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CHAPTER 1
INTRODUCTION

In this section we give a brief description of the Standard Model of particle

physics and reasons for going beyond it.
1.1 The Standard Model

The Standard Model (SM) of elementary particle physics has recorded remark-
able success in describing physics at length scales ranging from atomic scales down
to the shortest probed scale of about 107'¥ m. It is a non—abelian gauge theory based
on the gauge group [1]

SU@B)e x SU(2), x U(1)y,

where SU(3)¢ is the color gauge group describing strong interactions and SU(2), X
U(1)y is the electroweak gauge group describing weak and electromagnetic interac-
tions.

The SM describes the interactions of quarks, leptons, gauge bosons and the
Higgs boson. The field content and the transformation properties under the gauge
symmetries are shown in Table 1.

It is important to note that the left— and the right-handed components of
the matter fermions are assigned to different representations (doublets and singlets
respectively) of the weak gauge group SU(2)y, thereby allowing a chiral structure for
the weak interactions.

The Yukawa and Higgs part of the SM Lagrangian is given by

Lyuwkawa = Yiglaeho +YHQud50 + Y4Quub¢ + hc., (1.1)
N @0
where ¢ = io?¢* = . Here generation indices o, § = 1, 2, 3 are explicitly
—¢~
displayed, while color and SU(2)y, indices are suppressed.



Fields SU(S)C SU(Z)W U(l)y
. u,
Quarks Q:, = , 3 2 %
d,
ust 3 1 —2
e 3 1 1
I/Oé
Leptons ly = 1 2 —3
€a
es 1 1 2
Gluon G} 8 1 0
Intermediate weak bosons Wi 1 3 0
Hypercharge gauge boson B, 1 1 0
ot
Higgs boson o= 1 2 1
¢" i

TABLE 1.1. Particle content of the SM and the charge assignment. Here o = 1, 2, 3 is the
generation index, i = 1 — 3 (color), a = 1 — 8 (SU(3)¢ generators) and r =1 — 3
(SU(2)L generators).

1.2 Symmetry breaking via the Higgs mechanism

If we consider the SU(2), xU(1)y part of the Lagrangian, assuming that there is
no Higgs field, all the fermions and the four gauge bosons (W'

s B,,) would be massless.

This is unacceptable, for the weak interactions are short range, meaning that the
mediators must be massive. We must then break the symmetry spontaneously which

will ensure renormalizability. This is achieved through the scalar Higgs doublet

¢+
= . 1.2
0 <¢> (1.2)

The only observed unbroken local symmetry in Nature is the U(1).,, (apart from
SU(3)¢). Therefore the SU(2), x U(1)y symmetry should be broken down to U(1).y,.
The renomalizable Higgs potential is given by

Vg = 1207 o + A(¢'9).



This has a minimum for % < 0 at

2 2
oy = 1 1

oy =-1 =2 (13

We can choose the vacuum expectation value (VEV) after an SU(2),, transformation

in the unitary gauge as

1 (0
(o) = 2 <U> : (1.4)

It is not difficult to see that the gauge boson associated with the U(1),, subgroup of
SU(2)r, x U(1)y remains massless. The electric charge Qcp, the U(1)y hypercharge

and the third component of weak isospin T3, are related by

Y
Qem = T3L + 57 (15)
and the gauge boson masses are given by
gu My
My = 2= M, = M, =0. 1.6
W 77 cosOy’ 4 (16)

Here g is the SU(2); gauge coupling strength and tanfy = ¢'/g, where ¢ is the
U(1)y gauge coupling constant. These masses are obtained from the Lagrangian for

the gauge and Higgs field, given by

g = ig’ 2
Lgauge—Higgs = |00 — 57?-Wu¢ - 731@ ’

once the VEV of ¢° is inserted.
It is worthwhile to note that the weak mixing angle 6y, is a parameter of the
SM which has been measured to a very high accuracy. Another accurately measured

) which is predicted to be 1 (at tree level)

2
quantity is the p parameter (p = 55— f)ZVQ -
zZ

in the SM. New physics can also be severely constrained by the observed value of p.
After symmetry breaking, from the Yukawa interactions in Eq. (1.1), the

fermions become massive with masses given by
Mu = Yul}, Md = YdU, Mg = YéU. (17)

Here Y, 4, are arbitrary 3 x 3 complex matrices in generation space.



Not all parameters in these matrices are observable in the SM. After fermion
field redefinitions, the 3 eigenvalues of each of the matrices, 3 mixing angles and
one phase entering in the charged Wﬂi interactions with quarks become physical
quantities. Omne makes biunitary transformations, UqLJYuU}éT = Yudiag’ U‘LinU;;T =

Yddlag , U fHUg = Y}Zdlag, in which case the charged W¥ current takes the form

wi 9 pt

V2
where Vogn = UzTUg is a unitary matrix, the Cabibbo—Kobayashi—-Maskawa matrix
or the quark mixing matrix.
Since there is no right-handed neutrino field vy, the neutrinos remain massless.
The fermion masses are arbitrary since the Yukawa couplings Y are free parameters.
To find the Higgs boson mass, we write the complex field ¢° in terms of real

fields. The Higgs doublet then takes the form (in unitary gauge)

_ ! ! 1.8
gb_ﬁ(v—l—n)’ ()

where 7) is the physical Higgs scalar with mass
m? = 2\’ (1.9)

The Higgs mass is left undetermined since A is a free parameter, with only its
sign constrained to be positive.

There are several good features of the SM some of which are:

1. All the particles predicted by the SM have been observed except the Higgs

boson.

2. Both baryon and lepton number are automatically conserved. This prevents

rapid decay of the proton.

3. It has an extremely economical Higgs sector which is responsible for giving

masses to all particles.

4. With only two independent parameters My, and sin @y, all the electroweak

processes at high energy are correctly described.



The SM also has several drawbacks. There are several free parameters in the SM
Lagrangian: The Higgs coupling constant A, the Higgs mass parameter 2, three gauge
couplings (¢, g, gs), the number of generations (matter fields) and three Yukawa
matrices Y, Yfﬁ, chﬁ. Despite the remarkable success of the SM, there are still
several questions left unanswered. For example, does the Higgs boson exist? Do the
gauge couplings unify? How is gravity incorporated?

An attempt to answer these numerous questions will take us to beyond the
SM. For example, some earlier attempts tried to unify strong and electroweak forces
by embedding the SU(3)¢ x SU(2), x U(1)y structure into higher groups such as
SU(5) and SO(10). These “Grand Unified Theories” or GUT’s, were only partially
successful.

Difficulties with the SM and GUT models concerning gauge hierarchy and fine
tuning problems led to theoretical remedies such as technicolor, supersymmetry, string
theory, etc. The most appealing of these theories is perhaps supersymmetry, which

is the main focus of this thesis.
1.3 Gauge hierarchy problem

The hierarchy problem is one of the main reasons why we think supersymmetry
has something to do with Nature, and that it might be broken at a scale comparable
to the scale of weak interactions, rather than at some enormous energy such as the
Planck scale Mp; ~ 102 GeV. The mass hierarchy problem stems from the fact that
masses, in particular scalar masses, are not stable to radiative corrections [2]. While
fermion masses also receive radiative corrections from diagrams of the form in Figure

1.1, these are only logarithmically divergent (see for example [3]),
dmy =~ Sam In(A?/m?) (1.10)
= 47 f s ’

where A is an ultraviolet cutoff, where we expect new physics to play an important

role. As one can see, even for A ~ Mp;, these corrections are small, dmy < my.



Figure 1.1. 1-loop correction to the mass of a fermion.

In contrast, scalar masses are quadratically divergent. 1-loop contributions to

scalar masses, such as those shown in Fig. 1.2, are readily computed

om2y =~ {g% ¢, A}/d%— ~ 0( >A2 (1.11)

due to contributions from fermion loops with coupling g¢, from gauge boson loops

with coupling ¢2, and from quartic scalar-couplings .
g9

/// ‘\\
\
/ \
! \
I
— _— ] I
\ /
9 9 \ /
\ 4
\\\ /’/
2
g

Figure 1.2. 1-loop corrections to a scalar mass.

An alternative and by far simpler solution to this problem exists if one postu-
lates that there are new particles with similar masses and equal couplings to those
responsible for the radiatively induced masses but with a difference (by a half unit)
in spin. Then, because the contribution to dm?% due to a fermion loop comes with a

relative minus sign, the total contribution to the 1-loop corrected mass? is

)(A2+m23)—0< )(A2+mF) o(ﬁ>(m23—m§). (1.12)

5mH:O< =

47 47

If in addition, the bosons and fermions all have the same masses, then the radiative
corrections vanish identically. The stability of the hierarchy only requires that the

weak scale is preserved so that we need only require that
Im3%, —m3| < 1 TeV?. (1.13)

As we will see latter, supersymmetry offers just the framework for including the nec-

essary new particles and ensures the absence of these dangerous radiative corrections

[4]-



1.4 Gauge coupling unification

Another motivation for supersymmetry lies in the gauge coupling constant uni-
fication. In the SM, the gauge couplings do not unify. The solutions to the SM

renormalization group equations to one loop accuracy are given by

L _ L by (ﬁ)
a(@ () 2w e\Q)

where the b; are

by 0 E i
bi=b | = 2 | +N| 5| +N]| 3
bs —11 E 0

Here N, = 3 is the number of generations and Nj, = 1 is the number of Higgs doublets.

=19 7). The three gauge

The numerical values for the b; coefficients are b; = (1—0, 5

coupling constants used as input are
o = 5a/(3cos® Oy), ay = a/sin® Oy, as=g>/(4n),

where a~!(My) = 128.978, sin? fy = 0.23146 and a3 = 0.1184.

On evolving the inverse of the three coupling constants as a function of logarithm
of the unification scale @, the result is shown in Fig. 3 (left). These couplings
do not meet at a common point, hence unification does not occur. If we consider
supersymmetric grand unified theory, the beta function coefficients are modified due
to the quantum corrections involving the superpartners and are given in the Minimal

Supersymmetric Standard Model (MSSM) by

by 0 2 3
bz‘ — b2 - —6 + Ng 2 + Nh %
b3 -9 2 0

Here N, = 3 and N}, = 2. The numerical value for b; is b; = (%, 1, —3). If we assume
that all the SUSY particle masses are around 1 TeV, on evolving the inverse coupling
constants, they meet at a point (unify) as shown in Fig. 3 (right). The point at
which these particles meet is around 10'® GeV. The SUSY particles are assumed to
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Figure 1.3. Running of the couplings in the SM (left) and its minimal supersymmetric
version (right).

contribute only above the effective SUSY scale (~ 1 TeV) which causes the change of
slope in the evolution of the couplings. This is another reason why most high energy
physicist believe in supersymmetry.

The present thesis contains nine chapters. In the second chapter we review all
the basics for Supersymmetry (SUSY), we define the SUSY algebra and introduce all
the tools needed to write down the supersymmetric version of gauge field theories.
In chapter 3, the minimal supersymmetric extension of the Standard Model is intro-
duced, all the interactions and relevant mass matrices for our analysis are studied. In
the fourth chapter we review various symmetry breaking models, here we introduce
the Anomaly Mediated Supersymmetry Breaking (AMSB) and review the relevant
literature. In chapter 5, we suggest TeV—Scale horizontal symmetry as a solution to
the negative slepton mass squared problem of AMSB. In chapter 6, we suggest an
SU(2)g model as a solution to the negative slepton mass problem. In chapter 7,

we study a specific Z’ model as a solution to the slepton mass problem of AMSB.



In Chapter 8, we suggest another model to solve this problem of AMSB with the
quarks and the leptons transforming identically under two different SU(3) symmetry
group. Finally, we divert from the AMSB to Neutrino Physics, here we suggest a

non-standard neutrino interaction as a solution to the neutrino oscillation problem.



CHAPTER 2
SUPERSYMMETRY

Supersymmetry (SUSY) is often called the last great symmetry of Nature.
Rarely has so much effort, both theoretical and experimental, been spent to un-
derstand and discover a symmetry of Nature, which up to the present time lacks
concrete evidence.

Why SUSY? If for no other reason, it would be nice to understand the origin
of the fundamental difference between the two classes of particles distinguished by
their spin, fermions and bosons. If such a symmetry exists, one might expect that it

is represented by an operator which relates the two classes of particles. For example,

QQ|Boson) = |Fermion),

Q|Fermion) = |Boson). (2.1)

However, without a connection to experiment, SUSY would remain a mathematical
curiosity and a subject of a very theoretical nature as indeed it stood from its initial
description in the early 1970’s [5, 6] until its incorporation into a realistic theory of
physics at the electroweak scale.

One of the first break-throughs came with the realization that SUSY could
help resolve the difficult problem of mass hierarchies [2], namely the stability of the
electroweak scale with respect to radiative corrections. With precision experiments
at the electroweak scale, it has also become apparent that Grand Unification is not
possible in the absence of SUSY [7].

Considering a new class of “fermionic” generators (), that satisfy anti-commutation

relations
[Qa, J™] = i PQg,

10
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[QO”P“] = 07
[Qd’JW} — fWaQﬁ
[, P"] = 0, (2.2)

where Q, (Q%) is a symmetry operator (SUSY charge), P* is the energy-momentum
operator and J*” is the angular momentum operator.
The @’s are translationally invariant (no explicit z—dependence) and they satisfy

anti—-commutation relations

{Qa, Qﬁ} 149 (2.3)

where the factor 2 is conventional and can be achieved by re-scaling the ()’s. There are
three main properties of a supermultiplet: (1) All particles belonging to an irreducible
representation of SUSY have the same mass, (2) there are equal number of fermionic
(Nr) and bosonic (Np) degrees of freedom in a supermultiplet, (3) the energy Py in

a supersymmetric theory is always positive.
2.1 Supersymmetry algebra

Combined with the usual Poincaré and internal symmetry algebra the Super-

Poincaré Lie algebra contains additional SUSY generators @7, and Q7 [8]

b=

[P

[P ] = (guppa - guUPp)a

[Muw U] = (ngM gquup - gupMVa + g,uaMup>7

[B,, Bs] = iC! By,

[Br, P] = [By, Mys] =0,

@Bl = Q0 RI=0. - -
[ ] = ;(Juu)ﬁQﬂa [ Z?Muu] = _%Qg(ﬁuu)ga

Q%

B, = (0,)jQh Qi B/ = —Qh(by);,
(G4 @)} = 204) 4,
{QL, QhY = 2€0pZ",  Zij = ajb,, ZY =27},
{Qg,@%} = —2¢,37", [Zij, anything] = 0,
a,a=1,2 4,7=1,2,...,N.
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Here P, and M, are four-momentum and angular momentum operators, re-
spectively, B, are the internal symmetry generators, @ and Q° are the spinorial SUSY
generators and Z;; are the so-called central charges, while a, &, 3, 3 are the spinorial
indices. In the simplest case one has one spinor generator ), (and the conjugated
one Q) that corresponds to an ordinary or N=1 SUSY. When N > 1 one has an
extended SUSY.

The constraint on the number of SUSY generators comes from a requirement
of consistency of the corresponding quantum field theory (QFT). The number of

supersymmetries and the maximal spin of the particle in the multiplet are related by
N < 48,

where S is the maximal spin. Since the theories with spin greater than 1 are non-
renormalizable and the theories with spin greater than 5/2 have no consistent coupling

to gravity, this imposes a constraint on the number of SUSY generators

N <4 for renormalizable theories (YM),

N <8 for (super)gravity.

In what follows, we shall consider simple SUSY, or N = 1 SUSY, contrary to extended
supersymmetries with N > 1. In this case, one has two types of supermultiplets: the
so-called chiral multiplet, which contains two physical states (¢,1) with spin 0 and
1/2, respectively, and the vector multiplet with A = 1/2, which also contains two

physical states (A, A,) with spin 1/2 and 1, respectively.
2.2 Superspace and superfields

An elegant formulation of SUSY transformations and invariants can be achieved
in the framework of superspace [9]. Superspace differs from the ordinary Euclidean
(Minkowski) space by the addition of two new coordinates, 6, and 6, which are

Grassmannian, i.e. anticommuting, variables

{0005} =0, {04,0,}=0, 02=0, 03=0, a,8,d,0=12.
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Thus, we go from space to superspace

Space = Superspace
xu xua 9047 Q_d
A SUSY group element can be constructed in superspace in the same way as an

ordinary translation in the usual space

G(x,0,0) = H(=2" P +0Q + é@) (2.5)

It leads to a supertranslation in superspace

x, — x,+ibo,E— 10,0,
0 — 6O0+e¢, (2.6)
g — é—i—é,
where € and & are Grassmannian transformation parameters. From Eq. (2.6) one
can easily obtain the representation for the supercharges Eq. (2.4) acting on the
superspace

0

_ _ 0
Qa = 87 — iagoﬂaaﬂ, Qd == _ﬁ + ieaggda,u- (27>

Taking the Grassmannian transformation parameters to be local, or space-time de-
pendent, one gets a local translation. As has already been mentioned, this leads
to a theory of (super) gravity. To define the fields on a superspace, consider repre-
sentations of the Super-Poincaré group Eq. (2.4) [10]. The simplest one is a scalar
superfield F(x,6,0) which is SUSY invariant. Its Taylor expansion in § and # has only
several terms due to the nilpotent character of Grassmannian parameters. However,
this superfield is a reducible representation of SUSY. To get an irreducible one, we

define a chiral superfield which obeys the equation
DF =0, where D = —% — 160"0, (2.8)

is a superspace covariant derivative. In superspace (by Taylor expanding y = = +

i0of), a chiral superfield is written as

D(y,0) = Aly)+V200(y) + 00F (y)
= A(z) +i00"00,A(x) + EQ%HDA@)

- %eeam(m)a“e +00F(z). (2.9)

+ V20y(x) 7%
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Here A is a complex scalar field (with two bosonic degrees of freedom), ¢ is a Weyl
spinor field (with 2 fermionic degrees of freedom)and F' is the auxiliary field (with
no physical meaning) which is needed to close the SUSY algebra (2.4). We see from
here that a superfield contains an equal number of fermionic and bosonic degrees
of freedom. Under a SUSY transformation with anticommuting parameter ¢, the

component fields transform as

SA = V2,
5. = iV20"E0,A + V2¢F, (2.10)
0.F = V280",

The antichiral superfield ®* obey the equation

D®T =0, with D= % +ic"00,,.

The product of chiral (antichiral) superfields ®2, ®3, etc., is also a chiral (antichiral)
superfield, while the product of chiral and antichiral ones ®*® is a general superfield.

For any arbitrary function of chiral superfields one has

W(®;) = W(A; +V20u; + 00F)

9 9 o
— WA + awfewﬁee (a;" ;aA?;x ij). (2.11)

The W is usually referred to as a superpotential which replaces the usual potential for
the scalar fields. The vector superfield satisfies the condition V' = V*. They should

be understood in terms of their power series expansion in # and 6 as

V(x,0,0) = C’( )+ i0x(x )—zé;‘g(m)’
+ 500[M(m) +iN(z)] —

%HG[M(Q:) —iN(x)]
~ 00400, (a) + 0O 2) + %5ﬂaux(x)]
e+ L J”@l,,x( ] + ;eeéé[p(x) + %DC’(m)]. (2.12)
The component fields C, D, M, N and v, must be real for Eq. (2.12) to satisfy

V = V*. These vector supermultiplet contains 8 bosonic degrees of freedom (one
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each for C, D, M, M, N and four from the real vector field v,) and 8 fermionic
degrees of freedom (from the two component spinors x and A). The physical degrees
of freedom corresponding to a real vector superfield V' are the vector gauge field v,
and the Majorana spinor field A. All other components are unphysical and can be
eliminated. We now define the supersymmetric generalization of an Abelian gauge

transformation of the superfield V' as
V — V4+o+ 0T,

where ® and ®* are some chiral superfields. Under this transformation, the compo-

nent transform as
¢ - C+ A+ A"
X - xX—iV2Y,
M++N  — M +iN — 2iF,

vy, — v, —10,(A — AY), (2.13)
A — A,
D — D.

We see that there is a special gauge known as the Wess-Zumino gauge [11] in which
C, x, M and N are all zero. Fixing this gauge breaks SUSY but still allows the
usual gauge transformation v, — v,+0,A. In this gauge, the vector multiplet reduces
to 4 bosonic degrees of freedom (1 for D and the three remaining components of v,,)
and 4 fermionic degrees of freedom (from the Majorana spinor A). In this gauge the

vector superfield takes the form

V= ~0040u,(x) + i000A(x) — 00N(x) + L00BID ()

Vo= —%Geéévu(x)v“(x),

Vi o= 0,

V* = 0 for n>3. (2.14)

One can define also a field strength tensor (as analog of F},, in gauge theories)

1_
W, = —ZDQGVDae_V,
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1 _
Wy = —ZD%VDae*V, (2.15)

which is a polynomial in the Wess-Zumino gauge. (Here Ds are the supercovariant

derivatives.) The strength tensor is a chiral superfield

DyW, =0, DzWs=0.
In the Wess-Zumino gauge it is a polynomial over component fields:
W, =T (-iAg + 0,D" — %(J“ﬁyﬁ)aFﬁy + Gza“Du)\“> , (2.16)
where
Fi, = 0, — Oyvy, + gf*v va,, D, = OX* + gf“bcvzj\c.
In Abelian case egs.(2.15) are simplified and take form

_ 1 _
W, = —ZDQDQV, W, = —ZDQDQV

2.3 Supersymmetric Action

Using the rules of Grassmannian integration:

/d@a_o /eadeg_(saﬂ

we can define the general form of a SUSY and gauge invariant Lagrangian as [10]:

1 1 _
+ / 20420 O (e9)e D° + / d*0 W(® / d*0 W(®;)
®; are chiral superfields which transform as:

P; — e NP,

and

€gV N eng €gV€ g\

where both A and V' are matrices:
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Ay = TZ-Aa’ Vij = Ti(;‘vay
with 7* the gauge generators. The supersymmetric field strength W, is equal to

1.
W, = —ZDDe’VDaeV

and transforms as: W — e " Weih,
W is the superpotential, which should be invariant under the group of symme-

tries of a particular model. In terms of component fields the above Lagrangian takes

the form [12]

e —iFﬁVF“‘W iNoH DA + %Dam
+ (0,4 — ingT“Ai)T(auAi — igu™ TP A) — it (O — igu™ TMY;)
— DUAIT"A; — iV2AITNY,; + iV 20T AN + FIF
ow 8WFT 1w 1 PW s (2.18)

Integrating out the auxiliary fields D® and Fj, one reproduces the usual Lagrangian.
Contrary to the SM, where the scalar Higgs potential is arbitrary and is defined
only by the requirement of the gauge invariance, in supersymmetric theories it is
completely defined by the superpotential. It consists of the contributions from the
D-terms and F-terms. The kinetic energy of the gauge fields yields the %DaDa term,
and the matter-gauge interaction yields the gD7t A7 A; one. Together they give

1
Lp=5D"D" + gD T3 AL A;. (2.19)

The equation of motion reads
D = —gT1 3 AT Ay, (2.20)
Substituting it back into Eq. (2.19) yields the D-term part of the potential

1 1
LD = —§DaDa - Vp = §DaDa, (221)
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where D is given by Eq. (2.20). The F-term contribution can be derived from the

matter field self-interaction. For a general type superpotential YW one has

Lp=F'F + (%Fi +he) (2.22)

Using the equations of motion for the auxiliary field F;

0
B _aZ‘f (2.23)
yields
Lp= —E*E, = Vi = F:FZ, (224)

where F'is given by Eq. (2.23). The full potential is the sum of the two contributions
V=Vp+ Vg (2.25)

Thus, the form of the Lagrangian is constrained by symmetry requirements. The only
freedom is the field content, the value of the gauge coupling g, Yukawa couplings v;;x
and the masses. Because of the renormalizability constraint V' < A* the superpoten-
tial should be limited by W < ®3. All members of a supermultiplet have the same
masses, i.e. bosons and fermions are degenerate in mass. This property of SUSY

theories contradicts phenomenology and requires SUSY breaking.
2.4 SUSY breaking

Since the SUSY algebra leads to mass degeneracy in a supermultiplet, it should
be broken to explain the absence of superpartners at accessible energies. There are
several ways of SUSY breaking. It can be broken either explicitly or spontaneously.
In performing SUSY breaking one has to be careful not to spoil the cancellation
of quadratic divergencies which allows one to solve the hierarchy problem. This is
achieved by spontaneous breaking of SUSY. It is possible to show that in SUSY
models the energy is always nonnegative definite. According to quantum mechanics

the energy is equal to

E = (0] H |0), (2.26)
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where H is the Hamiltonian and due to the SUSY algebra

{Qa, Q) = 2("),3 P (2.27)

Taking into account that Tr(c"P,) = 2P, one gets

=1 3 (0HQuQul0) = § 3 Qa0 > 0 (2.28)

a=1,2

Hence

E=(0H[0)#0 ifandonlyif Q4|0) 0.

Therefore, SUSY is spontaneously broken, i.e. the vacuum is not invariant under @)
(Qal0) # 0), if and only if the minimum of the potential is positive (i.e. £ > 0) .
Spontaneous breaking of SUSY is achieved in the same way as electroweak symmetry
breaking. One introduces a field whose vacuum expectation value is nonzero and
breaks the symmetry. However, due to the special character of SUSY, this should
be a superfield whose auxiliary F' or D component acquires nonzero VEVs. Thus,
among possible spontaneous SUSY breaking mechanisms one distinguishes the F'—
type breaking and the D—type breaking.
i) Fayet-Tliopoulos (D-term) mechanism [12].

In this case the, the linear D-term is added to the Lagrangian
AL = Vo0 = g/cﬂe o V. (2.29)

It is U(1) gauge and SUSY invariant by itself, however, it may lead to spontaneous
breaking of both of them depending on the value of £. The drawback of this mecha-
nism is the necessity of U(1) gauge invariance. It can be used in SUSY generalizations
of the SM but not in GUTs. The mass spectrum also causes some troubles since the

following sum rule is always valid

STEM? =D (—1)* (2] + 1)m3 =0, (2.30)
J
which is bad for phenomenology.

ii) O’Raifeartaigh (F-term) mechanism [12].
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In this case, several chiral fields are needed and the superpotential should be
chosen in such way that trivial zero VEVs for the auxiliary F-fields are forbidden.

For instance, choosing the superpotential to be

one gets the equations for the auxiliary fields

Fl* = mA2 + 291411437 (232)
Fy = M+g45, (2.34)

which have no solutions with (F;) = 0 and SUSY is spontaneously broken. The
drawback of this mechanism is that there is a lot of arbitrariness in the choice of
the potential. The sum rule (2.30) is also valid here. Unfortunately, none of these
mechanisms explicitly works in SUSY generalizations of the SM. None of the fields
of the SM can develop nonzero VEVs for their F' or D components without breaking
SU(3)c or U(1)y gauge invariance since they are not singlets with respect to these

groups. This requires the presence of extra sources for spontaneous SUSY breaking

[13-18].



CHAPTER 3

THE MINIMAL SUPERSYMMETRIC STANDARD
MODEL

The Minimal Supersymmetric Standard Model (MSSM) [19] respects the same
gauge symmetry SU(3)c x SU(2)r x U(1)y as does the SM. Here SUSY is somehow
(softly) broken at the weak scale. The MSSM is the simplest phenomenologically
viable supersymmetric theory beyond the SM in that it contains the fewest number
of new particles and new interactions.

To construct the MSSM [20] we start with the complete set of chiral fermions,
and add a scalar superpartner to each Weyl fermion so that each fields represents a
chiral multiplet. Similarly we must add a gaugino for each of the gauge bosons in the
SM making up the gauge multiplets. The particles necessary to construct the MSSM
are shown in Tables 3.1. and 3.2.

Superfield | SU(3)¢ | SU(2). | U(1)y | Particle Content
Q 3 2 Lol (ug,dy), (g, dy)
Ue 3 1 —% UR, Up
De 3 1 : dg, di
L 1 2 —35 | (vp.ew), (7, ér)
E° 1 1 1 er, &
H, 1 2 ~1 (Hg, Hy)
H, 1 2 ! (H,, H,)

TABLE 3.1. Chiral superfields of the MSSM.

The MSSM is defined by its minimal field content (which accounts for the known

SM fields) and minimal superpotential necessary to account for the known Yukawa

21
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Superfield | SU(3)¢ | SU(2)L | U(1)y | Particle Content
Ga 8 1 0 GH, G*
W 1 3 0 WH, o
B 1 1 0 B, b~

TABLE 3.2. Vector Superfields of the MSSM.

mass terms. Notice that in Table 3.1. and 3.2., we have introduced a partner for
every particle of the SM with the same internal quantum number and a spin differing
by %

We define the MSSM by the superpotential

W = e[y HiL e + ya HYQ'd° + y, HLQ s + pHYHI). (3.1)

Here, the indices, {ij}, are SU(2),, doublet indices and p is the Higgs mass parameter.
The Yukawa couplings, y, are all 3 x 3 matrices in generation space. Note that there is
no generation index for the Higgs multiplets. Color and generation indices have been
suppressed in the above expression. There are two Higgs doublets in the MSSM. This
is a necessary addition to the SM which can be seen as arising from the holomorphic
property of the superpotential. That is, there would be no way to account for all
of the Yukawa terms for both up-type and down-type multiplets with a single Higgs
doublet. To avoid a massless Higgs state, a mixing term €;;uH;H? must be added to
the superpotential.

However, even if we stick to the minimal field content, there are several other
superpotential terms which we can envision adding to Eq. (3.1) since they are con-
sistent with all of the symmetries of the theory. We could have considered terms
like

Wg = p"LiH, + X" L; Ljef, + X" LiQ;dj + N7 uidSdy, (3.2)
where 7, j and k are the generation indices and \’s are the coupling constants.

In Eq. (3.2), the terms proportional to A, X', and p’, all violate lepton number

by one unit. The term proportional to \” violates baryon number by one unit.
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Each of the terms in Eq. (3.2) predicts new particle interactions and can be
to some extent constrained by the lack of observed exotic phenomena. However, the
combination of terms which violate both baryon and lepton number can be disastrous.

In order to avoid these unwanted terms, we impose a discrete symmetry on the

theory called R—parity [21], which can be defined as
R = (_1)3B+L+237 (33)

where B, L, and s are the baryon number, lepton number, and spin respectively. With
this definition, it turns out that all of the known SM particles have R-parity +1, and
all the superpartners of the known SM particles have R = —1, since they must have

the same value of B and L but differ by 1/2 unit of spin.
3.1 Electroweak symmetry breaking and the Higgs boson masses

We analyze the scalar potential in this section. It is derived from the superpo-
tential and the terms involving the Higgs in the soft breaking Lagrangian.

