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∆Pµτ (CPT ) = Pµτ − Pτ̄ µ̄ in matter as a function of energy for the
same choice of input parameters as in Fig. 9.18............................... 155

9.23. Oscillation probabilities Peµ and Pµµ in matter as a function of energy
for fixed length L = 295 km. All other parameters are the same as
in Fig. 9.18. ............................................................................ 156

9.24. Oscillation probability Pµτ in matter as a function of energy for the
same choice of input parameters as in Fig. 9.18............................... 157

9.25. Change in oscillation probabilities ∆Peµ (CP ) = Peµ − Pēµ̄ and
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CHAPTER 1

INTRODUCTION

In this section we give a brief description of the Standard Model of particle

physics and reasons for going beyond it.

1.1 The Standard Model

The Standard Model (SM) of elementary particle physics has recorded remark-

able success in describing physics at length scales ranging from atomic scales down

to the shortest probed scale of about 10−18 m. It is a non–abelian gauge theory based

on the gauge group [1]

SU(3)C × SU(2)L × U(1)Y ,

where SU(3)C is the color gauge group describing strong interactions and SU(2)L ×
U(1)Y is the electroweak gauge group describing weak and electromagnetic interac-

tions.

The SM describes the interactions of quarks, leptons, gauge bosons and the

Higgs boson. The field content and the transformation properties under the gauge

symmetries are shown in Table 1.

It is important to note that the left– and the right–handed components of

the matter fermions are assigned to different representations (doublets and singlets

respectively) of the weak gauge group SU(2)L, thereby allowing a chiral structure for

the weak interactions.

The Yukawa and Higgs part of the SM Lagrangian is given by

LY ukawa = Y `
αβ`αec

βφ̃ + Y d
αβQαdc

βφ̃ + Y u
αβQαuc

βφ + h.c., (1.1)

where φ̃ = iσ2φ∗ =

(
φ̄0

−φ−

)
. Here generation indices α, β = 1, 2, 3 are explicitly

displayed, while color and SU(2)L indices are suppressed.

1



2

Fields SU(3)C SU(2)W U(1)Y

Quarks Qi
α =

(
ui

α

di
α

)
3 2 1

6

uci
α 3̄ 1 −2

3

dci
α 3̄ 1 1

3

Leptons `α =

(
να

eα

)
1 2 −1

2

ec
α 1 1 2

Gluon Ga
µ 8 1 0

Intermediate weak bosons W r
µ 1 3 0

Hypercharge gauge boson Bµ 1 1 0

Higgs boson φ =

(
φ+

φ0

)
1 2 1

2

TABLE 1.1. Particle content of the SM and the charge assignment. Here α = 1, 2, 3 is the
generation index, i = 1 − 3 (color), a = 1 − 8 (SU(3)C generators) and r = 1 − 3
(SU(2)L generators).

1.2 Symmetry breaking via the Higgs mechanism

If we consider the SU(2)L×U(1)Y part of the Lagrangian, assuming that there is

no Higgs field, all the fermions and the four gauge bosons (W r
µ , Bµ) would be massless.

This is unacceptable, for the weak interactions are short range, meaning that the

mediators must be massive. We must then break the symmetry spontaneously which

will ensure renormalizability. This is achieved through the scalar Higgs doublet

φ =

(
φ+

φ0

)
. (1.2)

The only observed unbroken local symmetry in Nature is the U(1)em (apart from

SU(3)C). Therefore the SU(2)L×U(1)Y symmetry should be broken down to U(1)em.

The renomalizable Higgs potential is given by

VH ≡ µ2φ†φ + λ(φ†φ)2.
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This has a minimum for µ2 < 0 at

〈φ†φ〉 = −µ2

2λ
=

υ2

2
. (1.3)

We can choose the vacuum expectation value (VEV) after an SU(2)L transformation

in the unitary gauge as

〈φ0〉 =
1√
2

(
0

υ

)
. (1.4)

It is not difficult to see that the gauge boson associated with the U(1)em subgroup of

SU(2)L × U(1)Y remains massless. The electric charge Qem, the U(1)Y hypercharge

and the third component of weak isospin T3L are related by

Qem = T3L +
Y

2
, (1.5)

and the gauge boson masses are given by

MW =
gυ

2
, MZ =

MW

cos θW

, MA = 0. (1.6)

Here g is the SU(2)L gauge coupling strength and tan θW = g′/g, where g′ is the

U(1)Y gauge coupling constant. These masses are obtained from the Lagrangian for

the gauge and Higgs field, given by

Lgauge-Higgs =

∣∣∣∣∂µφ− ig

2
~τ . ~Wµφ− ig′

2
Bµφ

∣∣∣∣
2

,

once the VEV of φ0 is inserted.

It is worthwhile to note that the weak mixing angle θW is a parameter of the

SM which has been measured to a very high accuracy. Another accurately measured

quantity is the ρ parameter (ρ ≡ M2
W

M2
Z cos2 θW

) which is predicted to be 1 (at tree level)

in the SM. New physics can also be severely constrained by the observed value of ρ.

After symmetry breaking, from the Yukawa interactions in Eq. (1.1), the

fermions become massive with masses given by

Mu = Yuυ, Md = Ydυ, M` = Y`υ. (1.7)

Here Yu, d, ` are arbitrary 3× 3 complex matrices in generation space.
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Not all parameters in these matrices are observable in the SM. After fermion

field redefinitions, the 3 eigenvalues of each of the matrices, 3 mixing angles and

one phase entering in the charged W±
µ interactions with quarks become physical

quantities. One makes biunitary transformations, Uu
LYuU

u†
R = Y

diag
u , Ud

LYdU
d†
R =

Y
diag
d , U `

LY`U
`†
R = Y

diag
` , in which case the charged W± current takes the form

L
W±

µ

cc =
g√
2
ūLγµVCKMdLW µ+ + h.c.,

where VCKM = Uu†
L Ud

L is a unitary matrix, the Cabibbo–Kobayashi–Maskawa matrix

or the quark mixing matrix.

Since there is no right–handed neutrino field νR, the neutrinos remain massless.

The fermion masses are arbitrary since the Yukawa couplings Y are free parameters.

To find the Higgs boson mass, we write the complex field φ0 in terms of real

fields. The Higgs doublet then takes the form (in unitary gauge)

φ =
1√
2

(
0

υ + η

)
, (1.8)

where η is the physical Higgs scalar with mass

m2
η = 2λυ2. (1.9)

The Higgs mass is left undetermined since λ is a free parameter, with only its

sign constrained to be positive.

There are several good features of the SM some of which are:

1. All the particles predicted by the SM have been observed except the Higgs

boson.

2. Both baryon and lepton number are automatically conserved. This prevents

rapid decay of the proton.

3. It has an extremely economical Higgs sector which is responsible for giving

masses to all particles.

4. With only two independent parameters MW and sin θW , all the electroweak

processes at high energy are correctly described.
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The SM also has several drawbacks. There are several free parameters in the SM

Lagrangian: The Higgs coupling constant λ, the Higgs mass parameter µ2, three gauge

couplings (g′, g, gs), the number of generations (matter fields) and three Yukawa

matrices Y u
αβ, Y d

αβ, Y `
αβ. Despite the remarkable success of the SM, there are still

several questions left unanswered. For example, does the Higgs boson exist? Do the

gauge couplings unify? How is gravity incorporated?

An attempt to answer these numerous questions will take us to beyond the

SM. For example, some earlier attempts tried to unify strong and electroweak forces

by embedding the SU(3)C × SU(2)L × U(1)Y structure into higher groups such as

SU(5) and SO(10). These “Grand Unified Theories” or GUT’s, were only partially

successful.

Difficulties with the SM and GUT models concerning gauge hierarchy and fine

tuning problems led to theoretical remedies such as technicolor, supersymmetry, string

theory, etc. The most appealing of these theories is perhaps supersymmetry, which

is the main focus of this thesis.

1.3 Gauge hierarchy problem

The hierarchy problem is one of the main reasons why we think supersymmetry

has something to do with Nature, and that it might be broken at a scale comparable

to the scale of weak interactions, rather than at some enormous energy such as the

Planck scale MPl ∼ 1019 GeV. The mass hierarchy problem stems from the fact that

masses, in particular scalar masses, are not stable to radiative corrections [2]. While

fermion masses also receive radiative corrections from diagrams of the form in Figure

1.1, these are only logarithmically divergent (see for example [3]),

δmf ' 3α

4π
mf ln(Λ2/m2

f ), (1.10)

where Λ is an ultraviolet cutoff, where we expect new physics to play an important

role. As one can see, even for Λ ∼ MPl, these corrections are small, δmf <∼ mf .



6

Figure 1.1. 1-loop correction to the mass of a fermion.

In contrast, scalar masses are quadratically divergent. 1–loop contributions to

scalar masses, such as those shown in Fig. 1.2, are readily computed

δm2
H ' {g2

f , g
2, λ}

∫
d4k

1

k2
∼ O

( α

4π

)
Λ2, (1.11)

due to contributions from fermion loops with coupling gf , from gauge boson loops

with coupling g2, and from quartic scalar-couplings λ.

g2

g
f

g
f

λ

Figure 1.2. 1-loop corrections to a scalar mass.

An alternative and by far simpler solution to this problem exists if one postu-

lates that there are new particles with similar masses and equal couplings to those

responsible for the radiatively induced masses but with a difference (by a half unit)

in spin. Then, because the contribution to δm2
H due to a fermion loop comes with a

relative minus sign, the total contribution to the 1-loop corrected mass2 is

δm2
H ' O

( α

4π

)
(Λ2 + m2

B)−O
( α

4π

)
(Λ2 + m2

F ) = O
( α

4π

)
(m2

B −m2
F ). (1.12)

If in addition, the bosons and fermions all have the same masses, then the radiative

corrections vanish identically. The stability of the hierarchy only requires that the

weak scale is preserved so that we need only require that

|m2
B −m2

F | <∼ 1 TeV2. (1.13)

As we will see latter, supersymmetry offers just the framework for including the nec-

essary new particles and ensures the absence of these dangerous radiative corrections

[4].
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1.4 Gauge coupling unification

Another motivation for supersymmetry lies in the gauge coupling constant uni-

fication. In the SM, the gauge couplings do not unify. The solutions to the SM

renormalization group equations to one loop accuracy are given by

1

αi(Q)
=

1

αi(µ)
+

bi

2π
log

(
µ

Q

)
,

where the bi are

bi =




b1

b2

b3


 =




0

−22
3

−11


 + Ng




4
3

4
3

4
3


 + Nh




1
10

1
6

0


 .

Here Ng = 3 is the number of generations and Nh = 1 is the number of Higgs doublets.

The numerical values for the bi coefficients are bi = (41
10

, −19
6

, −7). The three gauge

coupling constants used as input are

α1 = 5α/(3 cos2 θW ), α2 = α/sin2 θW , α3 = g2
s/(4π),

where α−1(MZ) = 128.978, sin2 θW = 0.23146 and α3 = 0.1184.

On evolving the inverse of the three coupling constants as a function of logarithm

of the unification scale Q, the result is shown in Fig. 3 (left). These couplings

do not meet at a common point, hence unification does not occur. If we consider

supersymmetric grand unified theory, the beta function coefficients are modified due

to the quantum corrections involving the superpartners and are given in the Minimal

Supersymmetric Standard Model (MSSM) by

bi =




b1

b2

b3


 =




0

−6

−9


 + Ng




2

2

2


 + Nh




3
10

1
2

0


 .

Here Ng = 3 and Nh = 2. The numerical value for bi is bi = (33
5
, 1, −3). If we assume

that all the SUSY particle masses are around 1 TeV, on evolving the inverse coupling

constants, they meet at a point (unify) as shown in Fig. 3 (right). The point at

which these particles meet is around 1016 GeV. The SUSY particles are assumed to
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Figure 1.3. Running of the couplings in the SM (left) and its minimal supersymmetric
version (right).

contribute only above the effective SUSY scale (∼ 1 TeV) which causes the change of

slope in the evolution of the couplings. This is another reason why most high energy

physicist believe in supersymmetry.

The present thesis contains nine chapters. In the second chapter we review all

the basics for Supersymmetry (SUSY), we define the SUSY algebra and introduce all

the tools needed to write down the supersymmetric version of gauge field theories.

In chapter 3, the minimal supersymmetric extension of the Standard Model is intro-

duced, all the interactions and relevant mass matrices for our analysis are studied. In

the fourth chapter we review various symmetry breaking models, here we introduce

the Anomaly Mediated Supersymmetry Breaking (AMSB) and review the relevant

literature. In chapter 5, we suggest TeV–Scale horizontal symmetry as a solution to

the negative slepton mass squared problem of AMSB. In chapter 6, we suggest an

SU(2)H model as a solution to the negative slepton mass problem. In chapter 7,

we study a specific Z ′ model as a solution to the slepton mass problem of AMSB.
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In Chapter 8, we suggest another model to solve this problem of AMSB with the

quarks and the leptons transforming identically under two different SU(3) symmetry

group. Finally, we divert from the AMSB to Neutrino Physics, here we suggest a

non-standard neutrino interaction as a solution to the neutrino oscillation problem.



CHAPTER 2

Supersymmetry

Supersymmetry (SUSY) is often called the last great symmetry of Nature.

Rarely has so much effort, both theoretical and experimental, been spent to un-

derstand and discover a symmetry of Nature, which up to the present time lacks

concrete evidence.

Why SUSY? If for no other reason, it would be nice to understand the origin

of the fundamental difference between the two classes of particles distinguished by

their spin, fermions and bosons. If such a symmetry exists, one might expect that it

is represented by an operator which relates the two classes of particles. For example,

Q|Boson〉 = |Fermion〉,
Q|Fermion〉 = |Boson〉. (2.1)

However, without a connection to experiment, SUSY would remain a mathematical

curiosity and a subject of a very theoretical nature as indeed it stood from its initial

description in the early 1970’s [5, 6] until its incorporation into a realistic theory of

physics at the electroweak scale.

One of the first break-throughs came with the realization that SUSY could

help resolve the difficult problem of mass hierarchies [2], namely the stability of the

electroweak scale with respect to radiative corrections. With precision experiments

at the electroweak scale, it has also become apparent that Grand Unification is not

possible in the absence of SUSY [7].

Considering a new class of “fermionic” generators Q, that satisfy anti–commutation

relations

[Qα, Jµν ] = iσµν β
α Qβ,

10
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[Qα, P µ] = 0,

[
Q̄α̇, Jµν

]
= iσ̄µνα̇

β̇
Q̄β̇,

[
Q̄α̇, P µ

]
= 0, (2.2)

where Qα (Q̄α̇) is a symmetry operator (SUSY charge), P µ is the energy–momentum

operator and Jµν is the angular momentum operator.

The Q’s are translationally invariant (no explicit x–dependence) and they satisfy

anti–commutation relations

{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ, (2.3)

where the factor 2 is conventional and can be achieved by re–scaling the Q’s. There are

three main properties of a supermultiplet: (1) All particles belonging to an irreducible

representation of SUSY have the same mass, (2) there are equal number of fermionic

(NF ) and bosonic (NB) degrees of freedom in a supermultiplet, (3) the energy P0 in

a supersymmetric theory is always positive.

2.1 Supersymmetry algebra

Combined with the usual Poincaré and internal symmetry algebra the Super-

Poincaré Lie algebra contains additional SUSY generators Qi
α and Q̄i

α̇ [8]

[Pµ, Pν ] = 0,

[Pµ,Mρσ] = i(gµρPσ − gµσPρ),

[Mµν ,Mρσ] = i(gνρMµσ − gνσMµρ − gµρMνσ + gµσMνρ),

[Br, Bs] = iCt
rsBt,

[Br, Pµ] = [Br,Mµσ] = 0,

[Qi
α, Pµ] = [Q̄i

α̇, Pµ] = 0,

[Qi
α,Mµν ] = 1

2
(σµν)

β
αQi

β, [Q̄i
α̇,Mµν ] = −1

2
Q̄i

β̇
(σ̄µν)

β̇
α̇,

[Qi
α, Br] = (br)

i
jQ

j
α, [Q̄i

α̇, Br] = −Q̄j
α̇(br)

i
j,

{Qi
α, Q̄j

β̇
} = 2δij(σµ)αβ̇Pµ,

{Qi
α, Qj

β} = 2εαβZij, Zij = ar
ijbr, Z ij = Z+

ij ,

{Q̄i
α̇, Q̄j

β̇
} = −2εα̇β̇Zij, [Zij, anything] = 0,

α, α̇ = 1, 2 i, j = 1, 2, . . . , N.

(2.4)
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Here Pµ and Mµν are four-momentum and angular momentum operators, re-

spectively, Br are the internal symmetry generators, Qi and Q̄i are the spinorial SUSY

generators and Zij are the so-called central charges, while α, α̇, β, β̇ are the spinorial

indices. In the simplest case one has one spinor generator Qα (and the conjugated

one Q̄α̇) that corresponds to an ordinary or N=1 SUSY. When N > 1 one has an

extended SUSY.

The constraint on the number of SUSY generators comes from a requirement

of consistency of the corresponding quantum field theory (QFT). The number of

supersymmetries and the maximal spin of the particle in the multiplet are related by

N ≤ 4S,

where S is the maximal spin. Since the theories with spin greater than 1 are non-

renormalizable and the theories with spin greater than 5/2 have no consistent coupling

to gravity, this imposes a constraint on the number of SUSY generators

N ≤ 4 for renormalizable theories (YM),

N ≤ 8 for (super)gravity.

In what follows, we shall consider simple SUSY, or N = 1 SUSY, contrary to extended

supersymmetries with N > 1. In this case, one has two types of supermultiplets: the

so-called chiral multiplet, which contains two physical states (φ, ψ) with spin 0 and

1/2, respectively, and the vector multiplet with λ = 1/2, which also contains two

physical states (λ, Aµ) with spin 1/2 and 1, respectively.

2.2 Superspace and superfields

An elegant formulation of SUSY transformations and invariants can be achieved

in the framework of superspace [9]. Superspace differs from the ordinary Euclidean

(Minkowski) space by the addition of two new coordinates, θα and θ̄α̇, which are

Grassmannian, i.e. anticommuting, variables

{θα, θβ} = 0, {θ̄α̇, θ̄β̇} = 0, θ2
α = 0, θ̄2

α̇ = 0, α, β, α̇, β̇ = 1, 2.
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Thus, we go from space to superspace

Space ⇒ Superspace

xµ xµ, θα, θ̄α̇

A SUSY group element can be constructed in superspace in the same way as an

ordinary translation in the usual space

G(x, θ, θ̄) = ei(−xµPµ + θQ + θ̄Q̄). (2.5)

It leads to a supertranslation in superspace

xµ → xµ + iθσµε̄− iεσµθ̄,

θ → θ + ε,

θ̄ → θ̄ + ε̄,

(2.6)

where ε and ε̄ are Grassmannian transformation parameters. From Eq. (2.6) one

can easily obtain the representation for the supercharges Eq. (2.4) acting on the

superspace

Qα =
∂

∂θα

− iσµ
αα̇θ̄α̇∂µ, Q̄α̇ = − ∂

∂θ̄α̇

+ iθασµ
αα̇∂µ. (2.7)

Taking the Grassmannian transformation parameters to be local, or space-time de-

pendent, one gets a local translation. As has already been mentioned, this leads

to a theory of (super) gravity. To define the fields on a superspace, consider repre-

sentations of the Super-Poincaré group Eq. (2.4) [10]. The simplest one is a scalar

superfield F (x, θ, θ̄) which is SUSY invariant. Its Taylor expansion in θ and θ̄ has only

several terms due to the nilpotent character of Grassmannian parameters. However,

this superfield is a reducible representation of SUSY. To get an irreducible one, we

define a chiral superfield which obeys the equation

D̄F = 0, where D̄ = − ∂

∂θ
− iθσµ∂µ (2.8)

is a superspace covariant derivative. In superspace (by Taylor expanding y = x +

iθσθ̄), a chiral superfield is written as

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y)

= A(x) + iθσµθ̄∂µA(x) +
1

4
θθθ̄θ̄2A(x)

+
√

2θψ(x)− i√
2
θθ∂µψ(x)σµθ̄ + θθF (x). (2.9)
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Here A is a complex scalar field (with two bosonic degrees of freedom), ψ is a Weyl

spinor field (with 2 fermionic degrees of freedom)and F is the auxiliary field (with

no physical meaning) which is needed to close the SUSY algebra (2.4). We see from

here that a superfield contains an equal number of fermionic and bosonic degrees

of freedom. Under a SUSY transformation with anticommuting parameter ε, the

component fields transform as

δεA =
√

2εψ,

δεψ = i
√

2σµε̄∂µA +
√

2εF, (2.10)

δεF = i
√

2ε̄σµ∂µψ.

The antichiral superfield Φ+ obey the equation

DΦ+ = 0, with D =
∂

∂θ
+ iσµθ̄∂µ.

The product of chiral (antichiral) superfields Φ2, Φ3, etc., is also a chiral (antichiral)

superfield, while the product of chiral and antichiral ones Φ+Φ is a general superfield.

For any arbitrary function of chiral superfields one has

W(Φi) = W(Ai +
√

2θψi + θθF )

= W(Ai) +
∂W
∂Ai

√
2θψi + θθ

(
∂W
∂Ai

Fi − 1

2

∂2W
∂Ai∂Aj

ψiψj

)
. (2.11)

The W is usually referred to as a superpotential which replaces the usual potential for

the scalar fields. The vector superfield satisfies the condition V = V +. They should

be understood in terms of their power series expansion in θ and θ̄ as

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x)

+
i

2
θθ[M(x) + iN(x)]− i

2
θ̄θ̄[M(x)− iN(x)]

− θσµθ̄vµ(x) + iθθθ̄[λ(x) +
i

2
σ̄µ∂µχ(x)]

− iθ̄θ̄θ[λ +
i

2
σµ∂µχ̄(x)] +

1

2
θθθ̄θ̄[D(x) +

1

2
2C(x)]. (2.12)

The component fields C, D, M, N and vµ must be real for Eq. (2.12) to satisfy

V = V +. These vector supermultiplet contains 8 bosonic degrees of freedom (one
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each for C, D, M, M, N and four from the real vector field vµ) and 8 fermionic

degrees of freedom (from the two component spinors χ and λ). The physical degrees

of freedom corresponding to a real vector superfield V are the vector gauge field vµ

and the Majorana spinor field λ. All other components are unphysical and can be

eliminated. We now define the supersymmetric generalization of an Abelian gauge

transformation of the superfield V as

V → V + Φ + Φ+,

where Φ and Φ+ are some chiral superfields. Under this transformation, the compo-

nent transform as

C → C + A + A∗,

χ → χ− i
√

2ψ,

M + iN → M + iN − 2iF,

vµ → vµ − i∂µ(A− A∗), (2.13)

λ → λ,

D → D.

We see that there is a special gauge known as the Wess-Zumino gauge [11] in which

C, χ, M and N are all zero. Fixing this gauge breaks SUSY but still allows the

usual gauge transformation vµ → vµ+∂µA. In this gauge, the vector multiplet reduces

to 4 bosonic degrees of freedom (1 for D and the three remaining components of vµ)

and 4 fermionic degrees of freedom (from the Majorana spinor λ). In this gauge the

vector superfield takes the form

V = −θσµθ̄vµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x),

V 2 = −1

2
θθθ̄θ̄vµ(x)vµ(x),

V 3 = 0,

V n = 0 for n > 3. (2.14)

One can define also a field strength tensor (as analog of Fµν in gauge theories)

Wα = −1

4
D̄2eV Dαe−V ,
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W̄α̇ = −1

4
D2eV D̄αe−V , (2.15)

which is a polynomial in the Wess-Zumino gauge. (Here Ds are the supercovariant

derivatives.) The strength tensor is a chiral superfield

D̄β̇Wα = 0, DβW̄α̇ = 0.

In the Wess-Zumino gauge it is a polynomial over component fields:

Wα = T a

(
−iλa

α + θαDa − i

2
(σµσ̄νθ)αF a

µν + θ2σµDµλ̄
a

)
, (2.16)

where

F a
µν = ∂µv

a
ν − ∂νv

a
µ + gfabcvb

µv
c
ν , Dµλ̄

a = ∂λ̄a + gfabcvb
µλ̄

c.

In Abelian case eqs.(2.15) are simplified and take form

Wα = −1

4
D̄2DαV, W̄α̇ = −1

4
D2D̄αV.

2.3 Supersymmetric Action

Using the rules of Grassmannian integration:

∫
dθα = 0

∫
θα dθβ = δαβ

we can define the general form of a SUSY and gauge invariant Lagrangian as [10]:

LY M
SUSY =

1

4

∫
d2θ Tr(W αWα) +

1

4

∫
d2θ̄ T r(W̄ αW̄α) (2.17)

+

∫
d2θd2θ̄ Φ†

ia (egV )a
b Φb

i +

∫
d2θ W(Φi) +

∫
d2θ̄ W̄(Φ̄i)

Φi are chiral superfields which transform as:

Φi → e−igΛΦi

and

egV → eigΛ†egV e−igΛ

where both Λ and V are matrices:
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Λij = τa
ijΛa, Vij = τa

ijVa,

with τa the gauge generators. The supersymmetric field strength Wα is equal to

Wα = −1

4
D̄D̄e−V DαeV

and transforms as: W → e−iΛWeiΛ.

W is the superpotential, which should be invariant under the group of symme-

tries of a particular model. In terms of component fields the above Lagrangian takes

the form [12]

LY M
SUSY = −1

4
F a

µνF
aµν − iλaσµDµλ̄

a +
1

2
DaDa

+ (∂µAi − igva
µτ

aAi)
†(∂µAi − igvaµτaAi)− iψ̄iσ̄

µ(∂µψi − igvaµτaψi)

− DaA†
iτ

aAi − i
√

2A†
iτ

aλaψi + i
√

2ψ̄iτ
aAiλ̄

a + F †
i Fi

+
∂W
∂Ai

Fi +
∂W̄
∂A†

i

F †
i −

1

2

∂2W
∂Ai∂Aj

ψiψj − 1

2

∂2W̄
∂A†

i∂A†
j

ψ̄iψ̄j (2.18)

Integrating out the auxiliary fields Da and Fi, one reproduces the usual Lagrangian.

Contrary to the SM, where the scalar Higgs potential is arbitrary and is defined

only by the requirement of the gauge invariance, in supersymmetric theories it is

completely defined by the superpotential. It consists of the contributions from the

D-terms and F -terms. The kinetic energy of the gauge fields yields the 1
2
DaDa term,

and the matter-gauge interaction yields the gDaτa
ijA

∗
i Aj one. Together they give

LD =
1

2
DaDa + gDaτa

ijA
∗
i Aj. (2.19)

The equation of motion reads

Da = −gτa
ijA

∗
i Aj, (2.20)

Substituting it back into Eq. (2.19) yields the D-term part of the potential

LD = −1

2
DaDa =⇒ VD =

1

2
DaDa, (2.21)
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where D is given by Eq. (2.20). The F -term contribution can be derived from the

matter field self-interaction. For a general type superpotential W one has

LF = F ∗
i Fi + (

∂W
∂Ai

Fi + h.c.) (2.22)

Using the equations of motion for the auxiliary field Fi

F ∗
i = −∂W

∂Ai

(2.23)

yields

LF = −F ∗
i Fi, =⇒ VF = F ∗

i Fi, (2.24)

where F is given by Eq. (2.23). The full potential is the sum of the two contributions

V = VD + VF . (2.25)

Thus, the form of the Lagrangian is constrained by symmetry requirements. The only

freedom is the field content, the value of the gauge coupling g, Yukawa couplings yijk

and the masses. Because of the renormalizability constraint V ≤ A4 the superpoten-

tial should be limited by W ≤ Φ3. All members of a supermultiplet have the same

masses, i.e. bosons and fermions are degenerate in mass. This property of SUSY

theories contradicts phenomenology and requires SUSY breaking.

2.4 SUSY breaking

Since the SUSY algebra leads to mass degeneracy in a supermultiplet, it should

be broken to explain the absence of superpartners at accessible energies. There are

several ways of SUSY breaking. It can be broken either explicitly or spontaneously.

In performing SUSY breaking one has to be careful not to spoil the cancellation

of quadratic divergencies which allows one to solve the hierarchy problem. This is

achieved by spontaneous breaking of SUSY. It is possible to show that in SUSY

models the energy is always nonnegative definite. According to quantum mechanics

the energy is equal to

E = 〈0| Ĥ |0〉, (2.26)
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where Ĥ is the Hamiltonian and due to the SUSY algebra

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ. (2.27)

Taking into account that Tr(σµPµ) = 2P0 one gets

E =
1

4

∑
α=1,2

〈0|{Qα, Q̄α}|0〉 =
1

4

∑
α

‖Qα|0〉‖2 ≥ 0. (2.28)

Hence

E = 〈0| Ĥ |0〉 6= 0 if and only if Qα|0〉 6= 0.

Therefore, SUSY is spontaneously broken, i.e. the vacuum is not invariant under Q

(Qα|0〉 6= 0), if and only if the minimum of the potential is positive (i.e. E ≥ 0) .

Spontaneous breaking of SUSY is achieved in the same way as electroweak symmetry

breaking. One introduces a field whose vacuum expectation value is nonzero and

breaks the symmetry. However, due to the special character of SUSY, this should

be a superfield whose auxiliary F or D component acquires nonzero VEVs. Thus,

among possible spontaneous SUSY breaking mechanisms one distinguishes the F–

type breaking and the D–type breaking.

i) Fayet-Iliopoulos (D-term) mechanism [12].

In this case the, the linear D-term is added to the Lagrangian

∆L = ξV |θθθ̄θ̄ = ξ

∫
d2θ d2θ̄ V. (2.29)

It is U(1) gauge and SUSY invariant by itself, however, it may lead to spontaneous

breaking of both of them depending on the value of ξ. The drawback of this mecha-

nism is the necessity of U(1) gauge invariance. It can be used in SUSY generalizations

of the SM but not in GUTs. The mass spectrum also causes some troubles since the

following sum rule is always valid

STrM2 =
∑

J

(−1)2J(2J + 1)m2
J = 0, (2.30)

which is bad for phenomenology.

ii) O’Raifeartaigh (F -term) mechanism [12].
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In this case, several chiral fields are needed and the superpotential should be

chosen in such way that trivial zero VEVs for the auxiliary F -fields are forbidden.

For instance, choosing the superpotential to be

W(Φ) = λΦ3 + mΦ1Φ2 + gΦ3Φ
2
1, (2.31)

one gets the equations for the auxiliary fields

F ∗
1 = mA2 + 2gA1A3, (2.32)

F ∗
2 = mA1, (2.33)

F ∗
3 = λ + gA2

1, (2.34)

which have no solutions with 〈Fi〉 = 0 and SUSY is spontaneously broken. The

drawback of this mechanism is that there is a lot of arbitrariness in the choice of

the potential. The sum rule (2.30) is also valid here. Unfortunately, none of these

mechanisms explicitly works in SUSY generalizations of the SM. None of the fields

of the SM can develop nonzero VEVs for their F or D components without breaking

SU(3)C or U(1)Y gauge invariance since they are not singlets with respect to these

groups. This requires the presence of extra sources for spontaneous SUSY breaking

[13–18].



CHAPTER 3

The Minimal Supersymmetric Standard

Model

The Minimal Supersymmetric Standard Model (MSSM) [19] respects the same

gauge symmetry SU(3)C × SU(2)L ×U(1)Y as does the SM. Here SUSY is somehow

(softly) broken at the weak scale. The MSSM is the simplest phenomenologically

viable supersymmetric theory beyond the SM in that it contains the fewest number

of new particles and new interactions.

To construct the MSSM [20] we start with the complete set of chiral fermions,

and add a scalar superpartner to each Weyl fermion so that each fields represents a

chiral multiplet. Similarly we must add a gaugino for each of the gauge bosons in the

SM making up the gauge multiplets. The particles necessary to construct the MSSM

are shown in Tables 3.1. and 3.2.

Superfield SU(3)C SU(2)L U(1)Y Particle Content

Q̂ 3 2 1
6

(uL, dL), (ũL, d̃L)

Û c 3 1 −2
3

uR, ũ∗R

D̂c 3 1 1
3

dR, d̃∗R

L̂ 1 2 −1
2

(νL, eL), (ν̃L, ẽL)

Êc 1 1 1 eR, ẽ∗R

Ĥd 1 2 −1
2

(Hd, H̃d)

Ĥu 1 2 1
2

(Hu, H̃u)

TABLE 3.1. Chiral superfields of the MSSM.

The MSSM is defined by its minimal field content (which accounts for the known

SM fields) and minimal superpotential necessary to account for the known Yukawa

21
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Superfield SU(3)C SU(2)L U(1)Y Particle Content

Ĝa 8 1 0 Gµ, g̃µ

Ŵ r 1 3 0 W µ
r , ω̃µ

r

B̂ 1 1 0 Bµ, b̃µ

TABLE 3.2. Vector Superfields of the MSSM.

mass terms. Notice that in Table 3.1. and 3.2., we have introduced a partner for

every particle of the SM with the same internal quantum number and a spin differing

by 1
2
.

We define the MSSM by the superpotential

W = εij[yeH
j
dL

iec + ydH
j
dQ

idc + yuH
i
uQ

juc + µH i
dH

j
u]. (3.1)

Here, the indices, {ij}, are SU(2)L doublet indices and µ is the Higgs mass parameter.

The Yukawa couplings, y, are all 3×3 matrices in generation space. Note that there is

no generation index for the Higgs multiplets. Color and generation indices have been

suppressed in the above expression. There are two Higgs doublets in the MSSM. This

is a necessary addition to the SM which can be seen as arising from the holomorphic

property of the superpotential. That is, there would be no way to account for all

of the Yukawa terms for both up-type and down-type multiplets with a single Higgs

doublet. To avoid a massless Higgs state, a mixing term εijµH i
dH

j
u must be added to

the superpotential.

However, even if we stick to the minimal field content, there are several other

superpotential terms which we can envision adding to Eq. (3.1) since they are con-

sistent with all of the symmetries of the theory. We could have considered terms

like

WR = µ′iLiHu + λijkLiLje
c
k + λ′ijkLiQjd

c
k + λ′′ijkuc

id
c
jd

c
k, (3.2)

where i, j and k are the generation indices and λ’s are the coupling constants.

In Eq. (3.2), the terms proportional to λ, λ′, and µ′, all violate lepton number

by one unit. The term proportional to λ′′ violates baryon number by one unit.
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Each of the terms in Eq. (3.2) predicts new particle interactions and can be

to some extent constrained by the lack of observed exotic phenomena. However, the

combination of terms which violate both baryon and lepton number can be disastrous.

In order to avoid these unwanted terms, we impose a discrete symmetry on the

theory called R–parity [21], which can be defined as

R = (−1)3B+L+2s, (3.3)

where B, L, and s are the baryon number, lepton number, and spin respectively. With

this definition, it turns out that all of the known SM particles have R-parity +1, and

all the superpartners of the known SM particles have R = −1, since they must have

the same value of B and L but differ by 1/2 unit of spin.

3.1 Electroweak symmetry breaking and the Higgs boson masses

We analyze the scalar potential in this section. It is derived from the superpo-

tential and the terms involving the Higgs in the soft breaking Lagrangian.

