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CHAPTER 1

INTRODUCTION

In Number Theory, analyzing the special values of L-functions have been one of

the significant targets of research since the eighteenth century when the Riemann-

zeta function was introduced. It has an important role particularly on study of the

distribution of prime numbers, and also has applications in various fields including

physics and statistics. The Riemann-zeta function, which was originally introduced

and studied by Leonhard Euler, is a function of a complex variable defined as

ζ(s) :=
∞∑
n=1

1

ns
.

It can be checked that this infinite series converges only when the real part of s is

larger than 1, and has an Euler product:

ζ(s) =
∏
p

(1− p−s)−1,

where p runs through all the prime numbers. This observation first made by Euler

says that the Riemann-zeta function relates deeply to prime numbers. The series also

admits an analytic continuation, which allows us to extend our definition of ζ(s) as

a meromorphic function on the whole complex plane except for a pole at s = 1.

In the nineteenth century, Dirichlet constructed the Dirichlet L-functions which

are generalizations of the Riemann-zeta function. A Dirichlet L-series is obtained

by “twisting” the Riemann-zeta function by a certain function χ called a Dirichlet

character that maps integers to complex numbers, i.e., Dirichlet L-series attached to

χ is defined to be

L(s, χ) :=
∞∑
n=1

χ(n)

ns
.
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He investigated this series to prove the theorem that an arithmetic progression of

the form {a+ nd}∞n=0 contains infinitely many primes if a and d are relatively prime.

Similar to the Riemann-zeta function, the Dirichlet L-series have Euler products, and

can be analytically continued to the complex plane. The continued meromorphic

functions are called Dirichlet L-functions. Such analytic properties of the Riemann-

zeta function and Dirichlet L-functions are found in many books in Number Theory.

See, for example, [34, Section 7.1–7.2].

One of the interesting topics in the area is to analyze the “special values” of

L-functions. Some expamples of special values are:

ζ(2) = 1 +
1

22
+

1

32
+ · · · = π2

6
,

which is due to Euler, or if χ is a Dirichlet character modulo 4 such that χ(x) = 1

for x ≡ 1 (mod 4) and χ(x) = −1 for x ≡ 3 (mod 4), Leibniz observed that

L(1, χ) = 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
.

One can aim to generalize some arithmetic properties of such values. This is a very

deep and still highly conjectural topic.

In early twentieth century, Erich Hecke generalized Dirichlet characters to ob-

tain characters of the idèle group of a number field F , and associated them with

L-functions. His work was reformulated by John Tate in his Ph.D. thesis in which

he showed meromorphic continuation and the functional equations of L-functions at-

tached to a Hecke character by using Fourier analysis on adèle group over number field

F and on its local fields. Moving to the adèlic setting removed many technical issues

faced in the classical setting. His method is now called the modern GL1-theory of

automorphic forms, and contributed to the development of GLn-theory. In particular,

we deal with the GL2-theory in the thesis.

While the Riemann-zeta function and Dirichlet L-functions are classical examples

of L-functions, there are much broader generalizations in the area nowadays. For
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example, Hecke contributed deeply to the theory of L-functions attached to modular

forms, which leads us to the classical GL2-theory. A modular form is a complex-valued

analytic function defined on the upper-half plane h that satisfies a certain functional

equation and a growth condition. We say a modular form f is of weight k and level

N if, for any element ( a bc d ) in SL2(Z) with c ≡ 0 (mod N), it satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z).

In particular, such a function satisfies f(z + 1) = f(z) and therefore has a Fourier

expansion;

f(z) =
∞∑

n=−m

an(f)e2πinz.

A modular form is called a cusp form if it vanishes at all cusps, or equivalently, the

Fourier coefficients an(f) are 0 for all n ≤ 0. The L-function attached a cusp form f

is defined as the infinite series given by

L(s, f) =
∞∑
n=1

an(f)

ns
.

It has analytic properties of the expected kind, which are thoroughly studied in [33].

Furthermore, the concepts of modular forms were extended to obtain modular forms

in several variables. These forms are called Hilbert modular forms. Despite the fact

that Hilbert modular forms were introduced in the early stage, the development of

their theory was not seen until much later. This thesis focuses on such functions and

some of the arithmetic properties of their L-functions.

We now direct our attention to the contents of this thesis. We begin Chapter 2

by introducing some notations and basic facts that we will be using throughout the

thesis. Chapter 3 is to give precise definitions regarding Hilbert modular forms. A

Hilbert modular form can be lifted to the adèlic setting. The adèlized form is denoted

as f which is an h-tuple of Hilbert modular forms defined on hn. See (3.1.2). Here, h

represents the narrow class number (described in Section 2.3). It should be noted that
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we do not have any restriction on the narrow class number anywhere in the thesis,

which is often assumed to be one in literature. Section 3.3 focuses on primitive forms,

which are the forms with “nice” properties and the objects of our interests.

We would like to pass to the setting of the modern GL2-theory which is to use

a representation theoretical point of view. As mentioned earlier, it simplifies some

technical difficulties that arise in the classical setting. In particular, a large narrow

class number does not cause any trouble in a study of the representations. A bridge

that takes us from Hilbert modular forms to certain automorphic representations of

GL2 is described in detail in Chapter 5. Keeping the correspondence between these

objects in our mind, our interest is to compare the (finite) L-functions of Hilbert

modular form and of automorphic representation of GL2. An L-function of Hilbert

modular form f is defined as an infinite sum

Lf (s, f) =
∑
m

C(m, f)

N(m)s
,

where m runs through all the integral ideals of the base field F , and C(m, f) is a

suitably normalized Fourier coefficient at m given in (3.1.3). On the other hand, an

L-function of a representation Π is defined to be the product of the local L-factors

Lf (s,Π) =
∏
p

Lp(s,Πp).

These two L-functions constructed in completely different manners give the following

relation:

L(s,Π(f)) = L

(
s+

k0 − 1

2
, f

)
,

where k0 is determined by the weight of f . Note that, by denoting Π(f), we mean the

representation corresponding to f . Section 5.3 should be referred to for the construc-

tion of the L-functions and their relations.

What is also worth mentioning is the Aut(C)-equivariance of the correspondence.

The Aut(C)-actions and the equivariance are described in Section 5.4, and arise as

one of the key facts in the proof of algebraicity theorem. See Chapter 6.
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We study representations of GL2 in Chapter 4. We start Section 4.1 with the study

of the local representations Π∞ at infinity with a special focus on the Langlands

correspondence for GL2(R) in Section 4.1.2. This study has an important role to

determine whether a global representation Π is regular and algebraic, which is the

type of representations appearing in the correspondence described in Chapter 5. The

regular algebraic cuspidal automorphic representations are discussed in Section 4.2.

The rest of the chapter is to study cohomological representations, which contains

several technical details which are needed in Chapter 6.

Finally, we discuss our main theorems in Chapters 6, 7, and 8. These main

theorems are to concern the following:

• Algebraicity theorem discussed in Chapter 6;

• Congruence property in Chapter 7; and

• Non-vanishing property in Chapter 8.

Note that Chapter 6, Chapter 7, as well as their supporting materials are joint work

with the author’s thesis advisor, A. Raghuram.

Chapter 6 deals with an algebraicity theorem. There is a fundamental result

of Shimura in [41] about critical L-values of Hilbert modular form. The result is

stated as Theorem 6.0.1, which roughly says that, if f is primitive, then there are

nonzero complex numbers u(r, f) called periods so that the critical L-values of f equal

(2πi)∗∗u(r, f) (with some integer ∗∗), up to an element of the rationality field Q(f).

In other words, the L-values divided by (2πi)∗∗u(r, f) are algebraic (and belong to

Q(f)). More generally, similar statements hold when the L-function is twisted by a

finite order Hecke character χ. The aim of this chapter is to give another proof to

his theorem. As mentioned earlier, our approach is to study the L-functions attached

to the representation Π(f). One of the merits of working on the L-function attached

to the representation Π(f) instead of the one attached to f is that it is sufficient to

5



prove an algebraicity theorem for only one critical value, namely the central critical

value. Algebraicity results for the other critical values follow from the period relations

proved by Raghuram and Shahidi in [38]. Furthermore, the theorem can be applied to

any representation Π(f)⊗ χ twisted by a finite order Hecke character χ, which gives

Shimura’s results for L(s, f , χ). See Theorem 6.0.2 and Corollary 6.0.3. In Section 6.1,

we define the periods and give a brief summary of the period relations for our context

of GL2. Note that our period is not the same as what Shimura used, and it arises

out of a comparison of rational structures on two different realizations of Π. The

relation between these periods is observed in (6.2.18). The proof for Theorem 6.0.2 is

completed in Section 6.2. The idea of the proof is to interpret the Mellin transform

as a cohomological map. The summary of the proof is compressed into the diagram

(6.2.1).

Chapter 7 is to discuss a congruence property of the central critical L-values.

Vatsal proved in [44] that if two elliptic cusp forms are congruent modulo `, for a

prime `, then the congruence also holds for their critical L-values. Our goal is to

generalize this result to Hilbert modular forms by using the approach described in

Chapter 6, and analyzing it integrally. The key ingredient for solving the problem is a

refinement of the definition of periods, which follows from studying integral structures

on inner cohomology. Definitions of integral structures are provided in Section 7.2.

The periods defined in Chapter 6 are canonical up to an element of the rationality

field Q(Π) of the representation. However, for a congruence property, it needs to be

treated more sensitively. More precisely, it needs to be defined so that it is canonical

up to a unit in an `-adic completion of a field containing all the necessary number

fields. The proof is completed in Section 7.3 with a special focus on the refinement

of the periods in Section 7.3.3.

In Chapter 8, we study a nonvanishing property of the derivatives of L-functions.

Theorem 8.0.1 says that, for a primitive holomorphic Hilbert cusp form f of even

6



weight, if the central critical L-value does not vanish, then neither does the derivative

at the center of symmetry. This is a generalization of the result by Gun, Murty, and

Rath in [18]. The proof is completed by studying the derivative of the functional

equation for a completed L-function. Some properties of Hilbert modular forms stated

in Section 3.4 will be useful to know.

The author would like to express her sincere gratitude to her thesis advisor, Profes-

sor A. Raghuram, for his support throughout the research. Her grateful appreciation

is also extended to her committee: Professor Mahdi Asgari; Professor Anthony Kable;

Professor David Wright; and Professor Daniel Fisher.
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CHAPTER 2

Preliminaries

In this chapter, we will introduce some notations and basic definitions that will be

needed throughout the thesis.

2.1 The base field

Let F denote a totally real number field of degree n, OF the ring of integers in F ,

and n a fixed integral ideal in F . The real embeddings of F are denoted ηj with

j = 1, · · · , n, and we put η = (η1, · · · , ηn) with a fixed order of {ηj}. With respect

to this η, F naturally sits inside Rn, and an element α in F will be expressed as

(α1, · · · , αn) for (η1(α), · · · , ηn(α)) to be considered as an element of Rn. We write

F+ for the set of all the totally positive elements in F . (A totally positive element

means an element α in F such that ηj(α) > 0 for all j = 1, . . . , n.)

Let AF denote the adèle ring of F , and AF,f the finite adèles; we will drop the

subscript F for the field Q. Hence AF = A⊗Q F , etc. The infinite part of the adèle

F∞ can be also denoted as
∏

v∈S∞ Fv =
∏n

j=1 Fηj '
∏n

j=1 R where S∞ is the set of

all real places {ηj}. We write F∞+ for the subset of all (x1, . . . , xn) in F∞ such that

xj > 0 for all j.

Let p denote a prime ideal of OF , Fp the completion of F at p, and Op the ring

of integers of Fp. The unique maximal ideal of Op is pOp and is generated by a

uniformizer $p. We let DF denote the absolute different of F , i.e., D−1
F = {x ∈ F :

TF/Q(xOF ) ⊂ Z}. It can be also described as DF =
∏

p p
rp where rp = ordp(DF ).

8



2.2 The groups G ⊃ B ⊃ T ⊃ Z

Let G = ResF/Q(GL2) which is the Weil restriction of scalars from F to Q of the

algebraic group GL2 over F . Hence G(Q) = GL2(F ), and more generally, for any

Q-algebra A, we have G(A) = GL2(A ⊗Q F ). For any finite prime p, G(Qp) =∏
p|p GL2(Fp); similarly, G∞ := G(R) =

∏n
j=1 GL2(Fηj) =

∏n
j=1 GL2(R). We write

G+
∞ to mean the set of elements (g1, . . . , gn) in G∞ such that det(gj) > 0 for all j.

Let g∞ be the complexified Lie algebra of G∞.

Fix the standard Borel subgroup B = ResF/Q(B2), with B2 being the standard

Borel subgroup of GL2 of all upper triangular matrices. Let T = ResF/Q(T2), where

T2 stands for the diagonal torus in GL2. Let Z = ResF/Q(Z2), where Z2 is the center

of GL2 consisting of scalar matrices. For any Q-algebra A, we can talk of B(A), T (A),

and Z(A) as we did for G.

2.3 The narrow class group of F

By the narrow class group, we mean the group F×\A×F/F
×
∞+

∏
O×p , and the cardinality

of this group, which is denoted as h = hF , is called the narrow class number. The

narrow class group can be also viewed as the group JF/PF+ of all fractional ideals of

F modulo principal ideals generated by the elements in F+. The narrow class group

is, in general, bigger than the class group JF/PF , and one has the following exact

sequence. (See, for instance, [34, Section VI. 1].)

1 −→ O×F /O
×
F,+ −→ F×∞/F

×
∞+ −→ JF/PF+ −→ JF/PF −→ 1.

We write {tν}hν=1 for the elements of AF whose archimedean part tν,∞ is 1 and

that form a complete set of representatives of the narrow class group. Put xν = ( 1
tν )

and xιν = ( tν 1 ). Here, ι denotes the involution defined as ιA = w0
tAw−1

0 , where t is

transpose and w0 = ( 1
−1 ).

9



2.4 Various Subgroups

Let K∞ stand for the maximal compact subgroup of G∞ thickened by its center.

Hence

K∞ =
n∏
j=1

(O2(R)Z2(R)),

where O2(R) is the usual maximal compact subgroup of GL2(R). For any Lie group

G we will denote G◦ the connected component of the identity, and π0(G) := G/G◦

denotes the group of connected components. Observe then that

K◦∞ =
n∏
j=1

(SO2(R)Z2(R)◦)

and that π0(G∞) = π0(K∞) = K∞/K
◦
∞ ' (Z/2Z)n. We will identify the dual group

(K∞/K
◦
∞)̂ with (Z/2Z)n = {±}n, with the + (resp., −) denoting the trivial (resp.,

nontrivial) character of O2(R)/SO2(R).

Let k∞ be the complexified Lie algebra of K∞ or K◦∞; we will use similar ‘standard’

notation for the complexified Lie algebras of other Lie groups.

For a non-archimedean place p, define a subgroup Kp(n) of GL2(Fp) as

Kp(n) :=


 a b

c d

 ∈ GL2(Fp) :
aOp + np = Op, b ∈ D−1

p ,

c ∈ npDp, d ∈ Op, ad− bc ∈ O×p

 ,

(2.4.1)

where np and Dp are p-parts of n and the different DF of OF , respectively, and put

K0(n) :=
∏
p<∞

Kp(n). (2.4.2)

We note that G(A) affords a decomposition given as a disjoint union,

G(A) = ∪hν=1G(Q)x−ιν
(
G+
∞K0(n)

)
. (2.4.3)

Let us also define a congruence subgroup Γν(n) of G(Q) for each ν as

Γν(n) =


 a t−1

ν b

tνcd

 :
a ∈ OF , b ∈ D−1,

c ∈ nD, d ∈ OF , ad− bc ∈ O×F

 .

We note that Γν(n) = G+
∞ (xνK0(n)x−1

ν ) ∩G(Q).
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2.5 Measures and absolute values

The normalized absolute value for any local field L is denoted | |L, or simply | | when

no confusion arises. The product of all the local absolute values gives the adèlic norm

| | on A×F . All the measures used will be Haar measures, or measures on quotient

spaces derived from Haar measures. We will simply denote the underlying measure

by dx or dg; the measures are normalized in the usual or ‘obvious’ way. For example,

locally O×p has volume 1, and similarly, so does GL2(Op). The global measures on A×F

and GL2(AF ) are the product measures of local measures, etc.

2.6 Hecke algebra

For each place p of F , let Hp(Kp) be the space of C-valued functions on GL2(Fp) that

are smooth, compactly supported, and Kp-biinvariant where Kp is an open compact

subgroup of GL2(Fp). This space is an algebra under convolution:

(f ∗ g)(x) :=

∫
GL2(AF )

f(xy−1)g(y) dy,

where dy is the normalized Haar measure so that the volume of Kp is one. This is the

local Hecke algebra at p, and we denote H(K) for the global Hecke algebra, which is

the restricted tensor product of Hp(Kp) with respect to the identity element, namely

the characteristic function on Kp. Recall that the local Hecke algebra Hp(Kp) can

be viewed as the space of Hecke operators which is generated by the following two

elements:

Tp = Kp

 $p

1

Kp, and Sp = Kp

 $p

$p

Kp.

See Section 3.2 for the Hecke operators.
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2.7 Some notes on the various characters

Fix a character ω of (OF/n)×. We “lift” it to a character ω̃ of A×F/F× as follows.

Write A×F/F× as a disjoint union

A×F/F
× =

h⋃
ν=1

tνF
×
∞+

∏
p<∞

O×p ,

where {tν} are taken to be a set of representatives of the narrow class group, and

consider the following diagram where the row is exact:

1 −→ F×(F×
∞+

∏
O×p )

F×
↪→ A×F

F×
−→ A×F

F×(F×
∞+

∏
O×p )
−→ 1y

F×(F×
∞+

∏
O×p )

F×(F×∞+

∏
(1+pfpOp))

↓

(OF/n)×

↓ ω

C∗

Here fp is the highest power of p dividing n. Using the column, a character ω of

(OF/n)× can be inflated up to a character, also denoted ω, of F×(F×∞+

∏
O×p )/F×.

Denote this latter group tentatively by H, and observe that it is a subgroup of finite

index inside the abelian group G := A×F/F×; the index is the narrow class number h.

The representation IndGH(ω) is a direct sum of h characters, and we can take ω̃ to be

any such character. We will say that ω̃ is a character of A×F/F× which restricts to

the character ω of (OF/n)×.
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2.8 Whittaker models

We will often be working with Whittaker models, and without any ado we will freely

use these standard results. (See, for example, Bump [6, Chapters 3,4].)

We fix, once and for all, an additive character ψQ of Q\A, as in Tate’s thesis,

namely, ψQ(x) = e2πiλ(x) with the λ as defined in [42, Section 2.2]. In particular,

λ =
∑

p≤∞ λp; λ∞(t) = −t for any t ∈ R; λp(x) for any x ∈ Qp is that rational number

with only p-power denominator such that x−λp(x) ∈ Zp. If we write ψQ = ψR⊗⊗pψQp ,

then ψR(t) = e−2πit and ψQp is trivial on Zp and nontrivial on p−1Zp.

Next, we define a character ψ of F\AF by composing ψQ with the trace map from

F to Q: ψ = ψQ ◦ TF/Q. If ψ = ⊗vψv, then the local characters are determined

analogously. In particular, for all prime ideals p, suppose rp is the highest power of

p dividing the different DF , then the conductor of the local character ψp is p−rp , i.e.,

ψp is trivial on p−rp and nontrivial on p−rp−1.

Theorem 2.8.1 (Local Whittaker Models) For any place v of F , let Πv be an ir-

reducible admissible infinite-dimensional representation of GL2(Fv). Then there exists

a unique spaceW(Πv, ψv), with respect to a fixed additive charater ψv on Fv, of smooth

functions that satisfy the following conditions. For any function W ∈ W(Πv, ψv),

W


 1 x

1

 g

 = ψv(x)W (g) for x ∈ Fv and g ∈ GL2(Fv),

and W has the growth condition. The space is invariant under the right translation

of GL2(Fv), and equivalent to the representation Πv. This space W(Πv, ψv) is called

a (local) Whittaker model for Πv.

Theorem 2.8.2 (Global Whittaker Models) Let A := AF be the adèle ring of a

number field F , and (Π, VΠ) a cuspidal automorphic representation of GL2(A). Then

there exists a unique Whittaker model W(Π, ψ) for Π with respect to a non-trivial

13



additive character ψ, that consists of finite linear combinations of functions given by

Wφ(g) :=

∫
A/F

φ


 1 x

1

 g

ψ(x) dx,

where φ ∈ VΠ and g ∈ GL2(A). This space decomposes as a restricted tensor product

of local Whittaker models.

2.9 Gauss sums

For a Hecke character ξ of F , by which we mean a continuous homomorphism ξ :

F×\A×F → C×, following Weil [47, Chapter VII, Section 7], we define the Gauss sum

of ξ as follows: We let c stand for the conductor ideal of ξf . Let y = (yp)p ∈ A×F,f be

such that ordp(yp) = −ordp(c) − rp. The Gauss sum of ξ is defined as G(ξf , ψf , y) =∏
p G(ξp, ψp, yp) where the local Gauss sum G(ξp, ψp, yp) is defined as

G(ξp, ψp, yp) =

∫
O×p

ξp(up)
−1ψp(ypup) dup.

For almost all p, where everything in sight is unramified, we have G(ξp, ψp, yp) = 1,

and for all p we have G(ξp, ψp, yp) 6= 0. Note that, unlike Weil, we do not normalize

the Gauss sum to make it have absolute value one and we do not have any factor at

infinity. Suppressing the dependence on ψ and y, we denote G(ξf , ψf , y) simply by

G(ξf ) or even G(ξ).
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CHAPTER 3

Hilbert modular forms

3.1 Hilbert automorphic forms of holomorphic type

Let k = (k1, · · · , kn) ∈ Zn, and α = (α1, · · · , αn) ∈ Rn. We write αk to mean∏n
k=1 α

kj
j .

Let γ = (γ1, · · · , γn) be an element of G+
∞, and write γj =

(
aj bj
cj dj

)
for each

j = 1, · · · , n. Then γ acts on hn by

γ.z =

(
a1z1 + b1

c1z1 + d1

, · · · , anzn + bn
cnzn + dn

)
,

with z = (z1, · · · , zn) ∈ hn. For a holomorphic function f on hn, an element γ ∈ G+
∞,

and k = (k1, · · · , kn) ∈ Zn, define

f ||kγ(z) = det γk/2j(γ, z)−kf(γz)

where j(γ, z) = cz + d = (c1z1 + d1, . . . , cnzn + dn).

Fix a character ω of (OF/n)×, and let ω̃ be a character of A×F/F× induced from

ω. (See Section 2.7 for induced characters.) Then, we define a character of K0(n) by

ω̃ (( a bc d )) = ω̃(a). We put Mk(Γν(n), ω̃) to be the space of Hilbert modular forms of

weight k = (k1, · · · , kn) with respect to Γν(n), with a character ω̃, by which we mean

a space of C-valued functions fν that are holomorphic on hn and at all cusps, and

that satisfy f ||kγ = ω̃(γ)f for all γ ∈ Γν(n) considered as elements of G∞ on the left

hand side. Let us note that it makes sense to apply ω̃ to Γν(n). A function fν in

Mk(Γν(n), ω̃) has a Fourier expansion of the form:

fν(z) =
∑
ξ

aν(ξ)e
2πiξz, (3.1.1)
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where e2πiξz = exp
(

2πi
∑n

j=1 ξjzj

)
, and ξ runs through all the totally positive ele-

ments in tνOF and ξ = 0. A Hilbert modular form is called a cusp form if, for all

γ ∈ GL+
2 (F ), the constant term of fν ||kγ in its Fourier expansion is 0, and the space

of cusp forms with respect to Γν(n) is denoted as Sk(Γν(n), ω̃). To have nonempty

spaces of cusp forms Sk(Γν(n), ω̃), assume henceforth that kj ≥ 1. (See, for example,

Garrett [12, Theorem 1.7].)

