
DEVELOPMENT OF A METHODOLOGY FOR HYBRID

METAMODELING OF HIERARCHICAL

MANUFACTURING SYSTEMS

WITHIN A SIMULATION

FRAMEWORK

By

DAVID BRUCE PRA 'IT

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1976

Master of Engmeering
Oklahoma State University

Stillwater, Oklahoma
1977.

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May, 1992

,: -· ' ·-.· .. :- ·.· .: ~ ~. '

0/rlaho/IM State Univ. Lillr.,

DEVELOPMENT OF A METHODOLOGY FOR HYBRID

METAMODELING OF HIERARCHICAL

MANUFACTURING SYSTEMS

WITHIN A SIMULATION

FRAMEWORK

Thesis Approved:

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I would like to express my appreciation to all those who have helped me realize a

long held dream, completing this dissertation and earning my Ph.D. First and foremost,

this work is dedicated to my wife Jan and two children Brian and Kristi. When I thank

God for the blessings in my life, you three top the list. The sacrifices you have made

without complaint over the last three years is more than I had a right to ask for. The

encouragement and support you have offered is more than I could have hoped for. To

each of you I extend my love and heartfelt thanks for never letting me lose sight of the

truly important things in life and for helping me prove that sometimes to make dreams

come true, you have to be courageous enough to listen to your heart.

I would also like to thank my parents, Harold and Lahoma Pratt. Your ever

present support and encouragement has been a source of strength. I believe that

everything of lasting worth is built upon a solid foundation. Thank you for instilling in

me a foundation based on love and a set of values that has stood the test of time.

Special recognition also goes to my doctoral committee. To my advisor Dr. Joe

Mize and to committee member Dr. Ken Case, words cannot express the debt I owe the

two of you. When I examine the list of people who have had a significant impact on

molding me into what I am today, your names are prominent. In the years to come, I

will judge my career a success if I can look back and know that I have provided students

with the same inspiration, guidance, and example that you have provided me. To

committee members Dr. Palmer Terrell, Dr. Manjunath Kamath, and Dr. Charles Bacon,

thank you for your guidance, counsel, and encouragement. I have learned many things

from each of you and for that I thank you.

111

Finally, to my friends, the residents of the CIM Center, I am glad our paths

crossed. I will always remember and cherish our friendships. In particular I would like

to thank Phil Farrington and Chuda Basnet. We "non-traditional students" have to stick

together. Thanks for blazing the trail in front of me.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION .. . 1

Motivation For The Research... 1
Motivation - A Broader Perspective... 3
Overview Of The Dissertation.. 5

II. STATEMENT OF THE PROBLEM .. . 7

Introduction... 7
Simulation In A Manufacturing Context :............................. - 9
Fundamental Issues Of Simulation Modeling........................... 12
Object Oriented Modeling.. 13
Top-Down Versus Bottom-Up Modeling................................. 15
The Impact Of OOM On The Fundamental Issues.................... 17
Addressing The Abstraction Issue: Metamodeling.................... 18
Hybrid Modeling.. 22
Unanswered Questions... 23

III. BACKGROUND OF THE STUDY... 24

Introduction... 24
Metamodeling Of Hierarchical Systems................................... 24
Hybrid Modeling.. 28
Performance Modeling Of Manufacturing Systems.................. 30
Summary... 45

IV. STATEMENT OF RESEARCH.. 48

Research Goal.. 48
Research Objectives... 48
Research Assumptions... 52
Research Contributions.. 53

V. RESEARCH METHODOLOGY... 55

Performance Measure... 55
Research Plan... 55
Observation-Based Metamodel Scenarios................................. 60
Queueing Network Metamodel Scenarios................................. 63

v

Chapter Page

Plant Level Prototype Validation... 64
Observation-Based Metarnodel Development Procedure.......... 66
Queueing Network Metarnodel Development Procedure.......... 68
Metamodel Initialization Procedure.. 69

VI. OBJECT ORIENTED REPRESENTATION....................................... 71

Introduction... 71
Object Oriented Classes... 71
Changes Made To The Environment.. 74
Conducting An OOM Experiment.. 76

VII. METAMODEL SELECTION PROCEDURE..................................... 81

VIII.

Introduction... 81
Assessment Of Candidate Workcenters.................................... 82
Availability Of A Metarnodel... 85

EVALUATION OF THE METHODOLOGY 87

Introduction... 87
Experimental Evaluation.. 87
Characteristics Common To All Scenarios............................... 88
Scenario QN1 - Tandem Queueing Network............................ 89
Scenario QN2- Tree Queueing Network.................................. 101
Scenario OB1 -State Dependent Routings ;................... 107
Scenario OB2- Multiple Concurrent Resources....................... 119
Scenario OB3 - Machine Breakdowns...................................... 127
Scenario OB4 - Finite Queue Capacity..................................... 135
Inter-Scenario Comparisons... 144
Computer Execution Times.. 146
Summary of Experimental Results... 148

IX. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS......... 150

Introduction... 150
Research Summary.. 150
Research Contributions.. 155
Recommendations For Future Research................................... 156

BIBLIOGRAPHY... 160

APPENDIXES.. 169

APPENDIX A- SMALLTALK-80 CODE FOR ENVIRONMENT
MODIFICATIONS... 170

Vl

Chapter Page

APPENDIX B - SIMULATION RUN DESIGN CONSIDERATIONS..... 204

APPENDIX C-ANAL YSIS OF VARIANCE OF EXPERIMENTAL
DATA... 210

APPENDIX D- PERSPECTIVES ON COMPARING TWO DERIVED
NUMBERS... 230

APPENDIX E- EMPIRICAL GROUPED CUMULATIVE
DISTRIBUTION FUNCTIONS...................................... 233

APPENDIX F- METAMODEL FILE SPECIFICATION......................... 236

APPENDIX G- SAS PROGRAM FOR WORKCENTER LEVEL
VALIDATION .. 242

vii

LIST OF TABLES

Table Page

I. Balance Equations For Figure 5... 37

II. Balance Equations For Figure 6... 39

III. Tandem Network Fast Simulation Recursion Equations....................... 43

IV. Metamodeling Literature Overview... 46

V. Hybrid Modeling Literature Overview... 46

VI. Significant OOM Environment Changes.. 75

VII. OOM Routing Definition... 79

VIII Manufacturing Measures Of Performance.. 82

IX. Metamodeling Candidate Assessment.. ;.. 84

X. Scenario Identification... 88

XI ANOV A Summary For QN1 Plant Level Validation #2... 98

XII. ANOVA Summary For QN1 Plant Level Validation #3...................... 100

XIII. ANOVA Summary For QN1 Plant Level Validation #3a..................... 101

XIV. ANOVA Summary For QN2 Plant Level Validation #2...................... 105

XV. ANOVA Summary For QN2 Plant Level Validation #3...................... 106

XVI. ANOVA Summary For QN2 Plant Level Validation #3a..................... 106

XVII. ANOVA Summary For OB1 Plant Level Validation #2....................... 118

XVIII. ANOV A Summary For OB 1 Plant Level Validation #3....................... 118

XIX. ANOVA Summary For OB1 Plant Level Validation #3a..................... 119

XX. ANOVA Summary For OB2 Plant Level Validation #2....................... 125

XXI. ANOVA Summary For OB2 Plant Level Validation #3 :........... 126

viii

Table Page

XXIT. ANOVA Summary For OB2 Plant Level Validation #3a..................... 127

XXIIT. ANOV A Summary For OB3 Plant Level Validation #2....................... 133

XXIV. ANOVA Summary For OB3 Plant Level Validation #3....................... 134

XXV. ANOVA Summary For OB3 Plant Level Validation #3a..................... 135

XXVI. Queue Capacities For OB4 Machines... 136

XXVII. ANOVA Summary For OB4 Plant Level Validation #2....................... 143

XXVIII. ANOVA Summary For OB4 Plant Level Validation #3....................... 143

XXIX. ANOVA Summary For OB4 Plant Level Validation #3a..................... 145

XXX. Summary Of Computer Execution Time Savings................................. 147

lX

LIST OF FIGURES

Figure Page

1. Hierarchical Structure Of A Manufacturing System........................... 12

2. Base Model Of A Hierarchical Manufacturing System...................... 20

3. Metamodel Version Of A Hierarchical Manufacturing System.......... 20

4. Metamodels And Experimental Frames... 21

5. A Simple Open Jackson Queueing Network...................................... 37

6. A Simple Closed Jackson Queueing Network.................................... 38

7. Decision Based Validation... 51

8. Observation-Based Metamodel Workcenter Structure........................ 62

9. Basic Configuration Of Plant Model.. 64

10. Detailed Configuration Of Plant Model... 65

11. Plot Of Observed Time-In-System Distribution................................. 67

12. CDF Curves For A Workcenter Group.. 68

13. OOM Class Hierarchy Diagram For Metamodeling........................... 73

14. OOM Plant Structure Definition.. 77

15. Scenario OB3 Plant Definition File... 78

16. BOM Definition File For All Scenarios... 78

17. Scenario OB3 Routing Definition File... 79

18. Workcenter QNl Structure.. 90

19. Plant Level Validation #1.. 94

20. Plant QNl Validation #1- Visual Inspection..................................... 95

21. Workcenter QN2 Structure... 102

X

Figure Page

22. Plant QN2 Validation #1 - Visual Inspection..................................... 104

23. Workcenter OB 1 Structure.. 108

24. Plant OB1 Workcenter Validation- Rho 0.50.................................... 114

25. PlantOB1 WorkcenterValidation-Rho0.75.................................... 115

26. Plant OB 1 Validation #1 - Visual Inspection..................................... 117

27. Plant OB2 Workcenter Validation- Rho 0.50.................................... 121

28. Plant OB2 Workcenter Validation- Rho 0.75.................................... 122

29. Plant OB2 Validation #1 -Visual Inspection..................................... 124

30. Plant OB3 Workcenter Validation- Rho 0.50.................................... 129

31. Plant OB3 Workcenter Validation- Rho 0.75.................................... 1.30

32. Plant OB3 Validation #1 - Visual Inspection..................................... 132

33. Plant OB4 Workcenter Validation- Rho 0.50.................................... 138

34. Plant OB4 Workcenter Validation- Rho 0.75.................................... 139

35. Plant OB4 Validation #1 -Visual Inspection..................................... 142

Xl

CHAPTER I

INTRODUCITON

Motivation For The Research

One primary motivation for this research is the author's desire to contribute to the

advancement of simulation modeling of manufacturing systems from a practitioner's

point of view. Simulation has proven to be an excellent vehicle for studying complex

systems. It is perhaps the only viable tool for analyzing the detailed dynamic behavior of

such systems. However, simulation is not without its disadvantages. Foremost on the list

of disadvantages is that simulation can be costly, requiring large expenditures of time and

resources for model construction, validation and execution.

Recent progress in the development of an advanced simulation environment at

Oklahoma State University's (OSU) Center for Computer Integrated Manufacturing has

resulted in several key advancements in both conceptual and methodological capabilities.

Among these advancements are (1) the conceptualization and demonstration (in

prototype form) of decision modularity through separate modeling constructs for

physical, information, and control elements of a system and (2) the creation of a

framework for highly reusable modeling enabled by a library of modeling primitives that

can be retrieved and reused as desired. This approach to system modeling represents a

change that is perhaps more revolutionary than evolutionary. It represents a major

paradigm shift in the construction, utilization, and maintenance of models.

A significant element of this paradigm shift is the inherent adoption of a bottom

W rather than top-down view of model construction. This bottom-up process is a direct

1

result of a previously derived library of modeling primitives. Typically, the library of

primitives includes generic representations for such things as machines and material

handlers as well as company-specific constructs for particular lathes, robots, conveyors,

AGVs, etc. By selecting modeling primitives from the library, interconnecting their

input/output ports using routings, and implementing their decision processes through

control policies, models of specific systems can be created.

If a particular combination of interconnected primitives (e.g., a representation of

a workcenter) is useful in more than one situation, it too can be stored in the modeling

database for subsequent use. This representation is no longer called a modeling primi

tive. It becomes a coupled model.

One significant advantage of having this library of reusable modeling primitives

and coupled models is a reduction in the time required to build and validate complex

models. This time advantage accrues because developing a model is no longer a "code

from scratch" process. It is a "select and connect" process using previously validated

building blocks. The obvious tradeoff is that considerable up-front work is required to

create and validate the library. Additional on-going effort is required to maintain the

validity of the library as the real system changes over time. This effort is most easily

justified by viewing the modeling library as a new type of corporate asset; an asset that

must remain congruent with the actual physical, information, and control assets of the

enterprise.

2

The modeling approach described above raises an interesting question. What if

the level of detail represented by the primitives and coupled models exceeds the level

required for a particular experimental investigation? From one perspective, a modeler

might be tempted to say "Who cares? Use it anyway. If the model provides more de

tailed information than required, no one is hurt." If computational resources are plentiful

and time is not a constraint, then perhaps this perspective is acceptable. Unhappily,

based on this practitioner's experience, neither of these is usually the case.

3

From a different perspective, a modeler might logically ask "Can some portion of

the model be represented in a less detailed way to reduce model complexity while

retaining essential behaviors?" This question is one of creating simplified yet valid

"models of models" and using them effectively and efficiently in concert with a detailed

simulation model. Expressed in the language of this research, it is a question of creating

valid metamodels and using them in a hybrid modeling environment.

Addressing this question is a challenging task. While queueing network models

offer insight into some manufacturing configurations, little controlled research has been

done in an attempt to answer this question relative to complex manufacturing systems

that are beyond the realm of queueing models. As a result, this area is a fruitful area for

academic investigation. It is in search of insights in this area that the following research

is offered.

Motivation- A Broader Perspective

The primary motivation for pursuing research in the area of hybrid metamodels is

one of resource and time savings. In today's computing environment (hardware and

software) this is a reasonable and justifiable issue. Execution times for complex simula

tion models are frequently measured in minutes or hours rather than seconds. When

alternative scenarios are evaluated or search based optimization is pursued, total elapsed

times may stretch across multiple hours or even days. Under such conditions, simulation

modeling becomes restricted by resource and time constraints. Further, using simulation

for on-line real-time decision making, an area where simulation has seen little use but has

tremendous potential, is impractical due to lengthy execution time. These circumstances

represent situations within which faster, less resource intensive simulation would have

significant value.

While everything in the above paragraph is true, it represents a shortsighted view

of computer-based simulation. Technologically, few areas are advancing faster than

4

computing hardware and software. Ultimately, faster microchips and superior processing

paradigms (e.g., parallel processing) coupled with advances in simulation languages and

methodology will reduce execution times by orders of magnitude. Uses of simulation

that are today impractical will become realizable. Will model execution time then be

come a non-issue or will practitioners simply stretch the complexity boundary such that

there will always be models that require "too much time and too many resources?" This

is not an issue that can be answered here; only time will tell. However, just raising it

casts doubt on using execution time as the sole justification for hybrid metamodels.

From a broader viewpoint two significant perspectives emerge. First, from a

scholarly perspective, understanding and insight into the behavior of complex systems

are gained during the creative process required for the development of metamodels.

Second, from an information perspective, metarnodels may be the only modeling option

available if lack of information prohibits the creation of an appropriate coupled model

from the modeling primitives in the library.

The scholarly perspective is perhaps best summarized by Ignall and Kolesar

[1979, 232]. In summarizing the use of simulation to build new ORJMS theory they

state:

.... new systems knowledge will not happen if papers reporting results of

simulation studies continue to declare in effect "this system is too compli

cated for analytic models." What we have tried to stress is the potential

value of asking "Is it really too complicated?" and following up on that

question. That is, compare the simulation results with those of a related

analytic model. If those simulation results do show the inadequacy of the

analytical model, spend some time and effort hypothesizing a functional

form for the model that would be adequate. Then test it by running new

simulations. Iterate this process until you are satisfied.

5

Perhaps on reflection, this perspective outweighs the potential reduction in model execu

tion time in terms of the most significant contribution that this research can make.

The second perspective, the information perspective, is based on the fact that

despite best efforts, there are times when bottom-up modeling may not be appropriate.

The bottom-up perspective inherently assumes that the database of modeling primitives

contains either generic or company-specific representations of all components of the real

system to be modeled. But, what if a representation is needed of a component that is so

new that information regarding its performance is only known (or estimated) in gross

terms? In this case a metamodel may be the best (or only) choice available for including

the component in a system model. Subsequent availability of detailed information may

permit the replacement of the metamodel with a detailed counterpart. This process

exemplifies the more traditional top-down approach to modeling since the metamodel

was developed prior to the detailed model. While the thrust of this research is on the

development of metamodels from their detailed counterparts (the bottom-up approach),

insights gained into interchanging metamodels and detailed models as well as insights

into metamodel implementation should be useful in the top-down approach as well.

Overview Of The Dissertation

The remainder of this dissertation is presented in eight chapters plus a bibliogra

phy and appendices. Chapter II develops the problem statement in detail, within which,

many of the points made above are explored more fully. Chapter III reviews the litera

ture relevant to this research effort. This includes literature about performance modeling

of manufacturing systems, metamodeling of hierarchical systems, and hybrid modeling.

Chapter IV presents the statement of research by defining the research goal and research

objectives. The chapter also presents the simplifying assumptions made in defining the

research and the intended contributions of the effort. Chapter V discusses the research

methodology including performance measures, experimental scenarios, and planned

6

metamodel development procedures. Chapter VI provides a brief overview of the object

oriented modeling environment within which this research is conducted. Chapters VII

and VIII present the results of the investigation. Specifically, Chapter VII focuses on the

metamodel selection procedure and Chapter Vill focuses on the results of the simulation

experiments. Chapter IX is the summary and conclusions chapter that synopsizes the

results of this effort and suggests directions that appear fruitful for additional investiga

tion. The seven appendices provide supporting material including listings of computer

code and rationalization of choices in several areas.

CHAPTERTI

STATEMENT OF THE PROBLEM

Introduction

A system is a collection of interdependent elements which work cooperatively for

the purpose of achieving a common goal. Frequently, a system is characterized by ran

dom, but statistically predictable, behavior. A~ is a representation of a system. If

the model is expressed mathematically as a set of logical and functional relationships, it

is referred to as an abstract model. A computer-based simulation model is an abstract

model implemented on a computer upon which experiments are conducted for the pur

pose of generating information useful in making decisions. Simulation modeling is only

one alternative within a set of techniques which are useful in investigating the character

istics and behaviors of a system. At one end of this spectrum of techniques is analytical

modeling, while at the other end is experimentation on the real system.

Analytical models employ techniques from stochastic processes and queueing

theory to study system performance. They are generally the most efficient method of

investigation if they are applicable. They frequently yield explicit information about the

functional form of the relationships among system variables and, under some

circumstances, can point to further analysis which will produce an optimal solution.

Unfortunately, some real systems of interest are so complex that formulating and

solving an exact analytical model is either extremely difficult or impossible. Schriber

[1987, 6], addressing the subject from perhaps an unduly negative perspective, states:

7

.... the system being modeled must often be unduly distorted to fit a

model amenable to analytic solution, and one can wind up with "the right

solution for the wrong problem." (The right solution for the wrong prob

lem is the wrong solution.)

8

Suri [1983] demonstrates a vastly more favorable outlook through his work

showing that queueing network models are robust in many practical situations. In recent

years, considerable interest has been shown in approximate solutions to analytical mod

els. Although approximate, many situations that commonly occur in manufacturing

systems can be modeled quite well [Bitran and Tirupati 1988; Kamath, Suri, and Sanders

1988; Segal and Whitt 1989].

At the other end of the spectrum of techniques, experimentation on the real

system suffers from many practical limitations. First and foremost, the real system may

not even exist. The system being investigated may be purely hypothetical. Other limit

ing factors are that it may not be economically feasible to suspend on-going operations in

order to perform the experiments, it may be too dangerous and/or destructive to test the

real system, and experimentation may take too long to complete to be of value.

Simulation modeling overcomes many of the disadvantages inherent in analytical

modeling and experimentation on the real system. It permits realistic models of arbitrary

complexity; it can represent either real or proposed systems; it effectively compresses

time; it allows repetition of the same "history" so that alternatives can be equitably com

pared; and results are typically easier to "sell" to nontechnical managers than those of

analytical solutions. Unfortunately, as stated in Chapter I, simulation is not without its

disadvantages. Foremost on the list being the high expenditure of time and money.

M"an analysis technique, simulation is recognized as a technique of high practical

value. Numerous surveys have shown that it is one of the more popular and powerful

tools available to help solve real problems [Shannon, Long, and Buckles 1980; Ledbetter

and Cox 1977; Cook and Russell1976; Paul 1991]. Of particular interest to this research

is the breadth and depth of manufacturing issues which have been studied using simula

tion [Schriber 1987; Law 1986].

9

In recent years, an approach which combines simulation with analytical results

has emerged. This approach has come to be known as hybrid mocieling [Shanthikumar

and Sargent 1983]. Although hybrid models are typically not as accurate as pure simula

tion models, they take advantage of the speed of analytical methods and are thus more

cost effective.

Even more recently, Chen and Chen [1990] and Kamath and Bhuskute [1991]

have demonstrated the validity of fast simulation. Fast simulation involves replacing the

traditional simulation event calendar with a set of recursive equations which can be

solved very rapidly. For certain classes of queueing networks, fast simulation can save

up to 80% of simulation run time. Research is currently being conducted at OSU's

Center for Computer Integrated Manufacturing to explore a hybrid approach employing

both fast and traditional simulation simultaneously within a simulation run.

The research to be conducted in this study most closely aligns with the hybrid

approaches presented in the previous two paragraphs. While it does not exactly fit under

the umbrella of either of the above approaches, it is pursued in the same spirit. That is,

an attempt is made to take advantage of the speed offered by a derived analytical rela

tionship within the framework of a manufacturing simulation model.

Simulation In A Manufacturing Context

A manufacturing enterprise is an excellent example of a system. It is a collection

of interdependent elements (physical components, information components, and control

policies). It exhibits random (usually statistically predictable) behavior. And, its ele

ments work together to achieve a common goal (to manufacture products of acceptable

10

quality at a specified rate). Manufacturing systems are frequently too large and complex

to be modeled in detail using analytical techniques.1 Operational practicalities generally

prohibit experimentation on the real system. Simulation is usually the analysis tool of

choice.

Law [1986] points out that simulation has been used to address a wide variety of

manufacturing issues. Among these issues are:

(1) The need for and the quantity of equipment and personnel

(a) Number and type of machines

(b) Number, type and physical arrangement of material handlers and support equip-

ment

(c) Location and size of inventory buffers

(d) Evaluation of change in product mix (impact of new products)

(e) Evaluation of the effect of a new piece of equipment on an existing manufactur

ing line

(f) Evaluation of capital investments

(g) Manpower requirements planning

(2) Performance evaluation

(a) Throughput analysis

(b) Makespan analysis

(c) Bottleneck analysis

(3) Evaluation of operational procedures

(a) Production scheduling (i.e., evaluating proposed policies for loading and sqeuenc

ing machines)

(b) Evaluation of policies for component part or raw material inventory levels

1As noted earlier, many queueing theorists and practioners may disagree with this statement (see for
instance Koenigsberg [1991]). Their disagreement is respectfully acknowledged.

(c) Evaluation of control strategies (e.g., for an AGV system or an FMS)

(d) Reliability analysis (e.g., effect of planned maintenance)

(e) Evaluation of quality control policies

In addressing these issues, Law [1986] goes on to state that the measures of

performance most often used in manufacturing simulation studies include:

(1) Throughput (number of jobs produced per unit of time)

(2) Time in system for all jobs (makes pan)

(3) Time jobs spend in queue(s)

(4) Time that jobs spend being transported

(5) Sizes of WIP inventories

(6) Utilization of equipment and personnel

(7) Proportion of time that a machine is broken, blocked, or starved

(8) Proportion of jobs produced which must be reworked or scrapped

(9) Return on investment of a new or modified manufacturing system

(10) Payback period of a new or modified manufacturing system

11

Simulation models of manufacturing systems are frequently formulated as hierar

chical models. An hierarchical simulation model is a simulation model that can be

represented by levels in an hierarchical composition tree. Figure 1, shown on the next

page, illustrates an example of such a composition tree for a manufacturing system.

Within the hierarchy, upper levels contain more abstract representations of system

components (e.g., plants and departments) than lower levels. Lower levels are typified

by components within the real system which are "observable" and/or "touchable" (e.g.,

machines and material handlers).

As illustrated in Figure 1, hierarchical simulation models can be formulated using

either a top-down or a bottom-up strategy. The top-down strategy is characterized by

recursive decomposition of complex, abstract model components into simpler ones. In a

manufacturing model this would involve decomposing a plant into departments then

12

departments into workcenters then workcenters into machines. Conversely, the bottom

up strategy is characterized by recursive grouping of detailed modeling constructs into

more complex ones (i.e., grouping machines into workcenters then workcenters into

departments then departments into a plant). The grouping of machines into workcenters

(or workcenters into departments, etc.) is typically based on either common material

handling or common control mechanisms and strategies or both.

TOP DOWN STRATEGY

D
E
c
0
M
p
0
s
I
T
I
0
N

WORKCENTER A
D
D
0

PLANT

I
DEPARTMENT 1

I
DEPARTMENT 2

a
a
a

WORKCENTER B

I
MACHINE X MACHINEY

BOTTOM UP STRATEGV"

s
y
N
T
H
E
s
I
s

Figure 1. Hierarchical Structure Of A Manufacturing System

Fundamental Issues of Simulation Modeling

To successfully utilize simulation modeling, the modeler must consider three

major issues; system boundary, level of abstraction and experimental frame. The system

boundary refers to the partitioning of the real system into that part which will be explic-

itly represented in the model and the remaining part whose impact will be passed as

inputs to the model. The level of abstraction of a model is a measure of the detail with

13

which the components are portrayed within the simulation model. In an hierarchical

simulation model the level of abstraction is directly related to the composition tree level

at which downward (upward) recursion stops when using the top-down (bottom-up)

modeling strategy. Decisions regarding system boundary and level of abstraction are

guided by the experimental frame. The experimental frame is a statement of the specific

purpose(s) for which the simulation experiment(s) are being conducted, in other words,

the experimental frame is determined by the information which is needed for decision

making.

Historically, one of the significant disadvantages of simulation modeling is that

models are typically constructed as single use models. That is, once used for its original

purpose, a particular model is rarely used again. When a new problem is encountered, a

new model is generated from scratch even though it may include elements contained in

earlier models. The cost of this approach, measured in both dollars and hours, causes

many to question the value of using simulation tO model large complex systems.

Object Oriented Modeling

The advent of object oriented programming (OOP), a paradigm in which all

program variables are represented as "objects", appears to be a significant advancement

toward the development of multiple use, general purpose models. OOP achieves this

advancement through implementation of four key concepts: encapsulation, message

passing, late binding and inheritance. These concepts lead to three major differences

between OOP models and procedural language models. First, OOP models are typi~ally

structured to more closely parallel the "real world" system being modeled since program

objects parallel real world objects. Second, a modeler's ability to understand, modify,

and maintain a model are improved since objects incorporate both data and methods of

operating on the data into a single coherent entity. Finally, reusability is enhanced

14

through inheritance and through the use of instances of one class as internal components

of other classes.

Using the concepts outlined above, an object oriented modeling (OOM) environ

ment is under development within OSU's Center for Computer Integrated Manufacturing.

This environment specifically targets reusability as a key development factor. As a

consequence of the reusability emphasis, the bottom-up modeling strategy is employed to

create modeling constructs for the lowest level physical, informational, and control

components of a real world manufacturing environment. These modeling constructs

comprise both generic elements and company-specific elements and are referred to as

modelin~ primitives. Mter being validated, these primitives become part of a manufac

turing modeling database.

If a particular combination of primitives is logically and/or behaviorally related,

the collected representation can also be stored in the modeling database. This collected

representation is known as a coupled model. Within a manufacturing context, examples

of coupled models include (1) a collection of machines and material handling devices

forming a workcenter, (2) a collection of workcenters forming a department, and (3) a

collection of departments forming a plant. The ability to create and save coupled models

can significantly enhance a modeler's productivity. When a simulation model is appro

priate as a decision making aid, primitives and coupled models are drawn from the

database and linked together, in a bottom-up fashion, to form an overall model of the

situation of interest.

Another key consequence of the reusability emphasis is the implementation of

separation. The implementation of separation involves the creation of separate and

distinct modeling constructs for physical elements, information flows and control deci

sions. Traditional simulation languages do not provide natural constructs for separately

and distinctly modeling physical, information, and control elements. Further, the con

structs provided for information and control are frequently hard coded and dispersed into

the model. This results in code that is hard to modify and difficult to use for multiple

purposes.

15

Designing for reusability involves identification of behaviors that are useful in

more than one context. In general this implies a system design which adheres rather

strictly to the "one component- one function" doctrine. If a component performs more

than one of the three basic functions (i.e. physical, information, and/or controVdecision),

its usage becomes limited to situations in which all of its functions are required. On the

other hand if a strict one-to-one functionality is maintained between component and

function, then the components truly become "building blocks" (i.e. modeling primitives)

from which a total system model can be constructed.

Another advantage of the separation of physical, information, and control objects

is that it allows the system modeler to think of these elements independently during

model development. This provides a more "natural" modeling environment. When

developing the physical model, the modeler need not be concerned with information or

control aspects. The process involves selecting the appropriate physical components

without being constrained by concerns regarding how to model the information flow.

Similarly, information flow is considered without regard to physical objects. This inde

pendence facilitates the creation of models with a higher degree of integrity and greater

flexibility relative to experimentation with the model.

Top-Down Versus Bottom-Up Modeling

Marked differences exist in the modeling process when the bottom-up strategy is

employed. Traditionally, the modeling process proceeds through the following steps:

o The problem statement is defined.

o The simulation experimental frame is defined based on the problem statement.

o The model's system boundary and level of abstraction are determined with re

spect to the experimental frame.

16

o The model is coded, validated, and exercised.

o The results are presented for decision making.

This is inherently a top-down process since the system boundary and level of abstraction,

as well as the model coding and validation, are a function of a specific problem statement

and experimental frame.

Within the OOM environment a markedly different modeling process is required.

This process is composed of the following major steps:

o The modeling database of reusable primitives and coupled models is defined.

o The problem statement is defined.

o The experimental frame is defmed.

o The appropriate modeling primitives and coupled models are extracted and the

"building blocks" are assembled.

o The model is exercised.

o The results are analyzed for decision making.

The fundamental difference between this modeling paradigm and traditional modeling

paradigms is that the modeling database is created prior to defining a problem statement

and an experimental frame. The building blocks must exist before a particular model can

be constructed. The development of this database is not a trivial effort. Its up-front

creation (and subsequent maintenance) is a cost in time and resources that must be care

fully considered. This approach is clearly more suitable for an enterprise which intends

to use OOM capabilities as an integral part of its business operations and not as simply an

ad hoc project analysis tool.

The a priori creation of the modeling database gives rise to an interesting ques

tion. "If the experimental frame is not known, at what level of abstraction do you create

the primitives?" In order to have maximum flexibility, the implication is that modeling

primitives must be defined at their lowest possible level so that all behaviors of potential

interest are captured. Carried to the extreme, this would imply modeling physical objects

17

at a level equivalent to atoms and molecules in physics. Although this may be conceiv

able and perhaps even doable, it is doubtful that it would be of any practical value in a

manufacturing simulation model. A more reasonable level is one which captures

"observable behaviors" within the primitives. In this context, an observable behavior is

one which impacts (or potentially impacts) the performance of the object relative to the

goals of the system.

The Impact Of OOM On The Fundamental Issues

The OOM paradigm has a significant impact on the fundamental issues of simu

lation (system boundary, level of abstraction, and experimental frame). Using the OOM

paradigm the system boundary is more fluid. The system boundary can be enlarged by

selecting additional modeling components from the database and incorporating them into

the model. Similarly, components can be removed from the model to reduce the system

boundary.

The flexibility to enlarge or reduce system boundary adds robustness to the

simulation experimental frame issue. With the ability to freely move the system bound

ary, a modeler can deal with a much broader range of experimental frames. By defining

modeling primitives at their lowest levels, they embody all potential behaviors of inter

est. This gives the modeler great depth in the range of experimental frames that can be

explored. Thus, both breadth and depth of potential experimental frames are enhanced

underOOM.

The model abstraction issue remains a problem under OOM. The problem occurs

since all models are built from a collected set of modeling primitives. The problem

manifests itself in the execution times of a model. Execution time becomes a problem if

the experimental frame encompasses significant breadth and/or depth relative to the

primitives in the modeling database. While the modeling database may contain the

appropriate modeling elements to construct the system model, the number of elements

involved may result in excessively long model execution times. The problem is one of

level of abstraction. Bottom-up modeling within OOM does not provide a convenient

mechanism to adjust the level of abstraction based on the experimental frame.

18

Conceptually, within the composition tree hierarchy, a workcenter is viewed as a

more abstract representation than the collection of machines and material handlers from

which it was built. However, within OOM it remains a collection of primitive objects

whose behaviors are modeled at low levels. The workcenter designation (within OOM)

allows certain global controls to be placed over the set of primitives but the behaviors are

still detailed. Even the coupled model of the workcenter (if one was built and saved) is

in actuality nothing more than a convenient naming convention which is used to easily

refer to the collected set rather than the individual members.

Addressing The Abstraction Issue: Metamodeling

A base model is a model whose component parts are all modeling primitives. All

models developed within the OOM environment presented above are base models. The

major question resulting from the previous section is whether a more abstract representa

tion of some portion of a base model can be implemented to improve model efficiency

while retaining the detail and accuracy of the performance measures required by the

experimental frame being investigated.

If a more abs.tract representation is used for a workcenter, it in essence becomes a

"model of a model." Within the relevant literature (see Chapter 3) many terms have been

coined for such a representation. Among the terms encountered are aggregate model,

simplified model, metamodel, reduced model, lumped model, flow-equivalent model,

auxiliary model, and repro-model. The term of choice for this research is metamodel. A·

metamodel is a "model of a model" according to Schriber [1987] who used the term in

suggesting the use of regression equations in conjunction with simulation. Since the

19

methodology to be used within this research is consistent with Schriber's suggestion, his

term for the abstraction will be used.

Within the context of this research, metamodels are used in concert with detailed

simulation models. The metamodel transparently replaces (hopefully in a modular, plug

compatible fashion) the corresponding portion of the detailed model. The intent of the

metamodeling methodology developed in this effort is that the metamodel be more

computationally efficient than the detailed simulation and yet deliver approximately

equivalent steady state behavior across the performance measures of interest. If analysis

of transient behavior is the goal of a simulation study, then metamodels of the type

considered in this research are not appropriate.

The metamodel replacement process is depicted in Figure 2 and Figure 3 on the

next page. Figure 2 is the base model of a hierarchical manufacturing plant (depicted in

OOM separation format). Note the various machine primitives, material handling primi

tives, information primitives, and control primitives throughout the plant specification.

Figure 3 shows the same plant model with a metamodel in place for Workcenter 2. Note

that for the metamodeled component, the detailed system elements have been replaced by

a single component whose aggregate behavior is represented as a sampling distribution.

The metamodeling question must be asked anew each time a base model is used

to investigate a new experimental frame. The base model must be examined in light of

the experimental frame to determine which workcenters, if any, are amenable to a more

abstract representation without significantly degrading the information content of the

experimental results. From a benefit/cost perspective, the primary benefit sought is a

gain in model execution speed and the cost incurred is an aggregate behavior rather than

a collection of detailed ones. This process of a single base model spawning multiple

metamodel versions is depicted in Figure 4 on page 21.

0
A
D
E
A
s

Plan---------------------------.. eeeeA Departmen

Figure 2. Base Model Of A Hierarchical Manufacturing System

Figure 3. Metamodel Version Of A Hierarchical Manufacturing System

20

Validation

Identification
and Creation of

Metamodels

Figure 4. Metamodels And Experimental Frames

Database
Of

Primitives
and

Coupled
Models

21

A metamodel could potentially take many forms. Any function which maps an

input variable(s) to an output variable(s) is a potential candidate. Two classes of meta

models will be considered in this research: observation-based metamodels and queueing

network metamodels. An observation-based metamodel is a metamodel which is created

by monitoring and recording the behavior of the base model over time and then attempt-

ing to discover an analytical function which mimics the relationship between the input

variable and the performance measure. A QJleuein~ network metamodel is a metamodel

which is created by formulating the base model as a queueing network and then, using

the relevant theory or published solutions, solving the network for the desired relation

ships. ·

22

Hybrid Modeling

As stated above metamodels are used in concert with detailed simulation models.

By introducing a metamodel the simulation is in effect running at two levels of abstrac

tion simultaneously. This fact by itself is not noteworthy. In many, if not most, models

developed using the top-down strategy, multiple levels of abstraction are represented

(sometimes by choice, sometimes by default). Detailed model components are developed

where needed for the experimental frame while the remaining components are left at

higher levels of abstraction. Modeling of this type is frequently referred to as multi-level

or mixed-level modeling.

The noteworthy differences about the approach pursued in this research are

twofold. First, the approach seeks true "plug compatibility" between the metamodel and

the base model. The modeler should be able to save both versions in the modeling

database and freely chose the metamodel or the base model depending on the exper

imental objectives. The system model into which either of these is fitted should be

totally indifferent to the form of representation.

The second noteworthy difference is that the approach pursued here represents

true hybrid modeling rather than multi- or mixed-level modeling. Within the context of

this research, a hybrid model is a model within which simulation techniques are used in

conjunction with analytical expressions to represent the behavior of a real or proposed

system. The functional form of the analytical expressions are determined through either

the observation of a detailed model or the solution of a queueing network.

23

Unanswered Questions

The above development leaves unanswered many questions regarding hybrid

metamodeling of hierarchical manufacturing systems. Among the unanswered questions

are:

o What coupled models within a hierarchical manufacturing model are

amenable to the creation of a "plug compatible" metamodel?

o Can the structure, inputs, and outputs of the coupled model be used to sug

gest/select an appropriate metamodel?

o Can a rule based decision process be used to suggest when a metamodel is

appropriate given a set of coupled models and an experimental frame?

o Can a valid and robust metamodel be developed by observing the behavior of

a base model over a range of input values?

This research endeavors to address these questions and gain insight into a methodol

ogy for answering them.

CHAPTER ill

BACKGROUND OF THE STUDY

Introduction

This chapter contains a formal review of the literature related to hybrid meta

modeling of hierarchical manufacturing systems. From a breadth and depth standpoint,

much of the knowledge gained from the literature below is contained in the preceding

(Problem Statement) chapter. The review here will be broken into three broad

categories: metamodeling of hierarchical systems, hybrid modeling, and performance

modeling of manufacturing systems. Considering each area independently, the amount

of literature available ranges from quite small, for metamodeling, to rather large, for

performance modeling. Significantly smaller bodies of literature are available when

combinations of the areas are considered. These combinations will be discussed within

the area that, in the author's opinion, they make the greatest contribution. Only one

major reference, Sevinc [1988], was found that simultaneously addresses all three areas.

Significant differences exist between Sevinc's work and this research. These differences

are elaborated below.

Metamodeling Of Hierarchical Systems

A metamodel is "model of a model." The concept of metamodeling first appeared

in the literature in the early 1970s. Meisel and Collins [1973] introduced the term repro

modeling as an approach to reductive modeling. They attempt to obtain a model of a

complex relationship that allows convenient and repeated use within a larger (e.g.,

24

25

hierarchical) framework. They define repro-modeling as a process for developing an

approximation to, or condensation of, a complex computer-based model. The repro

model is designed to give the same results as a complex series of models to an

appropriate level of accuracy. The advantages cited for repro-modeling are that it

overcomes many of the impediments to the broad use of complex models: computational

costs, excessive input requirements, and difficulty in interpretation of the implications of

a model.

Meisel and Collins propose two functional forms for repro-models. They are

composed functions and continuous piecewise linear functions. Of the two, continuous

piecewise linear functions are preferred because they are easier to interpret both

qualitatively and quantitatively and usually extrapolate well beyond the "region of

approximation." The concepts of repro-modeling have been applied to environmental

quality, traffic flow, and radar targeting of complex objects.

The term metamodel per se was first introduced by Blanning [1975]. Blanning's

work is focused exclusively on using metamodels for post-simulation sensitivity analysis.

Data collected from a series of simulation runs is used to construct another model to

yield sensitivity information over a very narrow range. In this context, the metamodel is

not used within a larger framework but as a stand alone sensitivity analysis tool. The

functional form for the metamodel is case specific. For cases where the form is

differentiable, Blanning provides a methodology for evaluating and interpreting the

partial derivative matrices.

Blanning observes that no theory exists to suggest how a metamodel should be

constructed. Therefore, metamodels must be constructed on an ad hoc basis. The two

recommended ad hoc techniques for metamodel construction are to infer a functional

form from observation-based data and to construct a simple analytical model. Blanning's

conclusion is that while metamodels appear powerful and useful, there is not sufficient

experience to suggest when and how they should be constructed and used.

26

Kleijnen [1979] extends the two works cited above with regression-based

methodology. The primary advantage of this approach is that the metamodels are linear

in their parameters and thus easy to interpret. An additional advantage is that the

statistical basis for regression analysis is well formed and allows quantitative measures of

the accuracy of the metamodel.

Beyond the metamodeling advantages cited by other authors, Kleijnen identifies

"selling" of results as a significant benefit. This advantage derives from the fact that

simple metamodels (particularly regression models) are easier to understand for non

technical users. Besides being easier to understand, Kleijnen cites Geoffrion [1976] in

claiming that a higher purpose is served (i.e., "the purpose of modeling is insight, not

numbers").

Two notable extensions to Kleijnen's work should be mentioned. Friedman

[1984] extended the general linear metamodel to include multiple response variables.

Her technique is known as the multivariate general linear metamodel. She validates her

method using an analysis of the mean performance of an M/M/1 queue. The second

notable extension occurred when Friedman extended her own work with canonical

correlation analysis [Friedman 1986]. This technique is a multivariate technique that is

useful for identifying relationships between sets of variables. In the metamodeling

context, it aids in the unmasking of complex relationships and interdependencies between

system control variables and response variables.

The most recent reference to metamodeling per se is found in Schriber [1987].

While Schriber does not cite any of the above metamodeling works, he takes the strong

position that regression equation metamodels should be applied more frequently. His

rationale in calling for greater use of these techniques is that they "best explain the

behavior of the performance variables."

Zeigler [1984] refers to the metamodeling concept as "aggregation" or

"simplification" within his DEVS formalism. The DEVS formalism is a hierarchical

27

bottom-up modeling formalism specifically designed for discrete event simulation. In

Zeigler's terminology, the application of aggregation to a "base" model results in a

"lumped" model. A valid aggregation is one in which the lumped model is equivalent to

the base model within the experimental frame of interest.

Zeigler presents four general forms of simplification procedures. The one

relevant to this research effort is a mapping procedure that maintains compatibility

between the base and lumped models at the input-output level. This is nothing more than

maintaining "plug-compatibility" within the hierarchical model. Two approaches are

proposed to solve for the lumped model. If the system is tractable a complete solution

may be expressed in analytical form. Otherwise numerical simulation is used to build

tables to estimate the response function.