The part of the scalar potential which involves only the Higgs bosons (Hu and

Hd) is given by

V = |µ|2(H∗
dHd + H∗

uHu) +
1

8
g′2(H∗

uHu −H∗
dHd)

2

+
1

8
g2

(
4|H∗

dHu|2 − 2(H∗
dHd)(H

∗
uHu) + (H∗

dHd)
2 + (H∗

uHu)
2
)

+m2
Hd

H∗
dHd + m2

Hu
H∗

uHu + (BµεijH
i
dH

j
u + h.c.). (3.4)

Here the first term is the F -term, derived from |(∂W/∂Hd)|2 and |(∂W/∂Hu)|2 setting

all sfermion VEV’s equal to 0. The next two terms are D–terms, the first a U(1)Y

D–term, recalling that the hypercharges for the Higgses are YHd
= −1

2
and YHu = 1

2
,

and the second is an SU(2)L D–term, taking T a = σa where σa are the three Pauli

matrices. Finally, the last three terms are the soft SUSY breaking masses mHd
and

mHu , and the bilinear term Bµ. The Higgs doublets can be written as

〈Hd〉 =

(
H0

d

H−
d

)
, 〈Hu〉 =

(
H+

u

H0
u

)
, (3.5)

where in Eq. (3.4) by (H∗
dHd), we mean H0

d
∗
H0

d + H−
d
∗
H−

d etc.
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The neutral portion of Eq. (3.4) can be expressed more simply as

V =
g2 + g′2

8

(|H0
d |2 − |H0

u|2
)2

+ (m2
Hd

+ |µ|2)|H0
d |2

+(m2
Hu

+ |µ|2)|H0
u|2 + (BµH0

dH0
u + h.c.). (3.6)

For electroweak symmetry breaking, it will be required that either one (or both) of

the soft masses (m2
Hd

,m2
Hu

) be negative (as in the SM).

From the minimization of the potential Eq. (3.6), we obtain the following two

conditions

−2Bµ = (m2
Hd

+ m2
Hu

+ 2µ2) sin 2β, (3.7)

and

v2 =
4
(
m2

Hd
+ µ2 − (m2

Hu
+ µ2) tan2 β

)

(g2 + g′2)(tan2 β − 1)
, (3.8)

where tan β = υu

υd
. From the potential and these two conditions, the masses of the

physical scalars can be obtained. At the tree level,

m2
H± = m2

A + m2
W , (3.9)

m2
A = m2

Hd
+ m2

Hu
+ 2µ2 = −Bµ(tan β + cot β), (3.10)

m2
H,h =

1

2

[
m2

A + m2
Z ±

√
(m2

A + m2
Z)2 − 4m2

Am2
Z cos2 2β

]
. (3.11)

Notice that these expressions and the above constraints limit the number of free

inputs in the MSSM. First, from the mass of the pseudoscalar, we see that Bµ is not

independent and can be expressed in terms of mA and tan β. Furthermore from the

conditions Eqs. (3.7) and (3.8), we see that if we keep tan β, we can either choose

mA and µ as free inputs thereby determining the two soft masses, mHd
and mHu ,

or we can choose the soft masses as inputs, and fix mA and µ by the conditions for

electroweak symmetry breaking. Both choices of parameter fixing are widely used in

the literature.

The tree level expressions for the Higgs masses make some very definite predic-

tions. The charged Higgs is heavier than MW , and the light Higgs h, is necessarily

lighter than MZ . Note if uncorrected, the MSSM would already be excluded (from

current accelerator limits). However, radiative corrections to the Higgs masses are
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not negligible in the MSSM, particularly for a heavy top mass mt ∼ 178 GeV. The

leading one-loop corrections to m2
h depend quartically on mt and can be expressed as

[22]

∆m2
h =

3m4
t

4π2v2
ln

(
mt̃1mt̃2

m2
t

)

+
3m4

t Â
2
t

8π2v2

[
2h(m2

t̃1
,m2

t̃2
) + Â2

t g(m2
t̃1
,m2

t̃2
)
]

+ . . . (3.12)

where mt̃1,2
are the physical masses of the two stop squarks t̃1,2 to be discussed in more

detail shortly, Ât ≡ At + µ cot β, (At is the SUSY breaking trilinear term associated

with the top quark Yukawa coupling). The functions h and f are

h(a, b) ≡ 1

a− b
ln

(a

b

)
, g(a, b) =

1

(a− b)2

[
2− a + b

a− b
ln

(a

b

)]
. (3.13)

Additional corrections to coupling vertices, two-loop corrections and renormalization-

group resummations have also been computed in the MSSM [23]. With these correc-

tions one can allow

mh <∼ 130 GeV, (3.14)

within the MSSM. While certainly higher than the tree level limit of MZ , the limit still

predicts a relatively light Higgs boson, and allows the MSSM to be experimentally

excluded (or verified!) at the LHC.

3.2 The sfermions masses

We turn next to the discussion of scalar partners of the quarks and leptons.

The mixing matrices for m̃2
t , m̃

2
b and m̃2

τ are


 m̃2

tL mt(At + µ cot β)

mt(At + µ cot β) m̃2
tR


 , (3.15)


 m̃2

bL mb(Ab + µ tan β)

mb(Ab + µ tan β) m̃2
bR


 , (3.16)


 m̃2

τL mτ (Aτ + µ tan β)

mτ (Aτ + µ tan β) m̃2
τR


 , (3.17)



26

with

m̃2
tL = m̃2

Q + m2
t +

1

6
(4M2

W −M2
Z) cos 2β,

m̃2
tR = m̃2

U + m2
t −

2

3
(M2

W −M2
Z) cos 2β,

m̃2
bL = m̃2

Q + m2
b −

1

6
(2M2

W + M2
Z) cos 2β,

m̃2
bR = m̃2

D + m2
b +

1

3
(M2

W −M2
Z) cos 2β,

m̃2
τL = m̃2

L + m2
τ −

1

2
(2M2

W −M2
Z) cos 2β,

m̃2
τR = m̃2

E + m2
τ + (M2

W −M2
Z) cos 2β.

The first terms here (m̃2) are the soft ones, which are calculated using the Renor-

malization Group (RG) equations starting from their values at the GUT (Planck)

scale. The second ones are the usual masses of quarks and leptons and the last ones

are the D terms of the potential.

The off-diagonal mixing term in the mass matrix is negligible for all but the third

generation sfermions. The physical sfermion states and their masses are determined

by diagonalizing the sfermion mass matrix.

3.3 Neutralinos

There are four new neutral fermions in the MSSM which not only receive mass

but mix as well. These are the gauge fermion partners of the neutral B and W 3

gauge bosons, and the partners of the Higgs. The two gauginos are called the bino,

B̃, and wino, W̃ 3 respectively. The latter two are the Higgsinos, H̃d and H̃u. In

addition to the SUSY breaking gaugino mass terms, −1
2
M1B̃B̃, and −1

2
M2W̃

3W̃ 3,

there are supersymmetric mass contributions of the type W ijψiψj, giving a mixing

term between H̃d and H̃u,
1
2
µH̃dH̃u, as well as terms of the form g(φ∗T aψ)λa giv-

ing the following mass terms after the appropriate Higgs VEVs have been inserted,

1√
2
g′vdH̃dB̃, − 1√

2
g′vuH̃uB̃, − 1√

2
gvdH̃dW̃

3, and 1√
2
gvuH̃uW̃

3. These latter terms can

be written in a simpler form noting that for example, g′vd/
√

2 = MZ sin θW cos β.
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Thus we can write the neutralino mass matrix as (in the (B̃, W̃ 3, H̃0
d , H̃0

u) basis) [24]




M1 0 −MZsθW
cos β MZsθW

sin β

0 M2 MZcθW
cos β −MZcθW

sin β

−MZsθW
cos β MZcθW

cos β 0 −µ

MZsθW
sin β −MZcθW

sin β −µ 0




, (3.18)

where sθW
= sin θW and cθW

= cos θW . The mass eigenstates (a linear combination of

the four neutralino states) and the mass eigenvalues are found by diagonalizing the

mass matrix Eq. (3.18).

3.4 Charginos

There are two new charged fermionic states which are the partners of the W±

gauge bosons and the charged Higgs scalars, H±, which are the charged gauginos,

W̃± and charged Higgsinos, H̃±, or collectively charginos. The chargino mass matrix

is composed similarly to the neutralino mass matrix. The result for the mass term is

−1

2
(W̃−, H̃−)

(
M2

√
2mW sin β

√
2mW cos β µ

) (
W̃+

H̃+

)
+ h.c. (3.19)

Note that unlike the case for neutralinos, two unitary matrices must be constructed

to diagonalize Eq. (3.19). The result for the mass eigenstates of the two charginos is

m2
ec1 ,m

2
ec2 =

1

2

[
M2

2 + µ2 + 2M2
W ±

√
(M2

2 + µ2 + 2M2
W )2 − 4(µM2 −M2

W sin 2β)2
]

(3.20)

Some additional resources on supersymmetry used in this preliminary introduc-

tion are the classic by Bagger and Wess on supersymmetry [25], the book by Ross on

Grand Unification [26] and some other good reviews by Martin and others [27–33].



CHAPTER 4

ANOMALY MEDIATED

SUPERSYMMETRY BREAKING

Understanding the origin of Supersymmetry breaking has been one of the main

focuses of SUSY phenomenologists. It is highly non–trivial to construct models which

break supersymmetry in a generally acceptable way.

The most common scenario for producing low–energy Supersymmetry breaking

is called the hidden sector. The usual SM matter fields reside in the visible sector and

the fields that break supersymmetry reside in the hidden sector. There are no (small)

direct couplings between the two sectors. The symmetry breaking which occurs in

the hidden sector is communicated to the visible sector via “ messenger ” fields.

Some of the several competing proposals on what the mediating interaction

might be are Gravity mediation (SUGRA), Gauge mediation, Gaugino mediation

and Anomaly mediation.

Any successful supersymmetry breaking scenario should at least satisfy the fol-

lowing conditions:

• The theory should give correct masses to the superpartners ∼ 1 TeV, and the

scalar mass–squared should be positive,

• The µ parameter should be between 100 GeV – 1 TeV and the Bµ parameter

should not be too much larger than µ2,

• There are no large flavor changing neutral currents,

• CP should be approximately conserved (A & B phase should be small, as

required by the measurement of the electric dipole moments of neutron and

electron),

28
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• The model should be simple enough such that it can be tested experimentally.

This thesis is based on the Anomaly mediation scenario of SUSY breaking.

Before going into any details of the proposed models, I will briefly review the other

three scenarios and what others have done on anomaly mediation.

4.1 Gravity mediation

In this scenario, the messenger is gravity. Supersymmetry is broken in the

hidden sector by a VEV 〈F 〉. The moduli field T , which appears as a result of

compactification from higher dimensions and the dilaton field S, which is part of the

SUGRA supermultiplet develop a non–zero VEV for their F components which in

turn leads to spontaneous SUSY breaking. The soft mass term in the visible sector

is roughly

msoft ∼ 〈F 〉
MPl

. (4.1)

These soft masses should vanish as 〈F 〉 → 0 where SUSY remains unbroken.

In this scenario, the SUSY sector is completely described by 5 input parameters:

Higgs mass parameter (µ), common scalar mass (m0), common gaugino mass (m1/2),

common trilinear coupling (A0) and the Higgs mixing parameter (B).

When SUSY is broken at a scale
√
〈F 〉, the graviton will also obtain a mass

msoft ∼ m3/2 ∼ 〈F 〉
MPl

. (4.2)

Since we argued earlier that for SUSY to solve the hierarchy problem the mass scale

should be msoft ∼1 TeV, therefore SUSY should be broken at a scale
√
〈F 〉 ∼ 1011

GeV.

Some of the good features of the models are

• Extremely predictive– because the entire low energy spectrum is predicted in

terms of few input parameters (m0, m1/2, A0, tan β (B) and sign(µ)), where

all phenomenological limits can be expressed in terms of these parameters,
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• Gauge couplings are unified and the gaugino masses are predicted to be the

ratios of the gauge couplings,

• The µ problem is solved through Guidice–Masiero mechanism, where a singlet

field Σ in the Kahler potential
∫

d4θΣ∗HdHu/MPl breaks SUSY,

• It is easy to generate positive scalar mass–squared.

• Hu mass–squared turns negative due to large top Yukawa coupling even if it

starts of being positive at the Planck scale.

Despite the success of the theory, there are still some problems which are: CP is

generally a problem, large freedom of parameters, absence of automatic suppression of

flavor violation, lack of consistent theory of quantum supergravity (local symmetry).

4.2 Gauge mediation

In this scenario the Supersymmetry breaking is communicated from the hidden

sector to the visible sector via gauge interactions. The main idea is to introduce new

chiral multiplets (messengers) which couple indirectly to the MSSM fields through

the SU(3)C × SU(2)L × U(1)Y gauge interactions.

The particles ((s)quarks and (s)leptons) gets large mass by coupling to a gauge

singlet chiral supermultiplet S. The superpotential for a typical gauge mediation can

be written as

W = λ1S`¯̀+ λ2Sqq̄. (4.3)

The singlet scalar S and the auxiliary component of S (Fs) acquires a VEV by

putting the scalar field into an O’Raifeartaigh–type model or a dynamical mechanism.

The gauginos get mass at 1–loop

Mi ∼ αi

4π
Λ (i = 1, 2, 3), (4.4)

where Λ = Fs/〈S〉.
The MSSM scalars do not get any radiative corrections to their masses at 1–

loop. Their masses arise at 2–loop level from those diagrams involving the gauge



31

fields and the messengers. The scalar masses are given by

m̃ ∼
(

Λ

4π

)2

{α2
3C3 + α2

2C2 + α2
1C1}, (4.5)

where Ci are the quadratic Casimir operators for the SU(3)C×SU(2)L×U(1)Y gauge

group. This implies that the sparticles with the same gauge quantum number will

have equal masses (for example: m̃e = m̃µ = m̃τ ).

In order for the gauginos and scalar soft masses to be ∼ 1 TeV (as needed for

the hierarchy problem) requires Λ ∼ 104 − 105 GeV. In most of the gauge mediation

models, the slepton and squark masses depend only on their gauge quantum num-

bers. This leads to the degeneracy of squark and slepton mass which results in the

suppression of flavor changing neutral currents (FCNC’s). The Lightest Supersym-

metric Particle (LSP) is usually the gravitino, with mass m3/2 ∼ Λ2/Mpl ∼ 10−10

GeV, which can be crucial both for cosmology and collider physics.

In summary:

• gauge mediated supersymmetry breaking (GMSB) solves the FCNC problem,

• gaugino mass arise at 1–loop while the scalar mass–squared arise at two loop

level,

• there is still a problem in the Higgs sector (offers no compelling solution to the

µ problem),

• it does not offer any solution to the SUSY CP problem.

4.3 Gaugino mediation

In this scenario the SM quark and lepton fields are localized on a ‘3–brane’

in extra dimensions, while the gauge and Higgs fields propagate in the bulk. SUSY

breaking masses for the gauginos and Higgs fields are generated by higher–dimensional

contact terms between the bulk fields and the hidden sector fields, assumed to arise

from a more fundamental theory such as string theory [34]. The leading contribution

to the SUSY breaking for visible sector fields arises from loops of bulk gauge and

Higgs fields as shown in Fig. 4.1
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Figure 4.1. Leading diagram that contributes to SUSY–breaking scalar masses. The
bulk line is a gaugino propagator.

The minimal version of gaugino mediation has only three high energy param-

eters µ, m1/2 and Mc. Here m1/2 is the universal gaugino mass at the unification

scale and Mc is the compactification scale where the higher dimensional theory is

matched onto the effective four–dimensional theory. For sin2 θW prediction to be pre-

served from gauge coupling unification requires Mc > MGUT . In some other models

of gaugino mediation [35] the µ parameter is determined by fitting to the Z mass.

Such model requires only two free parameters m1/2 and Mc.

The gaugino mediation scenario is the least developed in the literature. It does

not offer any real solution to the µ problem.

4.4 Anomaly mediation

This scenario assumes that supersymmetry breaking takes place in a hidden

or sequestered sector. The MSSM superfields are confined to a 3–brane in a higher

dimensional bulk space–time separated from the sequestered sector by extra dimen-

sions. A rescaling super–Weyl anomaly generates coupling of the auxiliary field of the

gravity multiplet to the gauginos and the scalars of the MSSM, with the couplings

determined by the SUSY renormalization group equations (RGE) [36].
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Before going into much details, it is important to give a brief review on how

this scenario address the numerous problems associated with the other three scenarios

addressed earlier.

• The µ parameter can be generated without generating excessively large Bµ

due to the constraints from the coupling of the gravitational multiplet.

• The dominant anomaly–mediated contribution to the squark and slepton

masses suppresses flavor violation automatically.

• There are no new phases in the A and B terms. This implies a natural solution

to the SUSY CP problem. In other words CP can be violated on our 3–brane

and nowhere else.

• The model is straightforward in the sense that the basic assumption is that

SUSY breaking is derived from higher dimensional theory.

• These SUSY breaking models are very predictive. The ratio of the gaugino

masses depends on the beta functions rather than the gauge couplings. The A–

terms are predicted to be proportional to the corresponding Yukawa coupling

and there is a nearly degenerate Wino/Zino LSP, of which the Zino is the lighter.

• The gaugino and scalar masses are comparable.

• Since the rescaling anomaly is UV insensitive, the pattern of SUSY breaking

masses at any energy scale is governed only by the physics at that scale [36–38].

An arbitrary flavor structure in the SUSY scalar spectrum at high energies gets

washed out at low energies. This Ultraviolet (UV) insensitivity provides an

elegant solution to the SUSY flavor problem.

• It can naturally solve the cosmological gravitino abundance problem which

tends to destroy the success of big bang cosmology in generic supergravity

models [39].
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• The decay of the moduli fields present in the model (as well as the gravitino)

will produce neutralinos, especially the neutral Winos, with the right abundance

to make it a viable cold dark matter candidate [40, 41].

We see from above that this model seems to be a viable (promising) model for

understanding the MSSM supersymmetry breaking. It turns out that there is a major

problem in this model which is discussed below.

4.4.1 The negative slepton mass problem of anomaly mediated supersymmetry breaking

In anomaly mediated supersymmetry breaking models (AMSB), the masses of

the scalar components of the chiral supermultiplets are given by [36, 37]

(m2)
φj

φi
=

1

2
M2

aux

[
β(Y )

∂

∂Y
γ

φj

φi
+ β(g)

∂

∂g
γ

φj

φi

]
. (4.6)

In the above equation summations over the gauge couplings g and the Yukawa cou-

plings Y are assumed. γ
φj

φi
are the one–loop anomalous dimensions, β(Y ) is the beta

function for the Yukawa coupling Y , and β(g) is the beta function for the gauge

coupling g. Maux is the vacuum expectation value of a “compensator superfield” [36]

which sets the scale of SUSY breaking. The gaugino mass Mg associated with the

gauge group with coupling g is given by [36, 37]

Mg =
β(g)

g
Maux. (4.7)

The trilinear soft supersymmetry breaking term AY corresponding to the Yukawa

coupling Y is given by [36, 37]

AY = −β(Y )

Y
Maux. (4.8)

In the simplest scenario for generating the µ term for a special class of models, the

contribution to the Higgs mixing parameter (the B-term) is given by [36]

B = − (γHu + γHd
) Maux. (4.9)

Here γHu and γHd
are the one–loop anomalous dimensions of the Hu and Hd fields.

Similar relations hold for other bilinear terms in the SUSY breaking Lagrangian.



35

In the minimal scenario, it turns out that AMSB induces a negative mass–

squared for the sleptons. Such a scenario is excluded since it would break electro-

magnetism. The reason for the negative mass–squared can be understood as follows.

There are two sources for slepton masses in AMSB, the Yukawa part and the gauge

part (cf: Eq. (4.6)). For the first two families the Yukawa couplings are negligible

and the dominant contributions arise proportional to the gauge beta function. Since

in the MSSM the SU(2)L and the U(1)Y gauge couplings are not asymptotically free,

their gauge beta functions are positive. This makes the slepton mass–squared nega-

tive. In the squark sector, the masses are positive because SU(3)C gauge theory is

asymptotically free.

4.4.2 Suggested solutions to the AMSB slepton mass problem

Several possible ways of avoiding the slepton mass problem of AMSB have been

suggested. A non–decoupling universal bulk contribution to all the scalar masses is a

widely studied option [36–42]. While this will make the minimal model phenomeno-

logically consistent, the UV insensitivity of AMSB is no longer guaranteed. It is

therefore interesting to investigate variations of the minimal model which maintain

the UV insensitivity but provide positive mass–squared for the sleptons from physics

at the TeV scale.

One way to avoid the negative slepton mass problem with TeV scale physics is to

increase the Yukawa contributions in Eq. (4.6). This can be achieved by introducing

new particles at the TeV scale with large Yukawa couplings to the lepton fields. This

possibility was studied in Ref. [43] where the MSSM spectrum was extended to

include 3 pairs of Higgs doublets, four singlets and a vector–like pair of color–triplets

near the weak scale. The Yukawa contributions can also be enhanced by invoking

R–parity violating couplings in the MSSM [44]. Unfortunately such a theory would

generate unacceptably large neutrino masses. Yet another possibility is to make use of

the positive D–term contributions from a U(1) gauge symmetry broken at the weak

scale. This was achieved by adding TeV scale Fayet–Iliopoulos terms explicitly to

the theory in Ref. [45]. New D–term contributions generated in a controlled fashion
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by the breaking of U(1)B−L at an arbitrary high scale may also provide positive

contributions to the slepton masses [46, 47]. A low scale ancillary U(1) as a solution

to the problem has been studied in Ref. [48]. Effective supersymmetric theories which

are devoid of the negative slepton mass problem of AMSB with new dynamics at the

10 TeV scale have been studied in Ref. [49]. Non–decoupling effects of heavy fields

at higher orders have been analyzed in AMSB models in Ref. [50] as an attempt to

solve the slepton mass problem.



CHAPTER 5

TeV–Scale Horizontal Symmetry and the

Slepton Mass Problem of Anomaly

Mediation

5.1 Introduction

As noted in chapter 4, supersymmetry provides an elegant solution to the gauge

hierarchy problem of the standard model. To be realistic, it must however be a broken

symmetry. There are several ways of achieving supersymmetry (SUSY) breaking.

Anomaly mediated SUSY breaking (AMSB) is an attractive and predictive scenario

which has the virtue that it can solve the SUSY flavor problem [36, 37]. This scenario

assumes that SUSY breaking takes place in a hidden or sequestered sector. The

MSSM superfields are confined to a 3–brane in a higher dimensional bulk space–

time separated from the sequestered sector by extra dimensions. A rescaling super–

Weyl anomaly generates coupling of the auxiliary field of the gravity multiplet to

the gauginos and the scalars of the MSSM, with the couplings determined by the

SUSY renormalization group equations (RGE). Since the rescaling anomaly is UV

insensitive, the pattern of SUSY breaking masses at any energy scale is governed

only by the physics at that scale [36–38]. Arbitrary flavor structure in the SUSY

scalar spectrum at high energies gets washed out at low energies. This ultraviolet

insensitivity provides an elegant solution to the SUSY flavor problem.

The purpose of this thesis is to suggest and investigate the possibility of solving

the negative slepton mass problem by making the gauge contribution in Eq. (4.6)

positive. This can only be achieved by introducing a new non–Abelian gauge sym-

metry for leptons with negative gauge beta function. We point out that an SU(3)H

horizontal symmetry acting on the lepton multiplets has all the desired properties

37
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for achieving this. We show that such an SU(3)H horizontal symmetry broken at

the TeV scale is consistent with rare leptonic processes owing to the emergence of

approximate global symmetries.

The specific AMSB model we study is quite predictive. The lightest Higgs

boson mass is predicted to be mh . 120 GeV, and the parameter tan β is found to

be tan β ' 4. The model predicts the existence of new particles associated with the

SU(3)H symmetry breaking sector. The SU(3)H vector bosons have masses of order

1–4 TeV. These particles should be accessible experimentally at the LHC.

The plan of the chapter is as follows. In section 5.2 we introduce our model. In

section 5.3 we analyze the Higgs potential of the model. Here we derive the limits on

tan β and mh. In section 5.4 we present the SUSY spectrum of the model and show

how the sleptons acquire positive masses. Numerical results for the full spectrum

of the model are given in section 5.5. In section 5.6 we outline the most significant

experimental consequences of the model. In section 5.7 we comment on the possible

origins of the µ and the Bµ terms. We summarize in section 5.8. In Appendix A, we

give the relevant beta functions, anomalous dimensions as well as the soft masses.

5.2 SU(3)H horizontal symmetry

In this section we present our model. Since our aim is to have positive con-

tributions to the slepton masses from the gauge sector, we are naturally led to a

leptonic horizontal symmetry that is asymptotically free. Our model is based on the

gauge group SU(3)C × SU(2)L × U(1)Y × SU(3)H , where SU(3)H is a horizontal

symmetry acting on the leptons. The left–handed lepton doublets and the antilepton

singlets transform as fundamental representations of the SU(3)H gauge symmetry.

The theory is made anomaly free by introducing three Higgs multiplets (Φ1, Φ2, Φ3)

which transform as antifundamental representations of SU(3)H and as singlets of the

standard model. These fields are sufficient for breaking the SU(3)H symmetry com-

pletely near the TeV scale. The particle content of the model and the transformation

properties under the gauge group SU(3)C ×SU(2)L×U(1)Y ×SU(3)H are presented

in Table 5.1. It turns out that the Higgs potential involving these Φi fields exhibits
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a global SU(3)G symmetry. We take advantage of this global symmetry to suppress

potentially large flavor changing neutral current processes mediated by the SU(3)H

gauge bosons. The last column in Table 5.1 lists the transformation properties under

the global SU(3)G symmetry (The Yukawa couplings of the model reduce the global

SU(3)G down to U(1).) The fields ηi and η̄i are introduced to facilitate SU(3)H

symmetry breaking within our AMSB framework.

Superfield SU(3)C SU(2)L U(1)Y SU(3)H SU(3)G

Qi 3 2 1
6

1 1

uc
i 3̄ 1 −2

3
1 1

dc
i 3̄ 1 1

3
1 1

Lα 1 2 −1
2

3 1

ec
α 1 1 1 3 1

Hu 1 2 1
2

1 1

Hd 1 2 −1
2

1 1

Φα
i 1 1 0 3̄ 3

ηi 1 1 0 3̄ 3

η̄i 1 1 0 3 3̄

TABLE 5.1. Particle content and charge assignment of the model. SU(3)G in the last column
is a softly broken global symmetry present in the model. The indices i and α take
values i, α = 1− 3.

Note that the quarks are neutral under SU(3)H . This is necessitated by the

requirements that SU(3)H be asymptotically free. A separate SU(3)H′ acting on the

quarks is a possible quark–lepton symmetric extension of the model. But we do not

pursue such an extension here.

The superpotential of the model consistent with the gauge symmetries and the

global SU(3)G symmetry is given by:

W = (Yu)ij QiHuu
c
j + (Yd)ij QiHdd

c
j + µHuHd

+ κΦα
1 Φβ

2Φγ
3εαβγ + ληα

a ηβ
b Φγ

c εαβγε
abc + Mηηaη̄a. (5.1)
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Here α, β, γ =1, 2, 3 are SU(3)H indices, i, j = 1, 2, 3 are family indices, and a, b, c =

1, 2, 3 are SU(3)G indices. The mass parameters µ and Mη are of order TeV, which

has a natural origin in AMSB [36]. We will comment on possible origin of these terms

in Sec. 5.7.

In the SU(3)H symmetric limit the leptons are all massless. They obtain their

masses from the effective operators

Ll
eff =

Lαec
αΦα

i Φα
i Hd

M2
i

. (5.2)

Such operators can be obtained by integrating fields shown in Fig. 1, for example.

The masses of the heavy fields break SU(3)G symmetry softly (the ψ̄iψi and the ĒiEi

mass terms in Fig. 5.1). Note that the mass scale Mi in Eq. (5.2) is of order 5

Lα

Φi
α

ψi ψi EiEi

Hd

ec
α

Φi
α

Figure 5.1. Effective operators inducing charged lepton masses.

TeV for generating realistic τ–lepton mass, of order 20 TeV for the µ mass and of

order 300 TeV for the electron mass (assuming that all relevant Yukawa couplings

are of order one). Since these masses are all much heavier than the effective SUSY

breaking scale of order 1 TeV, these heavy fields will have no effect in the low energy

SUSY phenomenology within AMSB. Note that no generation mixing is induced

by these effective operators, which will guarantee the approximate conservation of

electron number, muon number and tau lepton number. This is what makes the

model consistent with FCNC data even when SU(3)H is broken at the TeV scale.

Since the Higgs potential respects SU(3)H × SU(3)G symmetry, after spontaneous
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symmetry breaking, the diagonal subgroup SU(3)G+H remains as an unbroken global

symmetry. This subgroup contains e, µ and τ lepton numbers.

Since right–handed neutrinos are not required to be light for SU(3)H anomaly

cancellation, they acquire heavy masses and decouple from the low energy theory.

Small neutrino masses are then induced through the seesaw mechanism. Specifically,

the following effective nonrenormalizable operators emerge after integrating out the

heavy right–handed neutrino fields:

Lν
eff =

λαβ
ij LαLβHuHuΦ

α
i Φβ

j

M3
N

. (5.3)

Here MN represents the masses of the heavy right–handed neutrino fields. For

MN ∼ 107 GeV and 〈Φi〉 ∼ TeV, neutrino masses in the right range for oscillation phe-

nomenology are obtained. Note that Eq. (5.3) arises from integrating neutral leptons

with their masses assumed to break all global symmetries. This enables generation

of large neutrino mixing angles, as needed for phenomenology.

5.3 Symmetry breaking

The SU(3)H model has two sets of Higgs bosons: the usual MSSM Higgs dou-

blets Hu and Hd, and the SU(3)H Higgs antitriplets Φi (i = 1, 2, 3). The Higgs

potential is derived from the superpotential of Eq. (5.1) and includes the soft terms

and the D terms. The tree level potential splits into two pieces:

V (Hu, Hd, Φi) = V (Hu, Hd) + V (Φi), (5.4)

enabling us to analyze them independently. The first part, V (Hu, Hd), is identical to

the MSSM potential which is well studied. There are however significant constraints

on the parameters in our AMSB extension, which we now discuss.

5.3.1 Constraints on tan β and mh

Minimization of V (Hu, Hd) gives

sin 2β =
2Bµ

2µ2 + m2
Hu

+ m2
Hd

, µ2 =
m2

Hd
−m2

Hu
tan2 β

tan2 β − 1
− M2

Z

2
. (5.5)
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Here m2
Hu

and m2
Hd

are the Higgs soft masses and are given in the Appendix for the

AMSB model (see Eqs. (A.19)–(A.20).) The constraints on mh and tan β arise since

these soft masses and the B parameter are determined in terms of a single parameter

Maux in our framework.

We eliminate Maux in favor of M2, the Wino mass (M2 =
b2g2

2

16π2 Maux). We see

from Eqs. (4.9), (5.5) as well as from Eqs. (A.6)–(A.7) and Eqs. (A.19)–(A.20) of the

Appendix that tan β is fixed in terms of M2. In Fig. 5.2 we plot tan β as a function of

M2. For the experimentally interesting range of M2 & 100 GeV, we find that tan β '
3.8 – 4.0. In obtaining the limit on tan β, we followed the following procedure. As

inputs at MZ we chose [51]

α3(MZ) = 0.119, sin2 θW = 0.2312, α(MZ) =
1

127.9
. (5.6)

Using the central value of Mt = 174.3 GeV, we obtain the running mass mt(Mt) with

the 2–loop QCD correction as [52]

Mt

mt(Mt)
= 1 +

4

3

α3(Mt)

π
+ 10.9

(
α3(Mt)

π

)2

. (5.7)

Using 5–flavor SM QCD beta functions we extrapolated α3(MZ) and obtained

α3(Mt) = 0.109. The top quark Yukawa coupling is then found to be (for Mt = 174.3

GeV) Y SM
t (Mt) = 0.935 corresponding to mt(Mt) = 162.8 GeV. This coupling is

then evolved from Mt to 1 TeV where we minimize the MSSM Higgs potential. Using

standard model beta function we obtain Y SM
t (1 TeV) = 0.851. The corresponding

MSSM coupling is Yt(1 TeV) = Y SM
t (1 TeV)/ sin β , which for tan β ' 4.0 (justified

a–posteriori) is Yt(1 TeV) = 0.824. The gauge couplings at 1 TeV are found to be

g1(1 TeV) = 0.466, g2(1 TeV) = 0.642 and g3(1 TeV) = 1.098. With these values

of couplings at 1 TeV we obtained Fig. 5.2. Uncertainties in the prediction for tan β

are estimated to be ±0.5, arising from the error in top quark mass and from the

precise scale at which the Higgs potential is minimized. We conclude that tan β =

3.5–4.5 in this model.

Since tan β is fixed and since the At parameter is not free in AMSB, there is

a nontrivial prediction for the lightest Higgs boson mass mh. We use the 2–loop
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nβ

Figure 5.2. Plot of tan β as a function of M2

radiatively corrected expression for m2
h = (m2

h)o +∆m2
h, where (m2

h)o is the tree–level

value of the mass and the radiative correction is given by [53]

∆m2
h =

3m4
t

4π2υ2

[
t + Xt +

1

16π2

(
3

2

m2
t

υ2
− 32πα3(Mt)

)
(2Xtt + t2)

]
. (5.8)

Here

Xt =
Ãt

2

m2
t̃

(
1− Ãt

2

12m2
t̃

)
, Ãt = At − µ cot β, (5.9)

and t =log(
m2

t̃

M2
t
), υ = 174 GeV. m2

t̃
is the arithmetic average of the diagonal entries

of the squared stop mass matrix and At is the soft trilinear coupling associated with

the top Yukawa coupling in the superpotential of Eq. (5.1). In these expressions,

mt is the one–loop QCD corrected running mass, mt = Mt

1+ 4
3

α3(Mt)
π

, which equals 166.7

GeV for Mt = 174.3 GeV. We find that mh ' 113 GeV – 120 GeV, depending on the

choice of Maux. The larger value mh ' 120 GeV is realized only for larger Mt ' 180

GeV. We list in Tables 5.2–5.4 the value of mh, along with the other sparticle masses.
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5.3.2 SU(3)H symmetry breaking

Let us now analyze the SU(3)H symmetry breaking sector of the potential. The

potential V (Φi) is given by:

V (Φi) = m2
φ(Φ

†
1Φ1 + Φ†

2Φ2 + Φ†
3Φ3) + κAκ

(
Φα

1 Φβ
2Φγ

3εαβγ + c.c
)

+ κ2
[
(Φ1Φ2)

†(Φ1Φ2) + (Φ1Φ3)
†(Φ1Φ3) + (Φ2Φ3)

†(Φ2Φ3)
]

+
g2
4

8

8∑
a=1

|Φ†
1λ

aΦ1 + Φ†
2λ

aΦ2 + Φ†
3λ

aΦ3|2. (5.10)

Here g4 is the gauge coupling of the SU(3)H , Aκ is the trilinear A–term corresponding

to the coupling κ, m2
φ is the soft mass squared for the Φi fields. These soft SUSY

breaking parameters are given in the Appendix (Eqs. (A.17), (A.23)). The κ2 term in

Eq. (5.10) is the F -term contribution and the last term in Eq. (5.10) is the SU(3)H

D–term with λa being the SU(3)H generators.

The Higgs potential, Eq. (5.10), has an SU(3)H × SU(3)G symmetry, with the

Φi fields (i = 1− 3) transforming as (3̄,3). This allows for a vacuum which preserves

an SU(3)H+G diagonal subgroup. The VEVs of the Φi fields are then given by:

〈Φ1〉 =




u

0

0


 , 〈Φ2〉 =




0

u

0


 and 〈Φ3〉 =




0

0

u


 . (5.11)

Using these VEVs the potential becomes

〈V (Φ)〉 = 3m2
φu

2 + 3κ2u4 + 2κAκu
3. (5.12)

Minimization of Eq. (5.12) leads to the condition

u =
−Aκ ±

√
−8m2

φ + A2
κ

4κ
. (5.13)

The argument in the square root of Eq. (5.13), which should be positive for a consis-

tent symmetry breaking, is given by

−8m2
φ + A2

κ =
M2

aux

(16π2)2
[15κ4 + 56κ2λ2 + 304λ4 − 8κ2g2

4 − 32λ2g2
4]. (5.14)
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Positivity of Eq. (5.14) leads to constraints on the parameters {λ, κ}. It can be

shown that Eq. (5.14) implies 0 6 |κ| 6 0.731g4 and 0 6 |λ| 6 0.324g4. Furthermore,

positivity of the slepton masses, along with the experimental limit m2
slepton & (100

GeV)2, require g4 > 0.5. This essentially fixes the parameter space of the model. We

get the right minimum by choosing the negative sign of the square root in Eq. (5.13)

(for positive Maux), with this choice, all the Higgs masses–squared will be positive.

