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Purpose and Method of Study: The objective of this study is to develop method for 

extracting cutaneous perfusion information from dynamic thermography, using an 

improved bio-heat transfer model for the initial application to study the responses of 

cutaneous perfusion to low level laser irradiation. The bio-heat transfer model developed 

in this study for dynamic thermography-derived perfusion employs the contributions of 

heat transfer due to blood circulation, which has been implemented in previous models, 

and a spatial Laplacian term accounting for heat changes due to conduction, which has 

been neglected by previous models. The model is applied to dynamic thermography 

imagery obtained at 23Hz of frame rate from cutaneous tissues of turtle subjects and 

human volunteers subjected to the same laser irradiation protocol of 20 seconds of 

irradiation between 20 seconds of idle time prior to and after the laser irradiation. 

 

Results and Conclusion: The proposed method yields stable results over all 6 sets of 

human data with a perfusion range similar to that estimated from other cited works 

whereas the other models falter for 3 or more sets of data. For turtle data the perfusion 

pattern is similar to that by the other models attributable to the low changes in heat 

conduction pertaining to their thermoregulation mechanism. The algorithm is being 

implemented in a Graphical-User-Interface (GUI) for the clinical testing by physicians. 
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  Temperature  K   
 

         
 

  Mass   Kg   
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  Volume  ml   
 

         
 

  Time   s   
 

         
 

  Energy   J   
 

       
 

     
 

Symbol  Description Units  
 

       
 

C
blood  Specific heat of blood   J/[Kg.K]  

 

C
tissue  Specific heat of tissue   J/[Kg.K]  

 

 blood  Mass density of blood   Kg/ml  
 

        

         
 

 tissue  Mass density of tissue   Kg/ml  
 

        

         
 

 blood  Rate of blood perfusion   ml/[60s.0.1Kg]  
 

        

       
 

Tb  Blood temperature in core   K  
 

       
 

Ts  Skin Temperature   K  
 

      
 

   Thermal Conductivity of Skin J/[m.s.K]  
 

      
 

 d  Depth of core temperature point from cutaneous surface m  
 

      
 

 Q  Heat change as a result of temperature changes J/s  
 

     
 

Qb  Heat change as a result of convection due to blood flow J/s  
 

      
 

Qc  Heat change as a result of conduction by subcutaneous J/s  
 

    tissue     
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CHAPTER I 
 
 
 

 

INTRODUCTION 
 
 
 

 

I.1  Perfusion: 

 

Blood perfusion is the volumetric flow of blood through the capillaries and extra cellular 

spaces of the body. It is defined as the rate of blood flow per amount of tissue per time. 

Hence it is measured in ml/100g.min.This flow is microscopic. At the perfusion level 

nutrients are carried by the blood and exchanged with cells and wastes are carried away. 

It is estimated that there are 10 billion capillaries in the human body and every cell is at 

least within 20 to 30 micrometers from one another. Perfusion is thus intrinsic to the 

healthy functioning of the body and therefore its quantification can be of great use to 

medicine and health care [1]. 

 

In addition to transporting fuel and wastes to and from cells, blood circulation is also a 

mechanism of heat transfer. Blood flow brings heat from the core of the body to the 

extremities. If a thermal event is applied to a tissue, blood perfusion will dissipate the 

applied heat or reheat a cooled area. However, the heat transfer through the tissue cannot 

be modeled with perfusion alone. Other parameters like thermal conductivity and 

specific heat of the tissue also affect the temperature distribution which when calculated 

and modeled can be used to measure blood perfusion. Therefore by measuring the 

temperature response of the tissue and modelling some of the related parameters as a bio- 
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heat model, which is shown in later parts, can be used to deduce a value for blood 

perfusion. 

 
I.2  Low-level laser therapy 

 

 

With the invention of the laser in1960, a new direction of medical treatment emerged. 

The usage of laser to induce heat for medical purposes became common. By inducing a 

temperature elevation of a few degrees above the body temperature the laser was used as 

a method to treat tumors and other harmful lesions in the human body. The advantage of 

using laser light for thermotherapy with other methods is due to the fact that it deposits, a 

precise amount of energy in a well-defined region, inducing lesions of reproducible size 

in a minimally invasive way [2]. 

 

Low-level laser (or light) therapy (LLLT) also known as cold or soft laser, bio-

stimulation, or photo bio-modulation is an emerging medical and veterinary therapeutic 

approach which uses low-level lasers or light-emitting diodes to either stimulate or 

inhibit cellular function , leading to reduction of cell and tissue death, improved wound 

healing, increasing repair of damage to soft tissue, nerves, bone, and cartilage, and relief 

for both acute and chronic pain and inflammation. Specific test and protocols for LLLT 

suggest that it is effective in relieving short-term pain for rheumatoid arthritis, 

osteoarthritis, acute and chronic neck pain, tendinopathy, possibly chronic joint 

disorders, treatment of low back pain, dentistry and wound healing [3]. 
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Figure 1: Schematic representation of the main applications of Low-level laser 
therapy (LLLT) [3]. 
 
Shown above in Figure 1 are some main applications for which low-level laser therapy 

can be used [3]. 

 
 

 

I.3  Monitoring Temperature derived perfusion: 
 

 

Since it has been realized how laser induced thermotherapy plays a significant role in 

medical treatment, it is important to understand how the tissue will thermally respond 

during such treatments. This would allow physicians to plan treatment doses and 

durations for the procedures [4, 5]. The movement of blood, or perfusion, is responsive to 

the environment. Blood flow increases during activity or trauma to provide necessary 

nutrients. The cardiovascular system is very dynamic and adjusts to meet the needs of the 

body. Blood from the core of the body is maintained at a constant 37°C in the human 

being. If an area of the body becomes warmer or cooler than normal, increased or 
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decreased perfusion will act to normalize the temperature [6]. If normal tissue is heated 

by less than several hours, tissue temperature and perfusion are correlated .This increase 

of tissue perfusion during this period is apparently associated with the release of 

vasoactive compounds, such as bradykinin, which cause vasodilation [7]. Previous 

studies have demonstrated that perfusion can be implied from dynamic thermography by 

applying bio-heat transfer models. In this study we develop a bio-heat transfer model for 

deriving perfusion information from thermography along the same basis with fewer 

approximations than the referred previous studies. 
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I.4  Perfusion value estimates cited from literature 
 

 

Table 1 gives some estimated Perfusion values from different regions of tissues. 

These values are obtained from other cited works. 

 

Region Perfusion (ml/[(60s)(0.1kg)]) Reference 

   

Sigmoid colonic tissue 41.7 ± 7.4 [8] 

   

Tissue About 40 [9] 

   

Lung tissue 40.1 [10] 

   

Unheated muscle 4 to 10 [10] 

   

Brain(gray matter) 70 [11] 

(white matter) 20  

   

Facial skin mean blood flow(male) 11.4 ± 2.8 [12] 

(female) 7.0 ± 1.6  

   

Spinal cord blood flow Pre injury case(rats) 49.7 ± 1.6 [13] 

   

Cuff occlusion(5 min) for human leg -20 to 50 [14] 

 -20 to 80  

   

Rats- (forepaw at rest) 37.17 ± 14.74 [15] 

(forepaw with ultrasonic radiation) 37.82 ± 14.29  

(hindpaw at rest) 35.34 ± 14.77  

(hindpaw with ultrasonic radiation) 39.28 ± 11.92  

   
 
 

Table 1: Perfusion value estimates from literature 
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I.5  Thesis Outline 
 

 

Chapter 2 discusses the bio-heat modelling for thermography derived perfusion in detail, 

and the literature review performed to complete this work. It covers how the present 

model was modified based on these papers. Chapter 3 covers the thermal camera 

operation and laser specifications used to obtain dynamic data. The different protocols 

followed for imaging real time data from subjects is also provided. Chapter 4 describes 

the results obtained from the different real time data as three parts. Chapter 5 summarizes 

the results, discusses the ongoing work (user-friendly GUI) and presents conclusions and 

suggestions for future work. 
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CHAPTER II 
 
 
 

 

BIO-HEAT TRANSFER MODEL FOR THERMOGRAPHY DERIVED PERFUSION 
 
 
 

 

II.1 Modeling of bio-heat transfer for thermography derived perfusion 
 
 

i. Heat transfer:  
 

 

Heat flows in a biological media whenever there is a temperature difference. This transfer of 

thermal energy is governed by the Laws of Thermodynamics. The two most important 

principles that are to be considered here are the first and second law of thermodynamics. 

 
The first law of thermodynamics talks about the conservation of energy. It states that the 

amount of heat lost by regions inside a closed system corresponding to the amount that is 

gained by the rest of the closed system. The second law talks about the direction of heat 

flow. It states that the heat flows from regions of higher temperature to lower temperature 

[2]. 

 
At Thermal Equilibrium: 
 

 

At thermal equilibrium the heat balance equation for human skin tissue can be determined 

using six factors. These factors are heat radiated from subject to air (Qr), heat due to 

evaporation (Qe), heat via convection into air neighboring skin surface (Qf), heat conducted 

by subcutaneous tissue (Qc), heat corresponding to metabolic rate of cutaneous 
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tissue (Qm ) and heat via convection attributable to blood flow of subcutaneous blood 

vessels (Qb ).These six heat components can be categorized into two groups as heat loss 

components and heat production components. [16, 17, 18, 19]. 

 

 The factors contributing to the loss of heat are: 

Qr : Heat radiated from subject to air, 



Qe : Heat due to evaporation, 



Qf : Heat via convection into air neighboring skin surface, 




 The factors contributing to the gain of heat 

are: Qc : Heat conducted by subcutaneous tissue, 



Qm : Heat corresponding to metabolic rate of cutaneous tissue 



Qb : Heat via convection attributable to blood flow of subcutaneous blood vessels 

At thermal equilibrium the heat balance equation for skin tissue is given as: 

Qr  Qe  Q f   Qc  Qm  Qb [20] 
 

 

Figure 2 shows the six heat transfer: heat production and loss components responsible in 

maintaining heat balance for skin tissue. 
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Figure 2: The heat factors to determine heat balance for skin tissue. 
 
 

 

Temperature changes due to heat (∆Q): 

 
When there are temperature changes the heat production or consumption is unsteady, part of 

the heat flow will be stored in the control volume. The stored heat will be reflected as 

temperature changes of the various tissues. The local rate of temperature change is controlled 

by intrinsic heat capacity (product of density and specific heat) at constant pressure. When it 

is summed over the tissue control volume the total rate of stored 

 

thermal energy is given by the relation Q    tissueCtissue[Ts (r', t) / t]dV ' [2] 
 

    
 

 V    
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Heat balance equation for skin tissue due to temperature changes over a short time period 

 
∆t can be expressed as: 
 

Q (Qr  Qe  Q f )  (Qc  Qm  Qb) 

 
 

 Heat due to radiation (Qr): 
 

 
Radiation is defined as the transfer of thermal energy via electromagnetic wave action 

between systems at different temperatures and which are not in contact. This mechanism 

does not require a medium for its energy transport. In most models of internal biological 

tissues, the contribution from intrinsic radiative heat transfer process is negligible [21]. 

 

Consider a body with temperature Tb, the radiation heat flux to the environment with 

a temperature Te is given by Stefan-Boltzman law. 

 

Qr    (Tb 
4
  Te

4
 ) where  is the emissivity and  is Stefan Boltzmann constant. 

 
 

 Heat due to Evaporation (Qe) 
 

 

Evaporative heat loss mainly consists of 2 components which are the loss due to 

respired vapor (Eres) and evaporative heat loss from skin surface (Esk) [22]. 

 
 

Q
e  


 

E
res  


 

E
sk 

 

The loss due to respired vapor (Eres) is given as: Eres   Erel   Erec  where Erel is the heat 
 

loss due to latent respiration and Erec is the heat loss due to convective respiration. The 
 

evaporative heat loss from skin surface (Esk) is given as: Esk   Edif   Ersw  where Edif  is 
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the evaporative heat loss due to skin diffusion and Ersw is the heat loss due to 

regulatory sweating. 

 

 Heat due to Air Convection(Qf) 
 
 
This heat exchange of air convection can be modeled using Newton’s law of cooling [21, 
 

2, 23].Consider a body with temperature Tb, the convection heat flux to the environment 
 

with a temperature Te is given as Q f   hf (Tb  Te ) where hf is the coefficient of air 

 

convection. It can be calculated as h f   
k f Nu 

where Kf is thermal conductivity, d is the 
 

   

 
d  

       
 

characteristic length of object, Nu is the Nusselt number. N 
u 
 A(P .G )

M
 where A and 

 

     rr  
 

 

M are experimentally determined constants. Pr is Prandtl number which is equal to 0.72 in 

air, and Gr is Grashof number. On further simplification the convective heat flux due to 

air is given as: Q 
f 
 Ak 

f d
 3M 1 (P g / v

2
 )

M
 (T  T )

M
 
1

 where g is the local gravitational 
 

    r b e  
 

          

acceleration, v is the kinematic viscosity of air, and ß is the volumetric thermal 
 

expansion coefficient of air.      
 

 
 

 Heat due to Conduction(Qc) 
 

 
Heat conduction is the transfer of thermal energy through a solid or fluid medium due to an 

internal temperature gradient. This can be well described by Fourier law of heat conduction. 

This law states that the amount of thermal energy conducted (Qc) through a medium is 

directly proportional to the cross-sectional are (A) perpendicular to the heat conduction 

direction; the temperature difference across the medium (T2 – T1); the length of time during 

which conduction occurs (∆t) and inversely proportional to length (d) 
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across the medium through which heat is conducted which can be neglected for 

limiting case of infinitesimally small value [2, 21] 

 

Qc 
'
  kA(T2  T1 )t / d where K is the proportionality constant called the thermal 

 

conductivity. The negative sign shows the second law of thermodynamics which states 

that heat should flow from regions of higher temperature to lower temperature. 

 

The integral form of fourier law describes Qc as the rate of heat conduction through the 

 
 

control volume with surface envelope of area dA.  It is given as Qc  KTs (r',t).ndA' 
A 

 

where n is unit vector normal to incremental surface area dA’. 
 
 

 Heat due to metabolism (Qm) 
 

 
The most widely used approach to estimate metabolic heat production, Qm, has been to set 

this term equal to the oxygen consumption multiplied by the caloric value of oxygen. The 

heat due to metabolic rate depends on factors like the degree of muscular activities; 

environmental conditions and body size. Metabolism, as any other chemical reaction, is 

accelerated with increasing temperature as long as the higher temperature does not lead to the 

inhibition of the metabolic process by, for example, the denaturation of enzymes. The 

 

temperature dependence can be written as Qm   Qmo (1.1
T

 ) where Qmo is the basal 

 

metabolic heat production rate and ∆T is the temperature increase. The basal metabolic 

heat production rate is highly variable, ranging approximately 5 W/m
3
 for subcutaneous 

fat and 50 kW/m
3
,for working muscle. Compared with the heating rate when using a 

laser for heat treatment, the metabolic heat production can be neglected [23]. 
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 Heat due to blood Convection(Qb) 
 

 

From the viewpoint of thermal physiology, the skin, tissues, and especially the fat of the 

subcutaneous tissues are heat insulators. The insulation beneath the skin is an effective 

means of maintaining normal core temperature, even though it allows the skin 

temperature to approach the ambient temperature. Conversely, blood vessels penetrate the 

subcutaneous tissues and are profusely distributed beneath the skin. Much research from 

biology and bioengineering has demonstrated that the main mechanism of heat exchange 

from deep body to skin is by circulation of blood [2, 21]. 

 
The most common approach to analyze the important effect of blood perfusion on the 

tissue energy balance is based on the application of Fick’s principle. It states that “the 

amount of substance taken up by an organ or control volume per unit time is equal to the 

arterial level of the substance minus the venous level times the rate of blood flow”. 

 

Q
b 

'
  


 


blood

C
blood


tissue


blood 

(T
b  

T
s 

)
 

 
When the entire tissue control volume is considered, the total amount of thermal 

energy transported by the blood stream becomes 

Qb   bloodCbloodbloodtissue[Tb (r',t) Ts (r',t)]dV ' 
V 

 

ii. Deriving the perfusion term:  
 

 

For short periods of time (∆t) and assuming the subject did not have a sizeable meal we 

can neglect Qm. The terms Qr, Qe, Qf are approximately 1/100 times less than the 

magnitude of Qb. Hence these terms can also be neglected. [16,17]. 

 
So the simplified energy balance equation can be written as: 
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Q  Qc   Qb 

 

Q  tissueCtissue[Ts (r', t) / t]dV 

' , V 
 
 

 

Qc  KTs (r',t).ndA' 
A ,  

Qb   bloodCbloodbloodtissue[Tb (r',t) Ts (r',t)]dV ' 

V 
 

 
  

tissueCtissue[Ts (r',t) / t]dV ' KTs (r',t).ndA'bloodCbloodbloodtissue[Tb (r',t) Ts (r',t)]dV ' V A V 
 
 

 

By applying the divergence theorem to the above equation can be simplified as: 
 

 

 tissueCtissue[Ts (r',t) / t] [KTs (r',t)]  bloodCbloodbloodtissue[Tb (r',t) Ts (r',t)] 




 tissueCtissue[Ts (r',t) / t]  K[
2
Ts (r',t)]  bloodCbloodbloodtissue[Tb (r',t) Ts (r',t)] 

 

  tissueCtissue[Ts (r',t) / t]  K[
2
Ts (r',t)]  

blood 
 
 
 
 
 
 
 

II.2. Comparing proposed modeling with previous studies 

 

The idea of using bio-heat modelling to obtain derived perfusion from temperature was 

inspired from [16], [17], [18] and [19]. Temperature measurement is widely used in the 

assessment of cutaneous circulation. Therefore, monitoring of cutaneous temperature (Ts) 

and its distribution by means of thermal infrared imaging (IR) has been proposed and 
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 (bloodCbloodtissue[Tb (r',t) Ts (r',t)]) 



 
used for the indirect assessment of possible microvascular or cutaneous tissue 

impairments [16,17,18,19]. 

 
 
 

i. Reference model :1 (from [16] and [17])  

 

The analytical equation of the perfusion related term from the bio-heat model is given as 

the time derivative of the blood-flow rate. 

d
blood 

 
 Cons tan t Ts 

 

dt ([T (r', t)  T (r', t)])
2
 t  

 
 

  b s  
 

 

where Constant value given by C− Kc/3d and acts like a scale factor. 

 

The expression can be integrated numerically over time to obtain an estimate for the 

perfusion (blood flow rate). 

 
 
 
ii. Reference model :2 (from [19] )  

 
The perfusion related term from the bio-heat model is determined as: 
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iii. Current study  

 

In this study a bio-heat transfer model was developed along the basis of these previous 

papers with a more rigorous approach and fewer approximations. 

 
The perfusion related term from the bio-heat model per my analytics can be given:  
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In this study I am comparing results from real time in-vivo and simulated data with the 

analytics given by [16, 17], and [19] with our proposed model. The perfusion related 

term is given differently in each model and this is summarized and shown in Table 3. 

 

Perfusion term (wblood ) from studies that are being compared   Reference 
 

             
 

     Cons tan t      1 
 

            

            

blood  

[Tb (r', t) Ts (r', t)] 
      

 

         
 

             
 

 
 

 
  Ctissue[Ts (r',t) / t]      2 

 

blood   

(bloodCblood[Tb (r',t) Ts (r',t)]) 
    

 

         

         
 

             
 

 
 

 
  Ctissue[Ts (r',t) / t] 

 
K[

2
Ts (r',t)]   Current 

 

blood  

(bloodCblood[Tb (r',t) Ts (r',t)]) 
(

blood

C
blood


tissue

[T
b 

(r',t)
 

T
s (r',t)]) 

 
 

       

      study  

             

             
 

 

 

Table 2: Comparing the derived perfusion related term from different studies. 
 
 
 
 

 Thermal Camera Specifications [16]: 

 
Thermal IR imaging has been performed by using a 3–5μm digital infrared camera (AEG Aim 
GmbH, Heilbronn, Germany), with 0.02 second time resolution, 0.1 K temperature sensitivity, 
and 0.02 K temperature noise. Emissivity of the skin was estimated as ≅ 0.95. 
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 Thermal Camera Specifications [17]: 

 

They used a cooled mid-infrared camera, the Radiance HS by Raytheon. The focal 

plane area (FPA) of the camera is sensitive to the 3-5μm waveband and its size is 256 × 

256 pixels. 

 
 
 
By observing these equations we can see that the reference model: 1 just considers a 

scaled temperature value as its perfusion term. Reference model: 2 and Current study 

give a better approximation of the perfusion term by considering other key parameters 

along with the change in temperature. To compare Reference model: 2 and Current study, 

a true image is created similar to that of real-time thermal in-vivo obtained in our 

study(shown in the latter part).The models are processed on these images to observe the 

perfusion change patterns. This part of the work was aimed at trying to analyze the 

difference between both the models for known conditions. The images as shown in figure 

3 and figure 4 were created such that there was a relation to the in-vivo imaging.A 

horizontal stip of around 40 pixels was creted corresponding to the tissue region. A 

distorted drop shaped region was also created to resemble a wound. This wound was 

being partially overlapped by an arrow which depicts the laser used for low-level laser 

therapy in our study. Images [1] and [2] correspond to the same concept except thatthere 

is a shift in the laser position in [2] and the wound is surrounded by an artefact of the 

same high pixel range as the laser. 
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Figure 3: A set of images created to observe the difference between the two models. 
 
 

 

In the Processed perfusion the laser and the artefact were displayed in both the models 

Reference model: 2 and Current study but the wound region appears with a lower scale 

value in Current study and is not shown at all in Reference model: 2. This is because the 

wound region is of the same range in both the images so even though it is our area of 

interest in our imaging and we would like to see the changes happening in that area we 

cannot observe it from Reference model: 2. This part appears in our model due to the 

additional scaled laplacian term which is the improvement Reference model: 2 and 

Current study 
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Another set of images was created as shown in figure 4 with an additional change. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Another set of images created to observe the difference between both models. 
 

 

In figure 4 the additional change was made in the wound region between the two images 

so this change was displayed in both the models but the wound area is displayed with the 

change over a relative scale only in Current study and not in Reference model: 2, thereby 

helping us visualize the actual changes taking place. The better visualizing and 

understanding of output between Reference model: 2 and Current study is due to the 

additional scaled laplacian term in the analytical equation of the perfusion term from the 

two models. 
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CHAPTER III 
 
 
 

 

METHODOLOGY 
 
 

III.1  Thermography equipment and post-processing 

 

An ETIP 7320 P-Series Infrared Camera (Infrared Cameras Inc., Beaumont Tx) with 

a micro-bolometer 320 x 240 UFPA VOX sensor and a 25mm lens was used for 

thermography in this study. It is shown in Figure3. The infrared sensor has a spectral 

 
response of 8 to 10 m, a thermal sensitivity of 0.027°C @ 25°C, and an accuracy of 

±2°C or ±2%. It is controlled by a laptop computer using USB protocol, with a 16 bits 

temperature dynamic range. At the default screen resolution of 320 x 240 pixels, the 

maximum acquisition rate was 23 frames per second. The frames were continuously 

stored in the dynamic memory during the acquisition, and transferred to hard-drive after 

the acquisition is stopped. The imaging was done approximately 20” from the subject. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: The Infrared Camera used in our study with a controlled laptop 
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III.2. Laser Specifications: 

 
The laser that was used for low-level laser therapy as part of this study is shown below in 
Figure 4 with the laser specifications tabulated in Table2: 

 

Laser Type Class IV, Solid State 

  

Laser Wavelength 980/810 nm 
  

Laser Power 0.5W to 15W 

  

Operating Modes CW or Pulsed 

  

Aiming Beam 650 nm, 5 mW 

  

Dimensions 15.6” x 10” x 10.4” 
  

Weight 17 lbs. 
  

Power Requirement 100 to 240VAC/50-60Hz 

  

Fiber Premium, Double-sheathed, Rubber Coated, 800 Microns in diameter 

  

Hand piece Finger Switch 

  

Table 3: Specifications of laser used for low-level laser therapy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: The laser used in the study for low-level laser therapy 
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III.3 Imaging Protocol 
 

i. Laser:  

 

The general Imaging protocol to obtain real time in-vivo data from humans and turtles 

was to image for 60 seconds with three intervals of 20 seconds having laser off and on 

over the subject. The schematic is shown in figure 5. 

 
 
 
 
 
 
 
 
 

 

Figure 7: Laser Protocol for 60 seconds 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8: Imaging setup of wounded Turtle with Low-level laser therapy 

Shown above in figure 6 is an image which shows a turtle which is being lasered over 

its wound as part of a treatment, along with the laser being used and the thermal camera 

which is used for imaging purposes. 

 

The data obtained from human hand was from 6 regions including the right palm, left 

palm, front of right and left forearm, back of right and left forearm are shown from figure 

7 to figure 12 
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Figure 9: Thermal image from right palm with laser application. 
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Figure 10: Thermal image from left palm with laser application. 
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Figure 11: Thermal image from right forearm with laser application. 
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Figure 12: Thermal image from left forearm with laser application 
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Figure 13: Thermal image from back of left forearm with laser application. 
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Figure 14: Thermal image from back of right forearm with laser application. 
 
 

 

The data was obtained from both legs of 3 turtles. Shown in figure 13 is one such image. 
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Figure 15: Thermal image from turtle leg with laser application. 
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ii. Pressure Cuffing  
 

The general Imaging protocol to obtain real time in-vivo data from turtles was to image 

for 60 seconds with 3 intervals of not applying and applying pressure cuff. This protocol 

is shown in figure 14 with a schematic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: Pressure cuffing Protocol for 60 seconds 
 
The data was obtained from both legs of 4 turtles. Shown in figure 15 is one such image. 
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Figure 17: Thermal image from turtle leg with application of pressure cuff 
 
 

 

The reason for conducting the pressure cuffing protocol image was that we 

expected some significant change in perfusion during the application and the release 

of the pressure cuff. 
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CHAPTER IV 
 

 

RESULTS 

 

The results of this study are categorized into three parts. All the data are obtained real 

time from humans and turtles as per the protocols mentioned in the Methodology 

section. The first part shows the different results from the analytical modelling of the 

bio-heat model by Reference model: 1, 2 and Current study for the non-tissue region. 

Here the laser head which, interferes the heated tissue region is considered. In second 

part the different data from the tissue region of lased and pressure cuffed thermal data 

are processed using the analytical bio-heat model by Reference model: 1, 2 and Current 

study. The third part compares the perfusion pattern obtained from processing real time 

data of lasing humans and turtles. 

 

 

IV.1  Part-1: Comparing different models on in-vivo data from non-tissue region 

 

In Chapter 2 a true condition data was generated using tissue and laser and wound 

region. This data was processed using the different models to observe the difference in 

the output perfusion pattern. In this part of the study a few sets of human data which had 

a significant interference of the laser head and the heated tissue region where selective 

thresholding was not applicable were considered. The presence of the laser head and its 

overlapping with the tissue region hinders in observing the perfusion pattern. The 

different models proposed by Reference model: 1, 2 and Current study, are compared in 

figures 18 and 19. 
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Ref model: 1 

 
 
 
 
 
 
 

 
Ref model: 2 

 
 
 
 
 
 
 
 
 
 
 

Current study 
 
 
 

 

Figure 18: Output Perfusion images from different models (non-tissue region) 
 
 
 
 
 
 
Ref model: 1 
 
 
 
 
 
 
Ref model: 2 
 
 
 
 
 
 
 

 
Current study 
 
 
 
 

 
Figure 19: Another set of Output Perfusion images from different models (non-
tissue region) 
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In figures 18 and 19 we can observe the different degrees of laser head edges popping 

up in the output data from different models. The output from [Reference model: 1] 

displays a clear edge of laser in the midrange in both figures. Results from [Reference 

model: 2] show a significant amount of laser head and edges at maximum perfusion 

range in both the figures. Results from [Current study] show a very small amount of 

laser head and edges at maximum perfusion range in both the figures thereby showing 

an improvement from both the previous models. 

 

 

IV.2  Part-2: Comparing different models on in-vivo data from tissue region 

 

The perfusion pattern from the forepaw and hindpaw of rats due to ultrasonic 

radiation from [15] is shown below in figure 20. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 20: The perfusion output pattern on endotherms due to Ultrasound from [15] 
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This pattern can be compared with the output pattern obtained from our study with 

the human data attributing to the endotherm nature of both the species. 

 

To show the different results obtained from the analytical modelling of the bio-heat 

model by [16, 17], [19] and proposed model the procedure followed was as follows: 

Selective thresholding was applied to all applicable data in order to eliminate possible 

artefacts, but in certain situations this thresholding technique was not applicable and so 

data was processed without it [24].The maximum temperature changes in the lased region 

over the subject is selected as the Region of Interest (ROI). These values are plotted over 

time to show the maximum temperature change over time. This is shown in the first part 

of figure. Over the same ROI the maximum values are considered as a narrower ROI, 

from the perfusion images proposed by each model being discussed. Averaging is done 

for the narrower ROI for all the outputs and is followed by smoothing. ). These output 

values are plotted over time to show the average perfusion change over time. The results 

obtained from Reference model: 1, 2 and Current study using above mentioned method 

are shown in the latter part of the figure respectively. A similar procedure is followed for 

the pressure cuffed data without the smoothing procedure. 

 
i. From Lasing of Human hand.  

 

Figures 21 to 26 shown below correspond to the outputs discussed above for 6 sets 

of data obtained from the lasing action over different parts of the human hand from 

our study. 
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Ref model: 1 

 
 
 
 
 
 

Ref model: 2 
 
 

 
Current study 

 
 
 
 
 

 

Figure 21: Temperature and Perfusion values from in-vivo data of right palm with laser. 
 
 
The results obtained from this set of data shown in figure 21 show that: 
 

 

Reference model: 1 displays perfusion output as a scaled temperature input. Reference 

model: 2 displays the perfusion output at a much higher range than the true value with 

unstable variations over non-lased duration. Current study displays a more stable 

perfusion output at the documented range of values with a significant change during 

laser irradiation period, else stable changes. 
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Ref model: 1 
 
 

 
Ref model: 2 

 
 

 
Current study 

 
 
 
 
 
 
 

 

Figure 22: Temperature and Perfusion values from in-vivo data of left palm with laser. 
 
 
The results obtained from this set of data shown in figure 22 show that: 
 

 

Reference model: 1 displays perfusion output as a scaled temperature input. Reference 

model: 2 displays a significant perfusion change at a much higher range than the actual 

values before the laser irradiation and almost constant pattern at lasing interval. Current 

study displays a more stable perfusion output showing significant change during laser 

irradiation period at the documented range of perfusion values and stable changes 

otherwise 
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Ref model: 1 
 
 
 
 
 
 

Ref model: 2 
 
 

 
Current study 

 
 
 
 
 
 
 
 
Figure 23: Temperature and Perfusion values from in-vivo data of right forearm with 

laser. 

 
The results obtained from this set of data shown in figure 23 show that: 
 

 

Reference model: 1 displays perfusion output as a scaled temperature input. In this case 

Reference model: 2 and current study displays a similar stable perfusion pattern output 

showing significant change during laser irradiation period and stable changes 

otherwise. The range of perfusion values are well in the documented range from other 

studies for both models from this set of data. 
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Ref model: 1 

 
 
 
 
 
 

Ref model: 2 
 
 
 
 
 
 

Current study 
 
 
 
 
 

 

Figure 24: Temperature and Perfusion values from in-vivo data of left forearm with laser 

application. 

 
The results obtained from this set of data shown in figure 24 show that: 
 

 

Reference model: 1 displays the perfusion output as a scaled temperature input. In this 

case Reference model: 2 and current study displays a similar stable perfusion pattern 

output showing significant change during laser irradiation period and stable changes 

otherwise. The range of perfusion values are well in the documented range from other 

studies for both models from this set of data. 
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Ref model: 1 
 
 
 
 
 
 

Ref model: 2 
 
 
 
 
 
 

Current study 
 
 
 
 
 
 
 
 
Figure 25: Temperature and Perfusion values from in-vivo data of back of right 

forearm with laser application. 

 
The results obtained from this set of data shown in figure 25 show that: 
 

 

Reference model: 1 displays perfusion output as a scaled temperature input. 

Reference model: 2 displays the perfusion output at a much higher range than the true 

value with unstable variations over the non-lased duration. Current study displays a 

more stable perfusion output showing significant change during laser irradiation 

period and stable changes otherwise at the documented range of perfusion values 
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Ref model: 1 
 
 
 
 
 
 

Ref model: 2 
 
 
 
 
 
 

Current study 
 
 
 
 
 
 
 

 

Figure 26: Temperature and Perfusion values from in-vivo data of back of left 

forearm with laser application. 

 
The results obtained from this set of data shown in figure 26 show that: 
 

 

Reference model: 1 displays the perfusion output as a scaled temperature input. In this 

case reference model: 2 and current study display a similar stable perfusion pattern 

output showing significant change during laser irradiation period and stable changes 

otherwise. The range of perfusion values are well in the documented range from other 

studies for both models from this set of data. 
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ii. From Lasing of Turtles legs.  
 
 
 
The perfusion pattern of ectotherms due to thermal changes from [26] is shown below 

in figure 27. This pattern can be compared with the output pattern obtained from our 

study with the turtle data attributing to the ectothermic nature of these species. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 27: The perfusion output pattern on ectotherms due to Thermal changes from [25] 
 
 
 
 
Figures 28 to 33 shown below correspond to the outputs with the same methodology as 

that discussed above for lased human data. Here we are comparing the outputs from the 

6 sets of data obtained from the lasing action on the legs of turtles. 
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Figure 28: Temperature and Perfusion values from in-vivo data of turtle leg with laser 

application 

 
The results obtained from this set of data shown in figure 28 show that: 
 

 

Reference model: 1 displays perfusion output value over a very high range with 

unstability, irrespective of the laser application. In this case reference model: 2 and 

current study displays a similar stable perfusion pattern output showing significant 

change during laser irradiation period and stable changes otherwise. The ranges of 

perfusion values are much higher than the other sets of data as the region of interest 

might have included some region from the laser head. 
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Figure 29: Temperature and Perfusion values from in-vivo data of turtle leg with laser 

application 

 
The results obtained from this set of data shown in figure 29 show that: 
 

 

Reference model: 1 displays a zero perfusion output value over the entire 60 second 

duration, irrespective of the laser application. In this case reference model: 2 and current 

study displays a similar stable perfusion pattern output showing significant change during 

laser irradiation period and stable changes otherwise. 
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Figure 30: Temperature and Perfusion values from in-vivo data of turtle leg with laser 

application 

 
The results obtained from this set of data shown in figure 30 show that: 
 

 

Reference model: 1 displays a zero perfusion output value over the entire 60 second 

duration, irrespective of the laser application. In this case reference model: 2 and current 

study displays a similar stable perfusion pattern output showing significant change during 

laser irradiation period and stable changes otherwise. 
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Figure 31: Temperature and Perfusion values from in-vivo data of turtle leg with laser 

application 

 
The results obtained from this set of data shown in figure 31 show that: 
 

 

Reference model: 1 displays a zero perfusion output value over the entire 60 second 

duration, irrespective of the laser application. In this case reference model: 2 and current 

study displays a similar stable perfusion pattern output showing significant change during 

laser irradiation period and stable changes otherwise. 
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Figure 32: Temperature and Perfusion values from in-vivo data of turtle leg with laser 

application 

 
The results obtained from this set of data shown in figure 32 show that: 
 

 

Reference model: 1 displays a zero perfusion output value over the entire 60 second 

duration, irrespective of the laser application. In this case reference model: 2 and current 

study displays a similar stable perfusion pattern output showing significant change during 

laser irradiation period and stable changes otherwise. 
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Figure 33: Temperature and Perfusion values from in-vivo data of turtle leg with laser 

application 

 
The results obtained from this set of data shown in figure 33 show that: 
 

 

Reference model: 1 displays a scaled temperature change pattern as the output perfusion 

pattern. In this case reference model: 2 and current study displays a similar stable 

perfusion pattern output showing significant change during laser irradiation period and 

stable changes otherwise. 
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iii. From Pressure Cuffing of Turtles legs.  

 

Figures 34 to 41 shown below correspond to the outputs discussed above for 8 sets 

of data obtained by pressure cuffing both the legs of three turtles. The pressure 

cuffing protocol was implemented to observe the expected change of perfusion with 

the application and release of sudden pressure cuff. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 34: Temperature and Perfusion values from in-vivo data of turtle leg with the 

application of pressure cuff 
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The results obtained from all the sets of pressure cuffing data shown in figures 34 to 

figures 41 show that Reference model: 1 displays a zero perfusion output value over the 

entire 60 second duration irrespective of the application and release of cuff as it displays 

the perfusion pattern as a scaled temperature change rather than perfusion change. In 

this case reference model: 2 and current study displays a similar perfusion pattern output 

showing significant change during the application and release of pressure cuff and 

otherwise stable changes as expected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 35: Temperature and Perfusion values from in-vivo data of turtle leg with the 

application of pressure cuff 
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Figure 36: Temperature and Perfusion values from in-vivo data of turtle leg with the 

 

application of pressure cuff 
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Figure 37: Temperature and Perfusion values from in-vivo data of turtle leg with the 

 

application of pressure cuff 
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Figure 38: Temperature and Perfusion values from in-vivo data of turtle leg with the 

 

application of pressure cuff 
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Figure 39: Temperature and Perfusion values from in-vivo data of turtle leg with the 

 
application of pressure cuff 
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Figure 40: Temperature and Perfusion values from in-vivo data of turtle leg with the 

 

application of pressure cuff 
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Figure 41: Temperature and Perfusion values from in-vivo data of turtle leg with the 

application of pressure cuff 

 
IV.3  Part-3 

 

In this part of the study we are trying to compare the perfusion patterns that are obtained 

from our proposed model, with the same method that is discussed in the previous part i.e. 

part1, from data obtained with laser protocol over humans and turtle without using 

smoothing technique which was used in processing the data for part1. The perfusion 

pattern of endotherms and ectotherms due to thermal changes from [26] is shown below 
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in figure 42. This pattern is compared with the output pattern obtained from our study 

with the human and turtle data attributing to the endothermic and ectothermic nature 

of these species. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 42: Perfusion patterns due to thermal variation (A) On Endotherms and (B) On 

Ectotherms from [25] 
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Figures 43 to 48 shown below compare the temperature changes and perfusion pattern of 

humans and turtles due to low-level laser irradiation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 43: Comparing Temperature and Perfusion values from in-vivo data of human 

hand and turtle leg with laser irradiation 

 

The results obtained from all the 6 sets of human and turtle data shown in figures 43 to 

figures 48 show that the temperature changes, due to laser irradiation in humans is much 

less when compared to that of turtles attributing to the adaptive thermogenesis of 

endotherms. The similarity between patterns from both the species is that there is an 

increase in perfusion with laser irradiation and the difference in the patterns occurs when 
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the laser is turned off. There is an abrupt decrease in perfusion for the turtle data and the 

decrease is not so abrupt in case of humans. The difference in perfusion patterns 

between human and turtle data may be attributable to the varying levels of vasodilation 

and vasoconstriction due to heat induced by laser irradiation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 44: Comparing Temperature and Perfusion values from in-vivo data of human 

hand and turtle leg with laser irradiation 
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Figure 45: Comparing Temperature and Perfusion values from in-vivo data of human 

 

hand and turtle leg with laser irradiation 
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Figure 46: Comparing Temperature and Perfusion values from in-vivo data of human 

 

hand and turtle leg with laser irradiation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

55 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 47: Comparing Temperature and Perfusion values from in-vivo data of human 

 

hand and turtle leg with laser irradiation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

56 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 48: Comparing Temperature and Perfusion values from in-vivo data of human 

 

hand and turtle leg with laser irradiation 
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CHAPTER V 
 

 
ONGOING, FUTURE WORKS & CONCLUSION 

 
 

 

V.1  Ongoing work - GUI for thermography derived perfusion imaging 
 
 
 
 
A user-friendly Graphical-User-Interface (GUI) was developed in Matlab such that it 

can take several saved raw data thermal images, display the thermal maps, process them 

and display the processed perfusion output with an overlapped input thermal image. 

 

This part of the work is aimed at helping the medical practitioners observe the 

temperature changes and the temperature derived perfusion changes of the 

subject. Shown below are snap shots to show the sequential working of the GUI. 

 
Figure 49 shows the look of the user friendly GUI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 49: Snapshot of display of User friendly GUI 
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On clicking of the Load Input pushbutton, shown in figure 49, the interface asks to 

choose the folder with the data and the particular data that needs to be processed. 

This process is shown in figure 50. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 50: Snapshot of selecting input data in user-friendly GUI 

Upon selecting the input the raw thermal data are loaded for visualising. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 51: Input thermal images being displayed with a color bar 
 
 

 

On clicking the process and display output pushbutton, shown in figure 51, the selected 

thermal data is processed and the Perfusion data Overlapped with the Thermal data with 

a transparency is displayed as output. This overlapping with transparency enables better 
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observing of the Temperature derived perfusion changes with the temperature 

changes. This output is shown in figure 52. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 52: Perfusion output with an overlapped input with transparency 
 
 

 

Then a movie file of the output perfusion images is created and saved as .avi file. This 

 

.avi file can be used on any system without additional software unlike the obtained input 

thermal images in their raw data format and the GUI which works on Matlab. Having 

these movie files saves a lot of time and effort when there is a need to access the 

perfusion output, as they do not need to be recomputed several times for the same set of 

data. 

 
V.2 Future Work 

 

The current work involves developing and implementing an improved approximated bio-

heat model for thermography derived perfusion from in-vivo data obtained from turtle 

subjects and human volunteer with low-level laser irradiation. However, in order to 
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quantitatively support the results a Synthetic study with true condition still needs to be 

implemented. 

 

The experimental study to obtain in-vivo data can be implemented with better control 

which will be a challenging task but can possibly result in more informative and accurate 

results. The present work investigates the cutaneous perfusion response to low-level 

laser. In future the cutaneous perfusion response to different kinds of heat can be studied 

and compared. Also the modelling can be carried out at a more rigorous level by 

considering more factors resulting in further improvement in future. 

 

The ongoing work involves the implementation of a user friendly GUI for thermography 

derived imaging. The present GUI takes several saved raw data thermal images, display 

the thermal maps, process them and display the processed perfusion output with an 

overlapped input thermal image and also displays the output images as movie files. There 

is scope to improve this GUI by making its implementation real-time instead of working 

with saved thermal images. Also there is possibility of including customized functions 

with the GUI implementation according to the needs of the medical practitioners. 

 
V.3  Conclusion from Results 
 

 

Perfusion is important to the healthy functioning of the body and therefore its 

quantification can be of great use to medicine and health care. Also with Low-level laser 

therapy playing a significant role in medical treatment, it has become important to 

understand how the tissue will thermally respond during treatments allowing physicians 

to plan treatment doses and durations for the procedures. Previous studies have 

demonstrated that Temperature derived perfusion can be derived from dynamic 
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thermography imagery by applying bio-heat transfer models. In this study we develop a 

bio-heat transfer model for deriving perfusion information from thermography imagery 

along the same basis but with fewer approximations than the referred previous studies. 

 

In this study different models from other studies and our developed model are used to 

process sets of real time thermal images obtained from our study to observe the pattern of 

perfusion changes with low-level laser irradiation. As part of this process there was a 

temperature elevation due to laser irradiation. This procedure was based on the fact that 

an increase in heat flux from the unheated state will raise the tissue temperature 

sufficiently to cause capillary recruitment and vasodilation. From the results of the 

procedure of lased data by reference model: 2 and current study there is an agreement 

about the increased perfusion pattern over the lased region for the specific duration of 

20seconds to 40 seconds. However the degree of variation differs from data to data as 

expected. The first model from reference model: 1 followed the pattern of temperature 

changes. The perfusion pattern of their model is similar to a scaled temperature pattern of 

the input data rather than perfusion pattern. Current study gives a similar perfusion 

pattern for all the sets of lased human data whereas reference model: 2 falters in certain 

cases. This happens when the data contains laser head, any sharp edges, or significant 

artefacts with a high temperature, where selective thresholding is not applicable as it 

interferes with the range of required information. In such situations the former model 

shows drastic changes in the perfusion pattern whereas our model gives a stable 

perfusion pattern similar to the data without interferences. This improvement can be 

attributed to the additional laplacian term involved in the model in current study. 
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For the lased turtle data the output perfusion pattern from reference model: 2 and current 

study yields similar results. Also for the pressure cuffed data from turtle legs, an increase 

in perfusion during the sudden pressure cuff variation and stable perfusion at other times 

was observed from reference model: 2 and current study .The similar perfusion pattern 

between the two methods may be due to the likely low changes due to heat conduction by 

the subcutaneous tissue attributable to their thermoregulation mechanism. Without 

significant changes due to this parameter the additional improvements in our model do 

not have any significant effect thereby giving a similar output when compared to the 

former model. 

 
 
 
When comparing the results obtained from the laser procedure of human and turtle data it 

is observed that that the temperature changes, due to laser irradiation in humans is much 

less when compared to that of turtles attributing to the adaptive thermogenesis of 

endotherms. There is an increase in perfusion due to laser irradiation and decrease in 

perfusion when the laser is turned off for both the species. But the decreasing perfusion 

pattern is different for humans and turtles. There is an abrupt decrease in perfusion for the 

turtle data and the decrease is not so abrupt in case of humans. The difference in the 

decreasing perfusion patterns between human and turtle data may be attributable to the 

varying levels of vasodilation and vasoconstriction due to heat induced by laser 

irradiation between endotherms (humans) and ectotherms (turtles). 
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APPENDICES 
 
 

 
% To process raw thermal data in matlab. 
 

 

close all; 

clear all; 

clc; 

 
[filename pathname] = uigetfile('*.i16', 'multiselect','on'); 

dirname = uigetdir; 

 
files = dir(dirname); 

 
fileIndex = find(~[files.isdir]); 
 
 
 
 

for i=3:(numel(fileIndex)-2) filename 

= files(fileIndex(i)).name; 

 
fid = fopen([pathname 

filename],'r+'); LgthFileMainHeader 

= 3476; LgthImHeader = 1016; 

 
fseek(fid, 2, 'bof'); 

 

NbRowImage = fread(fid,1,'uint16'); 

fseek(fid, 4, 'bof'); 

 
NbColImage = fread(fid,1,'uint16'); 

fseek(fid, 8, 'bof'); 
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B{i} = fread(fid, [NbRowImage,NbColImage] ,'uint16' ); 

a{i} = double(B{i}); 

 
a{i}=imrotate(a{i},270); 

a{i}= a{i}/100; 

fclose('all'); 

 
figure; 

 

imagesc(a{1}); 

 

impixelinfo; 

end 

 
% To select one frame out of every 10 frames and process the 

model for i=1:10:(numel(fileIndex)-2)  

 
in_old{i}=a{i}; 

in=in_old(~cellfun('isempty',in_old));  

 
end  

 
for i=1:(max(size(in)))  

 

G = fspecial('average',[8,8]); 

in_2{i}= imfilter(in{i},G,'same');  

 
end  

 
% To apply selective thresholding  

 
x=in_2; 

 
for i=1:numel(in) 

 
for k= 1:240 

 
for l=1:320 
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if x{1,i}(k,l)<26 

x{1,i}(k,l)=0; 

 
end 

end 

 
end 

end 

 
%% 

 

for i=1:(numel(in)) 

Iedge{1,i}=edge(x{1,i}); 

 
IedgeD{1,i}=imdilate(Iedge{1,i},ones(7)); 

 
Itemp=IedgeD{1,i}; 

 

IedgeD{1,i}=~Itemp; 

end 

 
for i=1:(numel(in)-1) 

dtsbydt{i}=double((x{i+1}-x{i})); 

 
end 

 
for i=1:(numel(in)-1) 

 

h = fspecial('laplacian',0.2); 

dts2bydt2{i}= 

imfilter(x{i},h,'same'); end 

 
% The parameter values from literature related to bio-heat model and modeling. 

ptissue=1.01*10^-3; 

 
ctissue=3600; 
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k=0.54; 

pblood=1.06*10^-

3; cblood=3780; 

tcore=37; 

 
for j=1:(numel(in)-2) 

tempdiff{j}=double(tcore-x{j}); 

 
iperf{j}=(ctissue.*dtsbydt{j})./(pblood*cblood.*(double(tcore-

x{j}))); y{j}=k.*dts2bydt2{j}; 

 
z{j}=pblood*cblood*ptissue*tempdiff{j}; 

 
intermed{j}=(y{j}./z{j}); 

 
wb{j}=iperf{j}+intermed{j}; 

op{j}=double(wb{j}.*IedgeD{j}); 

figure; 

 
imagesc(op{j}); 

 
caxis([0,40]); 

 

colorbar; 

end 

 
end 
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