The part of the scalar potential which involves only the Higgs bosons (H,, and
H,) is given by

1
Vo= (i H+ HiH) + 29 (HH, — HiHo)?

1
+39" (AHGHL® = 2(HGHa) (HEH) + (HiHa)® + (L))

+my HyHy+my, HiH, + (Bpe; HyH) +h.c.). (3.4)

Here the first term is the F-term, derived from |[(OW/0H,)|? and |(0W/OH,,)|? setting
all sfermion VEV’s equal to 0. The next two terms are D—terms, the first a U(1)y

D-term, recalling that the hypercharges for the Higgses are Yy, = —% and Yy, = %,
and the second is an SU(2);, D—term, taking 7% = ¢ where ¢ are the three Pauli
matrices. Finally, the last three terms are the soft SUSY breaking masses my, and

mpy,, and the bilinear term Bu. The Higgs doublets can be written as

Hy) = Ha H,) = i 3
<d>_<Hd_>= <u>_<H3>7 (5)

where in Eq. (3.4) by (H}H,), we mean HY HS + H; " H etc.
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The neutral portion of Eq. (3.4) can be expressed more simply as

2 /2
g +g 2
Vo= —5 (JHJP? — [H*)™ + (m3y, + |ul®) | Hg|?
+(myy, + |ul?)|Hy P + (BuHgH, + h.c.). (3.6)

For electroweak symmetry breaking, it will be required that either one (or both) of
the soft masses (m3;,,m7; ) be negative (as in the SM).
From the minimization of the potential Eq. (3.6), we obtain the following two
conditions
—2Bp = (my;, +my;, + 2u%) sin 20, (3.7)

and

o A(miy, + 42 — (mhy, + ) tan® 5)
Ve = 5 , (3.8)
(9> + g"*)(tan’ 5 — 1)

where tan 3 = . From the potential and these two conditions, the masses of the

physical scalars can be obtained. At the tree level,

mie = m4 +miy, (3.9)
m% = my;, +my, +2p” = —Bpu(tan 3 4 cot §), (3.10)
1
my, = 5 [mi +m3, £ \/(m?4 +m%)? — 4mim?% cos? 20 | . (3.11)

Notice that these expressions and the above constraints limit the number of free
inputs in the MSSM. First, from the mass of the pseudoscalar, we see that By is not
independent and can be expressed in terms of m4 and tan 3. Furthermore from the
conditions Eqgs. (3.7) and (3.8), we see that if we keep tan /3, we can either choose
my and o as free inputs thereby determining the two soft masses, my, and my,,
or we can choose the soft masses as inputs, and fix m4 and g by the conditions for
electroweak symmetry breaking. Both choices of parameter fixing are widely used in
the literature.

The tree level expressions for the Higgs masses make some very definite predic-
tions. The charged Higgs is heavier than My, and the light Higgs h, is necessarily
lighter than M. Note if uncorrected, the MSSM would already be excluded (from

current accelerator limits). However, radiative corrections to the Higgs masses are
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not negligible in the MSSM, particularly for a heavy top mass m; ~ 178 GeV. The
leading one-loop corrections to m? depend quartically on m; and can be expressed as

[22]

3m? m:; m
A 2 _ t (A7
h 47292 ( m?
3miA? .
it [Qh(m?1>m?2)+z4? g(m3 ,mi)| + ... (3.12)

where mj, , are the physical masses of the two stop squarks t1.5 to be discussed in more
detail shortly, A, = A+ pcot 3, (A; is the SUSY breaking trilinear term associated

with the top quark Yukawa coupling). The functions h and f are

h(a,b) = aib (%) glab) = ﬁ [2-%@ In (%)} (3.13)

Additional corrections to coupling vertices, two-loop corrections and renormalization-

group resummations have also been computed in the MSSM [23]. With these correc-
tions one can allow

my, < 130 GeV, (3.14)

within the MSSM. While certainly higher than the tree level limit of M, the limit still
predicts a relatively light Higgs boson, and allows the MSSM to be experimentally
excluded (or verified!) at the LHC.

3.2 The sfermions masses

We turn next to the discussion of scalar partners of the quarks and leptons.

The mixing matrices for m?, m? and m? are

gy my(As + pcot 3) (3.15)
my(Ay + pcot ) mip 7

My my(Ap + g tan 3) (3.16)
my(Ap + ptan B) Mg |

TNTL?.L mT(AT + :utan ﬂ) (3 17)

m- (A, + ptan 3) m2p
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with
my, = my+m;+ é(élMI%, — M3) cos 283,
il = i = (MR, — M) cos2,
i, = i mE %(mgv + M2) cos 2,

1
My = mp+mp + =(Mj — M3)cos2p,

3

1
m2, = mi+m:— 5(2M§, — M%) cos 283,
mip = mp+m2+ (Mjy — M3)cos20.

The first terms here (m?) are the soft ones, which are calculated using the Renor-
malization Group (RG) equations starting from their values at the GUT (Planck)
scale. The second ones are the usual masses of quarks and leptons and the last ones
are the D terms of the potential.

The off-diagonal mixing term in the mass matrix is negligible for all but the third
generation sfermions. The physical sfermion states and their masses are determined

by diagonalizing the sfermion mass matrix.
3.3 Neutralinos

There are four new neutral fermions in the MSSM which not only receive mass
but mix as well. These are the gauge fermion partners of the neutral B and W3
gauge bosons, and the partners of the Higgs. The two gauginos are called the bino,
E, and wino, W respectively. The latter two are the Higgsinos, f:Id and f[u In
addition to the SUSY breaking gaugino mass terms, —%Mléé, and —%M{VV?’W?’,
there are supersymmetric mass contributions of the type W%;1;, giving a mixing
term between H, and ﬁu, %uﬁdﬁu, as well as terms of the form g(¢*T %))\ giv-
ing the following mass terms after the appropriate Higgs VEVs have been inserted,
\/Lig'vd]:v]dg, —\%g’vuﬁ]ug, —\%gvdﬁld/w\/?’, and %g%ﬁuﬁ? These latter terms can

be written in a simpler form noting that for example, g'vg/v/2 = My sin Oy cos 3.
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Thus we can write the neutralino mass matrix as (in the (B, W*, HY, H%) basis) [24]

M, 0 —Mysg,, cosB Myzsg,, sin 3
0 M, Mycy,, cos 3 —Mzcy,, sin 3 | (3.18)
—Myzsg,, cos3 Mzcy,, cos 3 0 —
Mysg,, sinf3  —Mzcy,, sin3 — I 0

where sg,, = sinfy and ¢y, = cosfy,. The mass eigenstates (a linear combination of
the four neutralino states) and the mass eigenvalues are found by diagonalizing the

mass matrix Eq. (3.18).
3.4 Charginos

There are two new charged fermionic states which are the partners of the W=+
gauge bosons and the charged Higgs scalars, H*, which are the charged gauginos,
W and charged Higgsinos, H *+, or collectively charginos. The chargino mass matrix

is composed similarly to the neutralino mass matrix. The result for the mass term is

1 ~  ~ ( M,y ﬁmwsinﬁ> (W+

~ + h.c. 3.19
V2myy cos 8 i HT ) ( )

Note that unlike the case for neutralinos, two unitary matrices must be constructed

to diagonalize Eq. (3.19). The result for the mass eigenstates of the two charginos is

1
me,,mg, = 5 [MQQ + p? +2M3, £ \/(M22 + p? + 2M7)? — A(uMy — M3, sin 23)? ]

(3.20)

Some additional resources on supersymmetry used in this preliminary introduc-
tion are the classic by Bagger and Wess on supersymmetry [25], the book by Ross on
Grand Unification [26] and some other good reviews by Martin and others [27-33].



CHAPTER 4

ANOMALY MEDIATED
SUPERSYMMETRY BREAKING

Understanding the origin of Supersymmetry breaking has been one of the main
focuses of SUSY phenomenologists. It is highly non—trivial to construct models which
break supersymmetry in a generally acceptable way.

The most common scenario for producing low—energy Supersymmetry breaking
is called the hidden sector. The usual SM matter fields reside in the visible sector and
the fields that break supersymmetry reside in the hidden sector. There are no (small)
direct couplings between the two sectors. The symmetry breaking which occurs in

4

the hidden sector is communicated to the visible sector via “ messenger ” fields.

Some of the several competing proposals on what the mediating interaction
might be are Gravity mediation (SUGRA), Gauge mediation, Gaugino mediation
and Anomaly mediation.

Any successful supersymmetry breaking scenario should at least satisfy the fol-

lowing conditions:

e The theory should give correct masses to the superpartners ~ 1 TeV, and the

scalar mass—squared should be positive,

e The p parameter should be between 100 GeV — 1 TeV and the Bpu parameter

should not be too much larger than p2,
e There are no large flavor changing neutral currents,

e CP should be approximately conserved (A & B phase should be small, as
required by the measurement of the electric dipole moments of neutron and

electron),

28



29

e The model should be simple enough such that it can be tested experimentally.

This thesis is based on the Anomaly mediation scenario of SUSY breaking.
Before going into any details of the proposed models, I will briefly review the other

three scenarios and what others have done on anomaly mediation.
4.1 Gravity mediation

In this scenario, the messenger is gravity. Supersymmetry is broken in the
hidden sector by a VEV (F). The moduli field T, which appears as a result of
compactification from higher dimensions and the dilaton field S, which is part of the
SUGRA supermultiplet develop a non—zero VEV for their F components which in
turn leads to spontaneous SUSY breaking. The soft mass term in the visible sector

is roughly

(F)

7 (4.1)

Msoft ~

These soft masses should vanish as (F') — 0 where SUSY remains unbroken.

In this scenario, the SUSY sector is completely described by 5 input parameters:
Higgs mass parameter (4), common scalar mass (mg), common gaugino mass (m2),
common trilinear coupling (Ag) and the Higgs mixing parameter (B).

When SUSY is broken at a scale y/(F), the graviton will also obtain a mass

F
Msoft ~ M3zj2 ~~ ]<w_P>l (42)

Since we argued earlier that for SUSY to solve the hierarchy problem the mass scale

should be mg,p; ~1 TeV, therefore SUSY should be broken at a scale \/(F) ~ 10"
GeV.

Some of the good features of the models are

e Extremely predictive— because the entire low energy spectrum is predicted in
terms of few input parameters (mg, mi2, Ao, tan B (B) and sign(u)), where

all phenomenological limits can be expressed in terms of these parameters,
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e Gauge couplings are unified and the gaugino masses are predicted to be the

ratios of the gauge couplings,

e The p problem is solved through Guidice-Masiero mechanism, where a singlet

field ¥ in the Kahler potential [ d*6X*H,H, /Mp, breaks SUSY,
e [t is easy to generate positive scalar mass—squared.

e H, mass—squared turns negative due to large top Yukawa coupling even if it

starts of being positive at the Planck scale.

Despite the success of the theory, there are still some problems which are: CP is
generally a problem, large freedom of parameters, absence of automatic suppression of

flavor violation, lack of consistent theory of quantum supergravity (local symmetry).
4.2 Gauge mediation

In this scenario the Supersymmetry breaking is communicated from the hidden
sector to the visible sector via gauge interactions. The main idea is to introduce new
chiral multiplets (messengers) which couple indirectly to the MSSM fields through
the SU(3)c x SU(2)r x U(1)y gauge interactions.

The particles ((s)quarks and (s)leptons) gets large mass by coupling to a gauge
singlet chiral supermultiplet S. The superpotential for a typical gauge mediation can

be written as

The singlet scalar S and the auxiliary component of S (Fy) acquires a VEV by
putting the scalar field into an O’Raifeartaigh—type model or a dynamical mechanism.

The gauginos get mass at 1-loop
M~ YA (1=1,2,3) (4.4)
i~ t=1,24, ) .
47

where A = F;/(S5).
The MSSM scalars do not get any radiative corrections to their masses at 1—

loop. Their masses arise at 2—loop level from those diagrams involving the gauge
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fields and the messengers. The scalar masses are given by

A 2
i () {e0a+ a2+ i (45)

where C; are the quadratic Casimir operators for the SU(3)c x SU(2), x U(1)y gauge
group. This implies that the sparticles with the same gauge quantum number will
have equal masses (for example: m, = m, = m,).

In order for the gauginos and scalar soft masses to be ~ 1 TeV (as needed for
the hierarchy problem) requires A ~ 10* — 10° GeV. In most of the gauge mediation
models, the slepton and squark masses depend only on their gauge quantum num-
bers. This leads to the degeneracy of squark and slepton mass which results in the
suppression of flavor changing neutral currents (FCNC’s). The Lightest Supersym-
metric Particle (LSP) is usually the gravitino, with mass mg,, ~ A?/M, ~ 107
GeV, which can be crucial both for cosmology and collider physics.

In summary:
e gauge mediated supersymmetry breaking (GMSB) solves the FCNC problem,

e gaugino mass arise at 1-loop while the scalar mass—squared arise at two loop

level,

e there is still a problem in the Higgs sector (offers no compelling solution to the

i problem),

e it does not offer any solution to the SUSY CP problem.
4.3 Gaugino mediation

In this scenario the SM quark and lepton fields are localized on a ‘3-brane’
in extra dimensions, while the gauge and Higgs fields propagate in the bulk. SUSY
breaking masses for the gauginos and Higgs fields are generated by higher—dimensional
contact terms between the bulk fields and the hidden sector fields, assumed to arise
from a more fundamental theory such as string theory [34]. The leading contribution
to the SUSY breaking for visible sector fields arises from loops of bulk gauge and
Higgs fields as shown in Fig. 4.1
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Figure 4.1. Leading diagram that contributes to SUSY-breaking scalar masses. The
bulk line is a gaugino propagator.

The minimal version of gaugino mediation has only three high energy param-
eters p, mys and M,.. Here m;, is the universal gaugino mass at the unification
scale and M, is the compactification scale where the higher dimensional theory is
matched onto the effective four-dimensional theory. For sin? @y prediction to be pre-
served from gauge coupling unification requires M. > Mgyr. In some other models
of gaugino mediation [35] the u parameter is determined by fitting to the Z mass.
Such model requires only two free parameters m;/ and M.

The gaugino mediation scenario is the least developed in the literature. It does

not offer any real solution to the y problem.
4.4 Anomaly mediation

This scenario assumes that supersymmetry breaking takes place in a hidden
or sequestered sector. The MSSM superfields are confined to a 3—brane in a higher
dimensional bulk space-time separated from the sequestered sector by extra dimen-
sions. A rescaling super—Weyl anomaly generates coupling of the auxiliary field of the
gravity multiplet to the gauginos and the scalars of the MSSM, with the couplings
determined by the SUSY renormalization group equations (RGE) [36].
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Before going into much details, it is important to give a brief review on how

this scenario address the numerous problems associated with the other three scenarios

addressed earlier.

e The y parameter can be generated without generating excessively large Bu

due to the constraints from the coupling of the gravitational multiplet.

e The dominant anomaly—mediated contribution to the squark and slepton

masses suppresses flavor violation automatically.

e There are no new phases in the A and B terms. This implies a natural solution
to the SUSY CP problem. In other words CP can be violated on our 3-brane

and nowhere else.

e The model is straightforward in the sense that the basic assumption is that

SUSY breaking is derived from higher dimensional theory.

e These SUSY breaking models are very predictive. The ratio of the gaugino
masses depends on the beta functions rather than the gauge couplings. The A-
terms are predicted to be proportional to the corresponding Yukawa coupling

and there is a nearly degenerate Wino/Zino LSP, of which the Zino is the lighter.
e The gaugino and scalar masses are comparable.

e Since the rescaling anomaly is UV insensitive, the pattern of SUSY breaking
masses at any energy scale is governed only by the physics at that scale [36-38].
An arbitrary flavor structure in the SUSY scalar spectrum at high energies gets
washed out at low energies. This Ultraviolet (UV) insensitivity provides an

elegant solution to the SUSY flavor problem.

e [t can naturally solve the cosmological gravitino abundance problem which

tends to destroy the success of big bang cosmology in generic supergravity

models [39].
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e The decay of the moduli fields present in the model (as well as the gravitino)
will produce neutralinos, especially the neutral Winos, with the right abundance

to make it a viable cold dark matter candidate [40, 41].

We see from above that this model seems to be a viable (promising) model for
understanding the MSSM supersymmetry breaking. It turns out that there is a major

problem in this model which is discussed below.

4.4.1 The negative slepton mass problem of anomaly mediated supersymmetry breaking

In anomaly mediated supersymmetry breaking models (AMSB), the masses of

the scalar components of the chiral supermultiplets are given by [36, 37]

8¢]

|
(m2)¢] = - M; BY )5 oY Vs

¢i — o' aux "’6() 7@ (4.6)

In the above equation summations over the gauge couplings g and the Yukawa cou-
plings Y are assumed. 7;5] are the one-loop anomalous dimensions, 5(Y) is the beta
function for the Yukawa coupling Y, and (3(g) is the beta function for the gauge
coupling g. My, is the vacuum expectation value of a “compensator superfield” [36]
which sets the scale of SUSY breaking. The gaugino mass M, associated with the
gauge group with coupling g is given by [36, 37]

B(g)

M, = 2D My (4.7)

The trilinear soft supersymmetry breaking term Ay corresponding to the Yukawa

coupling Y is given by [36, 37]

_BY)
AY — _TMaux- (48)

In the simplest scenario for generating the p term for a special class of models, the

contribution to the Higgs mixing parameter (the B-term) is given by [36]

B = - (/yHu + /YHd) Mau;r‘ (49)

Here vg, and ~yp, are the one-loop anomalous dimensions of the H, and H, fields.

Similar relations hold for other bilinear terms in the SUSY breaking Lagrangian.
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In the minimal scenario, it turns out that AMSB induces a negative mass—
squared for the sleptons. Such a scenario is excluded since it would break electro-
magnetism. The reason for the negative mass—squared can be understood as follows.
There are two sources for slepton masses in AMSB, the Yukawa part and the gauge
part (cf: Eq. (4.6)). For the first two families the Yukawa couplings are negligible
and the dominant contributions arise proportional to the gauge beta function. Since
in the MSSM the SU(2) and the U(1)y gauge couplings are not asymptotically free,
their gauge beta functions are positive. This makes the slepton mass—squared nega-
tive. In the squark sector, the masses are positive because SU(3)c gauge theory is

asymptotically free.

4.4.2 Suggested solutions to the AMSB slepton mass problem

Several possible ways of avoiding the slepton mass problem of AMSB have been
suggested. A non—decoupling universal bulk contribution to all the scalar masses is a
widely studied option [36-42]. While this will make the minimal model phenomeno-
logically consistent, the UV insensitivity of AMSB is no longer guaranteed. It is
therefore interesting to investigate variations of the minimal model which maintain
the UV insensitivity but provide positive mass—squared for the sleptons from physics
at the TeV scale.

One way to avoid the negative slepton mass problem with TeV scale physics is to
increase the Yukawa contributions in Eq. (4.6). This can be achieved by introducing
new particles at the TeV scale with large Yukawa couplings to the lepton fields. This
possibility was studied in Ref. [43] where the MSSM spectrum was extended to
include 3 pairs of Higgs doublets, four singlets and a vector—like pair of color—triplets
near the weak scale. The Yukawa contributions can also be enhanced by invoking
R-parity violating couplings in the MSSM [44]. Unfortunately such a theory would
generate unacceptably large neutrino masses. Yet another possibility is to make use of
the positive D—term contributions from a U(1) gauge symmetry broken at the weak
scale. This was achieved by adding TeV scale Fayet-Iliopoulos terms explicitly to

the theory in Ref. [45]. New D-term contributions generated in a controlled fashion



36

by the breaking of U(1)p_; at an arbitrary high scale may also provide positive
contributions to the slepton masses [46,47]. A low scale ancillary U(1) as a solution
to the problem has been studied in Ref. [48]. Effective supersymmetric theories which
are devoid of the negative slepton mass problem of AMSB with new dynamics at the
10 TeV scale have been studied in Ref. [49]. Non-decoupling effects of heavy fields
at higher orders have been analyzed in AMSB models in Ref. [50] as an attempt to

solve the slepton mass problem.



CHAPTER 5

TEV-SCALE HORIZONTAL SYMMETRY AND THE
SLEPTON MASS PROBLEM OF ANOMALY
MEDIATION

5.1 Introduction

As noted in chapter 4, supersymmetry provides an elegant solution to the gauge
hierarchy problem of the standard model. To be realistic, it must however be a broken
symmetry. There are several ways of achieving supersymmetry (SUSY) breaking.
Anomaly mediated SUSY breaking (AMSB) is an attractive and predictive scenario
which has the virtue that it can solve the SUSY flavor problem [36, 37]. This scenario
assumes that SUSY breaking takes place in a hidden or sequestered sector. The
MSSM superfields are confined to a 3-brane in a higher dimensional bulk space—
time separated from the sequestered sector by extra dimensions. A rescaling super—
Weyl anomaly generates coupling of the auxiliary field of the gravity multiplet to
the gauginos and the scalars of the MSSM, with the couplings determined by the
SUSY renormalization group equations (RGE). Since the rescaling anomaly is UV
insensitive, the pattern of SUSY breaking masses at any energy scale is governed
only by the physics at that scale [36-38]. Arbitrary flavor structure in the SUSY
scalar spectrum at high energies gets washed out at low energies. This ultraviolet
insensitivity provides an elegant solution to the SUSY flavor problem.

The purpose of this thesis is to suggest and investigate the possibility of solving
the negative slepton mass problem by making the gauge contribution in Eq. (4.6)
positive. This can only be achieved by introducing a new non—Abelian gauge sym-
metry for leptons with negative gauge beta function. We point out that an SU(3) g

horizontal symmetry acting on the lepton multiplets has all the desired properties
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for achieving this. We show that such an SU(3)y horizontal symmetry broken at
the TeV scale is consistent with rare leptonic processes owing to the emergence of
approximate global symmetries.

The specific AMSB model we study is quite predictive. The lightest Higgs
boson mass is predicted to be my < 120 GeV, and the parameter tan § is found to
be tan § ~ 4. The model predicts the existence of new particles associated with the
SU(3)g symmetry breaking sector. The SU(3)y vector bosons have masses of order
1-4 TeV. These particles should be accessible experimentally at the LHC.

The plan of the chapter is as follows. In section 5.2 we introduce our model. In
section 5.3 we analyze the Higgs potential of the model. Here we derive the limits on
tan # and my. In section 5.4 we present the SUSY spectrum of the model and show
how the sleptons acquire positive masses. Numerical results for the full spectrum
of the model are given in section 5.5. In section 5.6 we outline the most significant
experimental consequences of the model. In section 5.7 we comment on the possible
origins of the p and the By terms. We summarize in section 5.8. In Appendix A, we

give the relevant beta functions, anomalous dimensions as well as the soft masses.
5.2 SU(3)y horizontal symmetry

In this section we present our model. Since our aim is to have positive con-
tributions to the slepton masses from the gauge sector, we are naturally led to a
leptonic horizontal symmetry that is asymptotically free. Our model is based on the
gauge group SU(3)¢ x SU(2), x U(1l)y x SU(3)n, where SU(3)y is a horizontal
symmetry acting on the leptons. The left—-handed lepton doublets and the antilepton
singlets transform as fundamental representations of the SU(3)y gauge symmetry.
The theory is made anomaly free by introducing three Higgs multiplets (®, ®o, ®3)
which transform as antifundamental representations of SU(3)y and as singlets of the
standard model. These fields are sufficient for breaking the SU(3)y symmetry com-
pletely near the TeV scale. The particle content of the model and the transformation
properties under the gauge group SU(3)c x SU(2), x U(1)y x SU(3)y are presented
in Table 5.1. It turns out that the Higgs potential involving these ®; fields exhibits
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a global SU(3)s symmetry. We take advantage of this global symmetry to suppress
potentially large flavor changing neutral current processes mediated by the SU(3)y
gauge bosons. The last column in Table 5.1 lists the transformation properties under
the global SU(3)s symmetry (The Yukawa couplings of the model reduce the global
SU(3)g down to U(1).) The fields n; and 7; are introduced to facilitate SU(3)y

symmetry breaking within our AMSB framework.

Superfield | SU3)¢ | SU2), | U(L)y | SUB)y | SU(3)¢
Qi 3 2 % 1 1
us 3 1 —2 1 1
de 3 1 1 1 1
La 1 2 ~1 3 1
e 1 1 1 3 1
H, 1 2 : 1 1
H, 1 2 -1 1 1
P 1 1 0 3 3
i 1 1 0 3 3
i 1 1 0 3 3

TABLE 5.1. Particle content and charge assignment of the model. SU(3)g in the last column
is a softly broken global symmetry present in the model. The indices i and « take

values i, = 1 — 3.

Note that the quarks are neutral under SU(3)y. This is necessitated by the
requirements that SU(3)y be asymptotically free. A separate SU(3)y: acting on the
quarks is a possible quark—lepton symmetric extension of the model. But we do not
pursue such an extension here.

The superpotential of the model consistent with the gauge symmetries and the

global SU(3)¢ symmetry is given by:

+ “q)?q)gq)geaﬁv + MZ“H?‘PZ%W““ + MynaTa.- (5.1)
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Here o, 3, v =1, 2, 3 are SU(3) g indices, i, 7 = 1, 2, 3 are family indices, and a, b, ¢ =
1, 2, 3 are SU(3)¢ indices. The mass parameters o and M, are of order TeV, which
has a natural origin in AMSB [36]. We will comment on possible origin of these terms
in Sec. 5.7.

In the SU(3)y symmetric limit the leptons are all massless. They obtain their
masses from the effective operators

Loel & H,

T (5.2)

L
Legp =

Such operators can be obtained by integrating fields shown in Fig. 1, for example.
The masses of the heavy fields break SU(3)q symmetry softly (the ¢;); and the E;E;
mass terms in Fig. 5.1). Note that the mass scale M; in Eq. (5.2) is of order 5

L

| Hd |

Figure 5.1. Effective operators inducing charged lepton masses.

TeV for generating realistic 7—lepton mass, of order 20 TeV for the u mass and of
order 300 TeV for the electron mass (assuming that all relevant Yukawa couplings
are of order one). Since these masses are all much heavier than the effective SUSY
breaking scale of order 1 TeV, these heavy fields will have no effect in the low energy
SUSY phenomenology within AMSB. Note that no generation mixing is induced
by these effective operators, which will guarantee the approximate conservation of
electron number, muon number and tau lepton number. This is what makes the
model consistent with FCNC data even when SU(3)y is broken at the TeV scale.

Since the Higgs potential respects SU(3)g x SU(3)s symmetry, after spontaneous
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symmetry breaking, the diagonal subgroup SU(3)sy remains as an unbroken global
symmetry. This subgroup contains e, y and 7 lepton numbers.

Since right-handed neutrinos are not required to be light for SU(3)y anomaly
cancellation, they acquire heavy masses and decouple from the low energy theory.
Small neutrino masses are then induced through the seesaw mechanism. Specifically,
the following effective nonrenormalizable operators emerge after integrating out the
heavy right—-handed neutrino fields:

af afl
v )\ij L.LgH, H, P <I>j
eff M]%, :

(5.3)

Here My represents the masses of the heavy right-handed neutrino fields. For
My ~ 107 GeV and (®;) ~ TeV, neutrino masses in the right range for oscillation phe-
nomenology are obtained. Note that Eq. (5.3) arises from integrating neutral leptons
with their masses assumed to break all global symmetries. This enables generation

of large neutrino mixing angles, as needed for phenomenology.
5.3 Symmetry breaking

The SU(3)y model has two sets of Higgs bosons: the usual MSSM Higgs dou-
blets H, and Hy, and the SU(3)y Higgs antitriplets ®; (i = 1,2,3). The Higgs
potential is derived from the superpotential of Eq. (5.1) and includes the soft terms

and the D terms. The tree level potential splits into two pieces:
V(Hy, He, ®;) = V(Hy, Hy) +V(®;), (5.4)

enabling us to analyze them independently. The first part, V (H,, Hy), is identical to
the MSSM potential which is well studied. There are however significant constraints

on the parameters in our AMSB extension, which we now discuss.

5.3.1 Constraints on tan 3 and my,

Minimization of V' (H,, Hy) gives

2B,u 2 m%’d B m%{u tan2 ﬁ M%

in24 — - . 5.5
sin 20 uZ vy, +my, )

tan? 3 — 1 2
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Here quu and m%d are the Higgs soft masses and are given in the Appendix for the
AMSB model (see Eqgs. (A.19)—(A.20).) The constraints on m; and tan 3 arise since
these soft masses and the B parameter are determined in terms of a single parameter
M in our framework.

We eliminate Mg, in favor of M, the Wino mass (My = bagj M) We see

1672

from Egs. (4.9), (5.5) as well as from Eqs. (A.6)—(A.7) and Egs. (A.19)—(A.20) of the

Appendix that tan g is fixed in terms of M,. In Fig. 5.2 we plot tan 3 as a function of
Ms. For the experimentally interesting range of My = 100 GeV, we find that tan g ~
3.8 — 4.0. In obtaining the limit on tan 3, we followed the following procedure. As
inputs at Mz we chose [51]

1
as(Mz) =0.119, sin®fy = 0.2312, a(My) = oo (5.6)

Using the central value of M; = 174.3 GeV, we obtain the running mass m;(M;) with
the 2-loop QCD correction as [52]

m%\}t) — 1+ %—0‘3(;\@ +10.9 (—0‘3(7?4’*)) . (5.7)

Using 5—flavor SM QCD beta functions we extrapolated az(Myz) and obtained
as(My;) = 0.109. The top quark Yukawa coupling is then found to be (for M; = 174.3
GeV) Y M(M,;) = 0.935 corresponding to m;(M;) = 162.8 GeV. This coupling is
then evolved from M; to 1 TeV where we minimize the MSSM Higgs potential. Using
standard model beta function we obtain Y;°(1 TeV) = 0.851. The corresponding
MSSM coupling is Y;(1 TeV) = Y;*M (1 TeV)/sin 3 , which for tan 3 ~ 4.0 (justified
a—posteriori) is Y;(1 TeV) = 0.824. The gauge couplings at 1 TeV are found to be
g1(1 TeV) = 0.466, go(1 TeV) = 0.642 and g3(1 TeV) = 1.098. With these values
of couplings at 1 TeV we obtained Fig. 5.2. Uncertainties in the prediction for tan g
are estimated to be £0.5, arising from the error in top quark mass and from the
precise scale at which the Higgs potential is minimized. We conclude that tan g =
3.5-4.5 in this model.