Since the symmetry breaking chain is SU(3)H × SU(3)G → SU(3)H+G, we can

classify the masses of all scalars and fermions as multiplets of SU(3)H+G. The complex

Φ(3̄, 3) scalar multiplet decomposes into 2 octets and two singlets of SU(3)H+G. One

octet gets eaten by the Higgs mechanism. A physical octet remains in the spectrum

with a mass given by

M2
octet = −2κ2u2 − 2κuAκ + g2

4u
2. (5.15)

There are two singlets, one scalar (φs) and one pseudoscalar (φp) with masses given

by

m2
φs

= 4κ2u2 + κuAκ, (5.16)

m2
φp

= −3κuAκ. (5.17)

In the fermionic sector, the octet Higgsino mixes with the octet gaugino with a

mixing matrix given by

M′
octet =

(
m4 g4u

g4u κu

)
. (5.18)

In addition, there is a Majorana fermion, a singlet of SU(3)H+G, with a mass of

mφ̃ = 2κu. (5.19)

Finally the gauge bosons form an octet with a mass

MV = g4u. (5.20)

5.4 The SUSY spectrum

We are now ready to discuss the full SUSY spectrum of the model. We will

see that the tachyonic slepton problem is cured by virtue of the positive contribution

from the SU(3)H gauge sector.
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5.4.1 Slepton masses

The slepton mass–squareds are given by the eigenvalues of the mass matrices

(α = e, µ, τ)

M2
l̃

=

(
m2

L̃α
mEα

(
AYEα

− µ tan β
)

mEα

(
AYEα

− µ tan β
)

m2
ẽc
α

)
. (5.21)

Here

m2
L̃α

=
M2

aux

(16π2)

[
YEαβ(YEα)−

(
3

2
g2β(g2) +

3

10
g1β(g1) +

8

3
g4β(g4)

)]

+ m2
Eα

+

(
−1

2
+ sin2 θW

)
cos 2βM2

Z , (5.22)

m2
ẽc
α

=
M2

aux

(16π2)

[
2YEαβ(YEα)−

(
6

5
g1β(g1) +

8

3
g4β(g4)

)]

+ m2
Eα
− sin2 θW cos 2βM2

Z . (5.23)

The off diagonal terms in Eq. (5.21) are rather small as they are proportional to

the lepton masses. The SUSY soft masses are calculated from the RGE give in the

Appendix. The last terms of Eqs. (5.22)–(5.23) are the D–terms. Note the positive

contribution from the SU(3)H gauge sector in Eqs. (5.22)–(5.23), given by the term

−8
3
g4β(g4). In our model g4 is asymptotically free with β(g4) = − 3

16π2 g
3
4. This

contribution makes the mass–squared of all sleptons to be positive for g4 > 0.5.

The left handed sneutrino mass is given by

m2
ν̃i

=
M2

aux

(16π2)

[
−

(
3

2
g2β(g2) +

3

10
g1β(g1) +

8

3
g4β(g4)

)]

+
1

2
cos 2βM2

Z , (5.24)

where i = e, µ, τ .

5.4.2 Squark masses

The mixing matrix for the squark sector is similar to the slepton sector. The

diagonal entries of the up and the down squark mass matrices are given by [27]

m2
Ũi

= (m2
soft)

Q̃i

Q̃i
+ m2

Ui
+

1

6

(
4M2

W −M2
Z

)
cos 2β,
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m2
Ũc

i
= (m2

soft)
Ũc

i

Ũc
i

+ m2
Ui
− 2

3

(
M2

W −M2
Z

)
cos 2β,

m2
D̃i

= (m2
soft)

Q̃i

Q̃i
+ m2

Di
− 1

6

(
2M2

W + M2
Z

)
cos 2β,

m2
D̃c

i
= (m2

soft)
D̃c

i

D̃c
i

+ m2
Di

+
1

3

(
M2

W −M2
Z

)
cos 2β. (5.25)

Here mUi
and mDi

are quark masses of different generations, i = 1, 2, 3. The squark

soft masses are obtained from the RGE as

(m2
soft)

Q̃i

Q̃i
=

M2
aux

16π2

(
Yui

β(Yui
) + Ydi

β(Ydi
)− 1

30
g1β(g1)− 3

2
g2β(g2)− 8

3
g3β(g3)

)
,(5.26)

(m2
soft)

Ũc
i

Ũc
i

=
M2

aux

16π2

(
2Yui

β(Yui
)− 8

15
g1β(g1)− 8

3
g3β(g3)

)
, (5.27)

(m2
soft)

D̃c
i

D̃c
i

=
M2

aux

16π2

(
2Ydi

β(Ydi
)− 2

15
g1β(g1)− 8

3
g3β(g3)

)
. (5.28)

5.4.3 η fermion and η scalar masses

The fields η and η̄ transform as (3, 3̄) and (3̄, 3) under SU(3)H ×SU(3)G. After

symmetry breaking, η and η̄ both transform as 8 + 1 of the diagonal SU(3)H+G. The

octet from η mixes with the octet from η̄, and similarly for the singlets.

In the fermionic sector, the octet and the singlet mass matrices are given by

Mη
octet =

(−2λu Mη

Mη 0

)
, (5.29)

Mη
singlet =

(
4λu Mη

Mη 0

)
. (5.30)

In the scalar sector, there are 4 real octets and 4 real singlets from η and η̄

fields. The two scalar octets are mixed, as are the two pseudoscalar octets. The mass

squared matrices for the octet are

M2
s−octet =

(
(m̃2

soft)
η
η + M2

η + 2λu(−Aλ − κu + 2λu) Mη(Bη − 2λu)

Mη(Bη − 2λu) (m̃2
soft)

η̄
η̄ + M2

η

)
,(5.31)

M2
p−octet =

(
(m̃2

soft)
η
η + M2

η + 2λu(Aλ + κu + 2λu) −Mη(Bη + 2λu)

−Mη(Bη + 2λu) (m̃2
soft)

η̄
η̄ + M2

η

)
.(5.32)
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The singlet scalar mass matrices are

M2
s−singlet =

(
(m̃2

soft)
η
η + M2

η + 4λu(Aλ + κu + 4λu) Mη(Bη + 4λu)

Mη(Bη + 4λu) (m̃2
soft)

η̄
η̄ + M2

η

)
,(5.33)

M2
p−singlet =

(
(m̃2

soft)
η
η + M2

η − 4λu(Aλ − κu− 4λu) −Mη(Bη − 4λu)

−Mη(Bη − 4λu) (m̃2
soft)

η̄
η̄ + M2

η

)
.(5.34)

The soft masses (m̃2
soft)

η
η and (m̃2

soft)
η
η are given in Eqs. (61)–(62) of the Appendix.

5.5 Numerical results

We are now ready to present our numerical results for the SUSY spectrum.

The scale of SUSY breaking, Maux, should be in the range 40–120 TeV for the MSSM

particles to have masses in the range 100 GeV – 2 TeV. Note that there is a large

hierarchy in the masses of the gluino and the neutral Wino, M3

M2
' 7.1 (after taking

account of radiative corrections), in AMSB models. Furthermore the lightest chargino

is nearly mass degenerate with the neutral Wino, so M2 & 100 GeV is required to

satisfy the LEP chargino mass bound.

The SU(3)H gauge coupling g4 is chosen so that the sleptons have positive mass

squared (g4 > 0.5). We allow g4 to take two values, g4 = 0.55 (Tables 5.2 and 5.4)

and g4 = 1.0 (Table 5.3). Symmetry breaking considerations constrain the couplings

κ and λ as discussed in Sec. 5.3 after Eq. 5.14. In Tables 5.2 and 5.4 we have taken

Maux = 47.112 TeV corresponding to a light spectrum, while in Table we have Maux

= 66.695 TeV with an intermediate spectrum. Other input parameters are listed in

the respective Table captions. The mass parameter Mη cannot be much larger than 1

TeV, as that would decouple the effects of η, η̄ fields which are needed for consistent

symmetry breaking.

We see from Table 5.2 that the lightest Higgs boson mass is mh ' 118 GeV.

This is very close to the current experimental limit. If Mt = 180 GeV is used (instead

of Mt = 176 GeV), for the same set of input parameters, mh will be 119 GeV. mh

being close to the current experimental limit is a generic prediction of our framework.

It holds in the spectra of Tables 5.3 and as well. We conclude that mh . 120 GeV in

this model.
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The masses of the sleptons will depend sensitively on the choice of g4. The

sleptons are relatively light, mslep . 300 GeV, with g4 = 0.55, while they are heavy,

mslep ' 800 GeV, when g4 = 1.0. Note however that there is a correlation in the

slepton masses and the SU(3)H gauge boson masses (MV ), with the lighter sleptons

corresponding to lighter SU(3)H gauge bosons. It is worth noting that very light

sleptons, below the current experimental limits of about 100 GeV, would be incon-

sistent with the limits on MV arising from e+e− → µ+µ− type processes (see Sec. 6).

Note also that the left–handed and the right–handed sleptons are nearly degenerate

to within about 10 GeV in this model. This a numerical coincidence having to do

with the values of g1 and g2 and the MSSM beta functions (see the last paper of Ref.

[39]). The new SU(3)H gauge boson contributions to the slepton masses are the same

for the left–handed and the right–handed sleptons.

In Tables 5.2–5.4 we have included the leading radiative corrections to the

gaugino masses M1, M2 and M3 [54]. Including these radiative corrections we find (in

Table 2) M1 : M2 : M3 = 3.0 : 1 : 7.4. The lightest SUSY particle (LSP) is the neutral

Wino, which is nearly mass degenerate with the charged Wino. In Tables 5.2–5.4 the

mass splitting is about 60 MeV, but this does not take into account SU(2)L×U(1)Y

breaking corrections [55]. These electroweak radiative corrections turn out to be very

important, and we find mχ±1
− mχ0

1
' 235 MeV (with about 175 MeV arising from

SU(2)L × U(1)Y breaking effects). The decay χ±1 → χ0
1 + π± is then kinematically

allowed, with the π± being very soft. Once produced, the neutralino χ0
1 will escape

the detector without leaving any tracks. With the decay channel χ±1 → χ0
1 +π± open,

the lightest chargino will leave an observable track with a decay length of about a few

cm. Search strategies for such a quasi–degenerate pair at colliders have been analyzed

in Ref. [54, 56, 57].

In the SU(3)H sector, in Tables 5.2–5.4, the horizontal gauge boson has a mass

of 1.5–4.0 TeV. The heavy Higgs bosons, Higgsinos, gauginos, squarks and the η fields

all have masses . (1− 2) TeV.
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MSSM Particles Symbol Mass (TeV)

Neutralinos {mχ̃0
1
, mχ̃0

2
} {0.146, 0.431}

Neutralinos {mχ̃0
3
, mχ̃0

4
} {0.876, 0.878}

Charginos {mχ̃±1
, mχ̃±2

} {0.146, 0.880}
Gluino M3 1.064

Higgs bosons {mh, mH , mA, mH±} {0.118, 0.878, 0.877, 0.880}
R.H sleptons {mẽR

, mµ̃R
, mτ̃1} {0.183, 0.183, 0.166}

L.H sleptons {mẽL
, mµ̃L

, mτ̃2} {0.190, 0.190, 0.203}
Sneutrinos {mν̃e , mν̃µ , mν̃τ} {0.175, 0.175, 0.175}
R.H down squarks {md̃R

, ms̃R
, mb̃1

} {1.017, 1.017, 1.015}
L.H down squarks {md̃L

, ms̃L
, mb̃2

} {1.008, 1.008, 0.885}
R.H up squarks {mũR

, mc̃R
, mt̃1} {1.011, 1.011, 0.669}

L.H up squarks {mũL
, mc̃L

, mt̃2} {1.005, 1.005, 0.979}
New Particles Symbol Mass (TeV)

SU(3)H Gauge boson octet MV 2.213

Singlet Higgsino mφ̃ 0.402

Octet Higgsino/gaugino mφ̃1,2
{1.978, 2.450}

φ Higgs bosons {mφs ,mφp ,mφ−octet} {0.179, 0.624, 2.253}
Fermionic η (octet) moctet

η1,2
{0.676, 1.480}

Fermionic η (singlet) msinglet
η1,2

{0.479, 2.089}
Scalar η Higgs (octet) ms−octet

η̃1,2
{0.454, 1.703}

Pseudoscalar η Higgs (octet) mp−octet
η̃1,2

{0.908, 1.259}
Scalar η Higgs (singlet) ms−singlet

η̃1,2
{0.717, 1.868}

Pseudoscalar η Higgs (singlet) mp−singlet
η̃1,2

{0.264, 2.310}

TABLE 5.2. Sparticle masses for the choice Maux = 47.112 TeV, tanβ = 3.785, µ = −0.873
TeV, yb = 0.068, λ = 0.1, κ = 0.05, g4 = 0.55, u = −4.024 TeV, Mη = 1.0
TeV and Mt = 0.176 TeV.
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MSSM Particles Symbol Mass (TeV)

Neutralinos {mχ̃0
1
, mχ̃0

2
} {0.198, 0.586}

Neutralinos {mχ̃0
3
, mχ̃0

4
} {1.179, 1.181}

Charginos {mχ̃±1
, mχ̃±2

} {0.198, 1.182}
Gluino M3 1.410

Higgs boson {mh, mH , mA, mH±} {0.119, 1.179, 1.178, 1.181}
R.H sleptons {mẽR

, mµ̃R
, mτ̃1} {0.245, 0.245, 0.227}

L.H sleptons {mẽL
, mµ̃L

, mτ̃2} {0.254, 0.254, 0.267}
Sneutrinos {mν̃e , mν̃µ , mν̃τ} {0.242, 0.242, 0.242}
R.H down squarks {md̃R

, ms̃R
, mb̃1

} {1.373, 1.373, 1.193}
L.H down squraks {md̃L

, ms̃L
, mb̃2

} {1.361, 1.361 1.370}
R.H up squarks {mũR

, mc̃R
, mt̃1} {1.365, 1.365, 0.940}

L.H up squraks {mũL
, mc̃L

, mt̃2} {1.359 1.359, 1.276}
New Particles Symbol Mass (TeV)

SU(3)H Gauge boson octet MV 1.871

Singlet Higgsino mφ̃ 0.544

Octet Higgsino/gaugino mφ̃1,2
{1.553, 2.191}

φ Higgs bosons {mφs ,mφp ,mφ−octet} {0.247, 0.840, 1.955}
Fermionic η (octet) moctet

η1,2
{0.716, 1.397}

Fermionic η (singlet) msinglet
η1,2

{0.529, 1.890}
Scalar η Higgs (octet) ms−octet

η̃1,2
{0.421, 1.699}

Pseudoscalar η Higgs (octet) mp−octet
η̃1,2

{1.031, 1.098}
Scalar η Higgs (singlet) ms−singlet

η̃1,2
{0.850, 1.593}

Pseudoscalar η Higgs (singlet) mp−singlet
η̃1,2

{0.247, 2.189}

TABLE 5.3. Sparticle masses for the choice Maux = 63.695 TeV, tanβ = 4.02, µ = −1.178
TeV, yb = 0.0719, λ = 0.1, κ = 0.08, g4 = 0.55, u = −3.402 TeV, Mη = 1.0
TeV and Mt = 0.1743 TeV.
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MSSM Particles Symbol Mass (TeV)

Neutralinos {mχ̃0
1
, mχ̃0

2
} {0.148, 0.436}

Neutralinos {mχ̃0
3
, mχ̃0

4
} {0.876, 0.878}

Charginos {mχ̃±1
, mχ̃±2

} {0.148, 0.878}
Gluino M3 1.064

Higgs boson {mh, mH , mA, mH±} {0.118, 0.878, 0.877, 0.880}
R.H sleptons {mẽR

, mµ̃R
, mτ̃1} {0.825, 825, 0.821}

L.H sleptons {mẽL
, mµ̃L

, mτ̃2} {0.827, 0.827, 0.830}
Sneutrinos {mν̃e , mν̃µ , mν̃τ} {0.823, 0.823, 0.823}
R.H down squarks {md̃R

, ms̃R
, mb̃1

} {1.017, 1.017, 1.015}
L.H down squraks {md̃L

, ms̃L
, mb̃2

} {1.008, 1.008, 0.885}
R.H up squarks {mũR

, mc̃R
, mt̃1} {1.011, 1.011, 0.669}

L.H up squraks {mũL
, mc̃L

, mt̃2} {1.005, 1.005, 0.979}
New Particles Symbol Mass (TeV)

SU(3)HGauge boson octet MV 3.779

Singlet Higgsino mφ̃ 1.058

Octet Higgsino/gaugino mφ̃1,2
{3.071, 4.495}

φ Higgs bosons {mφs ,mφp ,mφ−octet} {0.465, 1.646, 3.940}
Fermionic η (octet) moctet

η1,2
{0.254, 2.521}

Fermionic η (singlet) msinglet
η1,2

{0.137, 4.672}
Scalar η Higgs (octet) ms−octet

η̃1,2
{0.588, 3.090}

Pseudoscalar η Higgs (octet) mp−0ctet
η̃1,2

{1.058, 1.952}
Scalar η Higgs (singlet) ms−singlet

η̃1,2
{0.964, 4.116}

Pseudoscalar η Higgs (singlet) mp−singlet
η̃1,2

{0.711, 5.224}

TABLE 5.4. Sparticle masses for the choice Maux = 47.112 TeV, tanβ = 3.785, µ = −0.873
TeV, yb = 0.068, λ = 0.3, κ = 0.14, g4 = 1.0, u = −3.779 TeV, Mη = 0.800
TeV and Mt = 0.176 TeV.
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5.6 Experimental signatures

The Lightest SUSY particle in the model is the neutral Wino (χ0
1) which is nearly

mass degenerate with the lightest chargino (χ±1 ), with a mass splitting of about 235

MeV. At the Tevatron Run 2 as well as at the LHC, the process pp̄ (or pp) → χ0
1 +χ±1

will produce these SUSY particles. Naturalness suggest that mχ0
1
, mχ±1

. 300 GeV

(corresponding to mgluino . 2 TeV). Strategies for detecting such a quasi–degenerate

pair has been carried out in Ref. [54, 56, 57]. In the MSSM sector our model predicts

tan β ' 4.0 and mh . 120 GeV, both of which can be tested at the LHC.

If the SU(3)H gauge coupling g4 takes small values (g4 ' 0.55), the slepton

masses will be near the current experimental limit. For larger values of g4 (' 1.0)

the slepton masses are comparable to those of the squarks.

The SU(3)H gauge boson masses are in the range MV = 1.5 − 4.0 TeV. Al-

though relatively light, these particles do not mediate leptonic FCNC, owing to the

approximate SU(3)H+G global symmetries present in the model.

The most stringent constraint on MV arises from the process e+e− → µ+µ−.

LEP II has set severe constraints on lepton compositeness [51, 58] from this process.

We focus on one such amplitude, involving all left–handed lepton fields. In our model,

the effective Lagrangian for this process is

Leff = − 2g2
4

3M2
V

(ēLγµeL)(µ̄LγµµL). (5.35)

Comparing with Λ−LL(eeµµ) > 6.3 TeV [51, 58], we obtain MV

g4
≥ 2.05 TeV. For g4 =

0.55 (1.0) this implies MV > 1.129 (2.052) TeV. From Tables 5.2–5.4 we find that

these constraints are satisfied.

The model as it stands has an unbroken Z2 symmetry (in addition to the usual

R–parity) under which the superfields η, η̄ are odd and all other superfields are even.

If this symmetry is exact, the lightest of the η and η̄ fields (a pseudoscalar singlet

Higgs in the fits of Tables 5.2–5.3 and a singlet fermion in Table 5.4) will be stable.

We envision this Z2 symmetry to be broken by higher dimensional terms of the type

LαHuΦ
αη̄βΦβ/Λ2. Such a term will induce the decay ηp−singlet

1 → L+χ0
1 with a lifetime

less than 1 second for Λ ≤ 109 GeV. This would make these η particles cosmologically
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safe. It may be pointed out that the same effective operator, along with a TeV scale

mass for the η fields, can provide small neutrino masses even in the absence of the

operators given in Eq. 5.3.

5.7 Origin of the µ term

Any satisfactory SUSY breaking model should also have a natural explanation

for the µ term (the coefficient of HuHd term in Eq. (5.1)). In gravity mediated SUSY

breaking models, there are at least three solutions to the µ problem. The Giudice–

Masiero mechanism [59] which explains the µ term through the Kahler potential
∫

HuHdZ
∗d4θ/Mpl is not readily adaptable to the AMSB framework. The NMSSM

extension which introduces singlet fields can in principle provide a natural explanation

of the µ term in the AMSB scenario. We have however found that replacing µHuHd by

the term SHuHd in the superpotential alone can not lead to realistic SUSY breaking.

It is possible to make the NMSSM scenario compatible with symmetry breaking in

the AMSB framework by introducing a new set of fields which couple to the singlet

S. We do not follow this non–minimal alternative here.

There is a natural explanation for the µ parameter in the context of AMSB mod-

els, as suggested in Ref. [36]. It assumes a Lagrangian term L ⊃ α
∫

d4θ (Σ+Σ†)
MPl

HuHdΦ
†Φ,

where Σ is a hidden sector field which breaks SUSY and Φ is the compensator

field. After a rescaling, Hu → ΦHu, Hd → ΦHd, this term becomes L ⊃
α

∫
d4θ (Σ+Σ†)

MPl
HuHd

Φ†
Φ

, which generates a µ term in a way similar to the Giudice–

Masiero mechanism [59]. The Bµ term is induced only through the super–Weyl

anomaly and has the form given in Eq. (4.9). Our predictions for tan β and mh

depend sensitively on this assumption.

We now point out that the µ term may have an alternative explanation in the

context of AMSB models. This is obtained by promoting µHuHd in the superpotential

to the following [60]:

W ′ =
aHuHdS

2

MPl

+
bS2S̄2

MPl

. (5.36)
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Here S and S̄ are standard model singlet fields. Including AMSB induced soft pa-

rameters for these singlets (which can arise in a variety of ways), this superpotential

will have a minimum where 〈S〉 ' 〈
S̄
〉 ' √

MSUSY MPl. This would induce µ term of

order MSUSY , as needed. From the effective low energy point of view, the superpo-

tential will appear to have an explicit µ term. The B term will have a form as given

in Eq. 4.9.

5.8 Summary

In this chapter we have suggested a new scenario for solving the tachyonic slep-

ton mass problem of anomaly mediated SUSY breaking models. An asymptotically

free SU(3)H horizontal gauge symmetry acting on the lepton superfields provides

positive masses to the sleptons. The SU(3)H symmetry must be broken at the TeV

scale. Potentially dangerous FCNC processes mediated by the SU(3)H gauge bosons

are shown to be suppressed adequately via approximate global symmetries that are

present in the model.

Our scenario predicts mh . 120 GeV for the lightest Higgs boson mass of

MSSM and tan β ' 4.0. The lightest SUSY particle is the neutral Wino which is

nearly degenerate with the lightest chargino and is a candidate for cold dark matter.

The full spectrum of the model is given in Tables 5.2–5.4 for various choices of input

parameters. The very few parameters of our model are highly constrained by the

consistency of symmetry breaking.



CHAPTER 6

SU(2)H Horizontal Symmetry as a Solution

to the Slepton Mass Problem of Anomaly

Mediation

6.1 Introduction

Family symmetries may give a positive mass–squared contribution to the slep-

tons in AMSB. The simplest of such symmetry is an SU(2)H non–Abelian symmetry.

This symmetry when acting on leptons only can be asymptotically free, hence their

beta–function will be negative. This is very important because with this new sym-

metry, the sleptons enjoys the same freedom as the quarks and hence can solve the

negative slepton mass problem of AMSB. The quarks are singlet of SU(2)H but it

is possible that they transform under a different SU(2)q
H symmetry, so that there is

an underlying quark–lepton symmetry. Here we will focus on a model where quarks

carry no family symmetry.

In this chapter we suggest and investigate the possibility of solving the negative

slepton mass problem of AMSB using this SU(2)H symmetry broken at the TeV scale.

The leptons of the first two families transform as a doublet of SU(2)H and those of the

third family transform as singlet under this new symmetry. The sleptons of the first

two family gets a large positive contribution to their soft masses from the SU(2)H

gauge sector. With e and µ forming a doublet of SU(2)H , an important issue is how

to split their masses, since in Nature me 6= mµ. We introduce two new vector–like

fields that couples to the third family which will help to achieve me 6= mµ.

The model is quite predictive. The LSP is the Wino which is nearly mass

degenerate with the chargino. The lightest Higgs boson mass is predicted to be

mh . 135 GeV, and the parameter tan β is found to be tan β ' 40. This model

56
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is completely different from the previous model because it also predicts a different

mass hierarchy for the ẽ, µ̃ and τ̃ . In particular mẽ, mµ̃ and mτ̃ are all quite different,

which is a characteristic signature of this model. In addition, this model can easily be

tested at the LHC by direct discovery of the gauge bosons associated with SU(2)H .

The plan of the chapter is as follows. In section 6.2 we introduce our model.

In section 6.3 we analyze the Higgs potential. The SUSY spectrum is presented in

section 6.4. We discuss our numerical results in section 6.5. In section 6.6 we discuss

the experimental implication of the model. We summarize in section 6.7.

6.2 SU(2)H horizontal symmetry

We define the gauge group symmetry of the model as

GH ≡ SU(3)C × SU(2)L × U(1)Y × SU(2)H ,

where SU(2)H is a horizontal symmetry that acts on the first two families of leptons.

The third family is a singlet under this new SU(2)H symmetry. A pair of vector

like leptons, E, Ec, which are SU(2)H singlets are needed to ensure me 6= mµ. The

spectrum of the model is listed in Table. 6.1. The gauge group SU(2)H defined above

is asymptotically free (β function is given in Eq. B.20) with this spectrum.

The superpotential of the model consistent with the gauge symmetries reads

W = (Yu)ij QiHuu
c
j + (Yd)ij QiHdd

c
j + feµψαψc

αHd + fτψττ
cHd

+ fτEψτE
cHd + feEEψcφu + µHuHd + µ′φuφd + MEEEc (6.1)

It turns out that there is a Z4 symmetry present in the Lagrangian, under which

φu → iφu, φd → −iφd, E → −iE, Ec → iEc, ψτ → −iψτ , τ c → iτ c.

This Z4 symmetry forbids the term Eψcφd, which will be important to define an

unbroken muon number. Since SU(2)H is broken at TeV, the gauge bosons of SU(2)H

can potentially lead to large FCNC processes. The most dangerous of these are in the

muon sector, eg; µ → 3e. Such process are forbidden by an unbroken muon number,

making TeV scale horizontal symmetry phenomenologically consistent.
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Superfield SU(3)C SU(2)L U(1)Y SU(2)H

Qi 3 2 1
6

1

uc
i 3̄ 1 −2

3
1

dc
i 3̄ 1 1

3
1

ψα 1 2 −1
2

2

ψc
α 1 1 +1 2

ψτ 1 2 −1
2

1

τ c 1 1 +1 1

Hu 1 2 1
2

1

Hd 1 2 −1
2

1

φu 1 1 0 2

φd 1 1 0 2

E 1 1 −1 1

Ec 1 1 +1 1

ΨN 1 1 0 2

TABLE 6.1. Particle content and charge assignment of the model. The indices i and α take values
i = 1− 3 and α = 1− 2.

In the model, the ψα and ψc
α fields contain the first two family of leptons (e and

µ) which transforms as a doublet under the SU(2)H gauge group, while the members

of the third family (ψτ and τ c) transform as singlets under the SU(2)H gauge group.

The field ΨN , which transforms as a doublet under SU(2)H and as singlet under the

SM gauge group, is introduced in order to cancel the Witten anomaly.

The neutinos in the model get masses from the following non-renormalizable

operators:

ψτψτ
HuHd

M
, ψαψα

HuHu

M ′3 φu,dφu,d, ψαψτ
HuHu

M ′′ φu,d. (6.2)

These terms will lead to a consistent neutrino oscillation phenomenology.
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6.3 Symmetry breaking

The symmetry breaking is achieved in the form

GH → GSM → SU(3)C × U(1)EM ,

where GSM ≡ SU(3)C × SU(2)L × U(1)Y . The model has the possibility to be

consistent with the known low energy physics. The new Higgs multiplets φu and φd

are sufficient to break the GH → GSM completely near the TeV scale.

The tree level Higgs potential can be written as

V (Hu, Hd, φu, φd) = (m2
Hu

+ µ2)|Hu|2 + (m2
Hd

+ µ2)|Hd|2 + Bµ(HuHd + c.c.)

+
(g2

2 + g2
1)

8
(|Hu|2 − |Hd|2)2 +

g2
2

2
|HuHd|2 +

g2
4

8
(|φu|2 − |φd|2)2

+
g2
4

2
|φuφd|2 + (m2

φu
+ µ′2)|φu|2 + (m2

φd
+ µ′2)|φd|2

+ B′µ′(φuφd + c.c.).

The soft masses m2
Hu

and m2
Hd

,m2
φu

and m2
φd

parameters are determined in terms

of the single parameter Maux. The B and B′ parameters are taken to be free in the

model but in some special class of models, they are determined also by the same mass

parameter Maux. Upon symmetry breaking, the Higgs fields acquire VEV’s

〈Hu〉 =

(
0

υu

)
, 〈Hd〉 =

(
υd

0

)
, 〈φu〉 =

(
0

uu

)
, 〈φd〉 =

(
ud

0

)
. (6.3)

It is desired that the VEVs obey 〈φu〉, 〈φd〉 À 〈Hu〉, 〈Hd〉, in order for the symmetry

breaking to be consistent.

Minimization of the Higgs potential V (Hu, Hd, φu, φd) gives

sin 2β =
−2Bµ

2µ2 + m2
Hu

+ m2
Hd

, µ2 =
m2

Hd
−m2

Hu
tan2 β

tan2 β − 1
− M2

Z

2
, (6.4)

sin 2β′ =
−2B′µ′

2µ′2 + m2
φu

+ m2
φd

, µ′2 =
m2

φd
−m2

φu
tan2 β′

tan2 β′ − 1
− M2

Z′

2
, (6.5)

where we have introduced the notation uu = u sin β′, ud = u cos β′, u2 = u2
u + u2

d,

tan β′ = uu

ud
and M2

Z′ =
g2
4

2
(u2

u + u2
d). MZ′ is the mass of the gauge boson associated

with the SU(2)H .
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To find the physical Higgs boson mass, we parameterize the Higgs fields (in the

unitary gauge) as

Hu =

(
H+ sin β

υu + 1√
2
(φ2 + i cos β φ3)

)
, 〈Hd〉 =

(
υd + 1√

2
(φ1 + i sin β φ3)

H− cos β

)
,

φu =

(
φ+ sin β′

uu + 1√
2
(φ4 + i cos β′ φ5)

)
, φd =

(
ud + 1√

2
(φ6 + i sin β′ φ5)

φ− cos β′

)
. (6.6)

The Higgs masses are obtained by expanding the Higgs potential and keeping only

terms quadratic in the fields.

The masses of the CP–odd Higgs bosons {φ3, φ5} are

m2
A =

−2Bµ

sin 2β
, m2

A′ = − 2B′µ′

sin 2β′
. (6.7)

The mass matrices for the CP–even neutral Higgs bosons {φ1, φ2} and {φ4, φ6}
are decoupled. They are given by

(M2)cp−even =

(
m2

A cos2 β + M2
Z sin2 β −{m2

A + M2
Z} sin 2β

2

−{m2
A + M2

Z} sin 2β
2

m2
A sin2 β + M2

Z sin2 β

)
, (6.8)

(M′2)cp−even =

(
m2

A′ cos2 β′ + M ′2
Z sin2 β′ −{m2

A′ + M ′2
Z } sin 2β′

2

−{m2
A′ + M ′2

Z } sin 2β′
2

m2
A′ sin

2 β′ + M ′2
Z sin2 β′

)
. (6.9)

Finally, the charged Higgs boson mass (H± and φ±) is given by

m2
H± = m2

A + M2
W m2

φ± = m2
A′ + M2

Z′ (6.10)

φ± are electrically neutral, they are “charged” under SU(2)H .

The Majorana mass matrix of the neutralinos {B̃, W̃3, H̃0
d , H̃0

u, B̃H , φ̃0
d, φ̃0

u} is

M(0) =




M1 0 − υd√
2
g1

υu√
2
g1 0 0 0

0 M2
υd√

2
g2 − υu√

2
g2 0 0 0

− υd√
2
g1

υd√
2
g2 0 −µ 0 0 0

υu√
2
g1 − υu√

2
g2 −µ 0 0 0 0

0 0 0 0 M4
ud√

2
g4 − uu√

2
g4

0 0 0 0 ud√
2
g4 0 −µ′

0 0 0 0 − uu√
2
g4 −µ′ 0




, (6.11)
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where M1, M2 and M4 are the gaugino masses for U(1)Y , SU(2)L and SU(2)H which

are listed in Appendix B. The physical neutralino masses mχ̃0
i

(i =1–7) are obtained

as the eigenvalues of this mass matrix Eq. (6.11).

In the basis {W̃+, H̃+
u }, {W̃−, H̃−

d }, the chargino (Dirac) mass matrix is

M(c) =

(
M2 g2υd

g2υu µ

)
. (6.12)

Similarly, for the SU(2)H sector, we have

M̃(c) =

(
M4 g4ud

g4uu µ′

)
. (6.13)

The three SU(2)H gauge boson masses are given by

M2
V =

g2
4

2
(u2

u + u2
d). (6.14)

6.3.1 Lepton masses

Now we describe briefly how to obtain the masses of the ordinary leptons. We

have introduced E and Ec fields in the superpotential Eq. (6.1) for the purpose of

breaking e − µ degeneracy. These new fields mix with the usual leptons leading to

the mass matrix

( e µ τ E )




fµυd 0 0 0

0 fµυd 0 0

0 0 fτυd fτEυd

feEuu 0 0 ME







ec

µc

τ c

Ec




. (6.15)

The muon field completely decouples with mass

mµ = fµυd. (6.16)

We are then left with a 3 × 3 mass matrix for the e, τ and E fields. The eigenvalue

equation can be easily solved using the hierarchy me ¿ mτ ¿ mE and the result is

mτ ' fτυd

√
{1 +

f 2
τEf 2

eE

f 2
τ

u2
u

M2
E + f 2

eEu2
u

},

me ' mµME√
M2

E + f 2
eEu2

u +
f2

τEf2
eEu2

u

f2
τ

,

mE '
√

M2
E + f 2

eEu2
u. (6.17)

Note that me 6= mµ, showing consistency of the model.
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6.4 The SUSY spectrum

We will show in this section that the tachyonic slepton problem is cured by

virtue of the positive contribution from the SU(2)H gauge sector to the masses for

the first two family and a large Yukawa coupling for the third family.

6.4.1 Slepton masses

The slepton masses are given by a 2 × 2 mass matrix for the smuon (since

it decouples) and a 6 × 6 mass matrix for the e, τ, E, ec, τ c, Ec fields. The smuon

mass–squareds are given by the eigenvalues of the mass matrix

M2
µ̃ =

(
m2

µ̃ mµ

(
Afeµ − µ tan β

)

mµ

(
Afeµ − µ tan β

)
m2

µ̃c

)
, (6.18)

where the diagonal entries are

m2
µ̃ =

M2
aux

(16π2)

[
2feµβ(feµ)−

(
3

2
g2β(g2) +

3

10
g1β(g1) +

3

2
g4β(g4)

)]

+ m2
µ +

g2
4

4
(u2

u − u2
d),

m2
µ̃c =

M2
aux

(16π2)

[
2feµβ(feµ)−

(
6

5
g1β(g1) +

3

2
g4β(g4)

)]

+ m2
µ +

g2
4

4
(u2

u − u2
d).

