considered. That is, the discharge 

pipeline is arranged along the stream with outlets separated by a 

distance corresponding to a time increment At. It should be noted that 

At is assumed to vary with stream velocity, since the spacing incre-

ment, A~ are fixed. At an outlet, the waste dumped is u(t)At. The 

concentration of waste to be dumped at the outlet is defined as 

A = u(t)At 
u 

mg/lit (5-43) 

The relationship between BOD concentration before and after receiving 

waste in the stream is described by the following equation 

A cp, + A cp = A.RcpR = A.R(cp, + cp ) w w s s . w s (5-44) 
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where A and A are the BOD concentrations of the waste and the stream, w s 

respectively, AR is the resulting concentration after mixing. rn and 
TW 

~ are the flow rates, in cubic feet per second (cfs) or million 
s 

gallon per day (MGD), of the waste discharge and the stream, respec-

tively. The various concentrations are also related by the expression 

(5-45) 

In the case where ~s >> ~w' the relation 5-45 may be approximated by 

or 

(4-46) 

It is seen that one can control either the dumping concentration or 

the dumping flow rate. In practice, the dumping -concentration is 

fixed from the output of a treatment plant. Therefore, the applied 

control is the dumping flow rate. This is achieved by adjusting the 

valve openings of the outlets for the waste discharge, and should not 

be difficult to implement. The waste flow rate should be adjusted 

according to the relationship 

cp, = w 

"A. ~ u . s 
- ~ = (.;__ )u(t)At 
A s A 

w w 

(5-47) 

In many cases, the dumping waste has some DO residuals. This 

may be taken into account by inducing its effect in the mean value of 

the disturbance term,;. 
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5.6 Summary 

In this chapter, a potential application of the algorithms devel

oped in previous chapters to a stream pollution problem has been 

described. There are certainly some factors which have not been taken 

into account individually, such as the effects due to temperature 

changes and small variations in flow conditions. These effects have 

been treated by assuming uncertainty and random disturbances in the 

problem formulation. The following remarks are made concerning this 

application. 

(1) Since BOD and DO concentrati.ons are nonnegative quantities, the 

assumption that the state variables are normally distributed is not 

true in a strict sense. The results of simulation indicates that 

violation of this assumption does not seriously detract from the 

effectiveness of the algorithm. 

(2) The consideration of the disturbance term as white noise may not 

be appropriate. This is true especially when the presence of algae in 

the water is evident. In such a case a colored noise model might best 

describe the process. The order of the state is then increased by one 

and the associated coefficients must be identified. 

(3) The seasonal effects are not considered in this application. 

Whenever the stream characteristics show great changes, the candidate 

models and the control strategy should be redefined. In daily opera

tion, however, the effect of the photosynthesis due to the presence or 

absence of day light may be taken into account by considering a dif

ferent set of candidate models. 

(4). .Abnormal situations, such as heavy rain run off, sudden weather 

~hanges, and so forth, may cause such severe changes that application 



of the suggested algorithms would give poor results. 

(5) The critical reach downstream from the controlled region may 

be monitored, and the information then could be used to update the 

desired terminal conditions such that the assimilative capacity of 

a stream may be maximally used. 

176 

Overall, the application described in this chapter is encouraging 

based on simulated results. The proposed techniques are relatively 

easy to implement, and can be extended to other engineering problems. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6.1 Surranary 

In this study a generalized treatment of estimation and control 

for systems with uncertain models has been presented. The techniques 

developed should be applicable to a large class of engineering prob

lems. Systems with continuous dynamical structures and discrete 

observations have been studied since physical applications often 

fall within this framework. It has been demonstrated that a Bayesian 

approach could be successfully used to obtain the minimum mean square 

error estil'D.ate for a system which.remains fixed during the interval 

of inte+est. In the switching case, however, the optimal solution 

requires an evergrowing memory. A suboptimal technique is achieved 

by truncating the memory requirements of the filter one stage backo 

In the control portion of this study, strategies have been 

developed in which the control is a linear combination of the state 

estimates. This corresponds to the separation principle of stochastic 

control. The control gains are obtained using deterministic methods, 

not involving the estimation portion of the problem. 

Illustrative e~amples were included to demonstrate the 

algorithms developed. A more extensive application to a water 

quality control problem was presented in Chapter v. It was 

demonstrated that e,ven though some of the assumptions of the basic 

177 
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theoretical developments were violated, reasonably good results could 

be obtained. 

6.2 Conclusions 

It has been shown that, in the nonswitching case of estimation-

under-uncertainty, the estimate given by Algorithm 3-1 is optimalo 

Moreover, if the true model is one of the candidate models, it has 

been seen that after a sufficient number of observations, the posterior 

probability of the correct model approaches unity with probability 

one. This system identification property has been demonstrated in 

Chapter V, where it was seen that the estimation algorithm may be 

used in identifying an unknown system, even though the same data 

set is used repeatedlyo / Since in this example, the algorithm was 

not used as designed, obviously one cannot conclude that good results 

will al'.'7ays be obtained when the algorithm is used in this wayo 

However, the results obtained are encouraging. In the switching case, 

it was shown that an optimal solution is not practical. The 

simulation of the suboptimal solution has indicated that good result 

may be obtained under the assumption of a small signal to noise ratio. 

The estimation algorithms developed may be implemented either on-line 

or off-line, and this is an important aspect of the solutionso 

The solution to the control problem has a cost of control 

related to the capability of identification. Once the true system 

is identified, the control strategy reduces to the optimal solution 

under certainty. Applying the developed control strategy to the 

water pollution problem has demonstrated the usefulness of the 

algorithms. Thus, the objectives stated in the introductory chapter 



are met. Although only one application area was considered in this 

study, it is thought that many types of applications are amenable 

to solutions using the estimation and control techniques developed 

in this research. 

6.3 Suggestion for Further Resea.rch 
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There are many obvious extensions of this work, and a few of the 

more important topics are suggested below. 

(1) It appears that the likelihood ratio test of decision theory, 

employing a general threshold criterion, could be put to use in 

simplifying the computational aspects of the estimation algorithm. 

That is, if at a given stage, a candidate model proved to be unlikely, 

using such a test, then the candidate could be removed from consider

ation. The remaining stages would then require less computation 

and storag.e •.... 

(2) In cases where estimation of state trajectories is of 

importance, the development of optimal smoothing algorithms under 

uncertainty is needed. Extensions of this study to the smoothing 

case appear to be possible. 

(3) In the switching case, it has been assumed that only one 

switching is possible between observationse A natural extension 

of the work presented here involves the development of solutions to 

estimation and control problems in which more than one switching may 

occure 
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APPENDIX A 

DERIVATION OF THE UPDATED CONDITIONAL 

MEAN AND VARIANCE 

It is the purpose of this appendix to derive the updated condi-

tional mean and variance presented in Eqs. 3-19 and 3-20 from, Eq. 3-18 

whenever a new measurement z(k+l) is available at time tk+l' i.e., 

the following relationships are to be derived. 

and 

n. 
l. 

= (..l_.)2 
21T 

v 
x. 

l. 

p(z(k+l)/xi(tk+l))p(xi(tk+l)/Zk) 

p(z(k+l)/Zk,ei) 

-~ ~ T -1 A ] EXP[-~ (x.-x.) V (x.-x.) 
l. l. x. l. l. 

l. 

(A-1) 

(A-2) 

A 
where x(tk+/Zk+l) and Vx. (tk+/Zk+l) are to be obtained in terms of 

l. 
A 

new measurement z(k+l) and the current estimate x( tk+/Zk) and 

Since the state variables, xi, and the observation, z, are 

normally distributed variables, the corresponding density functions 

in Eq. A-1 may be evaluated as indicated below. 

From the relationship that given a model 8., the observation is 
l. 

1 0 C: 
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described by 

(A-3) 

The density function 

m 

= ( 2\rJ2 IRil -~ T 1 r: EXP[-~ (z-H.x.) R: (z-H.x.)] 
l. l. l. l. l. 

(A-4) 

is obtainedo Since ~(tk+i'Zk) is the sufficient statistics for Zk, 

or 

m 

= (....L) 2 
2'fr 

• [z-HJ.] } 
l. l. 

I H.V H: + R.1 
l. x. l. l. 

l. 

Furthermore, by definition 

n. 
l. 

= (_!-_)2 
21T 

I v I -~ EXP 
x. 

l. 

T 
-~ EXP[-~ [z-H.~.] [H.V H.+R.rl 

l. l. l. x. l. l. 

1 [ A ]T -1[ A] -~ X.-X. V X.=X. 
l. l. x. l. l. 

l. 

l. 

(A-5) 
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Substituting Eqs. A-4, A-5, and A-6 into right hand side of Eq. A~l, 

one may obtain 

IH.V H7 + R.j \ 
1. x. 1. l. 

p(x/ tk+l) /Zk+l) = ___ n_i _1. _____ _ EXP -\[ • ] (A-7) 

(21i)T I Ri I \ k Iv I 2 x. 
1. 

where 

[ • J T 1 " T -1 I\ = (z-H.x.) R: (z-H.x.) + (x.-x.) V (x.-x.) 
1. 1 1. 1. 1. 1. 1. X, 1. 1. 

1. 

I\ T T -1 A - (z-H.x.) (H.V H. + R.) (z-H.x.) (A-8) 
1. 1. 1. x. 1. 1. 1. 1. 

1. 

By collecting terms and noting the fact that Ri and V are symmetric 
x. 

1. 

matrices, Eq. A-8 may be. rewritten as 

[ J T T -1 -1 T -1 AT -1 T -1 • = x.(H.R. H. + V )x. - 2(z R.H.+ x.V )x. + z R. z 
1. 1. 1. 1. x. 1. 1. 1. 1. x. 1. 1. 

1. 1. 

+ "xT.V -lx". " )T( T )-1( A ) - (z-H.x. H.V H. + R. z-H.x. 
1. x. 1. 1. 1. 1. x. 1. 1. 1. 1. 

1. 1. 

(A-9) 

Next, completing the squares by adding and subtracting 

T -1 AT -1 -1 + V -1)-l(H.R-.lz -l/\ (z R.H.+ x.V )(H.R. H. + V x.) 
1. 1. 1. x. 1. 1. l. x. 1. 1. x. 1. 

1. 1. 1. 

Eq. A-9 may be further reduced 
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[ J [ -1 -1 -1 T -1 -111 )]T[ T -1 -1] • = x.-(R.R. R. + V ) (R.R. z + V x. R.R. R. + V 
i ii i x. ii x. i ii i x. 

i i i 

[ T -1 , -1 -1 T -1 -lA ] 
• x.-(R.R. R. + V ) (R.R. z + V x.) + r 

i i i i x. i i x. i 
(A-10) 

i i 

where 

II -111 T -1 11 T T -1 11 
r = x.V x. + z R. z - (z-R.x.) (R.V R. + R.) (z-H.x.) ix. i i ii ix. i i ii 

i i 

T -1 -111 T -1 -1 -1 -1 -111 -(R.R. z + V x.) (R.R. R. + V ) (R.R. z + V x.) 
i i x. i i i i x. i i x. i i i i 

AT[ -1 ( T )-1 -1 -1 -1)-1 -1]11 = x. V -R. R. V R. + R. R. - V (R.R. R. + V V x. i x. i i x. i i i x. i i i x. x. i i i i i i 

T[ T )-1 -1 T -1 -1 -1 -1]11 + 2z (R.V R. + R. R. - R. R.(R1R. R. + V ) V x. 
i x. i i i i i i i x. x. i 

i i i 

+ zT[R-.1 _ ( T )-1 -1 ( T -1 -1)-1 T -1] R.V R. + R. - R. R. R.R. R. + V R.R. z i ix. i i i i ii i x. ii 
i i 

(A-11) 

Using the matrix inversion lemma[27,34] 

T T )-1 - V H.(R.V R. + R. R.V x. i ix. i i ix. 
i i i 

(A-12) 

The expression inside the bracket in Eq. A-11 can be evaluated as 

follow. 

( 1) First term, 

6,, -1 T -1 -1 T -1 
11 = V - R. (R. V R. + R. ) R. - V + R. V R. +R. ) R. ::; 0 x. i i x. i i i x. i x. i i i i i i i 
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(2) Second term, 

D. -1 T )-1 -1 [ T T )-1 ] 
12 = R. R.(H.V H.-fR. H. - R.H. I - V H.(H.V H.+R. H. 

1 1 1 x. 1 1 1 1 1 x. 1 1 x. 1 1 1 
1 1 1 

-1[ T][ T ]-1 -1 = R. R.-HI.V H, H.V H.+R. H. - R. H. = 0 
1 1 1 x. 1 1 x. 1 1 1 1 1 

1 1 

(3) Third term, 

b, -1 T -1 ... 1 -1[ T . T -1] 
22 = R. -(H.V H.-fR.) R.R. -R. I-H.V H.(H.V H.-fR.) 

1 1 x. 1 1 1 1 1 . 1 x. 1 1 x. 1 1 
1 1 1 

T -1 -1 T )-1 T -1 • H. V H. R. + R. R. (H. V H. +R. H. V H. R. 
1 xi 1 1 1 1 1 xi 1 1 1 xi 1 1 

T )-1 T -1 - (H.V H.+R. H.V R.R. 
1 x. 1 1 1 x. 1 1 

1 1 

-1 T -1 -1( T)( T ) = R. - R,H,V R.R. + R. R.-HI.V H, H.V H.-fR. 
1 1 1 x. 1 1 1 1 1 x. 1 1 x. 1 1 

1 1 1 

T -1 T -1 T -1 • H. V H. R. - (H. V H. +R.) (R. -HI. V H. )R. = 0 
1 x. 1 1 1 x. 1 1 1 1 x. 1 1 

1 . 1 1 

Hence r = O. Comparing Eq. A-10 with the bracketed part inside the 

argument of the exponential function in Eq. A-2, one may conclude that 

(A-13) 

and 

(4-14) 
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These relationships may be reduced further, using Eq. A-12 and 

[ T -1 -1]-l -1 T T . -1 H. R . H. + V H. R. = V H . (H. V H . · + R. ) 
1 1 1 x. 1 1 x. 1 1 x. 1 1. 

(A-15) 
1 1. 1 

The updated mean and variance are expressed as follow • 

• 

and 

· T T 
= [I-K.H.] V (tk+l/z1 )[1-K.H.] + K.R.K. 

1 1 X, < 1. 1. 1 1 1 
1 

where 

(A-18) 

which is referred to as Kalman gain[27,34]. 



APPENDIX B 

A CONTROL CRITERION FOR WATER QUALITY PROBLEMS 

B.l Open Loop Control Strategy 

The solution to the open loop control problems stated in Section 

5.5.1 is examined here in detail. The dynamical structure of the 

system is described by Eq. 5-9, or 

where 

. 
x(t) = f(x,u,t) 

= -F(t)x(t) + D(t)C (t) + C(t)u(t) + G(t)w(t) 
s 

D(t) = [:]. C(t) = [J and G(t) = [:] 

(B-1) 

The problem is formulated in a deterministic sense, and the disturbance 

w(t) is replaced by its mean w(t). Given the nominal initial condi-

tions x(to) and the desired terminal conditions x(tf), a control is 

to be selected to minimize a performance index 

J = 1\ -u(t) dt (B-2) 

0 

The constraint Eq. B-1 is included in the performance measure by using 

Lagrange multipliers. 

/
t:f 

J = t [-u + AT(f(x,u,t) (B-3) 

0 

191 



192 

where A is a vector to be determined. The Hamiltonian in this case is 

(B-4) 

The necessary conditions for optimality associated with this problem 

are 

aH . 
--= -A 1 = -"A1 (k1+k3) - "A2k1 
ax1 

(B-5) 

i:>H --- -"A = -"A2k2 
ox2 2 

(B-6) 

aH 
-(k1+k3)x1 + u --- x1 = 

2) "A 1 
(B- 7) 

oH 
--= 

(B-8) 

and His to be minimized with respect to the set of admissable controls. 

Where Eqs. B-7 and B-8 are as given in Eq. B-1, and "A 1f and A2f are 

chosen such that the terminal conditions of x are satisfied. This is 

a two point boundary value problem. The problem is also known as a 

"Bang-Bang" or switching problem. The switching takes place when the 

condition 

cH 
c)U 

-1 + "A = 0 
1 

is satisfied. By combining Eqs. B-5 and B-6 in vector form 

• [k1+k3 A(t) = O 

(B-9) 

(B-10) 
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and by letting T = tf - t 

• T 
A(T)=-FA(T) (B-11) 

The equation can be solved analytically when coefficients are constant. 

The solution is 

(B-12) 

and 

It is assumed that only one switching takes place. This is indicated 

from Eq. B-12 since k2 is usually greater than k1 and k3 • It is also 

convenient from the view point of implementation. One may obtain a 

solution for Eq. B-1 by assuming a switching time at t and an allow
s 

able ~ontrol strategy 

u(t) -{ E 
- cpE 

for t ~ t ~t 
O S 

where E and cp are non-negative real numbers. 

(B-14) 

In the time interval t ~ t ~ t , the analytical solution for the 
O S 

state of the system is 

(B-15) 

and 



194 

(B-16) 

In the time interval ts~ t ~ tf, the solution can be obtained backward 

in time. By letting T = tf - t, the solution is 

(B-17) 

and 

(B-18) 

At the switching time, the value of the state given by Eqs. B-15 and 

B-16 should be equal to that of Eqs. B-17 and B-18. Hence the follow-

ing relationship must hold. 

(B-19) 

and 
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+ (C (B-20) 
s 

There are three unknowns in Eqs. B-19 and B-20, E, ~, and t. One of 
s 

the unknowns may be determined arbitrarily. If a switching time is 

arbitrarily chosen, the determination of the other two unknowns is 

relatively easy. After algebraic manipulation of Eqs. B-19 and B-20, 

solutions for E and~ are obtained. 

and 

~= 
(k1+k3)(x10-x1~) 

(.l_ - A) E 
A 

s 

A - 1 s 

1 - AA s 

(B-22) 
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where 

Since the values of E and~ are non-negative, any solution of 

the above equations which violate this assumption is not acceptable. 

B.2 Determination of Terminal Conditions 

The criterion for determining the terminal BOD and DO concentra-

tions is that the wastes discharged in the region under control will 

not cause the downstream critical reach to be lower than a specified 

level. Given a specified level of DO concentration, x2c, the corre

sponding BOD concentration, xlc' at that particular reach is determined 

by ~2(tc) = O, or from Eq. B-1 

Thus, 

k2 w 
- - (C - x ) + -

s 2c k 
1 

(B-23) 

(B-24) 

where t is the time when the critical reach occurred. The problem of 
c 

finding the concentrations of BOD and DO at terminal time tf ~f the 

control region may be solved by computing the state trajectory backward 

in time from t. The result is similar to Eqs. B-17 and B-18. 
c 

and 

(B-25) 



+ (C + .!:.) [1 - EXP[k2T]} 
s k 

2 
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(B-26) 

where T = t t c - f. It is noted that T should be chosen such that x2f 

is less than x20 • 
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