Since tan (§ is fixed and since the A; parameter is not free in AMSB, there is

a nontrivial prediction for the lightest Higgs boson mass m;,. We use the 2-loop
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tan3

50 100 150 200
M, (GeV)
Figure 5.2. Plot of tan § as a function of M,

radiatively corrected expression for m2 = (m2),+ Am3, where (m?), is the tree-level

value of the mass and the radiative correction is given by [53]

3Imd 1 3m?
Ami = 471_2;2 [t + X + 1672 <§U_Zt - 327TCY3(Mt)) (2X4t + t2)} . (5.8)
Here
~ 2 ~ 2
A, A, ~
X, =—|1-— A=A — t 5.9
t m? ( 12m§> ) t t MCO Bv ( )

and t zlog(%), v =174 GeV. mt2 is the arithmetic average of the diagonal entries
of the squared stop mass matrix and A, is the soft trilinear coupling associated with
the top Yukawa coupling in the superpotential of Eq. (5.1). In these expressions,
H%JZI@, which equals 166.7

GeV for M; = 174.3 GeV. We find that m;, ~ 113 GeV — 120 GeV, depending on the

m, is the one-loop QCD corrected running mass, m; =

choice of M,,,. The larger value m; ~ 120 GeV is realized only for larger M; ~ 180
GeV. We list in Tables 5.2-5.4 the value of my, along with the other sparticle masses.
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5.3.2 SU(3)y symmetry breaking

Let us now analyze the SU(3)y symmetry breaking sector of the potential. The
potential V(®;) is given by:

V(@) = m(D]®, + fd, + 0fdy) + kA, ((I)?(I)g@geam + c.c>

+ K [(P1D2)1(@1D2) + (@1D5) (@1 D3) + (PoP5) (D2 D3)]
8
+ %4 31BN, + BIND, + DIATD, 2, (5.10)

a=1
Here g, is the gauge coupling of the SU(3)y, A, is the trilinear A-term corresponding
to the coupling k, mé is the soft mass squared for the ®; fields. These soft SUSY
breaking parameters are given in the Appendix (Egs. (A.17), (A.23)). The x? term in
Eq. (5.10) is the F-term contribution and the last term in Eq. (5.10) is the SU(3)y
D—term with A\* being the SU(3)y generators.

The Higgs potential, Eq. (5.10), has an SU(3)y x SU(3)g symmetry, with the
®; fields (z: = 1 — 3) transforming as (3, 3). This allows for a vacuum which preserves

an SU(3) g1 diagonal subgroup. The VEVs of the ®; fields are then given by:

U 0 0
<<I)1> = 0 s <q)2> = u and <q)3> = 0 . (511)
0 0 U

Using these VEVs the potential becomes
(V(®)) = 3miu®+3x*u* + 2rA0°. (5.12)

Minimization of Eq. (5.12) leads to the condition

—A. £ ,/—8mj + A2
u = . (5.13)

N 4K

The argument in the square root of Eq. (5.13), which should be positive for a consis-

tent symmetry breaking, is given by

2

Maux
—8mi + A2 = W[m& +56K°A7 + 304\ — 8rk7gf — 32\%¢7].  (5.14)
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Positivity of Eq. (5.14) leads to constraints on the parameters {\, x}. It can be
shown that Eq. (5.14) implies 0 < |x| < 0.731g4 and 0 < |A] < 0.324¢4. Furthermore,
positivity of the slepton masses, along with the experimental limit m?,,,, = (100
GeV)?, require g4 > 0.5. This essentially fixes the parameter space of the model. We
get the right minimum by choosing the negative sign of the square root in Eq. (5.13)
(for positive My, ), with this choice, all the Higgs masses—squared will be positive.
Since the symmetry breaking chain is SU(3)g x SU(3)¢ — SU(3)n+a, we can
classify the masses of all scalars and fermions as multiplets of SU(3) y4¢. The complex
®(3, 3) scalar multiplet decomposes into 2 octets and two singlets of SU(3)y.g. One
octet gets eaten by the Higgs mechanism. A physical octet remains in the spectrum

with a mass given by

M? = —2k%u* — 2kud, + giut. (5.15)

octet
There are two singlets, one scalar (¢5) and one pseudoscalar (¢,) with masses given
by
mi = 4" + Kkud,, (5.16)
mip = —3kuA,. (5.17)
In the fermionic sector, the octet Higgsino mixes with the octet gaugino with a

mixing matrix given by

/ my g4t
Moctet = ( ) ) ) (518)

Jal KU

In addition, there is a Majorana fermion, a singlet of SU(3)y ¢, with a mass of
mg = 2Ku. (5.19)
Finally the gauge bosons form an octet with a mass

5.4 The SUSY spectrum

We are now ready to discuss the full SUSY spectrum of the model. We will
see that the tachyonic slepton problem is cured by virtue of the positive contribution

from the SU(3)y gauge sector.
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5.4.1 Slepton masses

The slepton mass—squareds are given by the eigenvalues of the mass matrices

(=¢e, pu, 7)
m? mpg, (Ay, — ptanp
M2 = La £, (Ave, —utanf) (5.21)
i, (Avy, — rtan ) i,
Here
3 3 8
m%a = Mis [ <§925(92) + 1—0915(91) + 5945(94))1
+ my, + ( % + sin GW) cos 28M2, (5.22)
2 aum 6 8
Mee, = B(YE,) — —915(91)+§945(94)
+ sin® Oy (:os.2ﬁ]\/[2 (5.23)

The off diagonal terms in Eq. (5.21) are rather small as they are proportional to
the lepton masses. The SUSY soft masses are calculated from the RGE give in the
Appendix. The last terms of Eqgs. (5.22)—(5.23) are the D—terms. Note the positive
contribution from the SU(3)y gauge sector in Egs. (5.22)—(5.23), given by the term
—2946(g4). In our model g, is asymptotically free with 3(gs) = —1259;. This
contribution makes the mass—squared of all sleptons to be positive for g, > 0.5.

The left handed sneutrino mass is given by

M? 3 3 8
m; = (1662:;”) {— (5926(92) + 19189 + g%ﬁ(%)ﬂ
+ %cos 28M2, (5.24)

where 1 = e, pu, T

5.4.2 Squark masses

The mixing matrix for the squark sector is similar to the slepton sector. The

diagonal entries of the up and the down squark mass matrices are given by [27]

5 1
mQUi = (m?oﬁ)gz + mQUZ_ + g (4M5V — M%) cos 2(3,



47

7 2
m%ic = (m ioft)Uc +mg, — 3 (Miy, — M3) cos 23,
. 1
nh = @4, - L oM+ 08 cos2,
1
m%g = (m ioft)Dc +mp, + 3 (Mg, — M) cos 28. (5.25)

Here my, and mp, are quark masses of different generations, i = 1, 2, 3. The squark

soft masses are obtained from the RGE as

(2, = Mo (. a0y Ly, B0V — L gB(0) — S0aBlan) — Salas) )5.26)
soft/g, 1672 U; U; d; d; 3091 g1 292 g2 3g3 g3 .
- M2
(m2, ft)g} o <2Yulﬁ( )= %glﬁ(gl) - 2935(93)) , (5.27)
¢ M? 2 8
(m goft)gc = 16%; (2 4,8(Ya,) — 1—5915(91) — 5935(93)) : (5.28)

5.4.3 n fermion and 7 scalar masses

The fields n and 7 transform as (3,3) and (3, 3) under SU(3) g x SU(3)g. After
symmetry breaking, n and 7 both transform as 8 + 1 of the diagonal SU(3)y . The
octet from 7 mixes with the octet from 7, and similarly for the singlets.

In the fermionic sector, the octet and the singlet mass matrices are given by

—2\u M,
Mgctet M 0 9 (529)
n
4 u M,
Mginglet = M 0 . (530)
n

In the scalar sector, there are 4 real octets and 4 real singlets from n and 7
fields. The two scalar octets are mixed, as are the two pseudoscalar octets. The mass

squared matrices for the octet are

e B < (M) + M7 + 2 u(—Ax — ku + 2 u) M, (B, — 2\u) ) (5.31)
s—octet .
MU(BU - 2)\u> ( soft) + M2
o B ( (MZyp)0 + M? 4 20u(Ax + wu +2Xu) =M, (B, + 2\u) > (5.32)
—octet T
g _MU(BW + 2)\u) ( soft) + M2
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The singlet scalar mass matrices are

e B <( 205000+ M2 4+ 4 u(Ay + ku + 4 ) M, (B, + 4)\u)> (5.3
s—singlet _ = .
’ M, (B, + 4)u) (mgoft)g + Mﬁ
2 B ((mgoﬂ)g + M7 — 4 u(Ay — ku — 4 u) =M,y (B, — 4)\u) )5 34)
singlet :
S _MU(B - 4)\’&) ( soft) + M2

The soft masses (1m3,,)7 and (/m2,;,)] are given in Egs. (61)-(62) of the Appendix.
5.5 Numerical results

We are now ready to present our numerical results for the SUSY spectrum.
The scale of SUSY breaking, M., should be in the range 40-120 TeV for the MSSM
particles to have masses in the range 100 GeV — 2 TeV. Note that there is a large
hierarchy in the masses of the gluino and the neutral Wino, M3 ~ 7.1 (after taking
account of radiative corrections), in AMSB models. Furthermore the lightest chargino
is nearly mass degenerate with the neutral Wino, so My = 100 GeV is required to
satisfy the LEP chargino mass bound.

The SU(3)y gauge coupling g4 is chosen so that the sleptons have positive mass
squared (g4 > 0.5). We allow g4 to take two values, g4 = 0.55 (Tables 5.2 and 5.4)
and g4 = 1.0 (Table 5.3). Symmetry breaking considerations constrain the couplings
k and A as discussed in Sec. 5.3 after Eq. 5.14. In Tables 5.2 and 5.4 we have taken
M. = 47.112 TeV corresponding to a light spectrum, while in Table we have M,,,
= 66.695 TeV with an intermediate spectrum. Other input parameters are listed in
the respective Table captions. The mass parameter M, cannot be much larger than 1
TeV, as that would decouple the effects of n, 77 fields which are needed for consistent
symmetry breaking.

We see from Table 5.2 that the lightest Higgs boson mass is my ~ 118 GeV.
This is very close to the current experimental limit. If M; = 180 GeV is used (instead
of My = 176 GeV), for the same set of input parameters, m;, will be 119 GeV. my,
being close to the current experimental limit is a generic prediction of our framework.
It holds in the spectra of Tables 5.3 and as well. We conclude that my;, < 120 GeV in
this model.
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The masses of the sleptons will depend sensitively on the choice of g4. The
sleptons are relatively light, mg., < 300 GeV, with g4 = 0.55, while they are heavy,
Msiep =~ 800 GeV, when g4 = 1.0. Note however that there is a correlation in the
slepton masses and the SU(3)y gauge boson masses (My ), with the lighter sleptons
corresponding to lighter SU(3)y gauge bosons. It is worth noting that very light
sleptons, below the current experimental limits of about 100 GeV, would be incon-
sistent with the limits on My, arising from ete™ — ptu~ type processes (see Sec. 6).
Note also that the left-handed and the right-handed sleptons are nearly degenerate
to within about 10 GeV in this model. This a numerical coincidence having to do
with the values of g; and g, and the MSSM beta functions (see the last paper of Ref.
[39]). The new SU(3) g gauge boson contributions to the slepton masses are the same
for the left—-handed and the right-handed sleptons.

In Tables 5.2-5.4 we have included the leading radiative corrections to the
gaugino masses My, My and Mj; [54]. Including these radiative corrections we find (in
Table 2) My : My : M3 =3.0:1:7.4. The lightest SUSY particle (LSP) is the neutral
Wino, which is nearly mass degenerate with the charged Wino. In Tables 5.2-5.4 the
mass splitting is about 60 MeV, but this does not take into account SU(2), x U(1)y
breaking corrections [55]. These electroweak radiative corrections turn out to be very
important, and we find Myt — Mg = 235 MeV (with about 175 MeV arising from
SU(2), x U(1)y breaking effects). The decay xi — xJ + % is then kinematically
allowed, with the 7% being very soft. Once produced, the neutralino y{ will escape
the detector without leaving any tracks. With the decay channel xi* — x{+7* open,
the lightest chargino will leave an observable track with a decay length of about a few
cm. Search strategies for such a quasi-degenerate pair at colliders have been analyzed
in Ref. [54, 56, 57].

In the SU(3) g sector, in Tables 5.2-5.4, the horizontal gauge boson has a mass
of 1.5-4.0 TeV. The heavy Higgs bosons, Higgsinos, gauginos, squarks and the 7 fields

all have masses < (1 —2) TeV.
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MSSM Particles Symbol Mass (TeV)
Neutralinos {mgo, mgo} {0.146, 0.431}
Neutralinos {mzg, mgo} {0.876, 0.878}
Charginos {mgz, mex} {0.146, 0.880}
Gluino M; 1.064

Higgs bosons

{mhu Mg, My, mHi}

{0.118, 0.878, 0.877, 0.880}

R.H sleptons

{mém Mpg; mﬁ}

{0.183, 0.183, 0.166}

L.H sleptons

{méL y Mg m‘T’z}

{0.190, 0.190, 0.203}

Sneutrinos

{mﬁe Y mljy‘ ) mD‘r}

{0.175, 0.175, 0.175}

R.H down squarks

{m(ZR7 ng’ mi)l}

{1.017, 1.017, 1.015}

L.H down squarks

{mJL7 M3y, még}

{1.008, 1.008, 0.885}

R.H up squarks

{mﬂR’ Meg, Mg, }

{1.011, 1.011, 0.669}

L.H up squarks

{mﬁL y My, Mg, }

{1.005, 1.005, 0.979}

New Particles Symbol Mass (TeV)
SU(3)g Gauge boson octet My 2.213
Singlet Higgsino mg 0.402
Octet Higgsino/gaugino mg,, {1.978, 2.450}

¢ Higgs bosons

{m¢su Mg, m¢>foctet}

{0.179, 0.624, 2.253}

Fermionic 1 (octet)

moctet

{0.676, 1.480}

n12
Fermionic 7 (singlet) myingtet {0.479, 2.089}
Scalar n Higgs (octet) m;%;jcm {0.454, 1.703}
Pseudoscalar n Higgs (octet) g;;’cm {0.908, 1.259}
Scalar n Higgs (singlet) %;jmglet {0.717, 1.868}
Pseudoscalar 7 Higgs (singlet) mgzjmglet {0.264, 2.310}

TABLE 5.2. Sparticle masses for the choice M, = 47.112 TeV, tan 3 = 3.785, u = —0.873
TeV, yp = 0.068, A = 0.1, & = 0.05, g4 = 0.55, u = —4.024 TeV, M, = 1.0
TeV and M; = 0.176 TeV.
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MSSM Particles

Mass (TeV)

Neutralinos {mgo, mgo} {0.198, 0.586}
Neutralinos {mzg, mgo} {1.179, 1.181}
Charginos {mgz, mex} {0.198, 1.182}
Gluino M; 1.410

Higgs boson

{0.119, 1.179, 1.178, 1.181}

R.H sleptons

{0.245, 0.245, 0.227}

L.H sleptons

{0.254, 0.254, 0.267}

Sneutrinos

{0.242, 0.242, 0.242}

R.H down squarks

{1.373, 1.373, 1.193}

L.H down squraks

{1.361, 1.361 1.370}

R.H up squarks

{1.365, 1.365, 0.940}

L.H up squraks

{1.359 1.359, 1.276}

New Particles Symbol Mass (TeV)
SU(3)g Gauge boson octet My 1.871
Singlet Higgsino mg 0.544
Octet Higgsino/gaugino mg,, {1.553, 2.191}

¢ Higgs bosons

{m¢su Mg, m¢>foctet}

{0.247, 0.840, 1.955}

Fermionic 1 (octet)

moctet

{0.716, 1.397}

2
Fermionic 7 (singlet) myingtet {0.529, 1.890}
Scalar n Higgs (octet) m;%;jcm {0.421, 1.699}
Pseudoscalar n Higgs (octet) g;;’cm {1.031, 1.098}
Scalar n Higgs (singlet) %;jmglet {0.850, 1.593}
Pseudoscalar 7 Higgs (singlet) mgzjmglet {0.247, 2.189}

TABLE 5.3. Sparticle masses for the choice My, = 63.695 TeV, tan 8 = 4.02, u = —1.178
TeV, yy = 0.0719, A = 0.1, 5 = 0.08, g4 = 0.55, u = —3.402 TeV, M, = 1.0
TeV and M; = 0.1743 TeV.
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MSSM Particles Symbol Mass (TeV)
Neutralinos {mgo, mgo} {0.148, 0.436}
Neutralinos {mzg, mgo} {0.876, 0.878}
Charginos {mgz, mex} {0.148, 0.878}
Gluino M; 1.064

Higgs boson

{mhu Mg, My, mHi}

{0.118, 0.878, 0.877, 0.880}

R.H sleptons

{mém Mpg; mﬁ}

{0.825, 825, 0.821}

L.H sleptons

{méL y Mg m‘T’z}

{0.827, 0.827, 0.830}

Sneutrinos

{mﬁe Y mljy‘ ) mD‘r}

{0.823, 0.823, 0.823}

R.H down squarks

{m(ZR7 ng’ mi)l}

{1.017, 1.017, 1.015}

L.H down squraks

{mJL7 M3y, még}

{1.008, 1.008, 0.885}

R.H up squarks

{mﬂR’ Meg, Mg, }

{1.011, 1.011, 0.669}

L.H up squraks

{mﬁL y My, Mg, }

{1.005, 1.005, 0.979}

New Particles Symbol Mass (TeV)
SU(3) gGauge boson octet My 3.779
Singlet Higgsino mg 1.058
Octet Higgsino/gaugino mg,, {3.071, 4.495}

¢ Higgs bosons

{m¢su Mg, m¢>foctet}

{0.465, 1.646, 3.940}

Fermionic 1 (octet)

moctet

{0.254, 2.521}

71,2

mL2
Fermionic 7 (singlet) myingtet {0.137, 4.672}
Scalar n Higgs (octet) m;%;jcm {0.588, 3.090}
Pseudoscalar n Higgs (octet) %;gcm {1.058, 1.952}
Scalar n Higgs (singlet) %;jmglet {0.964, 4.116}
Pseudoscalar n Higgs (singlet) mbsinglet {0.711, 5.224}

TABLE 5.4. Sparticle masses for the choice M, = 47.112 TeV, tan 3 = 3.785, u = —0.873
TeV, yp = 0.068, A = 0.3, K = 0.14, g4 = 1.0, u = —3.779 TeV, M, = 0.800
TeV and M; = 0.176 TeV.
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5.6 Experimental signatures

The Lightest SUSY particle in the model is the neutral Wino (x{) which is nearly
mass degenerate with the lightest chargino (xi), with a mass splitting of about 235
MeV. At the Tevatron Run 2 as well as at the LHC, the process pp (or pp) — X% +x7
will produce these SUSY particles. Naturalness suggest that m,po, m,+ < 300 GeV
(corresponding to Mmguine < 2 TeV). Strategies for detecting such a quasi-degenerate
pair has been carried out in Ref. [54,56,57]. In the MSSM sector our model predicts
tan 6 ~ 4.0 and m;, < 120 GeV, both of which can be tested at the LHC.

If the SU(3)y gauge coupling g4 takes small values (g4 ~ 0.55), the slepton
masses will be near the current experimental limit. For larger values of g4 (=~ 1.0)
the slepton masses are comparable to those of the squarks.

The SU(3)y gauge boson masses are in the range My = 1.5 — 4.0 TeV. Al-
though relatively light, these particles do not mediate leptonic FCNC, owing to the
approximate SU(3) . global symmetries present in the model.

The most stringent constraint on My, arises from the process ete™ — putpu™.
LEP II has set severe constraints on lepton compositeness [51, 58] from this process.
We focus on one such amplitude, involving all left—handed lepton fields. In our model,
the effective Lagrangian for this process is

297

Lo —
3M‘2/

(€Lyuer) (UL pir)- (5.35)

Comparing with A} (eepp) > 6.3 TeV [51, 58], we obtain % > 2.05 TeV. For g4 =
0.55 (1.0) this implies My > 1.129 (2.052) TeV. From Tables 5.2-5.4 we find that
these constraints are satisfied.

The model as it stands has an unbroken Zs symmetry (in addition to the usual
R-parity) under which the superfields 7, 77 are odd and all other superfields are even.
If this symmetry is exact, the lightest of the n and 7 fields (a pseudoscalar singlet
Higgs in the fits of Tables 5.2-5.3 and a singlet fermion in Table 5.4) will be stable.
We envision this Z, symmetry to be broken by higher dimensional terms of the type
Lo H,®75®" /A2, Such a term will induce the decay n?~*"9'*" — L[4+x9 with a lifetime

less than 1 second for A < 10° GeV. This would make these n particles cosmologically
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safe. It may be pointed out that the same effective operator, along with a TeV scale
mass for the n fields, can provide small neutrino masses even in the absence of the

operators given in Eq. 5.3.
5.7 Origin of the p term

Any satisfactory SUSY breaking model should also have a natural explanation
for the p term (the coefficient of H, Hy term in Eq. (5.1)). In gravity mediated SUSY
breaking models, there are at least three solutions to the p problem. The Giudice-
Masiero mechanism [59] which explains the p term through the Kahler potential
[ H,HyZ*d*0 /M, is not readily adaptable to the AMSB framework. The NMSSM
extension which introduces singlet fields can in principle provide a natural explanation
of the p term in the AMSB scenario. We have however found that replacing uH, Hy by
the term SH,H, in the superpotential alone can not lead to realistic SUSY breaking.
It is possible to make the NMSSM scenario compatible with symmetry breaking in
the AMSB framework by introducing a new set of fields which couple to the singlet
S. We do not follow this non—-minimal alternative here.

There is a natural explanation for the  parameter in the context of AMSB mod-
els, as suggested in Ref. [36]. It assumes a Lagrangian term L D « [ d%’%HquCDTCD,
where ¥ is a hidden sector field which breaks SUSY and ¢ is the compensator
field. After a rescaling, H, — ®H,, H; — ®H,, this term becomes L D
af d%%ﬂu}[d%f, which generates a p term in a way similar to the Giudice—
Masiero mechanism [59]. The By term is induced only through the super—Weyl
anomaly and has the form given in Eq. (4.9). Our predictions for tan  and my,
depend sensitively on this assumption.

We now point out that the p term may have an alternative explanation in the
context of AMSB models. This is obtained by promoting H, Hy in the superpotential
to the following [60]:
aH,HyS? N bS?5?

W' =
Mp, Mp,

(5.36)
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Here S and S are standard model singlet fields. Including AMSB induced soft pa-
rameters for these singlets (which can arise in a variety of ways), this superpotential
will have a minimum where (S) ~ <§ > ~ /Mgy sy Mp;. This would induce u term of
order Mgsysy, as needed. From the effective low energy point of view, the superpo-

tential will appear to have an explicit u term. The B term will have a form as given

in Eq. 4.9.
5.8 Summary

In this chapter we have suggested a new scenario for solving the tachyonic slep-
ton mass problem of anomaly mediated SUSY breaking models. An asymptotically
free SU(3)y horizontal gauge symmetry acting on the lepton superfields provides
positive masses to the sleptons. The SU(3)y symmetry must be broken at the TeV
scale. Potentially dangerous FCNC processes mediated by the SU(3)y gauge bosons
are shown to be suppressed adequately via approximate global symmetries that are
present in the model.

Our scenario predicts my < 120 GeV for the lightest Higgs boson mass of
MSSM and tan§ ~ 4.0. The lightest SUSY particle is the neutral Wino which is
nearly degenerate with the lightest chargino and is a candidate for cold dark matter.
The full spectrum of the model is given in Tables 5.2-5.4 for various choices of input

parameters. The very few parameters of our model are highly constrained by the

consistency of symmetry breaking.



CHAPTER 6

SU(2)y HORIZONTAL SYMMETRY AS A SOLUTION
TO THE SLEPTON MASS PROBLEM OF ANOMALY
MEDIATION

6.1 Introduction

Family symmetries may give a positive mass—squared contribution to the slep-
tons in AMSB. The simplest of such symmetry is an SU(2)y non—-Abelian symmetry.
This symmetry when acting on leptons only can be asymptotically free, hence their
beta—function will be negative. This is very important because with this new sym-
metry, the sleptons enjoys the same freedom as the quarks and hence can solve the
negative slepton mass problem of AMSB. The quarks are singlet of SU(2)y but it
is possible that they transform under a different SU(2)%, symmetry, so that there is
an underlying quark—lepton symmetry. Here we will focus on a model where quarks
carry no family symmetry.

In this chapter we suggest and investigate the possibility of solving the negative
slepton mass problem of AMSB using this SU(2)y symmetry broken at the TeV scale.
The leptons of the first two families transform as a doublet of SU(2)z and those of the
third family transform as singlet under this new symmetry. The sleptons of the first
two family gets a large positive contribution to their soft masses from the SU(2)y
gauge sector. With e and p forming a doublet of SU(2)y, an important issue is how
to split their masses, since in Nature m, # m,. We introduce two new vector-like
fields that couples to the third family which will help to achieve m, # m,,.

The model is quite predictive. The LSP is the Wino which is nearly mass
degenerate with the chargino. The lightest Higgs boson mass is predicted to be
my, < 135 GeV, and the parameter tan§ is found to be tan 8 ~ 40. This model

o6
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is completely different from the previous model because it also predicts a different
mass hierarchy for the €, frand 7. In particular ms, mj and ms: are all quite different,
which is a characteristic signature of this model. In addition, this model can easily be
tested at the LHC by direct discovery of the gauge bosons associated with SU(2)y.

The plan of the chapter is as follows. In section 6.2 we introduce our model.
In section 6.3 we analyze the Higgs potential. The SUSY spectrum is presented in
section 6.4. We discuss our numerical results in section 6.5. In section 6.6 we discuss

the experimental implication of the model. We summarize in section 6.7.
6.2 SU(2)y horizontal symmetry

We define the gauge group symmetry of the model as
GH = SU(S)C X SU(Q)L X U(l)y X SU(Q)H,

where SU(2)y is a horizontal symmetry that acts on the first two families of leptons.
The third family is a singlet under this new SU(2)y symmetry. A pair of vector
like leptons, E, E°, which are SU(2)y singlets are needed to ensure m. # m,. The
spectrum of the model is listed in Table. 6.1. The gauge group SU(2)y defined above
is asymptotically free (8 function is given in Eq. B.20) with this spectrum.

The superpotential of the model consistent with the gauge symmetries reads

W == (Yu)w QzHuuj + (Yd)ij Qszdj + feuwozngd + fTr(/}TTCHd
+ fTE¢TECHd + feEEwc(bu + ,UHqu + ,u,¢u¢d + MEEEC (61)

It turns out that there is a Z, symmetry present in the Lagrangian, under which
gbu - Z¢u7 ¢d - _i¢d7 E— _ZE7 E® — Z'Eca ¢T - _iqu)’r? ¢ — Tt

This Z4 symmetry forbids the term FE1°p,, which will be important to define an
unbroken muon number. Since SU(2)y is broken at TeV, the gauge bosons of SU(2)y
can potentially lead to large FCNC processes. The most dangerous of these are in the
muon sector, eg; i — 3e. Such process are forbidden by an unbroken muon number,

making TeV scale horizontal symmetry phenomenologically consistent.
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Superfield | SU(3)¢ | SU(2), | U1y | SU(2)n
Qi 3 2 é 1
uy 3 1 —% 1
de 3 1 1 1
Ve 1 2 ~1 2
Ve 1 1 +1 2
Uy 1 2 ~1 1
¢ 1 1 +1 1
H, 1 2 i 1
Hy 1 2 -1 1
Pu 1 1 0 2
ba 1 1 0 2
E 1 1 —1 1
E° 1 1 +1 1
Ty 1 1 0 2

TABLE 6.1. Particle content and charge assignment of the model. The indices i and a take values
i=1—-3anda=1-2.

In the model, the 9, and ¢¢ fields contain the first two family of leptons (e and
1) which transforms as a doublet under the SU(2)z gauge group, while the members
of the third family (¢, and 7¢) transform as singlets under the SU(2)y gauge group.
The field ¥y, which transforms as a doublet under SU(2)y and as singlet under the
SM gauge group, is introduced in order to cancel the Witten anomaly.

The neutinos in the model get masses from the following non-renormalizable

operators:

d

H,H
by g, T

M/3 qu dgb“ d wa% M gbu d- (62)

These terms will lead to a consistent neutrino oscillation phenomenology.
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6.3 Symmetry breaking

The symmetry breaking is achieved in the form
GH — GSM — SU(3)C X U(l)EM,

where Ggyyr = SU3)c x SU(2)r x U(l)y. The model has the possibility to be
consistent with the known low energy physics. The new Higgs multiplets ¢, and ¢4
are sufficient to break the Gg — Ggy completely near the TeV scale.

The tree level Higgs potential can be written as

V(Hy, Hoy ¢u, $a) = (my, + p®) | H,|* + (my, + p)| Hal® + Bu(H, Hy + c.c.)

(95 + g%)(
8

2
9
+ S ldual” + (mg, + el + (mG, + 1)l éaf?

+ B'Y(¢utq + c.c.).

2 2
[HL? = |HaPY? + 2 HHL + 2167 = |6a)

The soft masses m3;, and my,,mj, and m] parameters are determined in terms
of the single parameter M,,,. The B and B’ parameters are taken to be free in the
model but in some special class of models, they are determined also by the same mass

parameter M,,,. Upon symmetry breaking, the Higgs fields acquire VEV’s

- [ Hy = (" (™ 6.3
<u>_<vu>?<d>_<0>7<¢u>_<uu)><¢d>_<o>' ()

It is desired that the VEVs obey (¢yu), (¢4) > (Hu), (Hqg), in order for the symmetry
breaking to be consistent.