Note that the positive contributions from the SU(2)H gauge sector are provided by

the term −3
2
g4β(g4), with gauge beta function β(g4) = − 3

16π2 g
3
4. This contribution

ensures that the mass–squareds of all sleptons are positive when g4 > 0.9. It is

important to point out that the SU(2)H D–term contributions to the diagonal entries

of the mass matrix Eq. (6.18) can either be positive or negative but it must be such

that its overall contribution is rather small compared to the soft mass term.

The mass matrix for the other sleptons is in the form




m2
ẽ 0 feµfeEυduu feµ(Aeµυd + µυu) 0 0

0 m2
τ̃ MEfτEυd 0 fτ (Aτ υd + µυu) fτE(AτEυd + µυu)

feµfeEυduu MEfτEυd m2
Ẽ

feE(AeEuu + µ′ud) 0 MEBE

feµ(Aeµυd + µυu) 0 feE(AeEuu + µ′ud) m2
ẽc 0 MEfeEuu

0 fτ (Aτ υd + µυu) 0 0 m2
τ̃c fτ fτEυ2

d

0 fτE(AτEυd + µυu) MEBE MEfeEuu fτ fτEυ2
d m2

Ẽc


,
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where the diagonal entries of this mass matrix read

m2
ẽ =

M2
aux

(16π2)

[
2feµβ(feµ)−

(
3

2
g2β(g2) +

3

10
g1β(g1) +

3

2
g4β(g4)

)]

+ f 2
eµυ

2
d +

g2
4

4
(u2

d − u2
u),

m2
ẽc =

M2
aux

(16π2)

[
2feµβ(feµ)−

(
6

5
g1β(g1) +

3

2
g4β(g4)

)]

+ f 2
eµυ

2
d + f 2

eEu2
u +

g2
4

4
(u2

d − u2
u)

m2
τ̃ =

M2
aux

(16π2)

[
fτβ(fτ ) + fτEβ(fτE)−

(
3

10
g1β(g1) +

3

2
g2β(g2)

)]
+ (f 2

τ + f 2
τE)υ2

d,

m2
τ̃c =

M2
aux

(16π2)

[
2fτβ(fτ )−

(
6

5
g1β(g1)

)]
+ f 2

τ υ2
d

m2
Ẽ

=
M2

aux

(16π2)

[
feEβ(feE)−

(
6

5
g1β(g1)

)]
+ m2

E + f 2
eEu2

u,

m2
Ẽc =

M2
aux

(16π2)

[
fτeβ(feτ )−

(
6

5
g1β(g1)

)]
+ m2

E + f 2
τEυ2

d

(6.19)

The requirement that the slepton masses are positive puts constraints on the couplings

fτ , feE, fτe and g4.

6.4.2 Squark masses

The mixing matrix for the squark sector is similar to the slepton sector, except

that they receive no SU(2)H gauge contributions. The diagonal entries of the up and

the down squark mass matrices are given by [61]

m2
Ũi

= (m2
soft)

Q̃i

Q̃i
+ m2

Ui
+

1

6

(
4M2

W −M2
Z

)
cos 2β,

m2
Ũc

i
= (m2

soft)
Ũc

i

Ũc
i

+ m2
Ui
− 2

3

(
M2

W −M2
Z

)
cos 2β,

m2
D̃i

= (m2
soft)

Q̃i

Q̃i
+ m2

Di
− 1

6

(
2M2

W + M2
Z

)
cos 2β,

m2
D̃c

i
= (m2

soft)
D̃c

i

D̃c
i

+ m2
Di

+
1

3

(
M2

W −M2
Z

)
cos 2β, (6.20)

were mUi
and mDi

are the quark masses of the different generations with i = 1, 2, 3.

The squark soft masses are obtained from the RGE as

(m2
soft)

Q̃i

Q̃i
=

M2
aux

16π2

(
Yui

β(Yui
) + Ydi

β(Ydi
)− 1

30
g1β(g1)− 3

2
g2β(g2)− 8

3
g3β(g3)

)
,(6.21)
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(m2
soft)

Ũc
i

Ũc
i

=
M2

aux

16π2

(
2Yui

β(Yui
)− 8

15
g1β(g1)− 8

3
g3β(g3)

)
, (6.22)

(m2
soft)

D̃c
i

D̃c
i

=
M2

aux

16π2

(
2Ydi

β(Ydi
)− 2

15
g1β(g1)− 8

3
g3β(g3)

)
. (6.23)

6.5 Numerical results

Here we present our numerical results for the SUSY spectrum. We first per-

formed a one–loop accuracy numerical analysis to determine the sparticle and Higgs

Spectrum. For experimental inputs for the SM gauge couplings we use the same pro-

cedure Ref. [61] for the g1, g2, g3 with the central value of the top mass taken to be

Mt = 174.3 GeV.

In the model presented, the scale of SUSY breaking, Maux should be in the

range 40− 100 TeV for the MSSM particles to have masses in the range 0.1− 2 TeV.

The gauge coupling g4 ≥ 0.9 in order for the slepton masses for the first two families

to be positive and in the right range. Since the positivity of the mass–squared of

the slepton of the third family depends on the Yukawa couplings, we find that the

couplings should obey fτ , fτE ≥ 0.5.

For a specific choice of parameters (Table. 6.2), we find the mµ1 , mµ2 ∼ 800

GeV for the smuon. There is a significant mass splitting between the selectron and

the stau. The lightest of the sleptons is the left-handed stau. If SUSY is discovered

with a large mass hierarchy between the stau and the selectron (or smauon), this

model will be a good candidate. The lightest Higgs mass is found to be around 128

GeV which is consistent with current experimental limit.

The lightest supersymmetric particle is Wino which is nearly mass degenerate

with the lighter chargino of the SM. The SU(2)H gauge boson mass is found to be

∼ 1.4 TeV. The heavy Higgs bosons, Higgsinos and squarks masses are in the range

0.7− 2.0 TeV.
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Particles Symbol Mass (TeV)

Neutralinos {mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
} {0.176, 274, 0.726, 1.080}

Neutralinos {mχ̃0
5
, mχ̃0

6
, mχ̃0

7
} {1.091, 1.096, 2.097}

Charginos {mχ̃±1
, mχ̃±2

} {0.176, 1.094}
Charginos (SU(2)H) {mχ̃±1

, mχ̃±2
} {1.070, 2.102}

Gluino M3 1.556

Neutral Higgs bosons {mh, mH , mA} {0.128, 0.922, 0.922}
Neutral Higgs bosons {mh′ , mH′ , mA′} {0.143, 2.075, 1.554}
Charged Higgs bosons mH± 0.925

Charged Higgs bosons SU(2)H mH± 2.080

R.H smuon {mµ̃1} {0.867}
L.H smuon {mµ̃L} {0.796}
R.H sleptons {mẽR , mτ̃1 , mER

} {0.947, 0.176, 0.758}
L.H sleptons {mẽL , mτ̃2 , mµ̃L} {1.904, 0.533, 0.401}
R.H down squarks {md̃R

, ms̃R , mb̃1
} {1.464, 1.464, 1.369}

L.H down squarks {md̃L
, ms̃L , mb̃2

} {1.451, 1.451, 1.115}
R.H up squarks {mũR , mc̃R , mt̃1

} {1.454, 1.454, 1.107}
L.H up squarks {mũL , mc̃L , mt̃2

} {1.449, 1.449, 1.295}
SU(2)H gauge boson M ′

Z 1.382

TABLE 6.2. Sparticle masses in Model 1 for the choice Maux = 67.956 TeV, yb = 0.8,
fτ = 0.53, feE = 1.2, fτE = 0.51, g4 = 1.0, ME = 10.4 TeV and Mt = 0.174
TeV, u = 1.955 TeV, tanβ = 57.4, tanβ′ = 0.87, µ = 1.088 TeV, µ′ = 0.276
TeV, B = 0.014 TeV, B′ = 4.336 TeV, BE = 0.009 TeV.
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6.6 Other experimental implications

The lightest SUSY particle in the model we considered is the wino (χ̃0
1) which

is nearly mass degenerate with the chargino. This particle is stable and can be a

candidate for cold dark matter. The model predicts the lightest Higgs mass mh ≤ 135

GeV which can be tested at the LHC.

Because the SU(2)H gauge bosons do not mix with the SM gauge bosons, elec-

troweak precision data remains unchanged. Also the second family of leptons do not

mix with the first and third family, this is because of the Z4 symmetry present in the

model. The processes µ → 3e and µ → eγ are not a problem in the model.

The SU(2)H gauge boson masses are degenerate with mass MV = 1.382 TeV

for the choice of parameters chosen in model 1. The most stringent constraint on MV

arising from the process e+e− → µ+µ−. LEP II has set severe constraints on lepton

compositeness [51, 58] from this process. The effective Lagrangian for the process is

given by

Leff =
g2
4

2

(ēγµµ)(µ̄γµe)

M2
V

.

Here MV is the gauge boson mass. If we compare the above Lagrangian with the

Λ−LL (eeµµ) [51, 58], we obtain the limit MV > 1.2 TeV. This limit is satisfied in our

model.

6.7 Summary

We have suggested in this chapter a new scenario for solving the tachyonic

slepton mass problem of AMSB. An asymptotically free SU(2)H horizontal gauge

symmetry acting on the lepton superfields provides positive masses to the sleptons

of the first two families (ẽ, µ̃) while the Yukawa couplings associated with the third

family (τ) field gives a large positive contribution to the τ̃ mass. We have a large

mass splitting between the ẽ, µ̃, and, τ̃ , due to the transformation properties under

the new SU(2)H symmetry. This is how our model differs from the other models. The

SU(2)H symmetry must be broken at the TeV scale for consistency and our model

predicts mh . 135 GeV for the lightest MSSM Higgs boson mass and tan β ' 40. The



67

LSP is the neutral wino which is nearly mass degenerate with the lightest chargino

and is a candidate for cold dark matter.



CHAPTER 7

Constraining Z ′ From Supersymmetry

Breaking

7.1 Introduction

One of the simplest extensions of the Standard Model (SM) is obtained by

adding a U(1) factor to the SU(3)C ×SU(2)L×U(1)Y gauge structure [62, 63]. Such

U(1) factors arise quite naturally when the SM is embedded in a grand unified group

such as SO(10), SU(6), E6, etc. While it is possible that such U(1) symmetries are

broken spontaneously near the grand unification scale, it is also possible that some

of the U(1) factors survive down to the TeV scale. In fact, if there is low energy

supersymmetry, it is quite plausible that the U(1) symmetry is broken along with

supersymmetry at the TeV scale. The Z ′
χ and Z ′

ψ models arising from SO(10) →
SU(5) × U(1)χ and E6 → SO(10) × U(1)ψ are two popular extensions which have

attracted much phenomenological attention [62–69]. Z ′ associated with the left–

right symmetric extension of the Standard Model does not require a grand unified

symmetry. Other types of U(1) symmetries, which do not resemble the ones with a

GUT origin, are known to arise in string theory, free–fermionic construction as well

as in orbifold and D–brane models [70–72]. Gauge kinetic mixing terms of the type

BµνZ ′
µν [73] which will be generated through renormalization group flow below the

unification scale can further disguise the couplings of the Z ′.

The properties of the Z ′ gauge boson – its mass, mixing and couplings to

fermions – associated with the U(1) gauge symmetry are in general quite arbitrary

[74]. This is especially so when the low energy theory contains new fermions for

anomaly cancellation. In this chapter we propose and analyze a special class of

U(1) models wherein the Z ′ properties get essentially fixed from constraints of SUSY

68
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breaking. We have in mind the anomaly mediated supersymmetric (AMSB) frame-

work [36, 37]. In its minimal version, with the Standard Model gauge symmetry, it

turns out that the sleptons of AMSB become tachyonic. We suggest the U(1) symme-

try, identified as U(1)x = xY − (B−L), where Y is the Standard Model hypercharge,

as a solution to the negative slepton mass problem of AMSB. This symmetry is auto-

matically free of anomalies with the inclusion of right–handed neutrinos. It is shown

that the D–term of this U(1)x provides positive contributions to the slepton masses,

curing the tachyonic problem . The consistency of symmetry breaking and the SUSY

spectrum points towards a specific set of parameters in the Z ′ sector. For example,

1 < x < 2 is needed for the positivity of the left–handed and the right-handed slepton

masses. Furthermore, the U(1)x gauge coupling, gx, is fixed to be between 0.4–0.5.

The resulting Z ′ is found to be “leptophobic” [75] with Br(Z → `+`−) ' (1− 1.6)%

and Br(Z → qq̄) ' 44%.

AMSB models are quite predictive as regards the SUSY spectrum. The masses

of the scalar components of the chiral supermultiplets in AMSB scenario are given by

[36, 37]

(m2)
φj

φi
=

1

2
M2

aux

[
β(Y )

∂

∂Y
γ

φj

φi
+ β(g)

∂

∂g
γ

φj

φi

]
, (7.1)

where summations over the gauge couplings g and the Yukawa couplings Y are as-

sumed. γ
φj

φi
are the one–loop anomalous dimensions, β(Y ) is the beta function for the

Yukawa coupling Y , and β(g) is the beta function for the gauge coupling g. Maux is

the vacuum expectation value of a “compensator superfield” [36] which sets the scale

of SUSY breaking. The gaugino mass Mg, the trilinear soft supersymmetry breaking

term AY and the bilinear SUSY breaking term B are given by [36, 37]

Mg =
β(g)

g
Maux, AY = −β(Y )

Y
Maux, B = −Maux(γHu + γHd

). (7.2)

We see that the SUSY masses are completely fixed in the AMSB framework once the

spectrum of the theory and Maux are specified.

The negative slepton mass problem arises in AMSB because in Eq. 7.1 the gauge

beta functions for SU(2)L and U(1)Y are positive, γ
φj

φi
are negative, and the Yukawa
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couplings are small for the first two families of sleptons. In our Z ′ models, there are

additional positive contributions from the U(1)x D–terms which render these masses

positive.

In Ref. [38] the negative slepton mass problem of AMSB has been solved with

explicit Fayet–Iliopoulos terms added to the theory. In contrast, in our models, the

D–term is calculable, which makes the Z ′ sector more predictive. We find MZ′ = 2−4

TeV and the Z −Z ′ mixing angle ξ ' 0.001. Constraints from the electroweak preci-

sion observables are satisfied, with the Z ′ model giving a slightly better fit compared

to the Standard Model.

Other attempts to solve the negative slepton mass problem of AMSB generally

assume TeV–scale new physics [41, 43–50, 61] or a universal scalar mass of non AMSB

origin [39]. In Ref. [61] we have shown how a non–Abelian horizontal symmetry

which is asymptotically free solves the problem. Some of the techniques we use here

for the symmetry breaking analysis are similar to Ref. [61].

The plan of this chapter is as follows. In section 7.2 we introduce our model.

In section 7.3 we analyze the Higgs potential of the model. In section 7.4 we present

formulas for the SUSY spectrum. Section 7.5 contains our numerical results for the

SUSY spectrum as well as for the Z ′ mass and mixing. In section 7.6 we analyze the

partial decay modes of the Z ′. In section 7.7 we analyze other experimental test of the

model. Here we show the consistency of our models with the precision electroweak

data. Section 7.8 has our summary. In Appendix ?? we give the relevant expressions

for the beta functions, anomalous dimensions as well as for the soft masses.

7.2 U(1)x model

We present our model in this section. We consider adding an extra U(1) gauge

group to the Standard Model gauge structure of MSSM. The model is then based on

the gauge group SU(3)C ×SU(2)L×U(1)Y ×U(1)x, where the U(1)x charge is given

by the following linear combination of hypercharge Y and B − L:

U(1)x = xY − (B − L). (7.3)
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The particle content of the model and the U(1)x charge assignment are shown in Table

1. Besides the MSSM particles, the model has new particles {νc
i , νc, ν̄c, S+ and S−}

which are all singlets of the Standard Model gauge group.

Superfield Qi uc
i dc

i Li ec
i Hu Hd νc

i νc ν̄c S+ S−

U(1)x
x
6 − 1

3 −2x
3 + 1

3
x
3 + 1

3 −x
2 + 1 x− 1 x

2 −x
2 −1 −1 1 2 −2

TABLE 7.1. Particle content and charge assignment of the U(1)x model. Here i = 1 − 3 is the
family index.

In order for L̃i and ẽc
i sleptons to have positive mass–squared from the U(1)x

D–term, the charges of Li and ec
i must be of the same sign. This is possible only for

1 < x < 2. We shall confine to this range of x, which is an important restriction on

this class of models. The νc
i fields are needed for U(1)x anomaly cancellation. S+ and

S− are the Higgs superfields responsible for U(1)x symmetry breaking. The νc + ν̄c

pair facilitates symmetry breaking within the AMSB framework. The superpotential

of the model consistent with the gauge symmetries is given by:

W = (Yu)ij QiHuu
c
j + (Yd)ij QiHdd

c
j + (Yl)ij LiHde

c
j + µHuHd

+ µ′S+S− +
3∑

i=1

fνc
i
νc

i ν
c
i S+ + fνcνcνcS+ + hν̄cν̄cS− + Mνcνcν̄c. (7.4)

Here i, j = 1, 2, 3 are the family indices. The mass parameters µ and µ′ are of order

TeV, which may have a natural origin in AMSB [36]. In general, one can write

additional mass terms of the form Miν
c
i ν̄

c in the superpotential. Such terms will have

very little effect on the symmetry breaking analysis that follows. We forbid such mass

terms by invoking a discrete symmetry (such as a Z2) which differentiates νc from νc
i .

Small neutrino masses are induced in the model through the seesaw mechanism.

However, the νc
i fields, which remain light to the TeV scale, are not to be identified

as the traditional right–handed neutrinos involved in the seesaw mechanism. The

heavy fields which are integrated out have U(1)x–invariant mass terms. Specifically,

the following effective nonrenormalizable operators emerge after integrating out the
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heavy neutral lepton fields:

Lν
eff =

Y 2
νij

M2
N

LiLjHuHuS−. (7.5)

Here MN represents the masses of the heavy neutral leptons. For MN ∼ 109 GeV

and 〈S−〉 ∼ TeV, sub–eV neutrino masses are obtained. Note that we have not al-

lowed neutrino Dirac Yukawa couplings of the form hνij
Liν

c
jHu, which would generate

Majorana masses of order MeV for the light neutrinos. We forbid such terms by a

global symmetry G, either discrete or continuous. In our numerical examples we shall

assume this symmetry to be non–Abelian, with νc
i transforming as a triplet [for ex-

ample, G can be O(3), S4, A4, etc.]. Such a symmetry would imply that fνc
i

in Eq.

(7.4) are equal for i = 1− 3.

7.3 Symmetry breaking

The scalar potential (involving Hu, Hd, S+, S− fields) of the model is given by:

V = (M2
Hu

+ µ2)|Hu|2 + (M2
Hd

+ µ2)|Hd|2 + (M2
S+

+ µ′2)|S+|2 + (M2
S− + µ′2)|S−|2

+ Bµ(HuHd + h.c.) + B′µ′(S+S− + h.c.) +
1

8
(g2

1 + g2
2)(|Hu|2 − |Hd|2)2

+
1

2
g2
2|HuHd|2 +

1

2
g2

x

(x

2
|Hu|2 − x

2
|Hd|2 + 2|S+|2 − 2|S−|2

)2

, (7.6)

where the last term is the U(1)x D term. The B and the B′ terms for the model are

given by

B = −(γHu + γHd
)Maux and B′ = −(γS+ + γS−)Maux, (7.7)

where the γ’s are the one–loop anomalous dimensions given in the Appendix, Eqs.

(115)–(116), (120)–(121).

We parameterize the VEVs of Hu, Hd, S+ and S− as

〈Hu〉 =

(
0

υu

)
, 〈Hd〉 =

(
υd

0

)
, 〈S+〉 = z, 〈S−〉 = y. (7.8)

In minimizing the potential, we have to keep in mind the fact that the VEVs of 〈S+〉
and 〈S−〉 should be much larger than the VEVs of 〈Hu〉 and 〈Hd〉 for a consistent
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picture. In addition, the VEV of 〈S+〉 should be greater than the VEV of 〈S−〉 in

order for the D–term contribution to the slepton masses to be positive. We have

checked explicitly that all the above – mentioned conditions are satisfied at the local

minimum for a restricted choice of model parameters. The physical Higgs bosons as

well as the sleptons acquire positive mass–squared, while generating a Z ′ mass and

Z − Z ′ mixing angle consistent with experimental constraints.

Minimization of the potential leads to the following conditions:

sin 2β =
2Bµ

2µ2 + M2
Hu

+ M2
Hd

, (7.9)

M2
Z

2
= −µ2 +

M2
Hd
−M2

Hu
tan2 β

tan2 β − 1
− x2g2

xυ
2

4
− xg2

xu
2 cos 2ψ

cos 2β
, (7.10)

sin 2ψ =
−2B′µ′

2µ′2 + M2
S+

+ M2
S−

, (7.11)

M2
Z′

2
= −µ′2 +

M2
S− −M2

S+
tan2 ψ

(tan2 ψ − 1)
+

x2g2
xυ

2

4
− xg2

xυ
2 cos 2β

cos 2ψ
. (7.12)

Here M2
Z′ = x2g2

xυ2

2
+ 8g2

xu
2, tan β = υu

υd
, tan ψ = z

y
,

√
υ2

u + υ2
d = υ = 174 GeV and

√
z2 + y2 = u.

To see the consistency of symmetry breaking, we need to calculate the Higgs

boson mass–squared and establish that they are all positive. We parameterize the

Higgs fields (in the unitary gauge) as

Hu =

(
H+ sin β

υu + 1√
2
(φ2 + i cos β φ3)

)
, 〈Hd〉 =

(
υd + 1√

2
(φ1 + i sin β φ3)

H− cos β

)
,

S+ = z +
1√
2
(φ4 + i cos ψ φ5), S− = y +

1√
2
(φ6 + i sin ψ φ5). (7.13)

The CP–odd Higgs bosons {φ3, φ5} have masses given by

m2
A =

2Bµ

sin 2β
, m2

A′ = − 2B′µ′

sin 2ψ
. (7.14)

The mass matrix for the CP–even neutral Higgs bosons {φ1, φ2, φ4, φ6} is

given by

(M2)cp−even =




(M2)11 (M2)12 −2xg2
xυdz 2xg2

xυdy

(M2)12 (M2)22 2xg2
xυuz −2xg2

xυuy

−2xg2
xυdz 2xg2

xυuz (M2)33 (M2)34

2xg2
xυdy −2xg2

xυuy (M2)34 (M2)44




, (7.15)
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where

(M2)11 = m2
A sin2 β + M2

Z cos2 β +
1

2
(x2g2

xυ
2 cos2 β), (7.16)

(M2)12 = −m2
A sin β cos β −M2

Z sin β cos β − 1

2
x2g2

xυ
2 sin β cos β, (7.17)

(M2)22 = m2
A cos2 β + M2

Z sin2 β +
1

2
(x2g2

xυ
2 sin2 β), (7.18)

(M2)33 = m2
A′ cos2 ψ + 8g2

xz
2, (7.19)

(M2)34 = −m2
A′ sin ψ cos ψ − 8g2

xyz, (7.20)

(M2)44 = m2
A′ sin

2 ψ + 8g2
xy

2. (7.21)

It is instructive to analyze the effect of the U(1)x D–term on the mass of the lightest

MSSM Higgs boson h. Consider the upper left 2× 2 sub sector of the CP–even Higgs

boson mass matrix. It has eigenvalues given by

λ1,2 =
1

2

[
m2

A + M2
Z +

x2g2
xυ

2

2

∓
√(

m2
A + M2

Z +
x2g2

xυ
2

2

)2

− 4m2
AM2

Z cos2 2β − 4m2
A

(
x2g2

xυ
2

2

)
cos2 2β




From the equation above, we obtain an upper limit on mh

mh 6
√

x2g2
xυ

2

2
+ M2

Z | cos 2β|. (7.22)

The mixing between the doublets and the singlets will reduce the upper limit further.

In fact, we find this mixing effect to be significant.

The lower 2× 2 subsector of Eq. (7.15) has eigenvalues

λ′1,2 =
1

2

[
8g2

xu
2 + m2

A′ ∓
√

(8g2
xu

2 + m2
A′)

2 − 4m2
A′(8g

2
xu

2) cos2 2ψ

]
. (7.23)

From Eq. (7.23) we obtain the upper bound of the lightest Higgs mass for the SU(2)

singlet sector:

mh′ 6 mA′| cos 2ψ|. (7.24)

The above upper limit on mh′ is affected only minimally by the mixing between the

doublet and the singlet Higgs fields.
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As in the MSSM, the mass of the charged Higgs boson H± is given by

m2
H± = m2

A + M2
W . (7.25)

We now turn to the supersymmetric fermion masses. The (Majorana) mass

matrix of the neutralinos {B̃, W̃3, H̃0
d , H̃0

u, B̃′, S̃+, S̃−} is given by

M(0) =




M1 0 − υd√
2
g1

υu√
2
g1 0 0 0

0 M2
υd√

2
g2 − υu√

2
g2 0 0 0

− υd√
2
g1

υd√
2
g2 0 −µ − υd√

2
xgx 0 0

υu√
2
g1 − υu√

2
g2 −µ 0 υu√

2
xgx 0 0

0 0 − υd√
2
xgx

υu√
2
xgx M ′

1 2
√

2gxz −2
√

2gxy

0 0 0 0 2
√

2gxz 0 µ′

0 0 0 0 −2
√

2gxy µ′ 0




,(7.26)

where M1, M ′
1 and M2 are the gaugino masses for U(1)Y , U(1)x and SU(2)L. The

physical neutralino masses mχ̃0
i

(i =1–7) are obtained as the eigenvalues of this mass

matrix. We denote the diagonalizing matrix as O:

OM(0)OT = diag{mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
, mχ̃0

5
, mχ̃0

6
, mχ̃0

7
}. (7.27)

In the basis {W̃+, H̃+
u }, {W̃−, H̃−

d } the chargino (Dirac) mass matrix is

M(c) =

(
M2 g2υd

g2υu µ

)
. (7.28)

This matrix is diagonalized by a biunitary transformation V ∗M(c)U−1 = diag{mχ̃±1
, mχ̃±2

}.
The Z − Z ′ mixing matrix is given by

M2
Z−Z′ =

(
M2

Z γM2
Z

γM2
Z M2

Z′

)
, (7.29)

where

γ =
−xgx√
g2
1 + g2

2

, M2
Z =

υ2

2
(g2

1 + g2
2), M2

Z′ =
x2g2

xυ
2

2
+ 8g2

xu
2. (7.30)

The physical mass eigenstates Z1 and Z2 with masses MZ1 , MZ2 are

Z1 = Z cos ξ + Z ′ sin ξ, (7.31)

Z2 = −Z sin ξ + Z ′ cos ξ, (7.32)
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where

M2
Z1,Z2

=
1

2

[
M2

Z + M2
Z′ ±

√
(M2

Z −M2
Z′)

2 + 4γ2M4
Z

]
. (7.33)

The Z − Z ′ mixing angle ξ is given by

ξ =
1

2
arctan

(
2γM2

Z

M2
Z −M2

Z′

)
' −γM2

Z/M2
Z′ . (7.34)

We have ignored kinetic mixing of the form BµνZ ′
µν in the Lagrangian [73, 74].

The masses of the heavy right–handed neutrinos are given by

mνc
i

= fνc
i
z, (7.35)

where i = 1− 3 is the family index. The fourth right–handed neutrino νc mixes with

the ν̄c field forming two Majorana fermions. The masses are the eigenvalues of the

mass matrix

Mνcν̄c =

(
fνcz Mνc

Mνc hy

)
, (7.36)

where Mνc is the mass parameter that appears in the superpotential of Eq. (7.4). We

denote the eigenstates of this matrix as ω1, ω2 and the mass eigenvalues as mω1 and

mω2 .

7.4 The SUSY spectrum

7.4.1 Slepton masses

The slepton mass–squareds are given by the eigenvalues of the mass matrices

M2
l̃

=

(
m2

l̃i
mei

(
AYli

− µ tan β
)

mei

(
AYli

− µ tan β
)

m2
ẽc
i

)
, (7.37)

where i = e, µ, τ , and

m2
l̃i

=
M2

aux

(16π2)

[
Yliβ(Yli)−

(
3

2
g2β(g2) +

3

10
g1β(g1) + 2

(
1− x

2

)2

gxβ(gx)

)]

+ m2
ei

+

(
−1

2
+ sin2 θW

)
cos 2βM2

Z + 2g2
x

(
1− x

2

)
(z2 − y2), (7.38)

m2
ẽc
i

=
M2

aux

(16π2)

[
2Yliβ(Yli)−

(
6

5
g1β(g1) + 2(x− 1)2gxβ(gx)

)]

+ m2
ei
− sin2 θW cos 2βM2

Z + 2g2
x(x− 1)(z2 − y2). (7.39)
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The SUSY soft masses are calculated from the RGE given in the Appendix [Eqs.

(C.15), (C.21)]. Note the positive contribution from the U(1)x D–terms in Eqs.

(7.38)–(7.39), given by the terms +2g2
x(1− x

2
)(z2−y2) and +2g2

x(x−1)(z2−y2). There

are also negative contributions proportional to β (gx), but in our numerical solutions,

the positive D–term contributions are larger than the negative contributions. We

seek solutions where z = 〈S+〉 and y = 〈S−〉 are much larger than υu, υd, of order

TeV, with z & y.

The left–handed sneutrino masses are given by

m2
ν̃Li

=
M2

aux

(16π2)

[
−3

2
g2β(g2)− 3

10
g1β(g1)− 2

(
1− x

2

)2

gxβ(gx)

]

+
1

2
cos 2βM2

Z + 2g2
x

(
1− x

2

)
(z2 − y2). (7.40)

7.4.2 Squark masses

The mixing matrix for the squark sector is similar to the slepton sector. The

diagonal entries of the up and the down squark mass matrices are given by

m2
Ũi

= (m2
soft)

Q̃i

Q̃i
+ m2

Ui
+

1

6

(
4M2

W −M2
Z

)
cos 2β + 2g2

x

(
x

6
− 1

3

)
(z2 − y2),

m2
Ũc

i
= (m2

soft)
Ũc

i

Ũc
i

+ m2
Ui
− 2

3

(
M2

W −M2
Z

)
cos 2β + 2g2

x

(
−2x

3
+

1

3

)
(z2 − y2),

m2
D̃i

= (m2
soft)

Q̃i

Q̃i
+ m2

Di
− 1

6

(
2M2

W + M2
Z

)
cos 2β + 2g2

x

(
x

6
− 1

3

)
(z2 − y2),

m2
D̃c

i
= (m2

soft)
D̃c

i

D̃c
i

+ m2
Di

+
1

3

(
M2

W −M2
Z

)
cos 2β + 2g2

x

(
x

3
+

1

3

)
(z2 − y2).(7.41)

Here mUi
and mDi

are quark masses of different generations, i = 1, 2, 3. The squark

soft masses are obtained from the RGE as

(m2
soft)

Q̃i

Q̃i
=

M2
aux

16π2

[
Yui

β(Yui
) + Ydi

β(Ydi
)− 1

30
g1β(g1)− 3

2
g2β(g2)

− 8

3
g3β(g3)− 2

(
x

6
− 1

3

)2

gxβ(gx)

]
, (7.42)

(m2
soft)

Ũc
i

Ũc
i

=
M2

aux

16π2

[
2Yui

β(Yui
)− 8

15
g1β(g1)− 8

3
g3β(g3)− 2

(
−2x

3
+

1

3

)2

gxβ(gx)

]
(7.43)

(m2
soft)

D̃c
i

D̃c
i

=
M2

aux

16π2

[
2Ydi

β(Ydi
)− 2

15
g1β(g1)− 8

3
g3β(g3)− 2

(
x

3
+

1

3

)2

gxβ(gx)

]
(7.44)
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7.4.3 Heavy sneutrino masses

The heavy right–handed sneutrinos (ν̃c
i ) split into scalar (ν̃c

is) and pseudoscalar

(ν̃c
ip) components with masses given by

m2
ν̃c

is
=

M2
aux

(16π2)

[
4fνc

i
β(fνc

i
)− 2gxβ(gx)

)
]− 2g2

x(z
2 − y2)

+ 2µ′fνc
i
y + 4f 2

νc
i
z2 + 2fνc

i
Aνi

z, (7.45)

m2
ν̃c

ip
=

M2
aux

(16π2)

[
4fνc

i
β(fνc

i
)− 2gxβ(gx)

]− 2g2
x(z

2 − y2)

− 2µ′fνc
i
y + 4f 2

νc
i
z2 − 2fνc

i
Aνi

z. (7.46)

As for the fourth heavy sneutrino, there is mixing between the ν̃c and the ˜̄ν
c

fields. This leads to two 2 × 2 mass matrices, one for the scalars, and one for the

pseudoscalars. They are given by

M2
ν̃c

s
=

(
m2

ν̃c
s

2Mνc

(
fνcz + hy + Bνcν̄c

2

)

2Mνc

(
fνcz + hy + Bνcν̄c

2

)
m2

˜̄ν
c
s

)
, (7.47)

M2
ν̃c

p
=

(
m2

ν̃c
p

2Mνc

(
fνcz + hy + Bνcν̄c

2

)

2Mνc

(
fνcz + hy + Bνcν̄c

2

)
m2

˜̄ν
c
p

)
, (7.48)

where

m2
ν̃c

s
=

M2
aux

(16π2)
(4fνcβ(fνc)− 2gxβ(gx))− 2g2

x(z
2 − y2)

+ 2µ′fνcy + 4f 2
νcz2 + 2fνcAνcz + M2

νc , (7.49)

m2
ν̃c

p
=

M2
aux

(16π2)
(4fνcβ(fνc)− 2gxβ(gx))− 2g2

x(z
2 − y2)

− 2µ′fνcy + 4f 2
νcz2 − 2fνcAνcz + M2

νc , (7.50)

m2
˜̄ν

c
s

=
M2

aux

(16π2)
(4hβ(h)− 2gxβ(gx)) + 2g2

x(z
2 − y2)

+ 2µ′hz + 4h2y2 + 2hAhy + M2
νc , (7.51)

m2
˜̄ν

c
p

=
M2

aux

(16π2)
(4hβ(h)− 2gxβ(gx)) + 2g2

x(z
2 − y2)

− 2µ′hz + 4h2y2 − 2hAhy + M2
νc , (7.52)

Bνcν̄c = −Maux(γνc + γν̄c). (7.53)

Here s (p) stands for scalar (pseudoscalar). The beta functions, gamma functions and

the A terms are given in the Appendix, Eqs. (C.8)–(C.22). We shall denote the mass

eigenstates of the scalars as ω̃1s, ω̃2s with masses m2
ω̃1s

, m2
ω̃2s

, and the pseudoscalars

as ω̃1p, ω̃2p with masses m2
ω̃1p

, m2
ω̃2p

.
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7.5 Numerical results for the spectrum

As inputs at MZ we choose the central values (in the MS scheme ) [51]

α3(MZ) = 0.119, sin2 θW = 0.23113, α(MZ) =
1

127.922
. (7.54)

We keep the top quark mass fixed at its central value, Mt = 174.3 GeV. We follow

the procedure outlined in Ref. [61] to determine the parameter tan β and the lightest

Higgs boson mass mh. The gauge couplings and the top quark Yukawa coupling are

evolved from the lower momentum scale to Q = 1 TeV, where the Higgs potential

is minimized. We use the Standard Model beta functions for this evolution. In

determining the top quark Yukawa coupling Yt(mt), we use 2–loop QCD corrections

to convert the physical mass Mt into the running mass mt(mt).