Sevinc [1988] and Zeigler [1990] operationalize the simplification procedure

proposed by Zeigler. While this work looks promising with regard to the DEVS

formalism and the structural form of simplified models, its behavioral performance is

weak. Zeigler's DEVS formalism is the foundation for the research. A DEVS model is a

state machine whose transitions are specified by the external events happening at its

inputs, by its internal activities and by its states. Sevinc identifies two critical issues in

model simplification: (1) the reduction of the complexity of the model in terms of

(computer) memory and time and (2) to ensure that the model and its simplified version

behave closely given a goodness of fit criterion within an experimental frame of interest.

Sevinc's work focuses mainly on the reduction of model complexity. The

reduction is accomplished through model "observers" that are attached to the base model.

The observers monitor model states and transitions as the simulation progresses. These

states are "lumped" into pairs (phase and time left) that maintain consistent I/0 behavior

with the base model. The simplified model is constructed by accumulating these

"lumped" pairs and calculating transition probabilities from observed data.

28

This simplification process is demonstrated using a simulation of a local area

network model with various numbers of nodes and two different access protocols.

Sevinc's results demonstrated that (1) the simplification process using observers and

lumped models is totally compatible with the DEVS formalism and (2) the run time for

the base model increases very rapidly whereas the run time for the lumped model

increases very slowly as the number of nodes grows.

Behaviorally, Sevinc's lumped models are less encouraging. Under one access

protocol, the performance accuracy (measured by the relative number of packets

transmitted without collision) ranged from 90% to 40%, under the other protocol, 100%

to 25%. Also, in the simplification process, knowledge of the packet turnaround times is

lost.

The most important differences between the current proposed research and

Sevinc's research are:

o Sevinc places heavy emphasis on compatibility with the DEVS formalism; no

emphasis is placed on DEVS (or any other formalism) in the current effort.

o Sevinc places more emphasis on reduction of complexity than on behavioral

performance; this research strives to do exactly the opposite.

o Sevinc's research was generic within the DEVS structure; this research will seek

to take advantage of domain specific behavior (i.e., workcenters within a hierar

chical manufacturing model).

Hybrid Modeling

Hybrid simulation methodology combines both analytical methods and simulation

methods. The goal of hybrid modeling is to define models that are both more robust than

pure analytical models and less computationally complex than pure simulation models.

In this research, hybrid modeling encompasses not only analytical models working in

concert with simulation, but also observation based functions (e.g., Zeigler's lumped

models).

Like most other techniques, there are advantages and disadvantages associated

with using hybrid modeling. The advantages are:

o It exploits the benefits of both analytical and simulation modeling.

o It reduces the computational complexity of the model.

o It frequently leads to variance reduction in performance measure estimates.

The disadvantages are:

29

o A modeler must have knowledge of both analytical (i.e., metamodel) and simula

tion techniques.

o Interfacing the analytical (i.e., metamodel) and the simulation models can be

difficult.

In general, hybrid models can be thought of as a subset of the set of system simulation

models and a superset of the set of mathematical models of systems. A system that is

amenable to hybrid modeling must be decomposable from an input/output perspective.

The hierarchical manufacturing systems defined within this research fall within this

category.

Schwetman [1977; 1978] introduced the concept of hybrid simulation to solve a

class of computer system models. His results demonstrated a significant reduction in

computational expense while maintaining similar results for performance variables.

Even in cases where the decomposability assumption was not completely met, hybrid

modeling still proved valuable in narrowing the range of alternatives. Chiu and Chow

[1978], Thomasian and Gargeya [1985], and O'Reilly and Hammond [1984] have also

applied hybrid simulation to computer system models and local area networks.

Shanthikumar and Sargent [1983] present a unifying definition of hybrid

modeling. They define four classes of hybrid models by differentiating the way in which

the simulation and analytical models interact. A Class I model is a model whose

30

behavior over time can be completely decomposed into two independent parts, one

analytic and one simulation. The simulation part of the model can be carried out without

intermediate interaction with the analytic part and vice versa. If the simulation model

and the analytic model run in parallel with intermediate interaction, then the model is

Class II.

Class Ill and IV models use analytic models and simulation models, respectively,

as models of the total system. In a Class ill model, a simulation model is used in a

subordinate way to provide estimates for at least some values of the parameters in the

analytic model. Class IV models obtain values for some or all of the simulation model

parameters from the solution procedure of an analytic model. Usually the results of the

analytic model are generated and stored for use by the simulation model rather than

continuously executing the analytic model as the simulation model moves through time.

The models to be considered in this research effort are Class IV.

Many authors have cited applications of hybrid modeling to manufacturing

systems in the literature. Among them are Tolopka and Schwetman [1979], Dietrich and

March [1985], Nymon [1987], and Haider, Noller, and Robey [1986]. Unhappily, in

each of these cases the hybrid model was either Class I or Class IT rather than Class IV

which is of interest to this research.

Performance Modeling Of Manufacturing Systems 1

Performance evaluation models determine the performance measures such as

throughput or production rates, equipment utilization, work in process levels, and part

flow times that can be expected to result from a given set of decisions. These decisions

are typically expressed in terms of products to be manufactured, number and type of

machines, routings and operation sequences, number and type of material handlers, and

1The majority of the material in this section was originally developed as part of (1) an NSF proposal on
which the author was an associate investigator [Mize,Kamath, and Leemis 1990] and (2) a technical
paper co-authored by the author [Basnet et al., Object-Oriented Modelin~. 1990].

31

capacities of WIP areas. Four techniques have been used extensively for performance

evaluation of manufacturing systems. These techniques are discrete event simulation,

queueing networks, fast simulation, and Petri nets. The following sections briefly review

these techniques and their application. Broader reviews of performance evaluation

techniques for manufacturing systems are contained in Buzacott and Shanthikumar

[1980], Buzacott and Yao [1986], Segal and Whitt [1989], and Suri, Sanders, and

Kamath [1990].

Discrete Event Simulation

Discrete event simulation is the only viable approach to the detailed performance

analysis of complex manufacturing systems. Simulation models can mimic the operation

of a system in as much detail as required by the user and therefore can be very accurate.

Compared to other performance evaluation techniques, assumptions required in a

simulation model are closer to reality. Also, this is one of the few methodologies that

can be used for studying both transient and steady state behavior. Unfortunately,

simulation modeling is often a time consuming task with computationally expensive

analysis.

The history of simulation modeling can be broken into five periods: the era of

custom pro grams, the emergence of simulation specific languages, the second generation

of simulation languages, the era of extended features, and the current period [Nance

1984]. Early simulation modeling was performed using custom programs written in

general purpose computer languages, such as FORTRAN. Although this approach

proved the viability of simulation modeling, the models were typically expensive and

time consuming to design and maintain. Usually, the work done on a specific modeling

project could not be easily used during subsequent modeling efforts, even when many

modeling elements overlapped. This resulted in simulation being used primarily on large

expensive projects.

32

In the early 1960s, as the field of simulation developed further, discrete event

simulation languages such as GPSS, SIMSCRIPT, GASP, and SIMULA appeared

[Mitrani 1982; Nance 1984]. These languages were primarily written in general purpose

languages but provided generic functions and subroutines to perform many of the tasks

routinely required in simulation, such as calendar functions and statistics collection.

Unfortunately, the bulk of simulation model development effort was still spent in

developing problem specific code with little reusability. In the late 1960s, a second

generation of simulation languages emerged. In most cases, these languages were more

powerful replacements of their predecessors (e.g., GPSS V, SIMULA 67, and GASP

IIA).

In the 1970s, as the use of simulation modeling grew, developments in simulation

languages were driven toward the extension of simulation specific languages to facilitate

easier and more efficient methods of model translation and representation. Many

languages that evolved from these developments, GPSS, SLAM II, SIMSCRIPT II, and

SIMAN, are still widely and actively used today [Law and Haider 1989; Pegden 1986;

Pritsker 1986].

In the early 1980s, many changes were occurring in the computer hardware arena;

personal computers were becoming a mainstay, high resolution graphics and animation

were efficiently realizable, and artificial intelligence (AI) and expert systems were seeing

a resurgence with practical implementations [Nilsson 1980]. These changes had, and

continue to have, a direct impact on simulation methodologies. Simulation modeling is

now open to a much broader base of potential users through advances such as: menu and

icon driven model builders, expert systems to aid in the building and debugging of

models, graphs and charts to display model results both during and after execution, and

model animation to view the operation of the system as a whole or to zoom in on a

specific area of interest.

33

In the area of graphics and animation, packages such as SLAMSYSTEM,

Cinema/SIMAN, and SIMFACI'ORY [Nance 1984] are among the leading edge

competitors. The animation and graphics are typically developed and presented as an

integral part of the simulation language. By contrast, AI and expert system concepts

impact simulation modeling through a simulation "front-end" or application generators.

These tools interact with the user and ultimately result in a set of code that can be passed

directly to the simulation language. Among the leading edge competitors in this area are

EZSIM [Khoshnevis and Chen 1987], SMP [Endesfelder and Tempelmeier 1987], and

MAGEST [Oren and Aytac 1985].

Queueing Networks

Queueing network models have emerged as one of the most widely studied

analytical models of modern manufacturing systems [Buzacott and Shanthikumar 1980;

Buzacott and Yao 1986; Solberg 1977; Suri, Sanders, and Kamath 1992]. A node in a

queueing network model generally represents a workstation in the manufacturing system.

If the workstation consists of a single machine then the queueing node has a single

server. Multiple identical machines result in a multiple-server node. The entities

flowing through the queueing network represent the parts moving through the manufac

turing workstation. Preceding each node is a queue whose capacity is dictated by the

number of parts that are allowed to wait for service in front of the workstation.

If the number of entities within the queueing network is fixed then the network is

classified as closed, if the number fluctuates it is open. At a minimum, the speciflca~ion

of a queueing network model must include:

o the service time distribution for each node

o the routing sequence of parts within the network

o the arrival process for parts (open network) or the number of parts in the network

(closed network)

34

Generally, the service time and routing information is obtained from the process plans of

the manufacturing system. Techniques for transforming the process plans into queueing

network form have been demonstrated by Bitran and Tirupati [1988] and Whitt [1983].

One popular and heavily used type of queueing network model is the Jackson

Gordon-Newell type [Conway and Georganas 1989; Gelenbe and Pujolle 1987; Gordon

and Newell1967; Jackson 1957, 1963; Kelly 1976; Suri 1983; Suri and Hildebrant

1984]. These networks, commonly called Jackson networks, possess a product form

steady state distribution. The name product form derives from the fact that the steady

state distribution of the joint probabilities of the lengths of the queues is written as a

product of the marginal distributions for each queue.

Jackson networks form the basis for the Product Form Analysis (PFA) method.

Examples of the PFA method are techniques such as CAN-Q [Solberg 1977] and Mean

y alue Analysis of Queues (MV AQ) [Reiser and Laven berg 1980; Suri and Hildebrant

1984]. These techniques are used to compute throughput and utilizations in closed

networks. For certain flexible manufacturing system (FMS) applications performance

analysis using the PFA method has been successful [Buzacott and Yao 1986; Solberg

1977; Suri and Hildebrant 1984] although the product form assumptions are often

restrictive.

Baskett et al. [1975] expanded the range of product form solutions by introducing

what are commonly called BCMP networks. BCMP networks retain a product form

solution but allow for multiple classes of customers and service disciplines other than

fist-come-first-serve. Agrawal [1985] has detailed a list of assumptions required for a

product form solution to be calculable. This list includes:

o One Step Behavior: A state transition can occur only due to the departure of a

single customer from one resource to another or outside the system, or due to the

arrival of a customer from the outside,

35

o Flow Balance: The number of arrivals (in each class) at a device must equal the

number of departures (in each class) from the device,

o Device Homogeneity: A device's service rate for a particular class does not

depend on the state of the system in any way except the total device queue length

and the designated class's queue length. This assumption implies:

Single Resource Possession: A customer may not be present (waiting for service

or receiving service) at two or more devices at the same time;

NQ Blocking: A device renders service whenever customers are present, i.e., its

ability to render service is not controlled by any other device;

Independent Customer Behavior: Interaction among customers is limited to

queueing for physical devices, e.g., there should not be any synchronization re

quirements;

Local Information: A device's service rate depends only on local queue length

and not on the state of the rest of the system; and

Fair Service: If service rates differ by class, the service rate for a class depends

only on the queue length of that class at the device and not on the queue lengths

of other classes. This means that the server does not discriminate against cus

tomers in a class depending on the queue lengths of other classes.

o Routing Homogeneity: The customer routing should be state independent.

Baskett et al. [1975] have shown that these assumptions are met if a workstation satisfies

one of the following conditions:

o The service discipline is first-come-first-serve, all customers have the same

service time distribution at this station, and the service time distribution is expo

nential. The service rate can be state dependent based on the number of cus

tomers at the station.

36

o There is a single server at a service station, the service discipline is processor

sharing2 and each class of customer may have a distinct service time distribution.

The service time distributions must have rational Laplace transforms.

o The number of servers in the workstation is greater than or equal to the maximum

number of customers that can be held at this station and each class of customer

may have a distinct service time distribution. The service time distributions must

have rational Laplace transforms.

o There is a single server at a workstation, the queueing discipline is "preemptive

resume last-come-first-serve3", and each class of customer may have a distinct

service time distribution. The service time distributions must have rational

Laplace transforms.

To illustrate the application of PFA, two simple queueing network examples are

given below. The first example is an open Jackson queueing network. The manufactur

ing system is a two stage tandem line with Poisson arrivals and exponential service rates.

This network is illustrated in Figure 5 on the next page. For this network to be stable, A

must be less than Jll and Jl2. The state of this system can be defined in terms of the

number of customers at each station (nl, n2). This represents a continuous time Markov

chain.

If P nl n2 is defined as the probability of being in state (nl,n2), then the balance
'

equations (i.e, rate the process leaves a state= rate the process enters the state) for this

system are given in Table I on the next page. Using these balance equations along with

the fact that the P nl,nz's must sum to one, it can be shown that a solution to the balance

equations is given by:

2For example, when there are n customers at the station, each customer is receiving 1/n minutes of
service per minute.
3New customers have absolute priority, that is, a newly arrived customer interupts on-going service to
start its own. The interrupted customer is placed at the head of the queue and re-starts service from the
point it was interrupted when the customer causing the interruption finishes.

In the general case, this result can be extended to an m-stage tandem line where

m [A.]ni [A]
Pnl,n2, ... ,nm = Ilj=l ~ 1- ~

From these results, other performance measures of interest in a manufacturing system,

such as average number in system and average waiting time, can be calculated.

Poi~son)o I MAC~INE I --t).~ I MAC~INE I
Exponential

f.l2
Exponential

f.ll

Figure 5. A Simple Open Jackson Queueing Network

TABLE I

BALANCE EQUATIONS FOR FIGURE 5

STATES BALANCE EQUATIONS
0,0

nl,O; nl>O

O,n2; n2>0

nl,n2; nl>O, n2>0

37

38

The second example is a closed Jackson network. Recall that a closed network is

one that has a fixed number of customers within the system. A simple closed Jackson

network comprising an inspection and repair station is illustrated in Figure 6. The flow

balance equations for this network are given in Table II on the next page. The solution to

these balance equations takes the form:

1 nl n2
Pnl,n2 = C(N) P1 Pz

where:

P1 = klll1

P2 = kpz/Jlz

k is an arbitrary constant

C(N) is a normalizing constant.

P nl ,n2 is independent of the selection of the constant k, but p 1, pz, and C(N) are all

functions of k.

(N parts are always circulating) p1 + p2 = 1.0

'(I INSPECT I fail

B "' p2"' ~
)'

, ,
Exponential pass Exponential

J..ll p1 J..l2

'
,.

(pick up new part)

Figure 6. A Simple Closed Jackson Queueing Network

39

TABLE II

BALANCE EQUATIONS FOR FIGURE 6

STATES BALANCE EQUATIONS
N,O

O,N

n1,n2; n1>0, n2>0

If k assumes the value J..L 1, then P1 =1 and P2 = !l1P2/!l2· Substituting these values

and combining with the fact that the P nl,n2's must sum to one, it can be shown that:

C(N) =

N+1 for p2 = 1

From these results, other performance measures of interest in a manufacturing system,

such as stage utilizations and average throughputs, can be calculated.

For the simple two machine closed network above, the calculation of C(N) is

tractable. In the general case, however, the calculation frequently presents computational

problems [Ross 1989, 371]. These problems arise due to the combinatorial growth of the

number of terms in the summation as the number of machines and/or the number of parts

increase. In many of these cases, calculation of mean values for performance measures is

of primary concern rather than the joint distribution for the state space P. In these cases,

the mean value analysis techniques of Reiser and Lavenberg [1980] and Suri and

Hildebrant [1984] are appropriate. These recursive techniques do not require the a priori

calculation of C(N) and hence avoid the computational difficulties. Detailed discussion

of these approaches is beyond the scope of this effort.

40

The popularity of product form queueing network models can be attributed to the

fact that a relatively well developed theory exists for analyzing such networks.

Furthermore, the performance measures for such networks can be computed using

efficient algorithms [Agrawal1985; Conway and Georganas 1989; Gelenbe and Pujolle

1987], and the models are robust in practical situations [Suri 1983]. The assumption of

exponential service times is usually not satisfied by production systems such as an FMS

in which the machine times are frequently known quite accurately. Another example is

an automatic assembly station in which the assembly time is typically fixed except when

a station failure (i.e., "jam") occurs and a repair process is required. In such cases the

exponential service time models often do not represent reality faithfully, and the analysis

using an exponential assumption can be misleading [Kamath and Sanders 1987].

Furthermore, empirical observation reveals that service time distributions rarely take the

form of an exponential function.

For the analysis of large complex systems, the decomposition and aggregation

technique developed by Simon and Ando [1961] has proven useful. The primary feature

of the technique is to reduce the analysis of a large system into that of a set of smaller,

less complex problems through the use of flow-equivalent models. In general, the

decomposition and aggregation approach yields approximate results, however, in the

special case of a product form network, the results are exact.

Norton's Theorem, developed by Chandy, Herzog, and Woo [1975], is a

particular implementation of decomposition and aggregation for constructing an exact

reduced system around an arbitrary set of nodes in a product form queueing network.

The reduced system is constructed by replacing the set of nodes with a single server

flow-equivalent queue. The service rate of the flow-equivalent queue is calculated based

on the service rates and routing probabilities of the nodes forming the set. The flow

equivalent queue preserves the equilibrium distribution of the number of parts in the

system and hence the mean performance measures.

41

Agrawal [1985] also reviews many queueing approximations that can be used for

non-product form networks. Unfortunately these techniques do not, in general, preserve

the distribution of waiting times for work flow items (parts). Additionally, these

techniques typically deal with a single non-product form characteristic, whereas, a typical

manufacturing workcenter is likely to have multiple characteristics causing it to fall

outside the realm of queueing approximations.

In the last few years, there has been considerable interest in approximations to

queues with general arrival and service distributions [Kraemer and Langenbach-Belz

1976; Shanthikumar and Sargent 1980; Suri, Sanders, and Kamath 1992; Whitt 1983;

Wolff 1989], that require only the mean and variance of interarrival and service times.

These techniques are commonly called two moment approximations. Based on these

approximations, analysis techniques have been developed for non-exponential networks

[Kuehn 1979; Labetoulle and Pujolle 1980; Whitt 1983; Whitt 1984]. Some recently

developed tools and techniques for analyzing manufacturing and assembly systems use

these two moment approximations as building blocks for more complex models [Bitran

and Tirupati 1988; Buzacott and Shanthikumar 1980; Kamath and Sanders 1987;

Kamath, Suri, and Sanders 1988; Kamath 1989; Kamath 1991; Kamath and Sanders

1991; Segal and Whitt 1989]. In general, these techniques perform well at high values of

p, the workstation utilization.

The ability to handle general service times has given these techniques the

flexibility to model, although approximately, a variety of situations that commonly occur

in production systems such as, different product types, rework and scrap, changing lot

sizes, batch service, machine breakdown and repair, deterministic and probabilistic

routing, etc. [Bitran and Tirupati 1988; Segal and Whitt 1989]. Some queueing software

packages based on these two moment approximations are currently available, for

example, MANUPLAN [Suri, Diehl, and Dean 1986; Suri and Diehl1987; Suri 1988b]

and QNA [Segal and Whitt 1989; Whitt 1983].

42

Fast Simulation

The most popular form of discrete event simulation is the event scheduling

approach [Kreutzer 1986; Law and Kelton 1991]. The realization of the simulation

model involves the scheduling and execution of events on an event calendar. The

overhead load of the simulation is heavily influenced by the continual manipulation of

the time-ordered event calendar. Chen and Chen [1990] have demonstrated an approach

that eliminates the event calendar for certain classes of queueing network models. This

approach is known as fast simulation.

Chen and Chen have shown that for finite buffer, first-come-first serve, single

server tandem queueing systems, fast simulation based on recursion may save up to 80%

of run time in estimating certain system performance measures compared to event

scheduling simulation. The recursion equations, shown in Table III on the following

page, contain relationships among variables such as customer arrival time and start and

finish time of service activities. After executing the fast simulation (i.e., generating

random variates for the Pij and Ai values and solving the recursion equations), perfor-

mance measures such as utilization of nodes, waiting time of customers, waiting time at

nodes, throughput rates, and time-in-system for customers can be calculated. It should be

noted that the recursion equations do not involve any approximations. Fast simulations

should yield results identical with traditional simulation.

Kamath, Bhuskute, and Duse [1991] have extended the above approach to

consider first-come-first-served service with parallel servers. In contrast to the single

server case, the ordering of customers can change at a parallel server node. To

accommodate this the customer sequence is recalculated after each parallel server node.

Extensions to include

splitting and merging of customer flows, alternate routings, and different queue

disciplines have been proposed.

Petri Nets

TABLE III

TANDEM NETWORK FAST SIMULATION
RECURSION EQUATIONS

VARIABLES
M =number of nodes; i = 1, 2, ... , M

N =number of customers; j = 1, 2, ... , N
Pij = service time for customer j at node i

Aj = arrival time for customer j at node 1
Sij = starting time for customer j at node i

dij = departure time for customer j at node i

RECURSION EQUATIONS

dij = Sjj + pij

sij = max(di,j-1• di-1,j)

dij = max(di,j-1• di-1,j) + Pij

A Petri net is a formal graph based model for the description and analysis of

systems that exhibit asynchronous, concurrent behavior [Kamath and Viswanadham

1986; Murata 1989; Peterson 1977; Peterson 1981]. Petri nets serve as a natural

representation of the flow of information and control in such systems. Several tutorial

43

articles have appeared in the literature [Murata 1989; Peterson 1977]. The wide array of

Petri net application areas include computer networks, multi-processing and distributed

processing systems, and modem manufacturing systems.

44

The main advantages of modeling with Petri nets are (1) Petri nets can model a

system hierarchically; large complex systems can be represented in a top-down fashion at

various levels of abstraction and detail, (2) a systematic and complete qualitative analysis

of the system is possible by well developed Petri net analysis techniques, (3) the

existence of well formulated schemes for Petri net model synthesis, and (4) performance

evaluation using the class of nets known as timed Petri nets. The two most significant

disadvantages of Petri nets are (1) analysis techniques for the general case tend to be

qualitative rather than quantitative and (2) the state space for complex systems can

quickly become too large for analysis. For these reasons, many practical applications use

Petri nets with special restrictions that keep the problem tractable.

Petri nets are bipartite directed graphs. The standard Petri net model is defined

by a set of places, a set of transitions, and a set of directed arcs that connect places to

transitions or vice versa. Places may contain tokens. The marking of a Petri net

specifies the location and counts of the tokens in the places of the net. A marking

represents a state of the system being modeled. In general the places of the net represent

conditions and the transitions represent events. The dynamic behavior of the system is

modeled by the occurrence of events (i.e., the firing of transitions). When transitions

fire, tokens move from the input places of the transition to the output places resulting in a

new marking of the net and thus a new system state. In a Petri net model of a manufac

turing system, tokens may represent parts or machines, and places may serve as buffers

or machine states. In this manner, Petri nets present a graphical view of the dynamics of

the system.

Systematic techniques developed for Petri net models can be used to study the

qualitative aspects of a manufacturing system: absence/presence of deadlock, reinitializ

ability, and buffer overflows [Alla et al. 1985; Kamath and Viswanadham 1986; Likic

and Zizkovic 1989; Narahari and Viswanadham 1984]. The introduction of timed

transitions has transformed Petri nets into a powerful performance evaluation tool

[Holliday and Vernon 1987; Molloy 1982]. The literature is abundant in methods that

use timed Petri net models together with simulation and Markov process models for

performance evaluation [Balbo, Chiola, and Franceschinis 1989; Kamath and

Viswanadham 1986].

Summary

45

The literature related to hybrid metamodeling of manufacturing systems has been

reviewed. The review was conducted by examining significant works concerning

metamodeling of hierarchical systems, hybrid modeling, and performance modeling of

manufacturing systems. The results in these areas are impressive.

Metamodeling, as defined in this effort, has been discussed in the literature for

almost two decades under various names. Table IV on the next page presents a capsule

review of the literature in this area and the most significant distinctions between each

work and this effort.

Hybrid modeling or more generally a hybrid approach to modeling is a combina

tion of simulation with analytical modeling. Table V on the next page overviews the

hybrid modeling literature considered in this study.

The literature on performance modeling is .voluminous. It was reviewed above in

four specific areas: discrete event simulation, queueing network models, fast simulation,

and Petri nets. Due to the volume of works cited, it is not practical to review this

literature in table form. In terms of distinction from the research presented in this

dissertation however, all works share a common bond. While most of the works de~

with manufacturing issues, none present an approach that unifies hybrid modeling and

metamodeling. Fast simulation appears to be the most fertile area in this regard, but to

date published results are not available.

TABLE IV

METAMODELING LITERATURE OVERVIEW

SIGNIFICANT
AUTHORS MAJOR THRUST AREA DIFFERENCES FROM

THIS RESEARCH
Meisel and Collins Repro-Modeling using Not manufacturing specific
[1973] composed functions and

piecewise linear
functions

Blanning [1975] Post-simulation sensitivity No hybrid approach
modeling No methodology

Kleijnen [1979] Regression based No hybrid approach
Friedman [1984; 1986] methodology
Schriber f 19871 Regression analysis No methodology
Zeigler [1984; 1990] DEVS scheme aggregation Not manufacturing specific
Sevinc [1988] and simplification Emphasis on form over

function

TABLE V

HYBRID MODELING LITERATURE OVERVIEW

SIGNIFICANT
AUTHORS MAJOR THRUST DIFFERENCES FROM

AREA THIS RESEARCH

Schwetman [1977; 1978] Hybrid modeling using a Requires decomposition
two phase approach Not Manufacturing specific

Shanthikumar and Sargent Unified Hybrid modeling Not a methodology
D9831 class definitions

Tolopka and Schwetman Manufacturing examples Decomposition required in
[1979] of hybrid modeling each case

Dietrich and March [1985]
N ymon [1987]
Haider, Noller, and Robey

[1986]

46

47

This literature review reveals that little controlled experimentation has been

documented which focuses on the behavioral performance of hybrid metamodels of

hierarchical manufacturing systems. Therefore, this area, as define in Chapters I and II,

appears to be a fruitful area for academic investigation.

CHAPTER IV

STATEMENT OF RESEARCH

Research Goal

The principal goal of this research is to develop a methodology for hybrid

metamodeling of hierarchical manufacturing systems within a simulation framework.

The metamodeling methodology will comprise (1) a procedure to determine which

workcenters within a multi-workcenter manufacturing system are candidates for a

metamodel, (2) a procedure to create and validate an observation-based metamodel, (3) a

procedure to create a queueing network metamodel, and (4) a procedure to implement a

metamodel within a manufacturing simulation.

Research Objectives

To accomplish the goal, the following research objectives have been identified:

OBJECTIVE 1 - Metamodel Selection Procedure

Develop .a procedure !Q determine which workcenters within .a multi-workcenter

simulation model Qf .a hierarchical manufacturing system m candidates for .a metamodel.

The metamodel decision will be based on (1) the experimental frame being investigated .

and (2) the availability of a valid plug-compatible metamodel. The metamodel availabil

ity question will be based on (1) the workcenter structure (i.e., physical layout and

routings), (2) the input to the workcenter (i.e., ratio of arrival rate to service rate), and (3)

the workcenter operating characteristics (i.e., alternate routings, breakdowns, multiple

48

49

concurrent resource requirements, etc.). The metamodels considered in this research will

be those that can be classified as either queueing network metamodels or observation

based metamodels.

OBJECTIVE 2- Observation-Based Metamodel Procedure

Develop mill~£!~~ 1Q ~mill validate Uil the workcenter level) £!

steady-state observation-based metamodel.fur £! workcenter that is. amenable 1Q this class

of metamodels. The resulting metamodel will be a "plug compatible" replacement for

the candidate workcenter within a manufacturing simulation model. The workcenters in

this class will fall outside the realm of queueing networks with product form solutions.

Validation of the metamodel at the workcenter level will be accomplished by

comparing the base-model and metamodel time-in-system distribution curves. This

process will involve a statistical comparison of the two cumulative distribution function

(CDF) curves using confidence limits calculated for the base-model curve.

OBJECTIVE 3- Queueing Network Metamodel Procedure

Develop and ~£!procedure 1Q ~A steady-state g,ueueing network

metamodel for£! workcenter that is. amenable to this class of metamodels. The queueing

network models considered within the context of this research will be those with a

product form solution and overtake-free paths. The resulting metamodel will be a "plug

compatible" replacement for the candidate workcenter within a manufacturing simulation

model.

OBJECTIVE 4 - Proof of Concept Via Prototype Implementation

Implement A prototype version .Qf ~results .Qf objectives 1 through .3. in ll way

that demonstrates PIQ.Qf .Qf conc\4)t. This implementation will be accomplished using the

OSU OOM environment. The procedure developed in Objective 1 will be used to

perform the metamodel applicability and selection analysis. The metamodel

development procedures of Objectives 2 and 3 will be used to develop the library of

available plug compatible metamodels.

Implementation also will require the development of a procedure for on-line

parameterization of the metamodel. The parameter associated with the metamodel

during this research is the ratio arrival rate to service rate. The structure and operating

characteristics of the metamodel are assumed to be known and constant for a given

simulation run. However, the ratio may be dynamic or unknown or both. Through the

procedure developed in this step, the metamodel will monitor the value of the ratio and

adjust its own operation accordingly during the simulation run. 1

OBJECTIVE 5 - Plant Level Validation

Evaluate~ implementation ill~ methodology and metamodels .ru ~plant

kY.cl. .l1x conducting .a~ ill simulation experiments .Q.Ull multi-workcenter plant

model. One workcenter within the plant model will be compatible with the prototype

metamodels developed in Objective 4. Both a base-model version and a metamodel

version of the plant model will be evaluated under several decision alternatives. The

metamodel version will be judged valid if the decision outcomes resulting from its use

50

are consistent with the decision outcomes resulting from the base-model. The following

paragraph illustrates this approach.

Assume that simulation is being used to analyze the impact on time-in-system of

speeding-up a processing step for a work flow item (i.e., a part). A comparison is to be

made between a 10% speed-up and a 20% speed-up to see if a significant difference

exists. Using Figure 7 on the next page as a frame of reference, if the base model is used ·

for this analysis, then the decision can be based on whether the distance "dl" is judged to

1 The need for this procedure eventually became moot due to the particular workcenter configurations
used in this study and the steady state assumption for metamodels. This circumstance is discussed more
fully in Chapter IX.

51

be significant or not. Alternatively, if the metamodel version is used, then "d2" must be

judged. The validity of the metamodel version can be determined by comparing the two

decisions. If dl is significant then d2 also should be significant. Conversely, if dl is not

significant then neither should d2 be significant If the metamodel version shows

consistency across a range of decision alternatives then it can be judged valid within this

context.

M
E
A
N

T
I

M
E

I
N

s
y
s
T
E
M

+ Base Model J
0 Metamodel

-:-t-d1-~--------------~~~~+-o~~~~I~d2

0% 10%

SPEED UP FACTOR

Figure 7. Decision Based Validation

OBJECTIVE 6 - Future Research

Conceptualize ,a framework fur conducting- additional research to expand the

functionality of the prototype implementation~ 1Q demonstrate proof of concept. At

the conclusion of the current effort, much work will yet be required to generalize the

methodology and prototype implementation in a more robust environment. It is

anticipated that knowledge gained in this effort can be used as a foundation for further

research and to provide meaningful guidance as to the most profitable directions.

Research Assumptions

52

The primary assumption of this research is that bottom-up hierarchical modeling

of complex manufacturing systems is both viable and, in many situations, superior to

traditional top-down modeling approaches. (Perhaps defining the preferability bound

aries of this issue is a legitimate research question by itself.) If one adheres to the

traditional top-down single purpose approach to simulation then metamodels are

essentially irrelevant. Since the model would be developed to service a single

experimental effort, modification of the abstraction level (hence metamodeling) would

never arise as an issue.

An additional assumption of this research is that the metamodel question will be

considered only on a workcenter by workcenter basis. This is not intended to imply that

metamodels could not be created for groups of workcenters (i.e., departments) or that

second-order metamodels (i.e., a metamodel of a group of metamodels) should not be

investigated. On the contrary, it is anticipated that knowledge gained here can be

expanded through additional research to have broader application in the area of

simulation modeling of complex manufacturing systems.

Many potential measures of performance can be considered for a manufacturing

simulation. This research assumes that the performance measure of primary interest is

the time-in-system for work flow items. Further, it is assumed that the distribution of

this statistic is required. In other words, besides estimates of the mean and variance of

time-in-system, the modeler is interested in percentile measures of its dispersion. As was

53

stated above, it is this assumption that forces potential queueing network metamodels to

have a product form solution.

Several different workcenter variables could justifiably be considered for

paramaterizing the metamodels. Among the most logical candidates, based on queueing

literature, are mean arrival rate, arrival rate variability, mean service rate, and service

rate variability. For this research, the author assumes that the single most significant

variable in a workcenter model is the ratio of mean arrival rate to mean service rate. This

assumption is based on the central role that this ratio (typically symbolized by p) plays in

product form solutions of queueing networks. The mean service rate for a multi-station

workcenter with series stages will be the service rate of the slowest stage. The slowest

stage will be used since it represents the bottleneck stage and generally the controlling

rate for the workcenter throughput.

Since the primary goal of this research is the development of a methodology, the

experimental design for validation is directed toward proof of concept rather than toward

the development of a comprehensive library of metamodels. The test cases presented

represent a realistic set of scenarios that have practical merit based upon the author's

experience in industry.

Research Contributions

The major contribution anticipated from this research is the conceptualization

and validation of a methodology to create observation-based metamodels for use in

hybrid simulation of complex manufacturing systems. For modeling practitioners, the

development of this methodology offers significant rewards in two areas. First,

enhancement of the computational efficiency of simulation facilitates its use in on-line

real-time decision making. This area offers potentially large rewards and yet remains

virtually untapped by simulation due to lengthy execution times. Second, the develop

ment of metamodels will hopefully lead to the creation of basic knowledge about systems

54

and operations. This basic knowledge is in the form of insights regarding the functional

form of the relationships between input and performance variables of a workcenter. It is

this sentiment that is reflected in the statements of Hamming [1962], Geoffrion [1976],

and Ignall and Kolesar [1978] who each paraphrased the maxim that "the purpose of

modeling is insight, not numbers."

Other contributions anticipated from this research include:

o Demonstration of the viability of plug-compatible alternate representa

tions of coupled models within the OSU OOM environment.

o Demonstration of the viability of hybrid modeling within the OSU OOM

environment.

o Conceptualization and implementation of a procedure to initialize a pa

rameterized metamodel although the steady-state value of the parameter is

unknown and/or dynamic.

o Demonstration of the OSU OOM environment as a research test bed.

CHAPTER V

RESEARCH METHODOLOGY

Performance Measure

Within the scope of this research, the performance measure of primary interest is

the time-in-system for work flow items (parts). In related literature this performance

measure is sometimes designated as the sojourn time or the passage time. This research

addresses the statistical distribution of the time-in-system random variable, not just the

mean and the variance as is frequently the case. The research experiments described in

the following section collect data from which an empirical cumulative distribution

function of time-in-system is constructed. This empirical function becomes the basis of

the metamodel validation procedure.

Research Plan

To achieve the goals and objectives outlined in Chapter IV, the research will be

performed in phases as detailed below. There are eight major phases. Phase I finalizes

the experimental factors that will be used in the subsequent development and validation

phases. Phase II develops and validates the observation-based metamodel procedures. It

is anticipated that this phase will be the most intellectually challenging. Phase III

develops the queueing network metamodels. This phase will build from known,

published solutions and is included to demonstrate the robustness of the hybrid

metamodeling approach. Phase IV develops the rule based metamodel selection

procedure. This phase is perhaps the second most intellectually challenging. Phase V is

55

56

the prototype implementation. The most significant challenge of this phase will be

conquering the subtleties of object oriented programming to bring the intellectual

accomplishments to fruition. Phase VI validates the prototype hybrid metamodeling

methodology. This phase is the longest phase. It is primarily devoted to running

simulation models and analyzing the decision-based results. During this phase the merits

of the implemented prototype of the methodology will be evaluated. Phases VII and VIII

are the wrap-up phases. Phase VII is devoted to identifying areas of future research.

Phase VIII represents the culmination of the research through preparation of the final

dissertation document. The phase dependency relationships are presented in a

subsequent section. Detailed phase and task descriptions follow immediately.

PHASE I - Finalize Experimental Factors

The goal of this phase is to finalize the specification of experimental factors that

will be used during metamodel development and plant level validation. The factors (and

anticipated number of different levels) are outlined below. Additional detail regarding

the levels of the factors is presented in the sections titled: Observation-Based Metamod

els, Queueing Network Metamodels, and Plant Level Decision-Based Validation.

o Factors related to observation-based metamodel development:

workcenter structure; number of machines and routings; 1 value

workcenter input values; arrival rate to service rate ratios; 4 values

sets of workcenter operating characteristics; 4 values

run repetitions to generate time-in-system statistics; 5 values

o Factors related to observation-based metamodel validation:

workcenter input values (arrival rate to service rate ratios); 2 values

run repetitions to validate metamodels; 5 values

o Factors related to plant level metamodel validation:

plant structure; structure of non-metamodel workcenters; 1 value

57

decision alternatives; Case I- 2 alternatives; Case II- 2 alternatives

plant input values (arrival rates) 2 values.

The combination of factors described above will result in a minimum of 480

simulation runs (breakdown provided below) to complete the experimental portion of the

research. Running on an IBM PS/2 Model 70 personal computer, each workcenter level

validation run is expected to take approximately 15 minutes; each plant level run 30

minutes. This estimate brings the total simulation time to 210 hours.1

PHASE II- Observation-Based Metamodels

Task 1: Construct the base workcenter models to be used in developing the

observation-based metamodels. There will be one base workcenter model (and

subsequently one observation-based metamodel) for each combination of workcenter

structure X operating characteristics (4 combinations).

Task 2: Run the base workcenter models to collect the time-in-system

statistics. Eighty simulation runs will be required (4 combinations X 4 input values X 5

reps).

Task 3: Analyze the time-in-system statistics to develop the four

observation-based metamodels. The section title"Observation-Based Metamodel

Development Procedure" later in this chapter outlines this procedure.

Task 4: Validate the observation-based metamodels. Forty new simulation

runs will be required to generate time-in-system statistics for two new input values (4

combinations X 2 input values X 5 reps). The eight simulated time-in-system curves (4

combinations X 2 input values) will be statistically compared to the eight corresponding

curves generated by the metamodels.

1 The estimated run times proved quite accurate. Unfortunately, the number of runs required, and the
resulting total execution time, increased significantly due to the nature of the validation procedure
discussed in Chapter VII. The availability of multiple computers on which to simultaneously execute
simulation runs served as a mitigating factor.

58

PHASE III- Queuein& Network Metamodels

Task 1: Construct the base workcenter models to be used in developing the

queueing network metamodels. There will be one base workcenter model (and

subsequently one queueing network metamodel) for each of the two workcenter

configurations.

Task 2: Formulate the two queueing network base models as queueing

networks with a product form solution, then solve the networks to develop the meta

models. The section title "Queueing Network Metamodel Development Procedure" later

in this chapter outlines this procedure. No validation step is included since the meta

models are based on previously published results from the queueing literature. 2

PHASE IV - Metamodel Selection Procedure

Develop the procedure to determine which workcenters within a multi-workcenter

manufacturing system are candidates for a metamodel. This rule-based decision

procedure will consider the experimental frame being investigated and the availability of

a valid plug-compatible metamodel.

PHASE V - Prototype Implementation

Task 1: Develop the procedure for on-line initialization of the metamodel.

A subsequent section titled "Metamodel Initialization Procedure" outlines the develop

ment of this procedure. 3

Task 2: Implement a prototype metamodeling capability within the OSU

OOM environment to demonstrate proof of concept. This phase will be primarily

2Jn reality the "Simulation Run Design Considerations" in Appendix B are nothing more than a validation
procedure for the queueing network metarnodels.
3 As stated in Chapter IV, the need for this procedure eventually became moot due to the particular
workcenter configurations used in this study and the steady state assumption for metarnodels.

devoted to writing and/or modifying the Smalltalk-80 code required to implement the

procedures and results above.

PHASE VI - Prototype Validation

Task 1: Construct the base plant model to be used in validating the

metarnodels at the plant level. A subsequent section titled "Plant Level Prototype

Validation" outlines this procedure. There will be six basic plant models. Each will

contain three workcenters. Workcenters 1 and 3 will be unchanged in each of the four

59

plant models. W orkcenter 2 will be a workcenter corresponding to the structure and

operating characteristics of each of the base workcenter models used in Phases II and III

during the development of the metamodels (6 variations).

Task 2: Run the plant models to collect mean time-in-system statistics for

each decision alternative. One hundred and eighty simulation runs will be required

(3 decision alternatives4 X 6 variations X 2 input values X 5 reps).

Task 3: Repeat tasks 1 and 2 using the metarnodels developed during

Phases II and III. One hundred and eighty additional simulation runs will be required

(3 decision alternatives X 6 metarnodels X 2 input values X 5 reps).

Task4: Validate the metarnodeling methodology by comparing the

decision outcomes from the alternative comparisons. The comparisons will be made in

the following pairwise manner (the Cases and Alternatives are defined in a subsequent

section titled "Plant Level Prototype Validation"):

Decision 1: Case I-1 versus Case I-2

Decision 2: Case II-1 versus Case II-2.

For each decision the mean time-in-system from the base model runs for each of the two

alternatives will be compared to decide if a significant difference exists. The same

4Case I - Alternative 2 and Case II - Alternative 1 are actually the same alternative thus there are only
three unique alternatives.