Minimization of the Higgs potential V (H,, Hy, ¢u, ¢q) gives

. —2By o Mig, — My, tan®§ M3 6.4

sin23 = 9712 2 2 » K= 25 _ - ; (6.4)
W2+ my, +miy, tan® 3 — 1 2

nog — — 2B p_ Mg, — Mg, tan 80 M, (6.5)

Sl 9 2 4 m?2 2 M= tan2 3 — 1 9 7’ :
RN e

where we have introduced the notation u, = usin ¥, uq = ucos ', u* = u? + u?,
2
tan 3" = = and M7, = G (uj + uj). My is the mass of the gauge boson associated

with the SU(2)p.
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To find the physical Higgs boson mass, we parameterize the Higgs fields (in the

unitary gauge) as

H+ . L ..
o ( 1 smé ) HY = <Ud—|- ﬁ(qu +zsmﬁ¢3)) |
Uu + 75(d2 +icos B ¢s) H~ cosf3

. ¢* sin 3’ ) - <ud+\%(¢6+isinﬂ’gb5)> 60

g =

(uu + L (¢y +icos 8 ps) o~ cos

The Higgs masses are obtained by expanding the Higgs potential and keeping only
terms quadratic in the fields.

The masses of the CP—odd Higgs bosons {¢3, ¢5} are

—2Bu 2By

2 2

= , = ) 6.7
ma sin23’ A sin 23/ (6.7)

The mass matrices for the CP—even neutral Higgs bosons {¢1, ¢2} and {4, o6}
are decoupled. They are given by
m?cos? 3+ Misin®3  —{m? + M%}Sinzw ) (6.8)

—{m?% + M%}Smfﬁ m?% sin® 8+ M2sin? 3

(Mg)cp—even - (

m%, cos? 3 + MZsin? ' —{m?, + Mz} =22 (6.9)
—{mi/+M’ZQ}Si“Tw m?, sin? ' + M2 sin? 3’ o

(M/Q)cp—even = (

Finally, the charged Higgs boson mass (H* and ¢) is given by

mye =my + My, mie =mh + My, (6.10)

¢* are electrically neutral, they are “charged” under SU(2)y.

The Majorana mass matrix of the neutralinos {B, Wi, ﬁg, ﬁg, By. gzgg, ngg} is

M, 0 —%a  Za 0 0 0

0 My %92 —%92 0 0 0

U, U,

— 591 592 0 —p 0 0 0
MO = V11 B T 0 0 0 0 o (6.11)

0 0 0 0 My %94 —%94

0 0 0 0 TE9a 0 —u!

0 0 0 0 —gs  — 0
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where M, Myand M, are the gaugino masses for U(1)y, SU(2) and SU(2)y which
are listed in Appendix B. The physical neutralino masses mo (1 =1-7) are obtained
as the eigenvalues of this mass matrix Eq. (6.11).

In the basis {W+, Hf}, {W~, H; }, the chargino (Dirac) mass matrix is

My govg
M = : (6.12)
G2Uy %

Similarly, for the SU(2)y sector, we have

. My gaug
M) = ( ) . (6.13)
Gatty,

The three SU(2)y gauge boson masses are given by

2
M, = %(ui +ul). (6.14)

6.3.1 Lepton masses

Now we describe briefly how to obtain the masses of the ordinary leptons. We
have introduced F and E° fields in the superpotential Eq. (6.1) for the purpose of
breaking e — p degeneracy. These new fields mix with the usual leptons leading to

the mass matrix

f,uvd 0 0 0 e
0 fuva 0 0 s
(e p 7 E) g . (6.15)
0 0 fTUd fTEUd T¢
feEuu 0 0 ME E©

The muon field completely decouples with mass
my, = [V (6.16)
We are then left with a 3 x 3 mass matrix for the e, 7 and E fields. The eigenvalue

equation can be easily solved using the hierarchy m, < m, < mg and the result is
Felis u;
m, ~ ) 14 ke u 7
y d\/{ [ER R
mMME

12

Me

2 2 9
VMR + fR 4 et

T

mg ~ M2+ fAul. (6.17)

Note that m. # m,,, showing consistency of the model.
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6.4 The SUSY spectrum

We will show in this section that the tachyonic slepton problem is cured by
virtue of the positive contribution from the SU(2)y gauge sector to the masses for

the first two family and a large Yukawa coupling for the third family.

6.4.1 Slepton masses

The slepton masses are given by a 2 x 2 mass matrix for the smuon (since
it decouples) and a 6 x 6 mass matrix for the e, 7, E, e 7¢ E° fields. The smuon

mass—squareds are given by the eigenvalues of the mass matrix

M2 — m/21 My (Afeu — ptan 5)
g my, (Ay,, — ptan f) m2e 7

where the diagonal entries are

(6.18)

2

mE = e 20,000~ (Seden) + ate) + Said(an) )]

m, 4+ Sl — ),
2

mhe = e 2t ~ (Sonpte) + Sasten) |

_|_

Note that the positive contributions from the SU(2)g gauge sector are provided by

3
1672

the term —2g403(g4), with gauge beta function $(g4) = —12z9;. This contribution
ensures that the mass—squareds of all sleptons are positive when g4 > 0.9. It is
important to point out that the SU(2)y D—term contributions to the diagonal entries
of the mass matrix Eq. (6.18) can either be positive or negative but it must be such

that its overall contribution is rather small compared to the soft mass term.

The mass matrix for the other sleptons is in the form

mg 0 fE/LfeEUduu fe;A,(Aeu,'Ud + Hvy) 0 0
0 m2 Mg frEvg 0 fr(Arvg + vw)  fre(Arpvd + pvw)
fenfeEvVAUU MEg frEva m% fer(Acpuu + p1'ug) 0 MgpBg
feu(AcuUd + pvy) 0 feE(Aepuu + I»L/’de> mi‘c 0 Mg fepuu
0 fr(Arvg + pow) 0 0 m2, frfrEvd

-
0 fre(ArBva + pou) MgBg MEg fepuu frfrBvd mi.
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where the diagonal entries of this mass matrix read

M? 3 3 3
m: = (16?5) _2fe,u6(feu) — (5925(92) + 1—091@(91) + 5945(94)”
b i -
M? 6 3
mzc = (16(;:;) _2fe,uﬂ<fe,u) - (_glﬂ(gl) + 5945(94))]
+ vd+fEu —i—i‘l(d—u
2 Mc%ux 3 2
mz: = (16772) [-8(f:) + freB(fE) — (1—0915 1) + 925(92))] (f; + TE>Uda
2
mi. = (]1\{;;:;) 2f:8(fr) — ( g15(g1) } + f2v3
2 Mc?um
my = (1672 | feeB(fer) — ( 918(g1 )] +my + flpue,
2
wh = s [ - (Sonoton) )|+ mb 4 ek

(6.19)

The requirement that the slepton masses are positive puts constraints on the couplings

fT7 feE7 f're and g4.

6.4.2 Squark masses

The mixing matrix for the squark sector is similar to the slepton sector, except

that they receive no SU(2)y gauge contributions. The diagonal entries of the up and

the down squark mass matrices are given by [61]
mQUi = (mgoft) +myg, + é (4My, — M3) cos 20,
mQUic = (m 2oft)Uc +mg, — ; (Mg, — M3) cos 28,
mQDi = (mioft) + mD é (QM%, + M%) cos 213,
m%g = (m goft)Dc +mp, + ; (Mg, — M}) cos 23, (6.20)

were my, and mp, are the quark masses of the different generations with ¢ = 1, 2, 3.

The squark soft masses are obtained from the RGE as
2

5 M
() = G (VoS 4 Ya0(Ya) — 50800 — Jalan) ~ sandle) Y620
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e M? 8 8

e = e (B0 - Spsle) - Sedla ) (022
He M? 2 8

(mgoft)g% = ﬁ (QYdiﬁ(Ydi) - 1—5915(91) - §g3ﬁ(gs)> : (6.23)

6.5 Numerical results

Here we present our numerical results for the SUSY spectrum. We first per-
formed a one—loop accuracy numerical analysis to determine the sparticle and Higgs
Spectrum. For experimental inputs for the SM gauge couplings we use the same pro-
cedure Ref. [61] for the g1, g2, g3 with the central value of the top mass taken to be
My =174.3 GeV.

In the model presented, the scale of SUSY breaking, M,,, should be in the
range 40 — 100 TeV for the MSSM particles to have masses in the range 0.1 — 2 TeV.
The gauge coupling g4 > 0.9 in order for the slepton masses for the first two families
to be positive and in the right range. Since the positivity of the mass-squared of
the slepton of the third family depends on the Yukawa couplings, we find that the
couplings should obey f,, f;g > 0.5.

For a specific choice of parameters (Table. 6.2), we find the m,,, m,, ~ 800
GeV for the smuon. There is a significant mass splitting between the selectron and
the stau. The lightest of the sleptons is the left-handed stau. If SUSY is discovered
with a large mass hierarchy between the stau and the selectron (or smauon), this
model will be a good candidate. The lightest Higgs mass is found to be around 128
GeV which is consistent with current experimental limit.

The lightest supersymmetric particle is Wino which is nearly mass degenerate
with the lighter chargino of the SM. The SU(2)y gauge boson mass is found to be
~ 1.4 TeV. The heavy Higgs bosons, Higgsinos and squarks masses are in the range

0.7—2.0 TeV.
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Particles Symbol Mass (TeV)
Neutralinos {mxfl), Mgy, Mg, m)%ﬁ} {0.176, 274, 0.726, 1.080}
Neutralinos {mxg, myo, mi‘%} {1.091, 1.096, 2.097}
Charginos {mxli, mﬁ} {0.176, 1.094}

Charginos (SU(2) )

{mgli My }

{1.070, 2.102}

Gluino

M3

1.556

Neutral Higgs bosons

{mp, mug, ma}

{0.128, 0.922, 0.922}

Neutral Higgs bosons

{mp, mpr, ma}

{0.143, 2.075, 1.554}

Charged Higgs bosons Myt 0.925
Charged Higgs bosons SU(2) g Mp+ 2.080
R.H smuon {mz, } {0.867}
L.H smuon {mz, } {0.796}

R.H sleptons

{0.947, 0.176, 0.758}

L.H sleptons

{méL’ M7y, mﬂL}

{1.904, 0.533, 0.401}

R.H down squarks

{mg., msp, my }

{1.464, 1.464, 1.369}

L.H down squarks

{mJL, mgL, ml~)2}

{1.451, 1.451, 1.115}

R.H up squarks

{mag, mey, mfl}

{1.454, 1.454, 1.107}

L.H up squarks

{may, me,, mg,}

{1.449, 1.449, 1.295}

SU(2)y gauge boson

My

1.382

TABLE 6.2. Sparticle masses in Model 1 for the choice My, = 67.956 TeV, 1y, = 0.8,
fr=20.53, fer = 1.2, fg =0.51, g4 = 1.0, Mg = 10.4 TeV and M; = 0.174
TeV, u = 1.955 TeV, tan 8 = 57.4, tan 3 = 0.87, u = 1.088 TeV, 1/ = 0.276
TeV, B =0.014 TeV, B’ = 4.336 TeV, Br = 0.009 TeV.
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6.6 Other experimental implications

The lightest SUSY particle in the model we considered is the wino ()5(1)) which
is nearly mass degenerate with the chargino. This particle is stable and can be a
candidate for cold dark matter. The model predicts the lightest Higgs mass m;, < 135
GeV which can be tested at the LHC.

Because the SU(2)y gauge bosons do not mix with the SM gauge bosons, elec-
troweak precision data remains unchanged. Also the second family of leptons do not
mix with the first and third family, this is because of the Z, symmetry present in the
model. The processes u — 3e and p — ey are not a problem in the model.

The SU(2)y gauge boson masses are degenerate with mass My = 1.382 TeV
for the choice of parameters chosen in model 1. The most stringent constraint on My,
arising from the process ete™ — ptpu~. LEP II has set severe constraints on lepton
compositeness [51, 58] from this process. The effective Lagrangian for the process is

given by
[ _ 91 (@) (i)
T My
Here My is the gauge boson mass. If we compare the above Lagrangian with the
A7 (eepp) [51,58], we obtain the limit My > 1.2 TeV. This limit is satisfied in our

model.
6.7 Summary

We have suggested in this chapter a new scenario for solving the tachyonic
slepton mass problem of AMSB. An asymptotically free SU(2)y horizontal gauge
symmetry acting on the lepton superfields provides positive masses to the sleptons
of the first two families (€, fi) while the Yukawa couplings associated with the third
family (7) field gives a large positive contribution to the 7 mass. We have a large
mass splitting between the é, [i, and, 7, due to the transformation properties under
the new SU(2)y symmetry. This is how our model differs from the other models. The
SU(2)y symmetry must be broken at the TeV scale for consistency and our model

predicts my, < 135 GeV for the lightest MSSM Higgs boson mass and tan 5 ~ 40. The
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LSP is the neutral wino which is nearly mass degenerate with the lightest chargino

and is a candidate for cold dark matter.



CHAPTER 7

CONSTRAINING Z' FROM SUPERSYMMETRY
BREAKING

7.1 Introduction

One of the simplest extensions of the Standard Model (SM) is obtained by
adding a U(1) factor to the SU(3)c x SU(2), x U(1)y gauge structure [62,63]. Such
U(1) factors arise quite naturally when the SM is embedded in a grand unified group
such as SO(10), SU(6), Eg, etc. While it is possible that such U(1) symmetries are
broken spontaneously near the grand unification scale, it is also possible that some
of the U(1) factors survive down to the TeV scale. In fact, if there is low energy
supersymmetry, it is quite plausible that the U(1) symmetry is broken along with
supersymmetry at the TeV scale. The Z; and Z;, models arising from SO(10) —
SU(5) x U(1), and Eg — SO(10) x U(1), are two popular extensions which have
attracted much phenomenological attention [62-69]. Z’ associated with the left—
right symmetric extension of the Standard Model does not require a grand unified
symmetry. Other types of U(1) symmetries, which do not resemble the ones with a
GUT origin, are known to arise in string theory, free-fermionic construction as well
as in orbifold and D-brane models [70-72]. Gauge kinetic mixing terms of the type
B 7, [73] which will be generated through renormalization group flow below the
unification scale can further disguise the couplings of the Z’.

The properties of the Z’ gauge boson — its mass, mixing and couplings to
fermions — associated with the U(1) gauge symmetry are in general quite arbitrary
[74]. This is especially so when the low energy theory contains new fermions for
anomaly cancellation. In this chapter we propose and analyze a special class of

U(1) models wherein the Z’ properties get essentially fixed from constraints of SUSY

68
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breaking. We have in mind the anomaly mediated supersymmetric (AMSB) frame-
work [36,37]. In its minimal version, with the Standard Model gauge symmetry, it
turns out that the sleptons of AMSB become tachyonic. We suggest the U(1) symme-
try, identified as U(1), = Y — (B — L), where Y is the Standard Model hypercharge,
as a solution to the negative slepton mass problem of AMSB. This symmetry is auto-
matically free of anomalies with the inclusion of right—handed neutrinos. It is shown
that the D—term of this U(1), provides positive contributions to the slepton masses,
curing the tachyonic problem . The consistency of symmetry breaking and the SUSY
spectrum points towards a specific set of parameters in the Z’ sector. For example,
1 < z < 2 is needed for the positivity of the left-handed and the right-handed slepton
masses. Furthermore, the U(1), gauge coupling, g,, is fixed to be between 0.4-0.5.
The resulting Z’ is found to be “leptophobic” [75] with Br(Z — (t47) ~ (1 — 1.6)%
and Br(Z — qq) ~ 44%.

AMSB models are quite predictive as regards the SUSY spectrum. The masses
of the scalar components of the chiral supermultiplets in AMSB scenario are given by
(36, 37]

0 4

0 4,
677¢i

) 1
(m)% = M2, |B(Y) 37|

N N + B(9) (7.1)

where summations over the gauge couplings ¢ and the Yukawa couplings Y are as-
sumed. 7;?] are the one-loop anomalous dimensions, 5(Y") is the beta function for the
Yukawa coupling Y, and ((g) is the beta function for the gauge coupling g. My, is
the vacuum expectation value of a “compensator superfield” [36] which sets the scale

of SUSY breaking. The gaugino mass M,, the trilinear soft supersymmetry breaking
term Ay and the bilinear SUSY breaking term B are given by [36, 37]

Y
Mg - ﬁ(gg) Maux; Ay = _QMGUCEa B = _Mauz(fVHu + VHd)- (72)

We see that the SUSY masses are completely fixed in the AMSB framework once the
spectrum of the theory and M,,, are specified.
The negative slepton mass problem arises in AMSB because in Eq. 7.1 the gauge

beta functions for SU(2), and U(1)y are positive, ”y:ﬁ’ are negative, and the Yukawa



70

couplings are small for the first two families of sleptons. In our Z’ models, there are
additional positive contributions from the U(1), D-terms which render these masses
positive.

In Ref. [38] the negative slepton mass problem of AMSB has been solved with
explicit Fayet—Iliopoulos terms added to the theory. In contrast, in our models, the
D—term is calculable, which makes the Z’ sector more predictive. We find M, = 2—4
TeV and the Z — Z’ mixing angle £ ~ 0.001. Constraints from the electroweak preci-
sion observables are satisfied, with the Z’ model giving a slightly better fit compared
to the Standard Model.

Other attempts to solve the negative slepton mass problem of AMSB generally
assume TeV-scale new physics [41,43-50, 61] or a universal scalar mass of non AMSB
origin [39]. In Ref. [61] we have shown how a non-Abelian horizontal symmetry
which is asymptotically free solves the problem. Some of the techniques we use here
for the symmetry breaking analysis are similar to Ref. [61].

The plan of this chapter is as follows. In section 7.2 we introduce our model.
In section 7.3 we analyze the Higgs potential of the model. In section 7.4 we present
formulas for the SUSY spectrum. Section 7.5 contains our numerical results for the
SUSY spectrum as well as for the Z’ mass and mixing. In section 7.6 we analyze the
partial decay modes of the Z’. In section 7.7 we analyze other experimental test of the
model. Here we show the consistency of our models with the precision electroweak
data. Section 7.8 has our summary. In Appendix 7?7 we give the relevant expressions

for the beta functions, anomalous dimensions as well as for the soft masses.
7.2 U(1), model

We present our model in this section. We consider adding an extra U(1) gauge
group to the Standard Model gauge structure of MSSM. The model is then based on
the gauge group SU(3)¢ x SU(2), x U(1)y x U(1),, where the U(1), charge is given
by the following linear combination of hypercharge Y and B — L:

Ul), = 2¥ —(B—L). (7.3)
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The particle content of the model and the U(1), charge assignment are shown in Table
1. Besides the MSSM particles, the model has new particles {v¢, v¢, v¢, S, and S_}

which are all singlets of the Standard Model gauge group.

Superfield Qi us ds L; es H, | Hqg | v{ | v¢ | v°| S4 | S=
U(1), gLzl ozl 24 g1 2|2 -1|-1]1] 2 |-2

TABLE 7.1. Particle content and charge assignment of the U(1), model. Here i = 1 — 3 is the

family index.

In order for L; and é¢ sleptons to have positive mass—squared from the U(1),
D—term, the charges of L; and ef must be of the same sign. This is possible only for
1 < x < 2. We shall confine to this range of x, which is an important restriction on
this class of models. The v fields are needed for U(1), anomaly cancellation. S, and
S_ are the Higgs superfields responsible for U(1), symmetry breaking. The v¢ 4 ¢
pair facilitates symmetry breaking within the AMSB framework. The superpotential
of the model consistent with the gauge symmetries is given by:

W = (Yu)ij QiH,uj + (Yd)ij QiHad; + (V1),; LiHae§ + pH, Hy
3
+ WSS+ Z foevivi Sy + foev VoS, + oo S_ + M,evve.  (7.4)
i=1
Here i,7 = 1,2,3 are the family indices. The mass parameters y and p’ are of order
TeV, which may have a natural origin in AMSB [36]. In general, one can write
additional mass terms of the form M;v{7 in the superpotential. Such terms will have
very little effect on the symmetry breaking analysis that follows. We forbid such mass
terms by invoking a discrete symmetry (such as a Zs) which differentiates v¢ from .

Small neutrino masses are induced in the model through the seesaw mechanism.
However, the vf fields, which remain light to the TeV scale, are not to be identified
as the traditional right—-handed neutrinos involved in the seesaw mechanism. The
heavy fields which are integrated out have U(1),—invariant mass terms. Specifically,

the following effective nonrenormalizable operators emerge after integrating out the
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heavy neutral lepton fields:

2
12

Y2
Ly = 37 LiLHHS.-. (7.5)
N

Here My represents the masses of the heavy neutral leptons. For My ~ 10 GeV
and (S_) ~ TeV, sub—eV neutrino masses are obtained. Note that we have not al-
lowed neutrino Dirac Yukawa couplings of the form hy,; LiuJ‘?Hu, which would generate
Majorana masses of order MeV for the light neutrinos. We forbid such terms by a
global symmetry G, either discrete or continuous. In our numerical examples we shall
assume this symmetry to be non—Abelian, with ¢ transforming as a triplet [for ex-
ample, G can be O(3), Sy, Ay, etc.]. Such a symmetry would imply that f,c in Eq.
(7.4) are equal for i =1 — 3.

7.3 Symmetry breaking

The scalar potential (involving H,, Hy, S+, S_ fields) of the model is given by:

Vo= (Mg, + p*) Hu* + (Mg, + p®) | Hal® + (Mg, + p®)[S4* + (M3 + u)|S-?

1
+ Bu(HuHa+ h.c.) + Bp/(SeS-+ hee) + 290 + g3) ([Hul* = [Hal*)"

1 1 x T
+ SGIHH + 502 (FIH? = SIHA? + 21802 — 2|5 ?)

2
)

(7.6)

where the last term is the U(1), D term. The B and the B’ terms for the model are

given by
B = _(ryHu + fde)Maux and B'= _(75'+ + ’YS,)Mauma (77)

where the ’s are the one—loop anomalous dimensions given in the Appendix, Eqgs.
(115)—(116), (120)—(121).
We parameterize the VEVs of H,,, Hy, S, and S_ as
0 Uy
(Hy) = (vu) , (Ha) = ( . ) , (4 =2 (S) =v. (7.8)

In minimizing the potential, we have to keep in mind the fact that the VEVs of (S,)
and (S_) should be much larger than the VEVs of (H,) and (H,) for a consistent
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picture. In addition, the VEV of (S.) should be greater than the VEV of (S_) in
order for the D—term contribution to the slepton masses to be positive. We have
checked explicitly that all the above — mentioned conditions are satisfied at the local
minimum for a restricted choice of model parameters. The physical Higgs bosons as
well as the sleptons acquire positive mass—squared, while generating a Z’ mass and
7 — 7' mixing angle consistent with experimental constraints.

Minimization of the potential leads to the following conditions:

2Bu
n20 = 7.9
sin 25 2% + MZ, + ME’ (7.9)

MZ 2 Mg, — Mg tan® 3 22g20®  zg?u®cos 24 (7.10)
2~ M tan? 3 — 1 4 cos23 '
] —2BI[L/
sin2y = 20 ME  ME (7.11)
+ —
MZ o ME — Mg, tan®q N 2g2v? xgiu?cos2 (712)
>~k (tan%¢) — 1) 4 cos 29 '

Here M2, = % + 8g2u?, tan § = Z—Z, tany = i, VU2 +vi =v =174 GeV and

V22 4y =
To see the consistency of symmetry breaking, we need to calculate the Higgs
boson mass—squared and establish that they are all positive. We parameterize the

Higgs fields (in the unitary gauge) as

HJF . L . .
o ( 1 sm'ﬁ > (H) = <Ud+ ﬁ(gbj +zsmﬁ¢3)) |
Vu + 75 (d2 +icos f ¢s) H~ cosf3

S, =2+ %(m Ficosps), S =yt %wﬁ T ising ds). (7.13)

The CP-odd Higgs bosons {¢3, ¢5} have masses given by
2B 2B
2 2
m sin 23’ A sin 2¢) (7.14)

The mass matrix for the CP—even neutral Higgs bosons {¢1, ¢a, ¢4, ¢g} is

given by
(M?) (M?)1s —2xg%v42 219Uy
(M?)15 (M?)g 2xg%v, 2 —2xg2u.y
<M2)cpfeven = , (715)
—2rgivez  2xgivez (MP)ss (M?)34

2zgivgy  —2xgivy  (M?)a (M?) 14
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where
(M* = m?sin® B+ MZcos* 3+ %(:EQgiqﬂ cos® 3), (7.16)
(M*)1y = —m?sinfBcos B3 — M sinBcos 3 — %ngiiﬂ sinfeos B, (7.17)
(M?)gy = m?cos® B+ Mzsin? 3 + %(aﬂgivz sin? 3), (7.18)
(MP)35 = m?, cos®p + 8¢222, (7.19)
(M*)3y = —m? sintpcostp — 8g2yz, (7.20)
(M) = m?%sin® ¢ + 8g2y°. (7.21)

It is instructive to analyze the effect of the U(1), D—term on the mass of the lightest
MSSM Higgs boson h. Consider the upper left 2 x 2 sub sector of the CP—even Higgs

boson mass matrix. It has eigenvalues given by

1 CE2 2U2
)\172 = §[m?4+M%—I- 9295

x2g2v?

2 ) 22920\ 2 772 2
F m + M; + 5 —4m5 M7 cos? 23 — 4m7 cos? 23

From the equation above, we obtain an upper limit on my,

242,,2
my <\~ 9;” + M2 cos 24]. (7.22)

The mixing between the doublets and the singlets will reduce the upper limit further.

In fact, we find this mixing effect to be significant.

The lower 2 x 2 subsector of Eq. (7.15) has eigenvalues

Ny = [ngcuz +m?% F \/(8g§u2 +m?2,)? — 4m?,(8¢2u?) cos? 21| . (7.23)

N | =

From Eq. (7.23) we obtain the upper bound of the lightest Higgs mass for the SU(2)

singlet sector:
mp < mar| cos 2. (7.24)

The above upper limit on my, is affected only minimally by the mixing between the

doublet and the singlet Higgs fields.
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As in the MSSM, the mass of the charged Higgs boson H* is given by
my. = m4+ M. (7.25)

We now turn to the supersymmetric fermion masses. The (Majorana) mass

matrix of the neutralinos {B, Ws, ﬁg, HY, B, S,, S_} is given by
0

M, 0 —An B 0 0
0 M, \%92 —%92 0 0 0
MO — %91 _\U/_uigz — 1 0 \U/—%ngb@ 0 0 7.26)
0 0 —%zg, “xg, M 2V2g,2 —2V2g,y
0 0 0 0 22,2 0 4
0 0 0 0 —2v2¢,y 4 0

where M, M]and M, are the gaugino masses for U(1)y, U(1), and SU(2),. The
physical neutralino masses myo (i =1-7) are obtained as the eigenvalues of this mass

matrix. We denote the diagonalizing matrix as O:
0T -
OMOOT = diag{mgo, mgg, Mg9, Mgo, My, My, m;(g}. (7.27)

In the basis {W+, HS}, {W~, H;} the chargino (Dirac) mass matrix is

My govg
M = < y ) . (7.28)
G2Uy W

This matrix is diagonalized by a biunitary transformation V*M© Ut = dz’ag{mﬁ, Myt }.

The Z — Z' mixing matrix is given by

M2 M2
M= 7 7, (7.29)
YM3; M3,
where
—Tg, V2 220202
V= S = Mz = (i +93), My = Irl 1 8g2u?. (7.30)
VIi T G5 2 2

The physical mass eigenstates Z; and Z, with masses My, , M, are

Zy = Zcos&+ Z'sing, (7.31)

Zy = —Zsin&+ Z' cosé, (7.32)
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where
1
The Z — Z' mixing angle £ is given by
2y M?2
= 5 arctan (m) ~ —yMZ/M2,. (7.34)

We have ignored kinetic mixing of the form B*Z]  in the Lagrangian (73, 74].

The masses of the heavy right-handed neutrinos are given by
ml,ic = fViCZ, (735)

where ¢ = 1 — 3 is the family index. The fourth right-handed neutrino v mixes with

the v¢ field forming two Majorana fermions. The masses are the eigenvalues of the

foez My
Mycl—/c — 3 (736)
M, hy

mass matrix

where M, is the mass parameter that appears in the superpotential of Eq. (7.4). We
denote the eigenstates of this matrix as wy, we and the mass eigenvalues as m,,, and

My, -
7.4 The SUSY spectrum

7.4.1 Slepton masses

The slepton mass—squareds are given by the eigenvalues of the mass matrices

mlg_ Me, (Ayl, — ptan B)
M? = ‘ ' , (7.37)
M, (Ayli — ptan ﬁ) m2
where ¢ = e, p, 7, and
M? 3 3 T\ 2
2 aux N -~ v
mt =t i 600) - (oo + (o0 +2 (1-2) 0u800)) |
1
+ m + (—5 + sin? HW) cos 26M% + 29> <1 — g) (22 —y?), (7.38)

mt = e |o1i500) — (oo + 2 - V(e )

+ m. —sin® Oy cos2BM7 + 2g3(x — 1)(2* — y7). (7.39)




7

The SUSY soft masses are calculated from the RGE given in the Appendix [Egs.
(C.15), (C.21)]. Note the positive contribution from the U(1), D-terms in Egs.
(7.38)-(7.39), given by the terms +2¢2(1—%£)(2*—¢?) and +2¢2(z—1)(2*—y?). There
are also negative contributions proportional to 3 (g, ), but in our numerical solutions,
the positive D—term contributions are larger than the negative contributions. We
seek solutions where z = (5}) and y = (S_) are much larger than v,, vy, of order
TeV, with z 2 y.