For the lightest Higgs boson mass of MSSM we use the 2–loop radiatively cor-

rected expression for m2
h = (m2

h)o + ∆m2
h, where ∆m2

h is given in Ref. [53].

We present numerical results for two models: Model 1 with x = 1.3, and Model 2

with x = 1.6. In Model 1, the left–handed sleptons are heavier than the right–handed

sleptons, while the reverse holds for Model 2.

The value of Maux should be in the range Maux = 40 − 100 TeV if the SUSY

particles are to have masses in the range 100 GeV – 2 TeV. In Table 7.2, corresponding

to Model 1, we choose Maux = 56.398 TeV. In Table 7.7 (for Model 2) we choose

Maux = 59.987 TeV. We have included the leading radiative corrections [54] to M1, M2

and M3 in our numerical study. In Model 1 we find M1 : M2 : M3 = 3.0 : 1 : 7.1. The

minimization conditions (Eqs. (7.9)–(10)) fix tan β = 4.39 in this model. The choice

of gx = 0.41, fνc
i

= fνc = 0.28, and h = 0.921 are motivated by the requirements

of consistent symmetry breaking with 〈S+〉 & 〈S−〉 À υu, υd, and the positivity of

slepton masses. We find that the model parameters are highly constrained. Only

small deviations from the choice in Table 7.2 are found to be consistent.

From Table 7.2 we see that the lightest Higgs boson of the MSSM sector has mass

of 121 GeV. The lightest SUSY particle is the neutralino χ̃0
1, which is approximately

a neutral Wino. This is a candidate for cold dark matter [40]. Note that χ̃0
1 is nearly

mass degenerate with the lighter chargino χ̃±1 (which is approximately the charged
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Wino). The mass splitting mχ̃0
1
−mχ̃±1

= 180 MeV, where the bulk (173 MeV) arises

from finite electroweak radiative corrections [55], not shown in Table 7.2.

In the U(1)x sector, there is a relatively light neutral Higgs boson h′ with a mass

of 60 GeV. This occurs since the parameter tan ψ = z
y

is close to 1 – a requirement for

consistent symmetry breaking [see Eq. (7.24)]. h′ is an admixture of S+ and S−, and

as such has no direct couplings to the Standard Model fields. Its mass being below

100 GeV is fully consistent with experimental constraints. The phenomenology of

such a weakly coupled light neutral Higgs boson will be discussed in the section 7.

The mass of the Z ′ gauge boson and the Z−Z ′ mixing angle are listed in Table

7.3 (for Model 1). In section 7 we show that these values are compatible with known

experimental constraints.

Table 7.4 lists the eigenvectors of the neutralino mass matrix. These will become

relevant in discussing the decays of the Z ′ gauge boson. Tables 7.5 and 7.6 give the

eigenvectors of the chargino and the CP–even Higgs bosons, which will also be used

in the study of Z ′ decays.

Tables 7.7–7.11 are analogous to Tables 7.2–7.6, except that they now apply to

Model 2 (with x = 1.6). In this case, tan β = 5.83 and mh = 126 GeV. Here the right–

handed sleptons are heavier than the left–handed sleptons. In fact, in this Model,

the LSP is the left–handed sneutrino. This can also be a candidate for cold dark

matter in the AMSB framework, as the decay of the moduli fields and the gravitino

will produce ν̃Li with an abundance of the right order [41, 76].
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Particles Symbol Mass (TeV)

Neutralinos {mχ̃0
1
, mχ̃0

2
} {0.175, 0.517}

Neutralinos {mχ̃0
3
, mχ̃0

4
} {0.980, 0.980}

Neutralinos {mχ̃0
5
, mχ̃0

6
, mχ̃0

7
} {0.206, 1.644, 3.278}

Charginos {mχ̃±1
, mχ̃±2

} {0.175, 0.983}
Gluino M3 1.239

Neutral Higgs bosons {mh, mH , mA} {0.121, 0.793, 0.792}
Neutral Higgs bosons {mh′ , mH′ , mA′} {0.060, 2.394, 0.241}
Charged Higgs bosons mH± 0.796

R.H sleptons {mẽR , mµ̃R , mτ̃1} {0.215, 0.215, 0.205}
L.H sleptons {mẽL , mµ̃L , mτ̃2} {0.249, 0.249, 0.257}
Sneutrinos {mν̃e , mν̃µ , mν̃τ } {0.220, 0.220, 0.220}
R.H down squarks {md̃R

, ms̃R , mb̃1
} {1.284, 1.284, 1.284}

L.H down squarks {md̃L
, ms̃L , mb̃2

} {1.186, 1.186, 1.028}
R.H up squarks {mũR , mc̃R , mt̃1

} {1.098, 1.098, 0.644}
L.H up squarks {mũL , mc̃L , mt̃2

} {1.184, 1.184, 1.099}
R.H scalar neutrinos {mν̃c

si
}(i = 1− 3) 0.605

R.H pseudoscalar neutrinos {mν̃c
pi
}(i = 1− 3) 0.413

Heavy scalar neutrino (ν̃c, ˜̄νc) {mω̃1s , mω̃2s} {1.142, 3.644}
Heavy pseudoscalar neutrino (ν̃c, ˜̄νc) {mω̃ps , mω̃2p} {0.595, 1.439}
R.H neutrinos {mνc

i
} 0.455

Heavy neutrinos (νc, ν̄c) {mω1 , mω2} {0.933, 1.635}

TABLE 7.2. Sparticle masses in Model 1 (x = 1.3) for the choice Maux = 56.398 TeV,
tanψ = −1.295, u = 2.054 TeV, fνc

i
= 0.28, fνc = 0.28, h = 0.921,

gx = 0.41, Mνc = 1 TeV and Mt = 174.3 GeV. This corresponds to
tanβ = 4.39, µ = −0.977 TeV, µ′ = 0.214 TeV, yb = 0.03.
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Z ′ boson mass MZ′ 2.383 TeV

Z − Z ′ mixing angle ξ 0.001

TABLE 7.3. Z ′ mass and Z − Z ′ mixing angle in Model 1 for the same set of input
parameters as in Table 7.2.

Fields χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4 χ̃0
5 χ̃0

6 χ̃0
7

B̃ -0.003 0.998 0.051 0.025 0.000 -0.001 0.000

W̃ 0
3 -0.997 0.001 -0.052 -0.058 0.000 0.002 0.000

H̃0
d 0.078 0.054 -0.703 -0.704 -0.002 0.030 0.001

H̃0
u -0.004 0.019 -0.707 0.706 0.001 -0.042 0.016

B̃′ 0.000 0.000 -0.004 -0.023 -0.026 -0.612 -0.790

S̃+ 0.000 0.000 -0.011 0.039 -0.597 0.642 -0.479

S̃− 0.000 0.000 -0.009 0.026 0.802 0.458 -0.382

TABLE 7.4. Eigenvectors of the neutralino mass matrix in Model 1. The unitary matrix
O in Eq. (7.84) is the transpose of this array.

U11 U12 U21 U22 V11 V12 V21 V22

0.994 0.110 -0.110 0.994 1.000 0.006 -0.006 1.000

TABLE 7.5. Eigenvectors of the chargino mass matrix in Model 1, where U , V

are the unitary matrices that diagonalize the chargino mass matrix
(V ∗M (c)U−1 = M

(c)
diag).
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Fields h h′ H H ′

H0
d 0.226 -0.025 0.974 -0.007

H0
u 0.967 -0.110 -0.227 0.027

S+ -0.050 -0.612 -0.010 -0.790

S− 0.104 0.783 -0.008 -0.613

TABLE 7.6. Eigenvectors of the CP–even Higgs boson mass matrix in Model 1. This
array corresponds to X used in Eqs. (7.80) – (7.82) and Eq. (7.107) of the
text.
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Particles Symbol Mass (TeV)

Neutralinos {mχ̃0
1
, mχ̃0

2
} {0.186, 0.550}

Neutralinos {mχ̃0
3
, mχ̃0

4
} {1.049, 1.050}

Neutralinos {mχ̃0
5
, mχ̃0

6
, mχ̃0

7
} {0.498, 2.840, 4.539}

Charginos {mχ̃±1
, mχ̃±2

} {0.186, 1.051}
Gluino M3 1.298

Neutral Higgs bosons {mh, mH , mA} {0.126, 0.625, 0.625}
Neutral Higgs bosons {mh′ , mH′ , mA′} {0.023, 3.436, 0.125}
Charged Higgs bosons mH± 0.630

R.H sleptons {mẽR , mµ̃R , mτ̃1} {0.383, 0.383, 0.385}
L.H sleptons {mẽL , mµ̃L , mτ̃2} {0.213, 0.213, 0.210}
Sneutrinos {mν̃e , mν̃µ , mν̃τ } {0.174, 0.174, 0.174}
R.H down squarks {md̃R

, ms̃R , mb̃1
} {1.370, 1.370, 1.369}

L.H down squarks {md̃L
, ms̃L , mb̃2

} {1.267, 1.267, 1.087}
R.H up squarks {mũR , mc̃R , mt̃1

} {1.031, 1.031, 0.406}
L.H up squarks {mũL , mc̃L , mt̃2

} {1.264, 1.264, 1.1141}
R.H scalar neutrinos {mν̃c

si
}(i = 1− 3) 1.583

R.H pseudoscalar neutrinos {mν̃c
pi
}(i = 1− 3) 1.129

Heavy scalar neutrino (ν̃c, ˜̄νc) {mω̃1s , mω̃2s} {1.852, 4.700}
Heavy pseudoscalar neutrino (ν̃c, ˜̄νc) {mω̃ps , mω̃2p} {1.398, 2.586}
R.H neutrinos {mνc

i
} 0.829

Heavy neutrinos (νc, ν̄c) {mω1 , mω2} {1.174, 2.070}

TABLE 7.7. Sparticle masses in Model 2 (x = 1.6) for the choice Maux = 59.987 TeV,
tanψ = −1.202, u = 2.697 TeV, fνc

i
= 0.4, fνc = 0.4, h = 1.0, gx = 0.45,

M ′
1 = 2.197 TeV, Mνc = 1 TeV and Mt = 174.3 GeV. This corresponds to

tanβ = 5.83, µ = −1.046 TeV, µ′ = −0.505 TeV, yb = 0.06.

7.6 Z ′ decay modes and branching ratios

The Z ′ gauge boson of our model has substantial coupling to the quarks. With

its mass in the range 2–4 TeV, it will be produced copiously at the LHC via the

process pp → Z ′. The reach of LHC is about 5 TeV for a Z ′ with generic quark
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Z ′ boson mass MZ′ 3.433 TeV

Z − Z ′ mixing angle ξ 0.00068

TABLE 7.8. Z ′ mass and Z − Z ′ mixing angle in Model 2 for the same set of input
parameters as in Table 7.7.

Fields χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4 χ̃0
5 χ̃0

6 χ̃0
7

B̃ -0.001 0.998 -0.052 0.023 0.000 0.000 0.000

W̃ 0
3 -0.997 0.002 0.053 -0.052 0.000 -0.001 0.000

H̃0
d -0.074 -0.052 -0.703 0.705 -0.002 0.011 0.001

H̃0
u 0.000 -0.020 -0.707 -0.707 -0.001 -0.021 0.016

B̃′ 0.000 0.000 0.006 -0.004 0.023 0.0563 0.826

S̃+ 0.000 0.000 0.011 0.018 -0.648 -0.620 0.441

S̃− 0.000 0.000 0.007 0.017 0.761 -0.546 0.350

TABLE 7.9. Eigenvectors of the neutralino mass matrix in Model 2. The unitary matrix
O in Eq. (7.84) is the transpose of this array.

U11 U12 U21 U22 V11 V12 V21 V22

0.994 0.105 -0.105 0.994 1.000 0.000 -0.000 1.000

TABLE 7.10. Eigenvectors of the chargino mass matrix in Model 2, where U ,
V are the unitary matrices that diagonalize the chargino mass matrix
(V ∗M (c)U−1 = M

(c)
diag).

Fields h h′ H H ′

H0
d 0.176 0.002 0.984 0.005

H0
u 0.984 0.010 -0.176 -0.025

S+ -0.012 -0.640 0.007 -0.768

S− -0.023 0.768 0.006 -0.640

TABLE 7.11. Eigenvectors of the CP–even Higgs boson mass matrix in Model 2. This
array corresponds to X used in Eqs. (7.80) – (7.82) and Eq. (7.107) of the
text.

and lepton couplings [77]. Our model will then be directly tested at the LHC. Once

produced, the Z ′ will decay into various channels. It is important to identify the
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dominant decay modes of the Z ′ and calculate the corresponding branching ratios.

This is what we do in this section. We will see that our Z ′ is almost leptophobic, with

Br(Z ′ → e+e−) = (1 − 1.5)%. Direct limits on such a Z ′ are rather weak, however,

the Z−Z ′ mixing which occurs in our models at the level of 0.001 does provide useful

constraints.

We now turn to the dominant 2–body decays of Z ′. In this analysis we can

safely ignore the small Z − Z ′ mixing for the most part.

The Lagrangian for Z ′ coupling to the Standard Model fermions can be written

as

L = gxf̄γµ(vf − afγ5)fZ ′
µ. (7.55)

The Z ′ decay rate into a fermion–antifermion pair is then

Γ(Z ′ → f̄f) = Cf
g2

x

12π
MZ′

[
v2

f

(
1 + 2

m2
f

M2
Z′

)
+ a2

f

(
1− 4

m2
f

M2
Z′

)] √
1− 4

m2
f

M2
Z′

. (7.56)

Here Cf = 3 (1) for quarks (leptons), MZ′ is the Z ′ mass and gx is the U(1)x gauge

coupling. The vector and the axial–vector couplings (vf , af ) are related to the U(1)x

charges of the fermions as

vf =
1

2
(Q(fL) + Q(fR)) , (7.57)

af =
1

2
(Q(fL)−Q(fR)) . (7.58)

Here Q is the U(1)x charge of fL (listed in Table 7.1 ) and Q(fR) = −Q(f c
L).

The decay width for Z ′ → ν̄LiνLi and Z ′ → ν̄c
i ν

c
i are:

Γ(Z ′ → ν̄LiνLi) =
g2

x

24π
Q2

νLi
MZ′ , (7.59)

Γ(Z ′ → ν̄c
i ν

c
i ) =

g2
x

24π
Q2

νc
i
MZ′

(
1− 4

m2
νc

i

M2
Z′

) 3
2

. (7.60)

There is mixing between the heavy vector–like νc and the ν̄c [Cf: Eq. (7.36)],

with the mass eigenstates (ω1, ω2) given by
(

νc

ν̄c

)
=

(
cos θνc sin θνc

− sin θνc cos θνc

)(
ω1

ω2

)
. (7.61)
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Since Qν̄c = −Qνc , the Lagrangian for the Z ′ coupling to these neutrino is given by

L =
gx

2
Qνc(cos 2θνcω̄1γ

µγ5ω1 − cos 2θνcω̄2γ
µγ5ω2 − sin 2θνcω̄1γ

µγ5ω2

− sin 2θνcω̄2γ
µγ5ω1)Z

′
µ. (7.62)

This leads to the decay rates

Γ(Z ′ → ω1ω1) =
g2

x

24π
MZ′Q

2
νc cos2 2θνc

(
1− 4

m2
ω1

M2
Z′

) 3
2

, (7.63)

Γ(Z ′ → ω2ω2) =
g2

x

24π
MZ′Q

2
νc cos2 2θνc

(
1− 4

m2
ω2

M2
Z′

) 3
2

, (7.64)

Γ(Z ′ → ω1ω2) =
g2

x

12π
MZ′Q

2
νc sin2 2θνc

[
1− (m2

ω1
+ m2

ω2
)

2M2
Z′

− (m2
ω1
−m2

ω2
)2

2M4
Z′

− 3
mω1mω2

M2
Z′

]

×
√(

1− (mω1 + mω2)
2

M2
Z′

)(
1− (mω1 −mω2)

2

M2
Z′

)
. (7.65)

Here mω1 (mω2) are the masses of the physical Majorana fermions.

The Z ′ interaction with the sfermions is described by the Lagrangian

L = igx(vf ± af )f̃
∗
L,R

↔
∂µ f̃L,RZ ′µ. (7.66)

The rate for the decay Z ′ to sfermions is given by

Γ(Z ′ → f̃ ∗L,Rf̃L,R) = Cf
g2

x

48π
MZ′(vf ± af )

2

(
1− 4

m2
f̃L,R

M2
Z′

) 3
2

, (7.67)

where the +(−) sign is for the left (right)–handed sfermions and mf̃L,R
is the left

(right)–handed sfermion mass. vf and af are as given in Eqs. (7.57)–(7.58).

In the top squark sector, there is non–negligible mixing between the left and the

right–handed sfermions. This leads to the following modification of the Lagrangian:

L = igx

(
(vf ± af cos 2θf̃ )f̃

∗
1,2

↔
∂µ f̃1,2 − af sin 2θf̃ (f̃

∗
1

↔
∂µ f̃2 + f̃ ∗2

↔
∂µ f̃1)

)
Z ′µ, (7.68)

where θf̃ is the left–right sfermion mixing angle. The decay rate is given by

Γ(Z ′ → f̃ ∗1,2f̃1,2) = Cf
g2

x

48π
MZ′(vf ± af cos 2θf̃ )

2

(
1− 4

m2
f̃1,2

M2
Z′

) 3
2

, (7.69)

Γ(Z ′ → f̃ ∗1 f̃2) = Cf
g2

x

48π
MZ′(af sin 2θf̃ )

2

[
1 + 2

(m2
1 + m2

2)

M2
Z′

+
(m2

1 −m2
2)

2

M4
Z′

)

] 3
2

.(7.70)
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The ν̃c and ˜̄ν
c

splits into two scalar and two pseudoscalar which mix (see Eqs.

(7.47)–(7.48)). The mass eigenstate ω̃is and ω̃ip are given as
(

ν̃c
s

˜̄ν
c
s

)
=

(
cos θωs sin θωs

− sin θωs cos θωs

)(
ω̃1s

ω̃2s

)
, (7.71)

(
ν̃c

p

˜̄ν
c
p

)
=

(
cos θωp sin θωp

− sin θωp cos θωp

)(
ω̃1p

ω̃2p

)
. (7.72)

The Lagrangian for the Z ′ coupling to the scalar–pseudoscalar pair is given by:

L = gx

[
(Qνc cos θωs cos θωp + Qν̄c sin θωs sin θωp)ω̃1s

↔
∂µ ω̃1p

+(Qνc sin θωs sin θωp + Qν̄c cos θωs cos θωp)ω̃2s

↔
∂µ ω̃2p

+(Qνc cos θωs sin θωp −Qν̄c sin θωs cos θωp)ω̃1s

↔
∂µ ω̃2p

+(Qνc sin θωs cos θωp −Qν̄c cos θωs sin θωp)ω̃2s

↔
∂µ ω̃1p

]
Z ′µ. (7.73)

This leads to the decay rate

Γ(Z ′ → ω̃isω̃jp) =
g2

x

48π
Q2

ij

[
1− 2

(m2
ωis

+ m2
ωjp

)

M2
Z′

+
(m2

ωis
−m2

ωjp
)2

M4
Z′

] 3
2

, (7.74)

where Qij is identified with the appropriate coupling to ω̃isω̃jp term in the Lagrangian

of Eq. (7.73).

The supersymetric partners of νc
i split into a scalar (ν̃c

is) and a pseudoscalar

(ν̃c
ip). The decay of Z ′ to these fields is similar to those analyzed in Eq. (7.74):

Γ(Z ′ → ν̃c
isν̃

c
ip) =

g2
x

48π
Q2

νc
i

[
1− 2

(m2
ν̃c

is
+ m2

ν̃c
ip
)

M2
Z′

+
(m2

ν̃c
is
−m2

ν̃c
ip
)2

M4
Z′

] 3
2

, (7.75)

where mν̃c
is

and mν̃c
ip

are the masses of the scalar and the pseudoscalar.

The Lagrangian for the Z ′ coupling to the charged Higgs bosons is given by

L = igx(QHd
sin2 β −QHu cos2 β)H+

↔
∂µ H−Z ′µ

+ gx(QHd
+ QHu) sin β cos βMW (W+

µ H− + W−
µ H+)Z ′µ, (7.76)

where QHd
(QHu) is the U(1)x charge of Hd (Hu) field. The decay rates of Z ′ to

H+H− and W±H∓ are given by

Γ(Z ′ → H+H−) =
g2

x

48π
MZ′(QHd

sin2 β −QHu cos2 β)2

(
1− 4

m2
H±

M2
Z′

) 3
2

, (7.77)
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Γ(Z ′ → W±H∓) =
g2

x

192π
MZ′(QHd

+ QHu)2

[
1 + 2

(5M2
W −m2

H±)

M2
Z′

+
(M2

W −m2
H±)2

M4
Z′

]

×
√

1− 2
(M2

W + m2
H±)

M2
Z′

+
(M2

W −m2
H±)2

M4
Z′

. (7.78)

Here mH± is the mass of the H± Higgs boson and MW is the mass of the W–boson.

The ZW+W− coupling of the Standard Model will induce, through Z − Z ′

mixing, a Z ′W+W− coupling. The decay of Z ′ to a pair of W+W− is found to be

[78]

Γ(Z ′ → W+W−) =
g2
2

192π
cos2 θW sin2 ξMZ′

M4
Z′

M4
W

(
1 + 20

M2
W

M2
Z′

+ 12
M4

W

M4
Z′

)(
1− 4

M2
W

M2
Z′

) 3
2

We now discuss the decays of Z ′ → Zh,ZH, Zh′, ZH ′ as well as Z ′ →
hA, h′A′ etc.. The relevant Lagrangian is

L = 2gxMZ′

4∑
i=1

(QHd
cos βX1i −QHu sin βX2i)Z

′µZµHi

− gx

4∑
i=1

(QHd
sin βX1i + QHu cos βX2i)Z

′µH0
i

↔
∂µ A

− gx

4∑
i=1

(QS+ cos ψX3i + QS− sin ψX4i)Z
′µH0

i

↔
∂µ A′, (7.79)

where H0
i (= h, h′, H, H ′) are the neutral CP–even Higgs bosons, mHi

are the

masses of the corresponding Higgs boson, QS+ (QS−) is the U(1)x charge of the

S+ (S−) field and Xij are the matrix elements of the unitary matrix that diagonalizes

the CP–even mass matrix of Eq. (7.15). The decay rates are then

Γ(Z ′ → ZH0
i ) =

g2
x

48π
MZ′(QHd

cos βX1i −QHu sin βX2i)
2 ×

[
1 + 2

(5M2
Z −m2

Hi
)

M2
Z′

+
(M2

Z −m2
Hi

)2

M4
Z′

] √
1− 2

(M2
Z + m2

Hi
)

M2
Z′

+
(M2

Z −m2
Hi

)2

M4
Z′

,(7.80)

Γ(Z ′ → HiA) =
g2

x

48π
MZ′(QHd

sin βX1i + QHu cos βX2i)
2

×
[
1− 2

(m2
A + m2

Hi
)

M2
Z′

+
(m2

A −m2
Hi

)2

M4
Z′

] 3
2

(7.81)

Γ(Z ′ → HiA
′) =

g2
x

48π
MZ′(QS+ cos ψX3i + QS− sin ψX4i)

2

×
[
1− 2

(m2
A′ + m2

Hi
)

M2
Z′

+
(m2

A′ −m2
Hi

)2

M4
Z′

] 3
2

, (7.82)
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where mA and mA′ are the pseudoscalar Higgs boson masses.

We parameterize the interactions between the neutralinos (χ̃0
1, χ̃0

2, ...χ̃
0
7) and the

Z ′ boson as

L =
∑
i,j

gij
¯̃χ

0
i γ

µγ5χ̃
0
jZ

′
µ. (7.83)

Here the coupling gij is obtained from the eigenvectors of the neutralino mass matrix

of Eq. (7.26) as

ĝ =
gx

2
O




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −x
2

0 0 0 0

0 0 0 x
2

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 −2




OT , (7.84)

with gij = (ĝ)ij. Here O is the orthogonal matrix that diagonalizes the neutralino

mass matrix. The Z ′ partial decay rates into neutralinos is found to be

Γ(Z ′ → χ̃0
i χ̃

0
i ) =

g2
ii

6π
MZ′

(
1− 4

m2
i

M2
Z′

) 3
2

, (7.85)

Γ(Z ′ → χ̃0
i χ̃

0
j) =

(gij + gji)
2

12π
MZ′

[
1− (m2

i + m2
j)

2M2
Z′

− (m2
i −m2

j)
2

2M4
Z′

− 3
mimj

M2
Z′

]

×
√(

1− (mi + mj)2

M2
Z′

)(
1− (mi −mj)2

M2
Z′

)
(i 6= j) (7.86)

where mi are the neutralino masses. (Here our result disagrees with Eq. (48) of Ref.

[64] by a factor of 2.)

The Lagrangian for the couplings of Z ′ to the charginos is given by [64]

L =
1

2
gx

2∑
i,j=1

¯̃χ
±
i γµ(vij + aijγ5)χ̃

±
j Z ′

µ. (7.87)

The Z ′ decay rate into the chargino pair is then

Γ(Z ′ → χ̃±i χ̃∓j ) =
g2

x

48π
MZ′

[
(v2

ij + a2
ij)(1−

(m2
i + m2

j)

2M2
Z′

− (m2
i −m2

j)
2

2M4
Z′

) + 3(v2
ij − a2

ij)
mimj

M2
Z′

]

×
√(

1− (mi + mj)2

M2
Z′

)(
1− (mi −mj)2

M2
Z′

)
. (7.88)
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Here mi is the chargino mass, vij and aij are given in terms of the charges QHu , QHd

and the matrices U and V which diagonalize the chargino mass matrix Eq. (7.28),

can be explicitly written as [64]

v11 = QHd
V 2

12 −QHuU
2
12, (7.89)

a11 = QHd
V 2

21 + QHuU
2
21, (7.90)

v12 = v21 = QHd
V12V11 − δQHuU12U11, (7.91)

a12 = a21 = QHd
V12V11 + δQHuU12U11, (7.92)

v22 = QHd
V 2

11 −QHuU
2
11, (7.93)

a22 = QHd
V 2

22 + QHuU
2
22, (7.94)

where δ = sgn(mχ̃±1
)× sgn(mχ̃±2

).

In Table 7.12 we present the partial decay rates of Z ′ to two fermions and to two

scalars in Model 1. The total width of Z ′ is 106 GeV (this ignores three body decays,

which are more suppressed). One sees from Table 7.12 that the Z ′ decays dominantly

to qq̄ with Br(Z ′ → qq̄) w 43.93%. On the other hand, Br(Z ′ → e+e−) w 1.16% in

this case. Thus this Z ′ is leptophobic. We also see that Z ′ → χ̃0
i χ̃

0
j and Z ′ → χ̃±i χ̃∓j

are significant. There are also non–negligible decays into two Higgs particles, with

Z ′ → h′A′ being the dominant mode in this class. The decay of Z ′ into sfermions is

a new production channel for supersymmetric particles. Decays into sneutrino pairs

is the dominant mode in this category, with Br(Z ′ → ν̃Lν̃L) v 7.74%. The signature

will be pp → Z ′ → ν̃Liν̃Li → `−i `−i χ̃+
1 χ̃+

1 , where the sneutrino decays into `−i χ̃+
1 , with

the subsequent decay χ̃±1 → χ̃0
1 + π±, etc.

In Table 7.13 we list the Z ′ partial decay rates in Model 2. Br(Z ′ → e+e−) w
1.60% in this case. Other features are very similar to the case of Model 1 (Table

7.12).
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Decay Modes of Z ′ Width (GeV)

Z ′ → {ūu, c̄c, t̄t} {4.75, 4.75, 4.64}
Z ′ → d̄d (s̄s, b̄b) 9.59

Z ′ → ēe(µ̄µ, τ̄ τ) 1.13

Z ′ → νeLνeL (νµLνµL, ντLντL) 0.65

Z ′ → νeRνeR (νµRνµR, ντRντR) 4.19

Z ′ → ω̄1ω1 0.50

Z ′ → {χ̃1χ̃3, χ̃1χ̃4, χ̃2χ̃4, χ̃3χ̃4} {0.01, 0.01, 0.01, 3.38}
Z ′ → {χ̃3χ̃5, χ̃4χ̃5, χ̃5χ̃5, χ̃5χ̃6} {0.01, 0.05, 3.34, 5.65}
Z ′ → {χ̃+

2 χ̃−2 , χ̃+
1 χ̃−2 , χ̃−1 χ̃+

2 } {3.36, 0.02, 0.02}
Z ′ → ũ∗RũR (c̃∗Rc̃R) 0.13

Z ′ → {t̃∗Rt̃R, t̃∗Lt̃R, t̃∗Rt̃L} {0.88, 0.13, 0.13}
Z ′ → ẽ∗LẽL (µ̃∗Lµ̃L, τ̃∗Lτ̃L) 0.30

Z ′ → ẽ∗RẽR (µ̃∗Rµ̃R, τ̃∗Rτ̃R) 0.23

Z ′ → ν̃∗eLν̃eL (ν̃∗µLν̃µL, ν̃∗τLν̃τL) 2.52

Z ′ → ν̃c
1sν̃

c
1p {ν̃c

2sν̃
c
2p, ν̃c

3sν̃
c
3p} 1.94

Z ′ → ω̃1sω̃1p 0.36

Z ′ → Zh 1.11

Z ′ → {hA′, HA, h′A′} {0.03, 0.47, 0.62}
Z ′ → H+H− 0.46

Z ′ → W+W− 1.08

Z ′ → W±H∓ 0

TABLE 7.12. Decay modes for Z ′ in Model 1 for the parameters used in Table 7.2. The
total decay width is Γ(Z ′ → all) = 97.68 GeV.
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Decay Modes of Z ′ Width (GeV)

Z ′ → {ūu, c̄c, t̄t} {15.00, 15.00, 14.86}
Z ′ → d̄d (s̄s, b̄b) 20.90

Z ′ → ēe(µ̄µ, τ̄ τ) 3.69

Z ′ → νeLνeL (νµLνµL, ντLντL) 0.37

Z ′ → νeRνeR (νµRνµR, ντRντR) 6.19

Z ′ → {ω̄1ω1, ω̄1ω2} {1.41, 0.06}
Z ′ → {χ̃1χ̃3, χ̃1χ̃4, χ̃2χ̃4, χ̃3χ̃4} {0.03 0.03, 0.03, 10.99}
Z ′ → {χ̃3χ̃5, χ̃4χ̃5, χ̃5χ̃5, χ̃5χ̃6} {0.01, 0.04, 1.63, 6.64}
Z ′ → {χ̃+

2 χ̃−2 } {10.96}
Z ′ → ũ∗LũL (c̃∗Lc̃L) 0.02

Z ′ → ũ∗RũR (c̃∗Rc̃R) 3.80

Z ′ → {t̃∗Rt̃R, t̃∗Lt̃R, t̃∗Rt̃L} {5.93, 0.45, 0.45}
Z ′ → d̃∗Ld̃L (s̃∗Ls̃L, b̃∗Lb̃L) 0.02

Z ′ → d̃∗Rd̃R (s̃∗Rs̃R, b̃∗Rb̃R) 3.77

Z ′ → ẽ∗LẽL (µ̃∗Lµ̃L, τ̃∗Lτ̃L) 0.18

Z ′ → ẽ∗RẽR (µ̃∗Rµ̃R, τ̃∗Rτ̃R) 1.54

Z ′ → ν̃∗eLν̃eL (ν̃∗µLν̃µL, ν̃∗τLν̃τL) 4.54

Z ′ → ν̃c
1sν̃

c
1p {ν̃c

2sν̃
c
2p, ν̃c

3sν̃
c
3p} 1.04

Z ′ → ω̃1sω̃1p 0.91

Z ′ → Zh 2.96

Z ′ → {hA′, HA, h′A′} {0.01, 2.38, 0.60}
Z ′ → H+H− 2.38

Z ′ → W+W− 2.81

Z ′ → W±H∓ 0

TABLE 7.13. Decay modes for Z ′ in Model 2 for the parameters used in Table 7.7. The
total decay width is Γ(Z ′ → all) = 229.93 GeV.
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7.7 Other experimental signatures

In this section we discuss experimental signatures of the model other than Z ′

decays.

7.7.1 Z decay and precision electroweak data

The Z − Z ′ mixing angle and the direct coupling of Z ′ to the Standard Model

fermions leads to modification of Z decays. Precision electroweak data from LEP and

SLC can be used to constrain such a Z ′ in the mass range of a few TeV. Typically

one finds the Z − Z ′ mixing angle ξ bounded to be less than a few ×10−3, which is

satisfied in our models.

The mixing of Z with Z ′ shifts the mass of the Z boson from its SM value, while

leaving the W mass unaffected. This leads to a positive shift in the ρ parameter:

ρ = ρSM

(
1 + ξ2M2

Z′

M2
Z

)
. (7.95)

The partial decay width Γ(Z → ff̄) is modified to

Γ(Z → ff̄) =
αMZ

12 sin2 θW cos2 θW

[
(gV cos ξ + κvf sin ξ)2 + (gA cos ξ + κaf sin ξ)2

]
.(7.96)

where

gV = (T3 − 2q sin2 θW ), gA = T3, κ =
2gx sin θW cos θW

e
, (7.97)

with q being the electric charge of the fermion. vf and va are given in Eqs. (7.57)

and (7.58).

Partial widths of the Z will deviate from the Standard Model values owing to

the shift in the coupling Z to fermions as well as due to a change in the derived value

of sin2 θW . We define

∆f =
Γ(Z → ff̄)

Γ(Z → ff̄)SM

− 1. (7.98)

We use sin2 θSM
W = 0.23113 (the best fit in the Standard Model) for evaluating Γ(Z →

ff̄)SM . We do not perform a global fit to the available data, but we present a specific
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fit which is at least as good as the Standard Model and perhaps slightly better. We

choose to set ∆` = 0, which yields sin2 θW = 0.230717 in Model 1. With this value of

sin2 θW we find

{∆u, ∆d, ∆ν} = {0.00100, 0.00171, 0.00206} (Model 1). (7.99)

This leads to the following modifications of decay widths:

Γhad = ΓSM
had + ∆d(2ΓSM

d + ΓSM
b ) + 2∆uΓ

SM
u = 1.74545 GeV, (7.100)

Γinv = (1 + ∆ν)Γ
SM
inv = 502.793 MeV, (7.101)

R` =
Γhad

Γ(Z → `+`−)
= 20.7744. (7.102)

We see that Γhad is closer to the experimental value of 1.7444 GeV compared to

the Standard Model value of 1.7429 GeV. Similarly R` is closer to the experimen-

tal value (20.767 ± 0.025) than the Standard Model value (20.744). On the other

hand, Γinv is somewhat worse than the Standard Model fit (501.76 MeV) compared

to the experimental value of (499.0± 1.5 MeV). This deviation is still within accept-

able range. Here for our numerical fits we used the central values ΓSM
d = 0.383185

GeV, ΓSM
b = 0.375926 GeV and ΓSM

c = ΓSM
u = 0.300302 GeV [51].

The predicted value of MW is modified as

MW =

√[(
1 + ξ2

M2
Z′

M2
Z

)
1− sin2 θW

1− sin2 θSM
W

]
MSM

W = 80.4427 GeV, (7.103)

where MSM
W = 80.391 GeV is used. This value is closer to the direct measurement

MW = 80.446 than the Standard Model value.