Choose a function fν ∈ Mk(Γν(n), ω̃) for each ν, and put f = (f1, · · · , fh) to be

a function of G(A) defined as follows: Using the decomposition given in (2.4.3), any

element g in G(A) can be written as g = γxνg∞k0 where γ ∈ G(Q), g∞ ∈ G+
∞, and

kf ∈ K0(n). Then the values of f(g) are taken as

f(γxνg∞kf ) = (fν ||kg∞)(i)ω̃f (k
ι
f ), (3.1.2)

where i = (i, · · · , i) and ω̃f is the finite part of ω̃. The space of such functions f will

be denoted as Mk(n, ω̃). In particular, if fν ∈ Sk(Γν(n), ω̃) for all ν, then f is called

a cusp form as well, and we write as Sk(n, ω̃) for the space of cusp forms in the adèlic

setting, i.e.,

Sk(n, ω̃) =
h⊕
ν=1

Sk(Γν(n), ω̃).

For any integral ideal m in F , there exist a unique ν ∈ {1, · · · , h} and a totally

positive element ξ in F so that m = ξt−1
ν OF . Put

C(m, f) = aν(ξ)ξ
−k/2N(m)k0/2 (3.1.3)

with aν(ξ) being a Fourier coefficient of fν given in (3.1.1) and k0 = maxj{kj}. This

is well-defined because the right hand side of the expression is invariant under the

totally positive elements in O×F . For our convenience, set C(m, f) = 0 if m is not

integral.
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3.2 Hecke operators

Let f be a cuspform of weight k = (k1, · · · , kn), level n, with a character ω̃. For each

finite place p, let $p be a uniformizer for Op. The Hecke operator Tp at p is defined

by

(Tpf)(g) =

∫
Kp(n)

f

gkp
$p

1


 ω̃−1(kp) dkp.

Suppose that p does not divide neither n nor D, then observe that Kp(n) =

GL2(Op), ω̃|O×p ≡ 11, and that f is right Kp(n)-fixed. Therefore, it follows that

(Tpf)(g) =

∫
Kp(n)($p

1 )Kp(n)

f(gh) dh.

Furthermore, it can be rewritten as the finite sum

(Tpf)(g) = f

g
 1

$p


+

∑
u∈OF /p

f

g
 $p u

1


 . (3.2.1)

This is obtained by decomposing the double coset Kp(n) ($p

1 ) Kp(n) as a disjoint

union of right cosets,

Kp(n)

 $p

1

Kp(n) =

 1

$p

Kp(n) ∪

∪u∈OF /p
 $p u

1

Kp(n)

 .

(3.2.2)

Now, we wish to define, more generally, the Hecke operators Tm for any integral

ideal m. Let K = G+
∞ ·K0(n), where K0(n) is as defined earlier. We also let

Yp :=


 a b

c d

 ∈ GL2(Fp) :
aOp + np = Op, b ∈ D−1

p

c ∈ npDp, d ∈ Op

 ,

and Y =
(
G(R) ·

∏
p Yp

)
∩G(A).

The Hecke operator Tm is given by Tm =
∑

y KyK where the sum is taken over all

the representatives y of the double cosets KyK with y ∈ Y satisfying (det y)OF = m.
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Noting that each summand KyK can be written as a disjoint union KyK = ∪jKyj

with the archimedean part of yj being 1, we define

(f |KyK) (g) =
∑
j

ω′(yj)
−1f(gyιj),

where ω′ (( a bc d )) = ω(an mod n). This definition coincides with the integral definition

for all the Hecke operators Tp with respect to prime ideals p.

3.3 Primitive form

We first recall the definition of new forms from Shimura [41]. Let m be an integral

ideal that divides n and is divisible by the conductor of ω̃, and g ∈ Sk(m, ω̃). Let a be

an integral ideal dividing m−1n that is generated by an element α ∈ A×F with α∞ = 1.

Define ga by the right translation of N(a)−k0/2g by
(
α−1

1

)
. Such ga is an element

in Sk(qm, ω̃). The space Sold
k (n, ω̃) generated by all such ga is called the space of old

forms. The space Snew
k (n, ω̃) of new forms is defined to be the orthogonal complement

of Sold
k (n, ω̃) with respect to an inner product:

〈f , g〉 :=
h∑
ν=1

1

µ (Γν\hn)

∫
Γν\hn

fν(z)gν(z)yk dµ(z),

where dµ(z) =
∏n

j=1
dxjdyj
y2
j

.

A Hilbert cusp form f in Sk(n, ω̃) is said to be primitive if it is a newform, a com-

mon eigenfunction of all the Hecke operators Tp, and normalized so that C(OF , f) = 1.

Miyake proved that if two newforms f and g are common eigenfunctions for Tp and

share the same eigenvalues for almost all primes p, then f and g are a constant multiple

of each other. In particular, if they are normalized, we have f = g. Furthermore, if a

newform f is normalized and a common eigenfunction of Tp for all p not dividing n,

then it is an eigenfunction for all Tm and its eigenvalues are N(m)1−k0/2C(m, f). (See

[32] and [41].) For our convenience, we normalize the Hecke operators Tm as

T′m := N(m)k0/2−1Tm
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so that the eigenvalues of f for T′m are C(m, f).

We make one more observation regarding a primitive form. Suppose f = (f1, . . . , fh)

is a primitive form. One may ask whether f is determined by any one of its com-

ponents fν . In general this is not true. For example, take χ to be a non-trivial

character of the narrow class group, and put g = f ⊗ χ, i.e., for any x ∈ G(A),

g(x) = f(x)χ(det(x)). Using (3.1.2) it is trivial to check that g1 = f1, however,

f 6= g, at least not in general. After we prove the correspondence f ↔ Π(f), it will

follow that Π(f ⊗ χ) = Π(f)⊗ χ, and so if Π(f) admits a self-twist, then the twisting

character must be quadratic, and Π(f) has to come via automorphic induction from

the corresponding quadratic extension of F , and in general this would not be the case

for a given f . On a related note, one can make an interesting observation based on

a refined strong multiplicity one theorem due to Ramakrishnan [39]: suppose, f and

g are primitive forms, and suppose fν = gν for all ν except, say, ν = ν0. This means

that C(p, f) = C(p,g) for all prime ideals p whose class in the narrow class group

is not represented by t−1
ν0

, or in other words, C(p, f) = C(p,g) for all prime ideals p

outside a set S of finite places with Dirichlet density 1/h. (See, for example, Koch

[28, Theorem 1.111].) It follows from Ramakrishnan’s theorem that if the narrow

class number is sufficiently large (h > 8 will do) then necessarily f = g.

3.4 Some properties

Some further properties of Hilbert modular forms are discussed in this section, that

are needed in Chapter 8.

Proposition 3.4.1 (Shimura, [41]) Let f be a holomorphic Hilbert modular form

of weight k, level n, with a character ω̃. If f is an eigenfunction of Tm, for an ideal

m prime to n, with its eigenvalue λ(m), then λ(m) = ω∗(m)λ(m).

In particular, if the character ω̃ is trivial, then λ(m) is real.
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We also define f |Jn as follows: For each ν, pick a totally positive element qν .

There exists a unique index λ so that tνtλOnD2
F = qνO. Put βν =

(
1

−qν
)
, and

f ′λ = (−1)kfν ||kβν . Then f |Jn is defined to be

f |Jn = (f ′1, · · · , f ′h). (3.4.2)

Then f |Jn has the same weight and level as f . Furthermore, we have the following:

Proposition 3.4.3 (Shimura, [41]) Let f be a primitive form with conductor n.

Then f |Jn is a nonzero constant times the complex conjugation of f .
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CHAPTER 4

Representation Theory on GL(2)

4.1 Representations of GL2(R)

4.1.1 The Weil group of R

Let WR be the Weil group of R. Recall that as a set it is defined as WR = C∗ ∪ jC∗.

The group structure is induced from that of C∗ and the relations jzj−1 = z and

j2 = −1. There is a homomorphism WR → R∗ which sends z ∈ C∗ to |z|C = zz̄ and

sends j to −1. This homomorphism induces an isomorphism of the abelianization

W ab
R → R∗.

Let us recall the classification of two-dimensional semi-simple representations of

WR. To begin, any (quasi-)character ξ of C∗ looks like ξ(s,w) : C∗ → C∗ with

ξ(s,w)(z) = zsz̄w, or ξ(s,w)(re
iθ) = rs+wei(s−w)θ,

where s, w ∈ C and s − w ∈ Z. As alluded to above, the complex absolute value is

|z|C := zz̄ = ξ(1,1)(z). A character ξ(s,w) is unitary, i.e., takes values in C1 = {z ∈ C∗ :

|z|C = 1}, if and only if w = −s in which case s ∈ 1
2
Z. In other words, any unitary

character of C∗ is of the form ξl for l ∈ Z, where

ξl(z) =
(z
z̄

)l/2
=

(
z√
|z|C

)l

, or ξl(re
iθ) = eilθ.

Next, any character χ of R∗ looks like χ(s,ε) : R∗ → C∗ with

χ(s,ε)(t) = |t|ssgn(t)ε
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where s ∈ C and ε is in {0, 1}. Via the isomorphism W ab
R → R∗ any character θ of

WR also looks like θ(s,ε) : WR → C∗ with

θ(s,ε)(z) = (zz̄)s and θ(s,ε)(j) = (−1)ε.

Henceforth, we identify the character θ(s,ε) of WR with the character χ(s,ε) of R∗.

Let εR : WR → {±1} denote the sign homomorphism, defined as εR(z) = 1 and

εR(j) = −1, i.e., εR = χ(0,1). The usual absolute value of a real number t is denoted

|t| and this gives an absolute value | |R on WR, defined as χ(1,0). The restriction

of | |R to C∗ via C∗ ↪→ WR gives | |C on C∗. Since WR contains C∗ as an abelian

subgroup of index two, it is an easy exercise to see that any two-dimensional semi-

simple representation τ is one of these two-kinds:

1. an irreducible 2-dimensional representation; τ = τ(l, t) parametrized by pairs

(l, t) with l ≥ 1 an integer and t ∈ C where

τ(l, t) = IndWR
C∗ (ξl)⊗ | |tR = IndWR

C∗ (ξl ⊗ | |tC).

2. a reducible 2-dimensional semi-simple representation; τ = τ(χ1, χ2) with char-

acters χi = χ(si,εi) of WR, where

τ(χ1, χ2) = χ1 ⊕ χ2.

4.1.2 The local Langlands correspondence

Let us recall the Langlands classification for GL2(R). Let χ1, χ2 be characters of R∗

such that χi = χ(si,εi). Let I(χ1, χ2) be the normalized parabolic induction of the

character χ1 ⊗ χ2 of the standard Borel subgroup to all of GL2(R). Suppose that

<(s1) ≥ <(s2) then I(χ1, χ2) has a unique irreducible quotient, called the Langlands

quotient, which we denote as J(χ1, χ2). The induced representation I(χ1, χ2) is re-

ducible if and only if s1 − s2 = l ∈ Z≥1; in this case the Langlands quotient is, up to
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a twist, the irreducible finite-dimensional sub-quotient of dimension l, and the other

piece is a twist of the discrete series representation Dl which we now define. (Later

we will give this exact sequence precisely.) For any integer l ≥ 1, let Dl stand for the

discrete series representation with lowest non-negative K-type being the character(
cos θ − sin θ
sin θ cos θ

)
7→ e−i(l+1)θ, and central character a 7→ sgn(a)l+1. Note the shift from l to

l + 1. The representation at infinity for a holomorphic elliptic modular cusp form of

weight k is Dk−1. The Langlands classification states that any irreducible admissible

representation of GL2(R) is, up to equivalence, one of these:

1. Dl ⊗ | |tR, for an integer l ≥ 1 and t ∈ C; or

2. J(χ1, χ2), for characters χi = χ(si,εi) of R∗ with <(s1) ≥ <(s2).

There is a canonical bijection π ↔ τ between equivalence classes of irreducible

admissible representations π of GL2(R) and equivalence classes of two dimensional

semi-simple representations τ = τ(π) of WR. We call τ the Langlands parameter of

π. From the above classifications it is clear that under this correspondence, we have

1. π = Dl ⊗ | |tR ↔ τ = τ(l, t); for an integer l ≥ 1 and t ∈ C; and

2. π = J(χ1, χ2) ↔ τ = τ(χ1, χ2); for characters χi = χ(si,εi) of R∗.

In the second case, given χ1 and χ2, if necessary we reorder them such that <(s1) ≥

<(s2) which ensures that J(χ1, χ2) is defined, while noting that reordering them does

not change the equivalence class of τ(χ1, χ2). This bijection is canonical in that it

preserves local factors and is equivariant under twisting. The local L-factor of an

irreducible representation τ of WR is as follows. (See Knapp [27].)

L(s, τ) =


π−(s+t)/2 Γ

(
s+t
2

)
, if τ = | |tR

π−(s+t+1)/2 Γ
(
s+t+1

2

)
, if τ = εR ⊗ | |tR

2(2π)−(s+t+l/2) Γ(s+ t+ l/2) , if τ = IndWR
C∗ (ξl)⊗ | |tR with l ≥ 1.
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4.2 Automorphic representations of GL2(AF )

Following Borel–Jacquet [4, Section 4.6], we say an irreducible representation of G(A)

is automorphic if it is isomorphic to an irreducible subquotient of the representation

of G(A) on its space of automorphic forms. We say an automorphic representation is

cuspidal if it is a subrepresentation of the representation of G(A) on the space of cusp

forms Acusp(G(Q)\G(A)); let VΠ denote the representation space of Π. (In particular,

a cuspidal representation need not be unitary.) For an automorphic representation Π

of G(A), we have Π = Π∞⊗Πf , where Π∞ = ⊗v∈S∞Πv is an irreducible representation

of G∞, and Πf = ⊗v/∈S∞Πv, which is a restricted tensor product, is an irreducible

representation of G(Af ).

4.2.1 Algebraic automorphic representation

(See Clozel [7, p.89].) Let Π be an irreducible automorphic representation of GL2(AF ).

We will work over a totally real number field F . The representation at infinity Π∞ is

a tensor product

Π∞ = ⊗η∈S∞Πη = Πη1 ⊗ · · · ⊗ Πηn ,

where Πη is an irreducible admissible representation of GL2(Fη) = GL2(R). For

1 ≤ j ≤ n, let τj be the Langlands parameter of Πηj . The restriction of τj to C∗ is a

direct sum of characters:

τj|C∗ = ξj1 ⊕ ξj2 ,

with ξji = ξ(sji ,wji )
. We say that an irreducible automorphic representation Π is

algebraic if

sji =
1

2
+ pji , wji =

1

2
+ qji , with pji , qji ∈ Z.

(In other words, a global representation Π is algebraic if all the exponents appearing

in the characters of C∗ coming from the representations Πη at infinity are half plus

an integer.)
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Note that the data (sj1 , wj1 , sj2 , wj2) depends only on two of these numbers:

1. the restriction of τ = τ(l, t) to C∗ is given by

IndWR
C∗ (ξl ⊗ | |tC)|C∗ = ξl ⊗ | |tC ⊕ ξ−l ⊗ | |tC,

which looks like (zsz̄w, zwz̄s) with s = l/2 + t and w = −l/2 + t.

2. Or, if τ = τ(χ1, χ2) with χi = χ(si,εi), then the restriction of τ to C∗ is

((zz̄)s1 , (zz̄)s2).

4.2.2 Regular algebraic cuspidal automorphic representation

Let us first note that this section is borrowed heavily from Clozel [7].

Let Π be an irreducible algebraic automorphic representation of GL2(AF ). The

infinity type of Π is an element of
∏n

j=1(Z2)Z/2, i.e., it is an n-tuple of unordered pairs

of integers, and is defined as follows: Consider Π′ = Π⊗ | |−1/2. Since Π is algebraic,

all the exponents of the characters of C∗ coming from the infinite components of

Π′ are integers. For each real place ηj for 1 ≤ j ≤ n, the restriction to C∗ of the

Langlands parameter of the representation Π′ηj , as described above, looks either like

(zpj z̄qj , zqj z̄pj) or like ((zz̄)pj , (zz̄)qj) for integers pj and qj. The infinity type of Π is

then defined as:

∞(Π) := ({p1, q1}, {p2, q2}, . . . , {pn, qn}).

(See Clozel [7, p.106] for details.)

If an algebraic cuspidal automorphic representation Π has the infinity type of

({p1, q1}, {p2, q2}, . . . , {pn, qn}) with pj 6= qj for all 1 ≤ j ≤ n, we say that Π is

regular.
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4.2.3 Infinite components of a regular algebraic cuspidal automorphic

representation

Let us suppose that Π is such a representation, and let us look closely at the possible

exponents of the characters of C∗ for the representations at infinity. Suppose one of the

representations at infinity looks like Πη = J(χ1, χ2). Then its Langlands parameter

is τ = τ(χ1, χ2) with χi = χ(si,εi); the restriction of τ to C∗ as mentioned above

looks like ((zz̄)s1 , (zz̄)s2). Since Π is algebraic we have si = 1
2

+ pi with pi ∈ Z. Then

s1−s2 ∈ Z. Since the inducing data is of Langlands type, we have s1−s2 ≥ 0. Since Π

is regular, s1−s2 ≥ 1. But then the full induced representation I(χ1, χ2) is reducible;

hence the Langlands quotient J(χ1, χ2) is a finite-dimensional representation. But a

cuspidal automorphic representation is globally generic (i.e., has a global Whittaker

model) and so locally generic everywhere, and so every local component has to be an

infinite-dimensional representation. Hence Πη cannot be equivalent to J(χ1, χ2), and

has to be of the form Dl⊗| |tR. In this case the exponents of the characters are l/2+ t

and −l/2 + t; hence if l is even then t ∈ 1
2
Z, and if l is odd then t ∈ Z. We have

just proved that the infinite components of a regular algebraic cuspidal automorphic

representation of GL2(AF ) are all discrete series representations twisted by integral

or half-integral powers of absolute value. Further, there is a compatibility with all

these twists afforded by the fact that there is a twist of the global representation

which makes it unitary; see 4.4.4.

4.3 Finite-dimensional representations

Any t ∈ T∞ looks like t = (tj)j ∈
∏n

j=1 T2(Fηj) =
∏n

j=1 T2(R). We will also write

t ∈ T∞ as:

t =


x1 0

0 y1

 ,

x2 0

0 y2

 , . . . ,

xn 0

0 yn


 .
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Let µ = (µ1, . . . , µn) be an integral weight for T∞, i.e., each µj = (aj, bj) ∈ Z2 and

we have

µ(t) =
∏
j

µj(tj) =
∏
j

x
aj
j y

bj
j .

Let X(T∞) stand for set of all integral weights. Let X+(T∞) be the subset of dominant

integral weights; dominant for the choice of Borel subgroup being B. A weight µ ∈

X(T∞) as above is dominant if and only if aj ≥ bj for all 1 ≤ j ≤ n.

For µ ∈ X+(T∞), we let Mµ stand for the irreducible finite-dimensional repre-

sentation of G(C) of highest weight µ. Since G(C) =
∏n

j=1 GL2(C), it is clear that

Mµ = ⊗jMµj with Mµj being the irreducible finite-dimensional representation of

GL2(C) of highest weight µj. Since µj = (aj, bj) it is well-known that

Mµj = Symaj−bj(C2)⊗ detbj

where C2 is the standard representation of GL2(C). We let M v
µ stand for the con-

tragredient representation; M v
µ = Mµv where µv = (µv

1, . . . , µ
v
n) with µv

j = (−bj,−aj).

Hence,

M v
µj

= Symaj−bj(C2)⊗ det−aj .

4.4 Cohomological automorphic representations

4.4.1 Cuspidal cohomology

For any open-compact subgroup Kf ⊂ G(Af ) define the space

SGKf := G(Q)\G(A)/K◦∞Kf = GL2(F )\GL2(AF )/K◦∞Kf .

This is an example of a locally symmetric space, because such a space is a finite

disjoint union of its connected components which are all of the form Γ\G(R)◦/K◦∞

for an arithmetic subgroup Γ of G(R)◦; locally it looks like the symmetric space

G(R)◦/K◦∞. In the literature on Hilbert modular forms, these spaces also go by the

appellation Hilbert–Blumenthal varieties. (See, for example, Ghate [15, Section 2.2].)
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Let µ = (µ1, . . . , µn) ∈ X+(T ). The representation M v
µ defines a local system M̃ v

µ

on SGKf . The precise definition is as follows.

Definition 4.4.1 Let P1 : G(AF )/K◦∞Kf −→ SGKf be the projection map. For any

open set U in SGKf , the section M̃µv(U) over U is defined as:

M̃µv(U) :=

 s : P−1
1 (U)→Mµv : s is locally constant, and

s(γx) = γ.s(x) ∀γ ∈ GL2(F )

 .

(Working with the dual Mµv instead of just Mµ is for convenience which will become

clear later on.) We should be cautious in the existence of such a non-zero sheaf. To

obtain a non-zero section, the condition s(γx) = s(x) must be satisfied for any element

γ in Z(F )∩K◦∞Kf . For the simplicity, let us assume Kf =
∏

p GL2(Op). Any element

in Z(F )∩K◦∞Kf is described as ( u u ) where u is a totally positive element in F× and

sits inside O×p for all non-archimedean places p, i.e., u is a totally positive element

in O×F . Hence the condition we need is equivalent to say that
∏

j ηj(u)aj+bj = 1 for

all totally positive elements u in O×F where µ = (µj) with µj = (aj, bj) is a dominant

integral weight. It is fulfilled when aj + bj is a constant for all j. Indeed, if aj + bj = c

for all j, then
∏

j ηj(u)aj+bj =
(∏

j ηj(u)
)c

= 1. We state this fact as a lemma below.

Lemma 4.1 Let F be a totally real number field. Let µ = (µj) with µj = (aj, bj) be a

dominant integral weight, and Mµ the irreducible finite-dimensional representation of

highest weight µ. Then a local system M̃µv on SGKf defined by Mµv is a nonzero sheaf

if aj + bj is independent of j.

We note that the hypothesis of this lemma is always satisfied under our setting

in the latter chapters. See (5.4.5). The open-compact subgroup Kf will be taken as

K0(n) defined in (2.4.2) which does not contradict the lemma as K0(n) is a subgroup

of
∏

p GL2(Op) up to a conjugation by an element of D.

We are interested in the sheaf cohomology

H•(SGKf , M̃µv).
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It is convenient to pass to the limit over all open-compact subgroups Kf and let

H•(SG, M̃µv) := lim−→
Kf

H•(SGKf , M̃µv).

There is an action of π0(G∞)×G(Af ) on H•(SG, M̃µv), which is usually called a Hecke-

action, and one can always recover the cohomology of SGKf by taking invariants:

H•(SGKf , M̃µv) = H•(SG, M̃µv)
Kf .

We can compute the above sheaf cohomology via the de Rham complex, and then

reinterpreting the de Rham complex in terms of the complex computing relative Lie

algebra cohomology, we get the isomorphism:

H•(SG, M̃µv) ' H•(g∞,K
◦
∞; C∞(G(Q)\G(A))⊗Mµv).

With level structure Kf this takes the form:

H•(SGKf , M̃µv) ' H•(g∞,K
◦
∞; C∞(G(Q)\G(A))Kf ⊗Mµv).