The left-handed sneutrino masses are given by

M? 3 3 2
m?;Li = (16(;:;) [—5925(92) - 1—0915(91) —2 (1 - g) gwﬁ(g;t>:|
+ %cos 28M2 + 24 (1 - g) (22 — ). (7.40)

7.4.2 Squark masses

The mixing matrix for the squark sector is similar to the slepton sector. The

diagonal entries of the up and the down squark mass matrices are given by

1 1

i = (gt (108~ ) cos20 20 (5 -5 ) =)
o 2 2¢ 1
b, = (e, = o (Mg — M2) cos20 + 247 (—§+§) (22— ).
2 2 \Qs 2—12M2 M2 9 92 r 1 2 2

mp, = (msoft)Qi+mDi 6< wt Z) cos 23 + 2g; 53 (% —y%),

1 z 1
mi. = (m ioft)Dp+mD +3 (M, — M3) cos28 + 2g> (§+§> (22 —y?).(7.41)

Here my, and mp, are quark masses of different generations, i = 1, 2, 3. The squark

soft masses are obtained from the RGE as

~ 2
o = T VO + Yas0) — Jian8e0) — S
8 z  1\?
- 593@(93) -2 <g - 5) 9:3(9z) | » (7.42)
c 2 2
()5 = T [mﬁ( ) - i) - gandlen) 2 (-5 + 3) gxmgxx}r.@)

- M2 2
()5, = T lmﬁm - Zouitan) - gdle) 2 (5 +5) gmmgz)}?.zm
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7.4.3 Heavy sneutrino masses

The heavy right-handed sneutrinos (7f) split into scalar (f,) and pseudoscalar

(7f,) components with masses given by
M2

Ml = gy [heB) = 209(0.))] - 202 — o)
+ 2l ey + A2 + 2 e Az, (7.45)
MZ
= ey 4B — 20:0(0.)] - 202 =)
= Ulfuy H SR = 2 Az (7.46)

As for the fourth heavy sneutrino, there is mixing between the 7¢ and the o°
fields. This leads to two 2 x 2 mass matrices, one for the scalars, and one for the

pseudoscalars. They are given by

v m2, 2M,e (foez + hy + B£22) (747
v 2M,,. (fl,cZ + hy + ”C”C) m~c ’ '
v mg, 2Mye (fiez + hy + Do) (748
Vﬁ 2Myc (fl,cZ + hy + VCVC) m%c ’ '

where
2 Mgux 272 2
L ) (4f0eB(foe) — 2928(92)) — 29, (2" — y°)
+ 2 foey FAfRZE A+ 2f e Aoz + M2, (7.49)
Msu:v
My = o2y (HeBlfer) = 20:0(02)) = 295(2* — %)
— 2l fey + A2 — 2f e Aoz + M2, (7.50)
M2
m = Ti6m2) (4hB(h) = 2045(g:)) + 293(2* — y°)
+ 2’ hz + 4R%Y? + 2R ALy + ML, (7.51)
Msua:
— 2p/hz + 4h%y* — 2 ALy + M2, (7.52)
Bycﬂe - _Maua:(’%/c + '7170)- (753)

Here s (p) stands for scalar (pseudoscalar). The beta functions, gamma functions and

the A terms are given in the Appendix, Eqgs. (C.8)—(C.22). We shall denote the mass

2

eigenstates of the scalars as @i,, Wy, With masses m2 5,.» and the pseudoscalars

G1s0 T

2 2

as wip, Wep With masses mg, , mg, .
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7.5 Numerical results for the spectrum

As inputs at M, we choose the central values (in the M.S scheme ) [51]

1
127.922°

as(Mz) =0.119, sin®fy = 0.23113, «a(My) = (7.54)

We keep the top quark mass fixed at its central value, M; = 174.3 GeV. We follow
the procedure outlined in Ref. [61] to determine the parameter tan 5 and the lightest
Higgs boson mass my;. The gauge couplings and the top quark Yukawa coupling are
evolved from the lower momentum scale to Q = 1 TeV, where the Higgs potential
is minimized. We use the Standard Model beta functions for this evolution. In
determining the top quark Yukawa coupling Y;(m;), we use 2-loop QCD corrections
to convert the physical mass M, into the running mass m,(m;).

For the lightest Higgs boson mass of MSSM we use the 2-loop radiatively cor-
rected expression for m; = (m3), + Amj, where Amj is given in Ref. [53].

We present numerical results for two models: Model 1 with x = 1.3, and Model 2
with x = 1.6. In Model 1, the left—-handed sleptons are heavier than the right-handed
sleptons, while the reverse holds for Model 2.

The value of M,,, should be in the range M,,, = 40 — 100 TeV if the SUSY
particles are to have masses in the range 100 GeV — 2 TeV. In Table 7.2, corresponding
to Model 1, we choose Mg, = 56.398 TeV. In Table 7.7 (for Model 2) we choose
M = 59.987 TeV. We have included the leading radiative corrections [54] to My, My
and M3 in our numerical study. In Model 1 we find M7 : My : M3 =3.0:1:7.1. The
minimization conditions (Egs. (7.9)—(10)) fix tan 5 = 4.39 in this model. The choice
of g, = 041, foe = fie = 0.28, and h = 0.921 are motivated by the requirements
of consistent symmetry breaking with (S,) = (S_) > v,, vg, and the positivity of
slepton masses. We find that the model parameters are highly constrained. Only
small deviations from the choice in Table 7.2 are found to be consistent.

From Table 7.2 we see that the lightest Higgs boson of the MSSM sector has mass
of 121 GeV. The lightest SUSY particle is the neutralino x?, which is approximately
a neutral Wino. This is a candidate for cold dark matter [40]. Note that y? is nearly
mass degenerate with the lighter chargino i (which is approximately the charged
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Wino). The mass splitting mgy — mg = 180 MeV, where the bulk (173 MeV) arises
from finite electroweak radiative corrections [55], not shown in Table 7.2.

In the U(1), sector, there is a relatively light neutral Higgs boson A’ with a mass
of 60 GeV. This occurs since the parameter tany = § is close to 1 — a requirement for
consistent symmetry breaking [see Eq. (7.24)]. A’ is an admixture of S, and S_, and
as such has no direct couplings to the Standard Model fields. Its mass being below
100 GeV is fully consistent with experimental constraints. The phenomenology of
such a weakly coupled light neutral Higgs boson will be discussed in the section 7.

The mass of the Z’ gauge boson and the Z — Z’ mixing angle are listed in Table
7.3 (for Model 1). In section 7 we show that these values are compatible with known
experimental constraints.

Table 7.4 lists the eigenvectors of the neutralino mass matrix. These will become
relevant in discussing the decays of the Z’' gauge boson. Tables 7.5 and 7.6 give the
eigenvectors of the chargino and the CP-even Higgs bosons, which will also be used
in the study of Z’ decays.

Tables 7.7-7.11 are analogous to Tables 7.2-7.6, except that they now apply to
Model 2 (with z = 1.6). In this case, tan § = 5.83 and m;, = 126 GeV. Here the right—
handed sleptons are heavier than the left-handed sleptons. In fact, in this Model,
the LSP is the left-handed sneutrino. This can also be a candidate for cold dark
matter in the AMSB framework, as the decay of the moduli fields and the gravitino
will produce 77; with an abundance of the right order [41, 76].



Particles Symbol Mass (TeV)
Neutralinos {myo, mig} {0.175, 0.517}
Neutralinos {mgo, mgo} {0.980, 0.980}
Neutralinos {mxg, mso, mi(?} {0.206, 1.644, 3.278}
Charginos {mﬁ, m)@t} {0.175, 0.983}
Gluino M3 1.239
Neutral Higgs bosons {mpn, mg, ma} | {0.121, 0.793, 0.792}
Neutral Higgs bosons {mp, mg, ma} | {0.060, 2.394, 0.241}
Charged Higgs bosons mpyg=+ 0.796

R.H sleptons {me,, mu,, mz} | {0.215, 0.215, 0.205}
L.H sleptons {me,, my,, mz} | {0.249, 0.249, 0.257}
Sneutrinos {ms., mz,, ms, } | {0.220, 0.220, 0.220}
R.H down squarks {chR’ M3, ml;l} {1.284, 1.284, 1.284}
L.H down squarks {mJL, ms,, mg,t | {1.186, 1.186, 1.028}
R.H up squarks {mag, meg, mz } | {1.098, 1.098, 0.644}
L.H up squarks {may, me,, mg,} | {1.184, 1.184, 1.099}
R.H scalar neutrinos {mpgi Hi=1-3) 0.605

R.H pseudoscalar neutrinos {mf,;i Hi=1-3) 0.413

. ~ =C
Heavy scalar neutrino (7€, v")

{m®1sv m‘I)Q.s}

{1.142, 3.644}

. ~ ~C
Heavy pseudoscalar neutrino (7¢, v")

{m‘:}ps ? ma)Qp}

{0.595, 1.439}

R.H neutrinos

{mue}

0.455

Heavy neutrinos (v¢, v°)

(M, My, }

{0.933, 1.635}
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TABLE 7.2. Sparticle masses in Model 1 (z = 1.3) for the choice My, = 56.398 TeV,
tang = —1.205, u = 2.054 TeV, fe = 0.28, foe = 0.28, h = 0.921,

g = 041, Mye = 1 TeV and M; =

tan 3 = 4.39, p = —0.977 TeV, ' = 0.214 TeV, y, = 0.03.

174.3 GeV. This corresponds to



Z' boson mass Mgy | 2.383 TeV

Z — 7' mixing angle | £ 0.001
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TABLE 7.3. Z' mass and Z — Z’' mixing angle in Model 1 for the same set of input

parameters as in Table 7.2.

Fields | {9 X3 X3 X9 X0 X2

e

B -0.003 | 0.998 | 0.051 | 0.025 | 0.000 | -0.001

0.000

V~V3? -0.997 | 0.001 | -0.052 | -0.058 | 0.000 | 0.002

0.000

Hg 0.078 | 0.054 | -0.703 | -0.704 | -0.002 | 0.030

0.001

H? | -0.004 | 0.019 | -0.707 | 0.706 | 0.001 | -0.042

0.016

B’ 0.000 | 0.000 | -0.004 | -0.023 | -0.026 | -0.612

-0.790

St 0.000 | 0.000 | -0.011 | 0.039 | -0.597 | 0.642

-0.479

S_ 0.000 | 0.000 | -0.009 | 0.026 | 0.802 | 0.458

-0.382

TABLE 7.4.

TABLE 7.5.

Eigenvectors of the neutralino mass matrix in Model 1.
O in Eq. (7.84) is the transpose of this array.

The unitary matrix

Unn | Ur2 Ua U2 Vi1 Via Va1

Vaa

0.994 | 0.110 | -0.110 | 0.994 | 1.000 | 0.006 | -0.006

1.000

Figenvectors of the chargino mass matrix in Model 1, where U, V

are the unitary matrices that diagonalize the chargino mass matrix

(V*MEOU-T = M) ).



Fields h n H H'
HY | 0.226 | -0.025 | 0.974 | -0.007
HY | 0.967 |-0.110 | -0.227 | 0.027
Sy ]-0.050 | -0.612 | -0.010 | -0.790
S_ ] 0.104 | 0.783 | -0.008 | -0.613
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TABLE 7.6. Eigenvectors of the CP—even Higgs boson mass matrix in Model 1. This
array corresponds to X used in Egs. (7.80) — (7.82) and Eq. (7.107) of the

text.
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Particles Symbol Mass (TeV)
Neutralinos {myo, m)ZS} {0.186, 0.550}
Neutralinos {mg, mgo} {1.049, 1.050}
Neutralinos {mig, Mg, m>2‘7)} {0.498, 2.840, 4.539}
Charginos {mili, mﬁ} {0.186, 1.051}
Gluino M3 1.298

Neutral Higgs bosons

{mp, my, ma}

{0.126, 0.625, 0.625}

Neutral Higgs bosons

{mp, mpr, mar}

{0.023, 3.436, 0.125}

Charged Higgs bosons

mpg+

0.630

R.H sleptons

{ng, Mpag, M7 }

{0.383, 0.383, 0.385}

L.H sleptons

{méu My, mﬁ}

{0.213, 0.213, 0.210}

Sneutrinos

{mz., mz,, ms }

{0.174, 0.174, 0.174}

R.H down squarks

{mg,, msp, my }

{1.370, 1.370, 1.369}

L.H down squarks

{mJL, mgL, m52}

{1.267, 1.267, 1.087}

R.H up squarks

{mag, mey, mfl}

{1.031, 1.031, 0.406}

L.H up squarks

{may, mey, mg,}

{1.264, 1.264, 1.1141}

R.H scalar neutrinos

{mog }i=1-3)

1.583

R.H pseudoscalar neutrinos

{mg }(i=1-3)

1.129

. ~ =C
Heavy scalar neutrino (2¢, v")

{mtﬁls ) mi}zs}

{1.852, 4.700}

Heavy pseudoscalar neutrino (7¢, v")

{majps Y m‘:JQp }

{1.398, 2.586}

R.H neutrinos

{mue}

0.829

Heavy neutrinos (v, v°)

{mw,, My}

{1.174, 2.070}

TABLE 7.7. Sparticle masses in Model 2 (z = 1.6) for the choice My, = 59.987 TeV,
tang = —1.202, u = 2.697 TeV, fie = 0.4, foe = 0.4, h = 1.0, g, = 0.45,
M{ = 2197 TeV, Mye =1 TeV and M; = 174.3 GeV. This corresponds to
tan 3 = 5.83, u = —1.046 TeV, ' = —0.505 TeV, vy, = 0.06.

7.6 Z' decay modes and branching ratios

The Z’ gauge boson of our model has substantial coupling to the quarks. With

its mass in the range 2-4 TeV, it will be produced copiously at the LHC via the

process pp — Z'. The reach of LHC is about 5 TeV for a Z’ with generic quark
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Z' boson mass My | 3.433 TeV

Z — 7' mixing angle | £ 0.00068

TABLE 7.8. Z' mass and Z — Z' mixing angle in Model 2 for the same set of input
parameters as in Table 7.7.

Fields | {9 e e o X2 Xe X9
B -0.001 | 0.998 | -0.052 | 0.023 | 0.000 0.000 | 0.000

W9 1-0.997 | 0.002 | 0.053 | -0.052 | 0.000 | -0.001 | 0.000

ﬁg -0.074 | -0.052 | -0.703 | 0.705 | -0.002 | 0.011 | 0.001

I;TS 0.000 | -0.020 | -0.707 | -0.707 | -0.001 | -0.021 | 0.016

B’ 0.000 | 0.000 | 0.006 | -0.004 | 0.023 | 0.0563 | 0.826

S+ 0.000 | 0.000 | 0.011 | 0.018 | -0.648 | -0.620 | 0.441

S_ 0.000 | 0.000 | 0.007 | 0.017 | 0.761 | -0.546 | 0.350

TABLE 7.9. Eigenvectors of the neutralino mass matrix in Model 2. The unitary matrix
O in Eq. (7.84) is the transpose of this array.

Ui | Ur2 U2y U2 Vin Via Vai Vaa
0.994 | 0.105 | -0.105 | 0.994 | 1.000 | 0.000 | -0.000 | 1.000

TABLE 7.10. Eigenvectors of the chargino mass matrix in Model 2, where U,

V are the unitary matrices that diagonalize the chargino mass matrix

(V*MEOU-! = M;;gg>.

Fields h h H H'

HY 0.176 | 0.002 | 0.984 | 0.005

H? 0.984 | 0.010 | -0.176 | -0.025

St -0.012 | -0.640 | 0.007 | -0.768
S_ -0.023 | 0.768 | 0.006 | -0.640

TABLE 7.11. Eigenvectors of the CP—even Higgs boson mass matrix in Model 2. This

array corresponds to X used in Eqgs. (7.80) — (7.82) and Eq. (7.107) of the
text.

and lepton couplings [77]. Our model will then be directly tested at the LHC. Once

produced, the Z’ will decay into various channels. It is important to identify the
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dominant decay modes of the Z’ and calculate the corresponding branching ratios.
This is what we do in this section. We will see that our Z’ is almost leptophobic, with
Br(Z' — ete”) = (1 — 1.5)%. Direct limits on such a Z’ are rather weak, however,
the Z — Z' mixing which occurs in our models at the level of 0.001 does provide useful
constraints.

We now turn to the dominant 2-body decays of Z’. In this analysis we can
safely ignore the small Z — Z’ mixing for the most part.

The Lagrangian for Z’ coupling to the Standard Model fermions can be written

as

L= g.fy" vy —asys)f 2, (7.55)

The Z’ decay rate into a fermion—antifermion pair is then

3 g: 2 m} 2 m} m}
! T
N2 = ff)=Ci5 Mz {vf (1 + 2M—%/) +a} (1 — 4M—%/)} 1— 4M§,.(7.56)

Here Cy = 3 (1) for quarks (leptons), My is the Z’ mass and g, is the U(1), gauge
coupling. The vector and the axial-vector couplings (vs, ay) are related to the U(1),

charges of the fermions as

(Q(fr) + Q(fr)), (7.57)
(Q(fr) — Q(fr)) - (7.58)

Uf—

CLf—

N — DN -

Here @ is the U(1), charge of f; (listed in Table 7.1 ) and Q(fr) = —Q(f).

The decay width for 7" — vpvp; and Z' — vfvf are:

2
P(Z/ — DLiVLi) = éizﬂ_QiuMZ/, (759)
g2 m2c 2
/ —c.c T 2 Vi
F(Z — U Vi) = Y QV@'CMZ/ 1-— 4M§, . (760)

There is mixing between the heavy vector-like v and the ¢ [Cf: Eq. (7.36)],

with the mass eigenstates (wq, wy) given by

Ve cosf@,c sinf,c w1
= ) (7.61)
7 —sinf,. cosb,. Wo
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Since Qpc = —Q,<, the Lagrangian for the Z’ coupling to these neutrino is given by
L = %ch(cos 20,1y ysw1 — cos 20,coyH yswo — sin 26,,cw1 Y Y5wo
— 8in 20,c@yy"5w1) 2, (7.62)

This leads to the decay rates

F(Z, — wlwl) = Q'ia;rMZ/ < COS 26)Vc (1 M2 ) s (763)
Z/
F(Z, — WQWQ) = 26155 MZ’ l/C COS 0 (1 M2 ) s (764)
Z/
4 2 .22 M
[(Z' — wiwy) = 192“”” Mz Q2. sin” 20, [1 (m, 2M2m .) — <mw12M1nw2) — 3m]\147;1 2
z! A z!

X \/(1 - %) (1 - %) (7.65)

Here m,,, (m,,) are the masses of the physical Majorana fermions.

The Z’ interaction with the sfermions is described by the Lagrangian
L =ig.(vy £ as)fi p 0 fr.RZ" (7.66)

The rate for the decay Z’ to sfermions is given by

N N 2 m2 2
F(Z’—>fZ7RfL,R):Cf—498m7TMZ/(Uf:I:af) (1—4 A}R) , (7.67)
Zl

where the +(—) sign is for the left (right)-handed sfermions and mg . is the left
(right)-handed sfermion mass. v; and ay are as given in Eqs. (7.57)(7.58).
In the top squark sector, there is non—negligible mixing between the left and the

right—handed sfermions. This leads to the following modification of the Lagrangian:
L =1ig, <(vf + ay cos 20f)ff72 Ou f~1’2 — aysin 29f(fl* Oy fa+ f2* Oy f1)> 7" (7.68)

where 07 is the left-right sfermion mixing angle. The decay rate is given by

D(Z' = fiafia) = CpioMa(os + agcos20,) (1—4Mf§’2> ’ (769
Z/

. 2 , m? +m
0(Z — fify) = C’fngZ/(af sin 20];)2 [1 + 2( 1]\/[2 2) M4 X} 70)
z! z!
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The ¢ and 7 splits into two scalar and two pseudoscalar which mix (see Egs.

(7.47)-(7.48)). The mass eigenstate &;; and uj;, are given as

178 cosf,, sinf,, 015
=~C = ) (771)
v —sinf,, cosb,, (o
ve cos 6, sin 6, w1
) o= : : ", (7.72)
v, —sinf,, cosf,, Wap

The Lagrangian for the Z’ coupling to the scalar—pseudoscalar pair is given by:

L = g, [(ch 08 O,y5 COS Oy + Qe SIN O5 SIN O, ) D15 5# 1p
+(Que sin O, sin b, + Qpe €08 0,5 cO8 O, ) Was 5# Wap
+(Qye 08 b5 8in 0, — Qe SIn 0,5 08 O, )01 5 (5“ Wap

+(Qpe sin 0,5 €08 b,y — Qe COS O, SIN b, ) 0o 5u J)lp] z". (7.73)

This leads to the decay rate

3
2 2 2 2 212
9920 2 [ _ 2<mwi5 + mqup> i (mwis - mwjp) ]

[(Z' — Gi@;p) = , (1.74)

48w ©H
where ();; is identified with the appropriate coupling to w;sw;, term in the Lagrangian
of Eq. (7.73).

The supersymetric partners of v{ split into a scalar (7§,) and a pseudoscalar

1S

(75,). The decay of Z' to these fields is similar to those analyzed in Eq. (7.74):

2 (m2. +m2. )  (mZ —m2 )?
N7 — B0) = 22Q2
p 487 “Vi

where Me. and My are the masses of the scalar and the pseudoscalar.

The Lagrangian for the Z’ coupling to the charged Higgs bosons is given by
L = ig.(Qu,sin?B — Qp, cos? B)H' o, H™ 7"
+  92(Qu, + Qnm,)sin Beos My (W H™ + W, H)Z", (7.76)

where Qp, (Qn,) is the U(1), charge of H; (H,) field. The decay rates of Z’ to
H*H~ and W*HT are given by

Nl

2 2
INZ — H'H™) = 498; Mz (Qp, sin® 8 — Qp, cos® 3)* (1 - 47]7\1;*) : (7.77)
Z/
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2 (BME, —m?2.) (M3 —m?.)?
N7 —WwrH%) = S, 2|1 4o T W
(M2, +m2.)  (MZ —m?.)’
1 -2 . 7.78
% \/ ML M, (7.78)

Here my= is the mass of the H* Higgs boson and My is the mass of the W-boson.

The ZWTW~ coupling of the Standard Model will induce, through Z — 7’
mixing, a Z'W*W~ coupling. The decay of Z’' to a pair of W~ is found to be
78]

M4 MQ M4 M2 %
F(Z/ — WJFW ) = 19,9; COS HW sin fMZ’ M4 (1 —+ QOW + 12m> (1 — 4W>
z! A A

We now discuss the decays of 2/ — Zh,ZH,Zh,ZH' as well as Z' —

hA, h' A’ ete.. The relevant Lagrangian is
4

L = 29.My Y (Qu,cos X1 — Qu, sin $Xo,) 2" Z, H;
=1
4

— g Z(QHd sin 3X1; + Qpg, cosﬁXzi)Z’“H,? 0, A
=1
4

— 00 Y (Qs, cosY Xy + Qs_sinXy)) ZMHY 9, A, (7.79)

i=1
where H? (= h, b/, H, H') are the neutral CP-even Higgs bosons, mp, are the

masses of the corresponding Higgs boson, Qs, (Qs ) is the U(1), charge of the
S+ (S-) field and X;; are the matrix elements of the unitary matrix that diagonalizes

the CP-even mass matrix of Eq. (7.15). The decay rates are then

D2 — ZHY) = 2 My(Qu, c0s BX — Qu, sin X0 ¢

T
. 2<5M%w—%/mm> ) <M§A—4§a>2} \/1 ) 2<M;A;;zi> ) (M%]\}Z%fm
[(Z — HA) = 495 My/(Qu, sin BX1; + Qur, cos BXa;)’
) [1 - 2(@;;%@) . <m];[mH>} 781)
(72 — HA) = 49896 Mz (Qs, cos Xz + Qs sinXy,)?
« [1 _ Q(mA/]\j[’%lmHi) i (mA’M;ﬂLHi)Q} : ’ (7.82)
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where m4 and mys are the pseudoscalar Higgs boson masses.
We parameterize the interactions between the neutralinos (Y9, X3, ...X%) and the
Z' boson as
=0 ~
L = ) 9" sX57, (7.83)
i’j
Here the coupling g;; is obtained from the eigenvectors of the neutralino mass matrix

of Eq. (7.26) as

00 0 000 0
00 0 000 0
00 -2 000 0

§ = %’”o 00 0 200 0[O (7.84)
00 0 000 0
00 0 002 0
00 0 000 —2

with ¢;; = (¢);;. Here O is the orthogonal matrix that diagonalizes the neutralino

mass matrix. The Z’ partial decay rates into neutralinos is found to be

3

72 m2 \ 2
N2 —Xix)) = oMz (1 — 45 ) , (7.85)
Z/
0.~ i + 95i)° (m; +m37)  (mi—m3)? mim;
F Z/ 0 0 = —(g‘j J M 1 1— J - J - ]
(2" = Xi%) 127 7 oM, 2N, MZ,

X \/(1 - %) (1 - %) (i £ ) (7.86)

where m; are the neutralino masses. (Here our result disagrees with Eq. (48) of Ref.
[64] by a factor of 2.)
The Lagrangian for the couplings of Z’ to the charginos is given by [64]

2
]- =+ ~
L= 59: ) %" (v +a)X; 2, (7.87)
ij=1

The Z’ decay rate into the chargino pair is then
2 2 2 2 212
SE 9z 2 2 (m; +mj) (m; — mj) 9 9\ MM
INVARSS % X;F) = EMZ’ |:(Uij + aij)(l - 2M§, - 2M§, )+ 3(“@‘ - aij) Mg,

x\/(l - %) (1 . %) (7.88)
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Here m, is the chargino mass, v;; and a,; are given in terms of the charges Qm,, Qm,
and the matrices U and V' which diagonalize the chargino mass matrix Eq. (7.28),

can be explicitly written as [64]

v = QuVs— Qu U, (
an = Qu,Va +Qn U3, (
vig = V21 = Qu,Vi2Vi1 — 0Qw, Ur2Un1, (
a2 = ag = Qu,Vi2aVi1 + 0Qu,U12Ui1, (7.
(
(

=
©
S

=~
Ne)
—_

~N
© O
w N
— N N N N~ N~

2 2
Va2 = QHan_QHuUn»

2 2
azg = Qu,Vay + Qn, U,

where § = sgn(mg+) x sgn(mgz).

In Table 7.12 we present the partial decay rates of Z’ to two fermions and to two
scalars in Model 1. The total width of Z’ is 106 GeV (this ignores three body decays,
which are more suppressed). One sees from Table 7.12 that the Z’ decays dominantly
to qq with Br(Z' — qq) = 43.93%. On the other hand, Br(Z" — ete™) = 1.16% in
this case. Thus this Z’ is leptophobic. We also see that Z' — x{X} and 2" — )Zf[f(f
are significant. There are also non—negligible decays into two Higgs particles, with
7' — KW A" being the dominant mode in this class. The decay of Z’ into sfermions is
a new production channel for supersymmetric particles. Decays into sneutrino pairs
is the dominant mode in this category, with Br(Z’ — vpvr) « 7.74%. The signature
will be pp — Z' — vpivp; — £; 0; X{ X1, where the sneutrino decays into £; i, with
the subsequent decay Y& — X! + 7+, etc.

In Table 7.13 we list the Z’ partial decay rates in Model 2. Br(Z' — ete™) =
1.60% in this case. Other features are very similar to the case of Model 1 (Table
7.12).
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Decay Modes of Z’ Width (GeV)
7' — {au, e, it} (4.75, 4.75, 4.64}
Z' — dd (5s, bb) 9.59

7" — ee(fp, 77) 1.13

Z" = VerVer, (VuLVur, VrLVrL) 0.65

Z'" — VerVer (VuRVuR, VrRVrR) 4.19

7" — 1w 0.50

Z" — {X1X3, X1X4, X2X4, X3X4} | {0.01, 0.01, 0.01, 3.38}
Z" — {XsXs, X4X5, X5X5, XsX6¢} | {0.01, 0.05, 3.34, 5.65}

Z" — {X3 X2 » X{ X2 » X1 X5 } {3.36, 0.02, 0.02}
7' — Wiig (E4CR) 0.13

Z' — {tytr, titr, Uhtr} {0.88, 0.13, 0.13}
Z' — éper (BLiie, 717L) 0.30

Z' — eper (IWpir, TRTR) 0.23

7' — Ufpper, (W PuL, Vipbrr) 2.52

Z' — Vi 0ty V55, V5.U5,) 1.94

7' — 1501 0.36

7' — Zh 1.11

7' —{hA, HA, W A"} {0.03, 0.47, 0.62}
7' — HTH™ 0.46

7' — WTWw- 1.08

7' — WrHT 0

TABLE 7.12. Decay modes for Z’ in Model 1 for the parameters used in Table 7.2. The
total decay width is T'(Z' — all) = 97.68 GeV.



Decay Modes of Z’

Width (GeV)

7' — {awu, cc, tt}

{15.00, 15.00, 14.86}

7' — dd (5s, bb) 20.90
7" — ee(fip, TT) 3.69
Z' — VerVer, WuLVuL, VrLVrL) 0.37
Z' — VerVer (VuRVuR, VrRVrR) 6.19
7" — {owr, O1wa} {1.41, 0.06}

Z" — {X1X3, X1X4> X2X4, X3X4}

{0.03 0.03, 0.03, 10.99}

Z" — {X3X5, X4X5, X5X5: X5X6}

{0.01, 0.04, 1.63, 6.64}

Z' = {x3 %2 } {10.96}

7' — agay (8hér) 0.02

7' — Uhip (ChR) 3.80

Z' — {tytr, Gitr, thtr} {5.93,0.45,0.45}
7' — didy (5551, bibr) 0.02

7' — diydp (8%5R, bhbr) 3.77

Z' —éper (BLfin, T171) 0.18

Z' — eper (iR, TRTR) 1.54

7' — 0 er, (7 OuL, ViLirL) 4.54

2" — iy { V55, V55, 1.04

7' — @1501p 0.91

7' — Zh 2.96

7' — {hA', HA, W' A"} {0.01, 2.38, 0.60}
7' — HTH- 2.38

7' — WrWw- 2.81

Z' - W*HT 0

total decay width is I'(Z' — all) = 229.93 GeV.
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TABLE 7.13. Decay modes for Z’ in Model 2 for the parameters used in Table 7.7. The
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7.7 Other experimental signatures

In this section we discuss experimental signatures of the model other than Z’

decays.

7.7.1 7 decay and precision electroweak data

The Z — Z' mixing angle and the direct coupling of Z’ to the Standard Model
fermions leads to modification of Z decays. Precision electroweak data from LEP and
SLC can be used to constrain such a Z’ in the mass range of a few TeV. Typically
one finds the Z — Z’' mixing angle ¢ bounded to be less than a few x1073, which is
satisfied in our models.

The mixing of Z with Z’ shifts the mass of the Z boson from its SM value, while
leaving the W mass unaffected. This leads to a positive shift in the p parameter:

2 M7,
P = pPsm (1 +¢ W) : (7.95)

The partial decay width I'(Z — ff) is modified to

- M
0(Z — ff) = T Sin2oéwi082 . [(gv cos€ + Ky sin €)% 4 (g4 cos € + Kaf sin§)217.96)
where
2¢g,sinf 0
g = (Ty—2qsin®Oy), ga=Ts r="2TDIWEBAW 0 (797)

e

with ¢ being the electric charge of the fermion. v; and v, are given in Eqgs. (7.57)
and (7.58).