In Model 2 we find, following the same procedure, sin2 θW = 0.230783,

∆d = 0.00131, ∆u = 0.00089, ∆ν = 0.00138 and Γhad = 1.74493 GeV, Γinv =

502.453 MeV, R` = 20.7682, MW = 80.4356 GeV.

The radiative correction parameter in µ decay, ∆r, is slightly different in our

model compared to the Standard Model. In the on shell scheme we have

M2
W sin2 θW

(M2
W sin2 θW )SM

=
(1−∆r)SM

(1−∆r)
. (7.104)

We obtain ∆r = 0.03501 (in Model 1) using the Standard Model value of ∆r =

0.0355 ± 0.0019. Clearly, such a shift is consistent with experimental constraints

((∆r)exp = 0.0347± 0.0011).
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7.7.2 Z ′ mass limit

The direct limit on the mass of Z ′ with generic couplings to quarks and leptons

is MZ′ > 600 GeV. There is also a constraint on MZ′ from the process e+e− → µ+µ−.

LEP II has set severe constraints on lepton compositeness [51, 58] from this process.

We focus on one such amplitude, involving all left–handed lepton fields. In our model,

the effective Lagrangian for this process is

Leff = −g2
x

(
1− x

2

)2 1

M2
Z′

(ēLγµeL)(µ̄LγµµL). (7.105)

Comparing with Λ−LL(eeµµ) > 6.3 TeV [51], we obtain
MZ′
gx

≥ (1 − x
2
) 2.51 TeV. For

gx = 0.41 (0.45) and x = 1.3 (1.6) this implies MZ′ > 361 (226) GeV. For the choice

of parameters in Tables 7.2 and 7.7, the above constraint is easily satisfied.

7.7.3 h → h′h′ decay

Since the neutral Higgs boson h′ is lighter than the Standard Model Higgs h,

the decay h → h′h′ can proceed for part of the parameter space. The decay rate is

given by

Γ(h → h′h′) =
G2

hh′

8πmh

√
1− 4

m2
h′

m2
h

, (7.106)

where

G2
hh′ =

(g2
1 + g2

2)

4
√

2

[
(υdX11 − υuX21)(X

2
12 −X2

22) + 2(υdX12 − υuX22)(X11X12 −X21X22)
]

+
g2

x

4
√

2
[2(4X31X32 − 4X41X42 − xX11X12 + xX21X22)

× (−xυdX12 + xυuX22 − 4yX42 + 4zX32)

− (4X2
32 − 4X2

42 − xX2
12 + xX2

22)(xυdX11 − xυuX21 + 4yX41 − 4zX31)
]
. (7.107)

Here X is the unitary matrix that diagonalizes the CP–even Higgs mass matrix of

Eq. (7.15). In principle this can compete with the dominant decay h → bb̄. However

we find that in Model 1 of Table 7.2 the decay is kinematically suppressed, while

in Model 2 of Table 7.7 due to the small admixture of h in S+, S−, this decay is
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suppressed: Γ(h → h′h′) = 1.48× 10−7 GeV (see Table 7.11). It is worth noting that

if the mixings are as large as in Table 7.6 and if the decay is kinematically allowed,

then Γ(h → h′h′) ∼ 0.1 MeV is possible. Once produced, the dominant decays of h′

will be h′ → bb̄ and h′ → cc̄ with comparable partial widths, as can be seen from H0
u

and H0
d components in h′ (see Table 7.6).

7.7.4 Signatures of SUSY particles

The supersymmetric particles, once produced in pp (pp̄) collisions, will decay

into the LSP. The LSP is χ̃0
1 (the neutral Wino) in Model 1 while it is the scalar

neutrino ν̃L in Model 2. In Model 1, χ̃0
1 is nearly mass degenerate with the lightest

chargino χ̃±1 , with a mass splitting of about 180 MeV. The decay χ̃0
1 → π±χ∓1 will then

occur within the detector. At the Tevetron Run 2 as well as at the LHC, the process

pp̄ (or pp)→ χ̃0
1 + χ̃±1 will produce these SUSY particles. Naturalness suggest that

mχ̃0
1
, mχ̃±1

. 300 GeV (corresponding to mgluino . 2 TeV). Strategies for detecting

such a quasi–degenerate pair has been carried out in Ref. [56, 57]. In the case where

the LSP is the left–handed sneutrino, the decay χ̃±1 → `±ν̃L will be allowed. In this

case χ̃0
1 will decay dominantly to χ̃0

1 → ν̃LνL.

7.8 Summary

We have suggested in this chapter a new class of supersymmetric Z ′ models

motivated by the anomaly mediated supersymmetry breaking framework. The as-

sociated U(1) symmetry is U(1)x = xY − (B − L), where Y is the Standard Model

hypercharge. For 1 < x < 2, the charges of the lepton doublets and the lepton singlets

have the same sign. This implies that the U(1)x D–term can induce positive masses

for both the doublet and the singlet sleptons and can cure the tachyonic problem of

AMSB. We have shown explicitly that this is indeed possible in this class of models.

In achieving this, the parameters of the model get essentially fixed. We have found

that MZ′ = 2−4 TeV and the Z−Z ′ mixing angle ξ ' 0.001. The phenomenologically
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viable Z ′ turns out to be leptophobic – with Br(Z ′ → `+`−) ' (1−1.6)%. The domi-

nant decay of Z ′ is to qq̄ pair with Br(Z ′ → qq̄) ' 44%. Decays into supersymmetric

particles and Higgs bosons are also significant.

In Tables 7.2 and 7.7 we present our spectrum for two models, Model 1 (with

x = 1.3) and Model 2 (with x = 1.6). The lightest SUSY particle is the neutral Wino

(Model 1) or the sneutrino (Model 2). The partial decay widths of Z ′ are listed in

Tables 7.12 and 7.13. These models are compatible with precision electroweak data,

with the Z ′ models giving slightly better fits to the data than the Standard Model.

This Z ′ should be within reach of LHC. The correlations between the Z ′ decays and

the supersymmetric spectrum should make this class of models distinguishable from

other Z ′ models.



CHAPTER 8

Quark–Lepton Supersymmetry

8.1 Introduction

In Nature it is a puzzle why some of the elementary fermions, viz; the quarks,

feel strong interactions, while some others, the leptons do not. Perhaps at a higher

scale the theory is manifestly quark–lepton symmetric and at low scale the disparity

appears as a result of spontaneous symmetry breaking. By manifest quark-lepton

symmetry we mean an interchange symmetry between quarks and leptons [79, 80].

The gauge symmetry of the SM and its spectrum does not admit such a symmetry.

The simplest extension of the SM that achieves quark–lepton symmetry is obtained

by postulating a new leptonic color force described by an SU(3)` gauge symmetry

which acts on leptons, just as the SU(3)C force acts on the quarks. In this chapter

we develop such a minimal supersymmetric quark–lepton symmetric model.

An interesting by–product of quark–lepton symmetric gauge sector is that if

SU(3)` survives down to the TeV scale, anomaly mediated SUSY breaking can be

consistently implemented without tachyonic sleptons. The gauge contributions from

the SU(3)` sector render the sleptons with positive mass–squared, just as the SU(3)C

contributions make quark mass–squared all positive. We show by explicit construction

how this may be achieved and discuss the salient features of this model.

An interesting observation we make here is that gauge coupling unification works

well within the minimal SUSY q–` model, provided that the unification conditions

are of string origin.

99
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8.2 TeV scale quark–lepton symmetric model

The model is based on the gauge group

Gql = SU(3)` × SU(3)q × SU(2)L × U(1)x, (8.1)

and is assumed to be supersymmetric.

The particle content of the model is shown in Table 8.1.

Superfield SU(3)` SU(3)q SU(2)L U(1)x

QL 1 3 2 1
6

uc 1 3̄ 1 −2
3

dc 1 3̄ 1 1
3

FL 3 1 2 −1
6

Ec 3̄ 1 1 2
3

N c 3̄ 1 1 −2
3

Hu 1 1 2 1
2

Hd 1 1 2 −1
2

χ1 3 1 1 1
3

χ̄1 3̄ 1 1 −1
3

χ2 1 3 1 −1
3

χ̄2 1 3̄ 1 1
3

TABLE 8.1. Particle content and charge assignment of the model.

The SU(3)` gauge group is the leptonic color group where the leptons FL (Ec,

N c) transforms as triplet (antitriplets) while the SU(3)q gauge group is the usual

color group. There is an exact interchange symmetry between the quarks and the

leptons which is defined as:

Q ↔ F, uc ↔ Ec, dc ↔ N c, χ1 ↔ χ2, χ̄1 ↔ χ̄2, Hu ↔ Hd. (8.2)

The model can be thought of as emerging from the quartification model pro-

posed in Ref. [81] which has a higher gauge group

SU(3)q × SU(3)` × SU(3)L × SU(3)R.
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The superpotential of the model consistent with the gauge symmetries is given

by ∗:

W = (Yu)ij QLi
Huu

c
j + (Yd)ij QLi

Hdd
c
j + µHuHd

+ (Yν)ij FLi
HuN

c
j + (Ye)ij FLi

HdE
c
j + µ′χ1χ̄1 + µ′′χ2χ̄2

+ (YN)ij Ec
i N

c
j χ̄1 +

(YF )ij

2
FLi

FLj
χ1

+
(
Y ′

Q

)
ij

uc
id

c
jχ̄2 +

(YQ)ij

2
QLi

QLj
χ2. (8.3)

The mass parameters µ, µ′ and µ′′ are of order TeV, which has a natural origin

in AMSB [36]. The leptonic multiplets have the following structure:

Fα =

(
x1 x2 ν

y1 y2 e

)

α

, Ec
α = ( yc

1 yc
2 ec )α , N c = ( xc

1 xc
2 νc )α . (8.4)

Here x, y are the exotic leptons needed to complete quark–lepton symmetry and

α = 1, 2, 3 is family indices. The electric charge generator is a linear combination of

the diagonal generators of the gauge groups given by

Q = T3L + X +
T

6
, (8.5)

where T =




1 0 0

0 1 0

0 0 −2


 is the SU(3)` (for the triplet representation of SU(3)`)

generator and X is the U(1)x charge. We identify the usual SM hypercharge as

Y = X + T
6
.

From Eq. (8.5) we find the relation between the electromagnetic coupling con-

stant e and the other gauge coupling constant gx, g2 and g` as:

1

e2
=

1

g2
2

+
1

g2
x

+
1

3g2
`

. (8.6)

The SU(3)` gauge group acts on the leptons. This symmetry is broken by the

VEVs of χ1 and χ̄1.

〈χ1〉 =




0

0

u


 , 〈χ̄1〉 =




0

0

ū


 .

∗We do not impose q–` interchange symmetry on the Yukawa couplings. If it is to
be implemented, consistent with quark and lepton masses, a second pair of H ′

u,d will
be needed.
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The symmetry breaking pattern is

SU(3)q × SU(3)` × SU(2)L × U(1)x → SU(3)q × SU(2)` × SU(2)L × U(1)Y .

The Higgs doublets Hu and Hd further breaks the symmetry GSM × SU(2)`.

SU(3)q × SU(2)L × SU(2)` × U(1)Y → SU(3)c × U(1)em × SU(2)`

8.2.1 Unification of gauge couplings

In order to check the prospect of unification in the low energy theory based on

GSM ×SU(2)`, we use the solutions to the one–loop renormalization group equations

α−1
i (µ) = α−1

i (µ0) +
bi

2π
ln

(
µ0

µ

)
, (8.7)

where the gauge beta functions coefficients for the model are calculated to be

b1 =
47

6
, b2 = 4, b3 = −2, b` = −2.

Using sin2 θW (MZ) = 0.2315, α−1(MZ) = 127.9 as input and the condition for string

unification

k1g
2
1 = k2g

2
2 = k3g2

3 = k`g
2
` , (8.8)

where ki are the Kac–Moody levels and with k1 = k2 = 1, k3 = k` = 2, we obtain to

one loop accuracy

MGUT = 1.6× 1016 GeV, α−1
G = 9.1 and α3(MZ) = 0.123. (8.9)

Note that when this model is embedded into [SU(3)]4 quartification model, we have

k1 = 1 (as opposed to k1 = 5/3 in SU(5) or SO(10) unification). The predicted value

of α3(MZ) is in good agreement with experiment. Thus we see that the minimal

quark–lepton supersymmetric model achieves unification of gauge couplings. We show

the renomalization group evolution the inverse gauge couplings in Fig. 8.1.



103

20

40

60

10
2

10
5

10
8

10
11

10
14

(2α3)
-1

α2
-1

α1
-1

 µ (GeV)

α i-1
(µ

)

Figure 8.1. Renomalization group evolution the inverse gauge couplings.

8.3 Symmetry breaking

The model has two sets of Higgs bosons: the usual MSSM Higgs doublets Hu

and Hd, and the SU(3)l Higgs triplets/antitriplets χ1 and χ̄1 . The Higgs potential

is derived from the superpotential of Eq. (8.3) and includes the soft terms and the
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D terms. The Higgs potential cannot be split into two pieces because of the U(1)

D–term mixes the two Higgs sectors. The tree level potential for the model is given

by:

V (Hu, Hd, χ1, χ̄1) = (m2
Hu

+ µ2)|Hu|2 + (m2
Hd

+ µ2)|Hd|2 + Bµ(HuHd + c.c.)

+
g2
2

8
(|Hu|2 − |Hd|2)2 +

g2
2

2
|HuHd|2 +

g2
`

2

∑
a

(χ†1λ
aχ1 − χ̄†1λ

aχ̄1)
2

+ (m2
χ1

+ µ′2)|χ1|2 + (m2
χ̄u

+ µ′2)|χ̄1|2 + B′µ′(χ1χ̄1 + c.c.)

+
g2

x

2

( |Hu|2
2

− |Hd|2
2

+
|χ1|2

3
− |χ̄1|2

3

)2

, (8.10)

where the last term in Eq. (8.10) is the U(1)x D–term.

The VEV’s of Hu, Hd, χ1 and χ̄1 are parameterized as

〈Hu〉 =

(
0

υu

)
, 〈Hd〉 =

(
υd

0

)
, 〈χ1〉 =




0

0

u


 , 〈χ̄1〉 =




0

0

ū


 . (8.11)

Minimization of the potential Eq. (8.10) leads to the following conditions:

(m2
Hu

+ µ2) = −Bµ
υd

υu

+
g2
2

4
(υ2

d − υ2
u) +

g2
x

12
(2ū2 − 2u2 + 3υ2

d − 3υ2
u)

(m2
Hd

+ µ2) = −Bµ
υu

υd

− g2
2

4
(υ2

d − υ2
u)−

g2
x

12
(2ū2 − 2u2 + 3υ2

d − 3υ2
u)

(m2
χ1

+ µ′2) = −B′µ′
ū

u
− g2

`

3
(u2 − ū2) +

g2
x

18
(2ū2 − 2u2 + 3υ2

d − 3υ2
u)

(m2
χ̄1

+ µ′2) = −B′µ′
u

ū
+

g2
`

3
(u2 − ū2)− g2

x

18
(2ū2 − 2u2 + 3υ2

d − 3υ2
u). (8.12)

We now consider the scalar mass matrices. The mass matrix for the CP–even

neutral Higgs bosons is given by

(M2)cp−even =




(M2)11 (M2)12 −g2
x

3
υdu

g2
x

3
υdū

(M2)12 (M2)22
g2

x

3
υuu −g2

x

3
υuū

−g2
x

3
υdu

g2
x

3
υuu (M2)33 (M2)34

g2
x

3
υdū −g2

x

3
υuū (M2)34 (M2)44




, (8.13)

where

(M2)11 = −Bµ
υu

υd

+
(g2

x + g2
2)

2
υ2

d
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(M2)22 = −Bµ
υd

υu

+
(g2

x + g2
2)

2
υ2

u

(M2)33 = −B′µ′
ū

u
+

2g2
x

9
u2 +

2g2
`

3
u2

(M2)44 = −B′µ′
u

ū
+

2g2
x

9
ū2 +

2g2
`

3
ū2

(M2)12 = Bµ− (g2
x + g2

2)

2
υuυd

(M2)34 = B′µ′ − 2g2
x

9
uuud +

8g2
`

3
uū. (8.14)

The CP–odd Higgs boson from Hu and Hd fields has a mass given by

M2
A = − Bµ

υuυd

(υ2
u + υ2

d). (8.15)

The CP–odd Higgs bosons for χ1 and χ̄1 fields has a mass

M2
A′ = = −B′µ′

uū
(u2 + ū2). (8.16)

The charged Higgs boson mass from Hu and Hd fields is given by

(M2)CH = − Bµ

υuυd

(υ2
u + υ2

d) +
g2
2

2
(υ2

u + υ2
d). (8.17)

The SU(2)` “charged” Higgs boson mass from χ1 and χ̄1 fields is given by

(M2)CH′ = −B′µ′

uū
(u2 + ū2) +

g2
`

2
(u2 + ū2). (8.18)

In the neutral fermion sector, the Higgsinos from Hu, Hd, χ1, χ̄1 mix with the gaugi-

nos X̃, W̃3, C̃8 (where C̃8 is the gaugino associated with the λ8 generator of SU(3)`)

The (Majorana) mass matrix of the neutralinos {X̃, W̃3, H̃0
u, H̃0

d , C̃8, χ̃1, ˜̄χ1} is given

by

M(0) =




Mx 0 υu√
2
gx − υd√

2
gx 0

√
2

3
gxu −

√
2

3
gxū

0 M2
υu√

2
g2 − υd√

2
g2 0 0 0

υu√
2
gx

υu√
2
g2 0 −µ 0 0 0

− υd√
2
gx

υd√
2
g2 −µ 0 0 0 0

0 0 0 0 M` −
√

2
3
g`u

√
2
3
g`ū

√
2

3
gxu 0 0 0 −

√
2
3
g`u 0 µ′

−
√

2
3

gxū 0 0 0
√

2
3
g`ū µ′ 0




,(8.19)
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where Mx, M` and M2 are the gaugino masses for U(1)x, SU(3)` and SU(2)L. The

physical neutralino masses mχ̃0
i

(i =1–7) are obtained as the eigenvalues of this mass

matrix. We denote the diagonalizing matrix as O such that:

OM(0)OT = diag{mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
, mχ̃0

5
, mχ̃0

6
, mχ̃0

7
}. (8.20)

In the basis {W̃+, H̃+
u }, {W̃−, H̃−

d } the chargino (Dirac) mass matrix is

M(c) =

(
M2 g2υd

g2υu µ

)
. (8.21)

This matrix is diagonalized by a biunitary transformation V ∗M(c)U−1 = diag{mχ̃±1
, mχ̃±2

}.
There is also a doublet of SU(2)` “chargino” {C̃+

13, χ̃1}, {C̃−
13, ˜̄χ1} with mass

matrix

M(c)
d =

(
M` g`ū

g`u µ′

)
. (8.22)

When SU(3)` breaks down to SU(2)`, we have 8 = 3+ 2 + 2+ 1. The triplet gaugino

mass Ml is given by

M` =
βg`

g`

Maux. (8.23)

In the gauge boson sector, G8 of SU(3)`, X and W3 of SU(2)L mix. We identify the

mass eigenstates of A, Z and Z ′ as

A =
g2g`X + g2gx√

3
G8 + g`gxW3√

g2
2

(
g2

` + g2
x

3

)
+ g2

` g
2
x

(8.24)

Z =
X + gx√

3g`
G8 − g2

gx

(
1 + g2

x

3g2
`

)
W3

√(
1 + g2

x

3g2
`

)(
1 +

g2
2

g2
x

+
g2
2

3g2
`

) (8.25)

Z ′ =
gx

3
X − g`G8√
g2

` + g2
x

3

. (8.26)

The SU(2)` doublet gauge boson mass is given by

M2
G±1 3

= M2
G±2 3

=
g2

`

2

(
u2 + ū2

)
(8.27)
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The Z − Z ′ mixing matrix is given by

M2
Z−Z′ =

(
M2

Z γM2
Z

γM2
Z M2

Z′

)
, (8.28)

where

γ =
gx√

3g`

√
1 +

g2
2

g2
x

+
g2
2

3g2
`

, M2
Z =

υ2

2


 g2

x

1 + g2
x

3g2
`

+ g2
2




M2
Z′ =

2

3

(
g2

` +
g2

x

3

)
(u2 + ū) +

g4
x

6(g2
` + g2

x

3
)
υ2. (8.29)

The physical mass eigenstates Z1 and Z2 with masses MZ1 , MZ2 are

Z1 = Z cos ξ + Z ′ sin ξ, (8.30)

Z2 = −Z sin ξ + Z ′ cos ξ, (8.31)

where

M2
Z1,Z2

=
1

2

[
M2

Z + M2
Z′ ±

√
(M2

Z −M2
Z′)

2 + 4γ2M4
Z

]
. (8.32)

The Z − Z ′ mixing angle ξ is given by

ξ =
1

2
arctan

(
2γM2

Z

M2
Z −M2

Z′

)
' −γM2

Z/M2
Z′ . (8.33)

The Z ′ coupling to the quarks and leptons is given by

LZ′ =
Z ′µ

√
3g2

` − g′2

[
g′2

6
QγµQ− 2

3
g′2ucγµu

c +
1

3
g′2dcγµd

c

+ (g2
` −

g′2

2
)LγµL− (g2

` − g′2)ecγµe
c

− 1

2

g2
`√

3g2
` − g′2

(x1γµx1 + x2γµ21 + y1γµy1 + y2γµy2)

]
(8.34)

where we used Eq. (8.6) to eliminate gx in favor of g′;

1

g′2
=

1

g2
x

+
1

3g2
`

. (8.35)
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8.4 The SUSY spectrum

We are now ready to discuss the full SUSY spectrum of the model. We will see

that the tachyonic slepton problem is cured by virtue of the positive contribution from

the SU(3)` gauge sector. We discuss the SUSY spectrum in the context of anomaly

mediation where the B and the B′ terms are in general free parameters but for a

special class of models it takes the form

B = −(γHu + γHd
)Maux and B′ = −(γχ1 + γχ̄1)Maux, (8.36)

where the γ’s are the one–loop anomalous dimensions given in the Appendix B.

8.4.1 Slepton masses

The slepton mass–squared are given by the eigenvalues of the mass matrices

(α = e, µ, τ)

M2
l̃

=

(
m2

L̃
mE (AYE

− µ tan β)

mE (AYE
− µ tan β) m2

ẽc

)
. (8.37)

Here

m2
L̃

=
M2

aux

(16π2)
[2YEβ(YE) + Yνβ(Yν) + 2YF β(YF )

−
(

3

2
g2β(g2) +

1

18
gxβ(gx) +

8

3
g`β(g`)

)]

+ m2
E −

g2
x

36
(3υ2

u − 3υ2
d + 2u2 − 2ū2) +

g2
2

4
(υ2

d − υ2
u) +

g2
`

3
(u2 − ū2), (8.38)

m2
ẽc =

M2
aux

(16π2)

[
2YEβ(YE) + 2YNβ(YN)−

(
+

8

9
gxβ(gx) +

8

3
g`β(g`)

)]

+ m2
E +

g2
x

9
(3υ2

u − 3υ2
d + 2u2 − 2ū2)− g2

`

3
(u2 − ū2). (8.39)

8.4.2 Squark masses

The mixing matrix for the squark sector is similar to the slepton sector. The

diagonal entries of the up and the down squark mass matrices are given by [27]

m2
Ũi

= (m2
soft)

Q̃i

Q̃i
+ m2

Ui
+

g2
x

36
(3υ2

u − 3υ2
d + 2u2 − 2ū2) +

g2
2

4
(υ2

d − υ2
u),
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m2
Ũc

i
= (m2

soft)
Ũc

i

Ũc
i

+ m2
Ui
− g2

x

9
(3υ2

u − 3υ2
d + 2u2 − 2ū2),

m2
D̃i

= (m2
soft)

Q̃i

Q̃i
+ m2

Di
+

g2
x

36
(3υ2

u − 3υ2
d + 2u2 − 2ū2)− g2

2

4
(υ2

d − υ2
u),

m2
D̃c

i
= (m2

soft)
D̃c

i

D̃c
i

+ m2
Di
− g2

x

18
(3υ2

u − 3υ2
d + 2u2 − 2ū2). (8.40)

Here mUi
and mDi

are quark masses of different generations, i = 1, 2, 3. The squark

soft masses are obtained from the RGE as

(m2
soft)

Q̃i

Q̃i
=

M2
aux

(16π2)
[Yuβ(Yu) + Ydβ(Yd) + 2YQβ(YQ)

−
(

3

2
g2β(g2) +

1

18
gxβ(gx) +

8

3
g3β(g3)

)]
, (8.41)

(m2
soft)

Ũc
i

Ũc
i

=
M2

aux

(16π2)

[
2Yuβ(Yu) + 2YQ′β(YQ′)−

(
8

9
gxβ(gx) +

8

3
g3β(g3)

)]
(8.42)

(m2
soft)

D̃c
i

D̃c
i

=
M2

aux

(16π2)

[
2Ydβ(Yd) + 2YQ′β(YQ′ −

(
+

2

9
gxβ(gx) +

8

3
g3β(g3)

)]
.(8.43)

8.4.3 Exotic slepton masses

The exotic slepton mass–squared matrix reduces to a 4× 4 matrix given by

M̃ sl
exotic =

(
m2

L̃
+ Y 2

F u2 YF (AYF
u + µ′ū) 0 υduYeYF

YF (AYF
u + µ′ū) m̃2

e + υ2
dY 2

e + u2Y 2
F −υdūYeYN Yeυd(AYe + µ)

0 −υdūYeYN m2
Nc + ū2Y 2

N −(AYN
YN ū + µ′uYN )

υduYeYF Yeυd(AYe + µ) −(AYN
YN ū + µ′uYN ) m2

ẽc + υ2
dY 2

e + Y 2
N ū2

)
. (8.44)

The A–terms AYF
, AYe , AYN

are given in Appendix B and masses–squared m2
Nc is

given by

m2
Nc = (m̃2

soft)
Nc

Nc − g2
x

18
(3υ2

u − 3υ2
d + 2u2 − 2ū2)− g2

`

6
(u2 − ū2), (8.45)

where the soft mass (m̃2
soft)

Nc

Nc is given in Appendix B.

8.4.4 Exotic lepton masses

The mass matrix for the exotic leptons in the basis {x1 x2 yc
1 yc

2} is given by

M l
exotic =




YF u 0 0 Yνυu

0 −YF u Yνυu 0

0 Yeυd YN ū 0

Yeυd 0 0 −YN ū




. (8.46)

The physical mass is the eigenvalue the mass matrix Eq. (8.46).
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8.5 Numerical results

We are now ready to present our numerical results for the SUSY spectrum. We

first performed a one–loop accuracy numerical analysis to determine the sparticle and

Higgs Spectrum. For experimental inputs for the SM gauge couplings we use the same

procedure Ref. [61] for the g1, g2, g3 with the central value of the top mass taken to

be Mt = 178 GeV. In Tables 8.2 we have taken Maux = 70.492 TeV, while in Table

8.7 we have Maux = 55.143 TeV. Other input parameters are listed in the respective

Table captions.

In the model presented, the LSP is not necessarily the neutral wino. In model

1, the LSP is the chargino of SU(2)` sector which decays to a lighter. This chargino

when produced can decay to charged leptons as shown in the figure. The slepton

masses are positive and the Z ′ constraints are all satisfied. The slepton mass is

comparable with the squark mass because of the quark–lepton symmetry.

W+

L

L

L

χ1
0

Figure 8.2. W̃+ decay to two leptons and LSP.
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χ1
0

χ1
0

Z’

L+

L−

Figure 8.3. Neutralino annihilation to two charged leptons in the early universe.

x

x

γ

γ

Figure 8.4. Bound state of two x leptons decay to two photons.

x

x
U

L+

L-

Figure 8.5. Bound state of two x leptons decay to two charged leptons via exchange
of SU(2)H gauge boson.



112

U

U

x

L+

L-

Figure 8.6. Doublet SU(2)H gauge boson decay to two charged leptons via exchange
of neutralino LSP.

Neutralinos {mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
} {0.610, 0.729, 0.736, 1.363}

Neutralinos {mχ̃0
5
, mχ̃0

6
, mχ̃0

7
} {1.365, 1.687, 2.079}

Charginos {mχ̃±1
, mχ̃±2

} {0.729, 1.368}
Charginos (SU(2)`) {mχ̃±1

, mχ̃±2
} {0.588, 2.275}

Gluino M3 1.089

Higgs bosons {mh, mH , mA, mH±} {0.117, 1.304, 1.303, 1.305}
Higgs bosons {mh′ , mH′ , mA′ , mH′±} {0.028, 2.490, 1.854, 2.331}
R.H sleptons {mẽR

, mµ̃R
, mτ̃1} {1.198, 1.198, 1.196}

L.H sleptons {mẽL
, mµ̃L

, mτ̃2} {1.150, 1.150, 1.149}
R.H down squarks {md̃R

, ms̃R
, mb̃1

} {1.223, 1.223, 1.220}
L.H down squarks {md̃L

, ms̃L
, mb̃2

} {1.140, 1.140, 0.890}
R.H up squarks {mũR

, mc̃R
, mt̃1} {1.206, 1.206, 0.965}

L.H up squarks {mũL
, mc̃L

, mt̃2} {1.138, 1.138, 0.602}
Exotic sleptons {m̃ex1 , m̃ex2 , m̃ex3 , m̃ex4} {0.864, 1.011, 1.357, 1.403}
Exotic leptons {mex1 , mex2} {0.130, 0.127}
SU(3)` gauge boson MV 1.413

TABLE 8.2. Sparticle masses in Model 1 for the choice Maux = 70.492 TeV, tanβ = 3.82,
Mt = 174.3 GeV, µ = 1.360 TeV, µ′ = 0.610 TeV yb = 0.07, Yi = 0.1,
u = −1.301 TeV, ū = 1.272 TeV, B = −0.306 TeV and B′ = 2.816 TeV.
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Z ′ boson mass MZ′ 1.662 TeV

Z − Z ′ mixing angle ξ 0.00032

TABLE 8.3. Z ′ mass and Z − Z ′ mixing angle in Model 1 for the same set of input
parameters as in Table 8.2.

Fields χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4 χ̃0
5 χ̃0

6 χ̃0
7

X̃ -0.001 0.946 -0.027 0.037 -0.010 0.316 0.046

W̃ 0
3 0.000 0.025 0.997 -0.061 -0.032 0.016 0.000

H̃0
u 0.000 -0.030 -0.021 -0.680 0.707 0.191 -0.002

H̃0
d 0.000 0.046 0.066 0.678 0.706 -0.187 -0.001

C̃8 -0.009 0.190 -0.006 -0.128 -0.003 -0.426 -0.875

χ̃1 -0.700 0.180 -0.006 -0.169 0.000 -0.572 0.350

˜̄χ1 0.714 0.180 -0.006 -0.167 0.000 -0.566 0.331

TABLE 8.4. Eigenvectors of the neutralino mass matrix in Model 1. The unitary matrix
O in Eq. (8.20) is the transpose of this array.

U11 U12 U21 U22 V11 V12 V21 V22

0.992 0.126 -0.126 0.992 0.996 0.088 -0.088 0.996

TABLE 8.5. Eigenvectors of the chargino mass matrix in Model 1, where U , V

are the unitary matrices that diagonalize the chargino mass matrix
(V ∗M (c)U−1 = M

(c)
diag).
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U11 U12 U21 U22 V11 V12 V21 V22

0.780 -0.625 0.625 0.780 0.769 0.639 -0.639 0.769

TABLE 8.6. Eigenvectors of SU(2)` chargino mass matrix in Model 1, where U , V

are the unitary matrices that diagonalize the SU(2)`chargino mass matrix
(V ∗M (c)

d U−1 = M
(c)
ddiag).

Neutralinos {mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
} {0.197, 0.520, 0.573, 1.027}

Neutralinos {mχ̃0
5
, mχ̃0

6
, mχ̃0

7
} {1.030, 1.140, 1.721}

Charginos {mχ̃±1
, mχ̃±2

} {0.569, 1.034}
Charginos (SU(2)`) {mχ̃±1

, mχ̃±2
} {0.641, 1.682}

Gluino M3 0.844

Higgs bosons {mh, mH , mA, mH±} {0.122, 0.923, 0.923, 0.926}
Higgs bosons {mh′ , mH′ , mA′ , mH′±} {0.023, 1.858, 1.318, 1.727}
R.H sleptons {mẽR

, mµ̃R
, mτ̃1} {0.941, 0.941, 0.935}

L.H sleptons {mẽL
, mµ̃L

, mτ̃2} {0.902, 0.902, 0.898}
R.H down squarks {md̃R

, ms̃R
, mb̃1

} {0.960, 0.960, 0.946}
L.H down squarks {md̃L

, ms̃L
, mb̃2

} {0.895, 0.895, 0.697}
R.H up squarks {mũR

, mc̃R
, mt̃1} {0.947, 0.947, 0.786}

L.H up squarks {mũL
, mc̃L

, mt̃2} {0.892, 0.892, 0.473}
Exotic sleptons {m̃ex1 , m̃ex2 , m̃ex3 , m̃ex4} {0.653, 0.776, 1.078, 1.115}
Exotic leptons {mex1 , mex2} {0.100, 0.103}
SU(3)` gauge boson MV 1.116

TABLE 8.7. Sparticle masses in Model 2 for the choice Maux = 55.143 TeV, tanβ = 7.87,
Mt = 178.0 GeV, µ = 1.024 TeV, µ′ = −0.197 TeV yb = 0.14, Yi = 0.1,
u = 1.028 TeV, ū = 1.003 TeV, B = −0.104 TeV and B′ = 4.414 TeV.
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Z ′ boson mass MZ′ 1.311 TeV

Z − Z ′ mixing angle ξ 0.00048

TABLE 8.8. Z ′ mass and Z − Z ′ mixing angle in Model 2 for the same set of input
parameters as in Table 8.7.

8.5.1 Coupling of light Higgs to SM fermions

In order to determine the couplings of the light Higgs h′ to the Standard Model

fermions, we first determine the eigenvectors of the CP–even mass matrix as




H0
d

H0
u

χ0
1

χ̄0
1




= OH




h

H

h′

H ′




, (8.47)

where OH is the eigenvector that diagonalize the mass matrix. In model 1, OH is

given by

OH =




0.255 0.967 −0.007 0.001

0.966 −0.255 −0.027 −0.002

−0.019 −0.001 −0.708 0.706

0.021 −0.001 0.706 0.708




. (8.48)

From the superpotential Eq. (8.3) we find the couplings of the third generation

fermions to the light Higgs as

0.027Yth
′tt̄, 0.007Ybh

′bb̄ and 0.007Yτh
′ττ c (8.49)

In model 2, OH is given by

OH =




0.126 0.992 −0.001 0.000

0.992 −0.126 −0.010 0.002

−0.006 0.000 −0.705 −0.709

0.009 0.000 0.709 −0.705




. (8.50)
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From the superpotential Eq. (8.3) we find the couplings of the third generation

fermions to the light Higgs as

0.010Yth
′tt̄, 0.001Ybh

′bb̄ and 0.001Yτh
′ττ c (8.51)

With these information, we can determine the decay width of the Higgs boson h′ →
bb̄, ττ c. Decay width of Z ′ to quarks and leptons

Γ(Z ′ −→ ūu) = 0.164, Γ(Z ′ −→ d̄d) = 0.048, Γ(Z ′ −→ t̄t) = 0.161

Γ(Z ′ −→ ēe) = 15.448

Γ(Z ′ −→ νLνL) = 8.197, Γ(Z ′ −→ νRνR) = 7.875

Γ(Z ′ −→ x̄x) = 4.775, Γ(Z ′ −→ ȳy) = 3.818

8.5.2 Neutralino s-channel annihilation

We calculate the thermal averaged cross section for s channel Z ′ boson contri-

bution to the lightest neutralino annihilating into fermions. We show that the LSP

is stable and is a candidate for cold dark matter. We begin by calculating the cross

section for the process χ̃0
1
˜̄χ

0
1 −→ ff̄ . Here χ̃0

1 ≈ N11χ1 + N12χ̄1.

The cross section for this process is given by;

σ =
s

12π

(C2
V + C2

A)(C2
V ′ + C2

A′)

s−M2
Z′ + Γ2

Z′M
2
Z′

[
1−

4M2
χ̃0

1

s

]
(8.52)

CV =
g
′2

4
√

3g2
` − g′2

CA =
−4g2

` + 3g
′2

4
√

3g2
` − g′2

CV ′ =
g2

`√
3g2

` − g′2

CA′ = 0.
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We follow the same procedures as in [82]. We use the general formula

< συrel >=
1

M2
χ

[
w − 3

2
(2w − w′)x + O(x2)

]

s

4M2
χ

=1

(8.53)

where the primes denote derivatives with respect to α (s/4M2
χ) and

w =
3α2M2

χ

4π

(C2
V + C2

A)(C2
V ′ + C2

A′)

4αM2
χ −M2

Z′
(1− 1

α
). (8.54)

Eq. (8.53) is to be evaluated at s/4M2
χ = 1 and x ≡ T

Mχ
. The freeze – out

temperature T is defined as the temperature at which the expansion rate of the co –

moving volume becomes larger than the rate of annihilation. For a stable neutralinos

x ≈ 1
20

The neutralino relic abundance through the rule of thumb [83]

Ωχh2 ' 10−27cm3 s/< σeffυ >.

We find it to Ωχh2 ' 0.07 in Model 1. and Ωχh2 ' 1.0 in model 2.

8.6 Summary

In this chapter we have suggested a simple solution to the negative slepton mass

problem of AMSB. The model we presented is a quark–lepton symmetric model based

on a new leptonic color force described by an SU(3)` gauge symmetry. The model

predicts the slepton masses to be ∼ 1 TeV and they are of thesame order as the

squark mass. The model also predicts the lightest Higgs boson mass to be mh > 117

GeV. There is a light Higgs present in the model, when produced they decay to bb̄

and ττ c We find the MZ′ = 1.2− 2.0 TeV and the Z −Z ′ mixing ξ ' 0.0004. The Z ′

turns out to be leptophobic.

The gauge coupling unification works well within the minimal SUSY quark–

lepton model with the unification conditions of string origin. The LSP can either be

the neutral wino or the chargino of SU(2)` which is a candidate for cold dark matter.



CHAPTER 9

CP Violation in Neutrino Oscillations

from Nonstandard Physics

9.1 Introduction

In recent years, the observation of solar [84–90] and atmospheric [91–94] neu-

trino deficit has provided strong evidence for neutrino oscillations. In particular,

neutrino oscillation data suggest the mass–squared differences for the solar and at-

mospheric neutrinos to be ∆m2
¯ ∼ 7.5× 10−5eV2 and ∆m2

atm ∼ 2.0× 10−3eV2, re-

spectively. Because of the hierarchy ∆m2
¯ ¿ ∆m2

atm, three flavors are needed to si-

multaneously explain the solar and atmospheric neutrino problem. However, the yet

unconfirmed measurement from the Liquid Scintillator Neutrino Detector (LSND) ex-

periment at Los Alamos indicates neutrinos oscillation with a mass squared difference

∆m2
LSND ∼ 0.2− 1 eV2. The LSND experiment has reported evidence for νµ → νe

and νµ → νe oscillations and a range of possible mixing angles [95–97]. The probabil-

ity for LSND oscillations with sin2 2θLSND ∼ 3× 10−3, has drawn a lot of attention

over the years. With only three neutrino, all observations cannot be explained by

neutrinos oscillation including LSND. Several interesting papers have been written to

explain this result.

There are two major ways one can explain the LSND result: (i.) by adding a

sterile neutrino [98] or (ii.) by including New Physics (NP) [98–100]. The problem

with alternative (i.) is that a sterile neutrino cannot be understood by the seesaw

mechanism, so its mass is naturally of the order the Planck scale (mνs ∼ mPl), but

we want to explain the LSND result with ∆m2
LSND ∼ 1 eV2. This implies that we

will have a mass hierarchy problem, thus the possibility of explaining this result with

a “sterile” neutrino may not be ideal. Although NP cannot explain the large solar

118
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and atmospheric mixing angles with sin2 2θ¯ ∼ 1 and sin2 2θatm ∼ 1, it might be

responsible for small mixing sin2[2θLSND] ∼ 3× 10−3 suggested by LSND.

To understand such angle θLSND from NP effects, a new physics amplitude of

order 10 % would be needed. Currently the Mini Boone experiment [101] at Fermi

Lab is in progress to check the LSND result, for a recent review see Refs. [102, 103].

with only three neutrino species, but allowing for arbitrary new physics effects

we show that we can parameterize all the new physics effects in terms of 6 angles, 3

of which are CP violating. We show that a small amount of new physics gives rise to

large CP and apparent CPT violation.

In section 9.2, we discuss the general formalism of neutrino oscillations both

in two/three generations with/without new physics. For these cases we give explicit

expressions for the probabilities and the CP violating asymmetry. We also give ex-

pressions for apparent CPT violating asymmetries. We also show the oscillation plots

for different baselines. In section 9.4, we analyze the effect of new physics includ-

ing matter effects using linearized approximations. We also show several plots for

different choices of parameters and discuss how CP violation from matter effect can

be distinguished from CP violation from new physics. We summarize in section 9.5.

Finally, in Appendix E we present a realistic model for the two generation neutrino

oscillations.

9.2 Neutrino oscillations including new physics

9.2.1 Neutrino mixing formalism

Here we first show how new physics effects change in neutrino oscillation prob-

abilities. Consider the weak, the source and the detector eigenstates to be different.

The weak eigenstate (|νw
µ 〉) is a superposition of mass eigenstates (|νm

µ 〉) given by

|νw
µ 〉 =

∑
α

Uw
µα|νm

α 〉, (9.1)
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where α = 1, 2, 3. Similar equations hold for the source eigenstate (|νs
µ〉) and the

detection eigenstate (|νd
µ〉) which is given by:

|νs
µ〉 =

∑
α

U s
µα|νm

α 〉, (9.2)

|νd
e 〉 =

∑
α

Ud
eα|νm

α 〉. (9.3)

In the presence of new physics, the muon neutrino produced from π decay is the

source eigenstate which is assumed to be different from the mass eigenstate and the

electron neutrino detected from νen → ep is the detector eigenstate that also differs

from the mass eigenstate. In the absence of new physics, the source, detection and

weak eigenstates are all identical.

Generalizing this without specifying the neutrino flavor, we have |νs
α〉, |νd

α〉 and

|νw
α 〉. The amplitude for finding a |νd

n〉 in the original |νs
l 〉 beam at time t is given by

〈νd
n|νs

l 〉(t) =
∑

e−iEαtU s
lαUd∗

nα, (9.4)

and the associated probability reads

Pnl(t) = |〈νd
n|νs

l 〉(t)|2. (9.5)

9.2.2 Two flavor neutrino mixing

The two generation example is always easier to analyze because of the simplicity

of the neutrino mixing matrix, called MNS matrix. As discussed in Ref. [100], let us

consider a muon neutrino beam produced by π → µν decay (source) and subsequent

detection of an electron neutrino through the process νn → ep (inverse β − decay).

We parameterize the 2×2 unitary matrix as

U s =

(
eiαs 0

0 e−iαs

)(
cos θs sin θs

− sin θs cos θs

)(
eiβs 0

0 e−iβs

)
eiγ , (9.6)

and similarly for Ud with (θs, αs, βs) replaced by (θd, αd, βd). The phases αs and αd

can be removed by an appropriate phase redefinition.

The probability of νe → νe, ν̄e → ν̄e, νe → νµ, νµ → νe ν̄e → ν̄µ and ν̄µ →
ν̄e oscillations in vacuum are found to be

Pee = cos2(θs − θd)− sin 2θs sin 2θd sin2[∆m2
12t/4E − (βs − βd)], (9.7)
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Pēē = cos2(θs − θd)− sin 2θs sin 2θd sin2[∆m2
12t/4E + (βs − βd)], (9.8)

Peµ = Pµe = sin2(θs − θd) + sin 2θs sin 2θd sin2[∆m2
12t/4E − (βs − βd)], (9.9)

Pēµ̄ = Pµ̄ē = sin2(θs − θd) + sin 2θs sin 2θd sin2[∆m2
12t/4E + (βs − βd)]. (9.10)

In the above equations, we can introduce the parameter εθ = θd − θs.

The CP asymmetry can then be defined as

Aµe =
Pµe − Pµ̄ē

Pµe + Pµ̄ē

, (9.11)

where Pµe and Pµ̄ē are given in Eqs. (9.9) and (9.10) respectively. If experiments

are performed with both neutrino beam and antineutrino beam, Pµe and Pµ̄ē can be

separately measured.

The plot of the CP asymmetry Aµe as a function of the energy (GeV) for the

two generation oscillation in vacuum is shown in Fig. 9.1 for fixed length L = 2540

km.

Remarks: We noticed that Pee 6= Pēē and Pµe 6= Pµ̄ē because βs 6= βd, hence

there is CP–asymmetry. If we go to the SM limit (absence of new physics) where

θs = θd and βs = βd, we obtain the usual two flavor vacuum oscillation probability.

The new physics contribution to the two neutrino flavor oscillation may be of order

10%.

9.2.3 Three generation neutrino oscillation

9.2.3.1 General formalism in vacuum. We have seen that new physics implies

a nonzero CP-asymmetry in the two generation neutrino oscillation in vacuum. Here

we consider the three generation neutrino oscillation in vacuum, we develop a general

formalism on how new physics effects can affect the known formalism. We will adopt

the same notation used in the two generation case. Assume the source eigenstate is

a superposition of the mass eigenstates given in Eq. (9.2) and detector eigenstate

different from the source eigenstate given in Eq. (9.3). The time evolution equation

for the detector eigenstate reads then

|νd〉t = UdÊ|νm〉, (9.12)
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Figure 9.1. CP asymmetry Aµe = Pµe−Pµ̄ē

Pµe+Pµ̄ē
as a function of energy for two generation

neutrino oscillation in vacuum for the choice ∆m2
21 = 7.1 × 10−5 eV2,

L = 2540 km, θs = π
5.6

, εθ = 0.005, βd − βs = 0.04 (see text for
definitions).

where Ê is defined as

Ê = exp


−i




E1t 0 0

0 E2t 0

0 0 E3t





 . (9.13)
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The probability amplitude for finding a νd
n in the original νs

l beam at time t is

Anl = 〈νd
n|νs

l 〉t =
∑

α,β

U s
nα|νm

α 〉Ud∗
lβ δαβÊβ〈νm

β |, (9.14)

which can be written in a simple form as A = U sÊUd†. Parameterizing our unitary

matrix as

U s = eiγs




1 0 0

0 eiχs
0

0 0 eiηs




︸ ︷︷ ︸
P s

V s




1 0 0

0 eiαs
0

0 0 eiβs




︸ ︷︷ ︸
Qs

= eiγsP sV sQs, (9.15)

where V s is given by

V s =

(
cos ωs cos φs cos φs sin ωs e−iδs

sin φs

− sin ωs cos ψs − eiδs
cos ωs sin φs sin ψs cos ωs cos ψs − eiδs

sin ωs sin φs sin ψs cos φs sin ψs

sin ψs sin ωs − eiδs
cos ωs sin φs cos ψs −eiδs

sin ωs sin φs cos ψs − cos ωs sin ψs cos φs cos ψs

)
. (9.16)

A similar definition holds for V d. Using Eqs. (9.15) in (9.14), we find the probability

amplitude to be

A = P sV sQsÊQd†V d†P d†ei(γs−γd). (9.17)

For the probability Pij = |Aij|2 we obtain

Pij =

∣∣∣∣∣
∑

k

P s
i V s

ikRkÊkV
d∗
jk P d∗

j

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

k

V s
ikRkÊkV

d∗
jk

∣∣∣∣∣

2

, (9.18)

where

RÊ =




1 0 0

0 e−i∆21+iα 0

0 0 e−i∆31+iβ


 . (9.19)

Here α = αs − αd and β = βs − βd are new physics parameters. In arriving at Eq.

(9.19), we used the definitions

∆21 = (E2 − E1)t ' ∆m2
21L

2E
and ∆31 = (E3 − E1)t ' ∆m2

31L

2E
. (9.20)

We express the unitary matrix for detector eigenstate in terms of the source

eigenstate using the following definitions;

εω = ωd − ωs, εφ = φd − φs, εψ = ψd − ψs, εδ = δd − δs. (9.21)

We then express the detector unitary matrix in terms of the original source parame-

ters and the small epsilon corrections, these epsilon parameters are also new physics

parameters.
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9.2.3.2 Bilarge mixing. Recent results from the KamLAND experiment have

further confirmed the large mixing angle (LMA) solution to the solar neutrino problem

[104] in a terrestrial experiment. For three neutrinos, the neutrino mixing matrix

VMNS is specified by three rotation angles θ13, θ12 and θ23 (φ, ω, ψ) and one CP–

violating phase δ. Experiments suggest θ13 . 13o for |∆m2
atm| = 2 × 10−3 eV , and

θ23 = 45o ± 10o. This suggests a simple form of the unitary matrix, where we take

φs ≡ φs + ε13 and ψs = π
4

+ ε23 while keeping the solar angle ωs and the CP–phase

δs as free parameters. Using the parametrization Eq. (9.21), we make expansions in

terms of the small parameters φs, ε13, εφ, ε23, εω, εψ, εδ, α, β and ∆21. Keeping terms

only up to second order, we find approximate expressions for the probabilities given

by

Pee ' 1− 4(φs)2 sin2 [
∆31

2
]− 1

4
(∆21 − α)2 sin2 2ωs − 4φsεφ sin2[

∆31

2
]

− ε2
ω − ε2

φ, (9.22)

Peµ ' 2(φs)2 sin2[
∆31

2
] +

1

8
(∆21 − α)2 sin2 2ωs

+ (∆21 − α)φs sin 2ωs(
1

2
cos δs sin ∆31 − sin δs sin2 ∆31

2
)

+ 2φsεφ sin2[
∆31

2
]− 1

2
(∆21 − α)εφ sin δs sin 2ωs

+ φsεω(sin δs sin ∆31 + 2 cos δs sin2[
∆31

2
]) + εφεω cos δs +

1

2
(ε2

φ + ε2
ω), (9.23)

Pµe ' 2(φs)2 sin2[
∆31

2
] +

1

8
(∆21 − α)2 sin2 2ωs

+ (∆21 − α)φs sin 2ωs(
1

2
cos δs sin ∆31 + sin δs sin2 ∆31

2
)

+ 2φsεφ sin2[
∆31

2
] +

1

2
(∆21 − α)εφ sin 2ωs(cos δs sin ∆31 − sin δs cos ∆31)

+ φsεω(sin δs sin ∆31 − 2 cos δs sin2[
∆31

2
])

+ εφεω(cos δs cos ∆31 + sin δs sin ∆31) +
1

2
(ε2

φ + ε2
ω), (9.24)

Pµτ ' sin2[
∆31

2
]− 2(φs2 + 2ε2

23) sin2[
∆31

2
]− 1

2
(∆21 − α) cos2 ωs sin ∆31

+
1

4
(∆21 − α)2 cos2 ωs(cos ∆31 − sin2 ωs)− φs(∆21 − α) sin δs sin 2ωs sin2[

∆31

2
]

− 1

2
β sin ∆31 +

1

4
β(β + 2(∆21 − α) cos2 ωs) cos ∆31 + 2φsεω cos δs sin2[

∆31

2
]

+
1

2
εω(∆21 − α) sin 2ωs sin2 δs

2
sin ∆31 − 2φsεφ sin2[

∆31

2
]− 4ε23εψ sin2[

∆31

2
]
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− 1

2
(∆21 − α)εφ sin δs sin 2ωs sin2[

∆31

2
]− 1

2
(ε2

φ + ε2
ω) sin2[

∆31

2
]

+ εφεω(cos δs sin2[
∆31

2
]− sin δs sin[

∆31

2
] cos[

∆31

2
]) + ε2

ψ cos ∆31. (9.25)

Since we are interested in the LSND result, we also made an expansion in terms

of ∆31 which is small for the baseline and energy chosen for the experiment. The

probability Pµe can be written as

Pµe ' 1

8
α2 sin2 2ω +

1

2
αεφ sin δ sin 2ω + εφεω cos δ +

1

2
(ε2

φ + ε2
ω). (9.26)

Here we ignored ∆21 and ∆31 terms since they are very small for LSND setup. For

the choice of parameters α = 0.04, εφ = 0.03, εω = 0.03, δ = π
4
, ω = π

5.6
, we find

Pµe ' 0.0021. This can consistently explain the LSND anomaly.

We can also write the probabilities Eqs. in (9.22–9.25) in terms of the detection

parameters. For example the probability Pµe when expressed in terms of the detector

angles is given by

Pµe ' 2(φd)2 sin2[
∆31

2
] +

1

8
(∆21 − α)2 sin2 2ωd

+ (∆21 − α)φd sin 2ωd(
1

2
cos δd sin ∆31 + sin δd sin2 ∆31

2
)

− 2φdεφ sin2[
∆31

2
]− 1

2
(∆21 − α)εφ sin δd sin 2ωd

+ φdεω(sin δd sin ∆31 − 2 cos δd sin2[
∆31

2
]) + εφεω cos δd +

1

2
(ε2

φ + ε2
ω).(9.27)

This is exactly symmetrical in form with the probability Peµ written in terms of the

source parameters of Eq. (9.23) which is not symmetrical with Peµ of Eq. (9.24).

A number of neutrino experiments have been proposed, which aim to test several

theoretical proposal on possible CP violation in the neutrino sector. Here we define

CP violation as the difference Pij − Pīj̄ which is nonzero in this model. We give

various expressions for the CP asymmetry for different oscillation channels. We find

the CP asymmetries to be

∆Peµ(CP ) = Peµ − Pēµ̄

' −2φs∆21 sin δs sin 2ωs sin2[
∆31

2
] + 2φsεω sin δs sin ∆31
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− εφ∆21 sin δs sin 2ωs − 1

2
α∆21 sin2 2ωs

− φsα cos δs sin 2ωs sin ∆31, (9.28)

∆Pµe(CP ) = Pµe − Pµ̄ē

' 2φs∆21 sin δs sin 2ωs sin2[
∆31

2
] + 2(φs + εφ)εω sin δs sin ∆31

− εφ∆21 sin δs sin 2ωs cos ∆31 − 1

2
α∆21 sin2 2ωs

− (φs + εφ)α cos δs sin 2ωs sin ∆31, (9.29)

∆Pµτ (CP ) = Pµτ − Pµ̄τ̄

' −∆21(α− β) cos2 ωs cos ∆31 + α cos2 ωs sin ∆31 − β sin ∆31

+
1

4
α∆21 sin2 2ωs − εφ∆21 sin δs sin 2ωs sin2[

∆31

2
]

+
1

2
εφα cos δs sin 2ωs sin ∆31 − 1

2
εωα sin 2ωs sin ∆31

− 2φs∆21 sin δs sin 2ωs sin2[
∆31

2
]− εφεω sin δs sin ∆31, (9.30)

∆Pee(CP ) = Pee − Pēē

' α∆21 sin2 2ωs. (9.31)

Similarly it turns out that there is apparent CPT asymmetry in our model,

though there is no true CPT violation. This apparent CPT violation arises because

of CP violation in new physics. In the standard scenario, there is no CPT violation.

The apparent CPT asymmetries are defined as

∆Peµ(CPT ) = Peµ − Pµ̄ē

' εω(2φs + εφ)(cos δs − cos(∆31 + δs))

+ αφs sin 2ωs(sin δs − sin(∆31 + δs))− α∆21

2
sin2 2ωs

− εφ

2
sin 2ωs[(∆21 − α) sin δs + (∆21 + α) sin(∆31 + δs)], (9.32)

∆Pµτ (CPT ) = Pµτ − Pτ̄ µ̄

' α∆21(
1

4
sin2 2ωs − cos2 ωs cos ∆31) +

β∆21

2
cos2 ωs cos ∆31

− εφ∆21

2
sin 2ωs cos δs sin ∆31 + α(2φs + εφ) sin 2ωs sin δs sin2 ∆31

2

− β sin ∆31 +
εω

2
[4(2φs + εφ) cos δs sin2 ∆31

2
− α sin 2ωs sin ∆31]

+ α cos2 ωs sin ∆31. (9.33)
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Notice that the apparent CPT asymmetries ∆Pee, ∆Pµµ and ∆Pττ coincide with their

corresponding CP asymmetries.

9.2.3.3 Exact analysis of three generation neutrino oscillation in vacuum. Here

we show the derivation for the three generation vacuum oscillation probabilities and

change in probabilities including new physics effect without matter effect. we use

the same general formalism as in section 9.2.3.1, with the unitary matrix as given in

Eq. (9.16) and with the assumption that the source eigenstate is different from the

detector eigenstate. The new physics effects comes from the α, β and the ε terms.

The exact expressions for the probability of νe → νe, νe → νµ and νµ → ντ is

Pee = sin2 φs sin2 φd +
1

2
sin 2φs sin 2φd

(
cos ωs cos ωd cos(∆31 − β + δs − δd)

+ sin ωs sin ωd cos(∆21 −∆31 − α + β − δs + δd)
)

+ cos2 φs cos2 φd

(
cos2(ωs − ωd)− sin 2ωs sin 2ωd sin2 (

∆21 − α

2
)

)
, (9.34)

Peµ = cos2 φs sin2 φd sin2 ωs sin2 ωd sin2 ψd + cos2 φs cos2 ωs sin2 ωd cos2 ψd

+ cos2 φs sin2 φd cos2 ωs cos2 ωd sin2 ψd + cos2 φs sin2 ωs cos2 ωd cos2 ψd

+ sin2 φs cos2 φd sin2 ψd +
1

2
cos2 φs sin φd sin 2ωd sin 2ψd cos δd(cos2 ωs − sin2 ωs)

+
1

2
cos2 φs sin φd sin 2ωs sin 2ψd

× (sin2 ωd cos(∆21 − α + δd)− cos2 ωd cos(∆21 − α− δd))

+
1

2
cos2 φs sin 2ωs sin 2ωd(sin2 φd sin2 ψd − cos2 ψd) cos(∆21 − α)

− 1

2
sin 2φs cos φd cos ωs sin ωd sin 2ψd cos(∆31 − β + δs)

− 1

2
sin 2φs sin 2φd cos ωs cos ωd sin2 ψd cos(∆31 − β + δs − δd)

+
1

2
sin 2φs cos φd sin ωs cos ωd sin 2ψd cos(∆21 −∆31 − α + β − δs)

− 1

2
sin 2φs sin 2φd sin ωs sin ωd sin2 ψd cos(∆21 −∆31 − α + β − δs + δd), (9.35)

Pµτ = cos2 φs cos2 φd cos2 ψd sin2 ψs + cos2 ψs sin2 ψd(cos2 ωs cos2 ωd + sin2 ωs sin2 ωd)

+ sin2 φs sin2 ψs sin2 ψd(sin2 ωs cos2 ωd + sin2 ωd cos2 ωs)

+ sin2 φs sin2 φd sin2 ψs cos2 ψd(cos2 ωs cos2 ωd + sin2 ωs sin2 ωd)

+ sin2 φd cos2 ψs cos2 ψd(sin2 ωs cos2 ωd + sin2 ωd cos2 ωs)
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+
1

2
sin φs sin 2ωs sin 2ψs cos δs(sin2 φd cos2 ψd − sin2 ψd)(cos2 ωd − sin2 ωd)

+
1

2
sin φd sin 2ωd sin 2ψd cos δd(cos2 ψs − sin2 φs sin2 ψs)(cos2 ωs − sin2 ωs)

− 1

2
sin φs sin φd sin 2ωs sin 2ωd sin 2ψs sin 2ψd cos δs cos δd

+
1

2
sin 2ωs sin 2ωd(sin2 ψd − sin2 φd cos2 ψd)

× (cos2 ψs − sin2 φs sin2 ψs) cos(∆21 − α)

− 1

2
cos φs cos φd sin ωs sin ωd sin 2ψs sin 2ψd cos(∆31 − β)

+
1

2
sin φs cos2 ωs sin 2ωd sin 2ψs(sin2 ψd − sin2 φd cos2 ψd) cos(∆21 − α + δs)

+
1

2
sin φs sin2 ωs sin 2ωd sin 2ψs(sin2 φd cos2 ψd − sin2 ψd) cos(∆21 − α− δs)

+
1

2
sin φd sin 2ωs sin2 ωd sin 2ψd(cos2 ψs − sin2 φs sin2 ψs) cos(∆21 − α + δd)

+
1

2
sin φd sin 2ωs cos2 ωd sin 2ψd(sin2 φs sin2 ψs − cos2 ψs) cos(∆21 − α− δd)

− 1

2
sin 2φs cos φd cos ωs sin ωd sin2 ψs sin 2ψd cos(∆31 − β + δs)

+
1

2
sin φs sin φd cos2 ωd sin 2ψs sin 2ψd

(
sin2 ωs cos(∆21 − α− δs − δd)

− cos2 ωs cos(∆21 − α + δs − δd)
)

+
1

2
sin φs sin φd sin2 ωd sin 2ψs sin 2ψd

(
cos2 ωs cos[∆21 − α + δs + δd]

− sin2 ωs cos[∆21 − α− δs + δd]
)

+ cos φs sin 2φd cos ωd cos2 ψd
(
sin ωs sin ψs cos ψs cos[∆31 − β − δd]

+ sin φs cos ωs sin2 ψs cos[∆31 − β + δs − δd]
)

− cos φs sin 2φd sin ωd cos2 ψd
(
cos ωs sin ψs cos ψs cos[∆21 −∆31 − α + β + δd]

− sin φs sin ωs sin2 ψs cos[∆21 −∆31 − α + β − δs + δd]
)

+ cos φs cos φd cos ωd sin 2ψd
(
sin φs sin ωs sin2 ψs cos[∆21 −∆31 − α + β − δs]

− cos ωs cos ψs sin ψs cos[∆21 −∆31 − α + β]) . (9.36)

The oscillation probabilities for the other neutrino channels can be obtained using

these three probabilities given above:

Peτ = 1− (Pee + Peµ), (9.37)

Pµe = Peµ{φs ↔ φd, ωs ↔ ωd, ψs ↔ ψd, δs ↔ −δd}, (9.38)
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Pµµ = 1− (Pµe + Pµτ ), (9.39)

Pτe = 1− (Pee + Pµe), (9.40)

Pττ = 1− (Peτ + Pµτ ), (9.41)

Pτµ = 1− (Pτe + Pττ ). (9.42)

We can also arrive at the antineutrino probabilities from the neutrino probabilities

by the simple prescription

Pāb̄ = Pab{α → −α, β → −β, δs → −δs, δd → −δd}. (9.43)

In the SM limit, the oscillation probabilities in Eqs. (9.34) – (9.42) reduce to

Pee = 1− sin2 2φ sin2 ∆31

2
− (cos4 φ sin2 2ω + sin2 ω sin2 2φ) sin2 ∆21

2

+ sin2 ω sin2 2φ(2 sin2 ∆21

2
sin2 ∆31

2
+

1

2
sin ∆21 sin ∆31), (9.44)

Peµ = sin2 ψ sin2 2φ sin2 ∆31

2
+ 4J(sin ∆21 sin2 ∆31

2
− sin ∆31 sin2 ∆21

2
)

− (sin2 ω sin2 ψ sin2 2φ− 4K)[2 sin2 ∆21

2
sin2 ∆31

2
+

1

2
sin ∆21 sin ∆31]

+
[
cos2 φ(cos2 ψ − sin2 φ sin2 ψ) sin2 2ω

+ sin2 ω sin2 ψ sin2 2φ− 8K sin2 ω
]
sin2 ∆21

2
, (9.45)

Pµτ = cos4 φ sin2 2ψ sin2 ∆31

2
+ 4J(sin ∆21 sin2 ∆31

2
− sin ∆31 sin2 ∆21

2
)

− [cos2 φ sin2 2ψ(cos2 ω − sin2 φ sin2 ω) + 4K cos 2ψ]

× (2 sin2 ∆21

2
sin2 ∆31

2
+

1

2
sin ∆21 sin ∆31) + 4K cos 2ψ

+
[
sin2 2ψ(cos2 ω − sin2 φ sin2 ω)2 + sin2 φ sin2 2ω(1− sin2 2ψ cos2 δ)

+ sin φ sin 2ω cos 2ω sin 2ψ cos 2ψ(1 + sin2 φ) cos δ
]
sin2 ∆21

2
, (9.46)

where the quantities J and K are defined as

J =
1

8
cos φ sin 2φ sin 2ψ sin 2ω sin δ, (9.47)

K =
1

8
cos φ sin 2φ sin 2ψ sin 2ω cos δ. (9.48)

One of the ultimate goals of neutrino factories is to investigate the phenomenon

of neutrino oscillations, which have so far been observed by the atmospheric and solar
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neutrino experiments, with unprecedented accuracy. CP violation gives a nonzero

difference between the oscillation probabilities Pab 6= Pāb̄. Here we give the expressions

for the CP asymmetries νe → νe, νe → νµ, and νµ → ντ , which are

∆Pab(CP ) = Pab − Pāb̄, (9.49)

∆Pee(CP ) = sin 2φs sin 2φd cos ωs cos ωd sin(β − δs + δd) sin ∆31

+ sin 2φs sin 2φd sin ωs sin ωd sin(α− β + δs − δd) sin(∆21 −∆31)

+ cos2 φs cos2 φd sin 2ωs sin 2ωd sin α sin ∆21, (9.50)

∆Peµ(CP ) = − sin 2φs sin 2φd cos ωs cos ωd sin2 ψd sin(β − δs + δd) sin ∆31

− sin 2φs cos φd cos ωs sin ωd sin 2ψd sin(β − δs) sin ∆31

− cos2 φs sin 2ωs sin 2ωd(cos2 ψd − sin2 φd sin2 ψd) sin α sin ∆21

− cos2 φs sin φd sin 2ωs sin 2ψd

× (cos2 ωd sin(α + δd)− sin2 ωd sin(α− δd)) sin ∆21

+ sin 2φs cos φd sin ωs cos ωd sin 2ψd sin(α− β + δs) sin(∆21 −∆31)

− sin 2φs sin 2φd sin ωs sin ωd sin2 ψd sin(α− β + δs − δd)

× sin(∆21 −∆31), (9.51)

∆Pµτ (CP ) = sin 2ωs sin 2ωd(sin2 ψd − cos2 ψd sin2 φd)

× (cos2 ψs − sin2 φs sin2 ψs) sin α sin ∆21

− cos φs cos φd sin ωs sin ωd sin 2ψs sin 2ψd sin β sin ∆31

− sin φd sin 2ωs sin 2ψd(cos2 ψs − sin2 φs sin2 ψs)

× (sin2 ωd sin(α− δd)− cos2 ωd sin(α + δd)) sin ∆21

+ sin φs cos2 ωs sin 2ωd sin 2ψs(cos2 ψd − sin2 φd sin2 ψd)

× (cos2 ωs sin(α− δs)− sin2 ωs sin(α + δs)) sin ∆21

+ cos φs sin 2φd sin ωs cos ωd sin 2ψs cos2 ψd sin(β + δd) sin ∆31

− sin 2φs cos φd cos ωs sin ωd sin2 ψs sin 2ψd sin(β − δs) sin ∆31

+ sin 2φs sin 2φd cos ωs cos ωd sin2 ψs cos2 ψd sin(β − δs + δd) sin ∆31

+ sin φs sin φd sin 2ψs sin 2ψd
(
sin2 ωs cos2 ωd sin(α + δs + δd)

+ cos2 ωs sin2 ωd sin(α− δs − δd)
)
sin ∆21
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− sin φs sin φd sin 2ψs sin 2ψd
(
cos2 ωs cos2 ωd sin(α− δs + δd)

+ sin2 ωs sin2 ωd sin(α + δs − δd)
)
sin ∆21

− cos φs cos φd cos ωs cos ωd sin 2ψs sin 2ψd sin(α− β) sin[∆21 −∆31]

+ sin 2φs cos φd sin ωs cos ωd sin2 ψs sin 2ψd sin(α− β + δs)

× sin[∆21 −∆31]

+ sin 2φs sin 2φd sin ωs sin ωd sin2 ψs cos2 ψd sin(α− β + δs − δd)

× sin[∆21 −∆31]

− cos φs sin 2φd cos ωs sin ωd sin 2ψs cos2 ψd sin(α− β − δd)

× sin[∆21 −∆31]. (9.52)

In the SM limit (source=detector), the above expressions for change in proba-

bilities reduce to

∆Pee(CP ) = ∆Pµµ(CP ) = ∆Pττ (CP ) = 0

∆Peµ(CP ) = ∆Pµτ (CP )

= 2 cos φ sin 2φ sin 2ω sin 2ψ sin δ sin
∆21

2
sin

∆31

2
sin

[
∆21 −∆31

2

]

9.3 Numerical results

We now turn to the three generation oscillation in vacuum. Here we considered

three different baselines, 730 km (Fermilab – Soudan, CERN – Gran Sasso), 295 km

(SJHF – Super K) and 2540 km (BNL – Homestake) These are some of the proposed

experiments. The probability plots as a function of energy at fixed length are shown in

Figs. 9.2 and 9.3 (Figs. 9.8 and 9.9) for a particular choice of parameters. The dotted

lines are the plots for the standard three generation vacuum oscillations without new

physics and the solid lines are the plots including the new physics parameters. In

these plots we choose the new physics parameters to be between 5 – 10 %. The plots

of change in probabilities are shown in Figs. 9.4 and 9.5 (Figs. 9.10 and 9.11) and

that of CPT asymmetries is depicted in Fig. 9.6 (Fig. 9.12). We also show the

probability plots as a function of length for fixed energy (5 GeV) in Figs. 9.13 and

9.14, the CP asymmetries Figs. 9.15 and 9.16 and the CPT asymmetries in Fig. 9.17.
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In Fig. 9.7, we plot the CP asymmetry for the same set of input parameters

as in Fig. 9.1, with the exception that we set here δ = 0 and εδ = 0. We see that

significant deviation from standard oscillation arise with new physics at 5–10 % level.
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Figure 9.2. Oscillation probabilities Peµ and Pµe as a function of energy for the
choice ψ = π

4
, ω = π

5.6
, φ = π

15
, δ = π

4
, ∆m2

21 = 7.1 × 10−5 eV2 and
∆m2

31 = 2.0× 10−3 eV2 for a fixed baseline L = 2540 km. The dotted
line is the Standard Model prediction and the solid line includes new
physics for the choice β = 0.1, α = −0.1, εω = −0.06, εφ = 0.05,
εψ = 0.05, εδ = 0.05.
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Figure 9.3. Oscillation probabilities Pµµ and Pµτ as a function of energy for the same
choice of input parameters as in Fig. 9.2.
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Figure 9.4. Change in oscillation probabilities ∆Peµ (CP ) = Peµ − Pēµ̄ and
∆Pµµ (CP ) = Pµµ−Pµ̄µ̄ as a function of energy for the same choice of
input parameters as in Fig. 9.2.
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Figure 9.5. Change in oscillation probability ∆Pµτ (CP ) = Pµτ − Pµ̄τ̄ as a function
of energy for the same choice of input parameters as in Fig. 9.2.
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Figure 9.6. Apparent CPT violation parameters ∆Peµ (CPT ) = Peµ − Pµ̄ē and
∆Pµτ (CPT ) = Pµτ − Pτ̄ µ̄ as a function of energy for the same choice
of input parameters as in Fig. 9.2.
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Figure 9.7. Change in oscillation probabilities ∆Pµµ (CP ) = Pµµ − Pµ̄µ̄ and
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Figure 9.8. Oscillation probabilities Peµ and Pµe as a function of energy for a fixed
baseline L = 295 km (a) and L = 730 km (b). All other parameters
are as in Fig. 9.2.
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Figure 9.9. Oscillation probabilities Pµµ and Pµτ as a function of energy for fixed
baseline L = 295 km (a) and L = 730 km (b). Input parameters are as
in Fig. 9.2.
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Figure 9.10. Change in oscillation probabilities ∆Peµ (CP ) = Peµ − Pēµ̄ and
∆Pµµ (CP ) = Pµµ−Pµ̄µ̄ as a function of energy for the same choice of
input parameters as in Fig. 9.2.
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Figure 9.11. Change in oscillation probability ∆Pµτ (CP ) = Pµτ −Pµ̄τ̄ as a function
of energy for the same choice of input parameters as in Fig. 9.2.
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Figure 9.12. Apparent CPT violation parameters ∆Peµ (CPT ) = Peµ − Pµ̄ē and
∆Pµτ (CPT ) = Pµτ − Pτ̄ µ̄ as a function of energy for the same choice
of input parameters as in Fig. 9.2.
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Figure 9.14. Oscillation probabilities Pµµ and Pµτ as a function of length for the same
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Figure 9.16. Change in oscillation probability ∆Pµτ (CP ) = Pµτ −Pµ̄τ̄ as a function
of length for the same choice of input parameters as in Fig. 9.2.
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of input parameters as in Fig. 9.2.