The inclusion C∞cusp(G(Q)\G(A)) ↪→ C∞(G(Q)\G(A)) of the space of smooth cusp

forms in the space of all smooth functions induces, via results of Borel [3], an injection

in cohomology; this defines cuspidal cohomology:

H•(SG, M̃µv) // H•(g∞,K
◦
∞;C∞(G(Q)\G(A))⊗Mµv)

H•cusp(SG, M̃µv)
?�

OO

// H•(g∞,K
◦
∞;C∞cusp(G(Q)\G(A))⊗Mµv)

?�

OO

Using the usual decomposition of the space of cusp forms into a direct sum of cuspi-

dal automorphic representations, we get the following fundamental decomposition of

π0(G∞)×G(Af )-modules:

H•cusp(SG, M̃µv) =
⊕

Π

H•(g∞,K
◦
∞; Π∞ ⊗Mµv)⊗ Πf (4.4.2)

We say that Π contributes to the cuspidal cohomology of G with coefficients in

Mµv if Π has a nonzero contribution to the above decomposition. Equivalently, if Π
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is a cuspidal automorphic representation whose representation at infinity Π∞ after

twisting by Mµv has nontrivial relative Lie algebra cohomology. In this situation,

we write Π ∈ Coh(G, µv). A fundamental observation of Clozel is that a cuspidal

automorphic representation Π is regular algebraic if and only if Π is of cohomological

type, i.e., contributes to the cohomology –possibly with nontrivial coefficients–of a

locally symmetric space attached to GL2 over F . (See Clozel [7, p.111].)

Whether Π contributes to cuspidal cohomology or not is determined entirely by

its infinite component Π∞. This is a very well-known and somewhat surprising fact;

surprising because local representations at infinity seem to have a such a strong control

over a global phenomenon. Further, it was observed by Clozel that this property is

in fact captured purely in terms of certain exponents of characters of C∗ appearing in

the Langlands parameter of Π∞. See the following sections. We also refer the reader

to Knapp [27].

4.4.2 Cohomology of a discrete series representation

We will digress for a moment to observe that discrete series representations of GL2(R),

possibly twisted by a half-integral power of absolute value, have nontrivial cohomol-

ogy. For brevity, let (g2,K
◦
2) := (gl2, SO(2)Z2(R)◦). For a dominant integral weight

ν = (a, b), with integers a ≥ b, the basic fact here is that there is a non-split exact

sequence of (g2,K
◦
2)-modules:

0→ Da−b+1 ⊗ | |(a+b)/2
R → Ind

GL2(R)
B2(R) (χ(a,a)| |1/2 ⊗ χ(b,b)| |−1/2)→Mν → 0. (4.4.3)

(Recall from our earlier notation that χ(a,a)(t) = |t|asgn(t)a = ta for any integer a.)

In other words, in the category C(g2,K
◦
2) of admissible (g2,K

◦
2)-modules, one has

Ext1
C(g2,K◦2)(Mν , Da−b+1 ⊗ | |(a+b)/2

R ) 6= 0.
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But

H1(g2,K
◦
2; (Da−b+1 ⊗ | |(a+b)/2

R )⊗Mνv) = Ext1
C(g2,K◦2)(11, (Da−b+1 ⊗ | |(a+b)/2

R )⊗Mνv)

= Ext1
C(g2,K◦2)(Mν , Da−b+1 ⊗ | |(a+b)/2

R ) 6= 0.

Further, it is well-known that H•(g2,K
◦
2; (Da−b+1 ⊗ | |(a+b)/2

R )⊗Mνv) 6= 0 if and only

if • = 1, and that dimension of H1(g2,K
◦
2; (Da−b+1 ⊗ | |(a+b)/2

R ) ⊗Mνv) is two, with

both the characters of O(2)/SO(2) appearing exactly once. (See, for example, Wald-

spurger [46, Proposition I.4].) This detail will be useful below; see 4.4.5. Finally,

suppose Hq(g2,K
◦
2; Ξ⊗Mνv) 6= 0 for some irreducible admissible infinite-dimensional

representation Ξ of GL2(R), then the central character restricted to R>0 and the in-

finitesimal character of Ξ are the same as that of Mν which can be seen from Wigner’s

Lemma (Borel-Wallach [5, Theorem I.4.1]). It follows from Langlands classification

that Ξ ' Da−b+1 ⊗ | |(a+b)/2
R .

4.4.3 ‘Regular algebraic’ = ‘Cohomological’

Let Π be a cuspidal automorphic representation of G(AF ). A point of view afforded

by Clozel [7] is that

Π is regular and algebraic ⇐⇒ Π ∈ Coh(G, µv) for some µ ∈ X+(T ).

Let Π ∈ Coh(G, µv). Say, µ = (µ1, . . . , µn), and each µj = (aj, bj). Apply the

Künneth theorem (see, for example, Borel-Wallach [5, I.1.3]) to see that

H•(g∞,K
◦
∞; Π∞ ⊗Mµv) =

⊕
d1+···+dn=•

⊗nj=1H
dj(gl2, SO(2)Z2(R)◦; Πj ⊗Mµvj

).

From 4.4.2 the right hand side is nonzero only for dj = 1 and Πηj = Daj−bj+1 ⊗

| |(aj+bj)/2R . The exponents in the Langlands parameter of Πηj are therefore given by:

τ(Πηj)(z) = z
1
2

+aj z̄−
1
2

+bj + z−
1
2

+bj z̄
1
2

+aj , ∀z ∈ C∗ ⊂ WR.
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Hence Π is algebraic. Next, working with Π′ = Π ⊗ | |−1/2 we see that the infinity

type of Π is:

∞(Π) := ({a1, b1 − 1}, {a2, b2 − 1}, . . . , {an, bn − 1}).

Since µ is dominant, aj ≥ bj; whence aj > bj − 1, i.e., Π is regular and algebraic.

Conversely, let Π be a regular algebraic cuspidal automorphic representation of

G(AF ). As in 4.2.2 the infinity type of π is given by

∞(Π) := ({p1, q1}, {p2, q2}, . . . , {pn, qn})

for integers pj, qj and regularity says that pj 6= qj. Without loss of generality assume

that pj > qj. Put aj = pj and bj = qj + 1. Now let µj = (aj, bj) and µ = (µ1, . . . , µn).

Then µ ∈ X+(T ), and it follows from 4.2.3 that Π ∈ Coh(G, µv).

4.4.4 Clozel’s purity lemma

(See Clozel [7, Lemme 4.9].) Let µ ∈ X+(T ) be a dominant integral weight as above;

say, µ = (µ1, . . . , µn), and each µj = (aj, bj) with integers aj ≥ bj. The purity lemma

says that if the weight µ supports nontrivial cuspidal cohomology, i.e., if Coh(G, µv)

is nonempty, then µ satisfies the ‘purity’ condition: there exists w = w(µ) ∈ Z such

that aj + bj = w for all j. This integer w is called the purity weight of µ, and if

Π ∈ Coh(G, µv), then we will call w the purity weight of Π as well. (Proof: Given

a cuspidal representation Π, there is a complex number w such that the twisted

representation Π⊗ | |w is unitary; if further Π is algebraic it follows that w must be

an integer.) Let us denote the set of all pure dominant integral weights by X+
0 (T ).

If we start with a primitive holomorphic Hilbert modular form, as will be the case in

the latter part of the article, then this condition is automatically fulfilled; however,

from the perspective of cohomological automorphic representations, the purity of the

weight µ is an important condition to keep in mind.
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4.4.5 Pinning down generators for the cohomology class at infinity

Let Π ∈ Coh(G, µv). Say, µ = (µ1, . . . , µn), and each µj = (aj, bj). The space

Hn(g∞,K
◦
∞; Π∞ ⊗Mµv) is acted upon by K∞/K

◦
∞. It follows from the Künneth rule

(Borel-Wallach [5, I.1.3]) and 4.4.2 that every character of K∞/K
◦
∞ appears with

multiplicity one in Hn(g∞,K
◦
∞; Π∞ ⊗Mµv). Fix such a character ε = (ε1, . . . , εn) of

K∞/K
◦
∞. The purpose of this (somewhat tedious) paragraph is to fix a basis [Π∞]ε

for the one-dimensional vector space Hn(g∞,K
◦
∞; Π∞ ⊗Mµv)(ε). (See (4.4.8) below,

especially when ε = (+, . . . ,+).) Since Künneth gives:

Hn(g∞,K
◦
∞; Π∞ ⊗Mµv)(ε) =

n⊗
j=1

H1(gl2, SO(2)Z2(R)◦; Πj ⊗Mµvj
)(εj),

it suffices to fix a basis [Πj]
εj for the one-dimensional H1(gl2, SO(2)Z2(R)◦; Πj ⊗

Mµvj
)(εj) and let

[Π∞]ε =
n⊗
j=1

[Πj]
εj .

We now proceed to fix [Πj]
εj . Since we are working with only one copy of

GL2(R), let us omit the subscript j and slightly change our notations: Let ν =

(ν1, ν2) ∈ X+(T2) be a dominant integral weight for the diagonal torus T2(R) in

GL2(R), and Mν the corresponding finite-dimensional irreducible representation of

GL2(C) of highest weight ν. Let Ξ ' Dν1−ν2+1 ⊗ | |(ν1+ν2)/2. For any choice of sign

in {±} := (O(2)/SO(2))̂, with + or − being the trivial or nontrivial character of

O(2)/SO(2) respectively, we will fix a 1-cocycle [Ξ]± so that

H1(gl2, SO(2)Z2(R)◦; Ξ⊗Mνv)(±) = C [Ξ]±.

For any integer m ≥ 1, let Mm be the (m − 1)th symmetric power of the stan-

dard (two-dimensional) representation C2 of GL2(C), i.e., Mm = Symm−1(C2). The

representation Mm is irreducible and of dimension m. Denote the standard ba-

sis of C2 by {e1, e2}, which gives the ‘standard’ basis {em−1
2 , em−2

2 e1, . . . , e
m−1
1 } for

Mm. This basis will be denoted as {s0, s1, . . . , sm−1}, i.e., sj = ej1e
m−1−j
2 . The
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finite-dimensional irreducible representation Mν of GL2(C) with highest weight ν is

Mν = Mν1−ν2+1⊗detν2 = Symν1−ν2(C2)⊗detν2 . By restriction, Mν is also a represen-

tation of GL2(R). The central character of Mν is given by a 7→ ων(a) = aν1+ν2 for all

a ∈ R∗. The contragredient representation of Mν is denoted M v
ν ; one has M v

ν = Mνv ,

where νv = (−ν2,−ν1) is the dual weight of ν. Explicitly, Mνv = Mν1−ν2+1 ⊗ det−ν1 .

We will need information on the restriction of Mνv to various subgroups.

In either of the representations Mν or Mνv , the action of the diagonal torus in SL2

on the basis vectors is given by
(
t 0
0 t−1

)
sj = t−ν1+ν2+2jsj. Hence, the standard basis

realizes the weights:

{−(ν1 − ν2),−(ν1 − ν2) + 2, . . . , ν1 − ν2}.

In particular, the highest weight vector of Mνv is given by e+
νv := sν1−ν2 = eν1−ν2

1 .

Observe that the standard basis gives a Q-structure on Mνv .

The restriction of Mνv to GL1(R) ↪→ GL2(R) is described by ( t 0
0 1 ) sj = tj−ν1sj.

From this we easily deduce the following lemma which will be of use later on; see

6.2.5 below.

Lemma 4.2 Let 11 denote the trivial representation of GL1(R). Then

HomGL1(R)(Mνv , 11) 6= 0 ⇐⇒ ν1 ≥ 0 ≥ ν2.

In this situation, HomGL1(R)(Mνv , 11) is one-dimensional and a nonzero map T in

HomGL1(R)(Mνv , 11) is given by projecting to the coordinate corresponding to sν1, i.e.,

T (

ν1−ν2∑
j=0

cjsj) = cν1 .

Proof. This is easy to verify and we omit the proof. Let us mention that this is a

special case of well-known classical branching laws from GLn(C) to GLn−1(C); see

Goodman-Wallach [17].
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The SO(2)-types of Mν , as well as Mνv , are given by:

Mνv |K1
2

= Mν |K1
2

= θ−(ν1−ν2) ⊕ θ−(ν1−ν2)+2 ⊕ · · · ⊕ θν1−ν2−2 ⊕ θν1−ν2 ,

where, for any integer n, θn is the character of SO(2) given by θn(r(t)) = e−int, for

all r(t) = ( cos t − sin t
sin t cos t ) in SO(2). It is necessary to fix an ordered basis giving the

above decomposition. Let {w1,w2} denote the basis for C2 which diagonalizes the

SO(2)-action:

w1 = e1 + ie2, w2 = ie1 + e2;

it is trivially verified that

r(t)w1 = e−itw1 = θ1(r(t))w1, r(t)w2 = eitw2 = θ−1(r(t))w2.

The ordered basis {wν1−ν2
2 ,wν1−ν2−1

2 w1, . . . ,w
ν1−ν2
1 } of Mνv realizes the above decom-

position of Mµv into its K-types. Let w+
νv = wν1−ν2

1 be the basis vector realizing

the highest non-negative K-type in Mνv , i.e., θν1−ν2 ; similarly, the lowest K-type is

realized by w−νv = wν1−ν2
2 . In terms of the standard basis:

w+
νv = (e1 + ie2)ν1−ν2 =

ν1−ν2∑
α=0

(
ν1 − ν2

α

)
iν1−ν2−α sα

w−νv = (ie1 + e2)ν1−ν2 =

ν1−ν2∑
α=0

(
ν1 − ν2

α

)
iα sα.

(4.4.4)

For a dominant integral weight ν = (ν1, ν2), and for Ξ ' Dν1−ν2+1 ⊗ | |(ν1+ν2)/2,

using the exact sequence in (4.4.3) we deduce that the SO(2)-types of Ξ are

· · · ⊕ θ−(ν1−ν2+4) ⊕ θ−(ν1−ν2+2) ⊕ (nothing here)⊕ θν1−ν2+2 ⊕ θν1−ν2+4 ⊕ · · ·

The missing K-types in (nothing here) correspond exactly to the K-types of Mν .

Let φ±(ν1−ν2+2) be vectors in Ξ with K-types θ±(ν1−ν2+2), respectively. The vectors in

Ξ = Dν1−ν2+1⊗| |(ν1+ν2)/2 may be identified with vectors in the induced representation

IndG2
B2

(χ(ν1,ν1)| |1/2 ⊗ χ(ν2,ν2)| |−1/2) which is the middle term in the exact sequence

(4.4.3). In particular, we may and shall normalize them as

φ±(ν1−ν2+2) (( 1 0
0 1 )) = 1.
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Recall that (g2,K
◦
2) := (gl2(C), SO(2)Z2(R)◦) and let K1

2 = SO(2). The cochain

complex

C• := HomK◦2
(∧•g2/k2,Ξ⊗Mνv)

computes (g2,K
◦
2)-cohomology of Ξ⊗Mνv . Since the central characters of Ξ and Mν

are equal, this complex is same as HomK1
2
(∧•g2/k2,Ξ ⊗Mνv). It is easy to see that

g2/k2 = θ2 ⊕ θ−2 as a K1
2-module: let {z1, z2} be the basis for g2/k2 given by:

z1 = i

 1 i

i −1

 , z2 = i

 1 −i

−i −1

 ;

it is easily checked that

Ad(r(t))(z1) = e−2itz1 = θ2(r(t))z1 and Ad(r(t))(z2) = e2itz2 = θ−2(r(t))z2.

From the description of K-types of Ξ and Mν we see that Cq = 0 for all q 6= 1, and

C1 = HomK1
2
(θ−2 ⊕ θ2,Ξ⊗Mνv) ' C2.

Fix a basis {f−2, f2} for this two dimensional space C1 as follows: f−2 picks up the

vector φ−ν1+ν2−2 ⊗ w+
νv realizing the character θ−2; similarly, f2 picks up the vector

φν1−ν2+2 ⊗ w−νv realizing the character θ2. More precisely,

f−2(z1) = 0, f−2(z2) = φ−ν1+ν2−2 ⊗ w+
νv ,

f2(z1) = φν1−ν2+2 ⊗ w−νv , f2(z2) = 0.

Since C1 = HomK◦2
(g2/k2,Ξ⊗Mνv) ' ((g2/k2)∗⊗Ξ⊗Mνv)

K◦2 we can transcribe these

expressions for f±2 as follows: Let {z∗1, z∗2} be the basis for (g2/k2)∗ that is dual to

the basis {z1, z2} for g2/k2. Then

f−2 = z∗2 ⊗ φ−ν1+ν2−2 ⊗ w+
νv , and f2 = z∗1 ⊗ φν1−ν2+2 ⊗ w−νv .

To summarize we have:

H1(g2,K
◦
2; Ξ⊗Mνv) = HomK◦2

(∧1g2/k2,Ξ⊗Mνv) = ((g2/k2)∗⊗Ξ⊗Mνv)
K◦2 = Cf−2⊕Cf2
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with explicit expressions for f±2 as relative Lie algebra cocycles.

To identify the class [Ξ]±, a generator for the one-dimensional space H1(g2,K
◦
2; Ξ⊗

Mνv)(±), we need to know the action of the element δ = ( −1 0
0 1 ) which represents the

nontrivial element in K2/K
◦
2. Recall that the action of δ on any f ∈ HomK◦2

(∧1g2/k2,Ξ⊗

Mνv) is given by

(δf)(z) = (Ξ⊗Mνv)(δ)(f(Ad(δ−1)z)).

Lemma 4.3 The action of δ on f±2 is given by

δf−2 = iν1−ν2f2, and δf2 = i−ν1+ν2f−2.

In particular, δ acts by ±1 on the cocycle [Ξ]± := f2 ± i−ν1+ν2f−2.

Proof. The proof is routine; here are some useful relations:

Ad(δ−1)(z1) = z2,

Ξ(δ)(φν1−ν2+2) = i2ν1φ−(ν1−ν2+2),

Mνv(δ)(w
+
νv) = i−(ν1+ν2)w−νv .

Let W(Ξ) denote the Whittaker model of Ξ with respect to a nontrivial additive

character ψR of R; which we recall from 2.8, is taken to be x 7→ ψR(x) = e−2πix. For

any φ ∈ Ξ, let λ = w(φ) denote the corresponding Whittaker vector. The cohomology

class [Ξ]± which generates H1(g2,K
◦
2;W(Ξ)⊗Mνv)(±) is explicitly given by

[Ξ]± = z∗1 ⊗ λν1−ν2+2 ⊗ w−νv ± i−ν1+ν2z∗2 ⊗ λ−(ν1−ν2+2) ⊗ w+
νv

Using (4.4.4) we can also express this class as:

[Ξ]± =
2∑
l=1

ν1−ν2∑
α=0

z∗l ⊗ λ±l,α ⊗ sα (4.4.5)

where

λ±1,α =

(
ν1 − ν2

α

)
iαλν1−ν2+2, λ±2,α = ±

(
ν1 − ν2

α

)
i−αλ−(ν1−ν2+2) (4.4.6)
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Let us now go back to Π ∈ Coh(G, µv) and write down [Π∞]++ explicitly, where

++ is short for (+, . . . ,+). Since

[Π∞]++ =
n⊗
j=1

[Πj]
+

we will tensor over j the class [Πj]
+.

Let {sj,0, sj,1, . . . , sj,aj−bj} denote the standard basis for the representation Mµvj
.

Let α = (α1, . . . , αn) be an n-tuple of integers such that 0 ≤ αj ≤ aj − bj. Let

sα = ⊗nj=1sj,αj .

Then the set {sα}α, as α runs through all n-tuples as above gives a basis for Mµv .

Next, let l = (l1, . . . , ln) be an n-tuple of integers such that lj ∈ {1, 2}. For each such

l, put

z∗l = ⊗nj=1z
∗
j,lj
,

where for each 1 ≤ j ≤ n we let zj,1 = z1 and zj,2 = z2 as elements of gl2 =

Lie(GL2(Fηj)); and as before z∗ is the corresponding element in the dual basis. For

each 1 ≤ j ≤ n, and αj as above, let

λj,1,αj =

(
ν1 − ν2

αj

)
iαjλν1−ν2+2, λj,2,αj =

(
ν1 − ν2

αj

)
i−αjλ−(ν1−ν2+2)

and for any l and α put

Wl,α,∞ = ⊗nj=1λj,lj ,αj ∈ W(Π∞, ψ∞).

We have the following expression

[Π∞]++ =
n⊗
j=1

[Πj]
+ =

n⊗
j=1

 2∑
lj=1

aj−bj∑
αj=0

z∗j,lj ⊗ λj,lj ,αj ⊗ sj,αj

 . (4.4.7)

Interchanging the tensor and the summations and regrouping we get:

[Π∞]++ =
∑

l=(l1,...,ln)

∑
α=(α1,...,αn)

z∗l ⊗Wl,α,∞ ⊗ sα (4.4.8)
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which is our chosen generator of the one-dimensional spaceHn(g∞,K
◦
∞; Π∞⊗Mµv)(+, . . . ,+)

and is expressed as a K∞-fixed element of

(g∞/k∞)∗ ⊗W(Π∞, ψ∞)⊗Mµv .
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CHAPTER 5

Dictionary

It is well-known to experts that there is a dictionary between holomorphic Hilbert

modular forms and automorphic representations of GL2 over a totally real number

field F . However, it is difficult to find all the details in the literature. We do not

want any restriction on the base field F while most treatments assume at some point

that the narrow class number of F is one. Besides, we could not find anywhere the

answer to the question: is the dictionary Aut(C)-equivariant? Some of the standard

books on Hilbert modular forms like Freitag [11], Garrett [12] or van der Geer [43]

do not have what we want; although Garrett’s book has a definitive treatment of the

action of Aut(C) on spaces of Hilbert modular forms–which is called the ‘arithmetic

structure theorem’ in his book. In this chapter, we write down such a dictionary,

give enough details to make the presentation self-contained, and also analyze its

arithmetic properties. (We refer the reader to Blasius-Rogawski [1] and Harris [22]

for some intimately related arithmetic issues about Hilbert modular forms.) The

correspondence is summarized in the following theorem.

Theorem 5.0.1 (The dictionary) There is a bijection f ↔ Π between

• f ∈ Sk(n, ω̃)prim, that is f is a primitive holomorphic Hilbert modular form

of weight k = (k1, . . . , kn), of level n and nebentypus character ω̃ which is a

character of AF/F induced from a character (OF/n)×; by primitive we mean it

is an eigenform for all Hecke operators T′p, a newform, and it is normalized as

C(OF , f) = 1.
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• Π is a cuspidal automorphic representation of GL2(AF ) whose representation

at infinity Π∞ = ⊗jDkj−1, of conductor n, and central character ωΠ = ω̃–the

adelization of ω; here Dl is the discrete series representation of GL2(R) with

lowest non-negative K-type being the character
(

cos θ − sin θ
sin θ cos θ

)
7→ e−i(l+1)θ, and

central character a 7→ sgn(a)l+1.

We devote this chapter to give a self-contained proof of this theorem and to

describe the relation of their L-functions.

5.1 Attaching a cuspidal automorphic representation

Let L2
0(G(Q)\G(A), ω̃) be the space of functions on G(A) such that

φ(γg) = φ(g) for all γ ∈ G(Q),

φ(zg) = ω̃(z)φ(g) for all z ∈ A×F ,

φ is square integrable modulo the center, and φ satisfies the cuspidality condition

∫
F×\A×F

φ


 1 x

1

 g

 dx = 0

for almost all g in G(A). The regular representation of G(A) on this space will be

denoted ρω̃0 .