Partial widths of the Z will deviate from the Standard Model values owing to
the shift in the coupling Z to fermions as well as due to a change in the derived value

of sin® fy,. We define

A, — F(Z—)]ﬁf)
"7 0(Z = fDsu

We use sin® 05 = 0.23113 (the best fit in the Standard Model) for evaluating I'(Z —

~ 1. (7.98)

ff)sar. We do not perform a global fit to the available data, but we present a specific
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fit which is at least as good as the Standard Model and perhaps slightly better. We
choose to set A, = 0, which yields sin? fy, = 0.230717 in Model 1. With this value of
sin? Oy, we find

{A,, Ay, Ay} ={0.00100, 0.00171, 0.00206} (Model 1). (7.99)

This leads to the following modifications of decay widths:

Thaa = DPM 4+ Ag@DSM 4 T9M) 4 2A,09M = 1.74545 GeV,  (7.100)

Dine = (14+A)T5M = 502.793 MeV, (7.101)
[had

= M — 90.7744. 102

Ry N7 07 0.77 (7.102)

We see that I'j,,q is closer to the experimental value of 1.7444 GeV compared to
the Standard Model value of 1.7429 GeV. Similarly R, is closer to the experimen-
tal value (20.767 4+ 0.025) than the Standard Model value (20.744). On the other
hand, T';,, is somewhat worse than the Standard Model fit (501.76 MeV) compared
to the experimental value of (499.0 + 1.5 MeV). This deviation is still within accept-
able range. Here for our numerical fits we used the central values I';" = 0.383185
GeV, I'YM =0.375926 GeV and I'’M =T = (.300302 GeV [51].
The predicted value of My, is modified as

M2\ 1—sin®6
My — \/ Kl rels > - ;1;2 QSVH MEM = 80.4427 GeV,  (7.103)
Z w

where MM = 80.391 GeV is used. This value is closer to the direct measurement
My, = 80.446 than the Standard Model value.

In Model 2 we find, following the same procedure, sin?fy = 0.230783,
Ay = 0.00131, A, = 0.00089, A, = 0.00138 and I'poq = 1.74493 GeV, 'y, =
502.453 MeV, R, = 20.7682, My = 80.4356 GeV.

The radiative correction parameter in p decay, Ar, is slightly different in our

model compared to the Standard Model. In the on shell scheme we have

M3, sin” Oy (1 —Ar)sy
= . 7.104
(MI%V sin2 QW)SM (1 — A?“) ( )

We obtain Ar = 0.03501 (in Model 1) using the Standard Model value of Ar =

0.0355 £ 0.0019. Clearly, such a shift is consistent with experimental constraints
((A7)ezp = 0.0347 £ 0.0011).
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7.7.2 7' mass limit

The direct limit on the mass of Z" with generic couplings to quarks and leptons
is Mz > 600 GeV. There is also a constraint on My from the process ete™ — ptu~.
LEP II has set severe constraints on lepton compositeness [51, 58] from this process.
We focus on one such amplitude, involving all left—-handed lepton fields. In our model,
the effective Lagrangian for this process is

e = g2 (125 L A 7.105
= Yy 2) M3, eryuer) (U pr)- (7.105)

Comparing with A7, (eepp) > 6.3 TeV [51], we obtain % > (1 —%)2.51 TeV. For
9. = 0.41 (0.45) and = = 1.3 (1.6) this implies Mz > 361 (226) GeV. For the choice

of parameters in Tables 7.2 and 7.7, the above constraint is easily satisfied.

7.7.3 h — h'h decay

Since the neutral Higgs boson A’ is lighter than the Standard Model Higgs h,

the decay h — h'h’ can proceed for part of the parameter space. The decay rate is

given by
2 2
D(h — WI) = 2w [y g™ (7.106)

where

Gy = M[@X — 0, Xo1) (X7 — X3) 4 2(04X12 — V4 X20)(X11 X712 — X201 X00)]
hh = 4\/§ d<\11 — UyA21 12 22 VgA12 — Uy A2 114312 21122

2
+ I (2(4X351 X350 — 4X41 Xuo — 2 X11 X712 + X021 X90)

42

X (—ZEUXmg + ZL‘UuXQQ — 4yX42 + 4ZX32)
- <4X§2 - 4X22 - LEX122 -+ .TX222)(.§C'UdX11 — .CL"UuX21 -+ 4yX41 — 4ZX31)] . (7107)

Here X is the unitary matrix that diagonalizes the CP—even Higgs mass matrix of
Eq. (7.15). In principle this can compete with the dominant decay h — bb. However
we find that in Model 1 of Table 7.2 the decay is kinematically suppressed, while
in Model 2 of Table 7.7 due to the small admixture of A in S, S_, this decay is
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suppressed: T'(h — Wh') = 1.48 x 1077 GeV (see Table 7.11). It is worth noting that
if the mixings are as large as in Table 7.6 and if the decay is kinematically allowed,
then I'(h — R'A') ~ 0.1 MeV is possible. Once produced, the dominant decays of A’
will be h' — bb and I’ — c¢ with comparable partial widths, as can be seen from H?

and HY components in b’ (see Table 7.6).

7.7.4 Signatures of SUSY particles

The supersymmetric particles, once produced in pp (pp) collisions, will decay
into the LSP. The LSP is x? (the neutral Wino) in Model 1 while it is the scalar
neutrino 7y, in Model 2. In Model 1, X9 is nearly mass degenerate with the lightest
chargino Y, with a mass splitting of about 180 MeV. The decay X9 — n*xF will then
occur within the detector. At the Tevetron Run 2 as well as at the LHC, the process
pp (or pp)— X + YT will produce these SUSY particles. Naturalness suggest that
mgg, Myt < 300 GeV (corresponding to mguin, S 2 TeV). Strategies for detecting
such a quasi—degenerate pair has been carried out in Ref. [56,57]. In the case where

the LSP is the left-handed sneutrino, the decay X — ¢*;, will be allowed. In this

case X will decay dominantly to X} — vpvy.
7.8 Summary

We have suggested in this chapter a new class of supersymmetric Z’' models
motivated by the anomaly mediated supersymmetry breaking framework. The as-
sociated U(1) symmetry is U(1), = 2Y — (B — L), where Y is the Standard Model
hypercharge. For 1 < x < 2, the charges of the lepton doublets and the lepton singlets
have the same sign. This implies that the U(1), D—term can induce positive masses
for both the doublet and the singlet sleptons and can cure the tachyonic problem of
AMSB. We have shown explicitly that this is indeed possible in this class of models.
In achieving this, the parameters of the model get essentially fixed. We have found

that Mz = 2—4 TeV and the Z — Z’ mixing angle £ ~ 0.001. The phenomenologically
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viable Z’ turns out to be leptophobic — with Br(Z" — ¢T¢7) ~ (1—-1.6)%. The domi-
nant decay of Z' is to qq pair with Br(Z" — qq) ~ 44%. Decays into supersymmetric
particles and Higgs bosons are also significant.

In Tables 7.2 and 7.7 we present our spectrum for two models, Model 1 (with
x = 1.3) and Model 2 (with x = 1.6). The lightest SUSY particle is the neutral Wino
(Model 1) or the sneutrino (Model 2). The partial decay widths of Z’ are listed in
Tables 7.12 and 7.13. These models are compatible with precision electroweak data,
with the Z" models giving slightly better fits to the data than the Standard Model.
This Z’ should be within reach of LHC. The correlations between the Z’ decays and
the supersymmetric spectrum should make this class of models distinguishable from

other 7’/ models.



CHAPTER 8
QUARK—LEPTON SUPERSYMMETRY
8.1 Introduction

In Nature it is a puzzle why some of the elementary fermions, viz; the quarks,
feel strong interactions, while some others, the leptons do not. Perhaps at a higher
scale the theory is manifestly quark—lepton symmetric and at low scale the disparity
appears as a result of spontaneous symmetry breaking. By manifest quark-lepton
symmetry we mean an interchange symmetry between quarks and leptons [79, 80].
The gauge symmetry of the SM and its spectrum does not admit such a symmetry.
The simplest extension of the SM that achieves quark—lepton symmetry is obtained
by postulating a new leptonic color force described by an SU(3), gauge symmetry
which acts on leptons, just as the SU(3)¢ force acts on the quarks. In this chapter
we develop such a minimal supersymmetric quark-lepton symmetric model.

An interesting by—product of quark-lepton symmetric gauge sector is that if
SU(3), survives down to the TeV scale, anomaly mediated SUSY breaking can be
consistently implemented without tachyonic sleptons. The gauge contributions from
the SU(3), sector render the sleptons with positive mass—squared, just as the SU(3)¢
contributions make quark mass—squared all positive. We show by explicit construction
how this may be achieved and discuss the salient features of this model.

An interesting observation we make here is that gauge coupling unification works
well within the minimal SUSY ¢—¢ model, provided that the unification conditions

are of string origin.
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8.2 TeV scale quark—lepton symmetric model

The model is based on the gauge group
Gg=5U(3)e x SU(3), x SU2) x U(1),, (8.1)

and is assumed to be supersymmetric.

The particle content of the model is shown in Table 8.1.

Superfield | SU(3), | SU(3), | SU2)L | U(1),
QL 1 3 2 5
u’ 1 3 1 -2
d° 1 3 1 3
FL 3 1 2 —3
E* 3 1 1 2
N© 3 1 1 -2
H, 1 1 2 :
Hy 1 1 2 —3
X1 3 1 1 3
X1 3 1 1 —3
X2 1 3 1 -3
X2 1 3 1 3

TABLE 8.1. Particle content and charge assignment of the model.

The SU(3), gauge group is the leptonic color group where the leptons F, (E°,
N°¢) transforms as triplet (antitriplets) while the SU(3), gauge group is the usual
color group. There is an exact interchange symmetry between the quarks and the

leptons which is defined as:
Q<—>F, uCHEC7 dCHNC7 X1 7 X2, >_<1 <_>>_<27 HUHHd (82)
The model can be thought of as emerging from the quartification model pro-

posed in Ref. [81] which has a higher gauge group
SU(3)q X SU(?))g X SU(S)L X SU(S)R
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The superpotential of the model consistent with the gauge symmetries is given
by *:

j

a)
+ (Vo) FrHWNG + (Ye)y; Fr, HaB§ + p'xaxa + 1" x2 Xz
F)

(Y,

j

—+ (YN>z'j Eichc)_(l + FLiFL]-XI
(YQ)ij
2

The mass parameters u, ' and p” are of order TeV, which has a natural origin

+ (Yé)ij uidjXa + Qr,Qr; X2 (8.3)

in AMSB [36]. The leptonic multiplets have the following structure:

r1 Io V
F, = . EL=(yf ys e),, Ne=(af 25 v°),. (8.4)
BoYy2 €/,

Here z, y are the exotic leptons needed to complete quark-lepton symmetry and
a = 1,2,3 is family indices. The electric charge generator is a linear combination of

the diagonal generators of the gauge groups given by

T
1 0 O
where T'= | 0 1 0 | is the SU(3), (for the triplet representation of SU(3),)
0 0 -2

generator and X is the U(1), charge. We identify the usual SM hypercharge as
V=X+7%
From Eq. (8.5) we find the relation between the electromagnetic coupling con-

stant e and the other gauge coupling constant g,, g» and g, as:
1 1 1 1
6_2 = g—% + g—% + 3—93
The SU(3), gauge group acts on the leptons. This symmetry is broken by the
VEVs of x; and y;.

(8.6)

o
o O

N
N

*We do not impose ¢ interchange symmetry on the Yukawa couplings. If it is to
be implemented, consistent with quark and lepton masses, a second pair of H, {L g will
be needed.
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The symmetry breaking pattern is
SU(3)y x SU(3)e x SU((2)p x U(1)y — SU(3), x SU(2)e x SU(2), x U(1)y.
The Higgs doublets H,, and Hy further breaks the symmetry Ggys x SU(2),.
SU3)y x SU(2), x SU((2)e x U(l)y — SU(3)c X U(1)er, x SU(2),

8.2.1 Unification of gauge couplings

In order to check the prospect of unification in the low energy theory based on
Gsyr x SU(2),, we use the solutions to the one-loop renormalization group equations
a; Hw) = o (o) + ﬁln fo) (8.7)

(2 (2 27]_ /,[/

where the gauge beta functions coefficients for the model are calculated to be

47
bl:g’ b2:4, b3:—2, bg:—2

Using sin® Oy (M) = 0.2315, o~ 1(My) = 127.9 as input and the condition for string

unification
k1gi = kags = k395 = kugg, (8.8)

where k; are the Kac-Moody levels and with ky = ky = 1, k3 = ky = 2, we obtain to

one IOOp accuracy
Mgyr = 1.6 x 10'° GeV, ag' =9.1 and az(Mz) = 0.123. (8.9)

Note that when this model is embedded into [SU(3)]* quartification model, we have
k1 =1 (as opposed to ky = 5/3 in SU(5) or SO(10) unification). The predicted value
of a3z(Myz) is in good agreement with experiment. Thus we see that the minimal
quark—lepton supersymmetric model achieves unification of gauge couplings. We show

the renomalization group evolution the inverse gauge couplings in Fig. 8.1.
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Figure 8.1. Renomalization group evolution the inverse gauge couplings.

8.3 Symmetry breaking

The model has two sets of Higgs bosons: the usual MSSM Higgs doublets H,
and Hy, and the SU(3), Higgs triplets/antitriplets x; and y; . The Higgs potential
is derived from the superpotential of Eq. (8.3) and includes the soft terms and the



104

D terms. The Higgs potential cannot be split into two pieces because of the U(1)
D—term mixes the two Higgs sectors. The tree level potential for the model is given
by:
V(He Hioxs %) = (m, + 1) Hal? + (my, + 12| Hal? + Bu(H, Ha+ c.c.
2 2 2
g g g a —tya—
+ G = [Ha*)? + FHHP + 5 03X = XA"%0)?

+ o (mi, + )l + m2, + i)+ B axa + ec)

Xu
2 /1H,|2 H.I2 2 o 12\ 2
A L T 510
where the last term in Eq. (8.10) is the U(1), D-term.
The VEV’s of H,, Hg, x1 and Y, are parameterized as
0 0
0 (OF} B
(Hu) = , (Ha) = =0, Ga)=10 (8.11)
Uy, 0
y _
Minimization of the potential Eq. (8.10) leads to the following conditions:
v 2 2
(my, +p®) = —Buv—d + %(vg —v2) + %(2@2 — 2u® + 3v3 — 3v2)
2 2 Vu G5, o 2 92 10 2 2 2
(my, +u°) = —B/Lv—d—z(vd—vu)—ﬁ@u — 2u” + 3v; — 3v3)
2 ? /RN - 2 2 2
(my, +p=) = —B,u——g(u —u)—i—ﬁ@u —2u” + 3v; — 3v;)
2 ) P Gh e 93 102 2 2 2
(m3, +p=) = _BMEJr?(u —u )—E(Qu —2u” + 3v; — 3v;). (8.12)

We now consider the scalar mass matrices. The mass matrix for the CP—even

neutral Higgs bosons is given by

2 2
(M) M2 —Fogu Fogu
5 2
(M?) (M1 M)z Fou  —Fou
cp—even — 2 2
g Lou  (M?)zz (M)
2

2
g?zvdﬂ —%Uuﬂ <M2)34 (M2)44

, (8.13)
Vql

where

Uy 2+ 9
(M) = —BMU—d+—(g 5 gQ)Ug
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(M2)22 = —B,uE + @Ug

(M?)35 = —B’//% + %gqu + %gl?uQ

M)y = _B/MI% + 2?93,&2 + %ggqf

(M?)12 = Bu- @qud

(M?)3y = By — %g"zfuuud + %g?uﬂ (8.14)

The CP-odd Higgs boson from H, and H, fields has a mass given by

Bu
M? = — 24 0?). 8.15
A qud(Uu+Ud) ( )

The CP-odd Higgs bosons for x; and y; fields has a mass

M3 = = — (u® + u?). (8.16)

The charged Higgs boson mass from H, and H, fields is given by

2

B
(MPow = - :jd (V2 +v3) + %2(1)5 +02). (8.17)

The SU(2), “charged” Higgs boson mass from yx; and x; fields is given by

B/ ! 2
(M)omr = — L (w? + @) + %(uQ + a?). (8.18)

uu

In the neutral fermion sector, the Higgsinos from H,,, Hy, x1, X1 mix with the gaugi-
nos X, Ws, Cs (where Cs is the gaugino associated with the Ag generator of SU(3),)
The (Majorana) mass matrix of the neutralinos { X, Ws, HO, I—jg, Cs, X1, X1} is given
by

M, 0 9% —A% 0 Lo —Lga
0 My 59o —\U/—%gz 0 0 0
9 592 0 —l 0 0 0
MO =1 g, g —p 0 0 0 0 (8.19)
0 0 0 0 M, —\/ 2 2get
Lou 0 0 0 —/2gu 0 W
_\/Tigxﬂ 0 0 0 390U pw 0
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where M,, M,and M, are the gaugino masses for U(1),, SU(3),and SU(2),. The
physical neutralino masses mo (i =1-7) are obtained as the eigenvalues of this mass

matrix. We denote the diagonalizing matrix as O such that:
0T -
OMOOT = dzag{m;(?, Mg, Mg9, Myo, M0, Myo, m>”<9}' (8.20)

In the basis {W+, HS}, {W~, H; } the chargino (Dirac) mass matrix is
My gavg
M) = < ) . (8.21)
Go2Uy K

This matrix is diagonalized by a biunitary transformation V*M©U ! = diag{mﬁ, My }.

There is also a doublet of SU(2), “chargino” {Ci;, X1}, {Cr3, X1} with mass

M,  geui
Mg‘”:( o ) (8.22)

matrix

/

gew
When SU(3), breaks down to SU(2),, we have 8 = 3+ 2+ 2+ 1. The triplet gaugino

mass M is given by

M, = Ba. = M i (8.23)
ge

In the gauge boson sector, Gg of SU(3)y, X and W3 of SU(2); mix. We identify the

mass eigenstates of A, Z and 7' as

929¢X + 22 Gs + gigaWs

- (8.24)
\/93 (9 + 3) + 9792
X+ 2 (14 &)W,
Z = \fg 3«(]@ (825>
92 93 4 92
J(H@) (Hg% )
X — g,G
7 = i_%3 (8.26)
V9t %
The SU(2), doublet gauge boson mass is given by
i
Mélis - Mfz;;ts - 5@ (v* + ) (8.27)



The Z — Z' mixing matrix is given by

Mz yMj
Mzz_zl = ( )

yM%Z M3,
where
2 2
v = gng —, Méz% ot gh
V31 + % + 35 14352
2 2 4
Mz = 5(9%%) (u? +1) + — o,
6(97 + %)

The physical mass eigenstates Z; and Z, with masses My, , M, are

Zy = Zcosé+ Z'sin,

Zy = —Zsiné+ 7' cosé,

where

1
M3, 4, = 3 [Mg + Mz, + \/ (M2 — M2)? +4v2M3| .

The Z — Z' mixing angle £ is given by

( 2y M?2

¢ = —arctan | ———
Mg_M%/

5 ) ~ —yMZ /M3,

The Z’ coupling to the quarks and leptons is given by

I AL 912@ 0 2 p— . N 1 g e
B g — Zd"”uv. u - c
’ Vg —g? 6 Tt g
g/2 o o .
+ (gl? - 7)[/7“[1 - (gf - glz)ec’yue
1 g?
_ I (7 Toy. 21 + T 1T )
2 392 —g” ($1’7M$1 T T2Vl T Y1 VuYr + Y2 V2
l

where we used Eq. (8.6) to eliminate g, in favor of ¢';

1 1 1

9% ¢> 3¢}
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(8.28)

(8.29)

(8.30)
(8.31)

(8.32)

(8.33)

(8.34)

(8.35)
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8.4 The SUSY spectrum

We are now ready to discuss the full SUSY spectrum of the model. We will see
that the tachyonic slepton problem is cured by virtue of the positive contribution from
the SU(3), gauge sector. We discuss the SUSY spectrum in the context of anomaly
mediation where the B and the B’ terms are in general free parameters but for a

special class of models it takes the form
B = —(vu, +vu,)Mauz and B = — (% + %) Maue (8.36)

where the +’s are the one-loop anomalous dimensions given in the Appendix B.

8.4.1 Slepton masses

The slepton mass—squared are given by the eigenvalues of the mass matrices

(a=e, p, 1)
M= ( m2 mp (Ay, — ptan 6)) . (8.37)
mg (Ay, — ptan 3) méc
Here
m? = (jl\fw) 2YE0(YE) + Y, B(Y,) + 2YrB(Yr)

- (gmﬁwﬁ 19#%% )+ Wﬁge)}

2
©omd— T30 502 4 2u? — 2% + Lo+ L - ), (3.39)

36 u
2 Maw Loy s0v0) 4 ovia, i s
= ){ Vi) + 2V3() — (+50080.) + Sardtan)) |
+ mE+%ww — 302+ 2% — 22y—%uﬂ—ﬁ) (8.39)

8.4.2 Squark masses

The mixing matrix for the squark sector is similar to the slepton sector. The

diagonal entries of the up and the down squark mass matrices are given by [27]

2

gm(3v —3v3 +2u® - 2u )—i—gj(vg—zﬂ),

36

my, = (ml) @+ md, -
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N 2
e 9z _

mige = (Mg ge + M, — < (Bup = 3vj + 20” — 20%),

2 2 \Qi 2 ga2r: 2 2 2 ) 9% 2 2

m% = (msoft)Q: +mp, + %(3% —3v; + 2u” —2u°) — Z(Ud — ),
N 2
De [ _

m%f = (mioft)bic + m2Di - E(?)vi - 3U§ + 2u? — 2u?). (8.40)

Here my, and mp, are quark masses of different generations, i = 1, 2, 3. The squark

soft masses are obtained from the RGE as

- M2
(m30s)g, = Trgasy WaB(V) + YaB(Ya) + 2Yo0(Ye)
- (St + oo + st} | s
~ o 2
(e = s |20+ 25()  (an(00) + Sedtan) ) | 5.22)
=~ 2
(it = e 2B+ 2oV~ (+ 20000 + Saadlan) ) 843

8.4.3 Exotic slepton masses

The exotic slepton mass—squared matrix reduces to a 4 X 4 matrix given by

m% + Yguz YF(AyFu + u'a) 0 vguYe YR
Msl o < Yp(Aypu+ w' @) 'fhg + u?iYe? + “2Y1-2‘ —vguYe Yy Yevq(Ay, + 1) > (8 44)
exotic — 0 —vguYeYyn m3c +a?YE —(Ayy YNT + p/uYN) . .
vquYe YR Yevg(Ay, + 1) —(AYN Yna+ p'uYn) mzjc + ﬂugYe2 + szvﬂz

The A-terms Ay,, Ay,, Ay, are given in Appendix B and masses-squared m3%. is
given by
. g2 g2
Mye = (Migp) Ne — 1—;(305 — 3v3 + 2u® — 2u?) — é(uQ —u?), (8.45)

where the soft mass (m2,;,) N is given in Appendix B.

8.4.4 Exotic lepton masses

The mass matrix for the exotic leptons in the basis {x; xo y$ yS} is given by

Yru 0 0 Y, v,
z 0 —Yru Y, v, 0
Mexotic - _ : (846>
0 }/evd YNU 0
}/e'Ud 0 0 —YNﬂ

The physical mass is the eigenvalue the mass matrix Eq. (8.46).
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8.5 Numerical results

We are now ready to present our numerical results for the SUSY spectrum. We
first performed a one—loop accuracy numerical analysis to determine the sparticle and
Higgs Spectrum. For experimental inputs for the SM gauge couplings we use the same
procedure Ref. [61] for the g1, go, g3 with the central value of the top mass taken to
be M; = 178 GeV. In Tables 8.2 we have taken M,,, = 70.492 TeV, while in Table
8.7 we have My, = 55.143 TeV. Other input parameters are listed in the respective
Table captions.

In the model presented, the LSP is not necessarily the neutral wino. In model
1, the LSP is the chargino of SU(2), sector which decays to a lighter. This chargino
when produced can decay to charged leptons as shown in the figure. The slepton
masses are positive and the Z’ constraints are all satisfied. The slepton mass is

comparable with the squark mass because of the quark—lepton symmetry.

Figure 8.2. W+ decay to two leptons and LSP.
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Z1

Xi L

Figure 8.3. Neutralino annihilation to two charged leptons in the early universe.

X

-

o
X

Y

Figure 8.4. Bound state of two z leptons decay to two photons.

L+

X
e U
X
L

Figure 8.5. Bound state of two x leptons decay to two charged leptons via exchange
of SU(2)y gauge boson.
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=

Figure 8.6. Doublet SU(2)y gauge boson decay to two charged leptons via exchange
of neutralino LSP.

Neutralinos {mgo, mgg, mye, mye} | {0.610, 0.729, 0.736, 1.363}
Neutralinos {mgo, mgo, mgo} {1.365, 1.687, 2.079}
Charginos {mgs, mes} {0.729, 1.368}
Charginos (SU(2),) {mgs, mes} {0.588, 2.275}
Gluino M; 1.089

Higgs bosons {mp, my, ma, mg+} | {0.117, 1.304, 1.303, 1.305}
Higgs bosons {mp, myr, ma, mpe=} | {0.028, 2.490, 1.854, 2.331}
R.H sleptons {me,, ma,, ms} {1.198, 1.198, 1.196}
L.H sleptons {me,, mpu,, msz} {1.150, 1.150, 1.149}
R.H down squarks {mg,, may, my } {1.223, 1.223, 1.220}
L.H down squarks {mg, , ms,, mg,} {1.140, 1.140, 0.890}
R.H up squarks {May, mey, my} {1.206, 1.206, 0.965}
L.H up squarks {ma,, ms, mg,} {1.138, 1.138, 0.602}
Exotic sleptons {Mexy, Mexys Mexsy Mex, b | {0.864, 1.011, 1.357, 1.403}
Exotic leptons {Mezy, Mewy} {0.130, 0.127}
SU(3), gauge boson My, 1.413

TABLE 8.2. Sparticle masses in Model 1 for the choice My, = 70.492 TeV, tan 3 = 3.82,
M, = 174.3 GeV, u = 1.360 TeV, i/ = 0.610 TeV y, = 0.07, ¥; = 0.1,
u=—1.301 TeV, u = 1.272 TeV, B = —0.306 TeV and B’ = 2.816 TeV.
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Z' boson mass Mgy | 1.662 TeV

Z — 7' mixing angle | £ 0.00032

TABLE 8.3. Z’ mass and Z — Z' mixing angle in Model 1 for the same set of input
parameters as in Table 8.2.

Fields | {9 X9 % X9 e X6 X9
X -0.001 | 0.946 | -0.027 | 0.037 | -0.010 | 0.316 | 0.046
W:,? 0.000 | 0.025 | 0.997 | -0.061 | -0.032 | 0.016 | 0.000

H? 0.000 | -0.030 | -0.021 | -0.680 | 0.707 | 0.191 | -0.002

Hfj] 0.000 | 0.046 | 0.066 | 0.678 | 0.706 | -0.187 | -0.001
C*® -0.009 | 0.190 | -0.006 | -0.128 | -0.003 | -0.426 | -0.875
X1 -0.700 | 0.180 | -0.006 | -0.169 | 0.000 | -0.572 | 0.350

X1 0.714 | 0.180 | -0.006 | -0.167 | 0.000 | -0.566 | 0.331

TABLE 8.4. FEigenvectors of the neutralino mass matrix in Model 1. The unitary matrix
O in Eq. (8.20) is the transpose of this array.

Unn | Ur2 Ua U2 Vi1 Via Va1 Vaa
0.992 | 0.126 | -0.126 | 0.992 | 0.996 | 0.088 | -0.088 | 0.996

TABLE 8.5. Eigenvectors of the chargino mass matrix in Model 1, where U, V
are the unitary matrices that diagonalize the chargino mass matrix
(V*MEOU-T = M) ).
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Ui | Ur2 Uan | U2 | Vi | Wiz Vai Vao
0.780 | -0.625 | 0.625 | 0.780 | 0.769 | 0.639 | -0.639 | 0.769
TABLE 8.6. Eigenvectors of SU(2), chargino mass matrix in Model 1, where U, V
are the unitary matrices that diagonalize the SU(2),chargino mass matrix
(VMU = Myg,,)-
Neutralinos {mgo, mgg, mye, mye} | {0.197, 0.520, 0.573, 1.027}
Neutralinos {mgo, mgo, mgo} {1.030, 1.140, 1.721}
Charginos {mgs, mgs} {0.569, 1.034}

Charginos (SU(2),)

{mgliv m)ﬁ}

{0.641, 1.682}

Gluino

Ms

0.844

Higgs bosons

{mh7 mpg, My, mHi}

{0.122, 0.923, 0.923, 0.926}

Higgs bosons

{mh’7 mpgr, Mar, mH’i}

{0.023, 1.858, 1.318, 1.727}

R.H sleptons {me,, ma,, ms} {0.941, 0.941, 0.935}
L.H sleptons {me,, mpu,, msz,} {0.902, 0.902, 0.898}
R.H down squarks {mg,, may, my } {0.960, 0.960, 0.946}
L.H down squarks {mg, , ms,, mg,} {0.895, 0.895, 0.697}
R.H up squarks {May, mey, my} {0.947, 0.947, 0.786}
L.H up squarks {ma,, ms, mg,} {0.892, 0.892, 0.473}

Exotic sleptons

{mea:1 9 m€$27 m@l‘g’ m€$4}

{0.653, 0.776, 1.078, 1.115}

Exotic leptons

{meazl ) mexz}

{0.100, 0.103}

SU(3), gauge boson

My

1.116

TABLE 8.7. Sparticle masses in Model 2 for the choice My, = 55.143 TeV, tan 3 = 7.87,
My = 178.0 GeV, u = 1.024 TeV, /' = —0.197 TeV y, = 0.14, Y; = 0.1,

u=1.028 TeV, 4 = 1.003 TeV, B = —0.104 TeV and B’ = 4.414 TeV.
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Z' boson mass Mgy | 1.311 TeV

Z — 7' mixing angle | £ 0.00048

TABLE 8.8. Z’ mass and Z — Z’' mixing angle in Model 2 for the same set of input
parameters as in Table 8.7.