60

comparison will be made for the mean time-in-system from the metamodel runs. For the

metamodels to be judged valid, the significant/not-significant decisions must be

consistent.

PHASE VII - Framework for Future Research

Develop a long term framework providing direction for future research in this

area. At the conclusion of the previous phases, a prototype implementation of the

methodology will have been achieved and its validity tested. To gain full benefit from

this methodology and provide additional (more robust) functionality, a planned approach

to additional research is required. This phase will outline a coherent, consistent approach

in this regard.

PHASE VIII - Summarize Results and Prepare Final Format

Summarize and document the research results. This phase represents the

culmination of the research activities and the presentation of results in final form.

Observation-Based Metamodel Scenarios

The purpose of this section is to document the workcenter structure, operating

characteristics and workcenter inputs that are to be evaluated during the observation

based metamodel development phase.

As stated earlier, observation-based metamodels are utilized when a workcenter

cannot be formulated as a queueing network with a product form solution. The

following characteristics are among those that violate the product form solution

assumptions:

o load-dependent alternate routings (i.e., based on workcenter queue lengths)

o multiple concurrent resource requirements (i.e., machine and operator, etc.)

o machine breakdowns

61

o finite buffers leading to blocking of machines.

The observation-based metamodels for this research will be created by taking a

single workcenter structure (number of machines and primary routings) and adding each

of the above operating characteristics in turn to create four non-product form scenarios.

The workcenter structure to be used throughout will be a two stage structure composed of

a single machine followed by three parallel alternates as illustrated in Figure 8 on the

next page. Each work flow item entering the workcenter requires an operation on the

single machine followed by an operation from one of the three parallel alternates. The

stages will be balanced in terms of expected throughput.

Four different levels of workcenter input will be used to develop the

parameterized observation-based metamodels. The input variable will be the ratio of

workcenter arrival rate to stage service rate, p. The four levels to be used are: 0.25, 0.40,

0.60, and 0.80. To validate the metamodels, input values of 0.50 and 0.75 will be used.

The observation-based metamodel scenarios can be summarized as follows:

Characteristics Common to All Scenarios

p- Arrival Rate/Service Rate Ratio (Development): 0.25, 0.40, 0.60, 0.80;

p- Arrival Rate/Service Rate Ratio (Validation): 0.50, 0.75;

Arrival Process: Poisson with rate based on p;

Service Rate Distributions: Triangular; stage mean: 1 time unit: minimum and maxi-

mum at mean ± 10%;

Workcenters are dedicated to a single work flow item (i.e., no part mix);

Lot sizes are fixed at 1;

Material Handling time is fixed at zero;

OPERATION 1

PART
JOINS

SHORTEST
MACHINE

QUEUE

OPERATION 2

Figure 8. Observation-Based Metarnodel Workcenter Structure

Scenario 1 (State De_pendent Alternate Routing)

62

For operation 2, the work flow item is routed to the parallel alternate with the shortest

waiting queue.

Scenario 2 (Scenario 1 plus Multiple Concurrent Resources)

For all operations, the machines require an operator assisted set-up. Set-up time is

deterministic and 10% of the mean service time for each stage. A single operator

services the entire workcenter.

Scenario 3 (Scenario 2 plus Machine Breakdowns)

All machines are subject to breakdown. Breakdowns require the operator full time

until the repair is completed. Breakdown and repair distributions are Triangular with

parameters to be set based on exploratory runs.

Scenario 4 (Scenario 3 plus Finite Queues)

The three parallel alternate machines required for stage 2 are all preceded by finite

queues (queue capacity to be determined in exploratory runs). If all alternate ma

chine queues are full, machine 1 becomes blocked.

Queueing Network Metamodel Scenarios

The purpose of this section is to document the workcenter structure, operating

characteristics and workcenter inputs that are to be evaluated during the queueing

network metamodel development phase.

These scenarios involve workcenter structures that are amenable to queueing

network analysis with product form solutions. Further, these scenarios will involve

workcenters with overtake-free paths so that known results from the literature can be

used to calculate the time-in-system distributions.

Characteristics Common to Both Scenarios

p - Arrival Rate/Service Rate Ratio (Development): 0.25, 0.40, 0.60, 0.80;

Arrival Process: Poisson with rate based on p;

Service Rate Distributions: Exponential; stage mean: 1 time unit;

W orkcenters are dedicated to a single work flow item (i.e., no part mix);

Lot sizes are fixed at 1;

Material handling time is fixed at zero;

Scenario 1 (Tandem Network)

63

This tandem network will comprise three machines in series. Work flow items must

visit each machine in sequence before exiting the workcenter.

64

Scenario 2 (Tree Network)

This tree network will comprise one machine followed by two machines with prob

abilistic routing. The probabilistic routing will be random (i.e., a 50/50 chance of

being routed to either stage 2 machine).

Plant Level Prototype Validation

The purpose of this section is to document the plant structure and decision

alternatives that are to be evaluated during the plant level validation phase. The basic

plant model will contain three workcenters as shown in Figure 9 below. Workcenters 1

and 3 will remain unchanged in each plant validation run. Workcenter 2 will be a

workcenter corresponding to the structure and operating characteristics of each of the

base workcenter models used in Phases IT and Ill during the development of the

metamodels. The exact configuration of workcenters 1 and 3 is illustrated in Figure 10

on the next page.

PANT

WORKCENTER 1

INCOMING
INSPECTION

WORKCENTER 2

METAMODEL
WORKSTATION

PART FLOW

WORKCENTER 3

OUTGOING
INSPECTION

Figure 9. Basic Configuration Of Plant Model

WORKCENTER 1

INCOMING
INSPECTION KITTING

WORKCENTER 2

METAMODEL
WORKSTATION

PART FLOW

WORKCENTER 3

OUTGOING
PACKING INSPECTION

Figure 10. Detailed Configuration Of Plant Model

65

Two decision cases will be evaluated comprising four decision alternatives. Case

I decisions concern the merits of speeding up the incoming and final inspection stations

in workcenters 1 and 3. The two alternatives to be evaluated are: leave the inspection

stations as-is (a.k.a., slow) versus speed-up the inspection stations by reducing the mean

service time by 10% (a.k.a., fast). Case II decisions concern the queue discipline strategy

used in workcenters 1 and 3. The two alternatives to be evaluated are: always route parts

to the shortest available queue (a.k.a., shortest) versus preferential queueing to machine

2 unless its waiting queue is three or more longer than machine 1 (a.k.a., preferred).

The plant level decision-based prototype validation can be summarized as

follows:

Case I-1: No Inspection Station Speed-Up

Case I-2: Speed-Up Inspection Station

Case II-1: Workstations 1&3 Queue Strategy: Shortest Available

Case II-2: Workstations 1&3 Queue Strategy: Preferential

66

Observation-Based Metamodel Development Procedures

The purpose of this section is to document a preliminary outline for the

observation-based metamodel development procedure. The metamodels for the

observation-based class will be developed using the following general approach. For

each combination of workcenter structure and operating characteristics (see Observation

Based Metamodel Scenarios above), do the following:

Stej) 1 - Base Model Data Generation

For a given workcenter input value (p), run five repetitions (reps) of the

base model workcenter structure and collect time-in-system observations.

Stej) 2 - Plot Data Points

For each rep, plot percentile points for the time-in-system statistic. The x

axis of this plot will represent time-in-system (TIS) values. The y-axis

will represent cumulative percentage of the collected time-in-system

values (i.e., a CDF axis expressed in percent). The plot points along the

x-axis will be at cells of a fixed width. Developing the plot in this fashion

will result in 5 y-values (one per rep) for each x-value (cell). Figure 11

on the next page illustrates the plot generated by this step of the procedure

(including the average curve to be generated by the next step).

Step 3 - Regression

Average the five CDF values in each cell and plot a single average CDF

curve for TIS.

Stej) 4- Repeat For All Input Values

Repeat steps 1 through 3 for all settings of the workcenter input value, p.

100 -

D P
I E
S R
T C
R E
I N
B T
U I
T L
I E

0 s
N

50

0

TIME IN SYSTEM

Figure 11. Plot Of Observed Time-In-System Distribution

Step _5 .- .QrQqp_ C:OE ClJIYvs.

Plot all curves generated by repetitions of Step 3 on a common graph.

Figure 12 on the next page illustrates an example of the family of curves

developed within this step.

Step .6.- .Q.ey~lQP. M~t.atnpd~l

Attempt to parameterize the CDF curves. Ideally this process will yield a

parameterized function of TIS in terms of CDF where the parameters are

determined by the input values. This parameterized function becomes the

metamodel from which time-in-workcenter samples can be drawn via the

inverse transformation method. If the curves are not amenable to parame-

terization, the set of curves will be used to interpolate a value for time-in-

workcenter samples via inverse transformation.

67

D p
I E s R
T c
R E
I N
B 50
u T

I
T L
I E
0 s
N

TIME IN SYSTEM

Figure 12. CDF Curves For A Workcenter Group

Queueing Network Metamodel Development Procedure

The metamodels for the queueing-network class will be developed using the following

general approach.

Ste.p 1 - Queuein~ Network: Foonylation

Formulate the workcenter model as a product form queueing network.

Step 2- Solve For The Time-In-System Distribution

Using the methodologies and algorithms developed by Walrand and

Varaiya [1980], Daduna [1982], Boxma, Kelly, and Konheim [1984], and

Kelly and Pollett [1983] solve for the time-in-system distributions.

Step 3- Calculate The Time-In-System CDF Curve

Using the time-in-system distribution, calculate the CDF function.

68

Ste_p 4 - Develop Metamodel

The CDF function becomes the metamodel from which time-in-system

samples cart be drawn via the inverse transformation method.

Metamodel Initialization Procedures

Within the context of this research, a metamodel is a function that is

parameterized on the ratio of arrival rate to service rate. The service rate is internal to

69

the metamodeled workcenter and therefore must be constant within the experimental

frame or else a metamodel would not be appropriate. As a result, the metamodel is

parameterized on the ratio of arrival rate (expressed as a ratio to a constant value).

Occasions may arise in which a metamodel is used but no initial estimate of the arrival

rate is available (e.g., changes are made "upstream" and their impact on arrival rate is not

known). In these cases a procedure is needed to permit the metamodel to self-adapt to

the ratio it is realizing during the simulation. This is essentially a warm-up procedure

that allows the metamodel to approach steady state as the rest of the model (and resulting

arrival rate at the metamodel) approaches steady state.

Two basic options for metamodel parameterization will be investigated in a

cursory fashion. If the models prove sensitive to this initialization procedure, additional

research will be proposed within Objective 6. The two basic options to be considered

are:

Option 1: Using exponential smoothing, maintain a weighted estimate of the current

arrival rate based on the realized rates since the start of the simulation run. If no initial

estimate is available for the "time zero" estimate, a value of 0.5 will be used. A

reasonable value for the smoothing constant will be determined during development.

5 As stated in Chapter IV, the need for this procedure eventually became moot due to the particular
workcenter configurations used in this study and the steady state assumption for metamodels. This
circumstance is discussed more fully in Chapter IX.

70

Option 2: Modify option 1 such that when the arrival rate estimate reaches steady-state

the current estimate will henceforth be maintained as a global average of all values since

achieving steady-state, rather than as an exponentially smoothed average. The method of

detecting when the arrival rate has achieved steady state will be determined during

development.

CHAPTER VI

OBJECf ORIENTED REPRESENTATION

Introduction

This chapter presents an overview of the object oriented environment that was

used to implement and test the methodology proposed in Chapter V. The general

characteristics and desirable features of an object oriented modeling (OOM) environment

were presented in Chapter II. The OOM advanced modeling environment upon which

this research is based has been evolving at OSU's Center for Computer Integrated

Manufacturing (CIM) for approximately five years. Several previous studies have

demonstrated its usefulness in analyzing manufacturing systems such as the ones used in

this research [Beaumariage 1990; Karacal1990; Basnet 1991].

Object Oriented Classes

The OSU OOM environment operates under Objectworks For DOS (Version 4.0),

an implementation of Smalltalk-80 [Goldberg 1989] designed specifically to run on

personal computers running the DOS operating system. Smalltalk-80 is one of the purest

object oriented languages in that it adheres rather strictly to the object paradigm

discussed in Chapter II. The initial classes underlying the OSU OOM advanced

modeling environment were developed using an early version of Smalltalk-80 for the PC

(Version 2.5). Significant enhancements have been made to these original classes and

methods as a result of on-going research within the Center for CIM. A comprehensive

review of the OSU advanced modeling environment is beyond the scope and need of this

71

72

effort. The interested reader is referred to Basnet et al. [Library of Objects, 1990] for

additional detail. Following is a brief overview of the primary classes needed for the

metamodeling evaluation. Figure 13 on the next page summarizes these classes in a

hierarchy tree. The tree highlights the inheritance relationships between the classes and

in some case shows relevant instance variables in parenthesis following the class name.

o SimModel. This class provides the overall framework for the simulation

model including managing the user interface and launching the simulation

process. It is the driver of the "model" component of the Smalltalk-80 model

view-controller (MVC) trilogy [Goldberg 1989] for the advanced modeling

environment.

o SimView. This class provides the primary user interface, the "Simulation

Launcher". It is the driver of the "view" component of the Smalltalk-80 MVC

trilogy.

o CimSimulation. This class is a subclass of the Smalltalk-80 supplied Simula

tion class. It internally manages the simulation process through actions such

as manipulating the event queue and pausing or resuming processes.

o Plant, WorkCenter, WorkStation. This hierarchy of classes provides for the

physical resources required to process parts. They also facilitate the natural

flow of decision and control up and down the hierarchy as required. An im

portant subclass of WorkStation is Operator.

o WorkFlowltem. Work flow items represent the parts which require process

ing by the plant. A work flow item accesses the routing dictionary to find the

required operations for its part name and visits the required workstations.

Work flow items are represented internally (to the advanced modeling envi

ronment) as "processes" that may be suspended and resumed as resource

availability dictates.

Object

Model ------- SimModel (plant, born, routing)

... DependentPart (model) - View (controller) --- SimView

Simulation (eventaueue) - CimSimulation (workFiowGenerator)

Plant------- WorkCenter WorkStation -- Operator

DelayedEvent ----- SimulationObject WorkFiowltem

Queue------- CapacitatedQueue

Queue Controller

Link-------- Operation

Routing------- Alternate Routing

BOM

BOMPart

... ProbabilityDistribution -- ContinuousProbability - ContinuousEmpiricaiGrouped
Deterministic

WorkFiowGenerator Exponential -;-Gamma
L HypoExponential2

Triangular

Figure 13. OOM Class Hierarchy Diagram For Metamodeling

o Queue. This class provides a mechanism to account for items awaiting pro-

cessing. Queues can be physical or logical. Physical queues, like the input

and output queues of a machine, provide WIP storage space as well as the

logical sequencing of items. Logical queues, such as the input queue of a

material handler or operator provide only logical sequencing. An important

subclass, CapacitatedQueue, provides queues with finite capacities.

o QueueController. Queue controllers provide the vehicle through which a

73

workstation communicates with its input and output queues. The controller is

also responsible for implementing queue discipline logic.

o Operation. An operation is a data structure that specifies a machine, a pro

cessing time, and a setup time required by a work flow item to be processed

on that machine.

74

o Routing. A routing is a collection of operations that specifies the series of

steps required to complete the processing of a WorkFlow Item. An important

subclass of Routing is AltemateRouting that specifies an operation on a dif

ferent machine that can be substituted for the primary operation.

o BOMPart. An instance of this class represents a component within a bill of

materials hierarchy tree.

o BOM. This class represents the entire bill of materials hierarchy. A list of

BOMParts is maintained to represent the complete list of parts in the plant.

o ProbabilityDistribution, ContinuousProbability. This hierarchy of classes

provides the framework for generation of random variates. The variates

themselves are generated by subclasses Exponential, Triangular, Determinis

tic, Gamma, HypoExponential2, and ContinuousEmpiricalGrouped using the

inverse transformation method. Class Random is used to generate the uni

form random numbers used in inverse transformation.

o WorkFlowGenerator. This class creates work flow items and sends them into

the system to be processed.

Changes Made To The Environment

Several changes were required within the advanced modeling environment to

facilitate this research. Table VI on the next page summarizes the most significant of

these changes. In many cases the changes were made in an application specific manner.

To the extent that the changes are of generic interest, with some additional work, they

can be generalized for inclusion in the permanent OOM environment. The relevant

TABLE VI

SIGNIFICANT OOM ENVIRONMENT CHANGES

AREA DESCRIPTION CLASS MODIFIED
Random Variate Generation Added new random number Random

generator1

Modified method for variate Gamma

generation 1

Added multiple stream variate Exponential

generation capability Gamma

Added new variate generator1 Triangular, HypoExponential2,
ContinuousEmpiricalGrouped

Added Global Variables: SimModel, WorkStation,

TheSeedArray, RandomRouter, · WorkCenter, Utils

MetaRhos,MetaCells,Meta V aloes
Queueing Selection Strategy Added Preferred Queue Strate,.gy Plant

WorkCenter

Added Random Queue Stratel!v WorkCenter
Simulation Termination Terminate based on number of SimModel

values collected rather than time
Metamodel Implementation Replace a workcenter with a SimModel

metamodel

Enable metamodel with infinite WorkStation
availability

Read and process metamodel file Utils

Calculate metamodel sampling
distribution Utils

Operator Implementation Define the Operator resource Operator

Allow a workcenter to possess an WorkCenter
operator resource

Enable a work flow item to WorkFlow Item
reQuest a second resource CimSimulation

Queue Length Inquiry Include machine status in queue WorkCenter
len_gth Query

Blocking Allow blocking to consider WorkCenter
alternate workstations

lSpecial thanks go to Steve Tretheway and Mike Oltman from The University of Oklahoma for their
research and implementation of the random number and random deviate generators.

75

76

portions of new and/or modified Smalltalk-80 code (classes and methods) are provided in

Appendix F for the interested reader.

Conducting An OOM Experiment

Four basic steps are required to conduct an experiment within the advanced

modeling environment; plant definition, BOM definition, routing definition, and

experimental parameters defmition. User interface options exist to bypass the first three

steps by reading from disk a set of previously defined files that contain the plant, BOM,

and routing definitions. The definition of experimental parameters is always conducted

on an on-line basis.

Defining the plant is accomplished in two phases. First, the names and hierarchi

cal relationships of the physical resources within the plant must be defined. The

hierarchical relationships specify (1) the workcenters within the plant and (2) the

workstations within the workcenter. Figure 14 on the next page illustrates this structure

for one of the plant configurations (scenario OB3) used within this research. The second

phase of plant definition is to specify the failure and repair distributions for each

workstation defined in the plant. Selecting the distribution and specifying the associated

parameters is handled by the user interface via scrolling lists and fill-in-the-blank

prompts. The "filed out" version of the complete plant definition for scenario OB3 is

shown in Figure 15 on page 77.

The second major step in conducting an experiment is the BOM definition. Bills

of materials are specified in two phases. First, a list of part names is created. This list

includes all inventoried items at all levels within the plant. The second step is to specify

the component breakdown of each part name. The component breakdown is specified

through parent/child relationships. A "quantity per" value also can be designated. Any

part without a parent is assumed to be an end item. Any part without a child is assumed

77

to be a purchased part. For this research, the BOM for every scenario consists of a single

item unobtrusively named "Part". "Part" has no parents or children, it simply enters the

plant, proceeds through a series of operations, and exits the plant. Figure 16 on page 77

shows the "flied out" version of the bill of material definition.

Plant: PnltOB3
WorkCenter: WC1

WorkStation: Inc_Insp
WorkStation: Kitl
WorkStation: Kit2

WorkCenter: OB 1
WorkStation: M1
WorkStation: M2
WorkStation: M3
WorkStation: M4

WorkCenter: WC3
WorkStation: Pack1
WorkStation: Pack2
WorkStation: Out_Insp

Figure 14. OOM Plant Structure Definition

The third major step in conducting an experiment is to define the routings and

alternate routings. This also is a two phase process. First, the sequence of workstations

to be visited (and any alternates) is specified by selecting from a scrolling list of the

workstations defined in the plant definition step. Table VII (page 78) illustrates this

sequence for one of the plant configurations (scenario OB 1) used within this research.

The second phase of routing definition is to specify the processing and setup time

78

plntob31 3 Interface WorkStation in41
no comment! Interface WorkStation no comment!
no cantrall out_inspl no cantrall
None nocommentl 00
3 no control! failure distribution! Triangular
well 00 300 300450
nocommentl no failure! repair distribution! Triangular
no cantrall no repair! 1.5 1.5 3.0
None Interface WorkStation pack11 Interface WorkStation m11
3 nocommentl no comment!
Interface WorkStation kit21 no cantrall no cantrall
no comment! 00 00
no cantrall no failure! failure distribution! Triangular
00 no repair! 100 100 150
no failure! Interface WorkStation pack21 repair distribution! Triangular
no repair! no comment! 0.5 0.5 1.0
Interface WorkStation no cantrall Interface W arkS tation m21
inc_inspl 00 no comment!
no comment! no failure! no cantrall
no cantrall no repair! 00
00 5 failure distribution! Triangular
no failure! out_inspl 0 300 300450
no repair! pack11 0 repair distribution! Triangular
Interface W arkS tation kitll inputl1 1.5 1.5 3.0
no comment! outputl30 6
no cantrall outputl1 outputl1
00 inputl30 inputl30
no failure! pack210 m110
no repair! ob31 m210
5 no comment! inputl1
inputl1 no cantrall output! 30
outputl30 None m310
kit21 0 4 m410
inc_inspl 0 Interface WorkStation m31 5
outputl1 no comment! outputl1
inputl30 no cantrall input! 0
kit11 0 00 well 0
wc31 failure distribution! Triangular wc31 0
no comment! 300 300450 inputl1
no controll repair distribution! Triangular output! 0
None 1.5 1.5 3.0 ob310

Figure 15. Scenario OB3 Plant Definition File

1
Partl 0

Figure 16. BOM Definition File For All Scenarios

79

TABLE VII

OOM ROUTING DEFINITION

PART PRIMARY ALTERNATE
NAME WORKSTATION WORKSTATION

Part Incoming-Inspection
Kitl Kit2
Ml
M2 M3

M4
Packl Pack2

Outgoing-Inspection

distributions for each primary and alternate workstation for each operation. Selecting the

distribution and specifying the associated parameters are handled by the user interface via

scrolling lists and fill-in-the-blank prompts. The "filed out" version of the complete

routing definition for scenario OB3 is shown in Figure 17 below.

1 Partl Exponential 0.5
1
Part I
01
Part! 6
1 inc_inspl processTimel Triangular 0.9 1.0 1.1
setUpTimel Deterministic 0.0
2 kitll processTimel Triangular 1.8 2.0 2.2
set UpTime! Deterministic 0.0
kit21 processTimel Triangular 1.8 2.0 2.2
setUpTimel Deterministic 0.0
1 mll processTimel Triangular 0.8 0.9 1.0
setUpTimel Deterministic 0.1

3 m21 processTimel Triangular 2.4 2.7 3.0
setUpTimel Deterministic 0.3
m31 processTimel Triangular 2.4 2.7 3.0
setUpTimel Deterministic 0.3
m41 processTimel Triangular 2.4 2.7 3.0
setUpTimel Deterministic 0.3
2 packll processTimel Triangular 1.8 2.0 2.2
setUpTimel Deterministic 0.0
pack21 processTimel Triangular 1.8 2.0 2.2
setUpTimel Deterministic 0.0
1 out_inspl processTimel Triangular 0.9 1.0 1.1
setUpTimel Deterministic 0.0

Figure 17. Scenario OB3 Routing Definition File

80

The fourth step in conducting an experiment is the definition of the experimental

parameters. Four parameters must be specified for each run within the context of this

research. First, the random number set to be used in initializing the stochastic processes

must be specified (five sets are available). Second, length of the simulation run must be

specified. The length is specified in terms of the number of time-in-system values

collected for "Part". Next, the simulation warm-up period is specified. The warm-up

period is specified in number of time units. When the simulation clock reaches the end

of the warm-up period, all statistical arrays are cleared. Finally, the variables for which

detailed observation data is to be collected must be specified. The specification is made

from a scrolling list of available variables. For this research, the sole variable of interest

is "Part" time-in-system.

At the conclusion of each experiment, two actions were taken. First, a time series

plot of the collected time-in-system values was examined to ensure (visually) that any

warm-up effects had been successfully eliminated. Second, output files were written

containing the summary statistics for the run and the detailed observations which were

collected.

CHAPTER VII

METAMODELSELECTIONPROCEDURE

Introduction

This chapter presents the metamodel selection procedure in partial fulfillment of

research objective 1 presented in Chapter IV. As stated previously, the metamodel

selection procedure is based on (1) the experimental frame being investigated and (2) the

availability of a valid plug-compatible metamodel. The metamodel availability question

is based on (1) the workcenter structure (i.e., physical layout and routings), (2) the input

to the workcenter (i.e., ratio of arrival rate to service rate), and (3) the workcenter

operating characteristics (i.e., alternate routings, breakdowns, multiple concurrent

resource requirements, etc.).

The procedure is presented below as a sequence of steps that result in either the

recommendation of a suggested metamodel or the decision that metamodeling is

. inappropriate for that particular workcenter. The procedure has two distinct phases. The

first phase determines which workcenters (if any) are amenable to metamodeling based

on the experimental frame and the capabilities of the advanced modeling environment

discussed in Chapter VI. This phase is performed external to the advanced modeling

environment. The second phase determines the availability of a plug-compatible

metamodel. This phase is performed internally within the advanced modeling environ

ment.

81

82

Assessment of Candidate Workcenters

The first phase determines which workcenters (if any) are amenable to meta

modeling within the framework of the OOM advanced modeling environment. The basis

of this determination is the experimental frame. In this context, the experimental frame

can be thought of as a statement from the user as to what measures of performance are

required as output from the simulation analysis. Law [1986] has identified a list of ten

measures of performance that are most often used in manufacturing simulation studies.

Table VIII lists these ten measures.

TABLE VIII

MANUFACTURING MEASURES OF PERFORMANCE

PERFORMANCE MEASURE

Part/Job Throughput
Time-In-System for Parts/Jobs
Time-In-Queue for Parts/Jobs
Time-In-Transport for Parts/Jobs
Sizes of WIP Inventory
Utilization of Equipment/Personnel
Proportion of Time that a Machine is Broken, Blocked, or Starved
Proportion of Jobs Produced that must be Reworked or Scrapped
Return On Investment of a New or Modified Manufacturing System
Payback Period of a New or Modified Manufacturing System

In light of the above, two issues must be considered in order to resolve the

metamodel amenability question. First, do the experimental measures of performance

sought conflict with the aggregation implicit in a given metamodel of a workcenter?

83

Second, does the OOM environment presented in Chapter VI support investigation of the

performance measure?

As stated in Chapter IV, a self imposed restriction of this research is that the

measure of performance to be approximately maintained by a metamodel of a workcenter

is the distribution of time-in.:system1• In general, this implies that all other detailed

behaviors within the workcenter are lost in aggregation. In terms of the ten performance

measures, this aggregate performance would eliminate a workcenter from metamodel

consideration if one or more of the following measures was required within ~

workcenter:

o time-in-queue

o time-in-transport

o sizes of WIP

o utilization of equipment

o proportion of time a machine is broken, blocked, or starved

o proportion of jobs produced that must be reworked or scrapped.

These performance measures could be used within other workcenters and not preclude a

metamodel for the current one. In essence, the metamodeling decision must be evaluated

on a workcenter by workcenter basis.

The second question deals with the capabilities of the OOM advanced modeling

environment. The current implementation of OOM does not readily provide information

in support of the following subset of the ten performance measures:

o proportion of time that a machine is broken, blocked, or starved

o proportion of jobs produced that must be reworked or scrapped

o return on investment of a new or modified manufacturing system

o payback period of a new or modified manufacturing system.

1It is certainly conceivable that the distribution of a performance measure other than time-in-system
could be the output of a metamodeling excercise.

While it might be possible to extract information useful to these types of analyses from

the current implementation, they are not directly supported.

The metamodeling amenability question now becomes quite mechanical. Each

workcenter is checked to see if its needed performance measures concur with the

84

metamodeling aggregation and to see if the OOM environment supports the performance

measures. If the answer to both questions is "yes", then the workcenter is a candidate for

metamodeling. Table IX summarizes this candidate assessment process.

TABLE IX

METAMODELING CANDIDATE ASSESSMENT

CONCURS WITH
WORK CENTER AGGREGA1E SUPPOR1ED :METAMODELING

PERFORMANCE :MEASURE PERFORMANCE BYOOM CANDIDA1E
Part/Job Throu~hput YES YES YES
Time-In-System for Parts/Jobs YES YES YES
Time-In-Queue for Parts/Jobs NO YES NO
Time-In-Transport for Parts/Jobs NO YES NO
Sizes of WIP Inventory NO YES NO
Utilization of Equipment/Personnel NO YES NO
Proportion of Time that a Machine NO NO NO
is Broken, Blocked, or Starved
Proportion of Jobs Produced that NO NO NO
must be Reworked or Scrapped
Return On Investment of a New or YES NO NO
Modified Manufacturing System
Payback Period of a New or YES NO NO
Modified Manufacturing System

85

Availability Of A Metamodel

The second phase of the selection procedure is the detennination of whether a

plug-compatible metamodel is available. This phase is performed internally within the

advanced modeling environment. The analysis is carried out any time the user highlights

a candidate workcenter and selects the "Meta Replace" option in the plant definition

window.

As stated in the Introduction, the metamodel availability question is based on (1)

the workcenter structure (i.e., physical layout and routings), (2) the input to the

workcenter (i.e., ratio of arrival rate to service rate), and (3) the workcenter operating

characteristics (i.e., alternate routings, breakdowns, multiple concurrent resource

requirements, etc.). The metamodel development procedure proposed in Chapter V and

evaluated in Chapter VIII is designed to create a workcenter metamodel that is valid over

a range of input levels. On the contrary, the metamodel is valid m for the structure

and operating characteristics for which it was built.

When the user loads a "metamodel file" into the OOM environment, its name

(i.e., the name of the workcenter) is stored in a list of available metamodels. The

environment does not (at the current time) maintain any information relative to the

structure and operating characteristics of the workcenter from which the metamodel was

built. 2 Thus, the user is obligated to delete a metamodel that has become invalid due to

a change of this type. If the change is temporary or experimental, rather than deleting the

metamodel, the user could simply choose not use it until it is again valid.

With regard to the range of input levels over which a metamodel is available, the

OOM environment provides direct feedback. The feedback comes in the form of upper

and lower bounds for the metamodel. When a "metamodel file" is loaded, it explicitly

carries with it the range of input values over which it has been studied. If an input level

2Maintaining and monitoring this information is certainly conceivable since the majority of the necessary
infonnation is stored in the "filed out" version~ of the plant, BOM, and routing definitions.

is subsequently specified that is not between the bounds, a message is displayed which

suggests that the metamodel is not valid at the specified level. The user must then use

the base model of the workcenter rather than the metamodel.

86

In summary, the process of evaluating metamodel availability involves the OOM

environment answering the following two questions:

o is the selected workcenter name on the metamodellist?

o is the specified input value within the bounds of the metamodel?

If the answer to both questions is "yes" then a plug compatible metamodel is available.

The question of judging its validity is the subject of the next chapter.

CHAPTER VITI

EVALUATION OF THE METHODOLOGY

Introduction

This chapter presents the evaluation of the proposed methodology. The

evaluation is accomplished by implementing the methodology outlined in Chapter V

within the object oriented framework presented in Chapter VI.

Experimental Evaluation

The experimental evaluation was conducted through a series of six scenarios.

Each experimental scenario corresponds to one of the workcenter scenarios presented in

Chapter V. Table X on the next page provides a list of the scenarios and the

corresponding scenario IDs that are used throughout the remainder of this dissertation.

Scenarios QN1 and QN2 are independent of each other and of all of the observation

based scenarios. Scenarios OB 1 through OB4 are cumulative. Scenario OB2 starts with

scenario OB 1 and adds multiple concurrent resources, scenario OB3 starts with scenario

OB2 and adds machine breakdowns, etc1•

The process of evaluation for the first scenario, QNl, will be presented in detail.

Subsequent scenarios will be presented in a more summarized fashion with any

deviations from the QNl process noted. In particular, the process for the third scenario,

OB 1, will be presented in more detail since it represents the first of the observation-based

metamodels.

1 A slight deviation from this cummulative approach was requred in scenario OB4 to accomodate
"blocking". This deviation is discussed in the review of scenario OB4 results.

87

TABLE X

SCENARIO IDENTIFICATION

SCENARIO DESCRIPTION
Queueing Network Scenario 1 Tandem Network
Queueing Network Scenario 2 Tree Network
Observation-Based Scenario 1 State Dependent Routings
Observation-Based Scenario 2 Multiple Concurrent Resources
Observation-Based Scenario 3 Machine Breakdowns
Observation-Based Scenario 4 Finite Queues

Characteristics Common To All Scenarios

SCENARIO
ID

QN1
QN2
OB1
OB2
OB3
OB4

Certain characteristics are common to all the scenarios considered in this

88

research. Perhaps the most important of these shared characteristics is that the

workcenters to which metamodeling is applied all have balanced stages, in that the mean

throughput capacity of each stage is equal. For example scenario QN1 has three stages

each composed of a single machine whose throughput is one part per time unit. Scenario

OB 1 has two stages. Stage one has one machine with a throughput of one part per time

unit. Stage two has three parallel alternate machines each with a throughput of 1/3 part

per time unit. The importance of this characteristic is that it allows a single parameter

(p) to be used as the approximate utilization value for each stage and therefore, the entire

workcenter.

A second important characteristic shared by all workcenters in the plant

validation runs (not just the metamodeled workcenters) is that they are stable. In this

context, stable means that the mean arrival rate is less than the mean service rate for all

stages. This requirement (a common one for queueing analysis) ensures that the queues

89

will not grow infinitely large. As an additional restriction for this research, heavy traffic

situations OJJl > 0.80) are not considered. Although the metamodeling methodology

presented below is applicable to such systems, the development and validation run

lengths as well as number of repetitions would undoubtedly have to be much greater to

obtainreasonable estimates of the time-in-system distributions.2

Another shared characteristic of all workcenters in the plant validation runs is that

they are conservative. In this context, conservatism means that parts are not lost from the

system. Thus, parts cannot balk; any part that enters the system will eventually be

processed and exit the system.

The importance of stability and conservatism is that, together with the structure

and routings of the workcenters, the mean arrival rate to the metamodel can be

determined by flow balance relationships. This allows the parameter associated with the

metamodel (i.e., mean arrival rate divided by stage service rate) to be determined in a

static a priori way rather than dynamically. This principle, along with the steady state

assumption, is what preempted the need for the dynamic parameterization procedure

originally proposed in Chapter V. This procedure was not developed s.imply because it

was not needed. 3

Scenario QNl- Tandem Queueing Network

Introduction

Queueing network scenario one is a tandem queueing network composed of three

stages (machines). Parts enter the workcenter and are routed sequentially to each

machine and then exit the workcenter. The three service time distributions are

2Special thanks go to committee member Dr. Manjunath Kamath for his recognition of this fact at the
proposal phase of this research.
3 A second special thanks to committee member Dr. Manjunath Kamath for his recognition of the fact that
the metamodels in this research are steady state, not dynamic, models.

90

independent identically distributed (iid) exponential random variables with a mean (1/Jl)

of one time unit. The arrival process is Poisson, therefore the interarrival time of parts to

the workcenter is exponentially distributed. Since one of the purposes of the experiments

is to test (and validate) the workcenter metamodels over a range of values of stage

utilizations, the mean of the interarrival time distribution (1/A) is set at 4.00, 2.50, 1.67,

or 1.25 depending upon the targeted utilization. The corresponding stage utilization

values (A/Jl) are thus 0.25, 0.40, 0.60, and 0.80. Figure 18 illustrates this scenario.

2l.
0.25
0.40
0.60
0.80

-----~~~ I MAC,HINE I
1/J.l = 1.0

-----~~~I MAC~INE I
1/J.l = 1.0

---~~~ I MAC:INE I
1/J.l = 1.0

Figure 18. Workcenter QN1 Structure

One of the first major issues to be addressed concerned the design characteristics

of simulation runs required to develop a metamodel. Remembering that the objective of

the metamodel is to approximately model the entire distribution of part time-in-system,

these experimental design questions included:

o How is "to approximately model" to be judged?

o How long must each simulation run be (measured in number of collected

time-system values) to ensure that the time-in-system distribution

(particularly the distribution "tails") are approximately modeled?

o How long should the "warm-up" period (measured in time units) be to

eliminate the idle and empty start-up influence on the collected time-in

system statistics?

91

o How many simulation runs at each utilization value are required to ensure

that the time-in-system distribution (particularly the distribution "tails")

are approximately modeled?

o How should random deviates be generated for each simulation run (i.e.,

single or multiple streams, using what random number generator, using

what seed values)?

These issues were resolved using an empirical approach involving the

examination of reasonable (in the author's judgement) potential values. This empirical

approach and its validation is discussed in Appendix B. The evaluation resulted in the

following conclusions which were used throughout the remainder of the experimentation:

o "Approximately modeled" is judged adequate if, for a given stage

utilization value, the average time-in-system cumulative distribution

function (CDF) curve obtained from the metamodel simulation runs does

not violate the Kolmogorov-Smirnov goodness of fit limits [Massey 1951]

obtained from the average time-in-system CDF curve from the base model

simulation runs.

o Each simulation model is run until3,000 time-in-system values are

collected after statistics have been cleared.

o Statistics are cleared in each run after 300 time units (as points of

reference, the greatest mean interarrival time for any model is four time

units and the greatest mean time-in system for any model is 23.5944 time

units).

o Five simulation runs at each utilization value are used to calculate the

average CDF.

o Random deviates are generated using the inverse transformation method

with Park and Miller's [1988] random number generator. A multiple

92

stream approach is maintained with each stochastic process (i.e., machine

M1 service time, Part interarrival time, etc.) maintaining its own random

number stream. Five seeds are associated with each stochastic process

(one for each of the five simulation runs), seeds are held constant for each

process across mod~4, decision, and utilization rate variants. Seeds were
1

randomly selected from a table of 5000 hand drawn random numbers

[Mize and Cox 1968, 218-219].

For scenario QN1 the distributional form for the metamodel can be analytically

determined since QN1 is an open queueing network with a product form solution.

Walrand and Varaiya [1980] have shown that for Jacksonian networks with non-

overtaking paths (of which this is one) the sojourn times of a customer in consecutive

nodes are independent. It follows directly that if the distributional form of the sojourn

times at each node are known, then the time-in-system distribution (i.e., the distribution

formed by the sum of node sojou~times) can be calculated.
\.

Ross [1989, 354-355] has shown that for an M/M/1 queueing model, a single

server exponential queueing model with exponential interarrivals (rate A.) and exponential

service (rate~), the sojourn time distribution is exponential (rate ~-A.). Further, Ross

[1989, 278] has shown that the output of a stable (p<1) M/M/1 queueing model is a

Poisson process with rate A.. Scenario QN1 is a tandem network consisting of three

M/M/1 queueing models. Drawing on Ross' results, the results of Walrand and Varaiya,

and the fact that the sum of iid exponential random variables is a gamma random

variable, it can be shown that the time-in-system random variable for scenario QN1 is

gamma distributed with shape parameter three and scale parameter ~-A..
'

4Since the stochastic processes vary by model, the random number seeds in fact vary by model. This
introduces a source of variation which must be accounted for in the ANOV A used for multiple model
comparisons.

93

Plant Level Validation #1

As discussed in Chapter V, the plant level validation of the metamodels is

conducted by including the metamodeled workcenter (in both its base and metamodel

forms) within a plant model and evaluating several decision alternatives with the plant

model. The validity of the metamodel is judged based on consistency between the base

model and the metamodel across decision alternatives. This consistency is judged by

three validation tests. Validation #1 is an empirical visual validation. Validations #2 and

#3 are statistically grounded tests.

Validation #1 involves the visual comparison of a line representing the

metamodel performance across the two decision alternatives and a line representing the

base model performance across the same alternatives. While acknowledging that this is

highly empirical, it helps to substantiate the performance of the metamodel on a

pragmatic basis. Figure 19 on the next page is an illustration of the type of graph used

for plant level validation #1.

In an ideal situation, the two lines in Figure 19 would coincide. This would

indicate perfect agreement between the metamodel and the base model for the decision

alternatives. The degree to which the two lines do not coincide is a measure of the

"approximate" nature of the metamodel. Any differences that exist between the lines can

be segregated into two types of error, an error due to inaccuracy and an error due to

inconsistency. Both types of error are illustrated in Figure 19.

In terms of the geometry of lines, an error due to inaccuracy is an error in the y

intercept of the metamodel while an error due to inconsistency is an error in the slope. In

a pragmatic sense, an error due to inaccuracy is an error in the "absolute" performance of

the metamodel while an error due to inconsistency is an error in the "relative"

performance. The main emphasis of this research is the relative performance of

metamodels, therefore, the analysis will focus on en:ors due to inconsistency.

94

ALT. 1 ALT. 2
DECISION ALTERNATIVES

Figure 19. Plant Level Validation #1

For each scenario there are four plant level validation #1 graphs. The four graphs

for scenario QN1 are shown in Figure 20 on the following page. Each graph represents

one of the four possible combinations of the two decision cases (inspection station speed

and queue selection strategy) and the two workcenter stage utilization values (rho equals

0.500 and 0.675). In Figure 20, the two left hand graphs represent decision case I

(inspection station speed) with rho at 0.500 on top and rho at 0.675 on bottom. The two

right hand graphs represent decision case II (queue selection strategy) with rho at 0.500

on top and rho at 0.675 on bottom.

Each of the four graphs has a similar internal format. Each graph contains twenty

plotted points and two lines. Each of the twenty plotted points represents a calculated

mean time-in-system for a simulation run. The points can be categorized into four

groups. Specifically, there are five points for each combination of the two decision

95

Inspection Station Speed Decision Queue Selection Strategy Decision
Rho 0.500 Rho 0.500

26 26
M 25 t.l 25
£ b4 A 24
N 23 N 23

r22 T 22
I 21 I 21
M 20
E M 20

E
19 19

I 18 I 18
N N

17 17
s 16 s 16 y y
s 15

t
s 15

T 14 $ T 14
E 13 ~13 M

12 12
11 11

FAST SLOW SHORTEST PREFERRED

INSPECTION STATION SPEED QUEUE SillCTION STRATEGY

Inspection Station Speed Decision Queue Selection Strategy Decision
Rho 0.675 Rho 0.675

26 26
t.t 25 M 25
E

b4 A 24
N 23 N 23

r22 T 22
I 21 I 21

t.t 20 M 20 E

========1
E

19 19
I 18 r I
N - N J8

17 17
\ s 16 s 16 y y

s 15 s 15
T 14 T 14
E 13 E 1J M M

12 12
11 11

FAST SLOW SHORTEST PREFERRED

INSPECTION STATION SPEED QUEUE SELECTION STRATEGY

+ =Base Model «<»> *=Meta Model

PLANT ON 1

Figure 20. Plant QNl Validation #1- Visual Inspection

alternatives (fast vs. slow inspection or shortest vs. preferred queueing) and the two

model types (base vs. meta). In many cases the points so nearly coincide that they

become indistinguishable. One line on the graph connects the mean of the metamodel

runs operating under decision alternative one with the mean of the metamodel runs

96

operating under decision alternative two. The other line is drawn similarly for the base

model runs. The values of the means that the lines connect are not plotted on the graph. 5

As stated above, the results of plant level validation #1 are empirical. Due to this

subjective and judgmental nature the results below are stated in terms of observations

rather than definitive conclusions. A visual inspection of Figure 20 yields the following

generalized observations:

o the metamodels are approximately accurate and approximately consistent;

o all metamodels are inaccurate on the high side;

o the metamodel inconsistency (when apparent) is divergent rather than

convergent;

o the degree of inconsistency is greater for the queue selection strategy decision

than for the inspection station speed decision.

Plant Level Validation #2

Plant level validation #2 is a statistical test of the consistency of the decision

outcome between the base model and the metamodel. This validation test is conducted

independently for each model type. The test is conducted in the following manner:

o an analysis of variance (ANOV A) is conducted to determine the observed

significance level (OSL) of the difference between the mean time-in-system

5For consistency of comparison, this page layout, internal format, and graph scaling are maintained for
the remaining scenarios.

of the base model runs with fast inspection using rho of 0.500 and the base

model runs with slow inspection using rho 0.500;6

o the ANOV A is repeated for the three additional combinations of decision

alternatives and rhos (fast vs.slow inspection using rho 0.675, shortest

vs.preferred queueing using rho 0.500, and shortest vs.preferred queueing

using rho 0.675);

97

o all four of the above ANOV As are repeated using the metamodel runs instead

of the base model runs;

o the results of the ANOV As are compared across model types (base and meta)

for consistency of the significance decision at a=0.05 and a=O.Ol.

The results of the ANOV As for scenario QNl are shown in Table XI on the next

page. Inspection of this table reveals that the corresponding base models and

metamodels are entirely consistent. In every case, both the base model and the

metamodel show a significant difference between the mean time-in-system across the

decision alternatives (i.e., the null hypothesis is rejected).

It is noteworthy in reviewing the table that not only is the null hypothesis

rejected, in each case it is rejected with an extremely small OSL (<= 0.0001). This is

primarily due to the large sample size used within the simulation runs (3000 time-in

system values). The ramification of a large sample size (n) is that the variance of the

mean of multiple runs is very small due to the inverse root effect of sample size (1/....{n) in

its calculation. With a sample size this large, very small differences between means of

multiple runs will be detected as statistically significant. Therefore, it is not surprising in

Table XI that the null hypothesis is consistently rejected with a very small OSL.

6The statistical rationale and SAS programs for conducting this analysis of variance are provided in
Appendix C.

98

TABLE XI

ANOV A SUMMARY FOR QN1 PLANT LEVEL VALIDATION #2

MODEL TREATMENT RHO HYPOTHESIS OSL a=0.05 a= 0.01

QNl/Base Inspection Station Speed 0.500 Ifo: Jlp = Jls 0.0001 Reject Reject

QNl/Meta Inspection Station Speed 0.500 Ifo: Jlp = Jls 0.0001 Reject Reject

QNl/Base Inspection Station Speed 0.675 Ifo: Jlp = Jls 0.0001 Reject Reject

QNl/Meta Inspection Station Speed 0.675 Ifo: Jlp = Jls 0.0001 Reject Reject

QNl/Base Queue Selection Strategy 0.500 Ifo: Jlp = Jls 0.0001 Reject Reject

QNl/Meta Queue Selection Strategy 0.500 Ifo: Jlp = Jls 0.0001 Reject Reject

QNl/Base Queue Selection Strategy 0.675 Ifo: Jlp = Jls 0.0001 Reject Reject

QNl/Meta Queue Selection Strategy 0.675 Ifo: Jlp = Jls 0.0000 Reject Reject

Plant Level Validation #3

The third and fmal plant level validation is a statistical test of the consistency of

the decision effect across the base model and the metamodel. In terms of the validation

#1 visual comparison (Figure 19), this test determines if a significant difference exists

between the slopes of the base model line and the metamodelline. In statistical terms,

the test determines the OSL of the interaction between the model type (base or meta) and

the decision alternative (fast vs.slow inspection or shortest vs.preferred queueing).

The test is conducted in the following manner:

o An ANOV A is conducted to determine the OSL of the model by decision

interaction of the base model runs with fast versus slow inspection using rho

of 0.500 and the metamodel runs with fast versus slow inspection using rho of

0.500.7

7The statistical rationale and SAS programs for conducting this analysis of variance are provided in
Appendix C.

o The ANOV A is repeated for the three additional combinations of decision

alternatives and rhos (fast vs.slow inspection using rho 0.675, shortest

vs.preferred queueing using rho 0.500, and shortest vs.preferred queueing

using rho 0.675).

o The results of the ANOV As are examined to determine if any of the

interaction effects are significant at a=0.05 and a=O.Ol.

99

The results of the ANOV As for scenario QNl are shown in Table XII on the next

page. Inspection of this table reveals an interesting mixture of results. The desirable

outcome of this test is for the statistical tests to show no difference in slopes between the

associated base models and metamodels. This would allow a statistical conclusion of

consistency to be drawn. Unfortunately, this occurred in only one of the four cases; .fast

versus slow inspection with rho at 0.675. Referring back to Figure 19, it is apparent that

among the four graphs this one (the bottom left) has the least discemable difference in

slopes of the lines.

In each of the other three cases, the slopes were determined to be statistically

different at one or both of the significance (a) levels. While unfortunate from the

standpoint of desired results, these conclusions are not totally unexpected. As before, the

large sample sizes used in the individual simulation runs result in small differences being

detectable as statistically significant. The larger question for this research effort

becomes: does this statistically detectable difference represent a difference that is of

practical consequence when dealing with a model that is, by intent and design, only an

approximation?S

In an effort to pragmatically measure the differences in slope, an additional test

was formulated and included as part of plant level validation #3 (henceforth this

8 Appendix D presents several editorial perspectives on comparing two numbers. Thanks are extended to
Dr. David Weeks for his help in defining these perspectives.

100

TABLE XII

ANOV A SUMMARY FOR QNl PLANT LEVEL VALIDATION #3

MODEL TREATMENT RHO HYPOTHESIS OSL a=0.05 a= 0.01

QNl Inspection Station Speed 0.500 Ho: AS lope = 0 0.0020 Reject Reject

QNl Inspection Station Speed 0.675 lfo: AS lope = 0 0.5735 Accept Accept

QNl Queue Selection Strategy 0.500 lfo: AS lope = 0 0.0058 Reject Reject

QNl Queue Selection Strategy 0.675 Ho: ASlope = 0 0.0302 Reject Accept

validation is called plant level validation #3a). Referring back to Figure 19, the test

compares the performance of the metamodel including the error due to inconsistency (the

solid metamodelline) against the metamodel with the error due to inconsistency removed

(the dashed line). The statistic that is calculated for this test is the magnitude of the error

due to inconsistency expressed as a percent of the corrected metamodel value. In terms

of the graph, this can be visualized as the difference between the right end points of the

two metamodellines divided by the right endpoint of the dashed metamodelline

(expressed as a percentage).

The results of validation test #3a are shown in Table XITI on the next page.

These results are considerably more satisfying from the standpoint of desirable outcome.

An inspection of the table reveals that the worst case inconsistency error for a

metamodel is 5.35 percent. Remembering that the metamodel is an approximate model,

this level of error is, at least in the author's judgement, within the realm of acceptable

performance. Of particular note, the level of error due to inconsistency would appear

from the graphs of Figure 19 to be less in every case than the level of error introduced by

metamodel inaccuracy.

101

TABLEXIll

ANOV A SUMMARY FOR QN1 PLANT LEVEL VALIDATION #3a

CORRECTED PERCENT
MODEL TREATMENT RHO META META ERROR

QNl Inspection Station Speed 0.500 14.50124 14.36667 0.94

QN1 Inspection Station Speed 0.675 19.35832 19.29664 0.32

QN1 Queue Selection Strategy 0.500 19.36968 18.38561 5.35

QNl Queue Selection Strategy 0.675 25.32664 24.39712 3.81

Scenario QN2- Tree Queueing Network

Introduction

Queueing network scenario two is a tree queueing network composed of three

machines configured in two stages. Parts enter the workcenter and are routed to machine

Ml. After being serviced at M1, parts are randomly routed to either machine M2 or M3.

After being serviced by either M2 or M3, parts exit the workcenter. The service time

distribution for Ml is exponential with a mean (11~) of one time unit. The service time

distributions for M2 and M3 are iid exponentials with a mean of two time units (2/J..L).

The arrival process to the workcenter is Poisson, therefore, the interarrival time of parts

to the workcenter is exponentially distributed. The mean of the interarrival time

distribution (1{A,) is set at 4.00, 2.50, 1.67, or 1.25 depending upon the targeted stage

utilization. The corresponding stage utilization values are thus 0.25, 0.40, 0.60, and

0.80. Figure 21 on the next page illustrates the workcenter structure of this scenario.

A
0.25
0.40
0.60
0.80

------~·~ I MAC~INE I
l!Jl= 1.0

I MAC~INE I
1/Jl = 2.0

I MAC:INE I
1/Jl = 2.0

Figure 21. Workcenter QN2 Structure

102

Like scenario QN1, the distributional form for the metamodel for scenario QN2

can be analytically determined. The output from machine M1 is a Poisson process

subject to splitting. It can be shown that a Poisson process with rate A. that is split with

probability p forms two new Poisson processes with rates A.p and A.(1-p) [Ross 1989, 217-

220]. For scenario QN2, this means that parts arrive at machines M2 and M3 according

to a Poisson process with rate A/2.

In summary, a part traversing workcenter QN2 encounters two stages. Stage one

can be characterized as an M/M/1 queue with arrival rate A. and service rate ~- Stage two

can be characterized as an M/M/1 queue with arrival rate A/2 and service rate ~/2. This

network satisfies the non-overtaking path conditions ofWalrand and Varaiya [1980],

thus the time-in-system distribution for parts can be expressed as the sum of the stage

sojourn time distributions.

Again using the results of Ross [1989, 354-355] for an M/M/1 queue, it can be

shown that the stage sojourn time distributions are exponential with rate ~-A for stage

one and exponential with rate ~/2-A/2 for stage two. The time-in-system distribution can

now be expressed as the sum of two independent but non-identically distributed . .

103

exponential random variables (i.e., a hypoexponential distribution). Thus, the time-in

system distribution for parts in scenario QN2 is a two stage hypoexponential distribution

with rates J..L-A and J..L/2-')..J2.

Plant Level Validation #1

The four plant level validation #1 graphs for scenario QN2 are shown in Figure

22 on the following page. An inspection of this figure yields observations similar to

those for scenario QNl. Specifically:

o · the metamodels are approximately accurate and approximately consistent;

o all metamodels are inaccurate on the high side;

o there is very little discernable inconsistency in the metamodels for the

inspection station speed cases;

o the inconsistency in the metamodels for the queue selection strategy cases is

divergent rather than convergent;

o the degree of inconsistency is greater for the queue selection strategy decision

than for the inspection station speed decision.

Plant Level Validation #2

The results of the validation #2 ANOV As for QN2 are shown in Table XIV on

page 105. As in validation #1, the results are remarkably consistent with scenario QNL

In every case, both the base model and metamodel show a significant difference between

the mean time-in-system across the decision alternatives.

26
t.t 25
E
A 24
N 23

r22
I 21
1.120
E

19
I 18
N

17
s 16
y
s 15
T 14
E 13
t.t

12

11

26
t.t 25
E
A 24
N 23

T22
I 21
1.120
E

19
I 18
N

17
I s 16

y
s 15
T 14
E 13 t.t

12

Inspection Station Speed Decision
Rho 0.500

* •
FAST SLOW

INSPECTION STATION SPEED

Inspection Station Speed Decision
Rho 0.675

26
Mzs
b4
N 23

T 22
I 21
t.l20
E

19
I 18
N

17
s 16
y
s 15
TJ4
E 13 u

12

Queue Selection Strategy Decision
Rho 0.500

11 '-----.----------.---

26
M 25

b4
N 23

T 22
I 21
M 20
E

19
I 18
N

17
s 16
y
s 15
T 14

~ 13
12

SHORTEST PREFERRED

QUEUE SElECTION STRATEGY

Queue Selection Strategy _Decision
. Rho 0.675

11 '----.----------,--- 11 '-----.---------,---
FAST SLOW SHORTEST PREFERRED

INSPECTION STATION SPEED QUEUE SELECTION STRATEGY

+ = Base Model <«>» * = Meta Model

PLANT QN2

Figure 22. Plant QN2 Validation #1- Visual Inspection

104

105

TABLE XIV

ANOV A SUMMARY FOR QN2 PLANT LEVEL VALIDATION #2

MODEL TREATMENT RHO HYPOTHESIS OSL a= 0.05 a= 0.01

QN2/Base Inspection Station Speed 0.500 Ho: Jlp = Jls 0.0001 Reject Reject

QN2/Meta Inspection Station Speed 0.500 Ho: Jlp = Jls 0.0001 Reject Reject

QN2/Base Inspection Station Speed 0.675 Ho: Jlp = Jls 0.0047 Reject Reject

QN2/Meta Inspection Station Speed 0.675 Ho: Jlp = Jls 0.0001 Reject Reject

QN2/Base Queue Selection Strategy 0.500 Ho: Jlp = Jls 0.0001 Reject Reject

QN2/Meta Queue Selection Strategy 0.500 Ho: Jlp = lls 0.0001 Reject Reject

QN2/Base Queue Selection Strategy 0.675 Ho: Jlp = Jls 0.0001 Reject Reject

QN2/Meta Queue Selection Strategy 0.675 Ho: Jlp = Jls 0.0001 Reject Reject

Plant Level Validation #3

The results of the statistical tests for validation #3 for QN2 are shown in Table

XV on the next page. The results for the inspection station speed decision cases exhibit

the desirable outcome in that the slopes of the base model and metamodellines are not

statistically different at either a. value. However, for each of the queue selection strategy

decision cases, the slopes are significantly different at both a. values.

The above results are intuitively appealing upon a review of the graphs of Figure

22. The base model and metamodellines in the left hand graphs (inspection station

speed cases) are visually "very nearly" parallel. Contrarily, a noticeable difference in

slopes can be seen in the right hand (queue selection strategy cases) graphs.

The results of the pragmatic validation test #3a are shown in Table XVI on the

following page. These results are again considerably more satisfying from the standpoint

of desirable outcome. An inspection of the table re':eals that the worst case inconsistency

106

error for a metamodel is 4.20 percent One interesting result of note in this table is that

the base model line and metamodelline for the inspection station speed case with rho at

0.675 are convergent rather than divergent. This result is indicated by the negative

percent error in the second line of the table.

TABLE XV

ANOV A SUMMARY FOR QN2 PLANT LEVEL VALIDATION #3

MODEL TREATMENT RHO HYPOTHESIS OSL a=0.05 a= 0.01

QN2 Inspection Station Speed 0.500 Ifo: ~Slope = 0 0.0887 Accept Accept

QN2 Inspection Station Speed 0.675 Ifo: ~Slope = 0 0.5993 Accept Accept

QN2 Queue Selection Strategy 0.500 Ifo: ~Slope = 0 0.0054 Reject Reject

QN2 Queue Selection Strategy 0.675 Ifo: ~Slope = 0 0.0019 Reject Reject

TABLE XVI

ANOV A SUMMARY FOR QN2 PLANT LEVEL VALIDATION #3a

CORRECTED PERCENT
MODEL TREATMENT RHO META META ERROR

QN2 Inspection Station Speed 0.500 14.52261 14.41660 0.74

QN2 Inspection Station Speed 0.675 19.38936 19.61518 -1.15

QN2 Queue Selection Strategy 0.500 19.39344 18.61183 4.20

QN2 Queue Selection Strategy 0.675 25.33877 24.77294 2.28

107

Scenario OB 1 - State Dependent Routings

Introduction

Observation based scenario one is a tree network composed of four machines

configured in two stages. Parts enter the workcenter and are routed to machine M 1

(stage one). After being serviced at M1, parts are routed to either machine M2, M3, or

M4 (stage two). After being serviced by either M2, M3, or M4, parts exit the

workcenter. The question of which stage two machine a particular part moves to is

resolved on a state dependent basis. When a part's M1 processing is complete, the length

of the input queue at each of stage two machines is examined and the part is routed to the

machine with the shortest queue9• The service time distribution forM 1 is triangular with

a minimum, mode, and maximum of 0.9, 1.0, and 1.1 time units, respectively (henceforth

expressed in the form TRI(0.9, 1.0, 1.1)). The service time distributions for M2, M3,

and M4 are iid TRI(2.7, 3.0, 3.3). The arrival process to the workcenter is Poisson,

therefore, the interarrival time of parts to the workcenter is exponentially distributed.

The mean of the interarrival time distribution is set at 4.00, 2.50, 1.67, or 1.25 depending

upon the targeted stage utilization. The corresponding stage utilization values are

approximately 0.25, 0.40, 0.60, and 0.80. Figure 23 on the next page illustrates the

workcenter structure of this scenario.

The distributional form for the metamodel for this workcenter cannot be

determined analytically. The presence of state dependent routings violate the product

form solution assumptions required for an analytical solution to be calculable.

9Note that it is strictly the length of the input queue which is examined, the status of the machine (i.e.,
busy or idle) is not considered. In retrospect, inclusion of the machine status would have been a superior
approach.

A.
0.25
0.40
0.60
0.80

----~>-~ I MAC~INE I
1/f.!. = 1.0

PART
JOINS

SHORTEST
MACHINE
QUEUE

I MAC~INE I
1/f.!. = 3.0

I MAC~INE I
1/f.!. = 3.0

I MAC:INE I
1/f.!. = 3.0

Figure 23. Workcenter OB 1 Structure

108

Metamodel DevelQPment

As proposed in Chapter V, the metamodel development, usage, and validation

procedures used in this research are founded on an observation-based methodology. The

mechanics of the development methodology are as follows:

o A simulation model of the workcenter is built (or extracted from the modeling

database).

o For each stage utilization value (0.25, 0.40, 0.60, and 0.80), five simulation

runs are conducted and on each run 3,000 time-in-system observations are

collected to be used in estimating the time-in-system distribution 10•

o For each combination of utilization value and simulation run (4 utilization

values X 5 runs= 20 combinations), calculate an empirical grouped

1~efer to the discussions in (1) the Introduction to Scenario QNl and (2) Appendix B .for additional
detail on the detennination of simulation run characteristics.

109

cumulative distribution function (CD F) (refer to Appendix E for additional

details on this procedure).

o For each of the four utilization values, form an average empirical grouped

CDF by arithmetically averaging the cell values of the five corresponding

individual CDFs formed in the previous step.

o Create a "metamodel file" (refer to Appendix F for a detailed specification of

the file format).

Metamodel Usage

The mechanics of using a metamodel within the object oriented environment

described in Chapter VI are automatically invoked upon selecting the "Metamodel

Replace" option in the workcenter definition window. The steps of the usage

methodology are as follows:

o Select the workcenter within the plant model to be replaced by a metamodel.

o Modify the plant definition by adding the metamodel version of the

workcenter and deleting the base model components of the workcenter (note

that the metamodel is automatically implemented with infinite servers since

the metamodel sampling distribution already accounts for all queue time

within the workcenter).

o Modify the routing definition by replacing all base model operations in the

metamodel workcenter with a single metamodel operation.

o Determine (or estimate) the mean arrival rate (A) to the metamodel.

o Calculate the metamodel utilization parameter (p) by dividing A by the mean

stage service rate (J.l) for the bottleneck stage of the base model version of the

metamodel.

o Supply the parameter p to the grouped empirical CDF service distribution of

the metamodel workcenter (note if p is outside the range of stage utilization

values used to create the metamodel (for this research: 0.25<p<0.80), this

methodology does not support the use of the metamodel).

o The parameter pis used to create a metamodel grouped empirical CDF via

linear interpolation. The interpolation procedure uses the value arrays

associated with the two closest stage utilization values found in the

"metamodel file" for interpolation end points.

110

o Whenever a sample is needed for the metamodel service time, the inverse

transformation method is used to sample the interpolated grouped empirical

CDF [Law and Kelton 1991, sec. 8.3.12].

Metamodel Validation

Metamodel validation is accomplished by comparing the results of simulation

runs using the workcenter metamodel with results produced by the workcenter base

model. Two stage utilization values (0.50 and 0.75) are used to validate the models. The

mechanics of the validation process are as follows:

o For a given stage utilization value, five simulation runs of the workcenter

base model are conducted and on each run 3,000 time-in-system observations

are collected to be used in estimating the time-in-system distribution.

o For each simulation run, calculate an empirical grouped cumulative

distribution function (CDF).

o Form an average empirical grouped CDF by arithmetically averaging the cell

values of the five individual CDFs formed in the previous step.

o Calculate the Kolmogorov-Smirnov (a= 0.01) goodness of fit limits [Massey

1951] for the average empirical grouped CDF.

o For a given stage utilization value, five simulation runs of the workcenter

metamodels are conducted and on each run 3,000 time-in-system observations

are collected to be used in estimating the time-in-system distribution.

o For each metamodel simulation run, calculate an empirical grouped

cumulative distribution function (CDF).

111

o Form an average empirical grouped CDF by arithmetically averaging the cell

values of the five individual CDFs formed in the previous step.

o Overlay the plot of the average empirical grouped CDF from the metamodel

on a plot of the empirical grouped CDF from the base model with its

associated goodness of fit limits.

o If the metamodel CDF does not violate the goodness of fit limits over its

entire range, then judge the metamodel valid; otherwise judge it invalid.

o If the metamodel is invalid, execute the remedial procedure below.

Metamodel Remedial Procedure

The following procedure is designed to remedy the situation in which a

metamodel has violated a goodness of fit limit during validation. In some cases the cycle

of validation followed by the remedial procedure will need to be iterated several times

before a successful validation is achieved. The remedial procedure, which is based on

the interval halving search technique, is conducted as follows:

o For the metamodel utilization values which failed validation (for instance p =

0.75), determine the utilization values that were used as endpoints in the

implementation interpolation (for instance, p = 0.60 and p = 0.80).

o Halve the interval represented by the interpolation endpoints and calculate

new endpoints such that the target metamodel utilization value is at the

midpoint of the halved interval (for instance, p = 0.70 and p = 0.80).

o Execute the metamodel development procedure for either (or both) of the new

endpoint utilization values for which the development procedure has not been

previously run (for instance, p = 0.70).

o Add this new grouped empirical CDF to the "metamodel file".

112

o Re-execute the metamodel validation procedure (note that if the remedial

procedure is required again for the parenthetical example being followed, the

next set of new endpoints would be p = 0.725 and p = 0.775, both of which

would require metamodel development runs).

Workcenter Level Validation

As proposed in Chapter V, the workcenter metamodels for the four observation

based scenarios (0Bl-OB4) are validated at stage utilization values (p) of 0.50 and 0.75.

The results of these validations are presented in graphical form. For each scenario, four

graphs are presented grouped into two figures. The first figure for each scenario presents

the validation results for pat 0.50; the second for pat 0.75.

The top graph in each figure presents the probability density function (PDF)

curve of the time-in-system distribution for both the base model and the metamodel. If

the metamodel was perfectly accurate and consistent then these two curves would

coincide.

The bottom graph in each figure presents the cumulative distribution function

(CDF) curve of the time-in-system distribution for both the base model and the

. metamodel.. Like the PDF graph, if the metamodel was perfectly accurate and consistent

then these two curves would coincide. This graph also displays the upper and lower

Kolmogorov-Smirnov (a= 0.01) goodness of fit limits. A violation of either of these

limits by the metamodel curve causes the metamodel to be judged invalid and the

iterative cycling through the remedial procedure to be initiated. Since the results shown

on the figures for each scenario are post-remedial, none of the metamodel curves on any

of the graphs will violate the goodness of fit limits.

The SAS program used to produce the workcenter level validation graphs is

shown in Appendix G. Besides producing the graphs that are used to visually inspect the

validity of the workcenter metamodel, the program also quantitatively evaluates the

113

validity. At every cell along the CDF curve, the metamodel value is compared to the

upper and lower goodness of fit limits. IT any violations are detected the program

terminates the validity check with a violation message. Results from this "go/no-go" test

are not reported in a tabular fashion since the metamodels in the figures for each scenario

are post-remedial, therefore, all the results would have been "go".

The workcenter validation graphs for scenario OB 1 are shown in Figures 24

(p=0.50) and 25 (p=0.75) on the following two pages. In both cases, the valid

metamodel presented in the graph was produced without resorting to remedial cycles. By

observation, the p=0.50 metamodel appears to be comfortably within the goodness of fit

limits while the p=0.75 metamodel appears to be quite close to the lower limit over a

good deal of its range.

The PDF curves for both metamodels show an interesting bimodal characteristic.

A review of other p values (not shown) reveals that this bimodal characteristic is

consistent. The first mode is dominant at lower p values (approximately 0.50 and less)

while the second mode is dominant at higher p values (greater than 0.50). At the

extremes considered in this study, p=0.25 (p=0.80), the first (second) mode almost

entirely subsumes the other mode.

It is the author's belief that this rather curious behavior can be at least partially

accounted for with the following hypotheses:

o the first mode is representative of the time-in-system for parts that are queued

to a stage two machine that is idle;

o the second mode is representative of the time-in-system for parts that are

queued to a stage two machine that is busy;

o these two hypotheses are consistent with the observed changes in relationship

between the two modes as p increases (i.e., as p increases, the probability of

encountering an idle machine decreases and the second mode subsumes the

first);

0.34
0.32
0.30
0.28
0.26
0.24
0.22

p 0.20
0 0.18
F 0.16

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

0

1.0

0.9

0.8

0.7

c 0.6
D

0.5 F

0.4

0.3

0.2

0.1

0.0

0

Probability Density Function

2 4 6 8 10 12 14 1 6 18 20
TIME-IN-SYSTEM

MODEL BASE --META

Cumulative Distribution Function

/:::.;;;~::_ ____________________________ _
/./~/

:t/V (... , ,., ,,-,
•V ,,

I,
,//
// , ,

,'I
ll

/''I
//

/,'
I' , ,

' I

/,1 ,,
II ,,

'V
/;

l/
//
/' ---------J

2 4 6 8 10 12

TIME-IN-SYSTEM

14

MODEL BASE ---- LL --META

16 18

UL

LL and UL are 0.01 Kolmogorov-Smirnov Goodness of Fit Limits

WORKCENTER 081 - Rho 0.50
Figure 24. Plant OBl Workcenter Validation- Rho 0.50

20

114

1.0

0.9

0.8

0.7

c 0.6
D

0.5 F

0.4

0.3

0.2

0.1

0.0

0

Probability Density Function

8 10 12 14 16 18 20
TIME-IN-SYSTEM

MODEL BASE --META

Cumulative Distribution Function

----- ... -···- ---------------
/<;:-;:::-;-:.~:-----

~~~ ..... 
// 

,(~ ..... 
/.l 

~~~~ 
/~

/!
/r/

,/7
/.·/
' ' ' ' //

' ' ' ' //
' ' '' ,../ /

---------~ ,,'

2 4 6 8 10 12 14

TIME-IN-SYSTEM
MODEL BASE ---- LL --META

16 18

UL

LL and UL ore 0.01 Kolmogorov-Smirnov Goodness of Fit Limits

WORKCENTER 081 - Rho 0.75
Figure 25. Plant OBl Workcenter Validation- Rho 0.75

20

115

116

o the sharp distinction between the modes is related to the shortest queue

selection rule that ignores machine status. This hypothesis is supported by the

fact that the bimodal nature of the time-in-system PDF is maintained through

OB 1, OB2, and OB3 but disappears in OB4 where the queue selection rule is

modified to include machine status (among other changes).

Plant Level Validation #1

The four plant level validation #1 graphs for scenario OB1 are shown in Figure

26 on the following page. An inspection of this figure yields the following observations:

o the metamodels are approximately accurate and approximately consistent;

o all metamodels are inaccurate on the high side;

o the magnitude of the inaccuracies for both decision cases at rho 0.675 appears

to be greater than in either of two previous scenarios;

o there is very little discemable inconsistency in the metamodels. There does

appear to be a slight convergence of the lines for the queue selection strategy

decision at rho 0.675 (the lower right graph);

Plant Level Validation #2

The results for the validation #2 ANOV As for scenario OB 1 are shown in Table

XVII on page 118. As in the prior scenarios, in every case a significant difference in

mean time-in-system is detected across the decision alternatives.

Plant Level Validation #3

The results of the validation #3 ANOV As for scenario OB 1 are shown in Table

XVIII on page 118. In all cases except the queue selection strategy case at rho 0.675 the

table reflects the desired result (no difference in slope) at both a levels. In the

117

Inspection Station Speed Decision Queue Selection Strategy Decision
Rho 0.500 Rho 0.500

26 26
M 25 td 25
E b4 A 24
N 23 N 23

r22 T 22
I 21 I 21

1.120
E M 20

E
19 19

I 18 I 18
N N

17 17
s 16 s 16 y y s 15 s 15
T 14

=
=

T 14
E 13 ~ 13 M

12 12
11 11

FAST SLOW SHORTEST PREFERRED

INSPECTION STATION SPEED QUEUE SElECTION STRATEGY

Inspection Station Speed Decision Queue Selection Strategy Decision
Rho 0.675 Rho 0.675

26 26
1.1 25
E
A 24

M 25

b4
N 23 N 23

r22 T 22
I 21 I 21

1.1 20
E M 20

E
19 19

I 18 I
N . N ,18

17

~
17

\ s 16 s 16 y y s 15 s 15
T 14 t--

TJ4
[13 ~ 13 1.1

12 12
11 11

FAST SLOW SHORTEST PREFERRED

INSPECTION STATION SPEED QUEUE SEl.ECTION STRATEGY

+ = Base Model <«>» * = Meta Model

PLANT 081
Figure 26. Plant OB 1 Validation #1 - Visual Inspection

118

exceptional case, the difference in slope was detected with a very small OSL (0.0001).

These results are intuitively appealing upon a review of Figure 26 since the lower right

graph (the exceptional case) has the most perceptible slope difference.

TABLEXVIT

ANOV A SUMMARY FOR OB 1 PLANT LEVEL VALIDATION #2

MODEL 1REATMENT RHO HYPOTHESIS OSL a=0.05 a= O.OI

OBI/Base Inspection Station Speed 0.500 Ho: ~F = ~s 0.0001 Reject Reject

OBI/Meta Inspection Station Speed 0.500 Ho: ~F = ~s O.OOOI Reject Reject

OBI/Base Inspection Station Speed 0.675 Ho: ~F = ~s O.OOOI Reject Reject

OBI/Meta Inspection Station Speed 0.675 Ho: ~F = ~s O.OOOI Reject Reject

OBI/Base Queue Selection Strategy 0.500 Ho: ~P = ~s O.OOOI Reject Reject

OBI/Meta Queue Selection Strategy 0.500 Ho: ~P = ~s O.OOOI Reject Reject

OBI/Base Queue Selection Strategy 0.675 Ho: ~P = ~s O.OOOI Reject Reject

OBI/Meta Queue Selection Strategy 0.675 Ho: ~P =~s O.OOOI Reject Reject

TABLE XVIII

ANOV A SUMMARY FOR OB 1 PLANT LEVEL VALIDATION #3

MODEL 1REATMENT RHO HYPOTHESIS OSL a= 0.05 a= O.OI

OBI Inspection Station Speed 0.500 Ho= ASlope = 0 0.2783 Accept Accept

OBI Inspection Station Speed 0.675 Ho: ASlope = 0 0.2663 Accept Accept

OBI Queue Selection Strategy 0.500 Ho: ASlope = 0 0.7073 Accept Accept

OBI Queue Selection Strategy 0.675 Ho: ASlope = 0 0.0001 Reject Reject

119

The results of the pragmatic validation test #3a are given in Table XIX below.

The worst case inconsistency is -3.27 percent (the negative shows the convergence noted

in validation #1). In the other three cases, the results are highly desirable with each error

being less than one percent.

TABLE XIX

ANOV A SUMMARY FOR OB 1 PLANT LEVEL VALIDATION #3a

CORRECTED PERCENT
MODEL 1REATMENT RHO META META ERROR

OB1 Inspection Station Speed 0.500 14.26902 14.24311 0.18

OB1 Inspection Station Speed 0.675 16.61333 16.50004 0.69

OB1 Queue Selection Strategy 0.500 19.23814 19.10117 0.72

OB1 Queue Selection Strategy 0.675 22.86281 23.63557 -3.27

Scenario OB2 - Multiple Conclirrent Resources

Introduction

Observation based scenario two is a tree network composed of four machines

configured in two stages. The physical configuration and part routings are identical with

those of scenario OB 1 (see Figure 23). The difference between scenarios OB 1 and OB2

is that, besides OB1's state dependent routing, OB2 adds a multiple concurrent resource

requirement. In scenario OB2, a part must acquire both a machine and an operator to

initiate processing at a machine. The operator completes a setup operation and then is

released. Only one operator is available within the workcenter to provide setup for all

four machines (Ml, M2, M3, and M4).

120

To maintain approximate consistency in the stage utilization values across the

scenarios, the setup times for each operation (within workcenter OB2) are defined as the

first ten percent of the scenario OB 1 mean service time. The OB2 mean service time

becomes ninety percent of the OB 1 mean service time. The service time distribution for

M1 thus becomes TRI(0.8, 0.9, 1.0) with a deterministic setup time of 0.1 time units.

The service time distributions for M2, M3, and M4 become iid TRI(2.4, 2.7, 3.0) with

deterministic setup times of 0.3 time units. The arrival process to the workcenter is

Poisson, therefore, the interarrival time of parts to the workcenter is exponentially

distributed. The mean of the interarrival time distribution is set at 4.00, 2.50, 1.67, or

1.25 depending upon the targeted stage utilization. The corresponding stage utilization

values are approximately 0.25, 0.40, 0.60, and 0.80.

The distributional form for the metamodel for this workcenter cannot be

determined analytically. The presence of state dependent routings and multiple

concurrent resources violate the product form solution assumptions required for an

analytical solution to be calculable.

Workcenter Level Validation

The workcenter validation graphs for scenario OB1 shown in Figures 27 (p=0.50)

and 28 (p=0.75) on the following two pages. The metamodel with pat 0.50, Figure 27,

was produced with no remedial cycles. Other than the valley between the modes, the

metamodel PDF tracks the base model fairly well. For the CDF graph, there is a visible

gap between the metamodel curve and base model curve between time-in-system values

7.0 and 12.0, but the entire metamodel curve is clearly within the Kolmogorov-Smirnov

limits.

1.0

0.9

0.8

0.7

c 0.6
D

0.5 F

0.4

0.3

0.2

0.1

0.0

0

Probability Density Function

· ..

2 4 6 8 10 12 14 16 18 20
TIME-IN-SYSTEM

MODEL BASE -- META

Cumulative Distribution Function

/~-:=·~·-::-·=~-=~-----------------------
,~~;;:.,v

! './;/
':t , .. .,

I 1

/:l
I I

I I

//
,:,;

I I
1 I
I'

/,1
//

' I It
I I

I I , I
/l
II
I' :y

'• ,,
I,
II ,, ,,

---------.J/ I

2 4 6 8 10 12 14

TIME-IN-SYSTEM
MODEL BASE ---- LL --META

16 18. 20

UL

LL and UL are 0.01 Kolmogorov-Smirnov Goodness of Fit Limits

WORK CENTER 082 - Rho 0.50
Figure 27. Plant OB2 Workcenter Validation- Rho 0.50

121

122

Probability Density Function

·······-···-··

8 10 12 14 1 6 18 20
TIME -IN-SYSTEM

MODEL BASE -- META

Cumulative Distribution Function
1 .a

0.9

0.8

0.7

c 0.6
D

0.5 F

0.4

0.3

0.2

0.1

0.0

0 2 4 6 8 10 12 14 1 6 18 20
TIME-IN-SYSTEM

MODEL BASE ---- LL --META UL

LL and UL are 0.01 Kolmogorov-Smirnov Goodness of Fit Limits

WORKCENTER 082- Rho 0.75
Figure 28. Plant OB2 Workcenter Validation- Rho 0.75

123

The metamodel with pat 0.75, Figure 28, required one iteration of the remedial

procedure. This iteration caused the interpolation arrays to be associated with p values of

0.70 and 0.80 rather than 0.60 and 0.80. Even after the iteration, the metamodel CDF

curve is only just passable in the time-in-system range 10.0 to 14.0. In fact, the

quantitative rejection calculation performed by the SAS program of Appendix G was

required to ensure that this curve was passable.

As in scenario OB 1, the PDF curves for both metamodels show an interesting

bimodal characteristic. A review of other p values (not shown) reveals that this bimodal

characteristic is consistent. The frrst mode is dominant at lower p values while the

second mode is dominant at higher p values.

Plant Level Validation #1

The four plant level validation #1 graphs for scenario OB2 are shown in Figure

29 on the next page. An inspection of this figure yields the following observations:

o the metamodels are approximately accurate and approximately consistent;

o all metamodels are inaccurate on the high side;

o the magnitude of the inaccuracies appears to be greater than either of the

queueing network cases (QN1 and QN2) but consistent with the first

observation based case (OB1);

o there is very little discemable inconsistency in the metamodels with p at

0.500. With p at 0.675, the lines for the inspection speed decision appear to

diverge. For the queue selection strategy decision they appear to converge

slightly.

124

Inspection Station Speed Decision Queue Selection Strategy Decision
Rho 0.500 Rho 0.500

26 26
M 25 M2s
E b4 A 24
N 23 N 23

T22 T 22
I 21 I 21
M 20
E M 20

E
19 19

I 18 I 18
N N

17 17
s 16 s 16 y y
s 15

~
s 15

T 14 •
"'

T 14
E 13 + ~ 13 M

12 12
11 11

FAST SLOW SHORTEST PREFERRED

INSPECTION STATION SPEED QUEUE SE!£CTION STRATEGY

Inspection Station Speed Decision Queue Selection Strategy Decision
Rho 0.675 Rho 0.675

26 26
M 25 1.4 25
E

b4 A 24
N 23 N 23

r22 r 22
I 21 I 21
M 20
E M 20

E
19 19

I 18 I 18
N

-f
N

17 11
\ s 16 ~ - s 16 y y

s 15
1"

1" s 15
T 14 T 14
E 13 ~ 13 M

12 12
11 11

FAST SLOW SHORTEST PREFERRED

INSPECTION STATION SPEED QUEUE SELECTION STRATEGY

+ =Base Model «<>» * = Meta Model

PLANlOB2
Figure 29. Plant OB2 Validation #1- Visual Inspection

125

Plant Level Validation #2

The results for the validation #2 ANOV As for scenario OB2 are shown in Table

XX below. As in the prior scenarios, in every case a significant difference in mean time-

in-system is detected across the decision alternatives.

TABLE XX

ANOV A SUMMARY FOR OB2 PLANT LEVEL VALIDATION #2

MODEL TREATMENT RHO HYPOTHESIS OSL a= 0.05 a= 0.01
OB2/Base Inspection Station Speed 0.500 Ho: llF = lls 0.0001 Reject Reject

OB2/Meta Inspection Station Speed 0.500 Ho: llF = lls 0.0001 Reject Reject

OB2/Base Inspection Station Speed 0.675 Ho: llF = lls 0.0001 Reject Reject

OB2/Meta Inspection Station Speed 0.675 Ho: llF = lls 0.0001 Reject Reject

OB2/Base Queue Selection Strategy 0.500 Ho: llp = lls 0.0001 Reject Reject

OB2/Meta Queue Selection Strategy 0.500 Ho: llp = lls 0.0001 Reject Reject

OB2/Base Queue Selection Strategy 0.675 Ho: Jlp = lls 0.0001 Reject Reject

OB2/Meta Queue Selection Strategy 0.675 Ho: llp = lls 0.0001 Reject Reject

Plant Level Validation #3

The results of the validation #3 ANOV As for scenario OB2 are shown in Table

XXI on the next page. Only for the queue selection strategy decision at rho 0.500 does

the table reflect the desired result (no difference in slope) at both a levels. In all the

other cases, a difference in slope was detected with a very small OSL (less than or equal

to 0.0004). These results are not necessarily intuitively appealing upon a review of

Figure 29 since there does not appear to be a marked difference in slopes in any of the

graphs. In particular, the lines on the inspection station speed decision at rho 0.500

appear very nearly parallel.

TABLE XXI

ANOV A SUMMARY FOR OB2 PLANT LEVEL VALIDATION #3

MODEL 1REATMENT RHO HYPOTHESIS OSL a=0.05 a= 0.01

OB2 Inspection Station Speed 0.500 Ho: .6Slope = 0 0.0004 Reject Reject

OB2 Inspection Station Speed 0.675 Ho: .6Slope = 0 0.0001 Reject Reject

OB2 Queue Selection Strategy 0.500 Ho: AS lope = 0 0.4799 Accept Accept

OB2 Queue Selection Strategy 0.675 Ho: ASlope = 0 0.0002 Reject Reject

126

It is the author's contention that the resolution to this apparent dilemma lies in the

variance of the plot points used to estimate the line slope. As the variance among the

plot points at one (or both) ends of the line increases, the confidence interval around the

slope estimate widens. This leads directly to an increased probability that the two slopes

will not be considered significantly different. In terms of Figure 29, the plot points at the

"preferred" end of both lines of the queue selection decision graph with p at 0.500 (upper

right graph) have a greater variance among them than the points at the "slow" end of the

other nearly parallel lines (upper left graph). Specifically, the calculated sample

variances for the base and meta points on the upper right graph are 0.3180 and 0.2267

respectively while the same values for the upper left graph are 0.0804 and 0.0458.

The results of the pragmatic validation test #3a are given in Table XXII on the

next page. The worst case inconsistency is an acceptable 4.37 percent. It is interesting

127

that for the queue selection strategy case with pat 0.675 the lines are converging as they

were in scenario OB 1. In every other case in both scenarios, the lines were diverging.