148

9.4 Three neutrino oscillations including matter effects

There have been a number of attempts to find simple and exact analytic formu-

las for three generation neutrino oscillations including matter effects for long baselines

[105–110]. In one of the attempts, corrections to the neutrino mixing parameters in

the presence of constant matter density (2.8 g/cm3) were calculated in Ref. [111]

using a series expansion in terms of the mass hierarchy
∆m2

21

∆m2
31

(
∆m2

¯
∆m2

atm
) and small mix-

ing angle φ. They obtained the expressions for a one to one correspondence to the

vacuum case, which are valid for energies above the solar resonance (∼ 0.5 GeV).

The parameter mappings were used to find simple and accurate formulas for oscilla-

tion probabilities in matter including CP violating effects. We use these parameter

mappings to justify the effect of new physics and at the end show some numerical

plots obtained for the probabilities as a function of energy at fixed length 2540 km.

We also show plots of ∆P (CP ) as a function of energy and demonstrate how it is

possible to measure the asymmetry in the near future. At the end of this section, we

will combine these plots and outline the differences between pure new physics effects

and SM CP effects. The CP asymmetry has considerable importance in CP-violation

studies, the problem is that matter effects cause contributions to the CP-asymmetry,

which can not be easily distinguished from intrinsic CP-violation. We show that the

low energy option is not the best solution to measure effects from the CP-phase δ.

The SNO experiment [112] favors the MSW LMA [113] solution to the solar neutrino

problem, long baseline experiments such as JHF and neutrino factory experiments

are planned in the near future.

9.4.1 Formalism

We define the parameters λ = ∆m2¯
∆m2

atm
¿ 1, ∆m2

atm = ∆, ∆m2¯ = λ∆ and

∆m2
32 = (1−λ)∆. In matter, the effective Hamiltonian in the flavor basis is given by

H =
1

2E

[
U




m2
1 0 0

0 m2
2 0

0 0 m2
3


 U † +




A 0 0

0 0 0

0 0 0




]
, (9.53)
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where the matter effect term is given by

A ≡ 2
√

2GF neEν = 7.56× 10−5eV2 ρ

g cm−3

E

GeV
. (9.54)

The approximate expressions for the eigenvalues and eigenvectors can be found in

Ref. [111]. Two different resonances occur: (i) Â = λ (solar resonance) and (ii)

Â = cos 2φ (atmospheric resonance), where Â = A
∆

. Here we focus on |Â| > λ which

is appropriate for neutrino energies above 1 GeV in matter density of 2.8g/cm3. As

was pointed out in Ref. [111], the expressions obtained will not show the correct

convergence for Â → 0 and the result will hence not be good for the resonance Â ' 1.

9.4.2 Parameter mapping

The one–to–one correspondence for the parameter mapping to the vacuum case

is given by the following expressions [111]

sin φ
′

=
sin 2φ√

2Ĉ(∓Â + Ĉ ± cos 2φ)
± λÂ sin2 ω sin2 2φ

2Ĉ

√
2Ĉ2(±Â + C ∓ cos 2φ)

, (9.55)

sin ω
′

=
λĈ sin 2ω

|Â| cos φ

√
2Ĉ(∓Â + Ĉ ± cos 2φ)

, (9.56)

sin ψ
′

= sin ψ +
λ cos δÂ sin 2ω sin φ cos ψ

±1 + Ĉ ∓ Â cos 2φ
, (9.57)

sin δ
′

= sin δ(1− λ
cos δ

tan 2ψ

2Â sin 2ω sin φ

±1 + Ĉ ∓ Â cos 2φ
), (9.58)

where

Ĉ =

√
(Â− cos 2φ)2 + sin2 2φ. (9.59)

Higher order terms in λ are ignored. The upper sign is valid for Â < cos 2φ and

the lower sign is valid for Â > cos 2φ. For the case Â < cos 2φ, the mass squared

difference is

∆m2′
¯ =

1

2
(−1− Â + Ĉ)∆ + λ∆(cos2 ω − (1 + Ĉ − Â cos 2φ) sin2 ω

2Ĉ
), (9.60)

∆m2
′

atm = Ĉ∆ + λ∆
(−1 + Â cos 2φ) sin2 ω

Ĉ
, (9.61)
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for the case Â > cos 2φ, the mass squared difference is

∆m2′
¯ = −1

2
(1 + Â + Ĉ)∆− λ∆(cos2 ω − (−1 + Ĉ + Â cos 2φ) sin2 ω

2Ĉ
)(9.62)

∆m2
′

atm = −Ĉ∆− λ∆
(−1 + Â cos 2φ) sin2 ω

Ĉ
. (9.63)

Using these parameter mappings to replace each of the parameters in Eq. (9.14),

we have a one–to–one correspondence to the vacuum oscillation giving rise to a new

unitary matrix as in Eq. (9.16) with the above parameter mapping used to replace the

terms in V s. We also make the replacement ∆m2¯ ≡ ∆m2′
¯ and ∆m2

atm ≡ ∆m2′
atm.

Note that in deriving the results above, the source eigenstate is assumed to be

equal to the detection eigenstate. Using the same formalism as outlined in section 9.2

and the same procedure as in section 9.18, we assume here that the source eigenstate

is equal to the detection eigenstate. The probability is then given by P = |V ′.Ê ′
p.V

′†|2,
where

Ê ′
p =




1 0 0

0 e−i∆
′
21 0

0 0 e−i∆
′
31


 ,

and

∆
′
21 = 2.53× L

E
∆m2′

¯, ∆
′
31 = 2.53× L

E
∆m2′

atm. (9.64)

In the three generation vacuum oscillations analyzed in section 9.2, we can

separate out the new physics effect from the usual three generation probabilities. This

term is then added to the expressions for the three generation matter effect. Because

of the complicated nature of the unitary matrix in matter, it is very difficult to come

up with a simple analytic expressions for the probabilities, the change in probability

(∆P ) and CP–asymmetry. We show the numerical plots of the probabilities as a

function of Energy in Figs. 9.16 and 9.17 at fixed length 2540 km for different choices

of new physics parameters (εω, εφ, εψ, εδ, α and β). The plots of change in the

probability as a function of energy is shown in Figs. 9.19 and 9.20 and the CPT

asymmetry is shown in Fig. 21. In these figure, the dotted line denote the pure

standard three generation oscillations in matter with no new physics and the solid

line includes new physics.
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It is worth noting that there is a term in the expansion which is of order

(∆m2
¯/∆m2

atm)2 that will contribute to the probability at a very low value of sin2 2φ

which in our case will not contribute significantly for the value φ = π
15

that we have

chosen here.
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Figure 9.18. Oscillation probabilities Peµ and Pµµ in matter (assuming constant
matter density ρ = 2.8 g/cm3) as a function of energy for fixed length
L = 2540 km. All other parameters are the same as in Fig. 9.2.
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Figure 9.19. Oscillation probability Pµτ in matter as a function of energy for the
same choice of input parameters as in Fig. 9.18.
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Figure 9.20. Change in oscillation probabilities ∆Peµ (CP ) = Peµ − Pēµ̄ and
∆Pµµ (CP ) = Pµµ − Pµ̄µ̄ in matter as a function of energy for the
same choice of input parameters as in Fig. 9.18.
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Figure 9.21. Change in oscillation probability ∆Pµτ (CP ) = Pµτ − Pµ̄τ̄ in matter as
a function of energy for the same choice of input parameters as in Fig.
9.18.
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Figure 9.22. Apparent CPT violation parameters ∆Peµ (CPT ) = Peµ − Pµ̄ē and
∆Pµτ (CPT ) = Pµτ − Pτ̄ µ̄ in matter as a function of energy for the
same choice of input parameters as in Fig. 9.18.
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Figure 9.23. Oscillation probabilities Peµ and Pµµ in matter as a function of energy
for fixed length L = 295 km. All other parameters are the same as in
Fig. 9.18.
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Figure 9.24. Oscillation probability Pµτ in matter as a function of energy for the
same choice of input parameters as in Fig. 9.18.
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Figure 9.25. Change in oscillation probabilities ∆Peµ (CP ) = Peµ − Pēµ̄ and
∆Pµµ (CP ) = Pµµ − Pµ̄µ̄ in matter as a function of energy for the
same choice of input parameters as in Fig. 9.18.
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Figure 9.26. Change in oscillation probability ∆Pµτ (CP ) = Pµτ − Pµ̄τ̄ in matter as
a function of energy for the same choice of input parameters as in Fig.
9.18.
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Figure 9.27. Apparent CPT violation parameters ∆Peµ (CPT ) = Peµ − Pµ̄ē and
∆Pµτ (CPT ) = Pµτ − Pτ̄ µ̄ in matter as a function of energy for the
same choice of input parameters as in Fig. 9.18.
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9.5 Summary

In this chapter we have presented a simple analysis on how new physics can

affect neutrino oscillation data. These new physics effects can contribute to neutrino

oscillations roughly up to 10 %. In the usual two generation vacuum oscillation, there

is no CP violation but with new physics, one can have a CP asymmetry which is

evident by merely taking the source eigenstate different from the detector eigenstate.

There is no reason a priori to assume that the source eigenstate should be equal to

the detection eigenstate.

In the three generation vacuum oscillations, we give explicit formulas for the

probabilities and CP asymmetries. From the plots, we see that new the physics

effects may be quite large. It is possible to be able to separate out these new physics

effects from the usual standard CP effect. In the matter effect case, we only give

the numerical plots of the oscillation probabilities, CP and CPT asymmetries. One

will be able to separate out these new physics contributions from the matter effect

contributions since we know the new physics effect from the vacuum oscillation case.

We hope that in the near future experiments will be able to see these effects.
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APPENDIX A

TeV scale Horizontal Symmetry

In this Appendix we give the one-loop anomalous dimension, beta-function and

the soft masses for the TeV scale horizontal symmetry model.

A.1 Anomalous dimensions

The one loop anomalous dimensions for the fields in our model are:

16π2γLα = Y 2
Eα
− 3

10
g2
1 −

3

2
g2
2 −
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3
g2
4, (A.1)
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A.2 Beta functions

The beta functions for the Yukawa couplings appearing in the superpotential, Eq.

(5.1), are:
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3

)
, (A.11)
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β(Yu3) =
Yu3

16π2

(
6Y 2

u3
+ Y 2

d3
− 13

15
g2
1 − 3g2

2 −
16

3
g2
3

)
, (A.12)

β(YEα) =
YEα

16π2

(
4Y 2

Eα
+ 3Y 2

d3
− 9

5
g2
1 − 3g2

2

)
, (A.13)

β (λ) =
λ

16π2

(
28λ2 + 2κ2 − 8g2

4

)
, (A.14)

β (κ) =
3κ

16π2

(
2κ2 + 8λ2 − 8

3
g2
4

)
. (A.15)

The gauge beta function of our model are

β(gi) = bi
g3

i

16π2
, (A.16)

where bi = (33
5
, 1,−3,−3) for i = 1− 4.

A.3 A terms

The trilinear soft SUSY breaking terms are given by

AY = −β(Y )

Y
Maux, (A.17)

where Y = (Yui
, Ydi

, YEα , k, λ).

A.4 Gaugino masses

The soft masses of the gauginos are given by:

Mi =
β(gi)

gi

Maux, (A.18)

where i = 1, 2, 3, 4, corresponding to the gauge groups U(1)Y , SU(2)W , SU(3)C and

SU(3)H , with β(gi) given as in Eq. (55).

A.5 Soft SUSY masses

The soft masses of the squarks and the sleptons are given in the text. For the

Hu, Hd Φi, ηi, η̄ fields they are:

(m̃2
soft)

Hu
Hu

=
M2

aux

16π2

(
3Yu3β(Yu3)−

3

10
g1β(g1)− 3

2
g2β(g2)

)
, (A.19)
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(m̃2
soft)

Hd
Hd

=
M2

aux

16π2

(
3Yd3β(Yd3)−

3

10
g1β(g1)− 3

2
g2β(g2)

)
, (A.20)

(m̃2
soft)

Φi
Φi

=
M2

aux

16π2

(
2κβ(κ) + 8λβ(λ)− 8

3
g4β(g4)

)
, (A.21)

(m̃2
soft)

η
η =

M2
aux

16π2

(
10λβ(λ)− 8

3
g4β(g4)

)
, (A.22)

(m̃2
soft)

η̄
η̄ =

M2
aux

16π2

(
−8

3
g4β(g4)

)
. (A.23)



APPENDIX B

SU(2)H Symmetry

In this Appendix we give the one-loop anomalous dimension, beta-function and

the soft SUSY breaking masses for the various fields in the SU(2)H symmetry model.

B.1 Anomalous dimensions

The one–loop anomalous dimensions for the fields in our model are:

16π2γψ = f 2
eµ −

(
3

10
g2
1 +

3

2
g2
2 +

3

2
g2
4

)
, (B.1)

16π2γψc = 2f 2
eµ + f 2

eE −
(

6

5
g2
1 +

3

2
g2
4

)
, (B.2)

16π2γψτ = f 2
τ + f 2

τE −
(

3

10
g2
1 +

3

2
g2
2

)
, (B.3)

16π2γτc = 2f 2
τ −

6

5
g2
1, (B.4)

16π2γQij
= (YdY

†
d )ji + (YuY

†
u )ji − δj

i

(
1

30
g2
1 +

3

2
g2
2 +

8

3
g2
3

)
, (B.5)

16π2γUij
= 2(Y †

u Yu)ij − δj
i

(
8

15
g2
1 +

8

3
g2
3

)
, (B.6)

16π2γDij
= 2(Y †

d Yd)ij − δj
i

(
2

15
g2
1 +

8

3
g2
3

)
, (B.7)

16π2γHd
= 3Y 2

b + 4f 2
eµ + f 2

τE + f 2
τ −

3

10
g2
1 −

3

2
g2
2, (B.8)

16π2γHu = 3Y 2
t −

3

10
g2
1 −

3

2
g2
2, (B.9)

16π2γφd
= −3

2
g2
4, (B.10)

16π2γφu = f 2
eE −

3

2
g2
4, (B.11)

16π2γE = 2f 2
eE −

6

5
g2
1, (B.12)

16π2γEc = 2f 2
τE −

6

5
g2
1. (B.13)
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B.2 Beta functions

The beta functions for the Yukawa couplings appearing in the superpotential, Eq.

(4), are:

β(Yb) =
Yb

16π2

(
6Y 2

b + Y 2
t + f 2

τ + f 2
τE + 4f 2

eµ −
7

15
g2
1 − 3g2

2 −
16

3
g2
3

)
, (B.14)

β(Yt) =
Yt

16π2

(
6Y 2

t + Y 2
b −

13

15
g2
1 − 3g2

2 −
16

3
g2
3

)
, (B.15)

β(Yτ ) =
Yτ

16π2

(
4Y 2

τ + 3Y 2
b + 2f 2

τE + 2f 2
eµ −

9

5
g2
1 − 3g2

2

)
, (B.16)

β(feE) =
feE

16π2

(
4f 2

eE + 2f 2
eµ −

12

5
g2
1 − 3g2

4

)
, (B.17)

β(fτE) =
fτE

16π2

(
4f 2

τE + 2f 2
τ + 4f 2

eµ + 3Y 2
b −

9

5
g2
1 − 3g2

2

)
, (B.18)

β(feµ) =
feµ

16π2

(
7f 2

eµ + 2f 2
τE + 2f 2

τ + 2f 2
eE + 3Y 2

b −
9

5
g2
1 − 3g2

2 − 3g2
4

)
.(B.19)

The gauge beta function of the model are

β(gi) = bi
g3

i

16π2
, (B.20)

where bi = (39
5
, 1,−3,−3) for i = 1 − 4 with g4 being the gauge coupling associated

with the SU(2)H gauge group.

B.3 A terms

The trilinear soft SUSY breaking terms are given by

AY = −β(Y )

Y
Maux, (B.21)

where Y = (Yui
, Ydi

, Yli , feE, fτE, fτ ).

B.4 Gaugino masses

The soft masses of the gauginos are given by:

Mi =
β(gi)

gi

Maux, (B.22)
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where i = 1, 2, 3, 4, corresponding to the gauge groups U(1)Y , SU(2)W , SU(3)C ,

SU(2)H with β(gi) given as in Eq. (B.20).

B.5 Soft SUSY masses

The soft masses of the squarks and the sleptons are given in the text. For the

Hu, Hd, νc, S+, S− fields they are:

(m̃2
soft)

Hu
Hu

=
M2

aux

16π2

(
3Ytβ(Yt)− 3

10
g1β(g1)− 3

2
g2β(g2)− 2

(x

2

)2

g4β(g4)

)
,(B.23)

(m̃2
soft)

Hd
Hd

=
M2

aux

16π2

(
3Ybβ(Yb) + Yτβ(Yτ ) + YτEβ(YτE)− 3

10
g1β(g1)− 3

2
g2β(g2)

− 2
(
−x

2

)2

g4β(g4)

)
, (B.24)

(m̃2
soft)

φu

φu
=

M2
aux

16π2

(
feEβ(feE)− 3

2
g4β(g4)

)
, (B.25)

(m̃2
soft)

φd

φd
=

M2
aux

16π2

(
−3

2
g4β(g4)

)
. (B.26)



APPENDIX C

U(1)x Model

In this Appendix we give the one-loop anomalous dimension, beta-function and

the soft SUSY breaking masses for the various fields in Z ′ model.

C.1 Anomalous dimensions

The one–loop anomalous dimensions for the fields in our model are:

16π2γLij
= (YlY

†
l )ji − δj

i

(
3

10
g2
1 +

3

2
g2
2 + 2(1− x

2
)2g2

x

)
, (C.1)

16π2γec
ij

= 2(Y †
l Yl)ij − δj

i

(
6

5
g2
1 + 2(−1 + x)2g2

x

)
, (C.2)

16π2γQij
= (YdY

†
d )ji + (YuY

†
u )ji − δj

i

(
1

30
g2
1 +

3

2
g2
2 +

8

3
g2
3 + 2(

x

6
− 1

3
)2g2

x

)
,(C.3)

16π2γUij
= 2(Y †

u Yu)ij − δj
i

(
8

15
g2
1 +

8

3
g2
3 + 2(

2

3
x +

1

3
)2g2

x

)
, (C.4)

16π2γDij
= 2(Y †

d Yd)ij − δj
i

(
2

15
g2
1 +

8

3
g2
3 + 2(

x

3
+

1

3
)2g2

x

)
, (C.5)

16π2γHd
= 3Y 2

d3
+ Y 2

l3
− 3

10
g2
1 −

3

2
g2
2 − 2

(
−x

2

)2

g2
x, (C.6)

16π2γHu = 3Y 2
u3
− 3

10
g2
1 −

3

2
g2
2 − 2

(
−x

2

)2

g2
x, (C.7)

16π2γνc
i

= 4f 2
νc

i
− 2g2

x, (C.8)

16π2γνc = 4f 2
νc − 2g2

x, (C.9)

16π2γν̄c = 4h2 − 2g2
x, (C.10)

16π2γS+ = 2
3∑

i=1

f 2
νc

i
+ 2f 2

νc − 8g2
x, (C.11)

16π2γS− = 2h2 − 8g2
x. (C.12)
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C.2 Beta functions

The beta functions for the Yukawa couplings appearing in the superpotential, Eq.

(4), are:

β(Yd3) =
Yd3

16π2

(
6Y 2

d3
+ Y 2

u3
+ Y 2

l3
− 7

15
g2
1 − 3g2

2 −
16

3
g2
3 −

(4 + 2x + 7x2)

9
g2

x

)
,(C.13)

β(Yu3) =
Yu3

16π2

(
6Y 2

u3
+ Y 2

d3
− 13

15
g2
1 − 3g2

2 −
16

3
g2
3 −

(4− 10x + 13x2)

9
g2

x

)
,(C.14)

β(Yl3) =
Yl3

16π2

(
4Y 2

l3
+ 3Y 2

d3
− 9

5
g2
1 − 3g2

2 − (4− 6x + 3x2)g2
x

)
, (C.15)

β(fνe) =
fνe

16π2

(
10f 2

νe
+ 2f 2

νµ
+ 2f 2

ντ
+ 2f 2

νc − 12g2
x

)
, (C.16)

β(fνµ) =
fνµ

16π2

(
10f 2

νµ
+ 2f 2

νe
+ 2f 2

ντ
+ 2f 2

νc − 12g2
x

)
, (C.17)

β(fντ ) =
fντ

16π2

(
10f 2

ντ
+ 2f 2

νµ
+ 2f 2

νe
+ 2f 2

νc − 12g2
x

)
, (C.18)

β(fνc) =
fν4

16π2

(
10f 2

νc + 2f 2
νµ

+ 2f 2
ντ

+ 2f 2
νe
− 12g2

x

)
, (C.19)

β(h) =
h

16π2

(
10h− 12g2

x

)
. (C.20)

The gauge beta function of our model are

β(gi) = bi
g3

i

16π2
, (C.21)

where bi = (33
5
, 1,−3, (11x2 − 16x + 26)) for i = 1, 2, 2, 3, x.

C.3 A terms

The trilinear soft SUSY breaking terms are given by

AY = −β(Y )

Y
Maux, (C.22)

where Y = (Yui
, Ydi

, Yli , fνc
i
, fνc , h).

C.4 Gaugino masses

The soft masses of the gauginos are given by:

Mi =
β(gi)

gi

Maux, (C.23)
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where i = 1, 2, 3, x, corresponding to the gauge groups U(1)Y , SU(2)W , SU(3)C ,

U(1)x with β(gi) given as in Eq. (C.21) with Mx = M ′
1.

C.5 Soft SUSY masses

The soft masses of the squarks and the sleptons are given in the text. For the

Hu, Hd, νc, S+, S− fields they are:

(m̃2
soft)

Hu
Hu

=
M2

aux

16π2

(
3Yu3β(Yu3)−

3

10
g1β(g1)− 3

2
g2β(g2)− 2

(x

2

)2

gxβ(gx)

)
,(C.24)

(m̃2
soft)

Hd
Hd

=
M2

aux

16π2

(
3Yd3β(Yd3) + Yl3β(Yl3)−

3

10
g1β(g1)− 3

2
g2β(g2)

− 2
(
−x

2

)2

gxβ(gx)

)
, (C.25)

(m̃2
soft)

S+

S+
=

M2
aux

16π2

(
2

3∑
i=1

fνc
i
β(fνc

i
) + 2fνcβ(fνc)− 8gxβ(gx)

)
, (C.26)

(m̃2
soft)

S−
S− =

M2
aux

16π2
(2hβ(h)− 8gxβ(gx)) , (C.27)

(m̃2
soft)

νc
i

νc
i

=
M2

aux

16π2

(
4fνc

i
β(fνc

i
)− 2gxβ(gx)

)
, (C.28)

(m̃2
soft)

νc

νc =
M2

aux

16π2
(4fνcβ(fνc)− 2gxβ(gx)) , (C.29)

(m̃2
soft)

ν̄c

ν̄c =
M2

aux

16π2
(4hβ(h)− 2gxβ(gx)) . (C.30)



APPENDIX D

Quark-Lepton Supersymmetric Model

In this Appendix we give the one-loop anomalous dimension, beta-function and

the soft masses for the Quark-Lepton Supersymmetry model.

D.1 Anomalous dimensions

The one loop anomalous dimensions for the fields in our model are:

16π2γQ = YdY
†
d + YuY

†
u + 2YQY †

Q −
(

1

18
g2

x +
3

2
g2
2 +

8

3
g2
3

)
, (D.1)

16π2γuc = 2Y †
u Yu + 2Y †

Q′YQ′ −
(

8

9
g2

x +
8

3
g2
3

)
, (D.2)

16π2γd = 2Y †
d Yd + 2Y †

Q′YQ′ −
(

2

9
g2

x +
8

3
g2
3

)
, (D.3)

16π2γF = YeY
†
e + YνY

†
ν + 2YF Y †

F −
(

1

18
g2

x +
3

2
g2
2 +

8

3
g2

`

)
, (D.4)

16π2γE = 2Y †
e Ye + 2Y †

NYN −
(

8

9
g2

x +
8

3
g2

`

)
, (D.5)

16π2γN = 2Y †
ν Yν + 2Y †

NYN −
(

2

9
g2

x +
8

3
g2

`

)
, (D.6)

16π2γHd
= 3Tr(Y †

d Yd) + 3Tr(Y †
e Ye)− 3

10
g2

x −
3

2
g2
2, (D.7)

16π2γHu = 3Tr(Y †
u Yu) + 3Tr(Y †

ν Yν)− 3

10
g2

x −
3

2
g2
2, (D.8)

16π2γχ1 = 4Tr(YF Y †
F )− 2

9
g2

x −
8

3
g2

` , (D.9)

16π2γχ̄1 = 2Tr(YNY †
N)− 2

9
g2

x −
8

3
g2

` , (D.10)

16π2γχ2 = 4Tr(YQY †
Q)− 2

9
g2

x −
8

3
g2
3, (D.11)

16π2γχ̄2 = 2Tr(YQ′Y
†
Q′)−

2

9
g2

x −
8

3
g2
3. (D.12)
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D.2 Beta functions

The beta functions for the Yukawa couplings appearing in the superpotential, Eq.

(8.3), are:

β(Yd) =
Yd

16π2

(
3YdY

†
d + YuY

†
u + 2YQY †

Q + 2Y †
Q′YQ′ − 7

9
g2

x − 3g2
2 −

16

3
g2
3

)
,(D.13)

β(Yu) =
Yu

16π2

(
3YuY

†
u + YdY

†
d + 2YQY †

Q + 2Y †
Q′YQ′ − 13

9
g2

x − 3g2
2 −

16

3
g2
3

)
,(D.14)

β(Ye) =
Ye

16π2

(
3YeY

†
e + YνY

†
ν + 2YF Y †

F + 2Y †
NYN − 13

9
g2

x − 3g2
2 −

16

3
g2

`

)
,(D.15)

β(Yν) =
Yν

16π2

(
3YνY

†
ν + YeY

†
e + 2YF Y †

F + 2Y †
NYN − 7

9
g2

x − 3g2
2 −

16

3
g2

`

)
,(D.16)

β(YF ) =
YF

16π2

(
2YeY

†
e + 2YνY

†
ν + 4YF Y †

F + 4Tr(YF Y †
F )− 1

3
g2

x − 2g2
2 − 8g2

`

)
,(D.17)

β(YN) =
YN

16π2

(
4YNY †

N + 2Tr(YNY †
N) + 2YeY

†
e + 2YνY

†
ν −

4

3
g2

x − 8g2
`

)
, (D.18)

β(YQ) =
YQ

16π2

(
2YuY

†
u + 2YdY

†
d + 4YQY †

Q + 4Tr(YQY †
Q)− 1

3
g2

x − 2g2
2 − 8g2

3

)
,(D.19)

β(YQ′) =
YQ′

16π2

(
4YQ′Y

†
Q′ + 2Tr(YQ′Y

†
Q′) + 2YuY

†
u + 2YdY

†
d −

4

3
g2

x − 8g2
3

)
. (D.20)

The gauge beta function of our model are

β(gi) = bi
g3

i

16π2
, (D.21)

where bi = (40
3
, 4,−2,−2) for i = x, 2, 3, `.

D.3 A terms

The trilinear soft SUSY breaking terms are given by

AY = −β(Y )

Y
Maux, (D.22)

where Y = (Yu, Yd, Ye, YN , Yν , YF , YQ, YQ′).
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D.4 Gaugino masses

The soft masses of the gauginos are given by:

Mi =
β(gi)

gi

Maux, (D.23)

where i = x, 2, 3, `, corresponding to the gauge groups U(1)x, SU(2)L, SU(3)q and

SU(3)`.

D.5 Soft SUSY masses

The soft masses of the squarks and the sleptons are given in the text. For the

Hu, Hd, χ1, χ̄1, χ2, χ̄2, F , Ec, N c fields are:

(m̃2
soft)

Hu
Hu

=
M2

aux

16π2

[
3Tr(Yuβ(Yu) + Yνβ(Yν))− 1

2
gxβ(gx)− 3

2
g2β(g2)

]
, (D.24)

(m̃2
soft)

Hd
Hd

=
M2

aux

16π2

[
3Tr(Ydβ(Yd) + Yeβ(Ye))− 1

2
gxβ(gx)− 3

2
g2β(g2)

]
, (D.25)

(m̃2
soft)

χ1
χ1

=
M2

aux

16π2

[
4Tr(YF β(YF ))− 2

9
gxβ(gx)− 8

3
g`β(g`)

]
, (D.26)

(m̃2
soft)

χ̄1
χ̄1

=
M2

aux

16π2

[
2Tr(YNβ(YN))− 2

9
gxβ(gx)− 8

3
g`β(g`)

]
, (D.27)

(m̃2
soft)

χ2
χ2

=
M2

aux

16π2

[
4Tr(YQβ(YQ))− 2

9
gxβ(gx)− 8

3
g3β(g3)

]
, (D.28)

(m̃2
soft)

χ̄2
χ̄2

=
M2

aux

16π2

[
2Tr(Y ′

Qβ(Y ′
Q))− 2

9
gxβ(gx)− 8

3
g3β(g3)

]
, (D.29)

(m̃2
soft)

Ec

Ec =
M2

aux

(16π2)

[
2Yeβ(Ye) + 2YNβ(YN)−

(
8

9
gxβ(gx) +

8

3
g`β(g`)

)]
,(D.30)

(m̃2
soft)

Nc

Nc =
M2

aux

(16π2)

[
2Yνβ(Yd) + 2YNβ(YN)−

(
+

2

9
gxβ(gx) +

8

3
g`β(g`)

)]
,(D.31)

(m̃2
soft)

F
F =

M2
aux

(16π2)
[Yeβ(Ye) + Yνβ(Yν) + 2YF β(YF )

−
(

3

2
g2β(g2) +

1

18
gxβ(gx) +

8

3
g`β(g`)

)]
. (D.32)



APPENDIX E

Two Generation Neutrino Oscillation Model

Consider the production by β-decay with new physics interaction and detection

by leptonic interaction with no new physics. The production Lagrangian can be

expressed as

Lprod =
GF Vus√

2
ūLγµ(1− γ5)dēγµ(1− γ5) ( 1 + ε11 ε12 ε13 )




νe

νµ

ντ


 + H.C, (E.1)

where ε’s are the new physics parameters.

For simplicity we consider the two generation case. We can write the production

Lagrangian as

Lprod =
GF Vus√

2
ūγµ(1− γ5)dēγµ(1− γ5)e

iγ ( 1 + ε11 ε12 )

×
(

cos θ sin θ

− sin θe−2iα cos θe−2iα

)(
ν1

ν2

)
+ H.C.

The charged current part of the detection Lagrangian is given by

Lcc
det =

GF√
2
µ̄γµ(1− γ5)νµν̄eγ

µ(1− γ5)e, (E.2)

=
GF√

2
µ̄γµ(1− γ5) (− sin θν1 + cos θν2)︸ ︷︷ ︸

observed

(cos θν̄1 + sin θν̄2)︸ ︷︷ ︸
unobserved

γµ(1− γ5)e.(E.3)

The probability of νe → νµ is given by

Pνe→νµ = |A(νe → νµ)|2

=

∣∣∣∣∣
− cos θ sin θ(1 + ε11) + sin2 θε12e

−2iα

√
|1 + ε11|2 + |ε12|2

∣∣∣∣∣

2

+

∣∣∣∣∣
cos θ sin θ(1 + ε11) + cos2 θε12e

−2iα

√
|1 + ε11|2 + |ε12|2

∣∣∣∣∣

2
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+ ei(E1−E2)t

[
− cos θ sin θ(1 + ε11) + sin2 θε12e

−2iα

√
|1 + ε11|2 + |ε12|2

]

×
[

cos θ sin θ(1 + ε∗11) + cos2 θε∗12e
2iα

√
|1 + ε11|2 + |ε12|2

]

+ ei(E2−E1)t

[
− cos θ sin θ(1 + ε∗11) + sin2 θε∗12e

2iα

√
|1 + ε11|2 + |ε12|2

]

×
[

cos θ sin θ(1 + ε11) + cos2 θε12e
−2iα

√
|1 + ε11|2 + |ε12|2

]
,

≡ sin2 θd cos2 θs + cos2 θd sin2 θs

− 2 sin θs sin θd cos θs cos θd cos

[
∆m2

12t

2E
+ β

]
(E.4)

where

β = arg
(
[cos θs(1 + ε11)− sin θsε12e

−2iα][sin θs(1 + ε∗11) + cos θsε
∗
11e

2iα]
)
,

' 2
|ε12| sin ϕ

sin 2θd

, (E.5)

cos θs =

∣∣∣∣∣
cos θ(1 + ε11)− sin θε12e

−2iα

√
|1 + ε11|2 + |ε12|2

∣∣∣∣∣ ' cos θd − sin θd|ε12| cos ϕ, (E.6)

sin θs =

∣∣∣∣∣
sin θ(1 + ε11) + cos θε12e

−2iα

√
|1 + ε11|2 + |ε12|2

∣∣∣∣∣ ' sin θd + cos θd|ε12| cos ϕ. (E.7)

Where we have use the parametrization

ε12 = |ε12|eiφ12 and 1 + ε11 = |1 + ε11|eiφ11 , ϕ = 2α− φ12 + φ11. (E.8)

We find the probabilities to be:

Pνe→νµ ' sin2 2θ sin2

(
∆m2t

4E

)

+ |ε12| sin 2θ

[
2 cos 2θ cos(ϕ) sin2

(
∆m2t

4E

)
+ sin ϕ sin

(
∆m2t

2E

)]
,(E.9)

Pν̄e→ν̄µ ' sin2 2θ sin2

(
∆m2t

4E

)

+ |ε12| sin 2θ

[
2 cos 2θ cos ϕ sin2

(
∆m2t

4E

)
− sin ϕ sin

(
∆m2t

2E

)]
.(E.10)

The CP asymmetry (A) of νe → νµ defined as:

A(νe → νµ) =
Pνe→νµ − Pν̄e→ν̄µ

Pνe→νµ + Pν̄e→ν̄µ

, (E.11)
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'
2|ε12| sin 2θ sin ϕ sin

(
∆m2t
2E

)

2 sin2 2θ sin2
(

∆m2t
4E

) , (E.12)

' 2|ε12| sin ϕ

[√
1− ρ

sin2 2θ√
ρ

]
, (E.13)

where

ρ = sin2 2θ sin2

[
∆m2t

4E

]
. (E.14)

We observed that because of the introduction of new physics, Pνe→νµ 6= Pν̄e→ν̄µ and

hence there will be an observable CP asymmetry as shown above. This Asymmetry

is due to the fact that we assumed source 6= detector. This new physics effect can

contribute up to 10% deviation from Standard Model and hence can give a large CP

violation.
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