8.5.1 Coupling of light Higgs to SM fermions

In order to determine the couplings of the light Higgs A’ to the Standard Model

fermions, we first determine the eigenvectors of the CP—even mass matrix as

HY h
H° H
0 = Oy e (8.47)
XY H'

where Oy is the eigenvector that diagonalize the mass matrix. In model 1, Oy is
given by
0.255  0.967 —0.007 0.001
0.966 —0.255 —0.027 —0.002
Oy = . (8.48)
—-0.019 —-0.001 —0.708 0.706

0.021 —-0.001 0.706  0.708

From the superpotential Eq. (8.3) we find the couplings of the third generation
fermions to the light Higgs as

0.027Y;h'tE, 0.007Yyh'bb and 0.007Y,h'77° (8.49)

In model 2, Oy is given by

0.126  0.992 —0.001 0.000
0.992 —0.126 —0.010 0.002

On = . (8.50)
—0.006 0.000 —0.705 —0.709

0.009  0.000  0.709 —0.705
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From the superpotential Eq. (8.3) we find the couplings of the third generation
fermions to the light Higgs as

0.010Y;h'tf, 0.001Y;R'bb and 0.001Y,h'77° (8.51)

With these information, we can determine the decay width of the Higgs boson h' —

bb, 77¢. Decay width of Z’ to quarks and leptons

I(Z' — ) = 0.164, T(Z' — dd) = 0.048, T'(Z' — t) = 0.161

I'(Z' — ee) = 15.448

[(Z — vpuy) = 8.197, T(Z' — vgvg) = 7.875

[(Z — zz) = 4.775, T(Z' — jy) = 3.818

8.5.2 Neutralino s-channel annihilation

We calculate the thermal averaged cross section for s channel Z’ boson contri-
bution to the lightest neutralino annihilating into fermions. We show that the LSP
is stable and is a candidate for cold dark matter. We begin by calculating the cross
section for the process 0%y — ff. Here X0 &~ Nijx1 + Niavi.

The cross section for this process is given by;

_ s (@ rceh+ci) [ M (552)
12 s — M2, +1%,M3, s ‘
o = 9
4:/3g7 — ¢
c —4g7 + 39"
A — T
4/39; — 9"
2
Cyr = —=t

V397 —9*

Cy = 0.
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We follow the same procedures as in [82]. We use the general formula

1 3
< OUpe >= ﬁ% w— 5(211) —w')x 4+ O(z?) - (8.53)

2
4]L1X

where the primes denote derivatives with respect to a (s/4M?) and

3a?M; (CF + C3%)(CE + C3) 1
= X1V ATV “(1——). 8.54
YT T TP VRS VR S (8.54)

Eq. (8.53) is to be evaluated at s/4M? = 1 and = = MLX The freeze — out
temperature 1" is defined as the temperature at which the expansion rate of the co —
moving volume becomes larger than the rate of annihilation. For a stable neutralinos
TR %

The neutralino relic abundance through the rule of thumb [83]
Q02 =107 em® s/< ooppv >.
We find it to Q,h% ~ 0.07 in Model 1. and Q,h* ~ 1.0 in model 2.
8.6 Summary

In this chapter we have suggested a simple solution to the negative slepton mass
problem of AMSB. The model we presented is a quark—lepton symmetric model based
on a new leptonic color force described by an SU(3), gauge symmetry. The model
predicts the slepton masses to be ~ 1 TeV and they are of thesame order as the
squark mass. The model also predicts the lightest Higgs boson mass to be m;, > 117
GeV. There is a light Higgs present in the model, when produced they decay to bb
and 77¢ We find the Mz = 1.2 — 2.0 TeV and the Z — Z’ mixing £ ~ 0.0004. The 7’
turns out to be leptophobic.

The gauge coupling unification works well within the minimal SUSY quark—
lepton model with the unification conditions of string origin. The LSP can either be

the neutral wino or the chargino of SU(2), which is a candidate for cold dark matter.



CHAPTER 9

CP VIOLATION IN NEUTRINO OSCILLATIONS
FROM NONSTANDARD PHYSICS

9.1 Introduction

In recent years, the observation of solar [84-90] and atmospheric [91-94] neu-
trino deficit has provided strong evidence for neutrino oscillations. In particular,
neutrino oscillation data suggest the mass—squared differences for the solar and at-

mospheric neutrinos to be Am?2 ~ 7.5 x 107%eV? and Am2,,, ~ 2.0 x 107%eV?, re-

2

2o, three flavors are needed to si-

spectively. Because of the hierarchy Am2 < Am
multaneously explain the solar and atmospheric neutrino problem. However, the yet
unconfirmed measurement from the Liquid Scintillator Neutrino Detector (LSND) ex-
periment at Los Alamos indicates neutrinos oscillation with a mass squared difference
Am?gyp ~ 0.2 —1eV? The LSND experiment has reported evidence for 7, — 7,
and v, — v, oscillations and a range of possible mixing angles [95-97]. The probabil-
ity for LSND oscillations with sin?20,snp ~ 3 x 1072, has drawn a lot of attention
over the years. With only three neutrino, all observations cannot be explained by
neutrinos oscillation including LSND. Several interesting papers have been written to
explain this result.

There are two major ways one can explain the LSND result: (i.) by adding a
sterile neutrino [98] or (ii.) by including New Physics (NP) [98-100]. The problem
with alternative (i.) is that a sterile neutrino cannot be understood by the seesaw
mechanism, so its mass is naturally of the order the Planck scale (m,, ~ mp;), but
we want to explain the LSND result with Am?,gnyp ~ 1 eV2. This implies that we
will have a mass hierarchy problem, thus the possibility of explaining this result with

a “sterile” neutrino may not be ideal. Although NP cannot explain the large solar

118
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and atmospheric mixing angles with sin®20, ~ 1 and sin®26,,,, ~ 1, it might be
responsible for small mixing sin?[20;5xp] ~ 3 x 1073 suggested by LSND.

To understand such angle 0;5yp from NP effects, a new physics amplitude of
order 10 % would be needed. Currently the Mini Boone experiment [101] at Fermi
Lab is in progress to check the LSND result, for a recent review see Refs. [102,103].

with only three neutrino species, but allowing for arbitrary new physics effects
we show that we can parameterize all the new physics effects in terms of 6 angles, 3
of which are CP violating. We show that a small amount of new physics gives rise to
large CP and apparent CPT violation.

In section 9.2, we discuss the general formalism of neutrino oscillations both
in two/three generations with/without new physics. For these cases we give explicit
expressions for the probabilities and the CP violating asymmetry. We also give ex-
pressions for apparent CPT violating asymmetries. We also show the oscillation plots
for different baselines. In section 9.4, we analyze the effect of new physics includ-
ing matter effects using linearized approximations. We also show several plots for
different choices of parameters and discuss how CP violation from matter effect can
be distinguished from CP violation from new physics. We summarize in section 9.5.
Finally, in Appendix E we present a realistic model for the two generation neutrino

oscillations.
9.2 Neutrino oscillations including new physics

9.2.1 Neutrino mixing formalism

Here we first show how new physics effects change in neutrino oscillation prob-
abilities. Consider the weak, the source and the detector eigenstates to be different.

The weak eigenstate (|v)’)) is a superposition of mass eigenstates (|v]]')) given by

vy = D Ul (9.1)



120

where o = 1, 2, 3. Similar equations hold for the source eigenstate (|v;)) and the

detection eigenstate (|v})) which is given by:
v = Z nolVa') (9.2)
vl) = Z Utalvit) (9.3)

In the presence of new physics, the muon neutrino produced from 7 decay is the
source eigenstate which is assumed to be different from the mass eigenstate and the
electron neutrino detected from v,n — ep is the detector eigenstate that also differs
from the mass eigenstate. In the absence of new physics, the source, detection and
weak eigenstates are all identical.

Generalizing this without specifying the neutrino flavor, we have |v2), [v) and

|}, The amplitude for finding a |v/%) in the original |1f) beam at time ¢ is given by

vl = Y e UL U, (9-4)

and the associated probability reads
Pu(t) = [(valv) ol (9.5)

9.2.2 Two flavor neutrino mixing

The two generation example is always easier to analyze because of the simplicity
of the neutrino mixing matrix, called MNS matrix. As discussed in Ref. [100], let us
consider a muon neutrino beam produced by m — pv decay (source) and subsequent
detection of an electron neutrino through the process vn — ep (inverse (5 — decay).

We parameterize the 2x2 unitary matrix as

eias 0 cosf, siné, e 0 ,
Us = | e, (9.6)
0 e —sinf; cosb, 0 e s

and similarly for U with (6, ay, 3;) replaced by (64, ag, 34). The phases o, and ag
can be removed by an appropriate phase redefinition.
The probability of v. — ve, Ve — Ve, Ve — vy, Vy — Ve Ve — U, and v, —

v, oscillations in vacuum are found to be

P, = cos*(0, — 0;) — sin 20, sin 20, sin* [Amiyt/AE — (B, — Ba)], (9.7)
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P,z = cos*(0, — ;) — sin 20, sin 204 sin®[Amit /4AE + (B, — B4)], (9.8)

P, = P, =sin*(0s — 0,) + sin 20, sin 20, sin®[AmIyt/AE — (Bs — Ba)], (9.9)

Py = P =sin®*(0s — 0,) + sin 20, sin 20, sin®[Am3yt /AE + (85 — Ba)]. (9.10)
In the above equations, we can introduce the parameter ¢y = 0, — 0,.

The CP asymmetry can then be defined as

P, — Py
A, = I 911
1 PME‘{‘Pﬂg’ ( )

where P, and Pj; are given in Egs. (9.9) and (9.10) respectively. If experiments
are performed with both neutrino beam and antineutrino beam, P, and Pj: can be
separately measured.

The plot of the CP asymmetry A, as a function of the energy (GeV) for the
two generation oscillation in vacuum is shown in Fig. 9.1 for fixed length L = 2540
km.

Remarks: We noticed that P,. # P and P, # Pz because 3 # (34, hence
there is CP—asymmetry. If we go to the SM limit (absence of new physics) where
0, = 0, and (B, = (B4, we obtain the usual two flavor vacuum oscillation probability.
The new physics contribution to the two neutrino flavor oscillation may be of order

10%.

9.2.3 Three generation neutrino oscillation

9.2.3.1 General formalism in vacuum. We have seen that new physics implies

a nonzero CP-asymmetry in the two generation neutrino oscillation in vacuum. Here
we consider the three generation neutrino oscillation in vacuum, we develop a general
formalism on how new physics effects can affect the known formalism. We will adopt
the same notation used in the two generation case. Assume the source eigenstate is
a superposition of the mass eigenstates given in Eq. (9.2) and detector eigenstate
different from the source eigenstate given in Eq. (9.3). The time evolution equation

for the detector eigenstate reads then

), = UE|/™), (9.12)
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Figure 9.1. CP asymmetry A, = g‘j;g’i as a function of energy for two generation

neutrino oscillation in vacuum for the choice Am3, = 7.1 x 107° eV?,
L = 2540 km, 0, = &%, ¢ = 0.005, 83 — f; = 0.04 (see text for
definitions).

where E is defined as
Eit 0 0
= exp|—i| 0 Est 0 : (9.13)
0 0 Est

>
|
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The probability amplitude for finding a v/ in the original v beam at time t is
A = d|Vl Z Upnalvd! Ul,B aﬂEﬂ<Vﬁ P (9.14)

which can be written in a simple form as A = UsEU, Parameterizing our unitary

matrix as
1 0 0 1 0 0
Us=e" [0 X 0 |[VE[0 & 0 |=e"PVeQs, (9.15)
0 0 e 0 0 &
N - , - ,

where V* is given by

sin % sinw® — ™" cos w® sin ¢° cos P° —e%” sin w® sin ¢° cos 1h° — cosw® sinY®  cos ¢° cos 1h®

cos w?® cos ¢* cos ¢° sinw e 07 sin [}
S . i5S . . i5S . . . .
V = —sinw® cos® — €07 cosw* sin ¢° sin ¥° cosw® cos P° — e sin w® sin ¢ sin P* cos ¢° sin ¢® . (916)

A similar definition holds for V¢. Using Egs. (9.15) in (9.14), we find the probability
amplitude to be

A= PVeiQ EQY v pdleitr—), (9.17)
For the probability P;; = |A;;|* we obtain
2
Py = > PViR.EVS Pd* SR EVE (9.18)
k
where
1 0 0
RE = [0 e ibati 0 : (9.19)
0 0 e~ 1Az1+if

Here a = a® — a and 8 = [3°* — 3¢ are new physics parameters. In arriving at Eq.

(9.19), we used the definitions

Am3, L AmZ, L
2F

We express the unitary matrix for detector eigenstate in terms of the source

A21 = (EQ — El) and Agl = (Eg — El)t ~ (920)

eigenstate using the following definitions;
(o =wh— W' €5 =" — ¢°, ey = —Y°, €5 =57 — 5" (9.21)
We then express the detector unitary matrix in terms of the original source parame-

ters and the small epsilon corrections, these epsilon parameters are also new physics

parameters.
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9.2.3.2 Bilarge mixing. Recent results from the KamLAND experiment have

further confirmed the large mixing angle (LMA) solution to the solar neutrino problem
[104] in a terrestrial experiment. For three neutrinos, the neutrino mixing matrix
Vs is specified by three rotation angles 6y3, 612 and 023 (¢, w, 1) and one CP-
violating phase J. Experiments suggest 013 < 13° for |[Am?2, | = 2 x 1072 eV , and
03 = 45° £ 10°. This suggests a simple form of the unitary matrix, where we take
¢° = ¢° + €13 and * = § + €93 while keeping the solar angle w® and the CP—phase
d° as free parameters. Using the parametrization Eq. (9.21), we make expansions in
terms of the small parameters ¢°, €13, €4, €23, €, €y, €5, &,  and Ay;. Keeping terms
only up to second order, we find approximate expressions for the probabilities given

by

A 1 A
P.. ~ 1—4(¢*)?sin? [%] - Z(Agl — )’ sin? 2w — 4%, sinQ[%]
— € —¢€5, (9.22)
o2 oo2r A1 1 2029, 8
P., ~ 2(¢°)*sin*[—] + < (A2 — a)”sin” 2w
2 8
1 A
+ (Ag — a)¢®sin 2w8(§ cos 6° sin Az; — sin §° sin? %)
s s 2 A31 1 : S o2 s
+ 2¢°¢,sin [—2 ] — §(A21 — )€y sin §° sin 2w
A 1
+ ¢%e,(sind®sin Az; + 2 cos 6° sinQ[—;l]) + €46, cos 0% + 5(63, +é2), (9.23)
A 1
P =~ 2(¢°)? sinﬁ%] + g(Agl — a)?sin? 2w°
1 A
+ (Ag — a)¢®sin 2w5(§ cos 6° sin Ag; + sin §° sin® —231 )
A 1
+ 2¢°€¢y siHQ[%] + §(A21 — )€y sin 2w®(cos 0° sin Ag; — sin 6% cos Agy)
A
+ ¢°e,(sind®sin Az — 2 cos o’ sinQ[%])
1
+  €4€,(cos 6% cos Agy + sind®sin Az ) + §(€3> +é2), (9.24)
A A 1
P, ~ siHQ[%] — 2(¢** + 2¢2,) sinz[%] - §(A21 — a) cos® w®sin A

1 A
+ Z<A21 — a)? cos® w(cos Ag; — sin® w®) — ¢*(Ay; — @) sin 0° sin 2w* sirﬂ%]

1 1 A
- 55 sin Agy + Zﬁ(ﬁ + 2(Ag1 — @) cos® w?) cos Ag; + 2¢°€¢,, cos 6° Sinz[%]
1 58

A
+ §ew(A21 — ) sin 2w® sin? 5 sin Asy; — 2¢°¢y sinQ[%] — 4eagsey SiHQ[%]



125

1 1 A
- §<A21 — ()€, sin 0° sin 2w® sinﬂ%] — 5(63) +€2) sinz[—;l]
A A A
+ epeucos 8 sin?l 2] — sin " sinf 52 cos 21]) 4 cos A (9.25)

Since we are interested in the LSND result, we also made an expansion in terms
of Agz; which is small for the baseline and energy chosen for the experiment. The

probability P,. can be written as

1 1 1
P, =~ §a2 sin? 2w + 50 sin d sin 2w + €€, cosd + i(ei +€2).  (9.26)

Here we ignored Aoy and Ag; terms since they are very small for LSND setup. For

L

=5, we find

the choice of parameters a = 0.04, ¢4 = 0.03, ¢, = 0.03, § = 7, w =
P,. ~0.0021. This can consistently explain the LSND anomaly.

We can also write the probabilities Eqgs. in (9.22-9.25) in terms of the detection
parameters. For example the probability P,. when expressed in terms of the detector

angles is given by

A 1
P =~ 2(¢%)? sinﬂ%] + g(Azl — a)? sin? 2w?
1 A
+ (Ag — oz)gbd sin QWd(E cos 6% sin Agy + sin 6% sin? %)
d ) ASI 1 . d - d
— 2¢%gsin [T] - §(A21 — ()€, sin 0 sin 2w

A 1
+ ¢, (sin 6% sin Ag, — 2 cos 0 sinQ[%]) + €€, c08 0% + E(eé + €2)(9.27)

This is exactly symmetrical in form with the probability P, written in terms of the
source parameters of Eq. (9.23) which is not symmetrical with P,, of Eq. (9.24).

A number of neutrino experiments have been proposed, which aim to test several
theoretical proposal on possible CP violation in the neutrino sector. Here we define
CP violation as the difference P,; — P;; which is nonzero in this model. We give
various expressions for the CP asymmetry for different oscillation channels. We find

the CP asymmetries to be

AP, (CP) = P.,— Py

12

A
—2¢° Aoy sin 6° sin 2w® sin? [%] + 2¢°€¢,, sin 6° sin As;



AP, (CP)

AP,.(CP)

AP,.(CP)

Similarly it

12

~
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. . 1 .
€491 8in 6° sin 2w* — §OZA21 sin? 2w*

¢*acos §° sin 2w’ sin Agy, (9.28)
P — Pge

A
2¢° Ay sin §° sin 2w° SinQ[%] +2(¢° + €4)€, sin 0° sin Agy

. . 1 .
€491 5in 6° sin 2w* cos Azy — 504A21 sin? 2w*

(¢° 4 €4)acos 6° sin 2w® sin Ay, (9.29)
J

—Agi(a — 3) cos® w* cos Azy + a cos® w®sin Agy — Bsin Ag
1 A
ZlaA21 sin? 2w* — €491 sin 6° sin 2w* sin? [%]

1
§e¢oz cos 0° sin 2w?® sin Ag; — iewa sin 2w® sin Az

A
2¢° Ay sin §° sin 2w* sinQ[%] — €46, 810 0° sin Ay, (9.30)
pee - Pé’
Ay sin® 2w°. (9.31)

turns out that there is apparent CPT asymmetry in our model,

though there is no true CPT violation. This apparent CPT violation arises because

of CP violation in new physics. In the standard scenario, there is no CPT violation.

The apparent CPT asymmetries are defined as

AP.,(CPT)

AP,.(CPT)

12

12

P, — Pge

€0(20° + €4)(cos §° — cos(Azy + 6°))

ag® sin 2w° (sin 6° — sin(Aszy + %)) — # sin® 2w*

% sin 2w*[(Ag — @) sin6* + (Ag + o) sin(Asy +6%)],  (9.32)
P, — P

A21

1.
gy (= sin? 2w® — cos? w® cos Agy) + cos? w® cos Az
4

Az

[FYAN
“272L Gin 2w cos 6% sin Agy + a(2¢° + €,) sin 2w* sin §° sin” -

w A
(Gsin Agy + % [4(2¢° + €,) cos 6° sin? % — asin 2w® sin Ag |

a cos® w® sin Ag;. (9.33)
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Notice that the apparent CPT asymmetries AF,., AP,, and AP;; coincide with their

corresponding CP asymmetries.

9.2.3.3 Exact analysis of three generation neutrino oscillation in vacuum. Here

we show the derivation for the three generation vacuum oscillation probabilities and
change in probabilities including new physics effect without matter effect. we use
the same general formalism as in section 9.2.3.1, with the unitary matrix as given in
Eq. (9.16) and with the assumption that the source eigenstate is different from the
detector eigenstate. The new physics effects comes from the «, 3 and the € terms.

The exact expressions for the probability of v, — v, v, — v, and v, — v, is
1
P.. = sin?¢®sin® ¢ + 5 sin 2¢° sin 2¢% (cos w® cosw? cos(Agy — B+ 0% — &%)
+ sinw®sinw? cos(Ag — Agy —a+ 3 — 6% + (5d))

2

sin? 9 + cos® ¢° cos? w® sin® w? cos? Y?

: . .9 Do) —
4+ cos® ¢* cos? ¢? (COSQ(MS — w?) — sin 2w® sin 2w sin’ (21—)> : (9.34)
P, = cos? ¢° sin? ¢? sin? w? sin? w?

+ cos? ¢° sin? ¢ cos® w® cos? w? sin? ¢ + cos? ¢* sin? w* cos® w? cos? ¢

1
+ sin? ¢° cos? ¢? sin? Y + 3 cos? ¢° sin ¢? sin 2w sin 2¢/¢ cos §%(cos? w® — sin? w*)

1
+ e 2 ¢° sin ¢ sin 2w*® sin 2¢)¢

x  (sin? w?cos(Ag; — a + 0%) — cos® w? cos(Ag — a — %))
% cos? ¢° sin 2w* sin 2w (sin? ¢¢ sin? Y — cos? %) cos(Ag — @)
— % sin 2¢° cos ¢ cos w® sin w sin 2¢/% cos(Asy — 4 %)
— % sin 2¢° sin 2¢ cos w* cos w? sin? 1 cos(Ag; — 4 6° — %)
+ % sin 2¢° cos ¢% sin w® cos w? sin 2¢0% cos(Agy — Asy — a + 5 — 6%)
— % sin 2¢° sin 2¢ sin w* sin w? sin? 1% cos(Agy — Azy — a + f — 5° +0%), (9.35)
P, = cos® ¢° cos? ¢ cos? 1% sin? 1° + cos® ¥® sin? Y% (cos?® w® cos® w? + sin’ w® sin? w?)
4 sin? ¢* sin® ¥® sin? ¢%(sin? w® cos® w? + sin® w? cos? w*)
4 sin? ¢* sin? ¢ sin? 1* cos® ¢¥(cos? w* cos? w 4 sin® w* sin? W)

4 sin? ¢ cos? 1b* cos® ¥ (sin? w* cos? w 4 sin? w? cos? w*)
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4 = sin ¢° sin 2w sin 2¢° cos 6° (sin? ¢¢ cos? Y — sin? %) (cos? w? — sin® w?)
+ = sin ¢? sin 2w? sin 2¢0¢ cos §%(cos? 1° — sin? ¢° sin® ¢*) (cos® w® — sin? w*)

— = sin ¢° sin ¢¢ sin 2w*® sin 2w? sin 2¢)° sin 2¢% cos §° cos §¢

4 = sin 2w® sin 2w%(sin? 1% — sin? ¢¢ cos? )

X (cos?® — sin® ¢* sin® ¥*) cos(Ag — @)

—  —cos ¢° cos ¢ sin w® sin w sin 2¢° sin 2¢% cos(Ag; — 3)

+ = sin ¢* cos? w® sin 2w sin 21)° (sin® Y* — sin? ¢? cos? 1h?) cos(Ag — a + 6°)
+ = sin ¢° sin® w* sin 2w sin 2¢0° (sin? ¢¢ cos? ¢ — sin? ?) cos(Agp — o — 6°)
4 = sin ¢% sin 2w* sin® w? sin 2% (cos? ¥* — sin? ¢* sin? 1) cos(Ayy — a + 09)
+ = sin ¢? sin 2w* cos? w? sin 2¢% (sin? ¢° sin® Y* — cos® ¥*) cos(Agy — o — §%)

sin 2¢° cos ¢ cos w® sin w? sin? ¢ sin 2¢)% cos(Asy — 5+ %)

[\ )—‘[\DIH[\')IH[\')IH[\DIH[\')IP—‘[\DI»—*’S\ N RN RN RN~

+ = sin ¢ sin ¢? cos® w?sin 2¢)° sin 2% (sin® w® cos(Agy — v — 6° — )

— cos’w’ cos(Ag — a4 0° — §%))

+ % sin ¢° sin ¢ sin® w? sin 2¢)° sin 24 (cos® w® cos[Agy — o + 6% + 5%

— sin®w’ cos[Ay — a — §° + 07))

+  cos ¢® sin 207 cos w? cos? P? (sin w® sin¥* cos ¥* cos[Ag; — B — 0]

+ sing® cosw®sin® ¢° cos[Az — B+ §° — §%))

—  cos ¢° sin 2¢% sin w? cos? Y? (cosw®siny® cos® cos[Ag; — Agy —a + 3+ 5%
—  sin ¢®sinw®sin® ¥® cos[Ag — Agp — a4+ B — 0° + 5d])

+  cos ¢* cos ¢® cos w? sin 20/ (sin ¢° sinw® sin® 1 cos[Ag; — Az — o+ 3 — 5]

— cosw’cos )’ sinh® cos[Ag — Azp — o+ f]). (9.36)

The oscillation probabilities for the other neutrino channels can be obtained using
these three probabilities given above:
Pe'r = 1- (Pee + Peu)a (937)

Pue = Pyu{¢® = ¢',0" o w9 oy’ 6 o =5}, (9.38)
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Py = (ue+ m), (9.39)
Pre = 1—(Pee+ Ppue), (9.40)
P = 1—(Per + Pur), (9.41)
P = 1= (Pt Po). (9.42)

We can also arrive at the antineutrino probabilities from the neutrino probabilities

by the simple prescription

P

a

5= Ppla— —a, f— =3, 6% — —6°, 8% — —§}. (9.43)

In the SM limit, the oscillation probabilities in Eqs. (9.34) — (9.42) reduce to

Pee

T

5 A 5 A
1 — sin® 2¢ sin % — (cos* ¢sin? 2w + sin® wsin® 2¢) sin %
A A 1
sin® w sin® 2¢(2 sin® % sin? % + 3 sin Ay sin Agy), (9.44)
5 Agp A 5 A
sin” 1) sin® 2¢ sin® T + 4.J (sin Ay, sin? % — sin As; sin %)
A A 1
(sin® wsin? ¥ sin® 2¢) — 4K )[2 sin® % sin? % + 3 sin Ay sin Ag]
[cos2 $(cos? 1) — sin? ¢ sin” ) sin? 2w
5 A
sin” w sin® ¢ sin® 2¢ — 8K sin® w] sin % (9.45)

Asy 5 A 5 Ay
cos? ¢ sin’ 21 sin? —= - + 4.J(sin Ag; sin % — sin As; sin Tl)

[cos? ¢ sin® 2¢p(cos? w — sin? ¢sin? w) + 4K cos 21)]

(2sin % sin % + % sin Aoy sin Agy) + 4K cos 2
[sin® 2¢)(cos® w — sin® ¢ sin® w)* + sin® @ sin® 2w (1 — sin® 2¢ cos® §)
sin ¢ sin 2w cos 2w sin 21 cos 2¢(1 + sin® @) cos (5} sin %, (9.46)
where the quantities J and K are defined as
J = écosgbsin 2¢ sin 21 sin 2w sin 4, (9.47)
K = écosq&sin 2¢ sin 21 sin 2w cos 9. (9.48)

One of the ultimate goals of neutrino factories is to investigate the phenomenon

of neutrino oscillations, which have so far been observed by the atmospheric and solar
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neutrino experiments, with unprecedented accuracy. CP violation gives a nonzero
difference between the oscillation probabilities P,;, # P;. Here we give the expressions

for the CP asymmetries v, — v,, v. — v,, and v, — v, which are
APab(CP) = Pab - P&I;» (949)
AP, (CP)

sin 2¢° sin 267 cos w* cos w?sin(B — 6° + 6%) sin A
sin 2¢° sin 2¢% sin w* sin w® sin(a — B + 6* — 0%) sin(Ag; — Agy)

cos? ¢° cos? ¢ sin 2w® sin 2w? sin o sin Ay, (9.50)

+ o+

AP, (CP) — sin 2¢° sin 2¢¢ cos w® cos w? sin? Y sin(B — §° + 09) sin Ay
—  sin 2¢° cos ¢ cos w® sin w? sin 2¢)% sin(3 — §°) sin A,

—  cos? ¢* sin 2w* sin 2w?(cos® Y — sin? ¢ sin? %) sin asin Ay,
—  cos? ¢* sin ¢ sin 2w* sin 21/

2wlsin(a — 6%)) sin Ay

x  (cos?w?sin(a + §%) — sin

4+ sin 2¢° cos ¢ sin w® cos w sin 244 sin(ar — B+ §%) sin(Ag; — Agy)

—  sin 2¢° sin 2¢% sin w*® sin w?sin? ¢ sin(a — 3 + 6° — §%)

X sin(Ag; — Agy), (9.51)
AP, (CP) = sin2w®sin 2w (sin®¢* — cos? % sin? %)

X (cos?1* — sin® ¢* sin® ¥*) sin a sin Ag;

—  cos ¢° cos ¢? sin w® sin w? sin 2¢0° sin 2¢/% sin B sin Agy

—  sin ¢ sin 2w® sin 2¢0%(cos? ¥* — sin? ¢° sin® 1)*)

x  (sin? w?sin(a — 0%) — cos® w?sin(a + 0%)) sin Agy

4+ sin ¢° cos® w* sin 2w sin 2¢/° (cos? 1h? — sin? ¢% sin? )

X (cos® w®sin(a — 0°) — sin® w®sin(a + §%)) sin Ay

4+ cos ¢° sin 2¢ sin w® cos w? sin 21)° cos® ¢ sin(B + 6%) sin Ag

—  sin 2¢° cos ¢ cos w* sin w? sin® 1h* sin 20 sin(B — 6°) sin Ay,

4+ sin 2¢° sin 2¢” cos w* cos w? sin® ¥* cos? Y sin(B — 0° + 6%) sin Ay,

sin ¢° sin ¢ sin 2¢° sin 2¢¢ (sin® w*® cos® W’ sin(a + §° + §%)

cos® w® sin® w’ sin(a — 6* — %)) sin Ay
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—  sin ¢® sin ¢ sin 2¢)° sin 2¢)% ((3082 w* cos? whsin(a — §° + §)

+  sin®w®sin® w¥sin(a 4 6% — (5d)) sin Aoy

— 08 ¢° cos ¢ cosw® cos w? sin 2¢° sin 2404 sin(a — ) sin[Ag; — Agy]
4 sin 2¢° cos ¢% sin w® cos w? sin? ¢* sin 2¢% sin(ar — B + 6°)

X sin[Ag — Ag]

4+ sin 2¢° sin 2¢% sin w® sin w? sin’® ¥* cos? Y sin(a — B + 6° — 6%)

X sin[Ag — Ag]

—  cos ¢° sin 2¢ cos w* sin w? sin 2¢* cos® Y sin(a — B — §%)

X sin[Ag; — Agy). (9.52)

In the SM limit (source=detector), the above expressions for change in proba-

bilities reduce to

AP..(CP) = AP,,(CP)=AP..(CP)=0

AP, (CP) = AP (CP)

A A
= 2cos ¢sin 2¢ sin 2w sin 21 sin J sin 221 sin 231 sin [

AQI - A31:|

9.3 Numerical results

We now turn to the three generation oscillation in vacuum. Here we considered
three different baselines, 730 km (Fermilab — Soudan, CERN — Gran Sasso), 295 km
(SJHF — Super K) and 2540 km (BNL — Homestake) These are some of the proposed
experiments. The probability plots as a function of energy at fixed length are shown in
Figs. 9.2 and 9.3 (Figs. 9.8 and 9.9) for a particular choice of parameters. The dotted
lines are the plots for the standard three generation vacuum oscillations without new
physics and the solid lines are the plots including the new physics parameters. In
these plots we choose the new physics parameters to be between 5 — 10 %. The plots
of change in probabilities are shown in Figs. 9.4 and 9.5 (Figs. 9.10 and 9.11) and
that of CPT asymmetries is depicted in Fig. 9.6 (Fig. 9.12). We also show the
probability plots as a function of length for fixed energy (5 GeV) in Figs. 9.13 and
9.14, the CP asymmetries Figs. 9.15 and 9.16 and the CP'T asymmetries in Fig. 9.17.
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In Fig. 9.7, we plot the CP asymmetry for the same set of input parameters

as in Fig. 9.1, with the exception that we set here § = 0 and ¢5 = 0. We see that

significant deviation from standard oscillation arise with new physics at 5-10 % level.
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Figure 9.2. Oscillation probabilities P, and P, as a function of energy for the

15

AmZ, = 2.0 x 1073 eV? for a fixed baseline L = 2540 km. The dotted
line is the Standard Model prediction and the solid line includes new
physics for the choice 8 = 0.1, « = —0.1, ¢, = —0.06, €, = 0.05,
ey = 0.05, €5 = 0.05.
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as a function of energy for the same
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Figure 9.5. Change in oscillation probability AP,, (CP) = P,; — P+ as a function
of energy for the same choice of input parameters as in Fig. 9.2.
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Figure 9.8. Oscillation probabilities F,, and P, as a function of energy for a fixed
baseline L = 295 km (a) and L = 730 km (b). All other parameters
are as in Fig. 9.2.
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9.4 Three neutrino oscillations including matter effects

There have been a number of attempts to find simple and exact analytic formu-
las for three generation neutrino oscillations including matter effects for long baselines
[105-110]. In one of the attempts, corrections to the neutrino mixing parameters in
the presence of constant matter density (2.8g/cm®) were calculated in Ref. [111]

2 2
Amgl ( ATZ@
A’m’31 Amatm

using a series expansion in terms of the mass hierarchy ) and small mix-
ing angle ¢. They obtained the expressions for a one to one correspondence to the
vacuum case, which are valid for energies above the solar resonance (~ 0.5 GeV).
The parameter mappings were used to find simple and accurate formulas for oscilla-
tion probabilities in matter including CP violating effects. We use these parameter
mappings to justify the effect of new physics and at the end show some numerical
plots obtained for the probabilities as a function of energy at fixed length 2540 km.
We also show plots of AP(CP) as a function of energy and demonstrate how it is
possible to measure the asymmetry in the near future. At the end of this section, we
will combine these plots and outline the differences between pure new physics effects
and SM CP effects. The CP asymmetry has considerable importance in CP-violation
studies, the problem is that matter effects cause contributions to the CP-asymmetry,
which can not be easily distinguished from intrinsic CP-violation. We show that the
low energy option is not the best solution to measure effects from the CP-phase ¢.
The SNO experiment [112] favors the MSW LMA [113] solution to the solar neutrino
problem, long baseline experiments such as JHF and neutrino factory experiments

are planned in the near future.