TABLE XXII

ANOV A SUMMARY FOR OB2 PLANT LEVEL VALIDATION #3a

CORRECTED PERCENT
MODEL TREATMENT RHO META META ERROR

OB2 Inspection Station Speed 0.500 14.49896 14.31963 1.25

OB2 Inspection Station Speed 0.675 17.09285 16.37793 4.37

OB2 Queue Selection Strategy 0.500 19.45608 19.22343 1.21

OB2 Queue Selection Strategy 0.675 23.26270 24.05016 -3.27

Scenario OB3 - Machine Breakdowns

Introduction

Observation based scenario three is a tree network composed of four machines

configured in two stages. The physical configuration and part routings are identical with

those of scenario OB 1 and OB2 (see Figure 23). The difference between scenarios OB2

and OB3 is that, besides OB2's state dependent routing and multiple concurrent

resources, OB3 adds machine breakdowns. In scenario OB3, a machine can jam while it

is processing a part. When a jam occurs, the operator is needed to un-jam the machine

and restart the process. A jam cannot occur while a machine is idle. Only one operator

is available within the workcenter to provide setup and service jams for all four machines

(M1, M2, M3, and M4).

128

The service time and setup distributions for Ml, M2, M3, and M4 remain as they

are in scenario OB2. The machine failure and repair distributions for M1 are TRI(100,

100, 150) and TRI(0.5, 0.5, 1.0) respectively. The machine failure and repair

distributions for M2, M3, andM4 are TRI(300, 300, 450) and TRI(1.5, 1.5, 3.0)11 • In

both cases, when expressed in terms of the mean processing plus setup time for parts, the

mean of the failure distribution is approximately once per 117 parts and the mean of the

repair distribution is approximately 2/3 of a part's processing time. The arrival process to

the workcenter is Poisson, therefore, the interarrival time of parts to the workcenter is

exponentially distributed. The mean of the interarrival time distribution is set at 4.00,

2.50, 1.67, or 1.25 depending upon the targeted stage utilization. The corresponding

stage utilization values are approximately 0.25, 0.40, 0.60, and 0.80.

The distributional form for the metamodel for this workcenter cannot be

determined analytically. The presence of state dependent routings, multiple concurrent

resources, and machine failures violate the product form solution assumptions required

for an analytical solution to be calculable.

W orkcenter Level Validation

The workcenter validation graphs for scenario OB3 are shown in Figures 30

(p=0.50) and 31 (p=0.75) on the following two pages. The metamodel with pat 0.50,

Figure 30, was produced with no remedial cycles. The metamodel PDF tracks well

through the first mode but becomes more erratic through the valley and over the second

mode. For the CDF graph, there is a visible gap between the metamodel curve and base

11These distribution parameters were arrived at after considerable trial and error experimentation. The
experimentation was designed to find parameters which would not overwhelm the system at high
utilizations and yet still have some impact at l()w utilizations.

0.30

0.28
0.26
0.24
0.22

0.20

p 0.18

D 0.16
F 0.14

0.12

0.10

0.08

0.06
0.04

0.02

0.00

0

1.0

0.9

0.8

0.7

c 0.6
D

0.5 F

0.4

0.3

0.2

0.1

0.0

0

Probability Density Function

2 4 6 8 10 12 14 1 6 18 20

TIME-IN-SYSTEM

MODEL BASE --META

Cumulative Distribution Function

/~:;::~;:.;_·:-.-----------------------·

gr
u
ll ,:l

I 1
I I

!i
1 I
II
I~ /.I

li
lj

/,l
/,'1

I 1

I'!
'I

/,!
//
/I _________ J

2 4 6 8 10 12

TIME-IN-SYSTEM

14 16 18

MODEL BASE ---- LL --META ---- UL

LL and UL are 0.01 Kolmogorov-Smirnov Goodness of Fit Limits

WORK CENTER 083- Rho 0.50
Figure 30. Plant OB3 Workcenter Validation- Rho 0.50

20

129

0.18
0.17
0.16
0.15
0.14
0.13
0.12
0.11 . 6 0.10

F 0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Probability Density Function

.·•·.

0 . 0 0 !,.:;::::;:::;::;:::;::;:::;:~,._,......-.-..,..,..--.--r..,...,..,.-.---r-r-r-r-r-T"-r-T".,.........,.....-,.,....,._,.--r-T,_,.--r-T-.--,~~-,.
0 2 4 6 8 10 12 14 16 18 20

TIME-IN-SYSTEM

MODEL BASE --META

Cumulative Distribution Function
1.0

0.9

0.8

0.7

c 0.6

D
0.5 F

0.4

0.3

0.2

0.1

0.0

0 2 4 6 8 10 12 14 16 18 20
TIME-IN-SYSTEM

MODEL BASE ---- LL --META UL

LL and UL are 0.01 Kolmogorov-Smirnov Goodness of Fit Limits

WORKCENTER 083- Rho 0.75
Figure 31. Plant OB3 Workcenter Validation- Rho 0.75

130

model curve over a broad range between time-in-system values 6.0 and 14.0, but the

entire metamodel curve is clearly within the Kolmogorov-Smirnov limits.

131

The metamodel with pat 0.75, Figure 31, required two iterations of the remedial

procedure. These iterations caused the interpolation arrays to ultimately be associated

with p values of 0.725 and 0.775 rather than 0.60 and 0.80. Even after the iterations, the

metamodel CDF curve noticeably lags the base model CDF curve. Even so, the

metamodel curve is clearly within limits over its range.

As in the previous scenarios, the PDF curves for both metamodels show the

bimodal characteristic. A review of other p values (not shown) reveals that this bimodal

characteristic remains consistent. The first mode is dominant at lower p values while the

second mode is dominant at higher p values.

Plant Level Validation #1

The four plant level validation #1 graphs for scenario OB3 are shown in Figure

32 on the following page. An inspection of this figure yields the following observations:

o the metamodels are approximately accurate and approximately consistent;

o all metamodels are inaccurate on the high side;

o the magnitude of the inaccuracies appears to be greater than either of the

queueing network cases (QN1 and QN2) but consistent with the first two

observation based cases (OB 1 and OB2);

o there is very little discemable inconsistency in the metamodels with p at

0.500. With pat 0.675, the lines for the inspection speed decision appear to

diverge. For the queue selection strategy decision they appear to converge

slightly.

132

Inspection Station Speed Decision Queue Selection Strategy Decision
Rho 0.500 Rho 0.500

26 26
~ 25

b4
M 25

b4
N 23 N 23

r22 T 22
I 21 I 21
M 20
E u 20

E
19 19

I 18
N I 18

N
17 17

s 16 s 16 y y s 15 • s 15
T 14 ' "'

T 14
E 13 + ~ 13 t.l

12 12
11 11

FAST SLOW SHORTEST PREFERRED

INSPECTION STATION SPEED QUEUE SELECTION STRATEGY

Inspection Station Speed Decision Queue Selection Strategy Decision
Rho 0.675 Rho 0.675

26 26
M 25
[
A 24

u 25

b4
N 23 N 23
r22 T 22
I 21 I 21
M 20
[M 20

E
19 19

I 18 I
N

~
. N ,l8

17 17
\ s 16 .-- s 16 y ~ y s 15 t- s 15

T 14 T 14
[13 [13 M M

12 12
11 11

FAST SLOW SHORTEST PREFERRED

INSPECTION STATION SPEED QUEUE SElECTION STRATEGY

+ = Bose Model <«>» * = Meta Model

PLANT 083
Figure 32. Plant OB3 Validation #1- Visual Inspection

133

Plant Level Validation #2

The results for the validation #2 ANOV As for scenario OB3 are shown in Table

XXIII below. As in the prior scenarios, in every case a significant difference in mean

time-in-system is detected across the decision alternatives.

TABLE :XXIII

ANOV A SUMMARY FOR OB3 PLANT LEVEL VALIDATION #2

MODEL 1REATMENT RHO HYPOTHESIS OSL a =0.05 a= 0.01
OB3/Base Inspection Station Speed 0.500 Ifo: llF = lls 0.0001 Reject Reject

OB3/Meta Inspection Station Speed 0.500 Ifo: llF = lls 0.0001 Reject Reject

OB3/Base Inspection Station Speed 0.675 Ifo: llF = lls 0.0001 Reject Reject

OB3/Meta Inspection Station Speed 0.675 Ifo: llF = lls 0.0001 Reject Reject

OB3/Base Queue Selection Strategy 0.500 Ifo: llP = lls 0.0001 Reject Reject

OB3/Meta Queue Selection Strategy 0.500 Ifo: llP = lls 0.0001 Reject Reject

OB3/Base Queue Selection Strategy 0.675 Ifo: llP = lls 0.0001 Reject Reject

OB3/Meta Queue Selection Strategy 0.675 Ifo: llP = lls 0.0001 Reject Reject

Plant Level Validation #3

The results of the validation #3 ANOV As for scenario OB3 are shown in Table

XXIV on the following page. As happened for scenario OB2, only in the queue selection

strategy decision at rho 0.500 does the table reflect the desired result (no difference in

slope) at both a levels. In the all other cases, a difference in slope was detected with a

very small OSL (0.0001). As in the previous scenario, these results are not necessarily

intuitively appealing upon a review of Figure 32 since there does not appear to be a

marked difference in slopes in any of the graphs.

TABLE XXIV

ANOV A SUMMARY FOR OB3 PLANT LEVEL VALIDATION #3

MODEL TREATMENT RHO HYPOTHESIS OSL a=0.05 a= 0.01

OB3 Inspection Station Speed 0.500 Ifo: ..1Slope = 0 0.0001 Reject Reject

OB3 Inspection Station Speed 0.675 Ifo: ..1Slope = 0 0.0001 Reject Reject

OB3 Queue Selection Strategy 0.500 Ifo: ..1Slope = 0 0.3650 Accept Accept

OB3 Queue Selection Strategy 0.675 Ifo: ..1Slope = 0 0.0001 Reject Reject

134

As before this lack of intuitive appeal is attributed to the difference in vru.iances

of the plot points used to estimate the line slopes. As the variance among the plot points

at one (or both) ends of the line increases, the confidence interval around the slope

estimate widens. This leads directly to an increased probability that the two slopes will

not be considered significantly different. In terms of Figure 32, the plot points at the

"preferred" end of both lines of the queue selection decision graph with p at 0.500 (upper

right graph) have a greater variance among them than the points at the "slow" end of the

other nearly parallel lines (upper left graph). Specifically, the calculated sample

variances for the base and meta points on the upper right graph are 0.3013 and 0.2196

respectively while the same values for the upper left graph are 0.0829 and 0.0378.

The results of the pragmatic validation test #3a are given in Table XXV on the

next page. The worst case inconsistency is an acceptable 4.30 percent. It is again

interesting that for the queue selection strategy case with pat 0.675 the lines are

converging as they were in scenario OB 1 and OB2. In every other case in both

scenarios, the lines were diverging.

TABLE XXV

ANOV A SUMMARY FOR OB3 PLANT LEVEL VALIDATION #3a

CORRECTED PERCENT
MODEL 1REATMENT RHO META META ERROR

OB3 Inspection Station Speed 0.500 14.60994 14.44822 1.12

OB3 Inspection Station Speed 0.675 17.34473 16.62901 4.30

OB3 Queue Selection Strategy 0.500 19.57897 19.30435 1.42

OB3 Queue Selection Strategy 0.675 23.49819 2436399 -3.55

Scenario OB4 - Finite Queue Capacity

Introduction

135

Observation based scenario four is a tree network composed of four machines

configured in two stages. The physical configuration and part routings are identical with

those of scenario OBl, OB2, and OB3 (see Figure 23). There are three major differences

between scenario OB4 and the previous observation based scenarios. The first and most

significant difference is that the individual workstations within OB4 have queues with

finite capacity. These queues, which can be thought of as WIP buffers, occur on both the

input and output side of each workstation.

The queue capacities for the OB4 machines are given in Table XXVI on the next

page. As before, the exact parameters were determined based on preliminary

experimental runs. The goal of the experimentation was to find queue lengths that would

136

allow the finite queues to have some impact at low utilization levels without

overwhelming the system at high utilization levels. By implementing finite queues in

this way, blocking of workstation Ml can occur. Workstation Ml becomes blocked if

there is no room in its output queue to hold a processed part. The station remains in a

blocked state until room becomes available in this queue. Room becomes available when

the currently waiting part can move to the input queue of M2 or directly into processing

onM3 orM4.

TABLE XXVI

QUEUE CAPACITIES FOR OB4 MACHINES

INPUT QUEUE OUTPUT QUEUE
MACHINE CAPACITY CAPACITY

M1 infinite 1

M2 1 infinite
M3 0 infinite

M4 0 infinite

The second change that differentiates scenario OB4 is that the operator assisted

setup that was added in scenario OB2 had to be removed. While this breached the

intended cumulative nature of the observation based scenarios, the removal was

necessary in order for the blocking to have a significant impact. Preliminary runs made

with the operator assisted setup in place showed that queueing for the operator paced the

progress of parts to the extent that blocking never (or very seldom) occurred at low and

moderate stage utilization values.

137

The third major change was required due to the zero input queue capacities in

front of machines M3 and M4. When queried these queues would always report that

their current queue length was equal to their maximum (i.e., zero). Under this condition,

the shortest queue selection rule that considers only queue length (not machine status)

would never route a part to the machine. To circumvent this problem the shortest queue

selection rule was modified to consider both queue length and machine status.

The service time distributions for Ml, M2, M3, and M4 were reinstated to their

scenario OBI values (i.e., prior to setup). The machine failure and operator assisted

repair distributions remain as they were in scenario OB3. The arrival process to the

workcenter is Poisson, therefore, the interarrival time of parts to the workcenter is

exponentially distributed. The mean of the interarrival time distribution is set at 4.00,

2.50, 1.67, or 1.25 depending upon the targeted stage utilization. The corresponding

stage utilization values are approximately 0.25, 0.40, 0.60, and 0.80.

The distributional form for the metamodel for this workcenter cannot be

determined analytically. The presence of state dependent routings, multiple concurrent

resources (for repair only), machine failures, and finite queues violate the product form

solution assumptions required for an analytical solution to be calculable.

W orkcenter Level Validation

The workcenter validation graphs for scenario OB4 are shown in Figures 33

(p=0.50) and 34 (p=0.75) on the following two pages. The metamodel with pat 0.50,

Figure 33, was produced with no remedial cycles. The metamodel with pat 0.75, Figure

34, required two iterations of the remedial procedure. These iterations caused the

interpolation arrays to ultimately be associated with p values of 0.725 and 0.775 rather

than 0.60 and 0.80. Both metamodel CDFs track well through the mode but lag

noticeably after the mode. Both metamodels are within the Kolmogorov-Smirnov limits

138

Probability Density Function

0.8

0.7

0.6

0.5
p
D

0.4 F

0 . .3

0.2

0.1
··

0.0

0 2 4 6 8 10 12 14 16 18 20

TIME-IN-SYSTEM

MODEL BASE -- META

Cumulative Distribution Function

1.0

0.9

0.8

0.7 •
c 0.6
D

0.5 F

0.4

0 . .3

0.2

0.1
' ---------..J 0.0

0 2 4 6 8 10 12 14 16 18 20

TIME-IN-SYSTEM

MODEL BASE ---- LL --META ---- UL

LL and UL ore 0.01 Kolmogorov-Smirnov Goodness of Fit Limits

WORK CENTER 084 - Rho 0.50
Figure 33. Plant OB4 Workcenter Validation- Rho 0.50

0.36
0.34
0.32
0.30
0.28
0.26
0.24
0.22 p
0.20 0

F 0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

0

1.0

0.9

0.8

0.7

c 0.6
0

0.5 F

0.4

0.3

0.2

0.1

0.0

0

Probability Density Function

2 4 6 8 10 12 14 16 18 20
Tl ME -IN-SYSTEM

MODEL BASE --META

Cun~ulative Distribution Function

-- ··-···-···-···-···· /;);;;;:::::::::::::-::::::.::::::::----------
,/ /,.

/, j/" , ,
//"

/ ,'
// , '

' ' ,l,/
~I

I I

,'I
//
" If ,, ,,

/' ,,
//
" /I

----------'
2 4

MODEL

6 8 10 12 14
TIME-IN-SYSTEM

BASE ---- LL -- MET A

16 18

UL

LL and UL are 0.01 Kolmogorov-Smirnov Goodness of Fit Limits

WORK CENTER 084- Rho 0.75
Figure 34. Plant OB4 Workcenter Validation- Rho 0.75

20

139

over their entire range. Although this is difficult to see on the near vertical part of the

CDF curve of Figure 33, the SAS validation program (Appendix G) verifies that no

limits were violated.

140

In contrast to the previous observation based scenarios, the PDF curves for the

metamodels do not exhibit the bimodal characteristic. A review of other p values (not

shown) reveals that this unimodal characteristic remains consistent. It is the author's

hypothesis that the modification of the queue selection rule to include consideration of

machine status induced this change.

Within the discussion of results of Scenario OBl, it was hypothesized that the

first mode of the bimodal PDF was representative of time-in-system for parts that were

queued to a stage two machine that was idle. The second mode was representative of

parts queued to a busy machine. The valley between the modes is created by the queue

selection rule that, under some circumstances, prefers a busy machine over an idle one.

This misguided preference occurs when a low numbered machine (e.g., Ml) has no

queue but is busy while a higher numbered machine (e.g., M2) has no queue and is idle.

Under these circumstances, the queue selection algorithm would "see" a tie between the

competing machines since both have a waiting queue length of zero. The algorithm

breaks ties in favor of the lower numbered machine. Thus, in the example, the part

would be queued to Ml although it was busy.

Under the current scenario, the valley between the modes is lost. It is the author's

hypothesis that this results from a modification of the queue selection rule to consider

machine status. The net result is that a smaller proportion of parts are queued to busy

machines since situations similar to the example above would never be seen as a tie. The

part would have been definitively queued to M2, the idle machine. Pictorially, this can

be thought of as "shaving" part of the peak of the second mode to fill the valley.

141

Plant Level Validation #1

The four plant level validation #1 graphs for scenario OB4 are shown in Figure

35 on the next page. An inspection of this figure yields the following observations:

o the metamodels are approximately accurate and approximately consistent;

o all metamodels are inaccurate on the high side;

o the magnitude of the inaccuracies appears to be greater than either of the

queueing network cases (QN1 and QN2) but consistent with the first three

observation based cases (OB1, OB2, and OB3);

o there is very little discemable inconsistency in the metamodels with p at

0.500. With pat 0.675, the lines for the inspection speed decision appear to

diverge. For the queue selection strategy decision they appear to converge

slightly.

Plant Level Validation #2

The results for the validation #2 ANOV As for scenario OB4 are shown in Table

XXVII on page 143. As in the prior scenarios, in every case a significant difference in

mean time-in-system is detected across the decision alternatives.

Plant Level Validation #3

The results of the validation #3 ANOV As for scenario OB4 are shown in Table

XXVIII on page 143. As was true for scenario OB2, only in the queue selection strategy

decision at rho 0.500 does the table reflect the desired result (no difference in slope) at

both a levels. In the all other cases, a difference in slope was detected with a small OSL

(0.0012). Again, these results are not necessarily intuitively appealing upon a review of ·

Figure 35 since there does not appear to be a marked difference in slopes in any of the

graphs.

26
1.125

b4
N 23

r22
I 21

1.1 20
E

19
I 18
N

17
s 16

~ 15
T 14
E 13 1.1

12

Inspection Station Speed Decision
Rho 0.500

26
Mzs
~ 24
N 23

T 22
I 21
t.l20
E

19
I 18
N

17
s 16
y
s 15
T 14

~ 13
12

Queue Selection Strategy Decision
Rho 0.500

11 '----,-----------.-- 11'----~---------r---

26
1.1 25
E
A 24
N 23

r22
I 21

1.1 20
E

19
I 18
N

17
\ s 16

y
s 15
T14
E 13
1.1

12

FAST SLOW

INSPECTION STATION SPEED

Inspection Station Speed Decision
Rho 0.675

--------1
t---

26
M 25

b4
N 23

T 22
I 21
M 20
E

19
I 18
N

17
s i6 y
s 15
T 14

~ 13
12

SHORTEST PREfERRED

QUEUE SELECTION STRATEGY

Queue Selection Strategy Decision
Rho 0.675

11 '-----.---------.--- 11 '----,------------.--
FAST SLOW SHORTEST PREFERRED

INSPECTION STATION SPEEO QUEUE SElECTION STRATEGY

+ = Base Model <«>» * = Meta Model

PLANT 084
Figure 35. Plant OB4 Validation #1- Visual Inspection

142

143

TABLE XXVII

ANOV A SUMMARY FOR OB4 PLANT LEVEL VALIDATION #2

MODEL 1REATMENT RHO HYPOTHESIS OSL a=0.05 a= 0.01

OB4/Base Inspection Station Speed 0.500 Ho: J..lF = J..ls 0.0001 Reject Reject

OB4/Meta Inspection Station Speed 0.500 Ho: J..lF = J..ls 0.0001 Reject Reject

OB4/Base Inspection Station Speed 0.675 Ho: J..lF = J..ls 0.0001 Reject Reject

OB4/Meta Inspection Station Speed 0.675 Ho: J..lF = J..ls 0.0001 Reject Reject

OB4/Base Queue Selection Strategy 0.500 Ho: J..lp = J..ls 0.0001 Reject Reject

OB4/Meta Queue Selection Strategy 0.500 Ho: J..lp = J..ls 0.0001 Reject Reject

OB4/Base Queue Selection Strategy 0.675 Ho: J..lp = J..ls 0.0001 Reject Reject

OB4/Meta Queue Selection Strategy 0.675 Ho: J..lp = J..ls 0.0001 Reject Reject

TABLE XXVIII

ANOV A SUMMARY FOR OB4 PLANT LEVEL VALIDATION #3

MODEL TREATMENT RHO HYPOTHESIS OSL a= 0.05 a= 0.01
OB4 Inspection Station Speed 0.500 Ho: .1-Slope = 0 0.0001 Reject Reject

OB4 Inspection Station Speed 0.675 Ho: .1-Slope = 0 0.0001 Reject Reject

OB4 Queue Selection Strategy 0.500 Ho: .1-Slope = 0 0.2957 Accept Accept

OB4 Queue Selection Strategy 0.675 Ho: .1-Slope = 0 0.0012 Reject Reject

As before this lack of intuitive appeal is attributed to the difference in variances

of the plot points used to estimate the line slopes. As the variance among the plot points

at one (or both) ends of the line increases, the confidence interval around the slope

estimate widens. This leads directly to an increased probability that the two slopes will

not be considered significantly different. In terms of Figure 35, the plot points at the

144

"preferred" end of both lines of the queue selection decision graph with pat 0.500 (upper

right graph) have a greater variance among them than the points at the "slow" end of the

other nearly parallel lines (upper left graph). Specifically, the calculated sample

variances for the base and meta points on the upper right graph are 0.3409 and 0.2648

respectively while the same values for the upper left graph are 0.0626 and 0.0520.

In this scenario there is also one decision case with an OSL that is in the"reject"

range but is slightly higher than it was in previous scenarios (0.0012). An inspection of

Figure 35 reveals that the plot point variance appears slightly greater for the "preferred"

end of the base model line of the queue selection decision graph with p at 0.675 (lower

right graph). The calculated sample variance for these points is 0.1808. This value is

bracketed by the lowest "accept" values (variance of 0.2648 with an OSL of 0.2957) and

highest "reject" values (variance of 0.0626 with an OSL of 0.0001) in the preceding

paragraph. Since these results are consistent with the plot point variance hypothesis, the

hypothesis remains credible.

The results of the pragmatic validation test #3a are given in Table XXIX on the

following page. The worst case inconsistency is an acceptable 4.68 percent. It is again

interesting that for the queue selection strategy case with pat 0.675 the lines are

converging as they were in scenario OB1, OB2, OB3. In every other case in each

scenario, the lines were diverging.

Inter-Scenario Comparisons

The focus of the analysis in the preceding sections has been primarily intra

scenario. It is appropriate to note some observations regarding inter-scenario results.

The observations below result from the simultaneous consideration of the results of plant

level validation #3a for each scenario (Tables XIII, XVI, XIX, XXII, XXV, and XXIX).

145

TABLE XXIX

ANOV A SUMMARY FOR OB4 PLANT LEVEL VALIDATION #3a

CORRECTED PERCENT
MODEL TREATMENT RHO META META ERROR

OB4 Inspection Station Speed 0.500 13.19580 13.00810 1.44

OB4 Inspection Station Speed 0.675 15.58739 14.89030 4.68

OB4 Queue Selection Strategy 0.500 18.32305 17.92185 2.24

OB4 Queue Selection Strategy 0.675 21.92960 22.84682 -4.01

o In all eight pairs of the observation-based scenario decision cases, the absolute

value of the percent error for the p = 0.50 case is less than that for the

corresponding p = 0.675 case. This observation is consistent with the

behavior of the metamodels with respect to the remedial procedure. The

higher p, the more difficult it is for the metamodel to track the base model

within Kolmogorov-Smirnov limits. It is an interesting contrast to note that

while metamodels encounter difficulty at high p values, queueing

approximations (see Chapter III) perform well. This suggests potential future

research in the area of combined metamodels and queueing approximations.

o In three out of four of the pairs of queueing network scenario decision cases,

the absolute value of the percent error for the p = 0.50 case is greater than that

for the corresponding p = 0.675 case. This result is counter intuitive and

perhaps warrants additional research.

o Out of the sixteen individual observation-based decision cases, twelve had

divergent base and metamodellines and four had convergent lines. In each

case the convergent lines occurred with the queue selection strategy decision

at p = 0.675. This would suggest that the type of decision and p value have a

significant bearing on sign of the inconsistency error. Further research is

suggested to explore this relationship.

146

o For Scenarios OB2, OB3, and OB4, the inconsistency errors across decisions

but within p values are comparable. The inconsistency errors across p values

but within decisions are less comparable. This suggests that the metamodels

considered in this research (particularly the complex scenarios) are more

sensitive to the value of p than they are to the type of decision.

o The stability of the level of inconsistency error across scenarios but within

decision cases and p value, suggests that calibration and/or correction factors

could be incorporated into a metamodel to improve its consistency. Further

research is needed to learn how such factors could be included in the

metamodel development and validation procedures.

The observations presented in this section suggest many things about metamodels

and the relationship between model complexity, decision cases, and p values. Additional

research is needed to substantiate these observations across a wider range of scenarios.

Ultimately this research could lead to insights into fundamental relationships as discussed

in Chapter I.

Computer Execution Times

The primary goal for this research is to develop a methodology for hybrid

metamodeling of complex manufacturing systems and assess its viability. This goal is

motivated by an interest in reducing the time required for simulation model execution.

Given this goal and motivation, it may seem curious that no research objective was

developed to specifically measure the time savings achieved under the various scenarios.

The reason for this is twofold. First, the dominant focus of this effort is on a practicable

147

methodology not on the ultimate time savings achievable through its use. The focus is on

the question "does it work?" rather than the question "how well does it work?"

The second reason that measurement of execution times is not a formal objective

is the intuitive appeal of the speed of the metamodels. This appeal stems from the fact

that metamodels are inherently "less complex" than their base model counterparts.

Complexity is reduced in at least two dimensions: (1) only one random variate must be

generated for the metamodel whereas a base model may require many, and (2) no

"internal" logic must be exercised for the metamodel whereas a base model may require

embedded logic for queue selection rules, machine breakdown and repair, etc.

While not a formal objective it is still prudent to examine the impact of

metamodels on execution time within this research. To accomplish this, average

computer execution time savings for each scenario is calculated and shown in Table

XXX. These results reflect computer time savings ranging from approximately fifteen

percent for the least complex models to approximately twenty percent for the most

complex models.

TABLE XXX

SUMMARY OF COMPUTER EXECUTION TIME SAVINGS

SCENARIO PERCENT TIME REDUCTION FOR METAMODELS
QN1 15.3%
QN2 14.6%
OB1 15.0%
OB2 18.8%
OB3 18.4%
OB4 20.2%

148

Two factors need to be considered in putting these time savings into perspective

relative to the potential of metamodeling. First, the scenarios considered in this research

are relatively simple. They all are composed of four or fewer machines and only one

part type. If more complex scenarios were evaluated it would be reasonable to expect the

percentage time savings to increase. Second, within the OOM environment, the

metamodel sampling procedure is written in a straightforward but not necessarily

efficient form. The sampling procedure includes a left-to-right interval search of the

empirical grouped distribution function (see Appendix E for details). This search could

be performed in a more efficient, application specific manner to enhance the time

savings. This would be particularly valuable for empirical grouped distribution functions

containing many cells.

Summary Of Experimental Results

The methodologies and results presented in this chapter complete the fulfillment

of research Objectives 1 through 5. Objective 1 is the development of a metamodel

selection procedure. The metamodel selection procedure presented in Chapter VII is

implemented as described under the Metamodel Usage sub-heading of Scenario OBI.

This fulfills Objective 1.

Objective 2 is the development of the observation based metamodel procedure. It

is fulfilled through the triad of algorithms described under the sub-headings Metamodel

Development, Metamodel Validation, and Metamodel Remedial Procedure of Scenario

OBL

The development of the queueing network metamodel procedure is Objective 3.

This objective was included to demonstrate the robustness of the metamodeling concept.

Queueing network metamodels are case-specific. Each queueing network model must be

individually solved to yield the metamodel cumulative distribution function based on its

unique characteristics. The introductory sections of Scenarios QNl and QN2 are

exemplary of this procedure and thus fulfill the Objective 3.

149

Objective 4 is the demonstration of proof-of-concept through prototype

implementation. The OOM environment used for implementation is described in

Chapter VI and Appendix A. The proof of concept is demonstrated via the

implementation of the results of the first three objectives within the OOM environment.

The workcenter level validations described within each scenario provide evidence of the

viability of the developed procedures.

The validation of metamodels through consistency of plant level decisions is

Objective 5. The results presented in this chapter demonstrate the pragmatic

acceptability of the developed metamodeling methodology. The outcomes of the

statistical tests were less desirable but are mitigated by the impact of the large sample

size associated with the experimental design.

CHAPTER IX

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Introduction

This chapter presents concluding thoughts about this research effort. It includes a

summary of the research in light of the proposed objectives, contributions to the body of

knowledge attributable to the research, and recommendations for extended and/or

additional research in the area.

Research Summary

The goal of this research was to develop a methodology for hybrid metamodeling

of manufacturing systems within a simulation framework. The goal was systematically

addressed through six research objectives. The sections below review the

accomplishments in each of these areas.

Metamodel Selection Procedure

The first objective was the development of a procedure to determine which

workcenters within a multi-workcenter simulation model are candidates for a metamodel.

This procedure is the subject of Chapter IV. The derived procedure involves two major

steps: the determination of candidate workcenters and the determination of the

availability of a valid metamodel. Candidate workcenters are those whose desired

performance measures within the experimental frame do not conflict with the metamodel

150

151

aggregate behavior. Table IX on page 84 summarizes the results of this process within

the following restrictions:

o Potential performance measures are given by Law [1986].

o Metamodel aggregate behavior preserves the time-in-system distribution.

o the OSU OOM environment is the simulator.1

The second step of the procedure is the determination of an available valid

metamodel. Within this research, this determination is made within the modeling

environment through two checks. The first check determines whether a metamodel has

been previously loaded for the workcenter .. The second check determines whether the

desired value of the input parameter (mean arrival rate divided by mean stage service

rate) is within the bounds of the data used to create the metamodel. If both checks are

successfully passed then a metamodel is available and can be implemented.

Two caveats apply to the procedure outlined above. First, a metamodel is valid

only for the physical configuration and operational characteristics for which it was

developed. If either of these is modified in any way then the metamodel must be re

validated before use. Second, the existence of a metamodel that has been validated for a

set of p values, does not guarantee that it is valid (within the defined Kolmogorov

Smirnov limits) for every possible p value within its allowed range.

Within this research effort each metamodel was validated at three p values, 0.50,

0.675, and 0.75 using the validation procedure presented in Chapter VITI. In pursuing

these validations, the following judgmental guidelines emerged for assessing the validity

of a metamodel at other p values:

o if the desired p value is greater than 0.25 and less than 0.60, a metamodel

interpolation range less than or equal to 0.20 will produce a valid metamodel;

1The metamodeling concept is valid in many potential environments. This restriction exists because the
OSU OOM environment cannot currently be used for all potential performance measures.

152

o if the desired p value is greater than 0.60 and less than 0.70, a metamodel

interpolation range less than or equal to 0.10 will produce a valid metamodel;

o if the desired p value is greater than 0.70 and less than 0.80, a metamodel

interpolation range less than or equal to 0.05 will produce a valid metamodel;

o in general, as the p value increases the interpolation range should decrease;

o in general, for a given p, as the complexity of the workcenter structure and/or

operating characteristics increases, the interpolation range for a metamodel

should be narrowed;

Using the procedures and guidelines summarized above, the objective of

developing a metamodel selection procedure was accomplished.

Observation-Based Metamodel Procedure

The second objective was the creation of a procedure to develop and validate (at

the workcenter level) an observation-based metarnodel. In the context of this research,

an observation-based metamodel is a metamodel developed by observing the behavior of

a detailed (base model) version of the workcenter. This procedure is required when no

closed form solution is available for the time-in-system distribution of the base model.

The development and validation procedures were both presented in detail within the

Scenario OB 1 Section of Chapter VIII.

One of the most significant disappointments of this research was that no curve

fitting based method was discovered for observation-based metarnodel development.

Several early ad hoc attempts using stepwise multiple regression failed to provide

solutions that were competitive with the interpolation based procedure. In defense of the

interpolation procedure, it is attractive because it is conceptually and graphically easy to

comprehend and because none of the metarnodels within this research required more than

two cycles of the remedial procedure to converge.

153

Using the procedures summarized above, the objective of creating an observation

based metamodel development procedure was accomplished.

Oueuein~ Network Metamodel Procedure

The third objective was the creation of a procedure to develop a queueing

network metamodel. In the context of this research, a queueing network metamodel is a

metamodel developed by solving for a closed form solution of the time-in-system

distribution for the workcenter. This procedure can be used when a workcenter meets the

assumptions required for a product form solution with non-overtaking paths. The

procedure for developing this type of metarnodel is discussed within the Scenario QNl

and Scenario QN2 Sections of Chapter VIII. Using the procedure presented in these .two

sections, the objective of creating a queueing network metamodel development procedure

was accomplished.

Proof of Conct(!Jt Via Prototype Development

The fourth objective was the implementation of the results of objectives one

through three in a way that demonstrates proof of concept. The implementation was

accomplished within the OSU OOM environment presented in Chapter VI. The structure

of the user interaction with the OOM environment and the proof of concept results are

presented in Chapters Vll and Vill. The reduction in computer run times produced by

implementing metamodels (15% to 20%) is documented in Table XXX on page 147.

The fourth objective as presented in the July, 1991 Research Proposal and

Chapter IV includes the development of a procedure for on-line parameterization of the

metamodel. This procedure was intended to accommodate situations in which the

metamodel parameter was either unknown prior to initiating the simulation run or

dynamically changing within the simulation run. As discussed in Chapter VITI this

requirement eventually became moot for two reasons. First, due to the nature of the

154

cases used within this research, the metamodel parameter can be determined from flow

balance analysis prior to the run, thus eliminating the unknown parameter case. Second,

the metamodels in this research are not time-varying models. By their very nature they

are suitable only for steady state not transient modeling, thus eliminating the dynamic

case.

With the above exception noted, the results of Chapters VI, VII, and VIII provide

evidence that the objective of implementation and proof of concept was accomplished.

Plant Level Validation

The fifth objective was the evaluation of the methodology and metamodels at the

plant level through simulation experiments. This evaluation was accomplished through

the plant level validation results presented in Chapter VIII. The validation was judged

based on both empirical and statistical analysis of the consistency between a decision

made using a base model and the same decision made using a corresponding metamodel.

The results presented were satisfying from the standpoint of visual empirical

evidence and pragmatic error analysis. The results were less satisfying from a pure

statistical analysis point of view. Arguments were presented that discount the statistical

analysis in favor of the empirical and pragmatic results due to the impact of the large

sample sizes involved.

With the above subjective argument noted, the results presented in Chapter VIII

constitute the accomplishment of metamodel evaluation and validation at the plant level.

Future Research

The final objective was the identification of further research in this area. Many

areas of potential research exist within the broad context of hybrid metamodeling.

Published results to date in this area barely scratch the surface of what might be

accomplished via approximate modeling techniques. The final section of this chapter

presents ideas on further research that grew out of this effort.

Research Contributions

155

Published results in the area of hybrid metamodeling are scant. One of the major

intended contributions of this research was to stimulate additional research in this area

through a .demonstration of the viability of the concept. The vehicle used to demonstrate

proof of concept was the bottom-up hierarchical object-oriented manufacturing

simulation environment currently under development at OSU's Center for Computer

Integrated Manufacturing.

The completion of the research objectives as documented in the previous section

makes the following contributions to the area of advanced simulation modeling within

Industrial Engineering:

o a metamodeling methodology has been developed that appears to have broad

application to hierarchical simulation models of manufacturing systems;

o the viability of the methodology, in terms of decision consistency, has been

demonstrated over a narrowly defined set of scenarios;

o a reduction of computer processing time through metamodeling has been

demonstrated, thereby, making on-line simulation and search-driven

simulation more feasible;

o an implementation procedure for plug-compatible metamodels has been

shown effective within the OSU OOM environment;

o the need for additional research aimed at extending and/or generalizing the

results of this effort such that they become available to mainstream

practitioners has been stimulated;

o the effectiveness of the OSU OOM environment as a research test bed has

been demonstrated.

156

Recommendations For Future Research

As a result of the research conducted in this study, recommendations of additional

research can be made. They are described in the sections that follow.

Metamodel Parameterization

All the metamodels in this research were parameterized on p, the expected stage

utilization of the workcenter. In each case the workcenter structure and operating

characteristics were held constant. Controlled experimentation is needed to determine if

workcenter structure and/or operating characteristics are viable metamodel parameters

under constant utilization.

Controlled experimentation is also needed to determine if time-parameterized

metamodels are feasible. Successful implementation of this concept would allow

metamodels to be used for transient analysis as well as steady-state analysis. This

research could also lead to investigation of dynamic substitution of metamodels. When

simulation conditions warrant, an appropriate metamodel would be "plugged" into the

overall model until the conditions changed sufficiently to call for another substitution.

An even broader interpretation of a dynamic metamodel is a "learning" metamodel. Such

a metamodel could conceivably use neural nets as a learning vehicle to change itself over

the course of time as conditions warrant.

Metamodel Accuracy

The primary validation measure for the metamodels in this research as prescribed

by Objective 5 is consistency of decisions. Figure 19 defines this error and differentiates

it from an error of inaccuracy. The plant level validation #1 results presented in Figures

20, 22, 26, 29, 32, and 35 clearly show that varying levels of inaccuracy are present in

the metamodels. Further research is suggested to investigate creating more accurate

157

metamodels, perhaps through the use of multiple variables (e.g., E[p] and Var[p]) rather

than a single variable (e.g., E[p]) to parameterize the metamodel.

Metamodel Calibration

Several areas of further research were noted in the inter-scenario section of

Chapter VIII. These areas were primarily based on the consistent behavior of

metamodels across the scenarios. The observations suggest that calibration of

metamodels through additive and/or multiplicative correction factors might be used to

improve both inaccuracy and inconsistency. Additional research is needed to substantiate

these observations and develop a methodology.

Metamodel Intetpolation Ranges

Guidelines for acceptable interpolation ranges for metamodels were presented

above. These guidelines were developed based upon the narrow set of scenarios used in

this research. Research is needed to enhance and validate these guidelines on a

significantly broader set of scenarios.

Metamodel Analytic Forms

One of the original intentions of this research was to discover analytic forms for

metamodels or classes of metamodels. No analytic forms were found in this study that

were competitive with the interpolation algorithms in terms of accuracy or efficiency. A

more rigorous effort is needed in this area to continue to pursue "insight not numbers."

Metamodel Target Behavior

The target behavior to be approximately maintained by all of the metamodels

within this research was time-in-system for a single part type. Research is needed to

investigate the viability of alternative be)laviors (e.g., maximum WIP, time-in-queue,

etc.) and/or multiple behaviors (e.g., time-in-system for multiple part types) for

metamodels.

Multiple and Nested Metamodels

158

The validation activities within this research were limited to cases where a single

metamodel existed within a plant scenario. Research is needed to determine whether

acceptable levels of consistency can be maintained if a plant model contains two or more

metamodels. Research is also needed to determine if acceptable consistency can be

achieved with two tiered metamodels (i.e., a group of two or more metamodels can be

metamodeled with some form of "super" metamodel). This type of two-tiered

metamodel would be useful if, for instance, all the workcenters within a department of a

multi-department model were amenable to metamodeling. For either multiple or nested

metamodels, research is needed bound the potential resource savings (i.e., computer

execution time savings) to be obtained by cumulative applications of metamodeling.

Justification of Metamodelin~

Within this research, the use of metamodels is rationalized based primarily on a

reduction in amount of computer processing time required. These savings are

particularly relevant when a metamodel is used repeatedly over time or when the

reduction enables the use of simulation in real-time or search based applications.

Additional research is needed to quantify these potential savings and to develop a

methodology for determining the conditions under which the creation and maintenance

of a metamodel is cost justified.

Tangential Research

The additional research areas identified above are either extensions of this research or

otherwise directly related to the stated objectives. Other areas of research were

discovered in the course of this effort that are tangentially related. A brief listing of

these areas is as follows:

159

o The ANOV As prepared for plant level validations #2 and #3 both indicated

that random number sets were a significant source of variation. Ideally, the

choice of random number seed should not be a significant source of variation.

This result emphasizes the need for continued efforts in this already active

area of research.

o Investigation during the simulation run design phase of this research (see

Appendix B) indicated that multiple stream random number generation was

superior to single stream generation. Additional research is needed to fully

investigate the ramifications of this effect and understand the rationale behind

it (see also [Mize 1973]).

BffiLIOGRAPHY

Agrawal, S.C. 1985. Metamodelinfi: A Study of Al)proximations in Queueing Models.
Research Notes and Reports, Computer Systems Series. Cambridge, MA: The
MIT Press.

Ahrens, J.H. and U. Dieter. 1974. "Computer Methods For Sampling From The
Exponential and Normal Distributions." Computing 12: 223-246.

Alia, H., P Ladet, J. Martinez, and M. Silva-Suarez. 1985. "Modeling and Validation of
Complex Systems by Colored Petri Nets: Application to Flexible Manufacturing
System." In Advances in Petri Nets 1984, edited by G. Goos and J. Hartmanis:
15-31. Springer Verlag: LNCS 188.

Balbo, G., G. Chiola, and G. Franceschinis. 1989. "Stochastic Petri Net Simulation for
the Evaluation of Flexible Manufacturing Systems." In Proceedings of the 1989
European Simulation Multiconference: 5-12.

Baskett, F., K.M. Chandy, R.R. Muntz, and F.G. Palacios. 1975. "Open, Closed, and
Mixed Networks of Queues With Different Classes of Customers." Journal of the
ACM 22:248-260.

Basnet, C.B. 1991. "On-Line Scheduling and Control of Random Flexible
Manufacturing Systems Within an Object Oriented Framework." Ph.D.
dissertation, Oklahoma State University.

Basnet, C., H. Bhuskute, P. Farringtion, M. Kamath, J. Mize, and D. Pratt,. 1990.
"OSU-CIM Library of Objects for Modeling and Simulation of Discrete Part
Manufacturing Systems." Center for Computer Integrated Manufacturing,
Working Paper Series: CIM-WPS-90-CBl. Oklahoma State University.

Basnet, C., P. Farringtion, D. Pratt, M. Kamath, C. Karacal, and J. Mize. 1990.
"Experiences in Developing an Object-Oriented Modeling Environment for
Manufacturing Systems." In Proceedings Of The 1990 Winter Simulation
Conference, edited by 0. Balci, R.P. Sadowski, and R.E. Nance, 477-481.
Piscataway, NJ: IEEE.

Beaumariage, T.G. 1990. "Investigation of an Object Oriented Modeling Environment
for Manufacturing Systems." Ph.D. dissertation, Oklahoma State University.

160

161

Bitran, G.R. and D. Tirupati. 1988. "Multiproduct Queueing Networks with
Deterministic Routing: Decomposition Approach and the Notion of Interference."

',fana~ement Science 34, no. 1: 75-100.

ann~ .. \g, R.W. 1975. "The Construction and Implementation ofMetamodels."
/Simulation, June 1975: 177-184_ __

Boxma, O.J., F.P. Kelly, and A.G. Konheim. 1984. "The Product Form for Sojourn
Time Distributions of Cyclic Exponential Queues." Journal of the Association of
Computin~ Machinezy 31, no. 1: 128-133.

Buzacott, J.A. and J.G. Shanthikumar. 1980. "Models for Understanding Flexible
Manufacturing Systems." AilE Transcations 12: 339-350.

Buzacott, J.A. and D.D. Yao. 1986. "Flexible Manufacturing Systems: A Review of
Analytical Models." Mana~ement Science 32, no. 7: 890-905.

Chandy, K.M., U. Herzog, and L. Woo. 1975. "Parametric Analysis of Queueing
Networks." IBM Journal of Research and Development 19: 36-42.

Chen, L. and C. Chen. 1990. "A Fast Simulation Approach For Tandem Queueing
Systems." In Proceedin~s Of The 1990 Winter Simulation Conference, edited by
0. Balci, R.P. Sadowski, and R.E. Nance, 539-546. Piscataway, NJ: IEEE.

Cheng, R.C.H. 1977. "The Generation Of Gamma Variables With Non-Integral Shape
Parameter." Appplied Statistics 26: 71-75.

Chiu, W.W. and W.M. Chow. 1978. "A Performance Model ofMVS." IBM Systems
Journal 17: 444-462.

Conway, A.E. and N.D. Georganas. 1989. Oueuein~ Networks- Exact Computational
Al~orithms. Cambridge, Massachusetts: The MIT Press.

Cook, T.M. and R.A. Russell. 1976. "A Survey of Industrial OR/MS Activities in the
70's." In Proceedin~ of the 8th Annual Conference of the American Institure of
Decision Sciences.

Dietrich, B.L. and B.M. March. 1985. "An Application of a Hybrid Approach to
Modeling A Flexible Manufacturing System." Annals of Operations Research 3:
263-276.

Daduna, H. 1982. "Passage Times for Overtake-Free Paths in Gordon-Newell
Networks." Advanced Applied Probability 14: 672-686.

162

Endesfelder, T. and H. Tempelmeier. 1987. "The SIMAN Module Processer- A
Flexible Software Tool for the Generation of SIMAN Simulation Models." In

\Simulation in Computer lnte(U'ated Maoufacturin~ and Attificial Intelligence
_./ Techniqyes, edited by J. Retti, 38-43. San Diego, CA: The Society of Computer

Simulation.

Friedman, L.W. 1984. "Establishing Functional Relationships in Multiple Response
Simulation: The Multivariate General Linear Metamodel." In Proceedings of the

i L ______ J984 Winter Simulation Conference. Dallas, TX: 285-289.

Friedman, L.W. 1986. "Exploring Relationships in Multiple-Response Simulation
Experiments." Ome~a 14, no. 6: 498-501.

Geoffrion, A. 1976. "The Purpose of Mathematical Programming is Insight, Not
Numbers." Interfaces 7, no. 1: 81-92.

Gelenbe, E. and G. Pujolle. 1987. Introduction to Oueuein~ Networks. New York, NY:
John Wiley and Sons.

Goldberg, A. and D. Robson. 1989. SMALLTALK-80: The Lan~rna~e and Its
Implementation. Reading, MA: Addison-Wesley.

Gordon, W.J. and G.F. Newell. 1967. "Closed Queueing Systems with Exponential
Servers." Operations Research 15: 254-265.

Haider, S.W., D.G. Noller, and T.B. Robey. 1986. "Experiences With Analytic and
Simulation Modeling for a Factory of the Future Project at IBM." In Proceedings
of the 1986 Winter Simulation Conference, edited by J. Wilson, J. Henriksen, and
S. Roberts, 641-647.

Hamming, R.W. 1962. Numerical Methods For Scientists and-En~ineers. McGraw
Hill, Inc.

Hicks, C.R. 1964. Fundamental Concepts In The Design of Experiments. New York,
NY: Holt, Rinehart and Winston.

Holliday, M.A. and M.K. Vernon. 1987. "A Generalized Timed Petri Net Model for
Performance Analysis." In Transactions on Software Engineerin~ 13: 1297-1310.
IEEE.

Ignall, E.J. and P. Kolesar. 1978. "Using Simulation to Develop and Validate Analytical
Models: Some Case Studies." Operations Research 26, no. 2: 237-253.

163

Ignall, E.J. and P. Kolesar. 1979. "On Using Simulation To Extend ORJMS Theory:
The Symbiosis Of Simulation And Analysis." Chap. in Current Issues in
Computer Simulation, ed. N.R. Adam and A. Dogramaci, 223-233. New York,
NY: Academic Press.

Jackson, J.R. 1957. "Networks of Waiting Lines." Operations Research 5:518-521.

Jackson, J.R. 1963. "Jobshop-like Queueing Systems." Management Science 10: 131-
142.

Kamath, M. 1989. "Analytical Performance Models for Automatic Assembly Systems."
Ph.D. dissertation, University of Wisconsin-Madison.

Kamath, M. 1991. "A Two-moment Model for the Approximate Analysis of General
Tandem Queues with Blocking." Center for Computer Integrated Manufacturing,
Working Paper Series: CIM-WPS-91-MK2. Oklahoma State University.

Kamath, M., H. Bhuskute, and M. Duse. 1991. "Fast Simulation Techniques for
Queueing Networks." Center for Computer Integrated Manufacturing, Working
Paper Series: CIM-WPS-91-MKl. Oklahoma State University.

Kamath, M. and J.L. Sanders. 1987. "Analytical Methods for Performance Evaluation
of Large Asynchronous Automatic Assembly Systems." Lar~e Scale Systems 12,
no. 2: 143-154.

Kamath, M. and J.L. Sanders. 1991. "Modeling Operator/Workstation Interference in
Asynchronous Automatic Assembly Systems." Discrete Event Dynamic Systems:
Themy and Applications 1: 93-124.

Kamath, M., R. Suri, and J.L. Sanders. 1988. "Analytical Performance Models for
Closed-loop Flexible Assembly Systems." The International Journal of Flexible
Manufacturin~ Systems 1: 51-84.

Kamath, M. and N. Viswanadham. 1986. "Applications of Petri net Based Models in the
Modeling and Analysis of Flexible Manufacturing Systems." In Proceedings of
the 1986 IEEE International Conference on Robotics and Automation: 312-317.
Washington, DC: IEEE Computer Society Press.

Karacal, S.C. 1990. "The Development of an Integrative Structure for Discrete Event
Simulation, Object Oriented Programming, and Imbedded Decision Processes."
Ph.D. dissertation, Oklahoma State University.

Kelly, F.P. 1976. "Networks of Queues." Advanced Applied Probability 8: 416-432.

Kelly, F.P. and P.K. Pollett. 1983. "Sojourn Times in Closed Queueing Networks."
Advanced Applied Probability 15: 638-656.

164

Khoshnevis, B. and A. Chen. 1987. "An Automated Simulation Modeling System Based
on AI Techniques." In Simulation and AI, edited by P.A. Luker and B.
Birtwi~tle, 87-91. San Diego, CA: The Society of Computer Simulation.

Kleijnen, J.P.C. 1979. "Regression Metamodels for Generalizing Simulation Results."
IEEE Transactions on Systems. Man. and Cybernetics 9, no. 2: 93-96.

Koenigsberg, E. 1991. "Is Queueing Theory Dead?" Omega 19, no. 2/3:69-78.

Kraemer, W. and M. Langenbach-Belz. 1976. "Approximate Formula for the Delay in
the Queueing System GI/G/1." In Proceedings of the Eighth International
Teletraffic Congress, 235-1/8.

Kreutzer W. 1986. System Simulation Programming Styles and Languages. Reading,
MA: Addison-Wesley.

Kuehn, P.J. 1979. "Approximate Analysis of General Queueing Networks by
Decomposition." IEEE Transactions Comm. 27: 113-126.

Labetoulle, J. and G. Pujolle. 1980. "Isolation Method in a Network of Queues."
Transactions on Software Engineering 6, no. 4: 373-381. IEEE.

Law, A.M. 1986. "An Introduction to Simulation: A Powerful Tool for Analyzing
Complex Manufacturing Systems." Industrial Engineering 18, no. 5: 46-63.

Law, A.M. and S.W. Haider. 1989. "Selecting Simulation Software for Manufacturing
Applications: Practical Guidelines and Software Survey." Industrial Engineering,
31, no. 5: 33-46.

Law, A.M. and W.D. Kelton. 1991. Simulation Modeling And Analysis. 2nd ed. New
York, NY: McGraw-Hill, Inc.

Ledbetter, W.N. and J.F. Cox. 1977. "Are OR Techniques Being Used?" Industrial
Engineering 9, no. 2: 19-21.

Likic, A. and V. Zivkovic. 1989. "A Software Package for Representation and Analysis
of Flexible Manufacturing Systems Based on Petri Nets." In Proceedings of the
3rd European Simulation Congress: 502-507.

Massey, F.J., Jr. 1951. "The Kolmogorov-Smimov Test For Goodness Of Fit."
American Statistical Association Journal46, no. 253: 68-78.

Meisel, W.S. and D.C. Collins. 1973. "Repro-Modeling: An Approach to Efficient
Model Utilization and Interpretation." IEEE Transactions on Systems. Man. and
Cybernetics 3, no. 4: 349-358.

165

Mitrani, I. 1982. Simulation Techniques for Discrete Event Systems. Cambridge, Great
Britain: Cambridge University Press.

Mize, J.H. 1973. "Multiple Sequence Random Number Generators." In Proceedings of
the 1973 Winter Simulation Conference, edited by A.C. Hoggatt: 67-76.

Mize, J.H. and J.G. Cox. 1968. Essentials of Simulation. Englewood Cliffs, NJ:
Prentice-Hall, Inc.

Mize, J.H., M. Kamath, and L. Leemis. 1990. "Design and Implementation of an
Object-Oriented Modeling and Simulation Environment for Manufacturing
Systems." A research proposal submitted to the National Science Foundation.

Molloy, M.K. 1982. "Performance Analysis using Stochastic Petri Nets." Transactions
on Computers 31, no. 9: 913-917. IEEE.

Murata, T. 1989. "Petri Nets: Properties, Analysis and Applications." In IEEE
Proceedings 77, no. 4: 541-580. IEEE.

Nance, R.E. 1984. "Model Development Revisited." In Proceedings of the 1984 Winter
Simulation Conference, edited by S. Sheppard, U.W. Pooch, and C.D. Pegden,
75-80. Piscataway, N.J.: IEEE.

Narahari, Y. and N. Viswanadham. 1984. "Analysis and Synthesis of Flexible
Manufacturing Systems using Petri Nets." In Proceedings of the First
ORSAITIMS Conference on Flexible Manufacturing Systems: 346-358. North
Holland.

Nilsson, N.J. 1980. Principles of Artificial Intelligence. Palo Alto, CA: Tioga
Publishing Co.

Nymon, J.G. 1987. "Using Analytical and Simulation Modeling For Early Factory
Prototyping." In Proceedings of the 1987 Winter Simulation Conference, edited
by A. Thesen, H. Grant, W.O. Kelton: 721-724.

O'Reilly, P.J.P. and J.L Hammond. 1984. "An Efficient Simulation Technique for
Performance Studies of CSMNCD Local Networks." In IEEE Journal on
Selected Areas in Communication 2, no. 1: 238-249.

Oren, T. and K. Aytac. 1985. "Architecture of MAGEST: A Knowledge-based
Modeling and Simulation System." In Simulation in Research and Development:
. 99-109. North-Holland, Amsterdam, The Netherlands: Elsevier Science
Publishers.

Park, S.K. and K.W. Miller. 1988. "Random Number Generators: Good Ones Are Hard
To Find." Communications Of The ACM 31, no. 10: 1192-1201.

Paul, R.J. 1991. "Recent Developments in Simulation Modelling." Journal of the
Operational Research Society 42, no. 3: 217-226.

Pegden, C.D. 1986. Introduction to SIMAN. State College, PA: Systems Modeling
Corporation.

Peterson, J.L. 1977. "Petri Nets." ACM Computing Surveys 9, no. 3: 223-252.

166

Peterson, J.L. 1981. Petri Net Theory and the Modeling of Systems. Englewood Cliffs,
NJ: Prentice-Hall, Inc.

Pritsker, A.A.B. 1986. Introduction to Simulation and SLAM II. 3rd ed. New York,
NY: Halsted Press.

Reiser, M. and S.S. Lavenberg. 1980. "Mean-Value Analysis of Closed Multichain
Queueing Networks." Association for Computing Machinery Journal27: 313-
322.

Ross, S.M. 1989. Introduction To Probability Models. 4th ed. Boston, MA: Academic
~,Press.

·,_
~,,

Schriber, T.J. 1987. "The Nature and Role of Simulation in the Design of
"---.,, Ma)mfacturing Systems." In Simulation In CIM and Artificial Intelligence

''·'IochniCJJ.Ies, edited by J. Retti and K.E. Wichmann: 5-18. Belgium: The Society
1 ---J.Qr. Computer Simulation.
! ~ .. ,

S~hwetman,;H.D. 1977. "Hybrid Simulation Models: A Speed-Up Technique
\,_ . Cogibining Analytical and Discrete-Event Modeling." Models of Computer

SyStems, edited by P.P. Spies. New York: Springer-Verlag.

Schwetman, H.D. 1978. "Hybrid Simulation Models of Computer Systems."
Communications of the ACM 21, no. 9: 718-723.

Segal, M. and W. Whitt. 1989. "A Queueing Network Analyzer for Manufacturing." In
Proceedings of the Eighth International Teletraffic Congress: 1146-1152. North
Holland.

Sevinc, S. 1988. "Automatic Simplification of Models in a Hierarchical, Modular
Discrete Event Simulation Environment." Ph.D. dissertation, The University of
Arizona.

Shannon, R.E., S.S. Long, and B.P. Buckles. 1980. "Operation Research Methodologies
in Industrial Engineering: A Survey." AilE Transactions 12, no. 4.

Shantikumar, J.G. and R.G. Sargent. 1980. "On the Approximations to the Single
Server Queue." International Journal of Production Research 18: 761-773.

167

Shantikumar, J.G. and R.G. Sargent. 1983. "A Unifying View of Hybrid
I ,
\\ Sim~ation/Analytic Models and Modeling." Operations Research 31, no. 6:

\, 1030-1052.

Simon, H.A., and A. Ando. 1961. "Aggregation of Variables in Dynamic Systems."
Econometrica 29: 111-138.

Solberg, J.J. 1977. A Mathematical Model of Computerized Manufacturing Systems."
In Proceedin~s of the 4th International Conference on Production Research.

Steel, R.G.D, and J.H. Torrie. 1980. Principles and Procedures Of Statistics. 2nd ed.
New York, NY: McGraw-Hill, Inc.

Stephens, M.A. 1974. EDF Statistics for Goodness of Fit and Some Comparisons.
Journal of the American Statistical Association 69: 730-737.

Suri, R. 1983. "Robustness of Queueing Network Formulas." Association for
Computin~ Machinecy Journal 30, no. 3: 564-594.

Suri, R. and R.R. Hildebrant. 1984. "Modeling Flexible Manufacturing Systems Using
Mean-Value Analysis." Journal ofManufacturin~ Systems 3, no. 1:27-38.

Suri, R., G.W. Diehl, and R. Dean. 1986. "Quick and Easy Manufacturing Systems
Analysis Using MANUPLAN." In Proceeding of the Sprin~ TIE Conference:
195-205. Norcross, GA: TIE.

Suri, R. and G.W. Diehl. 1987. "Rough-cut Modeling: An Alternative to Simulation."
CIM Review 3: 25-32.

Suri, R. 1988a. "A New Perspective on Manufacturing Systems Analysis." Design and
Analysis of lnte&rated Manufacturin~ Systems, edited by W.D. Compton: 118-
133. Washington, DC: National Academy Press.

Suri, R. 1988b. "RMT puts Manufacturing at the Helm." Manufacturing Engineering
100, no. 2: 41-44.

Suri, R., J.L. Sanders, and M. Kamath. 1992. "Performance Evaluation of Production
Networks." In Handbooks in Operations Research and Management Science.
Vo1.4: Lo~istics of Production and Inventory, edited by S.C. Graves, A. Rinnooy
Kan, and P. Zipkin. Elsevier (forthcoming).

Thomasian, A. and K. Gargeya. 1985. "Speeding Up Computer System Simulations
Using Hierarchical Modeling." In Proceedings CMG XV International
Conference '84: 845-850.

Tijms, H. C. 1988. Stochastic Modellin~ and Analysis: A Computational Approach.
New York, NY: John Wiley and Sons.

Tolopka, S. and H. Schwetman. 1979. "Mix-Dependent Job Scheduling- An
Application of Hybrid Simulation." In Proceeding-s of the NCC 48: 45-49.

Vemuri, V. 1978. Modelin~ of Complex Systems. New York, NY: Academic Press.

Walrand, J. and P. Varaiya. 1980. "Sojourn Times and the Overtaking Condition in
Jacksonian Networks." Advanced Applied Probability 12: 1000-1018.

168

Whitt, W. 1983. "The Queueing Network Analyzer." Bell Systems Technical Journal
62: 2779-2815.

Whitt, W. 1984. "Open and Closed Networks of Queues." AT&T Bell Laboratory
Technical Journal63: 1911-1979.

Wolff, R.W. 1989. Stochastic Mocleling- and the Theory of Queues. Englewood Cliffs,
NJ: Prentice-Hall, Inc.

Zeigler, B.P. 1984. Multifacetted Modelling- and Discrete Event Simulation. Orlando,
Florida: Academic Press, Inc.

Zeigler, B.P. 1990. Object-Oriented Simulation with Hierarchical. Modular Models.
San Diego, CA: Academic Press, Inc.

APPENDIXES

169

APPENDIX A

SMALLTALK-80 CODE FORENVIRONMENT

MODIFICATIONS

170

171

Introduction

This appendix contains listings of Smalltalk 80 code beginning on the next page.

The listings are relevant portions of new and/or modified classes and methods that were

used for hybrid metamodeling.

The listings are separated by class. Within each class, there is a header section

followed by listings of methods. The header section contains the class hierarchy

specification as well as the names of all instance and class variables. A comment

segment concludes the header section.

The methods are divided into groups of related methods. This grouping is

arbitrary but usually provides some insight as to the general intend of the methods in the

group. The group headers are designated by the character string "!classname

methodsFor: groupname". The last grouping under a method (if listed) is the group for

class methods. These methods are used by the class rather than instances of the class. A

good example of their use is the creation of a new instance.

Methods listings always start with the method name including any incoming

parameters. The names are free form except that a colon is used to separate the

parameter(s) from the name. The code itself follows Smalltalk 80 convention. Any text

within the method enclosed by quotation marks is a comment. All methods terminate

with an exclamation point (!).

SmallTalk:-80 Code For Class: CimSimulation

'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 December 1991 at 4:37:48 pm'!

Simulation subclass: #CimSimulation
instance VariableNames: 'workFlowGenerator outputStream'
classVariableNames:"
poolDictionaries: "
category: 'Cim Sim'!

CimSimulation comment:
'The actual Simulation model is represented by this object. '!

!CimSimulation methodsFor: 'simulation control'!

postponeEventForResource2: aResource by: aTime
"SimScript cr; nextPutAll: eventQueue printString."
I event newTime I
event:= eventQueue detect: [:ev I (ev isKindOf: WorkFlowltem)

iffrue: [ev resourceNeeded = aResource]
ifFalse: [false]]

ifNone: [nil].
event isNil

printString ,

iiTrue: ["nil]
ifFalse:

[newTime := eventresumptionTime + aTime.
"SimScript cr; nextPutAll: aResource printString , ' was working with ' , event

172

'prev finish time: ' , event resumption Time printString , ' new finish time: ' ,
newTime printString."

event resumption Time: newTime.
eventQueue reSort.
newTime <Simulation active time iffrue: [selfhalt]]!

postponeEventForResource: aResource by: aTime
"SimScript cr; nextPutAll: eventQueue printString."
I event newTime I
event:= eventQueue detect: [:ev I (ev isKindOf: WorkFlow Item)

event isNil
iff rue:

itFalse:

with ' , event printString ,

iffrue: [ev resourceNeeded = aResource]
ifFalse: [false]]

ifNone: [nil].

["self halt."
"SimScript cr; nextPutAll: aResource printString,' was Waiting for Operator with',

event printString , 'Failure IGNORED'."
"self]

"SimScript cr; nextPutAll: 'Operator Status is ' , event hasOperator printString."
event hasOperator = 2

itT rue:
[newTime :=event resumption Time+ a Time.
"SimScript cr; nextPutAll: aResource printString , ' was in Setup

' prev fmish time: ' , event resumption Time printString , '
new fmish time: ' , new Time printString."

SmallTalk:-80 Code For Class: CimSimulation (continued)

event resumption Time: newTime.
eventQueue reSort
"event class].

(event has Operator = 3)
iffrue:

[newTime :=event resumption Time+ 100.

173

with ' , event printString ,
"SimScript cr; nextPutAll: aResource printString , ' was Processing

t

' prev ftnish time: ' , event resumption Time printString , '
new fmish time: ' , new Time printString."

event resumption Time: newTime.
eventQueue reSort
"nil]]!

SmallTalk:-80 Code For Class: ContinuousEmpiricalGrouped

'From Objectworks(r)\Smalltalk~ Release 4 of25 February 1991 on 21 December 1991 at 4:35:15 pm'!

ContinuousProbability subclass: #ContinuousEmpiricalGrouped
instanceVariableNames: 'theDataArray theCellArray aRandom dataFile'
classVariableNames:"
poolDictionaries: "
category: 'Statistics'!

!ContinuousEmpiricalGrouped methodsFor: 'accessing'!

random
"aRandom!

showCells
"theCellArray!

show Data
AfueDataArray! !

!ContinuousEmpiricalGrouped methodsFor: 'random sampling'!

next
I u index s t1 t2 t3 I

u := aRandom next

"Transcript cr; show: 'Random Number:', u printString,' '."
index:= 0.
[(theDataArray at: index+ 1)

<= u and: [(theDataArray at: index+ 2)
>u]]

whileFalse: [index:= index+ 1].
"Transcript show: 'Index:', index printString,' '."
tl := u - (theDataArray at: index+ 1).
t2 := (theCellArray at: index+ 3)

- (theCellArray at: index+ 2).
t3 := (theDataArray at: index + 2)

SmallTalk-80 Code For Class: ContinuousEmpiricalGrouped (continued)

- (theDataArray at: index+ 1).
s := (theCellArray at: index + 2) asFloat + (tl * t2/ t3).
"Transcript show: 'Sample: ' , s printString."
"s!!

!ContinuousEmpiricalGrouped methodsFor: 'private'!

getParameters
I file I
dataFile :=Dialog View request: 'Sampling Distribution FileName (or GLOBAL)?' initialAnswer:

'GLOBAL'.
dataFile = 'GLOBAL'

iff rue:

ifFalse:

[theCellArray := MetaCells.
Utils new setMetaDistribution.
theDataArray := MetaDistribution]

[file:= ReadFile named: dataFile.
theCellArray := SortedCollection new.
theCellArray add: 0.0.
theDataArray := SortedCollection new.
140

timesRepeat:
[theCellArray add: file getNextNumber.
theDataArray add: file getNextNumber]]!

getParameters: file

initialize

dataFile := ReadFile named: flle.
theCellArray := SortedCollection new.
theCellArray add: 0.0.
theDataArray := SortedCollection new.
140

times Repeat:

dataFile close.!

[theCellArray add: dataFile getNextNumber.
theDataArray add: dataFile getNextNumber].

aRandom :=Random new.

setDataFile: name
dataFile := name.!

usingData: x usingCells: y
theDataArray := SortedCollection new.
theDataArray addAll: x.
theCellArray := SortedCollection new.
theCellArray addAll: y.! !

!ContinuousEmpiricalGrouped methodsFor: 'file manipulations'!

fueOutOn: aStream
"Put the receiver's contents on the stream"

aStream nextPutToken: 'ContinuousEmpiricalGrouped'; nextPutString: dataFile; cr! !

174

SmallTal.k-80 Code For Class: ContinuousEmpiricalGrouped (continued)

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

ContinuousEmpiricalGrouped class
instanceVariableNames: "!

!ContinuousEmpiricalGrouped class methodsFor: 'instance creation'!

fllelnFrom: aStream
"Construct an instance from a Stream"

I tempi
temp:= self new.
temp initialize.
temp getParameters: aStream getNextString.
"temp!

usingData: aCollection usingCells: bCollection
"Input is a Collection"

It I
t :=self new.
t initialize.
t using Data: aCollection usingCells: bCollection.
At! !

SmallTal.k-80 Code For Class: Exponential

'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 December 1991 at 4:34:29 pm'!

ContinuousProbability subclass: #Exponential
instanceVariableNames: 'mu aRandom'
classVariableNames:"
poolDictionaries: "
category: 'Statistics'!

!Exponential methodsFor: 'accessing'!

mean
"1.0/mu!

next

175

"This is a general random number generation method for any probability law; use the (0,1) uniformly
distributed random varible U as the value of the law's distribution function. Obtain the next random value and then
solve for the inverse. The inverse solution is defmed by the subclass."

"self inverseDistribution: aRandom next!

random
"aRandom!

variance
"1.0/(mu*mu)! !

SmallTal.k:-80 Code For Class: Exponential (continued)

!Exponential methodsFor: 'probability functions'!

density: x
x>O.O

iffrue: [Amu * (mu*x) negated exp]
ifFalse: ["0.0]!

distribution: anlnterval
anlntervallast <= 0.0

iffrue: [AQ.O]
ifFalse: ["1.0- (mu * anlntervallast) negated exp- (anlnterval first> 0.0 iffrue: [self

distribution: (0.0 to: anlnterval first)] ifFalse: [0.0])]! !

!Exponential methodsFor: 'fJle manipulations'!

fJleOutOn: aStream
"Put the receiver's contents on the stream"

aStream nextPutToken: 'Exponential'; nextPutNumber: mu; cr! !

!Exponential methodsFor: 'private'!

getParameters
lmuString I
mu isNil

iffrue: [muString := "]
ifFalse: [muString := (1.0 I mu) printString].

mu :=(Dialog View request: 'Mean of exponential?' initialAnswer: muString) asNumber.
[mu> 0]

whileFalse: [rnu := (Dialog View request: 'Mean of exponential should exceed 0!!! !'
initialAnswer: rnu printString) asNumber].

mu := 1.0 I mu!

initialize
aRandom :=Random new.!

inverseOistribution: x

ly I
y :=x.
[y = 0.0] whileTrue: [y := aRandorn next].
" y In negated I mu!

setParameter: p
mu_p!!

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Exponential class
instanceVariableNames: 'aRandom '!

!Exponential class methodsFor: 'instance creation'!

fJlelnFrom: aStream

176

mean: p

SmallTalk-80 Code For Class: Exponential (continued)

"Construct an instance from a Stream"

I tempi
temp := self new setParameter: aStream getNextNwnber.
"temp initialize!

laSeedl
aSeed := Dialog View request: 'Seed ?'.
aRandom := Random fromGenerator: 8 seededWith: aSeed.
"self parameter: 1.0/p!

mean: p deviation: aDummyNwnber
"self parameter: l.Oip!

parameter: p

p>O.O
iffrue: ["self new setParameter: p]
ifFalse: [self error: 'The probability parameter must be greater than 0.0']! !

SmallTalk-80 Code For Class: Gamma

'From Objectworks(r)\Smalltalk, Release 4 of25 February 1991 on 21 December 1991 at 4:34:16 pm'!

Exponential subclass: #Gamma
instanceVariableNames: 'alpha'
class V ariableN ames: "
poolDictionaries: "
category: 'Statistics'!

!Gamma methodsFor: 'random sampling'!

next
"This routine generates Gamma variates using the method of Ahrens and Dieter (1974)
when alpha < 1 and Cheng' (1977) when alpha> 1"

I r s b p y a c v z w flag value I
alpha< 1.0

iff rue:
[b := alpha+ 1 exp I 1 exp.
flag:= 0.
[flag== 0]

while True:
[r := aRandom next.
s := aRandom next
p :=b * r.
p<= 1.0

iff rue:
[y := p raisedTo: 1.0 I alpha.
s <= y negated exp iffrue: [flag := 1}]

ifFalse:
-[y := (b - p I alpha) ln negated.

177

178

SmallTalk:-80 Code For Class: Gamma (continued)

s <= (y raisedTo: alpha- 1) iffrue: [flag:= 1]]].

ifFalse:

"value! !

value := y I mu]

[a := 1.0 I (2.0 * alpha - 1.0) sqrt.
b := alpha - 4 ln.
c := alpha+ (1.0 I a).
z := 1.0.
w:=O.
[w + 2.50408- (4.5 * z) <= 0.0 & (w <= z In)]

while True:

value := y I mu].

[r := aRandom next.
s := aRandom next
v := (r I (1.0 - r)) In* a.
y := v exp * alpha.
z := r squared * s.
w := c * v +b-y].

!Gamma methodsFor: 'accessing'!

mean
"alphalmu!

variance
"alpha I (mu*mu)! !

!Gamma methodsFor: 'probability functions'!

density: x
I t I
[x>O.O]

iff rue:
[t_mu*x.
"(mu raisedTo: alpha)

I (self gamma: alpha)* (xraisedTo: alpha- 1.0) * t negated exp]
ifFalse: ["0.0]! !

!Gamma methodsFor: 'private'!

getParameters
I numbers messageList initiaiList muString alphaString I
mu isNil

iiTrue: [muString := "]
ifFalse: [muString := (1.0/mu) printString].

alpha isNil
iiTrue: [alphaString := ")
ifFalse: [alphaString :=alpha printString].

messageList :=Array with: 'Gamma processes' with: 'mean' .
. initialList := Array with: alphaString with: muString.
numbers :=Dialog View requestList: messageList initialValues: initialList.
alpha:= (numbers at: 1) asNumber.
mu := ll((numbers at: 2) asNumber).!

inverseDistribution: x

SmallTalk-80 Code For Class: Gamma (continued)

self error: 'Gamma does not implement inverseDistribution'!

shape: events scale: mmean
alpha := events.
self setParameter: 1.0 I mmean! !

!Gamma methodsFor: 'file manipulations'!

ftleOutOn: aStream
"Put the receiver's contents on the stream"

aStream nextPutToken: 'Gamma'; nextPutNumber: mu; nextPutNumber: alpha; cr! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Gamma class
instanceVariableNames: "!

!Gamma class methodsFor: 'instance creation'!

fllelnFrom: aStream
"Construct an instance from a Stream"

I temp events mean I
mean:= aStream getNextNumber.
events := aStream getNextNumber.
temp:= self new shape: events scale: (1/mean).
"temp initialize!

shape: q scale: p
"Gamma with q processes and a mean of p"

q>O.O
ifTrue: [p > 0.0

iiTrue: ["selfnew shape: q scale: p]
ifFalse: [self error: 'the rate for the Gamma must be greater than 0.0']]

itFalse: [self error: 'the number of events for the Gamma must be greater than 0.0']! !

SmallTalk-80 Code For Class: HypoExponential2

'From Objectworks(r)'Smalltalk, Release 4 of 25 February 1991 on 21 December 1991 at 4:34:44 pm'!

Exponential subclass: #HypoExponential2
instanceVariableNames: 'mul mu2'
classVariableNames:"
poolDictionaries: "
category: 'Statistics'!

!HyperExponential2 methodsFor: 'random sampling'!

next
"This routine generates HyperExponential (2 stage) variates by summing
two exponential variates "

179

SmallTalk-80 Code For Class: HypoExponentia12 (continued)

Irs yl y21
r := aRandom next.
[r = 0] whileTrue: [r := aRandom next].
s := aRandom next.
[s = OJ whileTrue: [s := aRandom next].
yl := r In negated I mul.
y2 := s In negated I mu2.
Ayl +y2!!

!HyperExponentia12 methodsFor: 'accessing'!

mean
All mul + (11 mu2)!

variance
All (mul * mul) + (11 (mu2 * mu2))! !

!HyperExponential2 methodsFor: 'probability functions'!

density: x
I t1 t21
[x>O.O]

iiTrue:
[tl := mul * x.
t2 := mu2 * x.
Amul * mu21 (mu2 - mul) * (tl negated exp - t2 negated exp)]

ifFalse: [AQ.O]! !

!HyperExponential2 methodsFor: 'private'!

getParameters
I numbers messageList initialList mu1String mu2String I
mul isNil

iffrue: [mu1String := "]
ifFalse: [mu1String := (1.0 I mul) printString].

mu2 isNil
iffrue: [mu2String := "]
itFalse: [mu2String := (1.0 I mu2) printString].

messageList :=Array with: 'HyperExponential (2 Stage) mean1' with: 'mean2'.
initialList :=Array with: mu1String with: mu2String.
numbers :=Dialog View requestList: messageList initialValues: initialList.
mu1 := 11 (numbers at: 1) asNumber.
mu2 := 11 (numbers at: 2) asNumber!

inverseDistribution: x
self error: 'Hyper Exponential (2 Stage) does not implement inverseDistribution'!

mul: num1 mu2: num2
"set HyperExponential (2 Stage) parameters"

mu1 := 1.0 I numl.
mu2 := 1.0 I num2!

shape: events scale: mmean

180

Sma11Talk-80 Code For Class: HypoExponentia12 (continued)

alpha := events.
self setParameter: 1.0 I mmean! !

!HyperExponential2 methodsFor: 'file manipulations'!

f'UeOutOn: aStream
"Put the receiver's contents on the stream"

aStream nextPutToken: 'HyperExponential2'; nextPutNumber: mul; nextPutNumber: mu2; cr! !
u_ .. -- -- -- -- -- .. "!

HyperExponential2 class
instance V ariableN ames: "!

!HyperExponential2 class methodsFor: 'instance creation'!

f'UelnFrom: aStream
"Construct an instance from a Stream"

I temp numl num2 I
num1 := aStream getNextNumber.
num2 := aStream getNextNumber.
temp := self new mu1: 1/ num1 mu2: 1/ num2.
"temp initialize!

shape: q scale: p
"Gamma with q processes and a mean of p"

q>O.O
ifi'rue: [p > 0.0

ifi'rue: ["selfnew shape: q scale: p]
ifFalse: [self error: 'the rate for the Gamma must be greater than 0.0']]

ifFalse: [self error: 'the number of events for the Gamma must be greater than 0.0']! !

SmallTalk:-80 Code For Class: Operator

'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 December 1991 at 4:36:19 pm'!

WorkStation subclass: #Operator
instanceVariableNames: 'mhLocations timeMatrix'
classVariableNames:"
pooiDictionaries: "
category: 'Cim Resources'!

!Operator methodsFor: 'initialize-release'!

initializeWithName: aString andAmount: aNumber
name := aString.
wsAmountAvailable := aNumber.

"mhLocations := OrderedCollection new.
aNumber timesRepeat [mhLocations add: aLocation]."

181

SmallTalk:-80 Code For Class: Operator (continued)

wsQueueController := QueueController new.
wsProcessingTimes := ObsTrackedNumber new.
wsUtilization := TimeTrackedNumber new.

''WorkFlow Item withMaterialHandling.
timeMatrix := aTimeMatrix"!

initializeWithName: aString andAmount: aNumber location: aLocation timelnfo: aTimeMatrix
self error: 'This method is obsolete for Operator'.
name := aString.
wsAmountAvailable := aNumber.
mhLocations := OrderedCollection new.
aN umber timesRepeat: [mhLocations add: aLocation].
wsQueueController := QueueController new.
wsProcessingTimes := ObsTrackedNumber new.
wsUtilization := TimeTrackedNumbernew.
WorkFlowltem withMaterialHandling.
timeMatrix := aTiineMatrix! !

!Operator methodsFor: 'accessing'!

mhLocations
self error: 'This method is obsolete for Operator'.
AmhLocations!

timeFrom: aLocation to: another
"Pass the message to the time matrix"

self error: 'This method is obsolete for Operator'.
AtimeMatrix timeFrom: aLocation to: another! !

!Operator methodsFor: 'task language'!

provideServices
"provide operator services to the next job in queue"

!waiting wfi I
[wsQueueController inputQueueEmpty not and: [wfi := wsQueueController next.

1 <= wsAmountA vailable]]
while True:

[waiting := wsQueueController inputQueueRemove: wfi .
wsAmountAvailable := wsAmountAvailable- 1.
waiting resume.]!

provideServiceTo: aWFI
"This wfi needs to be serviced. Put into the queue, and provide
a server if possible"

wsQueueController addTolnputQueue: a WFI.
"SimScript cr; nextPutAll: aWFI printString, 'needs workcenter', aWFI location name,'',

name , ' at' , Simulation active time printString."
self provideServices.
aWFipause.
"SimScript cr; nextPutAll: aWFI printString,' acquired workcenter', aWFI location name,'',

name,' at', Simulation active time printString."

182

SmallTalk:-80 Code For Class: Operator (continued)

wsUtilization equals: wsUtilization value+ 1.!

release: anAmount
"release anAmount of the Operator"

wsUtilization equals: wsUtilization value- anAmount.
self produce: anAmount!

release: anAmount at: aLocation
"release anAmount of the material handler at aLocation"

self error: This method is obsolete for Operator'.
wsUtilization equals: wsUtilization value- anAmount. "SimScript cr; nextPutAll: name,' is at: ',

aLocation name."
mhLocations addLast: aLocation.
self produce: anAmount!

releaseBy: a WFI
"release anAmount of the Operator"

wsUtilization equals: wsUtilization value- 1.
self produce: 1.
"SimScript cr; nextPutAll: aWFI printString, 'released workcenter ',(aWFI location name),'',

name,' at', Simulation active time printString."! !

!Operator methodsFor: 'decisions'!

chooseOperator
"Pick one of the material handlers from the
waiting material handler at different locations"

self error: This method is obsolete for Operator'.
"mhLocations removeFirst! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Operator class
instanceVariableNames: "!

!Operator class methodsFor: 'instance creation'!

newWithName: aString andAmount: aNumber

"Create a new OPERA TOR for this WorkCenter"

"self new initializeWithName: aString andAmount: aNumber!

newWithName: aString andAmount: aNumber location: aLocation timelnfo: aTimeMatrix

"Create a new transport device at this location"
self error: 'This method is obsolete'.

183

"self new initializeWithName: aString andAmount: aNumber location: aLocation timelnfo: aTimeMatrix!

184

SmallTalk-80 Code For Class: Plant

'From Objectworks(r)'Smalltalk, Releasc4 of25 February 1991 on 21 December 1991 at4:35:33 pm'!

Object subclass: #Plant
instanceVariableNames: 'workCenters transportDevice buffers machineLocDictionary routingDictionary

born disposer mfgController '
classVariableNames: 'ActivePlant'
poolDictionaries: "
category: 'Cim Controllers'!

!Plant methodsFor: 'decisions'!

whatShouldiDo: a WFI
''This wfi needs a decision on what its next operation is"
''THIS IS A MODIFIED VERSION OF THE METHOD TO IMPLEMENT
PREFERENTIAL QUEUE SELECTION"

I queueLength operation machine workCenter q2 op2 q3 op3 I
queueLength := 987654.
a WFI are YouDone

iffrue: [self error: "This wfi is done.']
ifFalse: [(aWFirouting at aWFI currentStage)

do:
[:op I
"This is the list of current alternate operations"
machine := op machine.
workCenter := machineLocDictionary at: machine.
"Transcript cr; show: op machine , ' '; show: (self resourceN amed:

op machine) queueLength printString."
op machine = 'pack1'

iffrue:
[q2 := queueLength := (workCenter

resourceNamed: op machine) queueLength.
op2 := op].

op machine = 'pack2'
iffrue:.

[q3 := queueLength := (workCenter
resourceNamed: op machine) queueLength.

op3 := op].
(workCenter resourceNamed: op machine) queueLength <

queueLength
iff rue:

op machine) queueLength.

"Logic For PREFERRED QUEUEING STRATEGY."
"q3 isNil ifFalse: [q3- 4 < q2

iffrue: [operation := op3]
ifFalse: [operation:= op2]]."

"Logic For SHORTEST QUEUE STRATEGY."
q3 isNil ifFalse: [q3 >= q2

iffrue: [operation:= op2]
itFalse: [operation:= op3]].

"Transcript cr; show: 'Routed to: ' , operation machine.''
/\operation!

[queueLength := (workCenter resourceNamed:

operation:= op]]].

SmallTalk-80 Code For Class: Plant (continued)

whatShouldiDoV1: aWFI

''This wfi needs a decision on what its next operation is"
"THIS IS A COPY OF THE ORIGINAL VERSION OF THE METHOD"

lqueueLength operation machine workCenter I

queueLength := 987654.
aWFI areYouDone iiTrue: [self error: 'This wfi is done.']
ifFalse: [(aWFI routing at: aWFI currentStage) "This is the list of

current alternate operations"
do: [:opl

machine := op machine.
workCenter := machineLocDictionary at machine .

"operation!

(((workCenter resourceNamed: op machine) queueLength) < queueLength)
iiTrue: [queueLength := (workCenter resourceNamed: op machine) queueLength.
operation:= op]

]].

SmallTalk-80 Code For Class: Random

'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 December 1991 at 4:33:57 pm'!

Stream subclass: #Random
instanceVariableNames: 'seed increment modulus fmodulus multiplier'
classVariableNames: 'DefaultGenerator Increments MaxGenerator Moduli Multipliers'
poolDictionaries: "
category: 'Magnitude-Numbers'!

Random comment:
'An instance of class Random provides an endless supply of random numbers.
We produce a uniform deviate in the half-open interval [0.0,1.0) using a
linear congruential generator.
seed increment modulus fmodulus multiplier
See "Numerical Recipes" (W.H. Press, B.P. Flannery, S.A. Teukolsk:y, W.T. Vetterling;
Cambridge University Press 1986), pp. 191-199.

Instance Variables:
seed
increment
modulus
fmodulus
multiplier

Class Variables:

<Integer>
<Float>

<Integer> the first of the series.
<Integer>

<Integer>
The recurrence parameters.

DefaultGenerator <Integer> used to choose a generator if the client
doesn"t select one.

Increments <Array of: Integer>
Max Generator <Integer> Highest numbered generator permitted;

185

Moduli
Multipliers

SmallTalk:-80 Code For Class: Random (continued)

this is the length of the 3 arrays named below.
<Array of: Integer>
<Array of: Integer>

Constants for the recurrence parameters. generator:
selects from these, e.g. generator #2 uses:

186

{Increments at: 2, Moduli at:2, Multipliers at:
2}.'!

!Random methodsFor: 'accessing'!

contents

flush

next

"Random numbers do not have a contents so provide
an error notification."

"self shouldNotlmplement!

"Random numbers do not need to flush.''

"self shouldN otlmplement!

"Answer the next random number.''

"self step asFloat I fmodulus!

nextPut: anObject
"Random numbers do not implement nextPut: so provide an
error notification."

"self shouldNotlmplement! !

!Random methodsFor: 'testing'!

a tEnd
"Answer false that the stream is not at an end."

"false! !

!Random methodsFor: 'private'!

generator: aSmalllnteger
"Chooses a parameter triplet"

I generatorlndex I
generatorlndex := aSmalllnteger.
generatorlndex < 1 I (generatorlndex >Max Generator)

iff rue:
[self notify: 'No such generator; proceed for generator #1 '.
generatorlndex := 1].

increment := Increments at: generatorlndex.
modulus :=Moduli at: generator Index.
fmodulus :=modulus asFloat.
multiplier :=Multipliers at: generatorlndex!

SmallTalk:-80 Code For Class: Random (continued)

seed
"Return the current seed value"

"seed!

seed: aSmalllnteger

setSeed

step

"Initialize the first random number."

seed:= aSmalllnteger \\modulus!

"Initialize the first random number."

seed:= Time millisecondClockValue bitAnd: 65535
"Time millisecondClockValue gives a large integer; I only want the lower 16 bits."!

"Produce the next random seed."

"Transcript show: ' ',(multiplier printString),'-',(seed printString),' '."
seed:= seed* multiplier+ increment\\modulus.
"Transcript show: (seed printString),' '."
"seed!!

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Random class
instanceVariableNames: "!

!Random class methodsFor: 'class initialization'!

initialize
"Set the recurrence parameter constants."
'These values are appropriate for
SmalllntegermaxVal = ((2 raisedTointeger: 29) -1)"
"After changing the DefaultGeneratory, Execute-> Random initialize"
"
IMPORT ANT NOTE:

187

Generator 8 is Park & Millers Minimal Standard LCG, (Park & Miller, Comm. of ACM, Oct. 88). This
generator is

one of the (if not THE) best RNGs known. It can be validated (according to Park & Miller) by
demonstrating

that the 10,000th seed generated is 10436118065. This has been done by DBP in STSOV 40 running on a
386 PC on 8/14/91. Unless the you have an RNG proven to be better than Park & Miller, DO NOT

change the
default generator or override it ! ! The generator can be seeded with ANY integer between 1 and

2147483646.
Park & Miller suggest a student's SSN as a good seed.

DefaultGenerator := 8.
MaxGenerator := 8.
Moduli:= #(120050 214326 244944 233280 175000 121500 145800 2147483647).
Multipliers:= #(23111807 1597 1861 26614081 366116807).

SmallTalk-80 Code For Class: Random (continued)

Increments := #(25367 45289 51749 49297 36979 25673 30809 0)! !

!Random class methodsFor: 'instance creation'!

fromGenerator: g seededWith: s

new

"Answer a new random number generator."

lrl
r :=self basicNew.
r generator: g.
r seed: s.
"r!

"Answer a new random number generator, seeded from the time-of-day."
"The simple, naive interface ... "

"self from Generator: DefaultGenerator
seededWith: Time millisecondClockValue! !

Random initialize!

SmallTalk:-80 Code For Class: SimModel

'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 December 1991 at 4:37:20 pm'!

Model subclass: #SimModel

188

instance V ariableNames: 'plants plantSelection plantMenu workCenterSelection workCenterMenu
workStationS election workStationMenu plantButtonSelection parentObject currentObject plantDisplayCollection
distanceSelection failSelection repairSelection failRes
et repair Reset hom routing viewSelection routingPartSelection operationSelection alternateSelection
processTimeReset processTimeSelection setUpTimeReset setUpTimeSelection disposalDecisions
arrivalDistributions disposalSelection arrivalTimeReset arrivalTi
meSelection wsSelection histogramSelection histograms histogramNameList histogramStationList
histogramPartList providedHistogramList '

classVariableNames: 'TextMenu'
poolDictionaries: "
category: 'Cim Interface'!

addMeta WorkStation
"Add a new meta workstation to this workCenter"

parentObject := workCenterSelection.
distanceSelection := nil.
failReset := repairReset := false.
currentObject :=Interface WorkStation newWithName: 'meta'.
workCenterSelection addWorkStation: currentObject
currentObject outputQCapacity: 0.
currentObject inputQCapacity: 0.
parentObject :=nil.
currentObject :=nil.
self changed: #workStationName!

SmallTalk:-80 Code For Class: SimModel (continued)

metaReplace
'This method replaces all the selected workcenter's workstations with a meta workstation
and updates the routing"

I workStation wsKeys routKeys operList rout frrstTrue test operation dummy I
(MetaWcList includes: workCenterSelection) ifFalse: [Dialog View notify:

(('No MetaModel Has Been Defmed For This WorkCenter\
That!!') withCRs).

"self].
routKeys := self routing keys.
routKeys do:

[:rt I
rout := self routing at: rt.
frrstTrue := true.
operList :=rout frrstOperationList.
operList do:

[:op I
test := workCenterSelection includesResourceFor: op machine.
"Transcript cr; show: op machine , ' ' , test printString."
test

iiTrue:
[frrstTrue

iff rue:

Sony About

189

["Transcript cr; show: 'Implement Add meta'."
MetaService := op processTime mean.
operation :=·Operation new.
processTimeReset := setUpTimeReset :=false.
currentObject := operation.
operation machine: 'meta'.
rout addOperation: operation before: op.
currentObject := nil.
self changed: #operationName.
self changed: #altemateName.
frrstTrue :=false].

''Transcript cr; show: 'Implement Delete operation'."
rout removeOperation: op.
operationSelection := nil.
altemateSelection :=nil.
self changed: #operationName.
self changed: #altemateName]

itFalse: ["Transcript cr; show: 'Do Nothing"']]].
wsKeys := workCenterSelection resources keys.
wsKeys do:

[:ws I
workStation := workCenterSelection resources at: ws.
workStationSelection := nil.
workCenterSelection remove WorkStation: workStation.
self changed: #workStationName].

self addMeta WorkStation.
dummy:= Utils new.
dummy getMetaParameters.
"dummy setMetaDistribution."!

workCenterMenu
"Answer an ActionMenu of operations on workCenters that is to be displayed

SmallTalk-80 Code For Class: SimModel (continued)

when the operate menu button is pressed."

plantSelection isNil iiTrue: [AworkCenterMenu :=nil].
workCenterSelection isNil

iffrue: [workCenterMenu _ ActionMenu
labels: 'add a workCenter' withCRs
lines:#()
selectors: #(#addWorkCenter)]

ifFalse: [workCenterMenu _ ActionMenu

review\remove\rename\Meta Replace' withCRs

#removeWorkCenter #renameWorkCenter
#metaReplace)].

AworkCenterMenu!

canyOutExperimentWith: anArray

labels: 'Add a workCentenmodify-

lines: #(2 4)
selectors: #{#addWorkCenter #modifyWorkCenter

"Build the model to be simulated from parts of the array"

190

I controller destinations cumProbs sim newPlant plant workCenter workStation mh timeMatrix wf index
route routingDictionary I

ProbabilityDistribution initializeWithSeed: (anArray at: 1) asNumber.
controller:= MfgController new.
disposalDecisions

keysAndValuesDo:
[:part :disposals I
I cumProb I
destinations:= OrderedCollection new.
cumProbs := OrderedCollection new.
cumProb := 0.0.
disposals

keysAndValuesDo:
[:dest :percent I
destinations add: dest.
cumProbs add: (cumProb := cumProb +(percent I 100))].

controller
putDisposaiDecisionFor: part
destinations: destinations
cumProbability: cumProbs].

sim := CimSimulation new.
new Plant:= Plant new.
new Plant activate.
plant := self plant.
plant workCenters do:

[:we I
workCenter := WorkCenter newWithName: we name.
we resources do:

[:res I
(res isKindOf: InterfaceAssemblyStation)

iiTrue: [workStation:= workCenter addAssemblyStation: res name]
ifFalse:

[workStation:= workCenter addWorkStation: res name.

191

Smal.lTalk:-80 Code For Class: SimModel (continued)

res inputQCapaeity > 0 iffrue: [workStation inputQueueCapaeity:
res inputQCapacity].

res inputQCapaeity = -1 iffrue: [workStation inputQueueCapaeity:
0].

res outputQCapaeity > 0 iiTrue: [workStation
outputQueueCapacity: res outputQCapacity].

res outputQCapacity = -1 ifTrue: [workStation
outputQueueCapacity: 0]].

].
mh := we materialHandler.
mh isNill (mh =#None)

itFalse:

timeMatrix := we getTimeMatrix.
mh = #AGV iffrue: [workCenter

addMaterialHandler: 'transport' , we name
amount: we mhQuantity
timelnfo: timeMatrix].

mh = #Conveyor iffrue: [workCenter add Conveyor: 'transport' , we name
timelnfo: timeMatrix]].

newPlant addWorkCenter: workCenter].
mh := plant materialHandler.
mh isNill (mh =#None)

itFalse:

timeMatrix)].

timeMatrix := plant getTimeMatrix.

mh = #AGV iffrue: [new Plant
addMaterialHandler: 'transport' , plant name
amount: plant mhQuantity
timelnfo: timeMatrix].

mh =#Conveyor iiTrue: [new Plant add Conveyor: 'transport' , plant name timelnfo:

routingDictionary := self routing copy.
self born partList do: [:part I part are YouAnAssembly

iff rue:

sim activate.

[route := routingDictionary at: part name.
route currentAlternates do: [:op I (new Plant resourceNamed: op machine)

assemblyTime: op processTime;
assemblyName: part name].

route getRidOfFirstOperation]].

sim outputStream: (ResultScript := TextStream on: (String new: 1024)).
new Plant routingDictionary: routingDictionary.
arrivalDistributions

keysAndV aluesDo:
[:part :dist I
dist initialize.
wf := WorkFlowGenerator name: part arrivalDistribution: dist.
sim addWorkFlowGenerator: wfl.

providedHistogramList := OrderedCollection new.
histograms do:

[:name I
index := histogramNameList indexOf: name.
index <= histogramStationList size

192

SmallTalk:-80 Code For Class: SimModel (continued)

iiTrue: [providedHistogramList add: (new Plant resourceN amed: (histogramStationList
at: index) name) provideHistogram]

ifFalse: [providedHistogramList add: (WorkFlowltem provideHistogramForPart:
(histogramPartList at: index- histogramStationList size) name)]].

sim traceOnAt: (anArray at: 4) asNumber.
new Plant mfgController: controller.
new Plant born: self born.
SimulationNumber := SimulationNumber + 1.
"SimulationNumber inspect."
sim outputStream nextPutAll: 'Plant:', (plant name),'; Log#=',SimulationNumber printString,'; seed=',

(anArray at:l), '; term=', (anArray at:2),'; clear=', (anArray at3);cr.
plant workCenters do:

[:we I

we resources do:
[:res I

res failureDistribution isNil
itFalse:

sim startUp.

[res failureDistribution: res failureDistribution
repairDistribution: res repairDistribution]]].

sim clearStatisticsAt: (anArray at: 3) asNumber.
"Cursor execute showWhile: [[sim time< (anArray at: 2) asNumber]

whileTrue: [sim proceed]]."
Cursor execute show While: [[((providedHistogramList at: 1) list) size< (anArray at: 2) asNumber]

whileTrue:
[sim proceed: (anArray at: 1)]].

sim fmishUp.
Transcript endEntry.!

SmallTalk:-80 Code For Class: Triangular

'From Objectworks(r)\Smalltalk, Release 4 of25 February 1991 on 21 December 1991 at4:35:02 pm'!

ContinuousProbability subclass: #Triangular
instance V ariableN ames: 'lowerBound mode upper Bound aRandom '
classVariableNames:"
poolDictionaries: "
category: 'Statistics'!

!Triangular methodsFor: 'probability distributions'!

density: x
"not Finished"! !

!Triangular methodsFor: 'accesssing'!

mean
"lowerBound + upperBound +mode /3.0!

next
"This is a general random number generation method for any probability law; use the (0,1)

random

variance

SmallTalk:-80 Code For Class: Triangular (continued)

uniformly distributed random varible U as the value of the law's distribution function. Obtain
the next random value and then solve for the inverse. The inverse solution is defmed by
the subclass."

"self inverseDistribution: aRandom next!

"aRandom!

"lower Bound squared + upperBound squared +mode squared - (lowerBound * upperBound) -
(lowerBound *mode)- (upperBound *mode) /18.0! !

· !Triangular methodsFor: 'private'!

from: a to: b mode: c
lowerBound := a.
upperBound :=b.
mode :=c!

getParameters

initialize

I numbers messageList initialList lbString modeString ubString I
lower Bound isNil

iffrue: [lbString := "]
ifFalse: [lbString := lowerBound printString].

modeisNil
iffrue: [modeString := "]
ifFalse: [modeString :=mode printString].

upperBound isNil
iffrue: [ubString := "]
itFalse: [ubString := upperBound printString].

messageList :=Array with: 'Triangular Lower Bound' with: 'Mode' with: 'Upper Bound'.
initialList := Array with: lbString with: modeString with: ubString.
numbers:= Dialog View requestList: messageList initialValues: initialList.
lowerBound :=(numbers at: 1) asNumber.
mode := (numbers at: 2) asNumber.
upperBound :=(numbers at: 3) asNumber.!

aRandom := Random new!

inverseDistribution: x
lv I
v := mode - lowerBound I (upper Bound - lowerBound).
x<=v

iffrue: [AlowerBound + ((upperBound -lowerBound) * (v * x) sqrt)]
itFalse: ["lowerBound + ((upperBound -lowerBound) * (1.0- (1.0- v * (1.0- x)) sqrt))]! !

!Triangular methodsFor: 'file manipulations'!

flleOutOn: aStream
"Put the receiver's contents on the stream"

aStream nextPutToken: 'Triangular'; nextPutNumber: lowerBound; nextPutNumber: mode;
nextPutNumber: upperBound; cr! !

193

SmallTalk-80 Code For Class: Triangular (continued)

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Triangular class
instanceVariableNames: "!

!Triangular class methodsFor: 'instance creation'!

flleinFrom: aStream
"Construct an instance from a Stream"

ltemp lb mode ub I
lb := aStream getNextNumber.
mode := aStream getNextNumber.
ub := aStream getNextNumber.
temp := self new

from: lb
to: ub
mode: mode.

Atemp initialize.!

from: a to: b mode: c
b>a

iiTrue: [c > a
iiTrue: [b > c

iiTrue: (Aself new
from: a
to: b
mode: c]

ifFalse: [Aself error: 'Bad range on Triangular mode']]
ifFalse: [Aself error: 'Bad range on Triangular mode']]

ifFalse: [Aself error: 'Bad range on Triangular']! !

SmallTal.k-80 Code For Class: Utils

'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 26 December 1991 at 4:23:02 pm'!

Object subclass: #Utils
instance V ariableN ames: "
classVariableNames:"
poolDictionaries: "
category: 'dbp'!

!Utils methodsFor: 'mise'!

flleWriteplant: aName run: aLetter rho: aRho model: theModel
"file writing routine to save TIS values for dbp dissertation"

ltemp fileName aFileStream n fileName2 bFileStream fileName3 cFileStream I
"temp:= (TrackedNumberWithCollection alllnstances at1) list."
temp:= (theModel providedHistogramList at:1) list.
fileName:= aName,'t.',aLetter,aRho.

194

SmallTalk:-80 Code For Class: Utils (continued)

aFileStream :=(Filename named: ftleName) writeStream.
n:=O.
temp do: [:xl n:=n+l. aFileStream nextPutNwnber: x; space. n\\7=0 iiTrue:[aFileStream cr.].].
aFileStream close.
Transcript cr; show: ftleName,' TIS file written'.

flleName2 := aName,'s.',aLetter,aRho.
bFileStream := (Filename named: ftleName2) writeStream.
bFileStream nextPutAII: ResultScript contents string.
bFileStream close.
Transcript cr; show: fileName2,' STATS ftle written'.

Transcript cr; show: 'Transcript clear'; cr.!

getMetaParameters
"Input the meta workstation sampling parameters, all of which are stored in global variables
MetaRhos is a sorted collection of input rho values
MetaCells is a sorted collection of the upper boundary of the distribution cells
Meta Values is an ordered collection of sorted collections containing the values
associated with each rho value.''

I ftle dataFile rho temp max string I
MetaRhos := SortedCollection new.
MetaCells := SortedCollection new.
Meta Values:= OrderedCollection new.
flle :=Dialog View request: 'Meta File Name?'.
Cursor read show While: [
dataFile := ReadFile named: flle.
max:= dataFile getNextNwnber.
max+ 1 timesRepeat: [MetaCells add: dataFile getNextNwnber].
rho:= dataFile getNextNwnber.
[rho= 0]

whileFalse:
[MetaRhos add: rho .
temp := SortedCollection new.
max timesRepeat: [temp add: dataFile getNextNwnber].
Meta Values add: temp. '
rho := dataFile getNextNumber].].

string := 'Meta Rhos Have Been Added For: '.
1 to: (MetaRhos size) do: [:il string:= string,"\, (MetaRhos at:i) printString.].
Dialog View notify: (string withCRs asComposedText centered).

195

Dialog View notify: (('DON'T Forget To Specify the MetaModel SERVICE and SETUP Distributions'\,
'BEFORE You Attempt to Run The Model!!!!!!') withCRs

asComposedText centered)!

setMetaDistribution
"Calculate the Meta Distribution based on the global Meta values and the user supplied rho
value"

I rho trueRhos bracketed max k lo hi interp loValues hiValues result I
rho:= (Dialog View request: 'Rho Value To InitializeMetaModel ?') asNumber.
trueRhos := OrderedCollection new.
1 to: MetaRhos size do: [:m I trueRhos add: ((MetaRhos at: m)/ 100) asFloat].
max := trueRhos size.
rho< (trueRhos at: 1) iiTrue:

SmallTalk-80 Code For Class: Utils (continued)

[Dialog View notify: 'This rho is too SMALL; TheMinimwn Rho is' ,(trueRhos at: 1)
printString. Aself.].

rho> (trueRhos at: max) iffrue:

printString. "self.].
k := 1.

[Dialog View notify: 'This rho is too LARGE; The Maximwn Rho is' ,(trueRhos at: max)

bracketed := false.
[bracketed] whileFalse: [
(rho>= (trueRhos atk) and: [rho<= (trueRhos at (k+1))])

iffrue: [bracketed:= true]
itFalse: [k:=k+ 1].].

lo := trueRhos at:k.
lo Values := Meta Values at: k.
hi:= trueRhos at: (k+1).
hiValues :=Meta Values at: (k+1).
interp := (rho-lo)/(hi-lo).
Dialog View notify: ('Rho Value of ', rho printString, ' has been braceted by ' ,

((trueRhos atk) printString),' and', ((trueRhos at:(k+1)) printString),
\Interpolation value is', interp printString,
\ \For This MetaModel to Perform as Expected',

196

\The Mean Part InterArrival Time Should be Set To', (MetaService/rho) printString)
withCRs asComposedTcxt centered.

MetaDistribution := Sorted Collection new.

1 to:140 do: [:n I
lo := lo Values at n.
hi:= hiValues at n.
result:= (interp *hi)+ ((1-interp) * lo).
MetaDistribution add: result.].!

SmallTalk:-80 Code For Class: WorkCenter

'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 December 1991 at 4:35:45 pm'!

Plant subclass: #WorkCenter
instanceVariableNames: 'resources name operator'
classVariableNames:"
poolDictionaries: "
category: 'Cim Controllers'!

! W orkCenter methodsFor: 'task language'!

produceOperator: anAmount of: aLabel

operator

"Method to create an Operator and add it to the workcenter"

operator isNil
iffrue: ["operator:= Operator newWithName: aLabel andAmount: anAmount]
itFalse: [self error: 'This needs to be checked out']!

"Answer the operator belonging to this work center"

"operator!

SmallTalk:-80 Code For Class: WorkCenter (continued)

printOperatorResultsOn: aStream

"Print the statistics of the operator output stream"

operator isNil ifFalse: [operator printResultsOn: aStream]!

!WorkCenter methodsFor: 'decisions'!

whatShouldiDo: a WFI
''This wfi needs a decision on what its next operation is"
"THIS IS A MODIFIED COPY TO IMPLEMENT A SPECIAL ROUTING RULE
WFI WILL SEEK KIT2 UNLESS ITS QUEUE IS 4 OR MORE LONGER THAN KITl
IN WHICH CASE KITl WILL BE USED"
"THIS VERSION IS FOR USE IN THE QN2 MODEL- IT INCLUDES THE RANDOM
ROUTER"

I queueLength operation q2 op2 q3 op3 rannum tester busy waiting I
queueLength := 987654.
a WFI are YouDone

ifl'rue: [self error: 'This wfi is done.']
ifFalse: [(aWFI routing at: aWFI currentStage)

do: [:op I "This is the list of current alternate operations"
(self includesResourceFor: op machine)

ifl'rue:

197

[''Transcript cr; show: op machine , ' '; show:
(self

printString."

queueLength := (selfresourceNamed: op machine) queueLength.

op].

queueLength := (selfresourceNamed: op machine) queueLength.

op]].

resourceNamed: op machine) queueLength.

resourceNamed: op machine) queueLength.

queueLength.

resourceNamed: op machine) queueLength

name='qn2'
ifl'rue:

op machine= 'kitl'
ifTrue:

[op machine = 'm2'
ifTrue:

op machine = 'm3'
ifTrue:

[q2 :=

op2:=

[q3 :=

op3:=

[q2 := queueLength :=(self

op2 := op].
op machine = 'kit2'

ifTrue:
[q3 := queueLength := (self

op3 := op].
tester:= (self resourceNamed: op machine)

198

SmallTalk:-80 Code For Class: WorkCenter (continued)

[op machine= 'm4']])

machine) amountAvailable = 0 iffrue: [busy:= 1].

resourceNamed: op machine) waitingForinputqueueLength.].

busy+ waiting.

busy :=0.
waiting := 0.
{op machine= 'm2' or: [op machine= 'm3' or:

iffrue: [(selfresourceNamed: op

waiting := (self

tester +busy + waiting < queueLength
iff rue:

[queueLength := tester+

operation:= op]]
ifFalse: ["The next operation cannot be carried out at this

machine.

"Logic For PREFERRED QUEUE STRATEGY."
"name = 'wcl' iffrue: [q3 - 4 < q2

iffrue: [operation:= op3]
ifFalse: [operation:= op2]]."

"Logic For SHORTEST QUEUE STRATEGY."
name='wcl' iffrue: [q3 >= q2

name='qn2'
iff rue:

iffrue: [operation:= op2]
ifFalse: [operation:= op3]].

rannum := RandomRouter next.
rannum <0.5

Only the
plant can decide this question"
"Plant active whatShouldiDo: aWFl]]].

iffrue: ["Transcript cr; show: 'RandomRouter', rannum printString."
operation := op2]

ifFalse: [operation:= op3]].
"operation"Transcript cr; show: 'Routed to:', operation machine."!

whatShouldiDoVl: aWFl

"This wfi needs a decision on what its next operation is"
"THIS IS A COPY OF THE ORIGINAL METHOD"

lqueueLength operation I

queueLength := 987654.
a WFl are Y ouDone iff rue: [self error: 'This wfi is done.']
ifFalse: [(aWFl routing at: aWFl currentStage) "This is the list of

current alternate operations"
do: [:opl

(self includesResourceFor: op machine) iff rue: [
(((selfresourceNamed: op machine) queueLength) < queueLength)
iffrue: [queueLength := (selfresourceNamed: op machine) queueLength.
operation:= op]]

ifFalse: [

"The' next operation cannot be carried out at this machine. Only the

SmallTalk-80 Code For Class: WorkCenter (continued)

plant can decide this question"
"Plant active whatShouldiDo: aWFI]]].
"operation!

SmallTalk-80 Code For Class: WorkFlowitem

'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 December 1991 at 4:36:41 pm'!

SimulationObject subclass: #WorkFlow Item

199

instanceVariableNames: 'name entryTime currentLocation workStation queueEntryTime serial workCenter
currentStage currentOperation done routing dueDate hasOperator '

class V ariableN ames: 'Count EntryTime MaterialHandling TimeinSystem '
poolDictionaries: "
category: 'Cim Sim'!

WorkFlow Item comment:
'Class WorkFlow Item represents the parts moving through the system which
must be processed by the system resources.'!

!WorkFlow Item methodsFor: 'initialize-release'!

initialize

"The workflowitem starts from the buffer 'storage'"

currentStage := 1.
done := false.
hasOperator := 0.
super initialize!

!WorkFlow Item methodsFor: 'task language'!

acquireOperator
"acquire the workcenters operator if one exists"
"self halt."
"resourceNeeded := aResource.
amountNeeded := 1."

workCenter operator provideServiceTo: self.
hasOperator := 2.!

getProcessedAtLocation
"The wfi has arrived at a resource, and acquired it Now complete the
current operation"

I resource time operTime suTime I
operTime := currentOperation processTime next.
suTime := currentOperation setUp Time next.
time := operTrme + suTime.
resource := Plant active resourceNamed: currentOperation machine.
"SirnScript cr; nextPutAll: self name , ' ' , self serial printString , 1 PT at ' , resource name , 1 for Setup: ' ,

suTime printString , ' and Process: ' , operTirne printString."
(workCenter name= 'ob2' or: [workCenter name= 'ob3' or:[workCenter name= 'ob4']])

SmallTalk-80 Code For Class: WorkFlow Item (continued)

"(workCenter name= 'ob2' or: [workCenter name= 'ob3'])"
iff rue:

["self halt."
self acquireOperator.
self holdFor: suTirne.
self releaseOperator.
workCenter operator processTirne: suTirne].

selfholdFor: operTirne.
resource processTirne: time!

has Operator
"hasOperator!

hasOperator: aStatus
hasOperator := aStatus.
"self.!

releaseOperator

" Release the operator when the resource is no longer required "

workCenter operator releaseBy: self.
hasOperator := 3.!

workgetProcessedAtLocation

Setup:',

"The wfi has arrived at a resource, and acquired it. Now complete the
current operation"

I resource time operTirne suTirne I
operTirne := currentOperation processTirne next.
suTune := currentOperation setUpTirne next.
time := operTime + suTime.
resource := Plant active resourceNamed: currentOperation machine.
SimScript cr; nextPutAll: (self name),' ',(self serial printString), ' PT at', resource name, ' for

suTime printString, ' and Process: ', operTime printString.
"SimScript cr; nextPutAll: self printString, 'obtained', resource printString."
((workCentername = 'ob2') or: [workCenter name='ob3']) ifTrue:[

"self halt."
self acquireOperator.
self holdFor: suTime.
self releaseOperator.
workCenter operator processTime: suTime.
].

selfholdFor: operTime.
resource processTime: time! !

SmallTalk:-80 Code For Class: WorkStation

'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 December 1991 at 4:36:08 pm'!

WorkCenter subclass: #WorkStation
instance V ariableN ames: 'wsAmountAvailable wsQueueController wsProcessingTimes ws Utilization

waitingForlnputQ blockingWFI blocked workCenter failureDistribution repairDistribution'

200

SmallTalk-80 Code For Class: WorkStation (continued)

classVariableNames:"
poolDictionaries: "
category: 'Cim Resources'!

WorkStation comment:
'Class WorkStation is the class which represents a delayer to an object
being processed. This class and its subclasses are used to represent
machine resources in the system.'!

!WorkStation methodsFor: 'task language'!

provideServices
"provide workstation resources to the next job in queue"

lwaitingWFI wfi I

[wsQueueController inputQueueEmpty not and: [wfi := wsQueueController next. wfi amountNeeded <=
wsAmountA vail able]]

while True:
[waitingWFI := wsQueueController inputQueueRemove: wfi.
wsAmountAvailable := wsAmountAvailable- waitingWFI amountNeeded.

201

self name= 'meta' ifl'rue:[wsAmountAvailable := wsAmountAvailable.+ waitingWFI amountNeeded].
[selfhaslnputSpace2 and: [waitingForinputQ isEmpty not]] whileTrue:

[self reserveAPlace. waitingForinputQ removeFirst resume].
wsUtilization equals: (wsUtilization value+ waitingWFI amountNeeded).
waitingWFI resume.].

"self name= 'meta' ifl'rue: [self halt]."!

provideServiceTo: a WFI
"This wfi needs to be serviced. Put into the queue, and provide
a server if possible"

wsQueueController addToinputQueue: aWFI.
"SimScript cr; nextPutAll: aWFI printString, 'needs:', self printString , 'at' , Simulation active time

printString."
self provideServices.
aWFipause.
a WFI hasOperator: 1.
"SimScript cr; nextPutAll: a WFI printString , ' grabbed: ' , self printString , ' at' , Simulation active time

printString.''!

!WorkStation methodsFor:· 'initialize-release'!

failureDistribution: aDistribution repair Distribution: another
failureDistribution := aDistribution.
repairDistribution := another.
name= 'ml'

ifl'rue:

name='m2'
ifl'rue:

name='m3'
ifl'rue:

[repairDistribution random seed: (TheSeedArray at: 14).
failureDistribution random seed: (TheSeedArray at: 15)].

[repairDistribution random seed: (TheSeedArray at: 16).
failureDistribution random seed: (TheSeedArray at: 17)].

SmallTalk-80 Code For Class: WorkStation (continued)

name='m4'
ifTrue:

"self halt."

[repairDistribution random seed: (TheSeedArray at: 18).
failureDistribution random seed: (TheSeedArray at: 19)].

[repairDistribution random seed: (TheSeedArray at: 20).
failureDistribution random seed: (TheSeedArray at: 21)].

self scheduleFailureRepairCycle.!

failYourselfFor: aDownTime
I dummy t1 t2 check I
"SimScript cr;nextPutAll: selfprintString,' failed!!', 'downTime=', aDownTime printString,

' at ' , Simulation active time printString."
wsAmountA vailable = 1

ifTrue: ["SimScript cr; nextPutAll: selfprintString,' was idle- FAILURE IGNORED"']
ifFalse:

["SimScript cr; nextPutAll: self printString , ' was busy'."
check:= Simulation active postponeEventForResource: self by: aDownTime.
"SimScript cr; nextPutAll: 'check class: ' , check class printString."
check isNil

ifTrue:

workCenter: workCenter; location: self.

[wsUtilization equals: 0.
dummy:= (WorkFlowltem new initialize) name: 'Repair WFI';

t1 := Simulation active time.
dummy acquireOperator.
t2 := Simulation active time.
self holdFor: aDownTime.
dummy releaseOperator.
dummy :=nil.

202

Simulation active postponeEventForResource2: self by: t2 - tl +
aDownTime- 100.

wsUtilization equals: 1]]!

workfailYourselfFor: aDownTime
I dummy t1 t2 check I
SimScript cr; nextPutAll: self printString , ' failed!! ' , 'downTime=' , aDownTime printString , ' at' ,

Simulation active time printString.

wsAmountAvailable = 1
iiTrue:

printString.

ifFalse:

["wsAmountAvailable := wsAmountAvailable -1."
SimScript cr; nextPutAll: self printString,' was idle- Failure IGNORED'.
"Simulation active delay For: aDownTime.
SimScript cr; nextPutAll: selfprintString,' is up now!! at', Simulation active time

wsAmountAvailable := wsAmountAvailable + 1.
self provideServices"]

[SimScript cr; nextPutAll: self printString , ' was busy '.
check := Simulation active postponeEventForResource: self by: aDownTime.
check isNil iiTrue:[
SimScript cr; nextPutAll: 'check class:', check class printString.
wsUtilization equals: 0.

203

SmallTalk:-80 Code For Class: WorkStation (continued)

dummy:= WorkFlow Item new initialize name: 'Repair WFI'; workCenter: workCenter;
location: self.

t1 := Simulation active time.
dummy acquireOperator.
t2 := Simulation active time.
self holdFor: aDownTime.
dummy releaseOperator.
dummy :=nil.
Simulation active postponeEventForResource2: self by: (t2-tl +aDownTime-100).
wsUtilization equals: 1]]! !

!WorkStation methodsFor: 'queue capacity'!

putMelnOutputQueue: a WFI

"output queues are adjacent to the workstation,
and do not need reservation.
WFI's directly move into them, without worrying about other
competition, if there is a space. If there is no space, they are blocked"

wsQueueController outputHasSpace iffrue: [
wsQueueController putlnOutput: a WFI]
ifFalse: ["There is no place for this wfi. the workStation is blocked"

"self halt."
"SimScript cr; nextPutAll: aWFI printString, 'blocked the', self printString,' at', Simulation active time

printString."
BlockCount := BlockCount + 1.
blocked := true.
blockingWFI := a WFI.
"self halt."
aWFipause.
"SimScript cr; nextPutAll: a WFI printString, ' unBlocked the ', self printString, ' at ', Simulation active

time printString."
blocked := false.
wsQueueController putlnOutput: a WFI]!

!WorkStation methodsFor: 'testing'!

haslnputSpace2

"There is space in the workStation if the input queue has space
or if there is a server available"
"SimScript cr; nextPutAll: 'Checking for Input Space (provideServices) at', self name,' at',

Simulation active time printString, 'Answer:', (wsQueueController inputHasSpace: wsAmountAvailable)
printString."
"self halt."
AwsQueueController inputHasSpace: wsAmountA vailable!

APPENDIXB

SIMULATION RUN DESIGN CONSIDERATIONS

204

As stated in Chapter VIIT, the simulation run design considerations are designed to

answer the following questions:

o How is "to approximately model" to be judged?

205

o How long must each simulation run be to ensure that the time-in-system

distributions are approximately modeled?

o How long a "warm-up" period should be allowed to eliminate the idle and

empty start-up influence on the collected time-in-system statistics?

o How many simulation runs at each utilization value are required to ensure

that the time-in-system distributions are approximately modeled?

o How should random deviates be generated for each simulation run?

Each of these questions will be addressed in turn in the sections below.

How Does One Judge "Approximately Modeled"?

Within the context of this research, the stated objective of a metamodel is to

approximately preserve the time-in-system distribution for parts moving through the

workcenter. In light of this, the question of "approximately modeled" becomes one of

judging whether the time-in-system distribution generated from the metamodel exhibits a

"goodness-of-fit" when compared to the corresponding base model distribution.

The null hypothesis for virtually all goodness of fit tests is that the observed values

are independent identically distributed random variables with distribution function F*. A

cautionary note is appropriate regarding the testing of this hypothesis [Law and Kelton

1991, sec. 6.6.2]. Failure to reject the null hypothesis should !1Q! be interpreted as

accepting it to be true. For small numbers of observed values, the tests should be viewed

as a systematic approach to detect gross differences. For large numbers of observed

values, the tests almost always reject the null hypothesis since it is rarely exactly true.

This is unfortunate since in most cases, what is needed is a distribution that is

approximately correct.

206

Perhaps the two most popular forms of general goodness of fit tests are the chi-square

test [Law and Kelton 1991, 382-387] and the Kolmogorov-Smirnov (K-S) test [Massey

1951]. For a continuous random variable, the chi-square test can be thought of as a

comparison of the observed and hypothesized probability mass functions. The K-S test

can be thought of as a comparison of the cumulative distribution functions. For this

research, the K-S test was favored over the chi-squared test for the following two

reasons:

o The K-S test tends to be more powerful against many alternatives

[Stephens 1974].

o The K-S test does not require the selection of equiprobable intervals each

containing at least five observations.

The K-S test employed in comparing metamodels and base models in this research

must be deemed an approximate test for the following reasons:

o The test was applied to grouped data (see Appendix E) rather than to

individual values. Massey [1951] indicates that this grouping tends to

lower the significance levels of the test.

o The test was applied using a sample of 3,000 averaged observations

calculated from 15,000 individual observations grouped into 140 cells.

The "n" factor in the K-S test was set to 3,000. Using 15,000 would have

lowered significance levels; 140 would have raised them.

While the test must be considered approximate, this fact in itself does not affect the

validity of the developed methodology. The metamodel validation test (of which the K-S

test is a part) is one component of a creation-validation-remedial cycle of procedures

designed to conclude with a valid metamodel. Any goodness of fit test could be applied

in the validation stage. A more powerful test would result in additional remedial cycles,

a less powerful test in fewer. The final decision on the exact test to be used and its

parameters is a function of how "appro~imate" the metamodel behavior is allowed to

become. Within this research effort, the approximate K-S test described above and

detailed in Massey [1951] appears both reasonable and satisfactory.

How Lonf: Should Each Simulation Run Be?

and

207

How Many Simulation Runs <Rta?etitions) Are Reqyired For Scenario At Each p Value?

The length of each simulation run and the number of independent runs (repetitions)

were the subject of considerable empirical investigation at the inception of this research.

The two issues were considered simultaneously due to their interrelationship. The

interrelationship is in the form of a tradeoff, more shorter runs versus fewer longer runs.

The empirical investigation was centered around the performance of the two

queueing network metamodels QN1 and QN2. Both of these metamodels had known

closed form solutions. By graphically comparing the averaged cumulative distribution

function obtained from the simulation runs against the known analytical solution, it was

possible to visually assess the degree to which the two coincided. In addition to this

pragmatic visual comparison, the K-S test described in the previous section was used as

an objective measure of performance.

The process of finalizing the run length and number of runs involved testing various

values at several utilization levels (p) across several models (QN1 and QN2). The run

lengths tested ranged from a low of 1,000 observations of time-in-system to a high of

15,000 observations. The number of runs (repetitions) ranged from a low of three to a

high of ten. While run lengths of 15,000 observations produced excellent results (within

even stringent K-S limits), the run times were excessive (> 45 minutes per run).

Similarly, the average based on ten repetitions showed excellent results but the total run

times were excessive. The final values used for the research, five repetitions each with

3,000 observations, were selected as a reasonable and quite acceptable compromise.

Undoubtedly many other combinations could have delivered acceptable results. This pair

simply surfaced first and withstood the pragmatic testing as being both rational and

practical.

How Lon~ Should The Simulation "Warm-Up" Period Be?

208

The warm up period for a simulation run is that period of time required for the

simulation to reach steady state behavior. It allows the system time to mitigate the

effects of starting empty and idle. Detecting the end of warm-up and the start of steady

state behavior is more of an art than a science. One of the most common techniques used

is to view a time ordered graph of a relevant system performance measure (or its moving

average) and eliminate the "ramp-up" effect typical of non-steady-state behavior. This

was the basic approach used throughout this research.

Graphs of time-in-system produced during initial simulation runs indicated that the

empty and idle effect was mitigated in less than 100 time units. For complex plant

configurations and higher utilization factors (p's), the warm up period was approximately

75 time units. For less complex plants and low p's, the warm up period was frequently

less than 25 time units.

Based on these results and incorporating a threefold safety factor, the warm-up time

for all simulation runs was set at 300 time units. When simulated time reached 300 in

each run, the statistical arrays were cleared and the count for the 3,000 time-in-system

observations was initiated. At the conclusion of each run, a time-ordered graph of the

collected time-in-system observations was displayed for review. In no case during the

conduct of this research did this end-of-run time-ordered graph display a ramp-up effect.

How Should Random Deviates Be Generated?

The problem of generating "good" random numbers and random deviates has long

plagued the simulation community (see for instance [Park and Miller 1988]). This

research was no different. The questions surfaced in the empirical investigation to

209

determine run lengths and number of repetitions (see section above). Initial results in

this investigation showed that both long run lengths (>8000) and high repetition counts

(>5) were going to be needed to successfully pass the visual and K-S tests.

Fortunately, from the author's perspective, two researchers at The University of

Oklahoma, Steve Tretheway and Mike Oltmanns, were actively investigating this area.

The most significant results of their (unpublished) efforts were:

o Park and Miller's [1988] random number generator was implemented;

o Ahrens and Dieter's [1974] gamma deviate generator (a< 1) was

implemented;

o Cheng's [1977] gamma deviate generator (a~ 1) was implemented.

While this provided some improvement in the run lengths and number of repetitions

required to achieve acceptable results, more improvement was desirable.

One final improvement in the random deviate generation process led to the results

which were ultimately implemented within this research. That improvement was the

implementation of multiple stream random number generation. At the suggestion of

committee chair J.H. Mize and committee member M. Kamath, an independent random

number generator was implemented for each stochastic process in the simulation model.

Previous results (e.g., Mize [1973]) had demonstrated the superiority of this approach

over single stream random number generation. This work further substantiates that

benefit. The final result after implementation of all the above improvements was that

acceptable performance of metamodels working against known analytical solutions was

achieved using 5 repetitions with 3,000 observations each.

APPENDIXC

ANALYSIS OF VARIANCE OF EXPERIMENTAL

DATA

210

General Description:

PLANT LEVEL VALIDATION #2

STATISTICAL RATIONALE

211

Plant level validation #2 measures the effect of implementing a "decision" within

the plant. The decision impacts (possibly) the average distribution of time-in-system for

parts moving through the plant. The statistical analysis given below is designed to

estimate the change in mean time-in-system under two different decisions and determine

the observed significance level (OSL) of a test of no difference.

Factors:

Decision (D)- a fixed factor with d=21evels;

Random Number Set (R)- a random factor with r=Slevels;

Number of Observations per Cell- n=l.

Model:

The data are in a two-way cross classification. Assuming that normal theory

assumptions hold, a model for the mean time-in-system statistic is:

MTISij = fl + Di + Rj + DRij + Eij

where:

MTISij =mean time-in-system with Decision i and Random Number Setj;

fl = common effect for the whole experiment;

Di = effect of the i-th Decision;

Rj =effect of the j-th Random Number Set;

DRij = interaction effect of the i-th Decision and the j-th Random Number Set;

Eij = random effect.

212

Expected Mean Sgyares (&eneral)

The general expressions for the expected mean squares for this experimental

model are developed in the table below using the methodology of Hicks [1964, p. 153].

Sources of Degrees of Expected Mean
Variation Freedom Squares

Total drn-1
Decision Level (D)

LD~ d-1
2 2

cre + ncrDR + rn d-1

Random Number Set (R) r-1 2 2
cre + dncrR

Interaction (DR) (d-1)(r-1) 2 2
cre + ncrDR

Random (E) dr(n-1) 2
cre

Expected Mean Sgyares (specific)

After substituting specific values, the expressions for the expected mean squares

of the model for the data are shown below.

Sources of Degrees of Expected Mean
Variation Freedom Squares

Total 9
Decision(D) 1 2

2 L 2 cre + crDR + 5 Di

Random Number Set (R) 4 2 2
cre + 2crR

Interaction (DR) 4 2 2
cre + crDR

Random (e) 0 2
cre

213

Hypothesis:

The hypothesis to be tested is whether the variation due to the decision is zero. In

terms of the above model and expected mean squares this becomes:

Ho: Di = 0 for all i;

H 1: at least one Di i= 0.

F Test:

Based upon the expected mean squares (EMS) and assuming that normal theory

assumptions hold, the appropriate F-statistic to test for significance of the hypothesis

given above is formed by:

Conclusions:

EMS(D)
Peale = EMS(DR)

The decision resulting from the analysis is based upon the observed significance

level (OSL) of Peale· The OSL is a measure of the evidence against H0. The smaller it is

the larger the evidence since it is computed assuming Ho is true. If the value is small, it

means that the data is rare given that H0 is true. The decision must be made (based on

the evidence) that either: (1) Ho is true and a rare event has occurred, or (2) Ho is false.

For a specified a level:

If OSL <= a; then reject H0;

otherwise, fail to reject Ho.

In terms of the current research, if Ho is rejected, we conclude that a statistically'

significant difference exists between the mean time-in-system of the two levels of the

214

decision variable (i.e., fast vs slow inspection station speed or shortest vs preferred queue

selection strategy).

I*

PLANT LEVEL VALIDATION #2

SASPROGRAM

Dissertation Plant Level Validation #2
ANOV A for Differences in Treatment Means
*I

***** Set general parameters;
options ps=58 nodate nonumber;
%let plant = QN2;
libname dbp "c:\dbp'&plant";
titlel "&plant Plant Level Validation";
title2 'Time In System- Validation #2- Differences in Treatment Means';

***** Read raw data;
data raw; set dbp.avg&plant;run;

*--· --,

215

***** Test for BASE model, 0.500 Rho, SHORT queues, SLOW vs FAST Inspection;
title3 'Base Model - Rho 0.500 - Shortest Queue - Fast vs Slow Inspection';

***** Select and Print Data;
data testl; set raw;
if (model='BASE' and rho='0.500' and insp='SLOW' and que=' SHORT')

or (model='BASE' and rho='0.500' and insp='FAST' and que=' SHORT');
run;
proc print data=testl; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glm data=testl;

class insp run;
model mean = insp run insp*run;
test h=insp e=insp*run I etype=l htype=l;

quit;

*--· --,
*****Test for META model, 0.500 Rho, SHORT queues, SLOW vs FAST Inspection;
title3 'Meta Model - Rho 0.500 - Shortest Queue- Fast vs Slow Inspection';

***** Select and Print Data;
data test2; set raw;
if (model='META' and rho='O.SOO' and insp='SLOW' and que=' SHORT')

or (model='META' and rho='0.500' and insp='FAST' and que='SHORT');
run;

proc print data=test2; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glm data=test2;

class insp run;
model mean = insp run insp*run;
test h=insp e=insp*run I etype=l htype=l;

quit;

*--· --,

216

***** Test for BASE model, 0.675 Rho, SHORT queues, SLOW vs FAST Inspection;
title3 'Base Model- Rho 0.675 - Shortest Queue - Fast vs Slow Inspection';

***** Select and Print Data;
data test3; set raw;
if (model='BASE' and rho='0.675' and insp='SLOW' and que=' SHORT')

or (model='BASE' and rho='0.675' and insp='FAST' and que=' SHORT');
run;
proc print data=test3; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glm data=test3;

class insp run;
model mean = insp run insp*run;
test h=insp e=insp*run I etype=l htype=l;

quit;

*--· --,
*****Test for META model, 0.675 Rho, SHORT queues, SLOW vs FAST Inspection;
title3 'Meta Model - Rho 0.675 - Shortest Queue - Fast vs Slow Inspection';

***** Select and Print Data;
data test4; set raw;
if (model='META' and rho='0.675' and insp='SLOW' and que=' SHORT')

or (model='META' and rho='0.675' and insp='FAST' and que=' SHORT');
run;
proc print data=test4; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glm data=test4;

class insp run;
model mean = insp run insp*run;
test h=insp e=insp*run I etype=l htype=l;

quit;

*==;

217

*****Test for BASE model, 0.500 Rho, FAST insp., SHORT vs PREFERRED queues;
title3 'Base Model- Rho 0.500 - Fast Inspection - Shortest vs Preferred Queues';

***** Select and Print Data;
data testS; set raw;
if (model='BASE' and rho='0.500' and insp='FAST and que=' SHORT')

or (model='BASE' and rho='0.500' and insp='FAST and que='PREF ');
run;
proc print data=test5; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glm data=test5;

class que run;
model mean = que run que*run;
test h=que e=que*run I etype=l htype=l;

quit;

*--· --,
*****Test for META model, 0.500 Rho, FAST insp., SHORT vs PREFERRED queues;
title3 'Meta Model - Rho 0.500 - Fast Inspection - Shortest vs Preferred Queues';

***** Select and Print Data;
data test6; set raw;
if (model='META' and rho='0.500' and insp='FAST' and que=' SHORT')

or (model='META' and rho='O.SOO' and insp='FAST and que='PREF ');
run;
proc print data=test6; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glm data=test6;

class que run;
model mean = que run que*run;
test h=que e=que*run I etype=l htype=l;

quit;

*--· --,
*****Test for BASE model, 0.675 Rho, FAST insp., SHORT vs PREFERRED queues;
title3 'Base Model- Rho 0.675 - Fast Inspection - Shortest vs Preferred Queues';

***** Select and Print Data;
data test7; set raw;
if (model='BASE' and rho='0.675' and insp='FAST and que=' SHORT')

or (model='BASE' and rho='0.675' and insp='FAST' and que='PREF ');
run;
proc print data=test7; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glrn data=test7;

class que run;
model mean = que run que*run;
test h=que e=que*run I etype=l htype=l;

quit;

*--· ---,

218

*****Test for META model, 0.675 Rho, FAST insp., SHORT vs PREFERRED queues;
title3 'Meta Model - Rho 0.675 - Fast Inspection - Shortest vs Preferred Queues';

***** Select and Print Data;
data testS; set raw;
if (model='META' and rho='0.675' and insp='FAST' and que='SHORT')

or (model='META' and rho='0.675' and insp='FAST' and que='PREF ');
run;
proc print data=test8; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glm data=test8;

class que run;
model mean =que run que*run;
test h=que e=que*run I etype=l htype=l;

quit;

PLANT LEVEL VALIDATION #2

SAMPLE SAS OUTPUT

OB4 Plant Level Validation
Time In System - Validation i2 - Differences in Treatment Means

Base Model - Rho 0.500 - Shortest Queue - Fast vs Slow In~j>pection

OBS RUN MEAN MODEL RHO INSP QUE

1 B 12.1060 BASE 0.500 FAST SHORT
2 D 12.0253 BASE 0.500 FAST SHORT
3 J 12.1194 BASE 0.500 FAST SHORT
4 K 12.0232 BASE 0.500 FAST SHORT
5 s 12.1184 BASE 0.500 FAST SHORT
6 B 12.4857 BASE 0.500 SLOW SHORT
7 D 12.3729 BASE 0.500 SLOW SHORT
8 J 12.4952 BASE 0.500 SLOW SHORT
9 K 12.3752 BASE 0.500 SLOW SHORT

10 s 12.4835 BASE 0.500 SLOW SHORT

OB4 Plant Level Validation
Time In System - Validation i2 - Differences in Treatment Means

Base Model - Rho 0.500 - Shortest Queue - Fast vs Slow Inspection

General Linear Models Procedure
Class Level Information

Class

INSP

RUN

Levels

2

5

Values

FAST SLOW

B D J K S

Number of observations in data set 10

General Linear Models Procedure

Dependent Variable: MEAN

Source DF

Model 9

Error 0

Corrected Total 9

Sum of
Squares

0.35694254

0.35694254

Mean
Square F Value

0.03966028

Pr > F

R-Square c.v. Root MSE MEAN Mean

Source

INSP
RUN
INSP*RUN

source

INSP
RUN
INSP*RUN

1.000000

DF

1
4
4

DF

1
4
4

0

Type I ss

0.33135237
0.02518839
0.00040178

Type III SS

0.33135237
0.02518839
0.00040178

0

Mean Square

0.33135237
0.00629710
0.00010044

Mean Square

0.33135237
0.00629710
0.00010044

12.2604896

F Value Pr > F

F Value Pr > F

Tests of Hypotheses using the Type I MS for INSP*RUN as an error term

Source DF Type I ss Mean Square F Value Pr > F

INSP 1 0. 33135237 0. 331.35237 3298.88 0.0001

219

General Description:

PLANT LEVEL VALIDATION #3

STATISTICAL RATIONALE

220

Plant level validation #3 compares the effect of implementing a "decision" within

the plant using two different models - the base model and the meta model. The decision

impacts (possibly) the mean time-in-system for parts moving through the plant. The

statistical analysis below measures the observed significance level (OSL) of the

difference between the effect in the base model and the effect in the metamodel.

Factors:

Model:

Model (M) - a fixed factor with m=2 levels;

Decision (D)- a fixed factor with d=2levels;

Random Number Set (R) - a random factor with r=5 levels;

Number of Observations per Cell- n=l.

The data are in a three-way nested cross-classification. Assuming that normal

theory assumptions hold, a model for the statistic described is given by1:

MTISijk = J.1 + Mi + Dj + MDij + Rk(i) + DRjk(i) + Eij

where:

MTISij = mean time-in-system with Model i, Decision j, and Random Number Set k;

J.1 = common effect for the whole experiment;

Mi = effect of the i-th Model;

Dj =effect of the j-th Decision;

1 A special thanks goes to Dr. David Weeks of the OSU Statistics Department for his assistance in
formulating this model and assisting with interpretation of results.

MDij =the interaction effect of the i-th Model and the j-th Decision (measures the

failure of the decision differences to the same for both models);

221

Rk(i) =the effect of the k-th Random Number Set within the i-th Model (this effect

contains the confounded effects of the Random Number Set and the

Random Number Set X Model interaction);

DRjk(i) = the interaction effect of the j-th Decision and the k-th Random Number Set

within the i-th Model (This effect contains the confounded effects of the

Decision X Random Number Set interaction and the Decision X Random

Number Set X Model interaction. It measures the failure of decision

differences to be the same over the runs inside each model and run,

averaged);

Eijk = random effect.

222

Expected Mean Sg,uares (~neral)

The general expressions for the expected mean squares for this experimental

model are developed in the table below using the methodology of Hicks [1964, p. 153].

Sources of Degrees of Expected Mean
Variation Freedom Squares

Total mdrn-1
Model (M)

LM~ m-1
2 2

cre + dncrR + drn m-1

Decision (D)
LD~ d-1

2 d 2
cre + 0 d-1 crDR + mrn d-1

Model x Decision
L(MD)~ Interaction (MD) (d-1)(m-1)

d
1]

2 2
cre + nd-1 crDR + rn (m-1)(d-1)

Random Number Set m(r-1) 2 2
Within Model (R) cre + dncrR

Decision x Random m(d-1)(r-1) 2 d 2
Number Set Interaction cre + nd-1 crDR
Within Model (DR)
Random (e) dr(n-1) 2

cre

223

Expected Mean Squares (specific)

After substituting known values, the specific expressions for the expected mean

squares for this experimental model are shown in the table below.

Sources of Degrees of Expected Mean
Variation Freedom Squares

Total 19
Model (M) 2 2 I, 2

1 cre + 2crR + 10 Mi

Decision (D) 2 2 I, 2
1 cre + 2crnR + 10 Di

Model x Decision 2 2 I, 2
Interaction (MD) 1 cre + 2cr0R + 5 (MD)ij

Random Number Set 8 2 2
Within Model (R) cre + 2crR

Decision x Random 8 2 2
Number Set Interaction cre + 2crDR

Within Model (DR)
Random (e) 0 2

cre

Hypothesis:

The hypothesis to be tested is whether the variation due to the interaction between

models and decisions is zero. In terms of the above model and expected mean squares

this becomes:

FTest:

Ho: (MD)ij = 0 for alli andj;

H 1: at least one MDij f:. 0.

Based upon the expected mean squares (EMS) the appropriate F-statistic to test

for significance of the interaction between model and decision is formed by:

Conclusions:

EMS (MD)
Fcalc = EMS(DR)

224

The decision resulting from the analysis is based upon the observed significance

level (OSL) of Fcalc- For a specified a level:

If OSL <= a; then reject H0;

otherwise; fail to reject Ho.

In terms of the current research, if Ho is rejected, we conclude that a significant

difference exists between the average behavior of the base model and the average

behavior of the metamodel with respect. to changes in the decision factor. Interpreted

graphically, this implies that a significant difference exists between the slopes of the two

lines shown on the validation #1 (visual inspection) graphs.

I*

PLANT LEVEL VALIDATION #3

SASPROGRAM

Dissertation Plant Level Validation #3
ANOV A for Difference in Treatment Slopes across Models
*I

***** Set general parameters;
options ps=58 nodate nonumber;
libname dbp "c:'dbp\&plant.";
%let plant= QN2;
titlel "&plant. Plant Level Validation";
title2 "Mean Time In System- Validation #3- Differences in Treatment Slopes";

***** Read raw data;
data raw; set dbp.avg&plant.; run;

225

*---· ---,
*****Test for 0.500 Rho, SHORT queues, SLOW vs FAST inspection;
title3 "&plant.- Rho 0.500- Shortest Queue- Fast vs Slow Inspection";

***** Select and Print Data;
data testl; set raw;

if (rho="0.500" and insp="SLOW" and que="SHORT")
or (rho="O.SOO" and insp="FAST" and que=" SHORT");

run;
proc print data=testl; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glm data=testl;

class model insp run;
model mean = model run(model)

insp insp*model insp*run(model)
test h=model e=run(model) I etype=l htype=l;
test h=insp insp*model e=insp*run(model) I etype=l htype=l;

quit;

*---· ---,
***** Test for 0.675 Rho, SHORT queues, SLOW vs FAST inspection;
title3 "&plant.- Rho 0.675- Shortest Queue- Fast vs Slow Inspection";

***** Select and Print Data;
data testl; set raw;
if (rho="0.675" and insp="SLOW" and que="SHORT")

or (rho="0.675" and insp="FAST" and que=" SHORT");
run;
proc print data=testl; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glm data=testl;

class model insp run;
model mean = model run(model)

insp insp*model insp*run(model) ;
test h=model e=run(model) I etype=l htype=l;
test h=insp insp*model e=insp*run(model) I etype=l htype=l;

quit;

226

*===;
***** Test for 0.500 Rho, FAST insp., SHORT vs PREFERRED queues;
title3 "&plant.- Rho 0.500- Fast Inspection- Short vs Preferred Queues";

***** Select and Print Data;
data testl; set raw;
if (rho="0.500" and insp="FAST" and que=" SHORT")

or (rho="0.500" and insp="FAST" and que="PREF ");
run;
proc print data=testl; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glm data=testl;

class model que run;
model mean = model run(model)

que que*model que*run(model)
test h=model e=run(model) I etype=l htype=l;
test h=que que*model e=que*run(model) I etype::;:l htype=l;

quit;

*---· ---,
***** Test for 0.675 Rho, FAST insp., SHORT vs PREFERRED queues;
title3 "&plant.- Rho 0.675- Fast Inspection- Short vs Preferred Queues";

***** Select and Print Data;
data testl; set raw;
if (rho="0.675" and insp="FAST" and que=" SHORT")

or (rho="0.675" and insp="FAST" and que="PREF ");
run;
proc print data=testl; run;

***** Proc GLM to produce ANOV A and F-statistic;
proc glm data=testl;

class model que run;
model mean = model run(model)

que que*model que*run(model)
test h=model e=run(model) I etype=l htype=l;
test h=que que*model e=que*run(model) I etype=l htype=l;

quit;

227

228

PLANT LEVEL VALIDATION #3

SAMPLE SAS OUTPUT

OB4 Plant Level Validation
Mean Time In System - Validation i3 - Differences in Treatment Slopes

OB4 - Rho 0.500 - Shortest Queue - Fast .vs Slow Inspection

OBS RUN MEAN MODEL RHO INSP QUE

1 B 12.1060 BASE 0.500 FAST SHORT
2 D 12.0253 BASE 0.500 FAST SHORT
3 J 12.1194 BASE 0.500 FAST SHORT
4 K 12.0232 BASE 0.500 FAST SHORT
5 s 12.1184 BASE 0.500 FAST SHORT
6 B 12.7432 META 0.500 FAST SHORT
7 D 12.6981 META 0.500 FAST SHORT
8 J 12.7809 META 0.500 FAST SHORT
9 K 12.7021 META 0.500 FAST SHORT

10 s 12.7652 META 0.500 FAST SHORT
11 B 12.4857 BASE 0.500 SLOW SHORT
12 D 12.3729 BASE 0.500 SLOW SHORT
13 J 12.4952 BASE 0.500 SLOW SHORT
14 K 12.3752 BASE 0.500 SLOW SHORT
15 s 12.4835 BASE 0.500 SLOW SHORT
16 B 13.2108 META 0.500 SLOW SHORT
17 D 13.1558 META 0.500 SLOW SHORT
18 J 13.2422 META 0.500 SLOW SHORT
19 K 13.1276 META 0.500 SLOW SHORT
20 s 13.2426 META 0.500 SLOW SHORT

General Linear Models Procedure
Class Level Information

Class Levels Values

MODEL 2 BASE META

INSP 2 FAST SLOW

RUN 5 B D J K S

Number of observations in data set 20

General Linear Models Procedure

Dependent Variable: MEAN
Sum of Mean

Source DF Squares Square F Value Pr > F

Model 19 3.39217824 0.17853570

Error 0

Corrected Total 19 3.39217824

R-Square c.v. Root MSE MEAN Mean

1.000000 0 0 12.6136694

OB4 Plant Level Validation
Mean Time In System - Validation t3 - Differences in Treatment Slopes

OB4 - Rho 0.500 - Shortest Queue - Fast vs Slow Inspection

Source DF Type I ss Mean Square F Value Pr > F

MODEL 1 2.49471875 2.49471875
RUN(MODEL) 8 0. 04072875 0.00509109
INSP 1 0.84454999 0.84454999
MODEL*INSP 1 0. 01100972 0. 01100972
INSP*RUN(MODEL) 8 0.00117102 0.00014638

Source DF Type III SS Mean Square F Value Pr > F

MODEL 1 2.49471875 2.49471875
RUN(MODEL) 8 0.04072875 0.00509109
INSP 1 0.84454999 0.84454999
MODEL*INSP 1 0. 01100972 0.01100972
INSP*RUN(MODEL) 8 0. 00117102 0.00014638

Tests of Hypotheses using the Type I MS for RUN(MODEL) as an error term

Source DF Type I ss Mean Square F Value Pr > F

MODEL 1 2.49471875 2.49471875 490. 02 0.0001

Tests of Hypotheses using the Type I MS for INSP*RUN(MODEL) as an error term

Source DF Type I ss Mean Square F Value Pr > F

INSP 1 0.84454999 0.84454999 5769.67 0.0001
MODEL*INSP 1 0. 01100972 0.01100972 75.21 0. 0001

229

APPENDIXD

PERSPECTIVES ON COMPARING TWO DERIVED

NUMBERS

230

231

PERSPECTIVES ON COMPARING TWO DERIVED NUMBERS

Frequently the question is asked "are these two derived numbers the same or

different". To truly answer this question, one must understand the perspective from

which the question is asked. At least three perspectives are clearly distinguishable: a

numerical perspective, a statistical perspective, and a practical perspective. In its purest

sense, a numerical comparison of numbers will rarely yield the conclusion that two

numbers are equal. If expanded to enough decimal places almost any two real numbers

will eventually differ. Usually, this perspective is not the one from which the

comparison question is asked.

The statistical perspective is based on sampling theory and the laws of

probability. The basic approach says that if you know (1) how big a difference you are

interested in detecting, (2) how much natural variation is present in the process, and (3)

how much risk of error you are willing to accept, then you can determine how many data

points you need to collect to determine if two outcomes are the same or different. The

answer to the comparison question hinges on the particular experimental design used to

collect data to answer it.

Within the context of this research effort, the important relationship in the

statistical perspective is the relationship between the sample size (n) and the size of the

difference detectable (8). The relationship is an inverse square relationship of the form:

8- 1/Vn [Hicks 1964, sec. 2.5; Steel and Torrie 1980, sec. 5.12]. During the simulation

run design phase of the research (see Appendix B), it is empirically determined that a

sample size (n) of 3,000 is needed to adequately capture the "tail behavior" of the time

in-system distribution. By virtue of this large sample size, very small differences (8) in

the mean time-in-system for different options become "significantly" different. The

analysis of variance results presented in Chapter Vlli reflect this effect. Under these

circumstances, the question that must be asked is whether or not these statistically

232

significant differences represent a "practical" difference.

A practical difference in two numbers must be defined and analyzed on a case

specific basis. Only in terms of the problem being analyzed does an empirical judgement

on the importance of the level of difference make any sense. In some cases a one percent

difference may be catastrophic, in others, a fifty percent difference may be acceptable.

For the current research, it is the author's subjective judgement that the

metamodel errors of inconsistency are acceptable from the practical perspective. The

maximum error reported in the pragmatic plant level validation #3a is 5.35%. Within the

bounds of "approximate behavior" this seems reasonable.

APPENDIXE

EMPIRICAL GROUPED CUMULATIVE

DISTRffiUTION FUNCTIONS

233

234

EMPIRICAL GROUPED CUMULATIVE DISTRIBUTION FUNCfiONS

In some cases it is preferable to use observed data to specify a sampling

distribution for a simulation rather than attempting to fit a theoretical distribution to the

data . This type of sampling distribution is known as an empirical distribution. For a

continuous random variable, two types of empirical distributions can be defined, one for

grouped data and the other for non-grouped data. This research effort utilizes the

grouped data approach.

Suppose that there are n observed values of the random variable X. Further, then

Xi's are grouped into k adjacent intervals [ao,a1), [al> a2), ... , [ak_1,ak), so that the jth

interval contains nj observations, where n1 + n2 + ... + nk = n. For such data, Law and

Kelton [1991, sec. 6.2.4] define a reasonable piecewise-linear empirical grouped

distribution function G by first letting G(ao) = 0 and G(aj) = (n1 + n2 + ... + nj)/n for j =

1, 2, ... , k. Then, interpolating linearly between the aj's, the continuous function G

becomes:

G(x) =

0

x- a· 1 J-
G(aJ·-1) + [G(aJ·) - G(aJ·-1)] aj - aj_1

1

for X< Cl()

for aj-1 ~ x < aj and j = 1; 2; ... ; k

Generating random variates from the empirical grouped distribution function G

can be accomplished using the following inverse transformation algorithm [Law and

Kelton 1991, sec. 8.3.12].

1) Generate a uniform random variate U- U(0.1).

2) Find the nonnegative integer J (0 ~ J ~ k-1) such that G(a1) ~ U < G(a1+1).

3) Return X= aJ + [U- G(aJ)] (aJ+1- aJ) I [G(aJ+1)- G(aJ)].

235

Note that J found in step 2 satisfied G(a1) < G(a1+1), so that no X can be returned for an

interval for which n1 = 0. Also, no X can be returned which does not satisfy ao ::;: X ::;:ak.

APPENDIXF

MET AMODEL FILE SPECIFICATIONS

236

237

A metamodel file is an ASCII file containing all the necessary information required by

the OSU OOM advanced modeling environment to build and subsequently utilize the

metamodel. The file is stored under a name whose format is "META. wkc" where "wkc"

is a three character acronym for the workcenter name. The two sections below provide

(1) the annotated format of the file and (2) the actual metamodel file listing for

workcenter OB4.

Annotated MetaModel File Format

I number of cells in the grouped empirical CDF (n)

cell boundary 1 (time units)
cell boundary 2

cell boundary n+ 1

rho 1 (percent)
rho 1, cell1 CDF value (decimal fraction)
rho 1, cell2 CDF value

rho 1, cell n CDF value

rho 2
rho 2, cell1 CDF value
rho 2, cell 2 CDF value

rho 2, cell n CDF value

238

File META.OB4- MetaModel File For WorkCenter OB4

140 24.5 50.0 0.824200 1.000000 1.000000 0.999467
25.0 50.5 0.929000 1.000000 1.000000 0.999867

0.0 25.5 51.0 0.963467 1.000000 1.000000 0.999933
0.5 26.0 51.5 0.982467 1.000000 1.000000 1.000000
1.0 26.5 52.0 0.990800 1.000000 1.000000 1.000000
1.5 27.0 52.5 0.995733 1.000000 1.000000 1.000000
2.0 27.5 53.0 0.997600 1.000000 1.000000 1.000000
2.5 28.0 53.5 0.999000 1.000000 1.000000 1.000000
3.0 28.5 54.0 0.999533 1.000000 1.000000 1.000000
3.5 29.0 54.5 0.999800 1.000000 1.000000 1.000000
4.0 29.5 55.0 1.000000 1.000000 1.000000 1.000000
4.5 30.0 55.5 1.000000 1.000000 1.000000 1.000000
5.0 30.5 56.0 1.000000 1.000000 1.000000 1.000000
5.5 31.0 56.5 1.000000 1.000000 1.000000 1.000000
6.0 31.5 57.0 1.000000 1.000000 1.000000 1.000000
6.5 32.0 57.5 1.000000 1.000000 1.000000 1.000000
7.0 32.5 58.0 1.000000 1.000000 1.000000 1.000000
7.5 33.0 58.5 1.000000 1.000000 1.000000 1.000000
8.0 33.5 59.0 1.000000 1.000000 1.000000 1.000000
8.5 34.0 59.5 1.000000 1.000000 1.000000 1.000000
9.0 34.5 60.0 1.000000 1.000000 1.000000 1.000000
9.5 35.0 60.5 1.000000 1.000000 1.000000 1.000000
10.0 35.5 61.0 1.000000 1.000000 1.000000 1.000000
10.5 36.0 61.5 1.000000 1.000000 1.000000 1.000000
11.0 36.5 62.0 1.000000 1.000000 1.000000 1.000000
11.5 37.0 62.5 1.000000 1.000000 1.000000 1.000000
12.0 37.5 63.0 1.000000 1.000000 1.000000 1.000000
12.5 38.0 63.5 1.000000 1.000000 1.000000 1.000000
13.0 38.5 64.0 1.000000 1.000000 1.000000 1.000000
13.5 39.0 64.5 1.000000 1.000000 1.000000 1.000000
14.0 39.5 65.0 1.000000 1.000000 1.000000
14.5 40.0 65.5 1.000000 1.000000 40 1.000000
15.0 40.5 66.0 1.000000 1.000000 0.000000 1.000000
15.5 41.0 66.5 1.000000 1.000000 0.000000 1.000000
16.0 41.5 67.0 1.000000 1.000000 0.000000 1.000000
16.5 42.0 67.5 1.000000 1.000000 0.000000 1.000000
17.0 42.5 68.0 1.000000 1.000000 0.000000 1.000000
17.5 43.0 68.5 1.000000 1.000000 0.000000 1.000000
18.0 43.5 69.0 1.000000 1.000000 0.000000 1.000000
18.5 44.0 69.5 1.000000 1.000000 0.305800 1.000000
19.0 44.5 70.0 1.000000 1.000000 0.702133 1.000000
19.5 45.0 1.000000 1.000000 0.845067 1.000000
20.0 45.5 25 1.000000 1.000000 0.906000 1.000000
20.5 46.0 0.000000 1.000000 1.000000 0.939133 1.000000
21.0 46.5 0.000000 1.000000 1.000000 0.960800 1.000000
21.5 47.0 0.000000 1.000000 1.000000 0.976800 1.000000
22.0 47.5 0.000000 1.000000 1.000000 0.985267 1.000000
22.5 48.0 0.000000 1.000000 1.000000 0.991867 1.000000
23.0 48.5 0.000000 1.000000 1.000000 0.995267 1.000000
23.5 49.0 0.000000 1.000000 1.000000 0.997600 1.000000
24.0 49.5 0.372267 1.000000 1.000000 0.998933 1.000000

239

File META.OB4- MetaModel File For WorkCenter OB4 (continued)

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 70 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 0.136933 1.000000 1.000000
1.000000 1.000000 1.000000 0.352867 1.000000 1.000000
1.000000 60 1.000000 1.000000 0.487800 1.000000- 1.000000
1.000000 0.000000 1.000000 1.000000 0.580267 1.000000 1.000000
1.000000 0.000000 1.000000 1.000000 0.654200 1.000000 1.000000
1.000000 0.000000 1.000000 1.000000 0.716667 1.000000 1.000000
1.000000 0.000000 1.000000 1.000000 0.769467 1.000000 1.000000
1.000000 0.000000 1.000000 1.000000 0.810400 1.000000 1.000000
1.000000 0.000000 1.000000 1.000000 0.847267 1.000000 1.000000
1.000000 0.000000 1.000000 1.000000 0.878267 1.000000 1.000000
1.000000 0.197200 1.000000 1.000000 0.902400 1.000000 1.000000
1.000000 0.485667 1.000000 1.000000 0.921533 1.000000 1.000000
1.000000 0.638667 1.000000 1.000000 0.937867 1.000000 1.000000
1.000000 0.730333 1.000000 1.000000 0.951600 1.000000 1.000000
1.000000 0.797600 1.000000 1.000000 0.961467 1.000000 1.000000
1.000000 0.845467 1.000000 1.000000 0.969667 1.000000 1.000000
1.000000 0.882067 1.000000 1.000000 0.977000 1.000000 1.000000
1.000000 0.912533 1.000000 1.000000 0.983000 1.000000 1.000000
1.000000 0.935200 1.000000 1.000000 0.986933 1.000000 1.000000
1.000000 0.952600 1.000000 1.000000 0.990533 1.000000 1.000000
1.000000 0.966467 1.000000 1.000000 0.993000 1.000000 1.000000
1.000000 0.976133 1.000000 1.000000 0.994400 1.000000 1.000000
1.000000 0.983667 1.000000 1.000000 0.996000 1.000000 1.000000
1.000000 0.988800 1.000000 1.000000 0.997267 1.000000 1.000000
1.000000 0.992133 1.000000 1.000000 0.998133 1.000000 1.000000
1.000000 0.994733 1.000000 1.000000 0.998867 1.000000 1.000000
1.000000 0.996733 1.000000 1.000000 0.999133 1.000000 1.000000
1.000000 0.998400 1.000000 1.000000 0.999600 1.000000 1.000000
1.000000 0.999067 1.000000 1.000000 0.999667 1.000000 1.000000
1.000000 0.999533 1.000000 1.000000 0.999733 1.000000 1.000000
1.000000 0.999733 1.000000 1.000000 0.999867 1.000000 1.000000
1.000000 0.999867 1.000000 1.000000 0.999933 1.000000
1.000000 1.000000 1.000000 1.000000 0.999933 1.000000 72.5
1.000000 1.000000 1.000000 1.000000 0.999933 1.000000 0.000000

240

File META.OB4- MetaModel File For WorkCenter OB4 (continued)

0.000000 1.000000 1.000000 0.550867 1.000000 1.000000 0.855867
0.000000 1.000000 1.000000 0.603667 1.000000 1.000000 0.869600
0.000000 1.000000 1.000000 0.653067 1.000000 1.000000 0.882800
0.000000 1.000000 1.000000 0.699933 1.000000 1.000000 0.895400
0.000000 1.000000 1.000000 0.740467 1.000000 1.000000 0.906867
0.000000 1.000000 1.000000 0.777533 1.000000 1.000000 0.916000
0.120133 1.000000 1.000000 0.811600 1.000000 1.000000 0.924333
0.318400 1.000000 1.000000 0.836200 1.000000 1.000000 0.931200
0.442733 1.000000 1.000000 0.857533 1.000000 1.000000 0.938400
0.531000 1.000000 1.000000 0.877000 1.000000 1.000000 0.945133
0.600733 1.000000 1.000000 0.890867 1.000000 1.000000 0.950333
0.663800 1.000000 1.000000 0.903467 1.000000 1.000000 0.954133
0.718600 1.000000 1.000000 0.915000 1.000000 1.000000 0.957867
0.763667 1.000000 1.000000 0.925267 1.000000 1.000000 0.961133
0.803133 1.000000 1.000000 0.933733 1.000000 1.000000 0.964333
0.836200 1.000000 1.000000 0.941133 1.000000 1.000000 0.967467
0.863867 1.000000 1.000000 0.948000 1.000000 1.000000 0.969933
0.887467 1.000000 1.000000 0.954600 1.000000 1.000000 0.972000
0.905800 1.000000 1.000000 0.959200 1.000000 1.000000 0.974267
0.923933 1.000000 1.000000 0.965067 1.000000 1.000000- 0.976467
0.937533 1.000000 1.000000 0.970200 1.000000 1.000000 0.978733
0.949333 1.000000 1.000000 0.974733 1.000000 1.000000 0.980933
0.958333 1.000000 1.000000 0.979467 1.000000 1.000000 0.982733
0.965667 1.000000 1.000000 0.982733 1.000000 1.000000 0.984733
0.972200 1.000000 1.000000 0.985333 1.000000 1.000000 0.986333
0.977467 1.000000 1.000000 0.987600 1.000000 1.000000 0.988200
0.981467 1.000000 1.000000 0.990133 1.000000 0.989667
0.985533 1.000000 1.000000 0.991400 1.000000 80 0.990867
0.988000 1.000000 1.000000 0.992667 1.000000 0.000000 0.991867
0.989733 1.000000 1.000000 0.994200 1.000000 0.000000 0.992533
0.991533 1.000000 1.000000 0.995467 1.000000 0.000000 0.993200
0.992800 1.000000 1.000000 0.995733 1.000000 0.000000 0.994333
0.993200 1.000000 1.000000 0.996400 1.000000 0.000000 0.995133
0.994333 1.000000 1.000000 0.996667 1.000000 0.000000 0.995667
0.994600 1.000000 1.000000 0.997067 1.000000 0.000000 0.996133
0.995133 1.000000 1.000000 0.997600 1.000000 0.076533 0.996600
0.995800 1.000000 1.000000 0.998067 1.000000 0.200467 0.997267
0.996533 1.000000 0.998267 1.000000 0.289867 0.997667
0.997267 1.000000 77.5 0.998467 1.000000 0.359933 0.998000
0.997867 1.000000 0.000000 0.998800 1.000000 0.423800 0.998467
0.998533 1.000000 0.000000 0.999400 1.000000 0.479000 0.998667
0.998867 1.000000 0.000000 0.999667 1.000000 0.532933 0.998867
0.999200 1.000000 0.000000 0.999867 1.000000 0.583467 0.999133
0.999467 1.000000 0.000000 0.999933 1.000000 0.629867 0.999333
0.999667 1.000000 0.000000 1.000000 1.000000 0.668933 0.999667
0.999800 1.000000 0.000000 1.000000 1.000000 0.707533 0.999800
0.999933 1.000000 0.093333 1.000000 1.000000 0.739467 0.999933
1.000000 1.000000 0.241000 1.000000 1.000000 0.767000 0.999933
1.000000 1.000000 0.344267 1.000000 1.000000 0.793400 0.999933
1.000000 1.000000 0.421067 1.000000 1.000000 0.816600 0.999933
1.000000 1.000000 0.488133 1.000000 1.000000 0.837467 1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

File META.OB4- MetaModel File For WorkCenter OB4 (continued)

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

241

APPENDIXG

SAS PROGRAM FOR WORKCENTER LEVEL

VALIDATION

242

WORKCENIER LEVEL VALIDATION- SAS PROGRAM

/*
Dissertation Workeenter Level Validation Graphs and Go/No-Go Test
Based on 0.01 Kolmogorov-Smirnov Goodness of Fit Limits
*I

***** Set general parameters;
options ps=58 nodate nonumber;
GOPTIONS DEVICE=PS2EGA;
goptions nodisplay gouttype=independent ftext=simplex htext= 1.25;
%let rho=75;
%let trho=0.75;
%let rho2= 7 5;
%let plant=OB1;
libname dbp "e:'dbp\&plant.";
axis1 origin=(lO pet) length=80 pet;

***** Prepare title slide;
proe gslide gout=dbp. welbmv ;

footnote1 h=l.OO
"LL and UL are 0.01 Kolmogorov-Smirnov Goodness of Fit Limits";

footnote2 h=1 ' ';
footnote3 h=2.00 "WORKCENTER &plant. - Rho &trho. ";

run;
footnote1 ""; footnote3 "";

**** Prepare BASE model data;
data one;
keepxd;.
set dbp.&plant.d&rho.;
d=obs_y;

run;
data two;
keep xj;
set dbp.&plant.j&rho.;
j=obs_y;

run;
data three;
keepxb;
set dbp.&plant.b&rho.;
b=obs_y;

run;
data four;
keepxk;
set dbp.&plant.k&rho.;

243

WORKCENTER LEVEL VALIDATION - SAS PROGRAM (continued)

k=obs_y;
run;
data five;
keepxs;
set dbp.&plant.s&rho.;
s=obs_y;

run;
data avg&rho.;
keep x c_avg avg model ulll;
retain c_avg 0;
merge one two three four five ;
byx;
cellwdth=0.5;
avg = (d+j+b+k+s)/5;
c_avg = c_avg + (avg*cellwdth);
if c_avg > 1 then c_avg=1;
temp=c_avg;
model='BASE';
output;
d_01 = 1.63/sqrt(3000);
ul=c_avg+d_01;
ll=c_avg-d_O 1;
if ul> 1 then ul=.;
if 11<0 then 11=.;
c_avg=ul; model='UL ';output;
c_avg=ll; model='LL ';output;
c_avg=temp;

run;

*****Prepare META model data;
data one;
keep x d;
set dbp.&plant.md&rho2.;
d=obs_y;

run;
data two;
keep xj;
set dbp.&plant.mj&rho2.;
j=obs_y;

run;
data three;
keepxb;
set dbp.&plant.mb&rho2.;
b=obs_y;

244

WORKCENTER LEVEL VALIDATION - SAS PROGRAM (continued)

run;
data four;

keep x k;
set dbp.&plant.mk&rho2.;
k=obs_y;

run;
data five;
keep x s;
set dbp.&plant.m~&rho2.;
s=obs_y;

run;
data avg&rho.m;
keep x c_avg avg model;
retain c_avg 0;
merge one two three four five ;
by x;
cellwdth=0.5;
avg = (d+j+b+k+s)/5;
c_avg = c_avg + (avg*cellwdth);
if c_avg > 1 then c_avg=l;
model='MET A';

run;

***** Plot CDF graph;
DATA ALLcrvsl;

set avg&rho. avg&rho.m;
if x > 20 then delete;

run;
PROC GPLOT DATA=ALLCRVSl gout=dbp.wclbmv;
TITLEl H=2.0 "Cummulative Distribution Function";
LABEL X='TIME-IN-SYSTEM' C_A VG='CDF';
SYMBOL! V=NONE I=JOIN 1=33;
symbol2 v=NONE I=JOIN 1=3 ;
symbol3 v=NONE I=JOIN 1=1;
symbol4 v=NONE I=JOIN 1=3 ;
PLOT c_avg*x=model I

haxis=axis 1
name=" &rho. CDF";

RUN;

***** Plot PDF graph;
DATA ALLcrvs2;

set allcrvsl;
if model='UL ' then delete;

245

WORKCENTER LEVEL VALIDATION - SAS PROGRAM (continued)

if model='LL ' then delete;
run;
PROC GPLOT DAT A=ALLCRVS2 gout=dbp. wclbmv;

TITLE1 h=2.0 "Probability Density Function";
LABEL X='TIME-IN-SYSTEM' A VG='PDF';
SYMBOL1 V=NONE I=JOIN 1=33 ;
symbol2 v=NONE I=JOIN 1=1 ;
symbol3 v=NONE I=JOIN 1=4 ;
symbol4 v=NONE I=JOIN 1=5 ;

· PLOT avg*x=model I
haxis=axis 1
name="&rho. PDF";

RUN;

***** Quantitatively Test for Limit Violations;
data base (KEEP=BASE X) meta (KEEP=META X) UL (keep=ul x) LL (keep=ll x);

set allcrvs1;
if model='BASE' THEN DO;

BASE = C_A VG;
OUTPUT BASE;

END;
if model='META' THEN DO;

META= C_AVG;
OUTPUT META;

END;
if model='UL ' THEN DO;

OUTPUTUL;
END;
if model='LL ' THEN DO;

OUTPUTLL;
END;

RUN;
DATA TEST;

MERGE BASE META UL LL ;
BYX;

RUN;
data _null_;

set test end=eof;
if 11= .. then 11=0;
if ul=. then ul=1;
if meta < 11 then do;

put 'Lower K-S Limit Violated at' x= meta= 11=;
stop;

end;

246

WQRKCENTER LEVEL VALIDATION- SAS PROGRAM (continued)

if meta > ul then do;
put 'Upper K-S Limit Violated at' x= meta= ul=;
stop;

end;
if eof=l then put 'No K-S Limit Violations Detected';

run;

247

VITA

David B. Pratt

Candidate for the Degree of

Doctor of Philosophy

Thesis: DEVELOPMENT OF A METHODOLOGY FOR HYBRID META
MODELING OF HIERARCHICAL MANUFACTURING SYSTEMS
WITHIN A SIMULATION FRAMEWORK

Major Field: Industrial Engineering and Management

Biographical:

Personal Date: Born in Oklahoma City, Oklahoma, January 6, 1954, the son of
Harold F. and G. Lahoma Pratt. Married Jan M. Hussey on August 28,
1976. Father of two children, Brian David born September 21, 1979 and
Kristi Marie born October 12, 1981.

Education: Graduated from John Marshall High School, Oklahoma City,
Oklahoma in May 1972; received Bachelor of Science Degree in
Industrial Engineering and Management from Oklahoma State University
in May, 1976; received Master of Engineering Degree in Industrial
Engineering from Oklahoma State University in July, 1977; completed
requirements for the Doctor of Philosophy degree at Oklahoma State
University in May, 1992.

Professional Experience: Operations Research Analyst, Phillips Petroleum
Company, May, 1976 to March, 1981; Senior Operations Research
Analyst, Phillips Petroleum Company, April, 1981 to September, 1985;
Section Director, Operations Research, Phillips Petroleum Company,
October, 1985 to May, 1986; Senior Production Systems Engineer,
Garrett Turbine Engine Company, July, 1986 to January, 1988;
Manager, Operations Research, International Paper Company, February,
1988 to November, 1988; Research Associate, School of Industrial
Engineering and Management Oklahoma State University, November,
1988 to December, 1992; Assistant Professor, School of Industrial
Engineering and Management Oklahoma State University, January, 1992
to present.