Let f be a primitive holomorphic Hilbert cusp form of weight k = (k1, · · · , kn),

level n, with a Hecke character ω̃. Let H(f) be a space spanned by right translations

of f under G(A). Then the resulting representation Π(f) on this space H(f) occurs in

the regular representation ρω̃0 on the cusp forms. The goal of this section is to prove

the following theorem.

Theorem 5.1.1 With the notions above, the representation Π(f) on the space H(f)

is irreducible. Furthermore, the local representation Πηj at each archimedean place ηj

is the discrete series representation Dkj−1 of lowest weight kj.
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To prove the first part of this theorem, let us recall some important theorems

regarding automorphic representations. (See, for example, Cogdell [8].)

Theorem 5.1.2 (Multiplicity One Theorem) The representation ρω̃0 decomposes

as the direct sum of irreducible representations, each of which appear with multiplicity

one.

Theorem 5.1.3 (Tensor Product Theorem) Let (Π, VΠ) be an automorphic rep-

resentation of G(A). Then Π is the restricted tensor product of the local represen-

tations Πv, where v runs through all the places of F , and each Πv is irreducible

admissible representation of GL2(Fv).

Theorem 5.1.4 (Strong Multiplicity One Theorem) Let (Π, VΠ) and (Π′, V ′Π)

be irreducible admissible constituents of the regular representation of GL2 on the cusp

forms. If Πv is equivalent to Π′v for almost all non-archimedean places v, then Π ≈ Π′.

Theorem 5.1.2 and Theorem 5.1.3 guarantee that the representation Π(f) can

be written as Π(f) = ⊕iΠi, with each irreducible constituent Πi being a restricted

tensor product of local representations Πi
v. Therefore, in order to show that Π(f) is

irreducible, it is now enough to show that Πi
v ≈ Πj

v for almost all non-archimedean

places v and for all i and j by Theorem 5.1.4. Write f = ⊕if i with each f i in the

space of Πi. Now consider an irreducible constituent Πi.

Let p be a prime ideal of F not dividing either n or the different D. For such an

ideal p, Πi
p is a spherical representation π(χ1,p, χ2,p) induced from some unramified

characters χ1,p and χ2,p. (We will work with only normalized parabolic induction.)

Since f is an eigenfunction of Tp, so is f i, since the projection from Π(f) to the i-th

coordinate in ⊕iΠi is a Hecke-equivariant map. Furthermore, it can be seen that the

eigenvalue is q
1/2
p (χ1,p($p) + χ2,p($p)), where qp is the cardinality of the residue field

Op/pOp, and $p is a uniformizer. Indeed, applying g = 1 in (3.2.1), we obtain that
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(Tpf
i)(1) = f i

 1

$p

+
∑
u∈O×p

f i

 $p u

1

 (5.1.5)

= q
1/2
p (χ1,p($p) + χ2,p($p)) f i(1).

This shows that χ1,p($p) + χ2,p($p) = q
(1−k0)/2
p C(p, f) where k0 = maxj{kj}, and

that, together with χ1,pχ2,p being the central character of Πi
p, the characters χ1,p and

χ2,p are uniquely determined by f and they are independent of i. Hence Πi
p = Πj

p

for almost all p. Strong multiplicity one implies that Πi ≈ Πj, and multiplicity one

will imply that Π(f) is irreducible, This completes the proof for the first part of

Theorem 5.1.1.

For archimedean places, note that the local representation Πηj at each place ηj is

a (gl(2),O(2))-module, so it is enough to consider the eigenvalue λj for the Casimir

operator ∆j = −y2
j

(
∂2

∂x2
j

+ ∂2

∂y2
j

)
− yj

∂2

∂xj∂θj
. Since ∆j acts on f as a function on

GL2(Fηj), we only need to see the action on (fν ||kgj)(i) for each ν. Writing gj =(
y

1/2
j xjy

−1/2
j

y
−1/2
j

)(
cos θj − sin θj
sin θj cos θj

)
, a direct computation shows that λj =

kj
2

(
1− kj

2

)
for

any ν. An irreducible admissible infinite-dimensional representation of GL2(R), with

infinitesimal character determined by
kj
2

(
1− kj

2

)
and central character trivial on

R>0 has to be the discrete series representation Dkj−1. This says that Πηj = Dkj−1.

(Infinite-dimensionality of Πηj is guaranteed by existence of Whittaker models.)

5.2 Retrieving a Hilbert modular form from a representation

Let (Π, VΠ) be a cuspidal automorphic representation with the central character ω̃

that is trivial on F×∞+ , and such that the representation at infinity is equivalent to

⊗nj=1Dkj−1, where Dkj−1 is a discrete series representation of the lowest weight kj. Let

the conductor of Π be n. We note that, for any non-archimedean place v not dividing

n, the local representation Πv is equivalent to a spherical representation induced from

some unramified character χ1,v ⊗ χ2,v. In order to retrieve a primitive holomorphic
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Hilbert cusp form from this representation, it is quite useful to consider a Whittaker

model of Π.

Recall from Section 2.8 our non-trivial additive character ψ of A/F , and write ψv

for v-component of this character. The isomorphism between the representation space

VΠ and the Whittaker space W(Π, ψ) allows us to determine a unique holomorphic

Hilbert cusp form that corresponds to Π by choosing a suitable element from each

local Whittaker model W(Πv, ψv). For almost all v, Wv ∈ W(Πv, ψv) is a spherical

element, and is normalized so that Wv(kv) = 1 for all kv ∈ GL2(Ov). The choices for

the local vectors should be made in the following manner.

For each archimedean place v = ηj, let W ◦
ηj

be the lowest weight vector in

W(Πηj , ψηj). By the lowest weight vector, we shall mean the element given as follows:

W ◦
ηj


a

a


1 x

1


cos θ − sin θ

sin θ cos θ


y

1


 = ωηj(a)ψηj(x)e−ikjθe−2πy.

For a non-archimedean place p, a suitably normalized Kp(n)-fixed vector needs to

be chosen, where Kp(n) is an open compact subgroup of GL2(Fp) defined in (2.4.1).

For this purpose, let f and r be the highest powers of p, which are possibly zeros,

that divide n and the different DF , respectively. It is clear that Kp(n) can be written

as

Kp(n) =

$−rp

1

Γ0(pf )

 $r
p

1

 ,

where Γ0(pf ) =
{

( a bc d ) ∈ GL2(Op) : c ≡ 0 mod pf
}

. Let W new
p be the new vector

in W(Πp, ψp), i.e., W new
p is an element such that ( a bc d ) ·W new

p = ωp(d)W new
p for all

( a bc d ) ∈ Γ0(pf ), and normalized in a way specified below. Define W ◦
p =

(
$−rp

1

)
·W new

p .

Then W ◦
p is an “almost” Kp(n)-fixed vector. (Note: this W ◦

p is slightly different from

the W ◦
p of 6.2.1.) In particular,

W ◦
p

 1

1

 = W new
p

 $−rp

1

 . (5.2.1)
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We claim that the right hand side of the above expression is not zero for any p,

and hence W ◦
p can be normalized so that W ◦

p (1) = 1. In order to show that our

claim is true, we first assume that r = 0, and hence the conductor of ψp is Op. Pass

W ◦
p = Wp to the new vector κp in the Kirillov model K(Πp, ψp) with respect to the

same additive character ψp, by defining κp(x) = W ◦
p ( x 1 ), and observe κp(1) 6= 0.

([40, Section 2.4].) The isomorphism between the Whittaker model W(Πp, ψp) and

the Kirillov model K(Πp, ψp) guarantees that W ◦
p ( 1

1 ) 6= 0. Normalize this vector,

(and call it W ◦
p again), so that W ◦

p (1) = 1.

Next, let r > 0. Let ψp,$−rp
be an additive character defined by ψp,$−rp

(x) :=

ψp($
−r
p x). Then since the conductor of ψp,$−rp

is Op, the same argument as above

applies to show that Wp,$−rp
(1) 6= 0 where Wp,$−rp

is the new vector in a Whittaker

model with respect to ψp,$−rp
. Observing that

Wp,$−rp

 1

1

 = Wp

 $−rp

1

 ,

the same normalization can be done in this case as well.

Let W ◦ = ⊗vW ◦
v , which is an element of W(Π, ψ). Then there is a corresponding

element f in VΠ by the usual isomorphism VΠ →W(Π, ψ). The vectors f and W ◦ are

related by

f(g) =
∑
α∈F×

W ◦


 α

1

 g

 . (5.2.2)

Furthermore, we claim that, in the above expression, α only runs through totally

positive elements in F . To see this, put g = ( y∞ 1 ) where y∞ is an element of A whose

finite part is 1. Then it is easy to see that W ◦ ( y∞α 1 ) = e−2πy∞α
∏

v<∞W
◦
v ( α 1 )

must be zero unless α is totally positive for the summation to be bounded. Hence

the Fourier expansion of f simplifies to:
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f(g) =
∑
α∈F×+

W ◦


 α

1

 g

 . (5.2.3)

The rest of the section will be devoted to show that f is the desired Hilbert modular

form.

Theorem 5.2.4 Let A0(k, n, ω̃) be a subspace of Acusp(G(Q)\GL2(A), ω̃) that con-

sists of elements satisfying the following properties.

1. φ(gr(θ)) = e−ikθφ(g) where r(θ) :=
{(

cos θj − sin θj
sin θj cos θj

)}
j
∈ SO(2)n,

2. φ(gk0) = ω̃f (k
ι
0)φ(g), where ω̃f is the finite part of ω̃ and k0 ∈ K0(n), and

3. φ is an eigenfunction of the Casimir element ∆ := (∆1, · · · ,∆n) as a function

of GL2(R)n, with its eigenvalue λ =
∏n

j=1
kj
2

(
1− kj

2

)
.

Then A0(k, n, ω̃) is isomorphic to Sk(n, ω̃).

Proof. These are essentially the same spaces defined from different points of view. To

see this, observe first that any holomorphic Hilbert cusp form f is in A0(k, n, ω̃). So it

remains to recover a holomorphic Hilbert cusp form from any element φ in A0(k, n, ω̃).

For each element g = γx−ιν g∞k0 of G(A), put

fν(z) = φ(x−ιν g∞) det g−k/2∞ j(g∞, i)k,

where g∞(i) = z. Holomorphy of fν can be shown by checking that it is an-

nihilated by the first order differential opeator ∂
∂x

+ i ∂
∂y

. (As mentioned in Gel-

bart [13, Proof of Proposition 2.1], details of this argument appear in Gelfand–

Graev–Piatetski-Shapiro[14, Chapter 1, Section 4].) A direct computation shows

that f := (f1, · · · , fh) ∈ Sk(n, ω̃) and f = φ.

Going back to the f that corresponds to the global Whittaker vector W ◦, it is

clear that f belongs to A0(k, n, ω̃). Indeed the first two conditions follow from (5.2.3)
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immediately, and the third condition holds because Π∞ = ⊗Dkj−1 and it follows that

∆W ◦
∞ = λW ◦

∞ with λ given in the theorem. Therefore, it now only remains to show

that f is primitive.

To prove that f is a newform, suppose that there exists an integral ideal m that

divides n and such that f ∈ Sk(m, ω̃). Writing f = (f1, · · · , fh) with fν ∈ Sk(Γν(m), ω)

for ν = 1, · · · , h, it shows that fν ||kγ = ω̃(γ)fν for all γ ∈ Γν(m) which contradicts

the fact that the conductor of Π is n.

Next, it needs to be proven that f is a common eigenfunction of the Hecke opera-

tors Tp for almost all prime ideals p, namely p not dividing neither n nor the different

DF . Recall that for such an ideal p, Kp(n) = GL2(Op), f is right Kp(n)-fixed, and

the local representatoin Πp is equivalent to a spherical representation, π(χ1,p, χ2,p),

induced from some unramified characters χ1,p and χ2,p. Let f◦p be the normalized

spherical vector in the induced model. Then f◦p is an eigenfunction of Tp with eigen-

value is q
1/2
p (χ1,p($p) + χ2,p($p)). (See (5.1.5).) Hence W ◦

p is an eigenfunction for Tp

with same eigenvalue. It follows from (5.2.2) that f is also an eigenfunction for Tp

with same eigenvalue.

Finally, we will prove that f is normalized, i.e., C(OF , f) = 1. Put

c(m, f) = aν(ξ)ξ
−k/2

if m = ξtνOF is an integral ideal in F , and 0 otherwise. This means that

c(m, f) = C(m, f)N(m)−k0/2

for any ideal m. Then f affords an expansion,

f


y x

1


 =

∑
ξ∈F×+

c(ξyOF , f)(ξy∞)k/2e−2πξy∞µ(ξx),

where y ∈ A×F with y∞ ∈ F∞+ , x ∈ AF , and µ is some additive character of AF/F .

This expression is obtained by observing that c(ξOF , f) = c(ξyOF , f) for any totally
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positive element y in O×F . (See, for example, Garrett [12] or Shimura [41].) In

particular,

f


 1

1


 =

∑
ξ∈F×+

c(ξOF , f)ξk/2e−2πξ.

On the other hand, by (5.2.3),

f


 1

1


 =

∑
α∈F×+

W ◦

 α

1


=

∑
0�α∈F×

e−2πα
∏
v<∞

W ◦
v

 α

1

 .

Comparing these expressions, we obtain C(OF , f) = c(OF , f) =
∏

v<∞W
◦
v ( 1

1 ) = 1

as desired.

This result, together with the argument in the previous section, completes the

proof of the correspondence between primitive holomorphic Hilbert modular forms in

Sk(n, ω̃) and cuspidal automorphic representations of G(A) over a totally real number

field F satisfying the following conditions: the local representations at infinite places

are the discrete series representations Dkj−1 of lowest weight kj for each j = 1, . . . , n,

the conductor is n, and the central character is trivial on the totally positive elements

F∞+ in Rn.

5.3 L-functions

5.3.1 L-function attached to f

Let f = (f1, · · · , fh) be a primitive holomorphic Hilbert modular form of weight k,

level n, and with a character ω̃. Recall that C(m, f) is defined to be aν(ξ)ξ
−k/2N(m)k0/2

for any integral m = ξtνOF , and it is 0 for m not integral. The (finite) L-function

attached to f is defined to be

Lf (s, f) =
∑
m

C(m, f)

N(m)s
,
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where m runs through all the integral ideals of F . Let ω∗ be a character of the group

of ideals prime to n defined by ω∗(p) = ω̃($p) for all prime ideals p that do not divide

n; and let ω∗(p) = 0 if p divides n. Then, the L-function has an Euler product,

Lf (s, f) =
∏
p

(
1− C(p, f)N(p)−s + ω∗(p)N(p)k0−1−2s

)−1
,

with k0 = maxj{kj}. The product is taken over all the prime ideals p. Define the

local factors at archimedean places by

Lηj(s, f) = (2π)
−
(
s−

k0−kj
2

)
Γ

(
s− k0 − kj

2

)
,

and for convenience write

L∞(s, f) =
n∏
j=1

Lηj(s, f) = (2π)−(s− k0−k
2 )Γ

(
s− k0 − k

2

)
.

Define the completed L-function by

L(s, f) = Lf (s, f)L∞(s, f).

The above definitions are all for <(s) � 0. It is part of standard ‘Hecke Theory’

for Hilbert modular forms that L(s, f) has an analytic continuation to all of C and

satisfies a functional equation of the expected kind.

5.3.2 L-functions attached to Π

In this section, we recall the definition of the L-function attached to a cuspidal au-

tomorphic representation Π. First recall the GL1-theory. For a Hecke character

χ = ⊗vχv of finite order, the local L-factors at the finite places are given by

Lv(s, χv) = (1− χv($v)q
−s
v )−1 if χv is unramified, and

Lv(s, χv) = 1 if χv is ramified.

Define the local L-factors for GL2 as follows: if the local representation Πp at a

place p is equivalent to a principal series representation π(χ1,p, χ2,p), then put

Lp(s,Πp) = Lp(s, χ1,p)Lp(s, χ2,p).
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Note that both factors are non-trivial if and only if Πp is spherical. For the other

representations, define Lp(s,Πp) = 1 for a supercuspidal representation Πp, and

Lp(s,Πp) = Lp(s+ 1/2, χp)

for Πp = StGL2(Fp) ⊗ χp, the twist of the Steinberg representation StGL2(Fp) by χp.

(See, for example, Kudla [29, Section 3].) At the infinite places, the factors are

Lηj(s,Πηj) = (2π)
−
(
s+

kj−1

2

)
Γ

(
s+

kj − 1

2

)
.

Again, we use a multi-index notation

L∞(s,Π∞) = (2π)−(s+ k−1
2 )Γ

(
s+

k − 1

2

)
to mean the product of all Lηj(s,Πηj). The global L-function attached to Π is

L(s,Π) = ⊗vLv(s,Πv).

The above definitions are all for <(s)� 0. It is part of standard ‘Hecke Theory’, due

to Jacquet and Langlands [25], for cuspidal representations of GL2(A) that L(s,Π)

has an analytic continuation to all of C and satisfies a functional equation of the

expected kind.

5.3.3 Relation between L(s, f) and L(s,Π)

Having L-functions attached to a Hilbert cusp form f and to a cuspidal automorphic

representation Π, a natural question to ask is how L(s, f) and L(s,Π(f)) relate to

each other where Π(f) is a representation attached to a primitive cusp form f . The

main theorem of this section is:

Theorem 5.3.1 Let f ∈ Sk(n, ω̃) be primitive, and Π(f) a cuspidal automorphic rep-

resentation attached to f . Then the completed L-functions attached to f and attached

to Π(f) satisfy the following relation:

L (s,Π(f)) = L

(
s+

k0 − 1

2
, f

)
,
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where k0 = Max{k1, · · · , kn}. The same relation holds between the finite and infinite

parts of the two L-functions.

Proof. Let <(s)� 0. For any place v of F , and any vector Wv in a local Whittaker

model W(Π(f)v, ψv), define a local ζ-integral by

ζv(s,Wv) =

∫
F×v

Wv

α
1

 |α|s−1/2 d×α.

A global ζ-integral is similarly defined for W ∈ W(Π, ψ) as

ζ(s,W ) =

∫
A×F

W

α
1

 |α|s−1/2 d×α.

This integral is eulerian, i.e., if the global Whittaker vector W factorizes as W = ⊗Wv

into local Whittaker vectors then

ζ(s,W ) =
∏
v≤∞

ζv(s,Wv).

In particular, take ψ to be the additive character that has been fixed in Section 2.8,

and Wv the normalized new vector W ◦
v as in Section 5.2. Then, one can show that

Lv(s,Π(f)v) = ζv(s,W
◦
v ). (See, for example, Gelbart [13, Proposition 6.17].) There-

fore L(s,Π(f)) =
∏

v Lv(s,Π(f)v) =
∏

v ζv(s,W
◦
v ) = ζ(s,W ◦). On the other hand, we

have ∫
A×F /F×

f

y
1

 |y|s−1/2 d×y =

∫
A×F /F×

∑
α∈F×

W ◦

αy
1

 |αy|s−1/2 d×y

=

∫
A×F

W ◦

 α

1

 |α|s−1/2 d×α.

We recall that A×F/F× = ∪hν=1tνF
×
∞+

∏
O×p (a disjoint union), and it follows that,

for any y ∈ A×F ,

f

y
1

 |y|s−1/2 = yk/2∞ fν(iy∞) (|tν ||y∞|)s−1/2 ,
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with a unique ν where y∞ is the infinite part of y and i = (i, · · · , i). Hence

L(s,Π(f)) =

∫
A×F /F×

f

 y

1

 |y|s−1/2 d×y

=
h∑
ν=1

∫
F∞+

fν(iy)ys+
k−1

2 |tν |s−1/2 dy

y
.

Applying the Fourier expansion fν(z) =
∑

ξ aν(ξ) exp(2πiξz), the proof can be com-

pleted as follows.

L(s,Π(f)) =
∑
ν,ξ

aν(ξ)|tν |s−1/2

∫
F∞+

e−2πξyys+
k−1

2
dy

y

=
∑
ν,ξ

aν(ξ)

(2πξ)s+
k−1

2 |tν |−(s−1/2)

∫
F∞+

e−yys+
k−1

2
dy

y

= (2π)−(s+ k−1
2 )Γ

(
s+

k − 1

2

)∑
m

C(m, f)

N(m)s+
k0−1

2

= L

(
s+

k0 − 1

2
, f

)
.

The equality is for <(s) � 0. Both sides have analytic continuation to all of C and

hence we have equality everywhere.

From the definitions of the infinite parts of the two L-functions, we see that

L∞(s,Π(f)∞) = L∞

(
s+

k0 − 1

2
, f

)
.

It follows that the same relations hold for the finite part since we have Lf (s,Πf ) =

L(s,Π)/L∞(s,Π∞), and similarly, Lf (s, f) = L(s, f)/L∞(s, f).

5.4 The Action of Aut(C)

5.4.1 The action of Aut(C) on Hilbert modular forms

Let σ be an automorphism of C, and let it act on Rn =
∏n

j=1 Fηj by permuting

the coordinates. Then σ ◦ η gives another embedding of F into Rn. Considering

σ(ξk) =
∏n

j=1 σ(ηj(ξ))
kj for ξ ∈ F and k ∈ Zn, we can view σ as a permutation of

{kj}. We will use this identification from now on, and denote it as kσ.
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Let f be a Hilbert modular form of weight k, level n, with a character ω̃, and

write its Fourier expansion as f(z) =
∑
ξ

aν(ξ) exp(2πiξz). We define fσ to be

fσ(z) =
∑
ξ

aσν (ξ) exp(2πiξz),

with aσν (ξ) = σ(aν(ξ)). We have the following

Proposition 5.4.1 (Shimura, [41]) Let σ ∈ Aut(C). If f ∈ Mk(Γ, ω), then fσ ∈

Mkσ(Γ, ωσ), where ωσ = σ ◦ ω.

In order to attain a similar result in the adèlic setting, we normalize fσ as follows:

For fν ∈Mk(Γν , ω) with Γν defined in Section 3.1, put

f [σ]
ν = fσν ·

(
N(tν)

k0/2
)σ

N(tν)
−k0/2,

where k0 = Max{k1, · · · , kn}. If f is a holomorphic Hilbert modular form given as

f = (f1, · · · , fh), we define fσ to be fσ = (f
[σ]
1 , · · · , f [σ]

h ).

Proposition 5.4.2 (Shimura, [41]) Let f = (f1, · · · , fh) be in Mk(n, ω̃), and σ ∈

Aut(C). Then fσ ∈ Mkσ(n, ω̃σ), and C(m, fσ) = C(m, f)σ. Furthermore, fσ is prim-

itive whenever f is.

5.4.2 The action of Aut(C) on global representations

The following theorem is due to Harder [19] and Waldspurger [46] for GL2 over any

number field (although we state it only for our totally real base field F ). It was gen-

eralized to GLn over any number field by Clozel [7]. We have adapted the statement

from Clozel’s and Waldspurger’s articles. In a classical context of Hilbert modular

forms it is due to Shimura [41]; see also Garrett [12, Theorem 6.1].

Theorem 5.4.3 Let Π be a regular algebraic cuspidal automorphic representation.

For any σ ∈ Aut(C), define an abstract irreducible representation σΠ = ⊗vσΠv of

GL2(AF ) as follows:
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• For any finite place v, suppose the representation space of Πv is Vv, then pick

any σ-linear isomorphism Av : Vv → V ′v , and define σΠv as the representation

of GL2(Fv) acting on V ′v by σΠv(g) = Av ◦ Πv(g) ◦ A−1
v . The definition of σΠv

is, up to equivalence, independent of all the choices made.

• For v ∈ S∞, define σΠv := Πσ−1v, i.e., (σΠ)∞ = ⊗ηΠσ−1◦η where η runs through

the set Hom(F,C) of all infinite places of the totally real field F .

Then σΠ is also a regular algebraic cuspidal automorphic representation. The ratio-

nality field Q(Πf ), which is defined as the subfield of C fixed by {σ : σ(Πf ) ' Πf}, is

a number field. For any field E containing Q(Πf ), the representation Πf of GL2(AF,f )

has an E-structure that is unique up to homotheties.

(Note that the above action is a left-action, i.e., στΠ = σ(τΠ).) Suppose σ fixes

Πf for a representation Π as in the theorem above, then by the strong multiplicity

one theorem, σ fixes Π; which justifies a change in notation: Q(Π) instead of Q(Πf ).

5.4.3 Aut(C)-equivariance of the dictionary

Proposition 5.4.2 guarantees that fσ is a primitive holomorphic Hilbert modular form

if f is. Therefore, by the bijection discussed in Section 5.1 and Section 5.2, there exists

a cuspidal automorphic representation Π(fσ) of a certain type that corresponds to fσ.

Now, the question is: how one can compare the Aut(C)-action on the space of Hilbert

modular forms with the Aut(C)-action on the space of cuspidal automorphic repre-

sentations? The obvious guess that Π(fσ) = σΠ(f) is not quite correct; indeed, σΠ(f)

may not even be an automorphic representation. The following theorem answers our

question.

Theorem 5.4.4 Let f ∈ Sk(n, ω̃) be primitive, with k = (k1, · · · , kn). Assume that

k1 ≡ · · · ≡ kn mod 2. Then the map f 7→ Π(f)⊗| |k0/2 is Aut(C)-equivariant, where

k0 = Max{k1, · · · , kn}.
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Proof. First, let us note that Π(f) is algebraic if k0 ≡ 0 mod 2, and Π(f) ⊗ | |1/2

is algebraic when k0 ≡ 1 mod 2; these follow easily from 4.2.1. These cases may

be uniformized by considering the twist Π(f) by | |k0/2 to say that Π(f) ⊗ | |k0/2

is an algebraic cuspidal automorphic representation for all k that satisfy the parity

condition in the hypothesis. Further, if kj ≥ 2 for all j, then Π(f) ⊗ | |k0/2 is a

regular algebraic cuspidal automorphic representation; this can be seen immediately

from 4.4.3 after one notes that Π(f) ⊗ | |k0/2 ∈ Coh(G, µv), where the weight µ =

(µ1, . . . , µn) is given by:

µj =

(
k0 + kj − 2

2
,
k0 − kj + 2

2

)
. (5.4.5)

(Let us add a comment about kj ≥ 2. Even in the elliptic modular case, a weight

1 form is not of motivic type; another facet of the same phenomenon is that the

associated representation after twisting by | |1/2 is algebraic but not regular; or that

the associated L-function has no critical points.)

By Theorem 5.4.3, the representation σ(Π(f) ⊗ | |k0/2) is also a regular algebraic

cuspidal automorphic representation. Let us note that this representation, however,

does not have an appropriate central character to apply the “dictionary.” In order

to modify the central character, twist it by | |−k0/2 and consider the representation

Π′ := σ(Π(f) ⊗ | |k0/2) ⊗ | |−k0/2. This representation is cuspidal and automorphic,

whose local representations at infinity places are ⊗ηΠ(f)σ−1η, i.e., the permutation

of the discrete series representations {Dkj−1}, and such that the conductor is n, and

that the central character is trivial on F∞+ . Therefore, by Section 5.2, there is a

primitive holomorphic Hilbert modular form of weight kσ and level n. It remains to

show that this cusp form is actually fσ, and that the central character of Π′ is ω̃σ.

By Theorem 5.1.4, it is enough to show that Π′p coincides with Π(fσ)p for almost

all finite places p. In particular, let p be a place of F that does not divide n. Then,

the local representation Π′p at p is a spherical representation, say induced from χ′1,p

and χ′2,p, and write it as Π′p = π
(
χ′1,p, χ

′
2,p

)
. We use the following lemma to see these

55



characters more carefully.

Lemma 5.1 (Waldspurger, [46]) Let Π = π(χ1, χ2) be a spherical representation

induced from χ1 and χ2, then σΠ is also spherical, and it is induced from characters

defined as | |−1/2σ(χi · | |1/2), where i = 1, 2.

Let Π(f)p = π(χ1,p, χ2,p). By the lemma above, the characters χ′i,p can be de-

scribed as

χ′i,p = | |−
k0+1

2
p σ

(
χi,p · | |

k0+1
2

p

)
.

Therefore, a direct computation shows that

(
χ′1,p + χ′2,p

)
($p) = q

− k0+1
2

p

(
q
k0+1

2
p

)σ (
q

1−k0
2

p C(p, f)

)σ
= q

1−k0
2

p C(p, f)σ

= q
1−k0

2
p C(p, fσ) by Proposition 5.4.2,

and

χ′1,p · χ′2,p = σ(ω̃).

This says that q
1/2
p

(
χ′1,p + χ′2,p

)
($p) gives the eigenvalue for the Hecke operator

Tp applied to fσ, which can be seen by the same computation done in (5.1.5), and

that χ′1,p · χ′2,p is the central character ω̃σ of Π(fσ). This completes the proof of

Theorem 5.4.4.

5.4.4 Rationality fields

Let f be a primitive form in Sk(n, ω̃). Define the rationality field of f as

Q(f) := Q(C(m, f) : for all integral ideals m}). (5.4.6)

This is the field generated over Q by the eigenvalues of f for all the normalized Hecke

operators T′m. Shimura [41, Proposition 2.8] proves that this field is a number field

which is in fact generated by C(p, f) for almost all prime ideals p. Further, this
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number field is either totally real, or a totally imaginary quadratic extension of a

totally real number field.

Let Π = Π(f), and we have checked that Π(f) ⊗ | |k0/2 is a regular cuspidal

automorphic representation. Define the rationality field Q(Π) to be

Q(Π) := C{σ∈Aut(C):σΠf=Πf}. (5.4.7)

That is the subfield of C fixed by the group {σ ∈ Aut(C) : σΠf = Πf} of all C-

automorphisms which fix Πf . By strong multiplicity one, σΠf = Πf if and only if

σΠp = Πp for almost all prime ideals p.

Using Proposition 5.4.2 it is clear that Q(f) is the subfield of C fixed by the group

{σ ∈ Aut(C) : σ(C(m, f)) = C(m, f))}. It follows that Q(f) = Q(Π(f)).

57



CHAPTER 6

Algebraicity Theorem

Shimura proved the following fundamental result (see [41, Theorem 4.3]) on the crit-

ical values of the standard L-function attached to a holomorphic Hilbert modular

form.

Theorem 6.0.1 (Shimura) Let f be a primitive holomorphic Hilbert modular cusp

form of type (k, ω̃) over a totally real number field F of degree n. Assume that the

weight k = (k1, . . . , kn) satisfies the parity condition

k1 ≡ · · · ≡ kn (mod 2).

Let k0 = min(k1, . . . , kn) and k0 = max(k1, . . . , kn). There exist nonzero complex

numbers u(r, fσ) defined for r ∈ Zn/2Zn and σ ∈ Aut(C) such that for any Hecke

character χ of A×F of finite order, for any integer m with

(k0 − k0)/2 < m < (k0 + k0)/2,

and for any σ ∈ Aut(C), we have

σ

(
Lf (m, f , χ)

(2πi)mn τ(χ)u(ε, f)

)
=

Lf (m, f
σ, χσ)

(2πi)mn τ(χσ)u(ε, fσ)
,

where ε is prescribed by: χ(a) = sgn[aεN(a)m]; the quantity τ(χ) is the Gauss sum

attached to χ, and Lf (s, f , χ) is the (finite part of the) standard L-function attached

to f , twisted by χ.

The purpose of this chapter is to give another proof of the above theorem, which

is rather different from Shimura’s proof. However, before proceeding any further, let
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us mention that our proof is contained in the union of these papers: Harder [19],

Hida [24]; see also Dou [10]. What is different from these papers is an organizational

principle based on the period relations proved in Raghuram-Shahidi [38] while working

in the context of regular algebraic cuspidal automorphic representations.

The first main theorem proved in this chapter is:

Theorem 6.0.2 (Central critical value) Let Π be a regular algebraic cuspidal au-

tomorphic representation of GL2(AF ), for a totally real number field F of degree

n = nF = [F : Q]. For every ε ∈ {±}n, we define pε(Π) ∈ C∗ which have the fol-

lowing property: Assume that s = 1/2 is critical for the standard L-function L(s,Π)

attached to Π. Then for any σ ∈ Aut(C) we have

σ

(
Lf (

1
2
,Π)

(2πi)d∞p(+,...,+)(Π)

)
=

Lf (
1
2
, σΠ)

(2πi)d∞p(+,...,+)(σΠ)
,

where d∞ = d(Π∞) = d(σΠ∞) is an integer determined by the representation at

infinity; see Proposition 6.2.16.

In particular,

Lf (1/2,Π) ∼Q(Π) (2πi)d∞p(+,...,+)(Π),

where, by ∼Q(Π), we mean up to an element of the number field Q(Π).

The following result on all critical values for twisted L-functions follows from the

period relations proved in [38].

Corollary 6.0.3 (All critical values) Let Π be a regular algebraic cuspidal au-

tomorphic representation of GL2(AF ), for a totally real number field F of degree

n = nF = [F : Q]. Let η1, . . . , ηn be all the infinite places of F . Assume that

s = 1
2

+ m ∈ 1
2

+ Z is critical for the standard L-function L(s,Π) attached to Π.

Then, for any finite order character χ of F×\A×F , and for any σ ∈ Aut(C) we have

σ

(
Lf (

1
2

+m,Π⊗ χ)

(2πi)d∞+nm p((−1)mεχ)(Π)G(χ)

)
=

Lf (
1
2

+m, σΠ⊗ σχ)

(2πi)d∞+nm p((−1)mεσχ)(σΠ)G(σχ)
,
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where εχ = (χη1(−1), . . . , χηn(−1)) is the ‘parity’ of χ determined completely by χ∞ =

⊗nj=1χηj ; and G(χ) is the Gauss sum of χ.

In particular,

Lf (1/2 +m,Π⊗ χ) ∼Q(Π,χ) (2πi)d∞+nmp((−1)mεχ)(Π)G(χ),

where, by ∼Q(Π,χ), we mean up to an element of the compositum of Q(Π) and Q(χ).

To see that the corollary exactly corresponds to Shimura’s Theorem 6.0.1 above,

we need to know some arithmetic properties of the dictionary between primitive

holomorphic Hilbert modular forms for F and regular algebraic cuspidal automorphic

representations of GL2 over F . The main statements are summarized in the theorem

below.

Theorem 6.0.4 Let f and Π(f) be such as described in Theorem 5.0.1. Then it has

the following properties.

1. (L-functions) For any finite order character χ of F×\A×F we have an equality

of (completed) L-functions:

L(s,Π(f)⊗ χ) = L(s+
k0 − 1

2
, f , χ),

where the left hand side is the standard L-function defined as in Jacquet and

Langlands [25], and the right hand side is defined via a Dirichlet series as in

Shimura [41].

2. (Algebraicity)

(a) if k1 ≡ · · · ≡ kn ≡ 0 (mod 2) then Π(f) is algebraic;

(b) if k1 ≡ · · · ≡ kn ≡ 1 (mod 2) then Π(f)⊗ | |1/2 is algebraic;

(c) if ki 6≡ kj (mod 2) for some i and j then no twist of Π(f) is algebraic.
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Note that (a), (b) and (c) can all be put-together as

k1 ≡ · · · ≡ kn (mod 2) ⇐⇒ Π(f)⊗ | |k0/2is algebraic.

3. (Regularity) Suppose now that k1 ≡ · · · ≡ kn (mod 2). Then Π(f) ⊗ | |k0/2 is

regular exactly when each kj ≥ 2.

4. (Galois equivariance) Let k1 ≡ · · · ≡ kn (mod 2) with kj ≥ 2 for all j. Then,

for any σ ∈ Aut(C) we have:

σ(Π(f)⊗ | |k0/2) = Π(fσ)⊗ | |k0/2,

where the action of σ on representations is as in Clozel [7] or Waldspurger [46],

and on Hilbert modular forms is as in Shimura [41].

5. (Rationality field) Let Q(f) be the field generated by the Fourier coefficients of

f , and let Q(Π(f)) be the subfield of complex numbers fixed by the set of all σ ∈

Aut(C) such that σΠ(f)v = Π(f)v for all finite places v. Then Q(f) = Q(Π(f)).

The first property was introduced in Section 5.3.3 for the case that χ is trivial,

and the properties 2, 3, and 4 are contained in Theorem 5.4.4. Recalling arithmetic

issues of regular algebraic cuspidal automorphic representations discussed in 4.4, we

start Section 6.1 by providing a summary of the definition of certain periods which

arise via a comparison of a rational structure on a Whittaker model of Π with a

rational structure on a cohomological realization of Π. We also record certain rela-

tions amongst these periods as in Raghuram-Shahidi [38]. Section 6.2 is devoted to

complete the proofs of Theorem 6.0.2 and Corollary 6.0.3.

6.1 Periods and period relations

6.1.1 Periods

We now look closely at the assertion that Πf has an E-structure. On the one hand, a

cuspidal automorphic representation Π of GLn(AF ) admits a Whittaker model, and
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these models carry a natural rational structure. On the other hand, if Π is regular and

algebraic, then it contributes to cuspidal cohomology and from this arises a rational

structure on a cohomological realization of Π. One defines periods by playing off these

rational structures against each other. (Another word for these ‘periods’ might be

‘regulators’, as the definition our periods is very close in spirit to Borel’s regulators

[2].) The rest of 6.1 is a very brief summary of Raghuram-Shahidi [38].

As a matter of definition/notation, given a C-vector space V , and given a subfield

E ⊂ C, by an E-structure on V we mean an E-subspace VE such that the canonical

map VE ⊗E C→ V is an isomorphism. Further, if V is a representation space for the

action of a group G, then we will need VE to be G-stable. Fixing an E-structure gives

an action of Aut(C/E) on V , by making it act on the second factor in V = VE ⊗E C.

Having fixed an E-structure, for any extension E ′/E, we have a canonical E ′-structure

by letting VE′ = VE ⊗E E ′.

6.1.2 Rational structures on Whittaker models

Recall from 2.8 that we have fixed a nontrivial character ψ = ψ∞⊗ψf of F\AF . Let

W(Π, ψ) be the Whittaker model of Π, and this factors as W(Π, ψ) =W(Π∞, ψ∞)⊗

W(Πf , ψf ). There is a semilinear action of Aut(C) on W(Πf , ψf ) which is defined as

follows. (See Harder [19, pp.79-80].) Consider:

Aut(C/Q) → Gal(Q/Q) → Gal(Q(µ∞)/Q) → Ẑ× '
∏
p Z×p ⊂

∏
p

∏
p|pO

×
p

σ 7→ σ|Q 7→ σ|Q(µ∞) 7→ tσ 7→ tσ = (tσ,p)p

where the last inclusion is the one induced by the diagonal embedding of Z×p into∏
p|pO×p . The element tσ at the end can be thought of as an element of A×F,f . Let

[t−1
σ ] denote the diagonal matrix diag(t−1

σ , 1) regarded as an element of GL2(AF,f ).

For σ ∈ Aut(C) and W ∈ W(Πf , ψf ), define the function σW by

σW (gf ) = σ(W ([t−1
σ ]gf ))
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for all gf ∈ GL2(AF,f ). Note that this action makes sense locally, by replacing tσ by

tσ,p. Further, if Πp is unramified, then a spherical vector is mapped to a spherical

vector under σ. If we normalize the spherical vector to take the value 1 on the identity,

then σ fixes this vector. This makes the local and global actions of σ compatible.

Lemma 6.1 With notation as above, W 7→ σW is a σ-linear GL2(AF,f )-equivariant

isomorphism from W(Πf , ψf ) onto W (σΠf , ψf ). For any finite extension E/Q(Πf )

we have an E-structure on W(Πf , ψf ) by taking invariants:

W(Πf , ψf )E =W(Πf , ψf )
Aut(C/E).

Proof. See Raghuram-Shahidi [38, Lemma 3.2]; it amounts to saying that a nor-

malized new-vector generates the E-structure obtained by taking invariants under

Aut(C/E). (It helps to keep Waldspruger’s [46, Lemme I.1] in mind.) Later, we will

work with some carefully normalized new-vectors; see 6.2.1 below.

As a notational convenience, when we talk of Whittaker models, we will henceforth

suppress the additive character ψ, since that has been fixed once and for all; for

example,W(Πf ) will denoteW(Πf , ψf ). Next,W(Πf )0 will denote the Q(Π)-rational

structure on W(Πf ).

6.1.3 Rational structures on cohomological representations

Let µ ∈ X+
0 (T ) and Π ∈ Coh(G, µv). For any character ε of π0(G∞), the cohomology

space Hn(g∞,K
◦
∞;VΠ ⊗Mµv)(ε), which as a representation of the group π0(G∞) ×

G(AF,f ) is isomorphic to ε⊗Πf , has a natural Q(Π)-structure which may be seen as
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follows. Consider the following diagram:

Hn(g∞,K
◦
∞;VΠ ⊗Mµv)(ε) ' ε⊗ Πf

↓ ↓

Hn(g∞,K
◦
∞;Acusp(G(Q)\G(A))⊗Mµv) ' Hn

cusp(SG, M̃µv)

↓ ↓

Hn(g∞,K
◦
∞;C∞(G(Q)\G(A))⊗Mµv) ' Hn

dR(SG, M̃µv) ' Hn
B(SG, M̃µv)

where all the vertical arrows are injections induced by inclusions. Indeed, the rational

structures on all the above spaces come from a rational structure on the Betti coho-

mology space on which it is easy to describe an action of Aut(C)–see Clozel [7]. The

point is that cuspidal cohomology admits a Q(µ)-structure which it inherits from ‘the’

canonical Q(µ)-structure on Betti cohomology Hn
B(SG, M̃µv). (By Q(µ) we mean the

subfield of C fixed by {σ : σµ = µ}, where the action of σ on µ, or any quantity indexed

by the infinite places S∞, is via permuting these places, exactly as the action of Aut(C)

on Π∞ described in Theorem 5.4.3.) Since ε ⊗ Πf ' Hn(g∞,K
◦
∞;VΠ ⊗Mµv)(ε) is a

Hecke eigenspace (i.e., is an irreducible subspace for the action of π0(G∞)×G(AF,f ))

of cuspidal cohomology, it follows that this eigenspace admits a Q(Π)-rational struc-

ture.

6.1.4 Comparing Whittaker models and cohomological representations

We have the following comparison isomorphism F εΠ, which is the composition of three

isomorphisms:

W(Πf ) −→ W(Πf )⊗Hn(g∞,K
◦
∞;W(Π∞)⊗Mµv)(ε)

−→ Hn(g∞,K
◦
∞;W(Π)⊗Mµv)(ε)

−→ Hn(g∞,K
◦
∞;VΠ ⊗Mµv)(ε),

where the first map is Wf 7→ Wf ⊗ [Π∞]ε for all Wf ∈ W(Πf ) with [Π∞]ε being the

generator (as in 4.4.5) of the one-dimensional space Hn(g∞,K
◦
∞;W(Π∞) ⊗Mµv)(ε);
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the second map is the obvious one; and the third map is the map induced in coho-

mology by the inverse of the map which gives the Fourier coefficient of a cusp form

in VΠ–the space of functions in Acusp(G(Q)\G(A)) which realizes Π.

6.1.5 Definition of the periods

The isomorphism F εΠ need not preserve rational structures on either side. Each side

is an irreducible representation space for the action of π0(G∞)×G(AF,f ) and rational

structures being unique up to homotheties (by Waldspurger [46, Lemme I.1]), we see

that we can adjust the isomorphism F εΠ by a scalar–which is the period–such that the

adjusted map preserves rational structures. Let us state this more precisely:

Let Π = Πf ⊗ Π∞ be a regular algebraic cuspidal automorphic representation

of GL2(AF ). Let µ ∈ X+
0 (T ) be such that Π ∈ Coh(G, µ∨). Let ε be a char-

acter of K∞/K
◦
∞. Let [Π∞]ε be a generator of the one dimensional vector space

Hn(g∞,K
◦
∞,Π∞ ⊗Mµv)(ε). To such a datum (Πf , ε, [Π∞]ε), there is a nonzero com-

plex number pε(Π), such that the normalized map

F εΠ,0 := pε(Π)−1F εΠ

is Aut(C)-equivariant, i.e., the following diagram commutes:

W(Πf )
FεΠ,0 //

σ

��

Hn(g∞,K
◦
∞;VΠ ⊗Mµv)(ε)

σ

��
W(σΠf )

FσεσΠ,0 // Hn(g∞,K
◦
∞;VσΠ ⊗ Eσµv)(

σε)

The complex number pε(Π), called a period, is well-defined only up to multiplication

by elements of Q(Π)∗. if we change pε(Π) to αpε(Π) with a α ∈ Q(Π)∗ then the period

p
σε(σΠ) changes to σ(α)p

σε(σΠ).

In terms of the un-normalized maps, we can describe the above commutative

diagram by

σ ◦ F εΠ =

(
σ(pε(Π))

pσε(σΠ)

)
Fσε
σΠ ◦ σ. (6.1.1)
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6.1.6 Period relations

The following is the main result proved in Raghuram-Shahidi [38], but stated below for

our context of GL2 over a totally real F . Let µ ∈ X+
0 (T ) be such that Π ∈ Coh(G, µ∨).

Let ε be a character of K∞/K
◦
∞. Let ξ be an algebraic Hecke character of F with

signature εξ which is defined as follows: any such ξ is of the form ξ = | |m⊗ ξ0 for an

integer m, and a finite order character ξ0, then

εξ = (−1)m(ξ0
η1

(−1), . . . , ξ0
ηn(−1)).

For any σ ∈ Aut(C) we have

σ

(
pε·εξ(Π⊗ ξ)
G(ξ) pε(Π)

)
=

(
p
σε·εσξ(σΠ⊗ σξ)

G(σξ) pσε(σΠ)

)
.

The action of Aut(C) on ε is via permuting the infinite places. Define Q(ξ) as the

field obtained by adjoining the values of ξ0, and let Q(Π, ξ) be the compositum of the

number fields Q(Π) and Q(ξ). We have

pε·εξ(Π⊗ ξ) ∼Q(Π,ξ) G(ξ) pε(Π).

By ∼Q(Π,ξ) we mean up to an element of Q(Π, ξ).

6.2 Proof of Theorem 6.0.2

We finally complete the proofs of Theorem 6.0.2 and Corollary 6.0.3. The proof is

rather technical, but the idea is based on a cohomological interpretation of the clas-

sical Mellin transform. We start the section by providing a diagram that summarizes

the proof.
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Hn(g∞,K
◦
∞ : VΠ ⊗Mµv)

� � // Hn
c (GL2(F )\GL2(AF )/K◦∞Kf , M̃µv)

ι∗

��

W(Πf )

F++
Π

OO

��

Hn
c (F×\A×F/ι∗Kf , ι

∗M̃µv)

T ∗
��

Hn
c (F×\A×F/ι∗Kf ,C)∫

M
��

C ⊕hν=1Coo

(6.2.1)

A normalized new vector W ◦
Π in the finite part of Whittaker model W(Πf ) is

mapped to a cohomology class ϑΠ in the relative Lie algebra cohomology Hn(g∞,K
◦
∞ :

VΠ ⊗ Mµv) via a map F++
Π . This map is normalized by the period p(++)(Π) so

that it preserves rational structures on each side. (See Section 6.1.) The coho-

mology class ϑΠ, viewed as an element in the compactly supported cohomology space

Hn
c (GL2(F )\GL2(AF )/K◦∞Kf , M̃µv), can be mapped to a top-degree compactly sup-

ported cohomology class for GL1 with the constant coefficients by the map T ∗ι∗

shown in the diagram above. Applying the Poincaré duality, which maps T ∗ι∗ϑΠ to

a complex number by integrating it over the entire manifold M = F×\A×F/ι∗Kf , we

have ∫
M
T ∗ι∗ϑΠ =

c · L(1/2,Π)

(2πi)d∞p(++)(Π)
, (6.2.2)

where c is an integer. Theorem 6.0.2 follows from this equation and the rationality

of each map used in the diagram. Each step is discussed in detail.

6.2.1 Normalized new vectors

We now show that local new-vectors when normalized appropriately give a very ex-

plicit element in the rational structure W(Πf )0 of the (finite part of the) global

Whittaker model. The new-vectors will be denoted as W ◦
p after a suitable normal-

ization. We should be aware that the normalization is slightly different from what is

done in Section 5.2.
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Recall from 2.8 our choice of additive character ψ. Pick an element dF ∈ OF

such that ordp(dF ) = rp = ord(DF ); this is possible by strong approximation. Now

define a character ψ′ by ψ′(x) = ψ(d−1
F x); then it is trivially checked that ψ′p has

conductor Op for all prime ideals p. We have a map W(Πf , ψ
′
f )→W(Πf , ψf ), given

by W ′
f 7→ Wf where

Wf (g) = W ′
f


 dF 0

0 1

 g

 .

This also makes sense locally: Wp(gp) = W ′
p

((
dp 0
0 1

)
gp
)
, where, by dp, we mean dF as

an element of Fp.

A Whittaker vector W ′
p is completely determined by the function on F ∗p

xp 7→ φ′p(xp) := W ′
p


 xp 0

0 1


 ,

i.e., the map W ′
p 7→ φ′p is injective. (See, for example, Godement [16, Lemma 3 on

p.1.5].) The set of all such functions κ′p is the Kirillov model K(Πp, ψ
′
p). Working

in the Kirillov model K(Πp, ψ
′
p), we have the following explicit formulae for new-

vectors taken from Schmidt [40, p.141]. For each representation Πp we have a very

special vector κnew
p ∈ K(Πp, ψ

′
p) that is the local new-vector in that model. Since the

table consists of purely local information, we will abuse our notation by dropping the

subscript p.

1. Principal series representation π(χ1, χ2), with χ1, χ2 unramified, and χ1χ
−1
2 6=

| |±1. Then

κnew
p (x) = |x|1/2

 ∑
k+l=v(x)

χ1($k)χ2($l)

1O(x).

2. Principal series representation π(χ1, χ2) with exactly one of the characters being

unramified; say χ1 unramified and χ2 ramified. Then

κnew
p (x) = |x|1/2χ1(x)1O(x).
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3. Unramified twist of the Steinberg representation: St ⊗ χ with χ unramified.

Then

κnew
p (x) = |x|χ(x)1O(x).

4. In all other cases (principal series π(χ1, χ2) with both χ1, χ2 ramified; ramified

twist of the Steinberg representation; any supercuspidal representation) we have

κnew
p (x) = 1O×(x)

Let W new
p ∈ W(Πp, ψ

′
p) correspond to κnew

p , and finally we let W ◦
p ∈ W(Πp, ψp)

correspond to W new
p . That is we have:

W ◦
p ↔ W new

p ↔ κnew
p . (6.2.3)

We will also denote W ◦
p by W ◦

Πp
, and observe that

W ◦
Πp


 xp 0

0 1


 = W new

Πp


 dpxp 0

0 1


 = κnew

p (dpxp).

Proposition 6.2.4 Let Π be a cuspidal automorphic representation of GL2(AF ). For

each prime ideal p, let W ◦
Πp

be the normalized new-vector as defined in (6.2.3) of

the representation Πp which is realized in its Whittaker model W(Πp, ψp). For any

σ ∈ Aut(C) we have

σW ◦
Πp

= W ◦
σΠp
.

Let W ◦ = ⊗pW
◦
Πp
∈ W(Πf , ψf ). Then W ◦ is fixed by Aut(C/Q(Π)), and hence W ◦ ∈

W(Πf , ψf )0.

Proof. To see σW ◦
Πp

= W ◦
σΠp

, it suffices to check that both Whittaker vectors give the

same vector in the Kirillov model; which is then verified using a case-by-case analysis

using the above table.

Suppose Πp is an unramified principal series representation, and let us write Πp =

π(χ1,p, χ2,p) for characters χj,p : F ∗p → C∗. Let us describe σΠp. For this, given any
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character χ of F ∗, and any σ ∈ Aut(C), define σχ as σ ◦ χ, i.e., σχ(x) = σ(χ(x)).

Define a twisted action of σ ∈ Aut(C) on characters by:

σ′χ(x) = |x|−1/2σ(χ(x)|x|1/2).

As is checked in Waldspurger [46, I.2], we have

σπ(χ1,p, χ2,p) = π(σ
′
χ1,p,

σ′χ2,p).

On the one hand, using the formula for κnew
p for Πp = π(χ1,p, χ2,p) we have:

σW ◦Πp


 xp 0

0 1


 = σ

W ◦Πp


 t−1

σ,pxp 0

0 1





= σ

W new
Πp


 dpt

−1
σ,pxp 0

0 1





= σ

|dpt−1
σ,pxp|1/2

 ∑
k+l=rp+v(x)

χ1,p($
k)χ2,p($

l)

1Op(dpt
−1
σ,pxp)


= σ(|dpxp|1/2)

 ∑
k+l=rp+v(x)

σ
(
χ1,p($

k)χ2,p($
l)
)1Op(dpxp)

since tσ,p ∈ O×p . On the other hand, using the same formula for κnew
p , but now for

the representation σΠp = π(σ
′
χ1,p,

σ′χ2,p) we have:

W ◦
σΠp


 xp 0

0 1


 = W new

σΠp


 dpxp 0

0 1




= |dpxp|1/2
 ∑
k+l=rp+v(x)

σ′χ1,p($
k)σ

′
χ2,p($

l)

1Op(dpxp)

= |dpxp|1/2|$p|−
r+v(x)

2 ∑
k+l=rp+v(x)

σ
(
χ1,p($

k)χ2,p($
l)|$p|

r+v(x)
2

)1Op(dpxp)

Using |$p|
r+v(x)

2 = |dpxp|1/2 the final expression also simplifies to

σ(|dpxp|1/2)

 ∑
k+l=rp+v(x)

σ
(
χ1,p($

k)χ2,p($
l)
)1Op(dpxp).
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This concludes the proof in the case of an unramified principal series representation.

In all the other cases, the above calculation is much simpler. Let us note that in the

case of the Steinberg representation one has σ(St ⊗ χ) = St ⊗ σχ. We omit further

details.

6.2.2 The global integral

Let Π be a cuspidal automorphic representation as in Theorem 6.0.2. Piece together

all the normalized Whittaker vectors W ◦
p in 6.2.1 and let W ◦ = ⊗pW

◦
p . For each

infinite place ηj pick any Whittaker vector Wj ∈ W(Πηj , ψηj), and put W∞ = ⊗nj=1Wj.

Now put,

W = W∞ ⊗W ◦ ∈ W(Π∞)⊗W(Πf ) =W(Π).

Let φ ∈ VΠ be the cusp form that corresponds to W under the isomorphism VΠ →

W(Π) of taking the ψ-Fourier coefficient. For any place v, and any Wv ∈ W(Πv),

define the zeta-integral

ζv(s,Wv) =

∫
x∈F ∗v

Wv


 x 0

0 1


 |x|s− 1

2dx, <(s)� 0.

Hecke theory for GL2 (see Gelbart [13, Section 6]) says that these integrals have a

meromorphic continuation to all of C. The assumption that s = 1/2 is critical for

L(s,Π) says that ζη(
1
2
,Wη) is finite for every infinite place η. Lastly, let ζ∞(s,W∞) =∏

η∈S∞ ζη(s,Wη).

Proposition 6.2.5 With the notations as above,

∫
F×\A×F

φ


 x 0

0 1


 dx = ζ∞(1/2,W∞)Lf (1/2,Π).

Proof. The usual unfolding argument gives

∫
F×\A×F

φ


 x 0

0 1


 |x|s− 1

2dx =

∫
A×F

W


 x 0

0 1


 |x|s− 1

2dx.
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The integral on the left converges absolutely everywhere (since φ has rapid decay).

The integral on the right converges for <(s) � 0, and there it is eulerian, and so

factorizes as
∏

v ζv(s,Wv). For every prime ideal p, we know that the zeta-integral of

the local new vector gives the local L-function; more precisely, we have

ζp(s,W
◦
p ) = |dp|s−1/2ζp(s,W

new
p ) = |dp|s−1/2Lp(s,Πp).

We deduce that for <(s)� 0 we have

∫
F×\A×F

φ


 x 0

0 1


 |x|s− 1

2dx = ζ∞(s,W∞)Lf (s,Π)|dF |s−1/2

where dF is the absolute discriminant of F . However, the left hand side converges

for all s, and the right hand side has a meromorphic continuation for all s, and so we

can evaluate at s = 1/2 to finish the proof of the proposition.

6.2.3 The cohomology class ϑΠ attached to W ◦
Π

Consider the map

F++
Π :W(Πf )→ Hn(g∞,K

◦
∞;VΠ ⊗Mµv)(++)

as in 6.1.4, and let ϑΠ be the image of W ◦
Π under this map, i.e.,

ϑΠ = F++
Π (W ◦

Π).

Fix an open compact subgroup Kf which leaves W ◦
Π invariant; an optimal one is

related to the conductor of Π, but this will not play a role here. From 4.4.1, we have

ϑΠ ∈ Hn
cusp(SGKf , M̃µv) ⊂ Hn(SGKf , M̃µv).

It is a fundamental fact (see Clozel [7]) that cuspidal cohomology injects into coho-

mology with compact supports, i.e.,

Hn
cusp(SGKf , M̃µv) ↪→ Hn

c (SGKf , M̃µv).
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Therefore

ϑΠ ∈ Hn
c (SGKf , M̃µv).

Recall that map F++
Π is a composition of three isomorphisms, and the first one

maps W ◦
Π to W ◦

Π ⊗ [Π∞]++, where the class [Π∞]++ is given in (4.4.8). Using an

analogous notation, we may write the class ϑΠ in terms of Lie algebra cocycles as

ϑΠ =
∑

l=(l1,...,ln)

∑
α=(α1,...,αn)

z∗l ⊗ φl,α ⊗ sα (6.2.6)

where φl,α ∈ VΠ are cuspforms whose corresponding Whittaker functions in W(Π) =

W(Π∞)⊗W(Πf ) are

φl,α ↔ Wl,α = Wl,α,∞ ⊗W ◦
Π.

For later use, let us record the action of Aut(C) on ϑΠ which is given by the

following

Proposition 6.2.7

σϑΠ =
σ(p++(Π))

p++(σΠ)
ϑσΠ.

Proof. This follows from Equation (6.1.1) and Proposition 6.2.4:

σϑΠ = σ(F++
Π (W ◦

Π)) =

(
σ(p++(Π))

p++(σΠ)

)
F++
σΠ (σW ◦

Π)

=

(
σ(p++(Π))

p++(σΠ)

)
F++
σΠ (W ◦

σΠ) =
σ(p++(Π))

p++(σΠ)
ϑσΠ.

6.2.4 Pulling back to get a GL1-class ι∗ϑΠ

Let ι : GL1 → GL2 be the map x 7→ ( x 1 ). Then ι induces a map at the level of

local and global groups, and between appropriate symmetric spaces of GL1 and GL2,

all of which will also be denoted by ι again; this should cause no confusion. The

pullback (of a subset, a function, a differential form, or a cohomology class) via ι will
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be denoted ι∗. A little more precisely, ι induces an injection:

ι : GL1(F )\GL1(AF )/ι∗K◦∞ι
∗Kf ↪→ GL2(F )\GL2(AF )/K◦∞Kf .

Note that ι∗K◦∞ = {1}, and let us denote Rf := ι∗Kf which is an open compact

subgroup of A×F,f . The above injection will be denoted ι : S̄G1
Rf

↪→ SGKf , where

S̄G1
Rf

= F×\A×F/Rf .

As a manifold S̄G1
Rf

is an oriented n-dimensional manifold all of whose connected

components are isomorphic to
∏n

j=1 R>0. (Choose the obvious orientation on each

connected component.) It is a standard fact that this inclusion ι : S̄G1
Rf

↪→ SGKf is a

proper map, and hence we can pull back ϑΠ ∈ Hn
c (SGKf , M̃µv) by ι, to get

ι∗ϑΠ ∈ Hn
c (S̄G1

Rf
, ι∗M̃µv)

where ι∗M̃µv is the sheaf on S̄G1
Rf

given by the pullback of the sheaf M̃µv .

We note that the construction of the pullback sheaf is somehow complicated in

general: We first define the presheaf p(ι∗M̃ v
µ) on S̄G1

Rf
by putting

p(ι∗M̃ v
µ)(U) := lim−−−−−→

V⊃ι(U)

M̃ v
µ(V )

for any open set U in S̄G1
Rf

. The sheafification of this presheaf gives us the pullback

sheaf ι∗M̃µv of M̃µv . We now claim that this pullback sheaf is the restriction of the

representation Mµv to GL1 via ι, i.e., ι̃∗Mµv . To see this, we recall some basic facts

from sheaf theory. (See [21, Chapter 3] for details.)

Proposition 6.2.8 Let F and G be sheaves on X. A morphism φ : F −→ G between

two sheaves is an isomorphism if and only if, for all x ∈ X, the homomorphism at

the level of stalks is an isomorphism, i.e., φx : Fx
∼−→ Gx.

For our case, a morphism from ι∗M̃µv to ι̃∗Mµv is given by the restriction. Consider

the following diagram.
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A×/ι∗Kf

p1

��

� � ι // G(A)/K◦∞Kf

p2

��

S̄GL1
ι∗Kf
� � ι // SGL2

Kf

Here, the vertical arrows are projections. The stalks at x in S̄GL1
ι∗Kf

for each sheaf

is described as the following.

(
ι∗M̃µv

)
x

def
=

(
M̃µv

)
ι(x)

= lim−→
(x 1 )∈V

sV : p−1
2 (V ) −→Mµv :

sV (γg) = γ.sV (g) for g ∈ SGL2
Kf

,

sV is locally constant


(
ι̃∗Mµv

)
x

= lim−→
x∈U

tU : p−1
1 (U) −→Mµv :

tU(γg) = γ.tU(g) for g ∈ S̄GL1
ι∗Kf

,

tU is locally constant


The isomorphisms of these stalks given by the restriction need to be shown. Let

us recall the definition of germ:

Definition 6.2.9 An element sp in the stalk Fp at p is called a germ of a section. A

germ sp can be represented by a section sU ∈ F(U) for an open set U containing the

point p: sp = sU |p.

In particular, a germ of a continuous function at p is a continuous function φ :

Up −→ C defined in an open neighborhood Up of p modulo the following equivalence

relation:

(φ : Up −→ C) ∼ (ψ : Vp −→ C)

if and only if there is a neighborhood Wp ⊂ Up ∩ Vp of p such that and φ|Wp = ψ|Wp .

For any section sV ∈ ι∗M̃µv(V ), the restriction to GL1, i.e., sV |ι−1 gives a section

in ι̃∗Mµv(U) where U = ι−1(V ). To see that this map is surjective, let us take any

element x in S̄GL1
Rf

and a connected open neighborhood Ux of x. Then any section tUx
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in ι̃∗Mµv(Ux) is a constant function, say tUx(g) = m. Choose a connected open set

V in SGL2
Kf

that contains ι(Ux). A constant map sV : p−1
2 (V ) −→ {m} is an element

in ι∗M̃µv(V ) and its restriction to Ux equals tUx . This proves the surjectivity. The

injectivity follows from the surjectivity because Mµv is finite dimensional. This proves

that

ι∗M̃µv = ι̃∗Mµv .

6.2.5 Criticality of s = 1/2 and the coefficient µ

We now appeal to the hypothesis that s = 1/2 is critical to deduce that we can work

with cohomology with trivial coefficients, i.e., in Hn(S̄G1
Rf
,C). For this, let us first

record all the critical points for the L-function at hand:

Proposition 6.2.10 Let Π ∈ Coh(G, µv), with µ ∈ X+
0 (T ). Suppose µ = (µ1, . . . , µn)

where µj = (aj, bj) and aj ≥ bj. Then

s =
1

2
+m ∈ 1

2
+ Z is critical for L(s,Π) ⇐⇒ −aj ≤ m ≤ −bj, ∀j.

Proof. Recall the definition (as stated, for example, in Deligne [9]) for a point to be

critical. If we are working with an L-function for GLn then the so-called motivic

normalization says that critical points are in the set n−1
2

+ Z. In our situation, we

would say s = s0 ∈ 1
2

+ Z is critical for L(s,Π) if and only if both L∞(s,Π∞) and

L∞(1− s,Πv
∞) are regular at s = s0, i.e., the L-factors at infinity on both sides of the

functional equation do not have poles at s = s0. (Automorphic L-functions are always

normalized so that the functional equation looks like L(s,Π) = ε(s,Π)L(1− s,Πv).)

Given Π ∈ Coh(G, µv), we know from 4.2.3 and 4.4.2 that

Π∞ = ⊗jΠηj = ⊗j(Daj−bj+1 ⊗ | |(aj+bj)/2).

Since Dl is self-dual, we also have

Πv
∞ = ⊗j(Daj−bj+1 ⊗ | |−(aj+bj)/2).
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Using the information in 4.1.2 on the local factors for GL2(R), and ignoring nonzero

constants and exponentials (which are irrelevant to compute critical points) we have:

L∞(s,Π∞) ∼
∏
j

Γ

(
s+

1

2
+ aj

)
, L∞(1− s,Πv

∞) ∼
∏
j

Γ

(
1− s+

1

2
− bj

)
.

Hence, L∞(s,Π∞) is regular at 1
2
+m if and only if m+aj ≥ 0; similarly, L∞(1−s,Πv

∞)

is regular at 1
2

+m if and only if −m− bj ≥ 0.

Corollary 6.2.11 Let Π ∈ Coh(G, µv), with µ ∈ X+
0 (T ). Suppose µ = (µ1, . . . , µn)

where µj = (aj, bj) and aj ≥ bj. The center of symmetry s = 1/2 is critical if and

only if HomGL1(F∞)(Mµv , 11) 6= 0.

Proof. Follows from the above proposition and Lemma 4.2.

6.2.6 The cohomology class T ∗ι∗ϑΠ with trivial coefficients

When s = 1/2 is critical, let us let

T ∈ HomGL1(F∞)(Mµv , 11)

be the nonzero element as prescribed by Lemma 4.2. Since everything factors over

infinite places, we can let T = ⊗nj=1Tj, with Tj ∈ HomGL1(Fηj )(Mµjv , 11). The map T

induces a morphism of sheaves on the space S̄G1
Rf

, and by functoriality, a homomor-

phism

T ∗ : Hn
c (S̄G1

Rf
, ι̃∗Mµv)→ Hn

c (S̄G1
Rf
,C).

The image of the class ι∗ϑΠ under T ∗, expressed in terms of relative Lie algebra

cocycles, is given by:

T ∗ι∗ϑΠ =
∑

l=(l1,...,ln)

∑
α=(α1,...,αn)

ι∗z∗l ⊗ ι∗φl,α ⊗ T (sα) =
∑

l=(l1,...,ln)

ι∗z∗l ⊗ ι∗φl,a (6.2.12)

where a = (a1, . . . , an). This follows from (6.2.6) and Lemma 4.2.
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Since the map T is defined over Q, as after all the standard basis for Mµjv gives

it a Q-structure, the morphism T ∗ is rational, i.e, for all σ ∈ Aut(C) we have

σ ◦ T ∗ = T ∗ ◦ σ (6.2.13)

Observe that T ∗ι∗ϑΠ is a top-degree compactly supported cohomology class for

S̄GL1
Rf

.

6.2.7 Top-degree cohomology with compact supports

Let us recall some basic topological facts here. Let M be an oriented n-dimensional

manifold with h connected components, indexed by ν with 1 ≤ ν ≤ h. Then Poincaré

duality implies that

Hn
c (M,C) ' ⊕hν=1C.

(See, for example, Harder [21, 4.8.5].) The map is integration over the entire mani-

fold with some chosen orientation; for each connected component you get a complex

number. Now let us add these numbers to get a map ϑ 7→
∫
M ϑ∫

M
: Hn

c (M,C)→ C.

As explained in Raghuram [36, 3.2.3], such a map given by Poincaré duality is rational,

i.e.,

σ

(∫
M
ϑ

)
=

∫
M

σϑ. (6.2.14)

6.2.8 The main identity

Recall that T ∗ι∗ϑΠ ∈ Hn
c (S̄G1

Rf
,C) is a top-degree compactly supported cohomology

class. We can integrate it over all of S̄G1
Rf

. The main technical theorem needed to

analyze the arithmetic properties of the special value L(1/2,Π) is

Theorem 6.2.15 ∫
S̄
G1
Rf

T ∗ι∗ϑΠ =
〈[Π∞]++〉

(4i)nvol(Rf )
Lf (1/2,Π)
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where

〈[Π∞]++〉 =
∑

l=(l1,...,ln)

ζ∞(1/2,Wl,a,∞).

Proof. Recall that (6.2.12) gives

T ∗ι∗ϑΠ =
∑

l=(l1,...,ln)

∑
α=(α1,...,αn)

ι∗z∗l ⊗ ι∗φl,α ⊗ T (sα) =
∑

l=(l1,...,ln)

ι∗z∗l ⊗ ι∗φl,a.

We will identify the terms ι∗z∗l . Consider just one copy of GL1(R) sitting inside

GL2(R) via ι. Let t1 := 1 be a basis for g1 = C. (Fixing t1 is tantamount to fixing

an orientation on R>0 = GL1(R)◦. Taking all the infinite places together, this will be

fixing an orientation on each connected component of S̄G1
Rf

.) Note that

ι(t1) =
1

4i
(z1 + z2 + ( 2i 0

0 2i )) , in g2,

=
1

4i
(z1 + z2) , in g2/k2,

hence ι∗z∗1 = ι∗z∗2 = 1
4i

t∗1. Applying this to each infinite place, we see

ι∗z∗l = ⊗ι∗z∗j,lj =
1

(4i)n
⊗nj=1 t∗j,1,

where tj,1 is the element t1 for the infinite place ηj.

Using the fact that φl,α is fixed by Kf which implies that ι∗φl,a is fixed by Rf =

ι∗Kf we get∫
S̄
G1
Rf

T ∗ι∗ϑΠ =
∑

l=(l1,...,ln)

1

(4i)n

∫
S̄
G1
Rf

ι∗φl,a

=
1

(4i)n

∑
l=(l1,...,ln)

∫
F×\A×F /Rf

φl,a


 x

1


 dx

=
1

(4i)nvol(Rf )

∑
l=(l1,...,ln)

∫
F×\A×F

φl,a


 x

1


 dx

=
1

(4i)nvol(Rf )

∑
l=(l1,...,ln)

(ζ∞(1/2,Wl,a,∞)Lf (1/2,Π))

where the last equality is due to Proposition 6.2.5.
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6.2.9 Archimedean computations

Proposition 6.2.16 Given Π ∈ Coh(G, µv), with µ = (µ1, . . . , µn) and µj = (aj, bj),

we have

〈[Π∞]++〉 = c (2πi)−d∞in

where d∞ =
∑n

j=1(aj + 1), and c is a nonzero integer (which is made explicit in the

proof).

Proof. To compute 〈[Π∞]++〉 =
∑

l=(l1,...,ln) ζ∞(1/2,Wl,a,∞), let us begin by noting

that each summand is a product over infinite places:

ζ∞(1/2,Wl,a,∞) =
n∏
j=1

ζηj(1/2, λj,lj ,aj)

where the λj,lj ,aj are as in (4.4.7). We can rewrite the expression for 〈[Π∞]++〉 as∑
l=(l1,...,ln)

n∏
j=1

ζηj(1/2, λj,lj ,aj) =
n∏
j=1

(
ζηj(1/2, λj,1,aj) + ζηj(1/2, λj,2,aj)

)
.

The j-th factor in the right hand side is the value at s = 1/2 of the sum of two

zeta-integrals:

ζηj(s, λj,1,aj) + ζηj(s, λj,2,aj).

Using the definitions of ζη and λj,lj ,aj we get

∫
x∈R∗

(
aj − bj
aj

)
iajλ(aj−bj+2)


 x 0

0 1


 |x|s− 1

2dx

+

∫
x∈R∗

(
aj − bj
aj

)
i−ajλ−(aj−bj+2)


 x 0

0 1


 |x|s− 1

2dx.

Recall that the integrals converge for <s� 0. In the second integral, using the fact

that δ(λaj−bj+2) = i2ajλ−(aj−bj+2), and changing variable from x to −x, we see that it

is the same as the first integral. Hence

ζηj(s, λj,1,aj) + ζηj(s, λj,2,aj) = 2

(
aj − bj
aj

)
iaj
∫
x∈R∗

λ(aj−bj+2)


 x 0

0 1


 |x|s− 1

2dx.
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It is well-known that the zeta-integral of ‘the lowest weight vector’ λ(aj−bj+2) gives the

local L-factor L(s,Πηj), i.e., the local factor for the representation Πηj = Daj−bj+1 ⊗

| |(aj+bj)/2. (See, for example, Gelbart [13, Proposition 6.17].) Using the information

on local factors in 4.1.2, we get

ζηj(s, λj,1,aj) + ζηj(s, λj,2,aj) = 4

(
aj − bj
aj

)
iaj(2π)−(s+ 1

2
+aj)Γ

(
s+

1

2
+ aj

)
.

The left hand side converges for <s � 0 and has a meromorphic continuation to all

s, and in the right hand side the Γ-function also makes sense, after continuation, to

all s; hence we can put s = 1/2 to get

ζηj(1/2, λj,1,aj) + ζηj(1/2, λj,2,aj) = 4

(
aj − bj
aj

)
Γ(aj + 1)iaj(2π)−(aj+1)

= 4
(aj − bj)!

(−bj)!
(−1)aj i(2πi)−(aj+1).

Hence 〈[Π∞]++〉 = c (2πi)−d∞in where c is the integer:

c = 4n
n∏
j=1

(−1)aj
(aj − bj)!

(−bj)!
.

Let us note that σ ∈ Aut(C) acts on Π∞ by permuting the infinite places; in

particular,

〈[σΠ∞]++〉 = 〈[Π∞]++〉.

This kind of an explicit computation very quickly escalates in complexity when we

go from GL2 to higher GLn. Indeed, there are many conditional theorems on special

values of L-functions that have been proved under the assumption that a quantity

analogous to 〈[Π∞]++〉 is nonzero. See, for example, Kazhdan-Mazur-Schmidt [26],

Mahnkopf [31], or Raghuram [36].
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6.2.10 Concluding part of the proof of Theorem 6.0.2

We can now finish the proof as follows. Using Proposition 6.2.16 in the main identity

of Theorem 6.2.15 we have∫
S̄
G1
Rf

T ∗ι∗ϑΠ =
c

4nvol(Rf )

Lf (1/2,Π)

(2πi)d∞
. (6.2.17)

Apply σ ∈ Aut(C) to both sides, while noting that c/(4nvol(Rf )) is a nonzero rational

number, to get

σ

(∫
S̄
G1
Rf

T ∗ι∗ϑΠ

)
=

c

4nvol(Rf )
σ

(
Lf (1/2,Π)

(2πi)d∞

)
.

Using (6.2.14), that σ commutes with ι∗–since restriction of a class to a submanifold

is a rational operation, (6.2.13), and using Proposition 6.2.7, we get that the left hand

side simplifies to

σ

(∫
S̄
G1
Rf

T ∗ι∗ϑΠ

)
=

σ(p++(Π))

p++(σΠ)

∫
S̄
G1
Rf

T ∗ι∗ϑσΠ =
σ(p++(Π))

p++(σΠ)

c

4nvol(Rf )

Lf (1/2,
σΠ)

(2πi)d∞
,

where the last equality follows by applying (6.2.17) for the representation σΠ. Hence,

we have

c

4nvol(Rf )
σ

(
Lf (1/2,Π)

(2πi)d∞

)
=

σ(p++(Π))

p++(σΠ)

c

4nvol(Rf )

Lf (1/2,
σΠ)

(2πi)d∞
.

The proof of Theorem 6.0.2 follows easily from this equation.

6.2.11 Proof of Corollary 6.0.3

Let s = 1
2

+m ∈ 1
2

+ Z be any critical point for L(s,Π). Let us note that

L(s+m,Π) = L(s,Π⊗ | |m).

Hence 1/2 is critical for L(s,Π⊗ | |m). Now we apply Theorem 6.0.2 to the represen-

tation Π⊗ | |m. There is one nontrivial point to note, i.e., the coefficient system has

changed. It is easy to see that

Π ∈ Coh(G, µv) =⇒ Π⊗ | |m ∈ Coh(G, (µ+m)v),
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where, if µ = (µ1, . . . , µj), with µj = (aj, bj), then µ + m = (µ1 + m, . . . , µj + m),

with µj = (aj +m, bj +m). Hence the integer d∞ = d(Π∞) also changes:

d(Π∞ ⊗ | |m) = d(Π∞) +mn.

Further, let us note that the main theorem of Raghuram-Shahidi [38], applied to the

special case when the twisting character is | |m, gives the period relation:

p++(Π⊗ | |m) = p(−1)m(++)(Π).

Note that twisting by a finite order character χ of F×\A×F does not change the set

of critical points. Corollary 6.0.3 follows by the period relations of Raghuram-Shahidi

[38] as recalled in 6.1.6.

6.2.12 Proof of Theorem 6.0.1 and period relations

The proof of Theorem 6.0.1 is a totally formal consequence of Theorem 6.0.2 plus

Corollary 6.0.3, together with properties of the dictionary as in Theorem 6.0.4; we

leave the details to the reader after observing, as mentioned in the proof of Theo-

rem 5.4.4 above, that if f ∈ Sk(n, ω̃) and suppose for convenience that all the weights

kj are even, then Π = Π(f) ∈ Coh(G, µv) with the highest weight µ = (µ1, . . . , µn)

being given by:

µj =

(
kj − 2

2
,−kj − 2

2

)
=: (aj, bj).

Note that Shimura’s periods u(r, f) and our periods pε(Π) have different defini-

tions. With this in mind, it is interesting to see the formal consequences of the fact

that these periods appear in the critical values of the ‘same’ L-function. Using the

notation as in Theorem 5.0.1, when all the weights kj are even integers, then k0/2

is a critical point for L(s, f), which corresponds to the central critical point 1/2 for

L(s,Π(f)). We have the following consequence:

(2πi)
nk0

2 u(++, f) ∼ (2πi)d∞p++(Π(f)).
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where ∼ means up to an element of Q(f)∗ = Q(Π(f))∗. Note that d∞ =
∑

j(aj +1) =

(
∑

j kj)/2. Hence

p++(Π(f)) ∼ (2πi)
∑
j(k0−kj)/2 u(++, f). (6.2.18)

Twisting by a quadratic character of prescribed signature, one can deduce a similar

relation between u(ε, f) and pε(Π) for any ε ∈ (Z/2Z)n. Similarly, one can deduce

period relations when all the weights kj are odd.
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CHAPTER 7

Congruences of L-functions

7.1 Main theorem

The aim of this chapter is to study congruences of central critical L-values for Hilbert

modular froms. The congruences can be discussed in an `-adic setting for a prime

`. Throughout the chapter, we fix a prime ` and write Q` for the `-adic completion

of Q as usual. We denote E for a finite extension of Q` contained in Q̄`, OE for the

ring of integers in E, and $E for a generator of the maximal ideal of OE. Fix an

isomorphism C ∼−→ Q̄`. Vatsal proved in [44] the following theorem in the case of

elliptic modular forms.

Theorem 7.1.1 (Vatsal, [44]) Let f =
∑

anq
n and g =

∑
bnq

n be normalized Hecke

eigenforms on Γ1(M), where M is an integer greater than 4, of weight k ≥ 2. Write

M = N`s, s ≥ 0, and ` - N . Suppose there exists a finite extension E of Q` contained

in Q̄` such that all an and bn are in OE and that

an ≡ bn mod $r
E

for some integer r ≥ 1. Then, under a certain hypothesis about isomorphisms of

Hk-modules (See [44, Sectoin 1.2].), we have

τ(χ̄)(m− 1)!
L(m, f, χ)

(−2πi)mΩα
f

≡ τ(χ̄)(m− 1)!
L(m, g, χ)

(−2πi)mΩα
g

mod $r
E

for each character χ with conductor prime to N , and for each integer m between 1

and k − 1. Here, τ is the Gauss sum and Ωα
∗ are the canonical periods of Vatsal.
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We generalize this result to Hilbert modular forms by using the approach described

in Chapter 6. Our main theorem in the chapter is the following.

Theorem 7.1.2 Let k = (k1, . . . , kn) ∈ Zn with kj being even and at least 4 for all j.

Let f and f ′ be primitive forms in Sk(n, ω̃). Suppose there exists a finite extension E

of Q` inside Q̄` such that it contains Q(f), Q(f ′) and the base field F , and that its ring

of integers OE contains Z[ω̃]. Assuming the existence of an isomorphism concerning

integral cohomology (see 7.3.3) we define ‘canonical periods’ p(Π)◦ and p(Π′)◦ which

are in C∗ ' Q̄∗` and well defined up to O×E . These periods are such that if the Fourier

coefficients C(p, f) of f and C(p, f ′) of f ′ are contained in OE for each prime ideal p

and satisfy

C(p, f) ≡ C(p, f ′) mod $s
E

for a positive integer s, then, we have the following:

c(k) · L(k0/2, f)

(2πi)d∞p(Π)◦
≡ c(k) · L(k0/2, f

′)

(2πi)d∞p(Π′)◦
mod $s

E,

where c(k) is an integer depending only on the weight k.

Two Hilbert cusp forms are said to be congruent modulo $s
E if they fulfill the

conditions in the theorem, i.e., Fourier coefficients at primes p are inOE and congruent

modulo $s
E.

The key ingredient for solving the problem is a refinement of the definition of

periods, which follows from studying integral structures for Whittaker models and

integral structures on cuspidal cohomology. In the theorem, Π = Π(f) and Π′ = Π(f ′)

are regular algebraic cuspidal automorphic representations of G(A) corresponding to

f and f ′, respectively. The integer c(k) will be specified in the proof toward the end

of the chapter. We first introduce each integral structure in Section 7.2 and complete

the proof of Theorem 7.1.2 in Section 7.3.
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7.2 Integral structure

7.2.1 OE-structure for Whittaker model

For each prime p, let rp be the highest power of p that divides DF . We fix an additive

character ψ = ⊗vψv of F\AF such that a local character ψp at non-archimedean place

p is trivial on p−rp and non-trivial on p−rp−1. For details, see Section 2.8.

Let (Π, VΠ) be an irreducible infinite dimensional representation of GL2(AF ). With

respect to the additive character ψ, there is a unique Whittaker model W(Π, ψ) for

Π. We will simply write W(Π) for this model as the additive character ψ is fixed

throughout the chapter. We also recall that W(Π) decomposes as a restricted tensor

product of local Whittaker model W(Πv).

Lemma 7.1 Let (Π, VΠ) be a cuspidal automorphic representation of GL2(AF ), and

W(Π) be its Whittaker model with respect to a non-trivial additive character ψ. For a

prime `, if E is a finite extension of Q` containing Q(Π), and OE is its ring of integers,

then W(Π) has OE-structure, i.e., there exists an OE-module WOE satisfying:

1. WOE is GL2(OF )-stable,

2. the canonical map WOE ⊗OE Q̄` −→W(Π) is an isomorphism.

Proof. The proof is almost identical to [46, Lemma 1.1]. Let W ◦ be a normalized new

vector in W(Π) where the normalization is taken as in Section 6.2.1, and let WOE

be an OE-span of {g.W ◦ : g ∈ GL2(OF )}. A new vector means that it satisfies the

condition, k.W ◦ = ω̃(k)W ◦ where ω̃ is the central character of Π and k is an element

of a compact subgroup in GL2(AF ). We claim that the space WOE satisfies all the

conditions. It is clearly GL2(OF )-stable as, for any element V =
∑

i αigi.W
◦ ∈ WOE ,

we have g.V =
∑

i αi(ggi).W
◦. The surjectivity of the map in the second condition

follows from the irreducibility of Π. Therefore, it only remains to show injectivity. If

it is not, then there exists a nonzero element
∑n

i=1Wi ⊗ λi in WOE ⊗OE Q̄`, that is
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mapped to zero in WΠ. Without loss of generality, let us assume that each Wi is of

the form gi.W
◦ and λ1 = 1. Let us suppose n is minimal for such elements. We first

claim that all λi must belong to the rationality field Q(Π), which is defined to be the

subfield CS(Π) of C that is fixed by all the C-automorphisms in S(Π) := {σ : σΠ ∼ Π}.

Suppose λ2 /∈ Q(Π). There exists a σ in S(Π) that does not fix λ2. Recall that σΠ is

defined as

σΠ(g) = s ◦ Π(g) ◦ s−1

with some σ-linear isomorphism s from VΠ to VσΠ. This map s, together with an

intertwining operator f for Π and σΠ, we have a σ-linear isomorphism t from VΠ to

VΠ so that

Π(g) = t ◦ Π(g) ◦ t−1.

Viewing t as an automorphism of W(Π), it can be easily verified that t(W ◦) is a new

vector. Indeed,

k.t(W ◦) = t(k.W ◦) = t(ω̃(k)W ◦) = ω̃(k)t(W ◦),

since ω̃(k) ∈ Q(Π)× and σ fixes Q(Π). We normalize t so that t(W ◦) = W ◦. This is

possible because the space of new vectors is 1-dimensional. With this normalization,

t fixes g.W ◦ for any g ∈ GL2(OF ). It gives us that

t

(
n∑
i=1

λiWi

)
=

n∑
i=1

σ(λi)Wi = 0,

and therefore
n∑
i=2

(λi − σ(λi))Wi = 0.

This contradicts the minimality of n, and our claim is proved.

If
∑n

i=1Wi⊗λi is a nonzero element, there is an i so that λi /∈ OE. Say λ2 is such

an element. Since it is in E by our claim above, we may write λ2 = α2/β2 with α2,
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β2 ∈ OE. But then β2

∑
Wi ⊗ λi is mapped to zero in W(Π). On the other hand,

β2

n∑
i=1

Wi ⊗ λi = (β2W1 ⊗ 1) + (α2W2 ⊗ 1) +
n∑
i=3

β2Wi ⊗ λi

= (β2W1 + α2W2)⊗ 1 +
n∑
i=3

β2Wi ⊗ λi,

which causes a contradiction to the minimality of n. This says that the map in the

second condition must be injective, and thus the proof is completed.

7.2.2 Integral sheaf

Our aim is to define the integral structure for the cohomology group, but before

that we need to define an integral sheaf, i.e., a sheaf of OE-modules on SGKf . We

borrow heavily from Günter Harder’s book in progress on the cohomology of arith-

metic groups. See Chapter III of http://www.math.uni-bonn.de/people/harder/

Manuscripts/buch/. First, we slightly refine our notation. The finite-dimensional

representation of the highest weight µ was denoted simply as Mµ in earlier chap-

ters. From now on, we write it as Mµ,C and its dual as Mµv,C to emphasize its base

field. Similarly, an L-structure for Mµv,C will be denoted as Mµv,L where L = Q(µ),

E, or OE. Recall from Section 4.4.5 that the standard basis for Mµv,C was given

by {s0, s1, . . . , sα−β} with sj = ej1e
α−β−j
2 . This space affords an OE-integral struc-

ture Mµv,OE which is the OE-span of {g.sα : g ∈ GL2(OF )}. By OE-structure, we

mean an OE-submodule that is stable under then action of GL2(OF ) and such that

Mµv,OE ⊗OE Q̄` ≡ Mµv,C after the identification of C ' Q̄`. Similarly, E-rational

structure of Mµv,C is given as E-span of {g.sα : g ∈ GL2(F )}. See Section 4.4.5 for

the details of E-structure.

Let us define the integral sheaf M̃µv,OE on SGKf = G(Q)\G(A)/K◦∞Kf . We begin

this section by recalling the definition of E-rational sheaf on SGKf , which is essentially

the same as Definition 4.4.1.
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Definition 7.2.1 Let P1 : G(R)◦/K◦∞ ×G(Af )/Kf −→ SGKf be the projection map.

For any open set U in SGKf , the sections M̃µv,E(U) of the E-rational sheaf over U is

defined as:

M̃µv,E(U) :=

 s : P−1
1 (U)→Mµv,E : s is locally constant, and

s(γ(x∞, gfKf )) = γ.s(x∞, gfKf )

 .

It is not obvious how to define the integral sheaf inside the rational sheaf directly.

The approach to take here is that we first adèlize the rational sheaf M̃µv,E and then

use the “adèlized” integral sheaf to introduce the sheaf of our interest. See (7.2.2).

For adelization, we use the projection map P instead of P1 in the following diagram.

G(R)◦/K◦∞ ×G(Af ) //

P

++WWWW
WWWWW

WWWWW
WWWWW

WWWWW
WW

G(R)◦/K◦∞ ×G(Af )/Kf

P1

��
SGKf

The sections
(

˜Mµv,E ⊗Q Af

)
(U) of the adèlized E-rational sheaf on the same

space SGKf over U can be defined to be the set of locally constant maps, s̃ : P−1(U) −→

Mµv,E ⊗Q Af , satisfying

s̃(x∞, gf ) = g−1
f .(s(x∞, gfKf )⊗ 1).

One can see from the definition that s̃ is G(Q)-invariant as, for any γ in G(Q),

we have

s̃(γ(x∞, gf )) = s̃(γx∞, γgf ) = g−1
f γ−1. (s(γx∞, γgfKf )⊗ 1)

= g−1
f γ−1γ. (s(x∞, gfKf )⊗ 1)

= s̃(x∞, gf ),

and also Kf acts from the right as follows.

s̃(x∞, gfkf ) = k−1
f g−1

f . (s(x∞, gfKf )⊗ 1) = k−1
f .s̃(x∞, gf ).

Now, let us define the adèlized integral sheaf ˜Mµv,OE ⊗Z Ẑ on SGKf , that sits inside

the adèlized rational sheaf ˜Mµv,E ⊗Q Af . It must be done component-wise. This is
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because, if arbitrary open set U is chosen in SGKf , the image of P−1(U) under s̃ does

not necessarily sit inside Mµv,OE ⊗Z Ẑ where P and s̃ are taken as above. We use the

following decomposition of SGKf .

Lemma 7.2.2 Let SGKf = G(Q)\G(A)/K◦∞Kf as before. Then SGKf can be written as

a disjoint union of Γν\G(R)◦/K◦∞ where ν ∈ {1, . . . , h} with the narrow class number

h of F and Γν = G(Q)∩(G(R)◦, xνKfx
−1
ν ) is a congruence subgroup of G(Q) for each

ν.

Proof. Recall that G(A) has a decomposition;

G(A) = ∪νG(Q)xνG(R)◦Kf (disjoint)

and so SGKf = ∪νxνG(R)◦/K◦∞. Let us consider a map G(R)◦ −→ xνG(R)◦/K◦∞, given

by g∞ 7→ [xνg∞K◦∞]. This is clearly a surjective map. Suppose that g∞ and h∞ are

mapped to the same element, say xνg∞K
◦
∞. It means that xνg∞ = γxνh∞k∞kf for

some γ ∈ G(Q), k∞ ∈ K◦∞, and kf ∈ Kf . Comparing these elements for archimedean

and non-archimedean parts separately, we see that g∞ = γh∞k∞ and xν = γxνkf .

(Recall that the infinite part of xν is one.) It is deduced from the second condition

that γ is in xνKfx
−1
ν , and therefore γ ∈ G(Q) ∩ (G(R)◦, xνKfx

−1
ν ) =: Γν . This fact

together with the first condition shows that the injectivity of the map holds if the

space G(R)◦ is quotiented by Γν from the left and by K◦∞ from the right.

Throughout the article, each component of the space SGKf is denoted as

SGKf ,ν := Γν\G(R)◦/K◦∞,

and assume that SGKf ,1 is the identity component.

Now, let us consider the integral sheaf on this identity component SGKf ,1. Write

the integral sheaf on the identity component as ˜Mµv,OE ,1 ⊗Z Ẑ. Then, the section over
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any open set U in SGKf ,1 can be described as(
˜Mµv,OE ,1 ⊗Z Ẑ

)
(U)

=
{
s̃|P−1(U) : s̃ ∈

(
˜Mµv,E ⊗Q Af

)
(V ) for any open setV inSGKf containingU

}
.

(7.2.3)

Note that the image of P−1(U) under the map s̃ is inside Mµv,OE ⊗Z Ẑ as desired.

The sheaves on the other components are derived from ˜Mµv,OE ,1 ⊗Z Ẑ.

Lemma 7.2.4 Let all the notations be as above. If xηxν = xµ then

SG
xνKfx

−1
ν ,η
' SGKf ,µ.

In particular, SG
xνKfx

−1
ν ,1
' SGKf ,ν for any ν.

Proof. The proof is esentially the same as Lemma 7.2.2. Let G(R)◦ −→ SG
xνKfx

−1
ν ,η

be a map given by x∞ 7→ [x∞xη]. Then any element equivalent to [x∞xη] must be of

the form γxηg∞k∞ (xνkfx
−1
ν ) where γ ∈ G(Q), g∞ ∈ G(R)◦, k∞ ∈ K◦∞, and kf ∈ Kf .

Comparing the finite and infinite parts separately, we obtain that xη = γxηxνkfx
−1
ν

and x∞ = γg∞k∞. Therefore, γ = xµk
−1
f x−1

µ which concludes that γ ∈ Γµ. We

conclude the proof by observing that quotienting G(R)◦ by Γµ from the left and by

K◦∞ from the right, i.e., SGKf ,µ, gives the injectivity for the map and so that the two

spaces are isomorphic.

Let us call the isomorphism from SG
xνKfx

−1
ν ,1

to SGKf ,ν as τν , where the isomorphism

is given by [g∞] 7→ [xνg∞]. Since one can define the integral sheaf ˜Mν
µv,OE ,1 ⊗Z Ẑ on

the identity component SG
xνKfx

−1
ν ,1

for SG
xνKfx

−1
ν

, the integral sheaf on SGKf ,ν can be

defined by taking the direct image functor τν,∗. More precisely,(
˜Mµv,OE ,ν ⊗Z Ẑ

)
(U) := τν,∗

(
˜Mν

µv,OE ,1 ⊗Z Ẑ
)

(U)

=

(
˜Mν

µv,OE ,1 ⊗Z Ẑ
)

(τ−1
ν (U)).
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Finally, we take the adèlized integral sheaf on the whole space SGKf to be the disjoint

sum of those local sheaves:

˜Mµv,OE ⊗Z Ẑ := ⊕ν ˜Mµv,OE ,ν ⊗Z Ẑ.

The diagram below summarize the definitions. Note that the bottom row describes

several spaces used in the definitions while the top row is for the sheaves on each

space.

˜Mµv,OE ⊗Z Ẑ
⊕ν←− ˜Mµv,OE ,ν ⊗Z Ẑ

τν,∗←− ˜Mν
µv,OE ,1 ⊗Z Ẑ

SGKf '
⋃
ν S

G
Kf ,ν

τν←−
⋃
ν S

G
xνKfx

−1
ν ,1

“The” integral sheaf M̃µv,OE is taken to be the intersection of the E-rational sheaf

M̃µv,E and the adèlized integral sheaf ˜Mµv,OE ⊗Z Ẑ . Both sheaves sit inside the

adèlized sheaf ˜Mµ,E ⊗Q Af . See the following diagram.

M̃µv,E
� � // ˜Mµv,E ⊗Q Af

M̃µv,OE
� � //

?�

OO

˜Mµv,OE ⊗Z Ẑ

?�

OO

Note that M̃µv,OE = M̃µv,E∩ ˜Mµv,OE ⊗Z Ẑ, is actually a sheaf. To prove this, let us

recall the definition of the sheaf: A presheaf F is a sheaf if and only if the following

sequence is exact.

0 −→ F(U)
p0−→
∏
α

F(Uα) ⇒
∏
(α,β)

F(Uα ∩ Uβ),

where {Uα}α is an open covering of an open set U , p0 is the set of restriction morphisms

s 7→ (s|Uα)α, and the last map is given by (sα) 7→ (sα|Uα∩Uβ − sβ|Uα∩Uβ). For our

situation, suppose (sα) is in
∏
M̃µv,OE(Uα) and such that (sα|Uα∩Uβ−sβ|Uα∩Uβ) = 0 in
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∏
M̃µv,OE(Uα∩Uβ). We need to show that there exists a unique element in M̃µv,OE(U)

that is mapped to (sα) by p0. Since (sα) belongs to
∏
M̃µv,E(Uα), there is a unique s

in M̃µv,E(U) such that p0(s) = (sα). Similarly, there is a unique s′ in ˜Mµv,OE ⊗ Ẑ(U)

such that p0(s′) = (sα). But then, since both s and s′ are in ˜Mµv,E ⊗ Af (U), they

must coincide by the uniqueness of such sections. Hence s = s′ is the desired element

in

(
M̃µv,E ∩ ˜Mµv,OE ⊗ Ẑ

)
(U) =: M̃µv,OE(U).

7.2.3 OE-structure for cohomology group

In order to define the integral structure for cohomology group, let us introduce some

facts from sheaf theory. All the details are found, for example, in [20]. As it was

mentioned in Section 6.2.3, cuspidal cohomology injects into cohomology with com-

pact supports: Hn
cusp(SGKf , M̃µv,C) ↪→ Hn

c (SGKf , M̃µv,C). Furthermore, the image of

Hn
c (SGKf , M̃µv,C) in the full cohomology is called the inner cohomology and denoted as

Hn
! (SGKf , M̃µv,C) := Im

(
Hn
c (SGKf , M̃µv,C) −→ Hn(SGKf , M̃µv,C)

)
.

It is a fact that cuspidal cohomology always sits inside inner cohomology. (See

Clozel [7].) In particular, if µ is regular, then one has the following theorem.

Theorem 7.2.5 (Harder, [20]) If µ is regular, then

H•cusp(S
G
Kf
, M̃µv,C) ' H•! (SGKf , M̃µv,C).

By saying µ = (µ1, . . . , µn) is regular, we mean that aj > bj for all j where

µj = (aj, bj). In the case of holomorphic Hilbert cusp forms, µ is regular if the weight

kj is greater than 2 for all j, which follows from the highest weight µ given by

µj = (aj, bj) =

(
kj − 2

2
,−kj − 2

2

)
as seen in Section 6.2.12.

It is assumed in Theorem 7.1.2 that all kj’s are at least 4, which allows us to view

cuspidal cohomology Hn
cusp(SGKf , M̃µv,C) as inner cohomology Hn

! (SGKf , M̃µv,C). The
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purpose of this identification is to consider integral cohomology. Inner cohomology

is sheaf-theoretically defined and admits E-rational structure Hn
! (SGKf , M̃µv,E) and

OE-integral structure Hn
! (SGKf , M̃µv,OE). We consider the map

Hn
! (SGKf , M̃µv,OE) −→ Hn

! (SGKf , M̃µv,E),

and write H̄n
! (SGKf , M̃µv,OE) for the image of the inclusion map above. This is done in

order to avoid any trouble caused by the torsion elements in the integral cohomology.

7.3 Proof of Theorem 7.1.2

7.3.1 Some notes and assumptions on integral cohomology

Let Sk(n, ω̃)OE be the space of Hilbert cusp forms of weight k, level n, and with a

Hecke character ω̃, such that all the normalized Fourier coefficients C(m, ∗) are in OE.

The Hecke algebra Hk(n, ω̃)OE is defined to be an OE-subalgebra of EndC(Sk(n, ω̃))

generated by normalized Hecke operators {T′m} defined in Section 3.3 for all integral

ideals m. We note that it is a commutative algebra with the identity where T′OF = TOF

is the identity element. Furthermore, it also contains Sp := Kp ($p
$π ) Kp, for all p

not dividing n, which is obtained by (T′p)2 − T′p2 up to a scalar. See [23, Section 3]

for details. If OE contains Z[ω̃]` then Sk(n, ω̃)OE is stable under the action of the

Hecke algebra Hk(n, ω̃)OE . The necessity of the condition Z[ω̃]` ⊂ OE is verified by

computing

C(m,T′nf) =
∑

m+n⊂a

ω̃(a)N(a)k0−1C(a−2mn, f). (7.3.1)

(See [41] for details.)

Theorem 7.3.2 (Hida, [23]) Let ω̃ be a Hecke character, and E a finite extension

of Q` such that OE contains Z[ω̃]. Then one has the following isomorphism.

Sk(n, ω̃)OE ' Hk(n, ω̃)∗OE = HomOE(Hk(n, ω̃)OE ,OE).
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Proof. The isomorphism is induced from the pairing:

< , > : Hk(n, ω̃)OE × Sk(n, ω̃)OE −→ OE

given by < T, f >7→ C(OF ,Tf). It can be seen by (7.3.1) that, for any integral ideal

m, C(OF ,T′mf) = C(m, f).

Let us first prove the result forE-rational structure. SinceHk(n, ω̃)E and Sk(n, ω̃)E

are finite-dimensional, it is enough to show the non-degeneracy of the pairing. If

< T, f >= 0 for all f ∈ Sk(n, ω̃)E, then one has

C(m,Tf) = C(OF ,T′mTf) = C(OF ,TT′mf) =< T,T′mf >= 0.

Therefore Tf = 0 for all f , which means that T = 0 as an operator. Now suppose

< T, f >= 0 for all T. It gives that

C(m, f) =< T′m, f >= 0

for all m and that f = 0. This completes the proof for

Sk(n, ω̃)E ' Hk(n, ω̃)∗E.

Now, let φ be a homomorphism in Hk(n, ω̃)∗OE . It can be extended to a E-linear

map φ̃ in Hk(n, ω̃)∗E. This can be done because Hk(n, ω̃)OE ⊗OE E = Hk(n, ω̃)E. But

by the first part of the proof, there is a corresponding Hilbert cusp form f in Sk(n, ω̃)E

so that φ̃(T) =< T, f > for all T in Hk(n, ω̃)E by applying the first case. In particular,

φ̃(T′n) =< T′n, f > for all T′n in Hk(n, ω̃)OE . Hence,

C(n, f) = C(OF ,T′nf) =< T′n, f >= φ(T′n) ∈ OE.

Hence f is in Sk(n, ω̃)OE .

On the other hand, there is an action of Hk(n, ω̃)OE on the integral inner coho-

mology H̄n
! (SGL2

Kf
, M̃µv,OE). See Harder’s book in progress mentioned above. For a

Hecke character ω̃, let us define

H̄n
! (SGL2

Kf
, M̃µv,OE)(ω̃) :=

{
ξ ∈ H̄n

! (SGL2
Kf

, M̃µv,OE) : Spξ = ω̃($p)ξ for p - n.
}
.
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For each character ε of K∞/K
◦
∞, we assume the existence of an isomorphism of OE-

modules:

H̄n
! (SGL2

Kf
, M̃µv,OE)(ω̃ × ε) ' Hk(n, ω̃)∗OE . (7.3.3)

This isomorphism and Theorem 7.3.2 provide the following proposition.

Proposition 7.3.4 Assuming the isomorphism in (7.3.3), there is an isomorphism

ϑε of Hk(n, ω̃)OE -modules;

ϑε : Sk(n, ω̃)OE
∼−→ H̄n

! (SGL2
Kf

, M̃µv,OE)(ω̃ × ε)

for each ε ∈
(

K̂∞/K◦∞

)
.

7.3.2 Integral interpretation of the diagram (6.2.1)

To complete the proof of Theorem 7.1.2, we analyze each step in the diagram 6.2.1

integrally.

Let us let ι be the inclusion map from GL1 to GL2 as in Section 6.2.4. Everything

discussed in the section works integrally as well, and we obtain a map

H̄n
! (SGL2

Kf
, M̃µv,OE)(ε)

ι∗−→ H̄n
! (S̄GL1

ι∗Kf
, ι∗M̃µv,OE)(ε)

∼−→ H̄n
! (S̄GL1

ι∗Kf
, ˜ι∗Mµv,OE)(ε).

We now consider the map T ∗ to obtain the cohomology class with trivial co-

efficients as in Section 6.2.6. Recall that, from Lemma 4.2, a nonzero map T ∈

HomGL1(F∞)(Mµv,C, 11C) is given by

α−β∑
j=0

cjsj 7→ cα. It is clear from the definition of the

integral structure Mµv,OE ,which is the OE-span of {g.sα : g ∈ GL2(OF )}, that the

exact same T can be chosen. Noting that the image of the restricted map T |Mµv,OE

lies into OE, it induces a homomorphism

(T |Mµv,OE
)∗ : H̄n

!

(
S̄GL1

Rf
, ˜ι∗Mµv,OE

)
(ω̃ × ε) −→ H̄n

!

(
S̄GL1

Rf
, 11OE

)
(ω̃ × ε).

We shall drop the subscript of this map and simply write T ∗ as well.
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Finally, Poincaré duality can be applied integrally which gives a map∫
M

: H̄n
! (M, 11OE) −→ OE.

(See [21].)

Putting S :=

∫
M
T ∗ι∗, we now have an OE-linear map

S : H̄n
!

(
SGKf , M̃µv,OE

)
(ω̃ × ε) −→ OE.

Notice that the image of this map is an ideal in OE, say Pr
E for some r ≥ 0. If r ≥ 1,

let us modify the integral structure Mµv,OE of Mµv,C by multiplying by $−rE , i.e.,

the integral structure is taken to be $−rE Mµv,OE :=
〈
{g.$−rE sα : g ∈ GL2(F )}

〉
OE

.

Any cohomology class ϑr in H̄n
!

(
SGKf ,

˜$−rE Mµv,OE

)
(ω̃× ε) is described as $−rE ϑ with

some ϑ in H̄n
!

(
SGKf , M̃µv,OE

)
(ω̃ × ε). It can be easily viewed from considering the

element in Hn (g∞,K
◦
∞; Π∞ ⊗Mµv,C) as in Section 4.4.5. Hence S(ϑr) = $−rE S(ϑ),

and it follows that the image of S is exactly OE. This normalization needs to be

considered, as otherwise, the algebraic parts of critical L-values will always be in Pr
E

and therefore the congruence property of our interest becomes a trivial statement.

See also Section 7.3.4. In the following sections, it is understood that a suitable

normalization is taken on the integral structure and that the normalized integral

structure is denoted as M̃µv,OE . This shall cause no confusion.

7.3.3 Refinement of the periods

Recall from Section 6.1 that our period pε(Π) was chosen so that a map from the Kf -

fixed Whittaker space to the cohomology group preserves the E-rational structure of

each side, i.e.,

F εΠ,0 : W(Πf )
Kf
E −→ Hn

! (SGKf , M̃µv,E)(ε),

where ε stands for a character of K∞/K
◦
∞ = {±}n. For a finer treatment, these

periods need to be modified so that it preserves the integral structure on both sides.
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Consider the following maps.

Sk(n, ω̃)OE
ϑε // H̄n

!

(
SGKf , M̃µv,OE

)
(ω̃ × ε) � � // Hn

!

(
SGKf , M̃µv,C

)
(ω̃ × ε)

OO
FεΠ
� ?

W(Πf )
Kf

As discussed in Section 7.3.2, the integral sheaf M̃µv,OE might have been modified

in which case it differs from the one originally defined in Section 7.2.2 by a scalar.

The map ϑε is an isomorphism given in Proposition 7.3.3, and F εΠ is as defined in

Section 6.1.4. Let f be a primitive form in Sk(n, ω̃)OE . We saw already in Chap-

ter 6 that it is mapped to W ◦ in W(Πf )
Kf where Π is the representation corre-

sponding to f , and that W ◦ is mapped to ϑεΠ via F εΠ. On the other hand, we

have ϑε(f) in H̄n
!

(
SGKf , M̃µv,OE

)
(ω̃ × ε). So we have two classes ϑε(f) and ϑεΠ in

Hn
!

(
SGKf , M̃µv,C

)
(ω̃ × ε) and if Kf is chosen well, both correspond to the same ir-

reducible one-dimensional representation Π
Kf
f which appears with multiplicity one.

Hence they differ by a scalar. In other words, there exists pε(Π)◦ in C∗ so that

ϑε(f) =
1

pε(Π)◦
ϑεΠ,

which is the canonical period of our interest. In order to have a uniformity in our

notations, we shall call ϑε(f) =: ϑε,◦Π .

7.3.4 Concluding part of the proof of Theorem 7.1.2

As in Chapter 6, we are only interested in the case ε = (+, . . . ,+), and we suppress

the notation ε if ε = (+, . . . ,+). So ϑε = ϑ, etc. Now, summarizing all the details

discussed in Chapter 6 and this chapter, we obtain the following diagram.

Sk(n, ω̃)OE
ϑ // H̄n

!

(
SGKf , M̃µv,OE

)
(ω̃ × (++)) S //

� _

��

OE� _

��
Hn

!

(
SGKf , M̃µv,C

)
(ω̃ × (++)) S // C
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with S =
∫
M T

∗ι∗. If f is a primitive form in Sk(n, ω̃)OE , it is mapped to ϑ◦Π in

H̄n
!

(
SGKf , M̃µv,OE

)
(ω̃ × (++)). Applying S, we see that

S(ϑ◦Π) =
1

p(Π)◦
S(ϑΠ) =

c(k)

p(Π)◦(2πi)d∞
L

(
1

2
,Π

)
∈ OE,

where

c(k) =
∏
j

(−1)(kj−2)/2 (kj − 2)!

((kj − 2)/2)!
.

The last equality follows from (6.2.17). (Notice that vol(Rf ) = 1.)

Now, let f and f ′ be primitive forms in Sk(n, ω̃)OE such that f ≡ f ′ (mod $s
E). By

OE-linearity of ϑ = ϑ(++) and S, the congruence holds at each level, i.e., ϑ◦Π ≡ ϑ◦Π′

(mod $s
E). and S(ϑ◦Π) ≡ S(ϑ◦Π′) (mod $s

E). This, together with (6.2.17), we obtain

c(k)
L(1/2,Π)

p(Π)◦(2πi)d∞
≡ c(k)

L(1/2,Π′)

p(Π′)◦(2πi)d∞
mod $s

E.

This completes the proof of Theorem 7.1.2. �
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CHAPTER 8

Non-vanishing of derivatives of L-functions

In this chapter, we study a non-vanishing property of the derivative of the L-function

of a Hilbert modular cusp form at the center of symmetry. The property was originally

proven by Gun, Murty, and Rath for the case of an elliptic modular cusp form. (See

[18, Theorem 4.1].) Our aim is to generalize their result to Hilbert modular forms. A

precise statement of our theorem is as follows:

Theorem 8.0.1 Let f be a holomorphic Hilbert modular cusp form of weight k =

(k1, · · · , kn), level n, with trivial character, over a totally real number field F of degree

n. Assume that f is primitive, and the weight satisfies the following conditions: kj ≥ 4

for all j and k1 ≡ · · · ≡ kn ≡ 0 mod 2. Let k0 = max(k1, . . . , kn). If Lf (k0/2, f) 6= 0,

then
L′f (k0/2, f)

Lf (k0/2, f)
= − log N(nD2

F )

2
+ n log(2π)−

n∑
j=1

ψ

(
kj
2

)
,

where DF is the different ideal of F , and ψ is the logarithmic derivative of the gamma

function. Furthermore, L′f (k0/2, f) 6= 0, i.e., if the central critical value is nonzero

then so is the derivative at the center of symmetry.

Proof. Gun, Murty, and Rath proved the case n = 1 in [18, Theorem 4.1]. So we

assume that n ≥ 2. For this proof, the properties discussed in Section 3.4 will be

applied. Also, the (finite) L-function needs to be completed in a different way from

Section 5.3.1. To distinguish those functions, let us call it Λ(s, f) that is defined to

be

Λ(s, f) := N(nD2
F )s/2(2π)−ns

n∏
j=1

Γ

(
s− k0 − kj

2

)
Lf (s, f).
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It converges for <(s)� 0, and has an analytic continuation to C. The completed

L-function Λ(s, f) satisfies the functional equation:

Λ(s, f) = i
∑
kjΛ(k0 − s, f |Jn), (8.0.2)

where f |Jn is as in (3.4.2).

Let f be a normalized common eigenform for T′m. Then, as given in Section 3.3,

the eigenvalue for T′m is C(m, f). Moreover, it is real by Proposition 3.4.1. It follows

by Proposition 3.4.3, that f |Jn = c · f with some constant c. Therefore, the finite

L-function attached to f |Jn, i.e., attached to c · f is:

Lf (s, f |Jn) = Lf (s, cf) =
∑ c · C(m, f)

N(m)s
= cLf (s, f).

The functional equation given in (8.0.2) can be written as

N(nD2
F )s/2(2π)−ns

n∏
j=1

Γ

(
s− k0 − kj

2

)
Lf (s, f)

= c · i
∑
kjN(nD2

F )(k0−s)/2(2π)−n(k0−s)
n∏
j=1

Γ

(
k0 + kj

2
− s
)
Lf (k0 − s, f).

Taking the logarithmic derivative on both sides with respect to s, one has

log N(nD2
F )

2
− n log(2π) +

n∑
j=1

ψ

(
s− k0 − kj

2

)
+
L′f (s, f)

Lf (s, f)

= − log N(nD2
F )

2
+ n log(2π)−

n∑
j=1

ψ

(
k0 + kj

2
− s
)
−
L′f (k0 − s, f)

Lf (k0 − s, f)
.

Here, ψ(k) = Hk−1−γ with Hk−1 :=
∑k−1

m=1 1/m being the (k−1)-th harmonic number,

and γ the Euler’s constant.

The first part of the theorem is obtained by letting s = k0/2. For the second part,

suppose that L′f (k0/2, f) = 0. Then one has

n (γ + log(2π)) =
1

2
log N(n) + log(dF ) +

n∑
j=1

Hkj/2−1, (8.0.3)
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where dF is the discriminant of F . By our assumption on kj’s, min{
∑

j Hkj/2−1} = n

that is attained when all the kj’s are 4. Using this and the Minkowski bound:

|dF | ≥
n2n

(n!)2
,

we see that 2n log(n) − 2 log(n!) + n is a lower bound of the right hand side of the

equation (8.0.3). But, for n ≥ 7, this value is larger than n (γ + log(2π)) which is

bounded above by 2.4151n. Hence (8.0.3) cannot be attained.

Now, we only need to check when n ≤ 6. The table below shows the minimal

discriminant of each degree extension; see Voight [45, Table 3].

n 2 3 4 5 6

minimal dF 5 49 725 14641 300125

Applying each minimal dF in (8.0.3) for n ≥ 4, one can check that the right hand

side exceeds the left hand side for any weight and level, as long as all the kj’s are at

least 4.

If n = 2 or 3, one needs to examine several cases. Without loss of generality, let

us assume that ki ≤ ki+1. If n = 3 and the weight is at least k = (4, 4, 6), the right

hand side of (8.0.3) exceeds the left hand side for any level and any discriminant. So

the only remaining case is k = (4, 4, 4). But it can be easily verified that the equality

in (8.0.3) never be satisfied. Checking the case n = 2 similarly completes the proof

for the second part of the theorem.

The necessity of the hypotheses on the weight k = (k1, · · · , kn) are stated in

Remark 8.0.6 and 8.0.7. The theorem leads us to some applications in transcendental

number theory, as in [18]. See Corollary 8.0.4 and 8.0.5 below.

Corollary 8.0.4 Suppose that f satisfies all the conditions given in Theorem 8.0.1.
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Then

exp

(
L′f (k0/2, f)

Lf (k0/2, f)
+

n∑
j=1

ψ

(
kj
2

))
is transcendental.

Proof. This follows from the first part of Theorem 8.0.1:

exp

(
L′f (k0/2, f)

Lf (k0/2, f)
+

n∑
j=1

ψ

(
kj
2

))
= exp

(
n log(2π)− log N(nD2

F )

2

)
=

(2π)n

N(nD2
F )1/2

,

which is transcendental.

Corollary 8.0.5 Fix k = (k1, · · · , kn) with kj ≡ 0 mod 2 for all j, and let Sk be

the set of all primitive Hilbert cusp forms f of weight k that satisfy Lf (k0/2, f) 6= 0.

Then there is at most one algebraic element in the set{
L′f (k0/2, f)

Lf (k0/2, f)
: f ∈ Sk

}
.

Proof. The first part of Theorem 8.0.1 shows that the logarithmic derivatives of the

finite L-functions at k0/2 give the same value if two cusp forms have the same level.

Suppose that there are two cusp forms f and g, with different levels n and m respec-

tively, and that L′f (k0/2, f)/Lf (k0/2, f) and L′f (k0/2,g)/Lf (k0/2,g) are both alge-

braic. But then

L′f (k0/2, f)

Lf (k0/2, f)
−
L′f (k0/2,g)

Lf (k0/2,g)
=

1

2
log

(
N(mD2

F )

N(nD2
F )

)
must be also algebraic, which is a contradiction.

Remark 8.0.6 The parity condition of the weight, k1 ≡ · · · ≡ kn mod 2, makes f

a Hilbert modular form of algebraic type. Under this condition, any integer m with

(k0 − k0)/2 < m < (k0 + k0)/2 is a critical point of the (finite) L-function attached

to f , where k0 = min(k1, . . . , kn). In particular, if k1 ≡ · · · ≡ kn ≡ 0 mod 2, then

k0/2 is a critical point for Lf (s, f). (See Theorem 6.0.4.)
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Remark 8.0.7 When the condition kj ≥ 4 for all j is not satisfied, the first part of

the theorem still holds. However, a difficulty arises to prove the second part, as the

right hand side of (8.0.3) does not give a good bound. For example, if k1 = · · · =

kn = 2, one needs to show that n(γ + log(2π)) = 1/2 log N(n) + log(dF ) cannot hold.

One way to show this is to prove that eγπ is transcendental, which to the best of our

knowledge seems to be unknown.

It should be also noted that in case the degree n of F is large enough, and kj ≥ 4

for enough j’s (but not necessarily all of them), the non-vanishing of L′f (k0/2, f) can

be shown in the same way.
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