9.4.1 Formalism

We define the parameters A\ = Aﬁgifm < 1, Am?y,, = A, Am?, = AA and

Am3, = (1 —A)A. In matter, the effective Hamiltonian in the flavor basis is given by

m? 0 0 A0 0
H=—U|l 0 m3 o |U+[0 0 0]], (9.53)
0 0 m 000
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where the matter effect term is given by

p E
g cm—3 GeV'

A =2V2Gpn.E, = 7.56 x 10~%eV? (9.54)

The approximate expressions for the eigenvalues and eigenvectors can be found in
Ref. [111]. Two different resonances occur: (i) A = A (solar resonance) and (ii)
A = cos 2¢ (atmospheric resonance), where A = 4. Here we focus on |A| > X\ which
is appropriate for neutrino energies above 1 GeV in matter density of 2.8g/cm3. As
was pointed out in Ref. [111], the expressions obtained will not show the correct

convergence for A — 0 and the result will hence not be good for the resonance A~1.

9.4.2 Parameter mapping

The one—to—one correspondence for the parameter mapping to the vacuum case

is given by the following expressions [111]

sing = : Asin be - )\fl siniw sin® 2¢ (9.55)
\/QC(:FA + C + cos29) 20\/26'2(j:A + C F cos 29)
sinw = — ACsin2o , (9.56)
| Al cos ¢\/QC(:FA + C =+ cos 29)
: Asin 2wsi
siny = sing 4 SoosoAsindwsingcosy (9.57)
+1+ C F Acos2¢
, 2A sin 2wssi
sind = sind(1— A cos 0 = wAsmqﬁ , (9.58)
tan2y +1 4+ C F Acos2¢
where
C = \/(A — c0s2¢)? + sin® 2¢. (9.59)

Higher order terms in A are ignored. The upper sign is valid for A < cos 2¢ and
the lower sign is valid for A > cos 2¢. For the case A < cos 2¢, the mass squared

difference is

1

(14 C — Acos2¢)sin®w

Amé’ = 5(—1 — A+ CO)A + MA(cos? w — °C ), (9.60)
/ A —_ A 1 2
AmZ = CA 4 )\A( 1+ ACOAS 2¢) sin u)7 (9.61)
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for the case A > cos 2¢, the mass squared difference is

1

(=14 C + Acos2¢)sin®w

Am? = —5(1 + A+ C)A = AA(cos?w — Y% )(9.62)
’ . _ A i 2
AmZ = —ea—aaEEE AC%S 29) sin”w (9.63)

Using these parameter mappings to replace each of the parameters in Eq. (9.14),
we have a one-to—one correspondence to the vacuum oscillation giving rise to a new
unitary matrix as in Eq. (9.16) with the above parameter mapping used to replace the

2/

terms in V*. We also make the replacement Am?, = Am2 and Am?,,, = Am2,,.

Note that in deriving the results above, the source eigenstate is assumed to be
equal to the detection eigenstate. Using the same formalism as outlined in section 9.2
and the same procedure as in section 9.18, we assume here that the source eigenstate

is equal to the detection eigenstate. The probability is then given by P = |V’ .EZ’,.V’ T2,

where
1 0 0
Ey=|0 e®a 0 |,
0 0 e
and

/

L ! ! L /
A, = 253 x EAmé, As = 2.53 x EAm2 (9.64)

atm*

In the three generation vacuum oscillations analyzed in section 9.2, we can
separate out the new physics effect from the usual three generation probabilities. This
term is then added to the expressions for the three generation matter effect. Because
of the complicated nature of the unitary matrix in matter, it is very difficult to come
up with a simple analytic expressions for the probabilities, the change in probability
(AP) and CP-asymmetry. We show the numerical plots of the probabilities as a
function of Energy in Figs. 9.16 and 9.17 at fixed length 2540 km for different choices
of new physics parameters (e,, €4, €y, €5, o and ). The plots of change in the
probability as a function of energy is shown in Figs. 9.19 and 9.20 and the CPT
asymmetry is shown in Fig. 21. In these figure, the dotted line denote the pure
standard three generation oscillations in matter with no new physics and the solid

line includes new physics.
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It is worth noting that there is a term in the expansion which is of order
(Am2 /Am2,,.)? that will contribute to the probability at a very low value of sin® 2¢

which in our case will not contribute significantly for the value ¢ = % that we have

chosen here.

oscillation in matter
0.15 fw 77\ L =2540km
o1 [
n_%
005 [
0 E\ ! ! | ! ! ! ! | ! ! ! ! |
5 15
1 Energy (GeV)
oscillation in matter
L = 2540 km
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205
o
0.25
0 G R

5 15
Energy (GeV)

Figure 9.18. Oscillation probabilities P., and FP,, in matter (assuming constant
matter density p = 2.8 g/cm?) as a function of energy for fixed length
L = 2540 km. All other parameters are the same as in Fig. 9.2.
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same choice of input parameters as in Fig. 9.18.
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9.5 Summary

In this chapter we have presented a simple analysis on how new physics can
affect neutrino oscillation data. These new physics effects can contribute to neutrino
oscillations roughly up to 10 %. In the usual two generation vacuum oscillation, there
is no CP violation but with new physics, one can have a CP asymmetry which is
evident by merely taking the source eigenstate different from the detector eigenstate.
There is no reason a priori to assume that the source eigenstate should be equal to
the detection eigenstate.

In the three generation vacuum oscillations, we give explicit formulas for the
probabilities and CP asymmetries. From the plots, we see that new the physics
effects may be quite large. It is possible to be able to separate out these new physics
effects from the usual standard CP effect. In the matter effect case, we only give
the numerical plots of the oscillation probabilities, CP and CPT asymmetries. One
will be able to separate out these new physics contributions from the matter effect
contributions since we know the new physics effect from the vacuum oscillation case.

We hope that in the near future experiments will be able to see these effects.
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APPENDIX A

TeV scale Horizontal Symmetry

In this Appendix we give the one-loop anomalous dimension, beta-function and

the soft masses for the TeV scale horizontal symmetry model.

A.1 Anomalous dimensions

The one loop anomalous dimensions for the fields in our model are:

, 3, 3, 8

167y, = Yp — 091~ 593 - 5927 (A1)
167°y, = 2Yp — ggf - ggi (A.2)
167y, = (Ya¥i);+ (YuY.))i— 6! (%gf + 295 + §9§> , (A.3)
167y, = 2(Y[Y,)y — o (%gf + 293) : (A4)
towton, = 2~ (2ot + 5a2). (A5)
68, = 3Y3 — gt~ Sah. (A.6)
R L 1 (A7)
167%ys = 2K%+8X\* — ggi, (A.8)

167%y, = 10\* — 293, (A.9)

167%y,; = —ggi. (A.10)

A.2 Beta functions

The beta functions for the Yukawa couplings appearing in the superpotential, Eq.

(5.1), are:

Yd 2 2 7 2 2 16 2
B(Yy,) = F;Q <6Y1i3 + Y, — 59~ 395 — 39 (A.11)
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Y, 13 16
I R R ) ISt
Ve, 2 2 9, 2
/B(YEO() - 1671-2 4YEQ + 3Yd3 - ggl - 392 ) (A13)
A
B\ = T (28\* + 2K% — 8q3) (A.14)
3 8
B(k) = 16’;2 (2/-@2 + 8% — gg%j) : (A.15)
The gauge beta function of our model are
g’
where b; = (2,1, -3, -3) for i = 1 — 4.
A3 A terms
The trilinear soft SUSY breaking terms are given by
Y
Ay = _QMM, (A.17)
where Y = (Y,., Yy, YE,, k, A).
A.4  Gaugino masses
The soft masses of the gauginos are given by:
Mi = 6(gi)Mauxa (A18)
Gi

where i = 1,2, 3,4, corresponding to the gauge groups U(1)y, SU(2)w, SU(3)c and

SU(3)y, with ((g;) given as in Eq. (55).
A.5 Soft SUSY masses

The soft masses of the squarks and the sleptons are given in the text. For the
H,, H; ®;, n;, n fields they are:

M? 3 3
(mioft)gz = ﬁ (3Yu35(Yu3) - Eglﬁ(gl> - 5925(92)) ; (A.19)
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(A.20)
(A.21)
(A.22)

(A.23)



APPENDIX B

SU(2)y Symmetry

In this Appendix we give the one-loop anomalous dimension, beta-function and

the soft SUSY breaking masses for the various fields in the SU(2)y symmetry model.

B.1 Anomalous dimensions

The one—loop anomalous dimensions for the fields in our model are:

3 3 3
2 2 2
1677y = feu - (1091 + 292 + 294) ) (B.1)
1672 = 2f? 2 _ (82,3 B.2
T Ype = feu+feE 5gl+2g4 ) ( . )
16 2 _ 2 2 i 2 § 2 B3
™V, = [fr+fE g+ 59 ), (B.3)
10 2
6
16wy, = 27— =41, (B.4)
8
167y, = (Ya¥i)u+ (YY), —5J< 09 + 92+393) (B.5)
8
167y, = 2(Y]Y.); —5J< gl+§ 2) (B.6)
8
167r2’yD1.j = 2(}ijd) —5]( gl+3g§> (B.7)
3 3
167y, = 3Y7 — 1—09f - 5937 (B.9)
3
167‘-27% = _5927 (BlO)
3
1657, = f5— ok (B.11)
6
167y = 2f% - 59%, (B.12)
1672y = 2f% — ggf. (B.13)
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B.2 Beta functions

The beta functions for the Yukawa couplings appearing in the superpotential, Eq.

(4), are:
Y, 7 16
Y,) = Y2+ Y7 4 g 2_—_¢2),(B.14
B0R) = oi (O 4 Y24 P24 P4 AT~ ogh 363~ L) (B
Y, 9 5, 13, 16 ,
BY;) = 1672 (6}/; + Y, — 15 1 392 393 ) (B.15)
Y- 2 2 2 2 9 4 2
ﬂ(Y:F) = 167T2 4Y;' _I— 3}/1-) + 2 TE + 2 e - ggl - 392 ) (B16)
fe 12
_ fTE 2 2 2 2 9 2
1672 571
Je 9
B(fon) 167’; Tfe +2fip + 2fF +2f2 4+ 3 — gg% —3¢% —3¢% ) (B.19)
The gauge beta function of the model are
g3
ﬁ(gz') = bif;aa (B~20)

where b; = (359, 1,—-3,-3) for i = 1 — 4 with g4 being the gauge coupling associated

with the SU(2)y gauge group.
B.3 A terms

The trilinear soft SUSY breaking terms are given by

AY = _@Mawﬁa (B21)

where Y = (Yu., Ya,, Yi,, fer, frE: fr)-
B.4 Gaugino masses

The soft masses of the gauginos are given by:

Mi = ﬁ(gi)Maumy <B22>

Gi
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where i = 1,2,3,4, corresponding to the gauge groups U(1l)y, SU(2)w, SU(3)c,
SU(2)g with ((g;) given as in Eq. (B.20).

B.5 Soft SUSY masses

The soft masses of the squarks and the sleptons are given in the text. For the

H,, Hy, v¢, Sy, S_ fields they are:

2
()it = Q‘é (3¥080) = Sntan) ~ Jou0len) 2 (3) oublon) ) (B:2)
0l = T (378000 + V2500 + Vosi(Voe) — o) — S0a5(se)
N\ 2
- 2 <—§ 945(94>> g (B.24)

M2
(N goft)gz = 16au;c (feEﬂ(feE) - —945(94)) 3 (B25)

G = 1

3
= G (<Sata). (B.20)



APPENDIX C

U(1), Model

In this Appendix we give the one-loop anomalous dimension, beta-function and

the soft SUSY breaking masses for the various fields in Z’ model.

C.1 Anomalous dimensions

The one—loop anomalous dimensions for the fields in our model are:

(3 3 T
167T27L1-j = (YZYIT)]@‘ —& =g+ +201-5)q ), (C.1)
10 2 2
(6
167%7e, = 2(Y'Y))y; — 0] <59% +2(=1+ 90)295) ; (C.2)
/1 3 8 r 1
167%yq, = (Ya¥i)u+ (YuY)); — o) (%93 + 595 + 593 +2(5 - 5)29925) (C.3)
1672, = 201V — 6 (g2 + o2 + 2o+ 1) (C.4)
i wrwt T\ 157t 3 3 37 7%
(2 8 r 1
167°yp,, = 2Y[Yy)i; — O (1—5gf + gg?? + 2(5 + 5)2g§) , (C.5)
3 3 T 2
16y, = 3Y; +Y2——gi —-g5—2 (——) 9z, (C.6)
10 2 2
3 3 T\ 2
2 2 2 2 2
167"y, = 3y — 7591 — 592 — 2 (‘5) U (C.7)
167°y,e = 4f5 — 292, (C.8)
167T27uc = 4 30 - 2932:7 (C.9)
167275 = 4h* — 247, (C.10)
3
16m°ys, = 2> fr+2f — 8¢, (C.11)
=1
167%ys. = 2h* —8g2. (C.12)
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C.2 Beta functions

The beta functions for the Yukawa couplings appearing in the superpotential, Eq.

(4), are:
Y, 7 16 4+ 2z + Ta?
B(Ya) = 25 (62 +Y2 +Y— gl =35 — — g3 — WH20 217 4da3)
672 8 8 15 3 9
Yo, 2 4y 13, ., 16, (4—10z+132?) ,
Y,
806) = 1o (24375 - 38 -3 - - 6o+ 3e2) (©.15)
.
Blha) = o5 (10£2 +2f2 +2f2 +2£2 —12g). (C.16)
. fl/u 2 2 2 2
Blha) = <ot (1052 + 22 +2£2 +2f2 —1252). (C.17)
Bh) = Lo (102 v 2p v 2fs v orh —1262). (©18)
s K €
B(fre) = % (10 2 p2f? y2f +2f2 —12gx>, (C.19)
™
h 2
B(h) = 6.2 (10h —12¢2) . (C.20)
The gauge beta function of our model are
g’
Ba) = bl (c21)
where b; = (2,1, -3, (1122 — 162 + 26)) for i = 1, 2, 2, 3, .
C.3 A terms
The trilinear soft SUSY breaking terms are given by
Y
AY = _MMauxa (022)
Y
where YV = (YUH }/d” }/27;7 fllfa fVC7 h’)
C.4 Gaugino masses
The soft masses of the gauginos are given by:
M, = P9y (C.23)

Gi



where i = 1,23, z, corresponding to the gauge groups U(1)y, SU(2)w

U(1), with ((g;) given as in Eq. (C.21) with M, = Mj.

C.5 Soft SUSY masses

The soft masses of the squarks and the sleptons are given in the text.

H,, Hy, v¢, Sy, S_ fields they are:

~ Mzgux 3
( ioft)gz = 1671'2 <3Yusﬁ(Yu3)
(M)t = Tom2 (3Yd36(Yd3) + Y5, B8(Yi,) — Eglﬁ(gl) — 5925(92)

- 2 (—92%5(%)) :

(Mlop)s: = ”( va +2fv05<fvc)—89x5(9x>>v

1672
M2
(305" = a5 (2h5(h) — 89.0(9)
ve M?
(mgoft)u:c = 16au2x (4f1/ ﬁ(fl/f) - 29$5(gz)) )
c M?
(mgoft)zljc = 16au§ (4feB(foe) — 29:83(gz)) »
~ 2 v Mc?uz .
(Mioe)pe = (4h3(h) = 2920(92)) -

1672
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, SU(3)c,

For the

glﬁ(gl) - §926(92) -2 ( 9200 ng>3 24)

(C.25)

(C.26)

(C.27)
(C.28)
(C.29)

(C.30)



APPENDIX D

Quark-Lepton Supersymmetric Model

In this Appendix we give the one-loop anomalous dimension, beta-function and

the soft masses for the Quark-Lepton Supersymmetry model.

D.1 Anomalous dimensions

The one loop anomalous dimensions for the fields in our model are:

1670
1672 ye
16724
1672y
1672y
16%271\[

16m%yp,
167y,
167r27x1
167y,
1677y,

1671_2’)/5(2

1 3

nﬁ+nm+ﬂ@g—cﬁ%~£+—

8
%)

3

18 2

8 8
2xp;+ﬂgny_<§ﬁ+§£),

2 8
2Y’JY’d + QYC,;’YQ’ — (593 + §g§> ;

1 3
nﬁ+nﬁ+mﬂﬁ—cﬁ%~£+

18 2
t tv (8 9 8
i v _ (22,82
QYV Y,, —+ ZYNYN ggz -+ ggg 3
- i 3 5 3 5
3T7"(Yd Ya) +3Tr(Y]Y,) — Egz‘ - 5927
3 3
3TT(YJYU) + 3TT<YVTYV) - 1_()9% - 5937
2 8
4TT(YFY1I) - 59:% - 5937
iy 22 8
2TT(YNYN) ggx nga
2 8
4T7’(YQYQT) - 59326 - ggg,
2 8
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D.2 Beta functions

The beta functions for the Yukawa couplings appearing in the superpotential, Eq.

(8.3), are:

B(Ya)

7, 16
(3 YoY] + VLY +2YoY + 2v Yo — 5 — 392 — ggg) (D.13)
13
(3Y Y+ YaY] +2YoY] + 2], Yo — o g2 —3g3 — gg)(l;) 14)
t f t t 13 o 16 ,
3Y,Y) + Y, Y+ 2veY] 42V, YN—EgI—B < 9; ) (D-15)
3V, Y, + V.Y 4+ 2vey)l + 2y vy — Zg — 393 — Egg (D.16)
167r2 97% 3 ’
Yr i i i ry_ 1
1672 VY + 2V, Y + 4VpY] 4+ 4Tr (YY) — ng — 292 — 8¢11p.17)
4
167r2 (4YNYT +2Tr (YY) + 2.V + 2V, Y — ggm 893) , (D.18)
1
16 . (2}/ Y+ 2YaV] + 4YV] + 4Tr (YY) — ggx 297 — 89@ 19)
T

3

4
16 (4YQ,YT +2Tr (Yo V) + 2V, Y +2vay] — —g2 — 8g§) .(D.20)
m

The gauge beta function of our model are

3

B(gi) = bi%; (D.21)

where b; = (%0,4, —2,-2) for i =x,2,3,/.

D.3 A terms

The trilinear soft SUSY breaking terms are given by

where Y =

AY = _@Mauxa (D22)

(Yua Y;ia Yve; YN7 YIMYF? YQ7 YQ/)
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D.4 Gaugino masses

The soft masses of the gauginos are given by:

M, = B9y (D.23)

Gi

where i = x,2,3, ¢, corresponding to the gauge groups U(1),, SU(2)., SU(3), and
SU(3),.

D.5 Soft SUSY masses

The soft masses of the squarks and the sleptons are given in the text. For the

H,, Hy, x1, X1, X2, X2, I', E¢, N€ fields are:

M2 T 1

il = % (BTGB 4 YAK)) - 5.5(a) — Sdlan)|, (D20
™ |
(il = G [BTROAY) + YoBY) - pailan) - Sau(an)| . (D25
9 -
(M) = ]1\{;13 _4TT(YFﬂ(YF))_ggxﬁ<gx)_§g€ﬂ(g£):|, (D.26)
— 2 i ]
(PLp)E = T [2rON0M) — Gacflan)  Sedlan)]| (D.27)
M2 T 2 8 |
(e = oo [ATr(Q8(V0)) — ga:3l:) — 30980 (D.25)
i M2, [ 2 8 '
(ML) = T [2Tr0GA09) - gola) - 50s8(a)] (D.29)
2
B = (1 [20000) + YY) - (nggm;gzﬁ(gz))],<D.3o>
c M? 2 8
(~§oft)%c = (16?:56) [QYﬁ(Yd)+2YNﬁ(YN) (+§g$5(gz)+ggeﬁ(gz))ium)
~ 2 F M(?ux
( soft) - (16 )[Yﬁ( )+Yﬁ( )+2YFﬁ(YF)

- (5925(92) + %gxﬁ(gm) + ggeﬁ(gz))} : (D.32)



APPENDIX E

Two Generation Neutrino Oscillation Model

Consider the production by -decay with new physics interaction and detection
by leptonic interaction with no new physics. The production Lagrangian can be

expressed as
Ve
GFVus _
ur,
vz e

Lprod —

(1 —7s)dev" (1 =) (1 4+ €1 ez as3)| v, | +HC, (E1)
Vr
where €’s are the new physics parameters.
For simplicity we consider the two generation case. We can write the production
Lagrangian as

GpVis _ _ i
Lprod — F U/')/M(l —’)/5)(16’}/“(1 —'}/5)67(1 + €11 612)

V2

cos sin 6 2
X ' ' + H.C.
—sinfe %  cosfe 2 Vs

The charged current part of the detection Lagrangian is given by

cc G — —
det 7;“7#(1 - 75)1//1”67”(1 - 75)67 (EQ)
G
= TZﬁ%(l — v5) (— sin Ovy + cos Oy (cos B + sin 0) 4 (1 — 5)e(E.3)

observed unobserved

The probability of v, — v, is given by

Py, = |Alve = v)|”

2
—cos@sin (1 + €11) + sin? ejpe2

VIT+enl? + el

2
cos 0sin O(1 + €11) + cos? fejpe™ 2
VIT+en|? + ferf?
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4 eiE—Eat | T cos 0sin O(1 + €11) + sin? fepe=2
e
\/|1 + (511|2 + |€12|2

y [cos Osinf(1 + €f;) + cos? 961‘262ia]

\/‘1 + €11]? + |€12]?
4+ (iE-Bt [— cos 0 sin O(1 + €},) + sin? 96{262@1
e

VIL+en]? + lerzf?
" [cos&sin O(1 + €11) + cos? 96126—%1

VIL+enl +enf?

sin? 0, cos? 0, + cos? 0, sin® 0,

Am? ot
— 2sinf,sin 0, cos O, cos O, cos [ 7;1E12 + 5] (E.4)

where

B = arg ([cosOs(1+ €11) — sinOe2e 2] [sin b, (1 + €}) + cos Oer,€7])

|€12] sin

~ 2
sin26,; ’

(E.5)

0(1 — sin fejpe 2
cosfy = cosO(1 + en) — sin feroe ~ cos 0y — sin O4|e12| cos @, (E.6)

VIL+en]? + ez
inf(1 feqge— 2
sinf, = sin (1 + 1) + cos ferae ~ sin 0, + cos 0,4]€12| cos . (E.7)
VIL+en]? + Jewf?

Where we have use the parametrization

€12 = |€12|e’®? and 14 ey = |1 + €e1]e™®, = 2a — ¢1g + ¢ (E.8)
We find the probabilities to be:
Am?t
P, =~ sin? 26 sin® ( 472 )
Am?t Am?t
+ |e12]sin26 [20082«9608(3@) sin? ( 472 ) —l—singpsin( 2m )} (E.9)

Am?t
By = sin22981n2( 472 )

: o ((Am?t .. {Am*t
+ |€12]sin26 [20082900890511&2 ( 1B ) —smgpsm( 5F )] (E.10)

The CP asymmetry (A) of v, — v, defined as:

Pye—wu - Pﬁe—u_/H

PV8—>VM + P@;—)Eu

Alve = v,) = , (E.11)
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: : - ((Am2t
2|612|sm2981ngosm< 5 )

) : 2 ( AmZ2t ’
2 sin” 20 sin ( " )

/1 — —2
V=& \/;n229], (E.13)

12

(E.12)

~ 2lepsing [

where

AmQt}

= sin” 26 sin® E.14
p = sin® 20sin” | — ( )

We observed that because of the introduction of new physics, B, _.,, # Py, and
hence there will be an observable CP asymmetry as shown above. This Asymmetry
is due to the fact that we assumed source # detector. This new physics effect can
contribute up to 10% deviation from Standard Model and hence can give a large CP

violation.



VITA
Cyril Ojodume Anoka
Candidate for the Degree of

Doctor of Philosophy

Thesis: ANOMALY MEDIATED SUPERSYMMETRY BREAKING
AND NONSTANDARD NEUTRINO OSCILLATIONS

Major Field: Physics
Date Of Birth: December 27, 1972

Education and Scientific Degrees

Ph.D. (July 2005) Physics
Oklahoma State University
Stillwater, USA
ICTP Diploma (1999) High Energy Physics
International Center For Theoretical Physics,
Trieste, Italy.
B.Sc. (1995) Engineering Physics
Obafemi Awolowo University,
Ile-Ife, Nigeria .

Scholarships and Awards

02005 Outstanding Physics Research Award, Physics Department,
Oklahoma State University, Stillwater, USA

o TASI Scholarship, summer 2004, Boulder, Colorado, USA
oICTP Scholarship, 1998-1999 academic year, Trieste, Italy

eOutstanding Physics Student Scholarship, 1994-1995 academic
year, OAU, Nigeria



Name: Cyril O. Anoka Date of Degree: July, 2005
Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: ANOMALY MEDIATED SUPERSYMMETRY BREAKING
AND NONSTANDARD NEUTRINO OSCILLATIONS

Pages in Study: 186 Candidate for the Degree of Doctor of Philosophy
Major Field: Physics

Scope and Method of Study: In this thesis, we propose four different scenarios that
solves the tachyonic slepton mass problem of Anomaly Mediated Supersymme-
try Breaking (AMSB). We also address the question of neutrino oscillation using
non standard interactions. In the first two chapters we introduce the Standard
Model (SM) of particle physics and Supersymmetry (SUSY). We review models
of SUSY breaking in the third chapter. Chapters four, five, six and seven have
our various models that address the negative slepton mass problem of AMSB.
In chapter 8, we propose a simple solution to the neutrino oscillation problem
based on nonstandard interactions.

Findings and Conclusions: AMSB is an attractive scenario which can neatly solve
the flavor changing neutral current problem of SUSY models. However, the
simplest such model has tachyonic sleptons, which is unacceptable. The first
model we propose is based on a non—Abelian horizontal gauge symmetry broken
at the TeV scale. In this model the sleptons receive positive mass—squared from
the asymptotically free SU(3)y gauge sector. The second model is a class of
supersymmetric Z' models based on the gauge symmetry U(1), = 2Y —(B—L),
where Y is the Standard Model hypercharge. For 1 < x < 2, the U(1), D-term
generates positive contribution to the slepton masses. The third model is the
quark—lepton symmetric model based on leptonic SU(3), gauge symmetry. The
negative slepton mass problem is cured by virtue of the positive contribution
to the slepton masses from the SU(3), gauge sector. This model also leads to
unification of Standard Model gauge couplings in a non trivial way. The fourth
model is bassed on an asymptotically free SU(2)y gauge symmetry broken at
the TeV scale. This model is viable and also solves the tachyonic slepton mass
problem of AMSB. Finally in chapter 8, we show how the Liquid Scintillator
Neutrino Detector (LSND) experiment puzzle may be solved by adding new
physics terms to the standard interactions.

ADVISOR’S APPROVAL:




